2001-08-24 H.J. Lu <hjl@gnu.org>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /*
22
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet.
33 */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "bfd.h"
38 #include "sysdep.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43
44 static INLINE struct elf_segment_map *make_mapping
45 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
46 static boolean map_sections_to_segments PARAMS ((bfd *));
47 static int elf_sort_sections PARAMS ((const PTR, const PTR));
48 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
49 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
50 static boolean prep_headers PARAMS ((bfd *));
51 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
52 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
53 static char *elf_read PARAMS ((bfd *, long, unsigned int));
54 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
55 static boolean assign_section_numbers PARAMS ((bfd *));
56 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
57 static boolean elf_map_symbols PARAMS ((bfd *));
58 static bfd_size_type get_program_header_size PARAMS ((bfd *));
59 static boolean elfcore_read_notes PARAMS ((bfd *, bfd_vma, bfd_vma));
60 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
61 bfd_vma, const char **,
62 const char **));
63 static int elfcore_make_pid PARAMS ((bfd *));
64 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
65 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
66 Elf_Internal_Note *));
67 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
68 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
69 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
70
71 /* Swap version information in and out. The version information is
72 currently size independent. If that ever changes, this code will
73 need to move into elfcode.h. */
74
75 /* Swap in a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_in (abfd, src, dst)
79 bfd *abfd;
80 const Elf_External_Verdef *src;
81 Elf_Internal_Verdef *dst;
82 {
83 dst->vd_version = bfd_h_get_16 (abfd, src->vd_version);
84 dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags);
85 dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx);
86 dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt);
87 dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash);
88 dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux);
89 dst->vd_next = bfd_h_get_32 (abfd, src->vd_next);
90 }
91
92 /* Swap out a Verdef structure. */
93
94 void
95 _bfd_elf_swap_verdef_out (abfd, src, dst)
96 bfd *abfd;
97 const Elf_Internal_Verdef *src;
98 Elf_External_Verdef *dst;
99 {
100 bfd_h_put_16 (abfd, src->vd_version, dst->vd_version);
101 bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags);
102 bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx);
103 bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt);
104 bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash);
105 bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux);
106 bfd_h_put_32 (abfd, src->vd_next, dst->vd_next);
107 }
108
109 /* Swap in a Verdaux structure. */
110
111 void
112 _bfd_elf_swap_verdaux_in (abfd, src, dst)
113 bfd *abfd;
114 const Elf_External_Verdaux *src;
115 Elf_Internal_Verdaux *dst;
116 {
117 dst->vda_name = bfd_h_get_32 (abfd, src->vda_name);
118 dst->vda_next = bfd_h_get_32 (abfd, src->vda_next);
119 }
120
121 /* Swap out a Verdaux structure. */
122
123 void
124 _bfd_elf_swap_verdaux_out (abfd, src, dst)
125 bfd *abfd;
126 const Elf_Internal_Verdaux *src;
127 Elf_External_Verdaux *dst;
128 {
129 bfd_h_put_32 (abfd, src->vda_name, dst->vda_name);
130 bfd_h_put_32 (abfd, src->vda_next, dst->vda_next);
131 }
132
133 /* Swap in a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_in (abfd, src, dst)
137 bfd *abfd;
138 const Elf_External_Verneed *src;
139 Elf_Internal_Verneed *dst;
140 {
141 dst->vn_version = bfd_h_get_16 (abfd, src->vn_version);
142 dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt);
143 dst->vn_file = bfd_h_get_32 (abfd, src->vn_file);
144 dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux);
145 dst->vn_next = bfd_h_get_32 (abfd, src->vn_next);
146 }
147
148 /* Swap out a Verneed structure. */
149
150 void
151 _bfd_elf_swap_verneed_out (abfd, src, dst)
152 bfd *abfd;
153 const Elf_Internal_Verneed *src;
154 Elf_External_Verneed *dst;
155 {
156 bfd_h_put_16 (abfd, src->vn_version, dst->vn_version);
157 bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt);
158 bfd_h_put_32 (abfd, src->vn_file, dst->vn_file);
159 bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux);
160 bfd_h_put_32 (abfd, src->vn_next, dst->vn_next);
161 }
162
163 /* Swap in a Vernaux structure. */
164
165 void
166 _bfd_elf_swap_vernaux_in (abfd, src, dst)
167 bfd *abfd;
168 const Elf_External_Vernaux *src;
169 Elf_Internal_Vernaux *dst;
170 {
171 dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash);
172 dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags);
173 dst->vna_other = bfd_h_get_16 (abfd, src->vna_other);
174 dst->vna_name = bfd_h_get_32 (abfd, src->vna_name);
175 dst->vna_next = bfd_h_get_32 (abfd, src->vna_next);
176 }
177
178 /* Swap out a Vernaux structure. */
179
180 void
181 _bfd_elf_swap_vernaux_out (abfd, src, dst)
182 bfd *abfd;
183 const Elf_Internal_Vernaux *src;
184 Elf_External_Vernaux *dst;
185 {
186 bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash);
187 bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags);
188 bfd_h_put_16 (abfd, src->vna_other, dst->vna_other);
189 bfd_h_put_32 (abfd, src->vna_name, dst->vna_name);
190 bfd_h_put_32 (abfd, src->vna_next, dst->vna_next);
191 }
192
193 /* Swap in a Versym structure. */
194
195 void
196 _bfd_elf_swap_versym_in (abfd, src, dst)
197 bfd *abfd;
198 const Elf_External_Versym *src;
199 Elf_Internal_Versym *dst;
200 {
201 dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers);
202 }
203
204 /* Swap out a Versym structure. */
205
206 void
207 _bfd_elf_swap_versym_out (abfd, src, dst)
208 bfd *abfd;
209 const Elf_Internal_Versym *src;
210 Elf_External_Versym *dst;
211 {
212 bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers);
213 }
214
215 /* Standard ELF hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
217
218 unsigned long
219 bfd_elf_hash (namearg)
220 const char *namearg;
221 {
222 const unsigned char *name = (const unsigned char *) namearg;
223 unsigned long h = 0;
224 unsigned long g;
225 int ch;
226
227 while ((ch = *name++) != '\0')
228 {
229 h = (h << 4) + ch;
230 if ((g = (h & 0xf0000000)) != 0)
231 {
232 h ^= g >> 24;
233 /* The ELF ABI says `h &= ~g', but this is equivalent in
234 this case and on some machines one insn instead of two. */
235 h ^= g;
236 }
237 }
238 return h;
239 }
240
241 /* Read a specified number of bytes at a specified offset in an ELF
242 file, into a newly allocated buffer, and return a pointer to the
243 buffer. */
244
245 static char *
246 elf_read (abfd, offset, size)
247 bfd *abfd;
248 long offset;
249 unsigned int size;
250 {
251 char *buf;
252
253 if ((buf = bfd_alloc (abfd, size)) == NULL)
254 return NULL;
255 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
256 return NULL;
257 if (bfd_read ((PTR) buf, size, 1, abfd) != size)
258 {
259 if (bfd_get_error () != bfd_error_system_call)
260 bfd_set_error (bfd_error_file_truncated);
261 return NULL;
262 }
263 return buf;
264 }
265
266 boolean
267 bfd_elf_mkobject (abfd)
268 bfd *abfd;
269 {
270 /* This just does initialization. */
271 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
272 elf_tdata (abfd) = (struct elf_obj_tdata *)
273 bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
274 if (elf_tdata (abfd) == 0)
275 return false;
276 /* Since everything is done at close time, do we need any
277 initialization? */
278
279 return true;
280 }
281
282 boolean
283 bfd_elf_mkcorefile (abfd)
284 bfd *abfd;
285 {
286 /* I think this can be done just like an object file. */
287 return bfd_elf_mkobject (abfd);
288 }
289
290 char *
291 bfd_elf_get_str_section (abfd, shindex)
292 bfd *abfd;
293 unsigned int shindex;
294 {
295 Elf_Internal_Shdr **i_shdrp;
296 char *shstrtab = NULL;
297 unsigned int offset;
298 unsigned int shstrtabsize;
299
300 i_shdrp = elf_elfsections (abfd);
301 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
302 return 0;
303
304 shstrtab = (char *) i_shdrp[shindex]->contents;
305 if (shstrtab == NULL)
306 {
307 /* No cached one, attempt to read, and cache what we read. */
308 offset = i_shdrp[shindex]->sh_offset;
309 shstrtabsize = i_shdrp[shindex]->sh_size;
310 shstrtab = elf_read (abfd, offset, shstrtabsize);
311 i_shdrp[shindex]->contents = (PTR) shstrtab;
312 }
313 return shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
318 bfd *abfd;
319 unsigned int shindex;
320 unsigned int strindex;
321 {
322 Elf_Internal_Shdr *hdr;
323
324 if (strindex == 0)
325 return "";
326
327 hdr = elf_elfsections (abfd)[shindex];
328
329 if (hdr->contents == NULL
330 && bfd_elf_get_str_section (abfd, shindex) == NULL)
331 return NULL;
332
333 if (strindex >= hdr->sh_size)
334 {
335 (*_bfd_error_handler)
336 (_("%s: invalid string offset %u >= %lu for section `%s'"),
337 bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size,
338 ((shindex == elf_elfheader(abfd)->e_shstrndx
339 && strindex == hdr->sh_name)
340 ? ".shstrtab"
341 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
342 return "";
343 }
344
345 return ((char *) hdr->contents) + strindex;
346 }
347
348 /* Make a BFD section from an ELF section. We store a pointer to the
349 BFD section in the bfd_section field of the header. */
350
351 boolean
352 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
353 bfd *abfd;
354 Elf_Internal_Shdr *hdr;
355 const char *name;
356 {
357 asection *newsect;
358 flagword flags;
359 struct elf_backend_data *bed;
360
361 if (hdr->bfd_section != NULL)
362 {
363 BFD_ASSERT (strcmp (name,
364 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
365 return true;
366 }
367
368 newsect = bfd_make_section_anyway (abfd, name);
369 if (newsect == NULL)
370 return false;
371
372 newsect->filepos = hdr->sh_offset;
373
374 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
375 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
376 || ! bfd_set_section_alignment (abfd, newsect,
377 bfd_log2 (hdr->sh_addralign)))
378 return false;
379
380 flags = SEC_NO_FLAGS;
381 if (hdr->sh_type != SHT_NOBITS)
382 flags |= SEC_HAS_CONTENTS;
383 if ((hdr->sh_flags & SHF_ALLOC) != 0)
384 {
385 flags |= SEC_ALLOC;
386 if (hdr->sh_type != SHT_NOBITS)
387 flags |= SEC_LOAD;
388 }
389 if ((hdr->sh_flags & SHF_WRITE) == 0)
390 flags |= SEC_READONLY;
391 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
392 flags |= SEC_CODE;
393 else if ((flags & SEC_LOAD) != 0)
394 flags |= SEC_DATA;
395 if ((hdr->sh_flags & SHF_MERGE) != 0)
396 {
397 flags |= SEC_MERGE;
398 newsect->entsize = hdr->sh_entsize;
399 if ((hdr->sh_flags & SHF_STRINGS) != 0)
400 flags |= SEC_STRINGS;
401 }
402
403 /* The debugging sections appear to be recognized only by name, not
404 any sort of flag. */
405 {
406 static const char *debug_sec_names [] =
407 {
408 ".debug",
409 ".gnu.linkonce.wi.",
410 ".line",
411 ".stab"
412 };
413 int i;
414
415 for (i = sizeof (debug_sec_names) / sizeof (debug_sec_names[0]); i--;)
416 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
417 break;
418
419 if (i >= 0)
420 flags |= SEC_DEBUGGING;
421 }
422
423 /* As a GNU extension, if the name begins with .gnu.linkonce, we
424 only link a single copy of the section. This is used to support
425 g++. g++ will emit each template expansion in its own section.
426 The symbols will be defined as weak, so that multiple definitions
427 are permitted. The GNU linker extension is to actually discard
428 all but one of the sections. */
429 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0)
430 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
431
432 bed = get_elf_backend_data (abfd);
433 if (bed->elf_backend_section_flags)
434 if (! bed->elf_backend_section_flags (&flags, hdr))
435 return false;
436
437 if (! bfd_set_section_flags (abfd, newsect, flags))
438 return false;
439
440 if ((flags & SEC_ALLOC) != 0)
441 {
442 Elf_Internal_Phdr *phdr;
443 unsigned int i;
444
445 /* Look through the phdrs to see if we need to adjust the lma.
