* elfxx-target.h: Remove PTR cast.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean assign_file_positions_except_relocs (bfd *);
45 static bfd_boolean prep_headers (bfd *);
46 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
47 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
48
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
52
53 /* Swap in a Verdef structure. */
54
55 void
56 _bfd_elf_swap_verdef_in (bfd *abfd,
57 const Elf_External_Verdef *src,
58 Elf_Internal_Verdef *dst)
59 {
60 dst->vd_version = H_GET_16 (abfd, src->vd_version);
61 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
62 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
63 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
64 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
65 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
66 dst->vd_next = H_GET_32 (abfd, src->vd_next);
67 }
68
69 /* Swap out a Verdef structure. */
70
71 void
72 _bfd_elf_swap_verdef_out (bfd *abfd,
73 const Elf_Internal_Verdef *src,
74 Elf_External_Verdef *dst)
75 {
76 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
77 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
78 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
79 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
80 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
81 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
82 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
83 }
84
85 /* Swap in a Verdaux structure. */
86
87 void
88 _bfd_elf_swap_verdaux_in (bfd *abfd,
89 const Elf_External_Verdaux *src,
90 Elf_Internal_Verdaux *dst)
91 {
92 dst->vda_name = H_GET_32 (abfd, src->vda_name);
93 dst->vda_next = H_GET_32 (abfd, src->vda_next);
94 }
95
96 /* Swap out a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_out (bfd *abfd,
100 const Elf_Internal_Verdaux *src,
101 Elf_External_Verdaux *dst)
102 {
103 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
104 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
105 }
106
107 /* Swap in a Verneed structure. */
108
109 void
110 _bfd_elf_swap_verneed_in (bfd *abfd,
111 const Elf_External_Verneed *src,
112 Elf_Internal_Verneed *dst)
113 {
114 dst->vn_version = H_GET_16 (abfd, src->vn_version);
115 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
116 dst->vn_file = H_GET_32 (abfd, src->vn_file);
117 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
118 dst->vn_next = H_GET_32 (abfd, src->vn_next);
119 }
120
121 /* Swap out a Verneed structure. */
122
123 void
124 _bfd_elf_swap_verneed_out (bfd *abfd,
125 const Elf_Internal_Verneed *src,
126 Elf_External_Verneed *dst)
127 {
128 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
129 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
130 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
131 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
132 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
133 }
134
135 /* Swap in a Vernaux structure. */
136
137 void
138 _bfd_elf_swap_vernaux_in (bfd *abfd,
139 const Elf_External_Vernaux *src,
140 Elf_Internal_Vernaux *dst)
141 {
142 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
143 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
144 dst->vna_other = H_GET_16 (abfd, src->vna_other);
145 dst->vna_name = H_GET_32 (abfd, src->vna_name);
146 dst->vna_next = H_GET_32 (abfd, src->vna_next);
147 }
148
149 /* Swap out a Vernaux structure. */
150
151 void
152 _bfd_elf_swap_vernaux_out (bfd *abfd,
153 const Elf_Internal_Vernaux *src,
154 Elf_External_Vernaux *dst)
155 {
156 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
157 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
158 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
159 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
160 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
161 }
162
163 /* Swap in a Versym structure. */
164
165 void
166 _bfd_elf_swap_versym_in (bfd *abfd,
167 const Elf_External_Versym *src,
168 Elf_Internal_Versym *dst)
169 {
170 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
171 }
172
173 /* Swap out a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_out (bfd *abfd,
177 const Elf_Internal_Versym *src,
178 Elf_External_Versym *dst)
179 {
180 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
181 }
182
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
185
186 unsigned long
187 bfd_elf_hash (const char *namearg)
188 {
189 const unsigned char *name = (const unsigned char *) namearg;
190 unsigned long h = 0;
191 unsigned long g;
192 int ch;
193
194 while ((ch = *name++) != '\0')
195 {
196 h = (h << 4) + ch;
197 if ((g = (h & 0xf0000000)) != 0)
198 {
199 h ^= g >> 24;
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
202 h ^= g;
203 }
204 }
205 return h & 0xffffffff;
206 }
207
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
210 buffer. */
211
212 static char *
213 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
214 {
215 char *buf;
216
217 if ((buf = bfd_alloc (abfd, size)) == NULL)
218 return NULL;
219 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
220 return NULL;
221 if (bfd_bread (buf, size, abfd) != size)
222 {
223 if (bfd_get_error () != bfd_error_system_call)
224 bfd_set_error (bfd_error_file_truncated);
225 return NULL;
226 }
227 return buf;
228 }
229
230 bfd_boolean
231 bfd_elf_mkobject (bfd *abfd)
232 {
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
236 if (elf_tdata (abfd) == 0)
237 return FALSE;
238 /* Since everything is done at close time, do we need any
239 initialization? */
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 char *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
261 return 0;
262
263 shstrtab = (char *) i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269 shstrtab = elf_read (abfd, offset, shstrtabsize);
270 i_shdrp[shindex]->contents = shstrtab;
271 }
272 return shstrtab;
273 }
274
275 char *
276 bfd_elf_string_from_elf_section (bfd *abfd,
277 unsigned int shindex,
278 unsigned int strindex)
279 {
280 Elf_Internal_Shdr *hdr;
281
282 if (strindex == 0)
283 return "";
284
285 hdr = elf_elfsections (abfd)[shindex];
286
287 if (hdr->contents == NULL
288 && bfd_elf_get_str_section (abfd, shindex) == NULL)
289 return NULL;
290
291 if (strindex >= hdr->sh_size)
292 {
293 (*_bfd_error_handler)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
296 ((shindex == elf_elfheader(abfd)->e_shstrndx
297 && strindex == hdr->sh_name)
298 ? ".shstrtab"
299 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
300 return "";
301 }
302
303 return ((char *) hdr->contents) + strindex;
304 }
305
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
311
312 Elf_Internal_Sym *
313 bfd_elf_get_elf_syms (bfd *ibfd,
314 Elf_Internal_Shdr *symtab_hdr,
315 size_t symcount,
316 size_t symoffset,
317 Elf_Internal_Sym *intsym_buf,
318 void *extsym_buf,
319 Elf_External_Sym_Shndx *extshndx_buf)
320 {
321 Elf_Internal_Shdr *shndx_hdr;
322 void *alloc_ext;
323 const bfd_byte *esym;
324 Elf_External_Sym_Shndx *alloc_extshndx;
325 Elf_External_Sym_Shndx *shndx;
326 Elf_Internal_Sym *isym;
327 Elf_Internal_Sym *isymend;
328 const struct elf_backend_data *bed;
329 size_t extsym_size;
330 bfd_size_type amt;
331 file_ptr pos;
332
333 if (symcount == 0)
334 return intsym_buf;
335
336 /* Normal syms might have section extension entries. */
337 shndx_hdr = NULL;
338 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
339 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
340
341 /* Read the symbols. */
342 alloc_ext = NULL;
343 alloc_extshndx = NULL;
344 bed = get_elf_backend_data (ibfd);
345 extsym_size = bed->s->sizeof_sym;
346 amt = symcount * extsym_size;
347 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
348 if (extsym_buf == NULL)
349 {
350 alloc_ext = bfd_malloc (amt);
351 extsym_buf = alloc_ext;
352 }
353 if (extsym_buf == NULL
354 || bfd_seek (ibfd, pos, SEEK_SET) != 0
355 || bfd_bread (extsym_buf, amt, ibfd) != amt)
356 {
357 intsym_buf = NULL;
358 goto out;
359 }
360
361 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
362 extshndx_buf = NULL;
363 else
364 {
365 amt = symcount * sizeof (Elf_External_Sym_Shndx);
366 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
367 if (extshndx_buf == NULL)
368 {
369 alloc_extshndx = bfd_malloc (amt);
370 extshndx_buf = alloc_extshndx;
371 }
372 if (extshndx_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379 }
380
381 if (intsym_buf == NULL)
382 {
383 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
384 intsym_buf = bfd_malloc (amt);
385 if (intsym_buf == NULL)
386 goto out;
387 }
388
389 /* Convert the symbols to internal form. */
390 isymend = intsym_buf + symcount;
391 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
392 isym < isymend;
393 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
394 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
395
396 out:
397 if (alloc_ext != NULL)
398 free (alloc_ext);
399 if (alloc_extshndx != NULL)
400 free (alloc_extshndx);
401
402 return intsym_buf;
403 }
404
405 /* Look up a symbol name. */
406 const char *
407 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
408 {
409 unsigned int iname = isym->st_name;
410 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
411 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
412 {
413 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
414 shindex = elf_elfheader (abfd)->e_shstrndx;
415 }
416
417 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
418 }
419
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
422 pointers. */
423
424 typedef union elf_internal_group {
425 Elf_Internal_Shdr *shdr;
426 unsigned int flags;
427 } Elf_Internal_Group;
428
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
431
432 static const char *
433 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
434 {
435 Elf_Internal_Shdr *hdr;
436 unsigned char esym[sizeof (Elf64_External_Sym)];
437 Elf_External_Sym_Shndx eshndx;
438 Elf_Internal_Sym isym;
439
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
442 return NULL;
443
444 /* Go read the symbol. */
445 hdr = &elf_tdata (abfd)->symtab_hdr;
446 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
447 &isym, esym, &eshndx) == NULL)
448 return NULL;
449
450 return bfd_elf_local_sym_name (abfd, &isym);
451 }
452
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
454
455 static bfd_boolean
456 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
457 {
458 unsigned int num_group = elf_tdata (abfd)->num_group;
459
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
462 if (num_group == 0)
463 {
464 unsigned int i, shnum;
465
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum = elf_numsections (abfd);
469 num_group = 0;
470 for (i = 0; i < shnum; i++)
471 {
472 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
473 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
474 num_group += 1;
475 }
476
477 if (num_group == 0)
478 num_group = (unsigned) -1;
479 elf_tdata (abfd)->num_group = num_group;
480
481 if (num_group > 0)
482 {
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
486 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
487 if (elf_tdata (abfd)->group_sect_ptr == NULL)
488 return FALSE;
489
490 num_group = 0;
491 for (i = 0; i < shnum; i++)
492 {
493 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
494 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
495 {
496 unsigned char *src;
497 Elf_Internal_Group *dest;
498
499 /* Add to list of sections. */
500 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
501 num_group += 1;
502
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest) >= 4);
505 amt = shdr->sh_size * sizeof (*dest) / 4;
506 shdr->contents = bfd_alloc (abfd, amt);
507 if (shdr->contents == NULL
508 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
509 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
510 != shdr->sh_size))
511 return FALSE;
512
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
516 pointers. */
517 src = shdr->contents + shdr->sh_size;
518 dest = (Elf_Internal_Group *) (shdr->contents + amt);
519 while (1)
520 {
521 unsigned int idx;
522
523 src -= 4;
524 --dest;
525 idx = H_GET_32 (abfd, src);
526 if (src == shdr->contents)
527 {
528 dest->flags = idx;
529 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
530 shdr->bfd_section->flags
531 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
532 break;
533 }
534 if (idx >= shnum)
535 {
536 ((*_bfd_error_handler)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd)));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd), newsect->name);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
616 {
617 asection *first = elf_next_in_group (group);
618 asection *s = first;
619
620 while (s != NULL)
621 {
622 s->output_section = bfd_abs_section_ptr;
623 s = elf_next_in_group (s);
624 /* These lists are circular. */
625 if (s == first)
626 break;
627 }
628 return TRUE;
629 }
630
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
633
634 bfd_boolean
635 _bfd_elf_make_section_from_shdr (bfd *abfd,
636 Elf_Internal_Shdr *hdr,
637 const char *name)
638 {
639 asection *newsect;
640 flagword flags;
641 const struct elf_backend_data *bed;
642
643 if (hdr->bfd_section != NULL)
644 {
645 BFD_ASSERT (strcmp (name,
646 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
647 return TRUE;
648 }
649
650 newsect = bfd_make_section_anyway (abfd, name);
651 if (newsect == NULL)
652 return FALSE;
653
654 /* Always use the real type/flags. */
655 elf_section_type (newsect) = hdr->sh_type;
656 elf_section_flags (newsect) = hdr->sh_flags;
657
658 newsect->filepos = hdr->sh_offset;
659
660 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
661 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
662 || ! bfd_set_section_alignment (abfd, newsect,
663 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
664 return FALSE;
665
666 flags = SEC_NO_FLAGS;
667 if (hdr->sh_type != SHT_NOBITS)
668 flags |= SEC_HAS_CONTENTS;
669 if (hdr->sh_type == SHT_GROUP)
670 flags |= SEC_GROUP | SEC_EXCLUDE;
671 if ((hdr->sh_flags & SHF_ALLOC) != 0)
672 {
673 flags |= SEC_ALLOC;
674 if (hdr->sh_type != SHT_NOBITS)
675 flags |= SEC_LOAD;
676 }
677 if ((hdr->sh_flags & SHF_WRITE) == 0)
678 flags |= SEC_READONLY;
679 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
680 flags |= SEC_CODE;
681 else if ((flags & SEC_LOAD) != 0)
682 flags |= SEC_DATA;
683 if ((hdr->sh_flags & SHF_MERGE) != 0)
684 {
685 flags |= SEC_MERGE;
686 newsect->entsize = hdr->sh_entsize;
687 if ((hdr->sh_flags & SHF_STRINGS) != 0)
688 flags |= SEC_STRINGS;
689 }
690 if (hdr->sh_flags & SHF_GROUP)
691 if (!setup_group (abfd, hdr, newsect))
692 return FALSE;
693 if ((hdr->sh_flags & SHF_TLS) != 0)
694 flags |= SEC_THREAD_LOCAL;
695
696 /* The debugging sections appear to be recognized only by name, not
697 any sort of flag. */
698 {
699 static const char *debug_sec_names [] =
700 {
701 ".debug",
702 ".gnu.linkonce.wi.",
703 ".line",
704 ".stab"
705 };
706 int i;
707
708 for (i = ARRAY_SIZE (debug_sec_names); i--;)
709 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
710 break;
711
712 if (i >= 0)
713 flags |= SEC_DEBUGGING;
714 }
715
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect) == NULL)
724 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
725
726 bed = get_elf_backend_data (abfd);
727 if (bed->elf_backend_section_flags)
728 if (! bed->elf_backend_section_flags (&flags, hdr))
729 return FALSE;
730
731 if (! bfd_set_section_flags (abfd, newsect, flags))
732 return FALSE;
733
734 if ((flags & SEC_ALLOC) != 0)
735 {
736 Elf_Internal_Phdr *phdr;
737 unsigned int i;
738
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr = elf_tdata (abfd)->phdr;
743 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
744 {
745 if (phdr->p_paddr != 0)
746 break;
747 }
748 if (i < elf_elfheader (abfd)->e_phnum)
749 {
750 phdr = elf_tdata (abfd)->phdr;
751 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
752 {
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
757
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr->p_type == PT_LOAD
766 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
767 && (hdr->sh_offset + hdr->sh_size
768 <= phdr->p_offset + phdr->p_memsz)
769 && ((flags & SEC_LOAD) == 0
770 || (hdr->sh_offset + hdr->sh_size
771 <= phdr->p_offset + phdr->p_filesz)))
772 {
773 if ((flags & SEC_LOAD) == 0)
774 newsect->lma = (phdr->p_paddr
775 + hdr->sh_addr - phdr->p_vaddr);
776 else
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_offset - phdr->p_offset);
786
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr->sh_addr >= phdr->p_vaddr
792 && (hdr->sh_addr + hdr->sh_size
793 <= phdr->p_vaddr + phdr->p_memsz))
794 break;
795 }
796 }
797 }
798 }
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802
803 return TRUE;
804 }
805
806 /*
807 INTERNAL_FUNCTION
808 bfd_elf_find_section
809
810 SYNOPSIS
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
812
813 DESCRIPTION
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
819 */
820
821 struct elf_internal_shdr *
822 bfd_elf_find_section (bfd *abfd, char *name)
823 {
824 Elf_Internal_Shdr **i_shdrp;
825 char *shstrtab;
826 unsigned int max;
827 unsigned int i;
828
829 i_shdrp = elf_elfsections (abfd);
830 if (i_shdrp != NULL)
831 {
832 shstrtab = bfd_elf_get_str_section (abfd,
833 elf_elfheader (abfd)->e_shstrndx);
834 if (shstrtab != NULL)
835 {
836 max = elf_numsections (abfd);
837 for (i = 1; i < max; i++)
838 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
839 return i_shdrp[i];
840 }
841 }
842 return 0;
843 }
844
845 const char *const bfd_elf_section_type_names[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
849 };
850
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
860
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
863 arelent *reloc_entry,
864 asymbol *symbol,
865 void *data ATTRIBUTE_UNUSED,
866 asection *input_section,
867 bfd *output_bfd,
868 char **error_message ATTRIBUTE_UNUSED)
869 {
870 if (output_bfd != NULL
871 && (symbol->flags & BSF_SECTION_SYM) == 0
872 && (! reloc_entry->howto->partial_inplace
873 || reloc_entry->addend == 0))
874 {
875 reloc_entry->address += input_section->output_offset;
876 return bfd_reloc_ok;
877 }
878
879 return bfd_reloc_continue;
880 }
881 \f
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
883
884 static void
885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
886 asection *sec)
887 {
888 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
889 sec->sec_info_type = ELF_INFO_TYPE_NONE;
890 }
891
892 /* Finish SHF_MERGE section merging. */
893
894 bfd_boolean
895 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
896 {
897 if (!is_elf_hash_table (info))
898 return FALSE;
899 if (elf_hash_table (info)->merge_info)
900 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
901 merge_sections_remove_hook);
902 return TRUE;
903 }
904
905 void
906 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
907 {
908 sec->output_section = bfd_abs_section_ptr;
909 sec->output_offset = sec->vma;
910 if (!is_elf_hash_table (info))
911 return;
912
913 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
914 }
915 \f
916 /* Copy the program header and other data from one object module to
917 another. */
918
919 bfd_boolean
920 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
921 {
922 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
924 return TRUE;
925
926 BFD_ASSERT (!elf_flags_init (obfd)
927 || (elf_elfheader (obfd)->e_flags
928 == elf_elfheader (ibfd)->e_flags));
929
930 elf_gp (obfd) = elf_gp (ibfd);
931 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
932 elf_flags_init (obfd) = TRUE;
933 return TRUE;
934 }
935
936 /* Print out the program headers. */
937
938 bfd_boolean
939 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
940 {
941 FILE *f = farg;
942 Elf_Internal_Phdr *p;
943 asection *s;
944 bfd_byte *dynbuf = NULL;
945
946 p = elf_tdata (abfd)->phdr;
947 if (p != NULL)
948 {
949 unsigned int i, c;
950
951 fprintf (f, _("\nProgram Header:\n"));
952 c = elf_elfheader (abfd)->e_phnum;
953 for (i = 0; i < c; i++, p++)
954 {
955 const char *pt;
956 char buf[20];
957
958 switch (p->p_type)
959 {
960 case PT_NULL: pt = "NULL"; break;
961 case PT_LOAD: pt = "LOAD"; break;
962 case PT_DYNAMIC: pt = "DYNAMIC"; break;
963 case PT_INTERP: pt = "INTERP"; break;
964 case PT_NOTE: pt = "NOTE"; break;
965 case PT_SHLIB: pt = "SHLIB"; break;
966 case PT_PHDR: pt = "PHDR"; break;
967 case PT_TLS: pt = "TLS"; break;
968 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
969 case PT_GNU_STACK: pt = "STACK"; break;
970 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
971 }
972 fprintf (f, "%8s off 0x", pt);
973 bfd_fprintf_vma (abfd, f, p->p_offset);
974 fprintf (f, " vaddr 0x");
975 bfd_fprintf_vma (abfd, f, p->p_vaddr);
976 fprintf (f, " paddr 0x");
977 bfd_fprintf_vma (abfd, f, p->p_paddr);
978 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
979 fprintf (f, " filesz 0x");
980 bfd_fprintf_vma (abfd, f, p->p_filesz);
981 fprintf (f, " memsz 0x");
982 bfd_fprintf_vma (abfd, f, p->p_memsz);
983 fprintf (f, " flags %c%c%c",
984 (p->p_flags & PF_R) != 0 ? 'r' : '-',
985 (p->p_flags & PF_W) != 0 ? 'w' : '-',
986 (p->p_flags & PF_X) != 0 ? 'x' : '-');
987 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
988 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
989 fprintf (f, "\n");
990 }
991 }
992
993 s = bfd_get_section_by_name (abfd, ".dynamic");
994 if (s != NULL)
995 {
996 int elfsec;
997 unsigned long shlink;
998 bfd_byte *extdyn, *extdynend;
999 size_t extdynsize;
1000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1001
1002 fprintf (f, _("\nDynamic Section:\n"));
1003
1004 dynbuf = bfd_malloc (s->_raw_size);
1005 if (dynbuf == NULL)
1006 goto error_return;
1007 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1008 goto error_return;
1009
1010 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1011 if (elfsec == -1)
1012 goto error_return;
1013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1014
1015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1017
1018 extdyn = dynbuf;
1019 extdynend = extdyn + s->_raw_size;
1020 for (; extdyn < extdynend; extdyn += extdynsize)
1021 {
1022 Elf_Internal_Dyn dyn;
1023 const char *name;
1024 char ab[20];
1025 bfd_boolean stringp;
1026
1027 (*swap_dyn_in) (abfd, extdyn, &dyn);
1028
1029 if (dyn.d_tag == DT_NULL)
1030 break;
1031
1032 stringp = FALSE;
1033 switch (dyn.d_tag)
1034 {
1035 default:
1036 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1037 name = ab;
1038 break;
1039
1040 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1041 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1042 case DT_PLTGOT: name = "PLTGOT"; break;
1043 case DT_HASH: name = "HASH"; break;
1044 case DT_STRTAB: name = "STRTAB"; break;
1045 case DT_SYMTAB: name = "SYMTAB"; break;
1046 case DT_RELA: name = "RELA"; break;
1047 case DT_RELASZ: name = "RELASZ"; break;
1048 case DT_RELAENT: name = "RELAENT"; break;
1049 case DT_STRSZ: name = "STRSZ"; break;
1050 case DT_SYMENT: name = "SYMENT"; break;
1051 case DT_INIT: name = "INIT"; break;
1052 case DT_FINI: name = "FINI"; break;
1053 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1054 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1055 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1056 case DT_REL: name = "REL"; break;
1057 case DT_RELSZ: name = "RELSZ"; break;
1058 case DT_RELENT: name = "RELENT"; break;
1059 case DT_PLTREL: name = "PLTREL"; break;
1060 case DT_DEBUG: name = "DEBUG"; break;
1061 case DT_TEXTREL: name = "TEXTREL"; break;
1062 case DT_JMPREL: name = "JMPREL"; break;
1063 case DT_BIND_NOW: name = "BIND_NOW"; break;
1064 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1069 case DT_FLAGS: name = "FLAGS"; break;
1070 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM: name = "CHECKSUM"; break;
1073 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1074 case DT_MOVEENT: name = "MOVEENT"; break;
1075 case DT_MOVESZ: name = "MOVESZ"; break;
1076 case DT_FEATURE: name = "FEATURE"; break;
1077 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1078 case DT_SYMINSZ: name = "SYMINSZ"; break;
1079 case DT_SYMINENT: name = "SYMINENT"; break;
1080 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1081 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1082 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1083 case DT_PLTPAD: name = "PLTPAD"; break;
1084 case DT_MOVETAB: name = "MOVETAB"; break;
1085 case DT_SYMINFO: name = "SYMINFO"; break;
1086 case DT_RELACOUNT: name = "RELACOUNT"; break;
1087 case DT_RELCOUNT: name = "RELCOUNT"; break;
1088 case DT_FLAGS_1: name = "FLAGS_1"; break;
1089 case DT_VERSYM: name = "VERSYM"; break;
1090 case DT_VERDEF: name = "VERDEF"; break;
1091 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1092 case DT_VERNEED: name = "VERNEED"; break;
1093 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1094 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1095 case DT_USED: name = "USED"; break;
1096 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1097 }
1098
1099 fprintf (f, " %-11s ", name);
1100 if (! stringp)
1101 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1102 else
1103 {
1104 const char *string;
1105 unsigned int tagv = dyn.d_un.d_val;
1106
1107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1108 if (string == NULL)
1109 goto error_return;
1110 fprintf (f, "%s", string);
1111 }
1112 fprintf (f, "\n");
1113 }
1114
1115 free (dynbuf);
1116 dynbuf = NULL;
1117 }
1118
1119 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1120 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1121 {
1122 if (! _bfd_elf_slurp_version_tables (abfd))
1123 return FALSE;
1124 }
1125
1126 if (elf_dynverdef (abfd) != 0)
1127 {
1128 Elf_Internal_Verdef *t;
1129
1130 fprintf (f, _("\nVersion definitions:\n"));
1131 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1132 {
1133 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1134 t->vd_flags, t->vd_hash, t->vd_nodename);
1135 if (t->vd_auxptr->vda_nextptr != NULL)
1136 {
1137 Elf_Internal_Verdaux *a;
1138
1139 fprintf (f, "\t");
1140 for (a = t->vd_auxptr->vda_nextptr;
1141 a != NULL;
1142 a = a->vda_nextptr)
1143 fprintf (f, "%s ", a->vda_nodename);
1144 fprintf (f, "\n");
1145 }
1146 }
1147 }
1148
1149 if (elf_dynverref (abfd) != 0)
1150 {
1151 Elf_Internal_Verneed *t;
1152
1153 fprintf (f, _("\nVersion References:\n"));
1154 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1155 {
1156 Elf_Internal_Vernaux *a;
1157
1158 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1161 a->vna_flags, a->vna_other, a->vna_nodename);
1162 }
1163 }
1164
1165 return TRUE;
1166
1167 error_return:
1168 if (dynbuf != NULL)
1169 free (dynbuf);
1170 return FALSE;
1171 }
1172
1173 /* Display ELF-specific fields of a symbol. */
1174
1175 void
1176 bfd_elf_print_symbol (bfd *abfd,
1177 void *filep,
1178 asymbol *symbol,
1179 bfd_print_symbol_type how)
1180 {
1181 FILE *file = filep;
1182 switch (how)
1183 {
1184 case bfd_print_symbol_name:
1185 fprintf (file, "%s", symbol->name);
1186 break;
1187 case bfd_print_symbol_more:
1188 fprintf (file, "elf ");
1189 bfd_fprintf_vma (abfd, file, symbol->value);
1190 fprintf (file, " %lx", (long) symbol->flags);
1191 break;
1192 case bfd_print_symbol_all:
1193 {
1194 const char *section_name;
1195 const char *name = NULL;
1196 const struct elf_backend_data *bed;
1197 unsigned char st_other;
1198 bfd_vma val;
1199
1200 section_name = symbol->section ? symbol->section->name : "(*none*)";
1201
1202 bed = get_elf_backend_data (abfd);
1203 if (bed->elf_backend_print_symbol_all)
1204 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1205
1206 if (name == NULL)
1207 {
1208 name = symbol->name;
1209 bfd_print_symbol_vandf (abfd, file, symbol);
1210 }
1211
1212 fprintf (file, " %s\t", section_name);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol->section))
1218 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1219 else
1220 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1221 bfd_fprintf_vma (abfd, file, val);
1222
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd)->dynversym_section != 0
1225 && (elf_tdata (abfd)->dynverdef_section != 0
1226 || elf_tdata (abfd)->dynverref_section != 0))
1227 {
1228 unsigned int vernum;
1229 const char *version_string;
1230
1231 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1232
1233 if (vernum == 0)
1234 version_string = "";
1235 else if (vernum == 1)
1236 version_string = "Base";
1237 else if (vernum <= elf_tdata (abfd)->cverdefs)
1238 version_string =
1239 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1240 else
1241 {
1242 Elf_Internal_Verneed *t;
1243
1244 version_string = "";
1245 for (t = elf_tdata (abfd)->verref;
1246 t != NULL;
1247 t = t->vn_nextref)
1248 {
1249 Elf_Internal_Vernaux *a;
1250
1251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1252 {
1253 if (a->vna_other == vernum)
1254 {
1255 version_string = a->vna_nodename;
1256 break;
1257 }
1258 }
1259 }
1260 }
1261
1262 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1263 fprintf (file, " %-11s", version_string);
1264 else
1265 {
1266 int i;
1267
1268 fprintf (file, " (%s)", version_string);
1269 for (i = 10 - strlen (version_string); i > 0; --i)
1270 putc (' ', file);
1271 }
1272 }
1273
1274 /* If the st_other field is not zero, print it. */
1275 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1276
1277 switch (st_other)
1278 {
1279 case 0: break;
1280 case STV_INTERNAL: fprintf (file, " .internal"); break;
1281 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1282 case STV_PROTECTED: fprintf (file, " .protected"); break;
1283 default:
1284 /* Some other non-defined flags are also present, so print
1285 everything hex. */
1286 fprintf (file, " 0x%02x", (unsigned int) st_other);
1287 }
1288
1289 fprintf (file, " %s", name);
1290 }
1291 break;
1292 }
1293 }
1294 \f
1295 /* Create an entry in an ELF linker hash table. */
1296
1297 struct bfd_hash_entry *
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1299 struct bfd_hash_table *table,
1300 const char *string)
1301 {
1302 /* Allocate the structure if it has not already been allocated by a
1303 subclass. */
1304 if (entry == NULL)
1305 {
1306 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1307 if (entry == NULL)
1308 return entry;
1309 }
1310
1311 /* Call the allocation method of the superclass. */
1312 entry = _bfd_link_hash_newfunc (entry, table, string);
1313 if (entry != NULL)
1314 {
1315 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1316 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1317
1318 /* Set local fields. */
1319 ret->indx = -1;
1320 ret->dynindx = -1;
1321 ret->dynstr_index = 0;
1322 ret->elf_hash_value = 0;
1323 ret->weakdef = NULL;
1324 ret->verinfo.verdef = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_entries_used = NULL;
1327 ret->vtable_parent = NULL;
1328 ret->got = htab->init_refcount;
1329 ret->plt = htab->init_refcount;
1330 ret->size = 0;
1331 ret->type = STT_NOTYPE;
1332 ret->other = 0;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1338 }
1339
1340 return entry;
1341 }
1342
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1345
1346 void
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1348 struct elf_link_hash_entry *dir,
1349 struct elf_link_hash_entry *ind)
1350 {
1351 bfd_signed_vma tmp;
1352 bfd_signed_vma lowest_valid = bed->can_refcount;
1353
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1356
1357 dir->elf_link_hash_flags |=
1358 (ind->elf_link_hash_flags
1359 & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF));
1363
1364 if (ind->root.type != bfd_link_hash_indirect)
1365 return;
1366
1367 /* Copy over the global and procedure linkage table refcount entries.
