* elf.c (special_sections_d): Add comment.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 if (name [0] == '.')
884 {
885 const char *p;
886 int n;
887 if (name[1] == 'd')
888 p = ".debug", n = 6;
889 else if (name[1] == 'g' && name[2] == 'n')
890 p = ".gnu.linkonce.wi.", n = 17;
891 else if (name[1] == 'g' && name[2] == 'd')
892 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
893 else if (name[1] == 'l')
894 p = ".line", n = 5;
895 else if (name[1] == 's')
896 p = ".stab", n = 5;
897 else if (name[1] == 'z')
898 p = ".zdebug", n = 7;
899 else
900 p = NULL, n = 0;
901 if (p != NULL && strncmp (name, p, n) == 0)
902 flags |= SEC_DEBUGGING;
903 }
904 }
905
906 /* As a GNU extension, if the name begins with .gnu.linkonce, we
907 only link a single copy of the section. This is used to support
908 g++. g++ will emit each template expansion in its own section.
909 The symbols will be defined as weak, so that multiple definitions
910 are permitted. The GNU linker extension is to actually discard
911 all but one of the sections. */
912 if (CONST_STRNEQ (name, ".gnu.linkonce")
913 && elf_next_in_group (newsect) == NULL)
914 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
915
916 bed = get_elf_backend_data (abfd);
917 if (bed->elf_backend_section_flags)
918 if (! bed->elf_backend_section_flags (&flags, hdr))
919 return FALSE;
920
921 if (! bfd_set_section_flags (abfd, newsect, flags))
922 return FALSE;
923
924 /* We do not parse the PT_NOTE segments as we are interested even in the
925 separate debug info files which may have the segments offsets corrupted.
926 PT_NOTEs from the core files are currently not parsed using BFD. */
927 if (hdr->sh_type == SHT_NOTE)
928 {
929 bfd_byte *contents;
930
931 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
932 return FALSE;
933
934 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
935 free (contents);
936 }
937
938 if ((flags & SEC_ALLOC) != 0)
939 {
940 Elf_Internal_Phdr *phdr;
941 unsigned int i, nload;
942
943 /* Some ELF linkers produce binaries with all the program header
944 p_paddr fields zero. If we have such a binary with more than
945 one PT_LOAD header, then leave the section lma equal to vma
946 so that we don't create sections with overlapping lma. */
947 phdr = elf_tdata (abfd)->phdr;
948 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
949 if (phdr->p_paddr != 0)
950 break;
951 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
952 ++nload;
953 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
954 return TRUE;
955
956 phdr = elf_tdata (abfd)->phdr;
957 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 {
959 if (((phdr->p_type == PT_LOAD
960 && (hdr->sh_flags & SHF_TLS) == 0)
961 || phdr->p_type == PT_TLS)
962 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
963 {
964 if ((flags & SEC_LOAD) == 0)
965 newsect->lma = (phdr->p_paddr
966 + hdr->sh_addr - phdr->p_vaddr);
967 else
968 /* We used to use the same adjustment for SEC_LOAD
969 sections, but that doesn't work if the segment
970 is packed with code from multiple VMAs.
971 Instead we calculate the section LMA based on
972 the segment LMA. It is assumed that the
973 segment will contain sections with contiguous
974 LMAs, even if the VMAs are not. */
975 newsect->lma = (phdr->p_paddr
976 + hdr->sh_offset - phdr->p_offset);
977
978 /* With contiguous segments, we can't tell from file
979 offsets whether a section with zero size should
980 be placed at the end of one segment or the
981 beginning of the next. Decide based on vaddr. */
982 if (hdr->sh_addr >= phdr->p_vaddr
983 && (hdr->sh_addr + hdr->sh_size
984 <= phdr->p_vaddr + phdr->p_memsz))
985 break;
986 }
987 }
988 }
989
990 /* Compress/decompress DWARF debug sections with names: .debug_* and
991 .zdebug_*, after the section flags is set. */
992 if ((flags & SEC_DEBUGGING)
993 && ((name[1] == 'd' && name[6] == '_')
994 || (name[1] == 'z' && name[7] == '_')))
995 {
996 enum { nothing, compress, decompress } action = nothing;
997 char *new_name;
998
999 if (bfd_is_section_compressed (abfd, newsect))
1000 {
1001 /* Compressed section. Check if we should decompress. */
1002 if ((abfd->flags & BFD_DECOMPRESS))
1003 action = decompress;
1004 }
1005 else
1006 {
1007 /* Normal section. Check if we should compress. */
1008 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1009 action = compress;
1010 }
1011
1012 new_name = NULL;
1013 switch (action)
1014 {
1015 case nothing:
1016 break;
1017 case compress:
1018 if (!bfd_init_section_compress_status (abfd, newsect))
1019 {
1020 (*_bfd_error_handler)
1021 (_("%B: unable to initialize compress status for section %s"),
1022 abfd, name);
1023 return FALSE;
1024 }
1025 if (name[1] != 'z')
1026 {
1027 unsigned int len = strlen (name);
1028
1029 new_name = bfd_alloc (abfd, len + 2);
1030 if (new_name == NULL)
1031 return FALSE;
1032 new_name[0] = '.';
1033 new_name[1] = 'z';
1034 memcpy (new_name + 2, name + 1, len);
1035 }
1036 break;
1037 case decompress:
1038 if (!bfd_init_section_decompress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize decompress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] == 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 memcpy (new_name + 1, name + 2, len - 1);
1054 }
1055 break;
1056 }
1057 if (new_name != NULL)
1058 bfd_rename_section (abfd, newsect, new_name);
1059 }
1060
1061 return TRUE;
1062 }
1063
1064 const char *const bfd_elf_section_type_names[] = {
1065 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1066 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1067 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1068 };
1069
1070 /* ELF relocs are against symbols. If we are producing relocatable
1071 output, and the reloc is against an external symbol, and nothing
1072 has given us any additional addend, the resulting reloc will also
1073 be against the same symbol. In such a case, we don't want to
1074 change anything about the way the reloc is handled, since it will
1075 all be done at final link time. Rather than put special case code
1076 into bfd_perform_relocation, all the reloc types use this howto
1077 function. It just short circuits the reloc if producing
1078 relocatable output against an external symbol. */
1079
1080 bfd_reloc_status_type
1081 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1082 arelent *reloc_entry,
1083 asymbol *symbol,
1084 void *data ATTRIBUTE_UNUSED,
1085 asection *input_section,
1086 bfd *output_bfd,
1087 char **error_message ATTRIBUTE_UNUSED)
1088 {
1089 if (output_bfd != NULL
1090 && (symbol->flags & BSF_SECTION_SYM) == 0
1091 && (! reloc_entry->howto->partial_inplace
1092 || reloc_entry->addend == 0))
1093 {
1094 reloc_entry->address += input_section->output_offset;
1095 return bfd_reloc_ok;
1096 }
1097
1098 return bfd_reloc_continue;
1099 }
1100 \f
1101 /* Copy the program header and other data from one object module to
1102 another. */
1103
1104 bfd_boolean
1105 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1106 {
1107 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1108 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1109 return TRUE;
1110
1111 BFD_ASSERT (!elf_flags_init (obfd)
1112 || (elf_elfheader (obfd)->e_flags
1113 == elf_elfheader (ibfd)->e_flags));
1114
1115 elf_gp (obfd) = elf_gp (ibfd);
1116 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1117 elf_flags_init (obfd) = TRUE;
1118
1119 /* Copy object attributes. */
1120 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1121 return TRUE;
1122 }
1123
1124 static const char *
1125 get_segment_type (unsigned int p_type)
1126 {
1127 const char *pt;
1128 switch (p_type)
1129 {
1130 case PT_NULL: pt = "NULL"; break;
1131 case PT_LOAD: pt = "LOAD"; break;
1132 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1133 case PT_INTERP: pt = "INTERP"; break;
1134 case PT_NOTE: pt = "NOTE"; break;
1135 case PT_SHLIB: pt = "SHLIB"; break;
1136 case PT_PHDR: pt = "PHDR"; break;
1137 case PT_TLS: pt = "TLS"; break;
1138 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1139 case PT_GNU_STACK: pt = "STACK"; break;
1140 case PT_GNU_RELRO: pt = "RELRO"; break;
1141 default: pt = NULL; break;
1142 }
1143 return pt;
1144 }
1145
1146 /* Print out the program headers. */
1147
1148 bfd_boolean
1149 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1150 {
1151 FILE *f = (FILE *) farg;
1152 Elf_Internal_Phdr *p;
1153 asection *s;
1154 bfd_byte *dynbuf = NULL;
1155
1156 p = elf_tdata (abfd)->phdr;
1157 if (p != NULL)
1158 {
1159 unsigned int i, c;
1160
1161 fprintf (f, _("\nProgram Header:\n"));
1162 c = elf_elfheader (abfd)->e_phnum;
1163 for (i = 0; i < c; i++, p++)
1164 {
1165 const char *pt = get_segment_type (p->p_type);
1166 char buf[20];
1167
1168 if (pt == NULL)
1169 {
1170 sprintf (buf, "0x%lx", p->p_type);
1171 pt = buf;
1172 }
1173 fprintf (f, "%8s off 0x", pt);
1174 bfd_fprintf_vma (abfd, f, p->p_offset);
1175 fprintf (f, " vaddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1177 fprintf (f, " paddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_paddr);
1179 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1180 fprintf (f, " filesz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_filesz);
1182 fprintf (f, " memsz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_memsz);
1184 fprintf (f, " flags %c%c%c",
1185 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1186 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1187 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1188 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1189 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1190 fprintf (f, "\n");
1191 }
1192 }
1193
1194 s = bfd_get_section_by_name (abfd, ".dynamic");
1195 if (s != NULL)
1196 {
1197 unsigned int elfsec;
1198 unsigned long shlink;
1199 bfd_byte *extdyn, *extdynend;
1200 size_t extdynsize;
1201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1202
1203 fprintf (f, _("\nDynamic Section:\n"));
1204
1205 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1206 goto error_return;
1207
1208 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1209 if (elfsec == SHN_BAD)
1210 goto error_return;
1211 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1212
1213 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1214 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1215
1216 extdyn = dynbuf;
1217 extdynend = extdyn + s->size;
1218 for (; extdyn < extdynend; extdyn += extdynsize)
1219 {
1220 Elf_Internal_Dyn dyn;
1221 const char *name = "";
1222 char ab[20];
1223 bfd_boolean stringp;
1224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1225
1226 (*swap_dyn_in) (abfd, extdyn, &dyn);
1227
1228 if (dyn.d_tag == DT_NULL)
1229 break;
1230
1231 stringp = FALSE;
1232 switch (dyn.d_tag)
1233 {
1234 default:
1235 if (bed->elf_backend_get_target_dtag)
1236 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1237
1238 if (!strcmp (name, ""))
1239 {
1240 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1241 name = ab;
1242 }
1243 break;
1244
1245 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1246 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1247 case DT_PLTGOT: name = "PLTGOT"; break;
1248 case DT_HASH: name = "HASH"; break;
1249 case DT_STRTAB: name = "STRTAB"; break;
1250 case DT_SYMTAB: name = "SYMTAB"; break;
1251 case DT_RELA: name = "RELA"; break;
1252 case DT_RELASZ: name = "RELASZ"; break;
1253 case DT_RELAENT: name = "RELAENT"; break;
1254 case DT_STRSZ: name = "STRSZ"; break;
1255 case DT_SYMENT: name = "SYMENT"; break;
1256 case DT_INIT: name = "INIT"; break;
1257 case DT_FINI: name = "FINI"; break;
1258 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1259 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1260 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1261 case DT_REL: name = "REL"; break;
1262 case DT_RELSZ: name = "RELSZ"; break;
1263 case DT_RELENT: name = "RELENT"; break;
1264 case DT_PLTREL: name = "PLTREL"; break;
1265 case DT_DEBUG: name = "DEBUG"; break;
1266 case DT_TEXTREL: name = "TEXTREL"; break;
1267 case DT_JMPREL: name = "JMPREL"; break;
1268 case DT_BIND_NOW: name = "BIND_NOW"; break;
1269 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1270 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1271 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1272 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1273 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1274 case DT_FLAGS: name = "FLAGS"; break;
1275 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1276 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1277 case DT_CHECKSUM: name = "CHECKSUM"; break;
1278 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1279 case DT_MOVEENT: name = "MOVEENT"; break;
1280 case DT_MOVESZ: name = "MOVESZ"; break;
1281 case DT_FEATURE: name = "FEATURE"; break;
1282 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1283 case DT_SYMINSZ: name = "SYMINSZ"; break;
1284 case DT_SYMINENT: name = "SYMINENT"; break;
1285 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1286 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1287 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1288 case DT_PLTPAD: name = "PLTPAD"; break;
1289 case DT_MOVETAB: name = "MOVETAB"; break;
1290 case DT_SYMINFO: name = "SYMINFO"; break;
1291 case DT_RELACOUNT: name = "RELACOUNT"; break;
1292 case DT_RELCOUNT: name = "RELCOUNT"; break;
1293 case DT_FLAGS_1: name = "FLAGS_1"; break;
1294 case DT_VERSYM: name = "VERSYM"; break;
1295 case DT_VERDEF: name = "VERDEF"; break;
1296 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1297 case DT_VERNEED: name = "VERNEED"; break;
1298 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1299 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1300 case DT_USED: name = "USED"; break;
1301 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1302 case DT_GNU_HASH: name = "GNU_HASH"; break;
1303 }
1304
1305 fprintf (f, " %-20s ", name);
1306 if (! stringp)
1307 {
1308 fprintf (f, "0x");
1309 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1310 }
1311 else
1312 {
1313 const char *string;
1314 unsigned int tagv = dyn.d_un.d_val;
1315
1316 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1317 if (string == NULL)
1318 goto error_return;
1319 fprintf (f, "%s", string);
1320 }
1321 fprintf (f, "\n");
1322 }
1323
1324 free (dynbuf);
1325 dynbuf = NULL;
1326 }
1327
1328 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1329 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1330 {
1331 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1332 return FALSE;
1333 }
1334
1335 if (elf_dynverdef (abfd) != 0)
1336 {
1337 Elf_Internal_Verdef *t;
1338
1339 fprintf (f, _("\nVersion definitions:\n"));
1340 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1341 {
1342 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1343 t->vd_flags, t->vd_hash,
1344 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1345 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1346 {
1347 Elf_Internal_Verdaux *a;
1348
1349 fprintf (f, "\t");
1350 for (a = t->vd_auxptr->vda_nextptr;
1351 a != NULL;
1352 a = a->vda_nextptr)
1353 fprintf (f, "%s ",
1354 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1355 fprintf (f, "\n");
1356 }
1357 }
1358 }
1359
1360 if (elf_dynverref (abfd) != 0)
1361 {
1362 Elf_Internal_Verneed *t;
1363
1364 fprintf (f, _("\nVersion References:\n"));
1365 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1366 {
1367 Elf_Internal_Vernaux *a;
1368
1369 fprintf (f, _(" required from %s:\n"),
1370 t->vn_filename ? t->vn_filename : "<corrupt>");
1371 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1372 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1373 a->vna_flags, a->vna_other,
1374 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1375 }
1376 }
1377
1378 return TRUE;
1379
1380 error_return:
1381 if (dynbuf != NULL)
1382 free (dynbuf);
1383 return FALSE;
1384 }
1385
1386 /* Display ELF-specific fields of a symbol. */
1387
1388 void
1389 bfd_elf_print_symbol (bfd *abfd,
1390 void *filep,
1391 asymbol *symbol,
1392 bfd_print_symbol_type how)
1393 {
1394 FILE *file = (FILE *) filep;
1395 switch (how)
1396 {
1397 case bfd_print_symbol_name:
1398 fprintf (file, "%s", symbol->name);
1399 break;
1400 case bfd_print_symbol_more:
1401 fprintf (file, "elf ");
1402 bfd_fprintf_vma (abfd, file, symbol->value);
1403 fprintf (file, " %lx", (unsigned long) symbol->flags);
1404 break;
1405 case bfd_print_symbol_all:
1406 {
1407 const char *section_name;
1408 const char *name = NULL;
1409 const struct elf_backend_data *bed;
1410 unsigned char st_other;
1411 bfd_vma val;
1412
1413 section_name = symbol->section ? symbol->section->name : "(*none*)";
1414
1415 bed = get_elf_backend_data (abfd);
1416 if (bed->elf_backend_print_symbol_all)
1417 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1418
1419 if (name == NULL)
1420 {
1421 name = symbol->name;
1422 bfd_print_symbol_vandf (abfd, file, symbol);
1423 }
1424
1425 fprintf (file, " %s\t", section_name);
1426 /* Print the "other" value for a symbol. For common symbols,
1427 we've already printed the size; now print the alignment.
1428 For other symbols, we have no specified alignment, and
1429 we've printed the address; now print the size. */
1430 if (symbol->section && bfd_is_com_section (symbol->section))
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1432 else
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1434 bfd_fprintf_vma (abfd, file, val);
1435
1436 /* If we have version information, print it. */
1437 if (elf_tdata (abfd)->dynversym_section != 0
1438 && (elf_tdata (abfd)->dynverdef_section != 0
1439 || elf_tdata (abfd)->dynverref_section != 0))
1440 {
1441 unsigned int vernum;
1442 const char *version_string;
1443
1444 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1445
1446 if (vernum == 0)
1447 version_string = "";
1448 else if (vernum == 1)
1449 version_string = "Base";
1450 else if (vernum <= elf_tdata (abfd)->cverdefs)
1451 version_string =
1452 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1453 else
1454 {
1455 Elf_Internal_Verneed *t;
1456
1457 version_string = "";
1458 for (t = elf_tdata (abfd)->verref;
1459 t != NULL;
1460 t = t->vn_nextref)
1461 {
1462 Elf_Internal_Vernaux *a;
1463
1464 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1465 {
1466 if (a->vna_other == vernum)
1467 {
1468 version_string = a->vna_nodename;
1469 break;
1470 }
1471 }
1472 }
1473 }
1474
1475 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1476 fprintf (file, " %-11s", version_string);
1477 else
1478 {
1479 int i;
1480
1481 fprintf (file, " (%s)", version_string);
1482 for (i = 10 - strlen (version_string); i > 0; --i)
1483 putc (' ', file);
1484 }
1485 }
1486
1487 /* If the st_other field is not zero, print it. */
1488 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1489
1490 switch (st_other)
1491 {
1492 case 0: break;
1493 case STV_INTERNAL: fprintf (file, " .internal"); break;
1494 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1495 case STV_PROTECTED: fprintf (file, " .protected"); break;
1496 default:
1497 /* Some other non-defined flags are also present, so print
1498 everything hex. */
1499 fprintf (file, " 0x%02x", (unsigned int) st_other);
1500 }
1501
1502 fprintf (file, " %s", name);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Allocate an ELF string table--force the first byte to be zero. */
1509
1510 struct bfd_strtab_hash *
1511 _bfd_elf_stringtab_init (void)
1512 {
1513 struct bfd_strtab_hash *ret;
1514
1515 ret = _bfd_stringtab_init ();
1516 if (ret != NULL)
1517 {
1518 bfd_size_type loc;
1519
1520 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1521 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1522 if (loc == (bfd_size_type) -1)
1523 {
1524 _bfd_stringtab_free (ret);
1525 ret = NULL;
1526 }
1527 }
1528 return ret;
1529 }
1530 \f
1531 /* ELF .o/exec file reading */
1532
1533 /* Create a new bfd section from an ELF section header. */
1534
1535 bfd_boolean
1536 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1537 {
1538 Elf_Internal_Shdr *hdr;
1539 Elf_Internal_Ehdr *ehdr;
1540 const struct elf_backend_data *bed;
1541 const char *name;
1542
1543 if (shindex >= elf_numsections (abfd))
1544 return FALSE;
1545
1546 hdr = elf_elfsections (abfd)[shindex];
1547 ehdr = elf_elfheader (abfd);
1548 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1549 hdr->sh_name);
1550 if (name == NULL)
1551 return FALSE;
1552
1553 bed = get_elf_backend_data (abfd);
1554 switch (hdr->sh_type)
1555 {
1556 case SHT_NULL:
1557 /* Inactive section. Throw it away. */
1558 return TRUE;
1559
1560 case SHT_PROGBITS: /* Normal section with contents. */
1561 case SHT_NOBITS: /* .bss section. */
1562 case SHT_HASH: /* .hash section. */
1563 case SHT_NOTE: /* .note section. */
1564 case SHT_INIT_ARRAY: /* .init_array section. */
1565 case SHT_FINI_ARRAY: /* .fini_array section. */
1566 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1567 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1568 case SHT_GNU_HASH: /* .gnu.hash section. */
1569 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1570
1571 case SHT_DYNAMIC: /* Dynamic linking information. */
1572 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1573 return FALSE;
1574 if (hdr->sh_link > elf_numsections (abfd))
1575 {
1576 /* PR 10478: Accept Solaris binaries with a sh_link
1577 field set to SHN_BEFORE or SHN_AFTER. */
1578 switch (bfd_get_arch (abfd))
1579 {
1580 case bfd_arch_i386:
1581 case bfd_arch_sparc:
1582 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1583 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1584 break;
1585 /* Otherwise fall through. */
1586 default:
1587 return FALSE;
1588 }
1589 }
1590 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1591 return FALSE;
1592 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1593 {
1594 Elf_Internal_Shdr *dynsymhdr;
1595
1596 /* The shared libraries distributed with hpux11 have a bogus
1597 sh_link field for the ".dynamic" section. Find the
1598 string table for the ".dynsym" section instead. */
1599 if (elf_dynsymtab (abfd) != 0)
1600 {
1601 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1602 hdr->sh_link = dynsymhdr->sh_link;
1603 }
1604 else
1605 {
1606 unsigned int i, num_sec;
1607
1608 num_sec = elf_numsections (abfd);
1609 for (i = 1; i < num_sec; i++)
1610 {
1611 dynsymhdr = elf_elfsections (abfd)[i];
1612 if (dynsymhdr->sh_type == SHT_DYNSYM)
1613 {
1614 hdr->sh_link = dynsymhdr->sh_link;
1615 break;
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case SHT_SYMTAB: /* A symbol table */
1623 if (elf_onesymtab (abfd) == shindex)
1624 return TRUE;
1625
1626 if (hdr->sh_entsize != bed->s->sizeof_sym)
1627 return FALSE;
1628 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1629 {
1630 if (hdr->sh_size != 0)
1631 return FALSE;
1632 /* Some assemblers erroneously set sh_info to one with a
1633 zero sh_size. ld sees this as a global symbol count
1634 of (unsigned) -1. Fix it here. */
1635 hdr->sh_info = 0;
1636 return TRUE;
1637 }
1638 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1639 elf_onesymtab (abfd) = shindex;
1640 elf_tdata (abfd)->symtab_hdr = *hdr;
1641 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1642 abfd->flags |= HAS_SYMS;
1643
1644 /* Sometimes a shared object will map in the symbol table. If
1645 SHF_ALLOC is set, and this is a shared object, then we also
1646 treat this section as a BFD section. We can not base the
1647 decision purely on SHF_ALLOC, because that flag is sometimes
1648 set in a relocatable object file, which would confuse the
1649 linker. */
1650 if ((hdr->sh_flags & SHF_ALLOC) != 0
1651 && (abfd->flags & DYNAMIC) != 0
1652 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1653 shindex))
1654 return FALSE;
1655
1656 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1657 can't read symbols without that section loaded as well. It
1658 is most likely specified by the next section header. */
1659 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1660 {
1661 unsigned int i, num_sec;
1662
1663 num_sec = elf_numsections (abfd);
1664 for (i = shindex + 1; i < num_sec; i++)
1665 {
1666 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1667 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1668 && hdr2->sh_link == shindex)
1669 break;
1670 }
1671 if (i == num_sec)
1672 for (i = 1; i < shindex; i++)
1673 {
1674 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1675 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1676 && hdr2->sh_link == shindex)
1677 break;
1678 }
1679 if (i != shindex)
1680 return bfd_section_from_shdr (abfd, i);
1681 }
1682 return TRUE;
1683
1684 case SHT_DYNSYM: /* A dynamic symbol table */
1685 if (elf_dynsymtab (abfd) == shindex)
1686 return TRUE;
1687
1688 if (hdr->sh_entsize != bed->s->sizeof_sym)
1689 return FALSE;
1690 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1691 {
1692 if (hdr->sh_size != 0)
1693 return FALSE;
1694 /* Some linkers erroneously set sh_info to one with a
1695 zero sh_size. ld sees this as a global symbol count
1696 of (unsigned) -1. Fix it here. */
1697 hdr->sh_info = 0;
1698 return TRUE;
1699 }
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 /* There are more DWARF sections than these, but they needn't be added here
2065 unless you have to cope with broken compilers that don't emit section
2066 attributes or you want to help the user writing assembler. */
2067 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2074 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_f[] =
2079 {
2080 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_g[] =
2086 {
2087 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2089 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2092 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2093 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2096 { NULL, 0, 0, 0, 0 }
2097 };
2098
2099 static const struct bfd_elf_special_section special_sections_h[] =
2100 {
2101 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2102 { NULL, 0, 0, 0, 0 }
2103 };
2104
2105 static const struct bfd_elf_special_section special_sections_i[] =
2106 {
2107 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2108 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2109 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2110 { NULL, 0, 0, 0, 0 }
2111 };
2112
2113 static const struct bfd_elf_special_section special_sections_l[] =
2114 {
2115 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2116 { NULL, 0, 0, 0, 0 }
2117 };
2118
2119 static const struct bfd_elf_special_section special_sections_n[] =
2120 {
2121 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2122 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_p[] =
2127 {
2128 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2129 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { NULL, 0, 0, 0, 0 }
2131 };
2132
2133 static const struct bfd_elf_special_section special_sections_r[] =
2134 {
2135 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2137 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2138 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2139 { NULL, 0, 0, 0, 0 }
2140 };
2141
2142 static const struct bfd_elf_special_section special_sections_s[] =
2143 {
2144 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2146 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2147 /* See struct bfd_elf_special_section declaration for the semantics of
2148 this special case where .prefix_length != strlen (.prefix). */
2149 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section special_sections_t[] =
2154 {
2155 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2156 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2158 { NULL, 0, 0, 0, 0 }
2159 };
2160
2161 static const struct bfd_elf_special_section special_sections_z[] =
2162 {
2163 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section * const special_sections[] =
2171 {
2172 special_sections_b, /* 'b' */
2173 special_sections_c, /* 'c' */
2174 special_sections_d, /* 'd' */
2175 NULL, /* 'e' */
2176 special_sections_f, /* 'f' */
2177 special_sections_g, /* 'g' */
2178 special_sections_h, /* 'h' */
2179 special_sections_i, /* 'i' */
2180 NULL, /* 'j' */
2181 NULL, /* 'k' */
2182 special_sections_l, /* 'l' */
2183 NULL, /* 'm' */
2184 special_sections_n, /* 'n' */
2185 NULL, /* 'o' */
2186 special_sections_p, /* 'p' */
2187 NULL, /* 'q' */
2188 special_sections_r, /* 'r' */
2189 special_sections_s, /* 's' */
2190 special_sections_t, /* 't' */
2191 NULL, /* 'u' */
2192 NULL, /* 'v' */
2193 NULL, /* 'w' */
2194 NULL, /* 'x' */
2195 NULL, /* 'y' */
2196 special_sections_z /* 'z' */
2197 };
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_special_section (const char *name,
2201 const struct bfd_elf_special_section *spec,
2202 unsigned int rela)
2203 {
2204 int i;
2205 int len;
2206
2207 len = strlen (name);
2208
2209 for (i = 0; spec[i].prefix != NULL; i++)
2210 {
2211 int suffix_len;
2212 int prefix_len = spec[i].prefix_length;
2213
2214 if (len < prefix_len)
2215 continue;
2216 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2217 continue;
2218
2219 suffix_len = spec[i].suffix_length;
2220 if (suffix_len <= 0)
2221 {
2222 if (name[prefix_len] != 0)
2223 {
2224 if (suffix_len == 0)
2225 continue;
2226 if (name[prefix_len] != '.'
2227 && (suffix_len == -2
2228 || (rela && spec[i].type == SHT_REL)))
2229 continue;
2230 }
2231 }
2232 else
2233 {
2234 if (len < prefix_len + suffix_len)
2235 continue;
2236 if (memcmp (name + len - suffix_len,
2237 spec[i].prefix + prefix_len,
2238 suffix_len) != 0)
2239 continue;
2240 }
2241 return &spec[i];
2242 }
2243
2244 return NULL;
2245 }
2246
2247 const struct bfd_elf_special_section *
2248 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2249 {
2250 int i;
2251 const struct bfd_elf_special_section *spec;
2252 const struct elf_backend_data *bed;
2253
2254 /* See if this is one of the special sections. */
2255 if (sec->name == NULL)
2256 return NULL;
2257
2258 bed = get_elf_backend_data (abfd);
2259 spec = bed->special_sections;
2260 if (spec)
2261 {
2262 spec = _bfd_elf_get_special_section (sec->name,
2263 bed->special_sections,
2264 sec->use_rela_p);
2265 if (spec != NULL)
2266 return spec;
2267 }
2268
2269 if (sec->name[0] != '.')
2270 return NULL;
2271
2272 i = sec->name[1] - 'b';
2273 if (i < 0 || i > 'z' - 'b')
2274 return NULL;
2275
2276 spec = special_sections[i];
2277
2278 if (spec == NULL)
2279 return NULL;
2280
2281 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2282 }
2283
2284 bfd_boolean
2285 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2286 {
2287 struct bfd_elf_section_data *sdata;
2288 const struct elf_backend_data *bed;
2289 const struct bfd_elf_special_section *ssect;
2290
2291 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2292 if (sdata == NULL)
2293 {
2294 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2295 sizeof (*sdata));
2296 if (sdata == NULL)
2297 return FALSE;
2298 sec->used_by_bfd = sdata;
2299 }
2300
2301 /* Indicate whether or not this section should use RELA relocations. */
2302 bed = get_elf_backend_data (abfd);
2303 sec->use_rela_p = bed->default_use_rela_p;
2304
2305 /* When we read a file, we don't need to set ELF section type and
2306 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2307 anyway. We will set ELF section type and flags for all linker
2308 created sections. If user specifies BFD section flags, we will
2309 set ELF section type and flags based on BFD section flags in
2310 elf_fake_sections. Special handling for .init_array/.fini_array
2311 output sections since they may contain .ctors/.dtors input
2312 sections. We don't want _bfd_elf_init_private_section_data to
2313 copy ELF section type from .ctors/.dtors input sections. */
2314 if (abfd->direction != read_direction
2315 || (sec->flags & SEC_LINKER_CREATED) != 0)
2316 {
2317 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2318 if (ssect != NULL
2319 && (!sec->flags
2320 || (sec->flags & SEC_LINKER_CREATED) != 0
2321 || ssect->type == SHT_INIT_ARRAY
2322 || ssect->type == SHT_FINI_ARRAY))
2323 {
2324 elf_section_type (sec) = ssect->type;
2325 elf_section_flags (sec) = ssect->attr;
2326 }
2327 }
2328
2329 return _bfd_generic_new_section_hook (abfd, sec);
2330 }
2331
2332 /* Create a new bfd section from an ELF program header.
2333
2334 Since program segments have no names, we generate a synthetic name
2335 of the form segment<NUM>, where NUM is generally the index in the
2336 program header table. For segments that are split (see below) we
2337 generate the names segment<NUM>a and segment<NUM>b.