446 If all the p_paddr fields are zero, we ignore them, since
447 some ELF linkers produce such output. */
448 phdr = elf_tdata (abfd)->phdr;
449 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
450 {
451 if (phdr->p_paddr != 0)
452 break;
453 }
454 if (i < elf_elfheader (abfd)->e_phnum)
455 {
456 phdr = elf_tdata (abfd)->phdr;
457 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
458 {
459 if (phdr->p_type == PT_LOAD
460 && phdr->p_vaddr != phdr->p_paddr
461 && phdr->p_vaddr <= hdr->sh_addr
462 && (phdr->p_vaddr + phdr->p_memsz
463 >= hdr->sh_addr + hdr->sh_size)
464 && ((flags & SEC_LOAD) == 0
465 || (phdr->p_offset <= (bfd_vma) hdr->sh_offset
466 && (phdr->p_offset + phdr->p_filesz
467 >= hdr->sh_offset + hdr->sh_size))))
468 {
469 newsect->lma += phdr->p_paddr - phdr->p_vaddr;
470 break;
471 }
472 }
473 }
474 }
475
476 hdr->bfd_section = newsect;
477 elf_section_data (newsect)->this_hdr = *hdr;
478
479 return true;
480 }
481
482 /*
483 INTERNAL_FUNCTION
484 bfd_elf_find_section
485
486 SYNOPSIS
487 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
488
489 DESCRIPTION
490 Helper functions for GDB to locate the string tables.
491 Since BFD hides string tables from callers, GDB needs to use an
492 internal hook to find them. Sun's .stabstr, in particular,
493 isn't even pointed to by the .stab section, so ordinary
494 mechanisms wouldn't work to find it, even if we had some.
495 */
496
497 struct elf_internal_shdr *
498 bfd_elf_find_section (abfd, name)
499 bfd *abfd;
500 char *name;
501 {
502 Elf_Internal_Shdr **i_shdrp;
503 char *shstrtab;
504 unsigned int max;
505 unsigned int i;
506
507 i_shdrp = elf_elfsections (abfd);
508 if (i_shdrp != NULL)
509 {
510 shstrtab = bfd_elf_get_str_section
511 (abfd, elf_elfheader (abfd)->e_shstrndx);
512 if (shstrtab != NULL)
513 {
514 max = elf_elfheader (abfd)->e_shnum;
515 for (i = 1; i < max; i++)
516 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
517 return i_shdrp[i];
518 }
519 }
520 return 0;
521 }
522
523 const char *const bfd_elf_section_type_names[] = {
524 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
525 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
526 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
527 };
528
529 /* ELF relocs are against symbols. If we are producing relocateable
530 output, and the reloc is against an external symbol, and nothing
531 has given us any additional addend, the resulting reloc will also
532 be against the same symbol. In such a case, we don't want to
533 change anything about the way the reloc is handled, since it will
534 all be done at final link time. Rather than put special case code
535 into bfd_perform_relocation, all the reloc types use this howto
536 function. It just short circuits the reloc if producing
537 relocateable output against an external symbol. */
538
539 bfd_reloc_status_type
540 bfd_elf_generic_reloc (abfd,
541 reloc_entry,
542 symbol,
543 data,
544 input_section,
545 output_bfd,
546 error_message)
547 bfd *abfd ATTRIBUTE_UNUSED;
548 arelent *reloc_entry;
549 asymbol *symbol;
550 PTR data ATTRIBUTE_UNUSED;
551 asection *input_section;
552 bfd *output_bfd;
553 char **error_message ATTRIBUTE_UNUSED;
554 {
555 if (output_bfd != (bfd *) NULL
556 && (symbol->flags & BSF_SECTION_SYM) == 0
557 && (! reloc_entry->howto->partial_inplace
558 || reloc_entry->addend == 0))
559 {
560 reloc_entry->address += input_section->output_offset;
561 return bfd_reloc_ok;
562 }
563
564 return bfd_reloc_continue;
565 }
566 \f
567 /* Finish SHF_MERGE section merging. */
568
569 boolean
570 _bfd_elf_merge_sections (abfd, info)
571 bfd *abfd;
572 struct bfd_link_info *info;
573 {
574 if (!is_elf_hash_table (info))
575 return false;
576 if (elf_hash_table (info)->merge_info)
577 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info);
578 return true;
579 }
580 \f
581 /* Print out the program headers. */
582
583 boolean
584 _bfd_elf_print_private_bfd_data (abfd, farg)
585 bfd *abfd;
586 PTR farg;
587 {
588 FILE *f = (FILE *) farg;
589 Elf_Internal_Phdr *p;
590 asection *s;
591 bfd_byte *dynbuf = NULL;
592
593 p = elf_tdata (abfd)->phdr;
594 if (p != NULL)
595 {
596 unsigned int i, c;
597
598 fprintf (f, _("\nProgram Header:\n"));
599 c = elf_elfheader (abfd)->e_phnum;
600 for (i = 0; i < c; i++, p++)
601 {
602 const char *s;
603 char buf[20];
604
605 switch (p->p_type)
606 {
607 case PT_NULL: s = "NULL"; break;
608 case PT_LOAD: s = "LOAD"; break;
609 case PT_DYNAMIC: s = "DYNAMIC"; break;
610 case PT_INTERP: s = "INTERP"; break;
611 case PT_NOTE: s = "NOTE"; break;
612 case PT_SHLIB: s = "SHLIB"; break;
613 case PT_PHDR: s = "PHDR"; break;
614 default: sprintf (buf, "0x%lx", p->p_type); s = buf; break;
615 }
616 fprintf (f, "%8s off 0x", s);
617 bfd_fprintf_vma (abfd, f, p->p_offset);
618 fprintf (f, " vaddr 0x");
619 bfd_fprintf_vma (abfd, f, p->p_vaddr);
620 fprintf (f, " paddr 0x");
621 bfd_fprintf_vma (abfd, f, p->p_paddr);
622 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
623 fprintf (f, " filesz 0x");
624 bfd_fprintf_vma (abfd, f, p->p_filesz);
625 fprintf (f, " memsz 0x");
626 bfd_fprintf_vma (abfd, f, p->p_memsz);
627 fprintf (f, " flags %c%c%c",
628 (p->p_flags & PF_R) != 0 ? 'r' : '-',
629 (p->p_flags & PF_W) != 0 ? 'w' : '-',
630 (p->p_flags & PF_X) != 0 ? 'x' : '-');
631 if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0)
632 fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X));
633 fprintf (f, "\n");
634 }
635 }
636
637 s = bfd_get_section_by_name (abfd, ".dynamic");
638 if (s != NULL)
639 {
640 int elfsec;
641 unsigned long link;
642 bfd_byte *extdyn, *extdynend;
643 size_t extdynsize;
644 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
645
646 fprintf (f, _("\nDynamic Section:\n"));
647
648 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
649 if (dynbuf == NULL)
650 goto error_return;
651 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
652 s->_raw_size))
653 goto error_return;
654
655 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
656 if (elfsec == -1)
657 goto error_return;
658 link = elf_elfsections (abfd)[elfsec]->sh_link;
659
660 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
661 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
662
663 extdyn = dynbuf;
664 extdynend = extdyn + s->_raw_size;
665 for (; extdyn < extdynend; extdyn += extdynsize)
666 {
667 Elf_Internal_Dyn dyn;
668 const char *name;
669 char ab[20];
670 boolean stringp;
671
672 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
673
674 if (dyn.d_tag == DT_NULL)
675 break;
676
677 stringp = false;
678 switch (dyn.d_tag)
679 {
680 default:
681 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
682 name = ab;
683 break;
684
685 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
686 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
687 case DT_PLTGOT: name = "PLTGOT"; break;
688 case DT_HASH: name = "HASH"; break;
689 case DT_STRTAB: name = "STRTAB"; break;
690 case DT_SYMTAB: name = "SYMTAB"; break;
691 case DT_RELA: name = "RELA"; break;
692 case DT_RELASZ: name = "RELASZ"; break;
693 case DT_RELAENT: name = "RELAENT"; break;
694 case DT_STRSZ: name = "STRSZ"; break;
695 case DT_SYMENT: name = "SYMENT"; break;
696 case DT_INIT: name = "INIT"; break;
697 case DT_FINI: name = "FINI"; break;
698 case DT_SONAME: name = "SONAME"; stringp = true; break;
699 case DT_RPATH: name = "RPATH"; stringp = true; break;
700 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
701 case DT_REL: name = "REL"; break;
702 case DT_RELSZ: name = "RELSZ"; break;
703 case DT_RELENT: name = "RELENT"; break;
704 case DT_PLTREL: name = "PLTREL"; break;
705 case DT_DEBUG: name = "DEBUG"; break;
706 case DT_TEXTREL: name = "TEXTREL"; break;
707 case DT_JMPREL: name = "JMPREL"; break;
708 case DT_BIND_NOW: name = "BIND_NOW"; break;
709 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
710 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
711 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
712 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
713 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
714 case DT_FLAGS: name = "FLAGS"; break;
715 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
716 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
717 case DT_CHECKSUM: name = "CHECKSUM"; break;
718 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
719 case DT_MOVEENT: name = "MOVEENT"; break;
720 case DT_MOVESZ: name = "MOVESZ"; break;
721 case DT_FEATURE: name = "FEATURE"; break;
722 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
723 case DT_SYMINSZ: name = "SYMINSZ"; break;
724 case DT_SYMINENT: name = "SYMINENT"; break;
725 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
726 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
727 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
728 case DT_PLTPAD: name = "PLTPAD"; break;
729 case DT_MOVETAB: name = "MOVETAB"; break;
730 case DT_SYMINFO: name = "SYMINFO"; break;
731 case DT_RELACOUNT: name = "RELACOUNT"; break;
732 case DT_RELCOUNT: name = "RELCOUNT"; break;
733 case DT_FLAGS_1: name = "FLAGS_1"; break;
734 case DT_VERSYM: name = "VERSYM"; break;
735 case DT_VERDEF: name = "VERDEF"; break;
736 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
737 case DT_VERNEED: name = "VERNEED"; break;
738 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
739 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
740 case DT_USED: name = "USED"; break;
741 case DT_FILTER: name = "FILTER"; stringp = true; break;
742 }
743
744 fprintf (f, " %-11s ", name);
745 if (! stringp)
746 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
747 else
748 {
749 const char *string;
750
751 string = bfd_elf_string_from_elf_section (abfd, link,
752 dyn.d_un.d_val);
753 if (string == NULL)
754 goto error_return;
755 fprintf (f, "%s", string);
756 }
757 fprintf (f, "\n");
758 }
759
760 free (dynbuf);
761 dynbuf = NULL;
762 }
763
764 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
765 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
766 {
767 if (! _bfd_elf_slurp_version_tables (abfd))
768 return false;
769 }
770
771 if (elf_dynverdef (abfd) != 0)
772 {
773 Elf_Internal_Verdef *t;
774
775 fprintf (f, _("\nVersion definitions:\n"));
776 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
777 {
778 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
779 t->vd_flags, t->vd_hash, t->vd_nodename);
780 if (t->vd_auxptr->vda_nextptr != NULL)
781 {
782 Elf_Internal_Verdaux *a;
783
784 fprintf (f, "\t");
785 for (a = t->vd_auxptr->vda_nextptr;
786 a != NULL;
787 a = a->vda_nextptr)
788 fprintf (f, "%s ", a->vda_nodename);
789 fprintf (f, "\n");
790 }
791 }
792 }
793
794 if (elf_dynverref (abfd) != 0)
795 {
796 Elf_Internal_Verneed *t;
797
798 fprintf (f, _("\nVersion References:\n"));
799 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
800 {
801 Elf_Internal_Vernaux *a;
802
803 fprintf (f, _(" required from %s:\n"), t->vn_filename);
804 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
805 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
806 a->vna_flags, a->vna_other, a->vna_nodename);
807 }
808 }
809
810 return true;
811
812 error_return:
813 if (dynbuf != NULL)
814 free (dynbuf);
815 return false;
816 }
817
818 /* Display ELF-specific fields of a symbol. */
819
820 void
821 bfd_elf_print_symbol (abfd, filep, symbol, how)
822 bfd *abfd;
823 PTR filep;
824 asymbol *symbol;
825 bfd_print_symbol_type how;
826 {
827 FILE *file = (FILE *) filep;
828 switch (how)
829 {
830 case bfd_print_symbol_name:
831 fprintf (file, "%s", symbol->name);
832 break;
833 case bfd_print_symbol_more:
834 fprintf (file, "elf ");
835 bfd_fprintf_vma (abfd, file, symbol->value);
836 fprintf (file, " %lx", (long) symbol->flags);
837 break;
838 case bfd_print_symbol_all:
839 {
840 const char *section_name;
841 const char *name = NULL;
842 struct elf_backend_data *bed;
843 unsigned char st_other;
844
845 section_name = symbol->section ? symbol->section->name : "(*none*)";
846
847 bed = get_elf_backend_data (abfd);
848 if (bed->elf_backend_print_symbol_all)
849 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
850
851 if (name == NULL)
852 {
853 name = symbol->name;
854 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
855 }
856
857 fprintf (file, " %s\t", section_name);
858 /* Print the "other" value for a symbol. For common symbols,
859 we've already printed the size; now print the alignment.
