2006-12-01 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 table->dynamic_sections_created = FALSE;
1596 table->dynobj = NULL;
1597 table->init_got_refcount.refcount = can_refcount - 1;
1598 table->init_plt_refcount.refcount = can_refcount - 1;
1599 table->init_got_offset.offset = -(bfd_vma) 1;
1600 table->init_plt_offset.offset = -(bfd_vma) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table->dynsymcount = 1;
1603 table->dynstr = NULL;
1604 table->bucketcount = 0;
1605 table->needed = NULL;
1606 table->hgot = NULL;
1607 table->hplt = NULL;
1608 table->merge_info = NULL;
1609 memset (&table->stab_info, 0, sizeof (table->stab_info));
1610 memset (&table->eh_info, 0, sizeof (table->eh_info));
1611 table->dynlocal = NULL;
1612 table->runpath = NULL;
1613 table->tls_sec = NULL;
1614 table->tls_size = 0;
1615 table->loaded = NULL;
1616 table->is_relocatable_executable = FALSE;
1617
1618 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1619 table->root.type = bfd_link_elf_hash_table;
1620
1621 return ret;
1622 }
1623
1624 /* Create an ELF linker hash table. */
1625
1626 struct bfd_link_hash_table *
1627 _bfd_elf_link_hash_table_create (bfd *abfd)
1628 {
1629 struct elf_link_hash_table *ret;
1630 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1631
1632 ret = bfd_malloc (amt);
1633 if (ret == NULL)
1634 return NULL;
1635
1636 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1637 sizeof (struct elf_link_hash_entry)))
1638 {
1639 free (ret);
1640 return NULL;
1641 }
1642
1643 return &ret->root;
1644 }
1645
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1649
1650 void
1651 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1652 {
1653 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd) == bfd_object)
1655 elf_dt_name (abfd) = name;
1656 }
1657
1658 int
1659 bfd_elf_get_dyn_lib_class (bfd *abfd)
1660 {
1661 int lib_class;
1662 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd) == bfd_object)
1664 lib_class = elf_dyn_lib_class (abfd);
1665 else
1666 lib_class = 0;
1667 return lib_class;
1668 }
1669
1670 void
1671 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1672 {
1673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd) == bfd_object)
1675 elf_dyn_lib_class (abfd) = lib_class;
1676 }
1677
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1680
1681 struct bfd_link_needed_list *
1682 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684 {
1685 if (! is_elf_hash_table (info->hash))
1686 return NULL;
1687 return elf_hash_table (info)->needed;
1688 }
1689
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1692
1693 struct bfd_link_needed_list *
1694 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1695 struct bfd_link_info *info)
1696 {
1697 if (! is_elf_hash_table (info->hash))
1698 return NULL;
1699 return elf_hash_table (info)->runpath;
1700 }
1701
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1705
1706 const char *
1707 bfd_elf_get_dt_soname (bfd *abfd)
1708 {
1709 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd) == bfd_object)
1711 return elf_dt_name (abfd);
1712 return NULL;
1713 }
1714
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1717
1718 bfd_boolean
1719 bfd_elf_get_bfd_needed_list (bfd *abfd,
1720 struct bfd_link_needed_list **pneeded)
1721 {
1722 asection *s;
1723 bfd_byte *dynbuf = NULL;
1724 int elfsec;
1725 unsigned long shlink;
1726 bfd_byte *extdyn, *extdynend;
1727 size_t extdynsize;
1728 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1729
1730 *pneeded = NULL;
1731
1732 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd) != bfd_object)
1734 return TRUE;
1735
1736 s = bfd_get_section_by_name (abfd, ".dynamic");
1737 if (s == NULL || s->size == 0)
1738 return TRUE;
1739
1740 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1741 goto error_return;
1742
1743 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1744 if (elfsec == -1)
1745 goto error_return;
1746
1747 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1748
1749 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1750 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1751
1752 extdyn = dynbuf;
1753 extdynend = extdyn + s->size;
1754 for (; extdyn < extdynend; extdyn += extdynsize)
1755 {
1756 Elf_Internal_Dyn dyn;
1757
1758 (*swap_dyn_in) (abfd, extdyn, &dyn);
1759
1760 if (dyn.d_tag == DT_NULL)
1761 break;
1762
1763 if (dyn.d_tag == DT_NEEDED)
1764 {
1765 const char *string;
1766 struct bfd_link_needed_list *l;
1767 unsigned int tagv = dyn.d_un.d_val;
1768 bfd_size_type amt;
1769
1770 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1771 if (string == NULL)
1772 goto error_return;
1773
1774 amt = sizeof *l;
1775 l = bfd_alloc (abfd, amt);
1776 if (l == NULL)
1777 goto error_return;
1778
1779 l->by = abfd;
1780 l->name = string;
1781 l->next = *pneeded;
1782 *pneeded = l;
1783 }
1784 }
1785
1786 free (dynbuf);
1787
1788 return TRUE;
1789
1790 error_return:
1791 if (dynbuf != NULL)
1792 free (dynbuf);
1793 return FALSE;
1794 }
1795 \f
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1797
1798 struct bfd_strtab_hash *
1799 _bfd_elf_stringtab_init (void)
1800 {
1801 struct bfd_strtab_hash *ret;
1802
1803 ret = _bfd_stringtab_init ();
1804 if (ret != NULL)
1805 {
1806 bfd_size_type loc;
1807
1808 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1809 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1810 if (loc == (bfd_size_type) -1)
1811 {
1812 _bfd_stringtab_free (ret);
1813 ret = NULL;
1814 }
1815 }
1816 return ret;
1817 }
1818 \f
1819 /* ELF .o/exec file reading */
1820
1821 /* Create a new bfd section from an ELF section header. */
1822
1823 bfd_boolean
1824 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1825 {
1826 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1827 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1829 const char *name;
1830
1831 name = bfd_elf_string_from_elf_section (abfd,
1832 elf_elfheader (abfd)->e_shstrndx,
1833 hdr->sh_name);
1834 if (name == NULL)
1835 return FALSE;
1836
1837 switch (hdr->sh_type)
1838 {
1839 case SHT_NULL:
1840 /* Inactive section. Throw it away. */
1841 return TRUE;
1842
1843 case SHT_PROGBITS: /* Normal section with contents. */
1844 case SHT_NOBITS: /* .bss section. */
1845 case SHT_HASH: /* .hash section. */
1846 case SHT_NOTE: /* .note section. */
1847 case SHT_INIT_ARRAY: /* .init_array section. */
1848 case SHT_FINI_ARRAY: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853
1854 case SHT_DYNAMIC: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1856 return FALSE;
1857 if (hdr->sh_link > elf_numsections (abfd)
1858 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1859 return FALSE;
1860 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1861 {
1862 Elf_Internal_Shdr *dynsymhdr;
1863
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd) != 0)
1868 {
1869 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1870 hdr->sh_link = dynsymhdr->sh_link;
1871 }
1872 else
1873 {
1874 unsigned int i, num_sec;
1875
1876 num_sec = elf_numsections (abfd);
1877 for (i = 1; i < num_sec; i++)
1878 {
1879 dynsymhdr = elf_elfsections (abfd)[i];
1880 if (dynsymhdr->sh_type == SHT_DYNSYM)
1881 {
1882 hdr->sh_link = dynsymhdr->sh_link;
1883 break;
1884 }
1885 }
1886 }
1887 }
1888 break;
1889
1890 case SHT_SYMTAB: /* A symbol table */
1891 if (elf_onesymtab (abfd) == shindex)
1892 return TRUE;
1893
1894 if (hdr->sh_entsize != bed->s->sizeof_sym)
1895 return FALSE;
1896 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1897 elf_onesymtab (abfd) = shindex;
1898 elf_tdata (abfd)->symtab_hdr = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1900 abfd->flags |= HAS_SYMS;
1901
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1907 linker. */
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0
1909 && (abfd->flags & DYNAMIC) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1911 shindex))
1912 return FALSE;
1913
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1918 {
1919 unsigned int i, num_sec;
1920
1921 num_sec = elf_numsections (abfd);
1922 for (i = shindex + 1; i < num_sec; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i == num_sec)
1930 for (i = 1; i < shindex; i++)
1931 {
1932 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1933 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1934 && hdr2->sh_link == shindex)
1935 break;
1936 }
1937 if (i != shindex)
1938 return bfd_section_from_shdr (abfd, i);
1939 }
1940 return TRUE;
1941
1942 case SHT_DYNSYM: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd) == shindex)
1944 return TRUE;
1945
1946 if (hdr->sh_entsize != bed->s->sizeof_sym)
1947 return FALSE;
1948 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1949 elf_dynsymtab (abfd) = shindex;
1950 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1951 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1952 abfd->flags |= HAS_SYMS;
1953
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1957
1958 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd) == shindex)
1960 return TRUE;
1961
1962 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1963 elf_symtab_shndx (abfd) = shindex;
1964 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1965 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1966 return TRUE;
1967
1968 case SHT_STRTAB: /* A string table */
1969 if (hdr->bfd_section != NULL)
1970 return TRUE;
1971 if (ehdr->e_shstrndx == shindex)
1972 {
1973 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1974 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1975 return TRUE;
1976 }
1977 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1978 {
1979 symtab_strtab:
1980 elf_tdata (abfd)->strtab_hdr = *hdr;
1981 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1982 return TRUE;
1983 }
1984 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1985 {
1986 dynsymtab_strtab:
1987 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1988 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1989 elf_elfsections (abfd)[shindex] = hdr;
1990 /* We also treat this as a regular section, so that objcopy
1991 can handle it. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1993 shindex);
1994 }
1995
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2000 {
2001 unsigned int i, num_sec;
2002
2003 num_sec = elf_numsections (abfd);
2004 for (i = 1; i < num_sec; i++)
2005 {
2006 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2007 if (hdr2->sh_link == shindex)
2008 {
2009 /* Prevent endless recursion on broken objects. */
2010 if (i == shindex)
2011 return FALSE;
2012 if (! bfd_section_from_shdr (abfd, i))
2013 return FALSE;
2014 if (elf_onesymtab (abfd) == i)
2015 goto symtab_strtab;
2016 if (elf_dynsymtab (abfd) == i)
2017 goto dynsymtab_strtab;
2018 }
2019 }
2020 }
2021 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2022
2023 case SHT_REL:
2024 case SHT_RELA:
2025 /* *These* do a lot of work -- but build no sections! */
2026 {
2027 asection *target_sect;
2028 Elf_Internal_Shdr *hdr2;
2029 unsigned int num_sec = elf_numsections (abfd);
2030
2031 if (hdr->sh_entsize
2032 != (bfd_size_type) (hdr->sh_type == SHT_REL
2033 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2034 return FALSE;
2035
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2038 || hdr->sh_link >= num_sec)
2039 {
2040 ((*_bfd_error_handler)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd, hdr->sh_link, name, shindex));
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2044 shindex);
2045 }
2046
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2055 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2056 {
2057 unsigned int scan;
2058 int found;
2059
2060 found = 0;
2061 for (scan = 1; scan < num_sec; scan++)
2062 {
2063 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2064 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2065 {
2066 if (found != 0)
2067 {
2068 found = 0;
2069 break;
2070 }
2071 found = scan;
2072 }
2073 }
2074 if (found != 0)
2075 hdr->sh_link = found;
2076 }
2077
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2080 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2081 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2082 return FALSE;
2083
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr->sh_link != elf_onesymtab (abfd)
2091 || hdr->sh_info == SHN_UNDEF
2092 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2093 || hdr->sh_info >= num_sec
2094 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2095 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2096 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2097 shindex);
2098
2099 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2100 return FALSE;
2101 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2102 if (target_sect == NULL)
2103 return FALSE;
2104
2105 if ((target_sect->flags & SEC_RELOC) == 0
2106 || target_sect->reloc_count == 0)
2107 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2108 else
2109 {
2110 bfd_size_type amt;
2111 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2112 amt = sizeof (*hdr2);
2113 hdr2 = bfd_alloc (abfd, amt);
2114 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2115 }
2116 *hdr2 = *hdr;
2117 elf_elfsections (abfd)[shindex] = hdr2;
2118 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2119 target_sect->flags |= SEC_RELOC;
2120 target_sect->relocation = NULL;
2121 target_sect->rel_filepos = hdr->sh_offset;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr->sh_size != 0)
2125 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2126 abfd->flags |= HAS_RELOC;
2127 return TRUE;
2128 }
2129
2130 case SHT_GNU_verdef:
2131 elf_dynverdef (abfd) = shindex;
2132 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2133 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2134
2135 case SHT_GNU_versym:
2136 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2137 return FALSE;
2138 elf_dynversym (abfd) = shindex;
2139 elf_tdata (abfd)->dynversym_hdr = *hdr;
2140 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141
2142 case SHT_GNU_verneed:
2143 elf_dynverref (abfd) = shindex;
2144 elf_tdata (abfd)->dynverref_hdr = *hdr;
2145 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2146
2147 case SHT_SHLIB:
2148 return TRUE;
2149
2150 case SHT_GROUP:
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2153 name. */
2154 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2155 return FALSE;
2156 name = group_signature (abfd, hdr);
2157 if (name == NULL)
2158 return FALSE;
2159 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2160 return FALSE;
2161 if (hdr->contents != NULL)
2162 {
2163 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2164 unsigned int n_elt = hdr->sh_size / 4;
2165 asection *s;
2166
2167 if (idx->flags & GRP_COMDAT)
2168 hdr->bfd_section->flags
2169 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2170
2171 /* We try to keep the same section order as it comes in. */
2172 idx += n_elt;
2173 while (--n_elt != 0)
2174 if ((s = (--idx)->shdr->bfd_section) != NULL
2175 && elf_next_in_group (s) != NULL)
2176 {
2177 elf_next_in_group (hdr->bfd_section) = s;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 default:
2184 /* Check for any processor-specific section types. */
2185 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2186 return TRUE;
2187
2188 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2189 {
2190 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197 else
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex);
2201 }
2202 else if (hdr->sh_type >= SHT_LOPROC
2203 && hdr->sh_type <= SHT_HIPROC)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle processor specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2210 {
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler)
2217 (_("%B: don't know how to handle OS specific section "
2218 "`%s' [0x%8x]"),
2219 abfd, name, hdr->sh_type);
2220 else
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 }
2224 else
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229
2230 return FALSE;
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2238
2239 asection *
2240 bfd_section_from_r_symndx (bfd *abfd,
2241 struct sym_sec_cache *cache,
2242 asection *sec,
2243 unsigned long r_symndx)
2244 {
2245 Elf_Internal_Shdr *symtab_hdr;
2246 unsigned char esym[sizeof (Elf64_External_Sym)];
2247 Elf_External_Sym_Shndx eshndx;
2248 Elf_Internal_Sym isym;
2249 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2250
2251 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2252 return cache->sec[ent];
2253
2254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2255 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2256 &isym, esym, &eshndx) == NULL)
2257 return NULL;
2258
2259 if (cache->abfd != abfd)
2260 {
2261 memset (cache->indx, -1, sizeof (cache->indx));
2262 cache->abfd = abfd;
2263 }
2264 cache->indx[ent] = r_symndx;
2265 cache->sec[ent] = sec;
2266 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2267 || isym.st_shndx > SHN_HIRESERVE)
2268 {
2269 asection *s;
2270 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2271 if (s != NULL)
2272 cache->sec[ent] = s;
2273 }
2274 return cache->sec[ent];
2275 }
2276
2277 /* Given an ELF section number, retrieve the corresponding BFD
2278 section. */
2279
2280 asection *
2281 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2282 {
2283 if (index >= elf_numsections (abfd))
2284 return NULL;
2285 return elf_elfsections (abfd)[index]->bfd_section;
2286 }
2287
2288 static const struct bfd_elf_special_section special_sections_b[] =
2289 {
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { NULL, 0, 0, 0, 0 }
2292 };
2293
2294 static const struct bfd_elf_special_section special_sections_c[] =
2295 {
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_d[] =
2301 {
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_f[] =
2316 {
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_g[] =
2323 {
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_h[] =
2336 {
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2338 { NULL, 0, 0, 0, 0 }
2339 };
2340
2341 static const struct bfd_elf_special_section special_sections_i[] =
2342 {
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347 };
2348
2349 static const struct bfd_elf_special_section special_sections_l[] =
2350 {
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353 };
2354
2355 static const struct bfd_elf_special_section special_sections_n[] =
2356 {
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section special_sections_p[] =
2363 {
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2366 { NULL, 0, 0, 0, 0 }
2367 };
2368
2369 static const struct bfd_elf_special_section special_sections_r[] =
2370 {
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_s[] =
2379 {
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2386 { NULL, 0, 0, 0, 0 }
2387 };
2388
2389 static const struct bfd_elf_special_section special_sections_t[] =
2390 {
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2394 { NULL, 0, 0, 0, 0 }
2395 };
2396
2397 static const struct bfd_elf_special_section *special_sections[] =
2398 {
2399 special_sections_b, /* 'b' */
2400 special_sections_c, /* 'b' */
2401 special_sections_d, /* 'd' */
2402 NULL, /* 'e' */
2403 special_sections_f, /* 'f' */
2404 special_sections_g, /* 'g' */
2405 special_sections_h, /* 'h' */
2406 special_sections_i, /* 'i' */
2407 NULL, /* 'j' */
2408 NULL, /* 'k' */
2409 special_sections_l, /* 'l' */
2410 NULL, /* 'm' */
2411 special_sections_n, /* 'n' */
2412 NULL, /* 'o' */
2413 special_sections_p, /* 'p' */
2414 NULL, /* 'q' */
2415 special_sections_r, /* 'r' */
2416 special_sections_s, /* 's' */
2417 special_sections_t, /* 't' */
2418 };
2419
2420 const struct bfd_elf_special_section *
2421 _bfd_elf_get_special_section (const char *name,
2422 const struct bfd_elf_special_section *spec,
2423 unsigned int rela)
2424 {
2425 int i;
2426 int len;
2427
2428 len = strlen (name);
2429
2430 for (i = 0; spec[i].prefix != NULL; i++)
2431 {
2432 int suffix_len;
2433 int prefix_len = spec[i].prefix_length;
2434
2435 if (len < prefix_len)
2436 continue;
2437 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2438 continue;
2439
2440 suffix_len = spec[i].suffix_length;
2441 if (suffix_len <= 0)
2442 {
2443 if (name[prefix_len] != 0)
2444 {
2445 if (suffix_len == 0)
2446 continue;
2447 if (name[prefix_len] != '.'
2448 && (suffix_len == -2
2449 || (rela && spec[i].type == SHT_REL)))
2450 continue;
2451 }
2452 }
2453 else
2454 {
2455 if (len < prefix_len + suffix_len)
2456 continue;
2457 if (memcmp (name + len - suffix_len,
2458 spec[i].prefix + prefix_len,
2459 suffix_len) != 0)
2460 continue;
2461 }
2462 return &spec[i];
2463 }
2464
2465 return NULL;
2466 }
2467
2468 const struct bfd_elf_special_section *
2469 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2470 {
2471 int i;
2472 const struct bfd_elf_special_section *spec;
2473 const struct elf_backend_data *bed;
2474
2475 /* See if this is one of the special sections. */
2476 if (sec->name == NULL)
2477 return NULL;
2478
2479 bed = get_elf_backend_data (abfd);
2480 spec = bed->special_sections;
2481 if (spec)
2482 {
2483 spec = _bfd_elf_get_special_section (sec->name,
2484 bed->special_sections,
2485 sec->use_rela_p);
2486 if (spec != NULL)
2487 return spec;
2488 }
2489
2490 if (sec->name[0] != '.')
2491 return NULL;
2492
2493 i = sec->name[1] - 'b';
2494 if (i < 0 || i > 't' - 'b')
2495 return NULL;
2496
2497 spec = special_sections[i];
2498
2499 if (spec == NULL)
2500 return NULL;
2501
2502 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2503 }
2504
2505 bfd_boolean
2506 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2507 {
2508 struct bfd_elf_section_data *sdata;
2509 const struct elf_backend_data *bed;
2510 const struct bfd_elf_special_section *ssect;
2511
2512 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2513 if (sdata == NULL)
2514 {
2515 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2516 if (sdata == NULL)
2517 return FALSE;
2518 sec->used_by_bfd = sdata;
2519 }
2520
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed = get_elf_backend_data (abfd);
2523 sec->use_rela_p = bed->default_use_rela_p;
2524
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec->flags && abfd->direction != read_direction)
2532 || (sec->flags & SEC_LINKER_CREATED) != 0)
2533 {
2534 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2535 if (ssect != NULL)
2536 {
2537 elf_section_type (sec) = ssect->type;
2538 elf_section_flags (sec) = ssect->attr;
2539 }
2540 }
2541
2542 return _bfd_generic_new_section_hook (abfd, sec);
2543 }
2544
2545 /* Create a new bfd section from an ELF program header.