2338
2339 Note that some program segments may have a file size that is different than
2340 (less than) the memory size. All this means is that at execution the
2341 system must allocate the amount of memory specified by the memory size,
2342 but only initialize it with the first "file size" bytes read from the
2343 file. This would occur for example, with program segments consisting
2344 of combined data+bss.
2345
2346 To handle the above situation, this routine generates TWO bfd sections
2347 for the single program segment. The first has the length specified by
2348 the file size of the segment, and the second has the length specified
2349 by the difference between the two sizes. In effect, the segment is split
2350 into its initialized and uninitialized parts.
2351
2352 */
2353
2354 bfd_boolean
2355 _bfd_elf_make_section_from_phdr (bfd *abfd,
2356 Elf_Internal_Phdr *hdr,
2357 int hdr_index,
2358 const char *type_name)
2359 {
2360 asection *newsect;
2361 char *name;
2362 char namebuf[64];
2363 size_t len;
2364 int split;
2365
2366 split = ((hdr->p_memsz > 0)
2367 && (hdr->p_filesz > 0)
2368 && (hdr->p_memsz > hdr->p_filesz));
2369
2370 if (hdr->p_filesz > 0)
2371 {
2372 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2373 len = strlen (namebuf) + 1;
2374 name = (char *) bfd_alloc (abfd, len);
2375 if (!name)
2376 return FALSE;
2377 memcpy (name, namebuf, len);
2378 newsect = bfd_make_section (abfd, name);
2379 if (newsect == NULL)
2380 return FALSE;
2381 newsect->vma = hdr->p_vaddr;
2382 newsect->lma = hdr->p_paddr;
2383 newsect->size = hdr->p_filesz;
2384 newsect->filepos = hdr->p_offset;
2385 newsect->flags |= SEC_HAS_CONTENTS;
2386 newsect->alignment_power = bfd_log2 (hdr->p_align);
2387 if (hdr->p_type == PT_LOAD)
2388 {
2389 newsect->flags |= SEC_ALLOC;
2390 newsect->flags |= SEC_LOAD;
2391 if (hdr->p_flags & PF_X)
2392 {
2393 /* FIXME: all we known is that it has execute PERMISSION,
2394 may be data. */
2395 newsect->flags |= SEC_CODE;
2396 }
2397 }
2398 if (!(hdr->p_flags & PF_W))
2399 {
2400 newsect->flags |= SEC_READONLY;
2401 }
2402 }
2403
2404 if (hdr->p_memsz > hdr->p_filesz)
2405 {
2406 bfd_vma align;
2407
2408 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2409 len = strlen (namebuf) + 1;
2410 name = (char *) bfd_alloc (abfd, len);
2411 if (!name)
2412 return FALSE;
2413 memcpy (name, namebuf, len);
2414 newsect = bfd_make_section (abfd, name);
2415 if (newsect == NULL)
2416 return FALSE;
2417 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2418 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2419 newsect->size = hdr->p_memsz - hdr->p_filesz;
2420 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2421 align = newsect->vma & -newsect->vma;
2422 if (align == 0 || align > hdr->p_align)
2423 align = hdr->p_align;
2424 newsect->alignment_power = bfd_log2 (align);
2425 if (hdr->p_type == PT_LOAD)
2426 {
2427 /* Hack for gdb. Segments that have not been modified do
2428 not have their contents written to a core file, on the
2429 assumption that a debugger can find the contents in the
2430 executable. We flag this case by setting the fake
2431 section size to zero. Note that "real" bss sections will
2432 always have their contents dumped to the core file. */
2433 if (bfd_get_format (abfd) == bfd_core)
2434 newsect->size = 0;
2435 newsect->flags |= SEC_ALLOC;
2436 if (hdr->p_flags & PF_X)
2437 newsect->flags |= SEC_CODE;
2438 }
2439 if (!(hdr->p_flags & PF_W))
2440 newsect->flags |= SEC_READONLY;
2441 }
2442
2443 return TRUE;
2444 }
2445
2446 bfd_boolean
2447 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2448 {
2449 const struct elf_backend_data *bed;
2450
2451 switch (hdr->p_type)
2452 {
2453 case PT_NULL:
2454 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2455
2456 case PT_LOAD:
2457 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2458
2459 case PT_DYNAMIC:
2460 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2461
2462 case PT_INTERP:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2464
2465 case PT_NOTE:
2466 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2467 return FALSE;
2468 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2469 return FALSE;
2470 return TRUE;
2471
2472 case PT_SHLIB:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2474
2475 case PT_PHDR:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2477
2478 case PT_GNU_EH_FRAME:
2479 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2480 "eh_frame_hdr");
2481
2482 case PT_GNU_STACK:
2483 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2484
2485 case PT_GNU_RELRO:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2487
2488 default:
2489 /* Check for any processor-specific program segment types. */
2490 bed = get_elf_backend_data (abfd);
2491 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2492 }
2493 }
2494
2495 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 REL or RELA. */
2497
2498 Elf_Internal_Shdr *
2499 _bfd_elf_single_rel_hdr (asection *sec)
2500 {
2501 if (elf_section_data (sec)->rel.hdr)
2502 {
2503 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2504 return elf_section_data (sec)->rel.hdr;
2505 }
2506 else
2507 return elf_section_data (sec)->rela.hdr;
2508 }
2509
2510 /* Allocate and initialize a section-header for a new reloc section,
2511 containing relocations against ASECT. It is stored in RELDATA. If
2512 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 relocations. */
2514
2515 bfd_boolean
2516 _bfd_elf_init_reloc_shdr (bfd *abfd,
2517 struct bfd_elf_section_reloc_data *reldata,
2518 asection *asect,
2519 bfd_boolean use_rela_p)
2520 {
2521 Elf_Internal_Shdr *rel_hdr;
2522 char *name;
2523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2524 bfd_size_type amt;
2525
2526 amt = sizeof (Elf_Internal_Shdr);
2527 BFD_ASSERT (reldata->hdr == NULL);
2528 rel_hdr = bfd_zalloc (abfd, amt);
2529 reldata->hdr = rel_hdr;
2530
2531 amt = sizeof ".rela" + strlen (asect->name);
2532 name = (char *) bfd_alloc (abfd, amt);
2533 if (name == NULL)
2534 return FALSE;
2535 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2536 rel_hdr->sh_name =
2537 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2538 FALSE);
2539 if (rel_hdr->sh_name == (unsigned int) -1)
2540 return FALSE;
2541 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2542 rel_hdr->sh_entsize = (use_rela_p
2543 ? bed->s->sizeof_rela
2544 : bed->s->sizeof_rel);
2545 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2546 rel_hdr->sh_flags = 0;
2547 rel_hdr->sh_addr = 0;
2548 rel_hdr->sh_size = 0;
2549 rel_hdr->sh_offset = 0;
2550
2551 return TRUE;
2552 }
2553
2554 /* Return the default section type based on the passed in section flags. */
2555
2556 int
2557 bfd_elf_get_default_section_type (flagword flags)
2558 {
2559 if ((flags & SEC_ALLOC) != 0
2560 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2561 return SHT_NOBITS;
2562 return SHT_PROGBITS;
2563 }
2564
2565 struct fake_section_arg
2566 {
2567 struct bfd_link_info *link_info;
2568 bfd_boolean failed;
2569 };
2570
2571 /* Set up an ELF internal section header for a section. */
2572
2573 static void
2574 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2575 {
2576 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2578 struct bfd_elf_section_data *esd = elf_section_data (asect);
2579 Elf_Internal_Shdr *this_hdr;
2580 unsigned int sh_type;
2581
2582 if (arg->failed)
2583 {
2584 /* We already failed; just get out of the bfd_map_over_sections
2585 loop. */
2586 return;
2587 }
2588
2589 this_hdr = &esd->this_hdr;
2590
2591 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2592 asect->name, FALSE);
2593 if (this_hdr->sh_name == (unsigned int) -1)
2594 {
2595 arg->failed = TRUE;
2596 return;
2597 }
2598
2599 /* Don't clear sh_flags. Assembler may set additional bits. */
2600
2601 if ((asect->flags & SEC_ALLOC) != 0
2602 || asect->user_set_vma)
2603 this_hdr->sh_addr = asect->vma;
2604 else
2605 this_hdr->sh_addr = 0;
2606
2607 this_hdr->sh_offset = 0;
2608 this_hdr->sh_size = asect->size;
2609 this_hdr->sh_link = 0;
2610 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2611 /* The sh_entsize and sh_info fields may have been set already by
2612 copy_private_section_data. */
2613
2614 this_hdr->bfd_section = asect;
2615 this_hdr->contents = NULL;
2616
2617 /* If the section type is unspecified, we set it based on
2618 asect->flags. */
2619 if ((asect->flags & SEC_GROUP) != 0)
2620 sh_type = SHT_GROUP;
2621 else
2622 sh_type = bfd_elf_get_default_section_type (asect->flags);
2623
2624 if (this_hdr->sh_type == SHT_NULL)
2625 this_hdr->sh_type = sh_type;
2626 else if (this_hdr->sh_type == SHT_NOBITS
2627 && sh_type == SHT_PROGBITS
2628 && (asect->flags & SEC_ALLOC) != 0)
2629 {
2630 /* Warn if we are changing a NOBITS section to PROGBITS, but
2631 allow the link to proceed. This can happen when users link
2632 non-bss input sections to bss output sections, or emit data
2633 to a bss output section via a linker script. */
2634 (*_bfd_error_handler)
2635 (_("warning: section `%A' type changed to PROGBITS"), asect);
2636 this_hdr->sh_type = sh_type;
2637 }
2638
2639 switch (this_hdr->sh_type)
2640 {
2641 default:
2642 break;
2643
2644 case SHT_STRTAB:
2645 case SHT_INIT_ARRAY:
2646 case SHT_FINI_ARRAY:
2647 case SHT_PREINIT_ARRAY:
2648 case SHT_NOTE:
2649 case SHT_NOBITS:
2650 case SHT_PROGBITS:
2651 break;
2652
2653 case SHT_HASH:
2654 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2655 break;
2656
2657 case SHT_DYNSYM:
2658 this_hdr->sh_entsize = bed->s->sizeof_sym;
2659 break;
2660
2661 case SHT_DYNAMIC:
2662 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2663 break;
2664
2665 case SHT_RELA:
2666 if (get_elf_backend_data (abfd)->may_use_rela_p)
2667 this_hdr->sh_entsize = bed->s->sizeof_rela;
2668 break;
2669
2670 case SHT_REL:
2671 if (get_elf_backend_data (abfd)->may_use_rel_p)
2672 this_hdr->sh_entsize = bed->s->sizeof_rel;
2673 break;
2674
2675 case SHT_GNU_versym:
2676 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2677 break;
2678
2679 case SHT_GNU_verdef:
2680 this_hdr->sh_entsize = 0;
2681 /* objcopy or strip will copy over sh_info, but may not set
2682 cverdefs. The linker will set cverdefs, but sh_info will be
2683 zero. */
2684 if (this_hdr->sh_info == 0)
2685 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2686 else
2687 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2688 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2689 break;
2690
2691 case SHT_GNU_verneed:
2692 this_hdr->sh_entsize = 0;
2693 /* objcopy or strip will copy over sh_info, but may not set
2694 cverrefs. The linker will set cverrefs, but sh_info will be
2695 zero. */
2696 if (this_hdr->sh_info == 0)
2697 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2698 else
2699 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2700 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2701 break;
2702
2703 case SHT_GROUP:
2704 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2705 break;
2706
2707 case SHT_GNU_HASH:
2708 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2709 break;
2710 }
2711
2712 if ((asect->flags & SEC_ALLOC) != 0)
2713 this_hdr->sh_flags |= SHF_ALLOC;
2714 if ((asect->flags & SEC_READONLY) == 0)
2715 this_hdr->sh_flags |= SHF_WRITE;
2716 if ((asect->flags & SEC_CODE) != 0)
2717 this_hdr->sh_flags |= SHF_EXECINSTR;
2718 if ((asect->flags & SEC_MERGE) != 0)
2719 {
2720 this_hdr->sh_flags |= SHF_MERGE;
2721 this_hdr->sh_entsize = asect->entsize;
2722 if ((asect->flags & SEC_STRINGS) != 0)
2723 this_hdr->sh_flags |= SHF_STRINGS;
2724 }
2725 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2726 this_hdr->sh_flags |= SHF_GROUP;
2727 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2728 {
2729 this_hdr->sh_flags |= SHF_TLS;
2730 if (asect->size == 0
2731 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2732 {
2733 struct bfd_link_order *o = asect->map_tail.link_order;
2734
2735 this_hdr->sh_size = 0;
2736 if (o != NULL)
2737 {
2738 this_hdr->sh_size = o->offset + o->size;
2739 if (this_hdr->sh_size != 0)
2740 this_hdr->sh_type = SHT_NOBITS;
2741 }
2742 }
2743 }
2744 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2745 this_hdr->sh_flags |= SHF_EXCLUDE;
2746
2747 /* If the section has relocs, set up a section header for the
2748 SHT_REL[A] section. If two relocation sections are required for
2749 this section, it is up to the processor-specific back-end to
2750 create the other. */
2751 if ((asect->flags & SEC_RELOC) != 0)
2752 {
2753 /* When doing a relocatable link, create both REL and RELA sections if
2754 needed. */
2755 if (arg->link_info
2756 /* Do the normal setup if we wouldn't create any sections here. */
2757 && esd->rel.count + esd->rela.count > 0
2758 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2759 {
2760 if (esd->rel.count && esd->rel.hdr == NULL
2761 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2762 {
2763 arg->failed = TRUE;
2764 return;
2765 }
2766 if (esd->rela.count && esd->rela.hdr == NULL
2767 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2768 {
2769 arg->failed = TRUE;
2770 return;
2771 }
2772 }
2773 else if (!_bfd_elf_init_reloc_shdr (abfd,
2774 (asect->use_rela_p
2775 ? &esd->rela : &esd->rel),
2776 asect,
2777 asect->use_rela_p))
2778 arg->failed = TRUE;
2779 }
2780
2781 /* Check for processor-specific section types. */
2782 sh_type = this_hdr->sh_type;
2783 if (bed->elf_backend_fake_sections
2784 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2785 arg->failed = TRUE;
2786
2787 if (sh_type == SHT_NOBITS && asect->size != 0)
2788 {
2789 /* Don't change the header type from NOBITS if we are being
2790 called for objcopy --only-keep-debug. */
2791 this_hdr->sh_type = sh_type;
2792 }
2793 }
2794
2795 /* Fill in the contents of a SHT_GROUP section. Called from
2796 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2797 when ELF targets use the generic linker, ld. Called for ld -r
2798 from bfd_elf_final_link. */
2799
2800 void
2801 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2802 {
2803 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2804 asection *elt, *first;
2805 unsigned char *loc;
2806 bfd_boolean gas;
2807
2808 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 elfxx-ia64.c. */
2810 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2811 || *failedptr)
2812 return;
2813
2814 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2815 {
2816 unsigned long symindx = 0;
2817
2818 /* elf_group_id will have been set up by objcopy and the
2819 generic linker. */
2820 if (elf_group_id (sec) != NULL)
2821 symindx = elf_group_id (sec)->udata.i;
2822
2823 if (symindx == 0)
2824 {
2825 /* If called from the assembler, swap_out_syms will have set up
2826 elf_section_syms. */
2827 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2828 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2829 }
2830 elf_section_data (sec)->this_hdr.sh_info = symindx;
2831 }
2832 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2833 {
2834 /* The ELF backend linker sets sh_info to -2 when the group
2835 signature symbol is global, and thus the index can't be
2836 set until all local symbols are output. */
2837 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2838 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2839 unsigned long symndx = sec_data->this_hdr.sh_info;
2840 unsigned long extsymoff = 0;
2841 struct elf_link_hash_entry *h;
2842
2843 if (!elf_bad_symtab (igroup->owner))
2844 {
2845 Elf_Internal_Shdr *symtab_hdr;
2846
2847 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2848 extsymoff = symtab_hdr->sh_info;
2849 }
2850 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2854
2855 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2856 }
2857
2858 /* The contents won't be allocated for "ld -r" or objcopy. */
2859 gas = TRUE;
2860 if (sec->contents == NULL)
2861 {
2862 gas = FALSE;
2863 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2864
2865 /* Arrange for the section to be written out. */
2866 elf_section_data (sec)->this_hdr.contents = sec->contents;
2867 if (sec->contents == NULL)
2868 {
2869 *failedptr = TRUE;
2870 return;
2871 }
2872 }
2873
2874 loc = sec->contents + sec->size;
2875
2876 /* Get the pointer to the first section in the group that gas
2877 squirreled away here. objcopy arranges for this to be set to the
2878 start of the input section group. */
2879 first = elt = elf_next_in_group (sec);
2880
2881 /* First element is a flag word. Rest of section is elf section
2882 indices for all the sections of the group. Write them backwards
2883 just to keep the group in the same order as given in .section
2884 directives, not that it matters. */
2885 while (elt != NULL)
2886 {
2887 asection *s;
2888
2889 s = elt;
2890 if (!gas)
2891 s = s->output_section;
2892 if (s != NULL
2893 && !bfd_is_abs_section (s))
2894 {
2895 unsigned int idx = elf_section_data (s)->this_idx;
2896
2897 loc -= 4;
2898 H_PUT_32 (abfd, idx, loc);
2899 }
2900 elt = elf_next_in_group (elt);
2901 if (elt == first)
2902 break;
2903 }
2904
2905 if ((loc -= 4) != sec->contents)
2906 abort ();
2907
2908 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2909 }
2910
2911 /* Assign all ELF section numbers. The dummy first section is handled here
2912 too. The link/info pointers for the standard section types are filled
2913 in here too, while we're at it. */
2914
2915 static bfd_boolean
2916 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2917 {
2918 struct elf_obj_tdata *t = elf_tdata (abfd);
2919 asection *sec;
2920 unsigned int section_number, secn;
2921 Elf_Internal_Shdr **i_shdrp;
2922 struct bfd_elf_section_data *d;
2923 bfd_boolean need_symtab;
2924
2925 section_number = 1;
2926
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2928
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info == NULL || link_info->relocatable)
2931 {
2932 /* Put SHT_GROUP sections first. */
2933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2934 {
2935 d = elf_section_data (sec);
2936
2937 if (d->this_hdr.sh_type == SHT_GROUP)
2938 {
2939 if (sec->flags & SEC_LINKER_CREATED)
2940 {
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd, sec);
2943 abfd->section_count--;
2944 }
2945 else
2946 d->this_idx = section_number++;
2947 }
2948 }
2949 }
2950
2951 for (sec = abfd->sections; sec; sec = sec->next)
2952 {
2953 d = elf_section_data (sec);
2954
2955 if (d->this_hdr.sh_type != SHT_GROUP)
2956 d->this_idx = section_number++;
2957 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2958 if (d->rel.hdr)
2959 {
2960 d->rel.idx = section_number++;
2961 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2962 }
2963 else
2964 d->rel.idx = 0;
2965
2966 if (d->rela.hdr)
2967 {
2968 d->rela.idx = section_number++;
2969 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2970 }
2971 else
2972 d->rela.idx = 0;
2973 }
2974
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 need_symtab = (bfd_get_symcount (abfd) > 0
2980 || (link_info == NULL
2981 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2982 == HAS_RELOC)));
2983 if (need_symtab)
2984 {
2985 t->symtab_section = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2987 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2988 {
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 t->strtab_section = section_number++;
2997 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2998 }
2999
3000 if (section_number >= SHN_LORESERVE)
3001 {
3002 _bfd_error_handler (_("%B: too many sections: %u"),
3003 abfd, section_number);
3004 return FALSE;
3005 }
3006
3007 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3008 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3009
3010 elf_numsections (abfd) = section_number;
3011 elf_elfheader (abfd)->e_shnum = section_number;
3012
3013 /* Set up the list of section header pointers, in agreement with the
3014 indices. */
3015 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3016 sizeof (Elf_Internal_Shdr *));
3017 if (i_shdrp == NULL)
3018 return FALSE;
3019
3020 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3021 sizeof (Elf_Internal_Shdr));
3022 if (i_shdrp[0] == NULL)
3023 {
3024 bfd_release (abfd, i_shdrp);
3025 return FALSE;
3026 }
3027
3028 elf_elfsections (abfd) = i_shdrp;
3029
3030 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3031 if (need_symtab)
3032 {
3033 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3034 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3035 {
3036 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3037 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3038 }
3039 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3040 t->symtab_hdr.sh_link = t->strtab_section;
3041 }
3042
3043 for (sec = abfd->sections; sec; sec = sec->next)
3044 {
3045 asection *s;
3046 const char *name;
3047
3048 d = elf_section_data (sec);
3049
3050 i_shdrp[d->this_idx] = &d->this_hdr;
3051 if (d->rel.idx != 0)
3052 i_shdrp[d->rel.idx] = d->rel.hdr;
3053 if (d->rela.idx != 0)
3054 i_shdrp[d->rela.idx] = d->rela.hdr;
3055
3056 /* Fill in the sh_link and sh_info fields while we're at it. */
3057
3058 /* sh_link of a reloc section is the section index of the symbol
3059 table. sh_info is the section index of the section to which
3060 the relocation entries apply. */
3061 if (d->rel.idx != 0)
3062 {
3063 d->rel.hdr->sh_link = t->symtab_section;
3064 d->rel.hdr->sh_info = d->this_idx;
3065 }
3066 if (d->rela.idx != 0)
3067 {
3068 d->rela.hdr->sh_link = t->symtab_section;
3069 d->rela.hdr->sh_info = d->this_idx;
3070 }
3071
3072 /* We need to set up sh_link for SHF_LINK_ORDER. */
3073 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3074 {
3075 s = elf_linked_to_section (sec);
3076 if (s)
3077 {
3078 /* elf_linked_to_section points to the input section. */
3079 if (link_info != NULL)
3080 {
3081 /* Check discarded linkonce section. */
3082 if (discarded_section (s))
3083 {
3084 asection *kept;
3085 (*_bfd_error_handler)
3086 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3087 abfd, d->this_hdr.bfd_section,
3088 s, s->owner);
3089 /* Point to the kept section if it has the same
3090 size as the discarded one. */
3091 kept = _bfd_elf_check_kept_section (s, link_info);
3092 if (kept == NULL)
3093 {
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 s = kept;
3098 }
3099
3100 s = s->output_section;
3101 BFD_ASSERT (s != NULL);
3102 }
3103 else
3104 {
3105 /* Handle objcopy. */
3106 if (s->output_section == NULL)
3107 {
3108 (*_bfd_error_handler)
3109 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3110 abfd, d->this_hdr.bfd_section, s, s->owner);
3111 bfd_set_error (bfd_error_bad_value);
3112 return FALSE;
3113 }
3114 s = s->output_section;
3115 }
3116 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3117 }
3118 else
3119 {
3120 /* PR 290:
3121 The Intel C compiler generates SHT_IA_64_UNWIND with
3122 SHF_LINK_ORDER. But it doesn't set the sh_link or
3123 sh_info fields. Hence we could get the situation
3124 where s is NULL. */
3125 const struct elf_backend_data *bed
3126 = get_elf_backend_data (abfd);
3127 if (bed->link_order_error_handler)
3128 bed->link_order_error_handler
3129 (_("%B: warning: sh_link not set for section `%A'"),
3130 abfd, sec);
3131 }
3132 }
3133
3134 switch (d->this_hdr.sh_type)
3135 {
3136 case SHT_REL:
3137 case SHT_RELA:
3138 /* A reloc section which we are treating as a normal BFD
3139 section. sh_link is the section index of the symbol
3140 table. sh_info is the section index of the section to
3141 which the relocation entries apply. We assume that an
3142 allocated reloc section uses the dynamic symbol table.
3143 FIXME: How can we be sure? */
3144 s = bfd_get_section_by_name (abfd, ".dynsym");
3145 if (s != NULL)
3146 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3147
3148 /* We look up the section the relocs apply to by name. */
3149 name = sec->name;
3150 if (d->this_hdr.sh_type == SHT_REL)
3151 name += 4;
3152 else
3153 name += 5;
3154 s = bfd_get_section_by_name (abfd, name);
3155 if (s != NULL)
3156 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3157 break;
3158
3159 case SHT_STRTAB:
3160 /* We assume that a section named .stab*str is a stabs
3161 string section. We look for a section with the same name
3162 but without the trailing ``str'', and set its sh_link
3163 field to point to this section. */
3164 if (CONST_STRNEQ (sec->name, ".stab")
3165 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3166 {
3167 size_t len;
3168 char *alc;
3169
3170 len = strlen (sec->name);
3171 alc = (char *) bfd_malloc (len - 2);
3172 if (alc == NULL)
3173 return FALSE;
3174 memcpy (alc, sec->name, len - 3);
3175 alc[len - 3] = '\0';
3176 s = bfd_get_section_by_name (abfd, alc);
3177 free (alc);
3178 if (s != NULL)
3179 {
3180 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3181
3182 /* This is a .stab section. */
3183 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3184 elf_section_data (s)->this_hdr.sh_entsize
3185 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3186 }
3187 }
3188 break;
3189
3190 case SHT_DYNAMIC:
3191 case SHT_DYNSYM:
3192 case SHT_GNU_verneed:
3193 case SHT_GNU_verdef:
3194 /* sh_link is the section header index of the string table
3195 used for the dynamic entries, or the symbol table, or the
3196 version strings. */
3197 s = bfd_get_section_by_name (abfd, ".dynstr");
3198 if (s != NULL)
3199 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_GNU_LIBLIST:
3203 /* sh_link is the section header index of the prelink library
3204 list used for the dynamic entries, or the symbol table, or
3205 the version strings. */
3206 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3207 ? ".dynstr" : ".gnu.libstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_HASH:
3213 case SHT_GNU_HASH:
3214 case SHT_GNU_versym:
3215 /* sh_link is the section header index of the symbol table
3216 this hash table or version table is for. */
3217 s = bfd_get_section_by_name (abfd, ".dynsym");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_GROUP:
3223 d->this_hdr.sh_link = t->symtab_section;
3224 }
3225 }
3226
3227 for (secn = 1; secn < section_number; ++secn)
3228 if (i_shdrp[secn] == NULL)
3229 i_shdrp[secn] = i_shdrp[0];
3230 else
3231 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3232 i_shdrp[secn]->sh_name);
3233 return TRUE;
3234 }
3235
3236 static bfd_boolean
3237 sym_is_global (bfd *abfd, asymbol *sym)
3238 {
3239 /* If the backend has a special mapping, use it. */
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 if (bed->elf_backend_sym_is_global)
3242 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3243
3244 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3245 || bfd_is_und_section (bfd_get_section (sym))
3246 || bfd_is_com_section (bfd_get_section (sym)));
3247 }
3248
3249 /* Don't output section symbols for sections that are not going to be
3250 output, that are duplicates or there is no BFD section. */
3251
3252 static bfd_boolean
3253 ignore_section_sym (bfd *abfd, asymbol *sym)
3254 {
3255 elf_symbol_type *type_ptr;
3256
3257 if ((sym->flags & BSF_SECTION_SYM) == 0)
3258 return FALSE;
3259
3260 type_ptr = elf_symbol_from (abfd, sym);
3261 return ((type_ptr != NULL
3262 && type_ptr->internal_elf_sym.st_shndx != 0
3263 && bfd_is_abs_section (sym->section))
3264 || !(sym->section->owner == abfd
3265 || (sym->section->output_section->owner == abfd
3266 && sym->section->output_offset == 0)
3267 || bfd_is_abs_section (sym->section)));
3268 }
3269
3270 /* Map symbol from it's internal number to the external number, moving
3271 all local symbols to be at the head of the list. */
3272
3273 static bfd_boolean
3274 elf_map_symbols (bfd *abfd)
3275 {
3276 unsigned int symcount = bfd_get_symcount (abfd);
3277 asymbol **syms = bfd_get_outsymbols (abfd);
3278 asymbol **sect_syms;
3279 unsigned int num_locals = 0;
3280 unsigned int num_globals = 0;
3281 unsigned int num_locals2 = 0;
3282 unsigned int num_globals2 = 0;
3283 int max_index = 0;
3284 unsigned int idx;
3285 asection *asect;
3286 asymbol **new_syms;
3287
3288 #ifdef DEBUG
3289 fprintf (stderr, "elf_map_symbols\n");
3290 fflush (stderr);
3291 #endif
3292
3293 for (asect = abfd->sections; asect; asect = asect->next)
3294 {
3295 if (max_index < asect->index)
3296 max_index = asect->index;
3297 }
3298
3299 max_index++;
3300 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3301 if (sect_syms == NULL)
3302 return FALSE;
3303 elf_section_syms (abfd) = sect_syms;
3304 elf_num_section_syms (abfd) = max_index;
3305
3306 /* Init sect_syms entries for any section symbols we have already
3307 decided to output. */
3308 for (idx = 0; idx < symcount; idx++)
3309 {
3310 asymbol *sym = syms[idx];
3311
3312 if ((sym->flags & BSF_SECTION_SYM) != 0
3313 && sym->value == 0
3314 && !ignore_section_sym (abfd, sym)
3315 && !bfd_is_abs_section (sym->section))
3316 {
3317 asection *sec = sym->section;
3318
3319 if (sec->owner != abfd)
3320 sec = sec->output_section;
3321
3322 sect_syms[sec->index] = syms[idx];
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (sym_is_global (abfd, syms[idx]))
3330 num_globals++;
3331 else if (!ignore_section_sym (abfd, syms[idx]))
3332 num_locals++;
3333 }
3334
3335 /* We will be adding a section symbol for each normal BFD section. Most
3336 sections will already have a section symbol in outsymbols, but
3337 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3338 at least in that case. */
3339 for (asect = abfd->sections; asect; asect = asect->next)
3340 {
3341 if (sect_syms[asect->index] == NULL)
3342 {
3343 if (!sym_is_global (abfd, asect->symbol))
3344 num_locals++;
3345 else
3346 num_globals++;
3347 }
3348 }
3349
3350 /* Now sort the symbols so the local symbols are first. */
3351 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3352 sizeof (asymbol *));
3353
3354 if (new_syms == NULL)
3355 return FALSE;
3356
3357 for (idx = 0; idx < symcount; idx++)
3358 {
3359 asymbol *sym = syms[idx];
3360 unsigned int i;
3361
3362 if (sym_is_global (abfd, sym))
3363 i = num_locals + num_globals2++;
3364 else if (!ignore_section_sym (abfd, sym))
3365 i = num_locals2++;
3366 else
3367 continue;
3368 new_syms[i] = sym;
3369 sym->udata.i = i + 1;
3370 }
3371 for (asect = abfd->sections; asect; asect = asect->next)
3372 {
3373 if (sect_syms[asect->index] == NULL)
3374 {
3375 asymbol *sym = asect->symbol;
3376 unsigned int i;
3377
3378 sect_syms[asect->index] = sym;
3379 if (!sym_is_global (abfd, sym))
3380 i = num_locals2++;
3381 else
3382 i = num_locals + num_globals2++;
3383 new_syms[i] = sym;
3384 sym->udata.i = i + 1;
3385 }
3386 }
3387
3388 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3389
3390 elf_num_locals (abfd) = num_locals;
3391 elf_num_globals (abfd) = num_globals;
3392 return TRUE;
3393 }
3394
3395 /* Align to the maximum file alignment that could be required for any
3396 ELF data structure. */
3397
3398 static inline file_ptr
3399 align_file_position (file_ptr off, int align)
3400 {
3401 return (off + align - 1) & ~(align - 1);
3402 }
3403
3404 /* Assign a file position to a section, optionally aligning to the
3405 required section alignment. */
3406
3407 file_ptr
3408 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3409 file_ptr offset,
3410 bfd_boolean align)
3411 {
3412 if (align && i_shdrp->sh_addralign > 1)
3413 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3414 i_shdrp->sh_offset = offset;
3415 if (i_shdrp->bfd_section != NULL)
3416 i_shdrp->bfd_section->filepos = offset;
3417 if (i_shdrp->sh_type != SHT_NOBITS)
3418 offset += i_shdrp->sh_size;
3419 return offset;
3420 }
3421
3422 /* Compute the file positions we are going to put the sections at, and
3423 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3424 is not NULL, this is being called by the ELF backend linker. */
3425
3426 bfd_boolean
3427 _bfd_elf_compute_section_file_positions (bfd *abfd,
3428 struct bfd_link_info *link_info)
3429 {
3430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3431 struct fake_section_arg fsargs;
3432 bfd_boolean failed;
3433 struct bfd_strtab_hash *strtab = NULL;
3434 Elf_Internal_Shdr *shstrtab_hdr;
3435 bfd_boolean need_symtab;
3436
3437 if (abfd->output_has_begun)
3438 return TRUE;
3439
3440 /* Do any elf backend specific processing first. */
3441 if (bed->elf_backend_begin_write_processing)
3442 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3443
3444 if (! prep_headers (abfd))
3445 return FALSE;
3446
3447 /* Post process the headers if necessary. */
3448 if (bed->elf_backend_post_process_headers)
3449 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3450
3451 fsargs.failed = FALSE;
3452 fsargs.link_info = link_info;
3453 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3454 if (fsargs.failed)
3455 return FALSE;
3456
3457 if (!assign_section_numbers (abfd, link_info))
3458 return FALSE;
3459
3460 /* The backend linker builds symbol table information itself. */
3461 need_symtab = (link_info == NULL
3462 && (bfd_get_symcount (abfd) > 0
3463 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3464 == HAS_RELOC)));
3465 if (need_symtab)
3466 {
3467 /* Non-zero if doing a relocatable link. */
3468 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3469
3470 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3471 return FALSE;
3472 }
3473
3474 failed = FALSE;
3475 if (link_info == NULL)
3476 {
3477 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3478 if (failed)
3479 return FALSE;
3480 }
3481
3482 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3483 /* sh_name was set in prep_headers. */
3484 shstrtab_hdr->sh_type = SHT_STRTAB;
3485 shstrtab_hdr->sh_flags = 0;
3486 shstrtab_hdr->sh_addr = 0;
3487 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3488 shstrtab_hdr->sh_entsize = 0;
3489 shstrtab_hdr->sh_link = 0;
3490 shstrtab_hdr->sh_info = 0;
3491 /* sh_offset is set in assign_file_positions_except_relocs. */
3492 shstrtab_hdr->sh_addralign = 1;
3493
3494 if (!assign_file_positions_except_relocs (abfd, link_info))
3495 return FALSE;
3496
3497 if (need_symtab)
3498 {
3499 file_ptr off;
3500 Elf_Internal_Shdr *hdr;
3501
3502 off = elf_tdata (abfd)->next_file_pos;
3503
3504 hdr = &elf_tdata (abfd)->symtab_hdr;
3505 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3506
3507 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3508 if (hdr->sh_size != 0)
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3510
3511 hdr = &elf_tdata (abfd)->strtab_hdr;
3512 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3513
3514 elf_tdata (abfd)->next_file_pos = off;
3515
3516 /* Now that we know where the .strtab section goes, write it
3517 out. */
3518 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3519 || ! _bfd_stringtab_emit (abfd, strtab))
3520 return FALSE;
3521 _bfd_stringtab_free (strtab);
3522 }
3523
3524 abfd->output_has_begun = TRUE;
3525
3526 return TRUE;
3527 }
3528
3529 /* Make an initial estimate of the size of the program header. If we
3530 get the number wrong here, we'll redo section placement. */
3531
3532 static bfd_size_type
3533 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 size_t segs;
3536 asection *s;
3537 const struct elf_backend_data *bed;
3538
3539 /* Assume we will need exactly two PT_LOAD segments: one for text
3540 and one for data. */
3541 segs = 2;
3542
3543 s = bfd_get_section_by_name (abfd, ".interp");
3544 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3545 {
3546 /* If we have a loadable interpreter section, we need a
3547 PT_INTERP segment. In this case, assume we also need a
3548 PT_PHDR segment, although that may not be true for all
3549 targets. */
3550 segs += 2;
3551 }
3552
3553 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3554 {
3555 /* We need a PT_DYNAMIC segment. */
3556 ++segs;
3557 }
3558
3559 if (info != NULL && info->relro)
3560 {
3561 /* We need a PT_GNU_RELRO segment. */
3562 ++segs;
3563 }
3564
3565 if (elf_tdata (abfd)->eh_frame_hdr)
3566 {
3567 /* We need a PT_GNU_EH_FRAME segment. */
3568 ++segs;
3569 }
3570
3571 if (elf_tdata (abfd)->stack_flags)
3572 {
3573 /* We need a PT_GNU_STACK segment. */
3574 ++segs;
3575 }
3576
3577 for (s = abfd->sections; s != NULL; s = s->next)
3578 {
3579 if ((s->flags & SEC_LOAD) != 0
3580 && CONST_STRNEQ (s->name, ".note"))
3581 {
3582 /* We need a PT_NOTE segment. */
3583 ++segs;
3584 /* Try to create just one PT_NOTE segment
3585 for all adjacent loadable .note* sections.