860 For other symbols, we have no specified alignment, and
861 we've printed the address; now print the size. */
862 bfd_fprintf_vma (abfd, file,
863 (bfd_is_com_section (symbol->section)
864 ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value
865 : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size));
866
867 /* If we have version information, print it. */
868 if (elf_tdata (abfd)->dynversym_section != 0
869 && (elf_tdata (abfd)->dynverdef_section != 0
870 || elf_tdata (abfd)->dynverref_section != 0))
871 {
872 unsigned int vernum;
873 const char *version_string;
874
875 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
876
877 if (vernum == 0)
878 version_string = "";
879 else if (vernum == 1)
880 version_string = "Base";
881 else if (vernum <= elf_tdata (abfd)->cverdefs)
882 version_string =
883 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
884 else
885 {
886 Elf_Internal_Verneed *t;
887
888 version_string = "";
889 for (t = elf_tdata (abfd)->verref;
890 t != NULL;
891 t = t->vn_nextref)
892 {
893 Elf_Internal_Vernaux *a;
894
895 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
896 {
897 if (a->vna_other == vernum)
898 {
899 version_string = a->vna_nodename;
900 break;
901 }
902 }
903 }
904 }
905
906 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
907 fprintf (file, " %-11s", version_string);
908 else
909 {
910 int i;
911
912 fprintf (file, " (%s)", version_string);
913 for (i = 10 - strlen (version_string); i > 0; --i)
914 putc (' ', file);
915 }
916 }
917
918 /* If the st_other field is not zero, print it. */
919 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
920
921 switch (st_other)
922 {
923 case 0: break;
924 case STV_INTERNAL: fprintf (file, " .internal"); break;
925 case STV_HIDDEN: fprintf (file, " .hidden"); break;
926 case STV_PROTECTED: fprintf (file, " .protected"); break;
927 default:
928 /* Some other non-defined flags are also present, so print
929 everything hex. */
930 fprintf (file, " 0x%02x", (unsigned int) st_other);
931 }
932
933 fprintf (file, " %s", name);
934 }
935 break;
936 }
937 }
938 \f
939 /* Create an entry in an ELF linker hash table. */
940
941 struct bfd_hash_entry *
942 _bfd_elf_link_hash_newfunc (entry, table, string)
943 struct bfd_hash_entry *entry;
944 struct bfd_hash_table *table;
945 const char *string;
946 {
947 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
948
949 /* Allocate the structure if it has not already been allocated by a
950 subclass. */
951 if (ret == (struct elf_link_hash_entry *) NULL)
952 ret = ((struct elf_link_hash_entry *)
953 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)));
954 if (ret == (struct elf_link_hash_entry *) NULL)
955 return (struct bfd_hash_entry *) ret;
956
957 /* Call the allocation method of the superclass. */
958 ret = ((struct elf_link_hash_entry *)
959 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
960 table, string));
961 if (ret != (struct elf_link_hash_entry *) NULL)
962 {
963 /* Set local fields. */
964 ret->indx = -1;
965 ret->size = 0;
966 ret->dynindx = -1;
967 ret->dynstr_index = 0;
968 ret->weakdef = NULL;
969 ret->got.offset = (bfd_vma) -1;
970 ret->plt.offset = (bfd_vma) -1;
971 ret->linker_section_pointer = (elf_linker_section_pointers_t *)0;
972 ret->verinfo.verdef = NULL;
973 ret->vtable_entries_used = NULL;
974 ret->vtable_entries_size = 0;
975 ret->vtable_parent = NULL;
976 ret->type = STT_NOTYPE;
977 ret->other = 0;
978 /* Assume that we have been called by a non-ELF symbol reader.
979 This flag is then reset by the code which reads an ELF input
980 file. This ensures that a symbol created by a non-ELF symbol
981 reader will have the flag set correctly. */
982 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
983 }
984
985 return (struct bfd_hash_entry *) ret;
986 }
987
988 /* Copy data from an indirect symbol to its direct symbol, hiding the
989 old indirect symbol. */
990
991 void
992 _bfd_elf_link_hash_copy_indirect (dir, ind)
993 struct elf_link_hash_entry *dir, *ind;
994 {
995 /* Copy down any references that we may have already seen to the
996 symbol which just became indirect. */
997
998 dir->elf_link_hash_flags |=
999 (ind->elf_link_hash_flags
1000 & (ELF_LINK_HASH_REF_DYNAMIC
1001 | ELF_LINK_HASH_REF_REGULAR
1002 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1003 | ELF_LINK_NON_GOT_REF));
1004
1005 /* Copy over the global and procedure linkage table offset entries.
1006 These may have been already set up by a check_relocs routine. */
1007 if (dir->got.offset == (bfd_vma) -1)
1008 {
1009 dir->got.offset = ind->got.offset;
1010 ind->got.offset = (bfd_vma) -1;
1011 }
1012 BFD_ASSERT (ind->got.offset == (bfd_vma) -1);
1013
1014 if (dir->plt.offset == (bfd_vma) -1)
1015 {
1016 dir->plt.offset = ind->plt.offset;
1017 ind->plt.offset = (bfd_vma) -1;
1018 }
1019 BFD_ASSERT (ind->plt.offset == (bfd_vma) -1);
1020
1021 if (dir->dynindx == -1)
1022 {
1023 dir->dynindx = ind->dynindx;
1024 dir->dynstr_index = ind->dynstr_index;
1025 ind->dynindx = -1;
1026 ind->dynstr_index = 0;
1027 }
1028 BFD_ASSERT (ind->dynindx == -1);
1029 }
1030
1031 void
1032 _bfd_elf_link_hash_hide_symbol (info, h)
1033 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1034 struct elf_link_hash_entry *h;
1035 {
1036 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1037 h->plt.offset = (bfd_vma) -1;
1038 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1039 h->dynindx = -1;
1040 }
1041
1042 /* Initialize an ELF linker hash table. */
1043
1044 boolean
1045 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1046 struct elf_link_hash_table *table;
1047 bfd *abfd;
1048 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1049 struct bfd_hash_table *,
1050 const char *));
1051 {
1052 boolean ret;
1053
1054 table->dynamic_sections_created = false;
1055 table->dynobj = NULL;
1056 /* The first dynamic symbol is a dummy. */
1057 table->dynsymcount = 1;
1058 table->dynstr = NULL;
1059 table->bucketcount = 0;
1060 table->needed = NULL;
1061 table->runpath = NULL;
1062 table->hgot = NULL;
1063 table->stab_info = NULL;
1064 table->merge_info = NULL;
1065 table->dynlocal = NULL;
1066 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1067 table->root.type = bfd_link_elf_hash_table;
1068
1069 return ret;
1070 }
1071
1072 /* Create an ELF linker hash table. */
1073
1074 struct bfd_link_hash_table *
1075 _bfd_elf_link_hash_table_create (abfd)
1076 bfd *abfd;
1077 {
1078 struct elf_link_hash_table *ret;
1079
1080 ret = ((struct elf_link_hash_table *)
1081 bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
1082 if (ret == (struct elf_link_hash_table *) NULL)
1083 return NULL;
1084
1085 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1086 {
1087 bfd_release (abfd, ret);
1088 return NULL;
1089 }
1090
1091 return &ret->root;
1092 }
1093
1094 /* This is a hook for the ELF emulation code in the generic linker to
1095 tell the backend linker what file name to use for the DT_NEEDED
1096 entry for a dynamic object. The generic linker passes name as an
1097 empty string to indicate that no DT_NEEDED entry should be made. */
1098
1099 void
1100 bfd_elf_set_dt_needed_name (abfd, name)
1101 bfd *abfd;
1102 const char *name;
1103 {
1104 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1105 && bfd_get_format (abfd) == bfd_object)
1106 elf_dt_name (abfd) = name;
1107 }
1108
1109 void
1110 bfd_elf_set_dt_needed_soname (abfd, name)
1111 bfd *abfd;
1112 const char *name;
1113 {
1114 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1115 && bfd_get_format (abfd) == bfd_object)
1116 elf_dt_soname (abfd) = name;
1117 }
1118
1119 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1120 the linker ELF emulation code. */
1121
1122 struct bfd_link_needed_list *
1123 bfd_elf_get_needed_list (abfd, info)
1124 bfd *abfd ATTRIBUTE_UNUSED;
1125 struct bfd_link_info *info;
1126 {
1127 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1128 return NULL;
1129 return elf_hash_table (info)->needed;
1130 }
1131
1132 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1133 hook for the linker ELF emulation code. */
1134
1135 struct bfd_link_needed_list *
1136 bfd_elf_get_runpath_list (abfd, info)
1137 bfd *abfd ATTRIBUTE_UNUSED;
1138 struct bfd_link_info *info;
1139 {
1140 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1141 return NULL;
1142 return elf_hash_table (info)->runpath;
1143 }
1144
1145 /* Get the name actually used for a dynamic object for a link. This
1146 is the SONAME entry if there is one. Otherwise, it is the string
1147 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1148
1149 const char *
1150 bfd_elf_get_dt_soname (abfd)
1151 bfd *abfd;
1152 {
1153 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1154 && bfd_get_format (abfd) == bfd_object)
1155 return elf_dt_name (abfd);
1156 return NULL;
1157 }
1158
1159 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1160 the ELF linker emulation code. */
1161
1162 boolean
1163 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1164 bfd *abfd;
1165 struct bfd_link_needed_list **pneeded;
1166 {
1167 asection *s;
1168 bfd_byte *dynbuf = NULL;
1169 int elfsec;
1170 unsigned long link;
1171 bfd_byte *extdyn, *extdynend;
1172 size_t extdynsize;
1173 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1174
1175 *pneeded = NULL;
1176
1177 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1178 || bfd_get_format (abfd) != bfd_object)
1179 return true;
1180
1181 s = bfd_get_section_by_name (abfd, ".dynamic");
1182 if (s == NULL || s->_raw_size == 0)
1183 return true;
1184
1185 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1186 if (dynbuf == NULL)
1187 goto error_return;
1188
1189 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1190 s->_raw_size))
1191 goto error_return;
1192
1193 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1194 if (elfsec == -1)
1195 goto error_return;
1196
1197 link = elf_elfsections (abfd)[elfsec]->sh_link;
1198
1199 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1200 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1201
1202 extdyn = dynbuf;
1203 extdynend = extdyn + s->_raw_size;
1204 for (; extdyn < extdynend; extdyn += extdynsize)
1205 {
1206 Elf_Internal_Dyn dyn;
1207
1208 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1209
1210 if (dyn.d_tag == DT_NULL)
1211 break;
1212
1213 if (dyn.d_tag == DT_NEEDED)
1214 {
1215 const char *string;
1216 struct bfd_link_needed_list *l;
1217
1218 string = bfd_elf_string_from_elf_section (abfd, link,
1219 dyn.d_un.d_val);
1220 if (string == NULL)
1221 goto error_return;
1222
1223 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof *l);
1224 if (l == NULL)
1225 goto error_return;
1226
1227 l->by = abfd;
1228 l->name = string;
1229 l->next = *pneeded;
1230 *pneeded = l;
1231 }
1232 }
1233
1234 free (dynbuf);
1235
1236 return true;
1237
1238 error_return:
1239 if (dynbuf != NULL)
1240 free (dynbuf);
1241 return false;
1242 }
1243 \f
1244 /* Allocate an ELF string table--force the first byte to be zero. */
1245
1246 struct bfd_strtab_hash *
1247 _bfd_elf_stringtab_init ()
1248 {
1249 struct bfd_strtab_hash *ret;
1250
1251 ret = _bfd_stringtab_init ();
1252 if (ret != NULL)
1253 {
1254 bfd_size_type loc;
1255
1256 loc = _bfd_stringtab_add (ret, "", true, false);
1257 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1258 if (loc == (bfd_size_type) -1)
1259 {
1260 _bfd_stringtab_free (ret);
1261 ret = NULL;
1262 }
1263 }
1264 return ret;
1265 }
1266 \f
1267 /* ELF .o/exec file reading */
1268
1269 /* Create a new bfd section from an ELF section header. */
1270
1271 boolean
1272 bfd_section_from_shdr (abfd, shindex)
1273 bfd *abfd;
1274 unsigned int shindex;
1275 {
1276 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1277 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1278 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1279 char *name;
1280
1281 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1282
1283 switch (hdr->sh_type)
1284 {
1285 case SHT_NULL:
1286 /* Inactive section. Throw it away. */
1287 return true;
1288
1289 case SHT_PROGBITS: /* Normal section with contents. */