2546
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2551
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2558
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2564
2565 */
2566
2567 bfd_boolean
2568 _bfd_elf_make_section_from_phdr (bfd *abfd,
2569 Elf_Internal_Phdr *hdr,
2570 int index,
2571 const char *typename)
2572 {
2573 asection *newsect;
2574 char *name;
2575 char namebuf[64];
2576 size_t len;
2577 int split;
2578
2579 split = ((hdr->p_memsz > 0)
2580 && (hdr->p_filesz > 0)
2581 && (hdr->p_memsz > hdr->p_filesz));
2582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2583 len = strlen (namebuf) + 1;
2584 name = bfd_alloc (abfd, len);
2585 if (!name)
2586 return FALSE;
2587 memcpy (name, namebuf, len);
2588 newsect = bfd_make_section (abfd, name);
2589 if (newsect == NULL)
2590 return FALSE;
2591 newsect->vma = hdr->p_vaddr;
2592 newsect->lma = hdr->p_paddr;
2593 newsect->size = hdr->p_filesz;
2594 newsect->filepos = hdr->p_offset;
2595 newsect->flags |= SEC_HAS_CONTENTS;
2596 newsect->alignment_power = bfd_log2 (hdr->p_align);
2597 if (hdr->p_type == PT_LOAD)
2598 {
2599 newsect->flags |= SEC_ALLOC;
2600 newsect->flags |= SEC_LOAD;
2601 if (hdr->p_flags & PF_X)
2602 {
2603 /* FIXME: all we known is that it has execute PERMISSION,
2604 may be data. */
2605 newsect->flags |= SEC_CODE;
2606 }
2607 }
2608 if (!(hdr->p_flags & PF_W))
2609 {
2610 newsect->flags |= SEC_READONLY;
2611 }
2612
2613 if (split)
2614 {
2615 sprintf (namebuf, "%s%db", typename, index);
2616 len = strlen (namebuf) + 1;
2617 name = bfd_alloc (abfd, len);
2618 if (!name)
2619 return FALSE;
2620 memcpy (name, namebuf, len);
2621 newsect = bfd_make_section (abfd, name);
2622 if (newsect == NULL)
2623 return FALSE;
2624 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2625 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2626 newsect->size = hdr->p_memsz - hdr->p_filesz;
2627 if (hdr->p_type == PT_LOAD)
2628 {
2629 newsect->flags |= SEC_ALLOC;
2630 if (hdr->p_flags & PF_X)
2631 newsect->flags |= SEC_CODE;
2632 }
2633 if (!(hdr->p_flags & PF_W))
2634 newsect->flags |= SEC_READONLY;
2635 }
2636
2637 return TRUE;
2638 }
2639
2640 bfd_boolean
2641 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2642 {
2643 const struct elf_backend_data *bed;
2644
2645 switch (hdr->p_type)
2646 {
2647 case PT_NULL:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2649
2650 case PT_LOAD:
2651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2652
2653 case PT_DYNAMIC:
2654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2655
2656 case PT_INTERP:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2658
2659 case PT_NOTE:
2660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2661 return FALSE;
2662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2663 return FALSE;
2664 return TRUE;
2665
2666 case PT_SHLIB:
2667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2668
2669 case PT_PHDR:
2670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2671
2672 case PT_GNU_EH_FRAME:
2673 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2674 "eh_frame_hdr");
2675
2676 case PT_GNU_STACK:
2677 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2678
2679 case PT_GNU_RELRO:
2680 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2681
2682 default:
2683 /* Check for any processor-specific program segment types. */
2684 bed = get_elf_backend_data (abfd);
2685 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2686 }
2687 }
2688
2689 /* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2692
2693 bfd_boolean
2694 _bfd_elf_init_reloc_shdr (bfd *abfd,
2695 Elf_Internal_Shdr *rel_hdr,
2696 asection *asect,
2697 bfd_boolean use_rela_p)
2698 {
2699 char *name;
2700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2701 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2702
2703 name = bfd_alloc (abfd, amt);
2704 if (name == NULL)
2705 return FALSE;
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2713 rel_hdr->sh_entsize = (use_rela_p
2714 ? bed->s->sizeof_rela
2715 : bed->s->sizeof_rel);
2716 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2717 rel_hdr->sh_flags = 0;
2718 rel_hdr->sh_addr = 0;
2719 rel_hdr->sh_size = 0;
2720 rel_hdr->sh_offset = 0;
2721
2722 return TRUE;
2723 }
2724
2725 /* Set up an ELF internal section header for a section. */
2726
2727 static void
2728 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2729 {
2730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2731 bfd_boolean *failedptr = failedptrarg;
2732 Elf_Internal_Shdr *this_hdr;
2733
2734 if (*failedptr)
2735 {
2736 /* We already failed; just get out of the bfd_map_over_sections
2737 loop. */
2738 return;
2739 }
2740
2741 this_hdr = &elf_section_data (asect)->this_hdr;
2742
2743 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2744 asect->name, FALSE);
2745 if (this_hdr->sh_name == (unsigned int) -1)
2746 {
2747 *failedptr = TRUE;
2748 return;
2749 }
2750
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2752
2753 if ((asect->flags & SEC_ALLOC) != 0
2754 || asect->user_set_vma)
2755 this_hdr->sh_addr = asect->vma;
2756 else
2757 this_hdr->sh_addr = 0;
2758
2759 this_hdr->sh_offset = 0;
2760 this_hdr->sh_size = asect->size;
2761 this_hdr->sh_link = 0;
2762 this_hdr->sh_addralign = 1 << asect->alignment_power;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2765
2766 this_hdr->bfd_section = asect;
2767 this_hdr->contents = NULL;
2768
2769 /* If the section type is unspecified, we set it based on
2770 asect->flags. */
2771 if (this_hdr->sh_type == SHT_NULL)
2772 {
2773 if ((asect->flags & SEC_GROUP) != 0)
2774 this_hdr->sh_type = SHT_GROUP;
2775 else if ((asect->flags & SEC_ALLOC) != 0
2776 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2777 || (asect->flags & SEC_NEVER_LOAD) != 0))
2778 this_hdr->sh_type = SHT_NOBITS;
2779 else
2780 this_hdr->sh_type = SHT_PROGBITS;
2781 }
2782
2783 switch (this_hdr->sh_type)
2784 {
2785 default:
2786 break;
2787
2788 case SHT_STRTAB:
2789 case SHT_INIT_ARRAY:
2790 case SHT_FINI_ARRAY:
2791 case SHT_PREINIT_ARRAY:
2792 case SHT_NOTE:
2793 case SHT_NOBITS:
2794 case SHT_PROGBITS:
2795 break;
2796
2797 case SHT_HASH:
2798 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2799 break;
2800
2801 case SHT_DYNSYM:
2802 this_hdr->sh_entsize = bed->s->sizeof_sym;
2803 break;
2804
2805 case SHT_DYNAMIC:
2806 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2807 break;
2808
2809 case SHT_RELA:
2810 if (get_elf_backend_data (abfd)->may_use_rela_p)
2811 this_hdr->sh_entsize = bed->s->sizeof_rela;
2812 break;
2813
2814 case SHT_REL:
2815 if (get_elf_backend_data (abfd)->may_use_rel_p)
2816 this_hdr->sh_entsize = bed->s->sizeof_rel;
2817 break;
2818
2819 case SHT_GNU_versym:
2820 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2821 break;
2822
2823 case SHT_GNU_verdef:
2824 this_hdr->sh_entsize = 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2827 zero. */
2828 if (this_hdr->sh_info == 0)
2829 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2830 else
2831 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2832 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2833 break;
2834
2835 case SHT_GNU_verneed:
2836 this_hdr->sh_entsize = 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2839 zero. */
2840 if (this_hdr->sh_info == 0)
2841 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2842 else
2843 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2844 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2845 break;
2846
2847 case SHT_GROUP:
2848 this_hdr->sh_entsize = 4;
2849 break;
2850
2851 case SHT_GNU_HASH:
2852 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2853 break;
2854 }
2855
2856 if ((asect->flags & SEC_ALLOC) != 0)
2857 this_hdr->sh_flags |= SHF_ALLOC;
2858 if ((asect->flags & SEC_READONLY) == 0)
2859 this_hdr->sh_flags |= SHF_WRITE;
2860 if ((asect->flags & SEC_CODE) != 0)
2861 this_hdr->sh_flags |= SHF_EXECINSTR;
2862 if ((asect->flags & SEC_MERGE) != 0)
2863 {
2864 this_hdr->sh_flags |= SHF_MERGE;
2865 this_hdr->sh_entsize = asect->entsize;
2866 if ((asect->flags & SEC_STRINGS) != 0)
2867 this_hdr->sh_flags |= SHF_STRINGS;
2868 }
2869 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2870 this_hdr->sh_flags |= SHF_GROUP;
2871 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_TLS;
2874 if (asect->size == 0
2875 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2876 {
2877 struct bfd_link_order *o = asect->map_tail.link_order;
2878
2879 this_hdr->sh_size = 0;
2880 if (o != NULL)
2881 {
2882 this_hdr->sh_size = o->offset + o->size;
2883 if (this_hdr->sh_size != 0)
2884 this_hdr->sh_type = SHT_NOBITS;
2885 }
2886 }
2887 }
2888
2889 /* Check for processor-specific section types. */
2890 if (bed->elf_backend_fake_sections
2891 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2892 *failedptr = TRUE;
2893
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect->flags & SEC_RELOC) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd,
2900 &elf_section_data (asect)->rel_hdr,
2901 asect,
2902 asect->use_rela_p))
2903 *failedptr = TRUE;
2904 }
2905
2906 /* Fill in the contents of a SHT_GROUP section. */
2907
2908 void
2909 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2910 {
2911 bfd_boolean *failedptr = failedptrarg;
2912 unsigned long symindx;
2913 asection *elt, *first;
2914 unsigned char *loc;
2915 bfd_boolean gas;
2916
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2918 elfxx-ia64.c. */
2919 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2920 || *failedptr)
2921 return;
2922
2923 symindx = 0;
2924 if (elf_group_id (sec) != NULL)
2925 symindx = elf_group_id (sec)->udata.i;
2926
2927 if (symindx == 0)
2928 {
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd) != NULL)
2932 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2933 else
2934 symindx = sec->target_index;
2935 }
2936 elf_section_data (sec)->this_hdr.sh_info = symindx;
2937
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2939 gas = TRUE;
2940 if (sec->contents == NULL)
2941 {
2942 gas = FALSE;
2943 sec->contents = bfd_alloc (abfd, sec->size);
2944
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec)->this_hdr.contents = sec->contents;
2947 if (sec->contents == NULL)
2948 {
2949 *failedptr = TRUE;
2950 return;
2951 }
2952 }
2953
2954 loc = sec->contents + sec->size;
2955
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first = elt = elf_next_in_group (sec);
2960
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2965 while (elt != NULL)
2966 {
2967 asection *s;
2968 unsigned int idx;
2969
2970 loc -= 4;
2971 s = elt;
2972 if (!gas)
2973 s = s->output_section;
2974 idx = 0;
2975 if (s != NULL)
2976 idx = elf_section_data (s)->this_idx;
2977 H_PUT_32 (abfd, idx, loc);
2978 elt = elf_next_in_group (elt);
2979 if (elt == first)
2980 break;
2981 }
2982
2983 if ((loc -= 4) != sec->contents)
2984 abort ();
2985
2986 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2987 }
2988
2989 /* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2992
2993 static bfd_boolean
2994 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2995 {
2996 struct elf_obj_tdata *t = elf_tdata (abfd);
2997 asection *sec;
2998 unsigned int section_number, secn;
2999 Elf_Internal_Shdr **i_shdrp;
3000 struct bfd_elf_section_data *d;
3001
3002 section_number = 1;
3003
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3005
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info == NULL || link_info->relocatable)
3008 {
3009 /* Put SHT_GROUP sections first. */
3010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3011 {
3012 d = elf_section_data (sec);
3013
3014 if (d->this_hdr.sh_type == SHT_GROUP)
3015 {
3016 if (sec->flags & SEC_LINKER_CREATED)
3017 {
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd, sec);
3020 abfd->section_count--;
3021 }
3022 else
3023 {
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 d->this_idx = section_number++;
3027 }
3028 }
3029 }
3030 }
3031
3032 for (sec = abfd->sections; sec; sec = sec->next)
3033 {
3034 d = elf_section_data (sec);
3035
3036 if (d->this_hdr.sh_type != SHT_GROUP)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->this_idx = section_number++;
3041 }
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3043 if ((sec->flags & SEC_RELOC) == 0)
3044 d->rel_idx = 0;
3045 else
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3051 }
3052
3053 if (d->rel_hdr2)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 d->rel_idx2 = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3059 }
3060 else
3061 d->rel_idx2 = 0;
3062 }
3063
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->shstrtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3068 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3069
3070 if (bfd_get_symcount (abfd) > 0)
3071 {
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->symtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3076 if (section_number > SHN_LORESERVE - 2)
3077 {
3078 if (section_number == SHN_LORESERVE)
3079 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3080 t->symtab_shndx_section = section_number++;
3081 t->symtab_shndx_hdr.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3083 ".symtab_shndx", FALSE);
3084 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3085 return FALSE;
3086 }
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->strtab_section = section_number++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3091 }
3092
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3094 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3095
3096 elf_numsections (abfd) = section_number;
3097 elf_elfheader (abfd)->e_shnum = section_number;
3098 if (section_number > SHN_LORESERVE)
3099 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3100
3101 /* Set up the list of section header pointers, in agreement with the
3102 indices. */
3103 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3104 if (i_shdrp == NULL)
3105 return FALSE;
3106
3107 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3108 if (i_shdrp[0] == NULL)
3109 {
3110 bfd_release (abfd, i_shdrp);
3111 return FALSE;
3112 }
3113
3114 elf_elfsections (abfd) = i_shdrp;
3115
3116 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3117 if (bfd_get_symcount (abfd) > 0)
3118 {
3119 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3120 if (elf_numsections (abfd) > SHN_LORESERVE)
3121 {
3122 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3123 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3124 }
3125 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3126 t->symtab_hdr.sh_link = t->strtab_section;
3127 }
3128
3129 for (sec = abfd->sections; sec; sec = sec->next)
3130 {
3131 struct bfd_elf_section_data *d = elf_section_data (sec);
3132 asection *s;
3133 const char *name;
3134
3135 i_shdrp[d->this_idx] = &d->this_hdr;
3136 if (d->rel_idx != 0)
3137 i_shdrp[d->rel_idx] = &d->rel_hdr;
3138 if (d->rel_idx2 != 0)
3139 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3140
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3142
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d->rel_idx != 0)
3147 {
3148 d->rel_hdr.sh_link = t->symtab_section;
3149 d->rel_hdr.sh_info = d->this_idx;
3150 }
3151 if (d->rel_idx2 != 0)
3152 {
3153 d->rel_hdr2->sh_link = t->symtab_section;
3154 d->rel_hdr2->sh_info = d->this_idx;
3155 }
3156
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3159 {
3160 s = elf_linked_to_section (sec);
3161 if (s)
3162 {
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info != NULL)
3165 {
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s))
3168 {
3169 asection *kept;
3170 (*_bfd_error_handler)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd, d->this_hdr.bfd_section,
3173 s, s->owner);
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept = _bfd_elf_check_kept_section (s, link_info);
3177 if (kept == NULL)
3178 {
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = kept;
3183 }
3184
3185 s = s->output_section;
3186 BFD_ASSERT (s != NULL);
3187 }
3188 else
3189 {
3190 /* Handle objcopy. */
3191 if (s->output_section == NULL)
3192 {
3193 (*_bfd_error_handler)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd, d->this_hdr.bfd_section, s, s->owner);
3196 bfd_set_error (bfd_error_bad_value);
3197 return FALSE;
3198 }
3199 s = s->output_section;
3200 }
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 }
3203 else
3204 {
3205 /* PR 290:
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3209 where s is NULL. */
3210 const struct elf_backend_data *bed
3211 = get_elf_backend_data (abfd);
3212 if (bed->link_order_error_handler)
3213 bed->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3215 abfd, sec);
3216 }
3217 }
3218
3219 switch (d->this_hdr.sh_type)
3220 {
3221 case SHT_REL:
3222 case SHT_RELA:
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s = bfd_get_section_by_name (abfd, ".dynsym");
3230 if (s != NULL)
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232
3233 /* We look up the section the relocs apply to by name. */
3234 name = sec->name;
3235 if (d->this_hdr.sh_type == SHT_REL)
3236 name += 4;
3237 else
3238 name += 5;
3239 s = bfd_get_section_by_name (abfd, name);
3240 if (s != NULL)
3241 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3242 break;
3243
3244 case SHT_STRTAB:
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec->name, ".stab")
3250 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3251 {
3252 size_t len;
3253 char *alc;
3254
3255 len = strlen (sec->name);
3256 alc = bfd_malloc (len - 2);
3257 if (alc == NULL)
3258 return FALSE;
3259 memcpy (alc, sec->name, len - 3);
3260 alc[len - 3] = '\0';
3261 s = bfd_get_section_by_name (abfd, alc);
3262 free (alc);
3263 if (s != NULL)
3264 {
3265 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3266
3267 /* This is a .stab section. */
3268 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3269 elf_section_data (s)->this_hdr.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3271 }
3272 }
3273 break;
3274
3275 case SHT_DYNAMIC:
3276 case SHT_DYNSYM:
3277 case SHT_GNU_verneed:
3278 case SHT_GNU_verdef:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3281 version strings. */
3282 s = bfd_get_section_by_name (abfd, ".dynstr");
3283 if (s != NULL)
3284 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3285 break;
3286
3287 case SHT_GNU_LIBLIST:
3288 /* sh_link is the section header index of the prelink library
3289 list
3290 used for the dynamic entries, or the symbol table, or the
3291 version strings. */
3292 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3293 ? ".dynstr" : ".gnu.libstr");
3294 if (s != NULL)
3295 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3296 break;
3297
3298 case SHT_HASH:
3299 case SHT_GNU_HASH:
3300 case SHT_GNU_versym:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s = bfd_get_section_by_name (abfd, ".dynsym");
3304 if (s != NULL)
3305 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3306 break;
3307
3308 case SHT_GROUP:
3309 d->this_hdr.sh_link = t->symtab_section;
3310 }
3311 }
3312
3313 for (secn = 1; secn < section_number; ++secn)
3314 if (i_shdrp[secn] == NULL)
3315 i_shdrp[secn] = i_shdrp[0];
3316 else
3317 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3318 i_shdrp[secn]->sh_name);
3319 return TRUE;
3320 }
3321
3322 /* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3324
3325 static bfd_boolean
3326 sym_is_global (bfd *abfd, asymbol *sym)
3327 {
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3330 if (bed->elf_backend_sym_is_global)
3331 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3332
3333 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym))
3335 || bfd_is_com_section (bfd_get_section (sym)));
3336 }
3337
3338 /* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3341
3342 static bfd_boolean
3343 ignore_section_sym (bfd *abfd, asymbol *sym)
3344 {
3345 return ((sym->flags & BSF_SECTION_SYM) != 0
3346 && (sym->value != 0
3347 || (sym->section->owner != abfd
3348 && (sym->section->output_section->owner != abfd
3349 || sym->section->output_offset != 0))));
3350 }
3351
3352 static bfd_boolean
3353 elf_map_symbols (bfd *abfd)
3354 {
3355 unsigned int symcount = bfd_get_symcount (abfd);
3356 asymbol **syms = bfd_get_outsymbols (abfd);
3357 asymbol **sect_syms;
3358 unsigned int num_locals = 0;
3359 unsigned int num_globals = 0;
3360 unsigned int num_locals2 = 0;
3361 unsigned int num_globals2 = 0;
3362 int max_index = 0;
3363 unsigned int idx;
3364 asection *asect;
3365 asymbol **new_syms;
3366
3367 #ifdef DEBUG
3368 fprintf (stderr, "elf_map_symbols\n");
3369 fflush (stderr);
3370 #endif
3371
3372 for (asect = abfd->sections; asect; asect = asect->next)
3373 {
3374 if (max_index < asect->index)
3375 max_index = asect->index;
3376 }
3377
3378 max_index++;
3379 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3380 if (sect_syms == NULL)
3381 return FALSE;
3382 elf_section_syms (abfd) = sect_syms;
3383 elf_num_section_syms (abfd) = max_index;
3384
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 asymbol *sym = syms[idx];
3390
3391 if ((sym->flags & BSF_SECTION_SYM) != 0
3392 && !ignore_section_sym (abfd, sym))
3393 {
3394 asection *sec = sym->section;
3395
3396 if (sec->owner != abfd)
3397 sec = sec->output_section;
3398
3399 sect_syms[sec->index] = syms[idx];
3400 }
3401 }
3402
3403 /* Classify all of the symbols. */
3404 for (idx = 0; idx < symcount; idx++)
3405 {
3406 if (ignore_section_sym (abfd, syms[idx]))
3407 continue;
3408 if (!sym_is_global (abfd, syms[idx]))
3409 num_locals++;
3410 else
3411 num_globals++;
3412 }
3413
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect = abfd->sections; asect; asect = asect->next)
3419 {
3420 if (sect_syms[asect->index] == NULL)
3421 {
3422 if (!sym_is_global (abfd, asect->symbol))
3423 num_locals++;
3424 else
3425 num_globals++;
3426 }
3427 }
3428
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3431
3432 if (new_syms == NULL)
3433 return FALSE;
3434
3435 for (idx = 0; idx < symcount; idx++)
3436 {
3437 asymbol *sym = syms[idx];
3438 unsigned int i;
3439
3440 if (ignore_section_sym (abfd, sym))
3441 continue;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (sect_syms[asect->index] == NULL)
3452 {
3453 asymbol *sym = asect->symbol;
3454 unsigned int i;
3455
3456 sect_syms[asect->index] = sym;
3457 if (!sym_is_global (abfd, sym))
3458 i = num_locals2++;
3459 else
3460 i = num_locals + num_globals2++;
3461 new_syms[i] = sym;
3462 sym->udata.i = i + 1;
3463 }
3464 }
3465
3466 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3467
3468 elf_num_locals (abfd) = num_locals;
3469 elf_num_globals (abfd) = num_globals;
3470 return TRUE;
3471 }
3472
3473 /* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3475
3476 static inline file_ptr
3477 align_file_position (file_ptr off, int align)
3478 {
3479 return (off + align - 1) & ~(align - 1);
3480 }
3481
3482 /* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3484
3485 file_ptr
3486 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3487 file_ptr offset,
3488 bfd_boolean align)
3489 {
3490 if (align)
3491 {
3492 unsigned int al;
3493
3494 al = i_shdrp->sh_addralign;
3495 if (al > 1)
3496 offset = BFD_ALIGN (offset, al);
3497 }
3498 i_shdrp->sh_offset = offset;
3499 if (i_shdrp->bfd_section != NULL)
3500 i_shdrp->bfd_section->filepos = offset;
3501 if (i_shdrp->sh_type != SHT_NOBITS)
3502 offset += i_shdrp->sh_size;
3503 return offset;
3504 }
3505
3506 /* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3509
3510 bfd_boolean
3511 _bfd_elf_compute_section_file_positions (bfd *abfd,
3512 struct bfd_link_info *link_info)
3513 {
3514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3515 bfd_boolean failed;
3516 struct bfd_strtab_hash *strtab = NULL;
3517 Elf_Internal_Shdr *shstrtab_hdr;
3518
3519 if (abfd->output_has_begun)
3520 return TRUE;
3521
3522 /* Do any elf backend specific processing first. */
3523 if (bed->elf_backend_begin_write_processing)
3524 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3525
3526 if (! prep_headers (abfd))
3527 return FALSE;
3528
3529 /* Post process the headers if necessary. */
3530 if (bed->elf_backend_post_process_headers)
3531 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3532
3533 failed = FALSE;
3534 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3535 if (failed)
3536 return FALSE;
3537
3538 if (!assign_section_numbers (abfd, link_info))
3539 return FALSE;
3540
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3543 {
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3546
3547 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3548 return FALSE;
3549 }
3550
3551 if (link_info == NULL)
3552 {
3553 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3554 if (failed)
3555 return FALSE;
3556 }
3557
3558 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr->sh_type = SHT_STRTAB;
3561 shstrtab_hdr->sh_flags = 0;
3562 shstrtab_hdr->sh_addr = 0;
3563 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3564 shstrtab_hdr->sh_entsize = 0;
3565 shstrtab_hdr->sh_link = 0;
3566 shstrtab_hdr->sh_info = 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr->sh_addralign = 1;
3569
3570 if (!assign_file_positions_except_relocs (abfd, link_info))
3571 return FALSE;
3572
3573 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3574 {
3575 file_ptr off;
3576 Elf_Internal_Shdr *hdr;
3577
3578 off = elf_tdata (abfd)->next_file_pos;
3579
3580 hdr = &elf_tdata (abfd)->symtab_hdr;
3581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3582
3583 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3584 if (hdr->sh_size != 0)
3585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3586
3587 hdr = &elf_tdata (abfd)->strtab_hdr;
3588 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3589
3590 elf_tdata (abfd)->next_file_pos = off;
3591
3592 /* Now that we know where the .strtab section goes, write it
3593 out. */
3594 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3595 || ! _bfd_stringtab_emit (abfd, strtab))
3596 return FALSE;
3597 _bfd_stringtab_free (strtab);
3598 }
3599
3600 abfd->output_has_begun = TRUE;
3601
3602 return TRUE;
3603 }
3604
3605 /* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3607
3608 static bfd_size_type
3609 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3610 {
3611 size_t segs;
3612 asection *s;
3613 const struct elf_backend_data *bed;
3614
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3617 segs = 2;
3618
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3625 targets. */
3626 segs += 2;
3627 }
3628
3629 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3630 {
3631 /* We need a PT_DYNAMIC segment. */
3632 ++segs;
3633
3634 if (elf_tdata (abfd)->relro)
3635 {
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3638 ++segs;
3639 }
3640 }
3641
3642 if (elf_tdata (abfd)->eh_frame_hdr)
3643 {
3644 /* We need a PT_GNU_EH_FRAME segment. */
3645 ++segs;
3646 }
3647
3648 if (elf_tdata (abfd)->stack_flags)
3649 {
3650 /* We need a PT_GNU_STACK segment. */
3651 ++segs;
3652 }
3653
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_LOAD) != 0
3657 && CONST_STRNEQ (s->name, ".note"))
3658 {
3659 /* We need a PT_NOTE segment. */
3660 ++segs;
3661 }
3662 }
3663
3664 for (s = abfd->sections; s != NULL; s = s->next)
3665 {
3666 if (s->flags & SEC_THREAD_LOCAL)
3667 {
3668 /* We need a PT_TLS segment. */
3669 ++segs;
3670 break;
3671 }
3672 }
3673
3674 /* Let the backend count up any program headers it might need. */
3675 bed = get_elf_backend_data (abfd);
3676 if (bed->elf_backend_additional_program_headers)
3677 {
3678 int a;