3586 gABI requires that within a PT_NOTE segment
3587 (and also inside of each SHT_NOTE section)
3588 each note is padded to a multiple of 4 size,
3589 so we check whether the sections are correctly
3590 aligned. */
3591 if (s->alignment_power == 2)
3592 while (s->next != NULL
3593 && s->next->alignment_power == 2
3594 && (s->next->flags & SEC_LOAD) != 0
3595 && CONST_STRNEQ (s->next->name, ".note"))
3596 s = s->next;
3597 }
3598 }
3599
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if (s->flags & SEC_THREAD_LOCAL)
3603 {
3604 /* We need a PT_TLS segment. */
3605 ++segs;
3606 break;
3607 }
3608 }
3609
3610 /* Let the backend count up any program headers it might need. */
3611 bed = get_elf_backend_data (abfd);
3612 if (bed->elf_backend_additional_program_headers)
3613 {
3614 int a;
3615
3616 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3617 if (a == -1)
3618 abort ();
3619 segs += a;
3620 }
3621
3622 return segs * bed->s->sizeof_phdr;
3623 }
3624
3625 /* Find the segment that contains the output_section of section. */
3626
3627 Elf_Internal_Phdr *
3628 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3629 {
3630 struct elf_segment_map *m;
3631 Elf_Internal_Phdr *p;
3632
3633 for (m = elf_tdata (abfd)->segment_map,
3634 p = elf_tdata (abfd)->phdr;
3635 m != NULL;
3636 m = m->next, p++)
3637 {
3638 int i;
3639
3640 for (i = m->count - 1; i >= 0; i--)
3641 if (m->sections[i] == section)
3642 return p;
3643 }
3644
3645 return NULL;
3646 }
3647
3648 /* Create a mapping from a set of sections to a program segment. */
3649
3650 static struct elf_segment_map *
3651 make_mapping (bfd *abfd,
3652 asection **sections,
3653 unsigned int from,
3654 unsigned int to,
3655 bfd_boolean phdr)
3656 {
3657 struct elf_segment_map *m;
3658 unsigned int i;
3659 asection **hdrpp;
3660 bfd_size_type amt;
3661
3662 amt = sizeof (struct elf_segment_map);
3663 amt += (to - from - 1) * sizeof (asection *);
3664 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 return NULL;
3667 m->next = NULL;
3668 m->p_type = PT_LOAD;
3669 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3670 m->sections[i - from] = *hdrpp;
3671 m->count = to - from;
3672
3673 if (from == 0 && phdr)
3674 {
3675 /* Include the headers in the first PT_LOAD segment. */
3676 m->includes_filehdr = 1;
3677 m->includes_phdrs = 1;
3678 }
3679
3680 return m;
3681 }
3682
3683 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3684 on failure. */
3685
3686 struct elf_segment_map *
3687 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3688 {
3689 struct elf_segment_map *m;
3690
3691 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3692 sizeof (struct elf_segment_map));
3693 if (m == NULL)
3694 return NULL;
3695 m->next = NULL;
3696 m->p_type = PT_DYNAMIC;
3697 m->count = 1;
3698 m->sections[0] = dynsec;
3699
3700 return m;
3701 }
3702
3703 /* Possibly add or remove segments from the segment map. */
3704
3705 static bfd_boolean
3706 elf_modify_segment_map (bfd *abfd,
3707 struct bfd_link_info *info,
3708 bfd_boolean remove_empty_load)
3709 {
3710 struct elf_segment_map **m;
3711 const struct elf_backend_data *bed;
3712
3713 /* The placement algorithm assumes that non allocated sections are
3714 not in PT_LOAD segments. We ensure this here by removing such
3715 sections from the segment map. We also remove excluded
3716 sections. Finally, any PT_LOAD segment without sections is
3717 removed. */
3718 m = &elf_tdata (abfd)->segment_map;
3719 while (*m)
3720 {
3721 unsigned int i, new_count;
3722
3723 for (new_count = 0, i = 0; i < (*m)->count; i++)
3724 {
3725 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3726 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3727 || (*m)->p_type != PT_LOAD))
3728 {
3729 (*m)->sections[new_count] = (*m)->sections[i];
3730 new_count++;
3731 }
3732 }
3733 (*m)->count = new_count;
3734
3735 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3736 *m = (*m)->next;
3737 else
3738 m = &(*m)->next;
3739 }
3740
3741 bed = get_elf_backend_data (abfd);
3742 if (bed->elf_backend_modify_segment_map != NULL)
3743 {
3744 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3745 return FALSE;
3746 }
3747
3748 return TRUE;
3749 }
3750
3751 /* Set up a mapping from BFD sections to program segments. */
3752
3753 bfd_boolean
3754 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3755 {
3756 unsigned int count;
3757 struct elf_segment_map *m;
3758 asection **sections = NULL;
3759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3760 bfd_boolean no_user_phdrs;
3761
3762 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3763
3764 if (info != NULL)
3765 info->user_phdrs = !no_user_phdrs;
3766
3767 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3768 {
3769 asection *s;
3770 unsigned int i;
3771 struct elf_segment_map *mfirst;
3772 struct elf_segment_map **pm;
3773 asection *last_hdr;
3774 bfd_vma last_size;
3775 unsigned int phdr_index;
3776 bfd_vma maxpagesize;
3777 asection **hdrpp;
3778 bfd_boolean phdr_in_segment = TRUE;
3779 bfd_boolean writable;
3780 int tls_count = 0;
3781 asection *first_tls = NULL;
3782 asection *dynsec, *eh_frame_hdr;
3783 bfd_size_type amt;
3784 bfd_vma addr_mask, wrap_to = 0;
3785
3786 /* Select the allocated sections, and sort them. */
3787
3788 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3789 sizeof (asection *));
3790 if (sections == NULL)
3791 goto error_return;
3792
3793 /* Calculate top address, avoiding undefined behaviour of shift
3794 left operator when shift count is equal to size of type
3795 being shifted. */
3796 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3797 addr_mask = (addr_mask << 1) + 1;
3798
3799 i = 0;
3800 for (s = abfd->sections; s != NULL; s = s->next)
3801 {
3802 if ((s->flags & SEC_ALLOC) != 0)
3803 {
3804 sections[i] = s;
3805 ++i;
3806 /* A wrapping section potentially clashes with header. */
3807 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3808 wrap_to = (s->lma + s->size) & addr_mask;
3809 }
3810 }
3811 BFD_ASSERT (i <= bfd_count_sections (abfd));
3812 count = i;
3813
3814 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3815
3816 /* Build the mapping. */
3817
3818 mfirst = NULL;
3819 pm = &mfirst;
3820
3821 /* If we have a .interp section, then create a PT_PHDR segment for
3822 the program headers and a PT_INTERP segment for the .interp
3823 section. */
3824 s = bfd_get_section_by_name (abfd, ".interp");
3825 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3826 {
3827 amt = sizeof (struct elf_segment_map);
3828 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_PHDR;
3833 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3834 m->p_flags = PF_R | PF_X;
3835 m->p_flags_valid = 1;
3836 m->includes_phdrs = 1;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 amt = sizeof (struct elf_segment_map);
3842 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3843 if (m == NULL)
3844 goto error_return;
3845 m->next = NULL;
3846 m->p_type = PT_INTERP;
3847 m->count = 1;
3848 m->sections[0] = s;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* Look through the sections. We put sections in the same program
3855 segment when the start of the second section can be placed within
3856 a few bytes of the end of the first section. */
3857 last_hdr = NULL;
3858 last_size = 0;
3859 phdr_index = 0;
3860 maxpagesize = bed->maxpagesize;
3861 writable = FALSE;
3862 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3863 if (dynsec != NULL
3864 && (dynsec->flags & SEC_LOAD) == 0)
3865 dynsec = NULL;
3866
3867 /* Deal with -Ttext or something similar such that the first section
3868 is not adjacent to the program headers. This is an
3869 approximation, since at this point we don't know exactly how many
3870 program headers we will need. */
3871 if (count > 0)
3872 {
3873 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3874
3875 if (phdr_size == (bfd_size_type) -1)
3876 phdr_size = get_program_header_size (abfd, info);
3877 if ((abfd->flags & D_PAGED) == 0
3878 || (sections[0]->lma & addr_mask) < phdr_size
3879 || ((sections[0]->lma & addr_mask) % maxpagesize
3880 < phdr_size % maxpagesize)
3881 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3882 phdr_in_segment = FALSE;
3883 }
3884
3885 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3886 {
3887 asection *hdr;
3888 bfd_boolean new_segment;
3889
3890 hdr = *hdrpp;
3891
3892 /* See if this section and the last one will fit in the same
3893 segment. */
3894
3895 if (last_hdr == NULL)
3896 {
3897 /* If we don't have a segment yet, then we don't need a new
3898 one (we build the last one after this loop). */
3899 new_segment = FALSE;
3900 }
3901 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3902 {
3903 /* If this section has a different relation between the
3904 virtual address and the load address, then we need a new
3905 segment. */
3906 new_segment = TRUE;
3907 }
3908 else if (hdr->lma < last_hdr->lma + last_size
3909 || last_hdr->lma + last_size < last_hdr->lma)
3910 {
3911 /* If this section has a load address that makes it overlap
3912 the previous section, then we need a new segment. */
3913 new_segment = TRUE;
3914 }
3915 /* In the next test we have to be careful when last_hdr->lma is close
3916 to the end of the address space. If the aligned address wraps
3917 around to the start of the address space, then there are no more
3918 pages left in memory and it is OK to assume that the current
3919 section can be included in the current segment. */
3920 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3921 > last_hdr->lma)
3922 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 <= hdr->lma))
3924 {
3925 /* If putting this section in this segment would force us to
3926 skip a page in the segment, then we need a new segment. */
3927 new_segment = TRUE;
3928 }
3929 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3930 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3931 {
3932 /* We don't want to put a loadable section after a
3933 nonloadable section in the same segment.
3934 Consider .tbss sections as loadable for this purpose. */
3935 new_segment = TRUE;
3936 }
3937 else if ((abfd->flags & D_PAGED) == 0)
3938 {
3939 /* If the file is not demand paged, which means that we
3940 don't require the sections to be correctly aligned in the
3941 file, then there is no other reason for a new segment. */
3942 new_segment = FALSE;
3943 }
3944 else if (! writable
3945 && (hdr->flags & SEC_READONLY) == 0
3946 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3947 != (hdr->lma & -maxpagesize)))
3948 {
3949 /* We don't want to put a writable section in a read only
3950 segment, unless they are on the same page in memory
3951 anyhow. We already know that the last section does not
3952 bring us past the current section on the page, so the
3953 only case in which the new section is not on the same
3954 page as the previous section is when the previous section
3955 ends precisely on a page boundary. */
3956 new_segment = TRUE;
3957 }
3958 else
3959 {
3960 /* Otherwise, we can use the same segment. */
3961 new_segment = FALSE;
3962 }
3963
3964 /* Allow interested parties a chance to override our decision. */
3965 if (last_hdr != NULL
3966 && info != NULL
3967 && info->callbacks->override_segment_assignment != NULL)
3968 new_segment
3969 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3970 last_hdr,
3971 new_segment);
3972
3973 if (! new_segment)
3974 {
3975 if ((hdr->flags & SEC_READONLY) == 0)
3976 writable = TRUE;
3977 last_hdr = hdr;
3978 /* .tbss sections effectively have zero size. */
3979 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3980 != SEC_THREAD_LOCAL)
3981 last_size = hdr->size;
3982 else
3983 last_size = 0;
3984 continue;
3985 }
3986
3987 /* We need a new program segment. We must create a new program
3988 header holding all the sections from phdr_index until hdr. */
3989
3990 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3991 if (m == NULL)
3992 goto error_return;
3993
3994 *pm = m;
3995 pm = &m->next;
3996
3997 if ((hdr->flags & SEC_READONLY) == 0)
3998 writable = TRUE;
3999 else
4000 writable = FALSE;
4001
4002 last_hdr = hdr;
4003 /* .tbss sections effectively have zero size. */
4004 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4005 last_size = hdr->size;
4006 else
4007 last_size = 0;
4008 phdr_index = i;
4009 phdr_in_segment = FALSE;
4010 }
4011
4012 /* Create a final PT_LOAD program segment, but not if it's just
4013 for .tbss. */
4014 if (last_hdr != NULL
4015 && (i - phdr_index != 1
4016 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4017 != SEC_THREAD_LOCAL)))
4018 {
4019 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4020 if (m == NULL)
4021 goto error_return;
4022
4023 *pm = m;
4024 pm = &m->next;
4025 }
4026
4027 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4028 if (dynsec != NULL)
4029 {
4030 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4031 if (m == NULL)
4032 goto error_return;
4033 *pm = m;
4034 pm = &m->next;
4035 }
4036
4037 /* For each batch of consecutive loadable .note sections,
4038 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4039 because if we link together nonloadable .note sections and
4040 loadable .note sections, we will generate two .note sections
4041 in the output file. FIXME: Using names for section types is
4042 bogus anyhow. */
4043 for (s = abfd->sections; s != NULL; s = s->next)
4044 {
4045 if ((s->flags & SEC_LOAD) != 0
4046 && CONST_STRNEQ (s->name, ".note"))
4047 {
4048 asection *s2;
4049
4050 count = 1;
4051 amt = sizeof (struct elf_segment_map);
4052 if (s->alignment_power == 2)
4053 for (s2 = s; s2->next != NULL; s2 = s2->next)
4054 {
4055 if (s2->next->alignment_power == 2
4056 && (s2->next->flags & SEC_LOAD) != 0
4057 && CONST_STRNEQ (s2->next->name, ".note")
4058 && align_power (s2->lma + s2->size, 2)
4059 == s2->next->lma)
4060 count++;
4061 else
4062 break;
4063 }
4064 amt += (count - 1) * sizeof (asection *);
4065 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4066 if (m == NULL)
4067 goto error_return;
4068 m->next = NULL;
4069 m->p_type = PT_NOTE;
4070 m->count = count;
4071 while (count > 1)
4072 {
4073 m->sections[m->count - count--] = s;
4074 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4075 s = s->next;
4076 }
4077 m->sections[m->count - 1] = s;
4078 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4079 *pm = m;
4080 pm = &m->next;
4081 }
4082 if (s->flags & SEC_THREAD_LOCAL)
4083 {
4084 if (! tls_count)
4085 first_tls = s;
4086 tls_count++;
4087 }
4088 }
4089
4090 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4091 if (tls_count > 0)
4092 {
4093 amt = sizeof (struct elf_segment_map);
4094 amt += (tls_count - 1) * sizeof (asection *);
4095 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_TLS;
4100 m->count = tls_count;
4101 /* Mandated PF_R. */
4102 m->p_flags = PF_R;
4103 m->p_flags_valid = 1;
4104 for (i = 0; i < (unsigned int) tls_count; ++i)
4105 {
4106 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4107 m->sections[i] = first_tls;
4108 first_tls = first_tls->next;
4109 }
4110
4111 *pm = m;
4112 pm = &m->next;
4113 }
4114
4115 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4116 segment. */
4117 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4118 if (eh_frame_hdr != NULL
4119 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4120 {
4121 amt = sizeof (struct elf_segment_map);
4122 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4123 if (m == NULL)
4124 goto error_return;
4125 m->next = NULL;
4126 m->p_type = PT_GNU_EH_FRAME;
4127 m->count = 1;
4128 m->sections[0] = eh_frame_hdr->output_section;
4129
4130 *pm = m;
4131 pm = &m->next;
4132 }
4133
4134 if (elf_tdata (abfd)->stack_flags)
4135 {
4136 amt = sizeof (struct elf_segment_map);
4137 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4138 if (m == NULL)
4139 goto error_return;
4140 m->next = NULL;
4141 m->p_type = PT_GNU_STACK;
4142 m->p_flags = elf_tdata (abfd)->stack_flags;
4143 m->p_flags_valid = 1;
4144
4145 *pm = m;
4146 pm = &m->next;
4147 }
4148
4149 if (info != NULL && info->relro)
4150 {
4151 for (m = mfirst; m != NULL; m = m->next)
4152 {
4153 if (m->p_type == PT_LOAD
4154 && m->count != 0
4155 && m->sections[0]->vma >= info->relro_start
4156 && m->sections[0]->vma < info->relro_end)
4157 {
4158 i = m->count;
4159 while (--i != (unsigned) -1)
4160 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4161 == (SEC_LOAD | SEC_HAS_CONTENTS))
4162 break;
4163
4164 if (i == (unsigned) -1)
4165 continue;
4166
4167 if (m->sections[i]->vma + m->sections[i]->size
4168 >= info->relro_end)
4169 break;
4170 }
4171 }
4172
4173 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4174 if (m != NULL)
4175 {
4176 amt = sizeof (struct elf_segment_map);
4177 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4178 if (m == NULL)
4179 goto error_return;
4180 m->next = NULL;
4181 m->p_type = PT_GNU_RELRO;
4182 m->p_flags = PF_R;
4183 m->p_flags_valid = 1;
4184
4185 *pm = m;
4186 pm = &m->next;
4187 }
4188 }
4189
4190 free (sections);
4191 elf_tdata (abfd)->segment_map = mfirst;
4192 }
4193
4194 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4195 return FALSE;
4196
4197 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4198 ++count;
4199 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4200
4201 return TRUE;
4202
4203 error_return:
4204 if (sections != NULL)
4205 free (sections);
4206 return FALSE;
4207 }
4208
4209 /* Sort sections by address. */
4210
4211 static int
4212 elf_sort_sections (const void *arg1, const void *arg2)
4213 {
4214 const asection *sec1 = *(const asection **) arg1;
4215 const asection *sec2 = *(const asection **) arg2;
4216 bfd_size_type size1, size2;
4217
4218 /* Sort by LMA first, since this is the address used to
4219 place the section into a segment. */
4220 if (sec1->lma < sec2->lma)
4221 return -1;
4222 else if (sec1->lma > sec2->lma)
4223 return 1;
4224
4225 /* Then sort by VMA. Normally the LMA and the VMA will be
4226 the same, and this will do nothing. */
4227 if (sec1->vma < sec2->vma)
4228 return -1;
4229 else if (sec1->vma > sec2->vma)
4230 return 1;
4231
4232 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4233
4234 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4235
4236 if (TOEND (sec1))
4237 {
4238 if (TOEND (sec2))
4239 {
4240 /* If the indicies are the same, do not return 0
4241 here, but continue to try the next comparison. */
4242 if (sec1->target_index - sec2->target_index != 0)
4243 return sec1->target_index - sec2->target_index;
4244 }
4245 else
4246 return 1;
4247 }
4248 else if (TOEND (sec2))
4249 return -1;
4250
4251 #undef TOEND
4252
4253 /* Sort by size, to put zero sized sections
4254 before others at the same address. */
4255
4256 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4257 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4258
4259 if (size1 < size2)
4260 return -1;
4261 if (size1 > size2)
4262 return 1;
4263
4264 return sec1->target_index - sec2->target_index;
4265 }
4266
4267 /* Ian Lance Taylor writes:
4268
4269 We shouldn't be using % with a negative signed number. That's just
4270 not good. We have to make sure either that the number is not
4271 negative, or that the number has an unsigned type. When the types
4272 are all the same size they wind up as unsigned. When file_ptr is a
4273 larger signed type, the arithmetic winds up as signed long long,
4274 which is wrong.
4275
4276 What we're trying to say here is something like ``increase OFF by
4277 the least amount that will cause it to be equal to the VMA modulo
4278 the page size.'' */
4279 /* In other words, something like:
4280
4281 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4282 off_offset = off % bed->maxpagesize;
4283 if (vma_offset < off_offset)
4284 adjustment = vma_offset + bed->maxpagesize - off_offset;
4285 else
4286 adjustment = vma_offset - off_offset;
4287
4288 which can can be collapsed into the expression below. */
4289
4290 static file_ptr
4291 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4292 {
4293 return ((vma - off) % maxpagesize);
4294 }
4295
4296 static void
4297 print_segment_map (const struct elf_segment_map *m)
4298 {
4299 unsigned int j;
4300 const char *pt = get_segment_type (m->p_type);
4301 char buf[32];
4302
4303 if (pt == NULL)
4304 {
4305 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4306 sprintf (buf, "LOPROC+%7.7x",
4307 (unsigned int) (m->p_type - PT_LOPROC));
4308 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4309 sprintf (buf, "LOOS+%7.7x",
4310 (unsigned int) (m->p_type - PT_LOOS));
4311 else
4312 snprintf (buf, sizeof (buf), "%8.8x",
4313 (unsigned int) m->p_type);
4314 pt = buf;
4315 }
4316 fflush (stdout);
4317 fprintf (stderr, "%s:", pt);
4318 for (j = 0; j < m->count; j++)
4319 fprintf (stderr, " %s", m->sections [j]->name);
4320 putc ('\n',stderr);
4321 fflush (stderr);
4322 }
4323
4324 static bfd_boolean
4325 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4326 {
4327 void *buf;
4328 bfd_boolean ret;
4329
4330 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4331 return FALSE;
4332 buf = bfd_zmalloc (len);
4333 if (buf == NULL)
4334 return FALSE;
4335 ret = bfd_bwrite (buf, len, abfd) == len;
4336 free (buf);
4337 return ret;
4338 }
4339
4340 /* Assign file positions to the sections based on the mapping from
4341 sections to segments. This function also sets up some fields in
4342 the file header. */
4343
4344 static bfd_boolean
4345 assign_file_positions_for_load_sections (bfd *abfd,
4346 struct bfd_link_info *link_info)
4347 {
4348 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4349 struct elf_segment_map *m;
4350 Elf_Internal_Phdr *phdrs;
4351 Elf_Internal_Phdr *p;
4352 file_ptr off;
4353 bfd_size_type maxpagesize;
4354 unsigned int alloc;
4355 unsigned int i, j;
4356 bfd_vma header_pad = 0;
4357
4358 if (link_info == NULL
4359 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4360 return FALSE;
4361
4362 alloc = 0;
4363 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4364 {
4365 ++alloc;
4366 if (m->header_size)
4367 header_pad = m->header_size;
4368 }
4369
4370 if (alloc)
4371 {
4372 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4373 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4374 }
4375 else
4376 {
4377 /* PR binutils/12467. */
4378 elf_elfheader (abfd)->e_phoff = 0;
4379 elf_elfheader (abfd)->e_phentsize = 0;
4380 }
4381
4382 elf_elfheader (abfd)->e_phnum = alloc;
4383
4384 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4385 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4386 else
4387 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4388 >= alloc * bed->s->sizeof_phdr);
4389
4390 if (alloc == 0)
4391 {
4392 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4393 return TRUE;
4394 }
4395
4396 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4397 see assign_file_positions_except_relocs, so make sure we have
4398 that amount allocated, with trailing space cleared.
4399 The variable alloc contains the computed need, while elf_tdata
4400 (abfd)->program_header_size contains the size used for the
4401 layout.
4402 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4403 where the layout is forced to according to a larger size in the
4404 last iterations for the testcase ld-elf/header. */
4405 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4406 == 0);
4407 phdrs = (Elf_Internal_Phdr *)
4408 bfd_zalloc2 (abfd,
4409 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4410 sizeof (Elf_Internal_Phdr));
4411 elf_tdata (abfd)->phdr = phdrs;
4412 if (phdrs == NULL)
4413 return FALSE;
4414
4415 maxpagesize = 1;
4416 if ((abfd->flags & D_PAGED) != 0)
4417 maxpagesize = bed->maxpagesize;
4418
4419 off = bed->s->sizeof_ehdr;
4420 off += alloc * bed->s->sizeof_phdr;
4421 if (header_pad < (bfd_vma) off)
4422 header_pad = 0;
4423 else
4424 header_pad -= off;
4425 off += header_pad;
4426
4427 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4428 m != NULL;
4429 m = m->next, p++, j++)
4430 {
4431 asection **secpp;
4432 bfd_vma off_adjust;
4433 bfd_boolean no_contents;
4434
4435 /* If elf_segment_map is not from map_sections_to_segments, the
4436 sections may not be correctly ordered. NOTE: sorting should
4437 not be done to the PT_NOTE section of a corefile, which may
4438 contain several pseudo-sections artificially created by bfd.