1290 case SHT_DYNAMIC: /* Dynamic linking information. */
1291 case SHT_NOBITS: /* .bss section. */
1292 case SHT_HASH: /* .hash section. */
1293 case SHT_NOTE: /* .note section. */
1294 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1295
1296 case SHT_SYMTAB: /* A symbol table */
1297 if (elf_onesymtab (abfd) == shindex)
1298 return true;
1299
1300 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1301 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1302 elf_onesymtab (abfd) = shindex;
1303 elf_tdata (abfd)->symtab_hdr = *hdr;
1304 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1305 abfd->flags |= HAS_SYMS;
1306
1307 /* Sometimes a shared object will map in the symbol table. If
1308 SHF_ALLOC is set, and this is a shared object, then we also
1309 treat this section as a BFD section. We can not base the
1310 decision purely on SHF_ALLOC, because that flag is sometimes
1311 set in a relocateable object file, which would confuse the
1312 linker. */
1313 if ((hdr->sh_flags & SHF_ALLOC) != 0
1314 && (abfd->flags & DYNAMIC) != 0
1315 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1316 return false;
1317
1318 return true;
1319
1320 case SHT_DYNSYM: /* A dynamic symbol table */
1321 if (elf_dynsymtab (abfd) == shindex)
1322 return true;
1323
1324 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1325 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1326 elf_dynsymtab (abfd) = shindex;
1327 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1328 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1329 abfd->flags |= HAS_SYMS;
1330
1331 /* Besides being a symbol table, we also treat this as a regular
1332 section, so that objcopy can handle it. */
1333 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1334
1335 case SHT_STRTAB: /* A string table */
1336 if (hdr->bfd_section != NULL)
1337 return true;
1338 if (ehdr->e_shstrndx == shindex)
1339 {
1340 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1341 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1342 return true;
1343 }
1344 {
1345 unsigned int i;
1346
1347 for (i = 1; i < ehdr->e_shnum; i++)
1348 {
1349 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1350 if (hdr2->sh_link == shindex)
1351 {
1352 if (! bfd_section_from_shdr (abfd, i))
1353 return false;
1354 if (elf_onesymtab (abfd) == i)
1355 {
1356 elf_tdata (abfd)->strtab_hdr = *hdr;
1357 elf_elfsections (abfd)[shindex] =
1358 &elf_tdata (abfd)->strtab_hdr;
1359 return true;
1360 }
1361 if (elf_dynsymtab (abfd) == i)
1362 {
1363 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1364 elf_elfsections (abfd)[shindex] = hdr =
1365 &elf_tdata (abfd)->dynstrtab_hdr;
1366 /* We also treat this as a regular section, so
1367 that objcopy can handle it. */
1368 break;
1369 }
1370 #if 0 /* Not handling other string tables specially right now. */
1371 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1372 /* We have a strtab for some random other section. */
1373 newsect = (asection *) hdr2->bfd_section;
1374 if (!newsect)
1375 break;
1376 hdr->bfd_section = newsect;
1377 hdr2 = &elf_section_data (newsect)->str_hdr;
1378 *hdr2 = *hdr;
1379 elf_elfsections (abfd)[shindex] = hdr2;
1380 #endif
1381 }
1382 }
1383 }
1384
1385 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1386
1387 case SHT_REL:
1388 case SHT_RELA:
1389 /* *These* do a lot of work -- but build no sections! */
1390 {
1391 asection *target_sect;
1392 Elf_Internal_Shdr *hdr2;
1393
1394 /* Check for a bogus link to avoid crashing. */
1395 if (hdr->sh_link >= ehdr->e_shnum)
1396 {
1397 ((*_bfd_error_handler)
1398 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1399 bfd_get_filename (abfd), hdr->sh_link, name, shindex));
1400 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1401 }
1402
1403 /* For some incomprehensible reason Oracle distributes
1404 libraries for Solaris in which some of the objects have
1405 bogus sh_link fields. It would be nice if we could just
1406 reject them, but, unfortunately, some people need to use
1407 them. We scan through the section headers; if we find only
1408 one suitable symbol table, we clobber the sh_link to point
1409 to it. I hope this doesn't break anything. */
1410 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1411 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1412 {
1413 int scan;
1414 int found;
1415
1416 found = 0;
1417 for (scan = 1; scan < ehdr->e_shnum; scan++)
1418 {
1419 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1420 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1421 {
1422 if (found != 0)
1423 {
1424 found = 0;
1425 break;
1426 }
1427 found = scan;
1428 }
1429 }
1430 if (found != 0)
1431 hdr->sh_link = found;
1432 }
1433
1434 /* Get the symbol table. */
1435 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1436 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1437 return false;
1438
1439 /* If this reloc section does not use the main symbol table we
1440 don't treat it as a reloc section. BFD can't adequately
1441 represent such a section, so at least for now, we don't
1442 try. We just present it as a normal section. We also
1443 can't use it as a reloc section if it points to the null
1444 section. */
1445 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1446 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1447
1448 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1449 return false;
1450 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1451 if (target_sect == NULL)
1452 return false;
1453
1454 if ((target_sect->flags & SEC_RELOC) == 0
1455 || target_sect->reloc_count == 0)
1456 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1457 else
1458 {
1459 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1460 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
1461 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1462 }
1463 *hdr2 = *hdr;
1464 elf_elfsections (abfd)[shindex] = hdr2;
1465 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1466 target_sect->flags |= SEC_RELOC;
1467 target_sect->relocation = NULL;
1468 target_sect->rel_filepos = hdr->sh_offset;
1469 /* In the section to which the relocations apply, mark whether
1470 its relocations are of the REL or RELA variety. */
1471 if (hdr->sh_size != 0)
1472 elf_section_data (target_sect)->use_rela_p
1473 = (hdr->sh_type == SHT_RELA);
1474 abfd->flags |= HAS_RELOC;
1475 return true;
1476 }
1477 break;
1478
1479 case SHT_GNU_verdef:
1480 elf_dynverdef (abfd) = shindex;
1481 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1482 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1483 break;
1484
1485 case SHT_GNU_versym:
1486 elf_dynversym (abfd) = shindex;
1487 elf_tdata (abfd)->dynversym_hdr = *hdr;
1488 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1489 break;
1490
1491 case SHT_GNU_verneed:
1492 elf_dynverref (abfd) = shindex;
1493 elf_tdata (abfd)->dynverref_hdr = *hdr;
1494 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1495 break;
1496
1497 case SHT_SHLIB:
1498 return true;
1499
1500 default:
1501 /* Check for any processor-specific section types. */
1502 {
1503 if (bed->elf_backend_section_from_shdr)
1504 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1505 }
1506 break;
1507 }
1508
1509 return true;
1510 }
1511
1512 /* Given an ELF section number, retrieve the corresponding BFD
1513 section. */
1514
1515 asection *
1516 bfd_section_from_elf_index (abfd, index)
1517 bfd *abfd;
1518 unsigned int index;
1519 {
1520 BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
1521 if (index >= elf_elfheader (abfd)->e_shnum)
1522 return NULL;
1523 return elf_elfsections (abfd)[index]->bfd_section;
1524 }
1525
1526 boolean
1527 _bfd_elf_new_section_hook (abfd, sec)
1528 bfd *abfd;
1529 asection *sec;
1530 {
1531 struct bfd_elf_section_data *sdata;
1532
1533 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, sizeof (*sdata));
1534 if (!sdata)
1535 return false;
1536 sec->used_by_bfd = (PTR) sdata;
1537
1538 /* Indicate whether or not this section should use RELA relocations. */
1539 sdata->use_rela_p
1540 = get_elf_backend_data (abfd)->default_use_rela_p;
1541
1542 return true;
1543 }
1544
1545 /* Create a new bfd section from an ELF program header.
1546
1547 Since program segments have no names, we generate a synthetic name
1548 of the form segment<NUM>, where NUM is generally the index in the
1549 program header table. For segments that are split (see below) we
1550 generate the names segment<NUM>a and segment<NUM>b.
1551
1552 Note that some program segments may have a file size that is different than
1553 (less than) the memory size. All this means is that at execution the
1554 system must allocate the amount of memory specified by the memory size,
1555 but only initialize it with the first "file size" bytes read from the
1556 file. This would occur for example, with program segments consisting
1557 of combined data+bss.
1558
1559 To handle the above situation, this routine generates TWO bfd sections
1560 for the single program segment. The first has the length specified by
1561 the file size of the segment, and the second has the length specified
1562 by the difference between the two sizes. In effect, the segment is split
1563 into it's initialized and uninitialized parts.
1564
1565 */
1566
1567 boolean
1568 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
1569 bfd *abfd;
1570 Elf_Internal_Phdr *hdr;
1571 int index;
1572 const char *typename;
1573 {
1574 asection *newsect;
1575 char *name;
1576 char namebuf[64];
1577 int split;
1578
1579 split = ((hdr->p_memsz > 0)
1580 && (hdr->p_filesz > 0)
1581 && (hdr->p_memsz > hdr->p_filesz));
1582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
1583 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1584 if (!name)
1585 return false;
1586 strcpy (name, namebuf);
1587 newsect = bfd_make_section (abfd, name);
1588 if (newsect == NULL)
1589 return false;
1590 newsect->vma = hdr->p_vaddr;
1591 newsect->lma = hdr->p_paddr;
1592 newsect->_raw_size = hdr->p_filesz;
1593 newsect->filepos = hdr->p_offset;
1594 newsect->flags |= SEC_HAS_CONTENTS;
1595 if (hdr->p_type == PT_LOAD)
1596 {
1597 newsect->flags |= SEC_ALLOC;
1598 newsect->flags |= SEC_LOAD;
1599 if (hdr->p_flags & PF_X)
1600 {
1601 /* FIXME: all we known is that it has execute PERMISSION,
1602 may be data. */
1603 newsect->flags |= SEC_CODE;
1604 }
1605 }
1606 if (!(hdr->p_flags & PF_W))
1607 {
1608 newsect->flags |= SEC_READONLY;
1609 }
1610
1611 if (split)
1612 {
1613 sprintf (namebuf, "%s%db", typename, index);
1614 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1615 if (!name)
1616 return false;
1617 strcpy (name, namebuf);
1618 newsect = bfd_make_section (abfd, name);
1619 if (newsect == NULL)
1620 return false;
1621 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
1622 newsect->lma = hdr->p_paddr + hdr->p_filesz;
1623 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
1624 if (hdr->p_type == PT_LOAD)
1625 {
1626 newsect->flags |= SEC_ALLOC;
1627 if (hdr->p_flags & PF_X)
1628 newsect->flags |= SEC_CODE;
1629 }
1630 if (!(hdr->p_flags & PF_W))
1631 newsect->flags |= SEC_READONLY;
1632 }
1633
1634 return true;
1635 }
1636
1637 boolean
1638 bfd_section_from_phdr (abfd, hdr, index)
1639 bfd *abfd;
1640 Elf_Internal_Phdr *hdr;
1641 int index;
1642 {
1643 struct elf_backend_data *bed;
1644
1645 switch (hdr->p_type)
1646 {
1647 case PT_NULL:
1648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
1649
1650 case PT_LOAD:
1651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
1652
1653 case PT_DYNAMIC:
1654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
1655
1656 case PT_INTERP:
1657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
1658
1659 case PT_NOTE:
1660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
1661 return false;
1662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
1663 return false;
1664 return true;
1665
1666 case PT_SHLIB:
1667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
1668
1669 case PT_PHDR:
1670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
1671
1672 default:
1673 /* Check for any processor-specific program segment types.