1368 These may have been already set up by a check_relocs routine. */
1369 tmp = dir->got.refcount;
1370 if (tmp < lowest_valid)
1371 {
1372 dir->got.refcount = ind->got.refcount;
1373 ind->got.refcount = tmp;
1374 }
1375 else
1376 BFD_ASSERT (ind->got.refcount < lowest_valid);
1377
1378 tmp = dir->plt.refcount;
1379 if (tmp < lowest_valid)
1380 {
1381 dir->plt.refcount = ind->plt.refcount;
1382 ind->plt.refcount = tmp;
1383 }
1384 else
1385 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1386
1387 if (dir->dynindx == -1)
1388 {
1389 dir->dynindx = ind->dynindx;
1390 dir->dynstr_index = ind->dynstr_index;
1391 ind->dynindx = -1;
1392 ind->dynstr_index = 0;
1393 }
1394 else
1395 BFD_ASSERT (ind->dynindx == -1);
1396 }
1397
1398 void
1399 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1400 struct elf_link_hash_entry *h,
1401 bfd_boolean force_local)
1402 {
1403 h->plt = elf_hash_table (info)->init_offset;
1404 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1405 if (force_local)
1406 {
1407 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1408 if (h->dynindx != -1)
1409 {
1410 h->dynindx = -1;
1411 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1412 h->dynstr_index);
1413 }
1414 }
1415 }
1416
1417 /* Initialize an ELF linker hash table. */
1418
1419 bfd_boolean
1420 _bfd_elf_link_hash_table_init
1421 (struct elf_link_hash_table *table,
1422 bfd *abfd,
1423 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1424 struct bfd_hash_table *,
1425 const char *))
1426 {
1427 bfd_boolean ret;
1428
1429 table->dynamic_sections_created = FALSE;
1430 table->dynobj = NULL;
1431 /* Make sure can_refcount is extended to the width and signedness of
1432 init_refcount before we subtract one from it. */
1433 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1434 table->init_refcount.refcount -= 1;
1435 table->init_offset.offset = -(bfd_vma) 1;
1436 /* The first dynamic symbol is a dummy. */
1437 table->dynsymcount = 1;
1438 table->dynstr = NULL;
1439 table->bucketcount = 0;
1440 table->needed = NULL;
1441 table->hgot = NULL;
1442 table->stab_info = NULL;
1443 table->merge_info = NULL;
1444 memset (&table->eh_info, 0, sizeof (table->eh_info));
1445 table->dynlocal = NULL;
1446 table->runpath = NULL;
1447 table->tls_segment = NULL;
1448 table->loaded = NULL;
1449
1450 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1451 table->root.type = bfd_link_elf_hash_table;
1452
1453 return ret;
1454 }
1455
1456 /* Create an ELF linker hash table. */
1457
1458 struct bfd_link_hash_table *
1459 _bfd_elf_link_hash_table_create (bfd *abfd)
1460 {
1461 struct elf_link_hash_table *ret;
1462 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1463
1464 ret = bfd_malloc (amt);
1465 if (ret == NULL)
1466 return NULL;
1467
1468 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1469 {
1470 free (ret);
1471 return NULL;
1472 }
1473
1474 return &ret->root;
1475 }
1476
1477 /* This is a hook for the ELF emulation code in the generic linker to
1478 tell the backend linker what file name to use for the DT_NEEDED
1479 entry for a dynamic object. The generic linker passes name as an
1480 empty string to indicate that no DT_NEEDED entry should be made. */
1481
1482 void
1483 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1484 {
1485 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1486 && bfd_get_format (abfd) == bfd_object)
1487 elf_dt_name (abfd) = name;
1488 }
1489
1490 void
1491 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1492 {
1493 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1494 && bfd_get_format (abfd) == bfd_object)
1495 elf_dt_soname (abfd) = name;
1496 }
1497
1498 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1499 the linker ELF emulation code. */
1500
1501 struct bfd_link_needed_list *
1502 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1503 struct bfd_link_info *info)
1504 {
1505 if (! is_elf_hash_table (info))
1506 return NULL;
1507 return elf_hash_table (info)->needed;
1508 }
1509
1510 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1511 hook for the linker ELF emulation code. */
1512
1513 struct bfd_link_needed_list *
1514 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1515 struct bfd_link_info *info)
1516 {
1517 if (! is_elf_hash_table (info))
1518 return NULL;
1519 return elf_hash_table (info)->runpath;
1520 }
1521
1522 /* Get the name actually used for a dynamic object for a link. This
1523 is the SONAME entry if there is one. Otherwise, it is the string
1524 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1525
1526 const char *
1527 bfd_elf_get_dt_soname (bfd *abfd)
1528 {
1529 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1530 && bfd_get_format (abfd) == bfd_object)
1531 return elf_dt_name (abfd);
1532 return NULL;
1533 }
1534
1535 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1536 the ELF linker emulation code. */
1537
1538 bfd_boolean
1539 bfd_elf_get_bfd_needed_list (bfd *abfd,
1540 struct bfd_link_needed_list **pneeded)
1541 {
1542 asection *s;
1543 bfd_byte *dynbuf = NULL;
1544 int elfsec;
1545 unsigned long shlink;
1546 bfd_byte *extdyn, *extdynend;
1547 size_t extdynsize;
1548 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1549
1550 *pneeded = NULL;
1551
1552 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1553 || bfd_get_format (abfd) != bfd_object)
1554 return TRUE;
1555
1556 s = bfd_get_section_by_name (abfd, ".dynamic");
1557 if (s == NULL || s->_raw_size == 0)
1558 return TRUE;
1559
1560 dynbuf = bfd_malloc (s->_raw_size);
1561 if (dynbuf == NULL)
1562 goto error_return;
1563
1564 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1565 goto error_return;
1566
1567 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1568 if (elfsec == -1)
1569 goto error_return;
1570
1571 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1572
1573 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1574 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1575
1576 extdyn = dynbuf;
1577 extdynend = extdyn + s->_raw_size;
1578 for (; extdyn < extdynend; extdyn += extdynsize)
1579 {
1580 Elf_Internal_Dyn dyn;
1581
1582 (*swap_dyn_in) (abfd, extdyn, &dyn);
1583
1584 if (dyn.d_tag == DT_NULL)
1585 break;
1586
1587 if (dyn.d_tag == DT_NEEDED)
1588 {
1589 const char *string;
1590 struct bfd_link_needed_list *l;
1591 unsigned int tagv = dyn.d_un.d_val;
1592 bfd_size_type amt;
1593
1594 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1595 if (string == NULL)
1596 goto error_return;
1597
1598 amt = sizeof *l;
1599 l = bfd_alloc (abfd, amt);
1600 if (l == NULL)
1601 goto error_return;
1602
1603 l->by = abfd;
1604 l->name = string;
1605 l->next = *pneeded;
1606 *pneeded = l;
1607 }
1608 }
1609
1610 free (dynbuf);
1611
1612 return TRUE;
1613
1614 error_return:
1615 if (dynbuf != NULL)
1616 free (dynbuf);
1617 return FALSE;
1618 }
1619 \f
1620 /* Allocate an ELF string table--force the first byte to be zero. */
1621
1622 struct bfd_strtab_hash *
1623 _bfd_elf_stringtab_init (void)
1624 {
1625 struct bfd_strtab_hash *ret;
1626
1627 ret = _bfd_stringtab_init ();
1628 if (ret != NULL)
1629 {
1630 bfd_size_type loc;
1631
1632 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1633 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1634 if (loc == (bfd_size_type) -1)
1635 {
1636 _bfd_stringtab_free (ret);
1637 ret = NULL;
1638 }
1639 }
1640 return ret;
1641 }
1642 \f
1643 /* ELF .o/exec file reading */
1644
1645 /* Create a new bfd section from an ELF section header. */
1646
1647 bfd_boolean
1648 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1649 {
1650 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1651 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1652 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1653 const char *name;
1654
1655 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1656
1657 switch (hdr->sh_type)
1658 {
1659 case SHT_NULL:
1660 /* Inactive section. Throw it away. */
1661 return TRUE;
1662
1663 case SHT_PROGBITS: /* Normal section with contents. */
1664 case SHT_NOBITS: /* .bss section. */
1665 case SHT_HASH: /* .hash section. */
1666 case SHT_NOTE: /* .note section. */
1667 case SHT_INIT_ARRAY: /* .init_array section. */
1668 case SHT_FINI_ARRAY: /* .fini_array section. */
1669 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1671
1672 case SHT_DYNAMIC: /* Dynamic linking information. */
1673 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1674 return FALSE;
1675 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1676 {
1677 Elf_Internal_Shdr *dynsymhdr;
1678
1679 /* The shared libraries distributed with hpux11 have a bogus
1680 sh_link field for the ".dynamic" section. Find the
1681 string table for the ".dynsym" section instead. */
1682 if (elf_dynsymtab (abfd) != 0)
1683 {
1684 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1685 hdr->sh_link = dynsymhdr->sh_link;
1686 }
1687 else
1688 {
1689 unsigned int i, num_sec;
1690
1691 num_sec = elf_numsections (abfd);
1692 for (i = 1; i < num_sec; i++)
1693 {
1694 dynsymhdr = elf_elfsections (abfd)[i];
1695 if (dynsymhdr->sh_type == SHT_DYNSYM)
1696 {
1697 hdr->sh_link = dynsymhdr->sh_link;
1698 break;
1699 }
1700 }
1701 }
1702 }
1703 break;
1704
1705 case SHT_SYMTAB: /* A symbol table */
1706 if (elf_onesymtab (abfd) == shindex)
1707 return TRUE;
1708
1709 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1710 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1711 elf_onesymtab (abfd) = shindex;
1712 elf_tdata (abfd)->symtab_hdr = *hdr;
1713 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1714 abfd->flags |= HAS_SYMS;
1715
1716 /* Sometimes a shared object will map in the symbol table. If
1717 SHF_ALLOC is set, and this is a shared object, then we also
1718 treat this section as a BFD section. We can not base the
1719 decision purely on SHF_ALLOC, because that flag is sometimes
1720 set in a relocatable object file, which would confuse the
1721 linker. */
1722 if ((hdr->sh_flags & SHF_ALLOC) != 0
1723 && (abfd->flags & DYNAMIC) != 0
1724 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1725 return FALSE;
1726
1727 return TRUE;
1728
1729 case SHT_DYNSYM: /* A dynamic symbol table */
1730 if (elf_dynsymtab (abfd) == shindex)
1731 return TRUE;
1732
1733 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1734 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1735 elf_dynsymtab (abfd) = shindex;
1736 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1738 abfd->flags |= HAS_SYMS;
1739
1740 /* Besides being a symbol table, we also treat this as a regular
1741 section, so that objcopy can handle it. */
1742 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1743
1744 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1745 if (elf_symtab_shndx (abfd) == shindex)
1746 return TRUE;
1747
1748 /* Get the associated symbol table. */
1749 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1750 || hdr->sh_link != elf_onesymtab (abfd))
1751 return FALSE;
1752
1753 elf_symtab_shndx (abfd) = shindex;
1754 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1755 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1756 return TRUE;
1757
1758 case SHT_STRTAB: /* A string table */
1759 if (hdr->bfd_section != NULL)
1760 return TRUE;
1761 if (ehdr->e_shstrndx == shindex)
1762 {
1763 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1764 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1765 return TRUE;
1766 }
1767 {
1768 unsigned int i, num_sec;
1769
1770 num_sec = elf_numsections (abfd);
1771 for (i = 1; i < num_sec; i++)
1772 {
1773 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1774 if (hdr2->sh_link == shindex)
1775 {
1776 if (! bfd_section_from_shdr (abfd, i))
1777 return FALSE;
1778 if (elf_onesymtab (abfd) == i)
1779 {
1780 elf_tdata (abfd)->strtab_hdr = *hdr;
1781 elf_elfsections (abfd)[shindex] =
1782 &elf_tdata (abfd)->strtab_hdr;
1783 return TRUE;
1784 }
1785 if (elf_dynsymtab (abfd) == i)
1786 {
1787 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1788 elf_elfsections (abfd)[shindex] = hdr =
1789 &elf_tdata (abfd)->dynstrtab_hdr;
1790 /* We also treat this as a regular section, so
1791 that objcopy can handle it. */
1792 break;
1793 }
1794 #if 0 /* Not handling other string tables specially right now. */
1795 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1796 /* We have a strtab for some random other section. */
1797 newsect = (asection *) hdr2->bfd_section;
1798 if (!newsect)
1799 break;
1800 hdr->bfd_section = newsect;
1801 hdr2 = &elf_section_data (newsect)->str_hdr;
1802 *hdr2 = *hdr;
1803 elf_elfsections (abfd)[shindex] = hdr2;
1804 #endif
1805 }
1806 }
1807 }
1808
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1810
1811 case SHT_REL:
1812 case SHT_RELA:
1813 /* *These* do a lot of work -- but build no sections! */
1814 {
1815 asection *target_sect;
1816 Elf_Internal_Shdr *hdr2;
1817 unsigned int num_sec = elf_numsections (abfd);
1818
1819 /* Check for a bogus link to avoid crashing. */
1820 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1821 || hdr->sh_link >= num_sec)
1822 {
1823 ((*_bfd_error_handler)
1824 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1825 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1826 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1827 }
1828
1829 /* For some incomprehensible reason Oracle distributes
1830 libraries for Solaris in which some of the objects have
1831 bogus sh_link fields. It would be nice if we could just
1832 reject them, but, unfortunately, some people need to use
1833 them. We scan through the section headers; if we find only
1834 one suitable symbol table, we clobber the sh_link to point
1835 to it. I hope this doesn't break anything. */
1836 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1837 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1838 {
1839 unsigned int scan;
1840 int found;
1841
1842 found = 0;
1843 for (scan = 1; scan < num_sec; scan++)
1844 {
1845 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1846 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1847 {
1848 if (found != 0)
1849 {
1850 found = 0;
1851 break;
1852 }
1853 found = scan;
1854 }
1855 }
1856 if (found != 0)
1857 hdr->sh_link = found;
1858 }
1859
1860 /* Get the symbol table. */
1861 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1862 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1863 return FALSE;
1864
1865 /* If this reloc section does not use the main symbol table we
1866 don't treat it as a reloc section. BFD can't adequately
1867 represent such a section, so at least for now, we don't
1868 try. We just present it as a normal section. We also
1869 can't use it as a reloc section if it points to the null
1870 section. */
1871 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1872 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1873
1874 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1875 return FALSE;
1876 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1877 if (target_sect == NULL)
1878 return FALSE;
1879
1880 if ((target_sect->flags & SEC_RELOC) == 0
1881 || target_sect->reloc_count == 0)
1882 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1883 else
1884 {
1885 bfd_size_type amt;
1886 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1887 amt = sizeof (*hdr2);
1888 hdr2 = bfd_alloc (abfd, amt);
1889 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1890 }
1891 *hdr2 = *hdr;
1892 elf_elfsections (abfd)[shindex] = hdr2;
1893 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1894 target_sect->flags |= SEC_RELOC;
1895 target_sect->relocation = NULL;
1896 target_sect->rel_filepos = hdr->sh_offset;
1897 /* In the section to which the relocations apply, mark whether
1898 its relocations are of the REL or RELA variety. */
1899 if (hdr->sh_size != 0)
1900 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1901 abfd->flags |= HAS_RELOC;
1902 return TRUE;
1903 }
1904 break;
1905
1906 case SHT_GNU_verdef:
1907 elf_dynverdef (abfd) = shindex;
1908 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1909 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1910 break;
1911
1912 case SHT_GNU_versym:
1913 elf_dynversym (abfd) = shindex;
1914 elf_tdata (abfd)->dynversym_hdr = *hdr;
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1916 break;
1917
1918 case SHT_GNU_verneed:
1919 elf_dynverref (abfd) = shindex;
1920 elf_tdata (abfd)->dynverref_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1922 break;
1923
1924 case SHT_SHLIB:
1925 return TRUE;
1926
1927 case SHT_GROUP:
1928 /* We need a BFD section for objcopy and relocatable linking,
1929 and it's handy to have the signature available as the section
1930 name. */
1931 name = group_signature (abfd, hdr);
1932 if (name == NULL)
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / 4;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 while (--n_elt != 0)
1947 if ((s = (++idx)->shdr->bfd_section) != NULL
1948 && elf_next_in_group (s) != NULL)
1949 {
1950 elf_next_in_group (hdr->bfd_section) = s;
1951 break;
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Check for any processor-specific section types. */
1958 {
1959 if (bed->elf_backend_section_from_shdr)
1960 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1961 }
1962 break;
1963 }
1964
1965 return TRUE;
1966 }
1967
1968 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1969 Return SEC for sections that have no elf section, and NULL on error. */
1970
1971 asection *
1972 bfd_section_from_r_symndx (bfd *abfd,
1973 struct sym_sec_cache *cache,
1974 asection *sec,
1975 unsigned long r_symndx)
1976 {
1977 Elf_Internal_Shdr *symtab_hdr;
1978 unsigned char esym[sizeof (Elf64_External_Sym)];
1979 Elf_External_Sym_Shndx eshndx;
1980 Elf_Internal_Sym isym;
1981 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1982
1983 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1984 return cache->sec[ent];
1985
1986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1987 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1988 &isym, esym, &eshndx) == NULL)
1989 return NULL;
1990
1991 if (cache->abfd != abfd)
1992 {
1993 memset (cache->indx, -1, sizeof (cache->indx));
1994 cache->abfd = abfd;
1995 }
1996 cache->indx[ent] = r_symndx;
1997 cache->sec[ent] = sec;
1998 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
1999 || isym.st_shndx > SHN_HIRESERVE)
2000 {
2001 asection *s;
2002 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2003 if (s != NULL)
2004 cache->sec[ent] = s;
2005 }
2006 return cache->sec[ent];
2007 }
2008
2009 /* Given an ELF section number, retrieve the corresponding BFD
2010 section. */
2011
2012 asection *
2013 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2014 {
2015 if (index >= elf_numsections (abfd))
2016 return NULL;
2017 return elf_elfsections (abfd)[index]->bfd_section;
2018 }
2019
2020 static struct bfd_elf_special_section const special_sections[] =
2021 {
2022 { ".bss", 0, NULL, 0,
2023 SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2024 { ".comment", 0, NULL, 0,
2025 SHT_PROGBITS, 0 },
2026 { ".data", 0, NULL, 0,
2027 SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".data1", 0, NULL, 0,
2029 SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2030 { ".debug", 0, NULL, 0,
2031 SHT_PROGBITS, 0 },
2032 { ".fini", 0, NULL, 0,
2033 SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2034 { ".init", 0, NULL, 0,
2035 SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2036 { ".line", 0, NULL, 0,
2037 SHT_PROGBITS, 0 },
2038 { ".rodata", 0, NULL, 0,
2039 SHT_PROGBITS, SHF_ALLOC },
2040 { ".rodata1", 0, NULL, 0,
2041 SHT_PROGBITS, SHF_ALLOC },
2042 { ".tbss", 0, NULL, 0,
2043 SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2044 { ".tdata", 0, NULL, 0,
2045 SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2046 { ".text", 0, NULL, 0,
2047 SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2048 { ".init_array", 0, NULL, 0,
2049 SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2050 { ".fini_array", 0, NULL, 0,
2051 SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2052 { ".preinit_array", 0, NULL, 0,
2053 SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2054 { ".debug_line", 0, NULL, 0,
2055 SHT_PROGBITS, 0 },
2056 { ".debug_info", 0, NULL, 0,
2057 SHT_PROGBITS, 0 },
2058 { ".debug_abbrev", 0, NULL, 0,
2059 SHT_PROGBITS, 0 },
2060 { ".debug_aranges", 0, NULL, 0,
2061 SHT_PROGBITS, 0 },
2062 { ".dynamic", 0, NULL, 0,
2063 SHT_DYNAMIC, SHF_ALLOC },
2064 { ".dynstr", 0, NULL, 0,
2065 SHT_STRTAB, SHF_ALLOC },
2066 { ".dynsym", 0, NULL, 0,
2067 SHT_DYNSYM, SHF_ALLOC },
2068 { ".got", 0, NULL, 0,
2069 SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2070 { ".hash", 0, NULL, 0,
2071 SHT_HASH, SHF_ALLOC },
2072 { ".interp", 0, NULL, 0,
2073 SHT_PROGBITS, 0 },
2074 { ".plt", 0, NULL, 0,
2075 SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2076 { ".shstrtab", 0, NULL, 0,
2077 SHT_STRTAB, 0 },
2078 { ".strtab", 0, NULL, 0,
2079 SHT_STRTAB, 0 },
2080 { ".symtab", 0, NULL, 0,
2081 SHT_SYMTAB, 0 },
2082 { ".gnu.version", 0, NULL, 0,
2083 SHT_GNU_versym, 0 },
2084 { ".gnu.version_d", 0, NULL, 0,
2085 SHT_GNU_verdef, 0 },
2086 { ".gnu.version_r", 0, NULL, 0,
2087 SHT_GNU_verneed, 0 },
2088 { ".note", 5, NULL, 0,
2089 SHT_NOTE, 0 },
2090 { ".rela", 5, NULL, 0,
2091 SHT_RELA, 0 },
2092 { ".rel", 4, NULL, 0,
2093 SHT_REL, 0 },
2094 { ".stab", 5, "str", 3,
2095 SHT_STRTAB, 0 },
2096 { NULL, 0, NULL, 0,
2097 0, 0 }
2098 };
2099
2100 static const struct bfd_elf_special_section *
2101 get_special_section (const char *name,
2102 const struct bfd_elf_special_section *special_sections,
2103 unsigned int rela)
2104 {
2105 int i;
2106
2107 for (i = 0; special_sections[i].prefix != NULL; i++)
2108 if (((special_sections[i].prefix_length
2109 && strncmp (name, special_sections[i].prefix,
2110 special_sections[i].prefix_length) == 0
2111 && (! special_sections[i].suffix_length
2112 || strcmp ((name + strlen (name)
2113 - special_sections[i].suffix_length),
2114 special_sections[i].suffix) == 0))
2115 || strcmp (name, special_sections[i].prefix) == 0)
2116 && (rela || special_sections[i].type != SHT_RELA))
2117 return &special_sections[i];
2118
2119 return NULL;
2120 }
2121
2122 bfd_boolean
2123 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name, int *type, int *attr)
2124 {
2125 bfd_boolean found = FALSE;
2126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2127
2128 /* See if this is one of the special sections. */
2129 if (name)
2130 {
2131 const struct bfd_elf_special_section *ssect = NULL;
2132 unsigned int rela = bed->default_use_rela_p;
2133
2134 if (bed->special_sections)
2135 ssect = get_special_section (name, bed->special_sections, rela);
2136
2137 if (! ssect)
2138 ssect = get_special_section (name, special_sections, rela);
2139
2140 if (ssect)
2141 {
2142 *type = ssect->type;
2143 *attr = ssect->attributes;
2144 found = TRUE;
2145 }
2146 }
2147
2148 return found;
2149 }
2150
2151 bfd_boolean
2152 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2153 {
2154 struct bfd_elf_section_data *sdata;
2155 int type, attr;
2156
2157 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2158 if (sdata == NULL)
2159 {
2160 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2161 if (sdata == NULL)
2162 return FALSE;
2163 sec->used_by_bfd = sdata;
2164 }
2165
2166 elf_section_type (sec) = SHT_NULL;
2167 if (sec->name && _bfd_elf_get_sec_type_attr (abfd, sec->name,
2168 &type, &attr))
2169 {
2170 elf_section_type (sec) = type;
2171 elf_section_flags (sec) = attr;
2172 }
2173
2174 /* Indicate whether or not this section should use RELA relocations. */
2175 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2176
2177 return TRUE;
2178 }
2179
2180 /* Create a new bfd section from an ELF program header.