4439 Sorting these pseudo-sections breaks things badly. */
4440 if (m->count > 1
4441 && !(elf_elfheader (abfd)->e_type == ET_CORE
4442 && m->p_type == PT_NOTE))
4443 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4444 elf_sort_sections);
4445
4446 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4447 number of sections with contents contributing to both p_filesz
4448 and p_memsz, followed by a number of sections with no contents
4449 that just contribute to p_memsz. In this loop, OFF tracks next
4450 available file offset for PT_LOAD and PT_NOTE segments. */
4451 p->p_type = m->p_type;
4452 p->p_flags = m->p_flags;
4453
4454 if (m->count == 0)
4455 p->p_vaddr = 0;
4456 else
4457 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4458
4459 if (m->p_paddr_valid)
4460 p->p_paddr = m->p_paddr;
4461 else if (m->count == 0)
4462 p->p_paddr = 0;
4463 else
4464 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4465
4466 if (p->p_type == PT_LOAD
4467 && (abfd->flags & D_PAGED) != 0)
4468 {
4469 /* p_align in demand paged PT_LOAD segments effectively stores
4470 the maximum page size. When copying an executable with
4471 objcopy, we set m->p_align from the input file. Use this
4472 value for maxpagesize rather than bed->maxpagesize, which
4473 may be different. Note that we use maxpagesize for PT_TLS
4474 segment alignment later in this function, so we are relying
4475 on at least one PT_LOAD segment appearing before a PT_TLS
4476 segment. */
4477 if (m->p_align_valid)
4478 maxpagesize = m->p_align;
4479
4480 p->p_align = maxpagesize;
4481 }
4482 else if (m->p_align_valid)
4483 p->p_align = m->p_align;
4484 else if (m->count == 0)
4485 p->p_align = 1 << bed->s->log_file_align;
4486 else
4487 p->p_align = 0;
4488
4489 no_contents = FALSE;
4490 off_adjust = 0;
4491 if (p->p_type == PT_LOAD
4492 && m->count > 0)
4493 {
4494 bfd_size_type align;
4495 unsigned int align_power = 0;
4496
4497 if (m->p_align_valid)
4498 align = p->p_align;
4499 else
4500 {
4501 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4502 {
4503 unsigned int secalign;
4504
4505 secalign = bfd_get_section_alignment (abfd, *secpp);
4506 if (secalign > align_power)
4507 align_power = secalign;
4508 }
4509 align = (bfd_size_type) 1 << align_power;
4510 if (align < maxpagesize)
4511 align = maxpagesize;
4512 }
4513
4514 for (i = 0; i < m->count; i++)
4515 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4516 /* If we aren't making room for this section, then
4517 it must be SHT_NOBITS regardless of what we've
4518 set via struct bfd_elf_special_section. */
4519 elf_section_type (m->sections[i]) = SHT_NOBITS;
4520
4521 /* Find out whether this segment contains any loadable
4522 sections. */
4523 no_contents = TRUE;
4524 for (i = 0; i < m->count; i++)
4525 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4526 {
4527 no_contents = FALSE;
4528 break;
4529 }
4530
4531 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4532 off += off_adjust;
4533 if (no_contents)
4534 {
4535 /* We shouldn't need to align the segment on disk since
4536 the segment doesn't need file space, but the gABI
4537 arguably requires the alignment and glibc ld.so
4538 checks it. So to comply with the alignment
4539 requirement but not waste file space, we adjust
4540 p_offset for just this segment. (OFF_ADJUST is
4541 subtracted from OFF later.) This may put p_offset
4542 past the end of file, but that shouldn't matter. */
4543 }
4544 else
4545 off_adjust = 0;
4546 }
4547 /* Make sure the .dynamic section is the first section in the
4548 PT_DYNAMIC segment. */
4549 else if (p->p_type == PT_DYNAMIC
4550 && m->count > 1
4551 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4552 {
4553 _bfd_error_handler
4554 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4555 abfd);
4556 bfd_set_error (bfd_error_bad_value);
4557 return FALSE;
4558 }
4559 /* Set the note section type to SHT_NOTE. */
4560 else if (p->p_type == PT_NOTE)
4561 for (i = 0; i < m->count; i++)
4562 elf_section_type (m->sections[i]) = SHT_NOTE;
4563
4564 p->p_offset = 0;
4565 p->p_filesz = 0;
4566 p->p_memsz = 0;
4567
4568 if (m->includes_filehdr)
4569 {
4570 if (!m->p_flags_valid)
4571 p->p_flags |= PF_R;
4572 p->p_filesz = bed->s->sizeof_ehdr;
4573 p->p_memsz = bed->s->sizeof_ehdr;
4574 if (m->count > 0)
4575 {
4576 if (p->p_vaddr < (bfd_vma) off)
4577 {
4578 (*_bfd_error_handler)
4579 (_("%B: Not enough room for program headers, try linking with -N"),
4580 abfd);
4581 bfd_set_error (bfd_error_bad_value);
4582 return FALSE;
4583 }
4584
4585 p->p_vaddr -= off;
4586 if (!m->p_paddr_valid)
4587 p->p_paddr -= off;
4588 }
4589 }
4590
4591 if (m->includes_phdrs)
4592 {
4593 if (!m->p_flags_valid)
4594 p->p_flags |= PF_R;
4595
4596 if (!m->includes_filehdr)
4597 {
4598 p->p_offset = bed->s->sizeof_ehdr;
4599
4600 if (m->count > 0)
4601 {
4602 p->p_vaddr -= off - p->p_offset;
4603 if (!m->p_paddr_valid)
4604 p->p_paddr -= off - p->p_offset;
4605 }
4606 }
4607
4608 p->p_filesz += alloc * bed->s->sizeof_phdr;
4609 p->p_memsz += alloc * bed->s->sizeof_phdr;
4610 if (m->count)
4611 {
4612 p->p_filesz += header_pad;
4613 p->p_memsz += header_pad;
4614 }
4615 }
4616
4617 if (p->p_type == PT_LOAD
4618 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4619 {
4620 if (!m->includes_filehdr && !m->includes_phdrs)
4621 p->p_offset = off;
4622 else
4623 {
4624 file_ptr adjust;
4625
4626 adjust = off - (p->p_offset + p->p_filesz);
4627 if (!no_contents)
4628 p->p_filesz += adjust;
4629 p->p_memsz += adjust;
4630 }
4631 }
4632
4633 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4634 maps. Set filepos for sections in PT_LOAD segments, and in
4635 core files, for sections in PT_NOTE segments.
4636 assign_file_positions_for_non_load_sections will set filepos
4637 for other sections and update p_filesz for other segments. */
4638 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4639 {
4640 asection *sec;
4641 bfd_size_type align;
4642 Elf_Internal_Shdr *this_hdr;
4643
4644 sec = *secpp;
4645 this_hdr = &elf_section_data (sec)->this_hdr;
4646 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4647
4648 if ((p->p_type == PT_LOAD
4649 || p->p_type == PT_TLS)
4650 && (this_hdr->sh_type != SHT_NOBITS
4651 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4652 && ((this_hdr->sh_flags & SHF_TLS) == 0
4653 || p->p_type == PT_TLS))))
4654 {
4655 bfd_vma p_start = p->p_paddr;
4656 bfd_vma p_end = p_start + p->p_memsz;
4657 bfd_vma s_start = sec->lma;
4658 bfd_vma adjust = s_start - p_end;
4659
4660 if (adjust != 0
4661 && (s_start < p_end
4662 || p_end < p_start))
4663 {
4664 (*_bfd_error_handler)
4665 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4666 (unsigned long) s_start, (unsigned long) p_end);
4667 adjust = 0;
4668 sec->lma = p_end;
4669 }
4670 p->p_memsz += adjust;
4671
4672 if (this_hdr->sh_type != SHT_NOBITS)
4673 {
4674 if (p->p_filesz + adjust < p->p_memsz)
4675 {
4676 /* We have a PROGBITS section following NOBITS ones.
4677 Allocate file space for the NOBITS section(s) and
4678 zero it. */
4679 adjust = p->p_memsz - p->p_filesz;
4680 if (!write_zeros (abfd, off, adjust))
4681 return FALSE;
4682 }
4683 off += adjust;
4684 p->p_filesz += adjust;
4685 }
4686 }
4687
4688 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4689 {
4690 /* The section at i == 0 is the one that actually contains
4691 everything. */
4692 if (i == 0)
4693 {
4694 this_hdr->sh_offset = sec->filepos = off;
4695 off += this_hdr->sh_size;
4696 p->p_filesz = this_hdr->sh_size;
4697 p->p_memsz = 0;
4698 p->p_align = 1;
4699 }
4700 else
4701 {
4702 /* The rest are fake sections that shouldn't be written. */
4703 sec->filepos = 0;
4704 sec->size = 0;
4705 sec->flags = 0;
4706 continue;
4707 }
4708 }
4709 else
4710 {
4711 if (p->p_type == PT_LOAD)
4712 {
4713 this_hdr->sh_offset = sec->filepos = off;
4714 if (this_hdr->sh_type != SHT_NOBITS)
4715 off += this_hdr->sh_size;
4716 }
4717 else if (this_hdr->sh_type == SHT_NOBITS
4718 && (this_hdr->sh_flags & SHF_TLS) != 0
4719 && this_hdr->sh_offset == 0)
4720 {
4721 /* This is a .tbss section that didn't get a PT_LOAD.
4722 (See _bfd_elf_map_sections_to_segments "Create a
4723 final PT_LOAD".) Set sh_offset to the value it
4724 would have if we had created a zero p_filesz and
4725 p_memsz PT_LOAD header for the section. This
4726 also makes the PT_TLS header have the same
4727 p_offset value. */
4728 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4729 off, align);
4730 this_hdr->sh_offset = sec->filepos = off + adjust;
4731 }
4732
4733 if (this_hdr->sh_type != SHT_NOBITS)
4734 {
4735 p->p_filesz += this_hdr->sh_size;
4736 /* A load section without SHF_ALLOC is something like
4737 a note section in a PT_NOTE segment. These take
4738 file space but are not loaded into memory. */
4739 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4740 p->p_memsz += this_hdr->sh_size;
4741 }
4742 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4743 {
4744 if (p->p_type == PT_TLS)
4745 p->p_memsz += this_hdr->sh_size;
4746
4747 /* .tbss is special. It doesn't contribute to p_memsz of
4748 normal segments. */
4749 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4750 p->p_memsz += this_hdr->sh_size;
4751 }
4752
4753 if (align > p->p_align
4754 && !m->p_align_valid
4755 && (p->p_type != PT_LOAD
4756 || (abfd->flags & D_PAGED) == 0))
4757 p->p_align = align;
4758 }
4759
4760 if (!m->p_flags_valid)
4761 {
4762 p->p_flags |= PF_R;
4763 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4764 p->p_flags |= PF_X;
4765 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4766 p->p_flags |= PF_W;
4767 }
4768 }
4769 off -= off_adjust;
4770
4771 /* Check that all sections are in a PT_LOAD segment.
4772 Don't check funky gdb generated core files. */
4773 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4774 {
4775 bfd_boolean check_vma = TRUE;
4776
4777 for (i = 1; i < m->count; i++)
4778 if (m->sections[i]->vma == m->sections[i - 1]->vma
4779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4780 ->this_hdr), p) != 0
4781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4782 ->this_hdr), p) != 0)
4783 {
4784 /* Looks like we have overlays packed into the segment. */
4785 check_vma = FALSE;
4786 break;
4787 }
4788
4789 for (i = 0; i < m->count; i++)
4790 {
4791 Elf_Internal_Shdr *this_hdr;
4792 asection *sec;
4793
4794 sec = m->sections[i];
4795 this_hdr = &(elf_section_data(sec)->this_hdr);
4796 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4797 && !ELF_TBSS_SPECIAL (this_hdr, p))
4798 {
4799 (*_bfd_error_handler)
4800 (_("%B: section `%A' can't be allocated in segment %d"),
4801 abfd, sec, j);
4802 print_segment_map (m);
4803 }
4804 }
4805 }
4806 }
4807
4808 elf_tdata (abfd)->next_file_pos = off;
4809 return TRUE;
4810 }
4811
4812 /* Assign file positions for the other sections. */
4813
4814 static bfd_boolean
4815 assign_file_positions_for_non_load_sections (bfd *abfd,
4816 struct bfd_link_info *link_info)
4817 {
4818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4819 Elf_Internal_Shdr **i_shdrpp;
4820 Elf_Internal_Shdr **hdrpp;
4821 Elf_Internal_Phdr *phdrs;
4822 Elf_Internal_Phdr *p;
4823 struct elf_segment_map *m;
4824 struct elf_segment_map *hdrs_segment;
4825 bfd_vma filehdr_vaddr, filehdr_paddr;
4826 bfd_vma phdrs_vaddr, phdrs_paddr;
4827 file_ptr off;
4828 unsigned int num_sec;
4829 unsigned int i;
4830 unsigned int count;
4831
4832 i_shdrpp = elf_elfsections (abfd);
4833 num_sec = elf_numsections (abfd);
4834 off = elf_tdata (abfd)->next_file_pos;
4835 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4836 {
4837 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4838 Elf_Internal_Shdr *hdr;
4839
4840 hdr = *hdrpp;
4841 if (hdr->bfd_section != NULL
4842 && (hdr->bfd_section->filepos != 0
4843 || (hdr->sh_type == SHT_NOBITS
4844 && hdr->contents == NULL)))
4845 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4846 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4847 {
4848 if (hdr->sh_size != 0)
4849 (*_bfd_error_handler)
4850 (_("%B: warning: allocated section `%s' not in segment"),
4851 abfd,
4852 (hdr->bfd_section == NULL
4853 ? "*unknown*"
4854 : hdr->bfd_section->name));
4855 /* We don't need to page align empty sections. */
4856 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4857 off += vma_page_aligned_bias (hdr->sh_addr, off,
4858 bed->maxpagesize);
4859 else
4860 off += vma_page_aligned_bias (hdr->sh_addr, off,
4861 hdr->sh_addralign);
4862 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4863 FALSE);
4864 }
4865 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4866 && hdr->bfd_section == NULL)
4867 || hdr == i_shdrpp[tdata->symtab_section]
4868 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4869 || hdr == i_shdrpp[tdata->strtab_section])
4870 hdr->sh_offset = -1;
4871 else
4872 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4873 }
4874
4875 /* Now that we have set the section file positions, we can set up
4876 the file positions for the non PT_LOAD segments. */
4877 count = 0;
4878 filehdr_vaddr = 0;
4879 filehdr_paddr = 0;
4880 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4881 phdrs_paddr = 0;
4882 hdrs_segment = NULL;
4883 phdrs = elf_tdata (abfd)->phdr;
4884 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4885 m != NULL;
4886 m = m->next, p++)
4887 {
4888 ++count;
4889 if (p->p_type != PT_LOAD)
4890 continue;
4891
4892 if (m->includes_filehdr)
4893 {
4894 filehdr_vaddr = p->p_vaddr;
4895 filehdr_paddr = p->p_paddr;
4896 }
4897 if (m->includes_phdrs)
4898 {
4899 phdrs_vaddr = p->p_vaddr;
4900 phdrs_paddr = p->p_paddr;
4901 if (m->includes_filehdr)
4902 {
4903 hdrs_segment = m;
4904 phdrs_vaddr += bed->s->sizeof_ehdr;
4905 phdrs_paddr += bed->s->sizeof_ehdr;
4906 }
4907 }
4908 }
4909
4910 if (hdrs_segment != NULL && link_info != NULL)
4911 {
4912 /* There is a segment that contains both the file headers and the
4913 program headers, so provide a symbol __ehdr_start pointing there.
4914 A program can use this to examine itself robustly. */
4915
4916 struct elf_link_hash_entry *hash
4917 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4918 FALSE, FALSE, TRUE);
4919 /* If the symbol was referenced and not defined, define it. */
4920 if (hash != NULL
4921 && (hash->root.type == bfd_link_hash_new
4922 || hash->root.type == bfd_link_hash_undefined
4923 || hash->root.type == bfd_link_hash_undefweak
4924 || hash->root.type == bfd_link_hash_common))
4925 {
4926 asection *s = NULL;
4927 if (hdrs_segment->count != 0)
4928 /* The segment contains sections, so use the first one. */
4929 s = hdrs_segment->sections[0];
4930 else
4931 /* Use the first (i.e. lowest-addressed) section in any segment. */
4932 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4933 if (m->count != 0)
4934 {
4935 s = m->sections[0];
4936 break;
4937 }
4938
4939 if (s != NULL)
4940 {
4941 hash->root.u.def.value = filehdr_vaddr - s->vma;
4942 hash->root.u.def.section = s;
4943 }
4944 else
4945 {
4946 hash->root.u.def.value = filehdr_vaddr;
4947 hash->root.u.def.section = bfd_abs_section_ptr;
4948 }
4949
4950 hash->root.type = bfd_link_hash_defined;
4951 hash->def_regular = 1;
4952 hash->non_elf = 0;
4953 }
4954 }
4955
4956 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4957 m != NULL;
4958 m = m->next, p++)
4959 {
4960 if (p->p_type == PT_GNU_RELRO)
4961 {
4962 const Elf_Internal_Phdr *lp;
4963 struct elf_segment_map *lm;
4964
4965 if (link_info != NULL)
4966 {
4967 /* During linking the range of the RELRO segment is passed
4968 in link_info. */
4969 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4970 lm != NULL;
4971 lm = lm->next, lp++)
4972 {
4973 if (lp->p_type == PT_LOAD
4974 && lp->p_vaddr < link_info->relro_end
4975 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4976 && lm->count != 0
4977 && lm->sections[0]->vma >= link_info->relro_start)
4978 break;
4979 }
4980
4981 /* PR ld/14207. If the RELRO segment doesn't fit in the
4982 LOAD segment, it should be removed. */
4983 BFD_ASSERT (lm != NULL);
4984 }
4985 else
4986 {
4987 /* Otherwise we are copying an executable or shared
4988 library, but we need to use the same linker logic. */
4989 for (lp = phdrs; lp < phdrs + count; ++lp)
4990 {
4991 if (lp->p_type == PT_LOAD
4992 && lp->p_paddr == p->p_paddr)
4993 break;
4994 }
4995 }
4996
4997 if (lp < phdrs + count)
4998 {
4999 p->p_vaddr = lp->p_vaddr;
5000 p->p_paddr = lp->p_paddr;
5001 p->p_offset = lp->p_offset;
5002 if (link_info != NULL)
5003 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5004 else if (m->p_size_valid)
5005 p->p_filesz = m->p_size;
5006 else
5007 abort ();
5008 p->p_memsz = p->p_filesz;
5009 /* Preserve the alignment and flags if they are valid. The
5010 gold linker generates RW/4 for the PT_GNU_RELRO section.
5011 It is better for objcopy/strip to honor these attributes
5012 otherwise gdb will choke when using separate debug files.
5013 */
5014 if (!m->p_align_valid)
5015 p->p_align = 1;
5016 if (!m->p_flags_valid)
5017 p->p_flags = (lp->p_flags & ~PF_W);
5018 }
5019 else
5020 {
5021 memset (p, 0, sizeof *p);
5022 p->p_type = PT_NULL;
5023 }
5024 }
5025 else if (m->count != 0)
5026 {
5027 if (p->p_type != PT_LOAD
5028 && (p->p_type != PT_NOTE
5029 || bfd_get_format (abfd) != bfd_core))
5030 {
5031 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5032
5033 p->p_filesz = 0;
5034 p->p_offset = m->sections[0]->filepos;
5035 for (i = m->count; i-- != 0;)
5036 {
5037 asection *sect = m->sections[i];
5038 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5039 if (hdr->sh_type != SHT_NOBITS)
5040 {
5041 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5042 + hdr->sh_size);
5043 break;
5044 }
5045 }
5046 }
5047 }
5048 else if (m->includes_filehdr)
5049 {
5050 p->p_vaddr = filehdr_vaddr;
5051 if (! m->p_paddr_valid)
5052 p->p_paddr = filehdr_paddr;
5053 }
5054 else if (m->includes_phdrs)
5055 {
5056 p->p_vaddr = phdrs_vaddr;
5057 if (! m->p_paddr_valid)
5058 p->p_paddr = phdrs_paddr;
5059 }
5060 }
5061
5062 elf_tdata (abfd)->next_file_pos = off;
5063
5064 return TRUE;
5065 }
5066
5067 /* Work out the file positions of all the sections. This is called by
5068 _bfd_elf_compute_section_file_positions. All the section sizes and
5069 VMAs must be known before this is called.
5070
5071 Reloc sections come in two flavours: Those processed specially as
5072 "side-channel" data attached to a section to which they apply, and
5073 those that bfd doesn't process as relocations. The latter sort are
5074 stored in a normal bfd section by bfd_section_from_shdr. We don't
5075 consider the former sort here, unless they form part of the loadable
5076 image. Reloc sections not assigned here will be handled later by
5077 assign_file_positions_for_relocs.
5078
5079 We also don't set the positions of the .symtab and .strtab here. */
5080
5081 static bfd_boolean
5082 assign_file_positions_except_relocs (bfd *abfd,
5083 struct bfd_link_info *link_info)
5084 {
5085 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5086 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5087 file_ptr off;
5088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5089
5090 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5091 && bfd_get_format (abfd) != bfd_core)
5092 {
5093 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5094 unsigned int num_sec = elf_numsections (abfd);
5095 Elf_Internal_Shdr **hdrpp;
5096 unsigned int i;
5097
5098 /* Start after the ELF header. */
5099 off = i_ehdrp->e_ehsize;
5100
5101 /* We are not creating an executable, which means that we are
5102 not creating a program header, and that the actual order of
5103 the sections in the file is unimportant. */
5104 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5105 {
5106 Elf_Internal_Shdr *hdr;
5107
5108 hdr = *hdrpp;
5109 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5110 && hdr->bfd_section == NULL)
5111 || i == tdata->symtab_section
5112 || i == tdata->symtab_shndx_section
5113 || i == tdata->strtab_section)
5114 {
5115 hdr->sh_offset = -1;
5116 }
5117 else
5118 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5119 }
5120 }
5121 else
5122 {
5123 unsigned int alloc;
5124
5125 /* Assign file positions for the loaded sections based on the
5126 assignment of sections to segments. */
5127 if (!assign_file_positions_for_load_sections (abfd, link_info))
5128 return FALSE;
5129
5130 /* And for non-load sections. */
5131 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5132 return FALSE;
5133
5134 if (bed->elf_backend_modify_program_headers != NULL)
5135 {
5136 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5137 return FALSE;
5138 }
5139
5140 /* Write out the program headers. */
5141 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5142 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5143 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5144 return FALSE;
5145
5146 off = tdata->next_file_pos;
5147 }
5148
5149 /* Place the section headers. */
5150 off = align_file_position (off, 1 << bed->s->log_file_align);
5151 i_ehdrp->e_shoff = off;
5152 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5153
5154 tdata->next_file_pos = off;
5155
5156 return TRUE;
5157 }
5158
5159 static bfd_boolean
5160 prep_headers (bfd *abfd)
5161 {
5162 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5163 struct elf_strtab_hash *shstrtab;
5164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5165
5166 i_ehdrp = elf_elfheader (abfd);
5167
5168 shstrtab = _bfd_elf_strtab_init ();
5169 if (shstrtab == NULL)
5170 return FALSE;
5171
5172 elf_shstrtab (abfd) = shstrtab;
5173
5174 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5175 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5176 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5177 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5178
5179 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5180 i_ehdrp->e_ident[EI_DATA] =
5181 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5182 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5183
5184 if ((abfd->flags & DYNAMIC) != 0)
5185 i_ehdrp->e_type = ET_DYN;
5186 else if ((abfd->flags & EXEC_P) != 0)
5187 i_ehdrp->e_type = ET_EXEC;
5188 else if (bfd_get_format (abfd) == bfd_core)
5189 i_ehdrp->e_type = ET_CORE;
5190 else
5191 i_ehdrp->e_type = ET_REL;
5192
5193 switch (bfd_get_arch (abfd))
5194 {
5195 case bfd_arch_unknown:
5196 i_ehdrp->e_machine = EM_NONE;
5197 break;
5198
5199 /* There used to be a long list of cases here, each one setting
5200 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5201 in the corresponding bfd definition. To avoid duplication,
5202 the switch was removed. Machines that need special handling
5203 can generally do it in elf_backend_final_write_processing(),
5204 unless they need the information earlier than the final write.
5205 Such need can generally be supplied by replacing the tests for
5206 e_machine with the conditions used to determine it. */
5207 default:
5208 i_ehdrp->e_machine = bed->elf_machine_code;
5209 }
5210
5211 i_ehdrp->e_version = bed->s->ev_current;
5212 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5213
5214 /* No program header, for now. */
5215 i_ehdrp->e_phoff = 0;
5216 i_ehdrp->e_phentsize = 0;
5217 i_ehdrp->e_phnum = 0;
5218
5219 /* Each bfd section is section header entry. */
5220 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5221 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5222
5223 /* If we're building an executable, we'll need a program header table. */
5224 if (abfd->flags & EXEC_P)
5225 /* It all happens later. */
5226 ;
5227 else
5228 {
5229 i_ehdrp->e_phentsize = 0;
5230 i_ehdrp->e_phoff = 0;
5231 }
5232
5233 elf_tdata (abfd)->symtab_hdr.sh_name =
5234 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5235 elf_tdata (abfd)->strtab_hdr.sh_name =
5236 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5237 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5238 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5239 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5240 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5241 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5242 return FALSE;
5243
5244 return TRUE;
5245 }
5246
5247 /* Assign file positions for all the reloc sections which are not part
5248 of the loadable file image. */
5249
5250 void
5251 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5252 {
5253 file_ptr off;
5254 unsigned int i, num_sec;
5255 Elf_Internal_Shdr **shdrpp;
5256
5257 off = elf_tdata (abfd)->next_file_pos;
5258
5259 num_sec = elf_numsections (abfd);
5260 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5261 {
5262 Elf_Internal_Shdr *shdrp;
5263
5264 shdrp = *shdrpp;
5265 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5266 && shdrp->sh_offset == -1)
5267 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5268 }
5269
5270 elf_tdata (abfd)->next_file_pos = off;
5271 }
5272
5273 bfd_boolean
5274 _bfd_elf_write_object_contents (bfd *abfd)
5275 {
5276 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5277 Elf_Internal_Shdr **i_shdrp;
5278 bfd_boolean failed;
5279 unsigned int count, num_sec;
5280
5281 if (! abfd->output_has_begun
5282 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5283 return FALSE;
5284
5285 i_shdrp = elf_elfsections (abfd);
5286
5287 failed = FALSE;
5288 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5289 if (failed)
5290 return FALSE;
5291
5292 _bfd_elf_assign_file_positions_for_relocs (abfd);
5293
5294 /* After writing the headers, we need to write the sections too... */
5295 num_sec = elf_numsections (abfd);
5296 for (count = 1; count < num_sec; count++)
5297 {
5298 if (bed->elf_backend_section_processing)
5299 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5300 if (i_shdrp[count]->contents)
5301 {
5302 bfd_size_type amt = i_shdrp[count]->sh_size;
5303
5304 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5305 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5306 return FALSE;
5307 }
5308 }
5309
5310 /* Write out the section header names. */
5311 if (elf_shstrtab (abfd) != NULL
5312 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5313 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5314 return FALSE;
5315
5316 if (bed->elf_backend_final_write_processing)
5317 (*bed->elf_backend_final_write_processing) (abfd,
5318 elf_tdata (abfd)->linker);
5319
5320 if (!bed->s->write_shdrs_and_ehdr (abfd))
5321 return FALSE;
5322
5323 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5324 if (elf_tdata (abfd)->after_write_object_contents)
5325 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5326
5327 return TRUE;
5328 }
5329
5330 bfd_boolean
5331 _bfd_elf_write_corefile_contents (bfd *abfd)
5332 {
5333 /* Hopefully this can be done just like an object file. */
5334 return _bfd_elf_write_object_contents (abfd);
5335 }
5336
5337 /* Given a section, search the header to find them. */
5338
5339 unsigned int
5340 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5341 {
5342 const struct elf_backend_data *bed;
5343 unsigned int sec_index;
5344
5345 if (elf_section_data (asect) != NULL
5346 && elf_section_data (asect)->this_idx != 0)
5347 return elf_section_data (asect)->this_idx;
5348
5349 if (bfd_is_abs_section (asect))
5350 sec_index = SHN_ABS;
5351 else if (bfd_is_com_section (asect))
5352 sec_index = SHN_COMMON;
5353 else if (bfd_is_und_section (asect))
5354 sec_index = SHN_UNDEF;
5355 else
5356 sec_index = SHN_BAD;
5357
5358 bed = get_elf_backend_data (abfd);
5359 if (bed->elf_backend_section_from_bfd_section)
5360 {
5361 int retval = sec_index;
5362
5363 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5364 return retval;
5365 }
5366
5367 if (sec_index == SHN_BAD)
5368 bfd_set_error (bfd_error_nonrepresentable_section);
5369
5370 return sec_index;
5371 }
5372
5373 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5374 on error. */
5375
5376 int
5377 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5378 {
5379 asymbol *asym_ptr = *asym_ptr_ptr;
5380 int idx;
5381 flagword flags = asym_ptr->flags;
5382
5383 /* When gas creates relocations against local labels, it creates its
5384 own symbol for the section, but does put the symbol into the
5385 symbol chain, so udata is 0. When the linker is generating
5386 relocatable output, this section symbol may be for one of the
5387 input sections rather than the output section. */
5388 if (asym_ptr->udata.i == 0
5389 && (flags & BSF_SECTION_SYM)
5390 && asym_ptr->section)
5391 {
5392 asection *sec;
5393 int indx;
5394
5395 sec = asym_ptr->section;
5396 if (sec->owner != abfd && sec->output_section != NULL)
5397 sec = sec->output_section;
5398 if (sec->owner == abfd
5399 && (indx = sec->index) < elf_num_section_syms (abfd)
5400 && elf_section_syms (abfd)[indx] != NULL)
5401 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5402 }
5403
5404 idx = asym_ptr->udata.i;
5405
5406 if (idx == 0)
5407 {
5408 /* This case can occur when using --strip-symbol on a symbol
5409 which is used in a relocation entry. */
5410 (*_bfd_error_handler)
5411 (_("%B: symbol `%s' required but not present"),
5412 abfd, bfd_asymbol_name (asym_ptr));
5413 bfd_set_error (bfd_error_no_symbols);
5414 return -1;
5415 }
5416
5417 #if DEBUG & 4
5418 {
5419 fprintf (stderr,
5420 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5421 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5422 fflush (stderr);
5423 }
5424 #endif
5425
5426 return idx;
5427 }
5428
5429 /* Rewrite program header information. */
5430
5431 static bfd_boolean
5432 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5433 {
5434 Elf_Internal_Ehdr *iehdr;
5435 struct elf_segment_map *map;
5436 struct elf_segment_map *map_first;
5437 struct elf_segment_map **pointer_to_map;
5438 Elf_Internal_Phdr *segment;
5439 asection *section;
5440 unsigned int i;
5441 unsigned int num_segments;
5442 bfd_boolean phdr_included = FALSE;
5443 bfd_boolean p_paddr_valid;
5444 bfd_vma maxpagesize;
5445 struct elf_segment_map *phdr_adjust_seg = NULL;
5446 unsigned int phdr_adjust_num = 0;
5447 const struct elf_backend_data *bed;
5448
5449 bed = get_elf_backend_data (ibfd);
5450 iehdr = elf_elfheader (ibfd);
5451
5452 map_first = NULL;
5453 pointer_to_map = &map_first;
5454
5455 num_segments = elf_elfheader (ibfd)->e_phnum;
5456 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5457
5458 /* Returns the end address of the segment + 1. */
5459 #define SEGMENT_END(segment, start) \
5460 (start + (segment->p_memsz > segment->p_filesz \
5461 ? segment->p_memsz : segment->p_filesz))
5462
5463 #define SECTION_SIZE(section, segment) \
5464 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5465 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5466 ? section->size : 0)
5467
5468 /* Returns TRUE if the given section is contained within
5469 the given segment. VMA addresses are compared. */
5470 #define IS_CONTAINED_BY_VMA(section, segment) \
5471 (section->vma >= segment->p_vaddr \
5472 && (section->vma + SECTION_SIZE (section, segment) \
5473 <= (SEGMENT_END (segment, segment->p_vaddr))))
5474
5475 /* Returns TRUE if the given section is contained within
5476 the given segment. LMA addresses are compared. */
5477 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5478 (section->lma >= base \
5479 && (section->lma + SECTION_SIZE (section, segment) \
5480 <= SEGMENT_END (segment, base)))
5481
5482 /* Handle PT_NOTE segment. */
5483 #define IS_NOTE(p, s) \
5484 (p->p_type == PT_NOTE \
5485 && elf_section_type (s) == SHT_NOTE \
5486 && (bfd_vma) s->filepos >= p->p_offset \
5487 && ((bfd_vma) s->filepos + s->size \
5488 <= p->p_offset + p->p_filesz))
5489
5490 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5491 etc. */
5492 #define IS_COREFILE_NOTE(p, s) \
5493 (IS_NOTE (p, s) \
5494 && bfd_get_format (ibfd) == bfd_core \
5495 && s->vma == 0 \
5496 && s->lma == 0)
5497
5498 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5499 linker, which generates a PT_INTERP section with p_vaddr and
5500 p_memsz set to 0. */
5501 #define IS_SOLARIS_PT_INTERP(p, s) \
5502 (p->p_vaddr == 0 \
5503 && p->p_paddr == 0 \
5504 && p->p_memsz == 0 \
5505 && p->p_filesz > 0 \
5506 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5507 && s->size > 0 \
5508 && (bfd_vma) s->filepos >= p->p_offset \
5509 && ((bfd_vma) s->filepos + s->size \
5510 <= p->p_offset + p->p_filesz))
5511
5512 /* Decide if the given section should be included in the given segment.
