* elf.c: Formatting.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, file_ptr, bfd_size_type));
53 static const char *group_signature PARAMS ((bfd *, Elf_Internal_Shdr *));
54 static boolean setup_group PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
55 static void merge_sections_remove_hook PARAMS ((bfd *, asection *));
56 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
57 static boolean assign_section_numbers PARAMS ((bfd *));
58 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
59 static boolean elf_map_symbols PARAMS ((bfd *));
60 static bfd_size_type get_program_header_size PARAMS ((bfd *));
61 static boolean elfcore_read_notes PARAMS ((bfd *, file_ptr, bfd_size_type));
62 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
63 bfd_vma, const char **,
64 const char **));
65 static int elfcore_make_pid PARAMS ((bfd *));
66 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
67 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
68 Elf_Internal_Note *));
69 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
70 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
71 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
72
73 static boolean elfcore_netbsd_get_lwpid PARAMS ((Elf_Internal_Note *, int *));
74 static boolean elfcore_grok_netbsd_procinfo PARAMS ((bfd *,
75 Elf_Internal_Note *));
76 static boolean elfcore_grok_netbsd_note PARAMS ((bfd *, Elf_Internal_Note *));
77
78 /* Swap version information in and out. The version information is
79 currently size independent. If that ever changes, this code will
80 need to move into elfcode.h. */
81
82 /* Swap in a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_in (abfd, src, dst)
86 bfd *abfd;
87 const Elf_External_Verdef *src;
88 Elf_Internal_Verdef *dst;
89 {
90 dst->vd_version = H_GET_16 (abfd, src->vd_version);
91 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
92 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
93 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
94 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
95 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
96 dst->vd_next = H_GET_32 (abfd, src->vd_next);
97 }
98
99 /* Swap out a Verdef structure. */
100
101 void
102 _bfd_elf_swap_verdef_out (abfd, src, dst)
103 bfd *abfd;
104 const Elf_Internal_Verdef *src;
105 Elf_External_Verdef *dst;
106 {
107 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
108 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
109 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
110 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
111 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
112 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
113 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
114 }
115
116 /* Swap in a Verdaux structure. */
117
118 void
119 _bfd_elf_swap_verdaux_in (abfd, src, dst)
120 bfd *abfd;
121 const Elf_External_Verdaux *src;
122 Elf_Internal_Verdaux *dst;
123 {
124 dst->vda_name = H_GET_32 (abfd, src->vda_name);
125 dst->vda_next = H_GET_32 (abfd, src->vda_next);
126 }
127
128 /* Swap out a Verdaux structure. */
129
130 void
131 _bfd_elf_swap_verdaux_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdaux *src;
134 Elf_External_Verdaux *dst;
135 {
136 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
137 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
138 }
139
140 /* Swap in a Verneed structure. */
141
142 void
143 _bfd_elf_swap_verneed_in (abfd, src, dst)
144 bfd *abfd;
145 const Elf_External_Verneed *src;
146 Elf_Internal_Verneed *dst;
147 {
148 dst->vn_version = H_GET_16 (abfd, src->vn_version);
149 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
150 dst->vn_file = H_GET_32 (abfd, src->vn_file);
151 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
152 dst->vn_next = H_GET_32 (abfd, src->vn_next);
153 }
154
155 /* Swap out a Verneed structure. */
156
157 void
158 _bfd_elf_swap_verneed_out (abfd, src, dst)
159 bfd *abfd;
160 const Elf_Internal_Verneed *src;
161 Elf_External_Verneed *dst;
162 {
163 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
164 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
165 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
166 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
167 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
168 }
169
170 /* Swap in a Vernaux structure. */
171
172 void
173 _bfd_elf_swap_vernaux_in (abfd, src, dst)
174 bfd *abfd;
175 const Elf_External_Vernaux *src;
176 Elf_Internal_Vernaux *dst;
177 {
178 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
179 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
180 dst->vna_other = H_GET_16 (abfd, src->vna_other);
181 dst->vna_name = H_GET_32 (abfd, src->vna_name);
182 dst->vna_next = H_GET_32 (abfd, src->vna_next);
183 }
184
185 /* Swap out a Vernaux structure. */
186
187 void
188 _bfd_elf_swap_vernaux_out (abfd, src, dst)
189 bfd *abfd;
190 const Elf_Internal_Vernaux *src;
191 Elf_External_Vernaux *dst;
192 {
193 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
194 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
195 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
196 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
197 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
198 }
199
200 /* Swap in a Versym structure. */
201
202 void
203 _bfd_elf_swap_versym_in (abfd, src, dst)
204 bfd *abfd;
205 const Elf_External_Versym *src;
206 Elf_Internal_Versym *dst;
207 {
208 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
209 }
210
211 /* Swap out a Versym structure. */
212
213 void
214 _bfd_elf_swap_versym_out (abfd, src, dst)
215 bfd *abfd;
216 const Elf_Internal_Versym *src;
217 Elf_External_Versym *dst;
218 {
219 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
220 }
221
222 /* Standard ELF hash function. Do not change this function; you will
223 cause invalid hash tables to be generated. */
224
225 unsigned long
226 bfd_elf_hash (namearg)
227 const char *namearg;
228 {
229 const unsigned char *name = (const unsigned char *) namearg;
230 unsigned long h = 0;
231 unsigned long g;
232 int ch;
233
234 while ((ch = *name++) != '\0')
235 {
236 h = (h << 4) + ch;
237 if ((g = (h & 0xf0000000)) != 0)
238 {
239 h ^= g >> 24;
240 /* The ELF ABI says `h &= ~g', but this is equivalent in
241 this case and on some machines one insn instead of two. */
242 h ^= g;
243 }
244 }
245 return h;
246 }
247
248 /* Read a specified number of bytes at a specified offset in an ELF
249 file, into a newly allocated buffer, and return a pointer to the
250 buffer. */
251
252 static char *
253 elf_read (abfd, offset, size)
254 bfd *abfd;
255 file_ptr offset;
256 bfd_size_type size;
257 {
258 char *buf;
259
260 if ((buf = bfd_alloc (abfd, size)) == NULL)
261 return NULL;
262 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
263 return NULL;
264 if (bfd_bread ((PTR) buf, size, abfd) != size)
265 {
266 if (bfd_get_error () != bfd_error_system_call)
267 bfd_set_error (bfd_error_file_truncated);
268 return NULL;
269 }
270 return buf;
271 }
272
273 boolean
274 bfd_elf_mkobject (abfd)
275 bfd *abfd;
276 {
277 /* This just does initialization. */
278 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
279 bfd_size_type amt = sizeof (struct elf_obj_tdata);
280 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
281 if (elf_tdata (abfd) == 0)
282 return false;
283 /* Since everything is done at close time, do we need any
284 initialization? */
285
286 return true;
287 }
288
289 boolean
290 bfd_elf_mkcorefile (abfd)
291 bfd *abfd;
292 {
293 /* I think this can be done just like an object file. */
294 return bfd_elf_mkobject (abfd);
295 }
296
297 char *
298 bfd_elf_get_str_section (abfd, shindex)
299 bfd *abfd;
300 unsigned int shindex;
301 {
302 Elf_Internal_Shdr **i_shdrp;
303 char *shstrtab = NULL;
304 file_ptr offset;
305 bfd_size_type shstrtabsize;
306
307 i_shdrp = elf_elfsections (abfd);
308 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
309 return 0;
310
311 shstrtab = (char *) i_shdrp[shindex]->contents;
312 if (shstrtab == NULL)
313 {
314 /* No cached one, attempt to read, and cache what we read. */
315 offset = i_shdrp[shindex]->sh_offset;
316 shstrtabsize = i_shdrp[shindex]->sh_size;
317 shstrtab = elf_read (abfd, offset, shstrtabsize);
318 i_shdrp[shindex]->contents = (PTR) shstrtab;
319 }
320 return shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
325 bfd *abfd;
326 unsigned int shindex;
327 unsigned int strindex;
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL
337 && bfd_elf_get_str_section (abfd, shindex) == NULL)
338 return NULL;
339
340 if (strindex >= hdr->sh_size)
341 {
342 (*_bfd_error_handler)
343 (_("%s: invalid string offset %u >= %lu for section `%s'"),
344 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
345 ((shindex == elf_elfheader(abfd)->e_shstrndx
346 && strindex == hdr->sh_name)
347 ? ".shstrtab"
348 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
349 return "";
350 }
351
352 return ((char *) hdr->contents) + strindex;
353 }
354
355 /* Read and convert symbols to internal format.
356 SYMCOUNT specifies the number of symbols to read, starting from
357 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
358 are non-NULL, they are used to store the internal symbols, external
359 symbols, and symbol section index extensions, respectively. */
360
361 Elf_Internal_Sym *
362 bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, symoffset,
363 intsym_buf, extsym_buf, extshndx_buf)
364 bfd *ibfd;
365 Elf_Internal_Shdr *symtab_hdr;
366 size_t symcount;
367 size_t symoffset;
368 Elf_Internal_Sym *intsym_buf;
369 PTR extsym_buf;
370 Elf_External_Sym_Shndx *extshndx_buf;
371 {
372 Elf_Internal_Shdr *shndx_hdr;
373 PTR alloc_ext;
374 const PTR esym;
375 Elf_External_Sym_Shndx *alloc_extshndx;
376 Elf_External_Sym_Shndx *shndx;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (symcount == 0)
385 return intsym_buf;
386
387 /* Normal syms might have section extension entries. */
388 shndx_hdr = NULL;
389 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
390 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
391
392 /* Read the symbols. */
393 alloc_ext = NULL;
394 alloc_extshndx = NULL;
395 bed = get_elf_backend_data (ibfd);
396 extsym_size = bed->s->sizeof_sym;
397 amt = symcount * extsym_size;
398 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
399 if (extsym_buf == NULL)
400 {
401 alloc_ext = bfd_malloc (amt);
402 extsym_buf = alloc_ext;
403 }
404 if (extsym_buf == NULL
405 || bfd_seek (ibfd, pos, SEEK_SET) != 0
406 || bfd_bread (extsym_buf, amt, ibfd) != amt)
407 {
408 intsym_buf = NULL;
409 goto out;
410 }
411
412 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
413 extshndx_buf = NULL;
414 else
415 {
416 amt = symcount * sizeof (Elf_External_Sym_Shndx);
417 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
418 if (extshndx_buf == NULL)
419 {
420 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
421 extshndx_buf = alloc_extshndx;
422 }
423 if (extshndx_buf == NULL
424 || bfd_seek (ibfd, pos, SEEK_SET) != 0
425 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
426 {
427 intsym_buf = NULL;
428 goto out;
429 }
430 }
431
432 if (intsym_buf == NULL)
433 {
434 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
435 intsym_buf = (Elf_Internal_Sym *) bfd_malloc (amt);
436 if (intsym_buf == NULL)
437 goto out;
438 }
439
440 /* Convert the symbols to internal form. */
441 isymend = intsym_buf + symcount;
442 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 (*bed->s->swap_symbol_in) (ibfd, esym, (const PTR) shndx, isym);
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
457 sections. The first element is the flags, the rest are section
458 pointers. */
459
460 typedef union elf_internal_group {
461 Elf_Internal_Shdr *shdr;
462 unsigned int flags;
463 } Elf_Internal_Group;
464
465 /* Return the name of the group signature symbol. Why isn't the
466 signature just a string? */
467
468 static const char *
469 group_signature (abfd, ghdr)
470 bfd *abfd;
471 Elf_Internal_Shdr *ghdr;
472 {
473 Elf_Internal_Shdr *hdr;
474 unsigned char esym[sizeof (Elf64_External_Sym)];
475 Elf_External_Sym_Shndx eshndx;
476 Elf_Internal_Sym isym;
477 unsigned int iname;
478 unsigned int shindex;
479
480 /* First we need to ensure the symbol table is available. */
481 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
482 return NULL;
483
484 /* Go read the symbol. */
485 hdr = &elf_tdata (abfd)->symtab_hdr;
486 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
487 &isym, esym, &eshndx) == NULL)
488 return NULL;
489
490 /* Look up the symbol name. */
491 iname = isym.st_name;
492 shindex = hdr->sh_link;
493 if (iname == 0 && ELF_ST_TYPE (isym.st_info) == STT_SECTION)
494 {
495 iname = elf_elfsections (abfd)[isym.st_shndx]->sh_name;
496 shindex = elf_elfheader (abfd)->e_shstrndx;
497 }
498
499 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
500 }
501
502 /* Set next_in_group list pointer, and group name for NEWSECT. */
503
504 static boolean
505 setup_group (abfd, hdr, newsect)
506 bfd *abfd;
507 Elf_Internal_Shdr *hdr;
508 asection *newsect;
509 {
510 unsigned int num_group = elf_tdata (abfd)->num_group;
511
512 /* If num_group is zero, read in all SHT_GROUP sections. The count
513 is set to -1 if there are no SHT_GROUP sections. */
514 if (num_group == 0)
515 {
516 unsigned int i, shnum;
517
518 /* First count the number of groups. If we have a SHT_GROUP
519 section with just a flag word (ie. sh_size is 4), ignore it. */
520 shnum = elf_numsections (abfd);
521 num_group = 0;
522 for (i = 0; i < shnum; i++)
523 {
524 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
525 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 num_group = (unsigned) -1;
531 elf_tdata (abfd)->num_group = num_group;
532
533 if (num_group > 0)
534 {
535 /* We keep a list of elf section headers for group sections,
536 so we can find them quickly. */
537 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
538 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
539 if (elf_tdata (abfd)->group_sect_ptr == NULL)
540 return false;
541
542 num_group = 0;
543 for (i = 0; i < shnum; i++)
544 {
545 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
546 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
547 {
548 unsigned char *src;
549 Elf_Internal_Group *dest;
550
551 /* Add to list of sections. */
552 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
553 num_group += 1;
554
555 /* Read the raw contents. */
556 BFD_ASSERT (sizeof (*dest) >= 4);
557 amt = shdr->sh_size * sizeof (*dest) / 4;
558 shdr->contents = bfd_alloc (abfd, amt);
559 if (shdr->contents == NULL
560 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
561 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
562 != shdr->sh_size))
563 return false;
564
565 /* Translate raw contents, a flag word followed by an
566 array of elf section indices all in target byte order,
567 to the flag word followed by an array of elf section
568 pointers. */
569 src = shdr->contents + shdr->sh_size;
570 dest = (Elf_Internal_Group *) (shdr->contents + amt);
571 while (1)
572 {
573 unsigned int idx;
574
575 src -= 4;
576 --dest;
577 idx = H_GET_32 (abfd, src);
578 if (src == shdr->contents)
579 {
580 dest->flags = idx;
581 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
582 shdr->bfd_section->flags
583 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
584 break;
585 }
586 if (idx >= shnum)
587 {
588 ((*_bfd_error_handler)
589 (_("%s: invalid SHT_GROUP entry"),
590 bfd_archive_filename (abfd)));
591 idx = 0;
592 }
593 dest->shdr = elf_elfsections (abfd)[idx];
594 }
595 }
596 }
597 }
598 }
599
600 if (num_group != (unsigned) -1)
601 {
602 unsigned int i;
603
604 for (i = 0; i < num_group; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
607 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
608 unsigned int n_elt = shdr->sh_size / 4;
609
610 /* Look through this group's sections to see if current
611 section is a member. */
612 while (--n_elt != 0)
613 if ((++idx)->shdr == hdr)
614 {
615 asection *s = NULL;
616
617 /* We are a member of this group. Go looking through
618 other members to see if any others are linked via
619 next_in_group. */
620 idx = (Elf_Internal_Group *) shdr->contents;
621 n_elt = shdr->sh_size / 4;
622 while (--n_elt != 0)
623 if ((s = (++idx)->shdr->bfd_section) != NULL
624 && elf_next_in_group (s) != NULL)
625 break;
626 if (n_elt != 0)
627 {
628 /* Snarf the group name from other member, and
629 insert current section in circular list. */
630 elf_group_name (newsect) = elf_group_name (s);
631 elf_next_in_group (newsect) = elf_next_in_group (s);
632 elf_next_in_group (s) = newsect;
633 }
634 else
635 {
636 const char *gname;
637
638 gname = group_signature (abfd, shdr);
639 if (gname == NULL)
640 return false;
641 elf_group_name (newsect) = gname;
642
643 /* Start a circular list with one element. */
644 elf_next_in_group (newsect) = newsect;
645 }
646
647 /* If the group section has been created, point to the
648 new member. */
649 if (shdr->bfd_section != NULL)
650 elf_next_in_group (shdr->bfd_section) = newsect;
651
652 i = num_group - 1;
653 break;
654 }
655 }
656 }
657
658 if (elf_group_name (newsect) == NULL)
659 {
660 (*_bfd_error_handler) (_("%s: no group info for section %s"),
661 bfd_archive_filename (abfd), newsect->name);
662 }
663 return true;
664 }
665
666 boolean
667 bfd_elf_discard_group (abfd, group)
668 bfd *abfd ATTRIBUTE_UNUSED;
669 asection *group;
670 {
671 asection *first = elf_next_in_group (group);
672 asection *s = first;
673
674 while (s != NULL)
675 {
676 s->output_section = bfd_abs_section_ptr;
677 s = elf_next_in_group (s);
678 /* These lists are circular. */
679 if (s == first)
680 break;
681 }
682 return true;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 boolean
689 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
690 bfd *abfd;
691 Elf_Internal_Shdr *hdr;
692 const char *name;
693 {
694 asection *newsect;
695 flagword flags;
696 struct elf_backend_data *bed;
697
698 if (hdr->bfd_section != NULL)
699 {
700 BFD_ASSERT (strcmp (name,
701 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
702 return true;
703 }
704
705 newsect = bfd_make_section_anyway (abfd, name);
706 if (newsect == NULL)
707 return false;
708
709 newsect->filepos = hdr->sh_offset;
710
711 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
712 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
713 || ! bfd_set_section_alignment (abfd, newsect,
714 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
715 return false;
716
717 flags = SEC_NO_FLAGS;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_HAS_CONTENTS;
720 if (hdr->sh_type == SHT_GROUP)
721 flags |= SEC_GROUP | SEC_EXCLUDE;
722 if ((hdr->sh_flags & SHF_ALLOC) != 0)
723 {
724 flags |= SEC_ALLOC;
725 if (hdr->sh_type != SHT_NOBITS)
726 flags |= SEC_LOAD;
727 }
728 if ((hdr->sh_flags & SHF_WRITE) == 0)
729 flags |= SEC_READONLY;
730 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
731 flags |= SEC_CODE;
732 else if ((flags & SEC_LOAD) != 0)
733 flags |= SEC_DATA;
734 if ((hdr->sh_flags & SHF_MERGE) != 0)
735 {
736 flags |= SEC_MERGE;
737 newsect->entsize = hdr->sh_entsize;
738 if ((hdr->sh_flags & SHF_STRINGS) != 0)
739 flags |= SEC_STRINGS;
740 }
741 if (hdr->sh_flags & SHF_GROUP)
742 if (!setup_group (abfd, hdr, newsect))
743 return false;
744 if ((hdr->sh_flags & SHF_TLS) != 0)
745 flags |= SEC_THREAD_LOCAL;
746
747 /* The debugging sections appear to be recognized only by name, not
748 any sort of flag. */
749 {
750 static const char *debug_sec_names [] =
751 {
752 ".debug",
753 ".gnu.linkonce.wi.",
754 ".line",
755 ".stab"
756 };
757 int i;
758
759 for (i = ARRAY_SIZE (debug_sec_names); i--;)
760 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
761 break;
762
763 if (i >= 0)
764 flags |= SEC_DEBUGGING;
765 }
766
767 /* As a GNU extension, if the name begins with .gnu.linkonce, we
768 only link a single copy of the section. This is used to support
769 g++. g++ will emit each template expansion in its own section.
770 The symbols will be defined as weak, so that multiple definitions
771 are permitted. The GNU linker extension is to actually discard
772 all but one of the sections. */
773 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
774 && elf_next_in_group (newsect) == NULL)
775 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
776
777 bed = get_elf_backend_data (abfd);
778 if (bed->elf_backend_section_flags)
779 if (! bed->elf_backend_section_flags (&flags, hdr))
780 return false;
781
782 if (! bfd_set_section_flags (abfd, newsect, flags))
783 return false;
784
785 if ((flags & SEC_ALLOC) != 0)
786 {
787 Elf_Internal_Phdr *phdr;
788 unsigned int i;
789
790 /* Look through the phdrs to see if we need to adjust the lma.
791 If all the p_paddr fields are zero, we ignore them, since
792 some ELF linkers produce such output. */
793 phdr = elf_tdata (abfd)->phdr;
794 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
795 {
796 if (phdr->p_paddr != 0)
797 break;
798 }
799 if (i < elf_elfheader (abfd)->e_phnum)
800 {
801 phdr = elf_tdata (abfd)->phdr;
802 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
803 {
804 /* This section is part of this segment if its file
805 offset plus size lies within the segment's memory
806 span and, if the section is loaded, the extent of the
807 loaded data lies within the extent of the segment.
808
809 Note - we used to check the p_paddr field as well, and
810 refuse to set the LMA if it was 0. This is wrong
811 though, as a perfectly valid initialised segment can
812 have a p_paddr of zero. Some architectures, eg ARM,
813 place special significance on the address 0 and
814 executables need to be able to have a segment which
815 covers this address. */
816 if (phdr->p_type == PT_LOAD
817 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
818 && (hdr->sh_offset + hdr->sh_size
819 <= phdr->p_offset + phdr->p_memsz)
820 && ((flags & SEC_LOAD) == 0
821 || (hdr->sh_offset + hdr->sh_size
822 <= phdr->p_offset + phdr->p_filesz)))
823 {
824 if ((flags & SEC_LOAD) == 0)
825 newsect->lma = (phdr->p_paddr
826 + hdr->sh_addr - phdr->p_vaddr);
827 else
828 /* We used to use the same adjustment for SEC_LOAD
829 sections, but that doesn't work if the segment
830 is packed with code from multiple VMAs.
831 Instead we calculate the section LMA based on
832 the segment LMA. It is assumed that the
833 segment will contain sections with contiguous
834 LMAs, even if the VMAs are not. */
835 newsect->lma = (phdr->p_paddr
836 + hdr->sh_offset - phdr->p_offset);
837
838 /* With contiguous segments, we can't tell from file
839 offsets whether a section with zero size should
840 be placed at the end of one segment or the
841 beginning of the next. Decide based on vaddr. */
842 if (hdr->sh_addr >= phdr->p_vaddr
843 && (hdr->sh_addr + hdr->sh_size
844 <= phdr->p_vaddr + phdr->p_memsz))
845 break;
846 }
847 }
848 }
849 }
850
851 hdr->bfd_section = newsect;
852 elf_section_data (newsect)->this_hdr = *hdr;
853
854 return true;
855 }
856
857 /*
858 INTERNAL_FUNCTION
859 bfd_elf_find_section
860
861 SYNOPSIS
862 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
863
864 DESCRIPTION
865 Helper functions for GDB to locate the string tables.
866 Since BFD hides string tables from callers, GDB needs to use an
867 internal hook to find them. Sun's .stabstr, in particular,
868 isn't even pointed to by the .stab section, so ordinary
869 mechanisms wouldn't work to find it, even if we had some.