1674 If no handler for them, default to making "segment" sections. */
1675 bed = get_elf_backend_data (abfd);
1676 if (bed->elf_backend_section_from_phdr)
1677 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
1678 else
1679 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
1680 }
1681 }
1682
1683 /* Initialize REL_HDR, the section-header for new section, containing
1684 relocations against ASECT. If USE_RELA_P is true, we use RELA
1685 relocations; otherwise, we use REL relocations. */
1686
1687 boolean
1688 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
1689 bfd *abfd;
1690 Elf_Internal_Shdr *rel_hdr;
1691 asection *asect;
1692 boolean use_rela_p;
1693 {
1694 char *name;
1695 struct elf_backend_data *bed;
1696
1697 bed = get_elf_backend_data (abfd);
1698 name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
1699 if (name == NULL)
1700 return false;
1701 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
1702 rel_hdr->sh_name =
1703 (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
1704 true, false);
1705 if (rel_hdr->sh_name == (unsigned int) -1)
1706 return false;
1707 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
1708 rel_hdr->sh_entsize = (use_rela_p
1709 ? bed->s->sizeof_rela
1710 : bed->s->sizeof_rel);
1711 rel_hdr->sh_addralign = bed->s->file_align;
1712 rel_hdr->sh_flags = 0;
1713 rel_hdr->sh_addr = 0;
1714 rel_hdr->sh_size = 0;
1715 rel_hdr->sh_offset = 0;
1716
1717 return true;
1718 }
1719
1720 /* Set up an ELF internal section header for a section. */
1721
1722 static void
1723 elf_fake_sections (abfd, asect, failedptrarg)
1724 bfd *abfd;
1725 asection *asect;
1726 PTR failedptrarg;
1727 {
1728 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1729 boolean *failedptr = (boolean *) failedptrarg;
1730 Elf_Internal_Shdr *this_hdr;
1731
1732 if (*failedptr)
1733 {
1734 /* We already failed; just get out of the bfd_map_over_sections
1735 loop. */
1736 return;
1737 }
1738
1739 this_hdr = &elf_section_data (asect)->this_hdr;
1740
1741 this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
1742 asect->name,
1743 true, false);
1744 if (this_hdr->sh_name == (unsigned long) -1)
1745 {
1746 *failedptr = true;
1747 return;
1748 }
1749
1750 this_hdr->sh_flags = 0;
1751
1752 if ((asect->flags & SEC_ALLOC) != 0
1753 || asect->user_set_vma)
1754 this_hdr->sh_addr = asect->vma;
1755 else
1756 this_hdr->sh_addr = 0;
1757
1758 this_hdr->sh_offset = 0;
1759 this_hdr->sh_size = asect->_raw_size;
1760 this_hdr->sh_link = 0;
1761 this_hdr->sh_addralign = 1 << asect->alignment_power;
1762 /* The sh_entsize and sh_info fields may have been set already by
1763 copy_private_section_data. */
1764
1765 this_hdr->bfd_section = asect;
1766 this_hdr->contents = NULL;
1767
1768 /* FIXME: This should not be based on section names. */
1769 if (strcmp (asect->name, ".dynstr") == 0)
1770 this_hdr->sh_type = SHT_STRTAB;
1771 else if (strcmp (asect->name, ".hash") == 0)
1772 {
1773 this_hdr->sh_type = SHT_HASH;
1774 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
1775 }
1776 else if (strcmp (asect->name, ".dynsym") == 0)
1777 {
1778 this_hdr->sh_type = SHT_DYNSYM;
1779 this_hdr->sh_entsize = bed->s->sizeof_sym;
1780 }
1781 else if (strcmp (asect->name, ".dynamic") == 0)
1782 {
1783 this_hdr->sh_type = SHT_DYNAMIC;
1784 this_hdr->sh_entsize = bed->s->sizeof_dyn;
1785 }
1786 else if (strncmp (asect->name, ".rela", 5) == 0
1787 && get_elf_backend_data (abfd)->may_use_rela_p)
1788 {
1789 this_hdr->sh_type = SHT_RELA;
1790 this_hdr->sh_entsize = bed->s->sizeof_rela;
1791 }
1792 else if (strncmp (asect->name, ".rel", 4) == 0
1793 && get_elf_backend_data (abfd)->may_use_rel_p)
1794 {
1795 this_hdr->sh_type = SHT_REL;
1796 this_hdr->sh_entsize = bed->s->sizeof_rel;
1797 }
1798 else if (strncmp (asect->name, ".note", 5) == 0)
1799 this_hdr->sh_type = SHT_NOTE;
1800 else if (strncmp (asect->name, ".stab", 5) == 0
1801 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
1802 this_hdr->sh_type = SHT_STRTAB;
1803 else if (strcmp (asect->name, ".gnu.version") == 0)
1804 {
1805 this_hdr->sh_type = SHT_GNU_versym;
1806 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
1807 }
1808 else if (strcmp (asect->name, ".gnu.version_d") == 0)
1809 {
1810 this_hdr->sh_type = SHT_GNU_verdef;
1811 this_hdr->sh_entsize = 0;
1812 /* objcopy or strip will copy over sh_info, but may not set
1813 cverdefs. The linker will set cverdefs, but sh_info will be
1814 zero. */
1815 if (this_hdr->sh_info == 0)
1816 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
1817 else
1818 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
1819 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
1820 }
1821 else if (strcmp (asect->name, ".gnu.version_r") == 0)
1822 {
1823 this_hdr->sh_type = SHT_GNU_verneed;
1824 this_hdr->sh_entsize = 0;
1825 /* objcopy or strip will copy over sh_info, but may not set
1826 cverrefs. The linker will set cverrefs, but sh_info will be
1827 zero. */
1828 if (this_hdr->sh_info == 0)
1829 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
1830 else
1831 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
1832 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
1833 }
1834 else if ((asect->flags & SEC_ALLOC) != 0
1835 && ((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0))
1836 this_hdr->sh_type = SHT_NOBITS;
1837 else
1838 this_hdr->sh_type = SHT_PROGBITS;
1839
1840 if ((asect->flags & SEC_ALLOC) != 0)
1841 this_hdr->sh_flags |= SHF_ALLOC;
1842 if ((asect->flags & SEC_READONLY) == 0)
1843 this_hdr->sh_flags |= SHF_WRITE;
1844 if ((asect->flags & SEC_CODE) != 0)
1845 this_hdr->sh_flags |= SHF_EXECINSTR;
1846 if ((asect->flags & SEC_MERGE) != 0)
1847 {
1848 this_hdr->sh_flags |= SHF_MERGE;
1849 this_hdr->sh_entsize = asect->entsize;
1850 if ((asect->flags & SEC_STRINGS) != 0)
1851 this_hdr->sh_flags |= SHF_STRINGS;
1852 }
1853
1854 /* Check for processor-specific section types. */
1855 if (bed->elf_backend_fake_sections)
1856 (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
1857
1858 /* If the section has relocs, set up a section header for the
1859 SHT_REL[A] section. If two relocation sections are required for
1860 this section, it is up to the processor-specific back-end to
1861 create the other. */
1862 if ((asect->flags & SEC_RELOC) != 0
1863 && !_bfd_elf_init_reloc_shdr (abfd,
1864 &elf_section_data (asect)->rel_hdr,
1865 asect,
1866 elf_section_data (asect)->use_rela_p))
1867 *failedptr = true;
1868 }
1869
1870 /* Assign all ELF section numbers. The dummy first section is handled here
1871 too. The link/info pointers for the standard section types are filled
1872 in here too, while we're at it. */
1873
1874 static boolean
1875 assign_section_numbers (abfd)
1876 bfd *abfd;
1877 {
1878 struct elf_obj_tdata *t = elf_tdata (abfd);
1879 asection *sec;
1880 unsigned int section_number;
1881 Elf_Internal_Shdr **i_shdrp;
1882
1883 section_number = 1;
1884
1885 for (sec = abfd->sections; sec; sec = sec->next)
1886 {
1887 struct bfd_elf_section_data *d = elf_section_data (sec);
1888
1889 d->this_idx = section_number++;
1890 if ((sec->flags & SEC_RELOC) == 0)
1891 d->rel_idx = 0;
1892 else
1893 d->rel_idx = section_number++;
1894
1895 if (d->rel_hdr2)
1896 d->rel_idx2 = section_number++;
1897 else
1898 d->rel_idx2 = 0;
1899 }
1900
1901 t->shstrtab_section = section_number++;
1902 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
1903 t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
1904
1905 if (bfd_get_symcount (abfd) > 0)
1906 {
1907 t->symtab_section = section_number++;
1908 t->strtab_section = section_number++;
1909 }
1910
1911 elf_elfheader (abfd)->e_shnum = section_number;
1912
1913 /* Set up the list of section header pointers, in agreement with the
1914 indices. */
1915 i_shdrp = ((Elf_Internal_Shdr **)
1916 bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
1917 if (i_shdrp == NULL)
1918 return false;
1919
1920 i_shdrp[0] = ((Elf_Internal_Shdr *)
1921 bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
1922 if (i_shdrp[0] == NULL)
1923 {
1924 bfd_release (abfd, i_shdrp);
1925 return false;
1926 }
1927 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
1928
1929 elf_elfsections (abfd) = i_shdrp;
1930
1931 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
1932 if (bfd_get_symcount (abfd) > 0)
1933 {
1934 i_shdrp[t->symtab_section] = &t->symtab_hdr;
1935 i_shdrp[t->strtab_section] = &t->strtab_hdr;
1936 t->symtab_hdr.sh_link = t->strtab_section;
1937 }
1938 for (sec = abfd->sections; sec; sec = sec->next)
1939 {
1940 struct bfd_elf_section_data *d = elf_section_data (sec);
1941 asection *s;
1942 const char *name;
1943
1944 i_shdrp[d->this_idx] = &d->this_hdr;
1945 if (d->rel_idx != 0)
1946 i_shdrp[d->rel_idx] = &d->rel_hdr;
1947 if (d->rel_idx2 != 0)
1948 i_shdrp[d->rel_idx2] = d->rel_hdr2;
1949
1950 /* Fill in the sh_link and sh_info fields while we're at it. */
1951
1952 /* sh_link of a reloc section is the section index of the symbol
1953 table. sh_info is the section index of the section to which
1954 the relocation entries apply. */
1955 if (d->rel_idx != 0)
1956 {
1957 d->rel_hdr.sh_link = t->symtab_section;
1958 d->rel_hdr.sh_info = d->this_idx;
1959 }
1960 if (d->rel_idx2 != 0)
1961 {
1962 d->rel_hdr2->sh_link = t->symtab_section;
1963 d->rel_hdr2->sh_info = d->this_idx;
1964 }
1965
1966 switch (d->this_hdr.sh_type)
1967 {
1968 case SHT_REL:
1969 case SHT_RELA:
1970 /* A reloc section which we are treating as a normal BFD
1971 section. sh_link is the section index of the symbol
1972 table. sh_info is the section index of the section to
1973 which the relocation entries apply. We assume that an
1974 allocated reloc section uses the dynamic symbol table.