5513 A section will be included if:
5514 1. It is within the address space of the segment -- we use the LMA
5515 if that is set for the segment and the VMA otherwise,
5516 2. It is an allocated section or a NOTE section in a PT_NOTE
5517 segment.
5518 3. There is an output section associated with it,
5519 4. The section has not already been allocated to a previous segment.
5520 5. PT_GNU_STACK segments do not include any sections.
5521 6. PT_TLS segment includes only SHF_TLS sections.
5522 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5523 8. PT_DYNAMIC should not contain empty sections at the beginning
5524 (with the possible exception of .dynamic). */
5525 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5526 ((((segment->p_paddr \
5527 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5528 : IS_CONTAINED_BY_VMA (section, segment)) \
5529 && (section->flags & SEC_ALLOC) != 0) \
5530 || IS_NOTE (segment, section)) \
5531 && segment->p_type != PT_GNU_STACK \
5532 && (segment->p_type != PT_TLS \
5533 || (section->flags & SEC_THREAD_LOCAL)) \
5534 && (segment->p_type == PT_LOAD \
5535 || segment->p_type == PT_TLS \
5536 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5537 && (segment->p_type != PT_DYNAMIC \
5538 || SECTION_SIZE (section, segment) > 0 \
5539 || (segment->p_paddr \
5540 ? segment->p_paddr != section->lma \
5541 : segment->p_vaddr != section->vma) \
5542 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5543 == 0)) \
5544 && !section->segment_mark)
5545
5546 /* If the output section of a section in the input segment is NULL,
5547 it is removed from the corresponding output segment. */
5548 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5549 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5550 && section->output_section != NULL)
5551
5552 /* Returns TRUE iff seg1 starts after the end of seg2. */
5553 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5554 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5555
5556 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5557 their VMA address ranges and their LMA address ranges overlap.
5558 It is possible to have overlapping VMA ranges without overlapping LMA
5559 ranges. RedBoot images for example can have both .data and .bss mapped
5560 to the same VMA range, but with the .data section mapped to a different
5561 LMA. */
5562 #define SEGMENT_OVERLAPS(seg1, seg2) \
5563 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5564 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5565 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5566 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5567
5568 /* Initialise the segment mark field. */
5569 for (section = ibfd->sections; section != NULL; section = section->next)
5570 section->segment_mark = FALSE;
5571
5572 /* The Solaris linker creates program headers in which all the
5573 p_paddr fields are zero. When we try to objcopy or strip such a
5574 file, we get confused. Check for this case, and if we find it
5575 don't set the p_paddr_valid fields. */
5576 p_paddr_valid = FALSE;
5577 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5578 i < num_segments;
5579 i++, segment++)
5580 if (segment->p_paddr != 0)
5581 {
5582 p_paddr_valid = TRUE;
5583 break;
5584 }
5585
5586 /* Scan through the segments specified in the program header
5587 of the input BFD. For this first scan we look for overlaps
5588 in the loadable segments. These can be created by weird
5589 parameters to objcopy. Also, fix some solaris weirdness. */
5590 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5591 i < num_segments;
5592 i++, segment++)
5593 {
5594 unsigned int j;
5595 Elf_Internal_Phdr *segment2;
5596
5597 if (segment->p_type == PT_INTERP)
5598 for (section = ibfd->sections; section; section = section->next)
5599 if (IS_SOLARIS_PT_INTERP (segment, section))
5600 {
5601 /* Mininal change so that the normal section to segment
5602 assignment code will work. */
5603 segment->p_vaddr = section->vma;
5604 break;
5605 }
5606
5607 if (segment->p_type != PT_LOAD)
5608 {
5609 /* Remove PT_GNU_RELRO segment. */
5610 if (segment->p_type == PT_GNU_RELRO)
5611 segment->p_type = PT_NULL;
5612 continue;
5613 }
5614
5615 /* Determine if this segment overlaps any previous segments. */
5616 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5617 {
5618 bfd_signed_vma extra_length;
5619
5620 if (segment2->p_type != PT_LOAD
5621 || !SEGMENT_OVERLAPS (segment, segment2))
5622 continue;
5623
5624 /* Merge the two segments together. */
5625 if (segment2->p_vaddr < segment->p_vaddr)
5626 {
5627 /* Extend SEGMENT2 to include SEGMENT and then delete
5628 SEGMENT. */
5629 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5630 - SEGMENT_END (segment2, segment2->p_vaddr));
5631
5632 if (extra_length > 0)
5633 {
5634 segment2->p_memsz += extra_length;
5635 segment2->p_filesz += extra_length;
5636 }
5637
5638 segment->p_type = PT_NULL;
5639
5640 /* Since we have deleted P we must restart the outer loop. */
5641 i = 0;
5642 segment = elf_tdata (ibfd)->phdr;
5643 break;
5644 }
5645 else
5646 {
5647 /* Extend SEGMENT to include SEGMENT2 and then delete
5648 SEGMENT2. */
5649 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5650 - SEGMENT_END (segment, segment->p_vaddr));
5651
5652 if (extra_length > 0)
5653 {
5654 segment->p_memsz += extra_length;
5655 segment->p_filesz += extra_length;
5656 }
5657
5658 segment2->p_type = PT_NULL;
5659 }
5660 }
5661 }
5662
5663 /* The second scan attempts to assign sections to segments. */
5664 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5665 i < num_segments;
5666 i++, segment++)
5667 {
5668 unsigned int section_count;
5669 asection **sections;
5670 asection *output_section;
5671 unsigned int isec;
5672 bfd_vma matching_lma;
5673 bfd_vma suggested_lma;
5674 unsigned int j;
5675 bfd_size_type amt;
5676 asection *first_section;
5677 bfd_boolean first_matching_lma;
5678 bfd_boolean first_suggested_lma;
5679
5680 if (segment->p_type == PT_NULL)
5681 continue;
5682
5683 first_section = NULL;
5684 /* Compute how many sections might be placed into this segment. */
5685 for (section = ibfd->sections, section_count = 0;
5686 section != NULL;
5687 section = section->next)
5688 {
5689 /* Find the first section in the input segment, which may be
5690 removed from the corresponding output segment. */
5691 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5692 {
5693 if (first_section == NULL)
5694 first_section = section;
5695 if (section->output_section != NULL)
5696 ++section_count;
5697 }
5698 }
5699
5700 /* Allocate a segment map big enough to contain
5701 all of the sections we have selected. */
5702 amt = sizeof (struct elf_segment_map);
5703 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5704 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5705 if (map == NULL)
5706 return FALSE;
5707
5708 /* Initialise the fields of the segment map. Default to
5709 using the physical address of the segment in the input BFD. */
5710 map->next = NULL;
5711 map->p_type = segment->p_type;
5712 map->p_flags = segment->p_flags;
5713 map->p_flags_valid = 1;
5714
5715 /* If the first section in the input segment is removed, there is
5716 no need to preserve segment physical address in the corresponding
5717 output segment. */
5718 if (!first_section || first_section->output_section != NULL)
5719 {
5720 map->p_paddr = segment->p_paddr;
5721 map->p_paddr_valid = p_paddr_valid;
5722 }
5723
5724 /* Determine if this segment contains the ELF file header
5725 and if it contains the program headers themselves. */
5726 map->includes_filehdr = (segment->p_offset == 0
5727 && segment->p_filesz >= iehdr->e_ehsize);
5728 map->includes_phdrs = 0;
5729
5730 if (!phdr_included || segment->p_type != PT_LOAD)
5731 {
5732 map->includes_phdrs =
5733 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5734 && (segment->p_offset + segment->p_filesz
5735 >= ((bfd_vma) iehdr->e_phoff
5736 + iehdr->e_phnum * iehdr->e_phentsize)));
5737
5738 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5739 phdr_included = TRUE;
5740 }
5741
5742 if (section_count == 0)
5743 {
5744 /* Special segments, such as the PT_PHDR segment, may contain
5745 no sections, but ordinary, loadable segments should contain
5746 something. They are allowed by the ELF spec however, so only
5747 a warning is produced. */
5748 if (segment->p_type == PT_LOAD)
5749 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5750 " detected, is this intentional ?\n"),
5751 ibfd);
5752
5753 map->count = 0;
5754 *pointer_to_map = map;
5755 pointer_to_map = &map->next;
5756
5757 continue;
5758 }
5759
5760 /* Now scan the sections in the input BFD again and attempt
5761 to add their corresponding output sections to the segment map.
5762 The problem here is how to handle an output section which has
5763 been moved (ie had its LMA changed). There are four possibilities:
5764
5765 1. None of the sections have been moved.
5766 In this case we can continue to use the segment LMA from the
5767 input BFD.
5768
5769 2. All of the sections have been moved by the same amount.
5770 In this case we can change the segment's LMA to match the LMA
5771 of the first section.
5772
5773 3. Some of the sections have been moved, others have not.
5774 In this case those sections which have not been moved can be
5775 placed in the current segment which will have to have its size,
5776 and possibly its LMA changed, and a new segment or segments will
5777 have to be created to contain the other sections.
5778
5779 4. The sections have been moved, but not by the same amount.
5780 In this case we can change the segment's LMA to match the LMA
5781 of the first section and we will have to create a new segment
5782 or segments to contain the other sections.
5783
5784 In order to save time, we allocate an array to hold the section
5785 pointers that we are interested in. As these sections get assigned
5786 to a segment, they are removed from this array. */
5787
5788 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5789 if (sections == NULL)
5790 return FALSE;
5791
5792 /* Step One: Scan for segment vs section LMA conflicts.
5793 Also add the sections to the section array allocated above.
5794 Also add the sections to the current segment. In the common
5795 case, where the sections have not been moved, this means that
5796 we have completely filled the segment, and there is nothing
5797 more to do. */
5798 isec = 0;
5799 matching_lma = 0;
5800 suggested_lma = 0;
5801 first_matching_lma = TRUE;
5802 first_suggested_lma = TRUE;
5803
5804 for (section = ibfd->sections;
5805 section != NULL;
5806 section = section->next)
5807 if (section == first_section)
5808 break;
5809
5810 for (j = 0; section != NULL; section = section->next)
5811 {
5812 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5813 {
5814 output_section = section->output_section;
5815
5816 sections[j++] = section;
5817
5818 /* The Solaris native linker always sets p_paddr to 0.
5819 We try to catch that case here, and set it to the
5820 correct value. Note - some backends require that
5821 p_paddr be left as zero. */
5822 if (!p_paddr_valid
5823 && segment->p_vaddr != 0
5824 && !bed->want_p_paddr_set_to_zero
5825 && isec == 0
5826 && output_section->lma != 0
5827 && output_section->vma == (segment->p_vaddr
5828 + (map->includes_filehdr
5829 ? iehdr->e_ehsize
5830 : 0)
5831 + (map->includes_phdrs
5832 ? (iehdr->e_phnum
5833 * iehdr->e_phentsize)
5834 : 0)))
5835 map->p_paddr = segment->p_vaddr;
5836
5837 /* Match up the physical address of the segment with the
5838 LMA address of the output section. */
5839 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5840 || IS_COREFILE_NOTE (segment, section)
5841 || (bed->want_p_paddr_set_to_zero
5842 && IS_CONTAINED_BY_VMA (output_section, segment)))
5843 {
5844 if (first_matching_lma || output_section->lma < matching_lma)
5845 {
5846 matching_lma = output_section->lma;
5847 first_matching_lma = FALSE;
5848 }
5849
5850 /* We assume that if the section fits within the segment
5851 then it does not overlap any other section within that
5852 segment. */
5853 map->sections[isec++] = output_section;
5854 }
5855 else if (first_suggested_lma)
5856 {
5857 suggested_lma = output_section->lma;
5858 first_suggested_lma = FALSE;
5859 }
5860
5861 if (j == section_count)
5862 break;
5863 }
5864 }
5865
5866 BFD_ASSERT (j == section_count);
5867
5868 /* Step Two: Adjust the physical address of the current segment,
5869 if necessary. */
5870 if (isec == section_count)
5871 {
5872 /* All of the sections fitted within the segment as currently
5873 specified. This is the default case. Add the segment to
5874 the list of built segments and carry on to process the next
5875 program header in the input BFD. */
5876 map->count = section_count;
5877 *pointer_to_map = map;
5878 pointer_to_map = &map->next;
5879
5880 if (p_paddr_valid
5881 && !bed->want_p_paddr_set_to_zero
5882 && matching_lma != map->p_paddr
5883 && !map->includes_filehdr
5884 && !map->includes_phdrs)
5885 /* There is some padding before the first section in the
5886 segment. So, we must account for that in the output
5887 segment's vma. */
5888 map->p_vaddr_offset = matching_lma - map->p_paddr;
5889
5890 free (sections);
5891 continue;
5892 }
5893 else
5894 {
5895 if (!first_matching_lma)
5896 {
5897 /* At least one section fits inside the current segment.
5898 Keep it, but modify its physical address to match the
5899 LMA of the first section that fitted. */
5900 map->p_paddr = matching_lma;
5901 }
5902 else
5903 {
5904 /* None of the sections fitted inside the current segment.
5905 Change the current segment's physical address to match
5906 the LMA of the first section. */
5907 map->p_paddr = suggested_lma;
5908 }
5909
5910 /* Offset the segment physical address from the lma
5911 to allow for space taken up by elf headers. */
5912 if (map->includes_filehdr)
5913 {
5914 if (map->p_paddr >= iehdr->e_ehsize)
5915 map->p_paddr -= iehdr->e_ehsize;
5916 else
5917 {
5918 map->includes_filehdr = FALSE;
5919 map->includes_phdrs = FALSE;
5920 }
5921 }
5922
5923 if (map->includes_phdrs)
5924 {
5925 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5926 {
5927 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5928
5929 /* iehdr->e_phnum is just an estimate of the number
5930 of program headers that we will need. Make a note
5931 here of the number we used and the segment we chose
5932 to hold these headers, so that we can adjust the
5933 offset when we know the correct value. */
5934 phdr_adjust_num = iehdr->e_phnum;
5935 phdr_adjust_seg = map;
5936 }
5937 else
5938 map->includes_phdrs = FALSE;
5939 }
5940 }
5941
5942 /* Step Three: Loop over the sections again, this time assigning
5943 those that fit to the current segment and removing them from the
5944 sections array; but making sure not to leave large gaps. Once all
5945 possible sections have been assigned to the current segment it is
5946 added to the list of built segments and if sections still remain
5947 to be assigned, a new segment is constructed before repeating
5948 the loop. */
5949 isec = 0;
5950 do
5951 {
5952 map->count = 0;
5953 suggested_lma = 0;
5954 first_suggested_lma = TRUE;
5955
5956 /* Fill the current segment with sections that fit. */
5957 for (j = 0; j < section_count; j++)
5958 {
5959 section = sections[j];
5960
5961 if (section == NULL)
5962 continue;
5963
5964 output_section = section->output_section;
5965
5966 BFD_ASSERT (output_section != NULL);
5967
5968 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5969 || IS_COREFILE_NOTE (segment, section))
5970 {
5971 if (map->count == 0)
5972 {
5973 /* If the first section in a segment does not start at
5974 the beginning of the segment, then something is
5975 wrong. */
5976 if (output_section->lma
5977 != (map->p_paddr
5978 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5979 + (map->includes_phdrs
5980 ? iehdr->e_phnum * iehdr->e_phentsize
5981 : 0)))
5982 abort ();
5983 }
5984 else
5985 {
5986 asection *prev_sec;
5987
5988 prev_sec = map->sections[map->count - 1];
5989
5990 /* If the gap between the end of the previous section
5991 and the start of this section is more than
5992 maxpagesize then we need to start a new segment. */
5993 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5994 maxpagesize)
5995 < BFD_ALIGN (output_section->lma, maxpagesize))
5996 || (prev_sec->lma + prev_sec->size
5997 > output_section->lma))
5998 {
5999 if (first_suggested_lma)
6000 {
6001 suggested_lma = output_section->lma;
6002 first_suggested_lma = FALSE;
6003 }
6004
6005 continue;
6006 }
6007 }
6008
6009 map->sections[map->count++] = output_section;
6010 ++isec;
6011 sections[j] = NULL;
6012 section->segment_mark = TRUE;
6013 }
6014 else if (first_suggested_lma)
6015 {
6016 suggested_lma = output_section->lma;
6017 first_suggested_lma = FALSE;
6018 }
6019 }
6020
6021 BFD_ASSERT (map->count > 0);
6022
6023 /* Add the current segment to the list of built segments. */
6024 *pointer_to_map = map;
6025 pointer_to_map = &map->next;
6026
6027 if (isec < section_count)
6028 {
6029 /* We still have not allocated all of the sections to
6030 segments. Create a new segment here, initialise it
6031 and carry on looping. */
6032 amt = sizeof (struct elf_segment_map);
6033 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6034 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
6035 if (map == NULL)
6036 {
6037 free (sections);
6038 return FALSE;
6039 }
6040
6041 /* Initialise the fields of the segment map. Set the physical
6042 physical address to the LMA of the first section that has
6043 not yet been assigned. */
6044 map->next = NULL;
6045 map->p_type = segment->p_type;
6046 map->p_flags = segment->p_flags;
6047 map->p_flags_valid = 1;
6048 map->p_paddr = suggested_lma;
6049 map->p_paddr_valid = p_paddr_valid;
6050 map->includes_filehdr = 0;
6051 map->includes_phdrs = 0;
6052 }
6053 }
6054 while (isec < section_count);
6055
6056 free (sections);
6057 }
6058
6059 elf_tdata (obfd)->segment_map = map_first;
6060
6061 /* If we had to estimate the number of program headers that were
6062 going to be needed, then check our estimate now and adjust
6063 the offset if necessary. */
6064 if (phdr_adjust_seg != NULL)
6065 {
6066 unsigned int count;
6067
6068 for (count = 0, map = map_first; map != NULL; map = map->next)
6069 count++;
6070
6071 if (count > phdr_adjust_num)
6072 phdr_adjust_seg->p_paddr
6073 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6074 }
6075
6076 #undef SEGMENT_END
6077 #undef SECTION_SIZE
6078 #undef IS_CONTAINED_BY_VMA
6079 #undef IS_CONTAINED_BY_LMA
6080 #undef IS_NOTE
6081 #undef IS_COREFILE_NOTE
6082 #undef IS_SOLARIS_PT_INTERP
6083 #undef IS_SECTION_IN_INPUT_SEGMENT
6084 #undef INCLUDE_SECTION_IN_SEGMENT
6085 #undef SEGMENT_AFTER_SEGMENT
6086 #undef SEGMENT_OVERLAPS
6087 return TRUE;
6088 }
6089
6090 /* Copy ELF program header information. */
6091
6092 static bfd_boolean
6093 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6094 {
6095 Elf_Internal_Ehdr *iehdr;
6096 struct elf_segment_map *map;
6097 struct elf_segment_map *map_first;
6098 struct elf_segment_map **pointer_to_map;
6099 Elf_Internal_Phdr *segment;
6100 unsigned int i;
6101 unsigned int num_segments;
6102 bfd_boolean phdr_included = FALSE;
6103 bfd_boolean p_paddr_valid;
6104
6105 iehdr = elf_elfheader (ibfd);
6106
6107 map_first = NULL;
6108 pointer_to_map = &map_first;
6109
6110 /* If all the segment p_paddr fields are zero, don't set
6111 map->p_paddr_valid. */
6112 p_paddr_valid = FALSE;
6113 num_segments = elf_elfheader (ibfd)->e_phnum;
6114 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6115 i < num_segments;
6116 i++, segment++)
6117 if (segment->p_paddr != 0)
6118 {
6119 p_paddr_valid = TRUE;
6120 break;
6121 }
6122
6123 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6124 i < num_segments;
6125 i++, segment++)
6126 {
6127 asection *section;
6128 unsigned int section_count;
6129 bfd_size_type amt;
6130 Elf_Internal_Shdr *this_hdr;
6131 asection *first_section = NULL;
6132 asection *lowest_section;
6133
6134 /* Compute how many sections are in this segment. */
6135 for (section = ibfd->sections, section_count = 0;
6136 section != NULL;
6137 section = section->next)
6138 {
6139 this_hdr = &(elf_section_data(section)->this_hdr);
6140 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6141 {
6142 if (first_section == NULL)
6143 first_section = section;
6144 section_count++;
6145 }
6146 }
6147
6148 /* Allocate a segment map big enough to contain
6149 all of the sections we have selected. */
6150 amt = sizeof (struct elf_segment_map);
6151 if (section_count != 0)
6152 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6153 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6154 if (map == NULL)
6155 return FALSE;
6156
6157 /* Initialize the fields of the output segment map with the
6158 input segment. */
6159 map->next = NULL;
6160 map->p_type = segment->p_type;
6161 map->p_flags = segment->p_flags;
6162 map->p_flags_valid = 1;
6163 map->p_paddr = segment->p_paddr;
6164 map->p_paddr_valid = p_paddr_valid;
6165 map->p_align = segment->p_align;
6166 map->p_align_valid = 1;
6167 map->p_vaddr_offset = 0;
6168
6169 if (map->p_type == PT_GNU_RELRO)
6170 {
6171 /* The PT_GNU_RELRO segment may contain the first a few
6172 bytes in the .got.plt section even if the whole .got.plt
6173 section isn't in the PT_GNU_RELRO segment. We won't
6174 change the size of the PT_GNU_RELRO segment. */
6175 map->p_size = segment->p_memsz;
6176 map->p_size_valid = 1;
6177 }
6178
6179 /* Determine if this segment contains the ELF file header
6180 and if it contains the program headers themselves. */
6181 map->includes_filehdr = (segment->p_offset == 0
6182 && segment->p_filesz >= iehdr->e_ehsize);
6183
6184 map->includes_phdrs = 0;
6185 if (! phdr_included || segment->p_type != PT_LOAD)
6186 {
6187 map->includes_phdrs =
6188 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6189 && (segment->p_offset + segment->p_filesz
6190 >= ((bfd_vma) iehdr->e_phoff
6191 + iehdr->e_phnum * iehdr->e_phentsize)));
6192
6193 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6194 phdr_included = TRUE;
6195 }
6196
6197 lowest_section = first_section;
6198 if (section_count != 0)
6199 {
6200 unsigned int isec = 0;
6201
6202 for (section = first_section;
6203 section != NULL;
6204 section = section->next)
6205 {
6206 this_hdr = &(elf_section_data(section)->this_hdr);
6207 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6208 {
6209 map->sections[isec++] = section->output_section;
6210 if (section->lma < lowest_section->lma)
6211 lowest_section = section;
6212 if ((section->flags & SEC_ALLOC) != 0)
6213 {
6214 bfd_vma seg_off;
6215
6216 /* Section lmas are set up from PT_LOAD header
6217 p_paddr in _bfd_elf_make_section_from_shdr.
6218 If this header has a p_paddr that disagrees
6219 with the section lma, flag the p_paddr as
6220 invalid. */
6221 if ((section->flags & SEC_LOAD) != 0)
6222 seg_off = this_hdr->sh_offset - segment->p_offset;
6223 else
6224 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6225 if (section->lma - segment->p_paddr != seg_off)
6226 map->p_paddr_valid = FALSE;
6227 }
6228 if (isec == section_count)
6229 break;
6230 }
6231 }
6232 }
6233
6234 if (map->includes_filehdr && lowest_section != NULL)
6235 /* We need to keep the space used by the headers fixed. */
6236 map->header_size = lowest_section->vma - segment->p_vaddr;
6237
6238 if (!map->includes_phdrs
6239 && !map->includes_filehdr
6240 && map->p_paddr_valid)
6241 /* There is some other padding before the first section. */
6242 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6243 - segment->p_paddr);
6244
6245 map->count = section_count;
6246 *pointer_to_map = map;
6247 pointer_to_map = &map->next;
6248 }
6249
6250 elf_tdata (obfd)->segment_map = map_first;
6251 return TRUE;
6252 }
6253
6254 /* Copy private BFD data. This copies or rewrites ELF program header
6255 information. */
6256
6257 static bfd_boolean
6258 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6259 {
6260 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6261 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6262 return TRUE;
6263
6264 if (elf_tdata (ibfd)->phdr == NULL)
6265 return TRUE;
6266
6267 if (ibfd->xvec == obfd->xvec)
6268 {
6269 /* Check to see if any sections in the input BFD
6270 covered by ELF program header have changed. */
6271 Elf_Internal_Phdr *segment;
6272 asection *section, *osec;
6273 unsigned int i, num_segments;
6274 Elf_Internal_Shdr *this_hdr;
6275 const struct elf_backend_data *bed;
6276
6277 bed = get_elf_backend_data (ibfd);
6278
6279 /* Regenerate the segment map if p_paddr is set to 0. */
6280 if (bed->want_p_paddr_set_to_zero)
6281 goto rewrite;
6282
6283 /* Initialize the segment mark field. */
6284 for (section = obfd->sections; section != NULL;
6285 section = section->next)
6286 section->segment_mark = FALSE;
6287
6288 num_segments = elf_elfheader (ibfd)->e_phnum;
6289 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6290 i < num_segments;
6291 i++, segment++)
6292 {
6293 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6294 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6295 which severly confuses things, so always regenerate the segment
6296 map in this case. */
6297 if (segment->p_paddr == 0
6298 && segment->p_memsz == 0
6299 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6300 goto rewrite;
6301
6302 for (section = ibfd->sections;
6303 section != NULL; section = section->next)
6304 {
6305 /* We mark the output section so that we know it comes
6306 from the input BFD. */
6307 osec = section->output_section;
6308 if (osec)
6309 osec->segment_mark = TRUE;
6310
6311 /* Check if this section is covered by the segment. */
6312 this_hdr = &(elf_section_data(section)->this_hdr);
6313 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6314 {
6315 /* FIXME: Check if its output section is changed or
6316 removed. What else do we need to check? */
6317 if (osec == NULL
6318 || section->flags != osec->flags
6319 || section->lma != osec->lma
6320 || section->vma != osec->vma
6321 || section->size != osec->size
6322 || section->rawsize != osec->rawsize
6323 || section->alignment_power != osec->alignment_power)
6324 goto rewrite;
6325 }
6326 }
6327 }
6328
6329 /* Check to see if any output section do not come from the
6330 input BFD. */
6331 for (section = obfd->sections; section != NULL;
6332 section = section->next)
6333 {
6334 if (section->segment_mark == FALSE)
6335 goto rewrite;
6336 else
6337 section->segment_mark = FALSE;
6338 }
6339
6340 return copy_elf_program_header (ibfd, obfd);
6341 }
6342
6343 rewrite:
6344 return rewrite_elf_program_header (ibfd, obfd);
6345 }
6346
6347 /* Initialize private output section information from input section. */
6348
6349 bfd_boolean
6350 _bfd_elf_init_private_section_data (bfd *ibfd,
6351 asection *isec,
6352 bfd *obfd,
6353 asection *osec,
6354 struct bfd_link_info *link_info)
6355
6356 {
6357 Elf_Internal_Shdr *ihdr, *ohdr;
6358 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6359
6360 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6361 || obfd->xvec->flavour != bfd_target_elf_flavour)
6362 return TRUE;
6363
6364 BFD_ASSERT (elf_section_data (osec) != NULL);
6365
6366 /* For objcopy and relocatable link, don't copy the output ELF
6367 section type from input if the output BFD section flags have been
6368 set to something different. For a final link allow some flags
6369 that the linker clears to differ. */
6370 if (elf_section_type (osec) == SHT_NULL
6371 && (osec->flags == isec->flags
6372 || (final_link
6373 && ((osec->flags ^ isec->flags)
6374 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6375 elf_section_type (osec) = elf_section_type (isec);
6376
6377 /* FIXME: Is this correct for all OS/PROC specific flags? */
6378 elf_section_flags (osec) |= (elf_section_flags (isec)
6379 & (SHF_MASKOS | SHF_MASKPROC));
6380
6381 /* Set things up for objcopy and relocatable link. The output
6382 SHT_GROUP section will have its elf_next_in_group pointing back
6383 to the input group members. Ignore linker created group section.
6384 See elfNN_ia64_object_p in elfxx-ia64.c. */
6385 if (!final_link)
6386 {
6387 if (elf_sec_group (isec) == NULL
6388 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6389 {
6390 if (elf_section_flags (isec) & SHF_GROUP)
6391 elf_section_flags (osec) |= SHF_GROUP;
6392 elf_next_in_group (osec) = elf_next_in_group (isec);
6393 elf_section_data (osec)->group = elf_section_data (isec)->group;
6394 }
6395 }
6396
6397 ihdr = &elf_section_data (isec)->this_hdr;
6398
6399 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6400 don't use the output section of the linked-to section since it
6401 may be NULL at this point. */
6402 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6403 {
6404 ohdr = &elf_section_data (osec)->this_hdr;
6405 ohdr->sh_flags |= SHF_LINK_ORDER;
6406 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6407 }
6408
6409 osec->use_rela_p = isec->use_rela_p;
6410
6411 return TRUE;
6412 }
6413
6414 /* Copy private section information. This copies over the entsize
6415 field, and sometimes the info field. */
6416
6417 bfd_boolean
6418 _bfd_elf_copy_private_section_data (bfd *ibfd,
6419 asection *isec,
6420 bfd *obfd,
6421 asection *osec)
6422 {
6423 Elf_Internal_Shdr *ihdr, *ohdr;
6424
6425 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6426 || obfd->xvec->flavour != bfd_target_elf_flavour)
6427 return TRUE;
6428
6429 ihdr = &elf_section_data (isec)->this_hdr;
6430 ohdr = &elf_section_data (osec)->this_hdr;
6431
6432 ohdr->sh_entsize = ihdr->sh_entsize;
6433
6434 if (ihdr->sh_type == SHT_SYMTAB
6435 || ihdr->sh_type == SHT_DYNSYM
6436 || ihdr->sh_type == SHT_GNU_verneed
6437 || ihdr->sh_type == SHT_GNU_verdef)
6438 ohdr->sh_info = ihdr->sh_info;
6439
6440 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6441 NULL);
6442 }
6443
6444 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6445 necessary if we are removing either the SHT_GROUP section or any of
6446 the group member sections. DISCARDED is the value that a section's
6447 output_section has if the section will be discarded, NULL when this
6448 function is called from objcopy, bfd_abs_section_ptr when called
6449 from the linker. */
6450
6451 bfd_boolean
6452 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6453 {
6454 asection *isec;
6455
6456 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6457 if (elf_section_type (isec) == SHT_GROUP)
6458 {
6459 asection *first = elf_next_in_group (isec);
6460 asection *s = first;
6461 bfd_size_type removed = 0;
6462
6463 while (s != NULL)
6464 {
6465 /* If this member section is being output but the
6466 SHT_GROUP section is not, then clear the group info
6467 set up by _bfd_elf_copy_private_section_data. */
6468 if (s->output_section != discarded
6469 && isec->output_section == discarded)
6470 {
6471 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6472 elf_group_name (s->output_section) = NULL;
6473 }
6474 /* Conversely, if the member section is not being output
6475 but the SHT_GROUP section is, then adjust its size. */
6476 else if (s->output_section == discarded
6477 && isec->output_section != discarded)
6478 removed += 4;
6479 s = elf_next_in_group (s);
6480 if (s == first)
6481 break;
6482 }
6483 if (removed != 0)
6484 {
6485 if (discarded != NULL)
6486 {
6487 /* If we've been called for ld -r, then we need to
6488 adjust the input section size. This function may
6489 be called multiple times, so save the original
6490 size. */
6491 if (isec->rawsize == 0)
6492 isec->rawsize = isec->size;
6493 isec->size = isec->rawsize - removed;
6494 }
6495 else
6496 {
6497 /* Adjust the output section size when called from
6498 objcopy. */
6499 isec->output_section->size -= removed;
6500 }
6501 }
6502 }
6503
6504 return TRUE;
6505 }
6506
6507 /* Copy private header information. */
6508
6509 bfd_boolean
6510 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6511 {
6512 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6513 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6514 return TRUE;
6515
6516 /* Copy over private BFD data if it has not already been copied.
