Set SHF_INFO_LINK bit for SHT_REL/SHT_RELA sections
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 for (i = 0; i < (unsigned int) tls_count; ++i)
4121 {
4122 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4123 m->sections[i] = first_tls;
4124 first_tls = first_tls->next;
4125 }
4126
4127 *pm = m;
4128 pm = &m->next;
4129 }
4130
4131 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4132 segment. */
4133 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4134 if (eh_frame_hdr != NULL
4135 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_GNU_EH_FRAME;
4143 m->count = 1;
4144 m->sections[0] = eh_frame_hdr->output_section;
4145
4146 *pm = m;
4147 pm = &m->next;
4148 }
4149
4150 if (elf_stack_flags (abfd))
4151 {
4152 amt = sizeof (struct elf_segment_map);
4153 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4154 if (m == NULL)
4155 goto error_return;
4156 m->next = NULL;
4157 m->p_type = PT_GNU_STACK;
4158 m->p_flags = elf_stack_flags (abfd);
4159 m->p_align = bed->stack_align;
4160 m->p_flags_valid = 1;
4161 m->p_align_valid = m->p_align != 0;
4162 if (info->stacksize > 0)
4163 {
4164 m->p_size = info->stacksize;
4165 m->p_size_valid = 1;
4166 }
4167
4168 *pm = m;
4169 pm = &m->next;
4170 }
4171
4172 if (info != NULL && info->relro)
4173 {
4174 for (m = mfirst; m != NULL; m = m->next)
4175 {
4176 if (m->p_type == PT_LOAD
4177 && m->count != 0
4178 && m->sections[0]->vma >= info->relro_start
4179 && m->sections[0]->vma < info->relro_end)
4180 {
4181 i = m->count;
4182 while (--i != (unsigned) -1)
4183 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4184 == (SEC_LOAD | SEC_HAS_CONTENTS))
4185 break;
4186
4187 if (i == (unsigned) -1)
4188 continue;
4189
4190 if (m->sections[i]->vma + m->sections[i]->size
4191 >= info->relro_end)
4192 break;
4193 }
4194 }
4195
4196 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4197 if (m != NULL)
4198 {
4199 amt = sizeof (struct elf_segment_map);
4200 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4201 if (m == NULL)
4202 goto error_return;
4203 m->next = NULL;
4204 m->p_type = PT_GNU_RELRO;
4205 m->p_flags = PF_R;
4206 m->p_flags_valid = 1;
4207
4208 *pm = m;
4209 pm = &m->next;
4210 }
4211 }
4212
4213 free (sections);
4214 elf_seg_map (abfd) = mfirst;
4215 }
4216
4217 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4218 return FALSE;
4219
4220 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4221 ++count;
4222 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4223
4224 return TRUE;
4225
4226 error_return:
4227 if (sections != NULL)
4228 free (sections);
4229 return FALSE;
4230 }
4231
4232 /* Sort sections by address. */
4233
4234 static int
4235 elf_sort_sections (const void *arg1, const void *arg2)
4236 {
4237 const asection *sec1 = *(const asection **) arg1;
4238 const asection *sec2 = *(const asection **) arg2;
4239 bfd_size_type size1, size2;
4240
4241 /* Sort by LMA first, since this is the address used to
4242 place the section into a segment. */
4243 if (sec1->lma < sec2->lma)
4244 return -1;
4245 else if (sec1->lma > sec2->lma)
4246 return 1;
4247
4248 /* Then sort by VMA. Normally the LMA and the VMA will be
4249 the same, and this will do nothing. */
4250 if (sec1->vma < sec2->vma)
4251 return -1;
4252 else if (sec1->vma > sec2->vma)
4253 return 1;
4254
4255 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4256
4257 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4258
4259 if (TOEND (sec1))
4260 {
4261 if (TOEND (sec2))
4262 {
4263 /* If the indicies are the same, do not return 0
4264 here, but continue to try the next comparison. */
4265 if (sec1->target_index - sec2->target_index != 0)
4266 return sec1->target_index - sec2->target_index;
4267 }
4268 else
4269 return 1;
4270 }
4271 else if (TOEND (sec2))
4272 return -1;
4273
4274 #undef TOEND
4275
4276 /* Sort by size, to put zero sized sections
4277 before others at the same address. */
4278
4279 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4280 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4281
4282 if (size1 < size2)
4283 return -1;
4284 if (size1 > size2)
4285 return 1;
4286
4287 return sec1->target_index - sec2->target_index;
4288 }
4289
4290 /* Ian Lance Taylor writes:
4291
4292 We shouldn't be using % with a negative signed number. That's just
4293 not good. We have to make sure either that the number is not
4294 negative, or that the number has an unsigned type. When the types
4295 are all the same size they wind up as unsigned. When file_ptr is a
4296 larger signed type, the arithmetic winds up as signed long long,
4297 which is wrong.
4298
4299 What we're trying to say here is something like ``increase OFF by
4300 the least amount that will cause it to be equal to the VMA modulo
4301 the page size.'' */
4302 /* In other words, something like:
4303
4304 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4305 off_offset = off % bed->maxpagesize;
4306 if (vma_offset < off_offset)
4307 adjustment = vma_offset + bed->maxpagesize - off_offset;
4308 else
4309 adjustment = vma_offset - off_offset;
4310
4311 which can can be collapsed into the expression below. */
4312
4313 static file_ptr
4314 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4315 {
4316 return ((vma - off) % maxpagesize);
4317 }
4318
4319 static void
4320 print_segment_map (const struct elf_segment_map *m)
4321 {
4322 unsigned int j;
4323 const char *pt = get_segment_type (m->p_type);
4324 char buf[32];
4325
4326 if (pt == NULL)
4327 {
4328 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4329 sprintf (buf, "LOPROC+%7.7x",
4330 (unsigned int) (m->p_type - PT_LOPROC));
4331 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4332 sprintf (buf, "LOOS+%7.7x",
4333 (unsigned int) (m->p_type - PT_LOOS));
4334 else
4335 snprintf (buf, sizeof (buf), "%8.8x",
4336 (unsigned int) m->p_type);
4337 pt = buf;
4338 }
4339 fflush (stdout);
4340 fprintf (stderr, "%s:", pt);
4341 for (j = 0; j < m->count; j++)
4342 fprintf (stderr, " %s", m->sections [j]->name);
4343 putc ('\n',stderr);
4344 fflush (stderr);
4345 }
4346
4347 static bfd_boolean
4348 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4349 {
4350 void *buf;
4351 bfd_boolean ret;
4352
4353 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4354 return FALSE;
4355 buf = bfd_zmalloc (len);
4356 if (buf == NULL)
4357 return FALSE;
4358 ret = bfd_bwrite (buf, len, abfd) == len;
4359 free (buf);
4360 return ret;
4361 }
4362
4363 /* Assign file positions to the sections based on the mapping from
4364 sections to segments. This function also sets up some fields in
4365 the file header. */
4366
4367 static bfd_boolean
4368 assign_file_positions_for_load_sections (bfd *abfd,
4369 struct bfd_link_info *link_info)
4370 {
4371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4372 struct elf_segment_map *m;
4373 Elf_Internal_Phdr *phdrs;
4374 Elf_Internal_Phdr *p;
4375 file_ptr off;
4376 bfd_size_type maxpagesize;
4377 unsigned int alloc;
4378 unsigned int i, j;
4379 bfd_vma header_pad = 0;
4380
4381 if (link_info == NULL
4382 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4383 return FALSE;
4384
4385 alloc = 0;
4386 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4387 {
4388 ++alloc;
4389 if (m->header_size)
4390 header_pad = m->header_size;
4391 }
4392
4393 if (alloc)
4394 {
4395 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4396 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4397 }
4398 else
4399 {
4400 /* PR binutils/12467. */
4401 elf_elfheader (abfd)->e_phoff = 0;
4402 elf_elfheader (abfd)->e_phentsize = 0;
4403 }
4404
4405 elf_elfheader (abfd)->e_phnum = alloc;
4406
4407 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4408 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4409 else
4410 BFD_ASSERT (elf_program_header_size (abfd)
4411 >= alloc * bed->s->sizeof_phdr);
4412
4413 if (alloc == 0)
4414 {
4415 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4416 return TRUE;
4417 }
4418
4419 /* We're writing the size in elf_program_header_size (abfd),
4420 see assign_file_positions_except_relocs, so make sure we have
4421 that amount allocated, with trailing space cleared.
4422 The variable alloc contains the computed need, while
4423 elf_program_header_size (abfd) contains the size used for the
4424 layout.
4425 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4426 where the layout is forced to according to a larger size in the
4427 last iterations for the testcase ld-elf/header. */
4428 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4429 == 0);
4430 phdrs = (Elf_Internal_Phdr *)
4431 bfd_zalloc2 (abfd,
4432 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4433 sizeof (Elf_Internal_Phdr));
4434 elf_tdata (abfd)->phdr = phdrs;
4435 if (phdrs == NULL)
4436 return FALSE;
4437
4438 maxpagesize = 1;
4439 if ((abfd->flags & D_PAGED) != 0)
4440 maxpagesize = bed->maxpagesize;
4441
4442 off = bed->s->sizeof_ehdr;
4443 off += alloc * bed->s->sizeof_phdr;
4444 if (header_pad < (bfd_vma) off)
4445 header_pad = 0;
4446 else
4447 header_pad -= off;
4448 off += header_pad;
4449
4450 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4451 m != NULL;
4452 m = m->next, p++, j++)
4453 {
4454 asection **secpp;
4455 bfd_vma off_adjust;
4456 bfd_boolean no_contents;
4457
4458 /* If elf_segment_map is not from map_sections_to_segments, the
4459 sections may not be correctly ordered. NOTE: sorting should
4460 not be done to the PT_NOTE section of a corefile, which may
4461 contain several pseudo-sections artificially created by bfd.
4462 Sorting these pseudo-sections breaks things badly. */
4463 if (m->count > 1
4464 && !(elf_elfheader (abfd)->e_type == ET_CORE
4465 && m->p_type == PT_NOTE))
4466 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4467 elf_sort_sections);
4468
4469 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4470 number of sections with contents contributing to both p_filesz
4471 and p_memsz, followed by a number of sections with no contents
4472 that just contribute to p_memsz. In this loop, OFF tracks next
4473 available file offset for PT_LOAD and PT_NOTE segments. */
4474 p->p_type = m->p_type;
4475 p->p_flags = m->p_flags;
4476
4477 if (m->count == 0)
4478 p->p_vaddr = 0;
4479 else
4480 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4481
4482 if (m->p_paddr_valid)
4483 p->p_paddr = m->p_paddr;
4484 else if (m->count == 0)
4485 p->p_paddr = 0;
4486 else
4487 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4488
4489 if (p->p_type == PT_LOAD
4490 && (abfd->flags & D_PAGED) != 0)
4491 {
4492 /* p_align in demand paged PT_LOAD segments effectively stores
4493 the maximum page size. When copying an executable with
4494 objcopy, we set m->p_align from the input file. Use this
4495 value for maxpagesize rather than bed->maxpagesize, which
4496 may be different. Note that we use maxpagesize for PT_TLS
4497 segment alignment later in this function, so we are relying
4498 on at least one PT_LOAD segment appearing before a PT_TLS
4499 segment. */
4500 if (m->p_align_valid)
4501 maxpagesize = m->p_align;
4502
4503 p->p_align = maxpagesize;
4504 }
4505 else if (m->p_align_valid)
4506 p->p_align = m->p_align;
4507 else if (m->count == 0)
4508 p->p_align = 1 << bed->s->log_file_align;
4509 else
4510 p->p_align = 0;
4511
4512 no_contents = FALSE;
4513 off_adjust = 0;
4514 if (p->p_type == PT_LOAD
4515 && m->count > 0)
4516 {
4517 bfd_size_type align;
4518 unsigned int align_power = 0;
4519
4520 if (m->p_align_valid)
4521 align = p->p_align;
4522 else
4523 {
4524 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4525 {
4526 unsigned int secalign;
4527
4528 secalign = bfd_get_section_alignment (abfd, *secpp);
4529 if (secalign > align_power)
4530 align_power = secalign;
4531 }
4532 align = (bfd_size_type) 1 << align_power;
4533 if (align < maxpagesize)
4534 align = maxpagesize;
4535 }
4536
4537 for (i = 0; i < m->count; i++)
4538 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4539 /* If we aren't making room for this section, then
4540 it must be SHT_NOBITS regardless of what we've
4541 set via struct bfd_elf_special_section. */
4542 elf_section_type (m->sections[i]) = SHT_NOBITS;
4543
4544 /* Find out whether this segment contains any loadable
4545 sections. */
4546 no_contents = TRUE;
4547 for (i = 0; i < m->count; i++)
4548 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4549 {
4550 no_contents = FALSE;
4551 break;
4552 }
4553
4554 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4555 off += off_adjust;
4556 if (no_contents)
4557 {
4558 /* We shouldn't need to align the segment on disk since
4559 the segment doesn't need file space, but the gABI
4560 arguably requires the alignment and glibc ld.so
4561 checks it. So to comply with the alignment
4562 requirement but not waste file space, we adjust
4563 p_offset for just this segment. (OFF_ADJUST is
4564 subtracted from OFF later.) This may put p_offset
4565 past the end of file, but that shouldn't matter. */
4566 }
4567 else
4568 off_adjust = 0;
4569 }
4570 /* Make sure the .dynamic section is the first section in the
4571 PT_DYNAMIC segment. */
4572 else if (p->p_type == PT_DYNAMIC
4573 && m->count > 1
4574 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4575 {
4576 _bfd_error_handler
4577 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4578 abfd);
4579 bfd_set_error (bfd_error_bad_value);
4580 return FALSE;
4581 }
4582 /* Set the note section type to SHT_NOTE. */
4583 else if (p->p_type == PT_NOTE)
4584 for (i = 0; i < m->count; i++)
4585 elf_section_type (m->sections[i]) = SHT_NOTE;
4586
4587 p->p_offset = 0;
4588 p->p_filesz = 0;
4589 p->p_memsz = 0;
4590
4591 if (m->includes_filehdr)
4592 {
4593 if (!m->p_flags_valid)
4594 p->p_flags |= PF_R;
4595 p->p_filesz = bed->s->sizeof_ehdr;
4596 p->p_memsz = bed->s->sizeof_ehdr;
4597 if (m->count > 0)
4598 {
4599 if (p->p_vaddr < (bfd_vma) off)
4600 {
4601 (*_bfd_error_handler)
4602 (_("%B: Not enough room for program headers, try linking with -N"),
4603 abfd);
4604 bfd_set_error (bfd_error_bad_value);
4605 return FALSE;
4606 }
4607
4608 p->p_vaddr -= off;
4609 if (!m->p_paddr_valid)
4610 p->p_paddr -= off;
4611 }
4612 }
4613
4614 if (m->includes_phdrs)
4615 {
4616 if (!m->p_flags_valid)
4617 p->p_flags |= PF_R;
4618
4619 if (!m->includes_filehdr)
4620 {
4621 p->p_offset = bed->s->sizeof_ehdr;
4622
4623 if (m->count > 0)
4624 {
4625 p->p_vaddr -= off - p->p_offset;
4626 if (!m->p_paddr_valid)
4627 p->p_paddr -= off - p->p_offset;
4628 }
4629 }
4630
4631 p->p_filesz += alloc * bed->s->sizeof_phdr;
4632 p->p_memsz += alloc * bed->s->sizeof_phdr;
4633 if (m->count)
4634 {
4635 p->p_filesz += header_pad;
4636 p->p_memsz += header_pad;
4637 }
4638 }
4639
4640 if (p->p_type == PT_LOAD
4641 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4642 {
4643 if (!m->includes_filehdr && !m->includes_phdrs)
4644 p->p_offset = off;
4645 else
4646 {
4647 file_ptr adjust;
4648
4649 adjust = off - (p->p_offset + p->p_filesz);
4650 if (!no_contents)
4651 p->p_filesz += adjust;
4652 p->p_memsz += adjust;
4653 }
4654 }
4655
4656 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4657 maps. Set filepos for sections in PT_LOAD segments, and in
4658 core files, for sections in PT_NOTE segments.
4659 assign_file_positions_for_non_load_sections will set filepos
4660 for other sections and update p_filesz for other segments. */
4661 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4662 {
4663 asection *sec;
4664 bfd_size_type align;
4665 Elf_Internal_Shdr *this_hdr;
4666
4667 sec = *secpp;
4668 this_hdr = &elf_section_data (sec)->this_hdr;
4669 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4670
4671 if ((p->p_type == PT_LOAD
4672 || p->p_type == PT_TLS)
4673 && (this_hdr->sh_type != SHT_NOBITS
4674 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4675 && ((this_hdr->sh_flags & SHF_TLS) == 0
4676 || p->p_type == PT_TLS))))
4677 {
4678 bfd_vma p_start = p->p_paddr;
4679 bfd_vma p_end = p_start + p->p_memsz;
4680 bfd_vma s_start = sec->lma;
4681 bfd_vma adjust = s_start - p_end;
4682
4683 if (adjust != 0
4684 && (s_start < p_end
4685 || p_end < p_start))
4686 {
4687 (*_bfd_error_handler)
4688 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4689 (unsigned long) s_start, (unsigned long) p_end);
4690 adjust = 0;
4691 sec->lma = p_end;
4692 }
4693 p->p_memsz += adjust;
4694
4695 if (this_hdr->sh_type != SHT_NOBITS)
4696 {
4697 if (p->p_filesz + adjust < p->p_memsz)
4698 {
4699 /* We have a PROGBITS section following NOBITS ones.
4700 Allocate file space for the NOBITS section(s) and
4701 zero it. */
4702 adjust = p->p_memsz - p->p_filesz;
4703 if (!write_zeros (abfd, off, adjust))
4704 return FALSE;
4705 }
4706 off += adjust;
4707 p->p_filesz += adjust;
4708 }
4709 }
4710
4711 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4712 {
4713 /* The section at i == 0 is the one that actually contains
4714 everything. */
4715 if (i == 0)
4716 {
4717 this_hdr->sh_offset = sec->filepos = off;
4718 off += this_hdr->sh_size;
4719 p->p_filesz = this_hdr->sh_size;
4720 p->p_memsz = 0;
4721 p->p_align = 1;
4722 }
4723 else
4724 {
4725 /* The rest are fake sections that shouldn't be written. */
4726 sec->filepos = 0;
4727 sec->size = 0;
4728 sec->flags = 0;
4729 continue;
4730 }
4731 }
4732 else
4733 {
4734 if (p->p_type == PT_LOAD)
4735 {
4736 this_hdr->sh_offset = sec->filepos = off;
4737 if (this_hdr->sh_type != SHT_NOBITS)
4738 off += this_hdr->sh_size;
4739 }
4740 else if (this_hdr->sh_type == SHT_NOBITS
4741 && (this_hdr->sh_flags & SHF_TLS) != 0
4742 && this_hdr->sh_offset == 0)
4743 {
4744 /* This is a .tbss section that didn't get a PT_LOAD.
4745 (See _bfd_elf_map_sections_to_segments "Create a
4746 final PT_LOAD".) Set sh_offset to the value it
4747 would have if we had created a zero p_filesz and
4748 p_memsz PT_LOAD header for the section. This
4749 also makes the PT_TLS header have the same
4750 p_offset value. */
4751 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4752 off, align);
4753 this_hdr->sh_offset = sec->filepos = off + adjust;
4754 }
4755
4756 if (this_hdr->sh_type != SHT_NOBITS)
4757 {
4758 p->p_filesz += this_hdr->sh_size;
4759 /* A load section without SHF_ALLOC is something like
4760 a note section in a PT_NOTE segment. These take
4761 file space but are not loaded into memory. */
4762 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4763 p->p_memsz += this_hdr->sh_size;
4764 }
4765 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4766 {
4767 if (p->p_type == PT_TLS)
4768 p->p_memsz += this_hdr->sh_size;
4769
4770 /* .tbss is special. It doesn't contribute to p_memsz of
4771 normal segments. */
4772 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4773 p->p_memsz += this_hdr->sh_size;
4774 }
4775
4776 if (align > p->p_align
4777 && !m->p_align_valid
4778 && (p->p_type != PT_LOAD
4779 || (abfd->flags & D_PAGED) == 0))
4780 p->p_align = align;
4781 }
4782
4783 if (!m->p_flags_valid)
4784 {
4785 p->p_flags |= PF_R;
4786 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4787 p->p_flags |= PF_X;
4788 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4789 p->p_flags |= PF_W;
4790 }
4791 }
4792 off -= off_adjust;
4793
4794 /* Check that all sections are in a PT_LOAD segment.