3679
3680 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3681 if (a == -1)
3682 abort ();
3683 segs += a;
3684 }
3685
3686 return segs * bed->s->sizeof_phdr;
3687 }
3688
3689 /* Create a mapping from a set of sections to a program segment. */
3690
3691 static struct elf_segment_map *
3692 make_mapping (bfd *abfd,
3693 asection **sections,
3694 unsigned int from,
3695 unsigned int to,
3696 bfd_boolean phdr)
3697 {
3698 struct elf_segment_map *m;
3699 unsigned int i;
3700 asection **hdrpp;
3701 bfd_size_type amt;
3702
3703 amt = sizeof (struct elf_segment_map);
3704 amt += (to - from - 1) * sizeof (asection *);
3705 m = bfd_zalloc (abfd, amt);
3706 if (m == NULL)
3707 return NULL;
3708 m->next = NULL;
3709 m->p_type = PT_LOAD;
3710 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3711 m->sections[i - from] = *hdrpp;
3712 m->count = to - from;
3713
3714 if (from == 0 && phdr)
3715 {
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m->includes_filehdr = 1;
3718 m->includes_phdrs = 1;
3719 }
3720
3721 return m;
3722 }
3723
3724 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3725 on failure. */
3726
3727 struct elf_segment_map *
3728 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3729 {
3730 struct elf_segment_map *m;
3731
3732 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3733 if (m == NULL)
3734 return NULL;
3735 m->next = NULL;
3736 m->p_type = PT_DYNAMIC;
3737 m->count = 1;
3738 m->sections[0] = dynsec;
3739
3740 return m;
3741 }
3742
3743 /* Possibly add or remove segments from the segment map. */
3744
3745 static bfd_boolean
3746 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3747 {
3748 struct elf_segment_map **m;
3749 const struct elf_backend_data *bed;
3750
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3755 removed. */
3756 m = &elf_tdata (abfd)->segment_map;
3757 while (*m)
3758 {
3759 unsigned int i, new_count;
3760
3761 for (new_count = 0, i = 0; i < (*m)->count; i++)
3762 {
3763 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3764 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3765 || (*m)->p_type != PT_LOAD))
3766 {
3767 (*m)->sections[new_count] = (*m)->sections[i];
3768 new_count++;
3769 }
3770 }
3771 (*m)->count = new_count;
3772
3773 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3774 *m = (*m)->next;
3775 else
3776 m = &(*m)->next;
3777 }
3778
3779 bed = get_elf_backend_data (abfd);
3780 if (bed->elf_backend_modify_segment_map != NULL)
3781 {
3782 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3783 return FALSE;
3784 }
3785
3786 return TRUE;
3787 }
3788
3789 /* Set up a mapping from BFD sections to program segments. */
3790
3791 bfd_boolean
3792 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3793 {
3794 unsigned int count;
3795 struct elf_segment_map *m;
3796 asection **sections = NULL;
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798
3799 if (elf_tdata (abfd)->segment_map == NULL
3800 && bfd_count_sections (abfd) != 0)
3801 {
3802 asection *s;
3803 unsigned int i;
3804 struct elf_segment_map *mfirst;
3805 struct elf_segment_map **pm;
3806 asection *last_hdr;
3807 bfd_vma last_size;
3808 unsigned int phdr_index;
3809 bfd_vma maxpagesize;
3810 asection **hdrpp;
3811 bfd_boolean phdr_in_segment = TRUE;
3812 bfd_boolean writable;
3813 int tls_count = 0;
3814 asection *first_tls = NULL;
3815 asection *dynsec, *eh_frame_hdr;
3816 bfd_size_type amt;
3817
3818 /* Select the allocated sections, and sort them. */
3819
3820 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3821 if (sections == NULL)
3822 goto error_return;
3823
3824 i = 0;
3825 for (s = abfd->sections; s != NULL; s = s->next)
3826 {
3827 if ((s->flags & SEC_ALLOC) != 0)
3828 {
3829 sections[i] = s;
3830 ++i;
3831 }
3832 }
3833 BFD_ASSERT (i <= bfd_count_sections (abfd));
3834 count = i;
3835
3836 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3837
3838 /* Build the mapping. */
3839
3840 mfirst = NULL;
3841 pm = &mfirst;
3842
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3845 section. */
3846 s = bfd_get_section_by_name (abfd, ".interp");
3847 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_PHDR;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m->p_flags = PF_R | PF_X;
3857 m->p_flags_valid = 1;
3858 m->includes_phdrs = 1;
3859
3860 *pm = m;
3861 pm = &m->next;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_INTERP;
3869 m->count = 1;
3870 m->sections[0] = s;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3879 last_hdr = NULL;
3880 last_size = 0;
3881 phdr_index = 0;
3882 maxpagesize = bed->maxpagesize;
3883 writable = FALSE;
3884 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3885 if (dynsec != NULL
3886 && (dynsec->flags & SEC_LOAD) == 0)
3887 dynsec = NULL;
3888
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3893 if (count > 0)
3894 {
3895 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3896
3897 if (phdr_size == (bfd_size_type) -1)
3898 phdr_size = get_program_header_size (abfd, info);
3899 if ((abfd->flags & D_PAGED) == 0
3900 || sections[0]->lma < phdr_size
3901 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3902 phdr_in_segment = FALSE;
3903 }
3904
3905 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3906 {
3907 asection *hdr;
3908 bfd_boolean new_segment;
3909
3910 hdr = *hdrpp;
3911
3912 /* See if this section and the last one will fit in the same
3913 segment. */
3914
3915 if (last_hdr == NULL)
3916 {
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment = FALSE;
3920 }
3921 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3922 {
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3925 segment. */
3926 new_segment = TRUE;
3927 }
3928 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3929 < BFD_ALIGN (hdr->lma, maxpagesize))
3930 {
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3933 new_segment = TRUE;
3934 }
3935 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3936 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3937 {
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3941 new_segment = TRUE;
3942 }
3943 else if ((abfd->flags & D_PAGED) == 0)
3944 {
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment = FALSE;
3949 }
3950 else if (! writable
3951 && (hdr->flags & SEC_READONLY) == 0
3952 && (((last_hdr->lma + last_size - 1)
3953 & ~(maxpagesize - 1))
3954 != (hdr->lma & ~(maxpagesize - 1))))
3955 {
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3963 new_segment = TRUE;
3964 }
3965 else
3966 {
3967 /* Otherwise, we can use the same segment. */
3968 new_segment = FALSE;
3969 }
3970
3971 if (! new_segment)
3972 {
3973 if ((hdr->flags & SEC_READONLY) == 0)
3974 writable = TRUE;
3975 last_hdr = hdr;
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3978 != SEC_THREAD_LOCAL)
3979 last_size = hdr->size;
3980 else
3981 last_size = 0;
3982 continue;
3983 }
3984
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3987
3988 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3989 if (m == NULL)
3990 goto error_return;
3991
3992 *pm = m;
3993 pm = &m->next;
3994
3995 if ((hdr->flags & SEC_READONLY) == 0)
3996 writable = TRUE;
3997 else
3998 writable = FALSE;
3999
4000 last_hdr = hdr;
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4003 last_size = hdr->size;
4004 else
4005 last_size = 0;
4006 phdr_index = i;
4007 phdr_in_segment = FALSE;
4008 }
4009
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr != NULL)
4012 {
4013 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4014 if (m == NULL)
4015 goto error_return;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4022 if (dynsec != NULL)
4023 {
4024 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4025 if (m == NULL)
4026 goto error_return;
4027 *pm = m;
4028 pm = &m->next;
4029 }
4030
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s = abfd->sections; s != NULL; s = s->next)
4037 {
4038 if ((s->flags & SEC_LOAD) != 0
4039 && CONST_STRNEQ (s->name, ".note"))
4040 {
4041 amt = sizeof (struct elf_segment_map);
4042 m = bfd_zalloc (abfd, amt);
4043 if (m == NULL)
4044 goto error_return;
4045 m->next = NULL;
4046 m->p_type = PT_NOTE;
4047 m->count = 1;
4048 m->sections[0] = s;
4049
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053 if (s->flags & SEC_THREAD_LOCAL)
4054 {
4055 if (! tls_count)
4056 first_tls = s;
4057 tls_count++;
4058 }
4059 }
4060
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4062 if (tls_count > 0)
4063 {
4064 int i;
4065
4066 amt = sizeof (struct elf_segment_map);
4067 amt += (tls_count - 1) * sizeof (asection *);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_TLS;
4073 m->count = tls_count;
4074 /* Mandated PF_R. */
4075 m->p_flags = PF_R;
4076 m->p_flags_valid = 1;
4077 for (i = 0; i < tls_count; ++i)
4078 {
4079 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4080 m->sections[i] = first_tls;
4081 first_tls = first_tls->next;
4082 }
4083
4084 *pm = m;
4085 pm = &m->next;
4086 }
4087
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4089 segment. */
4090 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4091 if (eh_frame_hdr != NULL
4092 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_EH_FRAME;
4100 m->count = 1;
4101 m->sections[0] = eh_frame_hdr->output_section;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (elf_tdata (abfd)->stack_flags)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 m = bfd_zalloc (abfd, amt);
4111 if (m == NULL)
4112 goto error_return;
4113 m->next = NULL;
4114 m->p_type = PT_GNU_STACK;
4115 m->p_flags = elf_tdata (abfd)->stack_flags;
4116 m->p_flags_valid = 1;
4117
4118 *pm = m;
4119 pm = &m->next;
4120 }
4121
4122 if (dynsec != NULL && elf_tdata (abfd)->relro)
4123 {
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt = sizeof (struct elf_segment_map);
4127 m = bfd_zalloc (abfd, amt);
4128 if (m == NULL)
4129 goto error_return;
4130 m->next = NULL;
4131 m->p_type = PT_GNU_RELRO;
4132 m->p_flags = PF_R;
4133 m->p_flags_valid = 1;
4134
4135 *pm = m;
4136 pm = &m->next;
4137 }
4138
4139 free (sections);
4140 elf_tdata (abfd)->segment_map = mfirst;
4141 }
4142
4143 if (!elf_modify_segment_map (abfd, info))
4144 return FALSE;
4145
4146 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4147 ++count;
4148 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4149
4150 return TRUE;
4151
4152 error_return:
4153 if (sections != NULL)
4154 free (sections);
4155 return FALSE;
4156 }
4157
4158 /* Sort sections by address. */
4159
4160 static int
4161 elf_sort_sections (const void *arg1, const void *arg2)
4162 {
4163 const asection *sec1 = *(const asection **) arg1;
4164 const asection *sec2 = *(const asection **) arg2;
4165 bfd_size_type size1, size2;
4166
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1->lma < sec2->lma)
4170 return -1;
4171 else if (sec1->lma > sec2->lma)
4172 return 1;
4173
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1->vma < sec2->vma)
4177 return -1;
4178 else if (sec1->vma > sec2->vma)
4179 return 1;
4180
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4182
4183 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4184
4185 if (TOEND (sec1))
4186 {
4187 if (TOEND (sec2))
4188 {
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1->target_index - sec2->target_index != 0)
4192 return sec1->target_index - sec2->target_index;
4193 }
4194 else
4195 return 1;
4196 }
4197 else if (TOEND (sec2))
4198 return -1;
4199
4200 #undef TOEND
4201
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4204
4205 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4206 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4207
4208 if (size1 < size2)
4209 return -1;
4210 if (size1 > size2)
4211 return 1;
4212
4213 return sec1->target_index - sec2->target_index;
4214 }
4215
4216 /* Ian Lance Taylor writes:
4217
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4223 which is wrong.
4224
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4227 the page size.'' */
4228 /* In other words, something like:
4229
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4234 else
4235 adjustment = vma_offset - off_offset;
4236
4237 which can can be collapsed into the expression below. */
4238
4239 static file_ptr
4240 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4241 {
4242 return ((vma - off) % maxpagesize);
4243 }
4244
4245 /* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4247 the file header. */
4248
4249 static bfd_boolean
4250 assign_file_positions_for_load_sections (bfd *abfd,
4251 struct bfd_link_info *link_info)
4252 {
4253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4254 struct elf_segment_map *m;
4255 Elf_Internal_Phdr *phdrs;
4256 Elf_Internal_Phdr *p;
4257 file_ptr off, voff;
4258 bfd_size_type maxpagesize;
4259 unsigned int alloc;
4260 unsigned int i;
4261
4262 if (link_info == NULL
4263 && !elf_modify_segment_map (abfd, link_info))
4264 return FALSE;
4265
4266 alloc = 0;
4267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4268 ++alloc;
4269
4270 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4271 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4272 elf_elfheader (abfd)->e_phnum = alloc;
4273
4274 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4275 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4276 else
4277 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4278 == alloc * bed->s->sizeof_phdr);
4279
4280 if (alloc == 0)
4281 {
4282 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4283 return TRUE;
4284 }
4285
4286 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4287 elf_tdata (abfd)->phdr = phdrs;
4288 if (phdrs == NULL)
4289 return FALSE;
4290
4291 maxpagesize = 1;
4292 if ((abfd->flags & D_PAGED) != 0)
4293 maxpagesize = bed->maxpagesize;
4294
4295 off = bed->s->sizeof_ehdr;
4296 off += alloc * bed->s->sizeof_phdr;
4297
4298 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4299 m != NULL;
4300 m = m->next, p++)
4301 {
4302 asection **secpp;
4303
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4309 if (m->count > 1
4310 && !(elf_elfheader (abfd)->e_type == ET_CORE
4311 && m->p_type == PT_NOTE))
4312 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4313 elf_sort_sections);
4314
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4322 voff = 0;
4323 p->p_type = m->p_type;
4324 p->p_flags = m->p_flags;
4325
4326 if (m->count == 0)
4327 p->p_vaddr = 0;
4328 else
4329 p->p_vaddr = m->sections[0]->vma;
4330
4331 if (m->p_paddr_valid)
4332 p->p_paddr = m->p_paddr;
4333 else if (m->count == 0)
4334 p->p_paddr = 0;
4335 else
4336 p->p_paddr = m->sections[0]->lma;
4337
4338 if (p->p_type == PT_LOAD
4339 && (abfd->flags & D_PAGED) != 0)
4340 {
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4348 segment. */
4349 if (m->p_align_valid)
4350 maxpagesize = m->p_align;
4351
4352 p->p_align = maxpagesize;
4353 }
4354 else if (m->count == 0)
4355 p->p_align = 1 << bed->s->log_file_align;
4356 else
4357 p->p_align = 0;
4358
4359 if (p->p_type == PT_LOAD
4360 && m->count > 0)
4361 {
4362 bfd_size_type align;
4363 bfd_vma adjust;
4364 unsigned int align_power = 0;
4365
4366 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4367 {
4368 unsigned int secalign;
4369
4370 secalign = bfd_get_section_alignment (abfd, *secpp);
4371 if (secalign > align_power)
4372 align_power = secalign;
4373 }
4374 align = (bfd_size_type) 1 << align_power;
4375
4376 if (align < maxpagesize)
4377 align = maxpagesize;
4378
4379 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4380 off += adjust;
4381 if (adjust != 0
4382 && !m->includes_filehdr
4383 && !m->includes_phdrs
4384 && (ufile_ptr) off >= align)
4385 {
4386 /* If the first section isn't loadable, the same holds for
4387 any other sections. Since the segment won't need file
4388 space, we can make p_offset overlap some prior segment.
4389 However, .tbss is special. If a segment starts with
4390 .tbss, we need to look at the next section to decide
4391 whether the segment has any loadable sections. */
4392 i = 0;
4393 while ((m->sections[i]->flags & SEC_LOAD) == 0
4394 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4395 {
4396 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4397 || ++i >= m->count)
4398 {
4399 off -= adjust;
4400 voff = adjust - align;
4401 break;
4402 }
4403 }
4404 }
4405 }
4406 /* Make sure the .dynamic section is the first section in the
4407 PT_DYNAMIC segment. */
4408 else if (p->p_type == PT_DYNAMIC
4409 && m->count > 1
4410 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4411 {
4412 _bfd_error_handler
4413 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4414 abfd);
4415 bfd_set_error (bfd_error_bad_value);
4416 return FALSE;
4417 }
4418
4419 p->p_offset = 0;
4420 p->p_filesz = 0;
4421 p->p_memsz = 0;
4422
4423 if (m->includes_filehdr)
4424 {
4425 if (! m->p_flags_valid)
4426 p->p_flags |= PF_R;
4427 p->p_offset = 0;
4428 p->p_filesz = bed->s->sizeof_ehdr;
4429 p->p_memsz = bed->s->sizeof_ehdr;
4430 if (m->count > 0)
4431 {
4432 BFD_ASSERT (p->p_type == PT_LOAD);
4433
4434 if (p->p_vaddr < (bfd_vma) off)
4435 {
4436 (*_bfd_error_handler)
4437 (_("%B: Not enough room for program headers, try linking with -N"),
4438 abfd);
4439 bfd_set_error (bfd_error_bad_value);
4440 return FALSE;
4441 }
4442
4443 p->p_vaddr -= off;
4444 if (! m->p_paddr_valid)
4445 p->p_paddr -= off;
4446 }
4447 }
4448
4449 if (m->includes_phdrs)
4450 {
4451 if (! m->p_flags_valid)
4452 p->p_flags |= PF_R;
4453
4454 if (!m->includes_filehdr)
4455 {
4456 p->p_offset = bed->s->sizeof_ehdr;
4457
4458 if (m->count > 0)
4459 {
4460 BFD_ASSERT (p->p_type == PT_LOAD);
4461 p->p_vaddr -= off - p->p_offset;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr -= off - p->p_offset;
4464 }
4465 }
4466
4467 p->p_filesz += alloc * bed->s->sizeof_phdr;
4468 p->p_memsz += alloc * bed->s->sizeof_phdr;
4469 }
4470
4471 if (p->p_type == PT_LOAD
4472 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4473 {
4474 if (! m->includes_filehdr && ! m->includes_phdrs)
4475 p->p_offset = off + voff;
4476 else
4477 {
4478 file_ptr adjust;
4479
4480 adjust = off - (p->p_offset + p->p_filesz);
4481 p->p_filesz += adjust;
4482 p->p_memsz += adjust;
4483 }
4484 }
4485
4486 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4487 maps. Set filepos for sections in PT_LOAD segments, and in
4488 core files, for sections in PT_NOTE segments.
4489 assign_file_positions_for_non_load_sections will set filepos
4490 for other sections and update p_filesz for other segments. */
4491 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4492 {
4493 asection *sec;
4494 flagword flags;
4495 bfd_size_type align;
4496
4497 sec = *secpp;
4498 flags = sec->flags;
4499 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4500
4501 if (p->p_type == PT_LOAD
4502 || p->p_type == PT_TLS)
4503 {
4504 bfd_signed_vma adjust;
4505
4506 if ((flags & SEC_LOAD) != 0)
4507 {
4508 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4509 if (adjust < 0)
4510 {
4511 (*_bfd_error_handler)
4512 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4513 abfd, sec, (unsigned long) sec->lma);
4514 adjust = 0;
4515 }
4516 off += adjust;
4517 p->p_filesz += adjust;
4518 p->p_memsz += adjust;
4519 }
4520 /* .tbss is special. It doesn't contribute to p_memsz of
4521 normal segments. */
4522 else if ((flags & SEC_ALLOC) != 0
4523 && ((flags & SEC_THREAD_LOCAL) == 0
4524 || p->p_type == PT_TLS))
4525 {
4526 /* The section VMA must equal the file position
4527 modulo the page size. */
4528 bfd_size_type page = align;
4529 if (page < maxpagesize)
4530 page = maxpagesize;
4531 adjust = vma_page_aligned_bias (sec->vma,
4532 p->p_vaddr + p->p_memsz,
4533 page);
4534 p->p_memsz += adjust;
4535 }
4536 }
4537
4538 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4539 {
4540 /* The section at i == 0 is the one that actually contains
4541 everything. */
4542 if (i == 0)
4543 {
4544 sec->filepos = off;
4545 off += sec->size;
4546 p->p_filesz = sec->size;
4547 p->p_memsz = 0;
4548 p->p_align = 1;
4549 }
4550 else
4551 {
4552 /* The rest are fake sections that shouldn't be written. */
4553 sec->filepos = 0;
4554 sec->size = 0;
4555 sec->flags = 0;
4556 continue;
4557 }
4558 }
4559 else
4560 {
4561 if (p->p_type == PT_LOAD)
4562 {
4563 sec->filepos = off + voff;
4564 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4565 1997, and the exact reason for it isn't clear. One
4566 plausible explanation is that it is to work around
4567 a problem we have with linker scripts using data
4568 statements in NOLOAD sections. I don't think it
4569 makes a great deal of sense to have such a section
4570 assigned to a PT_LOAD segment, but apparently
4571 people do this. The data statement results in a
4572 bfd_data_link_order being built, and these need
4573 section contents to write into. Eventually, we get
4574 to _bfd_elf_write_object_contents which writes any
4575 section with contents to the output. Make room
4576 here for the write, so that following segments are
4577 not trashed. */
4578 if ((flags & SEC_LOAD) != 0
4579 || (flags & SEC_HAS_CONTENTS) != 0)
4580 off += sec->size;
4581 }
4582
4583 if ((flags & SEC_LOAD) != 0)
4584 {
4585 p->p_filesz += sec->size;
4586 p->p_memsz += sec->size;
4587 }
4588
4589 /* .tbss is special. It doesn't contribute to p_memsz of
4590 normal segments. */
4591 else if ((flags & SEC_ALLOC) != 0
4592 && ((flags & SEC_THREAD_LOCAL) == 0
4593 || p->p_type == PT_TLS))
4594 p->p_memsz += sec->size;
4595
4596 if (p->p_type == PT_TLS
4597 && sec->size == 0
4598 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4599 {
4600 struct bfd_link_order *o = sec->map_tail.link_order;
4601 if (o != NULL)
4602 p->p_memsz += o->offset + o->size;
4603 }
4604
4605 if (p->p_type == PT_GNU_RELRO)
4606 p->p_align = 1;
4607 else if (align > p->p_align
4608 && (p->p_type != PT_LOAD
4609 || (abfd->flags & D_PAGED) == 0))
4610 p->p_align = align;
4611 }
4612
4613 if (! m->p_flags_valid)
4614 {
4615 p->p_flags |= PF_R;
4616 if ((flags & SEC_CODE) != 0)
4617 p->p_flags |= PF_X;
4618 if ((flags & SEC_READONLY) == 0)
4619 p->p_flags |= PF_W;
4620 }
4621 }
4622 }
4623
4624 elf_tdata (abfd)->next_file_pos = off;
4625 return TRUE;
4626 }
4627
4628 /* Assign file positions for the other sections. */
4629
4630 static bfd_boolean
4631 assign_file_positions_for_non_load_sections (bfd *abfd,
4632 struct bfd_link_info *link_info)
4633 {
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 Elf_Internal_Shdr **i_shdrpp;
4636 Elf_Internal_Shdr **hdrpp;
4637 Elf_Internal_Phdr *phdrs;
4638 Elf_Internal_Phdr *p;
4639 struct elf_segment_map *m;
4640 bfd_vma filehdr_vaddr, filehdr_paddr;
4641 bfd_vma phdrs_vaddr, phdrs_paddr;
4642 file_ptr off;
4643 unsigned int num_sec;
4644 unsigned int i;
4645 unsigned int count;
4646
4647 i_shdrpp = elf_elfsections (abfd);
4648 num_sec = elf_numsections (abfd);
4649 off = elf_tdata (abfd)->next_file_pos;
4650 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4651 {
4652 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4653 Elf_Internal_Shdr *hdr;
4654
4655 hdr = *hdrpp;
4656 if (hdr->bfd_section != NULL
4657 && (hdr->bfd_section->filepos != 0
4658 || (hdr->sh_type == SHT_NOBITS
4659 && hdr->contents == NULL)))
4660 hdr->sh_offset = hdr->bfd_section->filepos;
4661 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4662 {
4663 if (hdr->sh_size != 0)
4664 ((*_bfd_error_handler)
4665 (_("%B: warning: allocated section `%s' not in segment"),
4666 abfd,
4667 (hdr->bfd_section == NULL
4668 ? "*unknown*"
4669 : hdr->bfd_section->name)));
4670 /* We don't need to page align empty sections. */
4671 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4672 off += vma_page_aligned_bias (hdr->sh_addr, off,
4673 bed->maxpagesize);
4674 else
4675 off += vma_page_aligned_bias (hdr->sh_addr, off,
4676 hdr->sh_addralign);
4677 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4678 FALSE);
4679 }
4680 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4681 && hdr->bfd_section == NULL)
4682 || hdr == i_shdrpp[tdata->symtab_section]
4683 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4684 || hdr == i_shdrpp[tdata->strtab_section])
4685 hdr->sh_offset = -1;
4686 else
4687 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4688
4689 if (i == SHN_LORESERVE - 1)
4690 {
4691 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4692 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4693 }
4694 }
4695
4696 /* Now that we have set the section file positions, we can set up
4697 the file positions for the non PT_LOAD segments. */
4698 count = 0;
4699 filehdr_vaddr = 0;
4700 filehdr_paddr = 0;
4701 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4702 phdrs_paddr = 0;
4703 phdrs = elf_tdata (abfd)->phdr;
4704 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4705 m != NULL;
4706 m = m->next, p++)
4707 {
4708 ++count;
4709 if (p->p_type != PT_LOAD)
4710 continue;
4711
4712 if (m->includes_filehdr)
4713 {
4714 filehdr_vaddr = p->p_vaddr;
4715 filehdr_paddr = p->p_paddr;
4716 }
4717 if (m->includes_phdrs)
4718 {
4719 phdrs_vaddr = p->p_vaddr;
4720 phdrs_paddr = p->p_paddr;
4721 if (m->includes_filehdr)
4722 {
4723 phdrs_vaddr += bed->s->sizeof_ehdr;
4724 phdrs_paddr += bed->s->sizeof_ehdr;
4725 }
4726 }
4727 }
4728
4729 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4730 m != NULL;
4731 m = m->next, p++)
4732 {
4733 if (m->count != 0)
4734 {
4735 if (p->p_type != PT_LOAD
4736 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4737 {
4738 Elf_Internal_Shdr *hdr;
4739 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4740
4741 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4742 p->p_filesz = (m->sections[m->count - 1]->filepos
4743 - m->sections[0]->filepos);
4744 if (hdr->sh_type != SHT_NOBITS)
4745 p->p_filesz += hdr->sh_size;
4746
4747 p->p_offset = m->sections[0]->filepos;
4748 }
4749 }
4750 else
4751 {
4752 if (m->includes_filehdr)
4753 {
4754 p->p_vaddr = filehdr_vaddr;
4755 if (! m->p_paddr_valid)
4756 p->p_paddr = filehdr_paddr;
4757 }
4758 else if (m->includes_phdrs)
4759 {
4760 p->p_vaddr = phdrs_vaddr;
4761 if (! m->p_paddr_valid)
4762 p->p_paddr = phdrs_paddr;
4763 }
4764 else if (p->p_type == PT_GNU_RELRO)
4765 {
4766 Elf_Internal_Phdr *lp;
4767
4768 for (lp = phdrs; lp < phdrs + count; ++lp)
4769 {
4770 if (lp->p_type == PT_LOAD
4771 && lp->p_vaddr <= link_info->relro_end
4772 && lp->p_vaddr >= link_info->relro_start
4773 && (lp->p_vaddr + lp->p_filesz
4774 >= link_info->relro_end))
4775 break;
4776 }
4777
4778 if (lp < phdrs + count
4779 && link_info->relro_end > lp->p_vaddr)
4780 {
4781 p->p_vaddr = lp->p_vaddr;
4782 p->p_paddr = lp->p_paddr;
4783 p->p_offset = lp->p_offset;
4784 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4785 p->p_memsz = p->p_filesz;
4786 p->p_align = 1;
4787 p->p_flags = (lp->p_flags & ~PF_W);
4788 }
4789 else
4790 {
4791 memset (p, 0, sizeof *p);
4792 p->p_type = PT_NULL;
4793 }
4794 }
4795 }
4796 }
4797
4798 elf_tdata (abfd)->next_file_pos = off;
4799
4800 return TRUE;
4801 }
4802
4803 /* Work out the file positions of all the sections. This is called by
4804 _bfd_elf_compute_section_file_positions. All the section sizes and
4805 VMAs must be known before this is called.
4806
4807 Reloc sections come in two flavours: Those processed specially as
4808 "side-channel" data attached to a section to which they apply, and
4809 those that bfd doesn't process as relocations. The latter sort are
4810 stored in a normal bfd section by bfd_section_from_shdr. We don't
4811 consider the former sort here, unless they form part of the loadable
4812 image. Reloc sections not assigned here will be handled later by
4813 assign_file_positions_for_relocs.