2181
2182 Since program segments have no names, we generate a synthetic name
2183 of the form segment<NUM>, where NUM is generally the index in the
2184 program header table. For segments that are split (see below) we
2185 generate the names segment<NUM>a and segment<NUM>b.
2186
2187 Note that some program segments may have a file size that is different than
2188 (less than) the memory size. All this means is that at execution the
2189 system must allocate the amount of memory specified by the memory size,
2190 but only initialize it with the first "file size" bytes read from the
2191 file. This would occur for example, with program segments consisting
2192 of combined data+bss.
2193
2194 To handle the above situation, this routine generates TWO bfd sections
2195 for the single program segment. The first has the length specified by
2196 the file size of the segment, and the second has the length specified
2197 by the difference between the two sizes. In effect, the segment is split
2198 into it's initialized and uninitialized parts.
2199
2200 */
2201
2202 bfd_boolean
2203 _bfd_elf_make_section_from_phdr (bfd *abfd,
2204 Elf_Internal_Phdr *hdr,
2205 int index,
2206 const char *typename)
2207 {
2208 asection *newsect;
2209 char *name;
2210 char namebuf[64];
2211 size_t len;
2212 int split;
2213
2214 split = ((hdr->p_memsz > 0)
2215 && (hdr->p_filesz > 0)
2216 && (hdr->p_memsz > hdr->p_filesz));
2217 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2218 len = strlen (namebuf) + 1;
2219 name = bfd_alloc (abfd, len);
2220 if (!name)
2221 return FALSE;
2222 memcpy (name, namebuf, len);
2223 newsect = bfd_make_section (abfd, name);
2224 if (newsect == NULL)
2225 return FALSE;
2226 newsect->vma = hdr->p_vaddr;
2227 newsect->lma = hdr->p_paddr;
2228 newsect->_raw_size = hdr->p_filesz;
2229 newsect->filepos = hdr->p_offset;
2230 newsect->flags |= SEC_HAS_CONTENTS;
2231 if (hdr->p_type == PT_LOAD)
2232 {
2233 newsect->flags |= SEC_ALLOC;
2234 newsect->flags |= SEC_LOAD;
2235 if (hdr->p_flags & PF_X)
2236 {
2237 /* FIXME: all we known is that it has execute PERMISSION,
2238 may be data. */
2239 newsect->flags |= SEC_CODE;
2240 }
2241 }
2242 if (!(hdr->p_flags & PF_W))
2243 {
2244 newsect->flags |= SEC_READONLY;
2245 }
2246
2247 if (split)
2248 {
2249 sprintf (namebuf, "%s%db", typename, index);
2250 len = strlen (namebuf) + 1;
2251 name = bfd_alloc (abfd, len);
2252 if (!name)
2253 return FALSE;
2254 memcpy (name, namebuf, len);
2255 newsect = bfd_make_section (abfd, name);
2256 if (newsect == NULL)
2257 return FALSE;
2258 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2259 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2260 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2261 if (hdr->p_type == PT_LOAD)
2262 {
2263 newsect->flags |= SEC_ALLOC;
2264 if (hdr->p_flags & PF_X)
2265 newsect->flags |= SEC_CODE;
2266 }
2267 if (!(hdr->p_flags & PF_W))
2268 newsect->flags |= SEC_READONLY;
2269 }
2270
2271 return TRUE;
2272 }
2273
2274 bfd_boolean
2275 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2276 {
2277 const struct elf_backend_data *bed;
2278
2279 switch (hdr->p_type)
2280 {
2281 case PT_NULL:
2282 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2283
2284 case PT_LOAD:
2285 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2286
2287 case PT_DYNAMIC:
2288 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2289
2290 case PT_INTERP:
2291 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2292
2293 case PT_NOTE:
2294 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2295 return FALSE;
2296 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2297 return FALSE;
2298 return TRUE;
2299
2300 case PT_SHLIB:
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2302
2303 case PT_PHDR:
2304 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2305
2306 case PT_GNU_EH_FRAME:
2307 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2308 "eh_frame_hdr");
2309
2310 case PT_GNU_STACK:
2311 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2312
2313 default:
2314 /* Check for any processor-specific program segment types.
2315 If no handler for them, default to making "segment" sections. */
2316 bed = get_elf_backend_data (abfd);
2317 if (bed->elf_backend_section_from_phdr)
2318 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2319 else
2320 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2321 }
2322 }
2323
2324 /* Initialize REL_HDR, the section-header for new section, containing
2325 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2326 relocations; otherwise, we use REL relocations. */
2327
2328 bfd_boolean
2329 _bfd_elf_init_reloc_shdr (bfd *abfd,
2330 Elf_Internal_Shdr *rel_hdr,
2331 asection *asect,
2332 bfd_boolean use_rela_p)
2333 {
2334 char *name;
2335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2336 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2337
2338 name = bfd_alloc (abfd, amt);
2339 if (name == NULL)
2340 return FALSE;
2341 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2342 rel_hdr->sh_name =
2343 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2344 FALSE);
2345 if (rel_hdr->sh_name == (unsigned int) -1)
2346 return FALSE;
2347 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2348 rel_hdr->sh_entsize = (use_rela_p
2349 ? bed->s->sizeof_rela
2350 : bed->s->sizeof_rel);
2351 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2352 rel_hdr->sh_flags = 0;
2353 rel_hdr->sh_addr = 0;
2354 rel_hdr->sh_size = 0;
2355 rel_hdr->sh_offset = 0;
2356
2357 return TRUE;
2358 }
2359
2360 /* Set up an ELF internal section header for a section. */
2361
2362 static void
2363 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2364 {
2365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2366 bfd_boolean *failedptr = failedptrarg;
2367 Elf_Internal_Shdr *this_hdr;
2368
2369 if (*failedptr)
2370 {
2371 /* We already failed; just get out of the bfd_map_over_sections
2372 loop. */
2373 return;
2374 }
2375
2376 this_hdr = &elf_section_data (asect)->this_hdr;
2377
2378 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2379 asect->name, FALSE);
2380 if (this_hdr->sh_name == (unsigned int) -1)
2381 {
2382 *failedptr = TRUE;
2383 return;
2384 }
2385
2386 this_hdr->sh_flags = 0;
2387
2388 if ((asect->flags & SEC_ALLOC) != 0
2389 || asect->user_set_vma)
2390 this_hdr->sh_addr = asect->vma;
2391 else
2392 this_hdr->sh_addr = 0;
2393
2394 this_hdr->sh_offset = 0;
2395 this_hdr->sh_size = asect->_raw_size;
2396 this_hdr->sh_link = 0;
2397 this_hdr->sh_addralign = 1 << asect->alignment_power;
2398 /* The sh_entsize and sh_info fields may have been set already by
2399 copy_private_section_data. */
2400
2401 this_hdr->bfd_section = asect;
2402 this_hdr->contents = NULL;
2403
2404 /* If the section type is unspecified, we set it based on
2405 asect->flags. */
2406 if (this_hdr->sh_type == SHT_NULL)
2407 {
2408 if ((asect->flags & SEC_ALLOC) != 0
2409 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2410 || (asect->flags & SEC_NEVER_LOAD) != 0))
2411 this_hdr->sh_type = SHT_NOBITS;
2412 else
2413 this_hdr->sh_type = SHT_PROGBITS;
2414 }
2415
2416 switch (this_hdr->sh_type)
2417 {
2418 default:
2419 break;
2420
2421 case SHT_STRTAB:
2422 case SHT_INIT_ARRAY:
2423 case SHT_FINI_ARRAY:
2424 case SHT_PREINIT_ARRAY:
2425 case SHT_NOTE:
2426 case SHT_NOBITS:
2427 case SHT_PROGBITS:
2428 break;
2429
2430 case SHT_HASH:
2431 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2432 break;
2433
2434 case SHT_DYNSYM:
2435 this_hdr->sh_entsize = bed->s->sizeof_sym;
2436 break;
2437
2438 case SHT_DYNAMIC:
2439 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2440 break;
2441
2442 case SHT_RELA:
2443 if (get_elf_backend_data (abfd)->may_use_rela_p)
2444 this_hdr->sh_entsize = bed->s->sizeof_rela;
2445 break;
2446
2447 case SHT_REL:
2448 if (get_elf_backend_data (abfd)->may_use_rel_p)
2449 this_hdr->sh_entsize = bed->s->sizeof_rel;
2450 break;
2451
2452 case SHT_GNU_versym:
2453 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2454 break;
2455
2456 case SHT_GNU_verdef:
2457 this_hdr->sh_entsize = 0;
2458 /* objcopy or strip will copy over sh_info, but may not set
2459 cverdefs. The linker will set cverdefs, but sh_info will be
2460 zero. */
2461 if (this_hdr->sh_info == 0)
2462 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2463 else
2464 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2465 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2466 break;
2467
2468 case SHT_GNU_verneed:
2469 this_hdr->sh_entsize = 0;
2470 /* objcopy or strip will copy over sh_info, but may not set
2471 cverrefs. The linker will set cverrefs, but sh_info will be
2472 zero. */
2473 if (this_hdr->sh_info == 0)
2474 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2475 else
2476 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2477 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2478 break;
2479
2480 case SHT_GROUP:
2481 this_hdr->sh_entsize = 4;
2482 break;
2483 }
2484
2485 if ((asect->flags & SEC_ALLOC) != 0)
2486 this_hdr->sh_flags |= SHF_ALLOC;
2487 if ((asect->flags & SEC_READONLY) == 0)
2488 this_hdr->sh_flags |= SHF_WRITE;
2489 if ((asect->flags & SEC_CODE) != 0)
2490 this_hdr->sh_flags |= SHF_EXECINSTR;
2491 if ((asect->flags & SEC_MERGE) != 0)
2492 {
2493 this_hdr->sh_flags |= SHF_MERGE;
2494 this_hdr->sh_entsize = asect->entsize;
2495 if ((asect->flags & SEC_STRINGS) != 0)
2496 this_hdr->sh_flags |= SHF_STRINGS;
2497 }
2498 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2499 this_hdr->sh_flags |= SHF_GROUP;
2500 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2501 {
2502 this_hdr->sh_flags |= SHF_TLS;
2503 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2504 {
2505 struct bfd_link_order *o;
2506
2507 this_hdr->sh_size = 0;
2508 for (o = asect->link_order_head; o != NULL; o = o->next)
2509 if (this_hdr->sh_size < o->offset + o->size)
2510 this_hdr->sh_size = o->offset + o->size;
2511 if (this_hdr->sh_size)
2512 this_hdr->sh_type = SHT_NOBITS;
2513 }
2514 }
2515
2516 /* Check for processor-specific section types. */
2517 if (bed->elf_backend_fake_sections
2518 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2519 *failedptr = TRUE;
2520
2521 /* If the section has relocs, set up a section header for the
2522 SHT_REL[A] section. If two relocation sections are required for
2523 this section, it is up to the processor-specific back-end to
2524 create the other. */
2525 if ((asect->flags & SEC_RELOC) != 0
2526 && !_bfd_elf_init_reloc_shdr (abfd,
2527 &elf_section_data (asect)->rel_hdr,
2528 asect,
2529 asect->use_rela_p))
2530 *failedptr = TRUE;
2531 }
2532
2533 /* Fill in the contents of a SHT_GROUP section. */
2534
2535 void
2536 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2537 {
2538 bfd_boolean *failedptr = failedptrarg;
2539 unsigned long symindx;
2540 asection *elt, *first;
2541 unsigned char *loc;
2542 struct bfd_link_order *l;
2543 bfd_boolean gas;
2544
2545 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2546 || *failedptr)
2547 return;
2548
2549 symindx = 0;
2550 if (elf_group_id (sec) != NULL)
2551 symindx = elf_group_id (sec)->udata.i;
2552
2553 if (symindx == 0)
2554 {
2555 /* If called from the assembler, swap_out_syms will have set up
2556 elf_section_syms; If called for "ld -r", use target_index. */
2557 if (elf_section_syms (abfd) != NULL)
2558 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2559 else
2560 symindx = sec->target_index;
2561 }
2562 elf_section_data (sec)->this_hdr.sh_info = symindx;
2563
2564 /* The contents won't be allocated for "ld -r" or objcopy. */
2565 gas = TRUE;
2566 if (sec->contents == NULL)
2567 {
2568 gas = FALSE;
2569 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2570
2571 /* Arrange for the section to be written out. */
2572 elf_section_data (sec)->this_hdr.contents = sec->contents;
2573 if (sec->contents == NULL)
2574 {
2575 *failedptr = TRUE;
2576 return;
2577 }
2578 }
2579
2580 loc = sec->contents + sec->_raw_size;
2581
2582 /* Get the pointer to the first section in the group that gas
2583 squirreled away here. objcopy arranges for this to be set to the
2584 start of the input section group. */
2585 first = elt = elf_next_in_group (sec);
2586
2587 /* First element is a flag word. Rest of section is elf section
2588 indices for all the sections of the group. Write them backwards
2589 just to keep the group in the same order as given in .section
2590 directives, not that it matters. */
2591 while (elt != NULL)
2592 {
2593 asection *s;
2594 unsigned int idx;
2595
2596 loc -= 4;
2597 s = elt;
2598 if (!gas)
2599 s = s->output_section;
2600 idx = 0;
2601 if (s != NULL)
2602 idx = elf_section_data (s)->this_idx;
2603 H_PUT_32 (abfd, idx, loc);
2604 elt = elf_next_in_group (elt);
2605 if (elt == first)
2606 break;
2607 }
2608
2609 /* If this is a relocatable link, then the above did nothing because
2610 SEC is the output section. Look through the input sections
2611 instead. */
2612 for (l = sec->link_order_head; l != NULL; l = l->next)
2613 if (l->type == bfd_indirect_link_order
2614 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2615 do
2616 {
2617 loc -= 4;
2618 H_PUT_32 (abfd,
2619 elf_section_data (elt->output_section)->this_idx, loc);
2620 elt = elf_next_in_group (elt);
2621 /* During a relocatable link, the lists are circular. */
2622 }
2623 while (elt != elf_next_in_group (l->u.indirect.section));
2624
2625 /* With ld -r, merging SHT_GROUP sections results in wasted space
2626 due to allowing for the flag word on each input. We may well
2627 duplicate entries too. */
2628 while ((loc -= 4) > sec->contents)
2629 H_PUT_32 (abfd, 0, loc);
2630
2631 if (loc != sec->contents)
2632 abort ();
2633
2634 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2635 }
2636
2637 /* Assign all ELF section numbers. The dummy first section is handled here
2638 too. The link/info pointers for the standard section types are filled
2639 in here too, while we're at it. */
2640
2641 static bfd_boolean
2642 assign_section_numbers (bfd *abfd)
2643 {
2644 struct elf_obj_tdata *t = elf_tdata (abfd);
2645 asection *sec;
2646 unsigned int section_number, secn;
2647 Elf_Internal_Shdr **i_shdrp;
2648 bfd_size_type amt;
2649
2650 section_number = 1;
2651
2652 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2653
2654 for (sec = abfd->sections; sec; sec = sec->next)
2655 {
2656 struct bfd_elf_section_data *d = elf_section_data (sec);
2657
2658 if (section_number == SHN_LORESERVE)
2659 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2660 d->this_idx = section_number++;
2661 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2662 if ((sec->flags & SEC_RELOC) == 0)
2663 d->rel_idx = 0;
2664 else
2665 {
2666 if (section_number == SHN_LORESERVE)
2667 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2668 d->rel_idx = section_number++;
2669 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2670 }
2671
2672 if (d->rel_hdr2)
2673 {
2674 if (section_number == SHN_LORESERVE)
2675 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2676 d->rel_idx2 = section_number++;
2677 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2678 }
2679 else
2680 d->rel_idx2 = 0;
2681 }
2682
2683 if (section_number == SHN_LORESERVE)
2684 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2685 t->shstrtab_section = section_number++;
2686 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2687 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2688
2689 if (bfd_get_symcount (abfd) > 0)
2690 {
2691 if (section_number == SHN_LORESERVE)
2692 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2693 t->symtab_section = section_number++;
2694 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2695 if (section_number > SHN_LORESERVE - 2)
2696 {
2697 if (section_number == SHN_LORESERVE)
2698 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2699 t->symtab_shndx_section = section_number++;
2700 t->symtab_shndx_hdr.sh_name
2701 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2702 ".symtab_shndx", FALSE);
2703 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2704 return FALSE;
2705 }
2706 if (section_number == SHN_LORESERVE)
2707 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2708 t->strtab_section = section_number++;
2709 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2710 }
2711
2712 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2713 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2714
2715 elf_numsections (abfd) = section_number;
2716 elf_elfheader (abfd)->e_shnum = section_number;
2717 if (section_number > SHN_LORESERVE)
2718 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2719
2720 /* Set up the list of section header pointers, in agreement with the
2721 indices. */
2722 amt = section_number * sizeof (Elf_Internal_Shdr *);
2723 i_shdrp = bfd_zalloc (abfd, amt);
2724 if (i_shdrp == NULL)
2725 return FALSE;
2726
2727 amt = sizeof (Elf_Internal_Shdr);
2728 i_shdrp[0] = bfd_zalloc (abfd, amt);
2729 if (i_shdrp[0] == NULL)
2730 {
2731 bfd_release (abfd, i_shdrp);
2732 return FALSE;
2733 }
2734
2735 elf_elfsections (abfd) = i_shdrp;
2736
2737 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2738 if (bfd_get_symcount (abfd) > 0)
2739 {
2740 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2741 if (elf_numsections (abfd) > SHN_LORESERVE)
2742 {
2743 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2744 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2745 }
2746 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2747 t->symtab_hdr.sh_link = t->strtab_section;
2748 }
2749 for (sec = abfd->sections; sec; sec = sec->next)
2750 {
2751 struct bfd_elf_section_data *d = elf_section_data (sec);
2752 asection *s;
2753 const char *name;
2754
2755 i_shdrp[d->this_idx] = &d->this_hdr;
2756 if (d->rel_idx != 0)
2757 i_shdrp[d->rel_idx] = &d->rel_hdr;
2758 if (d->rel_idx2 != 0)
2759 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2760
2761 /* Fill in the sh_link and sh_info fields while we're at it. */
2762
2763 /* sh_link of a reloc section is the section index of the symbol
2764 table. sh_info is the section index of the section to which
2765 the relocation entries apply. */
2766 if (d->rel_idx != 0)
2767 {
2768 d->rel_hdr.sh_link = t->symtab_section;
2769 d->rel_hdr.sh_info = d->this_idx;
2770 }
2771 if (d->rel_idx2 != 0)
2772 {
2773 d->rel_hdr2->sh_link = t->symtab_section;
2774 d->rel_hdr2->sh_info = d->this_idx;
2775 }
2776
2777 switch (d->this_hdr.sh_type)
2778 {
2779 case SHT_REL:
2780 case SHT_RELA:
2781 /* A reloc section which we are treating as a normal BFD
2782 section. sh_link is the section index of the symbol
2783 table. sh_info is the section index of the section to
2784 which the relocation entries apply. We assume that an
2785 allocated reloc section uses the dynamic symbol table.
2786 FIXME: How can we be sure? */
2787 s = bfd_get_section_by_name (abfd, ".dynsym");
2788 if (s != NULL)
2789 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2790
2791 /* We look up the section the relocs apply to by name. */
2792 name = sec->name;
2793 if (d->this_hdr.sh_type == SHT_REL)
2794 name += 4;
2795 else
2796 name += 5;
2797 s = bfd_get_section_by_name (abfd, name);
2798 if (s != NULL)
2799 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2800 break;
2801
2802 case SHT_STRTAB:
2803 /* We assume that a section named .stab*str is a stabs
2804 string section. We look for a section with the same name
2805 but without the trailing ``str'', and set its sh_link
2806 field to point to this section. */
2807 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2808 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2809 {
2810 size_t len;
2811 char *alc;
2812
2813 len = strlen (sec->name);
2814 alc = bfd_malloc (len - 2);
2815 if (alc == NULL)
2816 return FALSE;
2817 memcpy (alc, sec->name, len - 3);
2818 alc[len - 3] = '\0';
2819 s = bfd_get_section_by_name (abfd, alc);
2820 free (alc);
2821 if (s != NULL)
2822 {
2823 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2824
2825 /* This is a .stab section. */
2826 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2827 elf_section_data (s)->this_hdr.sh_entsize
2828 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2829 }
2830 }
2831 break;
2832
2833 case SHT_DYNAMIC:
2834 case SHT_DYNSYM:
2835 case SHT_GNU_verneed:
2836 case SHT_GNU_verdef:
2837 /* sh_link is the section header index of the string table
2838 used for the dynamic entries, or the symbol table, or the
2839 version strings. */
2840 s = bfd_get_section_by_name (abfd, ".dynstr");
2841 if (s != NULL)
2842 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2843 break;
2844
2845 case SHT_HASH:
2846 case SHT_GNU_versym:
2847 /* sh_link is the section header index of the symbol table
2848 this hash table or version table is for. */
2849 s = bfd_get_section_by_name (abfd, ".dynsym");
2850 if (s != NULL)
2851 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2852 break;
2853
2854 case SHT_GROUP:
2855 d->this_hdr.sh_link = t->symtab_section;
2856 }
2857 }
2858
2859 for (secn = 1; secn < section_number; ++secn)
2860 if (i_shdrp[secn] == NULL)
2861 i_shdrp[secn] = i_shdrp[0];
2862 else
2863 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2864 i_shdrp[secn]->sh_name);
2865 return TRUE;
2866 }
2867
2868 /* Map symbol from it's internal number to the external number, moving
2869 all local symbols to be at the head of the list. */
2870
2871 static int
2872 sym_is_global (bfd *abfd, asymbol *sym)
2873 {
2874 /* If the backend has a special mapping, use it. */
2875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2876 if (bed->elf_backend_sym_is_global)
2877 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2878
2879 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2880 || bfd_is_und_section (bfd_get_section (sym))
2881 || bfd_is_com_section (bfd_get_section (sym)));
2882 }
2883
2884 static bfd_boolean
2885 elf_map_symbols (bfd *abfd)
2886 {
2887 unsigned int symcount = bfd_get_symcount (abfd);
2888 asymbol **syms = bfd_get_outsymbols (abfd);
2889 asymbol **sect_syms;
2890 unsigned int num_locals = 0;
2891 unsigned int num_globals = 0;
2892 unsigned int num_locals2 = 0;
2893 unsigned int num_globals2 = 0;
2894 int max_index = 0;
2895 unsigned int idx;
2896 asection *asect;
2897 asymbol **new_syms;
2898 bfd_size_type amt;
2899
2900 #ifdef DEBUG
2901 fprintf (stderr, "elf_map_symbols\n");
2902 fflush (stderr);
2903 #endif
2904
2905 for (asect = abfd->sections; asect; asect = asect->next)
2906 {
2907 if (max_index < asect->index)
2908 max_index = asect->index;
2909 }
2910
2911 max_index++;
2912 amt = max_index * sizeof (asymbol *);
2913 sect_syms = bfd_zalloc (abfd, amt);
2914 if (sect_syms == NULL)
2915 return FALSE;
2916 elf_section_syms (abfd) = sect_syms;
2917 elf_num_section_syms (abfd) = max_index;
2918
2919 /* Init sect_syms entries for any section symbols we have already
2920 decided to output. */
2921 for (idx = 0; idx < symcount; idx++)
2922 {
2923 asymbol *sym = syms[idx];
2924
2925 if ((sym->flags & BSF_SECTION_SYM) != 0
2926 && sym->value == 0)
2927 {
2928 asection *sec;
2929
2930 sec = sym->section;
2931
2932 if (sec->owner != NULL)
2933 {
2934 if (sec->owner != abfd)
2935 {
2936 if (sec->output_offset != 0)
2937 continue;
2938
2939 sec = sec->output_section;
2940
2941 /* Empty sections in the input files may have had a
2942 section symbol created for them. (See the comment
2943 near the end of _bfd_generic_link_output_symbols in
2944 linker.c). If the linker script discards such
2945 sections then we will reach this point. Since we know
2946 that we cannot avoid this case, we detect it and skip
2947 the abort and the assignment to the sect_syms array.