4795 Don't check funky gdb generated core files. */
4796 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4797 {
4798 bfd_boolean check_vma = TRUE;
4799
4800 for (i = 1; i < m->count; i++)
4801 if (m->sections[i]->vma == m->sections[i - 1]->vma
4802 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4803 ->this_hdr), p) != 0
4804 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4805 ->this_hdr), p) != 0)
4806 {
4807 /* Looks like we have overlays packed into the segment. */
4808 check_vma = FALSE;
4809 break;
4810 }
4811
4812 for (i = 0; i < m->count; i++)
4813 {
4814 Elf_Internal_Shdr *this_hdr;
4815 asection *sec;
4816
4817 sec = m->sections[i];
4818 this_hdr = &(elf_section_data(sec)->this_hdr);
4819 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4820 && !ELF_TBSS_SPECIAL (this_hdr, p))
4821 {
4822 (*_bfd_error_handler)
4823 (_("%B: section `%A' can't be allocated in segment %d"),
4824 abfd, sec, j);
4825 print_segment_map (m);
4826 }
4827 }
4828 }
4829 }
4830
4831 elf_next_file_pos (abfd) = off;
4832 return TRUE;
4833 }
4834
4835 /* Assign file positions for the other sections. */
4836
4837 static bfd_boolean
4838 assign_file_positions_for_non_load_sections (bfd *abfd,
4839 struct bfd_link_info *link_info)
4840 {
4841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4842 Elf_Internal_Shdr **i_shdrpp;
4843 Elf_Internal_Shdr **hdrpp;
4844 Elf_Internal_Phdr *phdrs;
4845 Elf_Internal_Phdr *p;
4846 struct elf_segment_map *m;
4847 struct elf_segment_map *hdrs_segment;
4848 bfd_vma filehdr_vaddr, filehdr_paddr;
4849 bfd_vma phdrs_vaddr, phdrs_paddr;
4850 file_ptr off;
4851 unsigned int num_sec;
4852 unsigned int i;
4853 unsigned int count;
4854
4855 i_shdrpp = elf_elfsections (abfd);
4856 num_sec = elf_numsections (abfd);
4857 off = elf_next_file_pos (abfd);
4858 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4859 {
4860 Elf_Internal_Shdr *hdr;
4861
4862 hdr = *hdrpp;
4863 if (hdr->bfd_section != NULL
4864 && (hdr->bfd_section->filepos != 0
4865 || (hdr->sh_type == SHT_NOBITS
4866 && hdr->contents == NULL)))
4867 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4868 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4869 {
4870 if (hdr->sh_size != 0)
4871 (*_bfd_error_handler)
4872 (_("%B: warning: allocated section `%s' not in segment"),
4873 abfd,
4874 (hdr->bfd_section == NULL
4875 ? "*unknown*"
4876 : hdr->bfd_section->name));
4877 /* We don't need to page align empty sections. */
4878 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4879 off += vma_page_aligned_bias (hdr->sh_addr, off,
4880 bed->maxpagesize);
4881 else
4882 off += vma_page_aligned_bias (hdr->sh_addr, off,
4883 hdr->sh_addralign);
4884 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4885 FALSE);
4886 }
4887 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4888 && hdr->bfd_section == NULL)
4889 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4890 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4891 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4892 hdr->sh_offset = -1;
4893 else
4894 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4895 }
4896
4897 /* Now that we have set the section file positions, we can set up
4898 the file positions for the non PT_LOAD segments. */
4899 count = 0;
4900 filehdr_vaddr = 0;
4901 filehdr_paddr = 0;
4902 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4903 phdrs_paddr = 0;
4904 hdrs_segment = NULL;
4905 phdrs = elf_tdata (abfd)->phdr;
4906 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4907 {
4908 ++count;
4909 if (p->p_type != PT_LOAD)
4910 continue;
4911
4912 if (m->includes_filehdr)
4913 {
4914 filehdr_vaddr = p->p_vaddr;
4915 filehdr_paddr = p->p_paddr;
4916 }
4917 if (m->includes_phdrs)
4918 {
4919 phdrs_vaddr = p->p_vaddr;
4920 phdrs_paddr = p->p_paddr;
4921 if (m->includes_filehdr)
4922 {
4923 hdrs_segment = m;
4924 phdrs_vaddr += bed->s->sizeof_ehdr;
4925 phdrs_paddr += bed->s->sizeof_ehdr;
4926 }
4927 }
4928 }
4929
4930 if (hdrs_segment != NULL && link_info != NULL)
4931 {
4932 /* There is a segment that contains both the file headers and the
4933 program headers, so provide a symbol __ehdr_start pointing there.
4934 A program can use this to examine itself robustly. */
4935
4936 struct elf_link_hash_entry *hash
4937 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4938 FALSE, FALSE, TRUE);
4939 /* If the symbol was referenced and not defined, define it. */
4940 if (hash != NULL
4941 && (hash->root.type == bfd_link_hash_new
4942 || hash->root.type == bfd_link_hash_undefined
4943 || hash->root.type == bfd_link_hash_undefweak
4944 || hash->root.type == bfd_link_hash_common))
4945 {
4946 asection *s = NULL;
4947 if (hdrs_segment->count != 0)
4948 /* The segment contains sections, so use the first one. */
4949 s = hdrs_segment->sections[0];
4950 else
4951 /* Use the first (i.e. lowest-addressed) section in any segment. */
4952 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4953 if (m->count != 0)
4954 {
4955 s = m->sections[0];
4956 break;
4957 }
4958
4959 if (s != NULL)
4960 {
4961 hash->root.u.def.value = filehdr_vaddr - s->vma;
4962 hash->root.u.def.section = s;
4963 }
4964 else
4965 {
4966 hash->root.u.def.value = filehdr_vaddr;
4967 hash->root.u.def.section = bfd_abs_section_ptr;
4968 }
4969
4970 hash->root.type = bfd_link_hash_defined;
4971 hash->def_regular = 1;
4972 hash->non_elf = 0;
4973 }
4974 }
4975
4976 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4977 {
4978 if (p->p_type == PT_GNU_RELRO)
4979 {
4980 const Elf_Internal_Phdr *lp;
4981 struct elf_segment_map *lm;
4982
4983 if (link_info != NULL)
4984 {
4985 /* During linking the range of the RELRO segment is passed
4986 in link_info. */
4987 for (lm = elf_seg_map (abfd), lp = phdrs;
4988 lm != NULL;
4989 lm = lm->next, lp++)
4990 {
4991 if (lp->p_type == PT_LOAD
4992 && lp->p_vaddr < link_info->relro_end
4993 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4994 && lm->count != 0
4995 && lm->sections[0]->vma >= link_info->relro_start)
4996 break;
4997 }
4998
4999 /* PR ld/14207. If the RELRO segment doesn't fit in the
5000 LOAD segment, it should be removed. */
5001 BFD_ASSERT (lm != NULL);
5002 }
5003 else
5004 {
5005 /* Otherwise we are copying an executable or shared
5006 library, but we need to use the same linker logic. */
5007 for (lp = phdrs; lp < phdrs + count; ++lp)
5008 {
5009 if (lp->p_type == PT_LOAD
5010 && lp->p_paddr == p->p_paddr)
5011 break;
5012 }
5013 }
5014
5015 if (lp < phdrs + count)
5016 {
5017 p->p_vaddr = lp->p_vaddr;
5018 p->p_paddr = lp->p_paddr;
5019 p->p_offset = lp->p_offset;
5020 if (link_info != NULL)
5021 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5022 else if (m->p_size_valid)
5023 p->p_filesz = m->p_size;
5024 else
5025 abort ();
5026 p->p_memsz = p->p_filesz;
5027 /* Preserve the alignment and flags if they are valid. The
5028 gold linker generates RW/4 for the PT_GNU_RELRO section.
5029 It is better for objcopy/strip to honor these attributes
5030 otherwise gdb will choke when using separate debug files.
5031 */
5032 if (!m->p_align_valid)
5033 p->p_align = 1;
5034 if (!m->p_flags_valid)
5035 p->p_flags = (lp->p_flags & ~PF_W);
5036 }
5037 else
5038 {
5039 memset (p, 0, sizeof *p);
5040 p->p_type = PT_NULL;
5041 }
5042 }
5043 else if (p->p_type == PT_GNU_STACK)
5044 {
5045 if (m->p_size_valid)
5046 p->p_memsz = m->p_size;
5047 }
5048 else if (m->count != 0)
5049 {
5050 if (p->p_type != PT_LOAD
5051 && (p->p_type != PT_NOTE
5052 || bfd_get_format (abfd) != bfd_core))
5053 {
5054 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5055
5056 p->p_filesz = 0;
5057 p->p_offset = m->sections[0]->filepos;
5058 for (i = m->count; i-- != 0;)
5059 {
5060 asection *sect = m->sections[i];
5061 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5062 if (hdr->sh_type != SHT_NOBITS)
5063 {
5064 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5065 + hdr->sh_size);
5066 break;
5067 }
5068 }
5069 }
5070 }
5071 else if (m->includes_filehdr)
5072 {
5073 p->p_vaddr = filehdr_vaddr;
5074 if (! m->p_paddr_valid)
5075 p->p_paddr = filehdr_paddr;
5076 }
5077 else if (m->includes_phdrs)
5078 {
5079 p->p_vaddr = phdrs_vaddr;
5080 if (! m->p_paddr_valid)
5081 p->p_paddr = phdrs_paddr;
5082 }
5083 }
5084
5085 elf_next_file_pos (abfd) = off;
5086
5087 return TRUE;
5088 }
5089
5090 /* Work out the file positions of all the sections. This is called by
5091 _bfd_elf_compute_section_file_positions. All the section sizes and
5092 VMAs must be known before this is called.
5093
5094 Reloc sections come in two flavours: Those processed specially as
5095 "side-channel" data attached to a section to which they apply, and
5096 those that bfd doesn't process as relocations. The latter sort are
5097 stored in a normal bfd section by bfd_section_from_shdr. We don't
5098 consider the former sort here, unless they form part of the loadable
5099 image. Reloc sections not assigned here will be handled later by
5100 assign_file_positions_for_relocs.
5101
5102 We also don't set the positions of the .symtab and .strtab here. */
5103
5104 static bfd_boolean
5105 assign_file_positions_except_relocs (bfd *abfd,
5106 struct bfd_link_info *link_info)
5107 {
5108 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5109 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5110 file_ptr off;
5111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5112
5113 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5114 && bfd_get_format (abfd) != bfd_core)
5115 {
5116 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5117 unsigned int num_sec = elf_numsections (abfd);
5118 Elf_Internal_Shdr **hdrpp;
5119 unsigned int i;
5120
5121 /* Start after the ELF header. */
5122 off = i_ehdrp->e_ehsize;
5123
5124 /* We are not creating an executable, which means that we are
5125 not creating a program header, and that the actual order of
5126 the sections in the file is unimportant. */
5127 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5128 {
5129 Elf_Internal_Shdr *hdr;
5130
5131 hdr = *hdrpp;
5132 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5133 && hdr->bfd_section == NULL)
5134 || i == elf_onesymtab (abfd)
5135 || i == elf_symtab_shndx (abfd)
5136 || i == elf_strtab_sec (abfd))
5137 {
5138 hdr->sh_offset = -1;
5139 }
5140 else
5141 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5142 }
5143 }
5144 else
5145 {
5146 unsigned int alloc;
5147
5148 /* Assign file positions for the loaded sections based on the
5149 assignment of sections to segments. */
5150 if (!assign_file_positions_for_load_sections (abfd, link_info))
5151 return FALSE;
5152
5153 /* And for non-load sections. */
5154 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5155 return FALSE;
5156
5157 if (bed->elf_backend_modify_program_headers != NULL)
5158 {
5159 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5160 return FALSE;
5161 }
5162
5163 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5164 if (link_info != NULL
5165 && link_info->executable
5166 && link_info->shared)
5167 {
5168 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5169 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5170 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5171
5172 /* Find the lowest p_vaddr in PT_LOAD segments. */
5173 bfd_vma p_vaddr = (bfd_vma) -1;
5174 for (; segment < end_segment; segment++)
5175 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5176 p_vaddr = segment->p_vaddr;
5177
5178 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5179 segments is non-zero. */
5180 if (p_vaddr)
5181 i_ehdrp->e_type = ET_EXEC;
5182 }
5183
5184 /* Write out the program headers. */
5185 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5186 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5187 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5188 return FALSE;
5189
5190 off = elf_next_file_pos (abfd);
5191 }
5192
5193 /* Place the section headers. */
5194 off = align_file_position (off, 1 << bed->s->log_file_align);
5195 i_ehdrp->e_shoff = off;
5196 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5197
5198 elf_next_file_pos (abfd) = off;
5199
5200 return TRUE;
5201 }
5202
5203 static bfd_boolean
5204 prep_headers (bfd *abfd)
5205 {
5206 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5207 struct elf_strtab_hash *shstrtab;
5208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5209
5210 i_ehdrp = elf_elfheader (abfd);
5211
5212 shstrtab = _bfd_elf_strtab_init ();
5213 if (shstrtab == NULL)
5214 return FALSE;
5215
5216 elf_shstrtab (abfd) = shstrtab;
5217
5218 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5219 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5220 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5221 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5222
5223 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5224 i_ehdrp->e_ident[EI_DATA] =
5225 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5226 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5227
5228 if ((abfd->flags & DYNAMIC) != 0)
5229 i_ehdrp->e_type = ET_DYN;
5230 else if ((abfd->flags & EXEC_P) != 0)
5231 i_ehdrp->e_type = ET_EXEC;
5232 else if (bfd_get_format (abfd) == bfd_core)
5233 i_ehdrp->e_type = ET_CORE;
5234 else
5235 i_ehdrp->e_type = ET_REL;
5236
5237 switch (bfd_get_arch (abfd))
5238 {
5239 case bfd_arch_unknown:
5240 i_ehdrp->e_machine = EM_NONE;
5241 break;
5242
5243 /* There used to be a long list of cases here, each one setting
5244 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5245 in the corresponding bfd definition. To avoid duplication,
5246 the switch was removed. Machines that need special handling
5247 can generally do it in elf_backend_final_write_processing(),
5248 unless they need the information earlier than the final write.
5249 Such need can generally be supplied by replacing the tests for
5250 e_machine with the conditions used to determine it. */
5251 default:
5252 i_ehdrp->e_machine = bed->elf_machine_code;
5253 }
5254
5255 i_ehdrp->e_version = bed->s->ev_current;
5256 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5257
5258 /* No program header, for now. */
5259 i_ehdrp->e_phoff = 0;
5260 i_ehdrp->e_phentsize = 0;
5261 i_ehdrp->e_phnum = 0;
5262
5263 /* Each bfd section is section header entry. */
5264 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5265 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5266
5267 /* If we're building an executable, we'll need a program header table. */
5268 if (abfd->flags & EXEC_P)
5269 /* It all happens later. */
5270 ;
5271 else
5272 {
5273 i_ehdrp->e_phentsize = 0;
5274 i_ehdrp->e_phoff = 0;
5275 }
5276
5277 elf_tdata (abfd)->symtab_hdr.sh_name =
5278 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5279 elf_tdata (abfd)->strtab_hdr.sh_name =
5280 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5281 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5282 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5283 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5284 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5285 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5286 return FALSE;
5287
5288 return TRUE;
5289 }
5290
5291 /* Assign file positions for all the reloc sections which are not part
5292 of the loadable file image. */
5293
5294 void
5295 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5296 {
5297 file_ptr off;
5298 unsigned int i, num_sec;
5299 Elf_Internal_Shdr **shdrpp;
5300
5301 off = elf_next_file_pos (abfd);
5302
5303 num_sec = elf_numsections (abfd);
5304 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5305 {
5306 Elf_Internal_Shdr *shdrp;
5307
5308 shdrp = *shdrpp;
5309 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5310 && shdrp->sh_offset == -1)
5311 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5312 }
5313
5314 elf_next_file_pos (abfd) = off;
5315 }
5316
5317 bfd_boolean
5318 _bfd_elf_write_object_contents (bfd *abfd)
5319 {
5320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5321 Elf_Internal_Shdr **i_shdrp;
5322 bfd_boolean failed;
5323 unsigned int count, num_sec;
5324 struct elf_obj_tdata *t;
5325
5326 if (! abfd->output_has_begun
5327 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5328 return FALSE;
5329
5330 i_shdrp = elf_elfsections (abfd);
5331
5332 failed = FALSE;
5333 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5334 if (failed)
5335 return FALSE;
5336
5337 _bfd_elf_assign_file_positions_for_relocs (abfd);
5338
5339 /* After writing the headers, we need to write the sections too... */
5340 num_sec = elf_numsections (abfd);
5341 for (count = 1; count < num_sec; count++)
5342 {
5343 if (bed->elf_backend_section_processing)
5344 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5345 if (i_shdrp[count]->contents)
5346 {
5347 bfd_size_type amt = i_shdrp[count]->sh_size;
5348
5349 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5350 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5351 return FALSE;
5352 }
5353 }
5354
5355 /* Write out the section header names. */
5356 t = elf_tdata (abfd);
5357 if (elf_shstrtab (abfd) != NULL
5358 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5359 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5360 return FALSE;
5361
5362 if (bed->elf_backend_final_write_processing)
5363 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5364
5365 if (!bed->s->write_shdrs_and_ehdr (abfd))
5366 return FALSE;
5367
5368 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5369 if (t->o->build_id.after_write_object_contents != NULL)
5370 return (*t->o->build_id.after_write_object_contents) (abfd);
5371
5372 return TRUE;
5373 }
5374
5375 bfd_boolean
5376 _bfd_elf_write_corefile_contents (bfd *abfd)
5377 {
5378 /* Hopefully this can be done just like an object file. */
5379 return _bfd_elf_write_object_contents (abfd);
5380 }
5381
5382 /* Given a section, search the header to find them. */
5383
5384 unsigned int
5385 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5386 {
5387 const struct elf_backend_data *bed;
5388 unsigned int sec_index;
5389
5390 if (elf_section_data (asect) != NULL
5391 && elf_section_data (asect)->this_idx != 0)
5392 return elf_section_data (asect)->this_idx;
5393
5394 if (bfd_is_abs_section (asect))
5395 sec_index = SHN_ABS;
5396 else if (bfd_is_com_section (asect))
5397 sec_index = SHN_COMMON;
5398 else if (bfd_is_und_section (asect))
5399 sec_index = SHN_UNDEF;
5400 else
5401 sec_index = SHN_BAD;
5402
5403 bed = get_elf_backend_data (abfd);
5404 if (bed->elf_backend_section_from_bfd_section)
5405 {
5406 int retval = sec_index;
5407
5408 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5409 return retval;
5410 }
5411
5412 if (sec_index == SHN_BAD)
5413 bfd_set_error (bfd_error_nonrepresentable_section);
5414
5415 return sec_index;
5416 }
5417
5418 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5419 on error. */
5420
5421 int
5422 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5423 {
5424 asymbol *asym_ptr = *asym_ptr_ptr;
5425 int idx;
5426 flagword flags = asym_ptr->flags;
5427
5428 /* When gas creates relocations against local labels, it creates its
5429 own symbol for the section, but does put the symbol into the
5430 symbol chain, so udata is 0. When the linker is generating
5431 relocatable output, this section symbol may be for one of the
5432 input sections rather than the output section. */
5433 if (asym_ptr->udata.i == 0
5434 && (flags & BSF_SECTION_SYM)
5435 && asym_ptr->section)
5436 {
5437 asection *sec;
5438 int indx;
5439
5440 sec = asym_ptr->section;
5441 if (sec->owner != abfd && sec->output_section != NULL)
5442 sec = sec->output_section;
5443 if (sec->owner == abfd
5444 && (indx = sec->index) < elf_num_section_syms (abfd)
5445 && elf_section_syms (abfd)[indx] != NULL)
5446 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5447 }
5448
5449 idx = asym_ptr->udata.i;
5450
5451 if (idx == 0)
5452 {
5453 /* This case can occur when using --strip-symbol on a symbol
5454 which is used in a relocation entry. */
5455 (*_bfd_error_handler)
5456 (_("%B: symbol `%s' required but not present"),
5457 abfd, bfd_asymbol_name (asym_ptr));
5458 bfd_set_error (bfd_error_no_symbols);
5459 return -1;
5460 }
5461
5462 #if DEBUG & 4
5463 {
5464 fprintf (stderr,
5465 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5466 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5467 fflush (stderr);
5468 }
5469 #endif
5470
5471 return idx;
5472 }
5473
5474 /* Rewrite program header information. */
5475
5476 static bfd_boolean
5477 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5478 {
5479 Elf_Internal_Ehdr *iehdr;
5480 struct elf_segment_map *map;
5481 struct elf_segment_map *map_first;
5482 struct elf_segment_map **pointer_to_map;
5483 Elf_Internal_Phdr *segment;
5484 asection *section;
5485 unsigned int i;
5486 unsigned int num_segments;
5487 bfd_boolean phdr_included = FALSE;
5488 bfd_boolean p_paddr_valid;
5489 bfd_vma maxpagesize;
5490 struct elf_segment_map *phdr_adjust_seg = NULL;
5491 unsigned int phdr_adjust_num = 0;
5492 const struct elf_backend_data *bed;
5493
5494 bed = get_elf_backend_data (ibfd);
5495 iehdr = elf_elfheader (ibfd);
5496
5497 map_first = NULL;
5498 pointer_to_map = &map_first;
5499
5500 num_segments = elf_elfheader (ibfd)->e_phnum;
5501 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5502
5503 /* Returns the end address of the segment + 1. */
5504 #define SEGMENT_END(segment, start) \
5505 (start + (segment->p_memsz > segment->p_filesz \
5506 ? segment->p_memsz : segment->p_filesz))
5507
5508 #define SECTION_SIZE(section, segment) \
5509 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5510 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5511 ? section->size : 0)
5512
5513 /* Returns TRUE if the given section is contained within
5514 the given segment. VMA addresses are compared. */
5515 #define IS_CONTAINED_BY_VMA(section, segment) \
5516 (section->vma >= segment->p_vaddr \
5517 && (section->vma + SECTION_SIZE (section, segment) \
5518 <= (SEGMENT_END (segment, segment->p_vaddr))))
5519
5520 /* Returns TRUE if the given section is contained within
5521 the given segment. LMA addresses are compared. */
5522 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5523 (section->lma >= base \
5524 && (section->lma + SECTION_SIZE (section, segment) \
5525 <= SEGMENT_END (segment, base)))
5526
5527 /* Handle PT_NOTE segment. */
5528 #define IS_NOTE(p, s) \
5529 (p->p_type == PT_NOTE \
5530 && elf_section_type (s) == SHT_NOTE \
5531 && (bfd_vma) s->filepos >= p->p_offset \
5532 && ((bfd_vma) s->filepos + s->size \
5533 <= p->p_offset + p->p_filesz))
5534
5535 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5536 etc. */
5537 #define IS_COREFILE_NOTE(p, s) \
5538 (IS_NOTE (p, s) \
5539 && bfd_get_format (ibfd) == bfd_core \
5540 && s->vma == 0 \
5541 && s->lma == 0)
5542
5543 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5544 linker, which generates a PT_INTERP section with p_vaddr and
5545 p_memsz set to 0. */
5546 #define IS_SOLARIS_PT_INTERP(p, s) \
5547 (p->p_vaddr == 0 \
5548 && p->p_paddr == 0 \
5549 && p->p_memsz == 0 \
5550 && p->p_filesz > 0 \
5551 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5552 && s->size > 0 \
5553 && (bfd_vma) s->filepos >= p->p_offset \
5554 && ((bfd_vma) s->filepos + s->size \
5555 <= p->p_offset + p->p_filesz))
5556
5557 /* Decide if the given section should be included in the given segment.