4814
4815 We also don't set the positions of the .symtab and .strtab here. */
4816
4817 static bfd_boolean
4818 assign_file_positions_except_relocs (bfd *abfd,
4819 struct bfd_link_info *link_info)
4820 {
4821 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4822 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4823 file_ptr off;
4824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4825
4826 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4827 && bfd_get_format (abfd) != bfd_core)
4828 {
4829 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4830 unsigned int num_sec = elf_numsections (abfd);
4831 Elf_Internal_Shdr **hdrpp;
4832 unsigned int i;
4833
4834 /* Start after the ELF header. */
4835 off = i_ehdrp->e_ehsize;
4836
4837 /* We are not creating an executable, which means that we are
4838 not creating a program header, and that the actual order of
4839 the sections in the file is unimportant. */
4840 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4841 {
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4846 && hdr->bfd_section == NULL)
4847 || i == tdata->symtab_section
4848 || i == tdata->symtab_shndx_section
4849 || i == tdata->strtab_section)
4850 {
4851 hdr->sh_offset = -1;
4852 }
4853 else
4854 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4855
4856 if (i == SHN_LORESERVE - 1)
4857 {
4858 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4859 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4860 }
4861 }
4862 }
4863 else
4864 {
4865 unsigned int alloc;
4866
4867 /* Assign file positions for the loaded sections based on the
4868 assignment of sections to segments. */
4869 if (!assign_file_positions_for_load_sections (abfd, link_info))
4870 return FALSE;
4871
4872 /* And for non-load sections. */
4873 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4874 return FALSE;
4875
4876 if (bed->elf_backend_modify_program_headers != NULL)
4877 {
4878 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4879 return FALSE;
4880 }
4881
4882 /* Write out the program headers. */
4883 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4884 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4885 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4886 return FALSE;
4887
4888 off = tdata->next_file_pos;
4889 }
4890
4891 /* Place the section headers. */
4892 off = align_file_position (off, 1 << bed->s->log_file_align);
4893 i_ehdrp->e_shoff = off;
4894 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4895
4896 tdata->next_file_pos = off;
4897
4898 return TRUE;
4899 }
4900
4901 static bfd_boolean
4902 prep_headers (bfd *abfd)
4903 {
4904 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4905 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4906 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4907 struct elf_strtab_hash *shstrtab;
4908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4909
4910 i_ehdrp = elf_elfheader (abfd);
4911 i_shdrp = elf_elfsections (abfd);
4912
4913 shstrtab = _bfd_elf_strtab_init ();
4914 if (shstrtab == NULL)
4915 return FALSE;
4916
4917 elf_shstrtab (abfd) = shstrtab;
4918
4919 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4920 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4921 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4922 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4923
4924 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4925 i_ehdrp->e_ident[EI_DATA] =
4926 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4927 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4928
4929 if ((abfd->flags & DYNAMIC) != 0)
4930 i_ehdrp->e_type = ET_DYN;
4931 else if ((abfd->flags & EXEC_P) != 0)
4932 i_ehdrp->e_type = ET_EXEC;
4933 else if (bfd_get_format (abfd) == bfd_core)
4934 i_ehdrp->e_type = ET_CORE;
4935 else
4936 i_ehdrp->e_type = ET_REL;
4937
4938 switch (bfd_get_arch (abfd))
4939 {
4940 case bfd_arch_unknown:
4941 i_ehdrp->e_machine = EM_NONE;
4942 break;
4943
4944 /* There used to be a long list of cases here, each one setting
4945 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4946 in the corresponding bfd definition. To avoid duplication,
4947 the switch was removed. Machines that need special handling
4948 can generally do it in elf_backend_final_write_processing(),
4949 unless they need the information earlier than the final write.
4950 Such need can generally be supplied by replacing the tests for
4951 e_machine with the conditions used to determine it. */
4952 default:
4953 i_ehdrp->e_machine = bed->elf_machine_code;
4954 }
4955
4956 i_ehdrp->e_version = bed->s->ev_current;
4957 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4958
4959 /* No program header, for now. */
4960 i_ehdrp->e_phoff = 0;
4961 i_ehdrp->e_phentsize = 0;
4962 i_ehdrp->e_phnum = 0;
4963
4964 /* Each bfd section is section header entry. */
4965 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4966 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4967
4968 /* If we're building an executable, we'll need a program header table. */
4969 if (abfd->flags & EXEC_P)
4970 /* It all happens later. */
4971 ;
4972 else
4973 {
4974 i_ehdrp->e_phentsize = 0;
4975 i_phdrp = 0;
4976 i_ehdrp->e_phoff = 0;
4977 }
4978
4979 elf_tdata (abfd)->symtab_hdr.sh_name =
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4981 elf_tdata (abfd)->strtab_hdr.sh_name =
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4983 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4985 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4986 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4987 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4988 return FALSE;
4989
4990 return TRUE;
4991 }
4992
4993 /* Assign file positions for all the reloc sections which are not part
4994 of the loadable file image. */
4995
4996 void
4997 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4998 {
4999 file_ptr off;
5000 unsigned int i, num_sec;
5001 Elf_Internal_Shdr **shdrpp;
5002
5003 off = elf_tdata (abfd)->next_file_pos;
5004
5005 num_sec = elf_numsections (abfd);
5006 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5007 {
5008 Elf_Internal_Shdr *shdrp;
5009
5010 shdrp = *shdrpp;
5011 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5012 && shdrp->sh_offset == -1)
5013 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5014 }
5015
5016 elf_tdata (abfd)->next_file_pos = off;
5017 }
5018
5019 bfd_boolean
5020 _bfd_elf_write_object_contents (bfd *abfd)
5021 {
5022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5023 Elf_Internal_Ehdr *i_ehdrp;
5024 Elf_Internal_Shdr **i_shdrp;
5025 bfd_boolean failed;
5026 unsigned int count, num_sec;
5027
5028 if (! abfd->output_has_begun
5029 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5030 return FALSE;
5031
5032 i_shdrp = elf_elfsections (abfd);
5033 i_ehdrp = elf_elfheader (abfd);
5034
5035 failed = FALSE;
5036 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5037 if (failed)
5038 return FALSE;
5039
5040 _bfd_elf_assign_file_positions_for_relocs (abfd);
5041
5042 /* After writing the headers, we need to write the sections too... */
5043 num_sec = elf_numsections (abfd);
5044 for (count = 1; count < num_sec; count++)
5045 {
5046 if (bed->elf_backend_section_processing)
5047 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5048 if (i_shdrp[count]->contents)
5049 {
5050 bfd_size_type amt = i_shdrp[count]->sh_size;
5051
5052 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5053 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5054 return FALSE;
5055 }
5056 if (count == SHN_LORESERVE - 1)
5057 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5058 }
5059
5060 /* Write out the section header names. */
5061 if (elf_shstrtab (abfd) != NULL
5062 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5063 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5064 return FALSE;
5065
5066 if (bed->elf_backend_final_write_processing)
5067 (*bed->elf_backend_final_write_processing) (abfd,
5068 elf_tdata (abfd)->linker);
5069
5070 return bed->s->write_shdrs_and_ehdr (abfd);
5071 }
5072
5073 bfd_boolean
5074 _bfd_elf_write_corefile_contents (bfd *abfd)
5075 {
5076 /* Hopefully this can be done just like an object file. */
5077 return _bfd_elf_write_object_contents (abfd);
5078 }
5079
5080 /* Given a section, search the header to find them. */
5081
5082 int
5083 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5084 {
5085 const struct elf_backend_data *bed;
5086 int index;
5087
5088 if (elf_section_data (asect) != NULL
5089 && elf_section_data (asect)->this_idx != 0)
5090 return elf_section_data (asect)->this_idx;
5091
5092 if (bfd_is_abs_section (asect))
5093 index = SHN_ABS;
5094 else if (bfd_is_com_section (asect))
5095 index = SHN_COMMON;
5096 else if (bfd_is_und_section (asect))
5097 index = SHN_UNDEF;
5098 else
5099 index = -1;
5100
5101 bed = get_elf_backend_data (abfd);
5102 if (bed->elf_backend_section_from_bfd_section)
5103 {
5104 int retval = index;
5105
5106 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5107 return retval;
5108 }
5109
5110 if (index == -1)
5111 bfd_set_error (bfd_error_nonrepresentable_section);
5112
5113 return index;
5114 }
5115
5116 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5117 on error. */
5118
5119 int
5120 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5121 {
5122 asymbol *asym_ptr = *asym_ptr_ptr;
5123 int idx;
5124 flagword flags = asym_ptr->flags;
5125
5126 /* When gas creates relocations against local labels, it creates its
5127 own symbol for the section, but does put the symbol into the
5128 symbol chain, so udata is 0. When the linker is generating
5129 relocatable output, this section symbol may be for one of the
5130 input sections rather than the output section. */
5131 if (asym_ptr->udata.i == 0
5132 && (flags & BSF_SECTION_SYM)
5133 && asym_ptr->section)
5134 {
5135 asection *sec;
5136 int indx;
5137
5138 sec = asym_ptr->section;
5139 if (sec->owner != abfd && sec->output_section != NULL)
5140 sec = sec->output_section;
5141 if (sec->owner == abfd
5142 && (indx = sec->index) < elf_num_section_syms (abfd)
5143 && elf_section_syms (abfd)[indx] != NULL)
5144 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5145 }
5146
5147 idx = asym_ptr->udata.i;
5148
5149 if (idx == 0)
5150 {
5151 /* This case can occur when using --strip-symbol on a symbol
5152 which is used in a relocation entry. */
5153 (*_bfd_error_handler)
5154 (_("%B: symbol `%s' required but not present"),
5155 abfd, bfd_asymbol_name (asym_ptr));
5156 bfd_set_error (bfd_error_no_symbols);
5157 return -1;
5158 }
5159
5160 #if DEBUG & 4
5161 {
5162 fprintf (stderr,
5163 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5164 (long) asym_ptr, asym_ptr->name, idx, flags,
5165 elf_symbol_flags (flags));
5166 fflush (stderr);
5167 }
5168 #endif
5169
5170 return idx;
5171 }
5172
5173 /* Rewrite program header information. */
5174
5175 static bfd_boolean
5176 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5177 {
5178 Elf_Internal_Ehdr *iehdr;
5179 struct elf_segment_map *map;
5180 struct elf_segment_map *map_first;
5181 struct elf_segment_map **pointer_to_map;
5182 Elf_Internal_Phdr *segment;
5183 asection *section;
5184 unsigned int i;
5185 unsigned int num_segments;
5186 bfd_boolean phdr_included = FALSE;
5187 bfd_vma maxpagesize;
5188 struct elf_segment_map *phdr_adjust_seg = NULL;
5189 unsigned int phdr_adjust_num = 0;
5190 const struct elf_backend_data *bed;
5191
5192 bed = get_elf_backend_data (ibfd);
5193 iehdr = elf_elfheader (ibfd);
5194
5195 map_first = NULL;
5196 pointer_to_map = &map_first;
5197
5198 num_segments = elf_elfheader (ibfd)->e_phnum;
5199 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5200
5201 /* Returns the end address of the segment + 1. */
5202 #define SEGMENT_END(segment, start) \
5203 (start + (segment->p_memsz > segment->p_filesz \
5204 ? segment->p_memsz : segment->p_filesz))
5205
5206 #define SECTION_SIZE(section, segment) \
5207 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5208 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5209 ? section->size : 0)
5210
5211 /* Returns TRUE if the given section is contained within
5212 the given segment. VMA addresses are compared. */
5213 #define IS_CONTAINED_BY_VMA(section, segment) \
5214 (section->vma >= segment->p_vaddr \
5215 && (section->vma + SECTION_SIZE (section, segment) \
5216 <= (SEGMENT_END (segment, segment->p_vaddr))))
5217
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. LMA addresses are compared. */
5220 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5221 (section->lma >= base \
5222 && (section->lma + SECTION_SIZE (section, segment) \
5223 <= SEGMENT_END (segment, base)))
5224
5225 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5226 #define IS_COREFILE_NOTE(p, s) \
5227 (p->p_type == PT_NOTE \
5228 && bfd_get_format (ibfd) == bfd_core \
5229 && s->vma == 0 && s->lma == 0 \
5230 && (bfd_vma) s->filepos >= p->p_offset \
5231 && ((bfd_vma) s->filepos + s->size \
5232 <= p->p_offset + p->p_filesz))
5233
5234 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5235 linker, which generates a PT_INTERP section with p_vaddr and
5236 p_memsz set to 0. */
5237 #define IS_SOLARIS_PT_INTERP(p, s) \
5238 (p->p_vaddr == 0 \
5239 && p->p_paddr == 0 \
5240 && p->p_memsz == 0 \
5241 && p->p_filesz > 0 \
5242 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5243 && s->size > 0 \
5244 && (bfd_vma) s->filepos >= p->p_offset \
5245 && ((bfd_vma) s->filepos + s->size \
5246 <= p->p_offset + p->p_filesz))
5247
5248 /* Decide if the given section should be included in the given segment.
5249 A section will be included if:
5250 1. It is within the address space of the segment -- we use the LMA
5251 if that is set for the segment and the VMA otherwise,
5252 2. It is an allocated segment,
5253 3. There is an output section associated with it,
5254 4. The section has not already been allocated to a previous segment.
5255 5. PT_GNU_STACK segments do not include any sections.
5256 6. PT_TLS segment includes only SHF_TLS sections.
5257 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5258 8. PT_DYNAMIC should not contain empty sections at the beginning
5259 (with the possible exception of .dynamic). */
5260 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5261 ((((segment->p_paddr \
5262 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5263 : IS_CONTAINED_BY_VMA (section, segment)) \
5264 && (section->flags & SEC_ALLOC) != 0) \
5265 || IS_COREFILE_NOTE (segment, section)) \
5266 && segment->p_type != PT_GNU_STACK \
5267 && (segment->p_type != PT_TLS \
5268 || (section->flags & SEC_THREAD_LOCAL)) \
5269 && (segment->p_type == PT_LOAD \
5270 || segment->p_type == PT_TLS \
5271 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5272 && (segment->p_type != PT_DYNAMIC \
5273 || SECTION_SIZE (section, segment) > 0 \
5274 || (segment->p_paddr \
5275 ? segment->p_paddr != section->lma \
5276 : segment->p_vaddr != section->vma) \
5277 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5278 == 0)) \
5279 && ! section->segment_mark)
5280
5281 /* If the output section of a section in the input segment is NULL,
5282 it is removed from the corresponding output segment. */
5283 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5284 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5285 && section->output_section != NULL)
5286
5287 /* Returns TRUE iff seg1 starts after the end of seg2. */
5288 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5289 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5290
5291 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5292 their VMA address ranges and their LMA address ranges overlap.
5293 It is possible to have overlapping VMA ranges without overlapping LMA
5294 ranges. RedBoot images for example can have both .data and .bss mapped
5295 to the same VMA range, but with the .data section mapped to a different
5296 LMA. */
5297 #define SEGMENT_OVERLAPS(seg1, seg2) \
5298 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5299 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5300 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5301 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5302
5303 /* Initialise the segment mark field. */
5304 for (section = ibfd->sections; section != NULL; section = section->next)
5305 section->segment_mark = FALSE;
5306
5307 /* Scan through the segments specified in the program header
5308 of the input BFD. For this first scan we look for overlaps
5309 in the loadable segments. These can be created by weird
5310 parameters to objcopy. Also, fix some solaris weirdness. */
5311 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5312 i < num_segments;
5313 i++, segment++)
5314 {
5315 unsigned int j;
5316 Elf_Internal_Phdr *segment2;
5317
5318 if (segment->p_type == PT_INTERP)
5319 for (section = ibfd->sections; section; section = section->next)
5320 if (IS_SOLARIS_PT_INTERP (segment, section))
5321 {
5322 /* Mininal change so that the normal section to segment
5323 assignment code will work. */
5324 segment->p_vaddr = section->vma;
5325 break;
5326 }
5327
5328 if (segment->p_type != PT_LOAD)
5329 continue;
5330
5331 /* Determine if this segment overlaps any previous segments. */
5332 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5333 {
5334 bfd_signed_vma extra_length;
5335
5336 if (segment2->p_type != PT_LOAD
5337 || ! SEGMENT_OVERLAPS (segment, segment2))
5338 continue;
5339
5340 /* Merge the two segments together. */
5341 if (segment2->p_vaddr < segment->p_vaddr)
5342 {
5343 /* Extend SEGMENT2 to include SEGMENT and then delete
5344 SEGMENT. */
5345 extra_length =
5346 SEGMENT_END (segment, segment->p_vaddr)
5347 - SEGMENT_END (segment2, segment2->p_vaddr);
5348
5349 if (extra_length > 0)
5350 {
5351 segment2->p_memsz += extra_length;
5352 segment2->p_filesz += extra_length;
5353 }
5354
5355 segment->p_type = PT_NULL;
5356
5357 /* Since we have deleted P we must restart the outer loop. */
5358 i = 0;
5359 segment = elf_tdata (ibfd)->phdr;
5360 break;
5361 }
5362 else
5363 {
5364 /* Extend SEGMENT to include SEGMENT2 and then delete
5365 SEGMENT2. */
5366 extra_length =
5367 SEGMENT_END (segment2, segment2->p_vaddr)
5368 - SEGMENT_END (segment, segment->p_vaddr);
5369
5370 if (extra_length > 0)
5371 {
5372 segment->p_memsz += extra_length;
5373 segment->p_filesz += extra_length;
5374 }
5375
5376 segment2->p_type = PT_NULL;
5377 }
5378 }
5379 }
5380
5381 /* The second scan attempts to assign sections to segments. */
5382 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5383 i < num_segments;
5384 i ++, segment ++)
5385 {
5386 unsigned int section_count;
5387 asection ** sections;
5388 asection * output_section;
5389 unsigned int isec;
5390 bfd_vma matching_lma;
5391 bfd_vma suggested_lma;
5392 unsigned int j;
5393 bfd_size_type amt;
5394 asection * first_section;
5395
5396 if (segment->p_type == PT_NULL)
5397 continue;
5398
5399 first_section = NULL;
5400 /* Compute how many sections might be placed into this segment. */
5401 for (section = ibfd->sections, section_count = 0;
5402 section != NULL;
5403 section = section->next)
5404 {
5405 /* Find the first section in the input segment, which may be
5406 removed from the corresponding output segment. */
5407 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5408 {
5409 if (first_section == NULL)
5410 first_section = section;
5411 if (section->output_section != NULL)
5412 ++section_count;
5413 }
5414 }
5415
5416 /* Allocate a segment map big enough to contain
5417 all of the sections we have selected. */
5418 amt = sizeof (struct elf_segment_map);
5419 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5420 map = bfd_zalloc (obfd, amt);
5421 if (map == NULL)
5422 return FALSE;
5423
5424 /* Initialise the fields of the segment map. Default to
5425 using the physical address of the segment in the input BFD. */
5426 map->next = NULL;
5427 map->p_type = segment->p_type;
5428 map->p_flags = segment->p_flags;
5429 map->p_flags_valid = 1;
5430
5431 /* If the first section in the input segment is removed, there is
5432 no need to preserve segment physical address in the corresponding
5433 output segment. */
5434 if (!first_section || first_section->output_section != NULL)
5435 {
5436 map->p_paddr = segment->p_paddr;
5437 map->p_paddr_valid = 1;
5438 }
5439
5440 /* Determine if this segment contains the ELF file header
5441 and if it contains the program headers themselves. */
5442 map->includes_filehdr = (segment->p_offset == 0
5443 && segment->p_filesz >= iehdr->e_ehsize);
5444
5445 map->includes_phdrs = 0;
5446
5447 if (! phdr_included || segment->p_type != PT_LOAD)
5448 {
5449 map->includes_phdrs =
5450 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5451 && (segment->p_offset + segment->p_filesz
5452 >= ((bfd_vma) iehdr->e_phoff
5453 + iehdr->e_phnum * iehdr->e_phentsize)));
5454
5455 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5456 phdr_included = TRUE;
5457 }
5458
5459 if (section_count == 0)
5460 {
5461 /* Special segments, such as the PT_PHDR segment, may contain
5462 no sections, but ordinary, loadable segments should contain
5463 something. They are allowed by the ELF spec however, so only
5464 a warning is produced. */
5465 if (segment->p_type == PT_LOAD)
5466 (*_bfd_error_handler)
5467 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5468 ibfd);
5469
5470 map->count = 0;
5471 *pointer_to_map = map;
5472 pointer_to_map = &map->next;
5473
5474 continue;
5475 }
5476
5477 /* Now scan the sections in the input BFD again and attempt
5478 to add their corresponding output sections to the segment map.
5479 The problem here is how to handle an output section which has
5480 been moved (ie had its LMA changed). There are four possibilities:
5481
5482 1. None of the sections have been moved.
5483 In this case we can continue to use the segment LMA from the
5484 input BFD.
5485
5486 2. All of the sections have been moved by the same amount.
5487 In this case we can change the segment's LMA to match the LMA
5488 of the first section.
5489
5490 3. Some of the sections have been moved, others have not.
5491 In this case those sections which have not been moved can be
5492 placed in the current segment which will have to have its size,
5493 and possibly its LMA changed, and a new segment or segments will
5494 have to be created to contain the other sections.
5495
5496 4. The sections have been moved, but not by the same amount.
