* elf.c (elf_find_function): Fail if not provided with a symbol
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075 };
2076
2077 static const struct bfd_elf_special_section special_sections_f[] =
2078 {
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_g[] =
2085 {
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_h[] =
2099 {
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102 };
2103
2104 static const struct bfd_elf_special_section special_sections_i[] =
2105 {
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_l[] =
2113 {
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_n[] =
2119 {
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123 };
2124
2125 static const struct bfd_elf_special_section special_sections_p[] =
2126 {
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_r[] =
2133 {
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139 };
2140
2141 static const struct bfd_elf_special_section special_sections_s[] =
2142 {
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150 };
2151
2152 static const struct bfd_elf_special_section special_sections_t[] =
2153 {
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158 };
2159
2160 static const struct bfd_elf_special_section special_sections_z[] =
2161 {
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167 };
2168
2169 static const struct bfd_elf_special_section * const special_sections[] =
2170 {
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196 };
2197
2198 const struct bfd_elf_special_section *
2199 _bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202 {
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244 }
2245
2246 const struct bfd_elf_special_section *
2247 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248 {
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281 }
2282
2283 bfd_boolean
2284 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285 {
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329 }
2330
2331 /* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353 bfd_boolean
2354 _bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358 {
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 bfd_boolean
2446 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447 {
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492 }
2493
2494 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497 Elf_Internal_Shdr *
2498 _bfd_elf_single_rel_hdr (asection *sec)
2499 {
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507 }
2508
2509 /* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514 bfd_boolean
2515 _bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519 {
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551 }
2552
2553 /* Return the default section type based on the passed in section flags. */
2554
2555 int
2556 bfd_elf_get_default_section_type (flagword flags)
2557 {
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562 }
2563
2564 struct fake_section_arg
2565 {
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568 };
2569
2570 /* Set up an ELF internal section header for a section. */
2571
2572 static void
2573 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574 {
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792 }
2793
2794 /* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799 void
2800 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801 {
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908 }
2909
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914 static bfd_boolean
2915 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916 {
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (elf_discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226 }
3227
3228 /* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231 static bfd_boolean
3232 sym_is_global (bfd *abfd, asymbol *sym)
3233 {
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242 }
3243
3244 /* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247 static bfd_boolean
3248 ignore_section_sym (bfd *abfd, asymbol *sym)
3249 {
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254 }
3255
3256 static bfd_boolean
3257 elf_map_symbols (bfd *abfd)
3258 {
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271 #ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274 #endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377 }
3378
3379 /* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382 static inline file_ptr
3383 align_file_position (file_ptr off, int align)
3384 {
3385 return (off + align - 1) & ~(align - 1);
3386 }
3387
3388 /* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391 file_ptr
3392 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395 {
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404 }
3405
3406 /* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410 bfd_boolean
3411 _bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413 {
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511 }
3512
3513 /* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516 static bfd_size_type
3517 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518 {
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607 }
3608
3609 /* Find the segment that contains the output_section of section. */
3610
3611 Elf_Internal_Phdr *
3612 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613 {
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 /* Create a mapping from a set of sections to a program segment. */
3633
3634 static struct elf_segment_map *
3635 make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640 {
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665 }
3666
3667 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670 struct elf_segment_map *
3671 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672 {
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685 }
3686
3687 /* Possibly add or remove segments from the segment map. */
3688
3689 static bfd_boolean
3690 elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693 {
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733 }
3734
3735 /* Set up a mapping from BFD sections to program segments. */
3736
3737 bfd_boolean
3738 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739 {
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3748 {
3749 asection *s;
3750 unsigned int i;
3751 struct elf_segment_map *mfirst;
3752 struct elf_segment_map **pm;
3753 asection *last_hdr;
3754 bfd_vma last_size;
3755 unsigned int phdr_index;
3756 bfd_vma maxpagesize;
3757 asection **hdrpp;
3758 bfd_boolean phdr_in_segment = TRUE;
3759 bfd_boolean writable;
3760 int tls_count = 0;
3761 asection *first_tls = NULL;
3762 asection *dynsec, *eh_frame_hdr;
3763 bfd_size_type amt;
3764 bfd_vma addr_mask, wrap_to = 0;
3765
3766 /* Select the allocated sections, and sort them. */
3767
3768 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3769 sizeof (asection *));
3770 if (sections == NULL)
3771 goto error_return;
3772
3773 /* Calculate top address, avoiding undefined behaviour of shift
3774 left operator when shift count is equal to size of type
3775 being shifted. */
3776 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3777 addr_mask = (addr_mask << 1) + 1;
3778
3779 i = 0;
3780 for (s = abfd->sections; s != NULL; s = s->next)
3781 {
3782 if ((s->flags & SEC_ALLOC) != 0)
3783 {
3784 sections[i] = s;
3785 ++i;
3786 /* A wrapping section potentially clashes with header. */
3787 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3788 wrap_to = (s->lma + s->size) & addr_mask;
3789 }
3790 }
3791 BFD_ASSERT (i <= bfd_count_sections (abfd));
3792 count = i;
3793
3794 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3795
3796 /* Build the mapping. */
3797
3798 mfirst = NULL;
3799 pm = &mfirst;
3800
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3803 section. */
3804 s = bfd_get_section_by_name (abfd, ".interp");
3805 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3806 {
3807 amt = sizeof (struct elf_segment_map);
3808 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3809 if (m == NULL)
3810 goto error_return;
3811 m->next = NULL;
3812 m->p_type = PT_PHDR;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m->p_flags = PF_R | PF_X;
3815 m->p_flags_valid = 1;
3816 m->includes_phdrs = 1;
3817
3818 *pm = m;
3819 pm = &m->next;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_INTERP;
3827 m->count = 1;
3828 m->sections[0] = s;
3829
3830 *pm = m;
3831 pm = &m->next;
3832 }
3833
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3837 last_hdr = NULL;
3838 last_size = 0;
3839 phdr_index = 0;
3840 maxpagesize = bed->maxpagesize;
3841 writable = FALSE;
3842 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3843 if (dynsec != NULL
3844 && (dynsec->flags & SEC_LOAD) == 0)
3845 dynsec = NULL;
3846
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3851 if (count > 0)
3852 {
3853 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3854
3855 if (phdr_size == (bfd_size_type) -1)
3856 phdr_size = get_program_header_size (abfd, info);
3857 if ((abfd->flags & D_PAGED) == 0
3858 || (sections[0]->lma & addr_mask) < phdr_size
3859 || ((sections[0]->lma & addr_mask) % maxpagesize
3860 < phdr_size % maxpagesize)
3861 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3862 phdr_in_segment = FALSE;
3863 }
3864
3865 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3866 {
3867 asection *hdr;
3868 bfd_boolean new_segment;
3869
3870 hdr = *hdrpp;
3871
3872 /* See if this section and the last one will fit in the same
3873 segment. */
3874
3875 if (last_hdr == NULL)
3876 {
3877 /* If we don't have a segment yet, then we don't need a new
3878 one (we build the last one after this loop). */
3879 new_segment = FALSE;
3880 }
3881 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3882 {
3883 /* If this section has a different relation between the
3884 virtual address and the load address, then we need a new
3885 segment. */
3886 new_segment = TRUE;
3887 }
3888 else if (hdr->lma < last_hdr->lma + last_size
3889 || last_hdr->lma + last_size < last_hdr->lma)
3890 {
3891 /* If this section has a load address that makes it overlap
3892 the previous section, then we need a new segment. */
3893 new_segment = TRUE;
3894 }
3895 /* In the next test we have to be careful when last_hdr->lma is close
3896 to the end of the address space. If the aligned address wraps
3897 around to the start of the address space, then there are no more
3898 pages left in memory and it is OK to assume that the current
3899 section can be included in the current segment. */
3900 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3901 > last_hdr->lma)
3902 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3903 <= hdr->lma))
3904 {
3905 /* If putting this section in this segment would force us to
3906 skip a page in the segment, then we need a new segment. */
3907 new_segment = TRUE;
3908 }
3909 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3910 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3911 {
3912 /* We don't want to put a loadable section after a
3913 nonloadable section in the same segment.
3914 Consider .tbss sections as loadable for this purpose. */
3915 new_segment = TRUE;
3916 }
3917 else if ((abfd->flags & D_PAGED) == 0)
3918 {
3919 /* If the file is not demand paged, which means that we
3920 don't require the sections to be correctly aligned in the
3921 file, then there is no other reason for a new segment. */
3922 new_segment = FALSE;
3923 }
3924 else if (! writable
3925 && (hdr->flags & SEC_READONLY) == 0
3926 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3927 != (hdr->lma & -maxpagesize)))
3928 {
3929 /* We don't want to put a writable section in a read only
3930 segment, unless they are on the same page in memory
3931 anyhow. We already know that the last section does not
3932 bring us past the current section on the page, so the
3933 only case in which the new section is not on the same
3934 page as the previous section is when the previous section
3935 ends precisely on a page boundary. */
3936 new_segment = TRUE;
3937 }
3938 else
3939 {
3940 /* Otherwise, we can use the same segment. */
3941 new_segment = FALSE;
3942 }
3943
3944 /* Allow interested parties a chance to override our decision. */
3945 if (last_hdr != NULL
3946 && info != NULL
3947 && info->callbacks->override_segment_assignment != NULL)
3948 new_segment
3949 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3950 last_hdr,
3951 new_segment);
3952
3953 if (! new_segment)
3954 {
3955 if ((hdr->flags & SEC_READONLY) == 0)
3956 writable = TRUE;
3957 last_hdr = hdr;
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3960 != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 continue;
3965 }
3966
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3969
3970 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3971 if (m == NULL)
3972 goto error_return;
3973
3974 *pm = m;
3975 pm = &m->next;
3976
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 else
3980 writable = FALSE;
3981
3982 last_hdr = hdr;
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3985 last_size = hdr->size;
3986 else
3987 last_size = 0;
3988 phdr_index = i;
3989 phdr_in_segment = FALSE;
3990 }
3991
3992 /* Create a final PT_LOAD program segment, but not if it's just
3993 for .tbss. */
3994 if (last_hdr != NULL
3995 && (i - phdr_index != 1
3996 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3997 != SEC_THREAD_LOCAL)))
3998 {
3999 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4000 if (m == NULL)
4001 goto error_return;
4002
4003 *pm = m;
4004 pm = &m->next;
4005 }
4006
4007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4008 if (dynsec != NULL)
4009 {
4010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4011 if (m == NULL)
4012 goto error_return;
4013 *pm = m;
4014 pm = &m->next;
4015 }
4016
4017 /* For each batch of consecutive loadable .note sections,
4018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4019 because if we link together nonloadable .note sections and
4020 loadable .note sections, we will generate two .note sections
4021 in the output file. FIXME: Using names for section types is
4022 bogus anyhow. */
4023 for (s = abfd->sections; s != NULL; s = s->next)
4024 {
4025 if ((s->flags & SEC_LOAD) != 0
4026 && CONST_STRNEQ (s->name, ".note"))
4027 {
4028 asection *s2;
4029
4030 count = 1;
4031 amt = sizeof (struct elf_segment_map);
4032 if (s->alignment_power == 2)
4033 for (s2 = s; s2->next != NULL; s2 = s2->next)
4034 {
4035 if (s2->next->alignment_power == 2
4036 && (s2->next->flags & SEC_LOAD) != 0
4037 && CONST_STRNEQ (s2->next->name, ".note")
4038 && align_power (s2->lma + s2->size, 2)
4039 == s2->next->lma)
4040 count++;
4041 else
4042 break;
4043 }
4044 amt += (count - 1) * sizeof (asection *);
4045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4046 if (m == NULL)
4047 goto error_return;
4048 m->next = NULL;
4049 m->p_type = PT_NOTE;
4050 m->count = count;
4051 while (count > 1)
4052 {
4053 m->sections[m->count - count--] = s;
4054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4055 s = s->next;
4056 }
4057 m->sections[m->count - 1] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 *pm = m;
4060 pm = &m->next;
4061 }
4062 if (s->flags & SEC_THREAD_LOCAL)
4063 {
4064 if (! tls_count)
4065 first_tls = s;
4066 tls_count++;
4067 }
4068 }
4069
4070 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4071 if (tls_count > 0)
4072 {
4073 amt = sizeof (struct elf_segment_map);
4074 amt += (tls_count - 1) * sizeof (asection *);
4075 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4076 if (m == NULL)
4077 goto error_return;
4078 m->next = NULL;
4079 m->p_type = PT_TLS;
4080 m->count = tls_count;
4081 /* Mandated PF_R. */
4082 m->p_flags = PF_R;
4083 m->p_flags_valid = 1;
4084 for (i = 0; i < (unsigned int) tls_count; ++i)
4085 {
4086 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4087 m->sections[i] = first_tls;
4088 first_tls = first_tls->next;
4089 }
4090
4091 *pm = m;
4092 pm = &m->next;
4093 }
4094
4095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4096 segment. */
4097 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4098 if (eh_frame_hdr != NULL
4099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4100 {
4101 amt = sizeof (struct elf_segment_map);
4102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4103 if (m == NULL)
4104 goto error_return;
4105 m->next = NULL;
4106 m->p_type = PT_GNU_EH_FRAME;
4107 m->count = 1;
4108 m->sections[0] = eh_frame_hdr->output_section;
4109
4110 *pm = m;
4111 pm = &m->next;
4112 }
4113
4114 if (elf_tdata (abfd)->stack_flags)
4115 {
4116 amt = sizeof (struct elf_segment_map);
4117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4118 if (m == NULL)
4119 goto error_return;
4120 m->next = NULL;
4121 m->p_type = PT_GNU_STACK;
4122 m->p_flags = elf_tdata (abfd)->stack_flags;
4123 m->p_flags_valid = 1;
4124
4125 *pm = m;
4126 pm = &m->next;
4127 }
4128
4129 if (info != NULL && info->relro)
4130 {
4131 for (m = mfirst; m != NULL; m = m->next)
4132 {
4133 if (m->p_type == PT_LOAD)
4134 {
4135 asection *last = m->sections[m->count - 1];
4136 bfd_vma vaddr = m->sections[0]->vma;
4137 bfd_vma filesz = last->vma - vaddr + last->size;
4138
4139 if (vaddr < info->relro_end
4140 && vaddr >= info->relro_start
4141 && (vaddr + filesz) >= info->relro_end)
4142 break;
4143 }
4144 }
4145
4146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4147 if (m != NULL)
4148 {
4149 amt = sizeof (struct elf_segment_map);
4150 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4151 if (m == NULL)
4152 goto error_return;
4153 m->next = NULL;
4154 m->p_type = PT_GNU_RELRO;
4155 m->p_flags = PF_R;
4156 m->p_flags_valid = 1;
4157
4158 *pm = m;
4159 pm = &m->next;
4160 }
4161 }
4162
4163 free (sections);
4164 elf_tdata (abfd)->segment_map = mfirst;
4165 }
4166
4167 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4168 return FALSE;
4169
4170 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4171 ++count;
4172 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4173
4174 return TRUE;
4175
4176 error_return:
4177 if (sections != NULL)
4178 free (sections);
4179 return FALSE;
4180 }
4181
4182 /* Sort sections by address. */
4183
4184 static int
4185 elf_sort_sections (const void *arg1, const void *arg2)
4186 {
4187 const asection *sec1 = *(const asection **) arg1;
4188 const asection *sec2 = *(const asection **) arg2;
4189 bfd_size_type size1, size2;
4190
4191 /* Sort by LMA first, since this is the address used to
4192 place the section into a segment. */
4193 if (sec1->lma < sec2->lma)
4194 return -1;
4195 else if (sec1->lma > sec2->lma)
4196 return 1;
4197
4198 /* Then sort by VMA. Normally the LMA and the VMA will be
4199 the same, and this will do nothing. */
4200 if (sec1->vma < sec2->vma)
4201 return -1;
4202 else if (sec1->vma > sec2->vma)
4203 return 1;
4204
4205 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4206
4207 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4208
4209 if (TOEND (sec1))
4210 {
4211 if (TOEND (sec2))
4212 {
4213 /* If the indicies are the same, do not return 0
4214 here, but continue to try the next comparison. */
4215 if (sec1->target_index - sec2->target_index != 0)
4216 return sec1->target_index - sec2->target_index;
4217 }
4218 else
4219 return 1;
4220 }
4221 else if (TOEND (sec2))
4222 return -1;
4223
4224 #undef TOEND
4225
4226 /* Sort by size, to put zero sized sections
4227 before others at the same address. */
4228
4229 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4230 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4231
4232 if (size1 < size2)
4233 return -1;
4234 if (size1 > size2)
4235 return 1;
4236
4237 return sec1->target_index - sec2->target_index;
4238 }
4239
4240 /* Ian Lance Taylor writes:
4241
4242 We shouldn't be using % with a negative signed number. That's just
4243 not good. We have to make sure either that the number is not
4244 negative, or that the number has an unsigned type. When the types
4245 are all the same size they wind up as unsigned. When file_ptr is a
4246 larger signed type, the arithmetic winds up as signed long long,
4247 which is wrong.
4248
4249 What we're trying to say here is something like ``increase OFF by
4250 the least amount that will cause it to be equal to the VMA modulo
4251 the page size.'' */
4252 /* In other words, something like:
4253
4254 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4255 off_offset = off % bed->maxpagesize;
4256 if (vma_offset < off_offset)
4257 adjustment = vma_offset + bed->maxpagesize - off_offset;
4258 else
4259 adjustment = vma_offset - off_offset;
4260
4261 which can can be collapsed into the expression below. */
4262
4263 static file_ptr
4264 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4265 {
4266 return ((vma - off) % maxpagesize);
4267 }
4268
4269 static void
4270 print_segment_map (const struct elf_segment_map *m)
4271 {
4272 unsigned int j;
4273 const char *pt = get_segment_type (m->p_type);
4274 char buf[32];
4275
4276 if (pt == NULL)
4277 {
4278 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4279 sprintf (buf, "LOPROC+%7.7x",
4280 (unsigned int) (m->p_type - PT_LOPROC));
4281 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4282 sprintf (buf, "LOOS+%7.7x",
4283 (unsigned int) (m->p_type - PT_LOOS));
4284 else
4285 snprintf (buf, sizeof (buf), "%8.8x",
4286 (unsigned int) m->p_type);
4287 pt = buf;
4288 }
4289 fflush (stdout);
4290 fprintf (stderr, "%s:", pt);
4291 for (j = 0; j < m->count; j++)
4292 fprintf (stderr, " %s", m->sections [j]->name);
4293 putc ('\n',stderr);
4294 fflush (stderr);
4295 }
4296
4297 static bfd_boolean
4298 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4299 {
4300 void *buf;
4301 bfd_boolean ret;
4302
4303 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4304 return FALSE;
4305 buf = bfd_zmalloc (len);
4306 if (buf == NULL)
4307 return FALSE;
4308 ret = bfd_bwrite (buf, len, abfd) == len;
4309 free (buf);
4310 return ret;
4311 }
4312
4313 /* Assign file positions to the sections based on the mapping from
4314 sections to segments. This function also sets up some fields in
4315 the file header. */
4316
4317 static bfd_boolean
4318 assign_file_positions_for_load_sections (bfd *abfd,
4319 struct bfd_link_info *link_info)
4320 {
4321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4322 struct elf_segment_map *m;
4323 Elf_Internal_Phdr *phdrs;
4324 Elf_Internal_Phdr *p;
4325 file_ptr off;
4326 bfd_size_type maxpagesize;
4327 unsigned int alloc;
4328 unsigned int i, j;
4329 bfd_vma header_pad = 0;
4330
4331 if (link_info == NULL
4332 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4333 return FALSE;
4334
4335 alloc = 0;
4336 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4337 {
4338 ++alloc;
4339 if (m->header_size)
4340 header_pad = m->header_size;
4341 }
4342
4343 if (alloc)
4344 {
4345 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4346 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4347 }
4348 else
4349 {
4350 /* PR binutils/12467. */
4351 elf_elfheader (abfd)->e_phoff = 0;
4352 elf_elfheader (abfd)->e_phentsize = 0;
4353 }
4354
4355 elf_elfheader (abfd)->e_phnum = alloc;
4356
4357 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4358 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4359 else
4360 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4361 >= alloc * bed->s->sizeof_phdr);
4362
4363 if (alloc == 0)
4364 {
4365 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4366 return TRUE;
4367 }
4368
4369 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4370 see assign_file_positions_except_relocs, so make sure we have
4371 that amount allocated, with trailing space cleared.
4372 The variable alloc contains the computed need, while elf_tdata
4373 (abfd)->program_header_size contains the size used for the
4374 layout.
4375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4376 where the layout is forced to according to a larger size in the
4377 last iterations for the testcase ld-elf/header. */
4378 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4379 == 0);
4380 phdrs = (Elf_Internal_Phdr *)
4381 bfd_zalloc2 (abfd,
4382 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4383 sizeof (Elf_Internal_Phdr));
4384 elf_tdata (abfd)->phdr = phdrs;
4385 if (phdrs == NULL)
4386 return FALSE;
4387
4388 maxpagesize = 1;
4389 if ((abfd->flags & D_PAGED) != 0)
4390 maxpagesize = bed->maxpagesize;
4391
4392 off = bed->s->sizeof_ehdr;
4393 off += alloc * bed->s->sizeof_phdr;
4394 if (header_pad < (bfd_vma) off)
4395 header_pad = 0;
4396 else
4397 header_pad -= off;
4398 off += header_pad;
4399
4400 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4401 m != NULL;
4402 m = m->next, p++, j++)
4403 {
4404 asection **secpp;
4405 bfd_vma off_adjust;
4406 bfd_boolean no_contents;
4407
4408 /* If elf_segment_map is not from map_sections_to_segments, the
4409 sections may not be correctly ordered. NOTE: sorting should
4410 not be done to the PT_NOTE section of a corefile, which may
4411 contain several pseudo-sections artificially created by bfd.