2948 To reproduce this particular case try running the
2949 linker testsuite test ld-scripts/weak.exp for an ELF
2950 port that uses the generic linker. */
2951 if (sec->owner == NULL)
2952 continue;
2953
2954 BFD_ASSERT (sec->owner == abfd);
2955 }
2956 sect_syms[sec->index] = syms[idx];
2957 }
2958 }
2959 }
2960
2961 /* Classify all of the symbols. */
2962 for (idx = 0; idx < symcount; idx++)
2963 {
2964 if (!sym_is_global (abfd, syms[idx]))
2965 num_locals++;
2966 else
2967 num_globals++;
2968 }
2969
2970 /* We will be adding a section symbol for each BFD section. Most normal
2971 sections will already have a section symbol in outsymbols, but
2972 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2973 at least in that case. */
2974 for (asect = abfd->sections; asect; asect = asect->next)
2975 {
2976 if (sect_syms[asect->index] == NULL)
2977 {
2978 if (!sym_is_global (abfd, asect->symbol))
2979 num_locals++;
2980 else
2981 num_globals++;
2982 }
2983 }
2984
2985 /* Now sort the symbols so the local symbols are first. */
2986 amt = (num_locals + num_globals) * sizeof (asymbol *);
2987 new_syms = bfd_alloc (abfd, amt);
2988
2989 if (new_syms == NULL)
2990 return FALSE;
2991
2992 for (idx = 0; idx < symcount; idx++)
2993 {
2994 asymbol *sym = syms[idx];
2995 unsigned int i;
2996
2997 if (!sym_is_global (abfd, sym))
2998 i = num_locals2++;
2999 else
3000 i = num_locals + num_globals2++;
3001 new_syms[i] = sym;
3002 sym->udata.i = i + 1;
3003 }
3004 for (asect = abfd->sections; asect; asect = asect->next)
3005 {
3006 if (sect_syms[asect->index] == NULL)
3007 {
3008 asymbol *sym = asect->symbol;
3009 unsigned int i;
3010
3011 sect_syms[asect->index] = sym;
3012 if (!sym_is_global (abfd, sym))
3013 i = num_locals2++;
3014 else
3015 i = num_locals + num_globals2++;
3016 new_syms[i] = sym;
3017 sym->udata.i = i + 1;
3018 }
3019 }
3020
3021 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3022
3023 elf_num_locals (abfd) = num_locals;
3024 elf_num_globals (abfd) = num_globals;
3025 return TRUE;
3026 }
3027
3028 /* Align to the maximum file alignment that could be required for any
3029 ELF data structure. */
3030
3031 static inline file_ptr
3032 align_file_position (file_ptr off, int align)
3033 {
3034 return (off + align - 1) & ~(align - 1);
3035 }
3036
3037 /* Assign a file position to a section, optionally aligning to the
3038 required section alignment. */
3039
3040 file_ptr
3041 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3042 file_ptr offset,
3043 bfd_boolean align)
3044 {
3045 if (align)
3046 {
3047 unsigned int al;
3048
3049 al = i_shdrp->sh_addralign;
3050 if (al > 1)
3051 offset = BFD_ALIGN (offset, al);
3052 }
3053 i_shdrp->sh_offset = offset;
3054 if (i_shdrp->bfd_section != NULL)
3055 i_shdrp->bfd_section->filepos = offset;
3056 if (i_shdrp->sh_type != SHT_NOBITS)
3057 offset += i_shdrp->sh_size;
3058 return offset;
3059 }
3060
3061 /* Compute the file positions we are going to put the sections at, and
3062 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3063 is not NULL, this is being called by the ELF backend linker. */
3064
3065 bfd_boolean
3066 _bfd_elf_compute_section_file_positions (bfd *abfd,
3067 struct bfd_link_info *link_info)
3068 {
3069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3070 bfd_boolean failed;
3071 struct bfd_strtab_hash *strtab;
3072 Elf_Internal_Shdr *shstrtab_hdr;
3073
3074 if (abfd->output_has_begun)
3075 return TRUE;
3076
3077 /* Do any elf backend specific processing first. */
3078 if (bed->elf_backend_begin_write_processing)
3079 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3080
3081 if (! prep_headers (abfd))
3082 return FALSE;
3083
3084 /* Post process the headers if necessary. */
3085 if (bed->elf_backend_post_process_headers)
3086 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3087
3088 failed = FALSE;
3089 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3090 if (failed)
3091 return FALSE;
3092
3093 if (!assign_section_numbers (abfd))
3094 return FALSE;
3095
3096 /* The backend linker builds symbol table information itself. */
3097 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3098 {
3099 /* Non-zero if doing a relocatable link. */
3100 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3101
3102 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3103 return FALSE;
3104 }
3105
3106 if (link_info == NULL)
3107 {
3108 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3109 if (failed)
3110 return FALSE;
3111 }
3112
3113 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3114 /* sh_name was set in prep_headers. */
3115 shstrtab_hdr->sh_type = SHT_STRTAB;
3116 shstrtab_hdr->sh_flags = 0;
3117 shstrtab_hdr->sh_addr = 0;
3118 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3119 shstrtab_hdr->sh_entsize = 0;
3120 shstrtab_hdr->sh_link = 0;
3121 shstrtab_hdr->sh_info = 0;
3122 /* sh_offset is set in assign_file_positions_except_relocs. */
3123 shstrtab_hdr->sh_addralign = 1;
3124
3125 if (!assign_file_positions_except_relocs (abfd))
3126 return FALSE;
3127
3128 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3129 {
3130 file_ptr off;
3131 Elf_Internal_Shdr *hdr;
3132
3133 off = elf_tdata (abfd)->next_file_pos;
3134
3135 hdr = &elf_tdata (abfd)->symtab_hdr;
3136 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3137
3138 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3139 if (hdr->sh_size != 0)
3140 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3141
3142 hdr = &elf_tdata (abfd)->strtab_hdr;
3143 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3144
3145 elf_tdata (abfd)->next_file_pos = off;
3146
3147 /* Now that we know where the .strtab section goes, write it
3148 out. */
3149 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3150 || ! _bfd_stringtab_emit (abfd, strtab))
3151 return FALSE;
3152 _bfd_stringtab_free (strtab);
3153 }
3154
3155 abfd->output_has_begun = TRUE;
3156
3157 return TRUE;
3158 }
3159
3160 /* Create a mapping from a set of sections to a program segment. */
3161
3162 static struct elf_segment_map *
3163 make_mapping (bfd *abfd,
3164 asection **sections,
3165 unsigned int from,
3166 unsigned int to,
3167 bfd_boolean phdr)
3168 {
3169 struct elf_segment_map *m;
3170 unsigned int i;
3171 asection **hdrpp;
3172 bfd_size_type amt;
3173
3174 amt = sizeof (struct elf_segment_map);
3175 amt += (to - from - 1) * sizeof (asection *);
3176 m = bfd_zalloc (abfd, amt);
3177 if (m == NULL)
3178 return NULL;
3179 m->next = NULL;
3180 m->p_type = PT_LOAD;
3181 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3182 m->sections[i - from] = *hdrpp;
3183 m->count = to - from;
3184
3185 if (from == 0 && phdr)
3186 {
3187 /* Include the headers in the first PT_LOAD segment. */
3188 m->includes_filehdr = 1;
3189 m->includes_phdrs = 1;
3190 }
3191
3192 return m;
3193 }
3194
3195 /* Set up a mapping from BFD sections to program segments. */
3196
3197 static bfd_boolean
3198 map_sections_to_segments (bfd *abfd)
3199 {
3200 asection **sections = NULL;
3201 asection *s;
3202 unsigned int i;
3203 unsigned int count;
3204 struct elf_segment_map *mfirst;
3205 struct elf_segment_map **pm;
3206 struct elf_segment_map *m;
3207 asection *last_hdr;
3208 unsigned int phdr_index;
3209 bfd_vma maxpagesize;
3210 asection **hdrpp;
3211 bfd_boolean phdr_in_segment = TRUE;
3212 bfd_boolean writable;
3213 int tls_count = 0;
3214 asection *first_tls = NULL;
3215 asection *dynsec, *eh_frame_hdr;
3216 bfd_size_type amt;
3217
3218 if (elf_tdata (abfd)->segment_map != NULL)
3219 return TRUE;
3220
3221 if (bfd_count_sections (abfd) == 0)
3222 return TRUE;
3223
3224 /* Select the allocated sections, and sort them. */
3225
3226 amt = bfd_count_sections (abfd) * sizeof (asection *);
3227 sections = bfd_malloc (amt);
3228 if (sections == NULL)
3229 goto error_return;
3230
3231 i = 0;
3232 for (s = abfd->sections; s != NULL; s = s->next)
3233 {
3234 if ((s->flags & SEC_ALLOC) != 0)
3235 {
3236 sections[i] = s;
3237 ++i;
3238 }
3239 }
3240 BFD_ASSERT (i <= bfd_count_sections (abfd));
3241 count = i;
3242
3243 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3244
3245 /* Build the mapping. */
3246
3247 mfirst = NULL;
3248 pm = &mfirst;
3249
3250 /* If we have a .interp section, then create a PT_PHDR segment for
3251 the program headers and a PT_INTERP segment for the .interp
3252 section. */
3253 s = bfd_get_section_by_name (abfd, ".interp");
3254 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3255 {
3256 amt = sizeof (struct elf_segment_map);
3257 m = bfd_zalloc (abfd, amt);
3258 if (m == NULL)
3259 goto error_return;
3260 m->next = NULL;
3261 m->p_type = PT_PHDR;
3262 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3263 m->p_flags = PF_R | PF_X;
3264 m->p_flags_valid = 1;
3265 m->includes_phdrs = 1;
3266
3267 *pm = m;
3268 pm = &m->next;
3269
3270 amt = sizeof (struct elf_segment_map);
3271 m = bfd_zalloc (abfd, amt);
3272 if (m == NULL)
3273 goto error_return;
3274 m->next = NULL;
3275 m->p_type = PT_INTERP;
3276 m->count = 1;
3277 m->sections[0] = s;
3278
3279 *pm = m;
3280 pm = &m->next;
3281 }
3282
3283 /* Look through the sections. We put sections in the same program
3284 segment when the start of the second section can be placed within
3285 a few bytes of the end of the first section. */
3286 last_hdr = NULL;
3287 phdr_index = 0;
3288 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3289 writable = FALSE;
3290 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3291 if (dynsec != NULL
3292 && (dynsec->flags & SEC_LOAD) == 0)
3293 dynsec = NULL;
3294
3295 /* Deal with -Ttext or something similar such that the first section
3296 is not adjacent to the program headers. This is an
3297 approximation, since at this point we don't know exactly how many
3298 program headers we will need. */
3299 if (count > 0)
3300 {
3301 bfd_size_type phdr_size;
3302
3303 phdr_size = elf_tdata (abfd)->program_header_size;
3304 if (phdr_size == 0)
3305 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3306 if ((abfd->flags & D_PAGED) == 0
3307 || sections[0]->lma < phdr_size
3308 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3309 phdr_in_segment = FALSE;
3310 }
3311
3312 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3313 {
3314 asection *hdr;
3315 bfd_boolean new_segment;
3316
3317 hdr = *hdrpp;
3318
3319 /* See if this section and the last one will fit in the same
3320 segment. */
3321
3322 if (last_hdr == NULL)
3323 {
3324 /* If we don't have a segment yet, then we don't need a new
3325 one (we build the last one after this loop). */
3326 new_segment = FALSE;
3327 }
3328 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3329 {
3330 /* If this section has a different relation between the
3331 virtual address and the load address, then we need a new
3332 segment. */
3333 new_segment = TRUE;
3334 }
3335 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3336 < BFD_ALIGN (hdr->lma, maxpagesize))
3337 {
3338 /* If putting this section in this segment would force us to
3339 skip a page in the segment, then we need a new segment. */
3340 new_segment = TRUE;
3341 }
3342 else if ((last_hdr->flags & SEC_LOAD) == 0
3343 && (hdr->flags & SEC_LOAD) != 0)
3344 {
3345 /* We don't want to put a loadable section after a
3346 nonloadable section in the same segment. */
3347 new_segment = TRUE;
3348 }
3349 else if ((abfd->flags & D_PAGED) == 0)
3350 {
3351 /* If the file is not demand paged, which means that we
3352 don't require the sections to be correctly aligned in the
3353 file, then there is no other reason for a new segment. */
3354 new_segment = FALSE;
3355 }
3356 else if (! writable
3357 && (hdr->flags & SEC_READONLY) == 0
3358 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3359 & ~(maxpagesize - 1))
3360 != (hdr->lma & ~(maxpagesize - 1))))
3361 {
3362 /* We don't want to put a writable section in a read only
3363 segment, unless they are on the same page in memory
3364 anyhow. We already know that the last section does not
3365 bring us past the current section on the page, so the
3366 only case in which the new section is not on the same
3367 page as the previous section is when the previous section
3368 ends precisely on a page boundary. */
3369 new_segment = TRUE;
3370 }
3371 else
3372 {
3373 /* Otherwise, we can use the same segment. */
3374 new_segment = FALSE;
3375 }
3376
3377 if (! new_segment)
3378 {
3379 if ((hdr->flags & SEC_READONLY) == 0)
3380 writable = TRUE;
3381 last_hdr = hdr;
3382 continue;
3383 }
3384
3385 /* We need a new program segment. We must create a new program
3386 header holding all the sections from phdr_index until hdr. */
3387
3388 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3389 if (m == NULL)
3390 goto error_return;
3391
3392 *pm = m;
3393 pm = &m->next;
3394
3395 if ((hdr->flags & SEC_READONLY) == 0)
3396 writable = TRUE;
3397 else
3398 writable = FALSE;
3399
3400 last_hdr = hdr;
3401 phdr_index = i;
3402 phdr_in_segment = FALSE;
3403 }
3404
3405 /* Create a final PT_LOAD program segment. */
3406 if (last_hdr != NULL)
3407 {
3408 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3409 if (m == NULL)
3410 goto error_return;
3411
3412 *pm = m;
3413 pm = &m->next;
3414 }
3415
3416 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3417 if (dynsec != NULL)
3418 {
3419 amt = sizeof (struct elf_segment_map);
3420 m = bfd_zalloc (abfd, amt);
3421 if (m == NULL)
3422 goto error_return;
3423 m->next = NULL;
3424 m->p_type = PT_DYNAMIC;
3425 m->count = 1;
3426 m->sections[0] = dynsec;
3427
3428 *pm = m;
3429 pm = &m->next;
3430 }
3431
3432 /* For each loadable .note section, add a PT_NOTE segment. We don't
3433 use bfd_get_section_by_name, because if we link together
3434 nonloadable .note sections and loadable .note sections, we will
3435 generate two .note sections in the output file. FIXME: Using
3436 names for section types is bogus anyhow. */
3437 for (s = abfd->sections; s != NULL; s = s->next)
3438 {
3439 if ((s->flags & SEC_LOAD) != 0
3440 && strncmp (s->name, ".note", 5) == 0)
3441 {
3442 amt = sizeof (struct elf_segment_map);
3443 m = bfd_zalloc (abfd, amt);
3444 if (m == NULL)
3445 goto error_return;
3446 m->next = NULL;
3447 m->p_type = PT_NOTE;
3448 m->count = 1;
3449 m->sections[0] = s;
3450
3451 *pm = m;
3452 pm = &m->next;
3453 }
3454 if (s->flags & SEC_THREAD_LOCAL)
3455 {
3456 if (! tls_count)
3457 first_tls = s;
3458 tls_count++;
3459 }
3460 }
3461
3462 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3463 if (tls_count > 0)
3464 {
3465 int i;
3466
3467 amt = sizeof (struct elf_segment_map);
3468 amt += (tls_count - 1) * sizeof (asection *);
3469 m = bfd_zalloc (abfd, amt);
3470 if (m == NULL)
3471 goto error_return;
3472 m->next = NULL;
3473 m->p_type = PT_TLS;
3474 m->count = tls_count;
3475 /* Mandated PF_R. */
3476 m->p_flags = PF_R;
3477 m->p_flags_valid = 1;
3478 for (i = 0; i < tls_count; ++i)
3479 {
3480 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3481 m->sections[i] = first_tls;
3482 first_tls = first_tls->next;
3483 }
3484
3485 *pm = m;
3486 pm = &m->next;
3487 }
3488
3489 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3490 segment. */
3491 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3492 if (eh_frame_hdr != NULL
3493 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3494 {
3495 amt = sizeof (struct elf_segment_map);
3496 m = bfd_zalloc (abfd, amt);
3497 if (m == NULL)
3498 goto error_return;
3499 m->next = NULL;
3500 m->p_type = PT_GNU_EH_FRAME;
3501 m->count = 1;
3502 m->sections[0] = eh_frame_hdr->output_section;
3503
3504 *pm = m;
3505 pm = &m->next;
3506 }
3507
3508 if (elf_tdata (abfd)->stack_flags)
3509 {
3510 amt = sizeof (struct elf_segment_map);
3511 m = bfd_zalloc (abfd, amt);
3512 if (m == NULL)
3513 goto error_return;
3514 m->next = NULL;
3515 m->p_type = PT_GNU_STACK;
3516 m->p_flags = elf_tdata (abfd)->stack_flags;
3517 m->p_flags_valid = 1;
3518
3519 *pm = m;
3520 pm = &m->next;
3521 }
3522
3523 free (sections);
3524 sections = NULL;
3525
3526 elf_tdata (abfd)->segment_map = mfirst;
3527 return TRUE;
3528
3529 error_return:
3530 if (sections != NULL)
3531 free (sections);
3532 return FALSE;
3533 }
3534
3535 /* Sort sections by address. */
3536
3537 static int
3538 elf_sort_sections (const void *arg1, const void *arg2)
3539 {
3540 const asection *sec1 = *(const asection **) arg1;
3541 const asection *sec2 = *(const asection **) arg2;
3542 bfd_size_type size1, size2;
3543
3544 /* Sort by LMA first, since this is the address used to
3545 place the section into a segment. */
3546 if (sec1->lma < sec2->lma)
3547 return -1;
3548 else if (sec1->lma > sec2->lma)
3549 return 1;
3550
3551 /* Then sort by VMA. Normally the LMA and the VMA will be
3552 the same, and this will do nothing. */
3553 if (sec1->vma < sec2->vma)
3554 return -1;
3555 else if (sec1->vma > sec2->vma)
3556 return 1;
3557
3558 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3559
3560 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3561
3562 if (TOEND (sec1))
3563 {
3564 if (TOEND (sec2))
3565 {
3566 /* If the indicies are the same, do not return 0
3567 here, but continue to try the next comparison. */
3568 if (sec1->target_index - sec2->target_index != 0)
3569 return sec1->target_index - sec2->target_index;
3570 }
3571 else
3572 return 1;
3573 }
3574 else if (TOEND (sec2))
3575 return -1;
3576
3577 #undef TOEND
3578
3579 /* Sort by size, to put zero sized sections
3580 before others at the same address. */
3581
3582 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3583 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3584
3585 if (size1 < size2)
3586 return -1;
3587 if (size1 > size2)
3588 return 1;
3589
3590 return sec1->target_index - sec2->target_index;
3591 }
3592
3593 /* Assign file positions to the sections based on the mapping from
3594 sections to segments. This function also sets up some fields in
3595 the file header, and writes out the program headers. */
3596
3597 static bfd_boolean
3598 assign_file_positions_for_segments (bfd *abfd)
3599 {
3600 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3601 unsigned int count;
3602 struct elf_segment_map *m;
3603 unsigned int alloc;
3604 Elf_Internal_Phdr *phdrs;
3605 file_ptr off, voff;
3606 bfd_vma filehdr_vaddr, filehdr_paddr;
3607 bfd_vma phdrs_vaddr, phdrs_paddr;
3608 Elf_Internal_Phdr *p;
3609 bfd_size_type amt;
3610
3611 if (elf_tdata (abfd)->segment_map == NULL)
3612 {
3613 if (! map_sections_to_segments (abfd))
3614 return FALSE;
3615 }
3616 else
3617 {
3618 /* The placement algorithm assumes that non allocated sections are
3619 not in PT_LOAD segments. We ensure this here by removing such
3620 sections from the segment map. */
3621 for (m = elf_tdata (abfd)->segment_map;
3622 m != NULL;
3623 m = m->next)
3624 {
3625 unsigned int new_count;
3626 unsigned int i;
3627
3628 if (m->p_type != PT_LOAD)
3629 continue;
3630
3631 new_count = 0;
3632 for (i = 0; i < m->count; i ++)
3633 {
3634 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3635 {
3636 if (i != new_count)
3637 m->sections[new_count] = m->sections[i];
3638
3639 new_count ++;
3640 }
3641 }
3642
3643 if (new_count != m->count)
3644 m->count = new_count;
3645 }
3646 }
3647
3648 if (bed->elf_backend_modify_segment_map)
3649 {
3650 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3651 return FALSE;
3652 }
3653
3654 count = 0;
3655 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3656 ++count;
3657
3658 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3659 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3660 elf_elfheader (abfd)->e_phnum = count;
3661
3662 if (count == 0)
3663 return TRUE;
3664
3665 /* If we already counted the number of program segments, make sure
3666 that we allocated enough space. This happens when SIZEOF_HEADERS
3667 is used in a linker script. */
3668 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3669 if (alloc != 0 && count > alloc)
3670 {
3671 ((*_bfd_error_handler)
3672 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3673 bfd_get_filename (abfd), alloc, count));
3674 bfd_set_error (bfd_error_bad_value);
3675 return FALSE;
3676 }
3677
3678 if (alloc == 0)
3679 alloc = count;
3680
3681 amt = alloc * sizeof (Elf_Internal_Phdr);
3682 phdrs = bfd_alloc (abfd, amt);
3683 if (phdrs == NULL)
3684 return FALSE;
3685
3686 off = bed->s->sizeof_ehdr;
3687 off += alloc * bed->s->sizeof_phdr;
3688
3689 filehdr_vaddr = 0;
3690 filehdr_paddr = 0;
3691 phdrs_vaddr = 0;
3692 phdrs_paddr = 0;
3693
3694 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3695 m != NULL;
3696 m = m->next, p++)
3697 {
3698 unsigned int i;
3699 asection **secpp;
3700
3701 /* If elf_segment_map is not from map_sections_to_segments, the
3702 sections may not be correctly ordered. NOTE: sorting should
3703 not be done to the PT_NOTE section of a corefile, which may
3704 contain several pseudo-sections artificially created by bfd.
3705 Sorting these pseudo-sections breaks things badly. */
3706 if (m->count > 1
3707 && !(elf_elfheader (abfd)->e_type == ET_CORE
3708 && m->p_type == PT_NOTE))
3709 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3710 elf_sort_sections);
3711
3712 p->p_type = m->p_type;
3713 p->p_flags = m->p_flags;
3714
3715 if (p->p_type == PT_LOAD
3716 && m->count > 0
3717 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3718 {
3719 if ((abfd->flags & D_PAGED) != 0)
3720 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3721 else
3722 {
3723 bfd_size_type align;
3724
3725 align = 0;
3726 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3727 {
3728 bfd_size_type secalign;
3729
3730 secalign = bfd_get_section_alignment (abfd, *secpp);
3731 if (secalign > align)
3732 align = secalign;
3733 }
3734
3735 off += (m->sections[0]->vma - off) % (1 << align);
3736 }
3737 }
3738
3739 if (m->count == 0)
3740 p->p_vaddr = 0;
3741 else
3742 p->p_vaddr = m->sections[0]->vma;
3743
3744 if (m->p_paddr_valid)
3745 p->p_paddr = m->p_paddr;
3746 else if (m->count == 0)
3747 p->p_paddr = 0;
3748 else
3749 p->p_paddr = m->sections[0]->lma;
3750
3751 if (p->p_type == PT_LOAD
3752 && (abfd->flags & D_PAGED) != 0)
3753 p->p_align = bed->maxpagesize;
3754 else if (m->count == 0)
3755 p->p_align = 1 << bed->s->log_file_align;
3756 else
3757 p->p_align = 0;
3758
3759 p->p_offset = 0;
3760 p->p_filesz = 0;
3761 p->p_memsz = 0;
3762
3763 if (m->includes_filehdr)
3764 {
3765 if (! m->p_flags_valid)
3766 p->p_flags |= PF_R;
3767 p->p_offset = 0;
3768 p->p_filesz = bed->s->sizeof_ehdr;
3769 p->p_memsz = bed->s->sizeof_ehdr;
3770 if (m->count > 0)
3771 {
3772 BFD_ASSERT (p->p_type == PT_LOAD);
3773
3774 if (p->p_vaddr < (bfd_vma) off)
3775 {
3776 (*_bfd_error_handler)
3777 (_("%s: Not enough room for program headers, try linking with -N"),
3778 bfd_get_filename (abfd));
3779 bfd_set_error (bfd_error_bad_value);
3780 return FALSE;
3781 }
3782
3783 p->p_vaddr -= off;
3784 if (! m->p_paddr_valid)
3785 p->p_paddr -= off;
3786 }
3787 if (p->p_type == PT_LOAD)
3788 {
3789 filehdr_vaddr = p->p_vaddr;
3790 filehdr_paddr = p->p_paddr;
3791 }
3792 }
3793
3794 if (m->includes_phdrs)
3795 {
3796 if (! m->p_flags_valid)
3797 p->p_flags |= PF_R;
3798
3799 if (m->includes_filehdr)
3800 {
3801 if (p->p_type == PT_LOAD)
3802 {
3803 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3804 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3805 }
3806 }
3807 else
3808 {
3809 p->p_offset = bed->s->sizeof_ehdr;
3810
3811 if (m->count > 0)
3812 {
3813 BFD_ASSERT (p->p_type == PT_LOAD);
3814 p->p_vaddr -= off - p->p_offset;
3815 if (! m->p_paddr_valid)
3816 p->p_paddr -= off - p->p_offset;
3817 }
3818
3819 if (p->p_type == PT_LOAD)
3820 {
3821 phdrs_vaddr = p->p_vaddr;
3822 phdrs_paddr = p->p_paddr;
3823 }
3824 else
3825 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3826 }
3827
3828 p->p_filesz += alloc * bed->s->sizeof_phdr;
3829 p->p_memsz += alloc * bed->s->sizeof_phdr;
3830 }
3831
3832 if (p->p_type == PT_LOAD
3833 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3834 {
3835 if (! m->includes_filehdr && ! m->includes_phdrs)
3836 p->p_offset = off;
3837 else
3838 {
3839 file_ptr adjust;
3840
3841 adjust = off - (p->p_offset + p->p_filesz);
3842 p->p_filesz += adjust;
3843 p->p_memsz += adjust;
3844 }
3845 }
3846
3847 voff = off;
3848
3849 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3850 {
3851 asection *sec;
3852 flagword flags;
3853 bfd_size_type align;
3854
3855 sec = *secpp;
3856 flags = sec->flags;
3857 align = 1 << bfd_get_section_alignment (abfd, sec);
3858
3859 /* The section may have artificial alignment forced by a
3860 link script. Notice this case by the gap between the
3861 cumulative phdr lma and the section's lma. */
3862 if (p->p_paddr + p->p_memsz < sec->lma)
3863 {
3864 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3865
3866 p->p_memsz += adjust;
3867 if (p->p_type == PT_LOAD
3868 || (p->p_type == PT_NOTE
3869 && bfd_get_format (abfd) == bfd_core))
3870 {
3871 off += adjust;
3872 voff += adjust;
3873 }
3874 if ((flags & SEC_LOAD) != 0
3875 || (flags & SEC_THREAD_LOCAL) != 0)
3876 p->p_filesz += adjust;
3877 }
3878
3879 if (p->p_type == PT_LOAD)
3880 {
3881 bfd_signed_vma adjust;
3882
3883 if ((flags & SEC_LOAD) != 0)
3884 {
3885 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3886 if (adjust < 0)
3887 adjust = 0;
3888 }
3889 else if ((flags & SEC_ALLOC) != 0)
3890 {
3891 /* The section VMA must equal the file position
3892 modulo the page size. FIXME: I'm not sure if
3893 this adjustment is really necessary. We used to
3894 not have the SEC_LOAD case just above, and then
3895 this was necessary, but now I'm not sure. */
3896 if ((abfd->flags & D_PAGED) != 0)
3897 adjust = (sec->vma - voff) % bed->maxpagesize;
3898 else
3899 adjust = (sec->vma - voff) % align;
3900 }
3901 else
3902 adjust = 0;
3903
3904 if (adjust != 0)
3905 {
3906 if (i == 0)
3907 {
3908 (* _bfd_error_handler) (_("\
3909 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3910 bfd_section_name (abfd, sec),
3911 sec->lma,
3912 p->p_paddr);
3913 return FALSE;
3914 }
3915 p->p_memsz += adjust;
3916 off += adjust;
3917 voff += adjust;
3918 if ((flags & SEC_LOAD) != 0)
3919 p->p_filesz += adjust;
3920 }
3921
3922 sec->filepos = off;
3923
3924 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3925 used in a linker script we may have a section with
3926 SEC_LOAD clear but which is supposed to have
3927 contents. */
3928 if ((flags & SEC_LOAD) != 0
3929 || (flags & SEC_HAS_CONTENTS) != 0)
3930 off += sec->_raw_size;
3931
3932 if ((flags & SEC_ALLOC) != 0
3933 && ((flags & SEC_LOAD) != 0
3934 || (flags & SEC_THREAD_LOCAL) == 0))
3935 voff += sec->_raw_size;
3936 }
3937
3938 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3939 {
3940 /* The actual "note" segment has i == 0.