5497 In this case we can change the segment's LMA to match the LMA
5498 of the first section and we will have to create a new segment
5499 or segments to contain the other sections.
5500
5501 In order to save time, we allocate an array to hold the section
5502 pointers that we are interested in. As these sections get assigned
5503 to a segment, they are removed from this array. */
5504
5505 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5506 to work around this long long bug. */
5507 sections = bfd_malloc2 (section_count, sizeof (asection *));
5508 if (sections == NULL)
5509 return FALSE;
5510
5511 /* Step One: Scan for segment vs section LMA conflicts.
5512 Also add the sections to the section array allocated above.
5513 Also add the sections to the current segment. In the common
5514 case, where the sections have not been moved, this means that
5515 we have completely filled the segment, and there is nothing
5516 more to do. */
5517 isec = 0;
5518 matching_lma = 0;
5519 suggested_lma = 0;
5520
5521 for (j = 0, section = ibfd->sections;
5522 section != NULL;
5523 section = section->next)
5524 {
5525 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5526 {
5527 output_section = section->output_section;
5528
5529 sections[j ++] = section;
5530
5531 /* The Solaris native linker always sets p_paddr to 0.
5532 We try to catch that case here, and set it to the
5533 correct value. Note - some backends require that
5534 p_paddr be left as zero. */
5535 if (segment->p_paddr == 0
5536 && segment->p_vaddr != 0
5537 && (! bed->want_p_paddr_set_to_zero)
5538 && isec == 0
5539 && output_section->lma != 0
5540 && (output_section->vma == (segment->p_vaddr
5541 + (map->includes_filehdr
5542 ? iehdr->e_ehsize
5543 : 0)
5544 + (map->includes_phdrs
5545 ? (iehdr->e_phnum
5546 * iehdr->e_phentsize)
5547 : 0))))
5548 map->p_paddr = segment->p_vaddr;
5549
5550 /* Match up the physical address of the segment with the
5551 LMA address of the output section. */
5552 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5553 || IS_COREFILE_NOTE (segment, section)
5554 || (bed->want_p_paddr_set_to_zero &&
5555 IS_CONTAINED_BY_VMA (output_section, segment))
5556 )
5557 {
5558 if (matching_lma == 0)
5559 matching_lma = output_section->lma;
5560
5561 /* We assume that if the section fits within the segment
5562 then it does not overlap any other section within that
5563 segment. */
5564 map->sections[isec ++] = output_section;
5565 }
5566 else if (suggested_lma == 0)
5567 suggested_lma = output_section->lma;
5568 }
5569 }
5570
5571 BFD_ASSERT (j == section_count);
5572
5573 /* Step Two: Adjust the physical address of the current segment,
5574 if necessary. */
5575 if (isec == section_count)
5576 {
5577 /* All of the sections fitted within the segment as currently
5578 specified. This is the default case. Add the segment to
5579 the list of built segments and carry on to process the next
5580 program header in the input BFD. */
5581 map->count = section_count;
5582 *pointer_to_map = map;
5583 pointer_to_map = &map->next;
5584
5585 free (sections);
5586 continue;
5587 }
5588 else
5589 {
5590 if (matching_lma != 0)
5591 {
5592 /* At least one section fits inside the current segment.
5593 Keep it, but modify its physical address to match the
5594 LMA of the first section that fitted. */
5595 map->p_paddr = matching_lma;
5596 }
5597 else
5598 {
5599 /* None of the sections fitted inside the current segment.
5600 Change the current segment's physical address to match
5601 the LMA of the first section. */
5602 map->p_paddr = suggested_lma;
5603 }
5604
5605 /* Offset the segment physical address from the lma
5606 to allow for space taken up by elf headers. */
5607 if (map->includes_filehdr)
5608 map->p_paddr -= iehdr->e_ehsize;
5609
5610 if (map->includes_phdrs)
5611 {
5612 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5613
5614 /* iehdr->e_phnum is just an estimate of the number
5615 of program headers that we will need. Make a note
5616 here of the number we used and the segment we chose
5617 to hold these headers, so that we can adjust the
5618 offset when we know the correct value. */
5619 phdr_adjust_num = iehdr->e_phnum;
5620 phdr_adjust_seg = map;
5621 }
5622 }
5623
5624 /* Step Three: Loop over the sections again, this time assigning
5625 those that fit to the current segment and removing them from the
5626 sections array; but making sure not to leave large gaps. Once all
5627 possible sections have been assigned to the current segment it is
5628 added to the list of built segments and if sections still remain
5629 to be assigned, a new segment is constructed before repeating
5630 the loop. */
5631 isec = 0;
5632 do
5633 {
5634 map->count = 0;
5635 suggested_lma = 0;
5636
5637 /* Fill the current segment with sections that fit. */
5638 for (j = 0; j < section_count; j++)
5639 {
5640 section = sections[j];
5641
5642 if (section == NULL)
5643 continue;
5644
5645 output_section = section->output_section;
5646
5647 BFD_ASSERT (output_section != NULL);
5648
5649 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5650 || IS_COREFILE_NOTE (segment, section))
5651 {
5652 if (map->count == 0)
5653 {
5654 /* If the first section in a segment does not start at
5655 the beginning of the segment, then something is
5656 wrong. */
5657 if (output_section->lma !=
5658 (map->p_paddr
5659 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5660 + (map->includes_phdrs
5661 ? iehdr->e_phnum * iehdr->e_phentsize
5662 : 0)))
5663 abort ();
5664 }
5665 else
5666 {
5667 asection * prev_sec;
5668
5669 prev_sec = map->sections[map->count - 1];
5670
5671 /* If the gap between the end of the previous section
5672 and the start of this section is more than
5673 maxpagesize then we need to start a new segment. */
5674 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5675 maxpagesize)
5676 < BFD_ALIGN (output_section->lma, maxpagesize))
5677 || ((prev_sec->lma + prev_sec->size)
5678 > output_section->lma))
5679 {
5680 if (suggested_lma == 0)
5681 suggested_lma = output_section->lma;
5682
5683 continue;
5684 }
5685 }
5686
5687 map->sections[map->count++] = output_section;
5688 ++isec;
5689 sections[j] = NULL;
5690 section->segment_mark = TRUE;
5691 }
5692 else if (suggested_lma == 0)
5693 suggested_lma = output_section->lma;
5694 }
5695
5696 BFD_ASSERT (map->count > 0);
5697
5698 /* Add the current segment to the list of built segments. */
5699 *pointer_to_map = map;
5700 pointer_to_map = &map->next;
5701
5702 if (isec < section_count)
5703 {
5704 /* We still have not allocated all of the sections to
5705 segments. Create a new segment here, initialise it
5706 and carry on looping. */
5707 amt = sizeof (struct elf_segment_map);
5708 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5709 map = bfd_alloc (obfd, amt);
5710 if (map == NULL)
5711 {
5712 free (sections);
5713 return FALSE;
5714 }
5715
5716 /* Initialise the fields of the segment map. Set the physical
5717 physical address to the LMA of the first section that has
5718 not yet been assigned. */
5719 map->next = NULL;
5720 map->p_type = segment->p_type;
5721 map->p_flags = segment->p_flags;
5722 map->p_flags_valid = 1;
5723 map->p_paddr = suggested_lma;
5724 map->p_paddr_valid = 1;
5725 map->includes_filehdr = 0;
5726 map->includes_phdrs = 0;
5727 }
5728 }
5729 while (isec < section_count);
5730
5731 free (sections);
5732 }
5733
5734 /* The Solaris linker creates program headers in which all the
5735 p_paddr fields are zero. When we try to objcopy or strip such a
5736 file, we get confused. Check for this case, and if we find it
5737 reset the p_paddr_valid fields. */
5738 for (map = map_first; map != NULL; map = map->next)
5739 if (map->p_paddr != 0)
5740 break;
5741 if (map == NULL)
5742 for (map = map_first; map != NULL; map = map->next)
5743 map->p_paddr_valid = 0;
5744
5745 elf_tdata (obfd)->segment_map = map_first;
5746
5747 /* If we had to estimate the number of program headers that were
5748 going to be needed, then check our estimate now and adjust
5749 the offset if necessary. */
5750 if (phdr_adjust_seg != NULL)
5751 {
5752 unsigned int count;
5753
5754 for (count = 0, map = map_first; map != NULL; map = map->next)
5755 count++;
5756
5757 if (count > phdr_adjust_num)
5758 phdr_adjust_seg->p_paddr
5759 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5760 }
5761
5762 #undef SEGMENT_END
5763 #undef SECTION_SIZE
5764 #undef IS_CONTAINED_BY_VMA
5765 #undef IS_CONTAINED_BY_LMA
5766 #undef IS_COREFILE_NOTE
5767 #undef IS_SOLARIS_PT_INTERP
5768 #undef IS_SECTION_IN_INPUT_SEGMENT
5769 #undef INCLUDE_SECTION_IN_SEGMENT
5770 #undef SEGMENT_AFTER_SEGMENT
5771 #undef SEGMENT_OVERLAPS
5772 return TRUE;
5773 }
5774
5775 /* Copy ELF program header information. */
5776
5777 static bfd_boolean
5778 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5779 {
5780 Elf_Internal_Ehdr *iehdr;
5781 struct elf_segment_map *map;
5782 struct elf_segment_map *map_first;
5783 struct elf_segment_map **pointer_to_map;
5784 Elf_Internal_Phdr *segment;
5785 unsigned int i;
5786 unsigned int num_segments;
5787 bfd_boolean phdr_included = FALSE;
5788
5789 iehdr = elf_elfheader (ibfd);
5790
5791 map_first = NULL;
5792 pointer_to_map = &map_first;
5793
5794 num_segments = elf_elfheader (ibfd)->e_phnum;
5795 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5796 i < num_segments;
5797 i++, segment++)
5798 {
5799 asection *section;
5800 unsigned int section_count;
5801 bfd_size_type amt;
5802 Elf_Internal_Shdr *this_hdr;
5803
5804 /* FIXME: Do we need to copy PT_NULL segment? */
5805 if (segment->p_type == PT_NULL)
5806 continue;
5807
5808 /* Compute how many sections are in this segment. */
5809 for (section = ibfd->sections, section_count = 0;
5810 section != NULL;
5811 section = section->next)
5812 {
5813 this_hdr = &(elf_section_data(section)->this_hdr);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5815 section_count++;
5816 }
5817
5818 /* Allocate a segment map big enough to contain
5819 all of the sections we have selected. */
5820 amt = sizeof (struct elf_segment_map);
5821 if (section_count != 0)
5822 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5823 map = bfd_zalloc (obfd, amt);
5824 if (map == NULL)
5825 return FALSE;
5826
5827 /* Initialize the fields of the output segment map with the
5828 input segment. */
5829 map->next = NULL;
5830 map->p_type = segment->p_type;
5831 map->p_flags = segment->p_flags;
5832 map->p_flags_valid = 1;
5833 map->p_paddr = segment->p_paddr;
5834 map->p_paddr_valid = 1;
5835 map->p_align = segment->p_align;
5836 map->p_align_valid = 1;
5837
5838 /* Determine if this segment contains the ELF file header
5839 and if it contains the program headers themselves. */
5840 map->includes_filehdr = (segment->p_offset == 0
5841 && segment->p_filesz >= iehdr->e_ehsize);
5842
5843 map->includes_phdrs = 0;
5844 if (! phdr_included || segment->p_type != PT_LOAD)
5845 {
5846 map->includes_phdrs =
5847 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5848 && (segment->p_offset + segment->p_filesz
5849 >= ((bfd_vma) iehdr->e_phoff
5850 + iehdr->e_phnum * iehdr->e_phentsize)));
5851
5852 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5853 phdr_included = TRUE;
5854 }
5855
5856 if (section_count != 0)
5857 {
5858 unsigned int isec = 0;
5859
5860 for (section = ibfd->sections;
5861 section != NULL;
5862 section = section->next)
5863 {
5864 this_hdr = &(elf_section_data(section)->this_hdr);
5865 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5866 map->sections[isec++] = section->output_section;
5867 }
5868 }
5869
5870 map->count = section_count;
5871 *pointer_to_map = map;
5872 pointer_to_map = &map->next;
5873 }
5874
5875 elf_tdata (obfd)->segment_map = map_first;
5876 return TRUE;
5877 }
5878
5879 /* Copy private BFD data. This copies or rewrites ELF program header
5880 information. */
5881
5882 static bfd_boolean
5883 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5884 {
5885 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5886 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5887 return TRUE;
5888
5889 if (elf_tdata (ibfd)->phdr == NULL)
5890 return TRUE;
5891
5892 if (ibfd->xvec == obfd->xvec)
5893 {
5894 /* Check if any sections in the input BFD covered by ELF program
5895 header are changed. */
5896 Elf_Internal_Phdr *segment;
5897 asection *section, *osec;
5898 unsigned int i, num_segments;
5899 Elf_Internal_Shdr *this_hdr;
5900
5901 /* Initialize the segment mark field. */
5902 for (section = obfd->sections; section != NULL;
5903 section = section->next)
5904 section->segment_mark = FALSE;
5905
5906 num_segments = elf_elfheader (ibfd)->e_phnum;
5907 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5908 i < num_segments;
5909 i++, segment++)
5910 {
5911 for (section = ibfd->sections;
5912 section != NULL; section = section->next)
5913 {
5914 /* We mark the output section so that we know it comes
5915 from the input BFD. */
5916 osec = section->output_section;
5917 if (osec)
5918 osec->segment_mark = TRUE;
5919
5920 /* Check if this section is covered by the segment. */
5921 this_hdr = &(elf_section_data(section)->this_hdr);
5922 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5923 {
5924 /* FIXME: Check if its output section is changed or
5925 removed. What else do we need to check? */
5926 if (osec == NULL
5927 || section->flags != osec->flags
5928 || section->lma != osec->lma
5929 || section->vma != osec->vma
5930 || section->size != osec->size
5931 || section->rawsize != osec->rawsize
5932 || section->alignment_power != osec->alignment_power)
5933 goto rewrite;
5934 }
5935 }
5936 }
5937
5938 /* Check to see if any output section doesn't come from the
5939 input BFD. */
5940 for (section = obfd->sections; section != NULL;
5941 section = section->next)
5942 {
5943 if (section->segment_mark == FALSE)
5944 goto rewrite;
5945 else
5946 section->segment_mark = FALSE;
5947 }
5948
5949 return copy_elf_program_header (ibfd, obfd);
5950 }
5951
5952 rewrite:
5953 return rewrite_elf_program_header (ibfd, obfd);
5954 }
5955
5956 /* Initialize private output section information from input section. */
5957
5958 bfd_boolean
5959 _bfd_elf_init_private_section_data (bfd *ibfd,
5960 asection *isec,
5961 bfd *obfd,
5962 asection *osec,
5963 struct bfd_link_info *link_info)
5964
5965 {
5966 Elf_Internal_Shdr *ihdr, *ohdr;
5967 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5968
5969 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5970 || obfd->xvec->flavour != bfd_target_elf_flavour)
5971 return TRUE;
5972
5973 /* Don't copy the output ELF section type from input if the
5974 output BFD section flags have been set to something different.
5975 elf_fake_sections will set ELF section type based on BFD
5976 section flags. */
5977 if (osec->flags == isec->flags || !osec->flags)
5978 {
5979 BFD_ASSERT (osec->flags == isec->flags
5980 || (!osec->flags
5981 && elf_section_type (osec) == SHT_NULL));
5982 elf_section_type (osec) = elf_section_type (isec);
5983 }
5984
5985 /* FIXME: Is this correct for all OS/PROC specific flags? */
5986 elf_section_flags (osec) |= (elf_section_flags (isec)
5987 & (SHF_MASKOS | SHF_MASKPROC));
5988
5989 /* Set things up for objcopy and relocatable link. The output
5990 SHT_GROUP section will have its elf_next_in_group pointing back
5991 to the input group members. Ignore linker created group section.
5992 See elfNN_ia64_object_p in elfxx-ia64.c. */
5993 if (need_group)
5994 {
5995 if (elf_sec_group (isec) == NULL
5996 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5997 {
5998 if (elf_section_flags (isec) & SHF_GROUP)
5999 elf_section_flags (osec) |= SHF_GROUP;
6000 elf_next_in_group (osec) = elf_next_in_group (isec);
6001 elf_group_name (osec) = elf_group_name (isec);
6002 }
6003 }
6004
6005 ihdr = &elf_section_data (isec)->this_hdr;
6006
6007 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6008 don't use the output section of the linked-to section since it
6009 may be NULL at this point. */
6010 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6011 {
6012 ohdr = &elf_section_data (osec)->this_hdr;
6013 ohdr->sh_flags |= SHF_LINK_ORDER;
6014 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6015 }
6016
6017 osec->use_rela_p = isec->use_rela_p;
6018
6019 return TRUE;
6020 }
6021
6022 /* Copy private section information. This copies over the entsize
6023 field, and sometimes the info field. */
6024
6025 bfd_boolean
6026 _bfd_elf_copy_private_section_data (bfd *ibfd,
6027 asection *isec,
6028 bfd *obfd,
6029 asection *osec)
6030 {
6031 Elf_Internal_Shdr *ihdr, *ohdr;
6032
6033 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6034 || obfd->xvec->flavour != bfd_target_elf_flavour)
6035 return TRUE;
6036
6037 ihdr = &elf_section_data (isec)->this_hdr;
6038 ohdr = &elf_section_data (osec)->this_hdr;
6039
6040 ohdr->sh_entsize = ihdr->sh_entsize;
6041
6042 if (ihdr->sh_type == SHT_SYMTAB
6043 || ihdr->sh_type == SHT_DYNSYM
6044 || ihdr->sh_type == SHT_GNU_verneed
6045 || ihdr->sh_type == SHT_GNU_verdef)
6046 ohdr->sh_info = ihdr->sh_info;
6047
6048 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6049 NULL);
6050 }
6051
6052 /* Copy private header information. */
6053
6054 bfd_boolean
6055 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6056 {
6057 asection *isec;
6058
6059 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6060 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6061 return TRUE;
6062
6063 /* Copy over private BFD data if it has not already been copied.
6064 This must be done here, rather than in the copy_private_bfd_data
6065 entry point, because the latter is called after the section
6066 contents have been set, which means that the program headers have
6067 already been worked out. */
6068 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6069 {
6070 if (! copy_private_bfd_data (ibfd, obfd))
6071 return FALSE;
6072 }
6073
6074 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6075 but this might be wrong if we deleted the group section. */
6076 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6077 if (elf_section_type (isec) == SHT_GROUP
6078 && isec->output_section == NULL)
6079 {
6080 asection *first = elf_next_in_group (isec);
6081 asection *s = first;
6082 while (s != NULL)
6083 {
6084 if (s->output_section != NULL)
6085 {
6086 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6087 elf_group_name (s->output_section) = NULL;
6088 }
6089 s = elf_next_in_group (s);
6090 if (s == first)
6091 break;
6092 }
6093 }
6094
6095 return TRUE;
6096 }
6097
6098 /* Copy private symbol information. If this symbol is in a section
6099 which we did not map into a BFD section, try to map the section
6100 index correctly. We use special macro definitions for the mapped
6101 section indices; these definitions are interpreted by the
6102 swap_out_syms function. */
6103
6104 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6105 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6106 #define MAP_STRTAB (SHN_HIOS + 3)
6107 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6108 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6109
6110 bfd_boolean
6111 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6112 asymbol *isymarg,
6113 bfd *obfd,
6114 asymbol *osymarg)
6115 {
6116 elf_symbol_type *isym, *osym;
6117
6118 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6119 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6120 return TRUE;
6121
6122 isym = elf_symbol_from (ibfd, isymarg);
6123 osym = elf_symbol_from (obfd, osymarg);
6124
6125 if (isym != NULL
6126 && osym != NULL
6127 && bfd_is_abs_section (isym->symbol.section))
6128 {
6129 unsigned int shndx;
6130
6131 shndx = isym->internal_elf_sym.st_shndx;
6132 if (shndx == elf_onesymtab (ibfd))
6133 shndx = MAP_ONESYMTAB;
6134 else if (shndx == elf_dynsymtab (ibfd))
6135 shndx = MAP_DYNSYMTAB;
6136 else if (shndx == elf_tdata (ibfd)->strtab_section)
6137 shndx = MAP_STRTAB;
6138 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6139 shndx = MAP_SHSTRTAB;
6140 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6141 shndx = MAP_SYM_SHNDX;
6142 osym->internal_elf_sym.st_shndx = shndx;
6143 }
6144
6145 return TRUE;
6146 }
6147
6148 /* Swap out the symbols. */
6149
6150 static bfd_boolean
6151 swap_out_syms (bfd *abfd,
6152 struct bfd_strtab_hash **sttp,
6153 int relocatable_p)
6154 {
6155 const struct elf_backend_data *bed;
6156 int symcount;
6157 asymbol **syms;
6158 struct bfd_strtab_hash *stt;
6159 Elf_Internal_Shdr *symtab_hdr;
6160 Elf_Internal_Shdr *symtab_shndx_hdr;
6161 Elf_Internal_Shdr *symstrtab_hdr;
6162 bfd_byte *outbound_syms;
6163 bfd_byte *outbound_shndx;
6164 int idx;
6165 bfd_size_type amt;
6166 bfd_boolean name_local_sections;
6167
6168 if (!elf_map_symbols (abfd))
6169 return FALSE;
6170
6171 /* Dump out the symtabs. */
6172 stt = _bfd_elf_stringtab_init ();
6173 if (stt == NULL)
6174 return FALSE;
6175
6176 bed = get_elf_backend_data (abfd);
6177 symcount = bfd_get_symcount (abfd);
6178 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6179 symtab_hdr->sh_type = SHT_SYMTAB;
6180 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6181 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6182 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6183 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6184
6185 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6186 symstrtab_hdr->sh_type = SHT_STRTAB;
6187
6188 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6189 if (outbound_syms == NULL)
6190 {
6191 _bfd_stringtab_free (stt);
6192 return FALSE;
6193 }
6194 symtab_hdr->contents = outbound_syms;
6195
6196 outbound_shndx = NULL;
6197 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6198 if (symtab_shndx_hdr->sh_name != 0)
6199 {
6200 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6201 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6202 sizeof (Elf_External_Sym_Shndx));
6203 if (outbound_shndx == NULL)
6204 {
6205 _bfd_stringtab_free (stt);
6206 return FALSE;
6207 }
6208
6209 symtab_shndx_hdr->contents = outbound_shndx;
6210 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6211 symtab_shndx_hdr->sh_size = amt;
6212 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6213 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6214 }
6215
6216 /* Now generate the data (for "contents"). */
6217 {
6218 /* Fill in zeroth symbol and swap it out. */
6219 Elf_Internal_Sym sym;
6220 sym.st_name = 0;
6221 sym.st_value = 0;
6222 sym.st_size = 0;
6223 sym.st_info = 0;
6224 sym.st_other = 0;
6225 sym.st_shndx = SHN_UNDEF;
6226 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6227 outbound_syms += bed->s->sizeof_sym;
6228 if (outbound_shndx != NULL)
6229 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6230 }
6231
6232 name_local_sections
6233 = (bed->elf_backend_name_local_section_symbols
6234 && bed->elf_backend_name_local_section_symbols (abfd));
6235
6236 syms = bfd_get_outsymbols (abfd);
6237 for (idx = 0; idx < symcount; idx++)
6238 {
6239 Elf_Internal_Sym sym;
6240 bfd_vma value = syms[idx]->value;
6241 elf_symbol_type *type_ptr;
6242 flagword flags = syms[idx]->flags;
6243 int type;
6244
6245 if (!name_local_sections
6246 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6247 {
6248 /* Local section symbols have no name. */
6249 sym.st_name = 0;
6250 }
6251 else
6252 {
6253 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6254 syms[idx]->name,
6255 TRUE, FALSE);
6256 if (sym.st_name == (unsigned long) -1)
6257 {
6258 _bfd_stringtab_free (stt);
6259 return FALSE;
6260 }
6261 }
6262
6263 type_ptr = elf_symbol_from (abfd, syms[idx]);
6264
6265 if ((flags & BSF_SECTION_SYM) == 0
6266 && bfd_is_com_section (syms[idx]->section))
6267 {
6268 /* ELF common symbols put the alignment into the `value' field,
6269 and the size into the `size' field. This is backwards from
6270 how BFD handles it, so reverse it here. */
6271 sym.st_size = value;
6272 if (type_ptr == NULL
6273 || type_ptr->internal_elf_sym.st_value == 0)
6274 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6275 else
6276 sym.st_value = type_ptr->internal_elf_sym.st_value;
6277 sym.st_shndx = _bfd_elf_section_from_bfd_section
6278 (abfd, syms[idx]->section);
6279 }
6280 else
6281 {
6282 asection *sec = syms[idx]->section;
6283 int shndx;
6284
6285 if (sec->output_section)
6286 {
6287 value += sec->output_offset;
6288 sec = sec->output_section;
6289 }
6290
6291 /* Don't add in the section vma for relocatable output. */
6292 if (! relocatable_p)
6293 value += sec->vma;
6294 sym.st_value = value;
6295 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6296
6297 if (bfd_is_abs_section (sec)
6298 && type_ptr != NULL
6299 && type_ptr->internal_elf_sym.st_shndx != 0)
6300 {
6301 /* This symbol is in a real ELF section which we did
6302 not create as a BFD section. Undo the mapping done
6303 by copy_private_symbol_data. */
6304 shndx = type_ptr->internal_elf_sym.st_shndx;
6305 switch (shndx)
6306 {
6307 case MAP_ONESYMTAB:
6308 shndx = elf_onesymtab (abfd);
6309 break;
6310 case MAP_DYNSYMTAB:
6311 shndx = elf_dynsymtab (abfd);
6312 break;
6313 case MAP_STRTAB:
6314 shndx = elf_tdata (abfd)->strtab_section;
6315 break;
6316 case MAP_SHSTRTAB:
6317 shndx = elf_tdata (abfd)->shstrtab_section;
6318 break;
6319 case MAP_SYM_SHNDX:
6320 shndx = elf_tdata (abfd)->symtab_shndx_section;
6321 break;
6322 default:
6323 break;
6324 }
6325 }
6326 else
6327 {
6328 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6329
6330 if (shndx == -1)
6331 {
6332 asection *sec2;
6333
6334 /* Writing this would be a hell of a lot easier if
6335 we had some decent documentation on bfd, and
6336 knew what to expect of the library, and what to
6337 demand of applications. For example, it
6338 appears that `objcopy' might not set the
6339 section of a symbol to be a section that is
6340 actually in the output file. */
6341 sec2 = bfd_get_section_by_name (abfd, sec->name);
6342 if (sec2 == NULL)
6343 {
6344 _bfd_error_handler (_("\
6345 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6346 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6347 sec->name);
6348 bfd_set_error (bfd_error_invalid_operation);
6349 _bfd_stringtab_free (stt);
6350 return FALSE;
6351 }
6352
6353 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6354 BFD_ASSERT (shndx != -1);
6355 }
6356 }
6357
6358 sym.st_shndx = shndx;
6359 }
6360
6361 if ((flags & BSF_THREAD_LOCAL) != 0)
6362 type = STT_TLS;
6363 else if ((flags & BSF_FUNCTION) != 0)
6364 type = STT_FUNC;
6365 else if ((flags & BSF_OBJECT) != 0)
6366 type = STT_OBJECT;
6367 else
6368 type = STT_NOTYPE;
6369
6370 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6371 type = STT_TLS;
6372
6373 /* Processor-specific types. */
6374 if (type_ptr != NULL
6375 && bed->elf_backend_get_symbol_type)
6376 type = ((*bed->elf_backend_get_symbol_type)
6377 (&type_ptr->internal_elf_sym, type));
6378
6379 if (flags & BSF_SECTION_SYM)
6380 {
6381 if (flags & BSF_GLOBAL)
6382 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6383 else
6384 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6385 }
6386 else if (bfd_is_com_section (syms[idx]->section))
6387 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6388 else if (bfd_is_und_section (syms[idx]->section))
6389 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6390 ? STB_WEAK
6391 : STB_GLOBAL),
6392 type);
6393 else if (flags & BSF_FILE)
6394 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6395 else
6396 {
6397 int bind = STB_LOCAL;
6398
6399 if (flags & BSF_LOCAL)
6400 bind = STB_LOCAL;
6401 else if (flags & BSF_WEAK)
6402 bind = STB_WEAK;
6403 else if (flags & BSF_GLOBAL)
6404 bind = STB_GLOBAL;
6405
6406 sym.st_info = ELF_ST_INFO (bind, type);
6407 }
6408
6409 if (type_ptr != NULL)
6410 sym.st_other = type_ptr->internal_elf_sym.st_other;
6411 else
6412 sym.st_other = 0;
6413
6414 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6415 outbound_syms += bed->s->sizeof_sym;
6416 if (outbound_shndx != NULL)
6417 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6418 }
6419
6420 *sttp = stt;
6421 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6422 symstrtab_hdr->sh_type = SHT_STRTAB;
6423
6424 symstrtab_hdr->sh_flags = 0;
6425 symstrtab_hdr->sh_addr = 0;
6426 symstrtab_hdr->sh_entsize = 0;
6427 symstrtab_hdr->sh_link = 0;
6428 symstrtab_hdr->sh_info = 0;
6429 symstrtab_hdr->sh_addralign = 1;
6430
6431 return TRUE;
6432 }
6433
6434 /* Return the number of bytes required to hold the symtab vector.