4412 Sorting these pseudo-sections breaks things badly. */
4413 if (m->count > 1
4414 && !(elf_elfheader (abfd)->e_type == ET_CORE
4415 && m->p_type == PT_NOTE))
4416 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4417 elf_sort_sections);
4418
4419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4420 number of sections with contents contributing to both p_filesz
4421 and p_memsz, followed by a number of sections with no contents
4422 that just contribute to p_memsz. In this loop, OFF tracks next
4423 available file offset for PT_LOAD and PT_NOTE segments. */
4424 p->p_type = m->p_type;
4425 p->p_flags = m->p_flags;
4426
4427 if (m->count == 0)
4428 p->p_vaddr = 0;
4429 else
4430 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4431
4432 if (m->p_paddr_valid)
4433 p->p_paddr = m->p_paddr;
4434 else if (m->count == 0)
4435 p->p_paddr = 0;
4436 else
4437 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4438
4439 if (p->p_type == PT_LOAD
4440 && (abfd->flags & D_PAGED) != 0)
4441 {
4442 /* p_align in demand paged PT_LOAD segments effectively stores
4443 the maximum page size. When copying an executable with
4444 objcopy, we set m->p_align from the input file. Use this
4445 value for maxpagesize rather than bed->maxpagesize, which
4446 may be different. Note that we use maxpagesize for PT_TLS
4447 segment alignment later in this function, so we are relying
4448 on at least one PT_LOAD segment appearing before a PT_TLS
4449 segment. */
4450 if (m->p_align_valid)
4451 maxpagesize = m->p_align;
4452
4453 p->p_align = maxpagesize;
4454 }
4455 else if (m->p_align_valid)
4456 p->p_align = m->p_align;
4457 else if (m->count == 0)
4458 p->p_align = 1 << bed->s->log_file_align;
4459 else
4460 p->p_align = 0;
4461
4462 no_contents = FALSE;
4463 off_adjust = 0;
4464 if (p->p_type == PT_LOAD
4465 && m->count > 0)
4466 {
4467 bfd_size_type align;
4468 unsigned int align_power = 0;
4469
4470 if (m->p_align_valid)
4471 align = p->p_align;
4472 else
4473 {
4474 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4475 {
4476 unsigned int secalign;
4477
4478 secalign = bfd_get_section_alignment (abfd, *secpp);
4479 if (secalign > align_power)
4480 align_power = secalign;
4481 }
4482 align = (bfd_size_type) 1 << align_power;
4483 if (align < maxpagesize)
4484 align = maxpagesize;
4485 }
4486
4487 for (i = 0; i < m->count; i++)
4488 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4489 /* If we aren't making room for this section, then
4490 it must be SHT_NOBITS regardless of what we've
4491 set via struct bfd_elf_special_section. */
4492 elf_section_type (m->sections[i]) = SHT_NOBITS;
4493
4494 /* Find out whether this segment contains any loadable
4495 sections. */
4496 no_contents = TRUE;
4497 for (i = 0; i < m->count; i++)
4498 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4499 {
4500 no_contents = FALSE;
4501 break;
4502 }
4503
4504 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4505 off += off_adjust;
4506 if (no_contents)
4507 {
4508 /* We shouldn't need to align the segment on disk since
4509 the segment doesn't need file space, but the gABI
4510 arguably requires the alignment and glibc ld.so
4511 checks it. So to comply with the alignment
4512 requirement but not waste file space, we adjust
4513 p_offset for just this segment. (OFF_ADJUST is
4514 subtracted from OFF later.) This may put p_offset
4515 past the end of file, but that shouldn't matter. */
4516 }
4517 else
4518 off_adjust = 0;
4519 }
4520 /* Make sure the .dynamic section is the first section in the
4521 PT_DYNAMIC segment. */
4522 else if (p->p_type == PT_DYNAMIC
4523 && m->count > 1
4524 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4525 {
4526 _bfd_error_handler
4527 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4528 abfd);
4529 bfd_set_error (bfd_error_bad_value);
4530 return FALSE;
4531 }
4532 /* Set the note section type to SHT_NOTE. */
4533 else if (p->p_type == PT_NOTE)
4534 for (i = 0; i < m->count; i++)
4535 elf_section_type (m->sections[i]) = SHT_NOTE;
4536
4537 p->p_offset = 0;
4538 p->p_filesz = 0;
4539 p->p_memsz = 0;
4540
4541 if (m->includes_filehdr)
4542 {
4543 if (!m->p_flags_valid)
4544 p->p_flags |= PF_R;
4545 p->p_filesz = bed->s->sizeof_ehdr;
4546 p->p_memsz = bed->s->sizeof_ehdr;
4547 if (m->count > 0)
4548 {
4549 BFD_ASSERT (p->p_type == PT_LOAD);
4550
4551 if (p->p_vaddr < (bfd_vma) off)
4552 {
4553 (*_bfd_error_handler)
4554 (_("%B: Not enough room for program headers, try linking with -N"),
4555 abfd);
4556 bfd_set_error (bfd_error_bad_value);
4557 return FALSE;
4558 }
4559
4560 p->p_vaddr -= off;
4561 if (!m->p_paddr_valid)
4562 p->p_paddr -= off;
4563 }
4564 }
4565
4566 if (m->includes_phdrs)
4567 {
4568 if (!m->p_flags_valid)
4569 p->p_flags |= PF_R;
4570
4571 if (!m->includes_filehdr)
4572 {
4573 p->p_offset = bed->s->sizeof_ehdr;
4574
4575 if (m->count > 0)
4576 {
4577 BFD_ASSERT (p->p_type == PT_LOAD);
4578 p->p_vaddr -= off - p->p_offset;
4579 if (!m->p_paddr_valid)
4580 p->p_paddr -= off - p->p_offset;
4581 }
4582 }
4583
4584 p->p_filesz += alloc * bed->s->sizeof_phdr;
4585 p->p_memsz += alloc * bed->s->sizeof_phdr;
4586 if (m->count)
4587 {
4588 p->p_filesz += header_pad;
4589 p->p_memsz += header_pad;
4590 }
4591 }
4592
4593 if (p->p_type == PT_LOAD
4594 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4595 {
4596 if (!m->includes_filehdr && !m->includes_phdrs)
4597 p->p_offset = off;
4598 else
4599 {
4600 file_ptr adjust;
4601
4602 adjust = off - (p->p_offset + p->p_filesz);
4603 if (!no_contents)
4604 p->p_filesz += adjust;
4605 p->p_memsz += adjust;
4606 }
4607 }
4608
4609 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4610 maps. Set filepos for sections in PT_LOAD segments, and in
4611 core files, for sections in PT_NOTE segments.
4612 assign_file_positions_for_non_load_sections will set filepos
4613 for other sections and update p_filesz for other segments. */
4614 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4615 {
4616 asection *sec;
4617 bfd_size_type align;
4618 Elf_Internal_Shdr *this_hdr;
4619
4620 sec = *secpp;
4621 this_hdr = &elf_section_data (sec)->this_hdr;
4622 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4623
4624 if ((p->p_type == PT_LOAD
4625 || p->p_type == PT_TLS)
4626 && (this_hdr->sh_type != SHT_NOBITS
4627 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4628 && ((this_hdr->sh_flags & SHF_TLS) == 0
4629 || p->p_type == PT_TLS))))
4630 {
4631 bfd_vma p_start = p->p_paddr;
4632 bfd_vma p_end = p_start + p->p_memsz;
4633 bfd_vma s_start = sec->lma;
4634 bfd_vma adjust = s_start - p_end;
4635
4636 if (adjust != 0
4637 && (s_start < p_end
4638 || p_end < p_start))
4639 {
4640 (*_bfd_error_handler)
4641 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4642 (unsigned long) s_start, (unsigned long) p_end);
4643 adjust = 0;
4644 sec->lma = p_end;
4645 }
4646 p->p_memsz += adjust;
4647
4648 if (this_hdr->sh_type != SHT_NOBITS)
4649 {
4650 if (p->p_filesz + adjust < p->p_memsz)
4651 {
4652 /* We have a PROGBITS section following NOBITS ones.
4653 Allocate file space for the NOBITS section(s) and
4654 zero it. */
4655 adjust = p->p_memsz - p->p_filesz;
4656 if (!write_zeros (abfd, off, adjust))
4657 return FALSE;
4658 }
4659 off += adjust;
4660 p->p_filesz += adjust;
4661 }
4662 }
4663
4664 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4665 {
4666 /* The section at i == 0 is the one that actually contains
4667 everything. */
4668 if (i == 0)
4669 {
4670 this_hdr->sh_offset = sec->filepos = off;
4671 off += this_hdr->sh_size;
4672 p->p_filesz = this_hdr->sh_size;
4673 p->p_memsz = 0;
4674 p->p_align = 1;
4675 }
4676 else
4677 {
4678 /* The rest are fake sections that shouldn't be written. */
4679 sec->filepos = 0;
4680 sec->size = 0;
4681 sec->flags = 0;
4682 continue;
4683 }
4684 }
4685 else
4686 {
4687 if (p->p_type == PT_LOAD
4688 || (this_hdr->sh_type == SHT_NOBITS
4689 && (this_hdr->sh_flags & SHF_TLS) != 0
4690 && this_hdr->sh_offset == 0))
4691 {
4692 if (this_hdr->sh_type == SHT_NOBITS)
4693 {
4694 /* These sections don't really need sh_offset,
4695 but give them one anyway. */
4696 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4697 off, align);
4698 this_hdr->sh_offset = sec->filepos = off + adjust;
4699 }
4700 else
4701 {
4702 this_hdr->sh_offset = sec->filepos = off;
4703 off += this_hdr->sh_size;
4704 }
4705 }
4706
4707 if (this_hdr->sh_type != SHT_NOBITS)
4708 {
4709 p->p_filesz += this_hdr->sh_size;
4710 /* A load section without SHF_ALLOC is something like
4711 a note section in a PT_NOTE segment. These take
4712 file space but are not loaded into memory. */
4713 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4714 p->p_memsz += this_hdr->sh_size;
4715 }
4716 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4717 {
4718 if (p->p_type == PT_TLS)
4719 p->p_memsz += this_hdr->sh_size;
4720
4721 /* .tbss is special. It doesn't contribute to p_memsz of
4722 normal segments. */
4723 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4724 p->p_memsz += this_hdr->sh_size;
4725 }
4726
4727 if (align > p->p_align
4728 && !m->p_align_valid
4729 && (p->p_type != PT_LOAD
4730 || (abfd->flags & D_PAGED) == 0))
4731 p->p_align = align;
4732 }
4733
4734 if (!m->p_flags_valid)
4735 {
4736 p->p_flags |= PF_R;
4737 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4738 p->p_flags |= PF_X;
4739 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4740 p->p_flags |= PF_W;
4741 }
4742 }
4743 off -= off_adjust;
4744
4745 /* Check that all sections are in a PT_LOAD segment.
4746 Don't check funky gdb generated core files. */
4747 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4748 {
4749 bfd_boolean check_vma = TRUE;
4750
4751 for (i = 1; i < m->count; i++)
4752 if (m->sections[i]->vma == m->sections[i - 1]->vma
4753 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4754 ->this_hdr), p) != 0
4755 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4756 ->this_hdr), p) != 0)
4757 {
4758 /* Looks like we have overlays packed into the segment. */
4759 check_vma = FALSE;
4760 break;
4761 }
4762
4763 for (i = 0; i < m->count; i++)
4764 {
4765 Elf_Internal_Shdr *this_hdr;
4766 asection *sec;
4767
4768 sec = m->sections[i];
4769 this_hdr = &(elf_section_data(sec)->this_hdr);
4770 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4771 && !ELF_TBSS_SPECIAL (this_hdr, p))
4772 {
4773 (*_bfd_error_handler)
4774 (_("%B: section `%A' can't be allocated in segment %d"),
4775 abfd, sec, j);
4776 print_segment_map (m);
4777 }
4778 }
4779 }
4780 }
4781
4782 elf_tdata (abfd)->next_file_pos = off;
4783 return TRUE;
4784 }
4785
4786 /* Assign file positions for the other sections. */
4787
4788 static bfd_boolean
4789 assign_file_positions_for_non_load_sections (bfd *abfd,
4790 struct bfd_link_info *link_info)
4791 {
4792 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4793 Elf_Internal_Shdr **i_shdrpp;
4794 Elf_Internal_Shdr **hdrpp;
4795 Elf_Internal_Phdr *phdrs;
4796 Elf_Internal_Phdr *p;
4797 struct elf_segment_map *m;
4798 bfd_vma filehdr_vaddr, filehdr_paddr;
4799 bfd_vma phdrs_vaddr, phdrs_paddr;
4800 file_ptr off;
4801 unsigned int num_sec;
4802 unsigned int i;
4803 unsigned int count;
4804
4805 i_shdrpp = elf_elfsections (abfd);
4806 num_sec = elf_numsections (abfd);
4807 off = elf_tdata (abfd)->next_file_pos;
4808 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4809 {
4810 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4811 Elf_Internal_Shdr *hdr;
4812
4813 hdr = *hdrpp;
4814 if (hdr->bfd_section != NULL
4815 && (hdr->bfd_section->filepos != 0
4816 || (hdr->sh_type == SHT_NOBITS
4817 && hdr->contents == NULL)))
4818 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4819 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4820 {
4821 (*_bfd_error_handler)
4822 (_("%B: warning: allocated section `%s' not in segment"),
4823 abfd,
4824 (hdr->bfd_section == NULL
4825 ? "*unknown*"
4826 : hdr->bfd_section->name));
4827 /* We don't need to page align empty sections. */
4828 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4829 off += vma_page_aligned_bias (hdr->sh_addr, off,
4830 bed->maxpagesize);
4831 else
4832 off += vma_page_aligned_bias (hdr->sh_addr, off,
4833 hdr->sh_addralign);
4834 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4835 FALSE);
4836 }
4837 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4838 && hdr->bfd_section == NULL)
4839 || hdr == i_shdrpp[tdata->symtab_section]
4840 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4841 || hdr == i_shdrpp[tdata->strtab_section])
4842 hdr->sh_offset = -1;
4843 else
4844 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4845 }
4846
4847 /* Now that we have set the section file positions, we can set up
4848 the file positions for the non PT_LOAD segments. */
4849 count = 0;
4850 filehdr_vaddr = 0;
4851 filehdr_paddr = 0;
4852 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4853 phdrs_paddr = 0;
4854 phdrs = elf_tdata (abfd)->phdr;
4855 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4856 m != NULL;
4857 m = m->next, p++)
4858 {
4859 ++count;
4860 if (p->p_type != PT_LOAD)
4861 continue;
4862
4863 if (m->includes_filehdr)
4864 {
4865 filehdr_vaddr = p->p_vaddr;
4866 filehdr_paddr = p->p_paddr;
4867 }
4868 if (m->includes_phdrs)
4869 {
4870 phdrs_vaddr = p->p_vaddr;
4871 phdrs_paddr = p->p_paddr;
4872 if (m->includes_filehdr)
4873 {
4874 phdrs_vaddr += bed->s->sizeof_ehdr;
4875 phdrs_paddr += bed->s->sizeof_ehdr;
4876 }
4877 }
4878 }
4879
4880 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4881 m != NULL;
4882 m = m->next, p++)
4883 {
4884 if (p->p_type == PT_GNU_RELRO)
4885 {
4886 const Elf_Internal_Phdr *lp;
4887
4888 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4889
4890 if (link_info != NULL)
4891 {
4892 /* During linking the range of the RELRO segment is passed
4893 in link_info. */
4894 for (lp = phdrs; lp < phdrs + count; ++lp)
4895 {
4896 if (lp->p_type == PT_LOAD
4897 && lp->p_vaddr >= link_info->relro_start
4898 && lp->p_vaddr < link_info->relro_end
4899 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4900 break;
4901 }
4902 }
4903 else
4904 {
4905 /* Otherwise we are copying an executable or shared
4906 library, but we need to use the same linker logic. */
4907 for (lp = phdrs; lp < phdrs + count; ++lp)
4908 {
4909 if (lp->p_type == PT_LOAD
4910 && lp->p_paddr == p->p_paddr)
4911 break;
4912 }
4913 }
4914
4915 if (lp < phdrs + count)
4916 {
4917 p->p_vaddr = lp->p_vaddr;
4918 p->p_paddr = lp->p_paddr;
4919 p->p_offset = lp->p_offset;
4920 if (link_info != NULL)
4921 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4922 else if (m->p_size_valid)
4923 p->p_filesz = m->p_size;
4924 else
4925 abort ();
4926 p->p_memsz = p->p_filesz;
4927 p->p_align = 1;
4928 p->p_flags = (lp->p_flags & ~PF_W);
4929 }
4930 else
4931 {
4932 memset (p, 0, sizeof *p);
4933 p->p_type = PT_NULL;
4934 }
4935 }
4936 else if (m->count != 0)
4937 {
4938 if (p->p_type != PT_LOAD
4939 && (p->p_type != PT_NOTE
4940 || bfd_get_format (abfd) != bfd_core))
4941 {
4942 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4943
4944 p->p_filesz = 0;
4945 p->p_offset = m->sections[0]->filepos;
4946 for (i = m->count; i-- != 0;)
4947 {
4948 asection *sect = m->sections[i];
4949 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4950 if (hdr->sh_type != SHT_NOBITS)
4951 {
4952 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4953 + hdr->sh_size);
4954 break;
4955 }
4956 }
4957 }
4958 }
4959 else if (m->includes_filehdr)
4960 {
4961 p->p_vaddr = filehdr_vaddr;
4962 if (! m->p_paddr_valid)
4963 p->p_paddr = filehdr_paddr;
4964 }
4965 else if (m->includes_phdrs)
4966 {
4967 p->p_vaddr = phdrs_vaddr;
4968 if (! m->p_paddr_valid)
4969 p->p_paddr = phdrs_paddr;
4970 }
4971 }
4972
4973 elf_tdata (abfd)->next_file_pos = off;
4974
4975 return TRUE;
4976 }
4977
4978 /* Work out the file positions of all the sections. This is called by
4979 _bfd_elf_compute_section_file_positions. All the section sizes and
4980 VMAs must be known before this is called.
4981
4982 Reloc sections come in two flavours: Those processed specially as
4983 "side-channel" data attached to a section to which they apply, and
4984 those that bfd doesn't process as relocations. The latter sort are
4985 stored in a normal bfd section by bfd_section_from_shdr. We don't
4986 consider the former sort here, unless they form part of the loadable
4987 image. Reloc sections not assigned here will be handled later by
4988 assign_file_positions_for_relocs.
4989
4990 We also don't set the positions of the .symtab and .strtab here. */
4991
4992 static bfd_boolean
4993 assign_file_positions_except_relocs (bfd *abfd,
4994 struct bfd_link_info *link_info)
4995 {
4996 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4997 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4998 file_ptr off;
4999 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5000
5001 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5002 && bfd_get_format (abfd) != bfd_core)
5003 {
5004 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5005 unsigned int num_sec = elf_numsections (abfd);
5006 Elf_Internal_Shdr **hdrpp;
5007 unsigned int i;
5008
5009 /* Start after the ELF header. */
5010 off = i_ehdrp->e_ehsize;
5011
5012 /* We are not creating an executable, which means that we are
5013 not creating a program header, and that the actual order of
5014 the sections in the file is unimportant. */
5015 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5016 {
5017 Elf_Internal_Shdr *hdr;
5018
5019 hdr = *hdrpp;
5020 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5021 && hdr->bfd_section == NULL)
5022 || i == tdata->symtab_section
5023 || i == tdata->symtab_shndx_section
5024 || i == tdata->strtab_section)
5025 {
5026 hdr->sh_offset = -1;
5027 }
5028 else
5029 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5030 }
5031 }
5032 else
5033 {
5034 unsigned int alloc;
5035
5036 /* Assign file positions for the loaded sections based on the
5037 assignment of sections to segments. */
5038 if (!assign_file_positions_for_load_sections (abfd, link_info))
5039 return FALSE;
5040
5041 /* And for non-load sections. */
5042 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5043 return FALSE;
5044
5045 if (bed->elf_backend_modify_program_headers != NULL)
5046 {
5047 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5048 return FALSE;
5049 }
5050
5051 /* Write out the program headers. */
5052 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5053 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5054 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5055 return FALSE;
5056
5057 off = tdata->next_file_pos;
5058 }
5059
5060 /* Place the section headers. */
5061 off = align_file_position (off, 1 << bed->s->log_file_align);
5062 i_ehdrp->e_shoff = off;
5063 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5064
5065 tdata->next_file_pos = off;
5066
5067 return TRUE;
5068 }
5069
5070 static bfd_boolean
5071 prep_headers (bfd *abfd)
5072 {
5073 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5074 struct elf_strtab_hash *shstrtab;
5075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5076
5077 i_ehdrp = elf_elfheader (abfd);
5078
5079 shstrtab = _bfd_elf_strtab_init ();
5080 if (shstrtab == NULL)
5081 return FALSE;
5082
5083 elf_shstrtab (abfd) = shstrtab;
5084
5085 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5086 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5087 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5088 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5089
5090 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5091 i_ehdrp->e_ident[EI_DATA] =
5092 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5093 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5094
5095 if ((abfd->flags & DYNAMIC) != 0)
5096 i_ehdrp->e_type = ET_DYN;
5097 else if ((abfd->flags & EXEC_P) != 0)
5098 i_ehdrp->e_type = ET_EXEC;
5099 else if (bfd_get_format (abfd) == bfd_core)
5100 i_ehdrp->e_type = ET_CORE;
5101 else
5102 i_ehdrp->e_type = ET_REL;
5103
5104 switch (bfd_get_arch (abfd))
5105 {
5106 case bfd_arch_unknown:
5107 i_ehdrp->e_machine = EM_NONE;
5108 break;
5109
5110 /* There used to be a long list of cases here, each one setting
5111 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5112 in the corresponding bfd definition. To avoid duplication,
5113 the switch was removed. Machines that need special handling
5114 can generally do it in elf_backend_final_write_processing(),
5115 unless they need the information earlier than the final write.