3941 This is the one that actually contains everything. */
3942 if (i == 0)
3943 {
3944 sec->filepos = off;
3945 p->p_filesz = sec->_raw_size;
3946 off += sec->_raw_size;
3947 voff = off;
3948 }
3949 else
3950 {
3951 /* Fake sections -- don't need to be written. */
3952 sec->filepos = 0;
3953 sec->_raw_size = 0;
3954 flags = sec->flags = 0;
3955 }
3956 p->p_memsz = 0;
3957 p->p_align = 1;
3958 }
3959 else
3960 {
3961 if ((sec->flags & SEC_LOAD) != 0
3962 || (sec->flags & SEC_THREAD_LOCAL) == 0
3963 || p->p_type == PT_TLS)
3964 p->p_memsz += sec->_raw_size;
3965
3966 if ((flags & SEC_LOAD) != 0)
3967 p->p_filesz += sec->_raw_size;
3968
3969 if (p->p_type == PT_TLS
3970 && sec->_raw_size == 0
3971 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3972 {
3973 struct bfd_link_order *o;
3974 bfd_vma tbss_size = 0;
3975
3976 for (o = sec->link_order_head; o != NULL; o = o->next)
3977 if (tbss_size < o->offset + o->size)
3978 tbss_size = o->offset + o->size;
3979
3980 p->p_memsz += tbss_size;
3981 }
3982
3983 if (align > p->p_align
3984 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3985 p->p_align = align;
3986 }
3987
3988 if (! m->p_flags_valid)
3989 {
3990 p->p_flags |= PF_R;
3991 if ((flags & SEC_CODE) != 0)
3992 p->p_flags |= PF_X;
3993 if ((flags & SEC_READONLY) == 0)
3994 p->p_flags |= PF_W;
3995 }
3996 }
3997 }
3998
3999 /* Now that we have set the section file positions, we can set up
4000 the file positions for the non PT_LOAD segments. */
4001 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4002 m != NULL;
4003 m = m->next, p++)
4004 {
4005 if (p->p_type != PT_LOAD && m->count > 0)
4006 {
4007 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4008 p->p_offset = m->sections[0]->filepos;
4009 }
4010 if (m->count == 0)
4011 {
4012 if (m->includes_filehdr)
4013 {
4014 p->p_vaddr = filehdr_vaddr;
4015 if (! m->p_paddr_valid)
4016 p->p_paddr = filehdr_paddr;
4017 }
4018 else if (m->includes_phdrs)
4019 {
4020 p->p_vaddr = phdrs_vaddr;
4021 if (! m->p_paddr_valid)
4022 p->p_paddr = phdrs_paddr;
4023 }
4024 }
4025 }
4026
4027 /* Clear out any program headers we allocated but did not use. */
4028 for (; count < alloc; count++, p++)
4029 {
4030 memset (p, 0, sizeof *p);
4031 p->p_type = PT_NULL;
4032 }
4033
4034 elf_tdata (abfd)->phdr = phdrs;
4035
4036 elf_tdata (abfd)->next_file_pos = off;
4037
4038 /* Write out the program headers. */
4039 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4040 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4041 return FALSE;
4042
4043 return TRUE;
4044 }
4045
4046 /* Get the size of the program header.
4047
4048 If this is called by the linker before any of the section VMA's are set, it
4049 can't calculate the correct value for a strange memory layout. This only
4050 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4051 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4052 data segment (exclusive of .interp and .dynamic).
4053
4054 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4055 will be two segments. */
4056
4057 static bfd_size_type
4058 get_program_header_size (bfd *abfd)
4059 {
4060 size_t segs;
4061 asection *s;
4062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4063
4064 /* We can't return a different result each time we're called. */
4065 if (elf_tdata (abfd)->program_header_size != 0)
4066 return elf_tdata (abfd)->program_header_size;
4067
4068 if (elf_tdata (abfd)->segment_map != NULL)
4069 {
4070 struct elf_segment_map *m;
4071
4072 segs = 0;
4073 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4074 ++segs;
4075 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4076 return elf_tdata (abfd)->program_header_size;
4077 }
4078
4079 /* Assume we will need exactly two PT_LOAD segments: one for text
4080 and one for data. */
4081 segs = 2;
4082
4083 s = bfd_get_section_by_name (abfd, ".interp");
4084 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4085 {
4086 /* If we have a loadable interpreter section, we need a
4087 PT_INTERP segment. In this case, assume we also need a
4088 PT_PHDR segment, although that may not be true for all
4089 targets. */
4090 segs += 2;
4091 }
4092
4093 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4094 {
4095 /* We need a PT_DYNAMIC segment. */
4096 ++segs;
4097 }
4098
4099 if (elf_tdata (abfd)->eh_frame_hdr)
4100 {
4101 /* We need a PT_GNU_EH_FRAME segment. */
4102 ++segs;
4103 }
4104
4105 if (elf_tdata (abfd)->stack_flags)
4106 {
4107 /* We need a PT_GNU_STACK segment. */
4108 ++segs;
4109 }
4110
4111 for (s = abfd->sections; s != NULL; s = s->next)
4112 {
4113 if ((s->flags & SEC_LOAD) != 0
4114 && strncmp (s->name, ".note", 5) == 0)
4115 {
4116 /* We need a PT_NOTE segment. */
4117 ++segs;
4118 }
4119 }
4120
4121 for (s = abfd->sections; s != NULL; s = s->next)
4122 {
4123 if (s->flags & SEC_THREAD_LOCAL)
4124 {
4125 /* We need a PT_TLS segment. */
4126 ++segs;
4127 break;
4128 }
4129 }
4130
4131 /* Let the backend count up any program headers it might need. */
4132 if (bed->elf_backend_additional_program_headers)
4133 {
4134 int a;
4135
4136 a = (*bed->elf_backend_additional_program_headers) (abfd);
4137 if (a == -1)
4138 abort ();
4139 segs += a;
4140 }
4141
4142 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4143 return elf_tdata (abfd)->program_header_size;
4144 }
4145
4146 /* Work out the file positions of all the sections. This is called by
4147 _bfd_elf_compute_section_file_positions. All the section sizes and
4148 VMAs must be known before this is called.
4149
4150 We do not consider reloc sections at this point, unless they form
4151 part of the loadable image. Reloc sections are assigned file
4152 positions in assign_file_positions_for_relocs, which is called by
4153 write_object_contents and final_link.
4154
4155 We also don't set the positions of the .symtab and .strtab here. */
4156
4157 static bfd_boolean
4158 assign_file_positions_except_relocs (bfd *abfd)
4159 {
4160 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4161 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4162 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4163 unsigned int num_sec = elf_numsections (abfd);
4164 file_ptr off;
4165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4166
4167 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4168 && bfd_get_format (abfd) != bfd_core)
4169 {
4170 Elf_Internal_Shdr **hdrpp;
4171 unsigned int i;
4172
4173 /* Start after the ELF header. */
4174 off = i_ehdrp->e_ehsize;
4175
4176 /* We are not creating an executable, which means that we are
4177 not creating a program header, and that the actual order of
4178 the sections in the file is unimportant. */
4179 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4180 {
4181 Elf_Internal_Shdr *hdr;
4182
4183 hdr = *hdrpp;
4184 if (hdr->sh_type == SHT_REL
4185 || hdr->sh_type == SHT_RELA
4186 || i == tdata->symtab_section
4187 || i == tdata->symtab_shndx_section
4188 || i == tdata->strtab_section)
4189 {
4190 hdr->sh_offset = -1;
4191 }
4192 else
4193 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4194
4195 if (i == SHN_LORESERVE - 1)
4196 {
4197 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4198 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4199 }
4200 }
4201 }
4202 else
4203 {
4204 unsigned int i;
4205 Elf_Internal_Shdr **hdrpp;
4206
4207 /* Assign file positions for the loaded sections based on the
4208 assignment of sections to segments. */
4209 if (! assign_file_positions_for_segments (abfd))
4210 return FALSE;
4211
4212 /* Assign file positions for the other sections. */
4213
4214 off = elf_tdata (abfd)->next_file_pos;
4215 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4216 {
4217 Elf_Internal_Shdr *hdr;
4218
4219 hdr = *hdrpp;
4220 if (hdr->bfd_section != NULL
4221 && hdr->bfd_section->filepos != 0)
4222 hdr->sh_offset = hdr->bfd_section->filepos;
4223 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4224 {
4225 ((*_bfd_error_handler)
4226 (_("%s: warning: allocated section `%s' not in segment"),
4227 bfd_get_filename (abfd),
4228 (hdr->bfd_section == NULL
4229 ? "*unknown*"
4230 : hdr->bfd_section->name)));
4231 if ((abfd->flags & D_PAGED) != 0)
4232 off += (hdr->sh_addr - off) % bed->maxpagesize;
4233 else
4234 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4235 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4236 FALSE);
4237 }
4238 else if (hdr->sh_type == SHT_REL
4239 || hdr->sh_type == SHT_RELA
4240 || hdr == i_shdrpp[tdata->symtab_section]
4241 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4242 || hdr == i_shdrpp[tdata->strtab_section])
4243 hdr->sh_offset = -1;
4244 else
4245 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4246
4247 if (i == SHN_LORESERVE - 1)
4248 {
4249 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4250 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4251 }
4252 }
4253 }
4254
4255 /* Place the section headers. */
4256 off = align_file_position (off, 1 << bed->s->log_file_align);
4257 i_ehdrp->e_shoff = off;
4258 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4259
4260 elf_tdata (abfd)->next_file_pos = off;
4261
4262 return TRUE;
4263 }
4264
4265 static bfd_boolean
4266 prep_headers (bfd *abfd)
4267 {
4268 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4269 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4270 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4271 struct elf_strtab_hash *shstrtab;
4272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4273
4274 i_ehdrp = elf_elfheader (abfd);
4275 i_shdrp = elf_elfsections (abfd);
4276
4277 shstrtab = _bfd_elf_strtab_init ();
4278 if (shstrtab == NULL)
4279 return FALSE;
4280
4281 elf_shstrtab (abfd) = shstrtab;
4282
4283 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4284 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4285 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4286 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4287
4288 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4289 i_ehdrp->e_ident[EI_DATA] =
4290 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4291 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4292
4293 if ((abfd->flags & DYNAMIC) != 0)
4294 i_ehdrp->e_type = ET_DYN;
4295 else if ((abfd->flags & EXEC_P) != 0)
4296 i_ehdrp->e_type = ET_EXEC;
4297 else if (bfd_get_format (abfd) == bfd_core)
4298 i_ehdrp->e_type = ET_CORE;
4299 else
4300 i_ehdrp->e_type = ET_REL;
4301
4302 switch (bfd_get_arch (abfd))
4303 {
4304 case bfd_arch_unknown:
4305 i_ehdrp->e_machine = EM_NONE;
4306 break;
4307
4308 /* There used to be a long list of cases here, each one setting
4309 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4310 in the corresponding bfd definition. To avoid duplication,
4311 the switch was removed. Machines that need special handling
4312 can generally do it in elf_backend_final_write_processing(),
4313 unless they need the information earlier than the final write.
4314 Such need can generally be supplied by replacing the tests for
4315 e_machine with the conditions used to determine it. */
4316 default:
4317 i_ehdrp->e_machine = bed->elf_machine_code;
4318 }
4319
4320 i_ehdrp->e_version = bed->s->ev_current;
4321 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4322
4323 /* No program header, for now. */
4324 i_ehdrp->e_phoff = 0;
4325 i_ehdrp->e_phentsize = 0;
4326 i_ehdrp->e_phnum = 0;
4327
4328 /* Each bfd section is section header entry. */
4329 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4330 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4331
4332 /* If we're building an executable, we'll need a program header table. */
4333 if (abfd->flags & EXEC_P)
4334 {
4335 /* It all happens later. */
4336 #if 0
4337 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4338
4339 /* elf_build_phdrs() returns a (NULL-terminated) array of
4340 Elf_Internal_Phdrs. */
4341 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4342 i_ehdrp->e_phoff = outbase;
4343 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4344 #endif
4345 }
4346 else
4347 {
4348 i_ehdrp->e_phentsize = 0;
4349 i_phdrp = 0;
4350 i_ehdrp->e_phoff = 0;
4351 }
4352
4353 elf_tdata (abfd)->symtab_hdr.sh_name =
4354 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4355 elf_tdata (abfd)->strtab_hdr.sh_name =
4356 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4357 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4358 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4359 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4360 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4361 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4362 return FALSE;
4363
4364 return TRUE;
4365 }
4366
4367 /* Assign file positions for all the reloc sections which are not part
4368 of the loadable file image. */
4369
4370 void
4371 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4372 {
4373 file_ptr off;
4374 unsigned int i, num_sec;
4375 Elf_Internal_Shdr **shdrpp;
4376
4377 off = elf_tdata (abfd)->next_file_pos;
4378
4379 num_sec = elf_numsections (abfd);
4380 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4381 {
4382 Elf_Internal_Shdr *shdrp;
4383
4384 shdrp = *shdrpp;
4385 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4386 && shdrp->sh_offset == -1)
4387 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4388 }
4389
4390 elf_tdata (abfd)->next_file_pos = off;
4391 }
4392
4393 bfd_boolean
4394 _bfd_elf_write_object_contents (bfd *abfd)
4395 {
4396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4397 Elf_Internal_Ehdr *i_ehdrp;
4398 Elf_Internal_Shdr **i_shdrp;
4399 bfd_boolean failed;
4400 unsigned int count, num_sec;
4401
4402 if (! abfd->output_has_begun
4403 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4404 return FALSE;
4405
4406 i_shdrp = elf_elfsections (abfd);
4407 i_ehdrp = elf_elfheader (abfd);
4408
4409 failed = FALSE;
4410 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4411 if (failed)
4412 return FALSE;
4413
4414 _bfd_elf_assign_file_positions_for_relocs (abfd);
4415
4416 /* After writing the headers, we need to write the sections too... */
4417 num_sec = elf_numsections (abfd);
4418 for (count = 1; count < num_sec; count++)
4419 {
4420 if (bed->elf_backend_section_processing)
4421 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4422 if (i_shdrp[count]->contents)
4423 {
4424 bfd_size_type amt = i_shdrp[count]->sh_size;
4425
4426 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4427 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4428 return FALSE;
4429 }
4430 if (count == SHN_LORESERVE - 1)
4431 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4432 }
4433
4434 /* Write out the section header names. */
4435 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4436 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4437 return FALSE;
4438
4439 if (bed->elf_backend_final_write_processing)
4440 (*bed->elf_backend_final_write_processing) (abfd,
4441 elf_tdata (abfd)->linker);
4442
4443 return bed->s->write_shdrs_and_ehdr (abfd);
4444 }
4445
4446 bfd_boolean
4447 _bfd_elf_write_corefile_contents (bfd *abfd)
4448 {
4449 /* Hopefully this can be done just like an object file. */
4450 return _bfd_elf_write_object_contents (abfd);
4451 }
4452
4453 /* Given a section, search the header to find them. */
4454
4455 int
4456 _bfd_elf_section_from_bfd_section (bfd *abfd, struct sec *asect)
4457 {
4458 const struct elf_backend_data *bed;
4459 int index;
4460
4461 if (elf_section_data (asect) != NULL
4462 && elf_section_data (asect)->this_idx != 0)
4463 return elf_section_data (asect)->this_idx;
4464
4465 if (bfd_is_abs_section (asect))
4466 index = SHN_ABS;
4467 else if (bfd_is_com_section (asect))
4468 index = SHN_COMMON;
4469 else if (bfd_is_und_section (asect))
4470 index = SHN_UNDEF;
4471 else
4472 {
4473 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4474 int maxindex = elf_numsections (abfd);
4475
4476 for (index = 1; index < maxindex; index++)
4477 {
4478 Elf_Internal_Shdr *hdr = i_shdrp[index];
4479
4480 if (hdr != NULL && hdr->bfd_section == asect)
4481 return index;
4482 }
4483 index = -1;
4484 }
4485
4486 bed = get_elf_backend_data (abfd);
4487 if (bed->elf_backend_section_from_bfd_section)
4488 {
4489 int retval = index;
4490
4491 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4492 return retval;
4493 }
4494
4495 if (index == -1)
4496 bfd_set_error (bfd_error_nonrepresentable_section);
4497
4498 return index;
4499 }
4500
4501 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4502 on error. */
4503
4504 int
4505 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4506 {
4507 asymbol *asym_ptr = *asym_ptr_ptr;
4508 int idx;
4509 flagword flags = asym_ptr->flags;
4510
4511 /* When gas creates relocations against local labels, it creates its
4512 own symbol for the section, but does put the symbol into the
4513 symbol chain, so udata is 0. When the linker is generating
4514 relocatable output, this section symbol may be for one of the
4515 input sections rather than the output section. */
4516 if (asym_ptr->udata.i == 0
4517 && (flags & BSF_SECTION_SYM)
4518 && asym_ptr->section)
4519 {
4520 int indx;
4521
4522 if (asym_ptr->section->output_section != NULL)
4523 indx = asym_ptr->section->output_section->index;
4524 else
4525 indx = asym_ptr->section->index;
4526 if (indx < elf_num_section_syms (abfd)
4527 && elf_section_syms (abfd)[indx] != NULL)
4528 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4529 }
4530
4531 idx = asym_ptr->udata.i;
4532
4533 if (idx == 0)
4534 {
4535 /* This case can occur when using --strip-symbol on a symbol
4536 which is used in a relocation entry. */
4537 (*_bfd_error_handler)
4538 (_("%s: symbol `%s' required but not present"),
4539 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4540 bfd_set_error (bfd_error_no_symbols);
4541 return -1;
4542 }
4543
4544 #if DEBUG & 4
4545 {
4546 fprintf (stderr,
4547 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4548 (long) asym_ptr, asym_ptr->name, idx, flags,
4549 elf_symbol_flags (flags));
4550 fflush (stderr);
4551 }
4552 #endif
4553
4554 return idx;
4555 }
4556
4557 /* Copy private BFD data. This copies any program header information. */
4558
4559 static bfd_boolean
4560 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4561 {
4562 Elf_Internal_Ehdr *iehdr;
4563 struct elf_segment_map *map;
4564 struct elf_segment_map *map_first;
4565 struct elf_segment_map **pointer_to_map;
4566 Elf_Internal_Phdr *segment;
4567 asection *section;
4568 unsigned int i;
4569 unsigned int num_segments;
4570 bfd_boolean phdr_included = FALSE;
4571 bfd_vma maxpagesize;
4572 struct elf_segment_map *phdr_adjust_seg = NULL;
4573 unsigned int phdr_adjust_num = 0;
4574 const struct elf_backend_data *bed;
4575
4576 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4577 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4578 return TRUE;
4579
4580 if (elf_tdata (ibfd)->phdr == NULL)
4581 return TRUE;
4582
4583 bed = get_elf_backend_data (ibfd);
4584 iehdr = elf_elfheader (ibfd);
4585
4586 map_first = NULL;
4587 pointer_to_map = &map_first;
4588
4589 num_segments = elf_elfheader (ibfd)->e_phnum;
4590 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4591
4592 /* Returns the end address of the segment + 1. */
4593 #define SEGMENT_END(segment, start) \
4594 (start + (segment->p_memsz > segment->p_filesz \
4595 ? segment->p_memsz : segment->p_filesz))
4596
4597 #define SECTION_SIZE(section, segment) \
4598 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4599 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4600 ? section->_raw_size : 0)
4601
4602 /* Returns TRUE if the given section is contained within
4603 the given segment. VMA addresses are compared. */
4604 #define IS_CONTAINED_BY_VMA(section, segment) \
4605 (section->vma >= segment->p_vaddr \
4606 && (section->vma + SECTION_SIZE (section, segment) \
4607 <= (SEGMENT_END (segment, segment->p_vaddr))))
4608
4609 /* Returns TRUE if the given section is contained within
4610 the given segment. LMA addresses are compared. */
4611 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4612 (section->lma >= base \
4613 && (section->lma + SECTION_SIZE (section, segment) \
4614 <= SEGMENT_END (segment, base)))
4615
4616 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4617 #define IS_COREFILE_NOTE(p, s) \
4618 (p->p_type == PT_NOTE \
4619 && bfd_get_format (ibfd) == bfd_core \
4620 && s->vma == 0 && s->lma == 0 \
4621 && (bfd_vma) s->filepos >= p->p_offset \
4622 && ((bfd_vma) s->filepos + s->_raw_size \
4623 <= p->p_offset + p->p_filesz))
4624
4625 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4626 linker, which generates a PT_INTERP section with p_vaddr and
4627 p_memsz set to 0. */
4628 #define IS_SOLARIS_PT_INTERP(p, s) \
4629 (p->p_vaddr == 0 \
4630 && p->p_paddr == 0 \
4631 && p->p_memsz == 0 \
4632 && p->p_filesz > 0 \
4633 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4634 && s->_raw_size > 0 \
4635 && (bfd_vma) s->filepos >= p->p_offset \
4636 && ((bfd_vma) s->filepos + s->_raw_size \
4637 <= p->p_offset + p->p_filesz))
4638
4639 /* Decide if the given section should be included in the given segment.
4640 A section will be included if:
4641 1. It is within the address space of the segment -- we use the LMA
4642 if that is set for the segment and the VMA otherwise,
4643 2. It is an allocated segment,
4644 3. There is an output section associated with it,
4645 4. The section has not already been allocated to a previous segment.
4646 5. PT_TLS segment includes only SHF_TLS sections.
4647 6. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4648 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4649 ((((segment->p_paddr \
4650 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4651 : IS_CONTAINED_BY_VMA (section, segment)) \
4652 && (section->flags & SEC_ALLOC) != 0) \
4653 || IS_COREFILE_NOTE (segment, section)) \
4654 && section->output_section != NULL \
4655 && (segment->p_type != PT_TLS \
4656 || (section->flags & SEC_THREAD_LOCAL)) \
4657 && (segment->p_type == PT_LOAD \
4658 || segment->p_type == PT_TLS \
4659 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4660 && ! section->segment_mark)
4661
4662 /* Returns TRUE iff seg1 starts after the end of seg2. */
4663 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4664 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4665
4666 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4667 their VMA address ranges and their LMA address ranges overlap.