5558 A section will be included if:
5559 1. It is within the address space of the segment -- we use the LMA
5560 if that is set for the segment and the VMA otherwise,
5561 2. It is an allocated section or a NOTE section in a PT_NOTE
5562 segment.
5563 3. There is an output section associated with it,
5564 4. The section has not already been allocated to a previous segment.
5565 5. PT_GNU_STACK segments do not include any sections.
5566 6. PT_TLS segment includes only SHF_TLS sections.
5567 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5568 8. PT_DYNAMIC should not contain empty sections at the beginning
5569 (with the possible exception of .dynamic). */
5570 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5571 ((((segment->p_paddr \
5572 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5573 : IS_CONTAINED_BY_VMA (section, segment)) \
5574 && (section->flags & SEC_ALLOC) != 0) \
5575 || IS_NOTE (segment, section)) \
5576 && segment->p_type != PT_GNU_STACK \
5577 && (segment->p_type != PT_TLS \
5578 || (section->flags & SEC_THREAD_LOCAL)) \
5579 && (segment->p_type == PT_LOAD \
5580 || segment->p_type == PT_TLS \
5581 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5582 && (segment->p_type != PT_DYNAMIC \
5583 || SECTION_SIZE (section, segment) > 0 \
5584 || (segment->p_paddr \
5585 ? segment->p_paddr != section->lma \
5586 : segment->p_vaddr != section->vma) \
5587 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5588 == 0)) \
5589 && !section->segment_mark)
5590
5591 /* If the output section of a section in the input segment is NULL,
5592 it is removed from the corresponding output segment. */
5593 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5594 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5595 && section->output_section != NULL)
5596
5597 /* Returns TRUE iff seg1 starts after the end of seg2. */
5598 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5599 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5600
5601 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5602 their VMA address ranges and their LMA address ranges overlap.
5603 It is possible to have overlapping VMA ranges without overlapping LMA
5604 ranges. RedBoot images for example can have both .data and .bss mapped
5605 to the same VMA range, but with the .data section mapped to a different
5606 LMA. */
5607 #define SEGMENT_OVERLAPS(seg1, seg2) \
5608 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5609 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5610 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5611 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5612
5613 /* Initialise the segment mark field. */
5614 for (section = ibfd->sections; section != NULL; section = section->next)
5615 section->segment_mark = FALSE;
5616
5617 /* The Solaris linker creates program headers in which all the
5618 p_paddr fields are zero. When we try to objcopy or strip such a
5619 file, we get confused. Check for this case, and if we find it
5620 don't set the p_paddr_valid fields. */
5621 p_paddr_valid = FALSE;
5622 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5623 i < num_segments;
5624 i++, segment++)
5625 if (segment->p_paddr != 0)
5626 {
5627 p_paddr_valid = TRUE;
5628 break;
5629 }
5630
5631 /* Scan through the segments specified in the program header
5632 of the input BFD. For this first scan we look for overlaps
5633 in the loadable segments. These can be created by weird
5634 parameters to objcopy. Also, fix some solaris weirdness. */
5635 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5636 i < num_segments;
5637 i++, segment++)
5638 {
5639 unsigned int j;
5640 Elf_Internal_Phdr *segment2;
5641
5642 if (segment->p_type == PT_INTERP)
5643 for (section = ibfd->sections; section; section = section->next)
5644 if (IS_SOLARIS_PT_INTERP (segment, section))
5645 {
5646 /* Mininal change so that the normal section to segment
5647 assignment code will work. */
5648 segment->p_vaddr = section->vma;
5649 break;
5650 }
5651
5652 if (segment->p_type != PT_LOAD)
5653 {
5654 /* Remove PT_GNU_RELRO segment. */
5655 if (segment->p_type == PT_GNU_RELRO)
5656 segment->p_type = PT_NULL;
5657 continue;
5658 }
5659
5660 /* Determine if this segment overlaps any previous segments. */
5661 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5662 {
5663 bfd_signed_vma extra_length;
5664
5665 if (segment2->p_type != PT_LOAD
5666 || !SEGMENT_OVERLAPS (segment, segment2))
5667 continue;
5668
5669 /* Merge the two segments together. */
5670 if (segment2->p_vaddr < segment->p_vaddr)
5671 {
5672 /* Extend SEGMENT2 to include SEGMENT and then delete
5673 SEGMENT. */
5674 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5675 - SEGMENT_END (segment2, segment2->p_vaddr));
5676
5677 if (extra_length > 0)
5678 {
5679 segment2->p_memsz += extra_length;
5680 segment2->p_filesz += extra_length;
5681 }
5682
5683 segment->p_type = PT_NULL;
5684
5685 /* Since we have deleted P we must restart the outer loop. */
5686 i = 0;
5687 segment = elf_tdata (ibfd)->phdr;
5688 break;
5689 }
5690 else
5691 {
5692 /* Extend SEGMENT to include SEGMENT2 and then delete
5693 SEGMENT2. */
5694 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5695 - SEGMENT_END (segment, segment->p_vaddr));
5696
5697 if (extra_length > 0)
5698 {
5699 segment->p_memsz += extra_length;
5700 segment->p_filesz += extra_length;
5701 }
5702
5703 segment2->p_type = PT_NULL;
5704 }
5705 }
5706 }
5707
5708 /* The second scan attempts to assign sections to segments. */
5709 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5710 i < num_segments;
5711 i++, segment++)
5712 {
5713 unsigned int section_count;
5714 asection **sections;
5715 asection *output_section;
5716 unsigned int isec;
5717 bfd_vma matching_lma;
5718 bfd_vma suggested_lma;
5719 unsigned int j;
5720 bfd_size_type amt;
5721 asection *first_section;
5722 bfd_boolean first_matching_lma;
5723 bfd_boolean first_suggested_lma;
5724
5725 if (segment->p_type == PT_NULL)
5726 continue;
5727
5728 first_section = NULL;
5729 /* Compute how many sections might be placed into this segment. */
5730 for (section = ibfd->sections, section_count = 0;
5731 section != NULL;
5732 section = section->next)
5733 {
5734 /* Find the first section in the input segment, which may be
5735 removed from the corresponding output segment. */
5736 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5737 {
5738 if (first_section == NULL)
5739 first_section = section;
5740 if (section->output_section != NULL)
5741 ++section_count;
5742 }
5743 }
5744
5745 /* Allocate a segment map big enough to contain
5746 all of the sections we have selected. */
5747 amt = sizeof (struct elf_segment_map);
5748 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5749 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5750 if (map == NULL)
5751 return FALSE;
5752
5753 /* Initialise the fields of the segment map. Default to
5754 using the physical address of the segment in the input BFD. */
5755 map->next = NULL;
5756 map->p_type = segment->p_type;
5757 map->p_flags = segment->p_flags;
5758 map->p_flags_valid = 1;
5759
5760 /* If the first section in the input segment is removed, there is
5761 no need to preserve segment physical address in the corresponding
5762 output segment. */
5763 if (!first_section || first_section->output_section != NULL)
5764 {
5765 map->p_paddr = segment->p_paddr;
5766 map->p_paddr_valid = p_paddr_valid;
5767 }
5768
5769 /* Determine if this segment contains the ELF file header
5770 and if it contains the program headers themselves. */
5771 map->includes_filehdr = (segment->p_offset == 0
5772 && segment->p_filesz >= iehdr->e_ehsize);
5773 map->includes_phdrs = 0;
5774
5775 if (!phdr_included || segment->p_type != PT_LOAD)
5776 {
5777 map->includes_phdrs =
5778 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5779 && (segment->p_offset + segment->p_filesz
5780 >= ((bfd_vma) iehdr->e_phoff
5781 + iehdr->e_phnum * iehdr->e_phentsize)));
5782
5783 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5784 phdr_included = TRUE;
5785 }
5786
5787 if (section_count == 0)
5788 {
5789 /* Special segments, such as the PT_PHDR segment, may contain
5790 no sections, but ordinary, loadable segments should contain
5791 something. They are allowed by the ELF spec however, so only
5792 a warning is produced. */
5793 if (segment->p_type == PT_LOAD)
5794 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5795 " detected, is this intentional ?\n"),
5796 ibfd);
5797
5798 map->count = 0;
5799 *pointer_to_map = map;
5800 pointer_to_map = &map->next;
5801
5802 continue;
5803 }
5804
5805 /* Now scan the sections in the input BFD again and attempt
5806 to add their corresponding output sections to the segment map.
5807 The problem here is how to handle an output section which has
5808 been moved (ie had its LMA changed). There are four possibilities:
5809
5810 1. None of the sections have been moved.
5811 In this case we can continue to use the segment LMA from the
5812 input BFD.
5813
5814 2. All of the sections have been moved by the same amount.
5815 In this case we can change the segment's LMA to match the LMA
5816 of the first section.
5817
5818 3. Some of the sections have been moved, others have not.
5819 In this case those sections which have not been moved can be
5820 placed in the current segment which will have to have its size,
5821 and possibly its LMA changed, and a new segment or segments will
5822 have to be created to contain the other sections.
5823
5824 4. The sections have been moved, but not by the same amount.
5825 In this case we can change the segment's LMA to match the LMA
5826 of the first section and we will have to create a new segment
5827 or segments to contain the other sections.
5828
5829 In order to save time, we allocate an array to hold the section
5830 pointers that we are interested in. As these sections get assigned
5831 to a segment, they are removed from this array. */
5832
5833 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5834 if (sections == NULL)
5835 return FALSE;
5836
5837 /* Step One: Scan for segment vs section LMA conflicts.
5838 Also add the sections to the section array allocated above.
5839 Also add the sections to the current segment. In the common
5840 case, where the sections have not been moved, this means that
5841 we have completely filled the segment, and there is nothing
5842 more to do. */
5843 isec = 0;
5844 matching_lma = 0;
5845 suggested_lma = 0;
5846 first_matching_lma = TRUE;
5847 first_suggested_lma = TRUE;
5848
5849 for (section = ibfd->sections;
5850 section != NULL;
5851 section = section->next)
5852 if (section == first_section)
5853 break;
5854
5855 for (j = 0; section != NULL; section = section->next)
5856 {
5857 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5858 {
5859 output_section = section->output_section;
5860
5861 sections[j++] = section;
5862
5863 /* The Solaris native linker always sets p_paddr to 0.
5864 We try to catch that case here, and set it to the
5865 correct value. Note - some backends require that
5866 p_paddr be left as zero. */
5867 if (!p_paddr_valid
5868 && segment->p_vaddr != 0
5869 && !bed->want_p_paddr_set_to_zero
5870 && isec == 0
5871 && output_section->lma != 0
5872 && output_section->vma == (segment->p_vaddr
5873 + (map->includes_filehdr
5874 ? iehdr->e_ehsize
5875 : 0)
5876 + (map->includes_phdrs
5877 ? (iehdr->e_phnum
5878 * iehdr->e_phentsize)
5879 : 0)))
5880 map->p_paddr = segment->p_vaddr;
5881
5882 /* Match up the physical address of the segment with the
5883 LMA address of the output section. */
5884 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5885 || IS_COREFILE_NOTE (segment, section)
5886 || (bed->want_p_paddr_set_to_zero
5887 && IS_CONTAINED_BY_VMA (output_section, segment)))
5888 {
5889 if (first_matching_lma || output_section->lma < matching_lma)
5890 {
5891 matching_lma = output_section->lma;
5892 first_matching_lma = FALSE;
5893 }
5894
5895 /* We assume that if the section fits within the segment
5896 then it does not overlap any other section within that
5897 segment. */
5898 map->sections[isec++] = output_section;
5899 }
5900 else if (first_suggested_lma)
5901 {
5902 suggested_lma = output_section->lma;
5903 first_suggested_lma = FALSE;
5904 }
5905
5906 if (j == section_count)
5907 break;
5908 }
5909 }
5910
5911 BFD_ASSERT (j == section_count);
5912
5913 /* Step Two: Adjust the physical address of the current segment,
5914 if necessary. */
5915 if (isec == section_count)
5916 {
5917 /* All of the sections fitted within the segment as currently
5918 specified. This is the default case. Add the segment to
5919 the list of built segments and carry on to process the next
5920 program header in the input BFD. */
5921 map->count = section_count;
5922 *pointer_to_map = map;
5923 pointer_to_map = &map->next;
5924
5925 if (p_paddr_valid
5926 && !bed->want_p_paddr_set_to_zero
5927 && matching_lma != map->p_paddr
5928 && !map->includes_filehdr
5929 && !map->includes_phdrs)
5930 /* There is some padding before the first section in the
5931 segment. So, we must account for that in the output
5932 segment's vma. */
5933 map->p_vaddr_offset = matching_lma - map->p_paddr;
5934
5935 free (sections);
5936 continue;
5937 }
5938 else
5939 {
5940 if (!first_matching_lma)
5941 {
5942 /* At least one section fits inside the current segment.
5943 Keep it, but modify its physical address to match the
5944 LMA of the first section that fitted. */
5945 map->p_paddr = matching_lma;
5946 }
5947 else
5948 {
5949 /* None of the sections fitted inside the current segment.
5950 Change the current segment's physical address to match
5951 the LMA of the first section. */
5952 map->p_paddr = suggested_lma;
5953 }
5954
5955 /* Offset the segment physical address from the lma
5956 to allow for space taken up by elf headers. */
5957 if (map->includes_filehdr)
5958 {
5959 if (map->p_paddr >= iehdr->e_ehsize)
5960 map->p_paddr -= iehdr->e_ehsize;
5961 else
5962 {
5963 map->includes_filehdr = FALSE;
5964 map->includes_phdrs = FALSE;
5965 }
5966 }
5967
5968 if (map->includes_phdrs)
5969 {
5970 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5971 {
5972 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5973
5974 /* iehdr->e_phnum is just an estimate of the number
5975 of program headers that we will need. Make a note
5976 here of the number we used and the segment we chose
5977 to hold these headers, so that we can adjust the
5978 offset when we know the correct value. */
5979 phdr_adjust_num = iehdr->e_phnum;
5980 phdr_adjust_seg = map;
5981 }
5982 else
5983 map->includes_phdrs = FALSE;
5984 }
5985 }
5986
5987 /* Step Three: Loop over the sections again, this time assigning
5988 those that fit to the current segment and removing them from the
5989 sections array; but making sure not to leave large gaps. Once all
5990 possible sections have been assigned to the current segment it is
5991 added to the list of built segments and if sections still remain
5992 to be assigned, a new segment is constructed before repeating
5993 the loop. */
5994 isec = 0;
5995 do
5996 {
5997 map->count = 0;
5998 suggested_lma = 0;
5999 first_suggested_lma = TRUE;
6000
6001 /* Fill the current segment with sections that fit. */
6002 for (j = 0; j < section_count; j++)
6003 {
6004 section = sections[j];
6005
6006 if (section == NULL)
6007 continue;
6008
6009 output_section = section->output_section;
6010
6011 BFD_ASSERT (output_section != NULL);
6012
6013 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6014 || IS_COREFILE_NOTE (segment, section))
6015 {
6016 if (map->count == 0)
6017 {
6018 /* If the first section in a segment does not start at
6019 the beginning of the segment, then something is
6020 wrong. */
6021 if (output_section->lma
6022 != (map->p_paddr
6023 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6024 + (map->includes_phdrs
6025 ? iehdr->e_phnum * iehdr->e_phentsize
6026 : 0)))
6027 abort ();
6028 }
6029 else
6030 {
6031 asection *prev_sec;
6032
6033 prev_sec = map->sections[map->count - 1];
6034
6035 /* If the gap between the end of the previous section
6036 and the start of this section is more than
6037 maxpagesize then we need to start a new segment. */
6038 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6039 maxpagesize)
6040 < BFD_ALIGN (output_section->lma, maxpagesize))
6041 || (prev_sec->lma + prev_sec->size
6042 > output_section->lma))
6043 {
6044 if (first_suggested_lma)
6045 {
6046 suggested_lma = output_section->lma;
6047 first_suggested_lma = FALSE;
6048 }
6049
6050 continue;
6051 }
6052 }
6053
6054 map->sections[map->count++] = output_section;
6055 ++isec;
6056 sections[j] = NULL;
6057 section->segment_mark = TRUE;
6058 }
6059 else if (first_suggested_lma)
6060 {
6061 suggested_lma = output_section->lma;
6062 first_suggested_lma = FALSE;
6063 }
6064 }
6065
6066 BFD_ASSERT (map->count > 0);
6067
6068 /* Add the current segment to the list of built segments. */
6069 *pointer_to_map = map;
6070 pointer_to_map = &map->next;
6071
6072 if (isec < section_count)
6073 {
6074 /* We still have not allocated all of the sections to
6075 segments. Create a new segment here, initialise it
6076 and carry on looping. */
6077 amt = sizeof (struct elf_segment_map);
6078 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6079 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6080 if (map == NULL)
6081 {
6082 free (sections);
6083 return FALSE;
6084 }
6085
6086 /* Initialise the fields of the segment map. Set the physical
6087 physical address to the LMA of the first section that has
6088 not yet been assigned. */
6089 map->next = NULL;
6090 map->p_type = segment->p_type;
6091 map->p_flags = segment->p_flags;
6092 map->p_flags_valid = 1;
6093 map->p_paddr = suggested_lma;
6094 map->p_paddr_valid = p_paddr_valid;
6095 map->includes_filehdr = 0;
6096 map->includes_phdrs = 0;
6097 }
6098 }
6099 while (isec < section_count);
6100
6101 free (sections);
6102 }
6103
6104 elf_seg_map (obfd) = map_first;
6105
6106 /* If we had to estimate the number of program headers that were
6107 going to be needed, then check our estimate now and adjust
6108 the offset if necessary. */
6109 if (phdr_adjust_seg != NULL)
6110 {
6111 unsigned int count;
6112
6113 for (count = 0, map = map_first; map != NULL; map = map->next)
6114 count++;
6115
6116 if (count > phdr_adjust_num)
6117 phdr_adjust_seg->p_paddr
6118 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6119 }
6120
6121 #undef SEGMENT_END
6122 #undef SECTION_SIZE
6123 #undef IS_CONTAINED_BY_VMA
6124 #undef IS_CONTAINED_BY_LMA
6125 #undef IS_NOTE
6126 #undef IS_COREFILE_NOTE
6127 #undef IS_SOLARIS_PT_INTERP
6128 #undef IS_SECTION_IN_INPUT_SEGMENT
6129 #undef INCLUDE_SECTION_IN_SEGMENT
6130 #undef SEGMENT_AFTER_SEGMENT
6131 #undef SEGMENT_OVERLAPS
6132 return TRUE;
6133 }
6134
6135 /* Copy ELF program header information. */
6136
6137 static bfd_boolean
6138 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6139 {
6140 Elf_Internal_Ehdr *iehdr;
6141 struct elf_segment_map *map;
6142 struct elf_segment_map *map_first;
6143 struct elf_segment_map **pointer_to_map;
6144 Elf_Internal_Phdr *segment;
6145 unsigned int i;
6146 unsigned int num_segments;
6147 bfd_boolean phdr_included = FALSE;
6148 bfd_boolean p_paddr_valid;
6149
6150 iehdr = elf_elfheader (ibfd);
6151
6152 map_first = NULL;
6153 pointer_to_map = &map_first;
6154
6155 /* If all the segment p_paddr fields are zero, don't set
6156 map->p_paddr_valid. */
6157 p_paddr_valid = FALSE;
6158 num_segments = elf_elfheader (ibfd)->e_phnum;
6159 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6160 i < num_segments;
6161 i++, segment++)
6162 if (segment->p_paddr != 0)
6163 {
6164 p_paddr_valid = TRUE;
6165 break;
6166 }
6167
6168 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6169 i < num_segments;
6170 i++, segment++)
6171 {
6172 asection *section;
6173 unsigned int section_count;
6174 bfd_size_type amt;
6175 Elf_Internal_Shdr *this_hdr;
6176 asection *first_section = NULL;
6177 asection *lowest_section;
6178
6179 /* Compute how many sections are in this segment. */
6180 for (section = ibfd->sections, section_count = 0;
6181 section != NULL;
6182 section = section->next)
6183 {
6184 this_hdr = &(elf_section_data(section)->this_hdr);
6185 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6186 {
6187 if (first_section == NULL)
6188 first_section = section;
6189 section_count++;
6190 }
6191 }
6192
6193 /* Allocate a segment map big enough to contain
6194 all of the sections we have selected. */
6195 amt = sizeof (struct elf_segment_map);
6196 if (section_count != 0)
6197 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6198 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6199 if (map == NULL)
6200 return FALSE;
6201
6202 /* Initialize the fields of the output segment map with the
6203 input segment. */
6204 map->next = NULL;
6205 map->p_type = segment->p_type;
6206 map->p_flags = segment->p_flags;
6207 map->p_flags_valid = 1;
6208 map->p_paddr = segment->p_paddr;
6209 map->p_paddr_valid = p_paddr_valid;
6210 map->p_align = segment->p_align;
6211 map->p_align_valid = 1;
6212 map->p_vaddr_offset = 0;
6213
6214 if (map->p_type == PT_GNU_RELRO
6215 || map->p_type == PT_GNU_STACK)
6216 {
6217 /* The PT_GNU_RELRO segment may contain the first a few
6218 bytes in the .got.plt section even if the whole .got.plt
6219 section isn't in the PT_GNU_RELRO segment. We won't
6220 change the size of the PT_GNU_RELRO segment.