5116 Such need can generally be supplied by replacing the tests for
5117 e_machine with the conditions used to determine it. */
5118 default:
5119 i_ehdrp->e_machine = bed->elf_machine_code;
5120 }
5121
5122 i_ehdrp->e_version = bed->s->ev_current;
5123 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5124
5125 /* No program header, for now. */
5126 i_ehdrp->e_phoff = 0;
5127 i_ehdrp->e_phentsize = 0;
5128 i_ehdrp->e_phnum = 0;
5129
5130 /* Each bfd section is section header entry. */
5131 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5132 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5133
5134 /* If we're building an executable, we'll need a program header table. */
5135 if (abfd->flags & EXEC_P)
5136 /* It all happens later. */
5137 ;
5138 else
5139 {
5140 i_ehdrp->e_phentsize = 0;
5141 i_ehdrp->e_phoff = 0;
5142 }
5143
5144 elf_tdata (abfd)->symtab_hdr.sh_name =
5145 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5146 elf_tdata (abfd)->strtab_hdr.sh_name =
5147 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5148 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5149 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5150 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5151 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5152 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5153 return FALSE;
5154
5155 return TRUE;
5156 }
5157
5158 /* Assign file positions for all the reloc sections which are not part
5159 of the loadable file image. */
5160
5161 void
5162 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5163 {
5164 file_ptr off;
5165 unsigned int i, num_sec;
5166 Elf_Internal_Shdr **shdrpp;
5167
5168 off = elf_tdata (abfd)->next_file_pos;
5169
5170 num_sec = elf_numsections (abfd);
5171 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5172 {
5173 Elf_Internal_Shdr *shdrp;
5174
5175 shdrp = *shdrpp;
5176 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5177 && shdrp->sh_offset == -1)
5178 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5179 }
5180
5181 elf_tdata (abfd)->next_file_pos = off;
5182 }
5183
5184 bfd_boolean
5185 _bfd_elf_write_object_contents (bfd *abfd)
5186 {
5187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5188 Elf_Internal_Shdr **i_shdrp;
5189 bfd_boolean failed;
5190 unsigned int count, num_sec;
5191
5192 if (! abfd->output_has_begun
5193 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5194 return FALSE;
5195
5196 i_shdrp = elf_elfsections (abfd);
5197
5198 failed = FALSE;
5199 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5200 if (failed)
5201 return FALSE;
5202
5203 _bfd_elf_assign_file_positions_for_relocs (abfd);
5204
5205 /* After writing the headers, we need to write the sections too... */
5206 num_sec = elf_numsections (abfd);
5207 for (count = 1; count < num_sec; count++)
5208 {
5209 if (bed->elf_backend_section_processing)
5210 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5211 if (i_shdrp[count]->contents)
5212 {
5213 bfd_size_type amt = i_shdrp[count]->sh_size;
5214
5215 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5216 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5217 return FALSE;
5218 }
5219 }
5220
5221 /* Write out the section header names. */
5222 if (elf_shstrtab (abfd) != NULL
5223 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5224 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5225 return FALSE;
5226
5227 if (bed->elf_backend_final_write_processing)
5228 (*bed->elf_backend_final_write_processing) (abfd,
5229 elf_tdata (abfd)->linker);
5230
5231 if (!bed->s->write_shdrs_and_ehdr (abfd))
5232 return FALSE;
5233
5234 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5235 if (elf_tdata (abfd)->after_write_object_contents)
5236 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5237
5238 return TRUE;
5239 }
5240
5241 bfd_boolean
5242 _bfd_elf_write_corefile_contents (bfd *abfd)
5243 {
5244 /* Hopefully this can be done just like an object file. */
5245 return _bfd_elf_write_object_contents (abfd);
5246 }
5247
5248 /* Given a section, search the header to find them. */
5249
5250 unsigned int
5251 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5252 {
5253 const struct elf_backend_data *bed;
5254 unsigned int sec_index;
5255
5256 if (elf_section_data (asect) != NULL
5257 && elf_section_data (asect)->this_idx != 0)
5258 return elf_section_data (asect)->this_idx;
5259
5260 if (bfd_is_abs_section (asect))
5261 sec_index = SHN_ABS;
5262 else if (bfd_is_com_section (asect))
5263 sec_index = SHN_COMMON;
5264 else if (bfd_is_und_section (asect))
5265 sec_index = SHN_UNDEF;
5266 else
5267 sec_index = SHN_BAD;
5268
5269 bed = get_elf_backend_data (abfd);
5270 if (bed->elf_backend_section_from_bfd_section)
5271 {
5272 int retval = sec_index;
5273
5274 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5275 return retval;
5276 }
5277
5278 if (sec_index == SHN_BAD)
5279 bfd_set_error (bfd_error_nonrepresentable_section);
5280
5281 return sec_index;
5282 }
5283
5284 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5285 on error. */
5286
5287 int
5288 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5289 {
5290 asymbol *asym_ptr = *asym_ptr_ptr;
5291 int idx;
5292 flagword flags = asym_ptr->flags;
5293
5294 /* When gas creates relocations against local labels, it creates its
5295 own symbol for the section, but does put the symbol into the
5296 symbol chain, so udata is 0. When the linker is generating
5297 relocatable output, this section symbol may be for one of the
5298 input sections rather than the output section. */
5299 if (asym_ptr->udata.i == 0
5300 && (flags & BSF_SECTION_SYM)
5301 && asym_ptr->section)
5302 {
5303 asection *sec;
5304 int indx;
5305
5306 sec = asym_ptr->section;
5307 if (sec->owner != abfd && sec->output_section != NULL)
5308 sec = sec->output_section;
5309 if (sec->owner == abfd
5310 && (indx = sec->index) < elf_num_section_syms (abfd)
5311 && elf_section_syms (abfd)[indx] != NULL)
5312 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5313 }
5314
5315 idx = asym_ptr->udata.i;
5316
5317 if (idx == 0)
5318 {
5319 /* This case can occur when using --strip-symbol on a symbol
5320 which is used in a relocation entry. */
5321 (*_bfd_error_handler)
5322 (_("%B: symbol `%s' required but not present"),
5323 abfd, bfd_asymbol_name (asym_ptr));
5324 bfd_set_error (bfd_error_no_symbols);
5325 return -1;
5326 }
5327
5328 #if DEBUG & 4
5329 {
5330 fprintf (stderr,
5331 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5332 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5333 fflush (stderr);
5334 }
5335 #endif
5336
5337 return idx;
5338 }
5339
5340 /* Rewrite program header information. */
5341
5342 static bfd_boolean
5343 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5344 {
5345 Elf_Internal_Ehdr *iehdr;
5346 struct elf_segment_map *map;
5347 struct elf_segment_map *map_first;
5348 struct elf_segment_map **pointer_to_map;
5349 Elf_Internal_Phdr *segment;
5350 asection *section;
5351 unsigned int i;
5352 unsigned int num_segments;
5353 bfd_boolean phdr_included = FALSE;
5354 bfd_boolean p_paddr_valid;
5355 bfd_vma maxpagesize;
5356 struct elf_segment_map *phdr_adjust_seg = NULL;
5357 unsigned int phdr_adjust_num = 0;
5358 const struct elf_backend_data *bed;
5359
5360 bed = get_elf_backend_data (ibfd);
5361 iehdr = elf_elfheader (ibfd);
5362
5363 map_first = NULL;
5364 pointer_to_map = &map_first;
5365
5366 num_segments = elf_elfheader (ibfd)->e_phnum;
5367 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5368
5369 /* Returns the end address of the segment + 1. */
5370 #define SEGMENT_END(segment, start) \
5371 (start + (segment->p_memsz > segment->p_filesz \
5372 ? segment->p_memsz : segment->p_filesz))
5373
5374 #define SECTION_SIZE(section, segment) \
5375 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5376 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5377 ? section->size : 0)
5378
5379 /* Returns TRUE if the given section is contained within
5380 the given segment. VMA addresses are compared. */
5381 #define IS_CONTAINED_BY_VMA(section, segment) \
5382 (section->vma >= segment->p_vaddr \
5383 && (section->vma + SECTION_SIZE (section, segment) \
5384 <= (SEGMENT_END (segment, segment->p_vaddr))))
5385
5386 /* Returns TRUE if the given section is contained within
5387 the given segment. LMA addresses are compared. */
5388 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5389 (section->lma >= base \
5390 && (section->lma + SECTION_SIZE (section, segment) \
5391 <= SEGMENT_END (segment, base)))
5392
5393 /* Handle PT_NOTE segment. */
5394 #define IS_NOTE(p, s) \
5395 (p->p_type == PT_NOTE \
5396 && elf_section_type (s) == SHT_NOTE \
5397 && (bfd_vma) s->filepos >= p->p_offset \
5398 && ((bfd_vma) s->filepos + s->size \
5399 <= p->p_offset + p->p_filesz))
5400
5401 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5402 etc. */
5403 #define IS_COREFILE_NOTE(p, s) \
5404 (IS_NOTE (p, s) \
5405 && bfd_get_format (ibfd) == bfd_core \
5406 && s->vma == 0 \
5407 && s->lma == 0)
5408
5409 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5410 linker, which generates a PT_INTERP section with p_vaddr and
5411 p_memsz set to 0. */
5412 #define IS_SOLARIS_PT_INTERP(p, s) \
5413 (p->p_vaddr == 0 \
5414 && p->p_paddr == 0 \
5415 && p->p_memsz == 0 \
5416 && p->p_filesz > 0 \
5417 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5418 && s->size > 0 \
5419 && (bfd_vma) s->filepos >= p->p_offset \
5420 && ((bfd_vma) s->filepos + s->size \
5421 <= p->p_offset + p->p_filesz))
5422
5423 /* Decide if the given section should be included in the given segment.
5424 A section will be included if:
5425 1. It is within the address space of the segment -- we use the LMA
5426 if that is set for the segment and the VMA otherwise,
5427 2. It is an allocated section or a NOTE section in a PT_NOTE
5428 segment.
5429 3. There is an output section associated with it,
5430 4. The section has not already been allocated to a previous segment.
5431 5. PT_GNU_STACK segments do not include any sections.
5432 6. PT_TLS segment includes only SHF_TLS sections.
5433 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5434 8. PT_DYNAMIC should not contain empty sections at the beginning
5435 (with the possible exception of .dynamic). */
5436 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5437 ((((segment->p_paddr \
5438 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5439 : IS_CONTAINED_BY_VMA (section, segment)) \
5440 && (section->flags & SEC_ALLOC) != 0) \
5441 || IS_NOTE (segment, section)) \
5442 && segment->p_type != PT_GNU_STACK \
5443 && (segment->p_type != PT_TLS \
5444 || (section->flags & SEC_THREAD_LOCAL)) \
5445 && (segment->p_type == PT_LOAD \
5446 || segment->p_type == PT_TLS \
5447 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5448 && (segment->p_type != PT_DYNAMIC \
5449 || SECTION_SIZE (section, segment) > 0 \
5450 || (segment->p_paddr \
5451 ? segment->p_paddr != section->lma \
5452 : segment->p_vaddr != section->vma) \
5453 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5454 == 0)) \
5455 && !section->segment_mark)
5456
5457 /* If the output section of a section in the input segment is NULL,
5458 it is removed from the corresponding output segment. */
5459 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5460 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5461 && section->output_section != NULL)
5462
5463 /* Returns TRUE iff seg1 starts after the end of seg2. */
5464 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5465 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5466
5467 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5468 their VMA address ranges and their LMA address ranges overlap.
5469 It is possible to have overlapping VMA ranges without overlapping LMA
5470 ranges. RedBoot images for example can have both .data and .bss mapped
5471 to the same VMA range, but with the .data section mapped to a different
5472 LMA. */
5473 #define SEGMENT_OVERLAPS(seg1, seg2) \
5474 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5475 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5476 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5477 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5478
5479 /* Initialise the segment mark field. */
5480 for (section = ibfd->sections; section != NULL; section = section->next)
5481 section->segment_mark = FALSE;
5482
5483 /* The Solaris linker creates program headers in which all the
5484 p_paddr fields are zero. When we try to objcopy or strip such a
5485 file, we get confused. Check for this case, and if we find it
5486 don't set the p_paddr_valid fields. */
5487 p_paddr_valid = FALSE;
5488 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5489 i < num_segments;
5490 i++, segment++)
5491 if (segment->p_paddr != 0)
5492 {
5493 p_paddr_valid = TRUE;
5494 break;
5495 }
5496
5497 /* Scan through the segments specified in the program header
5498 of the input BFD. For this first scan we look for overlaps
5499 in the loadable segments. These can be created by weird
5500 parameters to objcopy. Also, fix some solaris weirdness. */
5501 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5502 i < num_segments;
5503 i++, segment++)
5504 {
5505 unsigned int j;
5506 Elf_Internal_Phdr *segment2;
5507
5508 if (segment->p_type == PT_INTERP)
5509 for (section = ibfd->sections; section; section = section->next)
5510 if (IS_SOLARIS_PT_INTERP (segment, section))
5511 {
5512 /* Mininal change so that the normal section to segment
5513 assignment code will work. */
5514 segment->p_vaddr = section->vma;
5515 break;
5516 }
5517
5518 if (segment->p_type != PT_LOAD)
5519 {
5520 /* Remove PT_GNU_RELRO segment. */
5521 if (segment->p_type == PT_GNU_RELRO)
5522 segment->p_type = PT_NULL;
5523 continue;
5524 }
5525
5526 /* Determine if this segment overlaps any previous segments. */
5527 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5528 {
5529 bfd_signed_vma extra_length;
5530
5531 if (segment2->p_type != PT_LOAD
5532 || !SEGMENT_OVERLAPS (segment, segment2))
5533 continue;
5534
5535 /* Merge the two segments together. */
5536 if (segment2->p_vaddr < segment->p_vaddr)
5537 {
5538 /* Extend SEGMENT2 to include SEGMENT and then delete
5539 SEGMENT. */
5540 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5541 - SEGMENT_END (segment2, segment2->p_vaddr));
5542
5543 if (extra_length > 0)
5544 {
5545 segment2->p_memsz += extra_length;
5546 segment2->p_filesz += extra_length;
5547 }
5548
5549 segment->p_type = PT_NULL;
5550
5551 /* Since we have deleted P we must restart the outer loop. */
5552 i = 0;
5553 segment = elf_tdata (ibfd)->phdr;
5554 break;
5555 }
5556 else
5557 {
5558 /* Extend SEGMENT to include SEGMENT2 and then delete
5559 SEGMENT2. */
5560 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5561 - SEGMENT_END (segment, segment->p_vaddr));
5562
5563 if (extra_length > 0)
5564 {
5565 segment->p_memsz += extra_length;
5566 segment->p_filesz += extra_length;
5567 }
5568
5569 segment2->p_type = PT_NULL;
5570 }
5571 }
5572 }
5573
5574 /* The second scan attempts to assign sections to segments. */
5575 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5576 i < num_segments;
5577 i++, segment++)
5578 {
5579 unsigned int section_count;
5580 asection **sections;
5581 asection *output_section;
5582 unsigned int isec;
5583 bfd_vma matching_lma;
5584 bfd_vma suggested_lma;
5585 unsigned int j;
5586 bfd_size_type amt;
5587 asection *first_section;
5588 bfd_boolean first_matching_lma;
5589 bfd_boolean first_suggested_lma;
5590
5591 if (segment->p_type == PT_NULL)
5592 continue;
5593
5594 first_section = NULL;
5595 /* Compute how many sections might be placed into this segment. */
5596 for (section = ibfd->sections, section_count = 0;
5597 section != NULL;
5598 section = section->next)
5599 {
5600 /* Find the first section in the input segment, which may be
5601 removed from the corresponding output segment. */
5602 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5603 {
5604 if (first_section == NULL)
5605 first_section = section;
5606 if (section->output_section != NULL)
5607 ++section_count;
5608 }
5609 }
5610
5611 /* Allocate a segment map big enough to contain
5612 all of the sections we have selected. */
5613 amt = sizeof (struct elf_segment_map);
5614 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5615 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5616 if (map == NULL)
5617 return FALSE;
5618
5619 /* Initialise the fields of the segment map. Default to
5620 using the physical address of the segment in the input BFD. */
5621 map->next = NULL;
5622 map->p_type = segment->p_type;
5623 map->p_flags = segment->p_flags;
5624 map->p_flags_valid = 1;
5625
5626 /* If the first section in the input segment is removed, there is
5627 no need to preserve segment physical address in the corresponding
5628 output segment. */
5629 if (!first_section || first_section->output_section != NULL)
5630 {
5631 map->p_paddr = segment->p_paddr;
5632 map->p_paddr_valid = p_paddr_valid;
5633 }
5634
5635 /* Determine if this segment contains the ELF file header
5636 and if it contains the program headers themselves. */
5637 map->includes_filehdr = (segment->p_offset == 0
5638 && segment->p_filesz >= iehdr->e_ehsize);
5639 map->includes_phdrs = 0;
5640
5641 if (!phdr_included || segment->p_type != PT_LOAD)
5642 {
5643 map->includes_phdrs =
5644 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5645 && (segment->p_offset + segment->p_filesz
5646 >= ((bfd_vma) iehdr->e_phoff
5647 + iehdr->e_phnum * iehdr->e_phentsize)));
5648
5649 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5650 phdr_included = TRUE;
5651 }
5652
5653 if (section_count == 0)
5654 {
5655 /* Special segments, such as the PT_PHDR segment, may contain
5656 no sections, but ordinary, loadable segments should contain
5657 something. They are allowed by the ELF spec however, so only
5658 a warning is produced. */
5659 if (segment->p_type == PT_LOAD)
5660 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5661 " detected, is this intentional ?\n"),
5662 ibfd);
5663
5664 map->count = 0;
5665 *pointer_to_map = map;
5666 pointer_to_map = &map->next;
5667
5668 continue;
5669 }
5670
5671 /* Now scan the sections in the input BFD again and attempt
5672 to add their corresponding output sections to the segment map.
5673 The problem here is how to handle an output section which has
5674 been moved (ie had its LMA changed). There are four possibilities:
5675
5676 1. None of the sections have been moved.
5677 In this case we can continue to use the segment LMA from the
5678 input BFD.
5679
5680 2. All of the sections have been moved by the same amount.
5681 In this case we can change the segment's LMA to match the LMA
5682 of the first section.
5683
5684 3. Some of the sections have been moved, others have not.
5685 In this case those sections which have not been moved can be
5686 placed in the current segment which will have to have its size,
5687 and possibly its LMA changed, and a new segment or segments will
5688 have to be created to contain the other sections.
5689
5690 4. The sections have been moved, but not by the same amount.
5691 In this case we can change the segment's LMA to match the LMA
5692 of the first section and we will have to create a new segment
5693 or segments to contain the other sections.
5694
5695 In order to save time, we allocate an array to hold the section
5696 pointers that we are interested in. As these sections get assigned
5697 to a segment, they are removed from this array. */
5698
5699 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5700 if (sections == NULL)
5701 return FALSE;
5702
5703 /* Step One: Scan for segment vs section LMA conflicts.
5704 Also add the sections to the section array allocated above.
5705 Also add the sections to the current segment. In the common
5706 case, where the sections have not been moved, this means that
5707 we have completely filled the segment, and there is nothing
5708 more to do. */
5709 isec = 0;
5710 matching_lma = 0;
5711 suggested_lma = 0;
5712 first_matching_lma = TRUE;
5713 first_suggested_lma = TRUE;
5714
5715 for (section = ibfd->sections;
5716 section != NULL;
5717 section = section->next)
5718 if (section == first_section)
5719 break;
5720
5721 for (j = 0; section != NULL; section = section->next)
5722 {
5723 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5724 {
5725 output_section = section->output_section;
5726
5727 sections[j++] = section;
5728
5729 /* The Solaris native linker always sets p_paddr to 0.
5730 We try to catch that case here, and set it to the
5731 correct value. Note - some backends require that
5732 p_paddr be left as zero. */
5733 if (!p_paddr_valid
5734 && segment->p_vaddr != 0
5735 && !bed->want_p_paddr_set_to_zero
5736 && isec == 0
5737 && output_section->lma != 0
5738 && output_section->vma == (segment->p_vaddr
5739 + (map->includes_filehdr
5740 ? iehdr->e_ehsize
5741 : 0)
5742 + (map->includes_phdrs
5743 ? (iehdr->e_phnum
5744 * iehdr->e_phentsize)
5745 : 0)))
5746 map->p_paddr = segment->p_vaddr;
5747
5748 /* Match up the physical address of the segment with the
5749 LMA address of the output section. */
5750 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5751 || IS_COREFILE_NOTE (segment, section)
5752 || (bed->want_p_paddr_set_to_zero
5753 && IS_CONTAINED_BY_VMA (output_section, segment)))
5754 {
5755 if (first_matching_lma || output_section->lma < matching_lma)
5756 {
5757 matching_lma = output_section->lma;
5758 first_matching_lma = FALSE;
5759 }
5760
5761 /* We assume that if the section fits within the segment
5762 then it does not overlap any other section within that
5763 segment. */
5764 map->sections[isec++] = output_section;
5765 }
5766 else if (first_suggested_lma)
5767 {
5768 suggested_lma = output_section->lma;
5769 first_suggested_lma = FALSE;
5770 }
5771
5772 if (j == section_count)
5773 break;
5774 }
5775 }
5776
5777 BFD_ASSERT (j == section_count);
5778
5779 /* Step Two: Adjust the physical address of the current segment,
5780 if necessary. */
5781 if (isec == section_count)
5782 {
5783 /* All of the sections fitted within the segment as currently
5784 specified. This is the default case. Add the segment to
5785 the list of built segments and carry on to process the next
5786 program header in the input BFD. */
5787 map->count = section_count;
5788 *pointer_to_map = map;
5789 pointer_to_map = &map->next;
5790
5791 if (p_paddr_valid
5792 && !bed->want_p_paddr_set_to_zero
5793 && matching_lma != map->p_paddr
5794 && !map->includes_filehdr
5795 && !map->includes_phdrs)
5796 /* There is some padding before the first section in the
5797 segment. So, we must account for that in the output
5798 segment's vma. */
5799 map->p_vaddr_offset = matching_lma - map->p_paddr;
5800
5801 free (sections);
5802 continue;
5803 }
5804 else
5805 {
5806 if (!first_matching_lma)
5807 {
5808 /* At least one section fits inside the current segment.