6517 This must be done here, rather than in the copy_private_bfd_data
6518 entry point, because the latter is called after the section
6519 contents have been set, which means that the program headers have
6520 already been worked out. */
6521 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6522 {
6523 if (! copy_private_bfd_data (ibfd, obfd))
6524 return FALSE;
6525 }
6526
6527 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6528 }
6529
6530 /* Copy private symbol information. If this symbol is in a section
6531 which we did not map into a BFD section, try to map the section
6532 index correctly. We use special macro definitions for the mapped
6533 section indices; these definitions are interpreted by the
6534 swap_out_syms function. */
6535
6536 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6537 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6538 #define MAP_STRTAB (SHN_HIOS + 3)
6539 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6540 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6541
6542 bfd_boolean
6543 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6544 asymbol *isymarg,
6545 bfd *obfd,
6546 asymbol *osymarg)
6547 {
6548 elf_symbol_type *isym, *osym;
6549
6550 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6551 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6552 return TRUE;
6553
6554 isym = elf_symbol_from (ibfd, isymarg);
6555 osym = elf_symbol_from (obfd, osymarg);
6556
6557 if (isym != NULL
6558 && isym->internal_elf_sym.st_shndx != 0
6559 && osym != NULL
6560 && bfd_is_abs_section (isym->symbol.section))
6561 {
6562 unsigned int shndx;
6563
6564 shndx = isym->internal_elf_sym.st_shndx;
6565 if (shndx == elf_onesymtab (ibfd))
6566 shndx = MAP_ONESYMTAB;
6567 else if (shndx == elf_dynsymtab (ibfd))
6568 shndx = MAP_DYNSYMTAB;
6569 else if (shndx == elf_tdata (ibfd)->strtab_section)
6570 shndx = MAP_STRTAB;
6571 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6572 shndx = MAP_SHSTRTAB;
6573 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6574 shndx = MAP_SYM_SHNDX;
6575 osym->internal_elf_sym.st_shndx = shndx;
6576 }
6577
6578 return TRUE;
6579 }
6580
6581 /* Swap out the symbols. */
6582
6583 static bfd_boolean
6584 swap_out_syms (bfd *abfd,
6585 struct bfd_strtab_hash **sttp,
6586 int relocatable_p)
6587 {
6588 const struct elf_backend_data *bed;
6589 int symcount;
6590 asymbol **syms;
6591 struct bfd_strtab_hash *stt;
6592 Elf_Internal_Shdr *symtab_hdr;
6593 Elf_Internal_Shdr *symtab_shndx_hdr;
6594 Elf_Internal_Shdr *symstrtab_hdr;
6595 bfd_byte *outbound_syms;
6596 bfd_byte *outbound_shndx;
6597 int idx;
6598 bfd_size_type amt;
6599 bfd_boolean name_local_sections;
6600
6601 if (!elf_map_symbols (abfd))
6602 return FALSE;
6603
6604 /* Dump out the symtabs. */
6605 stt = _bfd_elf_stringtab_init ();
6606 if (stt == NULL)
6607 return FALSE;
6608
6609 bed = get_elf_backend_data (abfd);
6610 symcount = bfd_get_symcount (abfd);
6611 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6612 symtab_hdr->sh_type = SHT_SYMTAB;
6613 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6614 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6615 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6616 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6617
6618 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6619 symstrtab_hdr->sh_type = SHT_STRTAB;
6620
6621 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6622 bed->s->sizeof_sym);
6623 if (outbound_syms == NULL)
6624 {
6625 _bfd_stringtab_free (stt);
6626 return FALSE;
6627 }
6628 symtab_hdr->contents = outbound_syms;
6629
6630 outbound_shndx = NULL;
6631 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6632 if (symtab_shndx_hdr->sh_name != 0)
6633 {
6634 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6635 outbound_shndx = (bfd_byte *)
6636 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6637 if (outbound_shndx == NULL)
6638 {
6639 _bfd_stringtab_free (stt);
6640 return FALSE;
6641 }
6642
6643 symtab_shndx_hdr->contents = outbound_shndx;
6644 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6645 symtab_shndx_hdr->sh_size = amt;
6646 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6647 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6648 }
6649
6650 /* Now generate the data (for "contents"). */
6651 {
6652 /* Fill in zeroth symbol and swap it out. */
6653 Elf_Internal_Sym sym;
6654 sym.st_name = 0;
6655 sym.st_value = 0;
6656 sym.st_size = 0;
6657 sym.st_info = 0;
6658 sym.st_other = 0;
6659 sym.st_shndx = SHN_UNDEF;
6660 sym.st_target_internal = 0;
6661 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6662 outbound_syms += bed->s->sizeof_sym;
6663 if (outbound_shndx != NULL)
6664 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6665 }
6666
6667 name_local_sections
6668 = (bed->elf_backend_name_local_section_symbols
6669 && bed->elf_backend_name_local_section_symbols (abfd));
6670
6671 syms = bfd_get_outsymbols (abfd);
6672 for (idx = 0; idx < symcount; idx++)
6673 {
6674 Elf_Internal_Sym sym;
6675 bfd_vma value = syms[idx]->value;
6676 elf_symbol_type *type_ptr;
6677 flagword flags = syms[idx]->flags;
6678 int type;
6679
6680 if (!name_local_sections
6681 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6682 {
6683 /* Local section symbols have no name. */
6684 sym.st_name = 0;
6685 }
6686 else
6687 {
6688 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6689 syms[idx]->name,
6690 TRUE, FALSE);
6691 if (sym.st_name == (unsigned long) -1)
6692 {
6693 _bfd_stringtab_free (stt);
6694 return FALSE;
6695 }
6696 }
6697
6698 type_ptr = elf_symbol_from (abfd, syms[idx]);
6699
6700 if ((flags & BSF_SECTION_SYM) == 0
6701 && bfd_is_com_section (syms[idx]->section))
6702 {
6703 /* ELF common symbols put the alignment into the `value' field,
6704 and the size into the `size' field. This is backwards from
6705 how BFD handles it, so reverse it here. */
6706 sym.st_size = value;
6707 if (type_ptr == NULL
6708 || type_ptr->internal_elf_sym.st_value == 0)
6709 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6710 else
6711 sym.st_value = type_ptr->internal_elf_sym.st_value;
6712 sym.st_shndx = _bfd_elf_section_from_bfd_section
6713 (abfd, syms[idx]->section);
6714 }
6715 else
6716 {
6717 asection *sec = syms[idx]->section;
6718 unsigned int shndx;
6719
6720 if (sec->output_section)
6721 {
6722 value += sec->output_offset;
6723 sec = sec->output_section;
6724 }
6725
6726 /* Don't add in the section vma for relocatable output. */
6727 if (! relocatable_p)
6728 value += sec->vma;
6729 sym.st_value = value;
6730 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6731
6732 if (bfd_is_abs_section (sec)
6733 && type_ptr != NULL
6734 && type_ptr->internal_elf_sym.st_shndx != 0)
6735 {
6736 /* This symbol is in a real ELF section which we did
6737 not create as a BFD section. Undo the mapping done
6738 by copy_private_symbol_data. */
6739 shndx = type_ptr->internal_elf_sym.st_shndx;
6740 switch (shndx)
6741 {
6742 case MAP_ONESYMTAB:
6743 shndx = elf_onesymtab (abfd);
6744 break;
6745 case MAP_DYNSYMTAB:
6746 shndx = elf_dynsymtab (abfd);
6747 break;
6748 case MAP_STRTAB:
6749 shndx = elf_tdata (abfd)->strtab_section;
6750 break;
6751 case MAP_SHSTRTAB:
6752 shndx = elf_tdata (abfd)->shstrtab_section;
6753 break;
6754 case MAP_SYM_SHNDX:
6755 shndx = elf_tdata (abfd)->symtab_shndx_section;
6756 break;
6757 default:
6758 break;
6759 }
6760 }
6761 else
6762 {
6763 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6764
6765 if (shndx == SHN_BAD)
6766 {
6767 asection *sec2;
6768
6769 /* Writing this would be a hell of a lot easier if
6770 we had some decent documentation on bfd, and
6771 knew what to expect of the library, and what to
6772 demand of applications. For example, it
6773 appears that `objcopy' might not set the
6774 section of a symbol to be a section that is
6775 actually in the output file. */
6776 sec2 = bfd_get_section_by_name (abfd, sec->name);
6777 if (sec2 == NULL)
6778 {
6779 _bfd_error_handler (_("\
6780 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6781 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6782 sec->name);
6783 bfd_set_error (bfd_error_invalid_operation);
6784 _bfd_stringtab_free (stt);
6785 return FALSE;
6786 }
6787
6788 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6789 BFD_ASSERT (shndx != SHN_BAD);
6790 }
6791 }
6792
6793 sym.st_shndx = shndx;
6794 }
6795
6796 if ((flags & BSF_THREAD_LOCAL) != 0)
6797 type = STT_TLS;
6798 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6799 type = STT_GNU_IFUNC;
6800 else if ((flags & BSF_FUNCTION) != 0)
6801 type = STT_FUNC;
6802 else if ((flags & BSF_OBJECT) != 0)
6803 type = STT_OBJECT;
6804 else if ((flags & BSF_RELC) != 0)
6805 type = STT_RELC;
6806 else if ((flags & BSF_SRELC) != 0)
6807 type = STT_SRELC;
6808 else
6809 type = STT_NOTYPE;
6810
6811 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6812 type = STT_TLS;
6813
6814 /* Processor-specific types. */
6815 if (type_ptr != NULL
6816 && bed->elf_backend_get_symbol_type)
6817 type = ((*bed->elf_backend_get_symbol_type)
6818 (&type_ptr->internal_elf_sym, type));
6819
6820 if (flags & BSF_SECTION_SYM)
6821 {
6822 if (flags & BSF_GLOBAL)
6823 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6824 else
6825 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6826 }
6827 else if (bfd_is_com_section (syms[idx]->section))
6828 {
6829 #ifdef USE_STT_COMMON
6830 if (type == STT_OBJECT)
6831 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6832 else
6833 #endif
6834 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6835 }
6836 else if (bfd_is_und_section (syms[idx]->section))
6837 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6838 ? STB_WEAK
6839 : STB_GLOBAL),
6840 type);
6841 else if (flags & BSF_FILE)
6842 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6843 else
6844 {
6845 int bind = STB_LOCAL;
6846
6847 if (flags & BSF_LOCAL)
6848 bind = STB_LOCAL;
6849 else if (flags & BSF_GNU_UNIQUE)
6850 bind = STB_GNU_UNIQUE;
6851 else if (flags & BSF_WEAK)
6852 bind = STB_WEAK;
6853 else if (flags & BSF_GLOBAL)
6854 bind = STB_GLOBAL;
6855
6856 sym.st_info = ELF_ST_INFO (bind, type);
6857 }
6858
6859 if (type_ptr != NULL)
6860 {
6861 sym.st_other = type_ptr->internal_elf_sym.st_other;
6862 sym.st_target_internal
6863 = type_ptr->internal_elf_sym.st_target_internal;
6864 }
6865 else
6866 {
6867 sym.st_other = 0;
6868 sym.st_target_internal = 0;
6869 }
6870
6871 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6872 outbound_syms += bed->s->sizeof_sym;
6873 if (outbound_shndx != NULL)
6874 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6875 }
6876
6877 *sttp = stt;
6878 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6879 symstrtab_hdr->sh_type = SHT_STRTAB;
6880
6881 symstrtab_hdr->sh_flags = 0;
6882 symstrtab_hdr->sh_addr = 0;
6883 symstrtab_hdr->sh_entsize = 0;
6884 symstrtab_hdr->sh_link = 0;
6885 symstrtab_hdr->sh_info = 0;
6886 symstrtab_hdr->sh_addralign = 1;
6887
6888 return TRUE;
6889 }
6890
6891 /* Return the number of bytes required to hold the symtab vector.
6892
6893 Note that we base it on the count plus 1, since we will null terminate
6894 the vector allocated based on this size. However, the ELF symbol table
6895 always has a dummy entry as symbol #0, so it ends up even. */
6896
6897 long
6898 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6899 {
6900 long symcount;
6901 long symtab_size;
6902 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6903
6904 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6905 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6906 if (symcount > 0)
6907 symtab_size -= sizeof (asymbol *);
6908
6909 return symtab_size;
6910 }
6911
6912 long
6913 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6914 {
6915 long symcount;
6916 long symtab_size;
6917 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6918
6919 if (elf_dynsymtab (abfd) == 0)
6920 {
6921 bfd_set_error (bfd_error_invalid_operation);
6922 return -1;
6923 }
6924
6925 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6926 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6927 if (symcount > 0)
6928 symtab_size -= sizeof (asymbol *);
6929
6930 return symtab_size;
6931 }
6932
6933 long
6934 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6935 sec_ptr asect)
6936 {
6937 return (asect->reloc_count + 1) * sizeof (arelent *);
6938 }
6939
6940 /* Canonicalize the relocs. */
6941
6942 long
6943 _bfd_elf_canonicalize_reloc (bfd *abfd,
6944 sec_ptr section,
6945 arelent **relptr,
6946 asymbol **symbols)
6947 {
6948 arelent *tblptr;
6949 unsigned int i;
6950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6951
6952 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6953 return -1;
6954
6955 tblptr = section->relocation;
6956 for (i = 0; i < section->reloc_count; i++)
6957 *relptr++ = tblptr++;
6958
6959 *relptr = NULL;
6960
6961 return section->reloc_count;
6962 }
6963
6964 long
6965 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6966 {
6967 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6968 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6969
6970 if (symcount >= 0)
6971 bfd_get_symcount (abfd) = symcount;
6972 return symcount;
6973 }
6974
6975 long
6976 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6977 asymbol **allocation)
6978 {
6979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6980 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6981
6982 if (symcount >= 0)
6983 bfd_get_dynamic_symcount (abfd) = symcount;
6984 return symcount;
6985 }
6986
6987 /* Return the size required for the dynamic reloc entries. Any loadable
6988 section that was actually installed in the BFD, and has type SHT_REL
6989 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6990 dynamic reloc section. */
6991
6992 long
6993 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6994 {
6995 long ret;
6996 asection *s;
6997
6998 if (elf_dynsymtab (abfd) == 0)
6999 {
7000 bfd_set_error (bfd_error_invalid_operation);
7001 return -1;
7002 }
7003
7004 ret = sizeof (arelent *);
7005 for (s = abfd->sections; s != NULL; s = s->next)
7006 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7007 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7008 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7009 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7010 * sizeof (arelent *));
7011
7012 return ret;
7013 }
7014
7015 /* Canonicalize the dynamic relocation entries. Note that we return the
7016 dynamic relocations as a single block, although they are actually
7017 associated with particular sections; the interface, which was
7018 designed for SunOS style shared libraries, expects that there is only
7019 one set of dynamic relocs. Any loadable section that was actually
7020 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7021 dynamic symbol table, is considered to be a dynamic reloc section. */
7022
7023 long
7024 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7025 arelent **storage,
7026 asymbol **syms)
7027 {
7028 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7029 asection *s;
7030 long ret;
7031
7032 if (elf_dynsymtab (abfd) == 0)
7033 {
7034 bfd_set_error (bfd_error_invalid_operation);
7035 return -1;
7036 }
7037
7038 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7039 ret = 0;
7040 for (s = abfd->sections; s != NULL; s = s->next)
7041 {
7042 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7043 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7044 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7045 {
7046 arelent *p;
7047 long count, i;
7048
7049 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7050 return -1;
7051 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7052 p = s->relocation;
7053 for (i = 0; i < count; i++)
7054 *storage++ = p++;
7055 ret += count;
7056 }
7057 }
7058
7059 *storage = NULL;
7060
7061 return ret;
7062 }
7063 \f
7064 /* Read in the version information. */
7065
7066 bfd_boolean
7067 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7068 {
7069 bfd_byte *contents = NULL;
7070 unsigned int freeidx = 0;
7071
7072 if (elf_dynverref (abfd) != 0)
7073 {
7074 Elf_Internal_Shdr *hdr;
7075 Elf_External_Verneed *everneed;
7076 Elf_Internal_Verneed *iverneed;
7077 unsigned int i;
7078 bfd_byte *contents_end;
7079
7080 hdr = &elf_tdata (abfd)->dynverref_hdr;
7081
7082 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7083 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7084 if (elf_tdata (abfd)->verref == NULL)
7085 goto error_return;
7086
7087 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7088
7089 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7090 if (contents == NULL)
7091 {
7092 error_return_verref:
7093 elf_tdata (abfd)->verref = NULL;
7094 elf_tdata (abfd)->cverrefs = 0;
7095 goto error_return;
7096 }
7097 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7098 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7099 goto error_return_verref;
7100
7101 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7102 goto error_return_verref;
7103
7104 BFD_ASSERT (sizeof (Elf_External_Verneed)
7105 == sizeof (Elf_External_Vernaux));
7106 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7107 everneed = (Elf_External_Verneed *) contents;
7108 iverneed = elf_tdata (abfd)->verref;
7109 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7110 {
7111 Elf_External_Vernaux *evernaux;
7112 Elf_Internal_Vernaux *ivernaux;
7113 unsigned int j;
7114
7115 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7116
7117 iverneed->vn_bfd = abfd;
7118
7119 iverneed->vn_filename =
7120 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7121 iverneed->vn_file);
7122 if (iverneed->vn_filename == NULL)
7123 goto error_return_verref;
7124
7125 if (iverneed->vn_cnt == 0)
7126 iverneed->vn_auxptr = NULL;
7127 else
7128 {
7129 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7130 bfd_alloc2 (abfd, iverneed->vn_cnt,
7131 sizeof (Elf_Internal_Vernaux));
7132 if (iverneed->vn_auxptr == NULL)
7133 goto error_return_verref;
7134 }
7135
7136 if (iverneed->vn_aux
7137 > (size_t) (contents_end - (bfd_byte *) everneed))
7138 goto error_return_verref;
7139
7140 evernaux = ((Elf_External_Vernaux *)
7141 ((bfd_byte *) everneed + iverneed->vn_aux));
7142 ivernaux = iverneed->vn_auxptr;
7143 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7144 {
7145 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7146
7147 ivernaux->vna_nodename =
7148 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7149 ivernaux->vna_name);
7150 if (ivernaux->vna_nodename == NULL)
7151 goto error_return_verref;
7152
7153 if (j + 1 < iverneed->vn_cnt)
7154 ivernaux->vna_nextptr = ivernaux + 1;
7155 else
7156 ivernaux->vna_nextptr = NULL;
7157
7158 if (ivernaux->vna_next
7159 > (size_t) (contents_end - (bfd_byte *) evernaux))
7160 goto error_return_verref;
7161
7162 evernaux = ((Elf_External_Vernaux *)
7163 ((bfd_byte *) evernaux + ivernaux->vna_next));
7164
7165 if (ivernaux->vna_other > freeidx)
7166 freeidx = ivernaux->vna_other;
7167 }
7168
7169 if (i + 1 < hdr->sh_info)
7170 iverneed->vn_nextref = iverneed + 1;
7171 else
7172 iverneed->vn_nextref = NULL;
7173
7174 if (iverneed->vn_next
7175 > (size_t) (contents_end - (bfd_byte *) everneed))
7176 goto error_return_verref;
7177
7178 everneed = ((Elf_External_Verneed *)
7179 ((bfd_byte *) everneed + iverneed->vn_next));
7180 }
7181
7182 free (contents);
7183 contents = NULL;
7184 }
7185
7186 if (elf_dynverdef (abfd) != 0)
7187 {
7188 Elf_Internal_Shdr *hdr;
7189 Elf_External_Verdef *everdef;
7190 Elf_Internal_Verdef *iverdef;
7191 Elf_Internal_Verdef *iverdefarr;
7192 Elf_Internal_Verdef iverdefmem;
7193 unsigned int i;
7194 unsigned int maxidx;
7195 bfd_byte *contents_end_def, *contents_end_aux;
7196
7197 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7198
7199 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7200 if (contents == NULL)
7201 goto error_return;
7202 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7203 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7204 goto error_return;
7205
7206 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7207 goto error_return;
7208
7209 BFD_ASSERT (sizeof (Elf_External_Verdef)
7210 >= sizeof (Elf_External_Verdaux));
7211 contents_end_def = contents + hdr->sh_size
7212 - sizeof (Elf_External_Verdef);
7213 contents_end_aux = contents + hdr->sh_size
7214 - sizeof (Elf_External_Verdaux);
7215
7216 /* We know the number of entries in the section but not the maximum
7217 index. Therefore we have to run through all entries and find
7218 the maximum. */
7219 everdef = (Elf_External_Verdef *) contents;
7220 maxidx = 0;
7221 for (i = 0; i < hdr->sh_info; ++i)
7222 {
7223 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7224
7225 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7226 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7227
7228 if (iverdefmem.vd_next
7229 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7230 goto error_return;
7231
7232 everdef = ((Elf_External_Verdef *)
7233 ((bfd_byte *) everdef + iverdefmem.vd_next));
7234 }
7235
7236 if (default_imported_symver)
7237 {
7238 if (freeidx > maxidx)
7239 maxidx = ++freeidx;
7240 else
7241 freeidx = ++maxidx;
7242 }
7243 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7244 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7245 if (elf_tdata (abfd)->verdef == NULL)
7246 goto error_return;
7247
7248 elf_tdata (abfd)->cverdefs = maxidx;
7249
7250 everdef = (Elf_External_Verdef *) contents;
7251 iverdefarr = elf_tdata (abfd)->verdef;
7252 for (i = 0; i < hdr->sh_info; i++)
7253 {
7254 Elf_External_Verdaux *everdaux;
7255 Elf_Internal_Verdaux *iverdaux;
7256 unsigned int j;
7257
7258 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7259
7260 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7261 {
7262 error_return_verdef:
7263 elf_tdata (abfd)->verdef = NULL;
7264 elf_tdata (abfd)->cverdefs = 0;
7265 goto error_return;
7266 }
7267
7268 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7269 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7270
7271 iverdef->vd_bfd = abfd;
7272
7273 if (iverdef->vd_cnt == 0)
7274 iverdef->vd_auxptr = NULL;
7275 else
7276 {
7277 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7278 bfd_alloc2 (abfd, iverdef->vd_cnt,
7279 sizeof (Elf_Internal_Verdaux));
7280 if (iverdef->vd_auxptr == NULL)
7281 goto error_return_verdef;
7282 }
7283
7284 if (iverdef->vd_aux
7285 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7286 goto error_return_verdef;
7287
7288 everdaux = ((Elf_External_Verdaux *)
7289 ((bfd_byte *) everdef + iverdef->vd_aux));
7290 iverdaux = iverdef->vd_auxptr;
7291 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7292 {
7293 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7294
7295 iverdaux->vda_nodename =
7296 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7297 iverdaux->vda_name);
7298 if (iverdaux->vda_nodename == NULL)
7299 goto error_return_verdef;
7300
7301 if (j + 1 < iverdef->vd_cnt)
7302 iverdaux->vda_nextptr = iverdaux + 1;
7303 else
7304 iverdaux->vda_nextptr = NULL;
7305
7306 if (iverdaux->vda_next
7307 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7308 goto error_return_verdef;
7309
7310 everdaux = ((Elf_External_Verdaux *)
7311 ((bfd_byte *) everdaux + iverdaux->vda_next));
7312 }
7313
7314 if (iverdef->vd_cnt)
7315 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7316
7317 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7318 iverdef->vd_nextdef = iverdef + 1;
7319 else
7320 iverdef->vd_nextdef = NULL;
7321
7322 everdef = ((Elf_External_Verdef *)
7323 ((bfd_byte *) everdef + iverdef->vd_next));
7324 }
7325
7326 free (contents);
7327 contents = NULL;
7328 }
7329 else if (default_imported_symver)
7330 {
7331 if (freeidx < 3)
7332 freeidx = 3;
7333 else
7334 freeidx++;
7335
7336 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7337 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7338 if (elf_tdata (abfd)->verdef == NULL)
7339 goto error_return;
7340
7341 elf_tdata (abfd)->cverdefs = freeidx;
7342 }
7343
7344 /* Create a default version based on the soname. */
7345 if (default_imported_symver)
7346 {
7347 Elf_Internal_Verdef *iverdef;
7348 Elf_Internal_Verdaux *iverdaux;
7349
7350 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7351
7352 iverdef->vd_version = VER_DEF_CURRENT;
7353 iverdef->vd_flags = 0;
7354 iverdef->vd_ndx = freeidx;
7355 iverdef->vd_cnt = 1;
7356
7357 iverdef->vd_bfd = abfd;
7358
7359 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7360 if (iverdef->vd_nodename == NULL)
7361 goto error_return_verdef;
7362 iverdef->vd_nextdef = NULL;
7363 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7364 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7365 if (iverdef->vd_auxptr == NULL)
7366 goto error_return_verdef;
7367
7368 iverdaux = iverdef->vd_auxptr;
7369 iverdaux->vda_nodename = iverdef->vd_nodename;
7370 iverdaux->vda_nextptr = NULL;
7371 }
7372
7373 return TRUE;
7374
7375 error_return:
7376 if (contents != NULL)
7377 free (contents);
7378 return FALSE;
7379 }
7380 \f
7381 asymbol *
7382 _bfd_elf_make_empty_symbol (bfd *abfd)
7383 {
7384 elf_symbol_type *newsym;
7385 bfd_size_type amt = sizeof (elf_symbol_type);
7386
7387 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7388 if (!newsym)
7389 return NULL;
7390 else
7391 {
7392 newsym->symbol.the_bfd = abfd;
7393 return &newsym->symbol;
7394 }
7395 }
7396
7397 void
7398 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7399 asymbol *symbol,
7400 symbol_info *ret)
7401 {
7402 bfd_symbol_info (symbol, ret);
7403 }
7404
7405 /* Return whether a symbol name implies a local symbol. Most targets
7406 use this function for the is_local_label_name entry point, but some
7407 override it. */
7408
7409 bfd_boolean
7410 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7411 const char *name)
7412 {
7413 /* Normal local symbols start with ``.L''. */
7414 if (name[0] == '.' && name[1] == 'L')
7415 return TRUE;
7416
7417 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7418 DWARF debugging symbols starting with ``..''. */
7419 if (name[0] == '.' && name[1] == '.')