870 */
871
872 struct elf_internal_shdr *
873 bfd_elf_find_section (abfd, name)
874 bfd *abfd;
875 char *name;
876 {
877 Elf_Internal_Shdr **i_shdrp;
878 char *shstrtab;
879 unsigned int max;
880 unsigned int i;
881
882 i_shdrp = elf_elfsections (abfd);
883 if (i_shdrp != NULL)
884 {
885 shstrtab = bfd_elf_get_str_section (abfd,
886 elf_elfheader (abfd)->e_shstrndx);
887 if (shstrtab != NULL)
888 {
889 max = elf_numsections (abfd);
890 for (i = 1; i < max; i++)
891 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
892 return i_shdrp[i];
893 }
894 }
895 return 0;
896 }
897
898 const char *const bfd_elf_section_type_names[] = {
899 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
900 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
901 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
902 };
903
904 /* ELF relocs are against symbols. If we are producing relocateable
905 output, and the reloc is against an external symbol, and nothing
906 has given us any additional addend, the resulting reloc will also
907 be against the same symbol. In such a case, we don't want to
908 change anything about the way the reloc is handled, since it will
909 all be done at final link time. Rather than put special case code
910 into bfd_perform_relocation, all the reloc types use this howto
911 function. It just short circuits the reloc if producing
912 relocateable output against an external symbol. */
913
914 bfd_reloc_status_type
915 bfd_elf_generic_reloc (abfd,
916 reloc_entry,
917 symbol,
918 data,
919 input_section,
920 output_bfd,
921 error_message)
922 bfd *abfd ATTRIBUTE_UNUSED;
923 arelent *reloc_entry;
924 asymbol *symbol;
925 PTR data ATTRIBUTE_UNUSED;
926 asection *input_section;
927 bfd *output_bfd;
928 char **error_message ATTRIBUTE_UNUSED;
929 {
930 if (output_bfd != (bfd *) NULL
931 && (symbol->flags & BSF_SECTION_SYM) == 0
932 && (! reloc_entry->howto->partial_inplace
933 || reloc_entry->addend == 0))
934 {
935 reloc_entry->address += input_section->output_offset;
936 return bfd_reloc_ok;
937 }
938
939 return bfd_reloc_continue;
940 }
941 \f
942 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
943
944 static void
945 merge_sections_remove_hook (abfd, sec)
946 bfd *abfd ATTRIBUTE_UNUSED;
947 asection *sec;
948 {
949 struct bfd_elf_section_data *sec_data;
950
951 sec_data = elf_section_data (sec);
952 BFD_ASSERT (sec_data->sec_info_type == ELF_INFO_TYPE_MERGE);
953 sec_data->sec_info_type = ELF_INFO_TYPE_NONE;
954 }
955
956 /* Finish SHF_MERGE section merging. */
957
958 boolean
959 _bfd_elf_merge_sections (abfd, info)
960 bfd *abfd;
961 struct bfd_link_info *info;
962 {
963 if (!is_elf_hash_table (info))
964 return false;
965 if (elf_hash_table (info)->merge_info)
966 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
967 merge_sections_remove_hook);
968 return true;
969 }
970
971 void
972 _bfd_elf_link_just_syms (sec, info)
973 asection *sec;
974 struct bfd_link_info *info;
975 {
976 sec->output_section = bfd_abs_section_ptr;
977 sec->output_offset = sec->vma;
978 if (!is_elf_hash_table (info))
979 return;
980
981 elf_section_data (sec)->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
982 }
983 \f
984 /* Copy the program header and other data from one object module to
985 another. */
986
987 boolean
988 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
989 bfd *ibfd;
990 bfd *obfd;
991 {
992 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
993 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
994 return true;
995
996 BFD_ASSERT (!elf_flags_init (obfd)
997 || (elf_elfheader (obfd)->e_flags
998 == elf_elfheader (ibfd)->e_flags));
999
1000 elf_gp (obfd) = elf_gp (ibfd);
1001 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1002 elf_flags_init (obfd) = true;
1003 return true;
1004 }
1005
1006 /* Print out the program headers. */
1007
1008 boolean
1009 _bfd_elf_print_private_bfd_data (abfd, farg)
1010 bfd *abfd;
1011 PTR farg;
1012 {
1013 FILE *f = (FILE *) farg;
1014 Elf_Internal_Phdr *p;
1015 asection *s;
1016 bfd_byte *dynbuf = NULL;
1017
1018 p = elf_tdata (abfd)->phdr;
1019 if (p != NULL)
1020 {
1021 unsigned int i, c;
1022
1023 fprintf (f, _("\nProgram Header:\n"));
1024 c = elf_elfheader (abfd)->e_phnum;
1025 for (i = 0; i < c; i++, p++)
1026 {
1027 const char *pt;
1028 char buf[20];
1029
1030 switch (p->p_type)
1031 {
1032 case PT_NULL: pt = "NULL"; break;
1033 case PT_LOAD: pt = "LOAD"; break;
1034 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1035 case PT_INTERP: pt = "INTERP"; break;
1036 case PT_NOTE: pt = "NOTE"; break;
1037 case PT_SHLIB: pt = "SHLIB"; break;
1038 case PT_PHDR: pt = "PHDR"; break;
1039 case PT_TLS: pt = "TLS"; break;
1040 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1041 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1042 }
1043 fprintf (f, "%8s off 0x", pt);
1044 bfd_fprintf_vma (abfd, f, p->p_offset);
1045 fprintf (f, " vaddr 0x");
1046 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1047 fprintf (f, " paddr 0x");
1048 bfd_fprintf_vma (abfd, f, p->p_paddr);
1049 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1050 fprintf (f, " filesz 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_filesz);
1052 fprintf (f, " memsz 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_memsz);
1054 fprintf (f, " flags %c%c%c",
1055 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1056 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1057 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1058 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1059 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1060 fprintf (f, "\n");
1061 }
1062 }
1063
1064 s = bfd_get_section_by_name (abfd, ".dynamic");
1065 if (s != NULL)
1066 {
1067 int elfsec;
1068 unsigned long shlink;
1069 bfd_byte *extdyn, *extdynend;
1070 size_t extdynsize;
1071 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1072
1073 fprintf (f, _("\nDynamic Section:\n"));
1074
1075 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1076 if (dynbuf == NULL)
1077 goto error_return;
1078 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1079 s->_raw_size))
1080 goto error_return;
1081
1082 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1083 if (elfsec == -1)
1084 goto error_return;
1085 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1086
1087 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1088 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1089
1090 extdyn = dynbuf;
1091 extdynend = extdyn + s->_raw_size;
1092 for (; extdyn < extdynend; extdyn += extdynsize)
1093 {
1094 Elf_Internal_Dyn dyn;
1095 const char *name;
1096 char ab[20];
1097 boolean stringp;
1098
1099 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1100
1101 if (dyn.d_tag == DT_NULL)
1102 break;
1103
1104 stringp = false;
1105 switch (dyn.d_tag)
1106 {
1107 default:
1108 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1109 name = ab;
1110 break;
1111
1112 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1113 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1114 case DT_PLTGOT: name = "PLTGOT"; break;
1115 case DT_HASH: name = "HASH"; break;
1116 case DT_STRTAB: name = "STRTAB"; break;
1117 case DT_SYMTAB: name = "SYMTAB"; break;
1118 case DT_RELA: name = "RELA"; break;
1119 case DT_RELASZ: name = "RELASZ"; break;
1120 case DT_RELAENT: name = "RELAENT"; break;
1121 case DT_STRSZ: name = "STRSZ"; break;
1122 case DT_SYMENT: name = "SYMENT"; break;
1123 case DT_INIT: name = "INIT"; break;
1124 case DT_FINI: name = "FINI"; break;
1125 case DT_SONAME: name = "SONAME"; stringp = true; break;
1126 case DT_RPATH: name = "RPATH"; stringp = true; break;
1127 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1128 case DT_REL: name = "REL"; break;
1129 case DT_RELSZ: name = "RELSZ"; break;
1130 case DT_RELENT: name = "RELENT"; break;
1131 case DT_PLTREL: name = "PLTREL"; break;
1132 case DT_DEBUG: name = "DEBUG"; break;
1133 case DT_TEXTREL: name = "TEXTREL"; break;
1134 case DT_JMPREL: name = "JMPREL"; break;
1135 case DT_BIND_NOW: name = "BIND_NOW"; break;
1136 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1137 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1138 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1139 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1140 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1141 case DT_FLAGS: name = "FLAGS"; break;
1142 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1143 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1144 case DT_CHECKSUM: name = "CHECKSUM"; break;
1145 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1146 case DT_MOVEENT: name = "MOVEENT"; break;
1147 case DT_MOVESZ: name = "MOVESZ"; break;
1148 case DT_FEATURE: name = "FEATURE"; break;
1149 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1150 case DT_SYMINSZ: name = "SYMINSZ"; break;
1151 case DT_SYMINENT: name = "SYMINENT"; break;
1152 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1153 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1154 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1155 case DT_PLTPAD: name = "PLTPAD"; break;
1156 case DT_MOVETAB: name = "MOVETAB"; break;
1157 case DT_SYMINFO: name = "SYMINFO"; break;
1158 case DT_RELACOUNT: name = "RELACOUNT"; break;
1159 case DT_RELCOUNT: name = "RELCOUNT"; break;
1160 case DT_FLAGS_1: name = "FLAGS_1"; break;
1161 case DT_VERSYM: name = "VERSYM"; break;
1162 case DT_VERDEF: name = "VERDEF"; break;
1163 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1164 case DT_VERNEED: name = "VERNEED"; break;
1165 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1166 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1167 case DT_USED: name = "USED"; break;
1168 case DT_FILTER: name = "FILTER"; stringp = true; break;
1169 }
1170
1171 fprintf (f, " %-11s ", name);
1172 if (! stringp)
1173 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1174 else
1175 {
1176 const char *string;
1177 unsigned int tagv = dyn.d_un.d_val;
1178
1179 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1180 if (string == NULL)
1181 goto error_return;
1182 fprintf (f, "%s", string);
1183 }
1184 fprintf (f, "\n");
1185 }
1186
1187 free (dynbuf);
1188 dynbuf = NULL;
1189 }
1190
1191 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1192 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1193 {
1194 if (! _bfd_elf_slurp_version_tables (abfd))
1195 return false;
1196 }
1197
1198 if (elf_dynverdef (abfd) != 0)
1199 {
1200 Elf_Internal_Verdef *t;
1201
1202 fprintf (f, _("\nVersion definitions:\n"));
1203 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1204 {
1205 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1206 t->vd_flags, t->vd_hash, t->vd_nodename);
1207 if (t->vd_auxptr->vda_nextptr != NULL)
1208 {
1209 Elf_Internal_Verdaux *a;
1210
1211 fprintf (f, "\t");
1212 for (a = t->vd_auxptr->vda_nextptr;
1213 a != NULL;
1214 a = a->vda_nextptr)
1215 fprintf (f, "%s ", a->vda_nodename);
1216 fprintf (f, "\n");
1217 }
1218 }
1219 }
1220
1221 if (elf_dynverref (abfd) != 0)
1222 {
1223 Elf_Internal_Verneed *t;
1224
1225 fprintf (f, _("\nVersion References:\n"));
1226 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1227 {
1228 Elf_Internal_Vernaux *a;
1229
1230 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1232 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1233 a->vna_flags, a->vna_other, a->vna_nodename);
1234 }
1235 }
1236
1237 return true;
1238
1239 error_return:
1240 if (dynbuf != NULL)
1241 free (dynbuf);
1242 return false;
1243 }
1244
1245 /* Display ELF-specific fields of a symbol. */
1246
1247 void
1248 bfd_elf_print_symbol (abfd, filep, symbol, how)
1249 bfd *abfd;
1250 PTR filep;
1251 asymbol *symbol;
1252 bfd_print_symbol_type how;
1253 {
1254 FILE *file = (FILE *) filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (entry, table, string)
1372 struct bfd_hash_entry *entry;
1373 struct bfd_hash_table *table;
1374 const char *string;
1375 {
1376 /* Allocate the structure if it has not already been allocated by a
1377 subclass. */
1378 if (entry == NULL)
1379 {
1380 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1381 if (entry == NULL)
1382 return entry;
1383 }
1384
1385 /* Call the allocation method of the superclass. */
1386 entry = _bfd_link_hash_newfunc (entry, table, string);
1387 if (entry != NULL)
1388 {
1389 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1390 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1391
1392 /* Set local fields. */
1393 ret->indx = -1;
1394 ret->size = 0;
1395 ret->dynindx = -1;
1396 ret->dynstr_index = 0;
1397 ret->weakdef = NULL;
1398 ret->got.refcount = htab->init_refcount;
1399 ret->plt.refcount = htab->init_refcount;
1400 ret->linker_section_pointer = NULL;
1401 ret->verinfo.verdef = NULL;
1402 ret->vtable_entries_used = NULL;
1403 ret->vtable_entries_size = 0;
1404 ret->vtable_parent = NULL;
1405 ret->type = STT_NOTYPE;
1406 ret->other = 0;
1407 /* Assume that we have been called by a non-ELF symbol reader.
1408 This flag is then reset by the code which reads an ELF input
1409 file. This ensures that a symbol created by a non-ELF symbol
1410 reader will have the flag set correctly. */
1411 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1412 }
1413
1414 return entry;
1415 }
1416
1417 /* Copy data from an indirect symbol to its direct symbol, hiding the
1418 old indirect symbol. Also used for copying flags to a weakdef. */
1419
1420 void
1421 _bfd_elf_link_hash_copy_indirect (dir, ind)
1422 struct elf_link_hash_entry *dir, *ind;
1423 {
1424 bfd_signed_vma tmp;
1425
1426 /* Copy down any references that we may have already seen to the
1427 symbol which just became indirect. */
1428
1429 dir->elf_link_hash_flags |=
1430 (ind->elf_link_hash_flags
1431 & (ELF_LINK_HASH_REF_DYNAMIC
1432 | ELF_LINK_HASH_REF_REGULAR
1433 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1434 | ELF_LINK_NON_GOT_REF));
1435
1436 if (ind->root.type != bfd_link_hash_indirect)
1437 return;
1438
1439 /* Copy over the global and procedure linkage table refcount entries.
1440 These may have been already set up by a check_relocs routine. */
1441 tmp = dir->got.refcount;
1442 if (tmp <= 0)
1443 {
1444 dir->got.refcount = ind->got.refcount;
1445 ind->got.refcount = tmp;
1446 }
1447 else
1448 BFD_ASSERT (ind->got.refcount <= 0);
1449
1450 tmp = dir->plt.refcount;
1451 if (tmp <= 0)
1452 {
1453 dir->plt.refcount = ind->plt.refcount;
1454 ind->plt.refcount = tmp;
1455 }
1456 else
1457 BFD_ASSERT (ind->plt.refcount <= 0);
1458
1459 if (dir->dynindx == -1)
1460 {
1461 dir->dynindx = ind->dynindx;
1462 dir->dynstr_index = ind->dynstr_index;
1463 ind->dynindx = -1;
1464 ind->dynstr_index = 0;
1465 }
1466 else
1467 BFD_ASSERT (ind->dynindx == -1);
1468 }
1469
1470 void
1471 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1472 struct bfd_link_info *info;
1473 struct elf_link_hash_entry *h;
1474 boolean force_local;
1475 {
1476 h->plt.offset = (bfd_vma) -1;
1477 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1478 if (force_local)
1479 {
1480 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1481 if (h->dynindx != -1)
1482 {
1483 h->dynindx = -1;
1484 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1485 h->dynstr_index);
1486 }
1487 }
1488 }
1489
1490 /* Initialize an ELF linker hash table. */
1491
1492 boolean
1493 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1494 struct elf_link_hash_table *table;
1495 bfd *abfd;
1496 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1497 struct bfd_hash_table *,
1498 const char *));
1499 {
1500 boolean ret;
1501
1502 table->dynamic_sections_created = false;
1503 table->dynobj = NULL;
1504 table->init_refcount = get_elf_backend_data (abfd)->can_refcount - 1;
1505 /* The first dynamic symbol is a dummy. */
1506 table->dynsymcount = 1;
1507 table->dynstr = NULL;
1508 table->bucketcount = 0;
1509 table->needed = NULL;
1510 table->runpath = NULL;
1511 table->loaded = NULL;
1512 table->hgot = NULL;
1513 table->stab_info = NULL;
1514 table->merge_info = NULL;
1515 table->dynlocal = NULL;
1516 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1517 table->root.type = bfd_link_elf_hash_table;
1518
1519 return ret;
1520 }
1521
1522 /* Create an ELF linker hash table. */
1523
1524 struct bfd_link_hash_table *
1525 _bfd_elf_link_hash_table_create (abfd)
1526 bfd *abfd;
1527 {
1528 struct elf_link_hash_table *ret;
1529 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1530
1531 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1532 if (ret == (struct elf_link_hash_table *) NULL)
1533 return NULL;
1534
1535 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1536 {
1537 free (ret);
1538 return NULL;
1539 }
1540
1541 return &ret->root;
1542 }
1543
1544 /* This is a hook for the ELF emulation code in the generic linker to
1545 tell the backend linker what file name to use for the DT_NEEDED
1546 entry for a dynamic object. The generic linker passes name as an
1547 empty string to indicate that no DT_NEEDED entry should be made. */
1548
1549 void
1550 bfd_elf_set_dt_needed_name (abfd, name)
1551 bfd *abfd;
1552 const char *name;
1553 {
1554 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1555 && bfd_get_format (abfd) == bfd_object)
1556 elf_dt_name (abfd) = name;
1557 }
1558
1559 void
1560 bfd_elf_set_dt_needed_soname (abfd, name)
1561 bfd *abfd;
1562 const char *name;
1563 {
1564 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1565 && bfd_get_format (abfd) == bfd_object)
1566 elf_dt_soname (abfd) = name;
1567 }
1568
1569 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1570 the linker ELF emulation code. */
1571
1572 struct bfd_link_needed_list *
1573 bfd_elf_get_needed_list (abfd, info)
1574 bfd *abfd ATTRIBUTE_UNUSED;
1575 struct bfd_link_info *info;
1576 {
1577 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1578 return NULL;
1579 return elf_hash_table (info)->needed;
1580 }
1581
1582 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1583 hook for the linker ELF emulation code. */
1584
1585 struct bfd_link_needed_list *
1586 bfd_elf_get_runpath_list (abfd, info)
1587 bfd *abfd ATTRIBUTE_UNUSED;
1588 struct bfd_link_info *info;
1589 {
1590 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1591 return NULL;
1592 return elf_hash_table (info)->runpath;
1593 }
1594
1595 /* Get the name actually used for a dynamic object for a link. This
1596 is the SONAME entry if there is one. Otherwise, it is the string
1597 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1598
1599 const char *
1600 bfd_elf_get_dt_soname (abfd)
1601 bfd *abfd;
1602 {
1603 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1604 && bfd_get_format (abfd) == bfd_object)
1605 return elf_dt_name (abfd);
1606 return NULL;
1607 }
1608
1609 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1610 the ELF linker emulation code. */
1611
1612 boolean
1613 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1614 bfd *abfd;
1615 struct bfd_link_needed_list **pneeded;
1616 {
1617 asection *s;
1618 bfd_byte *dynbuf = NULL;
1619 int elfsec;
1620 unsigned long shlink;
1621 bfd_byte *extdyn, *extdynend;
1622 size_t extdynsize;
1623 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1624
1625 *pneeded = NULL;
1626
1627 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1628 || bfd_get_format (abfd) != bfd_object)
1629 return true;
1630
1631 s = bfd_get_section_by_name (abfd, ".dynamic");
1632 if (s == NULL || s->_raw_size == 0)
1633 return true;
1634
1635 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1636 if (dynbuf == NULL)
1637 goto error_return;
1638
1639 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1640 s->_raw_size))
1641 goto error_return;
1642
1643 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1644 if (elfsec == -1)
1645 goto error_return;
1646
1647 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1648
1649 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1650 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1651
1652 extdyn = dynbuf;
1653 extdynend = extdyn + s->_raw_size;
1654 for (; extdyn < extdynend; extdyn += extdynsize)
1655 {
1656 Elf_Internal_Dyn dyn;
1657
1658 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1659
1660 if (dyn.d_tag == DT_NULL)
1661 break;
1662
1663 if (dyn.d_tag == DT_NEEDED)
1664 {
1665 const char *string;
1666 struct bfd_link_needed_list *l;
1667 unsigned int tagv = dyn.d_un.d_val;
1668 bfd_size_type amt;
1669
1670 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1671 if (string == NULL)
1672 goto error_return;
1673
1674 amt = sizeof *l;
1675 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1676 if (l == NULL)
1677 goto error_return;
1678
1679 l->by = abfd;
1680 l->name = string;
1681 l->next = *pneeded;
1682 *pneeded = l;
1683 }
1684 }
1685
1686 free (dynbuf);
1687
1688 return true;
1689
1690 error_return:
1691 if (dynbuf != NULL)
1692 free (dynbuf);
1693 return false;
1694 }
1695 \f
1696 /* Allocate an ELF string table--force the first byte to be zero. */
1697
1698 struct bfd_strtab_hash *
1699 _bfd_elf_stringtab_init ()
1700 {
1701 struct bfd_strtab_hash *ret;
1702
1703 ret = _bfd_stringtab_init ();
1704 if (ret != NULL)
1705 {
1706 bfd_size_type loc;
1707
1708 loc = _bfd_stringtab_add (ret, "", true, false);
1709 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1710 if (loc == (bfd_size_type) -1)
1711 {
1712 _bfd_stringtab_free (ret);
1713 ret = NULL;
1714 }
1715 }
1716 return ret;
1717 }
1718 \f
1719 /* ELF .o/exec file reading */
1720
1721 /* Create a new bfd section from an ELF section header. */
1722
1723 boolean
1724 bfd_section_from_shdr (abfd, shindex)
1725 bfd *abfd;
1726 unsigned int shindex;
1727 {
1728 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1729 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1730 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1731 const char *name;
1732
1733 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1734
1735 switch (hdr->sh_type)
1736 {
1737 case SHT_NULL:
1738 /* Inactive section. Throw it away. */
1739 return true;
1740
1741 case SHT_PROGBITS: /* Normal section with contents. */
1742 case SHT_NOBITS: /* .bss section. */
1743 case SHT_HASH: /* .hash section. */
1744 case SHT_NOTE: /* .note section. */
1745 case SHT_INIT_ARRAY: /* .init_array section. */
1746 case SHT_FINI_ARRAY: /* .fini_array section. */
1747 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1748 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1749
1750 case SHT_DYNAMIC: /* Dynamic linking information. */
1751 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1752 return false;
1753 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1754 {
1755 Elf_Internal_Shdr *dynsymhdr;
1756
1757 /* The shared libraries distributed with hpux11 have a bogus
1758 sh_link field for the ".dynamic" section. Find the
1759 string table for the ".dynsym" section instead. */
1760 if (elf_dynsymtab (abfd) != 0)
1761 {
1762 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1763 hdr->sh_link = dynsymhdr->sh_link;
1764 }
1765 else
1766 {
1767 unsigned int i, num_sec;
1768
1769 num_sec = elf_numsections (abfd);
1770 for (i = 1; i < num_sec; i++)
1771 {
1772 dynsymhdr = elf_elfsections (abfd)[i];
1773 if (dynsymhdr->sh_type == SHT_DYNSYM)
1774 {
1775 hdr->sh_link = dynsymhdr->sh_link;
1776 break;
1777 }
1778 }
1779 }
1780 }
1781 break;
1782
1783 case SHT_SYMTAB: /* A symbol table */
1784 if (elf_onesymtab (abfd) == shindex)
1785 return true;
1786
1787 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1788 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1789 elf_onesymtab (abfd) = shindex;
1790 elf_tdata (abfd)->symtab_hdr = *hdr;
1791 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1792 abfd->flags |= HAS_SYMS;
1793
1794 /* Sometimes a shared object will map in the symbol table. If
1795 SHF_ALLOC is set, and this is a shared object, then we also
1796 treat this section as a BFD section. We can not base the
1797 decision purely on SHF_ALLOC, because that flag is sometimes
1798 set in a relocateable object file, which would confuse the
1799 linker. */
1800 if ((hdr->sh_flags & SHF_ALLOC) != 0
1801 && (abfd->flags & DYNAMIC) != 0
1802 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1803 return false;
1804
1805 return true;
1806
1807 case SHT_DYNSYM: /* A dynamic symbol table */
1808 if (elf_dynsymtab (abfd) == shindex)
1809 return true;
1810
1811 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1812 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1813 elf_dynsymtab (abfd) = shindex;
1814 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1815 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1816 abfd->flags |= HAS_SYMS;
1817
1818 /* Besides being a symbol table, we also treat this as a regular
1819 section, so that objcopy can handle it. */
1820 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1821
1822 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1823 if (elf_symtab_shndx (abfd) == shindex)
1824 return true;
1825
1826 /* Get the associated symbol table. */
1827 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1828 || hdr->sh_link != elf_onesymtab (abfd))
1829 return false;
1830
1831 elf_symtab_shndx (abfd) = shindex;
1832 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1833 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1834 return true;
1835
1836 case SHT_STRTAB: /* A string table */
1837 if (hdr->bfd_section != NULL)
1838 return true;
1839 if (ehdr->e_shstrndx == shindex)
1840 {
1841 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1842 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1843 return true;
1844 }
1845 {
1846 unsigned int i, num_sec;
1847
1848 num_sec = elf_numsections (abfd);
1849 for (i = 1; i < num_sec; i++)
1850 {
1851 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1852 if (hdr2->sh_link == shindex)
1853 {
1854 if (! bfd_section_from_shdr (abfd, i))
1855 return false;
1856 if (elf_onesymtab (abfd) == i)
1857 {
1858 elf_tdata (abfd)->strtab_hdr = *hdr;
1859 elf_elfsections (abfd)[shindex] =
1860 &elf_tdata (abfd)->strtab_hdr;
1861 return true;
1862 }
1863 if (elf_dynsymtab (abfd) == i)
1864 {
1865 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1866 elf_elfsections (abfd)[shindex] = hdr =
1867 &elf_tdata (abfd)->dynstrtab_hdr;
1868 /* We also treat this as a regular section, so
1869 that objcopy can handle it. */
1870 break;
1871 }
1872 #if 0 /* Not handling other string tables specially right now. */
1873 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1874 /* We have a strtab for some random other section. */
1875 newsect = (asection *) hdr2->bfd_section;
1876 if (!newsect)
1877 break;
1878 hdr->bfd_section = newsect;
1879 hdr2 = &elf_section_data (newsect)->str_hdr;
1880 *hdr2 = *hdr;
1881 elf_elfsections (abfd)[shindex] = hdr2;
1882 #endif
1883 }
1884 }
1885 }
1886
1887 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1888
1889 case SHT_REL:
1890 case SHT_RELA:
1891 /* *These* do a lot of work -- but build no sections! */
1892 {
1893 asection *target_sect;
1894 Elf_Internal_Shdr *hdr2;
1895 unsigned int num_sec = elf_numsections (abfd);
1896
1897 /* Check for a bogus link to avoid crashing. */
1898 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1899 || hdr->sh_link >= num_sec)
1900 {
1901 ((*_bfd_error_handler)
1902 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1903 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1904 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1905 }
1906
1907 /* For some incomprehensible reason Oracle distributes
1908 libraries for Solaris in which some of the objects have
1909 bogus sh_link fields. It would be nice if we could just
1910 reject them, but, unfortunately, some people need to use
1911 them. We scan through the section headers; if we find only
1912 one suitable symbol table, we clobber the sh_link to point
1913 to it. I hope this doesn't break anything. */
1914 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1915 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1916 {
1917 unsigned int scan;
1918 int found;
1919
1920 found = 0;
1921 for (scan = 1; scan < num_sec; scan++)
1922 {
1923 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1924 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1925 {
1926 if (found != 0)
1927 {
1928 found = 0;
1929 break;
1930 }
1931 found = scan;
1932 }
1933 }
1934 if (found != 0)
1935 hdr->sh_link = found;
1936 }
1937
1938 /* Get the symbol table. */
1939 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1940 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1941 return false;
1942
1943 /* If this reloc section does not use the main symbol table we
1944 don't treat it as a reloc section. BFD can't adequately
1945 represent such a section, so at least for now, we don't
1946 try. We just present it as a normal section. We also
1947 can't use it as a reloc section if it points to the null
1948 section. */
1949 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1950 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1951
1952 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1953 return false;
1954 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1955 if (target_sect == NULL)
1956 return false;
1957
1958 if ((target_sect->flags & SEC_RELOC) == 0
1959 || target_sect->reloc_count == 0)
1960 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1961 else
1962 {
1963 bfd_size_type amt;
1964 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1965 amt = sizeof (*hdr2);
1966 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1967 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1968 }
1969 *hdr2 = *hdr;
1970 elf_elfsections (abfd)[shindex] = hdr2;
1971 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1972 target_sect->flags |= SEC_RELOC;
1973 target_sect->relocation = NULL;
1974 target_sect->rel_filepos = hdr->sh_offset;
1975 /* In the section to which the relocations apply, mark whether
1976 its relocations are of the REL or RELA variety. */
1977 if (hdr->sh_size != 0)
1978 elf_section_data (target_sect)->use_rela_p
1979 = (hdr->sh_type == SHT_RELA);
1980 abfd->flags |= HAS_RELOC;
1981 return true;
1982 }
1983 break;
1984
1985 case SHT_GNU_verdef:
1986 elf_dynverdef (abfd) = shindex;
1987 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1988 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1989 break;
1990
1991 case SHT_GNU_versym:
1992 elf_dynversym (abfd) = shindex;
1993 elf_tdata (abfd)->dynversym_hdr = *hdr;
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1995 break;
1996
1997 case SHT_GNU_verneed:
1998 elf_dynverref (abfd) = shindex;
1999 elf_tdata (abfd)->dynverref_hdr = *hdr;
2000 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2001 break;
2002
2003 case SHT_SHLIB:
2004 return true;
2005
2006 case SHT_GROUP:
2007 /* We need a BFD section for objcopy and relocatable linking,
2008 and it's handy to have the signature available as the section
2009 name. */
2010 name = group_signature (abfd, hdr);
2011 if (name == NULL)
2012 return false;
2013 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2014 return false;
2015 if (hdr->contents != NULL)
2016 {
2017 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2018 unsigned int n_elt = hdr->sh_size / 4;
2019 asection *s;
2020
2021 if (idx->flags & GRP_COMDAT)
2022 hdr->bfd_section->flags
2023 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2024
2025 while (--n_elt != 0)
2026 if ((s = (++idx)->shdr->bfd_section) != NULL
2027 && elf_next_in_group (s) != NULL)
2028 {
2029 elf_next_in_group (hdr->bfd_section) = s;
2030 break;
2031 }
2032 }
2033 break;
2034
2035 default:
2036 /* Check for any processor-specific section types. */
2037 {
2038 if (bed->elf_backend_section_from_shdr)
2039 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2040 }
2041 break;
2042 }
2043
2044 return true;
2045 }
2046
2047 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2048 Return SEC for sections that have no elf section, and NULL on error. */
2049
2050 asection *
2051 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
2052 bfd *abfd;
2053 struct sym_sec_cache *cache;
2054 asection *sec;
2055 unsigned long r_symndx;
2056 {
2057 Elf_Internal_Shdr *symtab_hdr;
2058 unsigned char esym[sizeof (Elf64_External_Sym)];
2059 Elf_External_Sym_Shndx eshndx;
2060 Elf_Internal_Sym isym;
2061 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2062
2063 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2064 return cache->sec[ent];
2065
2066 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2067 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2068 &isym, esym, &eshndx) == NULL)
2069 return NULL;
2070
2071 if (cache->abfd != abfd)
2072 {
2073 memset (cache->indx, -1, sizeof (cache->indx));
2074 cache->abfd = abfd;
2075 }
2076 cache->indx[ent] = r_symndx;
2077 cache->sec[ent] = sec;
2078 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
2079 {
2080 asection *s;
2081 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2082 if (s != NULL)
2083 cache->sec[ent] = s;
2084 }
2085 return cache->sec[ent];
2086 }
2087
2088 /* Given an ELF section number, retrieve the corresponding BFD
2089 section. */
2090
2091 asection *
2092 bfd_section_from_elf_index (abfd, index)
2093 bfd *abfd;
2094 unsigned int index;
2095 {
2096 if (index >= elf_numsections (abfd))
2097 return NULL;
2098 return elf_elfsections (abfd)[index]->bfd_section;
2099 }
2100
2101 boolean
2102 _bfd_elf_new_section_hook (abfd, sec)
2103 bfd *abfd;
2104 asection *sec;
2105 {
2106 struct bfd_elf_section_data *sdata;
2107 bfd_size_type amt = sizeof (*sdata);
2108
2109 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
2110 if (!sdata)
2111 return false;
2112 sec->used_by_bfd = (PTR) sdata;
2113
2114 /* Indicate whether or not this section should use RELA relocations. */
2115 sdata->use_rela_p
2116 = get_elf_backend_data (abfd)->default_use_rela_p;
2117
2118 return true;
2119 }
2120
2121 /* Create a new bfd section from an ELF program header.