5809 Keep it, but modify its physical address to match the
5810 LMA of the first section that fitted. */
5811 map->p_paddr = matching_lma;
5812 }
5813 else
5814 {
5815 /* None of the sections fitted inside the current segment.
5816 Change the current segment's physical address to match
5817 the LMA of the first section. */
5818 map->p_paddr = suggested_lma;
5819 }
5820
5821 /* Offset the segment physical address from the lma
5822 to allow for space taken up by elf headers. */
5823 if (map->includes_filehdr)
5824 {
5825 if (map->p_paddr >= iehdr->e_ehsize)
5826 map->p_paddr -= iehdr->e_ehsize;
5827 else
5828 {
5829 map->includes_filehdr = FALSE;
5830 map->includes_phdrs = FALSE;
5831 }
5832 }
5833
5834 if (map->includes_phdrs)
5835 {
5836 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5837 {
5838 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5839
5840 /* iehdr->e_phnum is just an estimate of the number
5841 of program headers that we will need. Make a note
5842 here of the number we used and the segment we chose
5843 to hold these headers, so that we can adjust the
5844 offset when we know the correct value. */
5845 phdr_adjust_num = iehdr->e_phnum;
5846 phdr_adjust_seg = map;
5847 }
5848 else
5849 map->includes_phdrs = FALSE;
5850 }
5851 }
5852
5853 /* Step Three: Loop over the sections again, this time assigning
5854 those that fit to the current segment and removing them from the
5855 sections array; but making sure not to leave large gaps. Once all
5856 possible sections have been assigned to the current segment it is
5857 added to the list of built segments and if sections still remain
5858 to be assigned, a new segment is constructed before repeating
5859 the loop. */
5860 isec = 0;
5861 do
5862 {
5863 map->count = 0;
5864 suggested_lma = 0;
5865 first_suggested_lma = TRUE;
5866
5867 /* Fill the current segment with sections that fit. */
5868 for (j = 0; j < section_count; j++)
5869 {
5870 section = sections[j];
5871
5872 if (section == NULL)
5873 continue;
5874
5875 output_section = section->output_section;
5876
5877 BFD_ASSERT (output_section != NULL);
5878
5879 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5880 || IS_COREFILE_NOTE (segment, section))
5881 {
5882 if (map->count == 0)
5883 {
5884 /* If the first section in a segment does not start at
5885 the beginning of the segment, then something is
5886 wrong. */
5887 if (output_section->lma
5888 != (map->p_paddr
5889 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5890 + (map->includes_phdrs
5891 ? iehdr->e_phnum * iehdr->e_phentsize
5892 : 0)))
5893 abort ();
5894 }
5895 else
5896 {
5897 asection *prev_sec;
5898
5899 prev_sec = map->sections[map->count - 1];
5900
5901 /* If the gap between the end of the previous section
5902 and the start of this section is more than
5903 maxpagesize then we need to start a new segment. */
5904 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5905 maxpagesize)
5906 < BFD_ALIGN (output_section->lma, maxpagesize))
5907 || (prev_sec->lma + prev_sec->size
5908 > output_section->lma))
5909 {
5910 if (first_suggested_lma)
5911 {
5912 suggested_lma = output_section->lma;
5913 first_suggested_lma = FALSE;
5914 }
5915
5916 continue;
5917 }
5918 }
5919
5920 map->sections[map->count++] = output_section;
5921 ++isec;
5922 sections[j] = NULL;
5923 section->segment_mark = TRUE;
5924 }
5925 else if (first_suggested_lma)
5926 {
5927 suggested_lma = output_section->lma;
5928 first_suggested_lma = FALSE;
5929 }
5930 }
5931
5932 BFD_ASSERT (map->count > 0);
5933
5934 /* Add the current segment to the list of built segments. */
5935 *pointer_to_map = map;
5936 pointer_to_map = &map->next;
5937
5938 if (isec < section_count)
5939 {
5940 /* We still have not allocated all of the sections to
5941 segments. Create a new segment here, initialise it
5942 and carry on looping. */
5943 amt = sizeof (struct elf_segment_map);
5944 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5945 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5946 if (map == NULL)
5947 {
5948 free (sections);
5949 return FALSE;
5950 }
5951
5952 /* Initialise the fields of the segment map. Set the physical
5953 physical address to the LMA of the first section that has
5954 not yet been assigned. */
5955 map->next = NULL;
5956 map->p_type = segment->p_type;
5957 map->p_flags = segment->p_flags;
5958 map->p_flags_valid = 1;
5959 map->p_paddr = suggested_lma;
5960 map->p_paddr_valid = p_paddr_valid;
5961 map->includes_filehdr = 0;
5962 map->includes_phdrs = 0;
5963 }
5964 }
5965 while (isec < section_count);
5966
5967 free (sections);
5968 }
5969
5970 elf_tdata (obfd)->segment_map = map_first;
5971
5972 /* If we had to estimate the number of program headers that were
5973 going to be needed, then check our estimate now and adjust
5974 the offset if necessary. */
5975 if (phdr_adjust_seg != NULL)
5976 {
5977 unsigned int count;
5978
5979 for (count = 0, map = map_first; map != NULL; map = map->next)
5980 count++;
5981
5982 if (count > phdr_adjust_num)
5983 phdr_adjust_seg->p_paddr
5984 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5985 }
5986
5987 #undef SEGMENT_END
5988 #undef SECTION_SIZE
5989 #undef IS_CONTAINED_BY_VMA
5990 #undef IS_CONTAINED_BY_LMA
5991 #undef IS_NOTE
5992 #undef IS_COREFILE_NOTE
5993 #undef IS_SOLARIS_PT_INTERP
5994 #undef IS_SECTION_IN_INPUT_SEGMENT
5995 #undef INCLUDE_SECTION_IN_SEGMENT
5996 #undef SEGMENT_AFTER_SEGMENT
5997 #undef SEGMENT_OVERLAPS
5998 return TRUE;
5999 }
6000
6001 /* Copy ELF program header information. */
6002
6003 static bfd_boolean
6004 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6005 {
6006 Elf_Internal_Ehdr *iehdr;
6007 struct elf_segment_map *map;
6008 struct elf_segment_map *map_first;
6009 struct elf_segment_map **pointer_to_map;
6010 Elf_Internal_Phdr *segment;
6011 unsigned int i;
6012 unsigned int num_segments;
6013 bfd_boolean phdr_included = FALSE;
6014 bfd_boolean p_paddr_valid;
6015
6016 iehdr = elf_elfheader (ibfd);
6017
6018 map_first = NULL;
6019 pointer_to_map = &map_first;
6020
6021 /* If all the segment p_paddr fields are zero, don't set
6022 map->p_paddr_valid. */
6023 p_paddr_valid = FALSE;
6024 num_segments = elf_elfheader (ibfd)->e_phnum;
6025 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6026 i < num_segments;
6027 i++, segment++)
6028 if (segment->p_paddr != 0)
6029 {
6030 p_paddr_valid = TRUE;
6031 break;
6032 }
6033
6034 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6035 i < num_segments;
6036 i++, segment++)
6037 {
6038 asection *section;
6039 unsigned int section_count;
6040 bfd_size_type amt;
6041 Elf_Internal_Shdr *this_hdr;
6042 asection *first_section = NULL;
6043 asection *lowest_section;
6044
6045 /* Compute how many sections are in this segment. */
6046 for (section = ibfd->sections, section_count = 0;
6047 section != NULL;
6048 section = section->next)
6049 {
6050 this_hdr = &(elf_section_data(section)->this_hdr);
6051 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6052 {
6053 if (first_section == NULL)
6054 first_section = section;
6055 section_count++;
6056 }
6057 }
6058
6059 /* Allocate a segment map big enough to contain
6060 all of the sections we have selected. */
6061 amt = sizeof (struct elf_segment_map);
6062 if (section_count != 0)
6063 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6064 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6065 if (map == NULL)
6066 return FALSE;
6067
6068 /* Initialize the fields of the output segment map with the
6069 input segment. */
6070 map->next = NULL;
6071 map->p_type = segment->p_type;
6072 map->p_flags = segment->p_flags;
6073 map->p_flags_valid = 1;
6074 map->p_paddr = segment->p_paddr;
6075 map->p_paddr_valid = p_paddr_valid;
6076 map->p_align = segment->p_align;
6077 map->p_align_valid = 1;
6078 map->p_vaddr_offset = 0;
6079
6080 if (map->p_type == PT_GNU_RELRO)
6081 {
6082 /* The PT_GNU_RELRO segment may contain the first a few
6083 bytes in the .got.plt section even if the whole .got.plt
6084 section isn't in the PT_GNU_RELRO segment. We won't
6085 change the size of the PT_GNU_RELRO segment. */
6086 map->p_size = segment->p_memsz;
6087 map->p_size_valid = 1;
6088 }
6089
6090 /* Determine if this segment contains the ELF file header
6091 and if it contains the program headers themselves. */
6092 map->includes_filehdr = (segment->p_offset == 0
6093 && segment->p_filesz >= iehdr->e_ehsize);
6094
6095 map->includes_phdrs = 0;
6096 if (! phdr_included || segment->p_type != PT_LOAD)
6097 {
6098 map->includes_phdrs =
6099 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6100 && (segment->p_offset + segment->p_filesz
6101 >= ((bfd_vma) iehdr->e_phoff
6102 + iehdr->e_phnum * iehdr->e_phentsize)));
6103
6104 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6105 phdr_included = TRUE;
6106 }
6107
6108 lowest_section = first_section;
6109 if (section_count != 0)
6110 {
6111 unsigned int isec = 0;
6112
6113 for (section = first_section;
6114 section != NULL;
6115 section = section->next)
6116 {
6117 this_hdr = &(elf_section_data(section)->this_hdr);
6118 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6119 {
6120 map->sections[isec++] = section->output_section;
6121 if (section->lma < lowest_section->lma)
6122 lowest_section = section;
6123 if ((section->flags & SEC_ALLOC) != 0)
6124 {
6125 bfd_vma seg_off;
6126
6127 /* Section lmas are set up from PT_LOAD header
6128 p_paddr in _bfd_elf_make_section_from_shdr.
6129 If this header has a p_paddr that disagrees
6130 with the section lma, flag the p_paddr as
6131 invalid. */
6132 if ((section->flags & SEC_LOAD) != 0)
6133 seg_off = this_hdr->sh_offset - segment->p_offset;
6134 else
6135 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6136 if (section->lma - segment->p_paddr != seg_off)
6137 map->p_paddr_valid = FALSE;
6138 }
6139 if (isec == section_count)
6140 break;
6141 }
6142 }
6143 }
6144
6145 if (map->includes_filehdr && lowest_section != NULL)
6146 /* We need to keep the space used by the headers fixed. */
6147 map->header_size = lowest_section->vma - segment->p_vaddr;
6148
6149 if (!map->includes_phdrs
6150 && !map->includes_filehdr
6151 && map->p_paddr_valid)
6152 /* There is some other padding before the first section. */
6153 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6154 - segment->p_paddr);
6155
6156 map->count = section_count;
6157 *pointer_to_map = map;
6158 pointer_to_map = &map->next;
6159 }
6160
6161 elf_tdata (obfd)->segment_map = map_first;
6162 return TRUE;
6163 }
6164
6165 /* Copy private BFD data. This copies or rewrites ELF program header
6166 information. */
6167
6168 static bfd_boolean
6169 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6170 {
6171 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6172 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6173 return TRUE;
6174
6175 if (elf_tdata (ibfd)->phdr == NULL)
6176 return TRUE;
6177
6178 if (ibfd->xvec == obfd->xvec)
6179 {
6180 /* Check to see if any sections in the input BFD
6181 covered by ELF program header have changed. */
6182 Elf_Internal_Phdr *segment;
6183 asection *section, *osec;
6184 unsigned int i, num_segments;
6185 Elf_Internal_Shdr *this_hdr;
6186 const struct elf_backend_data *bed;
6187
6188 bed = get_elf_backend_data (ibfd);
6189
6190 /* Regenerate the segment map if p_paddr is set to 0. */
6191 if (bed->want_p_paddr_set_to_zero)
6192 goto rewrite;
6193
6194 /* Initialize the segment mark field. */
6195 for (section = obfd->sections; section != NULL;
6196 section = section->next)
6197 section->segment_mark = FALSE;
6198
6199 num_segments = elf_elfheader (ibfd)->e_phnum;
6200 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6201 i < num_segments;
6202 i++, segment++)
6203 {
6204 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6205 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6206 which severly confuses things, so always regenerate the segment
6207 map in this case. */
6208 if (segment->p_paddr == 0
6209 && segment->p_memsz == 0
6210 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6211 goto rewrite;
6212
6213 for (section = ibfd->sections;
6214 section != NULL; section = section->next)
6215 {
6216 /* We mark the output section so that we know it comes
6217 from the input BFD. */
6218 osec = section->output_section;
6219 if (osec)
6220 osec->segment_mark = TRUE;
6221
6222 /* Check if this section is covered by the segment. */
6223 this_hdr = &(elf_section_data(section)->this_hdr);
6224 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6225 {
6226 /* FIXME: Check if its output section is changed or
6227 removed. What else do we need to check? */
6228 if (osec == NULL
6229 || section->flags != osec->flags
6230 || section->lma != osec->lma
6231 || section->vma != osec->vma
6232 || section->size != osec->size
6233 || section->rawsize != osec->rawsize
6234 || section->alignment_power != osec->alignment_power)
6235 goto rewrite;
6236 }
6237 }
6238 }
6239
6240 /* Check to see if any output section do not come from the
6241 input BFD. */
6242 for (section = obfd->sections; section != NULL;
6243 section = section->next)
6244 {
6245 if (section->segment_mark == FALSE)
6246 goto rewrite;
6247 else
6248 section->segment_mark = FALSE;
6249 }
6250
6251 return copy_elf_program_header (ibfd, obfd);
6252 }
6253
6254 rewrite:
6255 return rewrite_elf_program_header (ibfd, obfd);
6256 }
6257
6258 /* Initialize private output section information from input section. */
6259
6260 bfd_boolean
6261 _bfd_elf_init_private_section_data (bfd *ibfd,
6262 asection *isec,
6263 bfd *obfd,
6264 asection *osec,
6265 struct bfd_link_info *link_info)
6266
6267 {
6268 Elf_Internal_Shdr *ihdr, *ohdr;
6269 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6270
6271 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6272 || obfd->xvec->flavour != bfd_target_elf_flavour)
6273 return TRUE;
6274
6275 BFD_ASSERT (elf_section_data (osec) != NULL);
6276
6277 /* For objcopy and relocatable link, don't copy the output ELF
6278 section type from input if the output BFD section flags have been
6279 set to something different. For a final link allow some flags
6280 that the linker clears to differ. */
6281 if (elf_section_type (osec) == SHT_NULL
6282 && (osec->flags == isec->flags
6283 || (final_link
6284 && ((osec->flags ^ isec->flags)
6285 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6286 elf_section_type (osec) = elf_section_type (isec);
6287
6288 /* FIXME: Is this correct for all OS/PROC specific flags? */
6289 elf_section_flags (osec) |= (elf_section_flags (isec)
6290 & (SHF_MASKOS | SHF_MASKPROC));
6291
6292 /* Set things up for objcopy and relocatable link. The output
6293 SHT_GROUP section will have its elf_next_in_group pointing back
6294 to the input group members. Ignore linker created group section.
6295 See elfNN_ia64_object_p in elfxx-ia64.c. */
6296 if (!final_link)
6297 {
6298 if (elf_sec_group (isec) == NULL
6299 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6300 {
6301 if (elf_section_flags (isec) & SHF_GROUP)
6302 elf_section_flags (osec) |= SHF_GROUP;
6303 elf_next_in_group (osec) = elf_next_in_group (isec);
6304 elf_section_data (osec)->group = elf_section_data (isec)->group;
6305 }
6306 }
6307
6308 ihdr = &elf_section_data (isec)->this_hdr;
6309
6310 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6311 don't use the output section of the linked-to section since it
6312 may be NULL at this point. */
6313 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6314 {
6315 ohdr = &elf_section_data (osec)->this_hdr;
6316 ohdr->sh_flags |= SHF_LINK_ORDER;
6317 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6318 }
6319
6320 osec->use_rela_p = isec->use_rela_p;
6321
6322 return TRUE;
6323 }
6324
6325 /* Copy private section information. This copies over the entsize
6326 field, and sometimes the info field. */
6327
6328 bfd_boolean
6329 _bfd_elf_copy_private_section_data (bfd *ibfd,
6330 asection *isec,
6331 bfd *obfd,
6332 asection *osec)
6333 {
6334 Elf_Internal_Shdr *ihdr, *ohdr;
6335
6336 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6337 || obfd->xvec->flavour != bfd_target_elf_flavour)
6338 return TRUE;
6339
6340 ihdr = &elf_section_data (isec)->this_hdr;
6341 ohdr = &elf_section_data (osec)->this_hdr;
6342
6343 ohdr->sh_entsize = ihdr->sh_entsize;
6344
6345 if (ihdr->sh_type == SHT_SYMTAB
6346 || ihdr->sh_type == SHT_DYNSYM
6347 || ihdr->sh_type == SHT_GNU_verneed
6348 || ihdr->sh_type == SHT_GNU_verdef)
6349 ohdr->sh_info = ihdr->sh_info;
6350
6351 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6352 NULL);
6353 }
6354
6355 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6356 necessary if we are removing either the SHT_GROUP section or any of
6357 the group member sections. DISCARDED is the value that a section's
6358 output_section has if the section will be discarded, NULL when this
6359 function is called from objcopy, bfd_abs_section_ptr when called
6360 from the linker. */
6361
6362 bfd_boolean
6363 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6364 {
6365 asection *isec;
6366
6367 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6368 if (elf_section_type (isec) == SHT_GROUP)
6369 {
6370 asection *first = elf_next_in_group (isec);
6371 asection *s = first;
6372 bfd_size_type removed = 0;
6373
6374 while (s != NULL)
6375 {
6376 /* If this member section is being output but the
6377 SHT_GROUP section is not, then clear the group info
6378 set up by _bfd_elf_copy_private_section_data. */
6379 if (s->output_section != discarded
6380 && isec->output_section == discarded)
6381 {
6382 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6383 elf_group_name (s->output_section) = NULL;
6384 }
6385 /* Conversely, if the member section is not being output
6386 but the SHT_GROUP section is, then adjust its size. */
6387 else if (s->output_section == discarded
6388 && isec->output_section != discarded)
6389 removed += 4;
6390 s = elf_next_in_group (s);
6391 if (s == first)
6392 break;
6393 }
6394 if (removed != 0)
6395 {
6396 if (discarded != NULL)
6397 {
6398 /* If we've been called for ld -r, then we need to
6399 adjust the input section size. This function may
6400 be called multiple times, so save the original
6401 size. */
6402 if (isec->rawsize == 0)
6403 isec->rawsize = isec->size;
6404 isec->size = isec->rawsize - removed;
6405 }
6406 else
6407 {
6408 /* Adjust the output section size when called from
6409 objcopy. */
6410 isec->output_section->size -= removed;
6411 }
6412 }
6413 }
6414
6415 return TRUE;
6416 }
6417
6418 /* Copy private header information. */
6419
6420 bfd_boolean
6421 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6422 {
6423 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6424 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6425 return TRUE;
6426
6427 /* Copy over private BFD data if it has not already been copied.