7420 return TRUE;
7421
7422 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7423 emitting DWARF debugging output. I suspect this is actually a
7424 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7425 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7426 underscore to be emitted on some ELF targets). For ease of use,
7427 we treat such symbols as local. */
7428 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7429 return TRUE;
7430
7431 return FALSE;
7432 }
7433
7434 alent *
7435 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7436 asymbol *symbol ATTRIBUTE_UNUSED)
7437 {
7438 abort ();
7439 return NULL;
7440 }
7441
7442 bfd_boolean
7443 _bfd_elf_set_arch_mach (bfd *abfd,
7444 enum bfd_architecture arch,
7445 unsigned long machine)
7446 {
7447 /* If this isn't the right architecture for this backend, and this
7448 isn't the generic backend, fail. */
7449 if (arch != get_elf_backend_data (abfd)->arch
7450 && arch != bfd_arch_unknown
7451 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7452 return FALSE;
7453
7454 return bfd_default_set_arch_mach (abfd, arch, machine);
7455 }
7456
7457 /* Find the function to a particular section and offset,
7458 for error reporting. */
7459
7460 static bfd_boolean
7461 elf_find_function (bfd *abfd,
7462 asection *section,
7463 asymbol **symbols,
7464 bfd_vma offset,
7465 const char **filename_ptr,
7466 const char **functionname_ptr)
7467 {
7468 static asection *last_section;
7469 static asymbol *func;
7470 static const char *filename;
7471 static bfd_size_type func_size;
7472
7473 if (symbols == NULL)
7474 return FALSE;
7475
7476 if (last_section != section
7477 || func == NULL
7478 || offset < func->value
7479 || offset >= func->value + func_size)
7480 {
7481 asymbol *file;
7482 bfd_vma low_func;
7483 asymbol **p;
7484 /* ??? Given multiple file symbols, it is impossible to reliably
7485 choose the right file name for global symbols. File symbols are
7486 local symbols, and thus all file symbols must sort before any
7487 global symbols. The ELF spec may be interpreted to say that a
7488 file symbol must sort before other local symbols, but currently
7489 ld -r doesn't do this. So, for ld -r output, it is possible to
7490 make a better choice of file name for local symbols by ignoring
7491 file symbols appearing after a given local symbol. */
7492 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7494
7495 filename = NULL;
7496 func = NULL;
7497 file = NULL;
7498 low_func = 0;
7499 state = nothing_seen;
7500 func_size = 0;
7501 last_section = section;
7502
7503 for (p = symbols; *p != NULL; p++)
7504 {
7505 asymbol *sym = *p;
7506 bfd_vma code_off;
7507 bfd_size_type size;
7508
7509 if ((sym->flags & BSF_FILE) != 0)
7510 {
7511 file = sym;
7512 if (state == symbol_seen)
7513 state = file_after_symbol_seen;
7514 continue;
7515 }
7516
7517 size = bed->maybe_function_sym (sym, section, &code_off);
7518 if (size != 0
7519 && code_off <= offset
7520 && (code_off > low_func
7521 || (code_off == low_func
7522 && size > func_size)))
7523 {
7524 func = sym;
7525 func_size = size;
7526 low_func = code_off;
7527 filename = NULL;
7528 if (file != NULL
7529 && ((sym->flags & BSF_LOCAL) != 0
7530 || state != file_after_symbol_seen))
7531 filename = bfd_asymbol_name (file);
7532 }
7533 if (state == nothing_seen)
7534 state = symbol_seen;
7535 }
7536 }
7537
7538 if (func == NULL)
7539 return FALSE;
7540
7541 if (filename_ptr)
7542 *filename_ptr = filename;
7543 if (functionname_ptr)
7544 *functionname_ptr = bfd_asymbol_name (func);
7545
7546 return TRUE;
7547 }
7548
7549 /* Find the nearest line to a particular section and offset,
7550 for error reporting. */
7551
7552 bfd_boolean
7553 _bfd_elf_find_nearest_line (bfd *abfd,
7554 asection *section,
7555 asymbol **symbols,
7556 bfd_vma offset,
7557 const char **filename_ptr,
7558 const char **functionname_ptr,
7559 unsigned int *line_ptr)
7560 {
7561 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7562 offset, filename_ptr,
7563 functionname_ptr,
7564 line_ptr,
7565 NULL);
7566 }
7567
7568 bfd_boolean
7569 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7570 asection *section,
7571 asymbol **symbols,
7572 bfd_vma offset,
7573 const char **filename_ptr,
7574 const char **functionname_ptr,
7575 unsigned int *line_ptr,
7576 unsigned int *discriminator_ptr)
7577 {
7578 bfd_boolean found;
7579
7580 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7581 filename_ptr, functionname_ptr,
7582 line_ptr))
7583 {
7584 if (!*functionname_ptr)
7585 elf_find_function (abfd, section, symbols, offset,
7586 *filename_ptr ? NULL : filename_ptr,
7587 functionname_ptr);
7588
7589 return TRUE;
7590 }
7591
7592 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7593 section, symbols, offset,
7594 filename_ptr, functionname_ptr,
7595 line_ptr, discriminator_ptr, 0,
7596 &elf_tdata (abfd)->dwarf2_find_line_info))
7597 {
7598 if (!*functionname_ptr)
7599 elf_find_function (abfd, section, symbols, offset,
7600 *filename_ptr ? NULL : filename_ptr,
7601 functionname_ptr);
7602
7603 return TRUE;
7604 }
7605
7606 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7607 &found, filename_ptr,
7608 functionname_ptr, line_ptr,
7609 &elf_tdata (abfd)->line_info))
7610 return FALSE;
7611 if (found && (*functionname_ptr || *line_ptr))
7612 return TRUE;
7613
7614 if (symbols == NULL)
7615 return FALSE;
7616
7617 if (! elf_find_function (abfd, section, symbols, offset,
7618 filename_ptr, functionname_ptr))
7619 return FALSE;
7620
7621 *line_ptr = 0;
7622 return TRUE;
7623 }
7624
7625 /* Find the line for a symbol. */
7626
7627 bfd_boolean
7628 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7629 const char **filename_ptr, unsigned int *line_ptr)
7630 {
7631 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7632 filename_ptr, line_ptr,
7633 NULL);
7634 }
7635
7636 bfd_boolean
7637 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7638 const char **filename_ptr,
7639 unsigned int *line_ptr,
7640 unsigned int *discriminator_ptr)
7641 {
7642 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7643 filename_ptr, line_ptr, discriminator_ptr, 0,
7644 &elf_tdata (abfd)->dwarf2_find_line_info);
7645 }
7646
7647 /* After a call to bfd_find_nearest_line, successive calls to
7648 bfd_find_inliner_info can be used to get source information about
7649 each level of function inlining that terminated at the address
7650 passed to bfd_find_nearest_line. Currently this is only supported
7651 for DWARF2 with appropriate DWARF3 extensions. */
7652
7653 bfd_boolean
7654 _bfd_elf_find_inliner_info (bfd *abfd,
7655 const char **filename_ptr,
7656 const char **functionname_ptr,
7657 unsigned int *line_ptr)
7658 {
7659 bfd_boolean found;
7660 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7661 functionname_ptr, line_ptr,
7662 & elf_tdata (abfd)->dwarf2_find_line_info);
7663 return found;
7664 }
7665
7666 int
7667 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7668 {
7669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7670 int ret = bed->s->sizeof_ehdr;
7671
7672 if (!info->relocatable)
7673 {
7674 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7675
7676 if (phdr_size == (bfd_size_type) -1)
7677 {
7678 struct elf_segment_map *m;
7679
7680 phdr_size = 0;
7681 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7682 phdr_size += bed->s->sizeof_phdr;
7683
7684 if (phdr_size == 0)
7685 phdr_size = get_program_header_size (abfd, info);
7686 }
7687
7688 elf_tdata (abfd)->program_header_size = phdr_size;
7689 ret += phdr_size;
7690 }
7691
7692 return ret;
7693 }
7694
7695 bfd_boolean
7696 _bfd_elf_set_section_contents (bfd *abfd,
7697 sec_ptr section,
7698 const void *location,
7699 file_ptr offset,
7700 bfd_size_type count)
7701 {
7702 Elf_Internal_Shdr *hdr;
7703 bfd_signed_vma pos;
7704
7705 if (! abfd->output_has_begun
7706 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7707 return FALSE;
7708
7709 hdr = &elf_section_data (section)->this_hdr;
7710 pos = hdr->sh_offset + offset;
7711 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7712 || bfd_bwrite (location, count, abfd) != count)
7713 return FALSE;
7714
7715 return TRUE;
7716 }
7717
7718 void
7719 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7720 arelent *cache_ptr ATTRIBUTE_UNUSED,
7721 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7722 {
7723 abort ();
7724 }
7725
7726 /* Try to convert a non-ELF reloc into an ELF one. */
7727
7728 bfd_boolean
7729 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7730 {
7731 /* Check whether we really have an ELF howto. */
7732
7733 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7734 {
7735 bfd_reloc_code_real_type code;
7736 reloc_howto_type *howto;
7737
7738 /* Alien reloc: Try to determine its type to replace it with an
7739 equivalent ELF reloc. */
7740
7741 if (areloc->howto->pc_relative)
7742 {
7743 switch (areloc->howto->bitsize)
7744 {
7745 case 8:
7746 code = BFD_RELOC_8_PCREL;
7747 break;
7748 case 12:
7749 code = BFD_RELOC_12_PCREL;
7750 break;
7751 case 16:
7752 code = BFD_RELOC_16_PCREL;
7753 break;
7754 case 24:
7755 code = BFD_RELOC_24_PCREL;
7756 break;
7757 case 32:
7758 code = BFD_RELOC_32_PCREL;
7759 break;
7760 case 64:
7761 code = BFD_RELOC_64_PCREL;
7762 break;
7763 default:
7764 goto fail;
7765 }
7766
7767 howto = bfd_reloc_type_lookup (abfd, code);
7768
7769 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7770 {
7771 if (howto->pcrel_offset)
7772 areloc->addend += areloc->address;
7773 else
7774 areloc->addend -= areloc->address; /* addend is unsigned!! */
7775 }
7776 }
7777 else
7778 {
7779 switch (areloc->howto->bitsize)
7780 {
7781 case 8:
7782 code = BFD_RELOC_8;
7783 break;
7784 case 14:
7785 code = BFD_RELOC_14;
7786 break;
7787 case 16:
7788 code = BFD_RELOC_16;
7789 break;
7790 case 26:
7791 code = BFD_RELOC_26;
7792 break;
7793 case 32:
7794 code = BFD_RELOC_32;
7795 break;
7796 case 64:
7797 code = BFD_RELOC_64;
7798 break;
7799 default:
7800 goto fail;
7801 }
7802
7803 howto = bfd_reloc_type_lookup (abfd, code);
7804 }
7805
7806 if (howto)
7807 areloc->howto = howto;
7808 else
7809 goto fail;
7810 }
7811
7812 return TRUE;
7813
7814 fail:
7815 (*_bfd_error_handler)
7816 (_("%B: unsupported relocation type %s"),
7817 abfd, areloc->howto->name);
7818 bfd_set_error (bfd_error_bad_value);
7819 return FALSE;
7820 }
7821
7822 bfd_boolean
7823 _bfd_elf_close_and_cleanup (bfd *abfd)
7824 {
7825 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7826 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7827 {
7828 if (elf_shstrtab (abfd) != NULL)
7829 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7830 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7831 }
7832
7833 return _bfd_generic_close_and_cleanup (abfd);
7834 }
7835
7836 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7837 in the relocation's offset. Thus we cannot allow any sort of sanity
7838 range-checking to interfere. There is nothing else to do in processing
7839 this reloc. */
7840
7841 bfd_reloc_status_type
7842 _bfd_elf_rel_vtable_reloc_fn
7843 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7844 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7845 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7846 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7847 {
7848 return bfd_reloc_ok;
7849 }
7850 \f
7851 /* Elf core file support. Much of this only works on native
7852 toolchains, since we rely on knowing the
7853 machine-dependent procfs structure in order to pick
7854 out details about the corefile. */
7855
7856 #ifdef HAVE_SYS_PROCFS_H
7857 /* Needed for new procfs interface on sparc-solaris. */
7858 # define _STRUCTURED_PROC 1
7859 # include <sys/procfs.h>
7860 #endif
7861
7862 /* Return a PID that identifies a "thread" for threaded cores, or the
7863 PID of the main process for non-threaded cores. */
7864
7865 static int
7866 elfcore_make_pid (bfd *abfd)
7867 {
7868 int pid;
7869
7870 pid = elf_tdata (abfd)->core_lwpid;
7871 if (pid == 0)
7872 pid = elf_tdata (abfd)->core_pid;
7873
7874 return pid;
7875 }
7876
7877 /* If there isn't a section called NAME, make one, using
7878 data from SECT. Note, this function will generate a
7879 reference to NAME, so you shouldn't deallocate or
7880 overwrite it. */
7881
7882 static bfd_boolean
7883 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7884 {
7885 asection *sect2;
7886
7887 if (bfd_get_section_by_name (abfd, name) != NULL)
7888 return TRUE;
7889
7890 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7891 if (sect2 == NULL)
7892 return FALSE;
7893
7894 sect2->size = sect->size;
7895 sect2->filepos = sect->filepos;
7896 sect2->alignment_power = sect->alignment_power;
7897 return TRUE;
7898 }
7899
7900 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7901 actually creates up to two pseudosections:
7902 - For the single-threaded case, a section named NAME, unless
7903 such a section already exists.
7904 - For the multi-threaded case, a section named "NAME/PID", where
7905 PID is elfcore_make_pid (abfd).
7906 Both pseudosections have identical contents. */
7907 bfd_boolean
7908 _bfd_elfcore_make_pseudosection (bfd *abfd,
7909 char *name,
7910 size_t size,
7911 ufile_ptr filepos)
7912 {
7913 char buf[100];
7914 char *threaded_name;
7915 size_t len;
7916 asection *sect;
7917
7918 /* Build the section name. */
7919
7920 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7921 len = strlen (buf) + 1;
7922 threaded_name = (char *) bfd_alloc (abfd, len);
7923 if (threaded_name == NULL)
7924 return FALSE;
7925 memcpy (threaded_name, buf, len);
7926
7927 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7928 SEC_HAS_CONTENTS);
7929 if (sect == NULL)
7930 return FALSE;
7931 sect->size = size;
7932 sect->filepos = filepos;
7933 sect->alignment_power = 2;
7934
7935 return elfcore_maybe_make_sect (abfd, name, sect);
7936 }
7937
7938 /* prstatus_t exists on:
7939 solaris 2.5+
7940 linux 2.[01] + glibc
7941 unixware 4.2
7942 */
7943
7944 #if defined (HAVE_PRSTATUS_T)
7945
7946 static bfd_boolean
7947 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7948 {
7949 size_t size;
7950 int offset;
7951
7952 if (note->descsz == sizeof (prstatus_t))
7953 {
7954 prstatus_t prstat;
7955
7956 size = sizeof (prstat.pr_reg);
7957 offset = offsetof (prstatus_t, pr_reg);
7958 memcpy (&prstat, note->descdata, sizeof (prstat));
7959
7960 /* Do not overwrite the core signal if it
7961 has already been set by another thread. */
7962 if (elf_tdata (abfd)->core_signal == 0)
7963 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7964 if (elf_tdata (abfd)->core_pid == 0)
7965 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7966
7967 /* pr_who exists on:
7968 solaris 2.5+
7969 unixware 4.2
7970 pr_who doesn't exist on:
7971 linux 2.[01]
7972 */
7973 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7974 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7975 #else
7976 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7977 #endif
7978 }
7979 #if defined (HAVE_PRSTATUS32_T)
7980 else if (note->descsz == sizeof (prstatus32_t))
7981 {
7982 /* 64-bit host, 32-bit corefile */
7983 prstatus32_t prstat;
7984
7985 size = sizeof (prstat.pr_reg);
7986 offset = offsetof (prstatus32_t, pr_reg);
7987 memcpy (&prstat, note->descdata, sizeof (prstat));
7988
7989 /* Do not overwrite the core signal if it
7990 has already been set by another thread. */
7991 if (elf_tdata (abfd)->core_signal == 0)
7992 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7993 if (elf_tdata (abfd)->core_pid == 0)
7994 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7995
7996 /* pr_who exists on:
7997 solaris 2.5+
7998 unixware 4.2
7999 pr_who doesn't exist on:
8000 linux 2.[01]
8001 */
8002 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8003 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8004 #else
8005 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8006 #endif
8007 }
8008 #endif /* HAVE_PRSTATUS32_T */
8009 else
8010 {
8011 /* Fail - we don't know how to handle any other
8012 note size (ie. data object type). */
8013 return TRUE;
8014 }
8015
8016 /* Make a ".reg/999" section and a ".reg" section. */
8017 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8018 size, note->descpos + offset);
8019 }
8020 #endif /* defined (HAVE_PRSTATUS_T) */
8021
8022 /* Create a pseudosection containing the exact contents of NOTE. */
8023 static bfd_boolean
8024 elfcore_make_note_pseudosection (bfd *abfd,
8025 char *name,
8026 Elf_Internal_Note *note)
8027 {
8028 return _bfd_elfcore_make_pseudosection (abfd, name,
8029 note->descsz, note->descpos);
8030 }
8031
8032 /* There isn't a consistent prfpregset_t across platforms,
8033 but it doesn't matter, because we don't have to pick this
8034 data structure apart. */
8035
8036 static bfd_boolean
8037 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8038 {
8039 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8040 }
8041
8042 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8043 type of NT_PRXFPREG. Just include the whole note's contents
8044 literally. */
8045
8046 static bfd_boolean
8047 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8048 {
8049 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8050 }
8051
8052 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8053 with a note type of NT_X86_XSTATE. Just include the whole note's
8054 contents literally. */
8055
8056 static bfd_boolean
8057 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8058 {
8059 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8060 }
8061
8062 static bfd_boolean
8063 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8064 {
8065 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8066 }
8067
8068 static bfd_boolean
8069 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8070 {
8071 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8072 }
8073
8074 static bfd_boolean
8075 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8076 {
8077 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8078 }
8079
8080 static bfd_boolean
8081 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8082 {
8083 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8084 }
8085
8086 static bfd_boolean
8087 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8088 {
8089 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8090 }
8091
8092 static bfd_boolean
8093 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8094 {
8095 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8096 }
8097
8098 static bfd_boolean
8099 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8100 {
8101 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8102 }
8103
8104 static bfd_boolean
8105 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8106 {
8107 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8108 }
8109
8110 static bfd_boolean
8111 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8112 {
8113 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8114 }
8115
8116 static bfd_boolean
8117 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8118 {
8119 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8120 }
8121
8122 static bfd_boolean
8123 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8124 {
8125 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8126 }
8127
8128 #if defined (HAVE_PRPSINFO_T)
8129 typedef prpsinfo_t elfcore_psinfo_t;
8130 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8131 typedef prpsinfo32_t elfcore_psinfo32_t;
8132 #endif
8133 #endif
8134
8135 #if defined (HAVE_PSINFO_T)
8136 typedef psinfo_t elfcore_psinfo_t;
8137 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8138 typedef psinfo32_t elfcore_psinfo32_t;
8139 #endif
8140 #endif
8141
8142 /* return a malloc'ed copy of a string at START which is at
8143 most MAX bytes long, possibly without a terminating '\0'.
8144 the copy will always have a terminating '\0'. */
8145
8146 char *
8147 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8148 {
8149 char *dups;
8150 char *end = (char *) memchr (start, '\0', max);
8151 size_t len;
8152
8153 if (end == NULL)
8154 len = max;
8155 else
8156 len = end - start;
8157
8158 dups = (char *) bfd_alloc (abfd, len + 1);
8159 if (dups == NULL)
8160 return NULL;
8161
8162 memcpy (dups, start, len);
8163 dups[len] = '\0';
8164
8165 return dups;
8166 }
8167
8168 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8169 static bfd_boolean
8170 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8171 {
8172 if (note->descsz == sizeof (elfcore_psinfo_t))
8173 {
8174 elfcore_psinfo_t psinfo;
8175
8176 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8177
8178 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8179 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8180 #endif
8181 elf_tdata (abfd)->core_program
8182 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8183 sizeof (psinfo.pr_fname));
8184
8185 elf_tdata (abfd)->core_command
8186 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8187 sizeof (psinfo.pr_psargs));
8188 }
8189 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8190 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8191 {
8192 /* 64-bit host, 32-bit corefile */
8193 elfcore_psinfo32_t psinfo;
8194
8195 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8196
8197 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8198 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8199 #endif
8200 elf_tdata (abfd)->core_program
8201 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8202 sizeof (psinfo.pr_fname));
8203
8204 elf_tdata (abfd)->core_command
8205 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8206 sizeof (psinfo.pr_psargs));
8207 }
8208 #endif
8209
8210 else
8211 {
8212 /* Fail - we don't know how to handle any other
8213 note size (ie. data object type). */
8214 return TRUE;
8215 }
8216
8217 /* Note that for some reason, a spurious space is tacked
8218 onto the end of the args in some (at least one anyway)
8219 implementations, so strip it off if it exists. */
8220
8221 {
8222 char *command = elf_tdata (abfd)->core_command;
8223 int n = strlen (command);
8224
8225 if (0 < n && command[n - 1] == ' ')
8226 command[n - 1] = '\0';
8227 }
8228
8229 return TRUE;
8230 }
8231 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8232
8233 #if defined (HAVE_PSTATUS_T)
8234 static bfd_boolean
8235 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8236 {
8237 if (note->descsz == sizeof (pstatus_t)
8238 #if defined (HAVE_PXSTATUS_T)
8239 || note->descsz == sizeof (pxstatus_t)
8240 #endif
8241 )
8242 {
8243 pstatus_t pstat;
8244
8245 memcpy (&pstat, note->descdata, sizeof (pstat));
8246
8247 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8248 }
8249 #if defined (HAVE_PSTATUS32_T)
8250 else if (note->descsz == sizeof (pstatus32_t))
8251 {
8252 /* 64-bit host, 32-bit corefile */
8253 pstatus32_t pstat;
8254
8255 memcpy (&pstat, note->descdata, sizeof (pstat));
8256
8257 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8258 }
8259 #endif
8260 /* Could grab some more details from the "representative"
8261 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8262 NT_LWPSTATUS note, presumably. */
8263
8264 return TRUE;
8265 }
8266 #endif /* defined (HAVE_PSTATUS_T) */
8267
8268 #if defined (HAVE_LWPSTATUS_T)
8269 static bfd_boolean
8270 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8271 {
8272 lwpstatus_t lwpstat;
8273 char buf[100];
8274 char *name;
8275 size_t len;
8276 asection *sect;
8277
8278 if (note->descsz != sizeof (lwpstat)
8279 #if defined (HAVE_LWPXSTATUS_T)
8280 && note->descsz != sizeof (lwpxstatus_t)
8281 #endif
8282 )
8283 return TRUE;
8284
8285 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8286
8287 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8288 /* Do not overwrite the core signal if it has already been set by
8289 another thread. */
8290 if (elf_tdata (abfd)->core_signal == 0)
8291 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8292
8293 /* Make a ".reg/999" section. */
8294
8295 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8296 len = strlen (buf) + 1;
8297 name = bfd_alloc (abfd, len);
8298 if (name == NULL)
8299 return FALSE;
8300 memcpy (name, buf, len);
8301
8302 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8303 if (sect == NULL)
8304 return FALSE;
8305
8306 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8307 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8308 sect->filepos = note->descpos
8309 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8310 #endif
8311
8312 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8313 sect->size = sizeof (lwpstat.pr_reg);
8314 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8315 #endif
8316
8317 sect->alignment_power = 2;
8318
8319 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8320 return FALSE;
8321
8322 /* Make a ".reg2/999" section */
8323
8324 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8325 len = strlen (buf) + 1;
8326 name = bfd_alloc (abfd, len);
8327 if (name == NULL)
8328 return FALSE;
8329 memcpy (name, buf, len);
8330
8331 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8332 if (sect == NULL)
8333 return FALSE;
8334
8335 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8336 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8337 sect->filepos = note->descpos
8338 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8339 #endif
8340
8341 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8342 sect->size = sizeof (lwpstat.pr_fpreg);
8343 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8344 #endif
8345
8346 sect->alignment_power = 2;
8347
8348 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8349 }
8350 #endif /* defined (HAVE_LWPSTATUS_T) */
8351
8352 static bfd_boolean
8353 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8354 {
8355 char buf[30];
8356 char *name;
8357 size_t len;
8358 asection *sect;
8359 int type;
8360 int is_active_thread;
8361 bfd_vma base_addr;
8362
8363 if (note->descsz < 728)
8364 return TRUE;
8365
8366 if (! CONST_STRNEQ (note->namedata, "win32"))
8367 return TRUE;
8368
8369 type = bfd_get_32 (abfd, note->descdata);
8370
8371 switch (type)
8372 {
8373 case 1 /* NOTE_INFO_PROCESS */:
8374 /* FIXME: need to add ->core_command. */
8375 /* process_info.pid */
8376 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8377 /* process_info.signal */
8378 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8379 break;
8380
8381 case 2 /* NOTE_INFO_THREAD */:
8382 /* Make a ".reg/999" section. */
8383 /* thread_info.tid */
8384 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8385
8386 len = strlen (buf) + 1;
8387 name = (char *) bfd_alloc (abfd, len);
8388 if (name == NULL)
8389 return FALSE;
8390
8391 memcpy (name, buf, len);
8392
8393 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8394 if (sect == NULL)
8395 return FALSE;
8396
8397 /* sizeof (thread_info.thread_context) */
8398 sect->size = 716;
8399 /* offsetof (thread_info.thread_context) */
8400 sect->filepos = note->descpos + 12;
8401 sect->alignment_power = 2;
8402
8403 /* thread_info.is_active_thread */
8404 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8405
8406 if (is_active_thread)
8407 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8408 return FALSE;
8409 break;
8410
8411 case 3 /* NOTE_INFO_MODULE */:
8412 /* Make a ".module/xxxxxxxx" section. */
8413 /* module_info.base_address */
8414 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8415 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8416
8417 len = strlen (buf) + 1;
8418 name = (char *) bfd_alloc (abfd, len);
8419 if (name == NULL)
8420 return FALSE;
8421
8422 memcpy (name, buf, len);
8423
8424 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8425
8426 if (sect == NULL)
8427 return FALSE;
8428
8429 sect->size = note->descsz;
8430 sect->filepos = note->descpos;
8431 sect->alignment_power = 2;
8432 break;
8433
8434 default:
8435 return TRUE;
8436 }
8437
8438 return TRUE;
8439 }
8440
8441 static bfd_boolean
8442 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8443 {
8444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8445
8446 switch (note->type)
8447 {
8448 default:
8449 return TRUE;
8450
8451 case NT_PRSTATUS:
8452 if (bed->elf_backend_grok_prstatus)
8453 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8454 return TRUE;
8455 #if defined (HAVE_PRSTATUS_T)
8456 return elfcore_grok_prstatus (abfd, note);
8457 #else
8458 return TRUE;
8459 #endif
8460
8461 #if defined (HAVE_PSTATUS_T)
8462 case NT_PSTATUS:
8463 return elfcore_grok_pstatus (abfd, note);
8464 #endif
8465
8466 #if defined (HAVE_LWPSTATUS_T)
8467 case NT_LWPSTATUS:
8468 return elfcore_grok_lwpstatus (abfd, note);
8469 #endif
8470
8471 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8472 return elfcore_grok_prfpreg (abfd, note);
8473
8474 case NT_WIN32PSTATUS:
8475 return elfcore_grok_win32pstatus (abfd, note);
8476
8477 case NT_PRXFPREG: /* Linux SSE extension */
8478 if (note->namesz == 6
8479 && strcmp (note->namedata, "LINUX") == 0)
8480 return elfcore_grok_prxfpreg (abfd, note);
8481 else
8482 return TRUE;
8483
8484 case NT_X86_XSTATE: /* Linux XSAVE extension */
8485 if (note->namesz == 6
8486 && strcmp (note->namedata, "LINUX") == 0)
8487 return elfcore_grok_xstatereg (abfd, note);
8488 else
8489 return TRUE;
8490
8491 case NT_PPC_VMX:
8492 if (note->namesz == 6
8493 && strcmp (note->namedata, "LINUX") == 0)
8494 return elfcore_grok_ppc_vmx (abfd, note);
8495 else
8496 return TRUE;
8497
8498 case NT_PPC_VSX:
8499 if (note->namesz == 6
8500 && strcmp (note->namedata, "LINUX") == 0)
8501 return elfcore_grok_ppc_vsx (abfd, note);
8502 else
8503 return TRUE;
8504
8505 case NT_S390_HIGH_GPRS:
8506 if (note->namesz == 6
8507 && strcmp (note->namedata, "LINUX") == 0)
8508 return elfcore_grok_s390_high_gprs (abfd, note);
8509 else
8510 return TRUE;
8511
8512 case NT_S390_TIMER:
8513 if (note->namesz == 6
8514 && strcmp (note->namedata, "LINUX") == 0)
8515 return elfcore_grok_s390_timer (abfd, note);
8516 else
8517 return TRUE;
8518
8519 case NT_S390_TODCMP:
8520 if (note->namesz == 6
8521 && strcmp (note->namedata, "LINUX") == 0)
8522 return elfcore_grok_s390_todcmp (abfd, note);
8523 else
8524 return TRUE;
8525
8526 case NT_S390_TODPREG:
8527 if (note->namesz == 6
8528 && strcmp (note->namedata, "LINUX") == 0)
8529 return elfcore_grok_s390_todpreg (abfd, note);
8530 else
8531 return TRUE;
8532
8533 case NT_S390_CTRS:
8534 if (note->namesz == 6
8535 && strcmp (note->namedata, "LINUX") == 0)
8536 return elfcore_grok_s390_ctrs (abfd, note);
8537 else
8538 return TRUE;
8539
8540 case NT_S390_PREFIX:
8541 if (note->namesz == 6
8542 && strcmp (note->namedata, "LINUX") == 0)
8543 return elfcore_grok_s390_prefix (abfd, note);
8544 else
8545 return TRUE;
8546
8547 case NT_S390_LAST_BREAK:
8548 if (note->namesz == 6
8549 && strcmp (note->namedata, "LINUX") == 0)
8550 return elfcore_grok_s390_last_break (abfd, note);
8551 else
8552 return TRUE;
8553
8554 case NT_S390_SYSTEM_CALL:
8555 if (note->namesz == 6
8556 && strcmp (note->namedata, "LINUX") == 0)
8557 return elfcore_grok_s390_system_call (abfd, note);
8558 else
8559 return TRUE;
8560
8561 case NT_ARM_VFP:
8562 if (note->namesz == 6
8563 && strcmp (note->namedata, "LINUX") == 0)
8564 return elfcore_grok_arm_vfp (abfd, note);
8565 else
8566 return TRUE;
8567
8568 case NT_PRPSINFO:
8569 case NT_PSINFO:
8570 if (bed->elf_backend_grok_psinfo)
8571 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8572 return TRUE;
8573 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8574 return elfcore_grok_psinfo (abfd, note);
8575 #else
8576 return TRUE;
8577 #endif
8578
8579 case NT_AUXV:
8580 {
8581 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8582 SEC_HAS_CONTENTS);
8583
8584 if (sect == NULL)
8585 return FALSE;
8586 sect->size = note->descsz;
8587 sect->filepos = note->descpos;
8588 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8589
8590 return TRUE;
8591 }
8592 }
8593 }
8594
8595 static bfd_boolean
8596 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8597 {
8598 elf_tdata (abfd)->build_id_size = note->descsz;
8599 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8600 if (elf_tdata (abfd)->build_id == NULL)
8601 return FALSE;
8602
8603 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8604
8605 return TRUE;
8606 }
8607
8608 static bfd_boolean
8609 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8610 {
8611 switch (note->type)
8612 {
8613 default:
8614 return TRUE;
8615
8616 case NT_GNU_BUILD_ID:
8617 return elfobj_grok_gnu_build_id (abfd, note);
8618 }
8619 }
8620
8621 static bfd_boolean
8622 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8623 {
8624 struct sdt_note *cur =
8625 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8626 + note->descsz);
8627
8628 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8629 cur->size = (bfd_size_type) note->descsz;
8630 memcpy (cur->data, note->descdata, note->descsz);
8631