2122
2123 Since program segments have no names, we generate a synthetic name
2124 of the form segment<NUM>, where NUM is generally the index in the
2125 program header table. For segments that are split (see below) we
2126 generate the names segment<NUM>a and segment<NUM>b.
2127
2128 Note that some program segments may have a file size that is different than
2129 (less than) the memory size. All this means is that at execution the
2130 system must allocate the amount of memory specified by the memory size,
2131 but only initialize it with the first "file size" bytes read from the
2132 file. This would occur for example, with program segments consisting
2133 of combined data+bss.
2134
2135 To handle the above situation, this routine generates TWO bfd sections
2136 for the single program segment. The first has the length specified by
2137 the file size of the segment, and the second has the length specified
2138 by the difference between the two sizes. In effect, the segment is split
2139 into it's initialized and uninitialized parts.
2140
2141 */
2142
2143 boolean
2144 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
2145 bfd *abfd;
2146 Elf_Internal_Phdr *hdr;
2147 int index;
2148 const char *typename;
2149 {
2150 asection *newsect;
2151 char *name;
2152 char namebuf[64];
2153 size_t len;
2154 int split;
2155
2156 split = ((hdr->p_memsz > 0)
2157 && (hdr->p_filesz > 0)
2158 && (hdr->p_memsz > hdr->p_filesz));
2159 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2160 len = strlen (namebuf) + 1;
2161 name = bfd_alloc (abfd, (bfd_size_type) len);
2162 if (!name)
2163 return false;
2164 memcpy (name, namebuf, len);
2165 newsect = bfd_make_section (abfd, name);
2166 if (newsect == NULL)
2167 return false;
2168 newsect->vma = hdr->p_vaddr;
2169 newsect->lma = hdr->p_paddr;
2170 newsect->_raw_size = hdr->p_filesz;
2171 newsect->filepos = hdr->p_offset;
2172 newsect->flags |= SEC_HAS_CONTENTS;
2173 if (hdr->p_type == PT_LOAD)
2174 {
2175 newsect->flags |= SEC_ALLOC;
2176 newsect->flags |= SEC_LOAD;
2177 if (hdr->p_flags & PF_X)
2178 {
2179 /* FIXME: all we known is that it has execute PERMISSION,
2180 may be data. */
2181 newsect->flags |= SEC_CODE;
2182 }
2183 }
2184 if (!(hdr->p_flags & PF_W))
2185 {
2186 newsect->flags |= SEC_READONLY;
2187 }
2188
2189 if (split)
2190 {
2191 sprintf (namebuf, "%s%db", typename, index);
2192 len = strlen (namebuf) + 1;
2193 name = bfd_alloc (abfd, (bfd_size_type) len);
2194 if (!name)
2195 return false;
2196 memcpy (name, namebuf, len);
2197 newsect = bfd_make_section (abfd, name);
2198 if (newsect == NULL)
2199 return false;
2200 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2201 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2202 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2203 if (hdr->p_type == PT_LOAD)
2204 {
2205 newsect->flags |= SEC_ALLOC;
2206 if (hdr->p_flags & PF_X)
2207 newsect->flags |= SEC_CODE;
2208 }
2209 if (!(hdr->p_flags & PF_W))
2210 newsect->flags |= SEC_READONLY;
2211 }
2212
2213 return true;
2214 }
2215
2216 boolean
2217 bfd_section_from_phdr (abfd, hdr, index)
2218 bfd *abfd;
2219 Elf_Internal_Phdr *hdr;
2220 int index;
2221 {
2222 struct elf_backend_data *bed;
2223
2224 switch (hdr->p_type)
2225 {
2226 case PT_NULL:
2227 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2228
2229 case PT_LOAD:
2230 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2231
2232 case PT_DYNAMIC:
2233 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2234
2235 case PT_INTERP:
2236 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2237
2238 case PT_NOTE:
2239 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2240 return false;
2241 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2242 return false;
2243 return true;
2244
2245 case PT_SHLIB:
2246 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2247
2248 case PT_PHDR:
2249 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2250
2251 default:
2252 /* Check for any processor-specific program segment types.
2253 If no handler for them, default to making "segment" sections. */
2254 bed = get_elf_backend_data (abfd);
2255 if (bed->elf_backend_section_from_phdr)
2256 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2257 else
2258 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2259 }
2260 }
2261
2262 /* Initialize REL_HDR, the section-header for new section, containing
2263 relocations against ASECT. If USE_RELA_P is true, we use RELA
2264 relocations; otherwise, we use REL relocations. */
2265
2266 boolean
2267 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2268 bfd *abfd;
2269 Elf_Internal_Shdr *rel_hdr;
2270 asection *asect;
2271 boolean use_rela_p;
2272 {
2273 char *name;
2274 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2275 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2276
2277 name = bfd_alloc (abfd, amt);
2278 if (name == NULL)
2279 return false;
2280 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2281 rel_hdr->sh_name =
2282 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2283 false);
2284 if (rel_hdr->sh_name == (unsigned int) -1)
2285 return false;
2286 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2287 rel_hdr->sh_entsize = (use_rela_p
2288 ? bed->s->sizeof_rela
2289 : bed->s->sizeof_rel);
2290 rel_hdr->sh_addralign = bed->s->file_align;
2291 rel_hdr->sh_flags = 0;
2292 rel_hdr->sh_addr = 0;
2293 rel_hdr->sh_size = 0;
2294 rel_hdr->sh_offset = 0;
2295
2296 return true;
2297 }
2298
2299 /* Set up an ELF internal section header for a section. */
2300
2301 static void
2302 elf_fake_sections (abfd, asect, failedptrarg)
2303 bfd *abfd;
2304 asection *asect;
2305 PTR failedptrarg;
2306 {
2307 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2308 boolean *failedptr = (boolean *) failedptrarg;
2309 Elf_Internal_Shdr *this_hdr;
2310
2311 if (*failedptr)
2312 {
2313 /* We already failed; just get out of the bfd_map_over_sections
2314 loop. */
2315 return;
2316 }
2317
2318 this_hdr = &elf_section_data (asect)->this_hdr;
2319
2320 this_hdr->sh_name = (unsigned long) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2321 asect->name, false);
2322 if (this_hdr->sh_name == (unsigned long) -1)
2323 {
2324 *failedptr = true;
2325 return;
2326 }
2327
2328 this_hdr->sh_flags = 0;
2329
2330 if ((asect->flags & SEC_ALLOC) != 0
2331 || asect->user_set_vma)
2332 this_hdr->sh_addr = asect->vma;
2333 else
2334 this_hdr->sh_addr = 0;
2335
2336 this_hdr->sh_offset = 0;
2337 this_hdr->sh_size = asect->_raw_size;
2338 this_hdr->sh_link = 0;
2339 this_hdr->sh_addralign = 1 << asect->alignment_power;
2340 /* The sh_entsize and sh_info fields may have been set already by
2341 copy_private_section_data. */
2342
2343 this_hdr->bfd_section = asect;
2344 this_hdr->contents = NULL;
2345
2346 /* FIXME: This should not be based on section names. */
2347 if (strcmp (asect->name, ".dynstr") == 0)
2348 this_hdr->sh_type = SHT_STRTAB;
2349 else if (strcmp (asect->name, ".hash") == 0)
2350 {
2351 this_hdr->sh_type = SHT_HASH;
2352 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2353 }
2354 else if (strcmp (asect->name, ".dynsym") == 0)
2355 {
2356 this_hdr->sh_type = SHT_DYNSYM;
2357 this_hdr->sh_entsize = bed->s->sizeof_sym;
2358 }
2359 else if (strcmp (asect->name, ".dynamic") == 0)
2360 {
2361 this_hdr->sh_type = SHT_DYNAMIC;
2362 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2363 }
2364 else if (strncmp (asect->name, ".rela", 5) == 0
2365 && get_elf_backend_data (abfd)->may_use_rela_p)
2366 {
2367 this_hdr->sh_type = SHT_RELA;
2368 this_hdr->sh_entsize = bed->s->sizeof_rela;
2369 }
2370 else if (strncmp (asect->name, ".rel", 4) == 0
2371 && get_elf_backend_data (abfd)->may_use_rel_p)
2372 {
2373 this_hdr->sh_type = SHT_REL;
2374 this_hdr->sh_entsize = bed->s->sizeof_rel;
2375 }
2376 else if (strcmp (asect->name, ".init_array") == 0)
2377 this_hdr->sh_type = SHT_INIT_ARRAY;
2378 else if (strcmp (asect->name, ".fini_array") == 0)
2379 this_hdr->sh_type = SHT_FINI_ARRAY;
2380 else if (strcmp (asect->name, ".preinit_array") == 0)
2381 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2382 else if (strncmp (asect->name, ".note", 5) == 0)
2383 this_hdr->sh_type = SHT_NOTE;
2384 else if (strncmp (asect->name, ".stab", 5) == 0
2385 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2386 this_hdr->sh_type = SHT_STRTAB;
2387 else if (strcmp (asect->name, ".gnu.version") == 0)
2388 {
2389 this_hdr->sh_type = SHT_GNU_versym;
2390 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2391 }
2392 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2393 {
2394 this_hdr->sh_type = SHT_GNU_verdef;
2395 this_hdr->sh_entsize = 0;
2396 /* objcopy or strip will copy over sh_info, but may not set
2397 cverdefs. The linker will set cverdefs, but sh_info will be
2398 zero. */
2399 if (this_hdr->sh_info == 0)
2400 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2401 else
2402 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2403 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2404 }
2405 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2406 {
2407 this_hdr->sh_type = SHT_GNU_verneed;
2408 this_hdr->sh_entsize = 0;
2409 /* objcopy or strip will copy over sh_info, but may not set
2410 cverrefs. The linker will set cverrefs, but sh_info will be
2411 zero. */
2412 if (this_hdr->sh_info == 0)
2413 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2414 else
2415 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2416 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2417 }
2418 else if ((asect->flags & SEC_GROUP) != 0)
2419 {
2420 this_hdr->sh_type = SHT_GROUP;
2421 this_hdr->sh_entsize = 4;
2422 }
2423 else if ((asect->flags & SEC_ALLOC) != 0
2424 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2425 || (asect->flags & SEC_NEVER_LOAD) != 0))
2426 this_hdr->sh_type = SHT_NOBITS;
2427 else
2428 this_hdr->sh_type = SHT_PROGBITS;
2429
2430 if ((asect->flags & SEC_ALLOC) != 0)
2431 this_hdr->sh_flags |= SHF_ALLOC;
2432 if ((asect->flags & SEC_READONLY) == 0)
2433 this_hdr->sh_flags |= SHF_WRITE;
2434 if ((asect->flags & SEC_CODE) != 0)
2435 this_hdr->sh_flags |= SHF_EXECINSTR;
2436 if ((asect->flags & SEC_MERGE) != 0)
2437 {
2438 this_hdr->sh_flags |= SHF_MERGE;
2439 this_hdr->sh_entsize = asect->entsize;
2440 if ((asect->flags & SEC_STRINGS) != 0)
2441 this_hdr->sh_flags |= SHF_STRINGS;
2442 }
2443 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2444 this_hdr->sh_flags |= SHF_GROUP;
2445 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2446 this_hdr->sh_flags |= SHF_TLS;
2447
2448 /* Check for processor-specific section types. */
2449 if (bed->elf_backend_fake_sections
2450 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2451 *failedptr = true;
2452
2453 /* If the section has relocs, set up a section header for the
2454 SHT_REL[A] section. If two relocation sections are required for
2455 this section, it is up to the processor-specific back-end to
2456 create the other. */
2457 if ((asect->flags & SEC_RELOC) != 0
2458 && !_bfd_elf_init_reloc_shdr (abfd,
2459 &elf_section_data (asect)->rel_hdr,
2460 asect,
2461 elf_section_data (asect)->use_rela_p))
2462 *failedptr = true;
2463 }
2464
2465 /* Fill in the contents of a SHT_GROUP section. */
2466
2467 void
2468 bfd_elf_set_group_contents (abfd, sec, failedptrarg)
2469 bfd *abfd;
2470 asection *sec;
2471 PTR failedptrarg;
2472 {
2473 boolean *failedptr = (boolean *) failedptrarg;
2474 unsigned long symindx;
2475 asection *elt, *first;
2476 unsigned char *loc;
2477 struct bfd_link_order *l;
2478 boolean gas;
2479
2480 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2481 || *failedptr)
2482 return;
2483
2484 symindx = 0;
2485 if (elf_group_id (sec) != NULL)
2486 symindx = elf_group_id (sec)->udata.i;
2487
2488 if (symindx == 0)
2489 {
2490 /* If called from the assembler, swap_out_syms will have set up
2491 elf_section_syms; If called for "ld -r", use target_index. */
2492 if (elf_section_syms (abfd) != NULL)
2493 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2494 else
2495 symindx = sec->target_index;
2496 }
2497 elf_section_data (sec)->this_hdr.sh_info = symindx;
2498
2499 /* The contents won't be allocated for "ld -r" or objcopy. */
2500 gas = true;
2501 if (sec->contents == NULL)
2502 {
2503 gas = false;
2504 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2505
2506 /* Arrange for the section to be written out. */
2507 elf_section_data (sec)->this_hdr.contents = sec->contents;
2508 if (sec->contents == NULL)
2509 {
2510 *failedptr = true;
2511 return;
2512 }
2513 }
2514
2515 loc = sec->contents + sec->_raw_size;
2516
2517 /* Get the pointer to the first section in the group that gas
2518 squirreled away here. objcopy arranges for this to be set to the
2519 start of the input section group. */
2520 first = elt = elf_next_in_group (sec);
2521
2522 /* First element is a flag word. Rest of section is elf section
2523 indices for all the sections of the group. Write them backwards
2524 just to keep the group in the same order as given in .section
2525 directives, not that it matters. */
2526 while (elt != NULL)
2527 {
2528 asection *s;
2529 unsigned int idx;
2530
2531 loc -= 4;
2532 s = elt;
2533 if (!gas)
2534 s = s->output_section;
2535 idx = 0;
2536 if (s != NULL)
2537 idx = elf_section_data (s)->this_idx;
2538 H_PUT_32 (abfd, idx, loc);
2539 elt = elf_next_in_group (elt);
2540 if (elt == first)
2541 break;
2542 }
2543
2544 /* If this is a relocatable link, then the above did nothing because
2545 SEC is the output section. Look through the input sections
2546 instead. */
2547 for (l = sec->link_order_head; l != NULL; l = l->next)
2548 if (l->type == bfd_indirect_link_order
2549 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2550 do
2551 {
2552 loc -= 4;
2553 H_PUT_32 (abfd,
2554 elf_section_data (elt->output_section)->this_idx, loc);
2555 elt = elf_next_in_group (elt);
2556 /* During a relocatable link, the lists are circular. */
2557 }
2558 while (elt != elf_next_in_group (l->u.indirect.section));
2559
2560 /* With ld -r, merging SHT_GROUP sections results in wasted space
2561 due to allowing for the flag word on each input. We may well
2562 duplicate entries too. */
2563 while ((loc -= 4) > sec->contents)
2564 H_PUT_32 (abfd, 0, loc);
2565
2566 if (loc != sec->contents)
2567 abort ();
2568
2569 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2570 }
2571
2572 /* Assign all ELF section numbers. The dummy first section is handled here
2573 too. The link/info pointers for the standard section types are filled
2574 in here too, while we're at it. */
2575
2576 static boolean
2577 assign_section_numbers (abfd)
2578 bfd *abfd;
2579 {
2580 struct elf_obj_tdata *t = elf_tdata (abfd);
2581 asection *sec;
2582 unsigned int section_number, secn;
2583 Elf_Internal_Shdr **i_shdrp;
2584 bfd_size_type amt;
2585
2586 section_number = 1;
2587
2588 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2589
2590 for (sec = abfd->sections; sec; sec = sec->next)
2591 {
2592 struct bfd_elf_section_data *d = elf_section_data (sec);
2593
2594 if (section_number == SHN_LORESERVE)
2595 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2596 d->this_idx = section_number++;
2597 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2598 if ((sec->flags & SEC_RELOC) == 0)
2599 d->rel_idx = 0;
2600 else
2601 {
2602 if (section_number == SHN_LORESERVE)
2603 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2604 d->rel_idx = section_number++;
2605 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2606 }
2607
2608 if (d->rel_hdr2)
2609 {
2610 if (section_number == SHN_LORESERVE)
2611 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2612 d->rel_idx2 = section_number++;
2613 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2614 }
2615 else
2616 d->rel_idx2 = 0;
2617 }
2618
2619 if (section_number == SHN_LORESERVE)
2620 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2621 t->shstrtab_section = section_number++;
2622 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2623 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2624
2625 if (bfd_get_symcount (abfd) > 0)
2626 {
2627 if (section_number == SHN_LORESERVE)
2628 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2629 t->symtab_section = section_number++;
2630 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2631 if (section_number > SHN_LORESERVE - 2)
2632 {
2633 if (section_number == SHN_LORESERVE)
2634 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2635 t->symtab_shndx_section = section_number++;
2636 t->symtab_shndx_hdr.sh_name
2637 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2638 ".symtab_shndx", false);
2639 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2640 return false;
2641 }
2642 if (section_number == SHN_LORESERVE)
2643 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2644 t->strtab_section = section_number++;
2645 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2646 }
2647
2648 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2649 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2650
2651 elf_numsections (abfd) = section_number;
2652 elf_elfheader (abfd)->e_shnum = section_number;
2653 if (section_number > SHN_LORESERVE)
2654 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2655
2656 /* Set up the list of section header pointers, in agreement with the
2657 indices. */
2658 amt = section_number * sizeof (Elf_Internal_Shdr *);
2659 i_shdrp = (Elf_Internal_Shdr **) bfd_alloc (abfd, amt);
2660 if (i_shdrp == NULL)
2661 return false;
2662
2663 amt = sizeof (Elf_Internal_Shdr);
2664 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2665 if (i_shdrp[0] == NULL)
2666 {
2667 bfd_release (abfd, i_shdrp);
2668 return false;
2669 }
2670 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
2671
2672 elf_elfsections (abfd) = i_shdrp;
2673
2674 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2675 if (bfd_get_symcount (abfd) > 0)
2676 {
2677 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2678 if (elf_numsections (abfd) > SHN_LORESERVE)
2679 {
2680 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2681 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2682 }
2683 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2684 t->symtab_hdr.sh_link = t->strtab_section;
2685 }
2686 for (sec = abfd->sections; sec; sec = sec->next)
2687 {
2688 struct bfd_elf_section_data *d = elf_section_data (sec);
2689 asection *s;
2690 const char *name;
2691
2692 i_shdrp[d->this_idx] = &d->this_hdr;
2693 if (d->rel_idx != 0)
2694 i_shdrp[d->rel_idx] = &d->rel_hdr;
2695 if (d->rel_idx2 != 0)
2696 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2697
2698 /* Fill in the sh_link and sh_info fields while we're at it. */
2699
2700 /* sh_link of a reloc section is the section index of the symbol
2701 table. sh_info is the section index of the section to which
2702 the relocation entries apply. */
2703 if (d->rel_idx != 0)
2704 {
2705 d->rel_hdr.sh_link = t->symtab_section;
2706 d->rel_hdr.sh_info = d->this_idx;
2707 }
2708 if (d->rel_idx2 != 0)
2709 {
2710 d->rel_hdr2->sh_link = t->symtab_section;
2711 d->rel_hdr2->sh_info = d->this_idx;
2712 }
2713
2714 switch (d->this_hdr.sh_type)
2715 {
2716 case SHT_REL:
2717 case SHT_RELA:
2718 /* A reloc section which we are treating as a normal BFD
2719 section. sh_link is the section index of the symbol
2720 table. sh_info is the section index of the section to
2721 which the relocation entries apply. We assume that an
2722 allocated reloc section uses the dynamic symbol table.
2723 FIXME: How can we be sure? */
2724 s = bfd_get_section_by_name (abfd, ".dynsym");
2725 if (s != NULL)
2726 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2727
2728 /* We look up the section the relocs apply to by name. */
2729 name = sec->name;
2730 if (d->this_hdr.sh_type == SHT_REL)
2731 name += 4;
2732 else
2733 name += 5;
2734 s = bfd_get_section_by_name (abfd, name);
2735 if (s != NULL)
2736 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2737 break;
2738
2739 case SHT_STRTAB:
2740 /* We assume that a section named .stab*str is a stabs
2741 string section. We look for a section with the same name
2742 but without the trailing ``str'', and set its sh_link
2743 field to point to this section. */
2744 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2745 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2746 {
2747 size_t len;
2748 char *alc;
2749
2750 len = strlen (sec->name);
2751 alc = (char *) bfd_malloc ((bfd_size_type) (len - 2));
2752 if (alc == NULL)
2753 return false;
2754 memcpy (alc, sec->name, len - 3);
2755 alc[len - 3] = '\0';
2756 s = bfd_get_section_by_name (abfd, alc);
2757 free (alc);
2758 if (s != NULL)
2759 {
2760 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2761
2762 /* This is a .stab section. */
2763 elf_section_data (s)->this_hdr.sh_entsize =
2764 4 + 2 * bfd_get_arch_size (abfd) / 8;
2765 }
2766 }
2767 break;
2768
2769 case SHT_DYNAMIC:
2770 case SHT_DYNSYM:
2771 case SHT_GNU_verneed:
2772 case SHT_GNU_verdef:
2773 /* sh_link is the section header index of the string table
2774 used for the dynamic entries, or the symbol table, or the
2775 version strings. */
2776 s = bfd_get_section_by_name (abfd, ".dynstr");
2777 if (s != NULL)
2778 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2779 break;
2780
2781 case SHT_HASH:
2782 case SHT_GNU_versym:
2783 /* sh_link is the section header index of the symbol table
2784 this hash table or version table is for. */
2785 s = bfd_get_section_by_name (abfd, ".dynsym");
2786 if (s != NULL)
2787 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2788 break;
2789
2790 case SHT_GROUP:
2791 d->this_hdr.sh_link = t->symtab_section;
2792 }
2793 }
2794
2795 for (secn = 1; secn < section_number; ++secn)
2796 if (i_shdrp[secn] == NULL)
2797 i_shdrp[secn] = i_shdrp[0];
2798 else
2799 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2800 i_shdrp[secn]->sh_name);
2801 return true;
2802 }
2803
2804 /* Map symbol from it's internal number to the external number, moving
2805 all local symbols to be at the head of the list. */
2806
2807 static INLINE int
2808 sym_is_global (abfd, sym)
2809 bfd *abfd;
2810 asymbol *sym;
2811 {
2812 /* If the backend has a special mapping, use it. */
2813 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2814 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2815 (abfd, sym));
2816
2817 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2818 || bfd_is_und_section (bfd_get_section (sym))
2819 || bfd_is_com_section (bfd_get_section (sym)));
2820 }
2821
2822 static boolean
2823 elf_map_symbols (abfd)
2824 bfd *abfd;
2825 {
2826 unsigned int symcount = bfd_get_symcount (abfd);
2827 asymbol **syms = bfd_get_outsymbols (abfd);
2828 asymbol **sect_syms;
2829 unsigned int num_locals = 0;
2830 unsigned int num_globals = 0;
2831 unsigned int num_locals2 = 0;
2832 unsigned int num_globals2 = 0;
2833 int max_index = 0;
2834 unsigned int idx;
2835 asection *asect;
2836 asymbol **new_syms;
2837 bfd_size_type amt;
2838
2839 #ifdef DEBUG
2840 fprintf (stderr, "elf_map_symbols\n");
2841 fflush (stderr);
2842 #endif
2843
2844 for (asect = abfd->sections; asect; asect = asect->next)
2845 {
2846 if (max_index < asect->index)
2847 max_index = asect->index;
2848 }
2849
2850 max_index++;
2851 amt = max_index * sizeof (asymbol *);
2852 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2853 if (sect_syms == NULL)
2854 return false;
2855 elf_section_syms (abfd) = sect_syms;
2856 elf_num_section_syms (abfd) = max_index;
2857
2858 /* Init sect_syms entries for any section symbols we have already
2859 decided to output. */
2860 for (idx = 0; idx < symcount; idx++)
2861 {
2862 asymbol *sym = syms[idx];
2863
2864 if ((sym->flags & BSF_SECTION_SYM) != 0
2865 && sym->value == 0)
2866 {
2867 asection *sec;
2868
2869 sec = sym->section;
2870
2871 if (sec->owner != NULL)
2872 {
2873 if (sec->owner != abfd)
2874 {
2875 if (sec->output_offset != 0)
2876 continue;
2877
2878 sec = sec->output_section;
2879
2880 /* Empty sections in the input files may have had a
2881 section symbol created for them. (See the comment
2882 near the end of _bfd_generic_link_output_symbols in
2883 linker.c). If the linker script discards such
2884 sections then we will reach this point. Since we know
2885 that we cannot avoid this case, we detect it and skip
2886 the abort and the assignment to the sect_syms array.