4668 It is possible to have overlapping VMA ranges without overlapping LMA
4669 ranges. RedBoot images for example can have both .data and .bss mapped
4670 to the same VMA range, but with the .data section mapped to a different
4671 LMA. */
4672 #define SEGMENT_OVERLAPS(seg1, seg2) \
4673 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4674 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4675 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4676 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4677
4678 /* Initialise the segment mark field. */
4679 for (section = ibfd->sections; section != NULL; section = section->next)
4680 section->segment_mark = FALSE;
4681
4682 /* Scan through the segments specified in the program header
4683 of the input BFD. For this first scan we look for overlaps
4684 in the loadable segments. These can be created by weird
4685 parameters to objcopy. Also, fix some solaris weirdness. */
4686 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4687 i < num_segments;
4688 i++, segment++)
4689 {
4690 unsigned int j;
4691 Elf_Internal_Phdr *segment2;
4692
4693 if (segment->p_type == PT_INTERP)
4694 for (section = ibfd->sections; section; section = section->next)
4695 if (IS_SOLARIS_PT_INTERP (segment, section))
4696 {
4697 /* Mininal change so that the normal section to segment
4698 assigment code will work. */
4699 segment->p_vaddr = section->vma;
4700 break;
4701 }
4702
4703 if (segment->p_type != PT_LOAD)
4704 continue;
4705
4706 /* Determine if this segment overlaps any previous segments. */
4707 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4708 {
4709 bfd_signed_vma extra_length;
4710
4711 if (segment2->p_type != PT_LOAD
4712 || ! SEGMENT_OVERLAPS (segment, segment2))
4713 continue;
4714
4715 /* Merge the two segments together. */
4716 if (segment2->p_vaddr < segment->p_vaddr)
4717 {
4718 /* Extend SEGMENT2 to include SEGMENT and then delete
4719 SEGMENT. */
4720 extra_length =
4721 SEGMENT_END (segment, segment->p_vaddr)
4722 - SEGMENT_END (segment2, segment2->p_vaddr);
4723
4724 if (extra_length > 0)
4725 {
4726 segment2->p_memsz += extra_length;
4727 segment2->p_filesz += extra_length;
4728 }
4729
4730 segment->p_type = PT_NULL;
4731
4732 /* Since we have deleted P we must restart the outer loop. */
4733 i = 0;
4734 segment = elf_tdata (ibfd)->phdr;
4735 break;
4736 }
4737 else
4738 {
4739 /* Extend SEGMENT to include SEGMENT2 and then delete
4740 SEGMENT2. */
4741 extra_length =
4742 SEGMENT_END (segment2, segment2->p_vaddr)
4743 - SEGMENT_END (segment, segment->p_vaddr);
4744
4745 if (extra_length > 0)
4746 {
4747 segment->p_memsz += extra_length;
4748 segment->p_filesz += extra_length;
4749 }
4750
4751 segment2->p_type = PT_NULL;
4752 }
4753 }
4754 }
4755
4756 /* The second scan attempts to assign sections to segments. */
4757 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4758 i < num_segments;
4759 i ++, segment ++)
4760 {
4761 unsigned int section_count;
4762 asection ** sections;
4763 asection * output_section;
4764 unsigned int isec;
4765 bfd_vma matching_lma;
4766 bfd_vma suggested_lma;
4767 unsigned int j;
4768 bfd_size_type amt;
4769
4770 if (segment->p_type == PT_NULL)
4771 continue;
4772
4773 /* Compute how many sections might be placed into this segment. */
4774 for (section = ibfd->sections, section_count = 0;
4775 section != NULL;
4776 section = section->next)
4777 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4778 ++section_count;
4779
4780 /* Allocate a segment map big enough to contain
4781 all of the sections we have selected. */
4782 amt = sizeof (struct elf_segment_map);
4783 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4784 map = bfd_alloc (obfd, amt);
4785 if (map == NULL)
4786 return FALSE;
4787
4788 /* Initialise the fields of the segment map. Default to
4789 using the physical address of the segment in the input BFD. */
4790 map->next = NULL;
4791 map->p_type = segment->p_type;
4792 map->p_flags = segment->p_flags;
4793 map->p_flags_valid = 1;
4794 map->p_paddr = segment->p_paddr;
4795 map->p_paddr_valid = 1;
4796
4797 /* Determine if this segment contains the ELF file header
4798 and if it contains the program headers themselves. */
4799 map->includes_filehdr = (segment->p_offset == 0
4800 && segment->p_filesz >= iehdr->e_ehsize);
4801
4802 map->includes_phdrs = 0;
4803
4804 if (! phdr_included || segment->p_type != PT_LOAD)
4805 {
4806 map->includes_phdrs =
4807 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4808 && (segment->p_offset + segment->p_filesz
4809 >= ((bfd_vma) iehdr->e_phoff
4810 + iehdr->e_phnum * iehdr->e_phentsize)));
4811
4812 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4813 phdr_included = TRUE;
4814 }
4815
4816 if (section_count == 0)
4817 {
4818 /* Special segments, such as the PT_PHDR segment, may contain
4819 no sections, but ordinary, loadable segments should contain
4820 something. They are allowed by the ELF spec however, so only
4821 a warning is produced. */
4822 if (segment->p_type == PT_LOAD)
4823 (*_bfd_error_handler)
4824 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4825 bfd_archive_filename (ibfd));
4826
4827 map->count = 0;
4828 *pointer_to_map = map;
4829 pointer_to_map = &map->next;
4830
4831 continue;
4832 }
4833
4834 /* Now scan the sections in the input BFD again and attempt
4835 to add their corresponding output sections to the segment map.
4836 The problem here is how to handle an output section which has
4837 been moved (ie had its LMA changed). There are four possibilities:
4838
4839 1. None of the sections have been moved.
4840 In this case we can continue to use the segment LMA from the
4841 input BFD.
4842
4843 2. All of the sections have been moved by the same amount.
4844 In this case we can change the segment's LMA to match the LMA
4845 of the first section.
4846
4847 3. Some of the sections have been moved, others have not.
4848 In this case those sections which have not been moved can be
4849 placed in the current segment which will have to have its size,
4850 and possibly its LMA changed, and a new segment or segments will
4851 have to be created to contain the other sections.
4852
4853 4. The sections have been moved, but not by the same amount.
4854 In this case we can change the segment's LMA to match the LMA
4855 of the first section and we will have to create a new segment
4856 or segments to contain the other sections.
4857
4858 In order to save time, we allocate an array to hold the section
4859 pointers that we are interested in. As these sections get assigned
4860 to a segment, they are removed from this array. */
4861
4862 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4863 to work around this long long bug. */
4864 amt = section_count * sizeof (asection *);
4865 sections = bfd_malloc (amt);
4866 if (sections == NULL)
4867 return FALSE;
4868
4869 /* Step One: Scan for segment vs section LMA conflicts.
4870 Also add the sections to the section array allocated above.
4871 Also add the sections to the current segment. In the common
4872 case, where the sections have not been moved, this means that
4873 we have completely filled the segment, and there is nothing
4874 more to do. */
4875 isec = 0;
4876 matching_lma = 0;
4877 suggested_lma = 0;
4878
4879 for (j = 0, section = ibfd->sections;
4880 section != NULL;
4881 section = section->next)
4882 {
4883 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4884 {
4885 output_section = section->output_section;
4886
4887 sections[j ++] = section;
4888
4889 /* The Solaris native linker always sets p_paddr to 0.
4890 We try to catch that case here, and set it to the
4891 correct value. Note - some backends require that
4892 p_paddr be left as zero. */
4893 if (segment->p_paddr == 0
4894 && segment->p_vaddr != 0
4895 && (! bed->want_p_paddr_set_to_zero)
4896 && isec == 0
4897 && output_section->lma != 0
4898 && (output_section->vma == (segment->p_vaddr
4899 + (map->includes_filehdr
4900 ? iehdr->e_ehsize
4901 : 0)
4902 + (map->includes_phdrs
4903 ? (iehdr->e_phnum
4904 * iehdr->e_phentsize)
4905 : 0))))
4906 map->p_paddr = segment->p_vaddr;
4907
4908 /* Match up the physical address of the segment with the
4909 LMA address of the output section. */
4910 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4911 || IS_COREFILE_NOTE (segment, section)
4912 || (bed->want_p_paddr_set_to_zero &&
4913 IS_CONTAINED_BY_VMA (output_section, segment))
4914 )
4915 {
4916 if (matching_lma == 0)
4917 matching_lma = output_section->lma;
4918
4919 /* We assume that if the section fits within the segment
4920 then it does not overlap any other section within that
4921 segment. */
4922 map->sections[isec ++] = output_section;
4923 }
4924 else if (suggested_lma == 0)
4925 suggested_lma = output_section->lma;
4926 }
4927 }
4928
4929 BFD_ASSERT (j == section_count);
4930
4931 /* Step Two: Adjust the physical address of the current segment,
4932 if necessary. */
4933 if (isec == section_count)
4934 {
4935 /* All of the sections fitted within the segment as currently
4936 specified. This is the default case. Add the segment to
4937 the list of built segments and carry on to process the next
4938 program header in the input BFD. */
4939 map->count = section_count;
4940 *pointer_to_map = map;
4941 pointer_to_map = &map->next;
4942
4943 free (sections);
4944 continue;
4945 }
4946 else
4947 {
4948 if (matching_lma != 0)
4949 {
4950 /* At least one section fits inside the current segment.
4951 Keep it, but modify its physical address to match the
4952 LMA of the first section that fitted. */
4953 map->p_paddr = matching_lma;
4954 }
4955 else
4956 {
4957 /* None of the sections fitted inside the current segment.
4958 Change the current segment's physical address to match
4959 the LMA of the first section. */
4960 map->p_paddr = suggested_lma;
4961 }
4962
4963 /* Offset the segment physical address from the lma
4964 to allow for space taken up by elf headers. */
4965 if (map->includes_filehdr)
4966 map->p_paddr -= iehdr->e_ehsize;
4967
4968 if (map->includes_phdrs)
4969 {
4970 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4971
4972 /* iehdr->e_phnum is just an estimate of the number
4973 of program headers that we will need. Make a note
4974 here of the number we used and the segment we chose
4975 to hold these headers, so that we can adjust the
4976 offset when we know the correct value. */
4977 phdr_adjust_num = iehdr->e_phnum;
4978 phdr_adjust_seg = map;
4979 }
4980 }
4981
4982 /* Step Three: Loop over the sections again, this time assigning
4983 those that fit to the current segment and removing them from the
4984 sections array; but making sure not to leave large gaps. Once all
4985 possible sections have been assigned to the current segment it is
4986 added to the list of built segments and if sections still remain
4987 to be assigned, a new segment is constructed before repeating
4988 the loop. */
4989 isec = 0;
4990 do
4991 {
4992 map->count = 0;
4993 suggested_lma = 0;
4994
4995 /* Fill the current segment with sections that fit. */
4996 for (j = 0; j < section_count; j++)
4997 {
4998 section = sections[j];
4999
5000 if (section == NULL)
5001 continue;
5002
5003 output_section = section->output_section;
5004
5005 BFD_ASSERT (output_section != NULL);
5006
5007 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5008 || IS_COREFILE_NOTE (segment, section))
5009 {
5010 if (map->count == 0)
5011 {
5012 /* If the first section in a segment does not start at
5013 the beginning of the segment, then something is
5014 wrong. */
5015 if (output_section->lma !=
5016 (map->p_paddr
5017 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5018 + (map->includes_phdrs
5019 ? iehdr->e_phnum * iehdr->e_phentsize
5020 : 0)))
5021 abort ();
5022 }
5023 else
5024 {
5025 asection * prev_sec;
5026
5027 prev_sec = map->sections[map->count - 1];
5028
5029 /* If the gap between the end of the previous section
5030 and the start of this section is more than
5031 maxpagesize then we need to start a new segment. */
5032 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5033 maxpagesize)
5034 < BFD_ALIGN (output_section->lma, maxpagesize))
5035 || ((prev_sec->lma + prev_sec->_raw_size)
5036 > output_section->lma))
5037 {
5038 if (suggested_lma == 0)
5039 suggested_lma = output_section->lma;
5040
5041 continue;
5042 }
5043 }
5044
5045 map->sections[map->count++] = output_section;
5046 ++isec;
5047 sections[j] = NULL;
5048 section->segment_mark = TRUE;
5049 }
5050 else if (suggested_lma == 0)
5051 suggested_lma = output_section->lma;
5052 }
5053
5054 BFD_ASSERT (map->count > 0);
5055
5056 /* Add the current segment to the list of built segments. */
5057 *pointer_to_map = map;
5058 pointer_to_map = &map->next;
5059
5060 if (isec < section_count)
5061 {
5062 /* We still have not allocated all of the sections to
5063 segments. Create a new segment here, initialise it
5064 and carry on looping. */
5065 amt = sizeof (struct elf_segment_map);
5066 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5067 map = bfd_alloc (obfd, amt);
5068 if (map == NULL)
5069 {
5070 free (sections);
5071 return FALSE;
5072 }
5073
5074 /* Initialise the fields of the segment map. Set the physical
5075 physical address to the LMA of the first section that has
5076 not yet been assigned. */
5077 map->next = NULL;
5078 map->p_type = segment->p_type;
5079 map->p_flags = segment->p_flags;
5080 map->p_flags_valid = 1;
5081 map->p_paddr = suggested_lma;
5082 map->p_paddr_valid = 1;
5083 map->includes_filehdr = 0;
5084 map->includes_phdrs = 0;
5085 }
5086 }
5087 while (isec < section_count);
5088
5089 free (sections);
5090 }
5091
5092 /* The Solaris linker creates program headers in which all the
5093 p_paddr fields are zero. When we try to objcopy or strip such a
5094 file, we get confused. Check for this case, and if we find it
5095 reset the p_paddr_valid fields. */
5096 for (map = map_first; map != NULL; map = map->next)
5097 if (map->p_paddr != 0)
5098 break;
5099 if (map == NULL)
5100 for (map = map_first; map != NULL; map = map->next)
5101 map->p_paddr_valid = 0;
5102
5103 elf_tdata (obfd)->segment_map = map_first;
5104
5105 /* If we had to estimate the number of program headers that were
5106 going to be needed, then check our estimate now and adjust
5107 the offset if necessary. */
5108 if (phdr_adjust_seg != NULL)
5109 {
5110 unsigned int count;
5111
5112 for (count = 0, map = map_first; map != NULL; map = map->next)
5113 count++;
5114
5115 if (count > phdr_adjust_num)
5116 phdr_adjust_seg->p_paddr
5117 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5118 }
5119
5120 #if 0
5121 /* Final Step: Sort the segments into ascending order of physical
5122 address. */
5123 if (map_first != NULL)
5124 {
5125 struct elf_segment_map *prev;
5126
5127 prev = map_first;
5128 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5129 {
5130 /* Yes I know - its a bubble sort.... */
5131 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5132 {
5133 /* Swap map and map->next. */
5134 prev->next = map->next;
5135 map->next = map->next->next;
5136 prev->next->next = map;
5137
5138 /* Restart loop. */
5139 map = map_first;
5140 }
5141 }
5142 }
5143 #endif
5144
5145 #undef SEGMENT_END
5146 #undef SECTION_SIZE
5147 #undef IS_CONTAINED_BY_VMA
5148 #undef IS_CONTAINED_BY_LMA
5149 #undef IS_COREFILE_NOTE
5150 #undef IS_SOLARIS_PT_INTERP
5151 #undef INCLUDE_SECTION_IN_SEGMENT
5152 #undef SEGMENT_AFTER_SEGMENT
5153 #undef SEGMENT_OVERLAPS
5154 return TRUE;
5155 }
5156
5157 /* Copy private section information. This copies over the entsize
5158 field, and sometimes the info field. */
5159
5160 bfd_boolean
5161 _bfd_elf_copy_private_section_data (bfd *ibfd,
5162 asection *isec,
5163 bfd *obfd,
5164 asection *osec)
5165 {
5166 Elf_Internal_Shdr *ihdr, *ohdr;
5167
5168 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5169 || obfd->xvec->flavour != bfd_target_elf_flavour)
5170 return TRUE;
5171
5172 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5173 {
5174 asection *s;
5175
5176 /* Only set up the segments if there are no more SEC_ALLOC
5177 sections. FIXME: This won't do the right thing if objcopy is
5178 used to remove the last SEC_ALLOC section, since objcopy
5179 won't call this routine in that case. */
5180 for (s = isec->next; s != NULL; s = s->next)
5181 if ((s->flags & SEC_ALLOC) != 0)
5182 break;
5183 if (s == NULL)
5184 {
5185 if (! copy_private_bfd_data (ibfd, obfd))
5186 return FALSE;
5187 }
5188 }
5189
5190 ihdr = &elf_section_data (isec)->this_hdr;
5191 ohdr = &elf_section_data (osec)->this_hdr;
5192
5193 ohdr->sh_entsize = ihdr->sh_entsize;
5194
5195 if (ihdr->sh_type == SHT_SYMTAB
5196 || ihdr->sh_type == SHT_DYNSYM
5197 || ihdr->sh_type == SHT_GNU_verneed
5198 || ihdr->sh_type == SHT_GNU_verdef)
5199 ohdr->sh_info = ihdr->sh_info;
5200
5201 /* Set things up for objcopy. The output SHT_GROUP section will
5202 have its elf_next_in_group pointing back to the input group
5203 members. */
5204 elf_next_in_group (osec) = elf_next_in_group (isec);
5205 elf_group_name (osec) = elf_group_name (isec);
5206
5207 osec->use_rela_p = isec->use_rela_p;
5208
5209 return TRUE;
5210 }
5211
5212 /* Copy private symbol information. If this symbol is in a section
5213 which we did not map into a BFD section, try to map the section
5214 index correctly. We use special macro definitions for the mapped
5215 section indices; these definitions are interpreted by the
5216 swap_out_syms function. */
5217
5218 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5219 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5220 #define MAP_STRTAB (SHN_HIOS + 3)
5221 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5222 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5223
5224 bfd_boolean
5225 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5226 asymbol *isymarg,
5227 bfd *obfd,
5228 asymbol *osymarg)
5229 {
5230 elf_symbol_type *isym, *osym;
5231
5232 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5233 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5234 return TRUE;
5235
5236 isym = elf_symbol_from (ibfd, isymarg);
5237 osym = elf_symbol_from (obfd, osymarg);
5238
5239 if (isym != NULL
5240 && osym != NULL
5241 && bfd_is_abs_section (isym->symbol.section))
5242 {
5243 unsigned int shndx;
5244
5245 shndx = isym->internal_elf_sym.st_shndx;
5246 if (shndx == elf_onesymtab (ibfd))
5247 shndx = MAP_ONESYMTAB;
5248 else if (shndx == elf_dynsymtab (ibfd))
5249 shndx = MAP_DYNSYMTAB;
5250 else if (shndx == elf_tdata (ibfd)->strtab_section)
5251 shndx = MAP_STRTAB;
5252 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5253 shndx = MAP_SHSTRTAB;
5254 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5255 shndx = MAP_SYM_SHNDX;
5256 osym->internal_elf_sym.st_shndx = shndx;
5257 }
5258
5259 return TRUE;
5260 }
5261
5262 /* Swap out the symbols. */
5263
5264 static bfd_boolean
5265 swap_out_syms (bfd *abfd,
5266 struct bfd_strtab_hash **sttp,
5267 int relocatable_p)
5268 {
5269 const struct elf_backend_data *bed;
5270 int symcount;
5271 asymbol **syms;
5272 struct bfd_strtab_hash *stt;
5273 Elf_Internal_Shdr *symtab_hdr;
5274 Elf_Internal_Shdr *symtab_shndx_hdr;
5275 Elf_Internal_Shdr *symstrtab_hdr;
5276 char *outbound_syms;
5277 char *outbound_shndx;
5278 int idx;
5279 bfd_size_type amt;
5280
5281 if (!elf_map_symbols (abfd))
5282 return FALSE;
5283
5284 /* Dump out the symtabs. */
5285 stt = _bfd_elf_stringtab_init ();
5286 if (stt == NULL)
5287 return FALSE;
5288
5289 bed = get_elf_backend_data (abfd);
5290 symcount = bfd_get_symcount (abfd);
5291 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5292 symtab_hdr->sh_type = SHT_SYMTAB;
5293 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5294 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5295 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5296 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5297
5298 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5299 symstrtab_hdr->sh_type = SHT_STRTAB;
5300
5301 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5302 outbound_syms = bfd_alloc (abfd, amt);
5303 if (outbound_syms == NULL)
5304 {
5305 _bfd_stringtab_free (stt);
5306 return FALSE;
5307 }
5308 symtab_hdr->contents = outbound_syms;
5309
5310 outbound_shndx = NULL;
5311 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5312 if (symtab_shndx_hdr->sh_name != 0)
5313 {
5314 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5315 outbound_shndx = bfd_zalloc (abfd, amt);
5316 if (outbound_shndx == NULL)
5317 {
5318 _bfd_stringtab_free (stt);
5319 return FALSE;
5320 }
5321
5322 symtab_shndx_hdr->contents = outbound_shndx;
5323 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5324 symtab_shndx_hdr->sh_size = amt;
5325 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5326 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5327 }
5328
5329 /* Now generate the data (for "contents"). */
5330 {
5331 /* Fill in zeroth symbol and swap it out. */
5332 Elf_Internal_Sym sym;
5333 sym.st_name = 0;
5334 sym.st_value = 0;
5335 sym.st_size = 0;
5336 sym.st_info = 0;
5337 sym.st_other = 0;
5338 sym.st_shndx = SHN_UNDEF;
5339 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5340 outbound_syms += bed->s->sizeof_sym;
5341 if (outbound_shndx != NULL)
5342 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5343 }
5344
5345 syms = bfd_get_outsymbols (abfd);
5346 for (idx = 0; idx < symcount; idx++)
5347 {
5348 Elf_Internal_Sym sym;
5349 bfd_vma value = syms[idx]->value;
5350 elf_symbol_type *type_ptr;
5351 flagword flags = syms[idx]->flags;
5352 int type;
5353
5354 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5355 {
5356 /* Local section symbols have no name. */
5357 sym.st_name = 0;
5358 }
5359 else
5360 {
5361 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5362 syms[idx]->name,
5363 TRUE, FALSE);
5364 if (sym.st_name == (unsigned long) -1)
5365 {
5366 _bfd_stringtab_free (stt);
5367 return FALSE;
5368 }
5369 }
5370
5371 type_ptr = elf_symbol_from (abfd, syms[idx]);
5372
5373 if ((flags & BSF_SECTION_SYM) == 0
5374 && bfd_is_com_section (syms[idx]->section))
5375 {
5376 /* ELF common symbols put the alignment into the `value' field,
5377 and the size into the `size' field. This is backwards from
5378 how BFD handles it, so reverse it here. */
5379 sym.st_size = value;
5380 if (type_ptr == NULL
5381 || type_ptr->internal_elf_sym.st_value == 0)
5382 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5383 else
5384 sym.st_value = type_ptr->internal_elf_sym.st_value;
5385 sym.st_shndx = _bfd_elf_section_from_bfd_section
5386 (abfd, syms[idx]->section);
5387 }
5388 else
5389 {
5390 asection *sec = syms[idx]->section;
5391 int shndx;
5392
5393 if (sec->output_section)
5394 {
5395 value += sec->output_offset;
5396 sec = sec->output_section;
5397 }
5398
5399 /* Don't add in the section vma for relocatable output. */
5400 if (! relocatable_p)
5401 value += sec->vma;
5402 sym.st_value = value;
5403 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5404
5405 if (bfd_is_abs_section (sec)
5406 && type_ptr != NULL
5407 && type_ptr->internal_elf_sym.st_shndx != 0)
5408 {
5409 /* This symbol is in a real ELF section which we did
5410 not create as a BFD section. Undo the mapping done
5411 by copy_private_symbol_data. */
5412 shndx = type_ptr->internal_elf_sym.st_shndx;
5413 switch (shndx)
5414 {
5415 case MAP_ONESYMTAB:
5416 shndx = elf_onesymtab (abfd);
5417 break;
5418 case MAP_DYNSYMTAB:
5419 shndx = elf_dynsymtab (abfd);
5420 break;
5421 case MAP_STRTAB:
5422 shndx = elf_tdata (abfd)->strtab_section;
5423 break;
5424 case MAP_SHSTRTAB:
5425 shndx = elf_tdata (abfd)->shstrtab_section;
5426 break;
5427 case MAP_SYM_SHNDX:
5428 shndx = elf_tdata (abfd)->symtab_shndx_section;
5429 break;
5430 default:
5431 break;
5432 }
5433 }
5434 else
5435 {
5436 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5437
5438 if (shndx == -1)
5439 {
5440 asection *sec2;
5441
5442 /* Writing this would be a hell of a lot easier if
5443 we had some decent documentation on bfd, and
5444 knew what to expect of the library, and what to
5445 demand of applications. For example, it
5446 appears that `objcopy' might not set the
5447 section of a symbol to be a section that is
5448 actually in the output file. */
5449 sec2 = bfd_get_section_by_name (abfd, sec->name);
5450 if (sec2 == NULL)
5451 {
5452 _bfd_error_handler (_("\
5453 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5454 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5455 sec->name);
5456 bfd_set_error (bfd_error_invalid_operation);
5457 _bfd_stringtab_free (stt);
5458 return FALSE;
5459 }
5460
5461 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5462 BFD_ASSERT (shndx != -1);
5463 }
5464 }
5465
5466 sym.st_shndx = shndx;
5467 }
5468
5469 if ((flags & BSF_THREAD_LOCAL) != 0)
5470 type = STT_TLS;
5471 else if ((flags & BSF_FUNCTION) != 0)
5472 type = STT_FUNC;
5473 else if ((flags & BSF_OBJECT) != 0)
5474 type = STT_OBJECT;
5475 else
5476 type = STT_NOTYPE;
5477
5478 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5479 type = STT_TLS;
5480
5481 /* Processor-specific types. */
5482 if (type_ptr != NULL
5483 && bed->elf_backend_get_symbol_type)
5484 type = ((*bed->elf_backend_get_symbol_type)
5485 (&type_ptr->internal_elf_sym, type));
5486
5487 if (flags & BSF_SECTION_SYM)
5488 {
5489 if (flags & BSF_GLOBAL)
5490 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5491 else
5492 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5493 }
5494 else if (bfd_is_com_section (syms[idx]->section))
5495 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5496 else if (bfd_is_und_section (syms[idx]->section))
5497 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5498 ? STB_WEAK
5499 : STB_GLOBAL),
5500 type);
5501 else if (flags & BSF_FILE)
5502 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5503 else
5504 {
5505 int bind = STB_LOCAL;
5506
5507 if (flags & BSF_LOCAL)
5508 bind = STB_LOCAL;
5509 else if (flags & BSF_WEAK)
5510 bind = STB_WEAK;
5511 else if (flags & BSF_GLOBAL)
5512 bind = STB_GLOBAL;
5513
5514 sym.st_info = ELF_ST_INFO (bind, type);
5515 }
5516
5517 if (type_ptr != NULL)
5518 sym.st_other = type_ptr->internal_elf_sym.st_other;
5519 else
5520 sym.st_other = 0;
5521
5522 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5523 outbound_syms += bed->s->sizeof_sym;
5524 if (outbound_shndx != NULL)
5525 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5526 }
5527
5528 *sttp = stt;
5529 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5530 symstrtab_hdr->sh_type = SHT_STRTAB;
5531
5532 symstrtab_hdr->sh_flags = 0;
5533 symstrtab_hdr->sh_addr = 0;
5534 symstrtab_hdr->sh_entsize = 0;
5535 symstrtab_hdr->sh_link = 0;
5536 symstrtab_hdr->sh_info = 0;
5537 symstrtab_hdr->sh_addralign = 1;
5538
5539 return TRUE;
5540 }
5541
5542 /* Return the number of bytes required to hold the symtab vector.