6221 Similarly, PT_GNU_STACK size is significant on uclinux
6222 systems. */
6223 map->p_size = segment->p_memsz;
6224 map->p_size_valid = 1;
6225 }
6226
6227 /* Determine if this segment contains the ELF file header
6228 and if it contains the program headers themselves. */
6229 map->includes_filehdr = (segment->p_offset == 0
6230 && segment->p_filesz >= iehdr->e_ehsize);
6231
6232 map->includes_phdrs = 0;
6233 if (! phdr_included || segment->p_type != PT_LOAD)
6234 {
6235 map->includes_phdrs =
6236 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6237 && (segment->p_offset + segment->p_filesz
6238 >= ((bfd_vma) iehdr->e_phoff
6239 + iehdr->e_phnum * iehdr->e_phentsize)));
6240
6241 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6242 phdr_included = TRUE;
6243 }
6244
6245 lowest_section = first_section;
6246 if (section_count != 0)
6247 {
6248 unsigned int isec = 0;
6249
6250 for (section = first_section;
6251 section != NULL;
6252 section = section->next)
6253 {
6254 this_hdr = &(elf_section_data(section)->this_hdr);
6255 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6256 {
6257 map->sections[isec++] = section->output_section;
6258 if ((section->flags & SEC_ALLOC) != 0)
6259 {
6260 bfd_vma seg_off;
6261
6262 if (section->lma < lowest_section->lma)
6263 lowest_section = section;
6264
6265 /* Section lmas are set up from PT_LOAD header
6266 p_paddr in _bfd_elf_make_section_from_shdr.
6267 If this header has a p_paddr that disagrees
6268 with the section lma, flag the p_paddr as
6269 invalid. */
6270 if ((section->flags & SEC_LOAD) != 0)
6271 seg_off = this_hdr->sh_offset - segment->p_offset;
6272 else
6273 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6274 if (section->lma - segment->p_paddr != seg_off)
6275 map->p_paddr_valid = FALSE;
6276 }
6277 if (isec == section_count)
6278 break;
6279 }
6280 }
6281 }
6282
6283 if (map->includes_filehdr && lowest_section != NULL)
6284 /* We need to keep the space used by the headers fixed. */
6285 map->header_size = lowest_section->vma - segment->p_vaddr;
6286
6287 if (!map->includes_phdrs
6288 && !map->includes_filehdr
6289 && map->p_paddr_valid)
6290 /* There is some other padding before the first section. */
6291 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6292 - segment->p_paddr);
6293
6294 map->count = section_count;
6295 *pointer_to_map = map;
6296 pointer_to_map = &map->next;
6297 }
6298
6299 elf_seg_map (obfd) = map_first;
6300 return TRUE;
6301 }
6302
6303 /* Copy private BFD data. This copies or rewrites ELF program header
6304 information. */
6305
6306 static bfd_boolean
6307 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6308 {
6309 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6310 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6311 return TRUE;
6312
6313 if (elf_tdata (ibfd)->phdr == NULL)
6314 return TRUE;
6315
6316 if (ibfd->xvec == obfd->xvec)
6317 {
6318 /* Check to see if any sections in the input BFD
6319 covered by ELF program header have changed. */
6320 Elf_Internal_Phdr *segment;
6321 asection *section, *osec;
6322 unsigned int i, num_segments;
6323 Elf_Internal_Shdr *this_hdr;
6324 const struct elf_backend_data *bed;
6325
6326 bed = get_elf_backend_data (ibfd);
6327
6328 /* Regenerate the segment map if p_paddr is set to 0. */
6329 if (bed->want_p_paddr_set_to_zero)
6330 goto rewrite;
6331
6332 /* Initialize the segment mark field. */
6333 for (section = obfd->sections; section != NULL;
6334 section = section->next)
6335 section->segment_mark = FALSE;
6336
6337 num_segments = elf_elfheader (ibfd)->e_phnum;
6338 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6339 i < num_segments;
6340 i++, segment++)
6341 {
6342 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6343 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6344 which severly confuses things, so always regenerate the segment
6345 map in this case. */
6346 if (segment->p_paddr == 0
6347 && segment->p_memsz == 0
6348 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6349 goto rewrite;
6350
6351 for (section = ibfd->sections;
6352 section != NULL; section = section->next)
6353 {
6354 /* We mark the output section so that we know it comes
6355 from the input BFD. */
6356 osec = section->output_section;
6357 if (osec)
6358 osec->segment_mark = TRUE;
6359
6360 /* Check if this section is covered by the segment. */
6361 this_hdr = &(elf_section_data(section)->this_hdr);
6362 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6363 {
6364 /* FIXME: Check if its output section is changed or
6365 removed. What else do we need to check? */
6366 if (osec == NULL
6367 || section->flags != osec->flags
6368 || section->lma != osec->lma
6369 || section->vma != osec->vma
6370 || section->size != osec->size
6371 || section->rawsize != osec->rawsize
6372 || section->alignment_power != osec->alignment_power)
6373 goto rewrite;
6374 }
6375 }
6376 }
6377
6378 /* Check to see if any output section do not come from the
6379 input BFD. */
6380 for (section = obfd->sections; section != NULL;
6381 section = section->next)
6382 {
6383 if (section->segment_mark == FALSE)
6384 goto rewrite;
6385 else
6386 section->segment_mark = FALSE;
6387 }
6388
6389 return copy_elf_program_header (ibfd, obfd);
6390 }
6391
6392 rewrite:
6393 if (ibfd->xvec == obfd->xvec)
6394 {
6395 /* When rewriting program header, set the output maxpagesize to
6396 the maximum alignment of input PT_LOAD segments. */
6397 Elf_Internal_Phdr *segment;
6398 unsigned int i;
6399 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6400 bfd_vma maxpagesize = 0;
6401
6402 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6403 i < num_segments;
6404 i++, segment++)
6405 if (segment->p_type == PT_LOAD
6406 && maxpagesize < segment->p_align)
6407 maxpagesize = segment->p_align;
6408
6409 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6410 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6411 }
6412
6413 return rewrite_elf_program_header (ibfd, obfd);
6414 }
6415
6416 /* Initialize private output section information from input section. */
6417
6418 bfd_boolean
6419 _bfd_elf_init_private_section_data (bfd *ibfd,
6420 asection *isec,
6421 bfd *obfd,
6422 asection *osec,
6423 struct bfd_link_info *link_info)
6424
6425 {
6426 Elf_Internal_Shdr *ihdr, *ohdr;
6427 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6428
6429 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6430 || obfd->xvec->flavour != bfd_target_elf_flavour)
6431 return TRUE;
6432
6433 BFD_ASSERT (elf_section_data (osec) != NULL);
6434
6435 /* For objcopy and relocatable link, don't copy the output ELF
6436 section type from input if the output BFD section flags have been
6437 set to something different. For a final link allow some flags
6438 that the linker clears to differ. */
6439 if (elf_section_type (osec) == SHT_NULL
6440 && (osec->flags == isec->flags
6441 || (final_link
6442 && ((osec->flags ^ isec->flags)
6443 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6444 elf_section_type (osec) = elf_section_type (isec);
6445
6446 /* FIXME: Is this correct for all OS/PROC specific flags? */
6447 elf_section_flags (osec) |= (elf_section_flags (isec)
6448 & (SHF_MASKOS | SHF_MASKPROC));
6449
6450 /* Set things up for objcopy and relocatable link. The output
6451 SHT_GROUP section will have its elf_next_in_group pointing back
6452 to the input group members. Ignore linker created group section.
6453 See elfNN_ia64_object_p in elfxx-ia64.c. */
6454 if (!final_link)
6455 {
6456 if (elf_sec_group (isec) == NULL
6457 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6458 {
6459 if (elf_section_flags (isec) & SHF_GROUP)
6460 elf_section_flags (osec) |= SHF_GROUP;
6461 elf_next_in_group (osec) = elf_next_in_group (isec);
6462 elf_section_data (osec)->group = elf_section_data (isec)->group;
6463 }
6464 }
6465
6466 ihdr = &elf_section_data (isec)->this_hdr;
6467
6468 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6469 don't use the output section of the linked-to section since it
6470 may be NULL at this point. */
6471 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6472 {
6473 ohdr = &elf_section_data (osec)->this_hdr;
6474 ohdr->sh_flags |= SHF_LINK_ORDER;
6475 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6476 }
6477
6478 osec->use_rela_p = isec->use_rela_p;
6479
6480 return TRUE;
6481 }
6482
6483 /* Copy private section information. This copies over the entsize
6484 field, and sometimes the info field. */
6485
6486 bfd_boolean
6487 _bfd_elf_copy_private_section_data (bfd *ibfd,
6488 asection *isec,
6489 bfd *obfd,
6490 asection *osec)
6491 {
6492 Elf_Internal_Shdr *ihdr, *ohdr;
6493
6494 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6495 || obfd->xvec->flavour != bfd_target_elf_flavour)
6496 return TRUE;
6497
6498 ihdr = &elf_section_data (isec)->this_hdr;
6499 ohdr = &elf_section_data (osec)->this_hdr;
6500
6501 ohdr->sh_entsize = ihdr->sh_entsize;
6502
6503 if (ihdr->sh_type == SHT_SYMTAB
6504 || ihdr->sh_type == SHT_DYNSYM
6505 || ihdr->sh_type == SHT_GNU_verneed
6506 || ihdr->sh_type == SHT_GNU_verdef)
6507 ohdr->sh_info = ihdr->sh_info;
6508
6509 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6510 NULL);
6511 }
6512
6513 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6514 necessary if we are removing either the SHT_GROUP section or any of
6515 the group member sections. DISCARDED is the value that a section's
6516 output_section has if the section will be discarded, NULL when this
6517 function is called from objcopy, bfd_abs_section_ptr when called
6518 from the linker. */
6519
6520 bfd_boolean
6521 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6522 {
6523 asection *isec;
6524
6525 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6526 if (elf_section_type (isec) == SHT_GROUP)
6527 {
6528 asection *first = elf_next_in_group (isec);
6529 asection *s = first;
6530 bfd_size_type removed = 0;
6531
6532 while (s != NULL)
6533 {
6534 /* If this member section is being output but the
6535 SHT_GROUP section is not, then clear the group info
6536 set up by _bfd_elf_copy_private_section_data. */
6537 if (s->output_section != discarded
6538 && isec->output_section == discarded)
6539 {
6540 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6541 elf_group_name (s->output_section) = NULL;
6542 }
6543 /* Conversely, if the member section is not being output
6544 but the SHT_GROUP section is, then adjust its size. */
6545 else if (s->output_section == discarded
6546 && isec->output_section != discarded)
6547 removed += 4;
6548 s = elf_next_in_group (s);
6549 if (s == first)
6550 break;
6551 }
6552 if (removed != 0)
6553 {
6554 if (discarded != NULL)
6555 {
6556 /* If we've been called for ld -r, then we need to
6557 adjust the input section size. This function may
6558 be called multiple times, so save the original
6559 size. */
6560 if (isec->rawsize == 0)
6561 isec->rawsize = isec->size;
6562 isec->size = isec->rawsize - removed;
6563 }
6564 else
6565 {
6566 /* Adjust the output section size when called from
6567 objcopy. */
6568 isec->output_section->size -= removed;
6569 }
6570 }
6571 }
6572
6573 return TRUE;
6574 }
6575
6576 /* Copy private header information. */
6577
6578 bfd_boolean
6579 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6580 {
6581 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6582 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6583 return TRUE;
6584
6585 /* Copy over private BFD data if it has not already been copied.
6586 This must be done here, rather than in the copy_private_bfd_data
6587 entry point, because the latter is called after the section
6588 contents have been set, which means that the program headers have
6589 already been worked out. */
6590 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6591 {
6592 if (! copy_private_bfd_data (ibfd, obfd))
6593 return FALSE;
6594 }
6595
6596 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6597 }
6598
6599 /* Copy private symbol information. If this symbol is in a section
6600 which we did not map into a BFD section, try to map the section
6601 index correctly. We use special macro definitions for the mapped
6602 section indices; these definitions are interpreted by the
6603 swap_out_syms function. */
6604
6605 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6606 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6607 #define MAP_STRTAB (SHN_HIOS + 3)
6608 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6609 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6610
6611 bfd_boolean
6612 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6613 asymbol *isymarg,
6614 bfd *obfd,
6615 asymbol *osymarg)
6616 {
6617 elf_symbol_type *isym, *osym;
6618
6619 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6620 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6621 return TRUE;
6622
6623 isym = elf_symbol_from (ibfd, isymarg);
6624 osym = elf_symbol_from (obfd, osymarg);
6625
6626 if (isym != NULL
6627 && isym->internal_elf_sym.st_shndx != 0
6628 && osym != NULL
6629 && bfd_is_abs_section (isym->symbol.section))
6630 {
6631 unsigned int shndx;
6632
6633 shndx = isym->internal_elf_sym.st_shndx;
6634 if (shndx == elf_onesymtab (ibfd))
6635 shndx = MAP_ONESYMTAB;
6636 else if (shndx == elf_dynsymtab (ibfd))
6637 shndx = MAP_DYNSYMTAB;
6638 else if (shndx == elf_strtab_sec (ibfd))
6639 shndx = MAP_STRTAB;
6640 else if (shndx == elf_shstrtab_sec (ibfd))
6641 shndx = MAP_SHSTRTAB;
6642 else if (shndx == elf_symtab_shndx (ibfd))
6643 shndx = MAP_SYM_SHNDX;
6644 osym->internal_elf_sym.st_shndx = shndx;
6645 }
6646
6647 return TRUE;
6648 }
6649
6650 /* Swap out the symbols. */
6651
6652 static bfd_boolean
6653 swap_out_syms (bfd *abfd,
6654 struct bfd_strtab_hash **sttp,
6655 int relocatable_p)
6656 {
6657 const struct elf_backend_data *bed;
6658 int symcount;
6659 asymbol **syms;
6660 struct bfd_strtab_hash *stt;
6661 Elf_Internal_Shdr *symtab_hdr;
6662 Elf_Internal_Shdr *symtab_shndx_hdr;
6663 Elf_Internal_Shdr *symstrtab_hdr;
6664 bfd_byte *outbound_syms;
6665 bfd_byte *outbound_shndx;
6666 int idx;
6667 unsigned int num_locals;
6668 bfd_size_type amt;
6669 bfd_boolean name_local_sections;
6670
6671 if (!elf_map_symbols (abfd, &num_locals))
6672 return FALSE;
6673
6674 /* Dump out the symtabs. */
6675 stt = _bfd_elf_stringtab_init ();
6676 if (stt == NULL)
6677 return FALSE;
6678
6679 bed = get_elf_backend_data (abfd);
6680 symcount = bfd_get_symcount (abfd);
6681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6682 symtab_hdr->sh_type = SHT_SYMTAB;
6683 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6684 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6685 symtab_hdr->sh_info = num_locals + 1;
6686 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6687
6688 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6689 symstrtab_hdr->sh_type = SHT_STRTAB;
6690
6691 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6692 bed->s->sizeof_sym);
6693 if (outbound_syms == NULL)
6694 {
6695 _bfd_stringtab_free (stt);
6696 return FALSE;
6697 }
6698 symtab_hdr->contents = outbound_syms;
6699
6700 outbound_shndx = NULL;
6701 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6702 if (symtab_shndx_hdr->sh_name != 0)
6703 {
6704 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6705 outbound_shndx = (bfd_byte *)
6706 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6707 if (outbound_shndx == NULL)
6708 {
6709 _bfd_stringtab_free (stt);
6710 return FALSE;
6711 }
6712
6713 symtab_shndx_hdr->contents = outbound_shndx;
6714 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6715 symtab_shndx_hdr->sh_size = amt;
6716 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6717 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6718 }
6719
6720 /* Now generate the data (for "contents"). */
6721 {
6722 /* Fill in zeroth symbol and swap it out. */
6723 Elf_Internal_Sym sym;
6724 sym.st_name = 0;
6725 sym.st_value = 0;
6726 sym.st_size = 0;
6727 sym.st_info = 0;
6728 sym.st_other = 0;
6729 sym.st_shndx = SHN_UNDEF;
6730 sym.st_target_internal = 0;
6731 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6732 outbound_syms += bed->s->sizeof_sym;
6733 if (outbound_shndx != NULL)
6734 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6735 }
6736
6737 name_local_sections
6738 = (bed->elf_backend_name_local_section_symbols
6739 && bed->elf_backend_name_local_section_symbols (abfd));
6740
6741 syms = bfd_get_outsymbols (abfd);
6742 for (idx = 0; idx < symcount; idx++)
6743 {
6744 Elf_Internal_Sym sym;
6745 bfd_vma value = syms[idx]->value;
6746 elf_symbol_type *type_ptr;
6747 flagword flags = syms[idx]->flags;
6748 int type;
6749
6750 if (!name_local_sections
6751 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6752 {
6753 /* Local section symbols have no name. */
6754 sym.st_name = 0;
6755 }
6756 else
6757 {
6758 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6759 syms[idx]->name,
6760 TRUE, FALSE);
6761 if (sym.st_name == (unsigned long) -1)
6762 {
6763 _bfd_stringtab_free (stt);
6764 return FALSE;
6765 }
6766 }
6767
6768 type_ptr = elf_symbol_from (abfd, syms[idx]);
6769
6770 if ((flags & BSF_SECTION_SYM) == 0
6771 && bfd_is_com_section (syms[idx]->section))
6772 {
6773 /* ELF common symbols put the alignment into the `value' field,
6774 and the size into the `size' field. This is backwards from
6775 how BFD handles it, so reverse it here. */
6776 sym.st_size = value;
6777 if (type_ptr == NULL
6778 || type_ptr->internal_elf_sym.st_value == 0)
6779 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6780 else
6781 sym.st_value = type_ptr->internal_elf_sym.st_value;
6782 sym.st_shndx = _bfd_elf_section_from_bfd_section
6783 (abfd, syms[idx]->section);
6784 }
6785 else
6786 {
6787 asection *sec = syms[idx]->section;
6788 unsigned int shndx;
6789
6790 if (sec->output_section)
6791 {
6792 value += sec->output_offset;
6793 sec = sec->output_section;
6794 }
6795
6796 /* Don't add in the section vma for relocatable output. */
6797 if (! relocatable_p)
6798 value += sec->vma;
6799 sym.st_value = value;
6800 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6801
6802 if (bfd_is_abs_section (sec)
6803 && type_ptr != NULL
6804 && type_ptr->internal_elf_sym.st_shndx != 0)
6805 {
6806 /* This symbol is in a real ELF section which we did
6807 not create as a BFD section. Undo the mapping done
6808 by copy_private_symbol_data. */
6809 shndx = type_ptr->internal_elf_sym.st_shndx;
6810 switch (shndx)
6811 {
6812 case MAP_ONESYMTAB:
6813 shndx = elf_onesymtab (abfd);
6814 break;
6815 case MAP_DYNSYMTAB:
6816 shndx = elf_dynsymtab (abfd);
6817 break;
6818 case MAP_STRTAB:
6819 shndx = elf_strtab_sec (abfd);
6820 break;
6821 case MAP_SHSTRTAB:
6822 shndx = elf_shstrtab_sec (abfd);
6823 break;
6824 case MAP_SYM_SHNDX:
6825 shndx = elf_symtab_shndx (abfd);
6826 break;
6827 default:
6828 shndx = SHN_ABS;
6829 break;
6830 }
6831 }
6832 else
6833 {
6834 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6835
6836 if (shndx == SHN_BAD)
6837 {
6838 asection *sec2;
6839
6840 /* Writing this would be a hell of a lot easier if
6841 we had some decent documentation on bfd, and
6842 knew what to expect of the library, and what to
6843 demand of applications. For example, it
6844 appears that `objcopy' might not set the
6845 section of a symbol to be a section that is
6846 actually in the output file. */
6847 sec2 = bfd_get_section_by_name (abfd, sec->name);
6848 if (sec2 == NULL)
6849 {
6850 _bfd_error_handler (_("\
6851 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6852 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6853 sec->name);
6854 bfd_set_error (bfd_error_invalid_operation);
6855 _bfd_stringtab_free (stt);
6856 return FALSE;
6857 }
6858
6859 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6860 BFD_ASSERT (shndx != SHN_BAD);
6861 }
6862 }
6863
6864 sym.st_shndx = shndx;
6865 }
6866
6867 if ((flags & BSF_THREAD_LOCAL) != 0)
6868 type = STT_TLS;
6869 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6870 type = STT_GNU_IFUNC;
6871 else if ((flags & BSF_FUNCTION) != 0)
6872 type = STT_FUNC;
6873 else if ((flags & BSF_OBJECT) != 0)
6874 type = STT_OBJECT;
6875 else if ((flags & BSF_RELC) != 0)
6876 type = STT_RELC;
6877 else if ((flags & BSF_SRELC) != 0)
6878 type = STT_SRELC;
6879 else
6880 type = STT_NOTYPE;
6881
6882 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6883 type = STT_TLS;
6884
6885 /* Processor-specific types. */
6886 if (type_ptr != NULL
6887 && bed->elf_backend_get_symbol_type)
6888 type = ((*bed->elf_backend_get_symbol_type)
6889 (&type_ptr->internal_elf_sym, type));
6890
6891 if (flags & BSF_SECTION_SYM)
6892 {
6893 if (flags & BSF_GLOBAL)
6894 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6895 else
6896 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6897 }
6898 else if (bfd_is_com_section (syms[idx]->section))
6899 {
6900 #ifdef USE_STT_COMMON
6901 if (type == STT_OBJECT)
6902 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6903 else
6904 #endif
6905 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6906 }
6907 else if (bfd_is_und_section (syms[idx]->section))
6908 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6909 ? STB_WEAK
6910 : STB_GLOBAL),
6911 type);
6912 else if (flags & BSF_FILE)
6913 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6914 else
6915 {
6916 int bind = STB_LOCAL;
6917
6918 if (flags & BSF_LOCAL)
6919 bind = STB_LOCAL;
6920 else if (flags & BSF_GNU_UNIQUE)
6921 bind = STB_GNU_UNIQUE;
6922 else if (flags & BSF_WEAK)
6923 bind = STB_WEAK;
6924 else if (flags & BSF_GLOBAL)
6925 bind = STB_GLOBAL;
6926
6927 sym.st_info = ELF_ST_INFO (bind, type);
6928 }
6929
6930 if (type_ptr != NULL)
6931 {
6932 sym.st_other = type_ptr->internal_elf_sym.st_other;
6933 sym.st_target_internal
6934 = type_ptr->internal_elf_sym.st_target_internal;
6935 }
6936 else
6937 {
6938 sym.st_other = 0;
6939 sym.st_target_internal = 0;
6940 }
6941
6942 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6943 outbound_syms += bed->s->sizeof_sym;
6944 if (outbound_shndx != NULL)
6945 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6946 }
6947
6948 *sttp = stt;
6949 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6950 symstrtab_hdr->sh_type = SHT_STRTAB;
6951
6952 symstrtab_hdr->sh_flags = 0;
6953 symstrtab_hdr->sh_addr = 0;
6954 symstrtab_hdr->sh_entsize = 0;
6955 symstrtab_hdr->sh_link = 0;
6956 symstrtab_hdr->sh_info = 0;
6957 symstrtab_hdr->sh_addralign = 1;
6958
6959 return TRUE;
6960 }
6961
6962 /* Return the number of bytes required to hold the symtab vector.