1975 FIXME: How can we be sure? */
1976 s = bfd_get_section_by_name (abfd, ".dynsym");
1977 if (s != NULL)
1978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1979
1980 /* We look up the section the relocs apply to by name. */
1981 name = sec->name;
1982 if (d->this_hdr.sh_type == SHT_REL)
1983 name += 4;
1984 else
1985 name += 5;
1986 s = bfd_get_section_by_name (abfd, name);
1987 if (s != NULL)
1988 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
1989 break;
1990
1991 case SHT_STRTAB:
1992 /* We assume that a section named .stab*str is a stabs
1993 string section. We look for a section with the same name
1994 but without the trailing ``str'', and set its sh_link
1995 field to point to this section. */
1996 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
1997 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
1998 {
1999 size_t len;
2000 char *alc;
2001
2002 len = strlen (sec->name);
2003 alc = (char *) bfd_malloc (len - 2);
2004 if (alc == NULL)
2005 return false;
2006 strncpy (alc, sec->name, len - 3);
2007 alc[len - 3] = '\0';
2008 s = bfd_get_section_by_name (abfd, alc);
2009 free (alc);
2010 if (s != NULL)
2011 {
2012 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2013
2014 /* This is a .stab section. */
2015 elf_section_data (s)->this_hdr.sh_entsize =
2016 4 + 2 * bfd_get_arch_size (abfd) / 8;
2017 }
2018 }
2019 break;
2020
2021 case SHT_DYNAMIC:
2022 case SHT_DYNSYM:
2023 case SHT_GNU_verneed:
2024 case SHT_GNU_verdef:
2025 /* sh_link is the section header index of the string table
2026 used for the dynamic entries, or the symbol table, or the
2027 version strings. */
2028 s = bfd_get_section_by_name (abfd, ".dynstr");
2029 if (s != NULL)
2030 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2031 break;
2032
2033 case SHT_HASH:
2034 case SHT_GNU_versym:
2035 /* sh_link is the section header index of the symbol table
2036 this hash table or version table is for. */
2037 s = bfd_get_section_by_name (abfd, ".dynsym");
2038 if (s != NULL)
2039 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2040 break;
2041 }
2042 }
2043
2044 return true;
2045 }
2046
2047 /* Map symbol from it's internal number to the external number, moving
2048 all local symbols to be at the head of the list. */
2049
2050 static INLINE int
2051 sym_is_global (abfd, sym)
2052 bfd *abfd;
2053 asymbol *sym;
2054 {
2055 /* If the backend has a special mapping, use it. */
2056 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2057 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2058 (abfd, sym));
2059
2060 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2061 || bfd_is_und_section (bfd_get_section (sym))
2062 || bfd_is_com_section (bfd_get_section (sym)));
2063 }
2064
2065 static boolean
2066 elf_map_symbols (abfd)
2067 bfd *abfd;
2068 {
2069 int symcount = bfd_get_symcount (abfd);
2070 asymbol **syms = bfd_get_outsymbols (abfd);
2071 asymbol **sect_syms;
2072 int num_locals = 0;
2073 int num_globals = 0;
2074 int num_locals2 = 0;
2075 int num_globals2 = 0;
2076 int max_index = 0;
2077 int num_sections = 0;
2078 int idx;
2079 asection *asect;
2080 asymbol **new_syms;
2081 asymbol *sym;
2082
2083 #ifdef DEBUG
2084 fprintf (stderr, "elf_map_symbols\n");
2085 fflush (stderr);
2086 #endif
2087
2088 /* Add a section symbol for each BFD section. FIXME: Is this really
2089 necessary? */
2090 for (asect = abfd->sections; asect; asect = asect->next)
2091 {
2092 if (max_index < asect->index)
2093 max_index = asect->index;
2094 }
2095
2096 max_index++;
2097 sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
2098 if (sect_syms == NULL)
2099 return false;
2100 elf_section_syms (abfd) = sect_syms;
2101 elf_num_section_syms (abfd) = max_index;
2102
2103 for (idx = 0; idx < symcount; idx++)
2104 {
2105 sym = syms[idx];
2106
2107 if ((sym->flags & BSF_SECTION_SYM) != 0
2108 && sym->value == 0)
2109 {
2110 asection *sec;
2111
2112 sec = sym->section;
2113
2114 if (sec->owner != NULL)
2115 {
2116 if (sec->owner != abfd)
2117 {
2118 if (sec->output_offset != 0)
2119 continue;
2120
2121 sec = sec->output_section;
2122
2123 /* Empty sections in the input files may have had a section
2124 symbol created for them. (See the comment near the end of
2125 _bfd_generic_link_output_symbols in linker.c). If the linker
2126 script discards such sections then we will reach this point.
2127 Since we know that we cannot avoid this case, we detect it
2128 and skip the abort and the assignment to the sect_syms array.
2129 To reproduce this particular case try running the linker
2130 testsuite test ld-scripts/weak.exp for an ELF port that uses
2131 the generic linker. */
2132 if (sec->owner == NULL)
2133 continue;
2134
2135 BFD_ASSERT (sec->owner == abfd);
2136 }
2137 sect_syms[sec->index] = syms[idx];
2138 }
2139 }
2140 }
2141
2142 for (asect = abfd->sections; asect; asect = asect->next)
2143 {
2144 if (sect_syms[asect->index] != NULL)
2145 continue;
2146
2147 sym = bfd_make_empty_symbol (abfd);
2148 if (sym == NULL)
2149 return false;
2150 sym->the_bfd = abfd;
2151 sym->name = asect->name;
2152 sym->value = 0;
2153 /* Set the flags to 0 to indicate that this one was newly added. */
2154 sym->flags = 0;
2155 sym->section = asect;
2156 sect_syms[asect->index] = sym;
2157 num_sections++;
2158 #ifdef DEBUG
2159 fprintf (stderr,
2160 _("creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n"),
2161 asect->name, (long) asect->vma, asect->index, (long) asect);
2162 #endif
2163 }
2164
2165 /* Classify all of the symbols. */
2166 for (idx = 0; idx < symcount; idx++)
2167 {
2168 if (!sym_is_global (abfd, syms[idx]))
2169 num_locals++;
2170 else
2171 num_globals++;
2172 }
2173 for (asect = abfd->sections; asect; asect = asect->next)
2174 {
2175 if (sect_syms[asect->index] != NULL
2176 && sect_syms[asect->index]->flags == 0)
2177 {
2178 sect_syms[asect->index]->flags = BSF_SECTION_SYM;
2179 if (!sym_is_global (abfd, sect_syms[asect->index]))
2180 num_locals++;
2181 else
2182 num_globals++;
2183 sect_syms[asect->index]->flags = 0;
2184 }
2185 }
2186
2187 /* Now sort the symbols so the local symbols are first. */
2188 new_syms = ((asymbol **)
2189 bfd_alloc (abfd,
2190 (num_locals + num_globals) * sizeof (asymbol *)));
2191 if (new_syms == NULL)
2192 return false;
2193
2194 for (idx = 0; idx < symcount; idx++)
2195 {
2196 asymbol *sym = syms[idx];
2197 int i;
2198
2199 if (!sym_is_global (abfd, sym))
2200 i = num_locals2++;
2201 else
2202 i = num_locals + num_globals2++;
2203 new_syms[i] = sym;
2204 sym->udata.i = i + 1;
2205 }
2206 for (asect = abfd->sections; asect; asect = asect->next)
2207 {
2208 if (sect_syms[asect->index] != NULL
2209 && sect_syms[asect->index]->flags == 0)
2210 {
2211 asymbol *sym = sect_syms[asect->index];
2212 int i;
2213
2214 sym->flags = BSF_SECTION_SYM;
2215 if (!sym_is_global (abfd, sym))
2216 i = num_locals2++;
2217 else
2218 i = num_locals + num_globals2++;
2219 new_syms[i] = sym;
2220 sym->udata.i = i + 1;
2221 }
2222 }
2223
2224 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2225
2226 elf_num_locals (abfd) = num_locals;
2227 elf_num_globals (abfd) = num_globals;
2228 return true;
2229 }
2230
2231 /* Align to the maximum file alignment that could be required for any
2232 ELF data structure. */
2233
2234 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2235 static INLINE file_ptr
2236 align_file_position (off, align)
2237 file_ptr off;
2238 int align;
2239 {
2240 return (off + align - 1) & ~(align - 1);
2241 }
2242
2243 /* Assign a file position to a section, optionally aligning to the
2244 required section alignment. */
2245
2246 INLINE file_ptr
2247 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2248 Elf_Internal_Shdr *i_shdrp;
2249 file_ptr offset;
2250 boolean align;
2251 {
2252 if (align)
2253 {
2254 unsigned int al;
2255
2256 al = i_shdrp->sh_addralign;
2257 if (al > 1)
2258 offset = BFD_ALIGN (offset, al);
2259 }
2260 i_shdrp->sh_offset = offset;
2261 if (i_shdrp->bfd_section != NULL)
2262 i_shdrp->bfd_section->filepos = offset;
2263 if (i_shdrp->sh_type != SHT_NOBITS)
2264 offset += i_shdrp->sh_size;
2265 return offset;
2266 }
2267
2268 /* Compute the file positions we are going to put the sections at, and
2269 otherwise prepare to begin writing out the ELF file. If LINK_INFO
2270 is not NULL, this is being called by the ELF backend linker. */
2271
2272 boolean
2273 _bfd_elf_compute_section_file_positions (abfd, link_info)
2274 bfd *abfd;
2275 struct bfd_link_info *link_info;
2276 {
2277 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2278 boolean failed;
2279 struct bfd_strtab_hash *strtab;
2280 Elf_Internal_Shdr *shstrtab_hdr;
2281
2282 if (abfd->output_has_begun)
2283 return true;
2284
2285 /* Do any elf backend specific processing first. */
2286 if (bed->elf_backend_begin_write_processing)
2287 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
2288
2289 if (! prep_headers (abfd))
2290 return false;
2291
2292 /* Post process the headers if necessary. */
2293 if (bed->elf_backend_post_process_headers)
2294 (*bed->elf_backend_post_process_headers) (abfd, link_info);
2295
2296 failed = false;
2297 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
2298 if (failed)
2299 return false;
2300
2301 if (!assign_section_numbers (abfd))
2302 return false;
2303
2304 /* The backend linker builds symbol table information itself. */
2305 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2306 {
2307 /* Non-zero if doing a relocatable link. */
2308 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
2309
2310 if (! swap_out_syms (abfd, &strtab, relocatable_p))
2311 return false;
2312 }
2313
2314 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
2315 /* sh_name was set in prep_headers. */
2316 shstrtab_hdr->sh_type = SHT_STRTAB;
2317 shstrtab_hdr->sh_flags = 0;
2318 shstrtab_hdr->sh_addr = 0;
2319 shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
2320 shstrtab_hdr->sh_entsize = 0;
2321 shstrtab_hdr->sh_link = 0;
2322 shstrtab_hdr->sh_info = 0;
2323 /* sh_offset is set in assign_file_positions_except_relocs. */
2324 shstrtab_hdr->sh_addralign = 1;
2325
2326 if (!assign_file_positions_except_relocs (abfd))
2327 return false;
2328
2329 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2330 {
2331 file_ptr off;
2332 Elf_Internal_Shdr *hdr;
2333
2334 off = elf_tdata (abfd)->next_file_pos;
2335
2336 hdr = &elf_tdata (abfd)->symtab_hdr;
2337 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2338
2339 hdr = &elf_tdata (abfd)->strtab_hdr;
2340 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2341
2342 elf_tdata (abfd)->next_file_pos = off;
2343
2344 /* Now that we know where the .strtab section goes, write it
2345 out. */
2346 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
2347 || ! _bfd_stringtab_emit (abfd, strtab))
2348 return false;
2349 _bfd_stringtab_free (strtab);
2350 }
2351
2352 abfd->output_has_begun = true;
2353
2354 return true;
2355 }
2356
2357 /* Create a mapping from a set of sections to a program segment. */
2358
2359 static INLINE struct elf_segment_map *
2360 make_mapping (abfd, sections, from, to, phdr)
2361 bfd *abfd;
2362 asection **sections;
2363 unsigned int from;
2364 unsigned int to;
2365 boolean phdr;
2366 {
2367 struct elf_segment_map *m;
2368 unsigned int i;
2369 asection **hdrpp;
2370
2371 m = ((struct elf_segment_map *)