6428 This must be done here, rather than in the copy_private_bfd_data
6429 entry point, because the latter is called after the section
6430 contents have been set, which means that the program headers have
6431 already been worked out. */
6432 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6433 {
6434 if (! copy_private_bfd_data (ibfd, obfd))
6435 return FALSE;
6436 }
6437
6438 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6439 }
6440
6441 /* Copy private symbol information. If this symbol is in a section
6442 which we did not map into a BFD section, try to map the section
6443 index correctly. We use special macro definitions for the mapped
6444 section indices; these definitions are interpreted by the
6445 swap_out_syms function. */
6446
6447 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6448 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6449 #define MAP_STRTAB (SHN_HIOS + 3)
6450 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6451 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6452
6453 bfd_boolean
6454 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6455 asymbol *isymarg,
6456 bfd *obfd,
6457 asymbol *osymarg)
6458 {
6459 elf_symbol_type *isym, *osym;
6460
6461 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6462 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6463 return TRUE;
6464
6465 isym = elf_symbol_from (ibfd, isymarg);
6466 osym = elf_symbol_from (obfd, osymarg);
6467
6468 if (isym != NULL
6469 && isym->internal_elf_sym.st_shndx != 0
6470 && osym != NULL
6471 && bfd_is_abs_section (isym->symbol.section))
6472 {
6473 unsigned int shndx;
6474
6475 shndx = isym->internal_elf_sym.st_shndx;
6476 if (shndx == elf_onesymtab (ibfd))
6477 shndx = MAP_ONESYMTAB;
6478 else if (shndx == elf_dynsymtab (ibfd))
6479 shndx = MAP_DYNSYMTAB;
6480 else if (shndx == elf_tdata (ibfd)->strtab_section)
6481 shndx = MAP_STRTAB;
6482 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6483 shndx = MAP_SHSTRTAB;
6484 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6485 shndx = MAP_SYM_SHNDX;
6486 osym->internal_elf_sym.st_shndx = shndx;
6487 }
6488
6489 return TRUE;
6490 }
6491
6492 /* Swap out the symbols. */
6493
6494 static bfd_boolean
6495 swap_out_syms (bfd *abfd,
6496 struct bfd_strtab_hash **sttp,
6497 int relocatable_p)
6498 {
6499 const struct elf_backend_data *bed;
6500 int symcount;
6501 asymbol **syms;
6502 struct bfd_strtab_hash *stt;
6503 Elf_Internal_Shdr *symtab_hdr;
6504 Elf_Internal_Shdr *symtab_shndx_hdr;
6505 Elf_Internal_Shdr *symstrtab_hdr;
6506 bfd_byte *outbound_syms;
6507 bfd_byte *outbound_shndx;
6508 int idx;
6509 bfd_size_type amt;
6510 bfd_boolean name_local_sections;
6511
6512 if (!elf_map_symbols (abfd))
6513 return FALSE;
6514
6515 /* Dump out the symtabs. */
6516 stt = _bfd_elf_stringtab_init ();
6517 if (stt == NULL)
6518 return FALSE;
6519
6520 bed = get_elf_backend_data (abfd);
6521 symcount = bfd_get_symcount (abfd);
6522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6523 symtab_hdr->sh_type = SHT_SYMTAB;
6524 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6525 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6526 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6527 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6528
6529 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6530 symstrtab_hdr->sh_type = SHT_STRTAB;
6531
6532 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6533 bed->s->sizeof_sym);
6534 if (outbound_syms == NULL)
6535 {
6536 _bfd_stringtab_free (stt);
6537 return FALSE;
6538 }
6539 symtab_hdr->contents = outbound_syms;
6540
6541 outbound_shndx = NULL;
6542 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6543 if (symtab_shndx_hdr->sh_name != 0)
6544 {
6545 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6546 outbound_shndx = (bfd_byte *)
6547 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6548 if (outbound_shndx == NULL)
6549 {
6550 _bfd_stringtab_free (stt);
6551 return FALSE;
6552 }
6553
6554 symtab_shndx_hdr->contents = outbound_shndx;
6555 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6556 symtab_shndx_hdr->sh_size = amt;
6557 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6558 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6559 }
6560
6561 /* Now generate the data (for "contents"). */
6562 {
6563 /* Fill in zeroth symbol and swap it out. */
6564 Elf_Internal_Sym sym;
6565 sym.st_name = 0;
6566 sym.st_value = 0;
6567 sym.st_size = 0;
6568 sym.st_info = 0;
6569 sym.st_other = 0;
6570 sym.st_shndx = SHN_UNDEF;
6571 sym.st_target_internal = 0;
6572 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6573 outbound_syms += bed->s->sizeof_sym;
6574 if (outbound_shndx != NULL)
6575 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6576 }
6577
6578 name_local_sections
6579 = (bed->elf_backend_name_local_section_symbols
6580 && bed->elf_backend_name_local_section_symbols (abfd));
6581
6582 syms = bfd_get_outsymbols (abfd);
6583 for (idx = 0; idx < symcount; idx++)
6584 {
6585 Elf_Internal_Sym sym;
6586 bfd_vma value = syms[idx]->value;
6587 elf_symbol_type *type_ptr;
6588 flagword flags = syms[idx]->flags;
6589 int type;
6590
6591 if (!name_local_sections
6592 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6593 {
6594 /* Local section symbols have no name. */
6595 sym.st_name = 0;
6596 }
6597 else
6598 {
6599 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6600 syms[idx]->name,
6601 TRUE, FALSE);
6602 if (sym.st_name == (unsigned long) -1)
6603 {
6604 _bfd_stringtab_free (stt);
6605 return FALSE;
6606 }
6607 }
6608
6609 type_ptr = elf_symbol_from (abfd, syms[idx]);
6610
6611 if ((flags & BSF_SECTION_SYM) == 0
6612 && bfd_is_com_section (syms[idx]->section))
6613 {
6614 /* ELF common symbols put the alignment into the `value' field,
6615 and the size into the `size' field. This is backwards from
6616 how BFD handles it, so reverse it here. */
6617 sym.st_size = value;
6618 if (type_ptr == NULL
6619 || type_ptr->internal_elf_sym.st_value == 0)
6620 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6621 else
6622 sym.st_value = type_ptr->internal_elf_sym.st_value;
6623 sym.st_shndx = _bfd_elf_section_from_bfd_section
6624 (abfd, syms[idx]->section);
6625 }
6626 else
6627 {
6628 asection *sec = syms[idx]->section;
6629 unsigned int shndx;
6630
6631 if (sec->output_section)
6632 {
6633 value += sec->output_offset;
6634 sec = sec->output_section;
6635 }
6636
6637 /* Don't add in the section vma for relocatable output. */
6638 if (! relocatable_p)
6639 value += sec->vma;
6640 sym.st_value = value;
6641 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6642
6643 if (bfd_is_abs_section (sec)
6644 && type_ptr != NULL
6645 && type_ptr->internal_elf_sym.st_shndx != 0)
6646 {
6647 /* This symbol is in a real ELF section which we did
6648 not create as a BFD section. Undo the mapping done
6649 by copy_private_symbol_data. */
6650 shndx = type_ptr->internal_elf_sym.st_shndx;
6651 switch (shndx)
6652 {
6653 case MAP_ONESYMTAB:
6654 shndx = elf_onesymtab (abfd);
6655 break;
6656 case MAP_DYNSYMTAB:
6657 shndx = elf_dynsymtab (abfd);
6658 break;
6659 case MAP_STRTAB:
6660 shndx = elf_tdata (abfd)->strtab_section;
6661 break;
6662 case MAP_SHSTRTAB:
6663 shndx = elf_tdata (abfd)->shstrtab_section;
6664 break;
6665 case MAP_SYM_SHNDX:
6666 shndx = elf_tdata (abfd)->symtab_shndx_section;
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672 else
6673 {
6674 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6675
6676 if (shndx == SHN_BAD)
6677 {
6678 asection *sec2;
6679
6680 /* Writing this would be a hell of a lot easier if
6681 we had some decent documentation on bfd, and
6682 knew what to expect of the library, and what to
6683 demand of applications. For example, it
6684 appears that `objcopy' might not set the
6685 section of a symbol to be a section that is
6686 actually in the output file. */
6687 sec2 = bfd_get_section_by_name (abfd, sec->name);
6688 if (sec2 == NULL)
6689 {
6690 _bfd_error_handler (_("\
6691 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6692 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6693 sec->name);
6694 bfd_set_error (bfd_error_invalid_operation);
6695 _bfd_stringtab_free (stt);
6696 return FALSE;
6697 }
6698
6699 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6700 BFD_ASSERT (shndx != SHN_BAD);
6701 }
6702 }
6703
6704 sym.st_shndx = shndx;
6705 }
6706
6707 if ((flags & BSF_THREAD_LOCAL) != 0)
6708 type = STT_TLS;
6709 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6710 type = STT_GNU_IFUNC;
6711 else if ((flags & BSF_FUNCTION) != 0)
6712 type = STT_FUNC;
6713 else if ((flags & BSF_OBJECT) != 0)
6714 type = STT_OBJECT;
6715 else if ((flags & BSF_RELC) != 0)
6716 type = STT_RELC;
6717 else if ((flags & BSF_SRELC) != 0)
6718 type = STT_SRELC;
6719 else
6720 type = STT_NOTYPE;
6721
6722 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6723 type = STT_TLS;
6724
6725 /* Processor-specific types. */
6726 if (type_ptr != NULL
6727 && bed->elf_backend_get_symbol_type)
6728 type = ((*bed->elf_backend_get_symbol_type)
6729 (&type_ptr->internal_elf_sym, type));
6730
6731 if (flags & BSF_SECTION_SYM)
6732 {
6733 if (flags & BSF_GLOBAL)
6734 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6735 else
6736 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6737 }
6738 else if (bfd_is_com_section (syms[idx]->section))
6739 {
6740 #ifdef USE_STT_COMMON
6741 if (type == STT_OBJECT)
6742 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6743 else
6744 #endif
6745 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6746 }
6747 else if (bfd_is_und_section (syms[idx]->section))
6748 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6749 ? STB_WEAK
6750 : STB_GLOBAL),
6751 type);
6752 else if (flags & BSF_FILE)
6753 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6754 else
6755 {
6756 int bind = STB_LOCAL;
6757
6758 if (flags & BSF_LOCAL)
6759 bind = STB_LOCAL;
6760 else if (flags & BSF_GNU_UNIQUE)
6761 bind = STB_GNU_UNIQUE;
6762 else if (flags & BSF_WEAK)
6763 bind = STB_WEAK;
6764 else if (flags & BSF_GLOBAL)
6765 bind = STB_GLOBAL;
6766
6767 sym.st_info = ELF_ST_INFO (bind, type);
6768 }
6769
6770 if (type_ptr != NULL)
6771 {
6772 sym.st_other = type_ptr->internal_elf_sym.st_other;
6773 sym.st_target_internal
6774 = type_ptr->internal_elf_sym.st_target_internal;
6775 }
6776 else
6777 {
6778 sym.st_other = 0;
6779 sym.st_target_internal = 0;
6780 }
6781
6782 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6783 outbound_syms += bed->s->sizeof_sym;
6784 if (outbound_shndx != NULL)
6785 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6786 }
6787
6788 *sttp = stt;
6789 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6790 symstrtab_hdr->sh_type = SHT_STRTAB;
6791
6792 symstrtab_hdr->sh_flags = 0;
6793 symstrtab_hdr->sh_addr = 0;
6794 symstrtab_hdr->sh_entsize = 0;
6795 symstrtab_hdr->sh_link = 0;
6796 symstrtab_hdr->sh_info = 0;
6797 symstrtab_hdr->sh_addralign = 1;
6798
6799 return TRUE;
6800 }
6801
6802 /* Return the number of bytes required to hold the symtab vector.
6803
6804 Note that we base it on the count plus 1, since we will null terminate
6805 the vector allocated based on this size. However, the ELF symbol table
6806 always has a dummy entry as symbol #0, so it ends up even. */
6807
6808 long
6809 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6810 {
6811 long symcount;
6812 long symtab_size;
6813 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6814
6815 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6816 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6817 if (symcount > 0)
6818 symtab_size -= sizeof (asymbol *);
6819
6820 return symtab_size;
6821 }
6822
6823 long
6824 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6825 {
6826 long symcount;
6827 long symtab_size;
6828 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6829
6830 if (elf_dynsymtab (abfd) == 0)
6831 {
6832 bfd_set_error (bfd_error_invalid_operation);
6833 return -1;
6834 }
6835
6836 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6837 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6838 if (symcount > 0)
6839 symtab_size -= sizeof (asymbol *);
6840
6841 return symtab_size;
6842 }
6843
6844 long
6845 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6846 sec_ptr asect)
6847 {
6848 return (asect->reloc_count + 1) * sizeof (arelent *);
6849 }
6850
6851 /* Canonicalize the relocs. */
6852
6853 long
6854 _bfd_elf_canonicalize_reloc (bfd *abfd,
6855 sec_ptr section,
6856 arelent **relptr,
6857 asymbol **symbols)
6858 {
6859 arelent *tblptr;
6860 unsigned int i;
6861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6862
6863 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6864 return -1;
6865
6866 tblptr = section->relocation;
6867 for (i = 0; i < section->reloc_count; i++)
6868 *relptr++ = tblptr++;
6869
6870 *relptr = NULL;
6871
6872 return section->reloc_count;
6873 }
6874
6875 long
6876 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6877 {
6878 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6879 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6880
6881 if (symcount >= 0)
6882 bfd_get_symcount (abfd) = symcount;
6883 return symcount;
6884 }
6885
6886 long
6887 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6888 asymbol **allocation)
6889 {
6890 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6891 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6892
6893 if (symcount >= 0)
6894 bfd_get_dynamic_symcount (abfd) = symcount;
6895 return symcount;
6896 }
6897
6898 /* Return the size required for the dynamic reloc entries. Any loadable
6899 section that was actually installed in the BFD, and has type SHT_REL
6900 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6901 dynamic reloc section. */
6902
6903 long
6904 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6905 {
6906 long ret;
6907 asection *s;
6908
6909 if (elf_dynsymtab (abfd) == 0)
6910 {
6911 bfd_set_error (bfd_error_invalid_operation);
6912 return -1;
6913 }
6914
6915 ret = sizeof (arelent *);
6916 for (s = abfd->sections; s != NULL; s = s->next)
6917 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6918 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6919 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6920 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6921 * sizeof (arelent *));
6922
6923 return ret;
6924 }
6925
6926 /* Canonicalize the dynamic relocation entries. Note that we return the
6927 dynamic relocations as a single block, although they are actually
6928 associated with particular sections; the interface, which was
6929 designed for SunOS style shared libraries, expects that there is only
6930 one set of dynamic relocs. Any loadable section that was actually
6931 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6932 dynamic symbol table, is considered to be a dynamic reloc section. */
6933
6934 long
6935 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6936 arelent **storage,
6937 asymbol **syms)
6938 {
6939 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6940 asection *s;
6941 long ret;
6942
6943 if (elf_dynsymtab (abfd) == 0)
6944 {
6945 bfd_set_error (bfd_error_invalid_operation);
6946 return -1;
6947 }
6948
6949 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6950 ret = 0;
6951 for (s = abfd->sections; s != NULL; s = s->next)
6952 {
6953 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6954 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6955 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6956 {
6957 arelent *p;
6958 long count, i;
6959
6960 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6961 return -1;
6962 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6963 p = s->relocation;
6964 for (i = 0; i < count; i++)
6965 *storage++ = p++;
6966 ret += count;
6967 }
6968 }
6969
6970 *storage = NULL;
6971
6972 return ret;
6973 }
6974 \f
6975 /* Read in the version information. */
6976
6977 bfd_boolean
6978 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6979 {
6980 bfd_byte *contents = NULL;
6981 unsigned int freeidx = 0;
6982
6983 if (elf_dynverref (abfd) != 0)
6984 {
6985 Elf_Internal_Shdr *hdr;
6986 Elf_External_Verneed *everneed;
6987 Elf_Internal_Verneed *iverneed;
6988 unsigned int i;
6989 bfd_byte *contents_end;
6990
6991 hdr = &elf_tdata (abfd)->dynverref_hdr;
6992
6993 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6994 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6995 if (elf_tdata (abfd)->verref == NULL)
6996 goto error_return;
6997
6998 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6999
7000 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7001 if (contents == NULL)
7002 {
7003 error_return_verref:
7004 elf_tdata (abfd)->verref = NULL;
7005 elf_tdata (abfd)->cverrefs = 0;
7006 goto error_return;
7007 }
7008 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7009 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7010 goto error_return_verref;
7011
7012 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7013 goto error_return_verref;
7014
7015 BFD_ASSERT (sizeof (Elf_External_Verneed)
7016 == sizeof (Elf_External_Vernaux));
7017 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7018 everneed = (Elf_External_Verneed *) contents;
7019 iverneed = elf_tdata (abfd)->verref;
7020 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7021 {
7022 Elf_External_Vernaux *evernaux;
7023 Elf_Internal_Vernaux *ivernaux;
7024 unsigned int j;
7025
7026 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7027
7028 iverneed->vn_bfd = abfd;
7029
7030 iverneed->vn_filename =
7031 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7032 iverneed->vn_file);
7033 if (iverneed->vn_filename == NULL)
7034 goto error_return_verref;
7035
7036 if (iverneed->vn_cnt == 0)
7037 iverneed->vn_auxptr = NULL;
7038 else
7039 {
7040 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7041 bfd_alloc2 (abfd, iverneed->vn_cnt,
7042 sizeof (Elf_Internal_Vernaux));
7043 if (iverneed->vn_auxptr == NULL)
7044 goto error_return_verref;
7045 }
7046
7047 if (iverneed->vn_aux
7048 > (size_t) (contents_end - (bfd_byte *) everneed))
7049 goto error_return_verref;
7050
7051 evernaux = ((Elf_External_Vernaux *)
7052 ((bfd_byte *) everneed + iverneed->vn_aux));
7053 ivernaux = iverneed->vn_auxptr;
7054 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7055 {
7056 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7057
7058 ivernaux->vna_nodename =
7059 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7060 ivernaux->vna_name);
7061 if (ivernaux->vna_nodename == NULL)
7062 goto error_return_verref;
7063
7064 if (j + 1 < iverneed->vn_cnt)
7065 ivernaux->vna_nextptr = ivernaux + 1;
7066 else
7067 ivernaux->vna_nextptr = NULL;
7068
7069 if (ivernaux->vna_next
7070 > (size_t) (contents_end - (bfd_byte *) evernaux))
7071 goto error_return_verref;
7072
7073 evernaux = ((Elf_External_Vernaux *)
7074 ((bfd_byte *) evernaux + ivernaux->vna_next));
7075
7076 if (ivernaux->vna_other > freeidx)
7077 freeidx = ivernaux->vna_other;
7078 }
7079
7080 if (i + 1 < hdr->sh_info)
7081 iverneed->vn_nextref = iverneed + 1;
7082 else
7083 iverneed->vn_nextref = NULL;
7084
7085 if (iverneed->vn_next
7086 > (size_t) (contents_end - (bfd_byte *) everneed))
7087 goto error_return_verref;
7088
7089 everneed = ((Elf_External_Verneed *)
7090 ((bfd_byte *) everneed + iverneed->vn_next));
7091 }
7092
7093 free (contents);
7094 contents = NULL;
7095 }
7096
7097 if (elf_dynverdef (abfd) != 0)
7098 {
7099 Elf_Internal_Shdr *hdr;
7100 Elf_External_Verdef *everdef;
7101 Elf_Internal_Verdef *iverdef;
7102 Elf_Internal_Verdef *iverdefarr;
7103 Elf_Internal_Verdef iverdefmem;
7104 unsigned int i;
7105 unsigned int maxidx;
7106 bfd_byte *contents_end_def, *contents_end_aux;
7107
7108 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7109
7110 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7111 if (contents == NULL)
7112 goto error_return;
7113 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7114 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7115 goto error_return;
7116
7117 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7118 goto error_return;
7119
7120 BFD_ASSERT (sizeof (Elf_External_Verdef)
7121 >= sizeof (Elf_External_Verdaux));
7122 contents_end_def = contents + hdr->sh_size
7123 - sizeof (Elf_External_Verdef);
7124 contents_end_aux = contents + hdr->sh_size
7125 - sizeof (Elf_External_Verdaux);
7126
7127 /* We know the number of entries in the section but not the maximum
7128 index. Therefore we have to run through all entries and find
7129 the maximum. */
7130 everdef = (Elf_External_Verdef *) contents;
7131 maxidx = 0;
7132 for (i = 0; i < hdr->sh_info; ++i)
7133 {
7134 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7135
7136 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7137 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7138
7139 if (iverdefmem.vd_next
7140 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7141 goto error_return;
7142
7143 everdef = ((Elf_External_Verdef *)
7144 ((bfd_byte *) everdef + iverdefmem.vd_next));
7145 }
7146
7147 if (default_imported_symver)
7148 {
7149 if (freeidx > maxidx)
7150 maxidx = ++freeidx;
7151 else
7152 freeidx = ++maxidx;
7153 }
7154 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7155 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7156 if (elf_tdata (abfd)->verdef == NULL)
7157 goto error_return;
7158
7159 elf_tdata (abfd)->cverdefs = maxidx;
7160
7161 everdef = (Elf_External_Verdef *) contents;
7162 iverdefarr = elf_tdata (abfd)->verdef;
7163 for (i = 0; i < hdr->sh_info; i++)
7164 {
7165 Elf_External_Verdaux *everdaux;
7166 Elf_Internal_Verdaux *iverdaux;
7167 unsigned int j;
7168
7169 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7170
7171 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7172 {
7173 error_return_verdef:
7174 elf_tdata (abfd)->verdef = NULL;
7175 elf_tdata (abfd)->cverdefs = 0;
7176 goto error_return;
7177 }
7178
7179 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7180 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7181
7182 iverdef->vd_bfd = abfd;
7183
7184 if (iverdef->vd_cnt == 0)
7185 iverdef->vd_auxptr = NULL;
7186 else
7187 {
7188 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7189 bfd_alloc2 (abfd, iverdef->vd_cnt,
7190 sizeof (Elf_Internal_Verdaux));
7191 if (iverdef->vd_auxptr == NULL)
7192 goto error_return_verdef;
7193 }
7194
7195 if (iverdef->vd_aux
7196 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7197 goto error_return_verdef;
7198
7199 everdaux = ((Elf_External_Verdaux *)
7200 ((bfd_byte *) everdef + iverdef->vd_aux));
7201 iverdaux = iverdef->vd_auxptr;
7202 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7203 {
7204 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7205
7206 iverdaux->vda_nodename =
7207 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7208 iverdaux->vda_name);
7209 if (iverdaux->vda_nodename == NULL)
7210 goto error_return_verdef;
7211
7212 if (j + 1 < iverdef->vd_cnt)
7213 iverdaux->vda_nextptr = iverdaux + 1;
7214 else
7215 iverdaux->vda_nextptr = NULL;
7216
7217 if (iverdaux->vda_next
7218 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7219 goto error_return_verdef;
7220
7221 everdaux = ((Elf_External_Verdaux *)
7222 ((bfd_byte *) everdaux + iverdaux->vda_next));
7223 }
7224
7225 if (iverdef->vd_cnt)
7226 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7227
7228 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7229 iverdef->vd_nextdef = iverdef + 1;
7230 else
7231 iverdef->vd_nextdef = NULL;
7232
7233 everdef = ((Elf_External_Verdef *)
7234 ((bfd_byte *) everdef + iverdef->vd_next));
7235 }
7236
7237 free (contents);
7238 contents = NULL;
7239 }
7240 else if (default_imported_symver)
7241 {
7242 if (freeidx < 3)
7243 freeidx = 3;
7244 else
7245 freeidx++;
7246
7247 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7248 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7249 if (elf_tdata (abfd)->verdef == NULL)
7250 goto error_return;
7251
7252 elf_tdata (abfd)->cverdefs = freeidx;
7253 }
7254
7255 /* Create a default version based on the soname. */
7256 if (default_imported_symver)
7257 {
7258 Elf_Internal_Verdef *iverdef;
7259 Elf_Internal_Verdaux *iverdaux;
7260
7261 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7262
7263 iverdef->vd_version = VER_DEF_CURRENT;
7264 iverdef->vd_flags = 0;
7265 iverdef->vd_ndx = freeidx;
7266 iverdef->vd_cnt = 1;
7267
7268 iverdef->vd_bfd = abfd;
7269
7270 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7271 if (iverdef->vd_nodename == NULL)
7272 goto error_return_verdef;
7273 iverdef->vd_nextdef = NULL;
7274 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7275 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7276 if (iverdef->vd_auxptr == NULL)
7277 goto error_return_verdef;
7278
7279 iverdaux = iverdef->vd_auxptr;
7280 iverdaux->vda_nodename = iverdef->vd_nodename;
7281 iverdaux->vda_nextptr = NULL;
7282 }
7283
7284 return TRUE;
7285
7286 error_return:
7287 if (contents != NULL)
7288 free (contents);
7289 return FALSE;
7290 }
7291 \f
7292 asymbol *
7293 _bfd_elf_make_empty_symbol (bfd *abfd)
7294 {
7295 elf_symbol_type *newsym;
7296 bfd_size_type amt = sizeof (elf_symbol_type);
7297
7298 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7299 if (!newsym)
7300 return NULL;
7301 else
7302 {
7303 newsym->symbol.the_bfd = abfd;
7304 return &newsym->symbol;
7305 }
7306 }
7307
7308 void
7309 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7310 asymbol *symbol,
7311 symbol_info *ret)
7312 {
7313 bfd_symbol_info (symbol, ret);
7314 }
7315
7316 /* Return whether a symbol name implies a local symbol. Most targets
7317 use this function for the is_local_label_name entry point, but some
7318 override it. */
7319
7320 bfd_boolean
7321 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7322 const char *name)
7323 {
7324 /* Normal local symbols start with ``.L''. */
7325 if (name[0] == '.' && name[1] == 'L')
7326 return TRUE;
7327
7328 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7329 DWARF debugging symbols starting with ``..''. */
7330 if (name[0] == '.' && name[1] == '.')