2887 To reproduce this particular case try running the
2888 linker testsuite test ld-scripts/weak.exp for an ELF
2889 port that uses the generic linker. */
2890 if (sec->owner == NULL)
2891 continue;
2892
2893 BFD_ASSERT (sec->owner == abfd);
2894 }
2895 sect_syms[sec->index] = syms[idx];
2896 }
2897 }
2898 }
2899
2900 /* Classify all of the symbols. */
2901 for (idx = 0; idx < symcount; idx++)
2902 {
2903 if (!sym_is_global (abfd, syms[idx]))
2904 num_locals++;
2905 else
2906 num_globals++;
2907 }
2908
2909 /* We will be adding a section symbol for each BFD section. Most normal
2910 sections will already have a section symbol in outsymbols, but
2911 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2912 at least in that case. */
2913 for (asect = abfd->sections; asect; asect = asect->next)
2914 {
2915 if (sect_syms[asect->index] == NULL)
2916 {
2917 if (!sym_is_global (abfd, asect->symbol))
2918 num_locals++;
2919 else
2920 num_globals++;
2921 }
2922 }
2923
2924 /* Now sort the symbols so the local symbols are first. */
2925 amt = (num_locals + num_globals) * sizeof (asymbol *);
2926 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2927
2928 if (new_syms == NULL)
2929 return false;
2930
2931 for (idx = 0; idx < symcount; idx++)
2932 {
2933 asymbol *sym = syms[idx];
2934 unsigned int i;
2935
2936 if (!sym_is_global (abfd, sym))
2937 i = num_locals2++;
2938 else
2939 i = num_locals + num_globals2++;
2940 new_syms[i] = sym;
2941 sym->udata.i = i + 1;
2942 }
2943 for (asect = abfd->sections; asect; asect = asect->next)
2944 {
2945 if (sect_syms[asect->index] == NULL)
2946 {
2947 asymbol *sym = asect->symbol;
2948 unsigned int i;
2949
2950 sect_syms[asect->index] = sym;
2951 if (!sym_is_global (abfd, sym))
2952 i = num_locals2++;
2953 else
2954 i = num_locals + num_globals2++;
2955 new_syms[i] = sym;
2956 sym->udata.i = i + 1;
2957 }
2958 }
2959
2960 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2961
2962 elf_num_locals (abfd) = num_locals;
2963 elf_num_globals (abfd) = num_globals;
2964 return true;
2965 }
2966
2967 /* Align to the maximum file alignment that could be required for any
2968 ELF data structure. */
2969
2970 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2971 static INLINE file_ptr
2972 align_file_position (off, align)
2973 file_ptr off;
2974 int align;
2975 {
2976 return (off + align - 1) & ~(align - 1);
2977 }
2978
2979 /* Assign a file position to a section, optionally aligning to the
2980 required section alignment. */
2981
2982 INLINE file_ptr
2983 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2984 Elf_Internal_Shdr *i_shdrp;
2985 file_ptr offset;
2986 boolean align;
2987 {
2988 if (align)
2989 {
2990 unsigned int al;
2991
2992 al = i_shdrp->sh_addralign;
2993 if (al > 1)
2994 offset = BFD_ALIGN (offset, al);
2995 }
2996 i_shdrp->sh_offset = offset;
2997 if (i_shdrp->bfd_section != NULL)
2998 i_shdrp->bfd_section->filepos = offset;
2999 if (i_shdrp->sh_type != SHT_NOBITS)
3000 offset += i_shdrp->sh_size;
3001 return offset;
3002 }
3003
3004 /* Compute the file positions we are going to put the sections at, and
3005 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3006 is not NULL, this is being called by the ELF backend linker. */
3007
3008 boolean
3009 _bfd_elf_compute_section_file_positions (abfd, link_info)
3010 bfd *abfd;
3011 struct bfd_link_info *link_info;
3012 {
3013 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3014 boolean failed;
3015 struct bfd_strtab_hash *strtab;
3016 Elf_Internal_Shdr *shstrtab_hdr;
3017
3018 if (abfd->output_has_begun)
3019 return true;
3020
3021 /* Do any elf backend specific processing first. */
3022 if (bed->elf_backend_begin_write_processing)
3023 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3024
3025 if (! prep_headers (abfd))
3026 return false;
3027
3028 /* Post process the headers if necessary. */
3029 if (bed->elf_backend_post_process_headers)
3030 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3031
3032 failed = false;
3033 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3034 if (failed)
3035 return false;
3036
3037 if (!assign_section_numbers (abfd))
3038 return false;
3039
3040 /* The backend linker builds symbol table information itself. */
3041 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3042 {
3043 /* Non-zero if doing a relocatable link. */
3044 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3045
3046 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3047 return false;
3048 }
3049
3050 if (link_info == NULL)
3051 {
3052 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3053 if (failed)
3054 return false;
3055 }
3056
3057 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3058 /* sh_name was set in prep_headers. */
3059 shstrtab_hdr->sh_type = SHT_STRTAB;
3060 shstrtab_hdr->sh_flags = 0;
3061 shstrtab_hdr->sh_addr = 0;
3062 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3063 shstrtab_hdr->sh_entsize = 0;
3064 shstrtab_hdr->sh_link = 0;
3065 shstrtab_hdr->sh_info = 0;
3066 /* sh_offset is set in assign_file_positions_except_relocs. */
3067 shstrtab_hdr->sh_addralign = 1;
3068
3069 if (!assign_file_positions_except_relocs (abfd))
3070 return false;
3071
3072 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3073 {
3074 file_ptr off;
3075 Elf_Internal_Shdr *hdr;
3076
3077 off = elf_tdata (abfd)->next_file_pos;
3078
3079 hdr = &elf_tdata (abfd)->symtab_hdr;
3080 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3081
3082 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3083 if (hdr->sh_size != 0)
3084 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3085
3086 hdr = &elf_tdata (abfd)->strtab_hdr;
3087 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3088
3089 elf_tdata (abfd)->next_file_pos = off;
3090
3091 /* Now that we know where the .strtab section goes, write it
3092 out. */
3093 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3094 || ! _bfd_stringtab_emit (abfd, strtab))
3095 return false;
3096 _bfd_stringtab_free (strtab);
3097 }
3098
3099 abfd->output_has_begun = true;
3100
3101 return true;
3102 }
3103
3104 /* Create a mapping from a set of sections to a program segment. */
3105
3106 static INLINE struct elf_segment_map *
3107 make_mapping (abfd, sections, from, to, phdr)
3108 bfd *abfd;
3109 asection **sections;
3110 unsigned int from;
3111 unsigned int to;
3112 boolean phdr;
3113 {
3114 struct elf_segment_map *m;
3115 unsigned int i;
3116 asection **hdrpp;
3117 bfd_size_type amt;
3118
3119 amt = sizeof (struct elf_segment_map);
3120 amt += (to - from - 1) * sizeof (asection *);
3121 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3122 if (m == NULL)
3123 return NULL;
3124 m->next = NULL;
3125 m->p_type = PT_LOAD;
3126 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3127 m->sections[i - from] = *hdrpp;
3128 m->count = to - from;
3129
3130 if (from == 0 && phdr)
3131 {
3132 /* Include the headers in the first PT_LOAD segment. */
3133 m->includes_filehdr = 1;
3134 m->includes_phdrs = 1;
3135 }
3136
3137 return m;
3138 }
3139
3140 /* Set up a mapping from BFD sections to program segments. */
3141
3142 static boolean
3143 map_sections_to_segments (abfd)
3144 bfd *abfd;
3145 {
3146 asection **sections = NULL;
3147 asection *s;
3148 unsigned int i;
3149 unsigned int count;
3150 struct elf_segment_map *mfirst;
3151 struct elf_segment_map **pm;
3152 struct elf_segment_map *m;
3153 asection *last_hdr;
3154 unsigned int phdr_index;
3155 bfd_vma maxpagesize;
3156 asection **hdrpp;
3157 boolean phdr_in_segment = true;
3158 boolean writable;
3159 int tls_count = 0;
3160 asection *first_tls = NULL;
3161 asection *dynsec, *eh_frame_hdr;
3162 bfd_size_type amt;
3163
3164 if (elf_tdata (abfd)->segment_map != NULL)
3165 return true;
3166
3167 if (bfd_count_sections (abfd) == 0)
3168 return true;
3169
3170 /* Select the allocated sections, and sort them. */
3171
3172 amt = bfd_count_sections (abfd) * sizeof (asection *);
3173 sections = (asection **) bfd_malloc (amt);
3174 if (sections == NULL)
3175 goto error_return;
3176
3177 i = 0;
3178 for (s = abfd->sections; s != NULL; s = s->next)
3179 {
3180 if ((s->flags & SEC_ALLOC) != 0)
3181 {
3182 sections[i] = s;
3183 ++i;
3184 }
3185 }
3186 BFD_ASSERT (i <= bfd_count_sections (abfd));
3187 count = i;
3188
3189 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3190
3191 /* Build the mapping. */
3192
3193 mfirst = NULL;
3194 pm = &mfirst;
3195
3196 /* If we have a .interp section, then create a PT_PHDR segment for
3197 the program headers and a PT_INTERP segment for the .interp
3198 section. */
3199 s = bfd_get_section_by_name (abfd, ".interp");
3200 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3201 {
3202 amt = sizeof (struct elf_segment_map);
3203 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3204 if (m == NULL)
3205 goto error_return;
3206 m->next = NULL;
3207 m->p_type = PT_PHDR;
3208 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3209 m->p_flags = PF_R | PF_X;
3210 m->p_flags_valid = 1;
3211 m->includes_phdrs = 1;
3212
3213 *pm = m;
3214 pm = &m->next;
3215
3216 amt = sizeof (struct elf_segment_map);
3217 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3218 if (m == NULL)
3219 goto error_return;
3220 m->next = NULL;
3221 m->p_type = PT_INTERP;
3222 m->count = 1;
3223 m->sections[0] = s;
3224
3225 *pm = m;
3226 pm = &m->next;
3227 }
3228
3229 /* Look through the sections. We put sections in the same program
3230 segment when the start of the second section can be placed within
3231 a few bytes of the end of the first section. */
3232 last_hdr = NULL;
3233 phdr_index = 0;
3234 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3235 writable = false;
3236 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3237 if (dynsec != NULL
3238 && (dynsec->flags & SEC_LOAD) == 0)
3239 dynsec = NULL;
3240
3241 /* Deal with -Ttext or something similar such that the first section
3242 is not adjacent to the program headers. This is an
3243 approximation, since at this point we don't know exactly how many
3244 program headers we will need. */
3245 if (count > 0)
3246 {
3247 bfd_size_type phdr_size;
3248
3249 phdr_size = elf_tdata (abfd)->program_header_size;
3250 if (phdr_size == 0)
3251 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3252 if ((abfd->flags & D_PAGED) == 0
3253 || sections[0]->lma < phdr_size
3254 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3255 phdr_in_segment = false;
3256 }
3257
3258 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3259 {
3260 asection *hdr;
3261 boolean new_segment;
3262
3263 hdr = *hdrpp;
3264
3265 /* See if this section and the last one will fit in the same
3266 segment. */
3267
3268 if (last_hdr == NULL)
3269 {
3270 /* If we don't have a segment yet, then we don't need a new
3271 one (we build the last one after this loop). */
3272 new_segment = false;
3273 }
3274 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3275 {
3276 /* If this section has a different relation between the
3277 virtual address and the load address, then we need a new
3278 segment. */
3279 new_segment = true;
3280 }
3281 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3282 < BFD_ALIGN (hdr->lma, maxpagesize))
3283 {
3284 /* If putting this section in this segment would force us to
3285 skip a page in the segment, then we need a new segment. */
3286 new_segment = true;
3287 }
3288 else if ((last_hdr->flags & SEC_LOAD) == 0
3289 && (hdr->flags & SEC_LOAD) != 0)
3290 {
3291 /* We don't want to put a loadable section after a
3292 nonloadable section in the same segment. */
3293 new_segment = true;
3294 }
3295 else if ((abfd->flags & D_PAGED) == 0)
3296 {
3297 /* If the file is not demand paged, which means that we
3298 don't require the sections to be correctly aligned in the
3299 file, then there is no other reason for a new segment. */
3300 new_segment = false;
3301 }
3302 else if (! writable
3303 && (hdr->flags & SEC_READONLY) == 0
3304 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3305 == hdr->lma))
3306 {
3307 /* We don't want to put a writable section in a read only
3308 segment, unless they are on the same page in memory
3309 anyhow. We already know that the last section does not
3310 bring us past the current section on the page, so the
3311 only case in which the new section is not on the same
3312 page as the previous section is when the previous section
3313 ends precisely on a page boundary. */
3314 new_segment = true;
3315 }
3316 else
3317 {
3318 /* Otherwise, we can use the same segment. */
3319 new_segment = false;
3320 }
3321
3322 if (! new_segment)
3323 {
3324 if ((hdr->flags & SEC_READONLY) == 0)
3325 writable = true;
3326 last_hdr = hdr;
3327 continue;
3328 }
3329
3330 /* We need a new program segment. We must create a new program
3331 header holding all the sections from phdr_index until hdr. */
3332
3333 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3334 if (m == NULL)
3335 goto error_return;
3336
3337 *pm = m;
3338 pm = &m->next;
3339
3340 if ((hdr->flags & SEC_READONLY) == 0)
3341 writable = true;
3342 else
3343 writable = false;
3344
3345 last_hdr = hdr;
3346 phdr_index = i;
3347 phdr_in_segment = false;
3348 }
3349
3350 /* Create a final PT_LOAD program segment. */
3351 if (last_hdr != NULL)
3352 {
3353 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3354 if (m == NULL)
3355 goto error_return;
3356
3357 *pm = m;
3358 pm = &m->next;
3359 }
3360
3361 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3362 if (dynsec != NULL)
3363 {
3364 amt = sizeof (struct elf_segment_map);
3365 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3366 if (m == NULL)
3367 goto error_return;
3368 m->next = NULL;
3369 m->p_type = PT_DYNAMIC;
3370 m->count = 1;
3371 m->sections[0] = dynsec;
3372
3373 *pm = m;
3374 pm = &m->next;
3375 }
3376
3377 /* For each loadable .note section, add a PT_NOTE segment. We don't
3378 use bfd_get_section_by_name, because if we link together
3379 nonloadable .note sections and loadable .note sections, we will
3380 generate two .note sections in the output file. FIXME: Using
3381 names for section types is bogus anyhow. */
3382 for (s = abfd->sections; s != NULL; s = s->next)
3383 {
3384 if ((s->flags & SEC_LOAD) != 0
3385 && strncmp (s->name, ".note", 5) == 0)
3386 {
3387 amt = sizeof (struct elf_segment_map);
3388 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3389 if (m == NULL)
3390 goto error_return;
3391 m->next = NULL;
3392 m->p_type = PT_NOTE;
3393 m->count = 1;
3394 m->sections[0] = s;
3395
3396 *pm = m;
3397 pm = &m->next;
3398 }
3399 if (s->flags & SEC_THREAD_LOCAL)
3400 {
3401 if (! tls_count)
3402 first_tls = s;
3403 tls_count++;
3404 }
3405 }
3406
3407 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3408 if (tls_count > 0)
3409 {
3410 int i;
3411
3412 amt = sizeof (struct elf_segment_map);
3413 amt += (tls_count - 1) * sizeof (asection *);
3414 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3415 if (m == NULL)
3416 goto error_return;
3417 m->next = NULL;
3418 m->p_type = PT_TLS;
3419 m->count = tls_count;
3420 /* Mandated PF_R. */
3421 m->p_flags = PF_R;
3422 m->p_flags_valid = 1;
3423 for (i = 0; i < tls_count; ++i)
3424 {
3425 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3426 m->sections[i] = first_tls;
3427 first_tls = first_tls->next;
3428 }
3429
3430 *pm = m;
3431 pm = &m->next;
3432 }
3433
3434 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3435 segment. */
3436 eh_frame_hdr = NULL;
3437 if (elf_tdata (abfd)->eh_frame_hdr)
3438 eh_frame_hdr = bfd_get_section_by_name (abfd, ".eh_frame_hdr");
3439 if (eh_frame_hdr != NULL && (eh_frame_hdr->flags & SEC_LOAD))
3440 {
3441 amt = sizeof (struct elf_segment_map);
3442 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3443 if (m == NULL)
3444 goto error_return;
3445 m->next = NULL;
3446 m->p_type = PT_GNU_EH_FRAME;
3447 m->count = 1;
3448 m->sections[0] = eh_frame_hdr;
3449
3450 *pm = m;
3451 pm = &m->next;
3452 }
3453
3454 free (sections);
3455 sections = NULL;
3456
3457 elf_tdata (abfd)->segment_map = mfirst;
3458 return true;
3459
3460 error_return:
3461 if (sections != NULL)
3462 free (sections);
3463 return false;
3464 }
3465
3466 /* Sort sections by address. */
3467
3468 static int
3469 elf_sort_sections (arg1, arg2)
3470 const PTR arg1;
3471 const PTR arg2;
3472 {
3473 const asection *sec1 = *(const asection **) arg1;
3474 const asection *sec2 = *(const asection **) arg2;
3475
3476 /* Sort by LMA first, since this is the address used to
3477 place the section into a segment. */
3478 if (sec1->lma < sec2->lma)
3479 return -1;
3480 else if (sec1->lma > sec2->lma)
3481 return 1;
3482
3483 /* Then sort by VMA. Normally the LMA and the VMA will be
3484 the same, and this will do nothing. */
3485 if (sec1->vma < sec2->vma)
3486 return -1;
3487 else if (sec1->vma > sec2->vma)
3488 return 1;
3489
3490 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3491
3492 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
3493
3494 if (TOEND (sec1))
3495 {
3496 if (TOEND (sec2))
3497 {
3498 /* If the indicies are the same, do not return 0
3499 here, but continue to try the next comparison. */
3500 if (sec1->target_index - sec2->target_index != 0)
3501 return sec1->target_index - sec2->target_index;
3502 }
3503 else
3504 return 1;
3505 }
3506 else if (TOEND (sec2))
3507 return -1;
3508
3509 #undef TOEND
3510
3511 /* Sort by size, to put zero sized sections
3512 before others at the same address. */
3513
3514 if (sec1->_raw_size < sec2->_raw_size)
3515 return -1;
3516 if (sec1->_raw_size > sec2->_raw_size)
3517 return 1;
3518
3519 return sec1->target_index - sec2->target_index;
3520 }
3521
3522 /* Assign file positions to the sections based on the mapping from
3523 sections to segments. This function also sets up some fields in
3524 the file header, and writes out the program headers. */
3525
3526 static boolean
3527 assign_file_positions_for_segments (abfd)
3528 bfd *abfd;
3529 {
3530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3531 unsigned int count;
3532 struct elf_segment_map *m;
3533 unsigned int alloc;
3534 Elf_Internal_Phdr *phdrs;
3535 file_ptr off, voff;
3536 bfd_vma filehdr_vaddr, filehdr_paddr;
3537 bfd_vma phdrs_vaddr, phdrs_paddr;
3538 Elf_Internal_Phdr *p;
3539 bfd_size_type amt;
3540
3541 if (elf_tdata (abfd)->segment_map == NULL)
3542 {
3543 if (! map_sections_to_segments (abfd))
3544 return false;
3545 }
3546 else
3547 {
3548 /* The placement algorithm assumes that non allocated sections are
3549 not in PT_LOAD segments. We ensure this here by removing such
3550 sections from the segment map. */
3551 for (m = elf_tdata (abfd)->segment_map;
3552 m != NULL;
3553 m = m->next)
3554 {
3555 unsigned int new_count;
3556 unsigned int i;
3557
3558 if (m->p_type != PT_LOAD)
3559 continue;
3560
3561 new_count = 0;
3562 for (i = 0; i < m->count; i ++)
3563 {
3564 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3565 {
3566 if (i != new_count)
3567 m->sections[new_count] = m->sections[i];
3568
3569 new_count ++;
3570 }
3571 }
3572
3573 if (new_count != m->count)
3574 m->count = new_count;
3575 }
3576 }
3577
3578 if (bed->elf_backend_modify_segment_map)
3579 {
3580 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3581 return false;
3582 }
3583
3584 count = 0;
3585 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3586 ++count;
3587
3588 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3589 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3590 elf_elfheader (abfd)->e_phnum = count;
3591
3592 if (count == 0)
3593 return true;
3594
3595 /* If we already counted the number of program segments, make sure
3596 that we allocated enough space. This happens when SIZEOF_HEADERS
3597 is used in a linker script. */
3598 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3599 if (alloc != 0 && count > alloc)
3600 {
3601 ((*_bfd_error_handler)
3602 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3603 bfd_get_filename (abfd), alloc, count));
3604 bfd_set_error (bfd_error_bad_value);
3605 return false;
3606 }
3607
3608 if (alloc == 0)
3609 alloc = count;
3610
3611 amt = alloc * sizeof (Elf_Internal_Phdr);
3612 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3613 if (phdrs == NULL)
3614 return false;
3615
3616 off = bed->s->sizeof_ehdr;
3617 off += alloc * bed->s->sizeof_phdr;
3618
3619 filehdr_vaddr = 0;
3620 filehdr_paddr = 0;
3621 phdrs_vaddr = 0;
3622 phdrs_paddr = 0;
3623
3624 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3625 m != NULL;
3626 m = m->next, p++)
3627 {
3628 unsigned int i;
3629 asection **secpp;
3630
3631 /* If elf_segment_map is not from map_sections_to_segments, the
3632 sections may not be correctly ordered. NOTE: sorting should
3633 not be done to the PT_NOTE section of a corefile, which may
3634 contain several pseudo-sections artificially created by bfd.