2372 bfd_zalloc (abfd,
2373 (sizeof (struct elf_segment_map)
2374 + (to - from - 1) * sizeof (asection *))));
2375 if (m == NULL)
2376 return NULL;
2377 m->next = NULL;
2378 m->p_type = PT_LOAD;
2379 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
2380 m->sections[i - from] = *hdrpp;
2381 m->count = to - from;
2382
2383 if (from == 0 && phdr)
2384 {
2385 /* Include the headers in the first PT_LOAD segment. */
2386 m->includes_filehdr = 1;
2387 m->includes_phdrs = 1;
2388 }
2389
2390 return m;
2391 }
2392
2393 /* Set up a mapping from BFD sections to program segments. */
2394
2395 static boolean
2396 map_sections_to_segments (abfd)
2397 bfd *abfd;
2398 {
2399 asection **sections = NULL;
2400 asection *s;
2401 unsigned int i;
2402 unsigned int count;
2403 struct elf_segment_map *mfirst;
2404 struct elf_segment_map **pm;
2405 struct elf_segment_map *m;
2406 asection *last_hdr;
2407 unsigned int phdr_index;
2408 bfd_vma maxpagesize;
2409 asection **hdrpp;
2410 boolean phdr_in_segment = true;
2411 boolean writable;
2412 asection *dynsec;
2413
2414 if (elf_tdata (abfd)->segment_map != NULL)
2415 return true;
2416
2417 if (bfd_count_sections (abfd) == 0)
2418 return true;
2419
2420 /* Select the allocated sections, and sort them. */
2421
2422 sections = (asection **) bfd_malloc (bfd_count_sections (abfd)
2423 * sizeof (asection *));
2424 if (sections == NULL)
2425 goto error_return;
2426
2427 i = 0;
2428 for (s = abfd->sections; s != NULL; s = s->next)
2429 {
2430 if ((s->flags & SEC_ALLOC) != 0)
2431 {
2432 sections[i] = s;
2433 ++i;
2434 }
2435 }
2436 BFD_ASSERT (i <= bfd_count_sections (abfd));
2437 count = i;
2438
2439 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
2440
2441 /* Build the mapping. */
2442
2443 mfirst = NULL;
2444 pm = &mfirst;
2445
2446 /* If we have a .interp section, then create a PT_PHDR segment for
2447 the program headers and a PT_INTERP segment for the .interp
2448 section. */
2449 s = bfd_get_section_by_name (abfd, ".interp");
2450 if (s != NULL && (s->flags & SEC_LOAD) != 0)
2451 {
2452 m = ((struct elf_segment_map *)
2453 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2454 if (m == NULL)
2455 goto error_return;
2456 m->next = NULL;
2457 m->p_type = PT_PHDR;
2458 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
2459 m->p_flags = PF_R | PF_X;
2460 m->p_flags_valid = 1;
2461 m->includes_phdrs = 1;
2462
2463 *pm = m;
2464 pm = &m->next;
2465
2466 m = ((struct elf_segment_map *)
2467 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2468 if (m == NULL)
2469 goto error_return;
2470 m->next = NULL;
2471 m->p_type = PT_INTERP;
2472 m->count = 1;
2473 m->sections[0] = s;
2474
2475 *pm = m;
2476 pm = &m->next;
2477 }
2478
2479 /* Look through the sections. We put sections in the same program
2480 segment when the start of the second section can be placed within
2481 a few bytes of the end of the first section. */
2482 last_hdr = NULL;
2483 phdr_index = 0;
2484 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2485 writable = false;
2486 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
2487 if (dynsec != NULL
2488 && (dynsec->flags & SEC_LOAD) == 0)
2489 dynsec = NULL;
2490
2491 /* Deal with -Ttext or something similar such that the first section
2492 is not adjacent to the program headers. This is an
2493 approximation, since at this point we don't know exactly how many
2494 program headers we will need. */
2495 if (count > 0)
2496 {
2497 bfd_size_type phdr_size;
2498
2499 phdr_size = elf_tdata (abfd)->program_header_size;
2500 if (phdr_size == 0)
2501 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
2502 if ((abfd->flags & D_PAGED) == 0
2503 || sections[0]->lma < phdr_size
2504 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
2505 phdr_in_segment = false;
2506 }
2507
2508 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
2509 {
2510 asection *hdr;
2511 boolean new_segment;
2512
2513 hdr = *hdrpp;
2514
2515 /* See if this section and the last one will fit in the same
2516 segment. */
2517
2518 if (last_hdr == NULL)
2519 {
2520 /* If we don't have a segment yet, then we don't need a new
2521 one (we build the last one after this loop). */
2522 new_segment = false;
2523 }
2524 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
2525 {
2526 /* If this section has a different relation between the
2527 virtual address and the load address, then we need a new
2528 segment. */
2529 new_segment = true;
2530 }
2531 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2532 < BFD_ALIGN (hdr->lma, maxpagesize))
2533 {
2534 /* If putting this section in this segment would force us to
2535 skip a page in the segment, then we need a new segment. */
2536 new_segment = true;
2537 }
2538 else if ((last_hdr->flags & SEC_LOAD) == 0
2539 && (hdr->flags & SEC_LOAD) != 0)
2540 {
2541 /* We don't want to put a loadable section after a
2542 nonloadable section in the same segment. */
2543 new_segment = true;
2544 }
2545 else if ((abfd->flags & D_PAGED) == 0)
2546 {
2547 /* If the file is not demand paged, which means that we
2548 don't require the sections to be correctly aligned in the
2549 file, then there is no other reason for a new segment. */
2550 new_segment = false;
2551 }
2552 else if (! writable
2553 && (hdr->flags & SEC_READONLY) == 0
2554 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2555 == hdr->lma))
2556 {
2557 /* We don't want to put a writable section in a read only
2558 segment, unless they are on the same page in memory
2559 anyhow. We already know that the last section does not
2560 bring us past the current section on the page, so the
2561 only case in which the new section is not on the same
2562 page as the previous section is when the previous section
2563 ends precisely on a page boundary. */
2564 new_segment = true;
2565 }
2566 else
2567 {
2568 /* Otherwise, we can use the same segment. */
2569 new_segment = false;
2570 }
2571
2572 if (! new_segment)
2573 {
2574 if ((hdr->flags & SEC_READONLY) == 0)
2575 writable = true;
2576 last_hdr = hdr;
2577 continue;
2578 }
2579
2580 /* We need a new program segment. We must create a new program
2581 header holding all the sections from phdr_index until hdr. */
2582
2583 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
2584 if (m == NULL)
2585 goto error_return;
2586
2587 *pm = m;
2588 pm = &m->next;
2589
2590 if ((hdr->flags & SEC_READONLY) == 0)
2591 writable = true;
2592 else
2593 writable = false;
2594
2595 last_hdr = hdr;
2596 phdr_index = i;
2597 phdr_in_segment = false;
2598 }
2599
2600 /* Create a final PT_LOAD program segment. */
2601 if (last_hdr != NULL)
2602 {
2603 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
2604 if (m == NULL)
2605 goto error_return;
2606
2607 *pm = m;
2608 pm = &m->next;
2609 }
2610
2611 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
2612 if (dynsec != NULL)
2613 {
2614 m = ((struct elf_segment_map *)
2615 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2616 if (m == NULL)
2617 goto error_return;
2618 m->next = NULL;
2619 m->p_type = PT_DYNAMIC;
2620 m->count = 1;
2621 m->sections[0] = dynsec;
2622
2623 *pm = m;
2624 pm = &m->next;
2625 }
2626
2627 /* For each loadable .note section, add a PT_NOTE segment. We don't
2628 use bfd_get_section_by_name, because if we link together
2629 nonloadable .note sections and loadable .note sections, we will
2630 generate two .note sections in the output file. FIXME: Using
2631 names for section types is bogus anyhow. */
2632 for (s = abfd->sections; s != NULL; s = s->next)
2633 {
2634 if ((s->flags & SEC_LOAD) != 0
2635 && strncmp (s->name, ".note", 5) == 0)
2636 {
2637 m = ((struct elf_segment_map *)
2638 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2639 if (m == NULL)
2640 goto error_return;
2641 m->next = NULL;
2642 m->p_type = PT_NOTE;
2643 m->count = 1;
2644 m->sections[0] = s;
2645
2646 *pm = m;
2647 pm = &m->next;
2648 }
2649 }
2650
2651 free (sections);
2652 sections = NULL;
2653
2654 elf_tdata (abfd)->segment_map = mfirst;
2655 return true;
2656
2657 error_return:
2658 if (sections != NULL)
2659 free (sections);
2660 return false;
2661 }
2662
2663 /* Sort sections by address. */
2664
2665 static int
2666 elf_sort_sections (arg1, arg2)
2667 const PTR arg1;
2668 const PTR arg2;
2669 {
2670 const asection *sec1 = *(const asection **) arg1;
2671 const asection *sec2 = *(const asection **) arg2;
2672
2673 /* Sort by LMA first, since this is the address used to
2674 place the section into a segment. */
2675 if (sec1->lma < sec2->lma)
2676 return -1;
2677 else if (sec1->lma > sec2->lma)
2678 return 1;
2679
2680 /* Then sort by VMA. Normally the LMA and the VMA will be
2681 the same, and this will do nothing. */
2682 if (sec1->vma < sec2->vma)
2683 return -1;
2684 else if (sec1->vma > sec2->vma)
2685 return 1;
2686
2687 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
2688
2689 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
2690
2691 if (TOEND (sec1))
2692 {
2693 if (TOEND (sec2))
2694 {
2695 /* If the indicies are the same, do not return 0
2696 here, but continue to try the next comparison. */
2697 if (sec1->target_index - sec2->target_index != 0)
2698 return sec1->target_index - sec2->target_index;
2699 }
2700 else
2701 return 1;
2702 }
2703 else if (TOEND (sec2))
2704 return -1;
2705
2706 #undef TOEND
2707
2708 /* Sort by size, to put zero sized sections
2709 before others at the same address. */
2710
2711 if (sec1->_raw_size < sec2->_raw_size)
2712 return -1;
2713 if (sec1->_raw_size > sec2->_raw_size)
2714 return 1;
2715
2716 return sec1->target_index - sec2->target_index;
2717 }
2718
2719 /* Assign file positions to the sections based on the mapping from
2720 sections to segments. This function also sets up some fields in
2721 the file header, and writes out the program headers. */
2722
2723 static boolean
2724 assign_file_positions_for_segments (abfd)
2725 bfd *abfd;
2726 {
2727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2728 unsigned int count;
2729 struct elf_segment_map *m;
2730 unsigned int alloc;
2731 Elf_Internal_Phdr *phdrs;
2732 file_ptr off, voff;
2733 bfd_vma filehdr_vaddr, filehdr_paddr;
2734 bfd_vma phdrs_vaddr, phdrs_paddr;
2735 Elf_Internal_Phdr *p;
2736
2737 if (elf_tdata (abfd)->segment_map == NULL)
2738 {
2739 if (! map_sections_to_segments (abfd))
2740 return false;
2741 }
2742
2743 if (bed->elf_backend_modify_segment_map)
2744 {
2745 if (! (*bed->elf_backend_modify_segment_map) (abfd))
2746 return false;
2747 }
2748
2749 count = 0;
2750 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2751 ++count;
2752
2753 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
2754 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
2755 elf_elfheader (abfd)->e_phnum = count;
2756
2757 if (count == 0)
2758 return true;
2759
2760 /* If we already counted the number of program segments, make sure
2761 that we allocated enough space. This happens when SIZEOF_HEADERS
2762 is used in a linker script. */
2763 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
2764 if (alloc != 0 && count > alloc)
2765 {
2766 ((*_bfd_error_handler)
2767 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
2768 bfd_get_filename (abfd), alloc, count));
2769 bfd_set_error (bfd_error_bad_value);
2770 return false;
2771 }
2772
2773 if (alloc == 0)
2774 alloc = count;
2775