7331 return TRUE;
7332
7333 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7334 emitting DWARF debugging output. I suspect this is actually a
7335 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7336 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7337 underscore to be emitted on some ELF targets). For ease of use,
7338 we treat such symbols as local. */
7339 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7340 return TRUE;
7341
7342 return FALSE;
7343 }
7344
7345 alent *
7346 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7347 asymbol *symbol ATTRIBUTE_UNUSED)
7348 {
7349 abort ();
7350 return NULL;
7351 }
7352
7353 bfd_boolean
7354 _bfd_elf_set_arch_mach (bfd *abfd,
7355 enum bfd_architecture arch,
7356 unsigned long machine)
7357 {
7358 /* If this isn't the right architecture for this backend, and this
7359 isn't the generic backend, fail. */
7360 if (arch != get_elf_backend_data (abfd)->arch
7361 && arch != bfd_arch_unknown
7362 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7363 return FALSE;
7364
7365 return bfd_default_set_arch_mach (abfd, arch, machine);
7366 }
7367
7368 /* Find the function to a particular section and offset,
7369 for error reporting. */
7370
7371 static bfd_boolean
7372 elf_find_function (bfd *abfd,
7373 asection *section,
7374 asymbol **symbols,
7375 bfd_vma offset,
7376 const char **filename_ptr,
7377 const char **functionname_ptr)
7378 {
7379 const char *filename;
7380 asymbol *func, *file;
7381 bfd_vma low_func;
7382 asymbol **p;
7383 /* ??? Given multiple file symbols, it is impossible to reliably
7384 choose the right file name for global symbols. File symbols are
7385 local symbols, and thus all file symbols must sort before any
7386 global symbols. The ELF spec may be interpreted to say that a
7387 file symbol must sort before other local symbols, but currently
7388 ld -r doesn't do this. So, for ld -r output, it is possible to
7389 make a better choice of file name for local symbols by ignoring
7390 file symbols appearing after a given local symbol. */
7391 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7393
7394 if (symbols == NULL)
7395 return FALSE;
7396
7397 filename = NULL;
7398 func = NULL;
7399 file = NULL;
7400 low_func = 0;
7401 state = nothing_seen;
7402
7403 for (p = symbols; *p != NULL; p++)
7404 {
7405 elf_symbol_type *q;
7406 unsigned int type;
7407
7408 q = (elf_symbol_type *) *p;
7409
7410 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7411 switch (type)
7412 {
7413 case STT_FILE:
7414 file = &q->symbol;
7415 if (state == symbol_seen)
7416 state = file_after_symbol_seen;
7417 continue;
7418 default:
7419 if (!bed->is_function_type (type))
7420 break;
7421 case STT_NOTYPE:
7422 if (bfd_get_section (&q->symbol) == section
7423 && q->symbol.value >= low_func
7424 && q->symbol.value <= offset)
7425 {
7426 func = (asymbol *) q;
7427 low_func = q->symbol.value;
7428 filename = NULL;
7429 if (file != NULL
7430 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7431 || state != file_after_symbol_seen))
7432 filename = bfd_asymbol_name (file);
7433 }
7434 break;
7435 }
7436 if (state == nothing_seen)
7437 state = symbol_seen;
7438 }
7439
7440 if (func == NULL)
7441 return FALSE;
7442
7443 if (filename_ptr)
7444 *filename_ptr = filename;
7445 if (functionname_ptr)
7446 *functionname_ptr = bfd_asymbol_name (func);
7447
7448 return TRUE;
7449 }
7450
7451 /* Find the nearest line to a particular section and offset,
7452 for error reporting. */
7453
7454 bfd_boolean
7455 _bfd_elf_find_nearest_line (bfd *abfd,
7456 asection *section,
7457 asymbol **symbols,
7458 bfd_vma offset,
7459 const char **filename_ptr,
7460 const char **functionname_ptr,
7461 unsigned int *line_ptr)
7462 {
7463 bfd_boolean found;
7464
7465 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7466 filename_ptr, functionname_ptr,
7467 line_ptr))
7468 {
7469 if (!*functionname_ptr)
7470 elf_find_function (abfd, section, symbols, offset,
7471 *filename_ptr ? NULL : filename_ptr,
7472 functionname_ptr);
7473
7474 return TRUE;
7475 }
7476
7477 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7478 filename_ptr, functionname_ptr,
7479 line_ptr, 0,
7480 &elf_tdata (abfd)->dwarf2_find_line_info))
7481 {
7482 if (!*functionname_ptr)
7483 elf_find_function (abfd, section, symbols, offset,
7484 *filename_ptr ? NULL : filename_ptr,
7485 functionname_ptr);
7486
7487 return TRUE;
7488 }
7489
7490 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7491 &found, filename_ptr,
7492 functionname_ptr, line_ptr,
7493 &elf_tdata (abfd)->line_info))
7494 return FALSE;
7495 if (found && (*functionname_ptr || *line_ptr))
7496 return TRUE;
7497
7498 if (symbols == NULL)
7499 return FALSE;
7500
7501 if (! elf_find_function (abfd, section, symbols, offset,
7502 filename_ptr, functionname_ptr))
7503 return FALSE;
7504
7505 *line_ptr = 0;
7506 return TRUE;
7507 }
7508
7509 /* Find the line for a symbol. */
7510
7511 bfd_boolean
7512 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7513 const char **filename_ptr, unsigned int *line_ptr)
7514 {
7515 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7516 filename_ptr, line_ptr, 0,
7517 &elf_tdata (abfd)->dwarf2_find_line_info);
7518 }
7519
7520 /* After a call to bfd_find_nearest_line, successive calls to
7521 bfd_find_inliner_info can be used to get source information about
7522 each level of function inlining that terminated at the address
7523 passed to bfd_find_nearest_line. Currently this is only supported
7524 for DWARF2 with appropriate DWARF3 extensions. */
7525
7526 bfd_boolean
7527 _bfd_elf_find_inliner_info (bfd *abfd,
7528 const char **filename_ptr,
7529 const char **functionname_ptr,
7530 unsigned int *line_ptr)
7531 {
7532 bfd_boolean found;
7533 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7534 functionname_ptr, line_ptr,
7535 & elf_tdata (abfd)->dwarf2_find_line_info);
7536 return found;
7537 }
7538
7539 int
7540 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7541 {
7542 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7543 int ret = bed->s->sizeof_ehdr;
7544
7545 if (!info->relocatable)
7546 {
7547 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7548
7549 if (phdr_size == (bfd_size_type) -1)
7550 {
7551 struct elf_segment_map *m;
7552
7553 phdr_size = 0;
7554 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7555 phdr_size += bed->s->sizeof_phdr;
7556
7557 if (phdr_size == 0)
7558 phdr_size = get_program_header_size (abfd, info);
7559 }
7560
7561 elf_tdata (abfd)->program_header_size = phdr_size;
7562 ret += phdr_size;
7563 }
7564
7565 return ret;
7566 }
7567
7568 bfd_boolean
7569 _bfd_elf_set_section_contents (bfd *abfd,
7570 sec_ptr section,
7571 const void *location,
7572 file_ptr offset,
7573 bfd_size_type count)
7574 {
7575 Elf_Internal_Shdr *hdr;
7576 bfd_signed_vma pos;
7577
7578 if (! abfd->output_has_begun
7579 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7580 return FALSE;
7581
7582 hdr = &elf_section_data (section)->this_hdr;
7583 pos = hdr->sh_offset + offset;
7584 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7585 || bfd_bwrite (location, count, abfd) != count)
7586 return FALSE;
7587
7588 return TRUE;
7589 }
7590
7591 void
7592 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7593 arelent *cache_ptr ATTRIBUTE_UNUSED,
7594 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7595 {
7596 abort ();
7597 }
7598
7599 /* Try to convert a non-ELF reloc into an ELF one. */
7600
7601 bfd_boolean
7602 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7603 {
7604 /* Check whether we really have an ELF howto. */
7605
7606 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7607 {
7608 bfd_reloc_code_real_type code;
7609 reloc_howto_type *howto;
7610
7611 /* Alien reloc: Try to determine its type to replace it with an
7612 equivalent ELF reloc. */
7613
7614 if (areloc->howto->pc_relative)
7615 {
7616 switch (areloc->howto->bitsize)
7617 {
7618 case 8:
7619 code = BFD_RELOC_8_PCREL;
7620 break;
7621 case 12:
7622 code = BFD_RELOC_12_PCREL;
7623 break;
7624 case 16:
7625 code = BFD_RELOC_16_PCREL;
7626 break;
7627 case 24:
7628 code = BFD_RELOC_24_PCREL;
7629 break;
7630 case 32:
7631 code = BFD_RELOC_32_PCREL;
7632 break;
7633 case 64:
7634 code = BFD_RELOC_64_PCREL;
7635 break;
7636 default:
7637 goto fail;
7638 }
7639
7640 howto = bfd_reloc_type_lookup (abfd, code);
7641
7642 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7643 {
7644 if (howto->pcrel_offset)
7645 areloc->addend += areloc->address;
7646 else
7647 areloc->addend -= areloc->address; /* addend is unsigned!! */
7648 }
7649 }
7650 else
7651 {
7652 switch (areloc->howto->bitsize)
7653 {
7654 case 8:
7655 code = BFD_RELOC_8;
7656 break;
7657 case 14:
7658 code = BFD_RELOC_14;
7659 break;
7660 case 16:
7661 code = BFD_RELOC_16;
7662 break;
7663 case 26:
7664 code = BFD_RELOC_26;
7665 break;
7666 case 32:
7667 code = BFD_RELOC_32;
7668 break;
7669 case 64:
7670 code = BFD_RELOC_64;
7671 break;
7672 default:
7673 goto fail;
7674 }
7675
7676 howto = bfd_reloc_type_lookup (abfd, code);
7677 }
7678
7679 if (howto)
7680 areloc->howto = howto;
7681 else
7682 goto fail;
7683 }
7684
7685 return TRUE;
7686
7687 fail:
7688 (*_bfd_error_handler)
7689 (_("%B: unsupported relocation type %s"),
7690 abfd, areloc->howto->name);
7691 bfd_set_error (bfd_error_bad_value);
7692 return FALSE;
7693 }
7694
7695 bfd_boolean
7696 _bfd_elf_close_and_cleanup (bfd *abfd)
7697 {
7698 if (bfd_get_format (abfd) == bfd_object)
7699 {
7700 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7701 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7702 _bfd_dwarf2_cleanup_debug_info (abfd);
7703 }
7704
7705 return _bfd_generic_close_and_cleanup (abfd);
7706 }
7707
7708 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7709 in the relocation's offset. Thus we cannot allow any sort of sanity
7710 range-checking to interfere. There is nothing else to do in processing
7711 this reloc. */
7712
7713 bfd_reloc_status_type
7714 _bfd_elf_rel_vtable_reloc_fn
7715 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7716 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7717 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7718 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7719 {
7720 return bfd_reloc_ok;
7721 }
7722 \f
7723 /* Elf core file support. Much of this only works on native
7724 toolchains, since we rely on knowing the
7725 machine-dependent procfs structure in order to pick
7726 out details about the corefile. */
7727
7728 #ifdef HAVE_SYS_PROCFS_H
7729 /* Needed for new procfs interface on sparc-solaris. */
7730 # define _STRUCTURED_PROC 1
7731 # include <sys/procfs.h>
7732 #endif
7733
7734 /* Return a PID that identifies a "thread" for threaded cores, or the
7735 PID of the main process for non-threaded cores. */
7736
7737 static int
7738 elfcore_make_pid (bfd *abfd)
7739 {
7740 int pid;
7741
7742 pid = elf_tdata (abfd)->core_lwpid;
7743 if (pid == 0)
7744 pid = elf_tdata (abfd)->core_pid;
7745
7746 return pid;
7747 }
7748
7749 /* If there isn't a section called NAME, make one, using
7750 data from SECT. Note, this function will generate a
7751 reference to NAME, so you shouldn't deallocate or
7752 overwrite it. */
7753
7754 static bfd_boolean
7755 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7756 {
7757 asection *sect2;
7758
7759 if (bfd_get_section_by_name (abfd, name) != NULL)
7760 return TRUE;
7761
7762 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7763 if (sect2 == NULL)
7764 return FALSE;
7765
7766 sect2->size = sect->size;
7767 sect2->filepos = sect->filepos;
7768 sect2->alignment_power = sect->alignment_power;
7769 return TRUE;
7770 }
7771
7772 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7773 actually creates up to two pseudosections:
7774 - For the single-threaded case, a section named NAME, unless
7775 such a section already exists.
7776 - For the multi-threaded case, a section named "NAME/PID", where
7777 PID is elfcore_make_pid (abfd).
7778 Both pseudosections have identical contents. */
7779 bfd_boolean
7780 _bfd_elfcore_make_pseudosection (bfd *abfd,
7781 char *name,
7782 size_t size,
7783 ufile_ptr filepos)
7784 {
7785 char buf[100];
7786 char *threaded_name;
7787 size_t len;
7788 asection *sect;
7789
7790 /* Build the section name. */
7791
7792 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7793 len = strlen (buf) + 1;
7794 threaded_name = (char *) bfd_alloc (abfd, len);
7795 if (threaded_name == NULL)
7796 return FALSE;
7797 memcpy (threaded_name, buf, len);
7798
7799 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7800 SEC_HAS_CONTENTS);
7801 if (sect == NULL)
7802 return FALSE;
7803 sect->size = size;
7804 sect->filepos = filepos;
7805 sect->alignment_power = 2;
7806
7807 return elfcore_maybe_make_sect (abfd, name, sect);
7808 }
7809
7810 /* prstatus_t exists on:
7811 solaris 2.5+
7812 linux 2.[01] + glibc
7813 unixware 4.2
7814 */
7815
7816 #if defined (HAVE_PRSTATUS_T)
7817
7818 static bfd_boolean
7819 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7820 {
7821 size_t size;
7822 int offset;
7823
7824 if (note->descsz == sizeof (prstatus_t))
7825 {
7826 prstatus_t prstat;
7827
7828 size = sizeof (prstat.pr_reg);
7829 offset = offsetof (prstatus_t, pr_reg);
7830 memcpy (&prstat, note->descdata, sizeof (prstat));
7831
7832 /* Do not overwrite the core signal if it
7833 has already been set by another thread. */
7834 if (elf_tdata (abfd)->core_signal == 0)
7835 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7836 if (elf_tdata (abfd)->core_pid == 0)
7837 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7838
7839 /* pr_who exists on:
7840 solaris 2.5+
7841 unixware 4.2
7842 pr_who doesn't exist on:
7843 linux 2.[01]
7844 */
7845 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7846 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7847 #else
7848 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7849 #endif
7850 }
7851 #if defined (HAVE_PRSTATUS32_T)
7852 else if (note->descsz == sizeof (prstatus32_t))
7853 {
7854 /* 64-bit host, 32-bit corefile */
7855 prstatus32_t prstat;
7856
7857 size = sizeof (prstat.pr_reg);
7858 offset = offsetof (prstatus32_t, pr_reg);
7859 memcpy (&prstat, note->descdata, sizeof (prstat));
7860
7861 /* Do not overwrite the core signal if it
7862 has already been set by another thread. */
7863 if (elf_tdata (abfd)->core_signal == 0)
7864 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7865 if (elf_tdata (abfd)->core_pid == 0)
7866 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7867
7868 /* pr_who exists on:
7869 solaris 2.5+
7870 unixware 4.2
7871 pr_who doesn't exist on:
7872 linux 2.[01]
7873 */
7874 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7875 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7876 #else
7877 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7878 #endif
7879 }
7880 #endif /* HAVE_PRSTATUS32_T */
7881 else
7882 {
7883 /* Fail - we don't know how to handle any other
7884 note size (ie. data object type). */
7885 return TRUE;
7886 }
7887
7888 /* Make a ".reg/999" section and a ".reg" section. */
7889 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7890 size, note->descpos + offset);
7891 }
7892 #endif /* defined (HAVE_PRSTATUS_T) */
7893
7894 /* Create a pseudosection containing the exact contents of NOTE. */
7895 static bfd_boolean
7896 elfcore_make_note_pseudosection (bfd *abfd,
7897 char *name,
7898 Elf_Internal_Note *note)
7899 {
7900 return _bfd_elfcore_make_pseudosection (abfd, name,
7901 note->descsz, note->descpos);
7902 }
7903
7904 /* There isn't a consistent prfpregset_t across platforms,
7905 but it doesn't matter, because we don't have to pick this
7906 data structure apart. */
7907
7908 static bfd_boolean
7909 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7910 {
7911 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7912 }
7913
7914 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7915 type of NT_PRXFPREG. Just include the whole note's contents
7916 literally. */
7917
7918 static bfd_boolean
7919 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7920 {
7921 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7922 }
7923
7924 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7925 with a note type of NT_X86_XSTATE. Just include the whole note's
7926 contents literally. */
7927
7928 static bfd_boolean
7929 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7930 {
7931 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7932 }
7933
7934 static bfd_boolean
7935 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7936 {
7937 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7938 }
7939
7940 static bfd_boolean
7941 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7942 {
7943 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7944 }
7945
7946 static bfd_boolean
7947 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7948 {
7949 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7950 }
7951
7952 static bfd_boolean
7953 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7954 {
7955 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7956 }
7957
7958 static bfd_boolean
7959 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7960 {
7961 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7962 }
7963
7964 static bfd_boolean
7965 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7966 {
7967 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7968 }
7969
7970 static bfd_boolean
7971 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7972 {
7973 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7974 }
7975
7976 static bfd_boolean
7977 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7978 {
7979 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7980 }
7981
7982 static bfd_boolean
7983 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
7984 {
7985 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
7986 }
7987
7988 #if defined (HAVE_PRPSINFO_T)
7989 typedef prpsinfo_t elfcore_psinfo_t;
7990 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7991 typedef prpsinfo32_t elfcore_psinfo32_t;
7992 #endif
7993 #endif
7994
7995 #if defined (HAVE_PSINFO_T)
7996 typedef psinfo_t elfcore_psinfo_t;
7997 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7998 typedef psinfo32_t elfcore_psinfo32_t;
7999 #endif
8000 #endif
8001
8002 /* return a malloc'ed copy of a string at START which is at
8003 most MAX bytes long, possibly without a terminating '\0'.