6963
6964 Note that we base it on the count plus 1, since we will null terminate
6965 the vector allocated based on this size. However, the ELF symbol table
6966 always has a dummy entry as symbol #0, so it ends up even. */
6967
6968 long
6969 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6970 {
6971 long symcount;
6972 long symtab_size;
6973 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6974
6975 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6976 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6977 if (symcount > 0)
6978 symtab_size -= sizeof (asymbol *);
6979
6980 return symtab_size;
6981 }
6982
6983 long
6984 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6985 {
6986 long symcount;
6987 long symtab_size;
6988 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6989
6990 if (elf_dynsymtab (abfd) == 0)
6991 {
6992 bfd_set_error (bfd_error_invalid_operation);
6993 return -1;
6994 }
6995
6996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6997 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6998 if (symcount > 0)
6999 symtab_size -= sizeof (asymbol *);
7000
7001 return symtab_size;
7002 }
7003
7004 long
7005 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7006 sec_ptr asect)
7007 {
7008 return (asect->reloc_count + 1) * sizeof (arelent *);
7009 }
7010
7011 /* Canonicalize the relocs. */
7012
7013 long
7014 _bfd_elf_canonicalize_reloc (bfd *abfd,
7015 sec_ptr section,
7016 arelent **relptr,
7017 asymbol **symbols)
7018 {
7019 arelent *tblptr;
7020 unsigned int i;
7021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7022
7023 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7024 return -1;
7025
7026 tblptr = section->relocation;
7027 for (i = 0; i < section->reloc_count; i++)
7028 *relptr++ = tblptr++;
7029
7030 *relptr = NULL;
7031
7032 return section->reloc_count;
7033 }
7034
7035 long
7036 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7037 {
7038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7039 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7040
7041 if (symcount >= 0)
7042 bfd_get_symcount (abfd) = symcount;
7043 return symcount;
7044 }
7045
7046 long
7047 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7048 asymbol **allocation)
7049 {
7050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7051 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7052
7053 if (symcount >= 0)
7054 bfd_get_dynamic_symcount (abfd) = symcount;
7055 return symcount;
7056 }
7057
7058 /* Return the size required for the dynamic reloc entries. Any loadable
7059 section that was actually installed in the BFD, and has type SHT_REL
7060 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7061 dynamic reloc section. */
7062
7063 long
7064 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7065 {
7066 long ret;
7067 asection *s;
7068
7069 if (elf_dynsymtab (abfd) == 0)
7070 {
7071 bfd_set_error (bfd_error_invalid_operation);
7072 return -1;
7073 }
7074
7075 ret = sizeof (arelent *);
7076 for (s = abfd->sections; s != NULL; s = s->next)
7077 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7078 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7079 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7080 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7081 * sizeof (arelent *));
7082
7083 return ret;
7084 }
7085
7086 /* Canonicalize the dynamic relocation entries. Note that we return the
7087 dynamic relocations as a single block, although they are actually
7088 associated with particular sections; the interface, which was
7089 designed for SunOS style shared libraries, expects that there is only
7090 one set of dynamic relocs. Any loadable section that was actually
7091 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7092 dynamic symbol table, is considered to be a dynamic reloc section. */
7093
7094 long
7095 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7096 arelent **storage,
7097 asymbol **syms)
7098 {
7099 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7100 asection *s;
7101 long ret;
7102
7103 if (elf_dynsymtab (abfd) == 0)
7104 {
7105 bfd_set_error (bfd_error_invalid_operation);
7106 return -1;
7107 }
7108
7109 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7110 ret = 0;
7111 for (s = abfd->sections; s != NULL; s = s->next)
7112 {
7113 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7114 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7115 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7116 {
7117 arelent *p;
7118 long count, i;
7119
7120 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7121 return -1;
7122 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7123 p = s->relocation;
7124 for (i = 0; i < count; i++)
7125 *storage++ = p++;
7126 ret += count;
7127 }
7128 }
7129
7130 *storage = NULL;
7131
7132 return ret;
7133 }
7134 \f
7135 /* Read in the version information. */
7136
7137 bfd_boolean
7138 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7139 {
7140 bfd_byte *contents = NULL;
7141 unsigned int freeidx = 0;
7142
7143 if (elf_dynverref (abfd) != 0)
7144 {
7145 Elf_Internal_Shdr *hdr;
7146 Elf_External_Verneed *everneed;
7147 Elf_Internal_Verneed *iverneed;
7148 unsigned int i;
7149 bfd_byte *contents_end;
7150
7151 hdr = &elf_tdata (abfd)->dynverref_hdr;
7152
7153 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7154 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7155 if (elf_tdata (abfd)->verref == NULL)
7156 goto error_return;
7157
7158 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7159
7160 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7161 if (contents == NULL)
7162 {
7163 error_return_verref:
7164 elf_tdata (abfd)->verref = NULL;
7165 elf_tdata (abfd)->cverrefs = 0;
7166 goto error_return;
7167 }
7168 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7169 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7170 goto error_return_verref;
7171
7172 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7173 goto error_return_verref;
7174
7175 BFD_ASSERT (sizeof (Elf_External_Verneed)
7176 == sizeof (Elf_External_Vernaux));
7177 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7178 everneed = (Elf_External_Verneed *) contents;
7179 iverneed = elf_tdata (abfd)->verref;
7180 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7181 {
7182 Elf_External_Vernaux *evernaux;
7183 Elf_Internal_Vernaux *ivernaux;
7184 unsigned int j;
7185
7186 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7187
7188 iverneed->vn_bfd = abfd;
7189
7190 iverneed->vn_filename =
7191 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7192 iverneed->vn_file);
7193 if (iverneed->vn_filename == NULL)
7194 goto error_return_verref;
7195
7196 if (iverneed->vn_cnt == 0)
7197 iverneed->vn_auxptr = NULL;
7198 else
7199 {
7200 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7201 bfd_alloc2 (abfd, iverneed->vn_cnt,
7202 sizeof (Elf_Internal_Vernaux));
7203 if (iverneed->vn_auxptr == NULL)
7204 goto error_return_verref;
7205 }
7206
7207 if (iverneed->vn_aux
7208 > (size_t) (contents_end - (bfd_byte *) everneed))
7209 goto error_return_verref;
7210
7211 evernaux = ((Elf_External_Vernaux *)
7212 ((bfd_byte *) everneed + iverneed->vn_aux));
7213 ivernaux = iverneed->vn_auxptr;
7214 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7215 {
7216 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7217
7218 ivernaux->vna_nodename =
7219 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7220 ivernaux->vna_name);
7221 if (ivernaux->vna_nodename == NULL)
7222 goto error_return_verref;
7223
7224 if (j + 1 < iverneed->vn_cnt)
7225 ivernaux->vna_nextptr = ivernaux + 1;
7226 else
7227 ivernaux->vna_nextptr = NULL;
7228
7229 if (ivernaux->vna_next
7230 > (size_t) (contents_end - (bfd_byte *) evernaux))
7231 goto error_return_verref;
7232
7233 evernaux = ((Elf_External_Vernaux *)
7234 ((bfd_byte *) evernaux + ivernaux->vna_next));
7235
7236 if (ivernaux->vna_other > freeidx)
7237 freeidx = ivernaux->vna_other;
7238 }
7239
7240 if (i + 1 < hdr->sh_info)
7241 iverneed->vn_nextref = iverneed + 1;
7242 else
7243 iverneed->vn_nextref = NULL;
7244
7245 if (iverneed->vn_next
7246 > (size_t) (contents_end - (bfd_byte *) everneed))
7247 goto error_return_verref;
7248
7249 everneed = ((Elf_External_Verneed *)
7250 ((bfd_byte *) everneed + iverneed->vn_next));
7251 }
7252
7253 free (contents);
7254 contents = NULL;
7255 }
7256
7257 if (elf_dynverdef (abfd) != 0)
7258 {
7259 Elf_Internal_Shdr *hdr;
7260 Elf_External_Verdef *everdef;
7261 Elf_Internal_Verdef *iverdef;
7262 Elf_Internal_Verdef *iverdefarr;
7263 Elf_Internal_Verdef iverdefmem;
7264 unsigned int i;
7265 unsigned int maxidx;
7266 bfd_byte *contents_end_def, *contents_end_aux;
7267
7268 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7269
7270 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7271 if (contents == NULL)
7272 goto error_return;
7273 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7274 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7275 goto error_return;
7276
7277 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7278 goto error_return;
7279
7280 BFD_ASSERT (sizeof (Elf_External_Verdef)
7281 >= sizeof (Elf_External_Verdaux));
7282 contents_end_def = contents + hdr->sh_size
7283 - sizeof (Elf_External_Verdef);
7284 contents_end_aux = contents + hdr->sh_size
7285 - sizeof (Elf_External_Verdaux);
7286
7287 /* We know the number of entries in the section but not the maximum
7288 index. Therefore we have to run through all entries and find
7289 the maximum. */
7290 everdef = (Elf_External_Verdef *) contents;
7291 maxidx = 0;
7292 for (i = 0; i < hdr->sh_info; ++i)
7293 {
7294 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7295
7296 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7297 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7298
7299 if (iverdefmem.vd_next
7300 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7301 goto error_return;
7302
7303 everdef = ((Elf_External_Verdef *)
7304 ((bfd_byte *) everdef + iverdefmem.vd_next));
7305 }
7306
7307 if (default_imported_symver)
7308 {
7309 if (freeidx > maxidx)
7310 maxidx = ++freeidx;
7311 else
7312 freeidx = ++maxidx;
7313 }
7314 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7315 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7316 if (elf_tdata (abfd)->verdef == NULL)
7317 goto error_return;
7318
7319 elf_tdata (abfd)->cverdefs = maxidx;
7320
7321 everdef = (Elf_External_Verdef *) contents;
7322 iverdefarr = elf_tdata (abfd)->verdef;
7323 for (i = 0; i < hdr->sh_info; i++)
7324 {
7325 Elf_External_Verdaux *everdaux;
7326 Elf_Internal_Verdaux *iverdaux;
7327 unsigned int j;
7328
7329 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7330
7331 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7332 {
7333 error_return_verdef:
7334 elf_tdata (abfd)->verdef = NULL;
7335 elf_tdata (abfd)->cverdefs = 0;
7336 goto error_return;
7337 }
7338
7339 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7340 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7341
7342 iverdef->vd_bfd = abfd;
7343
7344 if (iverdef->vd_cnt == 0)
7345 iverdef->vd_auxptr = NULL;
7346 else
7347 {
7348 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7349 bfd_alloc2 (abfd, iverdef->vd_cnt,
7350 sizeof (Elf_Internal_Verdaux));
7351 if (iverdef->vd_auxptr == NULL)
7352 goto error_return_verdef;
7353 }
7354
7355 if (iverdef->vd_aux
7356 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7357 goto error_return_verdef;
7358
7359 everdaux = ((Elf_External_Verdaux *)
7360 ((bfd_byte *) everdef + iverdef->vd_aux));
7361 iverdaux = iverdef->vd_auxptr;
7362 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7363 {
7364 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7365
7366 iverdaux->vda_nodename =
7367 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7368 iverdaux->vda_name);
7369 if (iverdaux->vda_nodename == NULL)
7370 goto error_return_verdef;
7371
7372 if (j + 1 < iverdef->vd_cnt)
7373 iverdaux->vda_nextptr = iverdaux + 1;
7374 else
7375 iverdaux->vda_nextptr = NULL;
7376
7377 if (iverdaux->vda_next
7378 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7379 goto error_return_verdef;
7380
7381 everdaux = ((Elf_External_Verdaux *)
7382 ((bfd_byte *) everdaux + iverdaux->vda_next));
7383 }
7384
7385 if (iverdef->vd_cnt)
7386 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7387
7388 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7389 iverdef->vd_nextdef = iverdef + 1;
7390 else
7391 iverdef->vd_nextdef = NULL;
7392
7393 everdef = ((Elf_External_Verdef *)
7394 ((bfd_byte *) everdef + iverdef->vd_next));
7395 }
7396
7397 free (contents);
7398 contents = NULL;
7399 }
7400 else if (default_imported_symver)
7401 {
7402 if (freeidx < 3)
7403 freeidx = 3;
7404 else
7405 freeidx++;
7406
7407 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7408 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7409 if (elf_tdata (abfd)->verdef == NULL)
7410 goto error_return;
7411
7412 elf_tdata (abfd)->cverdefs = freeidx;
7413 }
7414
7415 /* Create a default version based on the soname. */
7416 if (default_imported_symver)
7417 {
7418 Elf_Internal_Verdef *iverdef;
7419 Elf_Internal_Verdaux *iverdaux;
7420
7421 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7422
7423 iverdef->vd_version = VER_DEF_CURRENT;
7424 iverdef->vd_flags = 0;
7425 iverdef->vd_ndx = freeidx;
7426 iverdef->vd_cnt = 1;
7427
7428 iverdef->vd_bfd = abfd;
7429
7430 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7431 if (iverdef->vd_nodename == NULL)
7432 goto error_return_verdef;
7433 iverdef->vd_nextdef = NULL;
7434 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7435 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7436 if (iverdef->vd_auxptr == NULL)
7437 goto error_return_verdef;
7438
7439 iverdaux = iverdef->vd_auxptr;
7440 iverdaux->vda_nodename = iverdef->vd_nodename;
7441 iverdaux->vda_nextptr = NULL;
7442 }
7443
7444 return TRUE;
7445
7446 error_return:
7447 if (contents != NULL)
7448 free (contents);
7449 return FALSE;
7450 }
7451 \f
7452 asymbol *
7453 _bfd_elf_make_empty_symbol (bfd *abfd)
7454 {
7455 elf_symbol_type *newsym;
7456 bfd_size_type amt = sizeof (elf_symbol_type);
7457
7458 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7459 if (!newsym)
7460 return NULL;
7461 else
7462 {
7463 newsym->symbol.the_bfd = abfd;
7464 return &newsym->symbol;
7465 }
7466 }
7467
7468 void
7469 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7470 asymbol *symbol,
7471 symbol_info *ret)
7472 {
7473 bfd_symbol_info (symbol, ret);
7474 }
7475
7476 /* Return whether a symbol name implies a local symbol. Most targets
7477 use this function for the is_local_label_name entry point, but some
7478 override it. */
7479
7480 bfd_boolean
7481 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7482 const char *name)
7483 {
7484 /* Normal local symbols start with ``.L''. */
7485 if (name[0] == '.' && name[1] == 'L')
7486 return TRUE;
7487
7488 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7489 DWARF debugging symbols starting with ``..''. */
7490 if (name[0] == '.' && name[1] == '.')