5543
5544 Note that we base it on the count plus 1, since we will null terminate
5545 the vector allocated based on this size. However, the ELF symbol table
5546 always has a dummy entry as symbol #0, so it ends up even. */
5547
5548 long
5549 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5550 {
5551 long symcount;
5552 long symtab_size;
5553 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5554
5555 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5556 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5557 if (symcount > 0)
5558 symtab_size -= sizeof (asymbol *);
5559
5560 return symtab_size;
5561 }
5562
5563 long
5564 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5565 {
5566 long symcount;
5567 long symtab_size;
5568 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5569
5570 if (elf_dynsymtab (abfd) == 0)
5571 {
5572 bfd_set_error (bfd_error_invalid_operation);
5573 return -1;
5574 }
5575
5576 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5577 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5578 if (symcount > 0)
5579 symtab_size -= sizeof (asymbol *);
5580
5581 return symtab_size;
5582 }
5583
5584 long
5585 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5586 sec_ptr asect)
5587 {
5588 return (asect->reloc_count + 1) * sizeof (arelent *);
5589 }
5590
5591 /* Canonicalize the relocs. */
5592
5593 long
5594 _bfd_elf_canonicalize_reloc (bfd *abfd,
5595 sec_ptr section,
5596 arelent **relptr,
5597 asymbol **symbols)
5598 {
5599 arelent *tblptr;
5600 unsigned int i;
5601 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5602
5603 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5604 return -1;
5605
5606 tblptr = section->relocation;
5607 for (i = 0; i < section->reloc_count; i++)
5608 *relptr++ = tblptr++;
5609
5610 *relptr = NULL;
5611
5612 return section->reloc_count;
5613 }
5614
5615 long
5616 _bfd_elf_get_symtab (bfd *abfd, asymbol **allocation)
5617 {
5618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5619 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5620
5621 if (symcount >= 0)
5622 bfd_get_symcount (abfd) = symcount;
5623 return symcount;
5624 }
5625
5626 long
5627 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5628 asymbol **allocation)
5629 {
5630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5631 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5632
5633 if (symcount >= 0)
5634 bfd_get_dynamic_symcount (abfd) = symcount;
5635 return symcount;
5636 }
5637
5638 /* Return the size required for the dynamic reloc entries. Any
5639 section that was actually installed in the BFD, and has type
5640 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5641 considered to be a dynamic reloc section. */
5642
5643 long
5644 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5645 {
5646 long ret;
5647 asection *s;
5648
5649 if (elf_dynsymtab (abfd) == 0)
5650 {
5651 bfd_set_error (bfd_error_invalid_operation);
5652 return -1;
5653 }
5654
5655 ret = sizeof (arelent *);
5656 for (s = abfd->sections; s != NULL; s = s->next)
5657 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5658 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5659 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5660 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5661 * sizeof (arelent *));
5662
5663 return ret;
5664 }
5665
5666 /* Canonicalize the dynamic relocation entries. Note that we return
5667 the dynamic relocations as a single block, although they are
5668 actually associated with particular sections; the interface, which
5669 was designed for SunOS style shared libraries, expects that there
5670 is only one set of dynamic relocs. Any section that was actually
5671 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5672 the dynamic symbol table, is considered to be a dynamic reloc
5673 section. */
5674
5675 long
5676 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5677 arelent **storage,
5678 asymbol **syms)
5679 {
5680 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5681 asection *s;
5682 long ret;
5683
5684 if (elf_dynsymtab (abfd) == 0)
5685 {
5686 bfd_set_error (bfd_error_invalid_operation);
5687 return -1;
5688 }
5689
5690 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5691 ret = 0;
5692 for (s = abfd->sections; s != NULL; s = s->next)
5693 {
5694 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5695 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5696 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5697 {
5698 arelent *p;
5699 long count, i;
5700
5701 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5702 return -1;
5703 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5704 p = s->relocation;
5705 for (i = 0; i < count; i++)
5706 *storage++ = p++;
5707 ret += count;
5708 }
5709 }
5710
5711 *storage = NULL;
5712
5713 return ret;
5714 }
5715 \f
5716 /* Read in the version information. */
5717
5718 bfd_boolean
5719 _bfd_elf_slurp_version_tables (bfd *abfd)
5720 {
5721 bfd_byte *contents = NULL;
5722 bfd_size_type amt;
5723
5724 if (elf_dynverdef (abfd) != 0)
5725 {
5726 Elf_Internal_Shdr *hdr;
5727 Elf_External_Verdef *everdef;
5728 Elf_Internal_Verdef *iverdef;
5729 Elf_Internal_Verdef *iverdefarr;
5730 Elf_Internal_Verdef iverdefmem;
5731 unsigned int i;
5732 unsigned int maxidx;
5733
5734 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5735
5736 contents = bfd_malloc (hdr->sh_size);
5737 if (contents == NULL)
5738 goto error_return;
5739 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5740 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5741 goto error_return;
5742
5743 /* We know the number of entries in the section but not the maximum
5744 index. Therefore we have to run through all entries and find
5745 the maximum. */
5746 everdef = (Elf_External_Verdef *) contents;
5747 maxidx = 0;
5748 for (i = 0; i < hdr->sh_info; ++i)
5749 {
5750 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5751
5752 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5753 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5754
5755 everdef = ((Elf_External_Verdef *)
5756 ((bfd_byte *) everdef + iverdefmem.vd_next));
5757 }
5758
5759 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5760 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5761 if (elf_tdata (abfd)->verdef == NULL)
5762 goto error_return;
5763
5764 elf_tdata (abfd)->cverdefs = maxidx;
5765
5766 everdef = (Elf_External_Verdef *) contents;
5767 iverdefarr = elf_tdata (abfd)->verdef;
5768 for (i = 0; i < hdr->sh_info; i++)
5769 {
5770 Elf_External_Verdaux *everdaux;
5771 Elf_Internal_Verdaux *iverdaux;
5772 unsigned int j;
5773
5774 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5775
5776 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5777 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5778
5779 iverdef->vd_bfd = abfd;
5780
5781 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5782 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5783 if (iverdef->vd_auxptr == NULL)
5784 goto error_return;
5785
5786 everdaux = ((Elf_External_Verdaux *)
5787 ((bfd_byte *) everdef + iverdef->vd_aux));
5788 iverdaux = iverdef->vd_auxptr;
5789 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5790 {
5791 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5792
5793 iverdaux->vda_nodename =
5794 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5795 iverdaux->vda_name);
5796 if (iverdaux->vda_nodename == NULL)
5797 goto error_return;
5798
5799 if (j + 1 < iverdef->vd_cnt)
5800 iverdaux->vda_nextptr = iverdaux + 1;
5801 else
5802 iverdaux->vda_nextptr = NULL;
5803
5804 everdaux = ((Elf_External_Verdaux *)
5805 ((bfd_byte *) everdaux + iverdaux->vda_next));
5806 }
5807
5808 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5809
5810 if (i + 1 < hdr->sh_info)
5811 iverdef->vd_nextdef = iverdef + 1;
5812 else
5813 iverdef->vd_nextdef = NULL;
5814
5815 everdef = ((Elf_External_Verdef *)
5816 ((bfd_byte *) everdef + iverdef->vd_next));
5817 }
5818
5819 free (contents);
5820 contents = NULL;
5821 }
5822
5823 if (elf_dynverref (abfd) != 0)
5824 {
5825 Elf_Internal_Shdr *hdr;
5826 Elf_External_Verneed *everneed;
5827 Elf_Internal_Verneed *iverneed;
5828 unsigned int i;
5829
5830 hdr = &elf_tdata (abfd)->dynverref_hdr;
5831
5832 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5833 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5834 if (elf_tdata (abfd)->verref == NULL)
5835 goto error_return;
5836
5837 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5838
5839 contents = bfd_malloc (hdr->sh_size);
5840 if (contents == NULL)
5841 goto error_return;
5842 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5843 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5844 goto error_return;
5845
5846 everneed = (Elf_External_Verneed *) contents;
5847 iverneed = elf_tdata (abfd)->verref;
5848 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5849 {
5850 Elf_External_Vernaux *evernaux;
5851 Elf_Internal_Vernaux *ivernaux;
5852 unsigned int j;
5853
5854 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5855
5856 iverneed->vn_bfd = abfd;
5857
5858 iverneed->vn_filename =
5859 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5860 iverneed->vn_file);
5861 if (iverneed->vn_filename == NULL)
5862 goto error_return;
5863
5864 amt = iverneed->vn_cnt;
5865 amt *= sizeof (Elf_Internal_Vernaux);
5866 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5867
5868 evernaux = ((Elf_External_Vernaux *)
5869 ((bfd_byte *) everneed + iverneed->vn_aux));
5870 ivernaux = iverneed->vn_auxptr;
5871 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5872 {
5873 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5874
5875 ivernaux->vna_nodename =
5876 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5877 ivernaux->vna_name);
5878 if (ivernaux->vna_nodename == NULL)
5879 goto error_return;
5880
5881 if (j + 1 < iverneed->vn_cnt)
5882 ivernaux->vna_nextptr = ivernaux + 1;
5883 else
5884 ivernaux->vna_nextptr = NULL;
5885
5886 evernaux = ((Elf_External_Vernaux *)
5887 ((bfd_byte *) evernaux + ivernaux->vna_next));
5888 }
5889
5890 if (i + 1 < hdr->sh_info)
5891 iverneed->vn_nextref = iverneed + 1;
5892 else
5893 iverneed->vn_nextref = NULL;
5894
5895 everneed = ((Elf_External_Verneed *)
5896 ((bfd_byte *) everneed + iverneed->vn_next));
5897 }
5898
5899 free (contents);
5900 contents = NULL;
5901 }
5902
5903 return TRUE;
5904
5905 error_return:
5906 if (contents != NULL)
5907 free (contents);
5908 return FALSE;
5909 }
5910 \f
5911 asymbol *
5912 _bfd_elf_make_empty_symbol (bfd *abfd)
5913 {
5914 elf_symbol_type *newsym;
5915 bfd_size_type amt = sizeof (elf_symbol_type);
5916
5917 newsym = bfd_zalloc (abfd, amt);
5918 if (!newsym)
5919 return NULL;
5920 else
5921 {
5922 newsym->symbol.the_bfd = abfd;
5923 return &newsym->symbol;
5924 }
5925 }
5926
5927 void
5928 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5929 asymbol *symbol,
5930 symbol_info *ret)
5931 {
5932 bfd_symbol_info (symbol, ret);
5933 }
5934
5935 /* Return whether a symbol name implies a local symbol. Most targets
5936 use this function for the is_local_label_name entry point, but some
5937 override it. */
5938
5939 bfd_boolean
5940 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5941 const char *name)
5942 {
5943 /* Normal local symbols start with ``.L''. */
5944 if (name[0] == '.' && name[1] == 'L')
5945 return TRUE;
5946
5947 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5948 DWARF debugging symbols starting with ``..''. */
5949 if (name[0] == '.' && name[1] == '.')
5950 return TRUE;
5951
5952 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5953 emitting DWARF debugging output. I suspect this is actually a
5954 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5955 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5956 underscore to be emitted on some ELF targets). For ease of use,
5957 we treat such symbols as local. */
5958 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5959 return TRUE;
5960
5961 return FALSE;
5962 }
5963
5964 alent *
5965 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5966 asymbol *symbol ATTRIBUTE_UNUSED)
5967 {
5968 abort ();
5969 return NULL;
5970 }
5971
5972 bfd_boolean
5973 _bfd_elf_set_arch_mach (bfd *abfd,
5974 enum bfd_architecture arch,
5975 unsigned long machine)
5976 {
5977 /* If this isn't the right architecture for this backend, and this
5978 isn't the generic backend, fail. */
5979 if (arch != get_elf_backend_data (abfd)->arch
5980 && arch != bfd_arch_unknown
5981 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5982 return FALSE;
5983
5984 return bfd_default_set_arch_mach (abfd, arch, machine);
5985 }
5986
5987 /* Find the function to a particular section and offset,
5988 for error reporting. */
5989
5990 static bfd_boolean
5991 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5992 asection *section,
5993 asymbol **symbols,
5994 bfd_vma offset,
5995 const char **filename_ptr,
5996 const char **functionname_ptr)
5997 {
5998 const char *filename;
5999 asymbol *func;
6000 bfd_vma low_func;
6001 asymbol **p;
6002
6003 filename = NULL;
6004 func = NULL;
6005 low_func = 0;
6006
6007 for (p = symbols; *p != NULL; p++)
6008 {
6009 elf_symbol_type *q;
6010
6011 q = (elf_symbol_type *) *p;
6012
6013 if (bfd_get_section (&q->symbol) != section)
6014 continue;
6015
6016 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6017 {
6018 default:
6019 break;
6020 case STT_FILE:
6021 filename = bfd_asymbol_name (&q->symbol);
6022 break;
6023 case STT_NOTYPE:
6024 case STT_FUNC:
6025 if (q->symbol.section == section
6026 && q->symbol.value >= low_func
6027 && q->symbol.value <= offset)
6028 {
6029 func = (asymbol *) q;
6030 low_func = q->symbol.value;
6031 }
6032 break;
6033 }
6034 }
6035
6036 if (func == NULL)
6037 return FALSE;
6038
6039 if (filename_ptr)
6040 *filename_ptr = filename;
6041 if (functionname_ptr)
6042 *functionname_ptr = bfd_asymbol_name (func);
6043
6044 return TRUE;
6045 }
6046
6047 /* Find the nearest line to a particular section and offset,
6048 for error reporting. */
6049
6050 bfd_boolean
6051 _bfd_elf_find_nearest_line (bfd *abfd,
6052 asection *section,
6053 asymbol **symbols,
6054 bfd_vma offset,
6055 const char **filename_ptr,
6056 const char **functionname_ptr,
6057 unsigned int *line_ptr)
6058 {
6059 bfd_boolean found;
6060
6061 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6062 filename_ptr, functionname_ptr,
6063 line_ptr))
6064 {
6065 if (!*functionname_ptr)
6066 elf_find_function (abfd, section, symbols, offset,
6067 *filename_ptr ? NULL : filename_ptr,
6068 functionname_ptr);
6069
6070 return TRUE;
6071 }
6072
6073 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6074 filename_ptr, functionname_ptr,
6075 line_ptr, 0,
6076 &elf_tdata (abfd)->dwarf2_find_line_info))
6077 {
6078 if (!*functionname_ptr)
6079 elf_find_function (abfd, section, symbols, offset,
6080 *filename_ptr ? NULL : filename_ptr,
6081 functionname_ptr);
6082
6083 return TRUE;
6084 }
6085
6086 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6087 &found, filename_ptr,
6088 functionname_ptr, line_ptr,
6089 &elf_tdata (abfd)->line_info))
6090 return FALSE;
6091 if (found && (*functionname_ptr || *line_ptr))
6092 return TRUE;
6093
6094 if (symbols == NULL)
6095 return FALSE;
6096
6097 if (! elf_find_function (abfd, section, symbols, offset,
6098 filename_ptr, functionname_ptr))
6099 return FALSE;
6100
6101 *line_ptr = 0;
6102 return TRUE;
6103 }
6104
6105 int
6106 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6107 {
6108 int ret;
6109
6110 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6111 if (! reloc)
6112 ret += get_program_header_size (abfd);
6113 return ret;
6114 }
6115
6116 bfd_boolean
6117 _bfd_elf_set_section_contents (bfd *abfd,
6118 sec_ptr section,
6119 void *location,
6120 file_ptr offset,
6121 bfd_size_type count)
6122 {
6123 Elf_Internal_Shdr *hdr;
6124 bfd_signed_vma pos;
6125
6126 if (! abfd->output_has_begun
6127 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6128 return FALSE;
6129
6130 hdr = &elf_section_data (section)->this_hdr;
6131 pos = hdr->sh_offset + offset;
6132 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6133 || bfd_bwrite (location, count, abfd) != count)
6134 return FALSE;
6135
6136 return TRUE;
6137 }
6138
6139 void
6140 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6141 arelent *cache_ptr ATTRIBUTE_UNUSED,
6142 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6143 {
6144 abort ();
6145 }
6146
6147 /* Try to convert a non-ELF reloc into an ELF one. */
6148
6149 bfd_boolean
6150 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6151 {
6152 /* Check whether we really have an ELF howto. */
6153
6154 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6155 {
6156 bfd_reloc_code_real_type code;
6157 reloc_howto_type *howto;
6158
6159 /* Alien reloc: Try to determine its type to replace it with an
6160 equivalent ELF reloc. */
6161
6162 if (areloc->howto->pc_relative)
6163 {
6164 switch (areloc->howto->bitsize)
6165 {
6166 case 8:
6167 code = BFD_RELOC_8_PCREL;
6168 break;
6169 case 12:
6170 code = BFD_RELOC_12_PCREL;
6171 break;
6172 case 16:
6173 code = BFD_RELOC_16_PCREL;
6174 break;
6175 case 24:
6176 code = BFD_RELOC_24_PCREL;
6177 break;
6178 case 32:
6179 code = BFD_RELOC_32_PCREL;
6180 break;
6181 case 64:
6182 code = BFD_RELOC_64_PCREL;
6183 break;
6184 default:
6185 goto fail;
6186 }
6187
6188 howto = bfd_reloc_type_lookup (abfd, code);
6189
6190 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6191 {
6192 if (howto->pcrel_offset)
6193 areloc->addend += areloc->address;
6194 else
6195 areloc->addend -= areloc->address; /* addend is unsigned!! */
6196 }
6197 }
6198 else
6199 {
6200 switch (areloc->howto->bitsize)
6201 {
6202 case 8:
6203 code = BFD_RELOC_8;
6204 break;
6205 case 14:
6206 code = BFD_RELOC_14;
6207 break;
6208 case 16:
6209 code = BFD_RELOC_16;
6210 break;
6211 case 26:
6212 code = BFD_RELOC_26;
6213 break;
6214 case 32:
6215 code = BFD_RELOC_32;
6216 break;
6217 case 64:
6218 code = BFD_RELOC_64;
6219 break;
6220 default:
6221 goto fail;
6222 }
6223
6224 howto = bfd_reloc_type_lookup (abfd, code);
6225 }
6226
6227 if (howto)
6228 areloc->howto = howto;
6229 else
6230 goto fail;
6231 }
6232
6233 return TRUE;
6234
6235 fail:
6236 (*_bfd_error_handler)
6237 (_("%s: unsupported relocation type %s"),
6238 bfd_archive_filename (abfd), areloc->howto->name);
6239 bfd_set_error (bfd_error_bad_value);
6240 return FALSE;
6241 }
6242
6243 bfd_boolean
6244 _bfd_elf_close_and_cleanup (bfd *abfd)
6245 {
6246 if (bfd_get_format (abfd) == bfd_object)
6247 {
6248 if (elf_shstrtab (abfd) != NULL)
6249 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6250 }
6251
6252 return _bfd_generic_close_and_cleanup (abfd);
6253 }
6254
6255 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6256 in the relocation's offset. Thus we cannot allow any sort of sanity
6257 range-checking to interfere. There is nothing else to do in processing
6258 this reloc. */
6259
6260 bfd_reloc_status_type
6261 _bfd_elf_rel_vtable_reloc_fn
6262 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6263 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED,
6264 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6265 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6266 {
6267 return bfd_reloc_ok;
6268 }
6269 \f
6270 /* Elf core file support. Much of this only works on native
6271 toolchains, since we rely on knowing the
6272 machine-dependent procfs structure in order to pick
6273 out details about the corefile. */
6274
6275 #ifdef HAVE_SYS_PROCFS_H
6276 # include <sys/procfs.h>
6277 #endif
6278
6279 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6280
6281 static int
6282 elfcore_make_pid (bfd *abfd)
6283 {
6284 return ((elf_tdata (abfd)->core_lwpid << 16)
6285 + (elf_tdata (abfd)->core_pid));
6286 }
6287
6288 /* If there isn't a section called NAME, make one, using
6289 data from SECT. Note, this function will generate a
6290 reference to NAME, so you shouldn't deallocate or
6291 overwrite it. */
6292
6293 static bfd_boolean
6294 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6295 {
6296 asection *sect2;
6297
6298 if (bfd_get_section_by_name (abfd, name) != NULL)
6299 return TRUE;
6300
6301 sect2 = bfd_make_section (abfd, name);
6302 if (sect2 == NULL)
6303 return FALSE;
6304
6305 sect2->_raw_size = sect->_raw_size;
6306 sect2->filepos = sect->filepos;
6307 sect2->flags = sect->flags;
6308 sect2->alignment_power = sect->alignment_power;
6309 return TRUE;
6310 }
6311
6312 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6313 actually creates up to two pseudosections:
6314 - For the single-threaded case, a section named NAME, unless
6315 such a section already exists.
6316 - For the multi-threaded case, a section named "NAME/PID", where
6317 PID is elfcore_make_pid (abfd).
6318 Both pseudosections have identical contents. */
6319 bfd_boolean
6320 _bfd_elfcore_make_pseudosection (bfd *abfd,
6321 char *name,
6322 size_t size,
6323 ufile_ptr filepos)
6324 {
6325 char buf[100];
6326 char *threaded_name;
6327 size_t len;
6328 asection *sect;
6329
6330 /* Build the section name. */
6331
6332 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6333 len = strlen (buf) + 1;
6334 threaded_name = bfd_alloc (abfd, len);
6335 if (threaded_name == NULL)
6336 return FALSE;
6337 memcpy (threaded_name, buf, len);
6338
6339 sect = bfd_make_section (abfd, threaded_name);
6340 if (sect == NULL)
6341 return FALSE;
6342 sect->_raw_size = size;
6343 sect->filepos = filepos;
6344 sect->flags = SEC_HAS_CONTENTS;
6345 sect->alignment_power = 2;
6346
6347 return elfcore_maybe_make_sect (abfd, name, sect);
6348 }
6349
6350 /* prstatus_t exists on:
6351 solaris 2.5+
6352 linux 2.[01] + glibc
6353 unixware 4.2
6354 */
6355
6356 #if defined (HAVE_PRSTATUS_T)
6357
6358 static bfd_boolean
6359 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6360 {
6361 size_t raw_size;
6362 int offset;
6363
6364 if (note->descsz == sizeof (prstatus_t))
6365 {
6366 prstatus_t prstat;
6367
6368 raw_size = sizeof (prstat.pr_reg);
6369 offset = offsetof (prstatus_t, pr_reg);
6370 memcpy (&prstat, note->descdata, sizeof (prstat));
6371
6372 /* Do not overwrite the core signal if it
6373 has already been set by another thread. */
6374 if (elf_tdata (abfd)->core_signal == 0)
6375 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6376 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6377
6378 /* pr_who exists on:
6379 solaris 2.5+
6380 unixware 4.2
6381 pr_who doesn't exist on:
6382 linux 2.[01]
6383 */
6384 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6385 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6386 #endif
6387 }
6388 #if defined (HAVE_PRSTATUS32_T)
6389 else if (note->descsz == sizeof (prstatus32_t))
6390 {
6391 /* 64-bit host, 32-bit corefile */
6392 prstatus32_t prstat;
6393
6394 raw_size = sizeof (prstat.pr_reg);
6395 offset = offsetof (prstatus32_t, pr_reg);
6396 memcpy (&prstat, note->descdata, sizeof (prstat));
6397
6398 /* Do not overwrite the core signal if it
6399 has already been set by another thread. */
6400 if (elf_tdata (abfd)->core_signal == 0)
6401 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6402 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6403
6404 /* pr_who exists on:
6405 solaris 2.5+
6406 unixware 4.2
6407 pr_who doesn't exist on:
6408 linux 2.[01]
6409 */
6410 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6411 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6412 #endif
6413 }
6414 #endif /* HAVE_PRSTATUS32_T */
6415 else
6416 {
6417 /* Fail - we don't know how to handle any other
6418 note size (ie. data object type). */
6419 return TRUE;
6420 }
6421
6422 /* Make a ".reg/999" section and a ".reg" section. */
6423 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6424 raw_size, note->descpos + offset);
6425 }
6426 #endif /* defined (HAVE_PRSTATUS_T) */
6427
6428 /* Create a pseudosection containing the exact contents of NOTE. */
6429 static bfd_boolean
6430 elfcore_make_note_pseudosection (bfd *abfd,
6431 char *name,
6432 Elf_Internal_Note *note)
6433 {
6434 return _bfd_elfcore_make_pseudosection (abfd, name,
6435 note->descsz, note->descpos);
6436 }
6437
6438 /* There isn't a consistent prfpregset_t across platforms,
6439 but it doesn't matter, because we don't have to pick this
6440 data structure apart. */
6441
6442 static bfd_boolean
6443 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6444 {
6445 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6446 }
6447
6448 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6449 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6450 literally. */
6451
6452 static bfd_boolean
6453 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6454 {
6455 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6456 }
6457
6458 #if defined (HAVE_PRPSINFO_T)
6459 typedef prpsinfo_t elfcore_psinfo_t;
6460 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6461 typedef prpsinfo32_t elfcore_psinfo32_t;
6462 #endif
6463 #endif
6464
6465 #if defined (HAVE_PSINFO_T)
6466 typedef psinfo_t elfcore_psinfo_t;
6467 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6468 typedef psinfo32_t elfcore_psinfo32_t;
6469 #endif
6470 #endif
6471
6472 /* return a malloc'ed copy of a string at START which is at
6473 most MAX bytes long, possibly without a terminating '\0'.