8004 the copy will always have a terminating '\0'. */
8005
8006 char *
8007 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8008 {
8009 char *dups;
8010 char *end = (char *) memchr (start, '\0', max);
8011 size_t len;
8012
8013 if (end == NULL)
8014 len = max;
8015 else
8016 len = end - start;
8017
8018 dups = (char *) bfd_alloc (abfd, len + 1);
8019 if (dups == NULL)
8020 return NULL;
8021
8022 memcpy (dups, start, len);
8023 dups[len] = '\0';
8024
8025 return dups;
8026 }
8027
8028 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8029 static bfd_boolean
8030 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8031 {
8032 if (note->descsz == sizeof (elfcore_psinfo_t))
8033 {
8034 elfcore_psinfo_t psinfo;
8035
8036 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8037
8038 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8039 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8040 #endif
8041 elf_tdata (abfd)->core_program
8042 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8043 sizeof (psinfo.pr_fname));
8044
8045 elf_tdata (abfd)->core_command
8046 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8047 sizeof (psinfo.pr_psargs));
8048 }
8049 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8050 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8051 {
8052 /* 64-bit host, 32-bit corefile */
8053 elfcore_psinfo32_t psinfo;
8054
8055 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8056
8057 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8058 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8059 #endif
8060 elf_tdata (abfd)->core_program
8061 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8062 sizeof (psinfo.pr_fname));
8063
8064 elf_tdata (abfd)->core_command
8065 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8066 sizeof (psinfo.pr_psargs));
8067 }
8068 #endif
8069
8070 else
8071 {
8072 /* Fail - we don't know how to handle any other
8073 note size (ie. data object type). */
8074 return TRUE;
8075 }
8076
8077 /* Note that for some reason, a spurious space is tacked
8078 onto the end of the args in some (at least one anyway)
8079 implementations, so strip it off if it exists. */
8080
8081 {
8082 char *command = elf_tdata (abfd)->core_command;
8083 int n = strlen (command);
8084
8085 if (0 < n && command[n - 1] == ' ')
8086 command[n - 1] = '\0';
8087 }
8088
8089 return TRUE;
8090 }
8091 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8092
8093 #if defined (HAVE_PSTATUS_T)
8094 static bfd_boolean
8095 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8096 {
8097 if (note->descsz == sizeof (pstatus_t)
8098 #if defined (HAVE_PXSTATUS_T)
8099 || note->descsz == sizeof (pxstatus_t)
8100 #endif
8101 )
8102 {
8103 pstatus_t pstat;
8104
8105 memcpy (&pstat, note->descdata, sizeof (pstat));
8106
8107 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8108 }
8109 #if defined (HAVE_PSTATUS32_T)
8110 else if (note->descsz == sizeof (pstatus32_t))
8111 {
8112 /* 64-bit host, 32-bit corefile */
8113 pstatus32_t pstat;
8114
8115 memcpy (&pstat, note->descdata, sizeof (pstat));
8116
8117 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8118 }
8119 #endif
8120 /* Could grab some more details from the "representative"
8121 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8122 NT_LWPSTATUS note, presumably. */
8123
8124 return TRUE;
8125 }
8126 #endif /* defined (HAVE_PSTATUS_T) */
8127
8128 #if defined (HAVE_LWPSTATUS_T)
8129 static bfd_boolean
8130 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8131 {
8132 lwpstatus_t lwpstat;
8133 char buf[100];
8134 char *name;
8135 size_t len;
8136 asection *sect;
8137
8138 if (note->descsz != sizeof (lwpstat)
8139 #if defined (HAVE_LWPXSTATUS_T)
8140 && note->descsz != sizeof (lwpxstatus_t)
8141 #endif
8142 )
8143 return TRUE;
8144
8145 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8146
8147 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8148 /* Do not overwrite the core signal if it has already been set by
8149 another thread. */
8150 if (elf_tdata (abfd)->core_signal == 0)
8151 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8152
8153 /* Make a ".reg/999" section. */
8154
8155 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8156 len = strlen (buf) + 1;
8157 name = bfd_alloc (abfd, len);
8158 if (name == NULL)
8159 return FALSE;
8160 memcpy (name, buf, len);
8161
8162 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8163 if (sect == NULL)
8164 return FALSE;
8165
8166 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8167 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8168 sect->filepos = note->descpos
8169 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8170 #endif
8171
8172 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8173 sect->size = sizeof (lwpstat.pr_reg);
8174 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8175 #endif
8176
8177 sect->alignment_power = 2;
8178
8179 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8180 return FALSE;
8181
8182 /* Make a ".reg2/999" section */
8183
8184 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8185 len = strlen (buf) + 1;
8186 name = bfd_alloc (abfd, len);
8187 if (name == NULL)
8188 return FALSE;
8189 memcpy (name, buf, len);
8190
8191 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8192 if (sect == NULL)
8193 return FALSE;
8194
8195 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8196 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8197 sect->filepos = note->descpos
8198 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8199 #endif
8200
8201 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8202 sect->size = sizeof (lwpstat.pr_fpreg);
8203 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8204 #endif
8205
8206 sect->alignment_power = 2;
8207
8208 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8209 }
8210 #endif /* defined (HAVE_LWPSTATUS_T) */
8211
8212 static bfd_boolean
8213 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8214 {
8215 char buf[30];
8216 char *name;
8217 size_t len;
8218 asection *sect;
8219 int type;
8220 int is_active_thread;
8221 bfd_vma base_addr;
8222
8223 if (note->descsz < 728)
8224 return TRUE;
8225
8226 if (! CONST_STRNEQ (note->namedata, "win32"))
8227 return TRUE;
8228
8229 type = bfd_get_32 (abfd, note->descdata);
8230
8231 switch (type)
8232 {
8233 case 1 /* NOTE_INFO_PROCESS */:
8234 /* FIXME: need to add ->core_command. */
8235 /* process_info.pid */
8236 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8237 /* process_info.signal */
8238 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8239 break;
8240
8241 case 2 /* NOTE_INFO_THREAD */:
8242 /* Make a ".reg/999" section. */
8243 /* thread_info.tid */
8244 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8245
8246 len = strlen (buf) + 1;
8247 name = (char *) bfd_alloc (abfd, len);
8248 if (name == NULL)
8249 return FALSE;
8250
8251 memcpy (name, buf, len);
8252
8253 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8254 if (sect == NULL)
8255 return FALSE;
8256
8257 /* sizeof (thread_info.thread_context) */
8258 sect->size = 716;
8259 /* offsetof (thread_info.thread_context) */
8260 sect->filepos = note->descpos + 12;
8261 sect->alignment_power = 2;
8262
8263 /* thread_info.is_active_thread */
8264 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8265
8266 if (is_active_thread)
8267 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8268 return FALSE;
8269 break;
8270
8271 case 3 /* NOTE_INFO_MODULE */:
8272 /* Make a ".module/xxxxxxxx" section. */
8273 /* module_info.base_address */
8274 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8275 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8276
8277 len = strlen (buf) + 1;
8278 name = (char *) bfd_alloc (abfd, len);
8279 if (name == NULL)
8280 return FALSE;
8281
8282 memcpy (name, buf, len);
8283
8284 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8285
8286 if (sect == NULL)
8287 return FALSE;
8288
8289 sect->size = note->descsz;
8290 sect->filepos = note->descpos;
8291 sect->alignment_power = 2;
8292 break;
8293
8294 default:
8295 return TRUE;
8296 }
8297
8298 return TRUE;
8299 }
8300
8301 static bfd_boolean
8302 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8303 {
8304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8305
8306 switch (note->type)
8307 {
8308 default:
8309 return TRUE;
8310
8311 case NT_PRSTATUS:
8312 if (bed->elf_backend_grok_prstatus)
8313 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8314 return TRUE;
8315 #if defined (HAVE_PRSTATUS_T)
8316 return elfcore_grok_prstatus (abfd, note);
8317 #else
8318 return TRUE;
8319 #endif
8320
8321 #if defined (HAVE_PSTATUS_T)
8322 case NT_PSTATUS:
8323 return elfcore_grok_pstatus (abfd, note);
8324 #endif
8325
8326 #if defined (HAVE_LWPSTATUS_T)
8327 case NT_LWPSTATUS:
8328 return elfcore_grok_lwpstatus (abfd, note);
8329 #endif
8330
8331 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8332 return elfcore_grok_prfpreg (abfd, note);
8333
8334 case NT_WIN32PSTATUS:
8335 return elfcore_grok_win32pstatus (abfd, note);
8336
8337 case NT_PRXFPREG: /* Linux SSE extension */
8338 if (note->namesz == 6
8339 && strcmp (note->namedata, "LINUX") == 0)
8340 return elfcore_grok_prxfpreg (abfd, note);
8341 else
8342 return TRUE;
8343
8344 case NT_X86_XSTATE: /* Linux XSAVE extension */
8345 if (note->namesz == 6
8346 && strcmp (note->namedata, "LINUX") == 0)
8347 return elfcore_grok_xstatereg (abfd, note);
8348 else
8349 return TRUE;
8350
8351 case NT_PPC_VMX:
8352 if (note->namesz == 6
8353 && strcmp (note->namedata, "LINUX") == 0)
8354 return elfcore_grok_ppc_vmx (abfd, note);
8355 else
8356 return TRUE;
8357
8358 case NT_PPC_VSX:
8359 if (note->namesz == 6
8360 && strcmp (note->namedata, "LINUX") == 0)
8361 return elfcore_grok_ppc_vsx (abfd, note);
8362 else
8363 return TRUE;
8364
8365 case NT_S390_HIGH_GPRS:
8366 if (note->namesz == 6
8367 && strcmp (note->namedata, "LINUX") == 0)
8368 return elfcore_grok_s390_high_gprs (abfd, note);
8369 else
8370 return TRUE;
8371
8372 case NT_S390_TIMER:
8373 if (note->namesz == 6
8374 && strcmp (note->namedata, "LINUX") == 0)
8375 return elfcore_grok_s390_timer (abfd, note);
8376 else
8377 return TRUE;
8378
8379 case NT_S390_TODCMP:
8380 if (note->namesz == 6
8381 && strcmp (note->namedata, "LINUX") == 0)
8382 return elfcore_grok_s390_todcmp (abfd, note);
8383 else
8384 return TRUE;
8385
8386 case NT_S390_TODPREG:
8387 if (note->namesz == 6
8388 && strcmp (note->namedata, "LINUX") == 0)
8389 return elfcore_grok_s390_todpreg (abfd, note);
8390 else
8391 return TRUE;
8392
8393 case NT_S390_CTRS:
8394 if (note->namesz == 6
8395 && strcmp (note->namedata, "LINUX") == 0)
8396 return elfcore_grok_s390_ctrs (abfd, note);
8397 else
8398 return TRUE;
8399
8400 case NT_S390_PREFIX:
8401 if (note->namesz == 6
8402 && strcmp (note->namedata, "LINUX") == 0)
8403 return elfcore_grok_s390_prefix (abfd, note);
8404 else
8405 return TRUE;
8406
8407 case NT_ARM_VFP:
8408 if (note->namesz == 6
8409 && strcmp (note->namedata, "LINUX") == 0)
8410 return elfcore_grok_arm_vfp (abfd, note);
8411 else
8412 return TRUE;
8413
8414 case NT_PRPSINFO:
8415 case NT_PSINFO:
8416 if (bed->elf_backend_grok_psinfo)
8417 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8418 return TRUE;
8419 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8420 return elfcore_grok_psinfo (abfd, note);
8421 #else
8422 return TRUE;
8423 #endif
8424
8425 case NT_AUXV:
8426 {
8427 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8428 SEC_HAS_CONTENTS);
8429
8430 if (sect == NULL)
8431 return FALSE;
8432 sect->size = note->descsz;
8433 sect->filepos = note->descpos;
8434 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8435
8436 return TRUE;
8437 }
8438 }
8439 }
8440
8441 static bfd_boolean
8442 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8443 {
8444 elf_tdata (abfd)->build_id_size = note->descsz;
8445 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8446 if (elf_tdata (abfd)->build_id == NULL)
8447 return FALSE;
8448
8449 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8450
8451 return TRUE;
8452 }
8453
8454 static bfd_boolean
8455 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8456 {
8457 switch (note->type)
8458 {
8459 default:
8460 return TRUE;
8461
8462 case NT_GNU_BUILD_ID:
8463 return elfobj_grok_gnu_build_id (abfd, note);
8464 }
8465 }
8466
8467 static bfd_boolean
8468 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8469 {
8470 struct sdt_note *cur =
8471 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8472 + note->descsz);
8473
8474 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8475 cur->size = (bfd_size_type) note->descsz;
8476 memcpy (cur->data, note->descdata, note->descsz);
8477
8478 elf_tdata (abfd)->sdt_note_head = cur;
8479
8480 return TRUE;
8481 }
8482
8483 static bfd_boolean
8484 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8485 {
8486 switch (note->type)
8487 {
8488 case NT_STAPSDT:
8489 return elfobj_grok_stapsdt_note_1 (abfd, note);
8490
8491 default:
8492 return TRUE;
8493 }
8494 }
8495
8496 static bfd_boolean
8497 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8498 {
8499 char *cp;
8500
8501 cp = strchr (note->namedata, '@');
8502 if (cp != NULL)
8503 {
8504 *lwpidp = atoi(cp + 1);
8505 return TRUE;
8506 }
8507 return FALSE;
8508 }
8509
8510 static bfd_boolean
8511 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8512 {
8513 /* Signal number at offset 0x08. */
8514 elf_tdata (abfd)->core_signal
8515 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8516
8517 /* Process ID at offset 0x50. */
8518 elf_tdata (abfd)->core_pid
8519 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8520
8521 /* Command name at 0x7c (max 32 bytes, including nul). */
8522 elf_tdata (abfd)->core_command
8523 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8524
8525 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8526 note);
8527 }
8528
8529 static bfd_boolean
8530 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8531 {
8532 int lwp;
8533
8534 if (elfcore_netbsd_get_lwpid (note, &lwp))
8535 elf_tdata (abfd)->core_lwpid = lwp;
8536
8537 if (note->type == NT_NETBSDCORE_PROCINFO)
8538 {
8539 /* NetBSD-specific core "procinfo". Note that we expect to
8540 find this note before any of the others, which is fine,
8541 since the kernel writes this note out first when it
8542 creates a core file. */
8543
8544 return elfcore_grok_netbsd_procinfo (abfd, note);
8545 }
8546
8547 /* As of Jan 2002 there are no other machine-independent notes
8548 defined for NetBSD core files. If the note type is less
8549 than the start of the machine-dependent note types, we don't
8550 understand it. */
8551
8552 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8553 return TRUE;
8554
8555
8556 switch (bfd_get_arch (abfd))
8557 {
8558 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8559 PT_GETFPREGS == mach+2. */
8560
8561 case bfd_arch_alpha:
8562 case bfd_arch_sparc:
8563 switch (note->type)
8564 {
8565 case NT_NETBSDCORE_FIRSTMACH+0:
8566 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8567
8568 case NT_NETBSDCORE_FIRSTMACH+2:
8569 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8570
8571 default:
8572 return TRUE;
8573 }
8574
8575 /* On all other arch's, PT_GETREGS == mach+1 and
8576 PT_GETFPREGS == mach+3. */
8577
8578 default:
8579 switch (note->type)
8580 {
8581 case NT_NETBSDCORE_FIRSTMACH+1:
8582 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8583
8584 case NT_NETBSDCORE_FIRSTMACH+3:
8585 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8586
8587 default:
8588 return TRUE;
8589 }
8590 }
8591 /* NOTREACHED */
8592 }
8593
8594 static bfd_boolean
8595 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8596 {
8597 /* Signal number at offset 0x08. */
8598 elf_tdata (abfd)->core_signal
8599 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8600
8601 /* Process ID at offset 0x20. */
8602 elf_tdata (abfd)->core_pid
8603 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8604
8605 /* Command name at 0x48 (max 32 bytes, including nul). */
8606 elf_tdata (abfd)->core_command
8607 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8608
8609 return TRUE;
8610 }
8611
8612 static bfd_boolean
8613 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8614 {
8615 if (note->type == NT_OPENBSD_PROCINFO)
8616 return elfcore_grok_openbsd_procinfo (abfd, note);
8617
8618 if (note->type == NT_OPENBSD_REGS)
8619 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8620
8621 if (note->type == NT_OPENBSD_FPREGS)
8622 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8623
8624 if (note->type == NT_OPENBSD_XFPREGS)
8625 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8626
8627 if (note->type == NT_OPENBSD_AUXV)
8628 {
8629 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8630 SEC_HAS_CONTENTS);
8631
8632 if (sect == NULL)
8633 return FALSE;
8634 sect->size = note->descsz;
8635 sect->filepos = note->descpos;
8636 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8637
8638 return TRUE;
8639 }
8640
8641 if (note->type == NT_OPENBSD_WCOOKIE)
8642 {
8643 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8644 SEC_HAS_CONTENTS);
8645
8646 if (sect == NULL)
8647 return FALSE;
8648 sect->size = note->descsz;
8649 sect->filepos = note->descpos;
8650 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8651
8652 return TRUE;
8653 }
8654
8655 return TRUE;
8656 }
8657
8658 static bfd_boolean
8659 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8660 {
8661 void *ddata = note->descdata;
8662 char buf[100];
8663 char *name;
8664 asection *sect;
8665 short sig;
8666 unsigned flags;
8667
8668 /* nto_procfs_status 'pid' field is at offset 0. */
8669 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8670
8671 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8672 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8673
8674 /* nto_procfs_status 'flags' field is at offset 8. */
8675 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8676
8677 /* nto_procfs_status 'what' field is at offset 14. */
8678 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8679 {
8680 elf_tdata (abfd)->core_signal = sig;
8681 elf_tdata (abfd)->core_lwpid = *tid;
8682 }
8683
8684 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8685 do not come from signals so we make sure we set the current
8686 thread just in case. */
8687 if (flags & 0x00000080)
8688 elf_tdata (abfd)->core_lwpid = *tid;
8689
8690 /* Make a ".qnx_core_status/%d" section. */
8691 sprintf (buf, ".qnx_core_status/%ld", *tid);
8692
8693 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8694 if (name == NULL)
8695 return FALSE;
8696 strcpy (name, buf);
8697
8698 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8699 if (sect == NULL)
8700 return FALSE;
8701
8702 sect->size = note->descsz;
8703 sect->filepos = note->descpos;
8704 sect->alignment_power = 2;
8705
8706 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8707 }
8708
8709 static bfd_boolean
8710 elfcore_grok_nto_regs (bfd *abfd,
8711 Elf_Internal_Note *note,
8712 long tid,
8713 char *base)
8714 {
8715 char buf[100];
8716 char *name;
8717 asection *sect;
8718
8719 /* Make a "(base)/%d" section. */
8720 sprintf (buf, "%s/%ld", base, tid);
8721
8722 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8723 if (name == NULL)
8724 return FALSE;
8725 strcpy (name, buf);
8726
8727 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8728 if (sect == NULL)
8729 return FALSE;
8730
8731 sect->size = note->descsz;
8732 sect->filepos = note->descpos;
8733 sect->alignment_power = 2;
8734
8735 /* This is the current thread. */
8736 if (elf_tdata (abfd)->core_lwpid == tid)
8737 return elfcore_maybe_make_sect (abfd, base, sect);
8738
8739 return TRUE;
8740 }
8741
8742 #define BFD_QNT_CORE_INFO 7
8743 #define BFD_QNT_CORE_STATUS 8
8744 #define BFD_QNT_CORE_GREG 9
8745 #define BFD_QNT_CORE_FPREG 10
8746
8747 static bfd_boolean
8748 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8749 {
8750 /* Every GREG section has a STATUS section before it. Store the
8751 tid from the previous call to pass down to the next gregs
8752 function. */
8753 static long tid = 1;
8754
8755 switch (note->type)
8756 {
8757 case BFD_QNT_CORE_INFO:
8758 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8759 case BFD_QNT_CORE_STATUS:
8760 return elfcore_grok_nto_status (abfd, note, &tid);
8761 case BFD_QNT_CORE_GREG:
8762 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8763 case BFD_QNT_CORE_FPREG:
8764 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8765 default:
8766 return TRUE;
8767 }
8768 }
8769
8770 static bfd_boolean
8771 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8772 {
8773 char *name;
8774 asection *sect;
8775 size_t len;
8776
8777 /* Use note name as section name. */
8778 len = note->namesz;
8779 name = (char *) bfd_alloc (abfd, len);
8780 if (name == NULL)
8781 return FALSE;
8782 memcpy (name, note->namedata, len);
8783 name[len - 1] = '\0';
8784
8785 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8786 if (sect == NULL)
8787 return FALSE;
8788
8789 sect->size = note->descsz;
8790 sect->filepos = note->descpos;
8791 sect->alignment_power = 1;
8792
8793 return TRUE;
8794 }
8795
8796 /* Function: elfcore_write_note
8797
8798 Inputs:
8799 buffer to hold note, and current size of buffer
8800 name of note
8801 type of note
8802 data for note
8803 size of data for note
8804
8805 Writes note to end of buffer. ELF64 notes are written exactly as
8806 for ELF32, despite the current (as of 2006) ELF gabi specifying
8807 that they ought to have 8-byte namesz and descsz field, and have
8808 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8809
8810 Return:
8811 Pointer to realloc'd buffer, *BUFSIZ updated. */
8812
8813 char *
8814 elfcore_write_note (bfd *abfd,
8815 char *buf,
8816 int *bufsiz,
8817 const char *name,
8818 int type,
8819 const void *input,
8820 int size)
8821 {
8822 Elf_External_Note *xnp;
8823 size_t namesz;
8824 size_t newspace;
8825 char *dest;
8826
8827 namesz = 0;
8828 if (name != NULL)