6435
6436 Note that we base it on the count plus 1, since we will null terminate
6437 the vector allocated based on this size. However, the ELF symbol table
6438 always has a dummy entry as symbol #0, so it ends up even. */
6439
6440 long
6441 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6442 {
6443 long symcount;
6444 long symtab_size;
6445 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6446
6447 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6448 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6449 if (symcount > 0)
6450 symtab_size -= sizeof (asymbol *);
6451
6452 return symtab_size;
6453 }
6454
6455 long
6456 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6457 {
6458 long symcount;
6459 long symtab_size;
6460 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6461
6462 if (elf_dynsymtab (abfd) == 0)
6463 {
6464 bfd_set_error (bfd_error_invalid_operation);
6465 return -1;
6466 }
6467
6468 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6469 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6470 if (symcount > 0)
6471 symtab_size -= sizeof (asymbol *);
6472
6473 return symtab_size;
6474 }
6475
6476 long
6477 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6478 sec_ptr asect)
6479 {
6480 return (asect->reloc_count + 1) * sizeof (arelent *);
6481 }
6482
6483 /* Canonicalize the relocs. */
6484
6485 long
6486 _bfd_elf_canonicalize_reloc (bfd *abfd,
6487 sec_ptr section,
6488 arelent **relptr,
6489 asymbol **symbols)
6490 {
6491 arelent *tblptr;
6492 unsigned int i;
6493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6494
6495 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6496 return -1;
6497
6498 tblptr = section->relocation;
6499 for (i = 0; i < section->reloc_count; i++)
6500 *relptr++ = tblptr++;
6501
6502 *relptr = NULL;
6503
6504 return section->reloc_count;
6505 }
6506
6507 long
6508 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6509 {
6510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6511 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6512
6513 if (symcount >= 0)
6514 bfd_get_symcount (abfd) = symcount;
6515 return symcount;
6516 }
6517
6518 long
6519 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6520 asymbol **allocation)
6521 {
6522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6523 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6524
6525 if (symcount >= 0)
6526 bfd_get_dynamic_symcount (abfd) = symcount;
6527 return symcount;
6528 }
6529
6530 /* Return the size required for the dynamic reloc entries. Any loadable
6531 section that was actually installed in the BFD, and has type SHT_REL
6532 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6533 dynamic reloc section. */
6534
6535 long
6536 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6537 {
6538 long ret;
6539 asection *s;
6540
6541 if (elf_dynsymtab (abfd) == 0)
6542 {
6543 bfd_set_error (bfd_error_invalid_operation);
6544 return -1;
6545 }
6546
6547 ret = sizeof (arelent *);
6548 for (s = abfd->sections; s != NULL; s = s->next)
6549 if ((s->flags & SEC_LOAD) != 0
6550 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6551 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6552 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6553 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6554 * sizeof (arelent *));
6555
6556 return ret;
6557 }
6558
6559 /* Canonicalize the dynamic relocation entries. Note that we return the
6560 dynamic relocations as a single block, although they are actually
6561 associated with particular sections; the interface, which was
6562 designed for SunOS style shared libraries, expects that there is only
6563 one set of dynamic relocs. Any loadable section that was actually
6564 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6565 dynamic symbol table, is considered to be a dynamic reloc section. */
6566
6567 long
6568 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6569 arelent **storage,
6570 asymbol **syms)
6571 {
6572 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6573 asection *s;
6574 long ret;
6575
6576 if (elf_dynsymtab (abfd) == 0)
6577 {
6578 bfd_set_error (bfd_error_invalid_operation);
6579 return -1;
6580 }
6581
6582 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6583 ret = 0;
6584 for (s = abfd->sections; s != NULL; s = s->next)
6585 {
6586 if ((s->flags & SEC_LOAD) != 0
6587 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6588 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6589 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6590 {
6591 arelent *p;
6592 long count, i;
6593
6594 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6595 return -1;
6596 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6597 p = s->relocation;
6598 for (i = 0; i < count; i++)
6599 *storage++ = p++;
6600 ret += count;
6601 }
6602 }
6603
6604 *storage = NULL;
6605
6606 return ret;
6607 }
6608 \f
6609 /* Read in the version information. */
6610
6611 bfd_boolean
6612 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6613 {
6614 bfd_byte *contents = NULL;
6615 unsigned int freeidx = 0;
6616
6617 if (elf_dynverref (abfd) != 0)
6618 {
6619 Elf_Internal_Shdr *hdr;
6620 Elf_External_Verneed *everneed;
6621 Elf_Internal_Verneed *iverneed;
6622 unsigned int i;
6623 bfd_byte *contents_end;
6624
6625 hdr = &elf_tdata (abfd)->dynverref_hdr;
6626
6627 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6628 sizeof (Elf_Internal_Verneed));
6629 if (elf_tdata (abfd)->verref == NULL)
6630 goto error_return;
6631
6632 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6633
6634 contents = bfd_malloc (hdr->sh_size);
6635 if (contents == NULL)
6636 {
6637 error_return_verref:
6638 elf_tdata (abfd)->verref = NULL;
6639 elf_tdata (abfd)->cverrefs = 0;
6640 goto error_return;
6641 }
6642 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6643 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6644 goto error_return_verref;
6645
6646 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6647 goto error_return_verref;
6648
6649 BFD_ASSERT (sizeof (Elf_External_Verneed)
6650 == sizeof (Elf_External_Vernaux));
6651 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6652 everneed = (Elf_External_Verneed *) contents;
6653 iverneed = elf_tdata (abfd)->verref;
6654 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6655 {
6656 Elf_External_Vernaux *evernaux;
6657 Elf_Internal_Vernaux *ivernaux;
6658 unsigned int j;
6659
6660 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6661
6662 iverneed->vn_bfd = abfd;
6663
6664 iverneed->vn_filename =
6665 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6666 iverneed->vn_file);
6667 if (iverneed->vn_filename == NULL)
6668 goto error_return_verref;
6669
6670 if (iverneed->vn_cnt == 0)
6671 iverneed->vn_auxptr = NULL;
6672 else
6673 {
6674 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6675 sizeof (Elf_Internal_Vernaux));
6676 if (iverneed->vn_auxptr == NULL)
6677 goto error_return_verref;
6678 }
6679
6680 if (iverneed->vn_aux
6681 > (size_t) (contents_end - (bfd_byte *) everneed))
6682 goto error_return_verref;
6683
6684 evernaux = ((Elf_External_Vernaux *)
6685 ((bfd_byte *) everneed + iverneed->vn_aux));
6686 ivernaux = iverneed->vn_auxptr;
6687 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6688 {
6689 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6690
6691 ivernaux->vna_nodename =
6692 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6693 ivernaux->vna_name);
6694 if (ivernaux->vna_nodename == NULL)
6695 goto error_return_verref;
6696
6697 if (j + 1 < iverneed->vn_cnt)
6698 ivernaux->vna_nextptr = ivernaux + 1;
6699 else
6700 ivernaux->vna_nextptr = NULL;
6701
6702 if (ivernaux->vna_next
6703 > (size_t) (contents_end - (bfd_byte *) evernaux))
6704 goto error_return_verref;
6705
6706 evernaux = ((Elf_External_Vernaux *)
6707 ((bfd_byte *) evernaux + ivernaux->vna_next));
6708
6709 if (ivernaux->vna_other > freeidx)
6710 freeidx = ivernaux->vna_other;
6711 }
6712
6713 if (i + 1 < hdr->sh_info)
6714 iverneed->vn_nextref = iverneed + 1;
6715 else
6716 iverneed->vn_nextref = NULL;
6717
6718 if (iverneed->vn_next
6719 > (size_t) (contents_end - (bfd_byte *) everneed))
6720 goto error_return_verref;
6721
6722 everneed = ((Elf_External_Verneed *)
6723 ((bfd_byte *) everneed + iverneed->vn_next));
6724 }
6725
6726 free (contents);
6727 contents = NULL;
6728 }
6729
6730 if (elf_dynverdef (abfd) != 0)
6731 {
6732 Elf_Internal_Shdr *hdr;
6733 Elf_External_Verdef *everdef;
6734 Elf_Internal_Verdef *iverdef;
6735 Elf_Internal_Verdef *iverdefarr;
6736 Elf_Internal_Verdef iverdefmem;
6737 unsigned int i;
6738 unsigned int maxidx;
6739 bfd_byte *contents_end_def, *contents_end_aux;
6740
6741 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6742
6743 contents = bfd_malloc (hdr->sh_size);
6744 if (contents == NULL)
6745 goto error_return;
6746 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6747 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6748 goto error_return;
6749
6750 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6751 goto error_return;
6752
6753 BFD_ASSERT (sizeof (Elf_External_Verdef)
6754 >= sizeof (Elf_External_Verdaux));
6755 contents_end_def = contents + hdr->sh_size
6756 - sizeof (Elf_External_Verdef);
6757 contents_end_aux = contents + hdr->sh_size
6758 - sizeof (Elf_External_Verdaux);
6759
6760 /* We know the number of entries in the section but not the maximum
6761 index. Therefore we have to run through all entries and find
6762 the maximum. */
6763 everdef = (Elf_External_Verdef *) contents;
6764 maxidx = 0;
6765 for (i = 0; i < hdr->sh_info; ++i)
6766 {
6767 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6768
6769 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6770 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6771
6772 if (iverdefmem.vd_next
6773 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6774 goto error_return;
6775
6776 everdef = ((Elf_External_Verdef *)
6777 ((bfd_byte *) everdef + iverdefmem.vd_next));
6778 }
6779
6780 if (default_imported_symver)
6781 {
6782 if (freeidx > maxidx)
6783 maxidx = ++freeidx;
6784 else
6785 freeidx = ++maxidx;
6786 }
6787 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6788 sizeof (Elf_Internal_Verdef));
6789 if (elf_tdata (abfd)->verdef == NULL)
6790 goto error_return;
6791
6792 elf_tdata (abfd)->cverdefs = maxidx;
6793
6794 everdef = (Elf_External_Verdef *) contents;
6795 iverdefarr = elf_tdata (abfd)->verdef;
6796 for (i = 0; i < hdr->sh_info; i++)
6797 {
6798 Elf_External_Verdaux *everdaux;
6799 Elf_Internal_Verdaux *iverdaux;
6800 unsigned int j;
6801
6802 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6803
6804 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6805 {
6806 error_return_verdef:
6807 elf_tdata (abfd)->verdef = NULL;
6808 elf_tdata (abfd)->cverdefs = 0;
6809 goto error_return;
6810 }
6811
6812 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6813 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6814
6815 iverdef->vd_bfd = abfd;
6816
6817 if (iverdef->vd_cnt == 0)
6818 iverdef->vd_auxptr = NULL;
6819 else
6820 {
6821 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6822 sizeof (Elf_Internal_Verdaux));
6823 if (iverdef->vd_auxptr == NULL)
6824 goto error_return_verdef;
6825 }
6826
6827 if (iverdef->vd_aux
6828 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6829 goto error_return_verdef;
6830
6831 everdaux = ((Elf_External_Verdaux *)
6832 ((bfd_byte *) everdef + iverdef->vd_aux));
6833 iverdaux = iverdef->vd_auxptr;
6834 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6835 {
6836 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6837
6838 iverdaux->vda_nodename =
6839 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6840 iverdaux->vda_name);
6841 if (iverdaux->vda_nodename == NULL)
6842 goto error_return_verdef;
6843
6844 if (j + 1 < iverdef->vd_cnt)
6845 iverdaux->vda_nextptr = iverdaux + 1;
6846 else
6847 iverdaux->vda_nextptr = NULL;
6848
6849 if (iverdaux->vda_next
6850 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6851 goto error_return_verdef;
6852
6853 everdaux = ((Elf_External_Verdaux *)
6854 ((bfd_byte *) everdaux + iverdaux->vda_next));
6855 }
6856
6857 if (iverdef->vd_cnt)
6858 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6859
6860 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6861 iverdef->vd_nextdef = iverdef + 1;
6862 else
6863 iverdef->vd_nextdef = NULL;
6864
6865 everdef = ((Elf_External_Verdef *)
6866 ((bfd_byte *) everdef + iverdef->vd_next));
6867 }
6868
6869 free (contents);
6870 contents = NULL;
6871 }
6872 else if (default_imported_symver)
6873 {
6874 if (freeidx < 3)
6875 freeidx = 3;
6876 else
6877 freeidx++;
6878
6879 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6880 sizeof (Elf_Internal_Verdef));
6881 if (elf_tdata (abfd)->verdef == NULL)
6882 goto error_return;
6883
6884 elf_tdata (abfd)->cverdefs = freeidx;
6885 }
6886
6887 /* Create a default version based on the soname. */
6888 if (default_imported_symver)
6889 {
6890 Elf_Internal_Verdef *iverdef;
6891 Elf_Internal_Verdaux *iverdaux;
6892
6893 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6894
6895 iverdef->vd_version = VER_DEF_CURRENT;
6896 iverdef->vd_flags = 0;
6897 iverdef->vd_ndx = freeidx;
6898 iverdef->vd_cnt = 1;
6899
6900 iverdef->vd_bfd = abfd;
6901
6902 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6903 if (iverdef->vd_nodename == NULL)
6904 goto error_return_verdef;
6905 iverdef->vd_nextdef = NULL;
6906 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6907 if (iverdef->vd_auxptr == NULL)
6908 goto error_return_verdef;
6909
6910 iverdaux = iverdef->vd_auxptr;
6911 iverdaux->vda_nodename = iverdef->vd_nodename;
6912 iverdaux->vda_nextptr = NULL;
6913 }
6914
6915 return TRUE;
6916
6917 error_return:
6918 if (contents != NULL)
6919 free (contents);
6920 return FALSE;
6921 }
6922 \f
6923 asymbol *
6924 _bfd_elf_make_empty_symbol (bfd *abfd)
6925 {
6926 elf_symbol_type *newsym;
6927 bfd_size_type amt = sizeof (elf_symbol_type);
6928
6929 newsym = bfd_zalloc (abfd, amt);
6930 if (!newsym)
6931 return NULL;
6932 else
6933 {
6934 newsym->symbol.the_bfd = abfd;
6935 return &newsym->symbol;
6936 }
6937 }
6938
6939 void
6940 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6941 asymbol *symbol,
6942 symbol_info *ret)
6943 {
6944 bfd_symbol_info (symbol, ret);
6945 }
6946
6947 /* Return whether a symbol name implies a local symbol. Most targets
6948 use this function for the is_local_label_name entry point, but some
6949 override it. */
6950
6951 bfd_boolean
6952 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6953 const char *name)
6954 {
6955 /* Normal local symbols start with ``.L''. */
6956 if (name[0] == '.' && name[1] == 'L')
6957 return TRUE;
6958
6959 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6960 DWARF debugging symbols starting with ``..''. */
6961 if (name[0] == '.' && name[1] == '.')