3635 Sorting these pseudo-sections breaks things badly. */
3636 if (m->count > 1
3637 && !(elf_elfheader (abfd)->e_type == ET_CORE
3638 && m->p_type == PT_NOTE))
3639 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3640 elf_sort_sections);
3641
3642 p->p_type = m->p_type;
3643 p->p_flags = m->p_flags;
3644
3645 if (p->p_type == PT_LOAD
3646 && m->count > 0
3647 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3648 {
3649 if ((abfd->flags & D_PAGED) != 0)
3650 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3651 else
3652 {
3653 bfd_size_type align;
3654
3655 align = 0;
3656 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3657 {
3658 bfd_size_type secalign;
3659
3660 secalign = bfd_get_section_alignment (abfd, *secpp);
3661 if (secalign > align)
3662 align = secalign;
3663 }
3664
3665 off += (m->sections[0]->vma - off) % (1 << align);
3666 }
3667 }
3668
3669 if (m->count == 0)
3670 p->p_vaddr = 0;
3671 else
3672 p->p_vaddr = m->sections[0]->vma;
3673
3674 if (m->p_paddr_valid)
3675 p->p_paddr = m->p_paddr;
3676 else if (m->count == 0)
3677 p->p_paddr = 0;
3678 else
3679 p->p_paddr = m->sections[0]->lma;
3680
3681 if (p->p_type == PT_LOAD
3682 && (abfd->flags & D_PAGED) != 0)
3683 p->p_align = bed->maxpagesize;
3684 else if (m->count == 0)
3685 p->p_align = bed->s->file_align;
3686 else
3687 p->p_align = 0;
3688
3689 p->p_offset = 0;
3690 p->p_filesz = 0;
3691 p->p_memsz = 0;
3692
3693 if (m->includes_filehdr)
3694 {
3695 if (! m->p_flags_valid)
3696 p->p_flags |= PF_R;
3697 p->p_offset = 0;
3698 p->p_filesz = bed->s->sizeof_ehdr;
3699 p->p_memsz = bed->s->sizeof_ehdr;
3700 if (m->count > 0)
3701 {
3702 BFD_ASSERT (p->p_type == PT_LOAD);
3703
3704 if (p->p_vaddr < (bfd_vma) off)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: Not enough room for program headers, try linking with -N"),
3708 bfd_get_filename (abfd));
3709 bfd_set_error (bfd_error_bad_value);
3710 return false;
3711 }
3712
3713 p->p_vaddr -= off;
3714 if (! m->p_paddr_valid)
3715 p->p_paddr -= off;
3716 }
3717 if (p->p_type == PT_LOAD)
3718 {
3719 filehdr_vaddr = p->p_vaddr;
3720 filehdr_paddr = p->p_paddr;
3721 }
3722 }
3723
3724 if (m->includes_phdrs)
3725 {
3726 if (! m->p_flags_valid)
3727 p->p_flags |= PF_R;
3728
3729 if (m->includes_filehdr)
3730 {
3731 if (p->p_type == PT_LOAD)
3732 {
3733 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3734 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3735 }
3736 }
3737 else
3738 {
3739 p->p_offset = bed->s->sizeof_ehdr;
3740
3741 if (m->count > 0)
3742 {
3743 BFD_ASSERT (p->p_type == PT_LOAD);
3744 p->p_vaddr -= off - p->p_offset;
3745 if (! m->p_paddr_valid)
3746 p->p_paddr -= off - p->p_offset;
3747 }
3748
3749 if (p->p_type == PT_LOAD)
3750 {
3751 phdrs_vaddr = p->p_vaddr;
3752 phdrs_paddr = p->p_paddr;
3753 }
3754 else
3755 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3756 }
3757
3758 p->p_filesz += alloc * bed->s->sizeof_phdr;
3759 p->p_memsz += alloc * bed->s->sizeof_phdr;
3760 }
3761
3762 if (p->p_type == PT_LOAD
3763 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3764 {
3765 if (! m->includes_filehdr && ! m->includes_phdrs)
3766 p->p_offset = off;
3767 else
3768 {
3769 file_ptr adjust;
3770
3771 adjust = off - (p->p_offset + p->p_filesz);
3772 p->p_filesz += adjust;
3773 p->p_memsz += adjust;
3774 }
3775 }
3776
3777 voff = off;
3778
3779 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3780 {
3781 asection *sec;
3782 flagword flags;
3783 bfd_size_type align;
3784
3785 sec = *secpp;
3786 flags = sec->flags;
3787 align = 1 << bfd_get_section_alignment (abfd, sec);
3788
3789 /* The section may have artificial alignment forced by a
3790 link script. Notice this case by the gap between the
3791 cumulative phdr lma and the section's lma. */
3792 if (p->p_paddr + p->p_memsz < sec->lma)
3793 {
3794 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3795
3796 p->p_memsz += adjust;
3797 off += adjust;
3798 voff += adjust;
3799 if ((flags & SEC_LOAD) != 0)
3800 p->p_filesz += adjust;
3801 }
3802
3803 if (p->p_type == PT_LOAD)
3804 {
3805 bfd_signed_vma adjust;
3806
3807 if ((flags & SEC_LOAD) != 0)
3808 {
3809 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3810 if (adjust < 0)
3811 adjust = 0;
3812 }
3813 else if ((flags & SEC_ALLOC) != 0)
3814 {
3815 /* The section VMA must equal the file position
3816 modulo the page size. FIXME: I'm not sure if
3817 this adjustment is really necessary. We used to
3818 not have the SEC_LOAD case just above, and then
3819 this was necessary, but now I'm not sure. */
3820 if ((abfd->flags & D_PAGED) != 0)
3821 adjust = (sec->vma - voff) % bed->maxpagesize;
3822 else
3823 adjust = (sec->vma - voff) % align;
3824 }
3825 else
3826 adjust = 0;
3827
3828 if (adjust != 0)
3829 {
3830 if (i == 0)
3831 {
3832 (* _bfd_error_handler) (_("\
3833 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3834 bfd_section_name (abfd, sec),
3835 sec->lma,
3836 p->p_paddr);
3837 return false;
3838 }
3839 p->p_memsz += adjust;
3840 off += adjust;
3841 voff += adjust;
3842 if ((flags & SEC_LOAD) != 0)
3843 p->p_filesz += adjust;
3844 }
3845
3846 sec->filepos = off;
3847
3848 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3849 used in a linker script we may have a section with
3850 SEC_LOAD clear but which is supposed to have
3851 contents. */
3852 if ((flags & SEC_LOAD) != 0
3853 || (flags & SEC_HAS_CONTENTS) != 0)
3854 off += sec->_raw_size;
3855
3856 if ((flags & SEC_ALLOC) != 0)
3857 voff += sec->_raw_size;
3858 }
3859
3860 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3861 {
3862 /* The actual "note" segment has i == 0.
3863 This is the one that actually contains everything. */
3864 if (i == 0)
3865 {
3866 sec->filepos = off;
3867 p->p_filesz = sec->_raw_size;
3868 off += sec->_raw_size;
3869 voff = off;
3870 }
3871 else
3872 {
3873 /* Fake sections -- don't need to be written. */
3874 sec->filepos = 0;
3875 sec->_raw_size = 0;
3876 flags = sec->flags = 0;
3877 }
3878 p->p_memsz = 0;
3879 p->p_align = 1;
3880 }
3881 else
3882 {
3883 p->p_memsz += sec->_raw_size;
3884
3885 if ((flags & SEC_LOAD) != 0)
3886 p->p_filesz += sec->_raw_size;
3887
3888 if (p->p_type == PT_TLS
3889 && sec->_raw_size == 0
3890 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3891 {
3892 struct bfd_link_order *o;
3893 bfd_vma tbss_size = 0;
3894
3895 for (o = sec->link_order_head; o != NULL; o = o->next)
3896 if (tbss_size < o->offset + o->size)
3897 tbss_size = o->offset + o->size;
3898
3899 p->p_memsz += tbss_size;
3900 }
3901
3902 if (align > p->p_align
3903 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3904 p->p_align = align;
3905 }
3906
3907 if (! m->p_flags_valid)
3908 {
3909 p->p_flags |= PF_R;
3910 if ((flags & SEC_CODE) != 0)
3911 p->p_flags |= PF_X;
3912 if ((flags & SEC_READONLY) == 0)
3913 p->p_flags |= PF_W;
3914 }
3915 }
3916 }
3917
3918 /* Now that we have set the section file positions, we can set up
3919 the file positions for the non PT_LOAD segments. */
3920 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3921 m != NULL;
3922 m = m->next, p++)
3923 {
3924 if (p->p_type != PT_LOAD && m->count > 0)
3925 {
3926 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3927 p->p_offset = m->sections[0]->filepos;
3928 }
3929 if (m->count == 0)
3930 {
3931 if (m->includes_filehdr)
3932 {
3933 p->p_vaddr = filehdr_vaddr;
3934 if (! m->p_paddr_valid)
3935 p->p_paddr = filehdr_paddr;
3936 }
3937 else if (m->includes_phdrs)
3938 {
3939 p->p_vaddr = phdrs_vaddr;
3940 if (! m->p_paddr_valid)
3941 p->p_paddr = phdrs_paddr;
3942 }
3943 }
3944 }
3945
3946 /* If additional nonloadable filepos adjustments are required,
3947 do them now. */
3948 if (bed->set_nonloadable_filepos)
3949 (*bed->set_nonloadable_filepos) (abfd, phdrs);
3950
3951 /* Clear out any program headers we allocated but did not use. */
3952 for (; count < alloc; count++, p++)
3953 {
3954 memset (p, 0, sizeof *p);
3955 p->p_type = PT_NULL;
3956 }
3957
3958 elf_tdata (abfd)->phdr = phdrs;
3959
3960 elf_tdata (abfd)->next_file_pos = off;
3961
3962 /* Write out the program headers. */
3963 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
3964 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3965 return false;
3966
3967 return true;
3968 }
3969
3970 /* Get the size of the program header.
3971
3972 If this is called by the linker before any of the section VMA's are set, it
3973 can't calculate the correct value for a strange memory layout. This only
3974 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3975 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3976 data segment (exclusive of .interp and .dynamic).
3977
3978 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3979 will be two segments. */
3980
3981 static bfd_size_type
3982 get_program_header_size (abfd)
3983 bfd *abfd;
3984 {
3985 size_t segs;
3986 asection *s;
3987 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3988
3989 /* We can't return a different result each time we're called. */
3990 if (elf_tdata (abfd)->program_header_size != 0)
3991 return elf_tdata (abfd)->program_header_size;
3992
3993 if (elf_tdata (abfd)->segment_map != NULL)
3994 {
3995 struct elf_segment_map *m;
3996
3997 segs = 0;
3998 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3999 ++segs;
4000 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4001 return elf_tdata (abfd)->program_header_size;
4002 }
4003
4004 /* Assume we will need exactly two PT_LOAD segments: one for text
4005 and one for data. */
4006 segs = 2;
4007
4008 s = bfd_get_section_by_name (abfd, ".interp");
4009 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4010 {
4011 /* If we have a loadable interpreter section, we need a
4012 PT_INTERP segment. In this case, assume we also need a
4013 PT_PHDR segment, although that may not be true for all
4014 targets. */
4015 segs += 2;
4016 }
4017
4018 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4019 {
4020 /* We need a PT_DYNAMIC segment. */
4021 ++segs;
4022 }
4023
4024 if (elf_tdata (abfd)->eh_frame_hdr
4025 && bfd_get_section_by_name (abfd, ".eh_frame_hdr") != NULL)
4026 {
4027 /* We need a PT_GNU_EH_FRAME segment. */
4028 ++segs;
4029 }
4030
4031 for (s = abfd->sections; s != NULL; s = s->next)
4032 {
4033 if ((s->flags & SEC_LOAD) != 0
4034 && strncmp (s->name, ".note", 5) == 0)
4035 {
4036 /* We need a PT_NOTE segment. */
4037 ++segs;
4038 }
4039 }
4040
4041 for (s = abfd->sections; s != NULL; s = s->next)
4042 {
4043 if (s->flags & SEC_THREAD_LOCAL)
4044 {
4045 /* We need a PT_TLS segment. */
4046 ++segs;
4047 break;
4048 }
4049 }
4050
4051 /* Let the backend count up any program headers it might need. */
4052 if (bed->elf_backend_additional_program_headers)
4053 {
4054 int a;
4055
4056 a = (*bed->elf_backend_additional_program_headers) (abfd);
4057 if (a == -1)
4058 abort ();
4059 segs += a;
4060 }
4061
4062 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4063 return elf_tdata (abfd)->program_header_size;
4064 }
4065
4066 /* Work out the file positions of all the sections. This is called by
4067 _bfd_elf_compute_section_file_positions. All the section sizes and
4068 VMAs must be known before this is called.
4069
4070 We do not consider reloc sections at this point, unless they form
4071 part of the loadable image. Reloc sections are assigned file
4072 positions in assign_file_positions_for_relocs, which is called by
4073 write_object_contents and final_link.
4074
4075 We also don't set the positions of the .symtab and .strtab here. */
4076
4077 static boolean
4078 assign_file_positions_except_relocs (abfd)
4079 bfd *abfd;
4080 {
4081 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4082 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4083 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4084 unsigned int num_sec = elf_numsections (abfd);
4085 file_ptr off;
4086 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4087
4088 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4089 && bfd_get_format (abfd) != bfd_core)
4090 {
4091 Elf_Internal_Shdr **hdrpp;
4092 unsigned int i;
4093
4094 /* Start after the ELF header. */
4095 off = i_ehdrp->e_ehsize;
4096
4097 /* We are not creating an executable, which means that we are
4098 not creating a program header, and that the actual order of
4099 the sections in the file is unimportant. */
4100 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4101 {
4102 Elf_Internal_Shdr *hdr;
4103
4104 hdr = *hdrpp;
4105 if (hdr->sh_type == SHT_REL
4106 || hdr->sh_type == SHT_RELA
4107 || i == tdata->symtab_section
4108 || i == tdata->symtab_shndx_section
4109 || i == tdata->strtab_section)
4110 {
4111 hdr->sh_offset = -1;
4112 }
4113 else
4114 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4115
4116 if (i == SHN_LORESERVE - 1)
4117 {
4118 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4119 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4120 }
4121 }
4122 }
4123 else
4124 {
4125 unsigned int i;
4126 Elf_Internal_Shdr **hdrpp;
4127
4128 /* Assign file positions for the loaded sections based on the
4129 assignment of sections to segments. */
4130 if (! assign_file_positions_for_segments (abfd))
4131 return false;
4132
4133 /* Assign file positions for the other sections. */
4134
4135 off = elf_tdata (abfd)->next_file_pos;
4136 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4137 {
4138 Elf_Internal_Shdr *hdr;
4139
4140 hdr = *hdrpp;
4141 if (hdr->bfd_section != NULL
4142 && hdr->bfd_section->filepos != 0)
4143 hdr->sh_offset = hdr->bfd_section->filepos;
4144 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4145 {
4146 ((*_bfd_error_handler)
4147 (_("%s: warning: allocated section `%s' not in segment"),
4148 bfd_get_filename (abfd),
4149 (hdr->bfd_section == NULL
4150 ? "*unknown*"
4151 : hdr->bfd_section->name)));
4152 if ((abfd->flags & D_PAGED) != 0)
4153 off += (hdr->sh_addr - off) % bed->maxpagesize;
4154 else
4155 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4156 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4157 false);
4158 }
4159 else if (hdr->sh_type == SHT_REL
4160 || hdr->sh_type == SHT_RELA
4161 || hdr == i_shdrpp[tdata->symtab_section]
4162 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4163 || hdr == i_shdrpp[tdata->strtab_section])
4164 hdr->sh_offset = -1;
4165 else
4166 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4167
4168 if (i == SHN_LORESERVE - 1)
4169 {
4170 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4171 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4172 }
4173 }
4174 }
4175
4176 /* Place the section headers. */
4177 off = align_file_position (off, bed->s->file_align);
4178 i_ehdrp->e_shoff = off;
4179 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4180
4181 elf_tdata (abfd)->next_file_pos = off;
4182
4183 return true;
4184 }
4185
4186 static boolean
4187 prep_headers (abfd)
4188 bfd *abfd;
4189 {
4190 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4191 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4192 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4193 struct elf_strtab_hash *shstrtab;
4194 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4195
4196 i_ehdrp = elf_elfheader (abfd);
4197 i_shdrp = elf_elfsections (abfd);
4198
4199 shstrtab = _bfd_elf_strtab_init ();
4200 if (shstrtab == NULL)
4201 return false;
4202
4203 elf_shstrtab (abfd) = shstrtab;
4204
4205 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4206 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4207 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4208 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4209
4210 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4211 i_ehdrp->e_ident[EI_DATA] =
4212 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4213 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4214
4215 if ((abfd->flags & DYNAMIC) != 0)
4216 i_ehdrp->e_type = ET_DYN;
4217 else if ((abfd->flags & EXEC_P) != 0)
4218 i_ehdrp->e_type = ET_EXEC;
4219 else if (bfd_get_format (abfd) == bfd_core)
4220 i_ehdrp->e_type = ET_CORE;
4221 else
4222 i_ehdrp->e_type = ET_REL;
4223
4224 switch (bfd_get_arch (abfd))
4225 {
4226 case bfd_arch_unknown:
4227 i_ehdrp->e_machine = EM_NONE;
4228 break;
4229
4230 /* There used to be a long list of cases here, each one setting
4231 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4232 in the corresponding bfd definition. To avoid duplication,
4233 the switch was removed. Machines that need special handling
4234 can generally do it in elf_backend_final_write_processing(),
4235 unless they need the information earlier than the final write.
4236 Such need can generally be supplied by replacing the tests for
4237 e_machine with the conditions used to determine it. */
4238 default:
4239 if (get_elf_backend_data (abfd) != NULL)
4240 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4241 else
4242 i_ehdrp->e_machine = EM_NONE;
4243 }
4244
4245 i_ehdrp->e_version = bed->s->ev_current;
4246 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4247
4248 /* No program header, for now. */
4249 i_ehdrp->e_phoff = 0;
4250 i_ehdrp->e_phentsize = 0;
4251 i_ehdrp->e_phnum = 0;
4252
4253 /* Each bfd section is section header entry. */
4254 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4255 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4256
4257 /* If we're building an executable, we'll need a program header table. */
4258 if (abfd->flags & EXEC_P)
4259 {
4260 /* It all happens later. */
4261 #if 0
4262 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4263
4264 /* elf_build_phdrs() returns a (NULL-terminated) array of
4265 Elf_Internal_Phdrs. */
4266 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4267 i_ehdrp->e_phoff = outbase;
4268 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4269 #endif
4270 }
4271 else
4272 {
4273 i_ehdrp->e_phentsize = 0;
4274 i_phdrp = 0;
4275 i_ehdrp->e_phoff = 0;
4276 }
4277
4278 elf_tdata (abfd)->symtab_hdr.sh_name =
4279 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
4280 elf_tdata (abfd)->strtab_hdr.sh_name =
4281 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
4282 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4283 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
4284 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4285 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4286 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4287 return false;
4288
4289 return true;
4290 }
4291
4292 /* Assign file positions for all the reloc sections which are not part
4293 of the loadable file image. */
4294
4295 void
4296 _bfd_elf_assign_file_positions_for_relocs (abfd)
4297 bfd *abfd;
4298 {
4299 file_ptr off;
4300 unsigned int i, num_sec;
4301 Elf_Internal_Shdr **shdrpp;
4302
4303 off = elf_tdata (abfd)->next_file_pos;
4304
4305 num_sec = elf_numsections (abfd);
4306 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4307 {
4308 Elf_Internal_Shdr *shdrp;
4309
4310 shdrp = *shdrpp;
4311 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4312 && shdrp->sh_offset == -1)
4313 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
4314 }
4315
4316 elf_tdata (abfd)->next_file_pos = off;
4317 }
4318
4319 boolean
4320 _bfd_elf_write_object_contents (abfd)
4321 bfd *abfd;
4322 {
4323 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4324 Elf_Internal_Ehdr *i_ehdrp;
4325 Elf_Internal_Shdr **i_shdrp;
4326 boolean failed;
4327 unsigned int count, num_sec;
4328
4329 if (! abfd->output_has_begun
4330 && ! _bfd_elf_compute_section_file_positions
4331 (abfd, (struct bfd_link_info *) NULL))
4332 return false;
4333
4334 i_shdrp = elf_elfsections (abfd);
4335 i_ehdrp = elf_elfheader (abfd);
4336
4337 failed = false;
4338 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4339 if (failed)
4340 return false;
4341
4342 _bfd_elf_assign_file_positions_for_relocs (abfd);
4343
4344 /* After writing the headers, we need to write the sections too... */
4345 num_sec = elf_numsections (abfd);
4346 for (count = 1; count < num_sec; count++)
4347 {
4348 if (bed->elf_backend_section_processing)
4349 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4350 if (i_shdrp[count]->contents)
4351 {
4352 bfd_size_type amt = i_shdrp[count]->sh_size;
4353
4354 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4355 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4356 return false;
4357 }
4358 if (count == SHN_LORESERVE - 1)
4359 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4360 }
4361
4362 /* Write out the section header names. */
4363 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4364 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4365 return false;
4366
4367 if (bed->elf_backend_final_write_processing)
4368 (*bed->elf_backend_final_write_processing) (abfd,
4369 elf_tdata (abfd)->linker);
4370
4371 return bed->s->write_shdrs_and_ehdr (abfd);
4372 }
4373
4374 boolean
4375 _bfd_elf_write_corefile_contents (abfd)
4376 bfd *abfd;
4377 {
4378 /* Hopefully this can be done just like an object file. */
4379 return _bfd_elf_write_object_contents (abfd);
4380 }
4381
4382 /* Given a section, search the header to find them. */
4383
4384 int
4385 _bfd_elf_section_from_bfd_section (abfd, asect)
4386 bfd *abfd;
4387 struct sec *asect;
4388 {
4389 struct elf_backend_data *bed;
4390 int index;
4391
4392 if (elf_section_data (asect) != NULL
4393 && elf_section_data (asect)->this_idx != 0)
4394 return elf_section_data (asect)->this_idx;
4395
4396 if (bfd_is_abs_section (asect))
4397 index = SHN_ABS;
4398 else if (bfd_is_com_section (asect))
4399 index = SHN_COMMON;
4400 else if (bfd_is_und_section (asect))
4401 index = SHN_UNDEF;
4402 else
4403 {
4404 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4405 int maxindex = elf_numsections (abfd);
4406
4407 for (index = 1; index < maxindex; index++)
4408 {
4409 Elf_Internal_Shdr *hdr = i_shdrp[index];
4410
4411 if (hdr != NULL && hdr->bfd_section == asect)
4412 return index;
4413 }
4414 index = -1;
4415 }
4416
4417 bed = get_elf_backend_data (abfd);
4418 if (bed->elf_backend_section_from_bfd_section)
4419 {
4420 int retval = index;
4421
4422 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4423 return retval;
4424 }
4425
4426 if (index == -1)
4427 bfd_set_error (bfd_error_nonrepresentable_section);
4428
4429 return index;
4430 }
4431
4432 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4433 on error. */
4434
4435 int
4436 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4437 bfd *abfd;
4438 asymbol **asym_ptr_ptr;
4439 {
4440 asymbol *asym_ptr = *asym_ptr_ptr;
4441 int idx;
4442 flagword flags = asym_ptr->flags;
4443
4444 /* When gas creates relocations against local labels, it creates its
4445 own symbol for the section, but does put the symbol into the
4446 symbol chain, so udata is 0. When the linker is generating
4447 relocatable output, this section symbol may be for one of the
4448 input sections rather than the output section. */
4449 if (asym_ptr->udata.i == 0
4450 && (flags & BSF_SECTION_SYM)
4451 && asym_ptr->section)
4452 {
4453 int indx;
4454
4455 if (asym_ptr->section->output_section != NULL)
4456 indx = asym_ptr->section->output_section->index;
4457 else
4458 indx = asym_ptr->section->index;
4459 if (indx < elf_num_section_syms (abfd)
4460 && elf_section_syms (abfd)[indx] != NULL)
4461 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4462 }
4463
4464 idx = asym_ptr->udata.i;
4465
4466 if (idx == 0)
4467 {
4468 /* This case can occur when using --strip-symbol on a symbol
4469 which is used in a relocation entry. */
4470 (*_bfd_error_handler)
4471 (_("%s: symbol `%s' required but not present"),
4472 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4473 bfd_set_error (bfd_error_no_symbols);
4474 return -1;
4475 }
4476
4477 #if DEBUG & 4
4478 {
4479 fprintf (stderr,
4480 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4481 (long) asym_ptr, asym_ptr->name, idx, flags,
4482 elf_symbol_flags (flags));
4483 fflush (stderr);
4484 }
4485 #endif
4486
4487 return idx;
4488 }
4489
4490 /* Copy private BFD data. This copies any program header information. */
4491
4492 static boolean
4493 copy_private_bfd_data (ibfd, obfd)
4494 bfd *ibfd;
4495 bfd *obfd;
4496 {
4497 Elf_Internal_Ehdr * iehdr;
4498 struct elf_segment_map * map;
4499 struct elf_segment_map * map_first;
4500 struct elf_segment_map ** pointer_to_map;
4501 Elf_Internal_Phdr * segment;
4502 asection * section;
4503 unsigned int i;
4504 unsigned int num_segments;
4505 boolean phdr_included = false;
4506 bfd_vma maxpagesize;
4507 struct elf_segment_map * phdr_adjust_seg = NULL;
4508 unsigned int phdr_adjust_num = 0;
4509 struct elf_backend_data * bed;
4510
4511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4513 return true;
4514
4515 if (elf_tdata (ibfd)->phdr == NULL)
4516 return true;
4517
4518 bed = get_elf_backend_data (ibfd);
4519 iehdr = elf_elfheader (ibfd);
4520
4521 map_first = NULL;
4522 pointer_to_map = &map_first;
4523
4524 num_segments = elf_elfheader (ibfd)->e_phnum;
4525 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4526
4527 /* Returns the end address of the segment + 1. */
4528 #define SEGMENT_END(segment, start) \
4529 (start + (segment->p_memsz > segment->p_filesz \
4530 ? segment->p_memsz : segment->p_filesz))
4531
4532 /* Returns true if the given section is contained within
4533 the given segment. VMA addresses are compared. */
4534 #define IS_CONTAINED_BY_VMA(section, segment) \
4535 (section->vma >= segment->p_vaddr \
4536 && (section->vma + section->_raw_size \
4537 <= (SEGMENT_END (segment, segment->p_vaddr))))
4538
4539 /* Returns true if the given section is contained within
4540 the given segment. LMA addresses are compared. */
4541 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4542 (section->lma >= base \
4543 && (section->lma + section->_raw_size \
4544 <= SEGMENT_END (segment, base)))
4545
4546 /* Returns true if the given section is contained within the
4547 given segment. Filepos addresses are compared in an elf
4548 backend function. */
4549 #define IS_CONTAINED_BY_FILEPOS(sec, seg, bed) \
4550 (bed->is_contained_by_filepos \
4551 && (*bed->is_contained_by_filepos) (sec, seg))
4552
4553 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4554 #define IS_COREFILE_NOTE(p, s) \
4555 (p->p_type == PT_NOTE \
4556 && bfd_get_format (ibfd) == bfd_core \
4557 && s->vma == 0 && s->lma == 0 \
4558 && (bfd_vma) s->filepos >= p->p_offset \
4559 && ((bfd_vma) s->filepos + s->_raw_size \
4560 <= p->p_offset + p->p_filesz))
4561
4562 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4563 linker, which generates a PT_INTERP section with p_vaddr and
4564 p_memsz set to 0. */
4565 #define IS_SOLARIS_PT_INTERP(p, s) \
4566 (p->p_vaddr == 0 \
4567 && p->p_paddr == 0 \
4568 && p->p_memsz == 0 \
4569 && p->p_filesz > 0 \
4570 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4571 && s->_raw_size > 0 \
4572 && (bfd_vma) s->filepos >= p->p_offset \
4573 && ((bfd_vma) s->filepos + s->_raw_size \
4574 <= p->p_offset + p->p_filesz))
4575
4576 /* Decide if the given section should be included in the given segment.