6474 the copy will always have a terminating '\0'. */
6475
6476 char *
6477 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6478 {
6479 char *dups;
6480 char *end = memchr (start, '\0', max);
6481 size_t len;
6482
6483 if (end == NULL)
6484 len = max;
6485 else
6486 len = end - start;
6487
6488 dups = bfd_alloc (abfd, len + 1);
6489 if (dups == NULL)
6490 return NULL;
6491
6492 memcpy (dups, start, len);
6493 dups[len] = '\0';
6494
6495 return dups;
6496 }
6497
6498 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6499 static bfd_boolean
6500 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6501 {
6502 if (note->descsz == sizeof (elfcore_psinfo_t))
6503 {
6504 elfcore_psinfo_t psinfo;
6505
6506 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6507
6508 elf_tdata (abfd)->core_program
6509 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6510 sizeof (psinfo.pr_fname));
6511
6512 elf_tdata (abfd)->core_command
6513 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6514 sizeof (psinfo.pr_psargs));
6515 }
6516 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6517 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6518 {
6519 /* 64-bit host, 32-bit corefile */
6520 elfcore_psinfo32_t psinfo;
6521
6522 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6523
6524 elf_tdata (abfd)->core_program
6525 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6526 sizeof (psinfo.pr_fname));
6527
6528 elf_tdata (abfd)->core_command
6529 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6530 sizeof (psinfo.pr_psargs));
6531 }
6532 #endif
6533
6534 else
6535 {
6536 /* Fail - we don't know how to handle any other
6537 note size (ie. data object type). */
6538 return TRUE;
6539 }
6540
6541 /* Note that for some reason, a spurious space is tacked
6542 onto the end of the args in some (at least one anyway)
6543 implementations, so strip it off if it exists. */
6544
6545 {
6546 char *command = elf_tdata (abfd)->core_command;
6547 int n = strlen (command);
6548
6549 if (0 < n && command[n - 1] == ' ')
6550 command[n - 1] = '\0';
6551 }
6552
6553 return TRUE;
6554 }
6555 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6556
6557 #if defined (HAVE_PSTATUS_T)
6558 static bfd_boolean
6559 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6560 {
6561 if (note->descsz == sizeof (pstatus_t)
6562 #if defined (HAVE_PXSTATUS_T)
6563 || note->descsz == sizeof (pxstatus_t)
6564 #endif
6565 )
6566 {
6567 pstatus_t pstat;
6568
6569 memcpy (&pstat, note->descdata, sizeof (pstat));
6570
6571 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6572 }
6573 #if defined (HAVE_PSTATUS32_T)
6574 else if (note->descsz == sizeof (pstatus32_t))
6575 {
6576 /* 64-bit host, 32-bit corefile */
6577 pstatus32_t pstat;
6578
6579 memcpy (&pstat, note->descdata, sizeof (pstat));
6580
6581 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6582 }
6583 #endif
6584 /* Could grab some more details from the "representative"
6585 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6586 NT_LWPSTATUS note, presumably. */
6587
6588 return TRUE;
6589 }
6590 #endif /* defined (HAVE_PSTATUS_T) */
6591
6592 #if defined (HAVE_LWPSTATUS_T)
6593 static bfd_boolean
6594 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6595 {
6596 lwpstatus_t lwpstat;
6597 char buf[100];
6598 char *name;
6599 size_t len;
6600 asection *sect;
6601
6602 if (note->descsz != sizeof (lwpstat)
6603 #if defined (HAVE_LWPXSTATUS_T)
6604 && note->descsz != sizeof (lwpxstatus_t)
6605 #endif
6606 )
6607 return TRUE;
6608
6609 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6610
6611 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6612 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6613
6614 /* Make a ".reg/999" section. */
6615
6616 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6617 len = strlen (buf) + 1;
6618 name = bfd_alloc (abfd, len);
6619 if (name == NULL)
6620 return FALSE;
6621 memcpy (name, buf, len);
6622
6623 sect = bfd_make_section (abfd, name);
6624 if (sect == NULL)
6625 return FALSE;
6626
6627 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6628 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6629 sect->filepos = note->descpos
6630 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6631 #endif
6632
6633 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6634 sect->_raw_size = sizeof (lwpstat.pr_reg);
6635 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6636 #endif
6637
6638 sect->flags = SEC_HAS_CONTENTS;
6639 sect->alignment_power = 2;
6640
6641 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6642 return FALSE;
6643
6644 /* Make a ".reg2/999" section */
6645
6646 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6647 len = strlen (buf) + 1;
6648 name = bfd_alloc (abfd, len);
6649 if (name == NULL)
6650 return FALSE;
6651 memcpy (name, buf, len);
6652
6653 sect = bfd_make_section (abfd, name);
6654 if (sect == NULL)
6655 return FALSE;
6656
6657 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6658 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6659 sect->filepos = note->descpos
6660 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6661 #endif
6662
6663 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6664 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6665 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6666 #endif
6667
6668 sect->flags = SEC_HAS_CONTENTS;
6669 sect->alignment_power = 2;
6670
6671 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6672 }
6673 #endif /* defined (HAVE_LWPSTATUS_T) */
6674
6675 #if defined (HAVE_WIN32_PSTATUS_T)
6676 static bfd_boolean
6677 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6678 {
6679 char buf[30];
6680 char *name;
6681 size_t len;
6682 asection *sect;
6683 win32_pstatus_t pstatus;
6684
6685 if (note->descsz < sizeof (pstatus))
6686 return TRUE;
6687
6688 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6689
6690 switch (pstatus.data_type)
6691 {
6692 case NOTE_INFO_PROCESS:
6693 /* FIXME: need to add ->core_command. */
6694 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6695 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6696 break;
6697
6698 case NOTE_INFO_THREAD:
6699 /* Make a ".reg/999" section. */
6700 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6701
6702 len = strlen (buf) + 1;
6703 name = bfd_alloc (abfd, len);
6704 if (name == NULL)
6705 return FALSE;
6706
6707 memcpy (name, buf, len);
6708
6709 sect = bfd_make_section (abfd, name);
6710 if (sect == NULL)
6711 return FALSE;
6712
6713 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6714 sect->filepos = (note->descpos
6715 + offsetof (struct win32_pstatus,
6716 data.thread_info.thread_context));
6717 sect->flags = SEC_HAS_CONTENTS;
6718 sect->alignment_power = 2;
6719
6720 if (pstatus.data.thread_info.is_active_thread)
6721 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6722 return FALSE;
6723 break;
6724
6725 case NOTE_INFO_MODULE:
6726 /* Make a ".module/xxxxxxxx" section. */
6727 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6728
6729 len = strlen (buf) + 1;
6730 name = bfd_alloc (abfd, len);
6731 if (name == NULL)
6732 return FALSE;
6733
6734 memcpy (name, buf, len);
6735
6736 sect = bfd_make_section (abfd, name);
6737
6738 if (sect == NULL)
6739 return FALSE;
6740
6741 sect->_raw_size = note->descsz;
6742 sect->filepos = note->descpos;
6743 sect->flags = SEC_HAS_CONTENTS;
6744 sect->alignment_power = 2;
6745 break;
6746
6747 default:
6748 return TRUE;
6749 }
6750
6751 return TRUE;
6752 }
6753 #endif /* HAVE_WIN32_PSTATUS_T */
6754
6755 static bfd_boolean
6756 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6757 {
6758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6759
6760 switch (note->type)
6761 {
6762 default:
6763 return TRUE;
6764
6765 case NT_PRSTATUS:
6766 if (bed->elf_backend_grok_prstatus)
6767 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6768 return TRUE;
6769 #if defined (HAVE_PRSTATUS_T)
6770 return elfcore_grok_prstatus (abfd, note);
6771 #else
6772 return TRUE;
6773 #endif
6774
6775 #if defined (HAVE_PSTATUS_T)
6776 case NT_PSTATUS:
6777 return elfcore_grok_pstatus (abfd, note);
6778 #endif
6779
6780 #if defined (HAVE_LWPSTATUS_T)
6781 case NT_LWPSTATUS:
6782 return elfcore_grok_lwpstatus (abfd, note);
6783 #endif
6784
6785 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6786 return elfcore_grok_prfpreg (abfd, note);
6787
6788 #if defined (HAVE_WIN32_PSTATUS_T)
6789 case NT_WIN32PSTATUS:
6790 return elfcore_grok_win32pstatus (abfd, note);
6791 #endif
6792
6793 case NT_PRXFPREG: /* Linux SSE extension */
6794 if (note->namesz == 6
6795 && strcmp (note->namedata, "LINUX") == 0)
6796 return elfcore_grok_prxfpreg (abfd, note);
6797 else
6798 return TRUE;
6799
6800 case NT_PRPSINFO:
6801 case NT_PSINFO:
6802 if (bed->elf_backend_grok_psinfo)
6803 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6804 return TRUE;
6805 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6806 return elfcore_grok_psinfo (abfd, note);
6807 #else
6808 return TRUE;
6809 #endif
6810
6811 case NT_AUXV:
6812 {
6813 asection *sect = bfd_make_section (abfd, ".auxv");
6814
6815 if (sect == NULL)
6816 return FALSE;
6817 sect->_raw_size = note->descsz;
6818 sect->filepos = note->descpos;
6819 sect->flags = SEC_HAS_CONTENTS;
6820 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6821
6822 return TRUE;
6823 }
6824 }
6825 }
6826
6827 static bfd_boolean
6828 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6829 {
6830 char *cp;
6831
6832 cp = strchr (note->namedata, '@');
6833 if (cp != NULL)
6834 {
6835 *lwpidp = atoi(cp + 1);
6836 return TRUE;
6837 }
6838 return FALSE;
6839 }
6840
6841 static bfd_boolean
6842 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6843 {
6844
6845 /* Signal number at offset 0x08. */
6846 elf_tdata (abfd)->core_signal
6847 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6848
6849 /* Process ID at offset 0x50. */
6850 elf_tdata (abfd)->core_pid
6851 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6852
6853 /* Command name at 0x7c (max 32 bytes, including nul). */
6854 elf_tdata (abfd)->core_command
6855 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6856
6857 return TRUE;
6858 }
6859
6860 static bfd_boolean
6861 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6862 {
6863 int lwp;
6864
6865 if (elfcore_netbsd_get_lwpid (note, &lwp))
6866 elf_tdata (abfd)->core_lwpid = lwp;
6867
6868 if (note->type == NT_NETBSDCORE_PROCINFO)
6869 {
6870 /* NetBSD-specific core "procinfo". Note that we expect to
6871 find this note before any of the others, which is fine,
6872 since the kernel writes this note out first when it
6873 creates a core file. */
6874
6875 return elfcore_grok_netbsd_procinfo (abfd, note);
6876 }
6877
6878 /* As of Jan 2002 there are no other machine-independent notes
6879 defined for NetBSD core files. If the note type is less
6880 than the start of the machine-dependent note types, we don't
6881 understand it. */
6882
6883 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6884 return TRUE;
6885
6886
6887 switch (bfd_get_arch (abfd))
6888 {
6889 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6890 PT_GETFPREGS == mach+2. */
6891
6892 case bfd_arch_alpha:
6893 case bfd_arch_sparc:
6894 switch (note->type)
6895 {
6896 case NT_NETBSDCORE_FIRSTMACH+0:
6897 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6898
6899 case NT_NETBSDCORE_FIRSTMACH+2:
6900 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6901
6902 default:
6903 return TRUE;
6904 }
6905
6906 /* On all other arch's, PT_GETREGS == mach+1 and
6907 PT_GETFPREGS == mach+3. */
6908
6909 default:
6910 switch (note->type)
6911 {
6912 case NT_NETBSDCORE_FIRSTMACH+1:
6913 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6914
6915 case NT_NETBSDCORE_FIRSTMACH+3:
6916 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6917
6918 default:
6919 return TRUE;
6920 }
6921 }
6922 /* NOTREACHED */
6923 }
6924
6925 static bfd_boolean
6926 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6927 {
6928 void *ddata = note->descdata;
6929 char buf[100];
6930 char *name;
6931 asection *sect;
6932 short sig;
6933 unsigned flags;
6934
6935 /* nto_procfs_status 'pid' field is at offset 0. */
6936 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6937
6938 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6939 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6940
6941 /* nto_procfs_status 'flags' field is at offset 8. */
6942 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6943
6944 /* nto_procfs_status 'what' field is at offset 14. */
6945 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6946 {
6947 elf_tdata (abfd)->core_signal = sig;
6948 elf_tdata (abfd)->core_lwpid = *tid;
6949 }
6950
6951 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6952 do not come from signals so we make sure we set the current
6953 thread just in case. */
6954 if (flags & 0x00000080)
6955 elf_tdata (abfd)->core_lwpid = *tid;
6956
6957 /* Make a ".qnx_core_status/%d" section. */
6958 sprintf (buf, ".qnx_core_status/%d", *tid);
6959
6960 name = bfd_alloc (abfd, strlen (buf) + 1);
6961 if (name == NULL)
6962 return FALSE;
6963 strcpy (name, buf);
6964
6965 sect = bfd_make_section (abfd, name);
6966 if (sect == NULL)
6967 return FALSE;
6968
6969 sect->_raw_size = note->descsz;
6970 sect->filepos = note->descpos;
6971 sect->flags = SEC_HAS_CONTENTS;
6972 sect->alignment_power = 2;
6973
6974 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
6975 }
6976
6977 static bfd_boolean
6978 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
6979 {
6980 char buf[100];
6981 char *name;
6982 asection *sect;
6983
6984 /* Make a ".reg/%d" section. */
6985 sprintf (buf, ".reg/%d", tid);
6986
6987 name = bfd_alloc (abfd, strlen (buf) + 1);
6988 if (name == NULL)
6989 return FALSE;
6990 strcpy (name, buf);
6991
6992 sect = bfd_make_section (abfd, name);
6993 if (sect == NULL)
6994 return FALSE;
6995
6996 sect->_raw_size = note->descsz;
6997 sect->filepos = note->descpos;
6998 sect->flags = SEC_HAS_CONTENTS;
6999 sect->alignment_power = 2;
7000
7001 /* This is the current thread. */
7002 if (elf_tdata (abfd)->core_lwpid == tid)
7003 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7004
7005 return TRUE;
7006 }
7007
7008 #define BFD_QNT_CORE_INFO 7
7009 #define BFD_QNT_CORE_STATUS 8
7010 #define BFD_QNT_CORE_GREG 9
7011 #define BFD_QNT_CORE_FPREG 10
7012
7013 static bfd_boolean
7014 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7015 {
7016 /* Every GREG section has a STATUS section before it. Store the
7017 tid from the previous call to pass down to the next gregs
7018 function. */
7019 static pid_t tid = 1;
7020
7021 switch (note->type)
7022 {
7023 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7024 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7025 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7026 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7027 default: return TRUE;
7028 }
7029 }
7030
7031 /* Function: elfcore_write_note
7032
7033 Inputs:
7034 buffer to hold note
7035 name of note
7036 type of note
7037 data for note
7038 size of data for note
7039
7040 Return:
7041 End of buffer containing note. */
7042
7043 char *
7044 elfcore_write_note (bfd *abfd,
7045 char *buf,
7046 int *bufsiz,
7047 const char *name,
7048 int type,
7049 const void *input,
7050 int size)
7051 {
7052 Elf_External_Note *xnp;
7053 size_t namesz;
7054 size_t pad;
7055 size_t newspace;
7056 char *p, *dest;
7057
7058 namesz = 0;
7059 pad = 0;
7060 if (name != NULL)
7061 {
7062 const struct elf_backend_data *bed;
7063
7064 namesz = strlen (name) + 1;
7065 bed = get_elf_backend_data (abfd);
7066 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7067 }
7068
7069 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
7070
7071 p = realloc (buf, *bufsiz + newspace);
7072 dest = p + *bufsiz;
7073 *bufsiz += newspace;
7074 xnp = (Elf_External_Note *) dest;
7075 H_PUT_32 (abfd, namesz, xnp->namesz);
7076 H_PUT_32 (abfd, size, xnp->descsz);
7077 H_PUT_32 (abfd, type, xnp->type);
7078 dest = xnp->name;
7079 if (name != NULL)
7080 {
7081 memcpy (dest, name, namesz);
7082 dest += namesz;
7083 while (pad != 0)
7084 {
7085 *dest++ = '\0';
7086 --pad;
7087 }
7088 }
7089 memcpy (dest, input, size);
7090 return p;
7091 }
7092
7093 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7094 char *
7095 elfcore_write_prpsinfo (bfd *abfd,
7096 char *buf,
7097 int *bufsiz,
7098 const char *fname,
7099 const char *psargs)
7100 {
7101 int note_type;
7102 char *note_name = "CORE";
7103
7104 #if defined (HAVE_PSINFO_T)
7105 psinfo_t data;
7106 note_type = NT_PSINFO;
7107 #else
7108 prpsinfo_t data;
7109 note_type = NT_PRPSINFO;
7110 #endif
7111
7112 memset (&data, 0, sizeof (data));
7113 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7114 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7115 return elfcore_write_note (abfd, buf, bufsiz,
7116 note_name, note_type, &data, sizeof (data));
7117 }
7118 #endif /* PSINFO_T or PRPSINFO_T */
7119
7120 #if defined (HAVE_PRSTATUS_T)
7121 char *
7122 elfcore_write_prstatus (bfd *abfd,
7123 char *buf,
7124 int *bufsiz,
7125 long pid,
7126 int cursig,
7127 const void *gregs)
7128 {
7129 prstatus_t prstat;
7130 char *note_name = "CORE";
7131
7132 memset (&prstat, 0, sizeof (prstat));
7133 prstat.pr_pid = pid;
7134 prstat.pr_cursig = cursig;
7135 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7136 return elfcore_write_note (abfd, buf, bufsiz,
7137 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7138 }
7139 #endif /* HAVE_PRSTATUS_T */
7140
7141 #if defined (HAVE_LWPSTATUS_T)
7142 char *
7143 elfcore_write_lwpstatus (bfd *abfd,
7144 char *buf,
7145 int *bufsiz,
7146 long pid,
7147 int cursig,
7148 const void *gregs)
7149 {
7150 lwpstatus_t lwpstat;
7151 char *note_name = "CORE";
7152
7153 memset (&lwpstat, 0, sizeof (lwpstat));
7154 lwpstat.pr_lwpid = pid >> 16;
7155 lwpstat.pr_cursig = cursig;
7156 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7157 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7158 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7159 #if !defined(gregs)
7160 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7161 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7162 #else
7163 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7164 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7165 #endif
7166 #endif
7167 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7168 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7169 }
7170 #endif /* HAVE_LWPSTATUS_T */
7171
7172 #if defined (HAVE_PSTATUS_T)
7173 char *
7174 elfcore_write_pstatus (bfd *abfd,
7175 char *buf,
7176 int *bufsiz,
7177 long pid,
7178 int cursig,
7179 const void *gregs)
7180 {
7181 pstatus_t pstat;
7182 char *note_name = "CORE";
7183
7184 memset (&pstat, 0, sizeof (pstat));
7185 pstat.pr_pid = pid & 0xffff;
7186 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7187 NT_PSTATUS, &pstat, sizeof (pstat));
7188 return buf;
7189 }
7190 #endif /* HAVE_PSTATUS_T */
7191
7192 char *
7193 elfcore_write_prfpreg (bfd *abfd,
7194 char *buf,
7195 int *bufsiz,
7196 const void *fpregs,
7197 int size)
7198 {
7199 char *note_name = "CORE";
7200 return elfcore_write_note (abfd, buf, bufsiz,
7201 note_name, NT_FPREGSET, fpregs, size);
7202 }
7203
7204 char *
7205 elfcore_write_prxfpreg (bfd *abfd,
7206 char *buf,
7207 int *bufsiz,
7208 const void *xfpregs,
7209 int size)
7210 {
7211 char *note_name = "LINUX";
7212 return elfcore_write_note (abfd, buf, bufsiz,
7213 note_name, NT_PRXFPREG, xfpregs, size);
7214 }
7215
7216 static bfd_boolean
7217 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7218 {
7219 char *buf;
7220 char *p;
7221
7222 if (size <= 0)
7223 return TRUE;
7224
7225 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7226 return FALSE;
7227
7228 buf = bfd_malloc (size);
7229 if (buf == NULL)
7230 return FALSE;
7231
7232 if (bfd_bread (buf, size, abfd) != size)
7233 {
7234 error:
7235 free (buf);
7236 return FALSE;
7237 }
7238
7239 p = buf;
7240 while (p < buf + size)
7241 {
7242 /* FIXME: bad alignment assumption. */
7243 Elf_External_Note *xnp = (Elf_External_Note *) p;
7244 Elf_Internal_Note in;
7245
7246 in.type = H_GET_32 (abfd, xnp->type);
7247
7248 in.namesz = H_GET_32 (abfd, xnp->namesz);
7249 in.namedata = xnp->name;
7250
7251 in.descsz = H_GET_32 (abfd, xnp->descsz);
7252 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7253 in.descpos = offset + (in.descdata - buf);
7254
7255 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7256 {
7257 if (! elfcore_grok_netbsd_note (abfd, &in))
7258 goto error;
7259 }
7260 else if (strncmp (in.namedata, "QNX", 3) == 0)
7261 {
7262 if (! elfcore_grok_nto_note (abfd, &in))
7263 goto error;
7264 }
7265 else
7266 {
7267 if (! elfcore_grok_note (abfd, &in))
7268 goto error;
7269 }
7270
7271 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7272 }
7273
7274 free (buf);
7275 return TRUE;
7276 }
7277 \f
7278 /* Providing external access to the ELF program header table. */
7279
7280 /* Return an upper bound on the number of bytes required to store a
7281 copy of ABFD's program header table entries. Return -1 if an error
7282 occurs; bfd_get_error will return an appropriate code. */
7283
7284 long
7285 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7286 {
7287 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7288 {
7289 bfd_set_error (bfd_error_wrong_format);
7290 return -1;
7291 }
7292
7293 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7294 }
7295
7296 /* Copy ABFD's program header table entries to *PHDRS. The entries
7297 will be stored as an array of Elf_Internal_Phdr structures, as
7298 defined in include/elf/internal.h. To find out how large the
7299 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7300
7301 Return the number of program header table entries read, or -1 if an
7302 error occurs; bfd_get_error will return an appropriate code. */
7303
7304 int
7305 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7306 {
7307 int num_phdrs;
7308
7309 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7310 {
7311 bfd_set_error (bfd_error_wrong_format);
7312 return -1;
7313 }
7314
7315 num_phdrs = elf_elfheader (abfd)->e_phnum;
7316 memcpy (phdrs, elf_tdata (abfd)->phdr,
7317 num_phdrs * sizeof (Elf_Internal_Phdr));
7318
7319 return num_phdrs;
7320 }
7321
7322 void
7323 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7324 {
7325 #ifdef BFD64
7326 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7327
7328 i_ehdrp = elf_elfheader (abfd);
7329 if (i_ehdrp == NULL)
7330 sprintf_vma (buf, value);
7331 else
7332 {
7333 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7334 {
7335 #if BFD_HOST_64BIT_LONG
7336 sprintf (buf, "%016lx", value);
7337 #else
7338 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7339 _bfd_int64_low (value));
7340 #endif
7341 }
7342 else
7343 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7344 }
7345 #else
7346 sprintf_vma (buf, value);
7347 #endif
7348 }
7349
7350 void
7351 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7352 {
7353 #ifdef BFD64
7354 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7355
7356 i_ehdrp = elf_elfheader (abfd);
7357 if (i_ehdrp == NULL)
7358 fprintf_vma ((FILE *) stream, value);
7359 else
7360 {
7361 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7362 {
7363 #if BFD_HOST_64BIT_LONG
7364 fprintf ((FILE *) stream, "%016lx", value);
7365 #else
7366 fprintf ((FILE *) stream, "%08lx%08lx",
7367 _bfd_int64_high (value), _bfd_int64_low (value));
7368 #endif
7369 }
7370 else
7371 fprintf ((FILE *) stream, "%08lx",
7372 (unsigned long) (value & 0xffffffff));
7373 }
7374 #else
7375 fprintf_vma ((FILE *) stream, value);
7376 #endif
7377 }
7378
7379 enum elf_reloc_type_class
7380 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7381 {
7382 return reloc_class_normal;
7383 }
7384
7385 /* For RELA architectures, return the relocation value for a
7386 relocation against a local symbol. */
7387
7388 bfd_vma
7389 _bfd_elf_rela_local_sym (bfd *abfd,
7390 Elf_Internal_Sym *sym,
7391 asection *sec,
7392 Elf_Internal_Rela *rel)
7393 {
7394 bfd_vma relocation;
7395
7396 relocation = (sec->output_section->vma
7397 + sec->output_offset
7398 + sym->st_value);
7399 if ((sec->flags & SEC_MERGE)
7400 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7401 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7402 {
7403 asection *msec;
7404
7405 msec = sec;
7406 rel->r_addend =
7407 _bfd_merged_section_offset (abfd, &msec,
7408 elf_section_data (sec)->sec_info,
7409 sym->st_value + rel->r_addend,
7410 0)
7411 - relocation;
7412 rel->r_addend += msec->output_section->vma + msec->output_offset;
7413 }
7414 return relocation;
7415 }
7416
7417 bfd_vma
7418 _bfd_elf_rel_local_sym (bfd *abfd,
7419 Elf_Internal_Sym *sym,
7420 asection **psec,
7421 bfd_vma addend)
7422 {
7423 asection *sec = *psec;
7424
7425 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7426 return sym->st_value + addend;
7427
7428 return _bfd_merged_section_offset (abfd, psec,
7429 elf_section_data (sec)->sec_info,
7430 sym->st_value + addend, 0);
7431 }
7432
7433 bfd_vma
7434 _bfd_elf_section_offset (bfd *abfd,
7435 struct bfd_link_info *info,
7436 asection *sec,
7437 bfd_vma offset)
7438 {
7439 struct bfd_elf_section_data *sec_data;
7440
7441 sec_data = elf_section_data (sec);
7442 switch (sec->sec_info_type)
7443 {
7444 case ELF_INFO_TYPE_STABS:
7445 return _bfd_stab_section_offset (abfd,
7446 &elf_hash_table (info)->merge_info,
7447 sec, &sec_data->sec_info, offset);
7448 case ELF_INFO_TYPE_EH_FRAME:
7449 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7450 default:
7451 return offset;
7452 }
7453 }
7454 \f
7455 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7456 reconstruct an ELF file by reading the segments out of remote memory
7457 based on the ELF file header at EHDR_VMA and the ELF program headers it
7458 points to. If not null, *LOADBASEP is filled in with the difference
7459 between the VMAs from which the segments were read, and the VMAs the
7460 file headers (and hence BFD's idea of each section's VMA) put them at.
7461
7462 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7463 remote memory at target address VMA into the local buffer at MYADDR; it
7464 should return zero on success or an `errno' code on failure. TEMPL must
7465 be a BFD for an ELF target with the word size and byte order found in
7466 the remote memory. */
7467
7468 bfd *
7469 bfd_elf_bfd_from_remote_memory
7470 (bfd *templ,
7471 bfd_vma ehdr_vma,
7472 bfd_vma *loadbasep,
7473 int (*target_read_memory) (bfd_vma, char *, int))
7474 {
7475 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7476 (templ, ehdr_vma, loadbasep, target_read_memory);
7477 }