6962 return TRUE;
6963
6964 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6965 emitting DWARF debugging output. I suspect this is actually a
6966 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6967 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6968 underscore to be emitted on some ELF targets). For ease of use,
6969 we treat such symbols as local. */
6970 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6971 return TRUE;
6972
6973 return FALSE;
6974 }
6975
6976 alent *
6977 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6978 asymbol *symbol ATTRIBUTE_UNUSED)
6979 {
6980 abort ();
6981 return NULL;
6982 }
6983
6984 bfd_boolean
6985 _bfd_elf_set_arch_mach (bfd *abfd,
6986 enum bfd_architecture arch,
6987 unsigned long machine)
6988 {
6989 /* If this isn't the right architecture for this backend, and this
6990 isn't the generic backend, fail. */
6991 if (arch != get_elf_backend_data (abfd)->arch
6992 && arch != bfd_arch_unknown
6993 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6994 return FALSE;
6995
6996 return bfd_default_set_arch_mach (abfd, arch, machine);
6997 }
6998
6999 /* Find the function to a particular section and offset,
7000 for error reporting. */
7001
7002 static bfd_boolean
7003 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7004 asection *section,
7005 asymbol **symbols,
7006 bfd_vma offset,
7007 const char **filename_ptr,
7008 const char **functionname_ptr)
7009 {
7010 const char *filename;
7011 asymbol *func, *file;
7012 bfd_vma low_func;
7013 asymbol **p;
7014 /* ??? Given multiple file symbols, it is impossible to reliably
7015 choose the right file name for global symbols. File symbols are
7016 local symbols, and thus all file symbols must sort before any
7017 global symbols. The ELF spec may be interpreted to say that a
7018 file symbol must sort before other local symbols, but currently
7019 ld -r doesn't do this. So, for ld -r output, it is possible to
7020 make a better choice of file name for local symbols by ignoring
7021 file symbols appearing after a given local symbol. */
7022 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7023
7024 filename = NULL;
7025 func = NULL;
7026 file = NULL;
7027 low_func = 0;
7028 state = nothing_seen;
7029
7030 for (p = symbols; *p != NULL; p++)
7031 {
7032 elf_symbol_type *q;
7033
7034 q = (elf_symbol_type *) *p;
7035
7036 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7037 {
7038 default:
7039 break;
7040 case STT_FILE:
7041 file = &q->symbol;
7042 if (state == symbol_seen)
7043 state = file_after_symbol_seen;
7044 continue;
7045 case STT_NOTYPE:
7046 case STT_FUNC:
7047 if (bfd_get_section (&q->symbol) == section
7048 && q->symbol.value >= low_func
7049 && q->symbol.value <= offset)
7050 {
7051 func = (asymbol *) q;
7052 low_func = q->symbol.value;
7053 filename = NULL;
7054 if (file != NULL
7055 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7056 || state != file_after_symbol_seen))
7057 filename = bfd_asymbol_name (file);
7058 }
7059 break;
7060 }
7061 if (state == nothing_seen)
7062 state = symbol_seen;
7063 }
7064
7065 if (func == NULL)
7066 return FALSE;
7067
7068 if (filename_ptr)
7069 *filename_ptr = filename;
7070 if (functionname_ptr)
7071 *functionname_ptr = bfd_asymbol_name (func);
7072
7073 return TRUE;
7074 }
7075
7076 /* Find the nearest line to a particular section and offset,
7077 for error reporting. */
7078
7079 bfd_boolean
7080 _bfd_elf_find_nearest_line (bfd *abfd,
7081 asection *section,
7082 asymbol **symbols,
7083 bfd_vma offset,
7084 const char **filename_ptr,
7085 const char **functionname_ptr,
7086 unsigned int *line_ptr)
7087 {
7088 bfd_boolean found;
7089
7090 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7091 filename_ptr, functionname_ptr,
7092 line_ptr))
7093 {
7094 if (!*functionname_ptr)
7095 elf_find_function (abfd, section, symbols, offset,
7096 *filename_ptr ? NULL : filename_ptr,
7097 functionname_ptr);
7098
7099 return TRUE;
7100 }
7101
7102 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7103 filename_ptr, functionname_ptr,
7104 line_ptr, 0,
7105 &elf_tdata (abfd)->dwarf2_find_line_info))
7106 {
7107 if (!*functionname_ptr)
7108 elf_find_function (abfd, section, symbols, offset,
7109 *filename_ptr ? NULL : filename_ptr,
7110 functionname_ptr);
7111
7112 return TRUE;
7113 }
7114
7115 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7116 &found, filename_ptr,
7117 functionname_ptr, line_ptr,
7118 &elf_tdata (abfd)->line_info))
7119 return FALSE;
7120 if (found && (*functionname_ptr || *line_ptr))
7121 return TRUE;
7122
7123 if (symbols == NULL)
7124 return FALSE;
7125
7126 if (! elf_find_function (abfd, section, symbols, offset,
7127 filename_ptr, functionname_ptr))
7128 return FALSE;
7129
7130 *line_ptr = 0;
7131 return TRUE;
7132 }
7133
7134 /* Find the line for a symbol. */
7135
7136 bfd_boolean
7137 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7138 const char **filename_ptr, unsigned int *line_ptr)
7139 {
7140 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7141 filename_ptr, line_ptr, 0,
7142 &elf_tdata (abfd)->dwarf2_find_line_info);
7143 }
7144
7145 /* After a call to bfd_find_nearest_line, successive calls to
7146 bfd_find_inliner_info can be used to get source information about
7147 each level of function inlining that terminated at the address
7148 passed to bfd_find_nearest_line. Currently this is only supported
7149 for DWARF2 with appropriate DWARF3 extensions. */
7150
7151 bfd_boolean
7152 _bfd_elf_find_inliner_info (bfd *abfd,
7153 const char **filename_ptr,
7154 const char **functionname_ptr,
7155 unsigned int *line_ptr)
7156 {
7157 bfd_boolean found;
7158 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7159 functionname_ptr, line_ptr,
7160 & elf_tdata (abfd)->dwarf2_find_line_info);
7161 return found;
7162 }
7163
7164 int
7165 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7166 {
7167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7168 int ret = bed->s->sizeof_ehdr;
7169
7170 if (!info->relocatable)
7171 {
7172 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7173
7174 if (phdr_size == (bfd_size_type) -1)
7175 {
7176 struct elf_segment_map *m;
7177
7178 phdr_size = 0;
7179 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7180 phdr_size += bed->s->sizeof_phdr;
7181
7182 if (phdr_size == 0)
7183 phdr_size = get_program_header_size (abfd, info);
7184 }
7185
7186 elf_tdata (abfd)->program_header_size = phdr_size;
7187 ret += phdr_size;
7188 }
7189
7190 return ret;
7191 }
7192
7193 bfd_boolean
7194 _bfd_elf_set_section_contents (bfd *abfd,
7195 sec_ptr section,
7196 const void *location,
7197 file_ptr offset,
7198 bfd_size_type count)
7199 {
7200 Elf_Internal_Shdr *hdr;
7201 bfd_signed_vma pos;
7202
7203 if (! abfd->output_has_begun
7204 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7205 return FALSE;
7206
7207 hdr = &elf_section_data (section)->this_hdr;
7208 pos = hdr->sh_offset + offset;
7209 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7210 || bfd_bwrite (location, count, abfd) != count)
7211 return FALSE;
7212
7213 return TRUE;
7214 }
7215
7216 void
7217 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7218 arelent *cache_ptr ATTRIBUTE_UNUSED,
7219 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7220 {
7221 abort ();
7222 }
7223
7224 /* Try to convert a non-ELF reloc into an ELF one. */
7225
7226 bfd_boolean
7227 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7228 {
7229 /* Check whether we really have an ELF howto. */
7230
7231 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7232 {
7233 bfd_reloc_code_real_type code;
7234 reloc_howto_type *howto;
7235
7236 /* Alien reloc: Try to determine its type to replace it with an
7237 equivalent ELF reloc. */
7238
7239 if (areloc->howto->pc_relative)
7240 {
7241 switch (areloc->howto->bitsize)
7242 {
7243 case 8:
7244 code = BFD_RELOC_8_PCREL;
7245 break;
7246 case 12:
7247 code = BFD_RELOC_12_PCREL;
7248 break;
7249 case 16:
7250 code = BFD_RELOC_16_PCREL;
7251 break;
7252 case 24:
7253 code = BFD_RELOC_24_PCREL;
7254 break;
7255 case 32:
7256 code = BFD_RELOC_32_PCREL;
7257 break;
7258 case 64:
7259 code = BFD_RELOC_64_PCREL;
7260 break;
7261 default:
7262 goto fail;
7263 }
7264
7265 howto = bfd_reloc_type_lookup (abfd, code);
7266
7267 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7268 {
7269 if (howto->pcrel_offset)
7270 areloc->addend += areloc->address;
7271 else
7272 areloc->addend -= areloc->address; /* addend is unsigned!! */
7273 }
7274 }
7275 else
7276 {
7277 switch (areloc->howto->bitsize)
7278 {
7279 case 8:
7280 code = BFD_RELOC_8;
7281 break;
7282 case 14:
7283 code = BFD_RELOC_14;
7284 break;
7285 case 16:
7286 code = BFD_RELOC_16;
7287 break;
7288 case 26:
7289 code = BFD_RELOC_26;
7290 break;
7291 case 32:
7292 code = BFD_RELOC_32;
7293 break;
7294 case 64:
7295 code = BFD_RELOC_64;
7296 break;
7297 default:
7298 goto fail;
7299 }
7300
7301 howto = bfd_reloc_type_lookup (abfd, code);
7302 }
7303
7304 if (howto)
7305 areloc->howto = howto;
7306 else
7307 goto fail;
7308 }
7309
7310 return TRUE;
7311
7312 fail:
7313 (*_bfd_error_handler)
7314 (_("%B: unsupported relocation type %s"),
7315 abfd, areloc->howto->name);
7316 bfd_set_error (bfd_error_bad_value);
7317 return FALSE;
7318 }
7319
7320 bfd_boolean
7321 _bfd_elf_close_and_cleanup (bfd *abfd)
7322 {
7323 if (bfd_get_format (abfd) == bfd_object)
7324 {
7325 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7326 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7327 _bfd_dwarf2_cleanup_debug_info (abfd);
7328 }
7329
7330 return _bfd_generic_close_and_cleanup (abfd);
7331 }
7332
7333 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7334 in the relocation's offset. Thus we cannot allow any sort of sanity
7335 range-checking to interfere. There is nothing else to do in processing
7336 this reloc. */
7337
7338 bfd_reloc_status_type
7339 _bfd_elf_rel_vtable_reloc_fn
7340 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7341 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7342 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7343 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7344 {
7345 return bfd_reloc_ok;
7346 }
7347 \f
7348 /* Elf core file support. Much of this only works on native
7349 toolchains, since we rely on knowing the
7350 machine-dependent procfs structure in order to pick
7351 out details about the corefile. */
7352
7353 #ifdef HAVE_SYS_PROCFS_H
7354 # include <sys/procfs.h>
7355 #endif
7356
7357 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7358
7359 static int
7360 elfcore_make_pid (bfd *abfd)
7361 {
7362 return ((elf_tdata (abfd)->core_lwpid << 16)
7363 + (elf_tdata (abfd)->core_pid));
7364 }
7365
7366 /* If there isn't a section called NAME, make one, using
7367 data from SECT. Note, this function will generate a
7368 reference to NAME, so you shouldn't deallocate or
7369 overwrite it. */
7370
7371 static bfd_boolean
7372 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7373 {
7374 asection *sect2;
7375
7376 if (bfd_get_section_by_name (abfd, name) != NULL)
7377 return TRUE;
7378
7379 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7380 if (sect2 == NULL)
7381 return FALSE;
7382
7383 sect2->size = sect->size;
7384 sect2->filepos = sect->filepos;
7385 sect2->alignment_power = sect->alignment_power;
7386 return TRUE;
7387 }
7388
7389 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7390 actually creates up to two pseudosections:
7391 - For the single-threaded case, a section named NAME, unless
7392 such a section already exists.
7393 - For the multi-threaded case, a section named "NAME/PID", where
7394 PID is elfcore_make_pid (abfd).
7395 Both pseudosections have identical contents. */
7396 bfd_boolean
7397 _bfd_elfcore_make_pseudosection (bfd *abfd,
7398 char *name,
7399 size_t size,
7400 ufile_ptr filepos)
7401 {
7402 char buf[100];
7403 char *threaded_name;
7404 size_t len;
7405 asection *sect;
7406
7407 /* Build the section name. */
7408
7409 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7410 len = strlen (buf) + 1;
7411 threaded_name = bfd_alloc (abfd, len);
7412 if (threaded_name == NULL)
7413 return FALSE;
7414 memcpy (threaded_name, buf, len);
7415
7416 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7417 SEC_HAS_CONTENTS);
7418 if (sect == NULL)
7419 return FALSE;
7420 sect->size = size;
7421 sect->filepos = filepos;
7422 sect->alignment_power = 2;
7423
7424 return elfcore_maybe_make_sect (abfd, name, sect);
7425 }
7426
7427 /* prstatus_t exists on:
7428 solaris 2.5+
7429 linux 2.[01] + glibc
7430 unixware 4.2
7431 */
7432
7433 #if defined (HAVE_PRSTATUS_T)
7434
7435 static bfd_boolean
7436 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7437 {
7438 size_t size;
7439 int offset;
7440
7441 if (note->descsz == sizeof (prstatus_t))
7442 {
7443 prstatus_t prstat;
7444
7445 size = sizeof (prstat.pr_reg);
7446 offset = offsetof (prstatus_t, pr_reg);
7447 memcpy (&prstat, note->descdata, sizeof (prstat));
7448
7449 /* Do not overwrite the core signal if it
7450 has already been set by another thread. */
7451 if (elf_tdata (abfd)->core_signal == 0)
7452 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7453 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7454
7455 /* pr_who exists on:
7456 solaris 2.5+
7457 unixware 4.2
7458 pr_who doesn't exist on:
7459 linux 2.[01]
7460 */
7461 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7462 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7463 #endif
7464 }
7465 #if defined (HAVE_PRSTATUS32_T)
7466 else if (note->descsz == sizeof (prstatus32_t))
7467 {
7468 /* 64-bit host, 32-bit corefile */
7469 prstatus32_t prstat;
7470
7471 size = sizeof (prstat.pr_reg);
7472 offset = offsetof (prstatus32_t, pr_reg);
7473 memcpy (&prstat, note->descdata, sizeof (prstat));
7474
7475 /* Do not overwrite the core signal if it
7476 has already been set by another thread. */
7477 if (elf_tdata (abfd)->core_signal == 0)
7478 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7479 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7480
7481 /* pr_who exists on:
7482 solaris 2.5+
7483 unixware 4.2
7484 pr_who doesn't exist on:
7485 linux 2.[01]
7486 */
7487 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7488 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7489 #endif
7490 }
7491 #endif /* HAVE_PRSTATUS32_T */
7492 else
7493 {
7494 /* Fail - we don't know how to handle any other
7495 note size (ie. data object type). */
7496 return TRUE;
7497 }
7498
7499 /* Make a ".reg/999" section and a ".reg" section. */
7500 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7501 size, note->descpos + offset);
7502 }
7503 #endif /* defined (HAVE_PRSTATUS_T) */
7504
7505 /* Create a pseudosection containing the exact contents of NOTE. */
7506 static bfd_boolean
7507 elfcore_make_note_pseudosection (bfd *abfd,
7508 char *name,
7509 Elf_Internal_Note *note)
7510 {
7511 return _bfd_elfcore_make_pseudosection (abfd, name,
7512 note->descsz, note->descpos);
7513 }
7514
7515 /* There isn't a consistent prfpregset_t across platforms,
7516 but it doesn't matter, because we don't have to pick this
7517 data structure apart. */
7518
7519 static bfd_boolean
7520 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7521 {
7522 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7523 }
7524
7525 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7526 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7527 literally. */
7528
7529 static bfd_boolean
7530 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7531 {
7532 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7533 }
7534
7535 #if defined (HAVE_PRPSINFO_T)
7536 typedef prpsinfo_t elfcore_psinfo_t;
7537 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7538 typedef prpsinfo32_t elfcore_psinfo32_t;
7539 #endif
7540 #endif
7541
7542 #if defined (HAVE_PSINFO_T)
7543 typedef psinfo_t elfcore_psinfo_t;
7544 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7545 typedef psinfo32_t elfcore_psinfo32_t;
7546 #endif
7547 #endif
7548
7549 /* return a malloc'ed copy of a string at START which is at
7550 most MAX bytes long, possibly without a terminating '\0'.
7551 the copy will always have a terminating '\0'. */
7552
7553 char *
7554 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7555 {
7556 char *dups;
7557 char *end = memchr (start, '\0', max);
7558 size_t len;
7559
7560 if (end == NULL)
7561 len = max;
7562 else
7563 len = end - start;
7564
7565 dups = bfd_alloc (abfd, len + 1);
7566 if (dups == NULL)
7567 return NULL;
7568
7569 memcpy (dups, start, len);
7570 dups[len] = '\0';
7571
7572 return dups;
7573 }
7574
7575 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7576 static bfd_boolean
7577 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7578 {
7579 if (note->descsz == sizeof (elfcore_psinfo_t))
7580 {
7581 elfcore_psinfo_t psinfo;
7582
7583 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7584
7585 elf_tdata (abfd)->core_program
7586 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7587 sizeof (psinfo.pr_fname));
7588
7589 elf_tdata (abfd)->core_command
7590 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7591 sizeof (psinfo.pr_psargs));
7592 }
7593 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7594 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7595 {
7596 /* 64-bit host, 32-bit corefile */
7597 elfcore_psinfo32_t psinfo;
7598
7599 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7600
7601 elf_tdata (abfd)->core_program
7602 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7603 sizeof (psinfo.pr_fname));
7604
7605 elf_tdata (abfd)->core_command
7606 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7607 sizeof (psinfo.pr_psargs));
7608 }
7609 #endif
7610
7611 else
7612 {
7613 /* Fail - we don't know how to handle any other
7614 note size (ie. data object type). */
7615 return TRUE;
7616 }
7617
7618 /* Note that for some reason, a spurious space is tacked
7619 onto the end of the args in some (at least one anyway)
7620 implementations, so strip it off if it exists. */
7621
7622 {
7623 char *command = elf_tdata (abfd)->core_command;
7624 int n = strlen (command);
7625
7626 if (0 < n && command[n - 1] == ' ')
7627 command[n - 1] = '\0';
7628 }
7629
7630 return TRUE;
7631 }
7632 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7633
7634 #if defined (HAVE_PSTATUS_T)
7635 static bfd_boolean
7636 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7637 {
7638 if (note->descsz == sizeof (pstatus_t)
7639 #if defined (HAVE_PXSTATUS_T)
7640 || note->descsz == sizeof (pxstatus_t)
7641 #endif
7642 )
7643 {
7644 pstatus_t pstat;
7645
7646 memcpy (&pstat, note->descdata, sizeof (pstat));
7647
7648 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7649 }
7650 #if defined (HAVE_PSTATUS32_T)
7651 else if (note->descsz == sizeof (pstatus32_t))
7652 {
7653 /* 64-bit host, 32-bit corefile */
7654 pstatus32_t pstat;
7655
7656 memcpy (&pstat, note->descdata, sizeof (pstat));
7657
7658 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7659 }
7660 #endif
7661 /* Could grab some more details from the "representative"
7662 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7663 NT_LWPSTATUS note, presumably. */
7664
7665 return TRUE;
7666 }
7667 #endif /* defined (HAVE_PSTATUS_T) */
7668
7669 #if defined (HAVE_LWPSTATUS_T)
7670 static bfd_boolean
7671 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7672 {
7673 lwpstatus_t lwpstat;
7674 char buf[100];
7675 char *name;
7676 size_t len;
7677 asection *sect;
7678
7679 if (note->descsz != sizeof (lwpstat)
7680 #if defined (HAVE_LWPXSTATUS_T)
7681 && note->descsz != sizeof (lwpxstatus_t)
7682 #endif
7683 )
7684 return TRUE;
7685
7686 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7687
7688 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7689 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7690
7691 /* Make a ".reg/999" section. */
7692
7693 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7694 len = strlen (buf) + 1;
7695 name = bfd_alloc (abfd, len);
7696 if (name == NULL)
7697 return FALSE;
7698 memcpy (name, buf, len);
7699
7700 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7701 if (sect == NULL)
7702 return FALSE;
7703
7704 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7705 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7706 sect->filepos = note->descpos
7707 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7708 #endif
7709
7710 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7711 sect->size = sizeof (lwpstat.pr_reg);
7712 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7713 #endif
7714
7715 sect->alignment_power = 2;
7716
7717 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7718 return FALSE;
7719
7720 /* Make a ".reg2/999" section */
7721
7722 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7723 len = strlen (buf) + 1;
7724 name = bfd_alloc (abfd, len);
7725 if (name == NULL)
7726 return FALSE;
7727 memcpy (name, buf, len);
7728
7729 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7730 if (sect == NULL)
7731 return FALSE;
7732
7733 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7734 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7735 sect->filepos = note->descpos
7736 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7737 #endif
7738
7739 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7740 sect->size = sizeof (lwpstat.pr_fpreg);
7741 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7742 #endif
7743
7744 sect->alignment_power = 2;
7745
7746 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7747 }
7748 #endif /* defined (HAVE_LWPSTATUS_T) */
7749
7750 #if defined (HAVE_WIN32_PSTATUS_T)
7751 static bfd_boolean
7752 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7753 {
7754 char buf[30];
7755 char *name;
7756 size_t len;
7757 asection *sect;
7758 win32_pstatus_t pstatus;
7759
7760 if (note->descsz < sizeof (pstatus))
7761 return TRUE;
7762
7763 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7764
7765 switch (pstatus.data_type)
7766 {
7767 case NOTE_INFO_PROCESS:
7768 /* FIXME: need to add ->core_command. */
7769 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7770 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7771 break;
7772
7773 case NOTE_INFO_THREAD:
7774 /* Make a ".reg/999" section. */
7775 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7776
7777 len = strlen (buf) + 1;
7778 name = bfd_alloc (abfd, len);
7779 if (name == NULL)
7780 return FALSE;
7781
7782 memcpy (name, buf, len);
7783
7784 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7785 if (sect == NULL)
7786 return FALSE;
7787
7788 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7789 sect->filepos = (note->descpos
7790 + offsetof (struct win32_pstatus,
7791 data.thread_info.thread_context));
7792 sect->alignment_power = 2;
7793
7794 if (pstatus.data.thread_info.is_active_thread)
7795 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7796 return FALSE;
7797 break;
7798
7799 case NOTE_INFO_MODULE:
7800 /* Make a ".module/xxxxxxxx" section. */
7801 sprintf (buf, ".module/%08lx",
7802 (long) pstatus.data.module_info.base_address);
7803
7804 len = strlen (buf) + 1;
7805 name = bfd_alloc (abfd, len);
7806 if (name == NULL)
7807 return FALSE;
7808
7809 memcpy (name, buf, len);
7810
7811 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7812
7813 if (sect == NULL)
7814 return FALSE;
7815
7816 sect->size = note->descsz;
7817 sect->filepos = note->descpos;
7818 sect->alignment_power = 2;
7819 break;
7820
7821 default:
7822 return TRUE;
7823 }
7824
7825 return TRUE;
7826 }
7827 #endif /* HAVE_WIN32_PSTATUS_T */
7828
7829 static bfd_boolean
7830 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7831 {
7832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7833
7834 switch (note->type)
7835 {
7836 default:
7837 return TRUE;
7838
7839 case NT_PRSTATUS:
7840 if (bed->elf_backend_grok_prstatus)
7841 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7842 return TRUE;
7843 #if defined (HAVE_PRSTATUS_T)
7844 return elfcore_grok_prstatus (abfd, note);
7845 #else
7846 return TRUE;
7847 #endif
7848
7849 #if defined (HAVE_PSTATUS_T)
7850 case NT_PSTATUS:
7851 return elfcore_grok_pstatus (abfd, note);
7852 #endif
7853
7854 #if defined (HAVE_LWPSTATUS_T)
7855 case NT_LWPSTATUS:
7856 return elfcore_grok_lwpstatus (abfd, note);
7857 #endif
7858
7859 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7860 return elfcore_grok_prfpreg (abfd, note);
7861
7862 #if defined (HAVE_WIN32_PSTATUS_T)
7863 case NT_WIN32PSTATUS:
7864 return elfcore_grok_win32pstatus (abfd, note);
7865 #endif
7866
7867 case NT_PRXFPREG: /* Linux SSE extension */
7868 if (note->namesz == 6
7869 && strcmp (note->namedata, "LINUX") == 0)
7870 return elfcore_grok_prxfpreg (abfd, note);
7871 else
7872 return TRUE;
7873
7874 case NT_PRPSINFO:
7875 case NT_PSINFO:
7876 if (bed->elf_backend_grok_psinfo)
7877 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7878 return TRUE;
7879 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7880 return elfcore_grok_psinfo (abfd, note);
7881 #else
7882 return TRUE;
7883 #endif
7884
7885 case NT_AUXV:
7886 {
7887 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7888 SEC_HAS_CONTENTS);
7889
7890 if (sect == NULL)
7891 return FALSE;
7892 sect->size = note->descsz;
7893 sect->filepos = note->descpos;
7894 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7895
7896 return TRUE;
7897 }
7898 }
7899 }
7900
7901 static bfd_boolean
7902 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7903 {
7904 char *cp;
7905
7906 cp = strchr (note->namedata, '@');
7907 if (cp != NULL)
7908 {
7909 *lwpidp = atoi(cp + 1);
7910 return TRUE;
7911 }
7912 return FALSE;
7913 }
7914
7915 static bfd_boolean
7916 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7917 {
7918
7919 /* Signal number at offset 0x08. */
7920 elf_tdata (abfd)->core_signal
7921 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7922
7923 /* Process ID at offset 0x50. */
7924 elf_tdata (abfd)->core_pid
7925 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7926
7927 /* Command name at 0x7c (max 32 bytes, including nul). */
7928 elf_tdata (abfd)->core_command
7929 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7930
7931 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7932 note);
7933 }
7934
7935 static bfd_boolean
7936 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7937 {
7938 int lwp;
7939
7940 if (elfcore_netbsd_get_lwpid (note, &lwp))
7941 elf_tdata (abfd)->core_lwpid = lwp;
7942
7943 if (note->type == NT_NETBSDCORE_PROCINFO)