4577 A section will be included if:
4578 1. It is within the address space of the segment -- we use the LMA
4579 if that is set for the segment and the VMA otherwise,
4580 2. It is an allocated segment,
4581 3. There is an output section associated with it,
4582 4. The section has not already been allocated to a previous segment. */
4583 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4584 ((((segment->p_paddr \
4585 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4586 : IS_CONTAINED_BY_VMA (section, segment)) \
4587 && (section->flags & SEC_ALLOC) != 0) \
4588 || IS_COREFILE_NOTE (segment, section) \
4589 || (IS_CONTAINED_BY_FILEPOS (section, segment, bed) \
4590 && (section->flags & SEC_ALLOC) == 0)) \
4591 && section->output_section != NULL \
4592 && ! section->segment_mark)
4593
4594 /* Returns true iff seg1 starts after the end of seg2. */
4595 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
4596 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
4597
4598 /* Returns true iff seg1 and seg2 overlap. */
4599 #define SEGMENT_OVERLAPS(seg1, seg2) \
4600 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) \
4601 || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
4602
4603 /* Initialise the segment mark field. */
4604 for (section = ibfd->sections; section != NULL; section = section->next)
4605 section->segment_mark = false;
4606
4607 /* Scan through the segments specified in the program header
4608 of the input BFD. For this first scan we look for overlaps
4609 in the loadable segments. These can be created by weird
4610 parameters to objcopy. Also, fix some solaris weirdness. */
4611 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4612 i < num_segments;
4613 i++, segment++)
4614 {
4615 unsigned int j;
4616 Elf_Internal_Phdr *segment2;
4617
4618 if (segment->p_type == PT_INTERP)
4619 for (section = ibfd->sections; section; section = section->next)
4620 if (IS_SOLARIS_PT_INTERP (segment, section))
4621 {
4622 /* Mininal change so that the normal section to segment
4623 assigment code will work. */
4624 segment->p_vaddr = section->vma;
4625 break;
4626 }
4627
4628 if (segment->p_type != PT_LOAD)
4629 continue;
4630
4631 /* Determine if this segment overlaps any previous segments. */
4632 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4633 {
4634 bfd_signed_vma extra_length;
4635
4636 if (segment2->p_type != PT_LOAD
4637 || ! SEGMENT_OVERLAPS (segment, segment2))
4638 continue;
4639
4640 /* Merge the two segments together. */
4641 if (segment2->p_vaddr < segment->p_vaddr)
4642 {
4643 /* Extend SEGMENT2 to include SEGMENT and then delete
4644 SEGMENT. */
4645 extra_length =
4646 SEGMENT_END (segment, segment->p_vaddr)
4647 - SEGMENT_END (segment2, segment2->p_vaddr);
4648
4649 if (extra_length > 0)
4650 {
4651 segment2->p_memsz += extra_length;
4652 segment2->p_filesz += extra_length;
4653 }
4654
4655 segment->p_type = PT_NULL;
4656
4657 /* Since we have deleted P we must restart the outer loop. */
4658 i = 0;
4659 segment = elf_tdata (ibfd)->phdr;
4660 break;
4661 }
4662 else
4663 {
4664 /* Extend SEGMENT to include SEGMENT2 and then delete
4665 SEGMENT2. */
4666 extra_length =
4667 SEGMENT_END (segment2, segment2->p_vaddr)
4668 - SEGMENT_END (segment, segment->p_vaddr);
4669
4670 if (extra_length > 0)
4671 {
4672 segment->p_memsz += extra_length;
4673 segment->p_filesz += extra_length;
4674 }
4675
4676 segment2->p_type = PT_NULL;
4677 }
4678 }
4679 }
4680
4681 /* The second scan attempts to assign sections to segments. */
4682 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4683 i < num_segments;
4684 i ++, segment ++)
4685 {
4686 unsigned int section_count;
4687 asection ** sections;
4688 asection * output_section;
4689 unsigned int isec;
4690 bfd_vma matching_lma;
4691 bfd_vma suggested_lma;
4692 unsigned int j;
4693 bfd_size_type amt;
4694
4695 if (segment->p_type == PT_NULL)
4696 continue;
4697
4698 /* Compute how many sections might be placed into this segment. */
4699 section_count = 0;
4700 for (section = ibfd->sections; section != NULL; section = section->next)
4701 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4702 ++section_count;
4703
4704 /* Allocate a segment map big enough to contain all of the
4705 sections we have selected. */
4706 amt = sizeof (struct elf_segment_map);
4707 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4708 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4709 if (map == NULL)
4710 return false;
4711
4712 /* Initialise the fields of the segment map. Default to
4713 using the physical address of the segment in the input BFD. */
4714 map->next = NULL;
4715 map->p_type = segment->p_type;
4716 map->p_flags = segment->p_flags;
4717 map->p_flags_valid = 1;
4718 map->p_paddr = segment->p_paddr;
4719 map->p_paddr_valid = 1;
4720
4721 /* Determine if this segment contains the ELF file header
4722 and if it contains the program headers themselves. */
4723 map->includes_filehdr = (segment->p_offset == 0
4724 && segment->p_filesz >= iehdr->e_ehsize);
4725
4726 map->includes_phdrs = 0;
4727
4728 if (! phdr_included || segment->p_type != PT_LOAD)
4729 {
4730 map->includes_phdrs =
4731 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4732 && (segment->p_offset + segment->p_filesz
4733 >= ((bfd_vma) iehdr->e_phoff
4734 + iehdr->e_phnum * iehdr->e_phentsize)));
4735
4736 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4737 phdr_included = true;
4738 }
4739
4740 if (section_count == 0)
4741 {
4742 /* Special segments, such as the PT_PHDR segment, may contain
4743 no sections, but ordinary, loadable segments should contain
4744 something. They are allowed by the ELF spec however, so only
4745 a warning is produced. */
4746 if (segment->p_type == PT_LOAD)
4747 (*_bfd_error_handler)
4748 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4749 bfd_archive_filename (ibfd));
4750
4751 map->count = 0;
4752 *pointer_to_map = map;
4753 pointer_to_map = &map->next;
4754
4755 continue;
4756 }
4757
4758 /* Now scan the sections in the input BFD again and attempt
4759 to add their corresponding output sections to the segment map.
4760 The problem here is how to handle an output section which has
4761 been moved (ie had its LMA changed). There are four possibilities:
4762
4763 1. None of the sections have been moved.
4764 In this case we can continue to use the segment LMA from the
4765 input BFD.
4766
4767 2. All of the sections have been moved by the same amount.
4768 In this case we can change the segment's LMA to match the LMA
4769 of the first section.
4770
4771 3. Some of the sections have been moved, others have not.
4772 In this case those sections which have not been moved can be
4773 placed in the current segment which will have to have its size,
4774 and possibly its LMA changed, and a new segment or segments will
4775 have to be created to contain the other sections.
4776
4777 4. The sections have been moved, but not be the same amount.
4778 In this case we can change the segment's LMA to match the LMA
4779 of the first section and we will have to create a new segment
4780 or segments to contain the other sections.
4781
4782 In order to save time, we allocate an array to hold the section
4783 pointers that we are interested in. As these sections get assigned
4784 to a segment, they are removed from this array. */
4785
4786 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4787 to work around this long long bug. */
4788 amt = section_count * sizeof (asection *);
4789 sections = (asection **) bfd_malloc (amt);
4790 if (sections == NULL)
4791 return false;
4792
4793 /* Step One: Scan for segment vs section LMA conflicts.
4794 Also add the sections to the section array allocated above.
4795 Also add the sections to the current segment. In the common
4796 case, where the sections have not been moved, this means that
4797 we have completely filled the segment, and there is nothing
4798 more to do. */
4799 isec = 0;
4800 matching_lma = 0;
4801 suggested_lma = 0;
4802
4803 for (j = 0, section = ibfd->sections;
4804 section != NULL;
4805 section = section->next)
4806 {
4807 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4808 {
4809 output_section = section->output_section;
4810
4811 sections[j ++] = section;
4812
4813 /* The Solaris native linker always sets p_paddr to 0.
4814 We try to catch that case here, and set it to the
4815 correct value. */
4816 if (segment->p_paddr == 0
4817 && segment->p_vaddr != 0
4818 && isec == 0
4819 && output_section->lma != 0
4820 && (output_section->vma == (segment->p_vaddr
4821 + (map->includes_filehdr
4822 ? iehdr->e_ehsize
4823 : 0)
4824 + (map->includes_phdrs
4825 ? (iehdr->e_phnum
4826 * iehdr->e_phentsize)
4827 : 0))))
4828 map->p_paddr = segment->p_vaddr;
4829
4830 /* Match up the physical address of the segment with the
4831 LMA address of the output section. */
4832 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4833 || IS_CONTAINED_BY_FILEPOS (section, segment, bed)
4834 || IS_COREFILE_NOTE (segment, section))
4835 {
4836 if (matching_lma == 0)
4837 matching_lma = output_section->lma;
4838
4839 /* We assume that if the section fits within the segment
4840 then it does not overlap any other section within that
4841 segment. */
4842 map->sections[isec ++] = output_section;
4843 }
4844 else if (suggested_lma == 0)
4845 suggested_lma = output_section->lma;
4846 }
4847 }
4848
4849 BFD_ASSERT (j == section_count);
4850
4851 /* Step Two: Adjust the physical address of the current segment,
4852 if necessary. */
4853 if (isec == section_count)
4854 {
4855 /* All of the sections fitted within the segment as currently
4856 specified. This is the default case. Add the segment to
4857 the list of built segments and carry on to process the next
4858 program header in the input BFD. */
4859 map->count = section_count;
4860 *pointer_to_map = map;
4861 pointer_to_map = &map->next;
4862
4863 free (sections);
4864 continue;
4865 }
4866 else
4867 {
4868 if (matching_lma != 0)
4869 {
4870 /* At least one section fits inside the current segment.
4871 Keep it, but modify its physical address to match the
4872 LMA of the first section that fitted. */
4873 map->p_paddr = matching_lma;
4874 }
4875 else
4876 {
4877 /* None of the sections fitted inside the current segment.
4878 Change the current segment's physical address to match
4879 the LMA of the first section. */
4880 map->p_paddr = suggested_lma;
4881 }
4882
4883 /* Offset the segment physical address from the lma
4884 to allow for space taken up by elf headers. */
4885 if (map->includes_filehdr)
4886 map->p_paddr -= iehdr->e_ehsize;
4887
4888 if (map->includes_phdrs)
4889 {
4890 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4891
4892 /* iehdr->e_phnum is just an estimate of the number
4893 of program headers that we will need. Make a note
4894 here of the number we used and the segment we chose
4895 to hold these headers, so that we can adjust the
4896 offset when we know the correct value. */
4897 phdr_adjust_num = iehdr->e_phnum;
4898 phdr_adjust_seg = map;
4899 }
4900 }
4901
4902 /* Step Three: Loop over the sections again, this time assigning
4903 those that fit to the current segment and removing them from the
4904 sections array; but making sure not to leave large gaps. Once all
4905 possible sections have been assigned to the current segment it is
4906 added to the list of built segments and if sections still remain
4907 to be assigned, a new segment is constructed before repeating
4908 the loop. */
4909 isec = 0;
4910 do
4911 {
4912 map->count = 0;
4913 suggested_lma = 0;
4914
4915 /* Fill the current segment with sections that fit. */
4916 for (j = 0; j < section_count; j++)
4917 {
4918 section = sections[j];
4919
4920 if (section == NULL)
4921 continue;
4922
4923 output_section = section->output_section;
4924
4925 BFD_ASSERT (output_section != NULL);
4926
4927 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4928 || IS_COREFILE_NOTE (segment, section))
4929 {
4930 if (map->count == 0)
4931 {
4932 /* If the first section in a segment does not start at
4933 the beginning of the segment, then something is
4934 wrong. */
4935 if (output_section->lma !=
4936 (map->p_paddr
4937 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4938 + (map->includes_phdrs
4939 ? iehdr->e_phnum * iehdr->e_phentsize
4940 : 0)))
4941 abort ();
4942 }
4943 else
4944 {
4945 asection * prev_sec;
4946
4947 prev_sec = map->sections[map->count - 1];
4948
4949 /* If the gap between the end of the previous section
4950 and the start of this section is more than
4951 maxpagesize then we need to start a new segment. */
4952 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
4953 maxpagesize)
4954 < BFD_ALIGN (output_section->lma, maxpagesize))
4955 || ((prev_sec->lma + prev_sec->_raw_size)
4956 > output_section->lma))
4957 {
4958 if (suggested_lma == 0)
4959 suggested_lma = output_section->lma;
4960
4961 continue;
4962 }
4963 }
4964
4965 map->sections[map->count++] = output_section;
4966 ++isec;
4967 sections[j] = NULL;
4968 section->segment_mark = true;
4969 }
4970 else if (suggested_lma == 0)
4971 suggested_lma = output_section->lma;
4972 }
4973
4974 BFD_ASSERT (map->count > 0);
4975
4976 /* Add the current segment to the list of built segments. */
4977 *pointer_to_map = map;
4978 pointer_to_map = &map->next;
4979
4980 if (isec < section_count)
4981 {
4982 /* We still have not allocated all of the sections to
4983 segments. Create a new segment here, initialise it
4984 and carry on looping. */
4985 amt = sizeof (struct elf_segment_map);
4986 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4987 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4988 if (map == NULL)
4989 return false;
4990
4991 /* Initialise the fields of the segment map. Set the physical
4992 physical address to the LMA of the first section that has
4993 not yet been assigned. */
4994 map->next = NULL;
4995 map->p_type = segment->p_type;
4996 map->p_flags = segment->p_flags;
4997 map->p_flags_valid = 1;
4998 map->p_paddr = suggested_lma;
4999 map->p_paddr_valid = 1;
5000 map->includes_filehdr = 0;
5001 map->includes_phdrs = 0;
5002 }
5003 }
5004 while (isec < section_count);
5005
5006 free (sections);
5007 }
5008
5009 /* The Solaris linker creates program headers in which all the
5010 p_paddr fields are zero. When we try to objcopy or strip such a
5011 file, we get confused. Check for this case, and if we find it
5012 reset the p_paddr_valid fields. */
5013 for (map = map_first; map != NULL; map = map->next)
5014 if (map->p_paddr != 0)
5015 break;
5016 if (map == NULL)
5017 {
5018 for (map = map_first; map != NULL; map = map->next)
5019 map->p_paddr_valid = 0;
5020 }
5021
5022 elf_tdata (obfd)->segment_map = map_first;
5023
5024 /* If we had to estimate the number of program headers that were
5025 going to be needed, then check our estimate now and adjust
5026 the offset if necessary. */
5027 if (phdr_adjust_seg != NULL)
5028 {
5029 unsigned int count;
5030
5031 for (count = 0, map = map_first; map != NULL; map = map->next)
5032 count++;
5033
5034 if (count > phdr_adjust_num)
5035 phdr_adjust_seg->p_paddr
5036 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5037 }
5038
5039 #if 0
5040 /* Final Step: Sort the segments into ascending order of physical
5041 address. */
5042 if (map_first != NULL)
5043 {
5044 struct elf_segment_map *prev;
5045
5046 prev = map_first;
5047 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5048 {
5049 /* Yes I know - its a bubble sort.... */
5050 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5051 {
5052 /* Swap map and map->next. */
5053 prev->next = map->next;
5054 map->next = map->next->next;
5055 prev->next->next = map;
5056
5057 /* Restart loop. */
5058 map = map_first;
5059 }
5060 }
5061 }
5062 #endif
5063
5064 #undef SEGMENT_END
5065 #undef IS_CONTAINED_BY_VMA
5066 #undef IS_CONTAINED_BY_LMA
5067 #undef IS_CONTAINED_BY_FILEPOS
5068 #undef IS_COREFILE_NOTE
5069 #undef IS_SOLARIS_PT_INTERP
5070 #undef INCLUDE_SECTION_IN_SEGMENT
5071 #undef SEGMENT_AFTER_SEGMENT
5072 #undef SEGMENT_OVERLAPS
5073 return true;
5074 }
5075
5076 /* Copy private section information. This copies over the entsize
5077 field, and sometimes the info field. */
5078
5079 boolean
5080 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
5081 bfd *ibfd;
5082 asection *isec;
5083 bfd *obfd;
5084 asection *osec;
5085 {
5086 Elf_Internal_Shdr *ihdr, *ohdr;
5087 const struct elf_backend_data *bed = get_elf_backend_data (ibfd);
5088
5089 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5090 || obfd->xvec->flavour != bfd_target_elf_flavour)
5091 return true;
5092
5093 /* Copy over private BFD data if it has not already been copied.
5094 This must be done here, rather than in the copy_private_bfd_data
5095 entry point, because the latter is called after the section
5096 contents have been set, which means that the program headers have
5097 already been worked out. The backend function provides a way to
5098 override the test conditions and code path for the call to
5099 copy_private_bfd_data. */
5100 if (bed->copy_private_bfd_data_p)
5101 {
5102 if ((*bed->copy_private_bfd_data_p) (ibfd, isec, obfd, osec))
5103 if (! copy_private_bfd_data (ibfd, obfd))
5104 return false;
5105 }
5106 else if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5107 {
5108 asection *s;
5109
5110 /* Only set up the segments if there are no more SEC_ALLOC
5111 sections. FIXME: This won't do the right thing if objcopy is
5112 used to remove the last SEC_ALLOC section, since objcopy
5113 won't call this routine in that case. */
5114 for (s = isec->next; s != NULL; s = s->next)
5115 if ((s->flags & SEC_ALLOC) != 0)
5116 break;
5117 if (s == NULL)
5118 {
5119 if (! copy_private_bfd_data (ibfd, obfd))
5120 return false;
5121 }
5122 }
5123
5124 ihdr = &elf_section_data (isec)->this_hdr;
5125 ohdr = &elf_section_data (osec)->this_hdr;
5126
5127 ohdr->sh_entsize = ihdr->sh_entsize;
5128
5129 if (ihdr->sh_type == SHT_SYMTAB
5130 || ihdr->sh_type == SHT_DYNSYM
5131 || ihdr->sh_type == SHT_GNU_verneed
5132 || ihdr->sh_type == SHT_GNU_verdef)
5133 ohdr->sh_info = ihdr->sh_info;
5134
5135 /* Set things up for objcopy. The output SHT_GROUP section will
5136 have its elf_next_in_group pointing back to the input group
5137 members. */
5138 elf_next_in_group (osec) = elf_next_in_group (isec);
5139 elf_group_name (osec) = elf_group_name (isec);
5140
5141 elf_section_data (osec)->use_rela_p
5142 = elf_section_data (isec)->use_rela_p;
5143
5144 return true;
5145 }
5146
5147 /* Copy private symbol information. If this symbol is in a section
5148 which we did not map into a BFD section, try to map the section
5149 index correctly. We use special macro definitions for the mapped
5150 section indices; these definitions are interpreted by the
5151 swap_out_syms function. */
5152
5153 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5154 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5155 #define MAP_STRTAB (SHN_HIOS + 3)
5156 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5157 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5158
5159 boolean
5160 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
5161 bfd *ibfd;
5162 asymbol *isymarg;
5163 bfd *obfd;
5164 asymbol *osymarg;
5165 {
5166 elf_symbol_type *isym, *osym;
5167
5168 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5169 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5170 return true;
5171
5172 isym = elf_symbol_from (ibfd, isymarg);
5173 osym = elf_symbol_from (obfd, osymarg);
5174
5175 if (isym != NULL
5176 && osym != NULL
5177 && bfd_is_abs_section (isym->symbol.section))
5178 {
5179 unsigned int shndx;
5180
5181 shndx = isym->internal_elf_sym.st_shndx;
5182 if (shndx == elf_onesymtab (ibfd))
5183 shndx = MAP_ONESYMTAB;
5184 else if (shndx == elf_dynsymtab (ibfd))
5185 shndx = MAP_DYNSYMTAB;
5186 else if (shndx == elf_tdata (ibfd)->strtab_section)
5187 shndx = MAP_STRTAB;
5188 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5189 shndx = MAP_SHSTRTAB;
5190 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5191 shndx = MAP_SYM_SHNDX;
5192 osym->internal_elf_sym.st_shndx = shndx;
5193 }
5194
5195 return true;
5196 }
5197
5198 /* Swap out the symbols. */
5199
5200 static boolean
5201 swap_out_syms (abfd, sttp, relocatable_p)
5202 bfd *abfd;
5203 struct bfd_strtab_hash **sttp;
5204 int relocatable_p;
5205 {
5206 struct elf_backend_data *bed;
5207 int symcount;
5208 asymbol **syms;
5209 struct bfd_strtab_hash *stt;
5210 Elf_Internal_Shdr *symtab_hdr;
5211 Elf_Internal_Shdr *symtab_shndx_hdr;
5212 Elf_Internal_Shdr *symstrtab_hdr;
5213 char *outbound_syms;
5214 char *outbound_shndx;
5215 int idx;
5216 bfd_size_type amt;
5217
5218 if (!elf_map_symbols (abfd))
5219 return false;
5220
5221 /* Dump out the symtabs. */
5222 stt = _bfd_elf_stringtab_init ();
5223 if (stt == NULL)
5224 return false;
5225
5226 bed = get_elf_backend_data (abfd);
5227 symcount = bfd_get_symcount (abfd);
5228 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5229 symtab_hdr->sh_type = SHT_SYMTAB;
5230 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5231 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5232 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5233 symtab_hdr->sh_addralign = bed->s->file_align;
5234
5235 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5236 symstrtab_hdr->sh_type = SHT_STRTAB;
5237
5238 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5239 outbound_syms = bfd_alloc (abfd, amt);
5240 if (outbound_syms == NULL)
5241 return false;
5242 symtab_hdr->contents = (PTR) outbound_syms;
5243
5244 outbound_shndx = NULL;
5245 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5246 if (symtab_shndx_hdr->sh_name != 0)
5247 {
5248 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5249 outbound_shndx = bfd_zalloc (abfd, amt);
5250 if (outbound_shndx == NULL)
5251 return false;
5252 symtab_shndx_hdr->contents = outbound_shndx;
5253 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5254 symtab_shndx_hdr->sh_size = amt;
5255 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5256 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5257 }
5258
5259 /* now generate the data (for "contents") */
5260 {
5261 /* Fill in zeroth symbol and swap it out. */
5262 Elf_Internal_Sym sym;
5263 sym.st_name = 0;
5264 sym.st_value = 0;
5265 sym.st_size = 0;
5266 sym.st_info = 0;
5267 sym.st_other = 0;
5268 sym.st_shndx = SHN_UNDEF;
5269 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5270 outbound_syms += bed->s->sizeof_sym;
5271 if (outbound_shndx != NULL)
5272 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5273 }
5274
5275 syms = bfd_get_outsymbols (abfd);
5276 for (idx = 0; idx < symcount; idx++)
5277 {
5278 Elf_Internal_Sym sym;
5279 bfd_vma value = syms[idx]->value;
5280 elf_symbol_type *type_ptr;
5281 flagword flags = syms[idx]->flags;
5282 int type;
5283
5284 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5285 {
5286 /* Local section symbols have no name. */
5287 sym.st_name = 0;
5288 }
5289 else
5290 {
5291 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5292 syms[idx]->name,
5293 true, false);
5294 if (sym.st_name == (unsigned long) -1)
5295 return false;
5296 }
5297
5298 type_ptr = elf_symbol_from (abfd, syms[idx]);
5299
5300 if ((flags & BSF_SECTION_SYM) == 0
5301 && bfd_is_com_section (syms[idx]->section))
5302 {
5303 /* ELF common symbols put the alignment into the `value' field,
5304 and the size into the `size' field. This is backwards from
5305 how BFD handles it, so reverse it here. */
5306 sym.st_size = value;
5307 if (type_ptr == NULL
5308 || type_ptr->internal_elf_sym.st_value == 0)
5309 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5310 else
5311 sym.st_value = type_ptr->internal_elf_sym.st_value;
5312 sym.st_shndx = _bfd_elf_section_from_bfd_section
5313 (abfd, syms[idx]->section);
5314 }
5315 else
5316 {
5317 asection *sec = syms[idx]->section;
5318 int shndx;
5319
5320 if (sec->output_section)
5321 {
5322 value += sec->output_offset;
5323 sec = sec->output_section;
5324 }
5325 /* Don't add in the section vma for relocatable output. */
5326 if (! relocatable_p)
5327 value += sec->vma;
5328 sym.st_value = value;
5329 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5330
5331 if (bfd_is_abs_section (sec)
5332 && type_ptr != NULL
5333 && type_ptr->internal_elf_sym.st_shndx != 0)
5334 {
5335 /* This symbol is in a real ELF section which we did
5336 not create as a BFD section. Undo the mapping done
5337 by copy_private_symbol_data. */
5338 shndx = type_ptr->internal_elf_sym.st_shndx;
5339 switch (shndx)
5340 {
5341 case MAP_ONESYMTAB:
5342 shndx = elf_onesymtab (abfd);
5343 break;
5344 case MAP_DYNSYMTAB:
5345 shndx = elf_dynsymtab (abfd);
5346 break;
5347 case MAP_STRTAB:
5348 shndx = elf_tdata (abfd)->strtab_section;
5349 break;
5350 case MAP_SHSTRTAB:
5351 shndx = elf_tdata (abfd)->shstrtab_section;
5352 break;
5353 case MAP_SYM_SHNDX:
5354 shndx = elf_tdata (abfd)->symtab_shndx_section;
5355 break;
5356 default:
5357 break;
5358 }
5359 }
5360 else
5361 {
5362 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5363
5364 if (shndx == -1)
5365 {
5366 asection *sec2;
5367
5368 /* Writing this would be a hell of a lot easier if
5369 we had some decent documentation on bfd, and
5370 knew what to expect of the library, and what to
5371 demand of applications. For example, it
5372 appears that `objcopy' might not set the
5373 section of a symbol to be a section that is
5374 actually in the output file. */
5375 sec2 = bfd_get_section_by_name (abfd, sec->name);
5376 BFD_ASSERT (sec2 != 0);
5377 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5378 BFD_ASSERT (shndx != -1);
5379 }
5380 }
5381
5382 sym.st_shndx = shndx;
5383 }
5384
5385 if ((flags & BSF_THREAD_LOCAL) != 0)
5386 type = STT_TLS;
5387 else if ((flags & BSF_FUNCTION) != 0)
5388 type = STT_FUNC;
5389 else if ((flags & BSF_OBJECT) != 0)
5390 type = STT_OBJECT;
5391 else
5392 type = STT_NOTYPE;
5393
5394 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5395 type = STT_TLS;
5396
5397 /* Processor-specific types */
5398 if (type_ptr != NULL
5399 && bed->elf_backend_get_symbol_type)
5400 type = ((*bed->elf_backend_get_symbol_type)
5401 (&type_ptr->internal_elf_sym, type));
5402
5403 if (flags & BSF_SECTION_SYM)
5404 {
5405 if (flags & BSF_GLOBAL)
5406 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5407 else
5408 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5409 }
5410 else if (bfd_is_com_section (syms[idx]->section))
5411 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5412 else if (bfd_is_und_section (syms[idx]->section))
5413 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5414 ? STB_WEAK
5415 : STB_GLOBAL),
5416 type);
5417 else if (flags & BSF_FILE)
5418 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5419 else
5420 {
5421 int bind = STB_LOCAL;
5422
5423 if (flags & BSF_LOCAL)
5424 bind = STB_LOCAL;
5425 else if (flags & BSF_WEAK)
5426 bind = STB_WEAK;
5427 else if (flags & BSF_GLOBAL)
5428 bind = STB_GLOBAL;
5429
5430 sym.st_info = ELF_ST_INFO (bind, type);
5431 }
5432
5433 if (type_ptr != NULL)
5434 sym.st_other = type_ptr->internal_elf_sym.st_other;
5435 else
5436 sym.st_other = 0;
5437
5438 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5439 outbound_syms += bed->s->sizeof_sym;
5440 if (outbound_shndx != NULL)
5441 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5442 }
5443
5444 *sttp = stt;
5445 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5446 symstrtab_hdr->sh_type = SHT_STRTAB;
5447
5448 symstrtab_hdr->sh_flags = 0;
5449 symstrtab_hdr->sh_addr = 0;
5450 symstrtab_hdr->sh_entsize = 0;
5451 symstrtab_hdr->sh_link = 0;
5452 symstrtab_hdr->sh_info = 0;
5453 symstrtab_hdr->sh_addralign = 1;
5454
5455 return true;
5456 }
5457
5458 /* Return the number of bytes required to hold the symtab vector.