7491 return TRUE;
7492
7493 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7494 emitting DWARF debugging output. I suspect this is actually a
7495 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7496 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7497 underscore to be emitted on some ELF targets). For ease of use,
7498 we treat such symbols as local. */
7499 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7500 return TRUE;
7501
7502 return FALSE;
7503 }
7504
7505 alent *
7506 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7507 asymbol *symbol ATTRIBUTE_UNUSED)
7508 {
7509 abort ();
7510 return NULL;
7511 }
7512
7513 bfd_boolean
7514 _bfd_elf_set_arch_mach (bfd *abfd,
7515 enum bfd_architecture arch,
7516 unsigned long machine)
7517 {
7518 /* If this isn't the right architecture for this backend, and this
7519 isn't the generic backend, fail. */
7520 if (arch != get_elf_backend_data (abfd)->arch
7521 && arch != bfd_arch_unknown
7522 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7523 return FALSE;
7524
7525 return bfd_default_set_arch_mach (abfd, arch, machine);
7526 }
7527
7528 /* Find the function to a particular section and offset,
7529 for error reporting. */
7530
7531 static bfd_boolean
7532 elf_find_function (bfd *abfd,
7533 asection *section,
7534 asymbol **symbols,
7535 bfd_vma offset,
7536 const char **filename_ptr,
7537 const char **functionname_ptr)
7538 {
7539 struct elf_find_function_cache
7540 {
7541 asection *last_section;
7542 asymbol *func;
7543 const char *filename;
7544 bfd_size_type func_size;
7545 } *cache;
7546
7547 if (symbols == NULL)
7548 return FALSE;
7549
7550 cache = elf_tdata (abfd)->elf_find_function_cache;
7551 if (cache == NULL)
7552 {
7553 cache = bfd_zalloc (abfd, sizeof (*cache));
7554 elf_tdata (abfd)->elf_find_function_cache = cache;
7555 if (cache == NULL)
7556 return FALSE;
7557 }
7558 if (cache->last_section != section
7559 || cache->func == NULL
7560 || offset < cache->func->value
7561 || offset >= cache->func->value + cache->func_size)
7562 {
7563 asymbol *file;
7564 bfd_vma low_func;
7565 asymbol **p;
7566 /* ??? Given multiple file symbols, it is impossible to reliably
7567 choose the right file name for global symbols. File symbols are
7568 local symbols, and thus all file symbols must sort before any
7569 global symbols. The ELF spec may be interpreted to say that a
7570 file symbol must sort before other local symbols, but currently
7571 ld -r doesn't do this. So, for ld -r output, it is possible to
7572 make a better choice of file name for local symbols by ignoring
7573 file symbols appearing after a given local symbol. */
7574 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7576
7577 file = NULL;
7578 low_func = 0;
7579 state = nothing_seen;
7580 cache->filename = NULL;
7581 cache->func = NULL;
7582 cache->func_size = 0;
7583 cache->last_section = section;
7584
7585 for (p = symbols; *p != NULL; p++)
7586 {
7587 asymbol *sym = *p;
7588 bfd_vma code_off;
7589 bfd_size_type size;
7590
7591 if ((sym->flags & BSF_FILE) != 0)
7592 {
7593 file = sym;
7594 if (state == symbol_seen)
7595 state = file_after_symbol_seen;
7596 continue;
7597 }
7598
7599 size = bed->maybe_function_sym (sym, section, &code_off);
7600 if (size != 0
7601 && code_off <= offset
7602 && (code_off > low_func
7603 || (code_off == low_func
7604 && size > cache->func_size)))
7605 {
7606 cache->func = sym;
7607 cache->func_size = size;
7608 cache->filename = NULL;
7609 low_func = code_off;
7610 if (file != NULL
7611 && ((sym->flags & BSF_LOCAL) != 0
7612 || state != file_after_symbol_seen))
7613 cache->filename = bfd_asymbol_name (file);
7614 }
7615 if (state == nothing_seen)
7616 state = symbol_seen;
7617 }
7618 }
7619
7620 if (cache->func == NULL)
7621 return FALSE;
7622
7623 if (filename_ptr)
7624 *filename_ptr = cache->filename;
7625 if (functionname_ptr)
7626 *functionname_ptr = bfd_asymbol_name (cache->func);
7627
7628 return TRUE;
7629 }
7630
7631 /* Find the nearest line to a particular section and offset,
7632 for error reporting. */
7633
7634 bfd_boolean
7635 _bfd_elf_find_nearest_line (bfd *abfd,
7636 asection *section,
7637 asymbol **symbols,
7638 bfd_vma offset,
7639 const char **filename_ptr,
7640 const char **functionname_ptr,
7641 unsigned int *line_ptr)
7642 {
7643 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7644 offset, filename_ptr,
7645 functionname_ptr,
7646 line_ptr,
7647 NULL);
7648 }
7649
7650 bfd_boolean
7651 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7652 asection *section,
7653 asymbol **symbols,
7654 bfd_vma offset,
7655 const char **filename_ptr,
7656 const char **functionname_ptr,
7657 unsigned int *line_ptr,
7658 unsigned int *discriminator_ptr)
7659 {
7660 bfd_boolean found;
7661
7662 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7663 filename_ptr, functionname_ptr,
7664 line_ptr))
7665 {
7666 if (!*functionname_ptr)
7667 elf_find_function (abfd, section, symbols, offset,
7668 *filename_ptr ? NULL : filename_ptr,
7669 functionname_ptr);
7670
7671 return TRUE;
7672 }
7673
7674 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7675 section, symbols, offset,
7676 filename_ptr, functionname_ptr,
7677 line_ptr, discriminator_ptr, 0,
7678 &elf_tdata (abfd)->dwarf2_find_line_info))
7679 {
7680 if (!*functionname_ptr)
7681 elf_find_function (abfd, section, symbols, offset,
7682 *filename_ptr ? NULL : filename_ptr,
7683 functionname_ptr);
7684
7685 return TRUE;
7686 }
7687
7688 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7689 &found, filename_ptr,
7690 functionname_ptr, line_ptr,
7691 &elf_tdata (abfd)->line_info))
7692 return FALSE;
7693 if (found && (*functionname_ptr || *line_ptr))
7694 return TRUE;
7695
7696 if (symbols == NULL)
7697 return FALSE;
7698
7699 if (! elf_find_function (abfd, section, symbols, offset,
7700 filename_ptr, functionname_ptr))
7701 return FALSE;
7702
7703 *line_ptr = 0;
7704 return TRUE;
7705 }
7706
7707 /* Find the line for a symbol. */
7708
7709 bfd_boolean
7710 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7711 const char **filename_ptr, unsigned int *line_ptr)
7712 {
7713 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7714 filename_ptr, line_ptr,
7715 NULL);
7716 }
7717
7718 bfd_boolean
7719 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7720 const char **filename_ptr,
7721 unsigned int *line_ptr,
7722 unsigned int *discriminator_ptr)
7723 {
7724 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7725 filename_ptr, line_ptr, discriminator_ptr, 0,
7726 &elf_tdata (abfd)->dwarf2_find_line_info);
7727 }
7728
7729 /* After a call to bfd_find_nearest_line, successive calls to
7730 bfd_find_inliner_info can be used to get source information about
7731 each level of function inlining that terminated at the address
7732 passed to bfd_find_nearest_line. Currently this is only supported
7733 for DWARF2 with appropriate DWARF3 extensions. */
7734
7735 bfd_boolean
7736 _bfd_elf_find_inliner_info (bfd *abfd,
7737 const char **filename_ptr,
7738 const char **functionname_ptr,
7739 unsigned int *line_ptr)
7740 {
7741 bfd_boolean found;
7742 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7743 functionname_ptr, line_ptr,
7744 & elf_tdata (abfd)->dwarf2_find_line_info);
7745 return found;
7746 }
7747
7748 int
7749 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7750 {
7751 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7752 int ret = bed->s->sizeof_ehdr;
7753
7754 if (!info->relocatable)
7755 {
7756 bfd_size_type phdr_size = elf_program_header_size (abfd);
7757
7758 if (phdr_size == (bfd_size_type) -1)
7759 {
7760 struct elf_segment_map *m;
7761
7762 phdr_size = 0;
7763 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7764 phdr_size += bed->s->sizeof_phdr;
7765
7766 if (phdr_size == 0)
7767 phdr_size = get_program_header_size (abfd, info);
7768 }
7769
7770 elf_program_header_size (abfd) = phdr_size;
7771 ret += phdr_size;
7772 }
7773
7774 return ret;
7775 }
7776
7777 bfd_boolean
7778 _bfd_elf_set_section_contents (bfd *abfd,
7779 sec_ptr section,
7780 const void *location,
7781 file_ptr offset,
7782 bfd_size_type count)
7783 {
7784 Elf_Internal_Shdr *hdr;
7785 bfd_signed_vma pos;
7786
7787 if (! abfd->output_has_begun
7788 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7789 return FALSE;
7790
7791 hdr = &elf_section_data (section)->this_hdr;
7792 pos = hdr->sh_offset + offset;
7793 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7794 || bfd_bwrite (location, count, abfd) != count)
7795 return FALSE;
7796
7797 return TRUE;
7798 }
7799
7800 void
7801 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7802 arelent *cache_ptr ATTRIBUTE_UNUSED,
7803 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7804 {
7805 abort ();
7806 }
7807
7808 /* Try to convert a non-ELF reloc into an ELF one. */
7809
7810 bfd_boolean
7811 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7812 {
7813 /* Check whether we really have an ELF howto. */
7814
7815 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7816 {
7817 bfd_reloc_code_real_type code;
7818 reloc_howto_type *howto;
7819
7820 /* Alien reloc: Try to determine its type to replace it with an
7821 equivalent ELF reloc. */
7822
7823 if (areloc->howto->pc_relative)
7824 {
7825 switch (areloc->howto->bitsize)
7826 {
7827 case 8:
7828 code = BFD_RELOC_8_PCREL;
7829 break;
7830 case 12:
7831 code = BFD_RELOC_12_PCREL;
7832 break;
7833 case 16:
7834 code = BFD_RELOC_16_PCREL;
7835 break;
7836 case 24:
7837 code = BFD_RELOC_24_PCREL;
7838 break;
7839 case 32:
7840 code = BFD_RELOC_32_PCREL;
7841 break;
7842 case 64:
7843 code = BFD_RELOC_64_PCREL;
7844 break;
7845 default:
7846 goto fail;
7847 }
7848
7849 howto = bfd_reloc_type_lookup (abfd, code);
7850
7851 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7852 {
7853 if (howto->pcrel_offset)
7854 areloc->addend += areloc->address;
7855 else
7856 areloc->addend -= areloc->address; /* addend is unsigned!! */
7857 }
7858 }
7859 else
7860 {
7861 switch (areloc->howto->bitsize)
7862 {
7863 case 8:
7864 code = BFD_RELOC_8;
7865 break;
7866 case 14:
7867 code = BFD_RELOC_14;
7868 break;
7869 case 16:
7870 code = BFD_RELOC_16;
7871 break;
7872 case 26:
7873 code = BFD_RELOC_26;
7874 break;
7875 case 32:
7876 code = BFD_RELOC_32;
7877 break;
7878 case 64:
7879 code = BFD_RELOC_64;
7880 break;
7881 default:
7882 goto fail;
7883 }
7884
7885 howto = bfd_reloc_type_lookup (abfd, code);
7886 }
7887
7888 if (howto)
7889 areloc->howto = howto;
7890 else
7891 goto fail;
7892 }
7893
7894 return TRUE;
7895
7896 fail:
7897 (*_bfd_error_handler)
7898 (_("%B: unsupported relocation type %s"),
7899 abfd, areloc->howto->name);
7900 bfd_set_error (bfd_error_bad_value);
7901 return FALSE;
7902 }
7903
7904 bfd_boolean
7905 _bfd_elf_close_and_cleanup (bfd *abfd)
7906 {
7907 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7908 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7909 {
7910 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7911 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7912 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7913 }
7914
7915 return _bfd_generic_close_and_cleanup (abfd);
7916 }
7917
7918 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7919 in the relocation's offset. Thus we cannot allow any sort of sanity
7920 range-checking to interfere. There is nothing else to do in processing
7921 this reloc. */
7922
7923 bfd_reloc_status_type
7924 _bfd_elf_rel_vtable_reloc_fn
7925 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7926 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7927 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7928 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7929 {
7930 return bfd_reloc_ok;
7931 }
7932 \f
7933 /* Elf core file support. Much of this only works on native
7934 toolchains, since we rely on knowing the
7935 machine-dependent procfs structure in order to pick
7936 out details about the corefile. */
7937
7938 #ifdef HAVE_SYS_PROCFS_H
7939 /* Needed for new procfs interface on sparc-solaris. */
7940 # define _STRUCTURED_PROC 1
7941 # include <sys/procfs.h>
7942 #endif
7943
7944 /* Return a PID that identifies a "thread" for threaded cores, or the
7945 PID of the main process for non-threaded cores. */
7946
7947 static int
7948 elfcore_make_pid (bfd *abfd)
7949 {
7950 int pid;
7951
7952 pid = elf_tdata (abfd)->core->lwpid;
7953 if (pid == 0)
7954 pid = elf_tdata (abfd)->core->pid;
7955
7956 return pid;
7957 }
7958
7959 /* If there isn't a section called NAME, make one, using
7960 data from SECT. Note, this function will generate a
7961 reference to NAME, so you shouldn't deallocate or
7962 overwrite it. */
7963
7964 static bfd_boolean
7965 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7966 {
7967 asection *sect2;
7968
7969 if (bfd_get_section_by_name (abfd, name) != NULL)
7970 return TRUE;
7971
7972 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7973 if (sect2 == NULL)
7974 return FALSE;
7975
7976 sect2->size = sect->size;
7977 sect2->filepos = sect->filepos;
7978 sect2->alignment_power = sect->alignment_power;
7979 return TRUE;
7980 }
7981
7982 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7983 actually creates up to two pseudosections:
7984 - For the single-threaded case, a section named NAME, unless
7985 such a section already exists.
7986 - For the multi-threaded case, a section named "NAME/PID", where
7987 PID is elfcore_make_pid (abfd).
7988 Both pseudosections have identical contents. */
7989 bfd_boolean
7990 _bfd_elfcore_make_pseudosection (bfd *abfd,
7991 char *name,
7992 size_t size,
7993 ufile_ptr filepos)
7994 {
7995 char buf[100];
7996 char *threaded_name;
7997 size_t len;
7998 asection *sect;
7999
8000 /* Build the section name. */
8001
8002 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8003 len = strlen (buf) + 1;
8004 threaded_name = (char *) bfd_alloc (abfd, len);
8005 if (threaded_name == NULL)
8006 return FALSE;
8007 memcpy (threaded_name, buf, len);
8008
8009 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8010 SEC_HAS_CONTENTS);
8011 if (sect == NULL)
8012 return FALSE;
8013 sect->size = size;
8014 sect->filepos = filepos;
8015 sect->alignment_power = 2;
8016
8017 return elfcore_maybe_make_sect (abfd, name, sect);
8018 }
8019
8020 /* prstatus_t exists on:
8021 solaris 2.5+
8022 linux 2.[01] + glibc
8023 unixware 4.2
8024 */
8025
8026 #if defined (HAVE_PRSTATUS_T)
8027
8028 static bfd_boolean
8029 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8030 {
8031 size_t size;
8032 int offset;
8033
8034 if (note->descsz == sizeof (prstatus_t))
8035 {
8036 prstatus_t prstat;
8037
8038 size = sizeof (prstat.pr_reg);
8039 offset = offsetof (prstatus_t, pr_reg);
8040 memcpy (&prstat, note->descdata, sizeof (prstat));
8041
8042 /* Do not overwrite the core signal if it
8043 has already been set by another thread. */
8044 if (elf_tdata (abfd)->core->signal == 0)
8045 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8046 if (elf_tdata (abfd)->core->pid == 0)
8047 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8048
8049 /* pr_who exists on:
8050 solaris 2.5+
8051 unixware 4.2
8052 pr_who doesn't exist on:
8053 linux 2.[01]
8054 */
8055 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8056 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8057 #else
8058 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8059 #endif
8060 }
8061 #if defined (HAVE_PRSTATUS32_T)
8062 else if (note->descsz == sizeof (prstatus32_t))
8063 {
8064 /* 64-bit host, 32-bit corefile */
8065 prstatus32_t prstat;
8066
8067 size = sizeof (prstat.pr_reg);
8068 offset = offsetof (prstatus32_t, pr_reg);
8069 memcpy (&prstat, note->descdata, sizeof (prstat));
8070
8071 /* Do not overwrite the core signal if it
8072 has already been set by another thread. */
8073 if (elf_tdata (abfd)->core->signal == 0)
8074 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8075 if (elf_tdata (abfd)->core->pid == 0)
8076 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8077
8078 /* pr_who exists on:
8079 solaris 2.5+
8080 unixware 4.2
8081 pr_who doesn't exist on:
8082 linux 2.[01]
8083 */
8084 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8085 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8086 #else
8087 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8088 #endif
8089 }
8090 #endif /* HAVE_PRSTATUS32_T */
8091 else
8092 {
8093 /* Fail - we don't know how to handle any other
8094 note size (ie. data object type). */
8095 return TRUE;
8096 }
8097
8098 /* Make a ".reg/999" section and a ".reg" section. */
8099 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8100 size, note->descpos + offset);
8101 }
8102 #endif /* defined (HAVE_PRSTATUS_T) */
8103
8104 /* Create a pseudosection containing the exact contents of NOTE. */
8105 static bfd_boolean
8106 elfcore_make_note_pseudosection (bfd *abfd,
8107 char *name,
8108 Elf_Internal_Note *note)
8109 {
8110 return _bfd_elfcore_make_pseudosection (abfd, name,
8111 note->descsz, note->descpos);
8112 }
8113
8114 /* There isn't a consistent prfpregset_t across platforms,
8115 but it doesn't matter, because we don't have to pick this
8116 data structure apart. */
8117
8118 static bfd_boolean
8119 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8120 {
8121 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8122 }
8123
8124 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8125 type of NT_PRXFPREG. Just include the whole note's contents
8126 literally. */
8127
8128 static bfd_boolean
8129 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8130 {
8131 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8132 }
8133
8134 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8135 with a note type of NT_X86_XSTATE. Just include the whole note's
8136 contents literally. */
8137
8138 static bfd_boolean
8139 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8140 {
8141 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8142 }
8143
8144 static bfd_boolean
8145 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8146 {
8147 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8148 }
8149
8150 static bfd_boolean
8151 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8152 {
8153 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8154 }
8155
8156 static bfd_boolean
8157 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8160 }
8161
8162 static bfd_boolean
8163 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8164 {
8165 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8166 }
8167
8168 static bfd_boolean
8169 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8170 {
8171 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8172 }
8173
8174 static bfd_boolean
8175 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8176 {
8177 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8178 }
8179
8180 static bfd_boolean
8181 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8182 {
8183 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8184 }
8185
8186 static bfd_boolean
8187 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8188 {
8189 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8190 }
8191
8192 static bfd_boolean
8193 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8194 {
8195 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8196 }
8197
8198 static bfd_boolean
8199 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8200 {
8201 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8202 }
8203
8204 static bfd_boolean
8205 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8206 {
8207 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8208 }
8209
8210 static bfd_boolean
8211 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8212 {
8213 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8214 }
8215
8216 static bfd_boolean
8217 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8218 {
8219 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8220 }
8221
8222 static bfd_boolean
8223 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8224 {
8225 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8226 }
8227
8228 static bfd_boolean
8229 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8230 {
8231 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8232 }
8233
8234 #if defined (HAVE_PRPSINFO_T)
8235 typedef prpsinfo_t elfcore_psinfo_t;
8236 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8237 typedef prpsinfo32_t elfcore_psinfo32_t;
8238 #endif
8239 #endif
8240
8241 #if defined (HAVE_PSINFO_T)
8242 typedef psinfo_t elfcore_psinfo_t;
8243 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8244 typedef psinfo32_t elfcore_psinfo32_t;
8245 #endif
8246 #endif
8247
8248 /* return a malloc'ed copy of a string at START which is at
8249 most MAX bytes long, possibly without a terminating '\0'.
8250 the copy will always have a terminating '\0'. */
8251
8252 char *
8253 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8254 {
8255 char *dups;
8256 char *end = (char *) memchr (start, '\0', max);
8257 size_t len;
8258
8259 if (end == NULL)
8260 len = max;
8261 else
8262 len = end - start;
8263
8264 dups = (char *) bfd_alloc (abfd, len + 1);
8265 if (dups == NULL)
8266 return NULL;
8267
8268 memcpy (dups, start, len);
8269 dups[len] = '\0';
8270
8271 return dups;
8272 }
8273
8274 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8275 static bfd_boolean
8276 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8277 {
8278 if (note->descsz == sizeof (elfcore_psinfo_t))
8279 {
8280 elfcore_psinfo_t psinfo;
8281
8282 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8283
8284 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8285 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8286 #endif
8287 elf_tdata (abfd)->core->program
8288 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8289 sizeof (psinfo.pr_fname));
8290
8291 elf_tdata (abfd)->core->command
8292 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8293 sizeof (psinfo.pr_psargs));
8294 }
8295 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8296 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8297 {
8298 /* 64-bit host, 32-bit corefile */
8299 elfcore_psinfo32_t psinfo;
8300
8301 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8302
8303 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8304 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8305 #endif
8306 elf_tdata (abfd)->core->program
8307 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8308 sizeof (psinfo.pr_fname));
8309
8310 elf_tdata (abfd)->core->command
8311 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8312 sizeof (psinfo.pr_psargs));
8313 }
8314 #endif
8315
8316 else
8317 {
8318 /* Fail - we don't know how to handle any other
8319 note size (ie. data object type). */
8320 return TRUE;
8321 }
8322
8323 /* Note that for some reason, a spurious space is tacked
8324 onto the end of the args in some (at least one anyway)
8325 implementations, so strip it off if it exists. */
8326
8327 {
8328 char *command = elf_tdata (abfd)->core->command;
8329 int n = strlen (command);
8330
8331 if (0 < n && command[n - 1] == ' ')
8332 command[n - 1] = '\0';
8333 }
8334
8335 return TRUE;
8336 }
8337 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8338
8339 #if defined (HAVE_PSTATUS_T)
8340 static bfd_boolean
8341 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8342 {
8343 if (note->descsz == sizeof (pstatus_t)
8344 #if defined (HAVE_PXSTATUS_T)
8345 || note->descsz == sizeof (pxstatus_t)