7944 {
7945 /* NetBSD-specific core "procinfo". Note that we expect to
7946 find this note before any of the others, which is fine,
7947 since the kernel writes this note out first when it
7948 creates a core file. */
7949
7950 return elfcore_grok_netbsd_procinfo (abfd, note);
7951 }
7952
7953 /* As of Jan 2002 there are no other machine-independent notes
7954 defined for NetBSD core files. If the note type is less
7955 than the start of the machine-dependent note types, we don't
7956 understand it. */
7957
7958 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7959 return TRUE;
7960
7961
7962 switch (bfd_get_arch (abfd))
7963 {
7964 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7965 PT_GETFPREGS == mach+2. */
7966
7967 case bfd_arch_alpha:
7968 case bfd_arch_sparc:
7969 switch (note->type)
7970 {
7971 case NT_NETBSDCORE_FIRSTMACH+0:
7972 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7973
7974 case NT_NETBSDCORE_FIRSTMACH+2:
7975 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7976
7977 default:
7978 return TRUE;
7979 }
7980
7981 /* On all other arch's, PT_GETREGS == mach+1 and
7982 PT_GETFPREGS == mach+3. */
7983
7984 default:
7985 switch (note->type)
7986 {
7987 case NT_NETBSDCORE_FIRSTMACH+1:
7988 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7989
7990 case NT_NETBSDCORE_FIRSTMACH+3:
7991 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7992
7993 default:
7994 return TRUE;
7995 }
7996 }
7997 /* NOTREACHED */
7998 }
7999
8000 static bfd_boolean
8001 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8002 {
8003 void *ddata = note->descdata;
8004 char buf[100];
8005 char *name;
8006 asection *sect;
8007 short sig;
8008 unsigned flags;
8009
8010 /* nto_procfs_status 'pid' field is at offset 0. */
8011 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8012
8013 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8014 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8015
8016 /* nto_procfs_status 'flags' field is at offset 8. */
8017 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8018
8019 /* nto_procfs_status 'what' field is at offset 14. */
8020 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8021 {
8022 elf_tdata (abfd)->core_signal = sig;
8023 elf_tdata (abfd)->core_lwpid = *tid;
8024 }
8025
8026 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8027 do not come from signals so we make sure we set the current
8028 thread just in case. */
8029 if (flags & 0x00000080)
8030 elf_tdata (abfd)->core_lwpid = *tid;
8031
8032 /* Make a ".qnx_core_status/%d" section. */
8033 sprintf (buf, ".qnx_core_status/%ld", *tid);
8034
8035 name = bfd_alloc (abfd, strlen (buf) + 1);
8036 if (name == NULL)
8037 return FALSE;
8038 strcpy (name, buf);
8039
8040 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8041 if (sect == NULL)
8042 return FALSE;
8043
8044 sect->size = note->descsz;
8045 sect->filepos = note->descpos;
8046 sect->alignment_power = 2;
8047
8048 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8049 }
8050
8051 static bfd_boolean
8052 elfcore_grok_nto_regs (bfd *abfd,
8053 Elf_Internal_Note *note,
8054 long tid,
8055 char *base)
8056 {
8057 char buf[100];
8058 char *name;
8059 asection *sect;
8060
8061 /* Make a "(base)/%d" section. */
8062 sprintf (buf, "%s/%ld", base, tid);
8063
8064 name = bfd_alloc (abfd, strlen (buf) + 1);
8065 if (name == NULL)
8066 return FALSE;
8067 strcpy (name, buf);
8068
8069 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8070 if (sect == NULL)
8071 return FALSE;
8072
8073 sect->size = note->descsz;
8074 sect->filepos = note->descpos;
8075 sect->alignment_power = 2;
8076
8077 /* This is the current thread. */
8078 if (elf_tdata (abfd)->core_lwpid == tid)
8079 return elfcore_maybe_make_sect (abfd, base, sect);
8080
8081 return TRUE;
8082 }
8083
8084 #define BFD_QNT_CORE_INFO 7
8085 #define BFD_QNT_CORE_STATUS 8
8086 #define BFD_QNT_CORE_GREG 9
8087 #define BFD_QNT_CORE_FPREG 10
8088
8089 static bfd_boolean
8090 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8091 {
8092 /* Every GREG section has a STATUS section before it. Store the
8093 tid from the previous call to pass down to the next gregs
8094 function. */
8095 static long tid = 1;
8096
8097 switch (note->type)
8098 {
8099 case BFD_QNT_CORE_INFO:
8100 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8101 case BFD_QNT_CORE_STATUS:
8102 return elfcore_grok_nto_status (abfd, note, &tid);
8103 case BFD_QNT_CORE_GREG:
8104 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8105 case BFD_QNT_CORE_FPREG:
8106 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8107 default:
8108 return TRUE;
8109 }
8110 }
8111
8112 /* Function: elfcore_write_note
8113
8114 Inputs:
8115 buffer to hold note, and current size of buffer
8116 name of note
8117 type of note
8118 data for note
8119 size of data for note
8120
8121 Writes note to end of buffer. ELF64 notes are written exactly as
8122 for ELF32, despite the current (as of 2006) ELF gabi specifying
8123 that they ought to have 8-byte namesz and descsz field, and have
8124 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8125
8126 Return:
8127 Pointer to realloc'd buffer, *BUFSIZ updated. */
8128
8129 char *
8130 elfcore_write_note (bfd *abfd,
8131 char *buf,
8132 int *bufsiz,
8133 const char *name,
8134 int type,
8135 const void *input,
8136 int size)
8137 {
8138 Elf_External_Note *xnp;
8139 size_t namesz;
8140 size_t newspace;
8141 char *dest;
8142
8143 namesz = 0;
8144 if (name != NULL)
8145 namesz = strlen (name) + 1;
8146
8147 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8148
8149 buf = realloc (buf, *bufsiz + newspace);
8150 dest = buf + *bufsiz;
8151 *bufsiz += newspace;
8152 xnp = (Elf_External_Note *) dest;
8153 H_PUT_32 (abfd, namesz, xnp->namesz);
8154 H_PUT_32 (abfd, size, xnp->descsz);
8155 H_PUT_32 (abfd, type, xnp->type);
8156 dest = xnp->name;
8157 if (name != NULL)
8158 {
8159 memcpy (dest, name, namesz);
8160 dest += namesz;
8161 while (namesz & 3)
8162 {
8163 *dest++ = '\0';
8164 ++namesz;
8165 }
8166 }
8167 memcpy (dest, input, size);
8168 dest += size;
8169 while (size & 3)
8170 {
8171 *dest++ = '\0';
8172 ++size;
8173 }
8174 return buf;
8175 }
8176
8177 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8178 char *
8179 elfcore_write_prpsinfo (bfd *abfd,
8180 char *buf,
8181 int *bufsiz,
8182 const char *fname,
8183 const char *psargs)
8184 {
8185 int note_type;
8186 char *note_name = "CORE";
8187
8188 #if defined (HAVE_PSINFO_T)
8189 psinfo_t data;
8190 note_type = NT_PSINFO;
8191 #else
8192 prpsinfo_t data;
8193 note_type = NT_PRPSINFO;
8194 #endif
8195
8196 memset (&data, 0, sizeof (data));
8197 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8198 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8199 return elfcore_write_note (abfd, buf, bufsiz,
8200 note_name, note_type, &data, sizeof (data));
8201 }
8202 #endif /* PSINFO_T or PRPSINFO_T */
8203
8204 #if defined (HAVE_PRSTATUS_T)
8205 char *
8206 elfcore_write_prstatus (bfd *abfd,
8207 char *buf,
8208 int *bufsiz,
8209 long pid,
8210 int cursig,
8211 const void *gregs)
8212 {
8213 prstatus_t prstat;
8214 char *note_name = "CORE";
8215
8216 memset (&prstat, 0, sizeof (prstat));
8217 prstat.pr_pid = pid;
8218 prstat.pr_cursig = cursig;
8219 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8220 return elfcore_write_note (abfd, buf, bufsiz,
8221 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8222 }
8223 #endif /* HAVE_PRSTATUS_T */
8224
8225 #if defined (HAVE_LWPSTATUS_T)
8226 char *
8227 elfcore_write_lwpstatus (bfd *abfd,
8228 char *buf,
8229 int *bufsiz,
8230 long pid,
8231 int cursig,
8232 const void *gregs)
8233 {
8234 lwpstatus_t lwpstat;
8235 char *note_name = "CORE";
8236
8237 memset (&lwpstat, 0, sizeof (lwpstat));
8238 lwpstat.pr_lwpid = pid >> 16;
8239 lwpstat.pr_cursig = cursig;
8240 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8241 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8242 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8243 #if !defined(gregs)
8244 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8245 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8246 #else
8247 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8248 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8249 #endif
8250 #endif
8251 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8252 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8253 }
8254 #endif /* HAVE_LWPSTATUS_T */
8255
8256 #if defined (HAVE_PSTATUS_T)
8257 char *
8258 elfcore_write_pstatus (bfd *abfd,
8259 char *buf,
8260 int *bufsiz,
8261 long pid,
8262 int cursig ATTRIBUTE_UNUSED,
8263 const void *gregs ATTRIBUTE_UNUSED)
8264 {
8265 pstatus_t pstat;
8266 char *note_name = "CORE";
8267
8268 memset (&pstat, 0, sizeof (pstat));
8269 pstat.pr_pid = pid & 0xffff;
8270 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8271 NT_PSTATUS, &pstat, sizeof (pstat));
8272 return buf;
8273 }
8274 #endif /* HAVE_PSTATUS_T */
8275
8276 char *
8277 elfcore_write_prfpreg (bfd *abfd,
8278 char *buf,
8279 int *bufsiz,
8280 const void *fpregs,
8281 int size)
8282 {
8283 char *note_name = "CORE";
8284 return elfcore_write_note (abfd, buf, bufsiz,
8285 note_name, NT_FPREGSET, fpregs, size);
8286 }
8287
8288 char *
8289 elfcore_write_prxfpreg (bfd *abfd,
8290 char *buf,
8291 int *bufsiz,
8292 const void *xfpregs,
8293 int size)
8294 {
8295 char *note_name = "LINUX";
8296 return elfcore_write_note (abfd, buf, bufsiz,
8297 note_name, NT_PRXFPREG, xfpregs, size);
8298 }
8299
8300 static bfd_boolean
8301 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8302 {
8303 char *buf;
8304 char *p;
8305
8306 if (size <= 0)
8307 return TRUE;
8308
8309 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8310 return FALSE;
8311
8312 buf = bfd_malloc (size);
8313 if (buf == NULL)
8314 return FALSE;
8315
8316 if (bfd_bread (buf, size, abfd) != size)
8317 {
8318 error:
8319 free (buf);
8320 return FALSE;
8321 }
8322
8323 p = buf;
8324 while (p < buf + size)
8325 {
8326 /* FIXME: bad alignment assumption. */
8327 Elf_External_Note *xnp = (Elf_External_Note *) p;
8328 Elf_Internal_Note in;
8329
8330 in.type = H_GET_32 (abfd, xnp->type);
8331
8332 in.namesz = H_GET_32 (abfd, xnp->namesz);
8333 in.namedata = xnp->name;
8334
8335 in.descsz = H_GET_32 (abfd, xnp->descsz);
8336 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8337 in.descpos = offset + (in.descdata - buf);
8338
8339 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8340 {
8341 if (! elfcore_grok_netbsd_note (abfd, &in))
8342 goto error;
8343 }
8344 else if (CONST_STRNEQ (in.namedata, "QNX"))
8345 {
8346 if (! elfcore_grok_nto_note (abfd, &in))
8347 goto error;
8348 }
8349 else
8350 {
8351 if (! elfcore_grok_note (abfd, &in))
8352 goto error;
8353 }
8354
8355 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8356 }
8357
8358 free (buf);
8359 return TRUE;
8360 }
8361 \f
8362 /* Providing external access to the ELF program header table. */
8363
8364 /* Return an upper bound on the number of bytes required to store a
8365 copy of ABFD's program header table entries. Return -1 if an error
8366 occurs; bfd_get_error will return an appropriate code. */
8367
8368 long
8369 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8370 {
8371 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8372 {
8373 bfd_set_error (bfd_error_wrong_format);
8374 return -1;
8375 }
8376
8377 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8378 }
8379
8380 /* Copy ABFD's program header table entries to *PHDRS. The entries
8381 will be stored as an array of Elf_Internal_Phdr structures, as
8382 defined in include/elf/internal.h. To find out how large the
8383 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8384
8385 Return the number of program header table entries read, or -1 if an
8386 error occurs; bfd_get_error will return an appropriate code. */
8387
8388 int
8389 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8390 {
8391 int num_phdrs;
8392
8393 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8394 {
8395 bfd_set_error (bfd_error_wrong_format);
8396 return -1;
8397 }
8398
8399 num_phdrs = elf_elfheader (abfd)->e_phnum;
8400 memcpy (phdrs, elf_tdata (abfd)->phdr,
8401 num_phdrs * sizeof (Elf_Internal_Phdr));
8402
8403 return num_phdrs;
8404 }
8405
8406 void
8407 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8408 {
8409 #ifdef BFD64
8410 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8411
8412 i_ehdrp = elf_elfheader (abfd);
8413 if (i_ehdrp == NULL)
8414 sprintf_vma (buf, value);
8415 else
8416 {
8417 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8418 {
8419 #if BFD_HOST_64BIT_LONG
8420 sprintf (buf, "%016lx", value);
8421 #else
8422 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8423 _bfd_int64_low (value));
8424 #endif
8425 }
8426 else
8427 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8428 }
8429 #else
8430 sprintf_vma (buf, value);
8431 #endif
8432 }
8433
8434 void
8435 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8436 {
8437 #ifdef BFD64
8438 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8439
8440 i_ehdrp = elf_elfheader (abfd);
8441 if (i_ehdrp == NULL)
8442 fprintf_vma ((FILE *) stream, value);
8443 else
8444 {
8445 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8446 {
8447 #if BFD_HOST_64BIT_LONG
8448 fprintf ((FILE *) stream, "%016lx", value);
8449 #else
8450 fprintf ((FILE *) stream, "%08lx%08lx",
8451 _bfd_int64_high (value), _bfd_int64_low (value));
8452 #endif
8453 }
8454 else
8455 fprintf ((FILE *) stream, "%08lx",
8456 (unsigned long) (value & 0xffffffff));
8457 }
8458 #else
8459 fprintf_vma ((FILE *) stream, value);
8460 #endif
8461 }
8462
8463 enum elf_reloc_type_class
8464 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8465 {
8466 return reloc_class_normal;
8467 }
8468
8469 /* For RELA architectures, return the relocation value for a
8470 relocation against a local symbol. */
8471
8472 bfd_vma
8473 _bfd_elf_rela_local_sym (bfd *abfd,
8474 Elf_Internal_Sym *sym,
8475 asection **psec,
8476 Elf_Internal_Rela *rel)
8477 {
8478 asection *sec = *psec;
8479 bfd_vma relocation;
8480
8481 relocation = (sec->output_section->vma
8482 + sec->output_offset
8483 + sym->st_value);
8484 if ((sec->flags & SEC_MERGE)
8485 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8486 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8487 {
8488 rel->r_addend =
8489 _bfd_merged_section_offset (abfd, psec,
8490 elf_section_data (sec)->sec_info,
8491 sym->st_value + rel->r_addend);
8492 if (sec != *psec)
8493 {
8494 /* If we have changed the section, and our original section is
8495 marked with SEC_EXCLUDE, it means that the original
8496 SEC_MERGE section has been completely subsumed in some
8497 other SEC_MERGE section. In this case, we need to leave
8498 some info around for --emit-relocs. */
8499 if ((sec->flags & SEC_EXCLUDE) != 0)
8500 sec->kept_section = *psec;
8501 sec = *psec;
8502 }
8503 rel->r_addend -= relocation;
8504 rel->r_addend += sec->output_section->vma + sec->output_offset;
8505 }
8506 return relocation;
8507 }
8508
8509 bfd_vma
8510 _bfd_elf_rel_local_sym (bfd *abfd,
8511 Elf_Internal_Sym *sym,
8512 asection **psec,
8513 bfd_vma addend)
8514 {
8515 asection *sec = *psec;
8516
8517 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8518 return sym->st_value + addend;
8519
8520 return _bfd_merged_section_offset (abfd, psec,
8521 elf_section_data (sec)->sec_info,
8522 sym->st_value + addend);
8523 }
8524
8525 bfd_vma
8526 _bfd_elf_section_offset (bfd *abfd,
8527 struct bfd_link_info *info,
8528 asection *sec,
8529 bfd_vma offset)
8530 {
8531 switch (sec->sec_info_type)
8532 {
8533 case ELF_INFO_TYPE_STABS:
8534 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8535 offset);
8536 case ELF_INFO_TYPE_EH_FRAME:
8537 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8538 default:
8539 return offset;
8540 }
8541 }
8542 \f
8543 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8544 reconstruct an ELF file by reading the segments out of remote memory
8545 based on the ELF file header at EHDR_VMA and the ELF program headers it
8546 points to. If not null, *LOADBASEP is filled in with the difference
8547 between the VMAs from which the segments were read, and the VMAs the
8548 file headers (and hence BFD's idea of each section's VMA) put them at.
8549
8550 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8551 remote memory at target address VMA into the local buffer at MYADDR; it
8552 should return zero on success or an `errno' code on failure. TEMPL must
8553 be a BFD for an ELF target with the word size and byte order found in
8554 the remote memory. */
8555
8556 bfd *
8557 bfd_elf_bfd_from_remote_memory
8558 (bfd *templ,
8559 bfd_vma ehdr_vma,
8560 bfd_vma *loadbasep,
8561 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8562 {
8563 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8564 (templ, ehdr_vma, loadbasep, target_read_memory);
8565 }
8566 \f
8567 long
8568 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8569 long symcount ATTRIBUTE_UNUSED,
8570 asymbol **syms ATTRIBUTE_UNUSED,
8571 long dynsymcount,
8572 asymbol **dynsyms,
8573 asymbol **ret)
8574 {
8575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8576 asection *relplt;
8577 asymbol *s;
8578 const char *relplt_name;
8579 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8580 arelent *p;
8581 long count, i, n;
8582 size_t size;
8583 Elf_Internal_Shdr *hdr;
8584 char *names;
8585 asection *plt;
8586
8587 *ret = NULL;
8588
8589 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8590 return 0;
8591
8592 if (dynsymcount <= 0)
8593 return 0;
8594
8595 if (!bed->plt_sym_val)
8596 return 0;
8597
8598 relplt_name = bed->relplt_name;
8599 if (relplt_name == NULL)
8600 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8601 relplt = bfd_get_section_by_name (abfd, relplt_name);
8602 if (relplt == NULL)
8603 return 0;
8604
8605 hdr = &elf_section_data (relplt)->this_hdr;
8606 if (hdr->sh_link != elf_dynsymtab (abfd)
8607 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8608 return 0;
8609
8610 plt = bfd_get_section_by_name (abfd, ".plt");
8611 if (plt == NULL)
8612 return 0;
8613
8614 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8615 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8616 return -1;
8617
8618 count = relplt->size / hdr->sh_entsize;
8619 size = count * sizeof (asymbol);
8620 p = relplt->relocation;
8621 for (i = 0; i < count; i++, s++, p++)
8622 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8623
8624 s = *ret = bfd_malloc (size);
8625 if (s == NULL)
8626 return -1;
8627
8628 names = (char *) (s + count);
8629 p = relplt->relocation;
8630 n = 0;
8631 for (i = 0; i < count; i++, s++, p++)
8632 {
8633 size_t len;
8634 bfd_vma addr;
8635
8636 addr = bed->plt_sym_val (i, plt, p);
8637 if (addr == (bfd_vma) -1)
8638 continue;
8639
8640 *s = **p->sym_ptr_ptr;
8641 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8642 we are defining a symbol, ensure one of them is set. */
8643 if ((s->flags & BSF_LOCAL) == 0)
8644 s->flags |= BSF_GLOBAL;
8645 s->section = plt;
8646 s->value = addr - plt->vma;
8647 s->name = names;
8648 len = strlen ((*p->sym_ptr_ptr)->name);
8649 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8650 names += len;
8651 memcpy (names, "@plt", sizeof ("@plt"));
8652 names += sizeof ("@plt");
8653 ++n;
8654 }
8655
8656 return n;
8657 }
8658
8659 /* Sort symbol by binding and section. We want to put definitions
8660 sorted by section at the beginning. */
8661
8662 static int
8663 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8664 {
8665 const Elf_Internal_Sym *s1;
8666 const Elf_Internal_Sym *s2;
8667 int shndx;
8668
8669 /* Make sure that undefined symbols are at the end. */
8670 s1 = (const Elf_Internal_Sym *) arg1;
8671 if (s1->st_shndx == SHN_UNDEF)
8672 return 1;
8673 s2 = (const Elf_Internal_Sym *) arg2;
8674 if (s2->st_shndx == SHN_UNDEF)
8675 return -1;
8676
8677 /* Sorted by section index. */
8678 shndx = s1->st_shndx - s2->st_shndx;
8679 if (shndx != 0)
8680 return shndx;
8681
8682 /* Sorted by binding. */
8683 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8684 }
8685
8686 struct elf_symbol
8687 {
8688 Elf_Internal_Sym *sym;
8689 const char *name;
8690 };
8691
8692 static int
8693 elf_sym_name_compare (const void *arg1, const void *arg2)
8694 {
8695 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8696 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8697 return strcmp (s1->name, s2->name);
8698 }
8699
8700 /* Check if 2 sections define the same set of local and global
8701 symbols. */
8702
8703 bfd_boolean
8704 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8705 struct bfd_link_info *info)
8706 {
8707 bfd *bfd1, *bfd2;
8708 const struct elf_backend_data *bed1, *bed2;
8709 Elf_Internal_Shdr *hdr1, *hdr2;
8710 bfd_size_type symcount1, symcount2;
8711 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8712 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8713 Elf_Internal_Sym *isymend;
8714 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8715 bfd_size_type count1, count2, i;
8716 int shndx1, shndx2;
8717 bfd_boolean result;
8718
8719 bfd1 = sec1->owner;
8720 bfd2 = sec2->owner;
8721
8722 /* If both are .gnu.linkonce sections, they have to have the same
8723 section name. */
8724 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8725 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8726 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8727 sec2->name + sizeof ".gnu.linkonce") == 0;
8728
8729 /* Both sections have to be in ELF. */
8730 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8731 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8732 return FALSE;
8733
8734 if (elf_section_type (sec1) != elf_section_type (sec2))
8735 return FALSE;
8736
8737 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8738 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8739 {
8740 /* If both are members of section groups, they have to have the
8741 same group name. */
8742 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8743 return FALSE;
8744 }
8745
8746 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8747 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8748 if (shndx1 == -1 || shndx2 == -1)
8749 return FALSE;
8750
8751 bed1 = get_elf_backend_data (bfd1);
8752 bed2 = get_elf_backend_data (bfd2);
8753 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8754 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8755 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8756 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8757
8758 if (symcount1 == 0 || symcount2 == 0)
8759 return FALSE;
8760
8761 result = FALSE;
8762 isymbuf1 = elf_tdata (bfd1)->symbuf;
8763 isymbuf2 = elf_tdata (bfd2)->symbuf;
8764
8765 if (isymbuf1 == NULL)
8766 {
8767 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8768 NULL, NULL, NULL);
8769 if (isymbuf1 == NULL)
8770 goto done;
8771 /* Sort symbols by binding and section. Global definitions are at
8772 the beginning. */
8773 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8774 elf_sort_elf_symbol);
8775 if (!info->reduce_memory_overheads)
8776 elf_tdata (bfd1)->symbuf = isymbuf1;
8777 }
8778
8779 if (isymbuf2 == NULL)
8780 {
8781 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8782 NULL, NULL, NULL);
8783 if (isymbuf2 == NULL)
8784 goto done;
8785 /* Sort symbols by binding and section. Global definitions are at
8786 the beginning. */
8787 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8788 elf_sort_elf_symbol);
8789 if (!info->reduce_memory_overheads)
8790 elf_tdata (bfd2)->symbuf = isymbuf2;
8791 }
8792
8793 /* Count definitions in the section. */
8794 count1 = 0;
8795 for (isym = isymbuf1, isymend = isym + symcount1;
8796 isym < isymend; isym++)
8797 {
8798 if (isym->st_shndx == (unsigned int) shndx1)
8799 {
8800 if (count1 == 0)
8801 isymstart1 = isym;
8802 count1++;
8803 }
8804
8805 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8806 break;
8807 }
8808
8809 count2 = 0;
8810 for (isym = isymbuf2, isymend = isym + symcount2;
8811 isym < isymend; isym++)
8812 {
8813 if (isym->st_shndx == (unsigned int) shndx2)
8814 {
8815 if (count2 == 0)
8816 isymstart2 = isym;
8817 count2++;
8818 }
8819
8820 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8821 break;
8822 }
8823
8824 if (count1 == 0 || count2 == 0 || count1 != count2)
8825 goto done;
8826
8827 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8828 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8829
8830 if (symtable1 == NULL || symtable2 == NULL)
8831 goto done;
8832
8833 symp = symtable1;
8834 for (isym = isymstart1, isymend = isym + count1;
8835 isym < isymend; isym++)
8836 {
8837 symp->sym = isym;
8838 symp->name = bfd_elf_string_from_elf_section (bfd1,
8839 hdr1->sh_link,
8840 isym->st_name);
8841 symp++;
8842 }
8843
8844 symp = symtable2;
8845 for (isym = isymstart2, isymend = isym + count1;
8846 isym < isymend; isym++)
8847 {
8848 symp->sym = isym;
8849 symp->name = bfd_elf_string_from_elf_section (bfd2,
8850 hdr2->sh_link,
8851 isym->st_name);
8852 symp++;
8853 }
8854
8855 /* Sort symbol by name. */
8856 qsort (symtable1, count1, sizeof (struct elf_symbol),
8857 elf_sym_name_compare);
8858 qsort (symtable2, count1, sizeof (struct elf_symbol),
8859 elf_sym_name_compare);
8860
8861 for (i = 0; i < count1; i++)
8862 /* Two symbols must have the same binding, type and name. */
8863 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8864 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8865 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8866 goto done;
8867
8868 result = TRUE;
8869
8870 done:
8871 if (symtable1)
8872 free (symtable1);
8873 if (symtable2)
8874 free (symtable2);
8875 if (info->reduce_memory_overheads)
8876 {
8877 if (isymbuf1)
8878 free (isymbuf1);
8879 if (isymbuf2)
8880 free (isymbuf2);
8881 }
8882
8883 return result;
8884 }
8885
8886 /* It is only used by x86-64 so far. */
8887 asection _bfd_elf_large_com_section
8888 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8889 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8890
8891 /* Return TRUE if 2 section types are compatible. */
8892
8893 bfd_boolean
8894 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8895 bfd *bbfd, const asection *bsec)
8896 {
8897 if (asec == NULL
8898 || bsec == NULL
8899 || abfd->xvec->flavour != bfd_target_elf_flavour
8900 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8901 return TRUE;
8902
8903 return elf_section_type (asec) == elf_section_type (bsec);
8904 }