5459
5460 Note that we base it on the count plus 1, since we will null terminate
5461 the vector allocated based on this size. However, the ELF symbol table
5462 always has a dummy entry as symbol #0, so it ends up even. */
5463
5464 long
5465 _bfd_elf_get_symtab_upper_bound (abfd)
5466 bfd *abfd;
5467 {
5468 long symcount;
5469 long symtab_size;
5470 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5471
5472 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5473 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5474 if (symcount > 0)
5475 symtab_size -= sizeof (asymbol *);
5476
5477 return symtab_size;
5478 }
5479
5480 long
5481 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5482 bfd *abfd;
5483 {
5484 long symcount;
5485 long symtab_size;
5486 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5487
5488 if (elf_dynsymtab (abfd) == 0)
5489 {
5490 bfd_set_error (bfd_error_invalid_operation);
5491 return -1;
5492 }
5493
5494 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5495 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5496 if (symcount > 0)
5497 symtab_size -= sizeof (asymbol *);
5498
5499 return symtab_size;
5500 }
5501
5502 long
5503 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5504 bfd *abfd ATTRIBUTE_UNUSED;
5505 sec_ptr asect;
5506 {
5507 return (asect->reloc_count + 1) * sizeof (arelent *);
5508 }
5509
5510 /* Canonicalize the relocs. */
5511
5512 long
5513 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5514 bfd *abfd;
5515 sec_ptr section;
5516 arelent **relptr;
5517 asymbol **symbols;
5518 {
5519 arelent *tblptr;
5520 unsigned int i;
5521 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5522
5523 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
5524 return -1;
5525
5526 tblptr = section->relocation;
5527 for (i = 0; i < section->reloc_count; i++)
5528 *relptr++ = tblptr++;
5529
5530 *relptr = NULL;
5531
5532 return section->reloc_count;
5533 }
5534
5535 long
5536 _bfd_elf_get_symtab (abfd, alocation)
5537 bfd *abfd;
5538 asymbol **alocation;
5539 {
5540 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5541 long symcount = bed->s->slurp_symbol_table (abfd, alocation, false);
5542
5543 if (symcount >= 0)
5544 bfd_get_symcount (abfd) = symcount;
5545 return symcount;
5546 }
5547
5548 long
5549 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5550 bfd *abfd;
5551 asymbol **alocation;
5552 {
5553 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5554 return bed->s->slurp_symbol_table (abfd, alocation, true);
5555 }
5556
5557 /* Return the size required for the dynamic reloc entries. Any
5558 section that was actually installed in the BFD, and has type
5559 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5560 considered to be a dynamic reloc section. */
5561
5562 long
5563 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5564 bfd *abfd;
5565 {
5566 long ret;
5567 asection *s;
5568
5569 if (elf_dynsymtab (abfd) == 0)
5570 {
5571 bfd_set_error (bfd_error_invalid_operation);
5572 return -1;
5573 }
5574
5575 ret = sizeof (arelent *);
5576 for (s = abfd->sections; s != NULL; s = s->next)
5577 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5578 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5579 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5580 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5581 * sizeof (arelent *));
5582
5583 return ret;
5584 }
5585
5586 /* Canonicalize the dynamic relocation entries. Note that we return
5587 the dynamic relocations as a single block, although they are
5588 actually associated with particular sections; the interface, which
5589 was designed for SunOS style shared libraries, expects that there
5590 is only one set of dynamic relocs. Any section that was actually
5591 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5592 the dynamic symbol table, is considered to be a dynamic reloc
5593 section. */
5594
5595 long
5596 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5597 bfd *abfd;
5598 arelent **storage;
5599 asymbol **syms;
5600 {
5601 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
5602 asection *s;
5603 long ret;
5604
5605 if (elf_dynsymtab (abfd) == 0)
5606 {
5607 bfd_set_error (bfd_error_invalid_operation);
5608 return -1;
5609 }
5610
5611 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5612 ret = 0;
5613 for (s = abfd->sections; s != NULL; s = s->next)
5614 {
5615 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5616 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5617 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5618 {
5619 arelent *p;
5620 long count, i;
5621
5622 if (! (*slurp_relocs) (abfd, s, syms, true))
5623 return -1;
5624 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5625 p = s->relocation;
5626 for (i = 0; i < count; i++)
5627 *storage++ = p++;
5628 ret += count;
5629 }
5630 }
5631
5632 *storage = NULL;
5633
5634 return ret;
5635 }
5636 \f
5637 /* Read in the version information. */
5638
5639 boolean
5640 _bfd_elf_slurp_version_tables (abfd)
5641 bfd *abfd;
5642 {
5643 bfd_byte *contents = NULL;
5644 bfd_size_type amt;
5645
5646 if (elf_dynverdef (abfd) != 0)
5647 {
5648 Elf_Internal_Shdr *hdr;
5649 Elf_External_Verdef *everdef;
5650 Elf_Internal_Verdef *iverdef;
5651 Elf_Internal_Verdef *iverdefarr;
5652 Elf_Internal_Verdef iverdefmem;
5653 unsigned int i;
5654 unsigned int maxidx;
5655
5656 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5657
5658 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5659 if (contents == NULL)
5660 goto error_return;
5661 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5662 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5663 goto error_return;
5664
5665 /* We know the number of entries in the section but not the maximum
5666 index. Therefore we have to run through all entries and find
5667 the maximum. */
5668 everdef = (Elf_External_Verdef *) contents;
5669 maxidx = 0;
5670 for (i = 0; i < hdr->sh_info; ++i)
5671 {
5672 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5673
5674 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5675 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5676
5677 everdef = ((Elf_External_Verdef *)
5678 ((bfd_byte *) everdef + iverdefmem.vd_next));
5679 }
5680
5681 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5682 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5683 if (elf_tdata (abfd)->verdef == NULL)
5684 goto error_return;
5685
5686 elf_tdata (abfd)->cverdefs = maxidx;
5687
5688 everdef = (Elf_External_Verdef *) contents;
5689 iverdefarr = elf_tdata (abfd)->verdef;
5690 for (i = 0; i < hdr->sh_info; i++)
5691 {
5692 Elf_External_Verdaux *everdaux;
5693 Elf_Internal_Verdaux *iverdaux;
5694 unsigned int j;
5695
5696 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5697
5698 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5699 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5700
5701 iverdef->vd_bfd = abfd;
5702
5703 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5704 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5705 if (iverdef->vd_auxptr == NULL)
5706 goto error_return;
5707
5708 everdaux = ((Elf_External_Verdaux *)
5709 ((bfd_byte *) everdef + iverdef->vd_aux));
5710 iverdaux = iverdef->vd_auxptr;
5711 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5712 {
5713 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5714
5715 iverdaux->vda_nodename =
5716 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5717 iverdaux->vda_name);
5718 if (iverdaux->vda_nodename == NULL)
5719 goto error_return;
5720
5721 if (j + 1 < iverdef->vd_cnt)
5722 iverdaux->vda_nextptr = iverdaux + 1;
5723 else
5724 iverdaux->vda_nextptr = NULL;
5725
5726 everdaux = ((Elf_External_Verdaux *)
5727 ((bfd_byte *) everdaux + iverdaux->vda_next));
5728 }
5729
5730 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5731
5732 if (i + 1 < hdr->sh_info)
5733 iverdef->vd_nextdef = iverdef + 1;
5734 else
5735 iverdef->vd_nextdef = NULL;
5736
5737 everdef = ((Elf_External_Verdef *)
5738 ((bfd_byte *) everdef + iverdef->vd_next));
5739 }
5740
5741 free (contents);
5742 contents = NULL;
5743 }
5744
5745 if (elf_dynverref (abfd) != 0)
5746 {
5747 Elf_Internal_Shdr *hdr;
5748 Elf_External_Verneed *everneed;
5749 Elf_Internal_Verneed *iverneed;
5750 unsigned int i;
5751
5752 hdr = &elf_tdata (abfd)->dynverref_hdr;
5753
5754 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5755 elf_tdata (abfd)->verref =
5756 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5757 if (elf_tdata (abfd)->verref == NULL)
5758 goto error_return;
5759
5760 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5761
5762 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5763 if (contents == NULL)
5764 goto error_return;
5765 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5766 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5767 goto error_return;
5768
5769 everneed = (Elf_External_Verneed *) contents;
5770 iverneed = elf_tdata (abfd)->verref;
5771 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5772 {
5773 Elf_External_Vernaux *evernaux;
5774 Elf_Internal_Vernaux *ivernaux;
5775 unsigned int j;
5776
5777 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5778
5779 iverneed->vn_bfd = abfd;
5780
5781 iverneed->vn_filename =
5782 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5783 iverneed->vn_file);
5784 if (iverneed->vn_filename == NULL)
5785 goto error_return;
5786
5787 amt = iverneed->vn_cnt;
5788 amt *= sizeof (Elf_Internal_Vernaux);
5789 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5790
5791 evernaux = ((Elf_External_Vernaux *)
5792 ((bfd_byte *) everneed + iverneed->vn_aux));
5793 ivernaux = iverneed->vn_auxptr;
5794 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5795 {
5796 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5797
5798 ivernaux->vna_nodename =
5799 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5800 ivernaux->vna_name);
5801 if (ivernaux->vna_nodename == NULL)
5802 goto error_return;
5803
5804 if (j + 1 < iverneed->vn_cnt)
5805 ivernaux->vna_nextptr = ivernaux + 1;
5806 else
5807 ivernaux->vna_nextptr = NULL;
5808
5809 evernaux = ((Elf_External_Vernaux *)
5810 ((bfd_byte *) evernaux + ivernaux->vna_next));
5811 }
5812
5813 if (i + 1 < hdr->sh_info)
5814 iverneed->vn_nextref = iverneed + 1;
5815 else
5816 iverneed->vn_nextref = NULL;
5817
5818 everneed = ((Elf_External_Verneed *)
5819 ((bfd_byte *) everneed + iverneed->vn_next));
5820 }
5821
5822 free (contents);
5823 contents = NULL;
5824 }
5825
5826 return true;
5827
5828 error_return:
5829 if (contents == NULL)
5830 free (contents);
5831 return false;
5832 }
5833 \f
5834 asymbol *
5835 _bfd_elf_make_empty_symbol (abfd)
5836 bfd *abfd;
5837 {
5838 elf_symbol_type *newsym;
5839 bfd_size_type amt = sizeof (elf_symbol_type);
5840
5841 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5842 if (!newsym)
5843 return NULL;
5844 else
5845 {
5846 newsym->symbol.the_bfd = abfd;
5847 return &newsym->symbol;
5848 }
5849 }
5850
5851 void
5852 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5853 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5854 asymbol *symbol;
5855 symbol_info *ret;
5856 {
5857 bfd_symbol_info (symbol, ret);
5858 }
5859
5860 /* Return whether a symbol name implies a local symbol. Most targets
5861 use this function for the is_local_label_name entry point, but some
5862 override it. */
5863
5864 boolean
5865 _bfd_elf_is_local_label_name (abfd, name)
5866 bfd *abfd ATTRIBUTE_UNUSED;
5867 const char *name;
5868 {
5869 /* Normal local symbols start with ``.L''. */
5870 if (name[0] == '.' && name[1] == 'L')
5871 return true;
5872
5873 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5874 DWARF debugging symbols starting with ``..''. */
5875 if (name[0] == '.' && name[1] == '.')
5876 return true;
5877
5878 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5879 emitting DWARF debugging output. I suspect this is actually a
5880 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5881 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5882 underscore to be emitted on some ELF targets). For ease of use,
5883 we treat such symbols as local. */
5884 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5885 return true;
5886
5887 return false;
5888 }
5889
5890 alent *
5891 _bfd_elf_get_lineno (ignore_abfd, symbol)
5892 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5893 asymbol *symbol ATTRIBUTE_UNUSED;
5894 {
5895 abort ();
5896 return NULL;
5897 }
5898
5899 boolean
5900 _bfd_elf_set_arch_mach (abfd, arch, machine)
5901 bfd *abfd;
5902 enum bfd_architecture arch;
5903 unsigned long machine;
5904 {
5905 /* If this isn't the right architecture for this backend, and this
5906 isn't the generic backend, fail. */
5907 if (arch != get_elf_backend_data (abfd)->arch
5908 && arch != bfd_arch_unknown
5909 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5910 return false;
5911
5912 return bfd_default_set_arch_mach (abfd, arch, machine);
5913 }
5914
5915 /* Find the function to a particular section and offset,
5916 for error reporting. */
5917
5918 static boolean
5919 elf_find_function (abfd, section, symbols, offset,
5920 filename_ptr, functionname_ptr)
5921 bfd *abfd ATTRIBUTE_UNUSED;
5922 asection *section;
5923 asymbol **symbols;
5924 bfd_vma offset;
5925 const char **filename_ptr;
5926 const char **functionname_ptr;
5927 {
5928 const char *filename;
5929 asymbol *func;
5930 bfd_vma low_func;
5931 asymbol **p;
5932
5933 filename = NULL;
5934 func = NULL;
5935 low_func = 0;
5936
5937 for (p = symbols; *p != NULL; p++)
5938 {
5939 elf_symbol_type *q;
5940
5941 q = (elf_symbol_type *) *p;
5942
5943 if (bfd_get_section (&q->symbol) != section)
5944 continue;
5945
5946 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5947 {
5948 default:
5949 break;
5950 case STT_FILE:
5951 filename = bfd_asymbol_name (&q->symbol);
5952 break;
5953 case STT_NOTYPE:
5954 case STT_FUNC:
5955 if (q->symbol.section == section
5956 && q->symbol.value >= low_func
5957 && q->symbol.value <= offset)
5958 {
5959 func = (asymbol *) q;
5960 low_func = q->symbol.value;
5961 }
5962 break;
5963 }
5964 }
5965
5966 if (func == NULL)
5967 return false;
5968
5969 if (filename_ptr)
5970 *filename_ptr = filename;
5971 if (functionname_ptr)
5972 *functionname_ptr = bfd_asymbol_name (func);
5973
5974 return true;
5975 }
5976
5977 /* Find the nearest line to a particular section and offset,
5978 for error reporting. */
5979
5980 boolean
5981 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
5982 filename_ptr, functionname_ptr, line_ptr)
5983 bfd *abfd;
5984 asection *section;
5985 asymbol **symbols;
5986 bfd_vma offset;
5987 const char **filename_ptr;
5988 const char **functionname_ptr;
5989 unsigned int *line_ptr;
5990 {
5991 boolean found;
5992
5993 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5994 filename_ptr, functionname_ptr,
5995 line_ptr))
5996 {
5997 if (!*functionname_ptr)
5998 elf_find_function (abfd, section, symbols, offset,
5999 *filename_ptr ? NULL : filename_ptr,
6000 functionname_ptr);
6001
6002 return true;
6003 }
6004
6005 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6006 filename_ptr, functionname_ptr,
6007 line_ptr, 0,
6008 &elf_tdata (abfd)->dwarf2_find_line_info))
6009 {
6010 if (!*functionname_ptr)
6011 elf_find_function (abfd, section, symbols, offset,
6012 *filename_ptr ? NULL : filename_ptr,
6013 functionname_ptr);
6014
6015 return true;
6016 }
6017
6018 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6019 &found, filename_ptr,
6020 functionname_ptr, line_ptr,
6021 &elf_tdata (abfd)->line_info))
6022 return false;
6023 if (found)
6024 return true;
6025
6026 if (symbols == NULL)
6027 return false;
6028
6029 if (! elf_find_function (abfd, section, symbols, offset,
6030 filename_ptr, functionname_ptr))
6031 return false;
6032
6033 *line_ptr = 0;
6034 return true;
6035 }
6036
6037 int
6038 _bfd_elf_sizeof_headers (abfd, reloc)
6039 bfd *abfd;
6040 boolean reloc;
6041 {
6042 int ret;
6043
6044 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6045 if (! reloc)
6046 ret += get_program_header_size (abfd);
6047 return ret;
6048 }
6049
6050 boolean
6051 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
6052 bfd *abfd;
6053 sec_ptr section;
6054 PTR location;
6055 file_ptr offset;
6056 bfd_size_type count;
6057 {
6058 Elf_Internal_Shdr *hdr;
6059 bfd_signed_vma pos;
6060
6061 if (! abfd->output_has_begun
6062 && ! (_bfd_elf_compute_section_file_positions
6063 (abfd, (struct bfd_link_info *) NULL)))
6064 return false;
6065
6066 hdr = &elf_section_data (section)->this_hdr;
6067 pos = hdr->sh_offset + offset;
6068 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6069 || bfd_bwrite (location, count, abfd) != count)
6070 return false;
6071
6072 return true;
6073 }
6074
6075 void
6076 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
6077 bfd *abfd ATTRIBUTE_UNUSED;
6078 arelent *cache_ptr ATTRIBUTE_UNUSED;
6079 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
6080 {
6081 abort ();
6082 }
6083
6084 #if 0
6085 void
6086 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
6087 bfd *abfd;
6088 arelent *cache_ptr;
6089 Elf_Internal_Rel *dst;
6090 {
6091 abort ();
6092 }
6093 #endif
6094
6095 /* Try to convert a non-ELF reloc into an ELF one. */
6096
6097 boolean
6098 _bfd_elf_validate_reloc (abfd, areloc)
6099 bfd *abfd;
6100 arelent *areloc;
6101 {
6102 /* Check whether we really have an ELF howto. */
6103
6104 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6105 {
6106 bfd_reloc_code_real_type code;
6107 reloc_howto_type *howto;
6108
6109 /* Alien reloc: Try to determine its type to replace it with an
6110 equivalent ELF reloc. */
6111
6112 if (areloc->howto->pc_relative)
6113 {
6114 switch (areloc->howto->bitsize)
6115 {
6116 case 8:
6117 code = BFD_RELOC_8_PCREL;
6118 break;
6119 case 12:
6120 code = BFD_RELOC_12_PCREL;
6121 break;
6122 case 16:
6123 code = BFD_RELOC_16_PCREL;
6124 break;
6125 case 24:
6126 code = BFD_RELOC_24_PCREL;
6127 break;
6128 case 32:
6129 code = BFD_RELOC_32_PCREL;
6130 break;
6131 case 64:
6132 code = BFD_RELOC_64_PCREL;
6133 break;
6134 default:
6135 goto fail;
6136 }
6137
6138 howto = bfd_reloc_type_lookup (abfd, code);
6139
6140 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6141 {
6142 if (howto->pcrel_offset)
6143 areloc->addend += areloc->address;
6144 else
6145 areloc->addend -= areloc->address; /* addend is unsigned!! */
6146 }
6147 }
6148 else
6149 {
6150 switch (areloc->howto->bitsize)
6151 {
6152 case 8:
6153 code = BFD_RELOC_8;
6154 break;
6155 case 14:
6156 code = BFD_RELOC_14;
6157 break;
6158 case 16:
6159 code = BFD_RELOC_16;
6160 break;
6161 case 26:
6162 code = BFD_RELOC_26;
6163 break;
6164 case 32:
6165 code = BFD_RELOC_32;
6166 break;
6167 case 64:
6168 code = BFD_RELOC_64;
6169 break;
6170 default:
6171 goto fail;
6172 }
6173
6174 howto = bfd_reloc_type_lookup (abfd, code);
6175 }
6176
6177 if (howto)
6178 areloc->howto = howto;
6179 else
6180 goto fail;
6181 }
6182
6183 return true;
6184
6185 fail:
6186 (*_bfd_error_handler)
6187 (_("%s: unsupported relocation type %s"),
6188 bfd_archive_filename (abfd), areloc->howto->name);
6189 bfd_set_error (bfd_error_bad_value);
6190 return false;
6191 }
6192
6193 boolean
6194 _bfd_elf_close_and_cleanup (abfd)
6195 bfd *abfd;
6196 {
6197 if (bfd_get_format (abfd) == bfd_object)
6198 {
6199 if (elf_shstrtab (abfd) != NULL)
6200 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6201 }
6202
6203 return _bfd_generic_close_and_cleanup (abfd);
6204 }
6205
6206 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6207 in the relocation's offset. Thus we cannot allow any sort of sanity
6208 range-checking to interfere. There is nothing else to do in processing
6209 this reloc. */
6210
6211 bfd_reloc_status_type
6212 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
6213 bfd *abfd ATTRIBUTE_UNUSED;
6214 arelent *re ATTRIBUTE_UNUSED;
6215 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
6216 PTR data ATTRIBUTE_UNUSED;
6217 asection *is ATTRIBUTE_UNUSED;
6218 bfd *obfd ATTRIBUTE_UNUSED;
6219 char **errmsg ATTRIBUTE_UNUSED;
6220 {
6221 return bfd_reloc_ok;
6222 }
6223 \f
6224 /* Elf core file support. Much of this only works on native
6225 toolchains, since we rely on knowing the
6226 machine-dependent procfs structure in order to pick
6227 out details about the corefile. */
6228
6229 #ifdef HAVE_SYS_PROCFS_H
6230 # include <sys/procfs.h>
6231 #endif
6232
6233 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6234
6235 static int
6236 elfcore_make_pid (abfd)
6237 bfd *abfd;
6238 {
6239 return ((elf_tdata (abfd)->core_lwpid << 16)
6240 + (elf_tdata (abfd)->core_pid));
6241 }
6242
6243 /* If there isn't a section called NAME, make one, using
6244 data from SECT. Note, this function will generate a
6245 reference to NAME, so you shouldn't deallocate or
6246 overwrite it. */
6247
6248 static boolean
6249 elfcore_maybe_make_sect (abfd, name, sect)
6250 bfd *abfd;
6251 char *name;
6252 asection *sect;
6253 {
6254 asection *sect2;
6255
6256 if (bfd_get_section_by_name (abfd, name) != NULL)
6257 return true;
6258
6259 sect2 = bfd_make_section (abfd, name);
6260 if (sect2 == NULL)
6261 return false;
6262
6263 sect2->_raw_size = sect->_raw_size;
6264 sect2->filepos = sect->filepos;
6265 sect2->flags = sect->flags;
6266 sect2->alignment_power = sect->alignment_power;
6267 return true;
6268 }
6269
6270 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6271 actually creates up to two pseudosections:
6272 - For the single-threaded case, a section named NAME, unless
6273 such a section already exists.
6274 - For the multi-threaded case, a section named "NAME/PID", where
6275 PID is elfcore_make_pid (abfd).
6276 Both pseudosections have identical contents. */
6277 boolean
6278 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6279 bfd *abfd;
6280 char *name;
6281 size_t size;
6282 ufile_ptr filepos;
6283 {
6284 char buf[100];
6285 char *threaded_name;
6286 size_t len;
6287 asection *sect;
6288
6289 /* Build the section name. */
6290
6291 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6292 len = strlen (buf) + 1;
6293 threaded_name = bfd_alloc (abfd, (bfd_size_type) len);
6294 if (threaded_name == NULL)
6295 return false;
6296 memcpy (threaded_name, buf, len);
6297
6298 sect = bfd_make_section (abfd, threaded_name);
6299 if (sect == NULL)
6300 return false;
6301 sect->_raw_size = size;
6302 sect->filepos = filepos;
6303 sect->flags = SEC_HAS_CONTENTS;
6304 sect->alignment_power = 2;
6305
6306 return elfcore_maybe_make_sect (abfd, name, sect);
6307 }
6308
6309 /* prstatus_t exists on:
6310 solaris 2.5+
6311 linux 2.[01] + glibc
6312 unixware 4.2
6313 */
6314
6315 #if defined (HAVE_PRSTATUS_T)
6316 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
6317
6318 static boolean
6319 elfcore_grok_prstatus (abfd, note)
6320 bfd *abfd;
6321 Elf_Internal_Note *note;
6322 {
6323 size_t raw_size;
6324 int offset;
6325
6326 if (note->descsz == sizeof (prstatus_t))
6327 {
6328 prstatus_t prstat;
6329
6330 raw_size = sizeof (prstat.pr_reg);
6331 offset = offsetof (prstatus_t, pr_reg);
6332 memcpy (&prstat, note->descdata, sizeof (prstat));
6333
6334 /* Do not overwrite the core signal if it
6335 has already been set by another thread. */
6336 if (elf_tdata (abfd)->core_signal == 0)
6337 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6338 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6339
6340 /* pr_who exists on:
6341 solaris 2.5+
6342 unixware 4.2
6343 pr_who doesn't exist on:
6344 linux 2.[01]
6345 */
6346 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6347 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6348 #endif
6349 }
6350 #if defined (HAVE_PRSTATUS32_T)
6351 else if (note->descsz == sizeof (prstatus32_t))
6352 {
6353 /* 64-bit host, 32-bit corefile */
6354 prstatus32_t prstat;
6355
6356 raw_size = sizeof (prstat.pr_reg);
6357 offset = offsetof (prstatus32_t, pr_reg);
6358 memcpy (&prstat, note->descdata, sizeof (prstat));
6359
6360 /* Do not overwrite the core signal if it
6361 has already been set by another thread. */
6362 if (elf_tdata (abfd)->core_signal == 0)
6363 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6364 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6365
6366 /* pr_who exists on:
6367 solaris 2.5+
6368 unixware 4.2
6369 pr_who doesn't exist on:
6370 linux 2.[01]
6371 */
6372 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6373 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6374 #endif
6375 }
6376 #endif /* HAVE_PRSTATUS32_T */
6377 else
6378 {
6379 /* Fail - we don't know how to handle any other
6380 note size (ie. data object type). */
6381 return true;
6382 }
6383
6384 /* Make a ".reg/999" section and a ".reg" section. */
6385 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6386 raw_size, note->descpos + offset);
6387 }
6388 #endif /* defined (HAVE_PRSTATUS_T) */
6389
6390 /* Create a pseudosection containing the exact contents of NOTE. */
6391 static boolean
6392 elfcore_make_note_pseudosection (abfd, name, note)
6393 bfd *abfd;
6394 char *name;
6395 Elf_Internal_Note *note;
6396 {
6397 return _bfd_elfcore_make_pseudosection (abfd, name,
6398 note->descsz, note->descpos);
6399 }
6400
6401 /* There isn't a consistent prfpregset_t across platforms,
6402 but it doesn't matter, because we don't have to pick this
6403 data structure apart. */
6404
6405 static boolean
6406 elfcore_grok_prfpreg (abfd, note)
6407 bfd *abfd;
6408 Elf_Internal_Note *note;
6409 {
6410 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6411 }
6412
6413 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6414 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6415 literally. */
6416
6417 static boolean
6418 elfcore_grok_prxfpreg (abfd, note)
6419 bfd *abfd;
6420 Elf_Internal_Note *note;
6421 {
6422 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6423 }
6424
6425 #if defined (HAVE_PRPSINFO_T)
6426 typedef prpsinfo_t elfcore_psinfo_t;
6427 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6428 typedef prpsinfo32_t elfcore_psinfo32_t;
6429 #endif
6430 #endif
6431
6432 #if defined (HAVE_PSINFO_T)
6433 typedef psinfo_t elfcore_psinfo_t;
6434 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6435 typedef psinfo32_t elfcore_psinfo32_t;
6436 #endif
6437 #endif
6438
6439 /* return a malloc'ed copy of a string at START which is at
6440 most MAX bytes long, possibly without a terminating '\0'.