8346 #endif
8347 )
8348 {
8349 pstatus_t pstat;
8350
8351 memcpy (&pstat, note->descdata, sizeof (pstat));
8352
8353 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8354 }
8355 #if defined (HAVE_PSTATUS32_T)
8356 else if (note->descsz == sizeof (pstatus32_t))
8357 {
8358 /* 64-bit host, 32-bit corefile */
8359 pstatus32_t pstat;
8360
8361 memcpy (&pstat, note->descdata, sizeof (pstat));
8362
8363 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8364 }
8365 #endif
8366 /* Could grab some more details from the "representative"
8367 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8368 NT_LWPSTATUS note, presumably. */
8369
8370 return TRUE;
8371 }
8372 #endif /* defined (HAVE_PSTATUS_T) */
8373
8374 #if defined (HAVE_LWPSTATUS_T)
8375 static bfd_boolean
8376 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8377 {
8378 lwpstatus_t lwpstat;
8379 char buf[100];
8380 char *name;
8381 size_t len;
8382 asection *sect;
8383
8384 if (note->descsz != sizeof (lwpstat)
8385 #if defined (HAVE_LWPXSTATUS_T)
8386 && note->descsz != sizeof (lwpxstatus_t)
8387 #endif
8388 )
8389 return TRUE;
8390
8391 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8392
8393 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8394 /* Do not overwrite the core signal if it has already been set by
8395 another thread. */
8396 if (elf_tdata (abfd)->core->signal == 0)
8397 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8398
8399 /* Make a ".reg/999" section. */
8400
8401 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8402 len = strlen (buf) + 1;
8403 name = bfd_alloc (abfd, len);
8404 if (name == NULL)
8405 return FALSE;
8406 memcpy (name, buf, len);
8407
8408 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8409 if (sect == NULL)
8410 return FALSE;
8411
8412 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8413 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8414 sect->filepos = note->descpos
8415 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8416 #endif
8417
8418 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8419 sect->size = sizeof (lwpstat.pr_reg);
8420 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8421 #endif
8422
8423 sect->alignment_power = 2;
8424
8425 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8426 return FALSE;
8427
8428 /* Make a ".reg2/999" section */
8429
8430 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8431 len = strlen (buf) + 1;
8432 name = bfd_alloc (abfd, len);
8433 if (name == NULL)
8434 return FALSE;
8435 memcpy (name, buf, len);
8436
8437 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8438 if (sect == NULL)
8439 return FALSE;
8440
8441 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8442 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8443 sect->filepos = note->descpos
8444 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8445 #endif
8446
8447 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8448 sect->size = sizeof (lwpstat.pr_fpreg);
8449 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8450 #endif
8451
8452 sect->alignment_power = 2;
8453
8454 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8455 }
8456 #endif /* defined (HAVE_LWPSTATUS_T) */
8457
8458 static bfd_boolean
8459 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8460 {
8461 char buf[30];
8462 char *name;
8463 size_t len;
8464 asection *sect;
8465 int type;
8466 int is_active_thread;
8467 bfd_vma base_addr;
8468
8469 if (note->descsz < 728)
8470 return TRUE;
8471
8472 if (! CONST_STRNEQ (note->namedata, "win32"))
8473 return TRUE;
8474
8475 type = bfd_get_32 (abfd, note->descdata);
8476
8477 switch (type)
8478 {
8479 case 1 /* NOTE_INFO_PROCESS */:
8480 /* FIXME: need to add ->core->command. */
8481 /* process_info.pid */
8482 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8483 /* process_info.signal */
8484 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8485 break;
8486
8487 case 2 /* NOTE_INFO_THREAD */:
8488 /* Make a ".reg/999" section. */
8489 /* thread_info.tid */
8490 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8491
8492 len = strlen (buf) + 1;
8493 name = (char *) bfd_alloc (abfd, len);
8494 if (name == NULL)
8495 return FALSE;
8496
8497 memcpy (name, buf, len);
8498
8499 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8500 if (sect == NULL)
8501 return FALSE;
8502
8503 /* sizeof (thread_info.thread_context) */
8504 sect->size = 716;
8505 /* offsetof (thread_info.thread_context) */
8506 sect->filepos = note->descpos + 12;
8507 sect->alignment_power = 2;
8508
8509 /* thread_info.is_active_thread */
8510 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8511
8512 if (is_active_thread)
8513 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8514 return FALSE;
8515 break;
8516
8517 case 3 /* NOTE_INFO_MODULE */:
8518 /* Make a ".module/xxxxxxxx" section. */
8519 /* module_info.base_address */
8520 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8521 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8522
8523 len = strlen (buf) + 1;
8524 name = (char *) bfd_alloc (abfd, len);
8525 if (name == NULL)
8526 return FALSE;
8527
8528 memcpy (name, buf, len);
8529
8530 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8531
8532 if (sect == NULL)
8533 return FALSE;
8534
8535 sect->size = note->descsz;
8536 sect->filepos = note->descpos;
8537 sect->alignment_power = 2;
8538 break;
8539
8540 default:
8541 return TRUE;
8542 }
8543
8544 return TRUE;
8545 }
8546
8547 static bfd_boolean
8548 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8549 {
8550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8551
8552 switch (note->type)
8553 {
8554 default:
8555 return TRUE;
8556
8557 case NT_PRSTATUS:
8558 if (bed->elf_backend_grok_prstatus)
8559 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8560 return TRUE;
8561 #if defined (HAVE_PRSTATUS_T)
8562 return elfcore_grok_prstatus (abfd, note);
8563 #else
8564 return TRUE;
8565 #endif
8566
8567 #if defined (HAVE_PSTATUS_T)
8568 case NT_PSTATUS:
8569 return elfcore_grok_pstatus (abfd, note);
8570 #endif
8571
8572 #if defined (HAVE_LWPSTATUS_T)
8573 case NT_LWPSTATUS:
8574 return elfcore_grok_lwpstatus (abfd, note);
8575 #endif
8576
8577 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8578 return elfcore_grok_prfpreg (abfd, note);
8579
8580 case NT_WIN32PSTATUS:
8581 return elfcore_grok_win32pstatus (abfd, note);
8582
8583 case NT_PRXFPREG: /* Linux SSE extension */
8584 if (note->namesz == 6
8585 && strcmp (note->namedata, "LINUX") == 0)
8586 return elfcore_grok_prxfpreg (abfd, note);
8587 else
8588 return TRUE;
8589
8590 case NT_X86_XSTATE: /* Linux XSAVE extension */
8591 if (note->namesz == 6
8592 && strcmp (note->namedata, "LINUX") == 0)
8593 return elfcore_grok_xstatereg (abfd, note);
8594 else
8595 return TRUE;
8596
8597 case NT_PPC_VMX:
8598 if (note->namesz == 6
8599 && strcmp (note->namedata, "LINUX") == 0)
8600 return elfcore_grok_ppc_vmx (abfd, note);
8601 else
8602 return TRUE;
8603
8604 case NT_PPC_VSX:
8605 if (note->namesz == 6
8606 && strcmp (note->namedata, "LINUX") == 0)
8607 return elfcore_grok_ppc_vsx (abfd, note);
8608 else
8609 return TRUE;
8610
8611 case NT_S390_HIGH_GPRS:
8612 if (note->namesz == 6
8613 && strcmp (note->namedata, "LINUX") == 0)
8614 return elfcore_grok_s390_high_gprs (abfd, note);
8615 else
8616 return TRUE;
8617
8618 case NT_S390_TIMER:
8619 if (note->namesz == 6
8620 && strcmp (note->namedata, "LINUX") == 0)
8621 return elfcore_grok_s390_timer (abfd, note);
8622 else
8623 return TRUE;
8624
8625 case NT_S390_TODCMP:
8626 if (note->namesz == 6
8627 && strcmp (note->namedata, "LINUX") == 0)
8628 return elfcore_grok_s390_todcmp (abfd, note);
8629 else
8630 return TRUE;
8631
8632 case NT_S390_TODPREG:
8633 if (note->namesz == 6
8634 && strcmp (note->namedata, "LINUX") == 0)
8635 return elfcore_grok_s390_todpreg (abfd, note);
8636 else
8637 return TRUE;
8638
8639 case NT_S390_CTRS:
8640 if (note->namesz == 6
8641 && strcmp (note->namedata, "LINUX") == 0)
8642 return elfcore_grok_s390_ctrs (abfd, note);
8643 else
8644 return TRUE;
8645
8646 case NT_S390_PREFIX:
8647 if (note->namesz == 6
8648 && strcmp (note->namedata, "LINUX") == 0)
8649 return elfcore_grok_s390_prefix (abfd, note);
8650 else
8651 return TRUE;
8652
8653 case NT_S390_LAST_BREAK:
8654 if (note->namesz == 6
8655 && strcmp (note->namedata, "LINUX") == 0)
8656 return elfcore_grok_s390_last_break (abfd, note);
8657 else
8658 return TRUE;
8659
8660 case NT_S390_SYSTEM_CALL:
8661 if (note->namesz == 6
8662 && strcmp (note->namedata, "LINUX") == 0)
8663 return elfcore_grok_s390_system_call (abfd, note);
8664 else
8665 return TRUE;
8666
8667 case NT_S390_TDB:
8668 if (note->namesz == 6
8669 && strcmp (note->namedata, "LINUX") == 0)
8670 return elfcore_grok_s390_tdb (abfd, note);
8671 else
8672 return TRUE;
8673
8674 case NT_ARM_VFP:
8675 if (note->namesz == 6
8676 && strcmp (note->namedata, "LINUX") == 0)
8677 return elfcore_grok_arm_vfp (abfd, note);
8678 else
8679 return TRUE;
8680
8681 case NT_ARM_TLS:
8682 if (note->namesz == 6
8683 && strcmp (note->namedata, "LINUX") == 0)
8684 return elfcore_grok_aarch_tls (abfd, note);
8685 else
8686 return TRUE;
8687
8688 case NT_ARM_HW_BREAK:
8689 if (note->namesz == 6
8690 && strcmp (note->namedata, "LINUX") == 0)
8691 return elfcore_grok_aarch_hw_break (abfd, note);
8692 else
8693 return TRUE;
8694
8695 case NT_ARM_HW_WATCH:
8696 if (note->namesz == 6
8697 && strcmp (note->namedata, "LINUX") == 0)
8698 return elfcore_grok_aarch_hw_watch (abfd, note);
8699 else
8700 return TRUE;
8701
8702 case NT_PRPSINFO:
8703 case NT_PSINFO:
8704 if (bed->elf_backend_grok_psinfo)
8705 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8706 return TRUE;
8707 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8708 return elfcore_grok_psinfo (abfd, note);
8709 #else
8710 return TRUE;
8711 #endif
8712
8713 case NT_AUXV:
8714 {
8715 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8716 SEC_HAS_CONTENTS);
8717
8718 if (sect == NULL)
8719 return FALSE;
8720 sect->size = note->descsz;
8721 sect->filepos = note->descpos;
8722 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8723
8724 return TRUE;
8725 }
8726
8727 case NT_FILE:
8728 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8729 note);
8730
8731 case NT_SIGINFO:
8732 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8733 note);
8734 }
8735 }
8736
8737 static bfd_boolean
8738 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8739 {
8740 struct elf_obj_tdata *t;
8741
8742 if (note->descsz == 0)
8743 return FALSE;
8744
8745 t = elf_tdata (abfd);
8746 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8747 if (t->build_id == NULL)
8748 return FALSE;
8749
8750 t->build_id->size = note->descsz;
8751 memcpy (t->build_id->data, note->descdata, note->descsz);
8752
8753 return TRUE;
8754 }
8755
8756 static bfd_boolean
8757 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8758 {
8759 switch (note->type)
8760 {
8761 default:
8762 return TRUE;
8763
8764 case NT_GNU_BUILD_ID:
8765 return elfobj_grok_gnu_build_id (abfd, note);
8766 }
8767 }
8768
8769 static bfd_boolean
8770 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8771 {
8772 struct sdt_note *cur =
8773 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8774 + note->descsz);
8775
8776 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8777 cur->size = (bfd_size_type) note->descsz;
8778 memcpy (cur->data, note->descdata, note->descsz);
8779
8780 elf_tdata (abfd)->sdt_note_head = cur;
8781
8782 return TRUE;
8783 }
8784
8785 static bfd_boolean
8786 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8787 {
8788 switch (note->type)
8789 {
8790 case NT_STAPSDT:
8791 return elfobj_grok_stapsdt_note_1 (abfd, note);
8792
8793 default:
8794 return TRUE;
8795 }
8796 }
8797
8798 static bfd_boolean
8799 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8800 {
8801 char *cp;
8802
8803 cp = strchr (note->namedata, '@');
8804 if (cp != NULL)
8805 {
8806 *lwpidp = atoi(cp + 1);
8807 return TRUE;
8808 }
8809 return FALSE;
8810 }
8811
8812 static bfd_boolean
8813 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8814 {
8815 /* Signal number at offset 0x08. */
8816 elf_tdata (abfd)->core->signal
8817 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8818
8819 /* Process ID at offset 0x50. */
8820 elf_tdata (abfd)->core->pid
8821 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8822
8823 /* Command name at 0x7c (max 32 bytes, including nul). */
8824 elf_tdata (abfd)->core->command
8825 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8826
8827 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8828 note);
8829 }
8830
8831 static bfd_boolean
8832 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8833 {
8834 int lwp;
8835
8836 if (elfcore_netbsd_get_lwpid (note, &lwp))
8837 elf_tdata (abfd)->core->lwpid = lwp;
8838
8839 if (note->type == NT_NETBSDCORE_PROCINFO)
8840 {
8841 /* NetBSD-specific core "procinfo". Note that we expect to
8842 find this note before any of the others, which is fine,
8843 since the kernel writes this note out first when it
8844 creates a core file. */
8845
8846 return elfcore_grok_netbsd_procinfo (abfd, note);
8847 }
8848
8849 /* As of Jan 2002 there are no other machine-independent notes
8850 defined for NetBSD core files. If the note type is less
8851 than the start of the machine-dependent note types, we don't
8852 understand it. */
8853
8854 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8855 return TRUE;
8856
8857
8858 switch (bfd_get_arch (abfd))
8859 {
8860 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8861 PT_GETFPREGS == mach+2. */
8862
8863 case bfd_arch_alpha:
8864 case bfd_arch_sparc:
8865 switch (note->type)
8866 {
8867 case NT_NETBSDCORE_FIRSTMACH+0:
8868 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8869
8870 case NT_NETBSDCORE_FIRSTMACH+2:
8871 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8872
8873 default:
8874 return TRUE;
8875 }
8876
8877 /* On all other arch's, PT_GETREGS == mach+1 and
8878 PT_GETFPREGS == mach+3. */
8879
8880 default:
8881 switch (note->type)
8882 {
8883 case NT_NETBSDCORE_FIRSTMACH+1:
8884 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8885
8886 case NT_NETBSDCORE_FIRSTMACH+3:
8887 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8888
8889 default:
8890 return TRUE;
8891 }
8892 }
8893 /* NOTREACHED */
8894 }
8895
8896 static bfd_boolean
8897 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8898 {
8899 /* Signal number at offset 0x08. */
8900 elf_tdata (abfd)->core->signal
8901 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8902
8903 /* Process ID at offset 0x20. */
8904 elf_tdata (abfd)->core->pid
8905 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8906
8907 /* Command name at 0x48 (max 32 bytes, including nul). */
8908 elf_tdata (abfd)->core->command
8909 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8910
8911 return TRUE;
8912 }
8913
8914 static bfd_boolean
8915 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8916 {
8917 if (note->type == NT_OPENBSD_PROCINFO)
8918 return elfcore_grok_openbsd_procinfo (abfd, note);
8919
8920 if (note->type == NT_OPENBSD_REGS)
8921 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8922
8923 if (note->type == NT_OPENBSD_FPREGS)
8924 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8925
8926 if (note->type == NT_OPENBSD_XFPREGS)
8927 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8928
8929 if (note->type == NT_OPENBSD_AUXV)
8930 {
8931 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8932 SEC_HAS_CONTENTS);
8933
8934 if (sect == NULL)
8935 return FALSE;
8936 sect->size = note->descsz;
8937 sect->filepos = note->descpos;
8938 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8939
8940 return TRUE;
8941 }
8942
8943 if (note->type == NT_OPENBSD_WCOOKIE)
8944 {
8945 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8946 SEC_HAS_CONTENTS);
8947
8948 if (sect == NULL)
8949 return FALSE;
8950 sect->size = note->descsz;
8951 sect->filepos = note->descpos;
8952 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8953
8954 return TRUE;
8955 }
8956
8957 return TRUE;
8958 }
8959
8960 static bfd_boolean
8961 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8962 {
8963 void *ddata = note->descdata;
8964 char buf[100];
8965 char *name;
8966 asection *sect;
8967 short sig;
8968 unsigned flags;
8969
8970 /* nto_procfs_status 'pid' field is at offset 0. */
8971 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8972
8973 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8974 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8975
8976 /* nto_procfs_status 'flags' field is at offset 8. */
8977 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8978
8979 /* nto_procfs_status 'what' field is at offset 14. */
8980 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8981 {
8982 elf_tdata (abfd)->core->signal = sig;
8983 elf_tdata (abfd)->core->lwpid = *tid;
8984 }
8985
8986 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8987 do not come from signals so we make sure we set the current
8988 thread just in case. */
8989 if (flags & 0x00000080)
8990 elf_tdata (abfd)->core->lwpid = *tid;
8991
8992 /* Make a ".qnx_core_status/%d" section. */
8993 sprintf (buf, ".qnx_core_status/%ld", *tid);
8994
8995 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8996 if (name == NULL)
8997 return FALSE;
8998 strcpy (name, buf);
8999
9000 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9001 if (sect == NULL)
9002 return FALSE;
9003
9004 sect->size = note->descsz;
9005 sect->filepos = note->descpos;
9006 sect->alignment_power = 2;
9007
9008 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9009 }
9010
9011 static bfd_boolean
9012 elfcore_grok_nto_regs (bfd *abfd,
9013 Elf_Internal_Note *note,
9014 long tid,
9015 char *base)
9016 {
9017 char buf[100];
9018 char *name;
9019 asection *sect;
9020
9021 /* Make a "(base)/%d" section. */
9022 sprintf (buf, "%s/%ld", base, tid);
9023
9024 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9025 if (name == NULL)
9026 return FALSE;
9027 strcpy (name, buf);
9028
9029 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9030 if (sect == NULL)
9031 return FALSE;
9032
9033 sect->size = note->descsz;
9034 sect->filepos = note->descpos;
9035 sect->alignment_power = 2;
9036
9037 /* This is the current thread. */
9038 if (elf_tdata (abfd)->core->lwpid == tid)
9039 return elfcore_maybe_make_sect (abfd, base, sect);
9040
9041 return TRUE;
9042 }
9043
9044 #define BFD_QNT_CORE_INFO 7
9045 #define BFD_QNT_CORE_STATUS 8
9046 #define BFD_QNT_CORE_GREG 9
9047 #define BFD_QNT_CORE_FPREG 10
9048
9049 static bfd_boolean
9050 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9051 {
9052 /* Every GREG section has a STATUS section before it. Store the
9053 tid from the previous call to pass down to the next gregs
9054 function. */
9055 static long tid = 1;
9056
9057 switch (note->type)
9058 {
9059 case BFD_QNT_CORE_INFO:
9060 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9061 case BFD_QNT_CORE_STATUS:
9062 return elfcore_grok_nto_status (abfd, note, &tid);
9063 case BFD_QNT_CORE_GREG:
9064 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9065 case BFD_QNT_CORE_FPREG:
9066 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9067 default:
9068 return TRUE;
9069 }
9070 }
9071
9072 static bfd_boolean
9073 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9074 {
9075 char *name;
9076 asection *sect;
9077 size_t len;
9078
9079 /* Use note name as section name. */
9080 len = note->namesz;
9081 name = (char *) bfd_alloc (abfd, len);
9082 if (name == NULL)
9083 return FALSE;
9084 memcpy (name, note->namedata, len);
9085 name[len - 1] = '\0';
9086
9087 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9088 if (sect == NULL)
9089 return FALSE;
9090
9091 sect->size = note->descsz;
9092 sect->filepos = note->descpos;
9093 sect->alignment_power = 1;
9094
9095 return TRUE;
9096 }
9097
9098 /* Function: elfcore_write_note
9099
9100 Inputs:
9101 buffer to hold note, and current size of buffer
9102 name of note
9103 type of note
9104 data for note
9105 size of data for note
9106
9107 Writes note to end of buffer. ELF64 notes are written exactly as
9108 for ELF32, despite the current (as of 2006) ELF gabi specifying
9109 that they ought to have 8-byte namesz and descsz field, and have
9110 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9111
9112 Return:
9113 Pointer to realloc'd buffer, *BUFSIZ updated. */
9114
9115 char *
9116 elfcore_write_note (bfd *abfd,
9117 char *buf,
9118 int *bufsiz,
9119 const char *name,
9120 int type,
9121 const void *input,
9122 int size)
9123 {
9124 Elf_External_Note *xnp;
9125 size_t namesz;
9126 size_t newspace;
9127 char *dest;
9128
9129 namesz = 0;
9130 if (name != NULL)
9131 namesz = strlen (name) + 1;
9132
9133 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9134
9135 buf = (char *) realloc (buf, *bufsiz + newspace);
9136 if (buf == NULL)
9137 return buf;
9138 dest = buf + *bufsiz;
9139 *bufsiz += newspace;
9140 xnp = (Elf_External_Note *) dest;
9141 H_PUT_32 (abfd, namesz, xnp->namesz);
9142 H_PUT_32 (abfd, size, xnp->descsz);
9143 H_PUT_32 (abfd, type, xnp->type);
9144 dest = xnp->name;
9145 if (name != NULL)
9146 {
9147 memcpy (dest, name, namesz);
9148 dest += namesz;
9149 while (namesz & 3)
9150 {
9151 *dest++ = '\0';
9152 ++namesz;
9153 }
9154 }
9155 memcpy (dest, input, size);
9156 dest += size;
9157 while (size & 3)
9158 {
9159 *dest++ = '\0';
9160 ++size;
9161 }
9162 return buf;
9163 }
9164
9165 char *
9166 elfcore_write_prpsinfo (bfd *abfd,
9167 char *buf,
9168 int *bufsiz,
9169 const char *fname,
9170 const char *psargs)
9171 {
9172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9173
9174 if (bed->elf_backend_write_core_note != NULL)
9175 {
9176 char *ret;
9177 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9178 NT_PRPSINFO, fname, psargs);
9179 if (ret != NULL)
9180 return ret;
9181 }
9182
9183 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9184 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9185 if (bed->s->elfclass == ELFCLASS32)
9186 {
9187 #if defined (HAVE_PSINFO32_T)
9188 psinfo32_t data;
9189 int note_type = NT_PSINFO;
9190 #else
9191 prpsinfo32_t data;
9192 int note_type = NT_PRPSINFO;
9193 #endif
9194
9195 memset (&data, 0, sizeof (data));
9196 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9197 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9198 return elfcore_write_note (abfd, buf, bufsiz,
9199 "CORE", note_type, &data, sizeof (data));
9200 }
9201 else
9202 #endif
9203 {
9204 #if defined (HAVE_PSINFO_T)
9205 psinfo_t data;
9206 int note_type = NT_PSINFO;
9207 #else
9208 prpsinfo_t data;
9209 int note_type = NT_PRPSINFO;
9210 #endif
9211
9212 memset (&data, 0, sizeof (data));
9213 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9214 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9215 return elfcore_write_note (abfd, buf, bufsiz,
9216 "CORE", note_type, &data, sizeof (data));
9217 }
9218 #endif /* PSINFO_T or PRPSINFO_T */
9219
9220 free (buf);
9221 return NULL;
9222 }
9223
9224 char *
9225 elfcore_write_linux_prpsinfo32
9226 (bfd *abfd, char *buf, int *bufsiz,
9227 const struct elf_internal_linux_prpsinfo *prpsinfo)
9228 {
9229 struct elf_external_linux_prpsinfo32 data;
9230
9231 memset (&data, 0, sizeof (data));
9232 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9233
9234 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9235 &data, sizeof (data));
9236 }
9237
9238 char *