8632 elf_tdata (abfd)->sdt_note_head = cur;
8633
8634 return TRUE;
8635 }
8636
8637 static bfd_boolean
8638 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8639 {
8640 switch (note->type)
8641 {
8642 case NT_STAPSDT:
8643 return elfobj_grok_stapsdt_note_1 (abfd, note);
8644
8645 default:
8646 return TRUE;
8647 }
8648 }
8649
8650 static bfd_boolean
8651 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8652 {
8653 char *cp;
8654
8655 cp = strchr (note->namedata, '@');
8656 if (cp != NULL)
8657 {
8658 *lwpidp = atoi(cp + 1);
8659 return TRUE;
8660 }
8661 return FALSE;
8662 }
8663
8664 static bfd_boolean
8665 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8666 {
8667 /* Signal number at offset 0x08. */
8668 elf_tdata (abfd)->core_signal
8669 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8670
8671 /* Process ID at offset 0x50. */
8672 elf_tdata (abfd)->core_pid
8673 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8674
8675 /* Command name at 0x7c (max 32 bytes, including nul). */
8676 elf_tdata (abfd)->core_command
8677 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8678
8679 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8680 note);
8681 }
8682
8683 static bfd_boolean
8684 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8685 {
8686 int lwp;
8687
8688 if (elfcore_netbsd_get_lwpid (note, &lwp))
8689 elf_tdata (abfd)->core_lwpid = lwp;
8690
8691 if (note->type == NT_NETBSDCORE_PROCINFO)
8692 {
8693 /* NetBSD-specific core "procinfo". Note that we expect to
8694 find this note before any of the others, which is fine,
8695 since the kernel writes this note out first when it
8696 creates a core file. */
8697
8698 return elfcore_grok_netbsd_procinfo (abfd, note);
8699 }
8700
8701 /* As of Jan 2002 there are no other machine-independent notes
8702 defined for NetBSD core files. If the note type is less
8703 than the start of the machine-dependent note types, we don't
8704 understand it. */
8705
8706 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8707 return TRUE;
8708
8709
8710 switch (bfd_get_arch (abfd))
8711 {
8712 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8713 PT_GETFPREGS == mach+2. */
8714
8715 case bfd_arch_alpha:
8716 case bfd_arch_sparc:
8717 switch (note->type)
8718 {
8719 case NT_NETBSDCORE_FIRSTMACH+0:
8720 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8721
8722 case NT_NETBSDCORE_FIRSTMACH+2:
8723 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8724
8725 default:
8726 return TRUE;
8727 }
8728
8729 /* On all other arch's, PT_GETREGS == mach+1 and
8730 PT_GETFPREGS == mach+3. */
8731
8732 default:
8733 switch (note->type)
8734 {
8735 case NT_NETBSDCORE_FIRSTMACH+1:
8736 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8737
8738 case NT_NETBSDCORE_FIRSTMACH+3:
8739 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8740
8741 default:
8742 return TRUE;
8743 }
8744 }
8745 /* NOTREACHED */
8746 }
8747
8748 static bfd_boolean
8749 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8750 {
8751 /* Signal number at offset 0x08. */
8752 elf_tdata (abfd)->core_signal
8753 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8754
8755 /* Process ID at offset 0x20. */
8756 elf_tdata (abfd)->core_pid
8757 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8758
8759 /* Command name at 0x48 (max 32 bytes, including nul). */
8760 elf_tdata (abfd)->core_command
8761 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8762
8763 return TRUE;
8764 }
8765
8766 static bfd_boolean
8767 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8768 {
8769 if (note->type == NT_OPENBSD_PROCINFO)
8770 return elfcore_grok_openbsd_procinfo (abfd, note);
8771
8772 if (note->type == NT_OPENBSD_REGS)
8773 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8774
8775 if (note->type == NT_OPENBSD_FPREGS)
8776 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8777
8778 if (note->type == NT_OPENBSD_XFPREGS)
8779 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8780
8781 if (note->type == NT_OPENBSD_AUXV)
8782 {
8783 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8784 SEC_HAS_CONTENTS);
8785
8786 if (sect == NULL)
8787 return FALSE;
8788 sect->size = note->descsz;
8789 sect->filepos = note->descpos;
8790 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8791
8792 return TRUE;
8793 }
8794
8795 if (note->type == NT_OPENBSD_WCOOKIE)
8796 {
8797 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8798 SEC_HAS_CONTENTS);
8799
8800 if (sect == NULL)
8801 return FALSE;
8802 sect->size = note->descsz;
8803 sect->filepos = note->descpos;
8804 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8805
8806 return TRUE;
8807 }
8808
8809 return TRUE;
8810 }
8811
8812 static bfd_boolean
8813 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8814 {
8815 void *ddata = note->descdata;
8816 char buf[100];
8817 char *name;
8818 asection *sect;
8819 short sig;
8820 unsigned flags;
8821
8822 /* nto_procfs_status 'pid' field is at offset 0. */
8823 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8824
8825 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8826 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8827
8828 /* nto_procfs_status 'flags' field is at offset 8. */
8829 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8830
8831 /* nto_procfs_status 'what' field is at offset 14. */
8832 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8833 {
8834 elf_tdata (abfd)->core_signal = sig;
8835 elf_tdata (abfd)->core_lwpid = *tid;
8836 }
8837
8838 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8839 do not come from signals so we make sure we set the current
8840 thread just in case. */
8841 if (flags & 0x00000080)
8842 elf_tdata (abfd)->core_lwpid = *tid;
8843
8844 /* Make a ".qnx_core_status/%d" section. */
8845 sprintf (buf, ".qnx_core_status/%ld", *tid);
8846
8847 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8848 if (name == NULL)
8849 return FALSE;
8850 strcpy (name, buf);
8851
8852 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8853 if (sect == NULL)
8854 return FALSE;
8855
8856 sect->size = note->descsz;
8857 sect->filepos = note->descpos;
8858 sect->alignment_power = 2;
8859
8860 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8861 }
8862
8863 static bfd_boolean
8864 elfcore_grok_nto_regs (bfd *abfd,
8865 Elf_Internal_Note *note,
8866 long tid,
8867 char *base)
8868 {
8869 char buf[100];
8870 char *name;
8871 asection *sect;
8872
8873 /* Make a "(base)/%d" section. */
8874 sprintf (buf, "%s/%ld", base, tid);
8875
8876 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8877 if (name == NULL)
8878 return FALSE;
8879 strcpy (name, buf);
8880
8881 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8882 if (sect == NULL)
8883 return FALSE;
8884
8885 sect->size = note->descsz;
8886 sect->filepos = note->descpos;
8887 sect->alignment_power = 2;
8888
8889 /* This is the current thread. */
8890 if (elf_tdata (abfd)->core_lwpid == tid)
8891 return elfcore_maybe_make_sect (abfd, base, sect);
8892
8893 return TRUE;
8894 }
8895
8896 #define BFD_QNT_CORE_INFO 7
8897 #define BFD_QNT_CORE_STATUS 8
8898 #define BFD_QNT_CORE_GREG 9
8899 #define BFD_QNT_CORE_FPREG 10
8900
8901 static bfd_boolean
8902 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8903 {
8904 /* Every GREG section has a STATUS section before it. Store the
8905 tid from the previous call to pass down to the next gregs
8906 function. */
8907 static long tid = 1;
8908
8909 switch (note->type)
8910 {
8911 case BFD_QNT_CORE_INFO:
8912 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8913 case BFD_QNT_CORE_STATUS:
8914 return elfcore_grok_nto_status (abfd, note, &tid);
8915 case BFD_QNT_CORE_GREG:
8916 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8917 case BFD_QNT_CORE_FPREG:
8918 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8919 default:
8920 return TRUE;
8921 }
8922 }
8923
8924 static bfd_boolean
8925 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8926 {
8927 char *name;
8928 asection *sect;
8929 size_t len;
8930
8931 /* Use note name as section name. */
8932 len = note->namesz;
8933 name = (char *) bfd_alloc (abfd, len);
8934 if (name == NULL)
8935 return FALSE;
8936 memcpy (name, note->namedata, len);
8937 name[len - 1] = '\0';
8938
8939 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8940 if (sect == NULL)
8941 return FALSE;
8942
8943 sect->size = note->descsz;
8944 sect->filepos = note->descpos;
8945 sect->alignment_power = 1;
8946
8947 return TRUE;
8948 }
8949
8950 /* Function: elfcore_write_note
8951
8952 Inputs:
8953 buffer to hold note, and current size of buffer
8954 name of note
8955 type of note
8956 data for note
8957 size of data for note
8958
8959 Writes note to end of buffer. ELF64 notes are written exactly as
8960 for ELF32, despite the current (as of 2006) ELF gabi specifying
8961 that they ought to have 8-byte namesz and descsz field, and have
8962 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8963
8964 Return:
8965 Pointer to realloc'd buffer, *BUFSIZ updated. */
8966
8967 char *
8968 elfcore_write_note (bfd *abfd,
8969 char *buf,
8970 int *bufsiz,
8971 const char *name,
8972 int type,
8973 const void *input,
8974 int size)
8975 {
8976 Elf_External_Note *xnp;
8977 size_t namesz;
8978 size_t newspace;
8979 char *dest;
8980
8981 namesz = 0;
8982 if (name != NULL)
8983 namesz = strlen (name) + 1;
8984
8985 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8986
8987 buf = (char *) realloc (buf, *bufsiz + newspace);
8988 if (buf == NULL)
8989 return buf;
8990 dest = buf + *bufsiz;
8991 *bufsiz += newspace;
8992 xnp = (Elf_External_Note *) dest;
8993 H_PUT_32 (abfd, namesz, xnp->namesz);
8994 H_PUT_32 (abfd, size, xnp->descsz);
8995 H_PUT_32 (abfd, type, xnp->type);
8996 dest = xnp->name;
8997 if (name != NULL)
8998 {
8999 memcpy (dest, name, namesz);
9000 dest += namesz;
9001 while (namesz & 3)
9002 {
9003 *dest++ = '\0';
9004 ++namesz;
9005 }
9006 }
9007 memcpy (dest, input, size);
9008 dest += size;
9009 while (size & 3)
9010 {
9011 *dest++ = '\0';
9012 ++size;
9013 }
9014 return buf;
9015 }
9016
9017 char *
9018 elfcore_write_prpsinfo (bfd *abfd,
9019 char *buf,
9020 int *bufsiz,
9021 const char *fname,
9022 const char *psargs)
9023 {
9024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9025
9026 if (bed->elf_backend_write_core_note != NULL)
9027 {
9028 char *ret;
9029 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9030 NT_PRPSINFO, fname, psargs);
9031 if (ret != NULL)
9032 return ret;
9033 }
9034
9035 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9036 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9037 if (bed->s->elfclass == ELFCLASS32)
9038 {
9039 #if defined (HAVE_PSINFO32_T)
9040 psinfo32_t data;
9041 int note_type = NT_PSINFO;
9042 #else
9043 prpsinfo32_t data;
9044 int note_type = NT_PRPSINFO;
9045 #endif
9046
9047 memset (&data, 0, sizeof (data));
9048 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9049 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9050 return elfcore_write_note (abfd, buf, bufsiz,
9051 "CORE", note_type, &data, sizeof (data));
9052 }
9053 else
9054 #endif
9055 {
9056 #if defined (HAVE_PSINFO_T)
9057 psinfo_t data;
9058 int note_type = NT_PSINFO;
9059 #else
9060 prpsinfo_t data;
9061 int note_type = NT_PRPSINFO;
9062 #endif
9063
9064 memset (&data, 0, sizeof (data));
9065 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9066 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9067 return elfcore_write_note (abfd, buf, bufsiz,
9068 "CORE", note_type, &data, sizeof (data));
9069 }
9070 #endif /* PSINFO_T or PRPSINFO_T */
9071
9072 free (buf);
9073 return NULL;
9074 }
9075
9076 char *
9077 elfcore_write_prstatus (bfd *abfd,
9078 char *buf,
9079 int *bufsiz,
9080 long pid,
9081 int cursig,
9082 const void *gregs)
9083 {
9084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9085
9086 if (bed->elf_backend_write_core_note != NULL)
9087 {
9088 char *ret;
9089 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9090 NT_PRSTATUS,
9091 pid, cursig, gregs);
9092 if (ret != NULL)
9093 return ret;
9094 }
9095
9096 #if defined (HAVE_PRSTATUS_T)
9097 #if defined (HAVE_PRSTATUS32_T)
9098 if (bed->s->elfclass == ELFCLASS32)
9099 {
9100 prstatus32_t prstat;
9101
9102 memset (&prstat, 0, sizeof (prstat));
9103 prstat.pr_pid = pid;
9104 prstat.pr_cursig = cursig;
9105 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9106 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9107 NT_PRSTATUS, &prstat, sizeof (prstat));
9108 }
9109 else
9110 #endif
9111 {
9112 prstatus_t prstat;
9113
9114 memset (&prstat, 0, sizeof (prstat));
9115 prstat.pr_pid = pid;
9116 prstat.pr_cursig = cursig;
9117 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9118 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9119 NT_PRSTATUS, &prstat, sizeof (prstat));
9120 }
9121 #endif /* HAVE_PRSTATUS_T */
9122
9123 free (buf);
9124 return NULL;
9125 }
9126
9127 #if defined (HAVE_LWPSTATUS_T)
9128 char *
9129 elfcore_write_lwpstatus (bfd *abfd,
9130 char *buf,
9131 int *bufsiz,
9132 long pid,
9133 int cursig,
9134 const void *gregs)
9135 {
9136 lwpstatus_t lwpstat;
9137 const char *note_name = "CORE";
9138
9139 memset (&lwpstat, 0, sizeof (lwpstat));
9140 lwpstat.pr_lwpid = pid >> 16;
9141 lwpstat.pr_cursig = cursig;
9142 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9143 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9144 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9145 #if !defined(gregs)
9146 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9147 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9148 #else
9149 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9150 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9151 #endif
9152 #endif
9153 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9154 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9155 }
9156 #endif /* HAVE_LWPSTATUS_T */
9157
9158 #if defined (HAVE_PSTATUS_T)
9159 char *
9160 elfcore_write_pstatus (bfd *abfd,
9161 char *buf,
9162 int *bufsiz,
9163 long pid,
9164 int cursig ATTRIBUTE_UNUSED,
9165 const void *gregs ATTRIBUTE_UNUSED)
9166 {
9167 const char *note_name = "CORE";
9168 #if defined (HAVE_PSTATUS32_T)
9169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9170
9171 if (bed->s->elfclass == ELFCLASS32)
9172 {
9173 pstatus32_t pstat;
9174
9175 memset (&pstat, 0, sizeof (pstat));
9176 pstat.pr_pid = pid & 0xffff;
9177 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9178 NT_PSTATUS, &pstat, sizeof (pstat));
9179 return buf;
9180 }
9181 else
9182 #endif
9183 {
9184 pstatus_t pstat;
9185
9186 memset (&pstat, 0, sizeof (pstat));
9187 pstat.pr_pid = pid & 0xffff;
9188 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9189 NT_PSTATUS, &pstat, sizeof (pstat));
9190 return buf;
9191 }
9192 }
9193 #endif /* HAVE_PSTATUS_T */
9194
9195 char *
9196 elfcore_write_prfpreg (bfd *abfd,
9197 char *buf,
9198 int *bufsiz,
9199 const void *fpregs,
9200 int size)
9201 {
9202 const char *note_name = "CORE";
9203 return elfcore_write_note (abfd, buf, bufsiz,
9204 note_name, NT_FPREGSET, fpregs, size);
9205 }
9206
9207 char *
9208 elfcore_write_prxfpreg (bfd *abfd,
9209 char *buf,
9210 int *bufsiz,
9211 const void *xfpregs,
9212 int size)
9213 {
9214 char *note_name = "LINUX";
9215 return elfcore_write_note (abfd, buf, bufsiz,
9216 note_name, NT_PRXFPREG, xfpregs, size);
9217 }
9218
9219 char *
9220 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9221 const void *xfpregs, int size)
9222 {
9223 char *note_name = "LINUX";
9224 return elfcore_write_note (abfd, buf, bufsiz,
9225 note_name, NT_X86_XSTATE, xfpregs, size);
9226 }
9227
9228 char *
9229 elfcore_write_ppc_vmx (bfd *abfd,
9230 char *buf,
9231 int *bufsiz,
9232 const void *ppc_vmx,
9233 int size)
9234 {
9235 char *note_name = "LINUX";
9236 return elfcore_write_note (abfd, buf, bufsiz,
9237 note_name, NT_PPC_VMX, ppc_vmx, size);
9238 }
9239
9240 char *
9241 elfcore_write_ppc_vsx (bfd *abfd,
9242 char *buf,
9243 int *bufsiz,
9244 const void *ppc_vsx,
9245 int size)
9246 {
9247 char *note_name = "LINUX";
9248 return elfcore_write_note (abfd, buf, bufsiz,
9249 note_name, NT_PPC_VSX, ppc_vsx, size);
9250 }
9251
9252 static char *
9253 elfcore_write_s390_high_gprs (bfd *abfd,
9254 char *buf,
9255 int *bufsiz,
9256 const void *s390_high_gprs,
9257 int size)
9258 {
9259 char *note_name = "LINUX";
9260 return elfcore_write_note (abfd, buf, bufsiz,
9261 note_name, NT_S390_HIGH_GPRS,
9262 s390_high_gprs, size);
9263 }
9264
9265 char *
9266 elfcore_write_s390_timer (bfd *abfd,
9267 char *buf,
9268 int *bufsiz,
9269 const void *s390_timer,
9270 int size)
9271 {
9272 char *note_name = "LINUX";
9273 return elfcore_write_note (abfd, buf, bufsiz,
9274 note_name, NT_S390_TIMER, s390_timer, size);
9275 }
9276
9277 char *
9278 elfcore_write_s390_todcmp (bfd *abfd,
9279 char *buf,
9280 int *bufsiz,
9281 const void *s390_todcmp,
9282 int size)
9283 {
9284 char *note_name = "LINUX";
9285 return elfcore_write_note (abfd, buf, bufsiz,
9286 note_name, NT_S390_TODCMP, s390_todcmp, size);
9287 }
9288
9289 char *
9290 elfcore_write_s390_todpreg (bfd *abfd,
9291 char *buf,
9292 int *bufsiz,
9293 const void *s390_todpreg,
9294 int size)
9295 {
9296 char *note_name = "LINUX";
9297 return elfcore_write_note (abfd, buf, bufsiz,
9298 note_name, NT_S390_TODPREG, s390_todpreg, size);
9299 }
9300
9301 char *
9302 elfcore_write_s390_ctrs (bfd *abfd,
9303 char *buf,
9304 int *bufsiz,
9305 const void *s390_ctrs,
9306 int size)
9307 {
9308 char *note_name = "LINUX";
9309 return elfcore_write_note (abfd, buf, bufsiz,
9310 note_name, NT_S390_CTRS, s390_ctrs, size);
9311 }
9312
9313 char *
9314 elfcore_write_s390_prefix (bfd *abfd,
9315 char *buf,
9316 int *bufsiz,
9317 const void *s390_prefix,
9318 int size)
9319 {
9320 char *note_name = "LINUX";
9321 return elfcore_write_note (abfd, buf, bufsiz,
9322 note_name, NT_S390_PREFIX, s390_prefix, size);
9323 }
9324
9325 char *
9326 elfcore_write_s390_last_break (bfd *abfd,
9327 char *buf,
9328 int *bufsiz,
9329 const void *s390_last_break,
9330 int size)
9331 {
9332 char *note_name = "LINUX";
9333 return elfcore_write_note (abfd, buf, bufsiz,
9334 note_name, NT_S390_LAST_BREAK,
9335 s390_last_break, size);
9336 }
9337
9338 char *
9339 elfcore_write_s390_system_call (bfd *abfd,
9340 char *buf,
9341 int *bufsiz,
9342 const void *s390_system_call,
9343 int size)
9344 {
9345 char *note_name = "LINUX";
9346 return elfcore_write_note (abfd, buf, bufsiz,
9347 note_name, NT_S390_SYSTEM_CALL,
9348 s390_system_call, size);
9349 }
9350
9351 char *
9352 elfcore_write_arm_vfp (bfd *abfd,
9353 char *buf,
9354 int *bufsiz,
9355 const void *arm_vfp,
9356 int size)
9357 {
9358 char *note_name = "LINUX";
9359 return elfcore_write_note (abfd, buf, bufsiz,
9360 note_name, NT_ARM_VFP, arm_vfp, size);
9361 }
9362
9363 char *
9364 elfcore_write_register_note (bfd *abfd,
9365 char *buf,
9366 int *bufsiz,
9367 const char *section,
9368 const void *data,
9369 int size)
9370 {
9371 if (strcmp (section, ".reg2") == 0)
9372 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9373 if (strcmp (section, ".reg-xfp") == 0)
9374 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9375 if (strcmp (section, ".reg-xstate") == 0)
9376 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9377 if (strcmp (section, ".reg-ppc-vmx") == 0)
9378 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9379 if (strcmp (section, ".reg-ppc-vsx") == 0)
9380 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9381 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9382 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9383 if (strcmp (section, ".reg-s390-timer") == 0)
9384 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9385 if (strcmp (section, ".reg-s390-todcmp") == 0)
9386 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9387 if (strcmp (section, ".reg-s390-todpreg") == 0)
9388 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9389 if (strcmp (section, ".reg-s390-ctrs") == 0)
9390 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9391 if (strcmp (section, ".reg-s390-prefix") == 0)
9392 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9393 if (strcmp (section, ".reg-s390-last-break") == 0)
9394 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9395 if (strcmp (section, ".reg-s390-system-call") == 0)
9396 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9397 if (strcmp (section, ".reg-arm-vfp") == 0)
9398 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9399 return NULL;
9400 }
9401
9402 static bfd_boolean
9403 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9404 {
9405 char *p;
9406
9407 p = buf;
9408 while (p < buf + size)
9409 {
9410 /* FIXME: bad alignment assumption. */
9411 Elf_External_Note *xnp = (Elf_External_Note *) p;
9412 Elf_Internal_Note in;
9413
9414 if (offsetof (Elf_External_Note, name) > buf - p + size)
9415 return FALSE;
9416
9417 in.type = H_GET_32 (abfd, xnp->type);
9418
9419 in.namesz = H_GET_32 (abfd, xnp->namesz);
9420 in.namedata = xnp->name;
9421 if (in.namesz > buf - in.namedata + size)
9422 return FALSE;
9423
9424 in.descsz = H_GET_32 (abfd, xnp->descsz);
9425 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9426 in.descpos = offset + (in.descdata - buf);
9427 if (in.descsz != 0
9428 && (in.descdata >= buf + size
9429 || in.descsz > buf - in.descdata + size))
9430 return FALSE;
9431
9432 switch (bfd_get_format (abfd))
9433 {
9434 default:
9435 return TRUE;
9436
9437 case bfd_core:
9438 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9439 {
9440 if (! elfcore_grok_netbsd_note (abfd, &in))
9441 return FALSE;
9442 }
9443 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9444 {
9445 if (! elfcore_grok_openbsd_note (abfd, &in))
9446 return FALSE;
9447 }
9448 else if (CONST_STRNEQ (in.namedata, "QNX"))
9449 {
9450 if (! elfcore_grok_nto_note (abfd, &in))
9451 return FALSE;
9452 }
9453 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9454 {
9455 if (! elfcore_grok_spu_note (abfd, &in))
9456 return FALSE;
9457 }
9458 else
9459 {
9460 if (! elfcore_grok_note (abfd, &in))
9461 return FALSE;
9462 }
9463 break;
9464
9465 case bfd_object:
9466 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9467 {
9468 if (! elfobj_grok_gnu_note (abfd, &in))
9469 return FALSE;
9470 }
9471 else if (in.namesz == sizeof "stapsdt"
9472 && strcmp (in.namedata, "stapsdt") == 0)
9473 {
9474 if (! elfobj_grok_stapsdt_note (abfd, &in))
9475 return FALSE;
9476 }
9477 break;
9478 }
9479
9480 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9481 }
9482
9483 return TRUE;
9484 }
9485
9486 static bfd_boolean
9487 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9488 {
9489 char *buf;
9490
9491 if (size <= 0)
9492 return TRUE;
9493
9494 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9495 return FALSE;
9496
9497 buf = (char *) bfd_malloc (size);
9498 if (buf == NULL)
9499 return FALSE;
9500
9501 if (bfd_bread (buf, size, abfd) != size
9502 || !elf_parse_notes (abfd, buf, size, offset))
9503 {
9504 free (buf);
9505 return FALSE;
9506 }
9507
9508 free (buf);
9509 return TRUE;
9510 }
9511 \f
9512 /* Providing external access to the ELF program header table. */
9513
9514 /* Return an upper bound on the number of bytes required to store a
9515 copy of ABFD's program header table entries. Return -1 if an error
9516 occurs; bfd_get_error will return an appropriate code. */
9517
9518 long
9519 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9520 {
9521 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9522 {
9523 bfd_set_error (bfd_error_wrong_format);
9524 return -1;
9525 }
9526
9527 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9528 }
9529
9530 /* Copy ABFD's program header table entries to *PHDRS. The entries
9531 will be stored as an array of Elf_Internal_Phdr structures, as
9532 defined in include/elf/internal.h. To find out how large the
9533 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9534
9535 Return the number of program header table entries read, or -1 if an
9536 error occurs; bfd_get_error will return an appropriate code. */
9537
9538 int
9539 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9540 {
9541 int num_phdrs;
9542
9543 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9544 {
9545 bfd_set_error (bfd_error_wrong_format);
9546 return -1;
9547 }
9548
9549 num_phdrs = elf_elfheader (abfd)->e_phnum;
9550 memcpy (phdrs, elf_tdata (abfd)->phdr,
9551 num_phdrs * sizeof (Elf_Internal_Phdr));
9552
9553 return num_phdrs;
9554 }
9555
9556 enum elf_reloc_type_class
9557 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9558 {
9559 return reloc_class_normal;
9560 }
9561
9562 /* For RELA architectures, return the relocation value for a
9563 relocation against a local symbol. */
9564
9565 bfd_vma
9566 _bfd_elf_rela_local_sym (bfd *abfd,
9567 Elf_Internal_Sym *sym,
9568 asection **psec,
9569 Elf_Internal_Rela *rel)
9570 {
9571 asection *sec = *psec;
9572 bfd_vma relocation;
9573
9574 relocation = (sec->output_section->vma
9575 + sec->output_offset
9576 + sym->st_value);
9577 if ((sec->flags & SEC_MERGE)
9578 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9579 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9580 {
9581 rel->r_addend =
9582 _bfd_merged_section_offset (abfd, psec,
9583 elf_section_data (sec)->sec_info,
9584 sym->st_value + rel->r_addend);
9585 if (sec != *psec)
9586 {
9587 /* If we have changed the section, and our original section is
9588 marked with SEC_EXCLUDE, it means that the original
9589 SEC_MERGE section has been completely subsumed in some
9590 other SEC_MERGE section. In this case, we need to leave
9591 some info around for --emit-relocs. */
9592 if ((sec->flags & SEC_EXCLUDE) != 0)
9593 sec->kept_section = *psec;
9594 sec = *psec;
9595 }
9596 rel->r_addend -= relocation;
9597 rel->r_addend += sec->output_section->vma + sec->output_offset;
9598 }
9599 return relocation;
9600 }
9601
9602 bfd_vma
9603 _bfd_elf_rel_local_sym (bfd *abfd,
9604 Elf_Internal_Sym *sym,
9605 asection **psec,
9606 bfd_vma addend)
9607 {
9608 asection *sec = *psec;
9609
9610 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9611 return sym->st_value + addend;
9612
9613 return _bfd_merged_section_offset (abfd, psec,
9614 elf_section_data (sec)->sec_info,
9615 sym->st_value + addend);
9616 }
9617
9618 bfd_vma
9619 _bfd_elf_section_offset (bfd *abfd,
9620 struct bfd_link_info *info,
9621 asection *sec,
9622 bfd_vma offset)
9623 {
9624 switch (sec->sec_info_type)
9625 {
9626 case SEC_INFO_TYPE_STABS:
9627 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9628 offset);
9629 case SEC_INFO_TYPE_EH_FRAME:
9630 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9631 default:
9632 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9633 {
9634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9635 bfd_size_type address_size = bed->s->arch_size / 8;
9636 offset = sec->size - offset - address_size;
9637 }
9638 return offset;
9639 }
9640 }
9641 \f
9642 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9643 reconstruct an ELF file by reading the segments out of remote memory
9644 based on the ELF file header at EHDR_VMA and the ELF program headers it
9645 points to. If not null, *LOADBASEP is filled in with the difference
9646 between the VMAs from which the segments were read, and the VMAs the
9647 file headers (and hence BFD's idea of each section's VMA) put them at.
9648
9649 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9650 remote memory at target address VMA into the local buffer at MYADDR; it
9651 should return zero on success or an `errno' code on failure. TEMPL must
9652 be a BFD for an ELF target with the word size and byte order found in
9653 the remote memory. */
9654
9655 bfd *
9656 bfd_elf_bfd_from_remote_memory
9657 (bfd *templ,
9658 bfd_vma ehdr_vma,
9659 bfd_vma *loadbasep,
9660 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9661 {
9662 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9663 (templ, ehdr_vma, loadbasep, target_read_memory);
9664 }
9665 \f
9666 long
9667 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9668 long symcount ATTRIBUTE_UNUSED,
9669 asymbol **syms ATTRIBUTE_UNUSED,
9670 long dynsymcount,
9671 asymbol **dynsyms,
9672 asymbol **ret)
9673 {
9674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9675 asection *relplt;
9676 asymbol *s;
9677 const char *relplt_name;
9678 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9679 arelent *p;
9680 long count, i, n;
9681 size_t size;
9682 Elf_Internal_Shdr *hdr;
9683 char *names;
9684 asection *plt;
9685
9686 *ret = NULL;
9687
9688 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9689 return 0;
9690
9691 if (dynsymcount <= 0)
9692 return 0;
9693
9694 if (!bed->plt_sym_val)
9695 return 0;
9696
9697 relplt_name = bed->relplt_name;
9698 if (relplt_name == NULL)
9699 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9700 relplt = bfd_get_section_by_name (abfd, relplt_name);
9701 if (relplt == NULL)
9702 return 0;
9703
9704 hdr = &elf_section_data (relplt)->this_hdr;
9705 if (hdr->sh_link != elf_dynsymtab (abfd)
9706 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9707 return 0;
9708
9709 plt = bfd_get_section_by_name (abfd, ".plt");
9710 if (plt == NULL)
9711 return 0;
9712
9713 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9714 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9715 return -1;
9716
9717 count = relplt->size / hdr->sh_entsize;
9718 size = count * sizeof (asymbol);
9719 p = relplt->relocation;
9720 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9721 {
9722 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9723 if (p->addend != 0)
9724 {
9725 #ifdef BFD64
9726 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9727 #else
9728 size += sizeof ("+0x") - 1 + 8;
9729 #endif
9730 }
9731 }
9732
9733 s = *ret = (asymbol *) bfd_malloc (size);
9734 if (s == NULL)
9735 return -1;
9736
9737 names = (char *) (s + count);
9738 p = relplt->relocation;
9739 n = 0;
9740 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9741 {
9742 size_t len;
9743 bfd_vma addr;
9744
9745 addr = bed->plt_sym_val (i, plt, p);
9746 if (addr == (bfd_vma) -1)
9747 continue;
9748
9749 *s = **p->sym_ptr_ptr;
9750 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9751 we are defining a symbol, ensure one of them is set. */
9752 if ((s->flags & BSF_LOCAL) == 0)
9753 s->flags |= BSF_GLOBAL;
9754 s->flags |= BSF_SYNTHETIC;
9755 s->section = plt;
9756 s->value = addr - plt->vma;
9757 s->name = names;
9758 s->udata.p = NULL;
9759 len = strlen ((*p->sym_ptr_ptr)->name);
9760 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9761 names += len;
9762 if (p->addend != 0)
9763 {
9764 char buf[30], *a;
9765
9766 memcpy (names, "+0x", sizeof ("+0x") - 1);
9767 names += sizeof ("+0x") - 1;
9768 bfd_sprintf_vma (abfd, buf, p->addend);
9769 for (a = buf; *a == '0'; ++a)
9770 ;
9771 len = strlen (a);
9772 memcpy (names, a, len);
9773 names += len;
9774 }
9775 memcpy (names, "@plt", sizeof ("@plt"));
9776 names += sizeof ("@plt");
9777 ++s, ++n;
9778 }
9779
9780 return n;
9781 }
9782
9783 /* It is only used by x86-64 so far. */
9784 asection _bfd_elf_large_com_section
9785 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9786 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9787
9788 void
9789 _bfd_elf_set_osabi (bfd * abfd,
9790 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9791 {
9792 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9793
9794 i_ehdrp = elf_elfheader (abfd);
9795
9796 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9797
9798 /* To make things simpler for the loader on Linux systems we set the
9799 osabi field to ELFOSABI_GNU if the binary contains symbols of
9800 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9801 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9802 && elf_tdata (abfd)->has_gnu_symbols)
9803 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9804 }
9805
9806
9807 /* Return TRUE for ELF symbol types that represent functions.
9808 This is the default version of this function, which is sufficient for
9809 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9810
9811 bfd_boolean
9812 _bfd_elf_is_function_type (unsigned int type)
9813 {
9814 return (type == STT_FUNC
9815 || type == STT_GNU_IFUNC);
9816 }
9817
9818 /* If the ELF symbol SYM might be a function in SEC, return the
9819 function size and set *CODE_OFF to the function's entry point,
9820 otherwise return zero. */
9821
9822 bfd_size_type
9823 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9824 bfd_vma *code_off)
9825 {
9826 bfd_size_type size;
9827
9828 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9829 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9830 || sym->section != sec)
9831 return 0;
9832
9833 *code_off = sym->value;
9834 size = 0;
9835 if (!(sym->flags & BSF_SYNTHETIC))
9836 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9837 if (size == 0)
9838 size = 1;
9839 return size;
9840 }