6441 the copy will always have a terminating '\0'. */
6442
6443 char *
6444 _bfd_elfcore_strndup (abfd, start, max)
6445 bfd *abfd;
6446 char *start;
6447 size_t max;
6448 {
6449 char *dups;
6450 char *end = memchr (start, '\0', max);
6451 size_t len;
6452
6453 if (end == NULL)
6454 len = max;
6455 else
6456 len = end - start;
6457
6458 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6459 if (dups == NULL)
6460 return NULL;
6461
6462 memcpy (dups, start, len);
6463 dups[len] = '\0';
6464
6465 return dups;
6466 }
6467
6468 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6469 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
6470
6471 static boolean
6472 elfcore_grok_psinfo (abfd, note)
6473 bfd *abfd;
6474 Elf_Internal_Note *note;
6475 {
6476 if (note->descsz == sizeof (elfcore_psinfo_t))
6477 {
6478 elfcore_psinfo_t psinfo;
6479
6480 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6481
6482 elf_tdata (abfd)->core_program
6483 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6484 sizeof (psinfo.pr_fname));
6485
6486 elf_tdata (abfd)->core_command
6487 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6488 sizeof (psinfo.pr_psargs));
6489 }
6490 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6491 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6492 {
6493 /* 64-bit host, 32-bit corefile */
6494 elfcore_psinfo32_t psinfo;
6495
6496 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6497
6498 elf_tdata (abfd)->core_program
6499 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6500 sizeof (psinfo.pr_fname));
6501
6502 elf_tdata (abfd)->core_command
6503 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6504 sizeof (psinfo.pr_psargs));
6505 }
6506 #endif
6507
6508 else
6509 {
6510 /* Fail - we don't know how to handle any other
6511 note size (ie. data object type). */
6512 return true;
6513 }
6514
6515 /* Note that for some reason, a spurious space is tacked
6516 onto the end of the args in some (at least one anyway)
6517 implementations, so strip it off if it exists. */
6518
6519 {
6520 char *command = elf_tdata (abfd)->core_command;
6521 int n = strlen (command);
6522
6523 if (0 < n && command[n - 1] == ' ')
6524 command[n - 1] = '\0';
6525 }
6526
6527 return true;
6528 }
6529 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6530
6531 #if defined (HAVE_PSTATUS_T)
6532 static boolean elfcore_grok_pstatus PARAMS ((bfd *, Elf_Internal_Note *));
6533
6534 static boolean
6535 elfcore_grok_pstatus (abfd, note)
6536 bfd *abfd;
6537 Elf_Internal_Note *note;
6538 {
6539 if (note->descsz == sizeof (pstatus_t)
6540 #if defined (HAVE_PXSTATUS_T)
6541 || note->descsz == sizeof (pxstatus_t)
6542 #endif
6543 )
6544 {
6545 pstatus_t pstat;
6546
6547 memcpy (&pstat, note->descdata, sizeof (pstat));
6548
6549 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6550 }
6551 #if defined (HAVE_PSTATUS32_T)
6552 else if (note->descsz == sizeof (pstatus32_t))
6553 {
6554 /* 64-bit host, 32-bit corefile */
6555 pstatus32_t pstat;
6556
6557 memcpy (&pstat, note->descdata, sizeof (pstat));
6558
6559 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6560 }
6561 #endif
6562 /* Could grab some more details from the "representative"
6563 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6564 NT_LWPSTATUS note, presumably. */
6565
6566 return true;
6567 }
6568 #endif /* defined (HAVE_PSTATUS_T) */
6569
6570 #if defined (HAVE_LWPSTATUS_T)
6571 static boolean elfcore_grok_lwpstatus PARAMS ((bfd *, Elf_Internal_Note *));
6572
6573 static boolean
6574 elfcore_grok_lwpstatus (abfd, note)
6575 bfd *abfd;
6576 Elf_Internal_Note *note;
6577 {
6578 lwpstatus_t lwpstat;
6579 char buf[100];
6580 char *name;
6581 size_t len;
6582 asection *sect;
6583
6584 if (note->descsz != sizeof (lwpstat)
6585 #if defined (HAVE_LWPXSTATUS_T)
6586 && note->descsz != sizeof (lwpxstatus_t)
6587 #endif
6588 )
6589 return true;
6590
6591 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6592
6593 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6594 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6595
6596 /* Make a ".reg/999" section. */
6597
6598 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6599 len = strlen (buf) + 1;
6600 name = bfd_alloc (abfd, (bfd_size_type) len);
6601 if (name == NULL)
6602 return false;
6603 memcpy (name, buf, len);
6604
6605 sect = bfd_make_section (abfd, name);
6606 if (sect == NULL)
6607 return false;
6608
6609 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6610 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6611 sect->filepos = note->descpos
6612 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6613 #endif
6614
6615 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6616 sect->_raw_size = sizeof (lwpstat.pr_reg);
6617 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6618 #endif
6619
6620 sect->flags = SEC_HAS_CONTENTS;
6621 sect->alignment_power = 2;
6622
6623 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6624 return false;
6625
6626 /* Make a ".reg2/999" section */
6627
6628 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6629 len = strlen (buf) + 1;
6630 name = bfd_alloc (abfd, (bfd_size_type) len);
6631 if (name == NULL)
6632 return false;
6633 memcpy (name, buf, len);
6634
6635 sect = bfd_make_section (abfd, name);
6636 if (sect == NULL)
6637 return false;
6638
6639 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6640 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6641 sect->filepos = note->descpos
6642 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6643 #endif
6644
6645 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6646 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6647 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6648 #endif
6649
6650 sect->flags = SEC_HAS_CONTENTS;
6651 sect->alignment_power = 2;
6652
6653 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6654 }
6655 #endif /* defined (HAVE_LWPSTATUS_T) */
6656
6657 #if defined (HAVE_WIN32_PSTATUS_T)
6658 static boolean
6659 elfcore_grok_win32pstatus (abfd, note)
6660 bfd *abfd;
6661 Elf_Internal_Note *note;
6662 {
6663 char buf[30];
6664 char *name;
6665 size_t len;
6666 asection *sect;
6667 win32_pstatus_t pstatus;
6668
6669 if (note->descsz < sizeof (pstatus))
6670 return true;
6671
6672 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6673
6674 switch (pstatus.data_type)
6675 {
6676 case NOTE_INFO_PROCESS:
6677 /* FIXME: need to add ->core_command. */
6678 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6679 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6680 break;
6681
6682 case NOTE_INFO_THREAD:
6683 /* Make a ".reg/999" section. */
6684 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6685
6686 len = strlen (buf) + 1;
6687 name = bfd_alloc (abfd, (bfd_size_type) len);
6688 if (name == NULL)
6689 return false;
6690
6691 memcpy (name, buf, len);
6692
6693 sect = bfd_make_section (abfd, name);
6694 if (sect == NULL)
6695 return false;
6696
6697 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6698 sect->filepos = (note->descpos
6699 + offsetof (struct win32_pstatus,
6700 data.thread_info.thread_context));
6701 sect->flags = SEC_HAS_CONTENTS;
6702 sect->alignment_power = 2;
6703
6704 if (pstatus.data.thread_info.is_active_thread)
6705 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6706 return false;
6707 break;
6708
6709 case NOTE_INFO_MODULE:
6710 /* Make a ".module/xxxxxxxx" section. */
6711 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6712
6713 len = strlen (buf) + 1;
6714 name = bfd_alloc (abfd, (bfd_size_type) len);
6715 if (name == NULL)
6716 return false;
6717
6718 memcpy (name, buf, len);
6719
6720 sect = bfd_make_section (abfd, name);
6721
6722 if (sect == NULL)
6723 return false;
6724
6725 sect->_raw_size = note->descsz;
6726 sect->filepos = note->descpos;
6727 sect->flags = SEC_HAS_CONTENTS;
6728 sect->alignment_power = 2;
6729 break;
6730
6731 default:
6732 return true;
6733 }
6734
6735 return true;
6736 }
6737 #endif /* HAVE_WIN32_PSTATUS_T */
6738
6739 static boolean
6740 elfcore_grok_note (abfd, note)
6741 bfd *abfd;
6742 Elf_Internal_Note *note;
6743 {
6744 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6745
6746 switch (note->type)
6747 {
6748 default:
6749 return true;
6750
6751 case NT_PRSTATUS:
6752 if (bed->elf_backend_grok_prstatus)
6753 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6754 return true;
6755 #if defined (HAVE_PRSTATUS_T)
6756 return elfcore_grok_prstatus (abfd, note);
6757 #else
6758 return true;
6759 #endif
6760
6761 #if defined (HAVE_PSTATUS_T)
6762 case NT_PSTATUS:
6763 return elfcore_grok_pstatus (abfd, note);
6764 #endif
6765
6766 #if defined (HAVE_LWPSTATUS_T)
6767 case NT_LWPSTATUS:
6768 return elfcore_grok_lwpstatus (abfd, note);
6769 #endif
6770
6771 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6772 return elfcore_grok_prfpreg (abfd, note);
6773
6774 #if defined (HAVE_WIN32_PSTATUS_T)
6775 case NT_WIN32PSTATUS:
6776 return elfcore_grok_win32pstatus (abfd, note);
6777 #endif
6778
6779 case NT_PRXFPREG: /* Linux SSE extension */
6780 if (note->namesz == 5
6781 && ! strcmp (note->namedata, "LINUX"))
6782 return elfcore_grok_prxfpreg (abfd, note);
6783 else
6784 return true;
6785
6786 case NT_PRPSINFO:
6787 case NT_PSINFO:
6788 if (bed->elf_backend_grok_psinfo)
6789 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6790 return true;
6791 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6792 return elfcore_grok_psinfo (abfd, note);
6793 #else
6794 return true;
6795 #endif
6796 }
6797 }
6798
6799 static boolean
6800 elfcore_netbsd_get_lwpid (note, lwpidp)
6801 Elf_Internal_Note *note;
6802 int *lwpidp;
6803 {
6804 char *cp;
6805
6806 cp = strchr (note->namedata, '@');
6807 if (cp != NULL)
6808 {
6809 *lwpidp = atoi(cp + 1);
6810 return true;
6811 }
6812 return false;
6813 }
6814
6815 static boolean
6816 elfcore_grok_netbsd_procinfo (abfd, note)
6817 bfd *abfd;
6818 Elf_Internal_Note *note;
6819 {
6820
6821 /* Signal number at offset 0x08. */
6822 elf_tdata (abfd)->core_signal
6823 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6824
6825 /* Process ID at offset 0x50. */
6826 elf_tdata (abfd)->core_pid
6827 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6828
6829 /* Command name at 0x7c (max 32 bytes, including nul). */
6830 elf_tdata (abfd)->core_command
6831 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6832
6833 return true;
6834 }
6835
6836 static boolean
6837 elfcore_grok_netbsd_note (abfd, note)
6838 bfd *abfd;
6839 Elf_Internal_Note *note;
6840 {
6841 int lwp;
6842
6843 if (elfcore_netbsd_get_lwpid (note, &lwp))
6844 elf_tdata (abfd)->core_lwpid = lwp;
6845
6846 if (note->type == NT_NETBSDCORE_PROCINFO)
6847 {
6848 /* NetBSD-specific core "procinfo". Note that we expect to
6849 find this note before any of the others, which is fine,
6850 since the kernel writes this note out first when it
6851 creates a core file. */
6852
6853 return elfcore_grok_netbsd_procinfo (abfd, note);
6854 }
6855
6856 /* As of Jan 2002 there are no other machine-independent notes
6857 defined for NetBSD core files. If the note type is less
6858 than the start of the machine-dependent note types, we don't
6859 understand it. */
6860
6861 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6862 return true;
6863
6864
6865 switch (bfd_get_arch (abfd))
6866 {
6867 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6868 PT_GETFPREGS == mach+2. */
6869
6870 case bfd_arch_alpha:
6871 case bfd_arch_sparc:
6872 switch (note->type)
6873 {
6874 case NT_NETBSDCORE_FIRSTMACH+0:
6875 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6876
6877 case NT_NETBSDCORE_FIRSTMACH+2:
6878 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6879
6880 default:
6881 return true;
6882 }
6883
6884 /* On all other arch's, PT_GETREGS == mach+1 and
6885 PT_GETFPREGS == mach+3. */
6886
6887 default:
6888 switch (note->type)
6889 {
6890 case NT_NETBSDCORE_FIRSTMACH+1:
6891 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6892
6893 case NT_NETBSDCORE_FIRSTMACH+3:
6894 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6895
6896 default:
6897 return true;
6898 }
6899 }
6900 /* NOTREACHED */
6901 }
6902
6903 /* Function: elfcore_write_note
6904
6905 Inputs:
6906 buffer to hold note
6907 name of note
6908 type of note
6909 data for note
6910 size of data for note
6911
6912 Return:
6913 End of buffer containing note. */
6914
6915 char *
6916 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
6917 bfd *abfd;
6918 char *buf;
6919 int *bufsiz;
6920 const char *name;
6921 int type;
6922 const PTR input;
6923 int size;
6924 {
6925 Elf_External_Note *xnp;
6926 size_t namesz;
6927 size_t pad;
6928 size_t newspace;
6929 char *p, *dest;
6930
6931 namesz = 0;
6932 pad = 0;
6933 if (name != NULL)
6934 {
6935 struct elf_backend_data *bed;
6936
6937 namesz = strlen (name) + 1;
6938 bed = get_elf_backend_data (abfd);
6939 pad = -namesz & (bed->s->file_align - 1);
6940 }
6941
6942 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
6943
6944 p = realloc (buf, *bufsiz + newspace);
6945 dest = p + *bufsiz;
6946 *bufsiz += newspace;
6947 xnp = (Elf_External_Note *) dest;
6948 H_PUT_32 (abfd, namesz, xnp->namesz);
6949 H_PUT_32 (abfd, size, xnp->descsz);
6950 H_PUT_32 (abfd, type, xnp->type);
6951 dest = xnp->name;
6952 if (name != NULL)
6953 {
6954 memcpy (dest, name, namesz);
6955 dest += namesz;
6956 while (pad != 0)
6957 {
6958 *dest++ = '\0';
6959 --pad;
6960 }
6961 }
6962 memcpy (dest, input, size);
6963 return p;
6964 }
6965
6966 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6967 char *
6968 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
6969 bfd *abfd;
6970 char *buf;
6971 int *bufsiz;
6972 const char *fname;
6973 const char *psargs;
6974 {
6975 int note_type;
6976 char *note_name = "CORE";
6977
6978 #if defined (HAVE_PSINFO_T)
6979 psinfo_t data;
6980 note_type = NT_PSINFO;
6981 #else
6982 prpsinfo_t data;
6983 note_type = NT_PRPSINFO;
6984 #endif
6985
6986 memset (&data, 0, sizeof (data));
6987 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
6988 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
6989 return elfcore_write_note (abfd, buf, bufsiz,
6990 note_name, note_type, &data, sizeof (data));
6991 }
6992 #endif /* PSINFO_T or PRPSINFO_T */
6993
6994 #if defined (HAVE_PRSTATUS_T)
6995 char *
6996 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6997 bfd *abfd;
6998 char *buf;
6999 int *bufsiz;
7000 long pid;
7001 int cursig;
7002 const PTR gregs;
7003 {
7004 prstatus_t prstat;
7005 char *note_name = "CORE";
7006
7007 memset (&prstat, 0, sizeof (prstat));
7008 prstat.pr_pid = pid;
7009 prstat.pr_cursig = cursig;
7010 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7011 return elfcore_write_note (abfd, buf, bufsiz,
7012 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7013 }
7014 #endif /* HAVE_PRSTATUS_T */
7015
7016 #if defined (HAVE_LWPSTATUS_T)
7017 char *
7018 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7019 bfd *abfd;
7020 char *buf;
7021 int *bufsiz;
7022 long pid;
7023 int cursig;
7024 const PTR gregs;
7025 {
7026 lwpstatus_t lwpstat;
7027 char *note_name = "CORE";
7028
7029 memset (&lwpstat, 0, sizeof (lwpstat));
7030 lwpstat.pr_lwpid = pid >> 16;
7031 lwpstat.pr_cursig = cursig;
7032 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7033 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7034 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7035 #if !defined(gregs)
7036 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7037 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7038 #else
7039 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7040 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7041 #endif
7042 #endif
7043 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7044 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7045 }
7046 #endif /* HAVE_LWPSTATUS_T */
7047
7048 #if defined (HAVE_PSTATUS_T)
7049 char *
7050 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7051 bfd *abfd;
7052 char *buf;
7053 int *bufsiz;
7054 long pid;
7055 int cursig;
7056 const PTR gregs;
7057 {
7058 pstatus_t pstat;
7059 char *note_name = "CORE";
7060
7061 memset (&pstat, 0, sizeof (pstat));
7062 pstat.pr_pid = pid & 0xffff;
7063 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7064 NT_PSTATUS, &pstat, sizeof (pstat));
7065 return buf;
7066 }
7067 #endif /* HAVE_PSTATUS_T */
7068
7069 char *
7070 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
7071 bfd *abfd;
7072 char *buf;
7073 int *bufsiz;
7074 const PTR fpregs;
7075 int size;
7076 {
7077 char *note_name = "CORE";
7078 return elfcore_write_note (abfd, buf, bufsiz,
7079 note_name, NT_FPREGSET, fpregs, size);
7080 }
7081
7082 char *
7083 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
7084 bfd *abfd;
7085 char *buf;
7086 int *bufsiz;
7087 const PTR xfpregs;
7088 int size;
7089 {
7090 char *note_name = "LINUX";
7091 return elfcore_write_note (abfd, buf, bufsiz,
7092 note_name, NT_PRXFPREG, xfpregs, size);
7093 }
7094
7095 static boolean
7096 elfcore_read_notes (abfd, offset, size)
7097 bfd *abfd;
7098 file_ptr offset;
7099 bfd_size_type size;
7100 {
7101 char *buf;
7102 char *p;
7103
7104 if (size <= 0)
7105 return true;
7106
7107 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7108 return false;
7109
7110 buf = bfd_malloc (size);
7111 if (buf == NULL)
7112 return false;
7113
7114 if (bfd_bread (buf, size, abfd) != size)
7115 {
7116 error:
7117 free (buf);
7118 return false;
7119 }
7120
7121 p = buf;
7122 while (p < buf + size)
7123 {
7124 /* FIXME: bad alignment assumption. */
7125 Elf_External_Note *xnp = (Elf_External_Note *) p;
7126 Elf_Internal_Note in;
7127
7128 in.type = H_GET_32 (abfd, xnp->type);
7129
7130 in.namesz = H_GET_32 (abfd, xnp->namesz);
7131 in.namedata = xnp->name;
7132
7133 in.descsz = H_GET_32 (abfd, xnp->descsz);
7134 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7135 in.descpos = offset + (in.descdata - buf);
7136
7137 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7138 {
7139 if (! elfcore_grok_netbsd_note (abfd, &in))
7140 goto error;
7141 }
7142 else
7143 {
7144 if (! elfcore_grok_note (abfd, &in))
7145 goto error;
7146 }
7147
7148 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7149 }
7150
7151 free (buf);
7152 return true;
7153 }
7154 \f
7155 /* Providing external access to the ELF program header table. */
7156
7157 /* Return an upper bound on the number of bytes required to store a
7158 copy of ABFD's program header table entries. Return -1 if an error
7159 occurs; bfd_get_error will return an appropriate code. */
7160
7161 long
7162 bfd_get_elf_phdr_upper_bound (abfd)
7163 bfd *abfd;
7164 {
7165 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7166 {
7167 bfd_set_error (bfd_error_wrong_format);
7168 return -1;
7169 }
7170
7171 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7172 }
7173
7174 /* Copy ABFD's program header table entries to *PHDRS. The entries
7175 will be stored as an array of Elf_Internal_Phdr structures, as
7176 defined in include/elf/internal.h. To find out how large the
7177 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7178
7179 Return the number of program header table entries read, or -1 if an
7180 error occurs; bfd_get_error will return an appropriate code. */
7181
7182 int
7183 bfd_get_elf_phdrs (abfd, phdrs)
7184 bfd *abfd;
7185 void *phdrs;
7186 {
7187 int num_phdrs;
7188
7189 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7190 {
7191 bfd_set_error (bfd_error_wrong_format);
7192 return -1;
7193 }
7194
7195 num_phdrs = elf_elfheader (abfd)->e_phnum;
7196 memcpy (phdrs, elf_tdata (abfd)->phdr,
7197 num_phdrs * sizeof (Elf_Internal_Phdr));
7198
7199 return num_phdrs;
7200 }
7201
7202 void
7203 _bfd_elf_sprintf_vma (abfd, buf, value)
7204 bfd *abfd ATTRIBUTE_UNUSED;
7205 char *buf;
7206 bfd_vma value;
7207 {
7208 #ifdef BFD64
7209 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7210
7211 i_ehdrp = elf_elfheader (abfd);
7212 if (i_ehdrp == NULL)
7213 sprintf_vma (buf, value);
7214 else
7215 {
7216 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7217 {
7218 #if BFD_HOST_64BIT_LONG
7219 sprintf (buf, "%016lx", value);
7220 #else
7221 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7222 _bfd_int64_low (value));
7223 #endif
7224 }
7225 else
7226 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7227 }
7228 #else
7229 sprintf_vma (buf, value);
7230 #endif
7231 }
7232
7233 void
7234 _bfd_elf_fprintf_vma (abfd, stream, value)
7235 bfd *abfd ATTRIBUTE_UNUSED;
7236 PTR stream;
7237 bfd_vma value;
7238 {
7239 #ifdef BFD64
7240 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7241
7242 i_ehdrp = elf_elfheader (abfd);
7243 if (i_ehdrp == NULL)
7244 fprintf_vma ((FILE *) stream, value);
7245 else
7246 {
7247 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7248 {
7249 #if BFD_HOST_64BIT_LONG
7250 fprintf ((FILE *) stream, "%016lx", value);
7251 #else
7252 fprintf ((FILE *) stream, "%08lx%08lx",
7253 _bfd_int64_high (value), _bfd_int64_low (value));
7254 #endif
7255 }
7256 else
7257 fprintf ((FILE *) stream, "%08lx",
7258 (unsigned long) (value & 0xffffffff));
7259 }
7260 #else
7261 fprintf_vma ((FILE *) stream, value);
7262 #endif
7263 }
7264
7265 enum elf_reloc_type_class
7266 _bfd_elf_reloc_type_class (rela)
7267 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
7268 {
7269 return reloc_class_normal;
7270 }
7271
7272 /* For RELA architectures, return the relocation value for a
7273 relocation against a local symbol. */
7274
7275 bfd_vma
7276 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
7277 bfd *abfd;
7278 Elf_Internal_Sym *sym;
7279 asection *sec;
7280 Elf_Internal_Rela *rel;
7281 {
7282 bfd_vma relocation;
7283
7284 relocation = (sec->output_section->vma
7285 + sec->output_offset
7286 + sym->st_value);
7287 if ((sec->flags & SEC_MERGE)
7288 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7289 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
7290 {
7291 asection *msec;
7292
7293 msec = sec;
7294 rel->r_addend =
7295 _bfd_merged_section_offset (abfd, &msec,
7296 elf_section_data (sec)->sec_info,
7297 sym->st_value + rel->r_addend,
7298 (bfd_vma) 0)
7299 - relocation;
7300 rel->r_addend += msec->output_section->vma + msec->output_offset;
7301 }
7302 return relocation;
7303 }
7304
7305 bfd_vma
7306 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7307 bfd *abfd;
7308 Elf_Internal_Sym *sym;
7309 asection **psec;
7310 bfd_vma addend;
7311 {
7312 asection *sec = *psec;
7313
7314 if (elf_section_data (sec)->sec_info_type != ELF_INFO_TYPE_MERGE)
7315 return sym->st_value + addend;
7316
7317 return _bfd_merged_section_offset (abfd, psec,
7318 elf_section_data (sec)->sec_info,
7319 sym->st_value + addend, (bfd_vma) 0);
7320 }
7321
7322 bfd_vma
7323 _bfd_elf_section_offset (abfd, info, sec, offset)
7324 bfd *abfd;
7325 struct bfd_link_info *info;
7326 asection *sec;
7327 bfd_vma offset;
7328 {
7329 struct bfd_elf_section_data *sec_data;
7330
7331 sec_data = elf_section_data (sec);
7332 switch (sec_data->sec_info_type)
7333 {
7334 case ELF_INFO_TYPE_STABS:
7335 return _bfd_stab_section_offset
7336 (abfd, &elf_hash_table (info)->merge_info, sec, &sec_data->sec_info,
7337 offset);
7338 case ELF_INFO_TYPE_EH_FRAME:
7339 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7340 default:
7341 return offset;
7342 }
7343 }