9239 elfcore_write_linux_prpsinfo64
9240 (bfd *abfd, char *buf, int *bufsiz,
9241 const struct elf_internal_linux_prpsinfo *prpsinfo)
9242 {
9243 struct elf_external_linux_prpsinfo64 data;
9244
9245 memset (&data, 0, sizeof (data));
9246 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9247
9248 return elfcore_write_note (abfd, buf, bufsiz,
9249 "CORE", NT_PRPSINFO, &data, sizeof (data));
9250 }
9251
9252 char *
9253 elfcore_write_prstatus (bfd *abfd,
9254 char *buf,
9255 int *bufsiz,
9256 long pid,
9257 int cursig,
9258 const void *gregs)
9259 {
9260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9261
9262 if (bed->elf_backend_write_core_note != NULL)
9263 {
9264 char *ret;
9265 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9266 NT_PRSTATUS,
9267 pid, cursig, gregs);
9268 if (ret != NULL)
9269 return ret;
9270 }
9271
9272 #if defined (HAVE_PRSTATUS_T)
9273 #if defined (HAVE_PRSTATUS32_T)
9274 if (bed->s->elfclass == ELFCLASS32)
9275 {
9276 prstatus32_t prstat;
9277
9278 memset (&prstat, 0, sizeof (prstat));
9279 prstat.pr_pid = pid;
9280 prstat.pr_cursig = cursig;
9281 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9282 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9283 NT_PRSTATUS, &prstat, sizeof (prstat));
9284 }
9285 else
9286 #endif
9287 {
9288 prstatus_t prstat;
9289
9290 memset (&prstat, 0, sizeof (prstat));
9291 prstat.pr_pid = pid;
9292 prstat.pr_cursig = cursig;
9293 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9294 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9295 NT_PRSTATUS, &prstat, sizeof (prstat));
9296 }
9297 #endif /* HAVE_PRSTATUS_T */
9298
9299 free (buf);
9300 return NULL;
9301 }
9302
9303 #if defined (HAVE_LWPSTATUS_T)
9304 char *
9305 elfcore_write_lwpstatus (bfd *abfd,
9306 char *buf,
9307 int *bufsiz,
9308 long pid,
9309 int cursig,
9310 const void *gregs)
9311 {
9312 lwpstatus_t lwpstat;
9313 const char *note_name = "CORE";
9314
9315 memset (&lwpstat, 0, sizeof (lwpstat));
9316 lwpstat.pr_lwpid = pid >> 16;
9317 lwpstat.pr_cursig = cursig;
9318 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9319 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9320 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9321 #if !defined(gregs)
9322 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9323 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9324 #else
9325 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9326 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9327 #endif
9328 #endif
9329 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9330 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9331 }
9332 #endif /* HAVE_LWPSTATUS_T */
9333
9334 #if defined (HAVE_PSTATUS_T)
9335 char *
9336 elfcore_write_pstatus (bfd *abfd,
9337 char *buf,
9338 int *bufsiz,
9339 long pid,
9340 int cursig ATTRIBUTE_UNUSED,
9341 const void *gregs ATTRIBUTE_UNUSED)
9342 {
9343 const char *note_name = "CORE";
9344 #if defined (HAVE_PSTATUS32_T)
9345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9346
9347 if (bed->s->elfclass == ELFCLASS32)
9348 {
9349 pstatus32_t pstat;
9350
9351 memset (&pstat, 0, sizeof (pstat));
9352 pstat.pr_pid = pid & 0xffff;
9353 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9354 NT_PSTATUS, &pstat, sizeof (pstat));
9355 return buf;
9356 }
9357 else
9358 #endif
9359 {
9360 pstatus_t pstat;
9361
9362 memset (&pstat, 0, sizeof (pstat));
9363 pstat.pr_pid = pid & 0xffff;
9364 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9365 NT_PSTATUS, &pstat, sizeof (pstat));
9366 return buf;
9367 }
9368 }
9369 #endif /* HAVE_PSTATUS_T */
9370
9371 char *
9372 elfcore_write_prfpreg (bfd *abfd,
9373 char *buf,
9374 int *bufsiz,
9375 const void *fpregs,
9376 int size)
9377 {
9378 const char *note_name = "CORE";
9379 return elfcore_write_note (abfd, buf, bufsiz,
9380 note_name, NT_FPREGSET, fpregs, size);
9381 }
9382
9383 char *
9384 elfcore_write_prxfpreg (bfd *abfd,
9385 char *buf,
9386 int *bufsiz,
9387 const void *xfpregs,
9388 int size)
9389 {
9390 char *note_name = "LINUX";
9391 return elfcore_write_note (abfd, buf, bufsiz,
9392 note_name, NT_PRXFPREG, xfpregs, size);
9393 }
9394
9395 char *
9396 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9397 const void *xfpregs, int size)
9398 {
9399 char *note_name = "LINUX";
9400 return elfcore_write_note (abfd, buf, bufsiz,
9401 note_name, NT_X86_XSTATE, xfpregs, size);
9402 }
9403
9404 char *
9405 elfcore_write_ppc_vmx (bfd *abfd,
9406 char *buf,
9407 int *bufsiz,
9408 const void *ppc_vmx,
9409 int size)
9410 {
9411 char *note_name = "LINUX";
9412 return elfcore_write_note (abfd, buf, bufsiz,
9413 note_name, NT_PPC_VMX, ppc_vmx, size);
9414 }
9415
9416 char *
9417 elfcore_write_ppc_vsx (bfd *abfd,
9418 char *buf,
9419 int *bufsiz,
9420 const void *ppc_vsx,
9421 int size)
9422 {
9423 char *note_name = "LINUX";
9424 return elfcore_write_note (abfd, buf, bufsiz,
9425 note_name, NT_PPC_VSX, ppc_vsx, size);
9426 }
9427
9428 static char *
9429 elfcore_write_s390_high_gprs (bfd *abfd,
9430 char *buf,
9431 int *bufsiz,
9432 const void *s390_high_gprs,
9433 int size)
9434 {
9435 char *note_name = "LINUX";
9436 return elfcore_write_note (abfd, buf, bufsiz,
9437 note_name, NT_S390_HIGH_GPRS,
9438 s390_high_gprs, size);
9439 }
9440
9441 char *
9442 elfcore_write_s390_timer (bfd *abfd,
9443 char *buf,
9444 int *bufsiz,
9445 const void *s390_timer,
9446 int size)
9447 {
9448 char *note_name = "LINUX";
9449 return elfcore_write_note (abfd, buf, bufsiz,
9450 note_name, NT_S390_TIMER, s390_timer, size);
9451 }
9452
9453 char *
9454 elfcore_write_s390_todcmp (bfd *abfd,
9455 char *buf,
9456 int *bufsiz,
9457 const void *s390_todcmp,
9458 int size)
9459 {
9460 char *note_name = "LINUX";
9461 return elfcore_write_note (abfd, buf, bufsiz,
9462 note_name, NT_S390_TODCMP, s390_todcmp, size);
9463 }
9464
9465 char *
9466 elfcore_write_s390_todpreg (bfd *abfd,
9467 char *buf,
9468 int *bufsiz,
9469 const void *s390_todpreg,
9470 int size)
9471 {
9472 char *note_name = "LINUX";
9473 return elfcore_write_note (abfd, buf, bufsiz,
9474 note_name, NT_S390_TODPREG, s390_todpreg, size);
9475 }
9476
9477 char *
9478 elfcore_write_s390_ctrs (bfd *abfd,
9479 char *buf,
9480 int *bufsiz,
9481 const void *s390_ctrs,
9482 int size)
9483 {
9484 char *note_name = "LINUX";
9485 return elfcore_write_note (abfd, buf, bufsiz,
9486 note_name, NT_S390_CTRS, s390_ctrs, size);
9487 }
9488
9489 char *
9490 elfcore_write_s390_prefix (bfd *abfd,
9491 char *buf,
9492 int *bufsiz,
9493 const void *s390_prefix,
9494 int size)
9495 {
9496 char *note_name = "LINUX";
9497 return elfcore_write_note (abfd, buf, bufsiz,
9498 note_name, NT_S390_PREFIX, s390_prefix, size);
9499 }
9500
9501 char *
9502 elfcore_write_s390_last_break (bfd *abfd,
9503 char *buf,
9504 int *bufsiz,
9505 const void *s390_last_break,
9506 int size)
9507 {
9508 char *note_name = "LINUX";
9509 return elfcore_write_note (abfd, buf, bufsiz,
9510 note_name, NT_S390_LAST_BREAK,
9511 s390_last_break, size);
9512 }
9513
9514 char *
9515 elfcore_write_s390_system_call (bfd *abfd,
9516 char *buf,
9517 int *bufsiz,
9518 const void *s390_system_call,
9519 int size)
9520 {
9521 char *note_name = "LINUX";
9522 return elfcore_write_note (abfd, buf, bufsiz,
9523 note_name, NT_S390_SYSTEM_CALL,
9524 s390_system_call, size);
9525 }
9526
9527 char *
9528 elfcore_write_s390_tdb (bfd *abfd,
9529 char *buf,
9530 int *bufsiz,
9531 const void *s390_tdb,
9532 int size)
9533 {
9534 char *note_name = "LINUX";
9535 return elfcore_write_note (abfd, buf, bufsiz,
9536 note_name, NT_S390_TDB, s390_tdb, size);
9537 }
9538
9539 char *
9540 elfcore_write_arm_vfp (bfd *abfd,
9541 char *buf,
9542 int *bufsiz,
9543 const void *arm_vfp,
9544 int size)
9545 {
9546 char *note_name = "LINUX";
9547 return elfcore_write_note (abfd, buf, bufsiz,
9548 note_name, NT_ARM_VFP, arm_vfp, size);
9549 }
9550
9551 char *
9552 elfcore_write_aarch_tls (bfd *abfd,
9553 char *buf,
9554 int *bufsiz,
9555 const void *aarch_tls,
9556 int size)
9557 {
9558 char *note_name = "LINUX";
9559 return elfcore_write_note (abfd, buf, bufsiz,
9560 note_name, NT_ARM_TLS, aarch_tls, size);
9561 }
9562
9563 char *
9564 elfcore_write_aarch_hw_break (bfd *abfd,
9565 char *buf,
9566 int *bufsiz,
9567 const void *aarch_hw_break,
9568 int size)
9569 {
9570 char *note_name = "LINUX";
9571 return elfcore_write_note (abfd, buf, bufsiz,
9572 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9573 }
9574
9575 char *
9576 elfcore_write_aarch_hw_watch (bfd *abfd,
9577 char *buf,
9578 int *bufsiz,
9579 const void *aarch_hw_watch,
9580 int size)
9581 {
9582 char *note_name = "LINUX";
9583 return elfcore_write_note (abfd, buf, bufsiz,
9584 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9585 }
9586
9587 char *
9588 elfcore_write_register_note (bfd *abfd,
9589 char *buf,
9590 int *bufsiz,
9591 const char *section,
9592 const void *data,
9593 int size)
9594 {
9595 if (strcmp (section, ".reg2") == 0)
9596 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9597 if (strcmp (section, ".reg-xfp") == 0)
9598 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9599 if (strcmp (section, ".reg-xstate") == 0)
9600 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9601 if (strcmp (section, ".reg-ppc-vmx") == 0)
9602 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9603 if (strcmp (section, ".reg-ppc-vsx") == 0)
9604 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9605 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9606 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9607 if (strcmp (section, ".reg-s390-timer") == 0)
9608 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9609 if (strcmp (section, ".reg-s390-todcmp") == 0)
9610 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9611 if (strcmp (section, ".reg-s390-todpreg") == 0)
9612 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9613 if (strcmp (section, ".reg-s390-ctrs") == 0)
9614 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9615 if (strcmp (section, ".reg-s390-prefix") == 0)
9616 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9617 if (strcmp (section, ".reg-s390-last-break") == 0)
9618 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9619 if (strcmp (section, ".reg-s390-system-call") == 0)
9620 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9621 if (strcmp (section, ".reg-s390-tdb") == 0)
9622 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9623 if (strcmp (section, ".reg-arm-vfp") == 0)
9624 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9625 if (strcmp (section, ".reg-aarch-tls") == 0)
9626 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9627 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9628 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9629 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9630 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9631 return NULL;
9632 }
9633
9634 static bfd_boolean
9635 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9636 {
9637 char *p;
9638
9639 p = buf;
9640 while (p < buf + size)
9641 {
9642 /* FIXME: bad alignment assumption. */
9643 Elf_External_Note *xnp = (Elf_External_Note *) p;
9644 Elf_Internal_Note in;
9645
9646 if (offsetof (Elf_External_Note, name) > buf - p + size)
9647 return FALSE;
9648
9649 in.type = H_GET_32 (abfd, xnp->type);
9650
9651 in.namesz = H_GET_32 (abfd, xnp->namesz);
9652 in.namedata = xnp->name;
9653 if (in.namesz > buf - in.namedata + size)
9654 return FALSE;
9655
9656 in.descsz = H_GET_32 (abfd, xnp->descsz);
9657 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9658 in.descpos = offset + (in.descdata - buf);
9659 if (in.descsz != 0
9660 && (in.descdata >= buf + size
9661 || in.descsz > buf - in.descdata + size))
9662 return FALSE;
9663
9664 switch (bfd_get_format (abfd))
9665 {
9666 default:
9667 return TRUE;
9668
9669 case bfd_core:
9670 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9671 {
9672 if (! elfcore_grok_netbsd_note (abfd, &in))
9673 return FALSE;
9674 }
9675 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9676 {
9677 if (! elfcore_grok_openbsd_note (abfd, &in))
9678 return FALSE;
9679 }
9680 else if (CONST_STRNEQ (in.namedata, "QNX"))
9681 {
9682 if (! elfcore_grok_nto_note (abfd, &in))
9683 return FALSE;
9684 }
9685 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9686 {
9687 if (! elfcore_grok_spu_note (abfd, &in))
9688 return FALSE;
9689 }
9690 else
9691 {
9692 if (! elfcore_grok_note (abfd, &in))
9693 return FALSE;
9694 }
9695 break;
9696
9697 case bfd_object:
9698 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9699 {
9700 if (! elfobj_grok_gnu_note (abfd, &in))
9701 return FALSE;
9702 }
9703 else if (in.namesz == sizeof "stapsdt"
9704 && strcmp (in.namedata, "stapsdt") == 0)
9705 {
9706 if (! elfobj_grok_stapsdt_note (abfd, &in))
9707 return FALSE;
9708 }
9709 break;
9710 }
9711
9712 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9713 }
9714
9715 return TRUE;
9716 }
9717
9718 static bfd_boolean
9719 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9720 {
9721 char *buf;
9722
9723 if (size <= 0)
9724 return TRUE;
9725
9726 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9727 return FALSE;
9728
9729 buf = (char *) bfd_malloc (size);
9730 if (buf == NULL)
9731 return FALSE;
9732
9733 if (bfd_bread (buf, size, abfd) != size
9734 || !elf_parse_notes (abfd, buf, size, offset))
9735 {
9736 free (buf);
9737 return FALSE;
9738 }
9739
9740 free (buf);
9741 return TRUE;
9742 }
9743 \f
9744 /* Providing external access to the ELF program header table. */
9745
9746 /* Return an upper bound on the number of bytes required to store a
9747 copy of ABFD's program header table entries. Return -1 if an error
9748 occurs; bfd_get_error will return an appropriate code. */
9749
9750 long
9751 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9752 {
9753 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9754 {
9755 bfd_set_error (bfd_error_wrong_format);
9756 return -1;
9757 }
9758
9759 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9760 }
9761
9762 /* Copy ABFD's program header table entries to *PHDRS. The entries
9763 will be stored as an array of Elf_Internal_Phdr structures, as
9764 defined in include/elf/internal.h. To find out how large the
9765 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9766
9767 Return the number of program header table entries read, or -1 if an
9768 error occurs; bfd_get_error will return an appropriate code. */
9769
9770 int
9771 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9772 {
9773 int num_phdrs;
9774
9775 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9776 {
9777 bfd_set_error (bfd_error_wrong_format);
9778 return -1;
9779 }
9780
9781 num_phdrs = elf_elfheader (abfd)->e_phnum;
9782 memcpy (phdrs, elf_tdata (abfd)->phdr,
9783 num_phdrs * sizeof (Elf_Internal_Phdr));
9784
9785 return num_phdrs;
9786 }
9787
9788 enum elf_reloc_type_class
9789 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9790 const asection *rel_sec ATTRIBUTE_UNUSED,
9791 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9792 {
9793 return reloc_class_normal;
9794 }
9795
9796 /* For RELA architectures, return the relocation value for a
9797 relocation against a local symbol. */
9798
9799 bfd_vma
9800 _bfd_elf_rela_local_sym (bfd *abfd,
9801 Elf_Internal_Sym *sym,
9802 asection **psec,
9803 Elf_Internal_Rela *rel)
9804 {
9805 asection *sec = *psec;
9806 bfd_vma relocation;
9807
9808 relocation = (sec->output_section->vma
9809 + sec->output_offset
9810 + sym->st_value);
9811 if ((sec->flags & SEC_MERGE)
9812 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9813 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9814 {
9815 rel->r_addend =
9816 _bfd_merged_section_offset (abfd, psec,
9817 elf_section_data (sec)->sec_info,
9818 sym->st_value + rel->r_addend);
9819 if (sec != *psec)
9820 {
9821 /* If we have changed the section, and our original section is
9822 marked with SEC_EXCLUDE, it means that the original
9823 SEC_MERGE section has been completely subsumed in some
9824 other SEC_MERGE section. In this case, we need to leave
9825 some info around for --emit-relocs. */
9826 if ((sec->flags & SEC_EXCLUDE) != 0)
9827 sec->kept_section = *psec;
9828 sec = *psec;
9829 }
9830 rel->r_addend -= relocation;
9831 rel->r_addend += sec->output_section->vma + sec->output_offset;
9832 }
9833 return relocation;
9834 }
9835
9836 bfd_vma
9837 _bfd_elf_rel_local_sym (bfd *abfd,
9838 Elf_Internal_Sym *sym,
9839 asection **psec,
9840 bfd_vma addend)
9841 {
9842 asection *sec = *psec;
9843
9844 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9845 return sym->st_value + addend;
9846
9847 return _bfd_merged_section_offset (abfd, psec,
9848 elf_section_data (sec)->sec_info,
9849 sym->st_value + addend);
9850 }
9851
9852 bfd_vma
9853 _bfd_elf_section_offset (bfd *abfd,
9854 struct bfd_link_info *info,
9855 asection *sec,
9856 bfd_vma offset)
9857 {
9858 switch (sec->sec_info_type)
9859 {
9860 case SEC_INFO_TYPE_STABS:
9861 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9862 offset);
9863 case SEC_INFO_TYPE_EH_FRAME:
9864 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9865 default:
9866 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9867 {
9868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9869 bfd_size_type address_size = bed->s->arch_size / 8;
9870 offset = sec->size - offset - address_size;
9871 }
9872 return offset;
9873 }
9874 }
9875 \f
9876 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9877 reconstruct an ELF file by reading the segments out of remote memory
9878 based on the ELF file header at EHDR_VMA and the ELF program headers it
9879 points to. If not null, *LOADBASEP is filled in with the difference
9880 between the VMAs from which the segments were read, and the VMAs the
9881 file headers (and hence BFD's idea of each section's VMA) put them at.
9882
9883 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9884 remote memory at target address VMA into the local buffer at MYADDR; it
9885 should return zero on success or an `errno' code on failure. TEMPL must
9886 be a BFD for an ELF target with the word size and byte order found in
9887 the remote memory. */
9888
9889 bfd *
9890 bfd_elf_bfd_from_remote_memory
9891 (bfd *templ,
9892 bfd_vma ehdr_vma,
9893 bfd_vma *loadbasep,
9894 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9895 {
9896 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9897 (templ, ehdr_vma, loadbasep, target_read_memory);
9898 }
9899 \f
9900 long
9901 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9902 long symcount ATTRIBUTE_UNUSED,
9903 asymbol **syms ATTRIBUTE_UNUSED,
9904 long dynsymcount,
9905 asymbol **dynsyms,
9906 asymbol **ret)
9907 {
9908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9909 asection *relplt;
9910 asymbol *s;
9911 const char *relplt_name;
9912 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9913 arelent *p;
9914 long count, i, n;
9915 size_t size;
9916 Elf_Internal_Shdr *hdr;
9917 char *names;
9918 asection *plt;
9919
9920 *ret = NULL;
9921
9922 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9923 return 0;
9924
9925 if (dynsymcount <= 0)
9926 return 0;
9927
9928 if (!bed->plt_sym_val)
9929 return 0;
9930
9931 relplt_name = bed->relplt_name;
9932 if (relplt_name == NULL)
9933 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9934 relplt = bfd_get_section_by_name (abfd, relplt_name);
9935 if (relplt == NULL)
9936 return 0;
9937
9938 hdr = &elf_section_data (relplt)->this_hdr;
9939 if (hdr->sh_link != elf_dynsymtab (abfd)
9940 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9941 return 0;
9942
9943 plt = bfd_get_section_by_name (abfd, ".plt");
9944 if (plt == NULL)
9945 return 0;
9946
9947 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9948 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9949 return -1;
9950
9951 count = relplt->size / hdr->sh_entsize;
9952 size = count * sizeof (asymbol);
9953 p = relplt->relocation;
9954 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9955 {
9956 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9957 if (p->addend != 0)
9958 {
9959 #ifdef BFD64
9960 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9961 #else
9962 size += sizeof ("+0x") - 1 + 8;
9963 #endif
9964 }
9965 }
9966
9967 s = *ret = (asymbol *) bfd_malloc (size);
9968 if (s == NULL)
9969 return -1;
9970
9971 names = (char *) (s + count);
9972 p = relplt->relocation;
9973 n = 0;
9974 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9975 {
9976 size_t len;
9977 bfd_vma addr;
9978
9979 addr = bed->plt_sym_val (i, plt, p);
9980 if (addr == (bfd_vma) -1)
9981 continue;
9982
9983 *s = **p->sym_ptr_ptr;
9984 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9985 we are defining a symbol, ensure one of them is set. */
9986 if ((s->flags & BSF_LOCAL) == 0)
9987 s->flags |= BSF_GLOBAL;
9988 s->flags |= BSF_SYNTHETIC;
9989 s->section = plt;
9990 s->value = addr - plt->vma;
9991 s->name = names;
9992 s->udata.p = NULL;
9993 len = strlen ((*p->sym_ptr_ptr)->name);
9994 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9995 names += len;
9996 if (p->addend != 0)
9997 {
9998 char buf[30], *a;
9999
10000 memcpy (names, "+0x", sizeof ("+0x") - 1);
10001 names += sizeof ("+0x") - 1;
10002 bfd_sprintf_vma (abfd, buf, p->addend);
10003 for (a = buf; *a == '0'; ++a)
10004 ;
10005 len = strlen (a);
10006 memcpy (names, a, len);
10007 names += len;
10008 }
10009 memcpy (names, "@plt", sizeof ("@plt"));
10010 names += sizeof ("@plt");
10011 ++s, ++n;
10012 }
10013
10014 return n;
10015 }
10016
10017 /* It is only used by x86-64 so far. */
10018 asection _bfd_elf_large_com_section
10019 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10020 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10021
10022 void
10023 _bfd_elf_post_process_headers (bfd * abfd,
10024 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10025 {
10026 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10027
10028 i_ehdrp = elf_elfheader (abfd);
10029
10030 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10031
10032 /* To make things simpler for the loader on Linux systems we set the
10033 osabi field to ELFOSABI_GNU if the binary contains symbols of
10034 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10035 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10036 && elf_tdata (abfd)->has_gnu_symbols)
10037 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10038 }
10039
10040
10041 /* Return TRUE for ELF symbol types that represent functions.
10042 This is the default version of this function, which is sufficient for
10043 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10044
10045 bfd_boolean
10046 _bfd_elf_is_function_type (unsigned int type)
10047 {
10048 return (type == STT_FUNC
10049 || type == STT_GNU_IFUNC);
10050 }
10051
10052 /* If the ELF symbol SYM might be a function in SEC, return the
10053 function size and set *CODE_OFF to the function's entry point,
10054 otherwise return zero. */
10055
10056 bfd_size_type
10057 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10058 bfd_vma *code_off)
10059 {
10060 bfd_size_type size;
10061
10062 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10063 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10064 || sym->section != sec)
10065 return 0;
10066
10067 *code_off = sym->value;
10068 size = 0;
10069 if (!(sym->flags & BSF_SYNTHETIC))
10070 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10071 if (size == 0)
10072 size = 1;
10073 return size;
10074 }