8829 namesz = strlen (name) + 1;
8830
8831 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8832
8833 buf = (char *) realloc (buf, *bufsiz + newspace);
8834 if (buf == NULL)
8835 return buf;
8836 dest = buf + *bufsiz;
8837 *bufsiz += newspace;
8838 xnp = (Elf_External_Note *) dest;
8839 H_PUT_32 (abfd, namesz, xnp->namesz);
8840 H_PUT_32 (abfd, size, xnp->descsz);
8841 H_PUT_32 (abfd, type, xnp->type);
8842 dest = xnp->name;
8843 if (name != NULL)
8844 {
8845 memcpy (dest, name, namesz);
8846 dest += namesz;
8847 while (namesz & 3)
8848 {
8849 *dest++ = '\0';
8850 ++namesz;
8851 }
8852 }
8853 memcpy (dest, input, size);
8854 dest += size;
8855 while (size & 3)
8856 {
8857 *dest++ = '\0';
8858 ++size;
8859 }
8860 return buf;
8861 }
8862
8863 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8864 char *
8865 elfcore_write_prpsinfo (bfd *abfd,
8866 char *buf,
8867 int *bufsiz,
8868 const char *fname,
8869 const char *psargs)
8870 {
8871 const char *note_name = "CORE";
8872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8873
8874 if (bed->elf_backend_write_core_note != NULL)
8875 {
8876 char *ret;
8877 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8878 NT_PRPSINFO, fname, psargs);
8879 if (ret != NULL)
8880 return ret;
8881 }
8882
8883 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8884 if (bed->s->elfclass == ELFCLASS32)
8885 {
8886 #if defined (HAVE_PSINFO32_T)
8887 psinfo32_t data;
8888 int note_type = NT_PSINFO;
8889 #else
8890 prpsinfo32_t data;
8891 int note_type = NT_PRPSINFO;
8892 #endif
8893
8894 memset (&data, 0, sizeof (data));
8895 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8896 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8897 return elfcore_write_note (abfd, buf, bufsiz,
8898 note_name, note_type, &data, sizeof (data));
8899 }
8900 else
8901 #endif
8902 {
8903 #if defined (HAVE_PSINFO_T)
8904 psinfo_t data;
8905 int note_type = NT_PSINFO;
8906 #else
8907 prpsinfo_t data;
8908 int note_type = NT_PRPSINFO;
8909 #endif
8910
8911 memset (&data, 0, sizeof (data));
8912 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8913 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8914 return elfcore_write_note (abfd, buf, bufsiz,
8915 note_name, note_type, &data, sizeof (data));
8916 }
8917 }
8918 #endif /* PSINFO_T or PRPSINFO_T */
8919
8920 #if defined (HAVE_PRSTATUS_T)
8921 char *
8922 elfcore_write_prstatus (bfd *abfd,
8923 char *buf,
8924 int *bufsiz,
8925 long pid,
8926 int cursig,
8927 const void *gregs)
8928 {
8929 const char *note_name = "CORE";
8930 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8931
8932 if (bed->elf_backend_write_core_note != NULL)
8933 {
8934 char *ret;
8935 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8936 NT_PRSTATUS,
8937 pid, cursig, gregs);
8938 if (ret != NULL)
8939 return ret;
8940 }
8941
8942 #if defined (HAVE_PRSTATUS32_T)
8943 if (bed->s->elfclass == ELFCLASS32)
8944 {
8945 prstatus32_t prstat;
8946
8947 memset (&prstat, 0, sizeof (prstat));
8948 prstat.pr_pid = pid;
8949 prstat.pr_cursig = cursig;
8950 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8951 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8952 NT_PRSTATUS, &prstat, sizeof (prstat));
8953 }
8954 else
8955 #endif
8956 {
8957 prstatus_t prstat;
8958
8959 memset (&prstat, 0, sizeof (prstat));
8960 prstat.pr_pid = pid;
8961 prstat.pr_cursig = cursig;
8962 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8963 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8964 NT_PRSTATUS, &prstat, sizeof (prstat));
8965 }
8966 }
8967 #endif /* HAVE_PRSTATUS_T */
8968
8969 #if defined (HAVE_LWPSTATUS_T)
8970 char *
8971 elfcore_write_lwpstatus (bfd *abfd,
8972 char *buf,
8973 int *bufsiz,
8974 long pid,
8975 int cursig,
8976 const void *gregs)
8977 {
8978 lwpstatus_t lwpstat;
8979 const char *note_name = "CORE";
8980
8981 memset (&lwpstat, 0, sizeof (lwpstat));
8982 lwpstat.pr_lwpid = pid >> 16;
8983 lwpstat.pr_cursig = cursig;
8984 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8985 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8986 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8987 #if !defined(gregs)
8988 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8989 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8990 #else
8991 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8992 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8993 #endif
8994 #endif
8995 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8996 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8997 }
8998 #endif /* HAVE_LWPSTATUS_T */
8999
9000 #if defined (HAVE_PSTATUS_T)
9001 char *
9002 elfcore_write_pstatus (bfd *abfd,
9003 char *buf,
9004 int *bufsiz,
9005 long pid,
9006 int cursig ATTRIBUTE_UNUSED,
9007 const void *gregs ATTRIBUTE_UNUSED)
9008 {
9009 const char *note_name = "CORE";
9010 #if defined (HAVE_PSTATUS32_T)
9011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9012
9013 if (bed->s->elfclass == ELFCLASS32)
9014 {
9015 pstatus32_t pstat;
9016
9017 memset (&pstat, 0, sizeof (pstat));
9018 pstat.pr_pid = pid & 0xffff;
9019 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9020 NT_PSTATUS, &pstat, sizeof (pstat));
9021 return buf;
9022 }
9023 else
9024 #endif
9025 {
9026 pstatus_t pstat;
9027
9028 memset (&pstat, 0, sizeof (pstat));
9029 pstat.pr_pid = pid & 0xffff;
9030 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9031 NT_PSTATUS, &pstat, sizeof (pstat));
9032 return buf;
9033 }
9034 }
9035 #endif /* HAVE_PSTATUS_T */
9036
9037 char *
9038 elfcore_write_prfpreg (bfd *abfd,
9039 char *buf,
9040 int *bufsiz,
9041 const void *fpregs,
9042 int size)
9043 {
9044 const char *note_name = "CORE";
9045 return elfcore_write_note (abfd, buf, bufsiz,
9046 note_name, NT_FPREGSET, fpregs, size);
9047 }
9048
9049 char *
9050 elfcore_write_prxfpreg (bfd *abfd,
9051 char *buf,
9052 int *bufsiz,
9053 const void *xfpregs,
9054 int size)
9055 {
9056 char *note_name = "LINUX";
9057 return elfcore_write_note (abfd, buf, bufsiz,
9058 note_name, NT_PRXFPREG, xfpregs, size);
9059 }
9060
9061 char *
9062 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9063 const void *xfpregs, int size)
9064 {
9065 char *note_name = "LINUX";
9066 return elfcore_write_note (abfd, buf, bufsiz,
9067 note_name, NT_X86_XSTATE, xfpregs, size);
9068 }
9069
9070 char *
9071 elfcore_write_ppc_vmx (bfd *abfd,
9072 char *buf,
9073 int *bufsiz,
9074 const void *ppc_vmx,
9075 int size)
9076 {
9077 char *note_name = "LINUX";
9078 return elfcore_write_note (abfd, buf, bufsiz,
9079 note_name, NT_PPC_VMX, ppc_vmx, size);
9080 }
9081
9082 char *
9083 elfcore_write_ppc_vsx (bfd *abfd,
9084 char *buf,
9085 int *bufsiz,
9086 const void *ppc_vsx,
9087 int size)
9088 {
9089 char *note_name = "LINUX";
9090 return elfcore_write_note (abfd, buf, bufsiz,
9091 note_name, NT_PPC_VSX, ppc_vsx, size);
9092 }
9093
9094 static char *
9095 elfcore_write_s390_high_gprs (bfd *abfd,
9096 char *buf,
9097 int *bufsiz,
9098 const void *s390_high_gprs,
9099 int size)
9100 {
9101 char *note_name = "LINUX";
9102 return elfcore_write_note (abfd, buf, bufsiz,
9103 note_name, NT_S390_HIGH_GPRS,
9104 s390_high_gprs, size);
9105 }
9106
9107 char *
9108 elfcore_write_s390_timer (bfd *abfd,
9109 char *buf,
9110 int *bufsiz,
9111 const void *s390_timer,
9112 int size)
9113 {
9114 char *note_name = "LINUX";
9115 return elfcore_write_note (abfd, buf, bufsiz,
9116 note_name, NT_S390_TIMER, s390_timer, size);
9117 }
9118
9119 char *
9120 elfcore_write_s390_todcmp (bfd *abfd,
9121 char *buf,
9122 int *bufsiz,
9123 const void *s390_todcmp,
9124 int size)
9125 {
9126 char *note_name = "LINUX";
9127 return elfcore_write_note (abfd, buf, bufsiz,
9128 note_name, NT_S390_TODCMP, s390_todcmp, size);
9129 }
9130
9131 char *
9132 elfcore_write_s390_todpreg (bfd *abfd,
9133 char *buf,
9134 int *bufsiz,
9135 const void *s390_todpreg,
9136 int size)
9137 {
9138 char *note_name = "LINUX";
9139 return elfcore_write_note (abfd, buf, bufsiz,
9140 note_name, NT_S390_TODPREG, s390_todpreg, size);
9141 }
9142
9143 char *
9144 elfcore_write_s390_ctrs (bfd *abfd,
9145 char *buf,
9146 int *bufsiz,
9147 const void *s390_ctrs,
9148 int size)
9149 {
9150 char *note_name = "LINUX";
9151 return elfcore_write_note (abfd, buf, bufsiz,
9152 note_name, NT_S390_CTRS, s390_ctrs, size);
9153 }
9154
9155 char *
9156 elfcore_write_s390_prefix (bfd *abfd,
9157 char *buf,
9158 int *bufsiz,
9159 const void *s390_prefix,
9160 int size)
9161 {
9162 char *note_name = "LINUX";
9163 return elfcore_write_note (abfd, buf, bufsiz,
9164 note_name, NT_S390_PREFIX, s390_prefix, size);
9165 }
9166
9167 char *
9168 elfcore_write_arm_vfp (bfd *abfd,
9169 char *buf,
9170 int *bufsiz,
9171 const void *arm_vfp,
9172 int size)
9173 {
9174 char *note_name = "LINUX";
9175 return elfcore_write_note (abfd, buf, bufsiz,
9176 note_name, NT_ARM_VFP, arm_vfp, size);
9177 }
9178
9179 char *
9180 elfcore_write_register_note (bfd *abfd,
9181 char *buf,
9182 int *bufsiz,
9183 const char *section,
9184 const void *data,
9185 int size)
9186 {
9187 if (strcmp (section, ".reg2") == 0)
9188 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9189 if (strcmp (section, ".reg-xfp") == 0)
9190 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9191 if (strcmp (section, ".reg-xstate") == 0)
9192 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9193 if (strcmp (section, ".reg-ppc-vmx") == 0)
9194 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9195 if (strcmp (section, ".reg-ppc-vsx") == 0)
9196 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9197 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9198 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9199 if (strcmp (section, ".reg-s390-timer") == 0)
9200 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9201 if (strcmp (section, ".reg-s390-todcmp") == 0)
9202 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9203 if (strcmp (section, ".reg-s390-todpreg") == 0)
9204 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9205 if (strcmp (section, ".reg-s390-ctrs") == 0)
9206 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9207 if (strcmp (section, ".reg-s390-prefix") == 0)
9208 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9209 if (strcmp (section, ".reg-arm-vfp") == 0)
9210 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9211 return NULL;
9212 }
9213
9214 static bfd_boolean
9215 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9216 {
9217 char *p;
9218
9219 p = buf;
9220 while (p < buf + size)
9221 {
9222 /* FIXME: bad alignment assumption. */
9223 Elf_External_Note *xnp = (Elf_External_Note *) p;
9224 Elf_Internal_Note in;
9225
9226 if (offsetof (Elf_External_Note, name) > buf - p + size)
9227 return FALSE;
9228
9229 in.type = H_GET_32 (abfd, xnp->type);
9230
9231 in.namesz = H_GET_32 (abfd, xnp->namesz);
9232 in.namedata = xnp->name;
9233 if (in.namesz > buf - in.namedata + size)
9234 return FALSE;
9235
9236 in.descsz = H_GET_32 (abfd, xnp->descsz);
9237 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9238 in.descpos = offset + (in.descdata - buf);
9239 if (in.descsz != 0
9240 && (in.descdata >= buf + size
9241 || in.descsz > buf - in.descdata + size))
9242 return FALSE;
9243
9244 switch (bfd_get_format (abfd))
9245 {
9246 default:
9247 return TRUE;
9248
9249 case bfd_core:
9250 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9251 {
9252 if (! elfcore_grok_netbsd_note (abfd, &in))
9253 return FALSE;
9254 }
9255 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9256 {
9257 if (! elfcore_grok_openbsd_note (abfd, &in))
9258 return FALSE;
9259 }
9260 else if (CONST_STRNEQ (in.namedata, "QNX"))
9261 {
9262 if (! elfcore_grok_nto_note (abfd, &in))
9263 return FALSE;
9264 }
9265 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9266 {
9267 if (! elfcore_grok_spu_note (abfd, &in))
9268 return FALSE;
9269 }
9270 else
9271 {
9272 if (! elfcore_grok_note (abfd, &in))
9273 return FALSE;
9274 }
9275 break;
9276
9277 case bfd_object:
9278 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9279 {
9280 if (! elfobj_grok_gnu_note (abfd, &in))
9281 return FALSE;
9282 }
9283 else if (in.namesz == sizeof "stapsdt"
9284 && strcmp (in.namedata, "stapsdt") == 0)
9285 {
9286 if (! elfobj_grok_stapsdt_note (abfd, &in))
9287 return FALSE;
9288 }
9289 break;
9290 }
9291
9292 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9293 }
9294
9295 return TRUE;
9296 }
9297
9298 static bfd_boolean
9299 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9300 {
9301 char *buf;
9302
9303 if (size <= 0)
9304 return TRUE;
9305
9306 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9307 return FALSE;
9308
9309 buf = (char *) bfd_malloc (size);
9310 if (buf == NULL)
9311 return FALSE;
9312
9313 if (bfd_bread (buf, size, abfd) != size
9314 || !elf_parse_notes (abfd, buf, size, offset))
9315 {
9316 free (buf);
9317 return FALSE;
9318 }
9319
9320 free (buf);
9321 return TRUE;
9322 }
9323 \f
9324 /* Providing external access to the ELF program header table. */
9325
9326 /* Return an upper bound on the number of bytes required to store a
9327 copy of ABFD's program header table entries. Return -1 if an error
9328 occurs; bfd_get_error will return an appropriate code. */
9329
9330 long
9331 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9332 {
9333 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9334 {
9335 bfd_set_error (bfd_error_wrong_format);
9336 return -1;
9337 }
9338
9339 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9340 }
9341
9342 /* Copy ABFD's program header table entries to *PHDRS. The entries
9343 will be stored as an array of Elf_Internal_Phdr structures, as
9344 defined in include/elf/internal.h. To find out how large the
9345 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9346
9347 Return the number of program header table entries read, or -1 if an
9348 error occurs; bfd_get_error will return an appropriate code. */
9349
9350 int
9351 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9352 {
9353 int num_phdrs;
9354
9355 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9356 {
9357 bfd_set_error (bfd_error_wrong_format);
9358 return -1;
9359 }
9360
9361 num_phdrs = elf_elfheader (abfd)->e_phnum;
9362 memcpy (phdrs, elf_tdata (abfd)->phdr,
9363 num_phdrs * sizeof (Elf_Internal_Phdr));
9364
9365 return num_phdrs;
9366 }
9367
9368 enum elf_reloc_type_class
9369 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9370 {
9371 return reloc_class_normal;
9372 }
9373
9374 /* For RELA architectures, return the relocation value for a
9375 relocation against a local symbol. */
9376
9377 bfd_vma
9378 _bfd_elf_rela_local_sym (bfd *abfd,
9379 Elf_Internal_Sym *sym,
9380 asection **psec,
9381 Elf_Internal_Rela *rel)
9382 {
9383 asection *sec = *psec;
9384 bfd_vma relocation;
9385
9386 relocation = (sec->output_section->vma
9387 + sec->output_offset
9388 + sym->st_value);
9389 if ((sec->flags & SEC_MERGE)
9390 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9391 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9392 {
9393 rel->r_addend =
9394 _bfd_merged_section_offset (abfd, psec,
9395 elf_section_data (sec)->sec_info,
9396 sym->st_value + rel->r_addend);
9397 if (sec != *psec)
9398 {
9399 /* If we have changed the section, and our original section is
9400 marked with SEC_EXCLUDE, it means that the original
9401 SEC_MERGE section has been completely subsumed in some
9402 other SEC_MERGE section. In this case, we need to leave
9403 some info around for --emit-relocs. */
9404 if ((sec->flags & SEC_EXCLUDE) != 0)
9405 sec->kept_section = *psec;
9406 sec = *psec;
9407 }
9408 rel->r_addend -= relocation;
9409 rel->r_addend += sec->output_section->vma + sec->output_offset;
9410 }
9411 return relocation;
9412 }
9413
9414 bfd_vma
9415 _bfd_elf_rel_local_sym (bfd *abfd,
9416 Elf_Internal_Sym *sym,
9417 asection **psec,
9418 bfd_vma addend)
9419 {
9420 asection *sec = *psec;
9421
9422 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9423 return sym->st_value + addend;
9424
9425 return _bfd_merged_section_offset (abfd, psec,
9426 elf_section_data (sec)->sec_info,
9427 sym->st_value + addend);
9428 }
9429
9430 bfd_vma
9431 _bfd_elf_section_offset (bfd *abfd,
9432 struct bfd_link_info *info,
9433 asection *sec,
9434 bfd_vma offset)
9435 {
9436 switch (sec->sec_info_type)
9437 {
9438 case ELF_INFO_TYPE_STABS:
9439 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9440 offset);
9441 case ELF_INFO_TYPE_EH_FRAME:
9442 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9443 default:
9444 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9445 {
9446 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9447 bfd_size_type address_size = bed->s->arch_size / 8;
9448 offset = sec->size - offset - address_size;
9449 }
9450 return offset;
9451 }
9452 }
9453 \f
9454 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9455 reconstruct an ELF file by reading the segments out of remote memory
9456 based on the ELF file header at EHDR_VMA and the ELF program headers it
9457 points to. If not null, *LOADBASEP is filled in with the difference
9458 between the VMAs from which the segments were read, and the VMAs the
9459 file headers (and hence BFD's idea of each section's VMA) put them at.
9460
9461 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9462 remote memory at target address VMA into the local buffer at MYADDR; it
9463 should return zero on success or an `errno' code on failure. TEMPL must
9464 be a BFD for an ELF target with the word size and byte order found in
9465 the remote memory. */
9466
9467 bfd *
9468 bfd_elf_bfd_from_remote_memory
9469 (bfd *templ,
9470 bfd_vma ehdr_vma,
9471 bfd_vma *loadbasep,
9472 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9473 {
9474 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9475 (templ, ehdr_vma, loadbasep, target_read_memory);
9476 }
9477 \f
9478 long
9479 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9480 long symcount ATTRIBUTE_UNUSED,
9481 asymbol **syms ATTRIBUTE_UNUSED,
9482 long dynsymcount,
9483 asymbol **dynsyms,
9484 asymbol **ret)
9485 {
9486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9487 asection *relplt;
9488 asymbol *s;
9489 const char *relplt_name;
9490 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9491 arelent *p;
9492 long count, i, n;
9493 size_t size;
9494 Elf_Internal_Shdr *hdr;
9495 char *names;
9496 asection *plt;
9497
9498 *ret = NULL;
9499
9500 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9501 return 0;
9502
9503 if (dynsymcount <= 0)
9504 return 0;
9505
9506 if (!bed->plt_sym_val)
9507 return 0;
9508
9509 relplt_name = bed->relplt_name;
9510 if (relplt_name == NULL)
9511 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9512 relplt = bfd_get_section_by_name (abfd, relplt_name);
9513 if (relplt == NULL)
9514 return 0;
9515
9516 hdr = &elf_section_data (relplt)->this_hdr;
9517 if (hdr->sh_link != elf_dynsymtab (abfd)
9518 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9519 return 0;
9520
9521 plt = bfd_get_section_by_name (abfd, ".plt");
9522 if (plt == NULL)
9523 return 0;
9524
9525 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9526 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9527 return -1;
9528
9529 count = relplt->size / hdr->sh_entsize;
9530 size = count * sizeof (asymbol);
9531 p = relplt->relocation;
9532 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9533 {
9534 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9535 if (p->addend != 0)
9536 {
9537 #ifdef BFD64
9538 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9539 #else
9540 size += sizeof ("+0x") - 1 + 8;
9541 #endif
9542 }
9543 }
9544
9545 s = *ret = (asymbol *) bfd_malloc (size);
9546 if (s == NULL)
9547 return -1;
9548
9549 names = (char *) (s + count);
9550 p = relplt->relocation;
9551 n = 0;
9552 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9553 {
9554 size_t len;
9555 bfd_vma addr;
9556
9557 addr = bed->plt_sym_val (i, plt, p);
9558 if (addr == (bfd_vma) -1)
9559 continue;
9560
9561 *s = **p->sym_ptr_ptr;
9562 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9563 we are defining a symbol, ensure one of them is set. */
9564 if ((s->flags & BSF_LOCAL) == 0)
9565 s->flags |= BSF_GLOBAL;
9566 s->flags |= BSF_SYNTHETIC;
9567 s->section = plt;
9568 s->value = addr - plt->vma;
9569 s->name = names;
9570 s->udata.p = NULL;
9571 len = strlen ((*p->sym_ptr_ptr)->name);
9572 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9573 names += len;
9574 if (p->addend != 0)
9575 {
9576 char buf[30], *a;
9577
9578 memcpy (names, "+0x", sizeof ("+0x") - 1);
9579 names += sizeof ("+0x") - 1;
9580 bfd_sprintf_vma (abfd, buf, p->addend);
9581 for (a = buf; *a == '0'; ++a)
9582 ;
9583 len = strlen (a);
9584 memcpy (names, a, len);
9585 names += len;
9586 }
9587 memcpy (names, "@plt", sizeof ("@plt"));
9588 names += sizeof ("@plt");
9589 ++s, ++n;
9590 }
9591
9592 return n;
9593 }
9594
9595 /* It is only used by x86-64 so far. */
9596 asection _bfd_elf_large_com_section
9597 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9598 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9599
9600 void
9601 _bfd_elf_set_osabi (bfd * abfd,
9602 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9603 {
9604 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9605
9606 i_ehdrp = elf_elfheader (abfd);
9607
9608 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9609
9610 /* To make things simpler for the loader on Linux systems we set the
9611 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9612 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9613 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9614 && elf_tdata (abfd)->has_gnu_symbols)
9615 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9616 }
9617
9618
9619 /* Return TRUE for ELF symbol types that represent functions.
9620 This is the default version of this function, which is sufficient for
9621 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9622
9623 bfd_boolean
9624 _bfd_elf_is_function_type (unsigned int type)
9625 {
9626 return (type == STT_FUNC
9627 || type == STT_GNU_IFUNC);
9628 }