2776 phdrs = ((Elf_Internal_Phdr *)
2777 bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr)));
2778 if (phdrs == NULL)
2779 return false;
2780
2781 off = bed->s->sizeof_ehdr;
2782 off += alloc * bed->s->sizeof_phdr;
2783
2784 filehdr_vaddr = 0;
2785 filehdr_paddr = 0;
2786 phdrs_vaddr = 0;
2787 phdrs_paddr = 0;
2788
2789 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
2790 m != NULL;
2791 m = m->next, p++)
2792 {
2793 unsigned int i;
2794 asection **secpp;
2795
2796 /* If elf_segment_map is not from map_sections_to_segments, the
2797 sections may not be correctly ordered. */
2798 if (m->count > 0)
2799 qsort (m->sections, (size_t) m->count, sizeof (asection *),
2800 elf_sort_sections);
2801
2802 p->p_type = m->p_type;
2803 p->p_flags = m->p_flags;
2804
2805 if (p->p_type == PT_LOAD
2806 && m->count > 0
2807 && (m->sections[0]->flags & SEC_ALLOC) != 0)
2808 {
2809 if ((abfd->flags & D_PAGED) != 0)
2810 off += (m->sections[0]->vma - off) % bed->maxpagesize;
2811 else
2812 {
2813 bfd_size_type align;
2814
2815 align = 0;
2816 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
2817 {
2818 bfd_size_type secalign;
2819
2820 secalign = bfd_get_section_alignment (abfd, *secpp);
2821 if (secalign > align)
2822 align = secalign;
2823 }
2824
2825 off += (m->sections[0]->vma - off) % (1 << align);
2826 }
2827 }
2828
2829 if (m->count == 0)
2830 p->p_vaddr = 0;
2831 else
2832 p->p_vaddr = m->sections[0]->vma;
2833
2834 if (m->p_paddr_valid)
2835 p->p_paddr = m->p_paddr;
2836 else if (m->count == 0)
2837 p->p_paddr = 0;
2838 else
2839 p->p_paddr = m->sections[0]->lma;
2840
2841 if (p->p_type == PT_LOAD
2842 && (abfd->flags & D_PAGED) != 0)
2843 p->p_align = bed->maxpagesize;
2844 else if (m->count == 0)
2845 p->p_align = bed->s->file_align;
2846 else
2847 p->p_align = 0;
2848
2849 p->p_offset = 0;
2850 p->p_filesz = 0;
2851 p->p_memsz = 0;
2852
2853 if (m->includes_filehdr)
2854 {
2855 if (! m->p_flags_valid)
2856 p->p_flags |= PF_R;
2857 p->p_offset = 0;
2858 p->p_filesz = bed->s->sizeof_ehdr;
2859 p->p_memsz = bed->s->sizeof_ehdr;
2860 if (m->count > 0)
2861 {
2862 BFD_ASSERT (p->p_type == PT_LOAD);
2863
2864 if (p->p_vaddr < (bfd_vma) off)
2865 {
2866 _bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"),
2867 bfd_get_filename (abfd));
2868 bfd_set_error (bfd_error_bad_value);
2869 return false;
2870 }
2871
2872 p->p_vaddr -= off;
2873 if (! m->p_paddr_valid)
2874 p->p_paddr -= off;
2875 }
2876 if (p->p_type == PT_LOAD)
2877 {
2878 filehdr_vaddr = p->p_vaddr;
2879 filehdr_paddr = p->p_paddr;
2880 }
2881 }
2882
2883 if (m->includes_phdrs)
2884 {
2885 if (! m->p_flags_valid)
2886 p->p_flags |= PF_R;
2887
2888 if (m->includes_filehdr)
2889 {
2890 if (p->p_type == PT_LOAD)
2891 {
2892 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
2893 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
2894 }
2895 }
2896 else
2897 {
2898 p->p_offset = bed->s->sizeof_ehdr;
2899
2900 if (m->count > 0)
2901 {
2902 BFD_ASSERT (p->p_type == PT_LOAD);
2903 p->p_vaddr -= off - p->p_offset;
2904 if (! m->p_paddr_valid)
2905 p->p_paddr -= off - p->p_offset;
2906 }
2907
2908 if (p->p_type == PT_LOAD)
2909 {
2910 phdrs_vaddr = p->p_vaddr;
2911 phdrs_paddr = p->p_paddr;
2912 }
2913 else
2914 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
2915 }
2916
2917 p->p_filesz += alloc * bed->s->sizeof_phdr;
2918 p->p_memsz += alloc * bed->s->sizeof_phdr;
2919 }
2920
2921 if (p->p_type == PT_LOAD
2922 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
2923 {
2924 if (! m->includes_filehdr && ! m->includes_phdrs)
2925 p->p_offset = off;
2926 else
2927 {
2928 file_ptr adjust;
2929
2930 adjust = off - (p->p_offset + p->p_filesz);
2931 p->p_filesz += adjust;
2932 p->p_memsz += adjust;
2933 }
2934 }
2935
2936 voff = off;
2937
2938 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
2939 {
2940 asection *sec;
2941 flagword flags;
2942 bfd_size_type align;
2943
2944 sec = *secpp;
2945 flags = sec->flags;
2946 align = 1 << bfd_get_section_alignment (abfd, sec);
2947
2948 /* The section may have artificial alignment forced by a
2949 link script. Notice this case by the gap between the
2950 cumulative phdr vma and the section's vma. */
2951 if (p->p_vaddr + p->p_memsz < sec->vma)
2952 {
2953 bfd_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
2954
2955 p->p_memsz += adjust;
2956 off += adjust;
2957 voff += adjust;
2958 if ((flags & SEC_LOAD) != 0)
2959 p->p_filesz += adjust;
2960 }
2961
2962 if (p->p_type == PT_LOAD)
2963 {
2964 bfd_signed_vma adjust;
2965
2966 if ((flags & SEC_LOAD) != 0)
2967 {
2968 adjust = sec->lma - (p->p_paddr + p->p_memsz);
2969 if (adjust < 0)
2970 adjust = 0;
2971 }
2972 else if ((flags & SEC_ALLOC) != 0)
2973 {
2974 /* The section VMA must equal the file position
2975 modulo the page size. FIXME: I'm not sure if
2976 this adjustment is really necessary. We used to
2977 not have the SEC_LOAD case just above, and then
2978 this was necessary, but now I'm not sure. */
2979 if ((abfd->flags & D_PAGED) != 0)
2980 adjust = (sec->vma - voff) % bed->maxpagesize;
2981 else
2982 adjust = (sec->vma - voff) % align;
2983 }
2984 else
2985 adjust = 0;
2986
2987 if (adjust != 0)
2988 {
2989 if (i == 0)
2990 {
2991 (* _bfd_error_handler)
2992 (_("Error: First section in segment (%s) starts at 0x%x"),
2993 bfd_section_name (abfd, sec), sec->lma);
2994 (* _bfd_error_handler)
2995 (_(" whereas segment starts at 0x%x"),
2996 p->p_paddr);
2997
2998 return false;
2999 }
3000 p->p_memsz += adjust;
3001 off += adjust;
3002 voff += adjust;
3003 if ((flags & SEC_LOAD) != 0)
3004 p->p_filesz += adjust;
3005 }
3006
3007 sec->filepos = off;
3008
3009 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3010 used in a linker script we may have a section with
3011 SEC_LOAD clear but which is supposed to have
3012 contents. */
3013 if ((flags & SEC_LOAD) != 0
3014 || (flags & SEC_HAS_CONTENTS) != 0)
3015 off += sec->_raw_size;
3016
3017 if ((flags & SEC_ALLOC) != 0)
3018 voff += sec->_raw_size;
3019 }
3020
3021 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3022 {
3023 /* The actual "note" segment has i == 0.
3024 This is the one that actually contains everything. */
3025 if (i == 0)
3026 {
3027 sec->filepos = off;
3028 p->p_filesz = sec->_raw_size;
3029 off += sec->_raw_size;
3030 voff = off;
3031 }
3032 else
3033 {
3034 /* Fake sections -- don't need to be written. */
3035 sec->filepos = 0;
3036 sec->_raw_size = 0;
3037 flags = sec->flags = 0;
3038 }
3039 p->p_memsz = 0;
3040 p->p_align = 1;
3041 }
3042 else
3043 {
3044 p->p_memsz += sec->_raw_size;
3045
3046 if ((flags & SEC_LOAD) != 0)
3047 p->p_filesz += sec->_raw_size;
3048
3049 if (align > p->p_align
3050 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3051 p->p_align = align;
3052 }
3053
3054 if (! m->p_flags_valid)
3055 {
3056 p->p_flags |= PF_R;
3057 if ((flags & SEC_CODE) != 0)
3058 p->p_flags |= PF_X;
3059 if ((flags & SEC_READONLY) == 0)
3060 p->p_flags |= PF_W;
3061 }
3062 }
3063 }
3064
3065 /* Now that we have set the section file positions, we can set up
3066 the file positions for the non PT_LOAD segments. */
3067 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3068 m != NULL;
3069 m = m->next, p++)
3070 {
3071 if (p->p_type != PT_LOAD && m->count > 0)
3072 {
3073 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3074 p->p_offset = m->sections[0]->filepos;
3075 }
3076 if (m->count == 0)
3077 {
3078 if (m->includes_filehdr)
3079 {
3080 p->p_vaddr = filehdr_vaddr;
3081 if (! m->p_paddr_valid)
3082 p->p_paddr = filehdr_paddr;
3083 }
3084 else if (m->includes_phdrs)
3085 {
3086 p->p_vaddr = phdrs_vaddr;
3087 if (! m->p_paddr_valid)
3088 p->p_paddr = phdrs_paddr;
3089 }
3090 }
3091 }
3092
3093 /* Clear out any program headers we allocated but did not use. */
3094 for (; count < alloc; count++, p++)
3095 {
3096 memset (p, 0, sizeof *p);
3097 p->p_type = PT_NULL;
3098 }
3099
3100 elf_tdata (abfd)->phdr = phdrs;
3101
3102 elf_tdata (abfd)->next_file_pos = off;
3103
3104 /* Write out the program headers. */
3105 if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0
3106 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3107 return false;
3108
3109 return true;
3110 }
3111
3112 /* Get the size of the program header.
3113
3114 If this is called by the linker before any of the section VMA's are set, it
3115 can't calculate the correct value for a strange memory layout. This only
3116 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3117 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3118 data segment (exclusive of .interp and .dynamic).
3119
3120 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3121 will be two segments. */
3122
3123 static bfd_size_type
3124 get_program_header_size (abfd)
3125 bfd *abfd;
3126 {
3127 size_t segs;
3128 asection *s;
3129 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3130
3131 /* We can't return a different result each time we're called. */
3132 if (elf_tdata (abfd)->program_header_size != 0)
3133 return elf_tdata (abfd)->program_header_size;
3134
3135 if (elf_tdata (abfd)->segment_map != NULL)
3136 {
3137 struct elf_segment_map *m;
3138
3139 segs = 0;
3140 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3141 ++segs;
3142 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3143 return elf_tdata (abfd)->program_header_size;
3144 }
3145
3146 /* Assume we will need exactly two PT_LOAD segments: one for text
3147 and one for data. */
3148 segs = 2;
3149
3150 s = bfd_get_section_by_name (abfd, ".interp");
3151 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3152 {
3153 /* If we have a loadable interpreter section, we need a
3154 PT_INTERP segment. In this case, assume we also need a
3155 PT_PHDR segment, although that may not be true for all
3156 targets. */
3157 segs += 2;
3158 }
3159
3160 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3161 {
3162 /* We need a PT_DYNAMIC segment. */
3163 ++segs;
3164 }
3165
3166 for (s = abfd->sections; s != NULL; s = s->next)
3167 {
3168 if ((s->flags & SEC_LOAD) != 0
3169 && strncmp (s->name, ".note", 5) == 0)
3170 {
3171 /* We need a PT_NOTE segment. */
3172 ++segs;
3173 }
3174 }
3175
3176 /* Let the backend count up any program headers it might need. */
3177 if (bed->elf_backend_additional_program_headers)
3178 {
3179 int a;
3180
3181 a = (*bed->elf_backend_additional_program_headers) (abfd);
3182 if (a == -1)
3183 abort ();
3184 segs += a;
3185 }
3186
3187 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3188 return elf_tdata (abfd)->program_header_size;
3189 }
3190
3191 /* Work out the file positions of all the sections. This is called by
3192 _bfd_elf_compute_section_file_positions. All the section sizes and
3193 VMAs must be known before this is called.
3194
3195 We do not consider reloc sections at this point, unless they form
3196 part of the loadable image. Reloc sections are assigned file
3197 positions in assign_file_positions_for_relocs, which is called by
3198 write_object_contents and final_link.
3199
3200 We also don't set the positions of the .symtab and .strtab here. */
3201
3202 static boolean
3203 assign_file_positions_except_relocs (abfd)
3204 bfd *abfd;
3205 {
3206 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
3207 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
3208 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
3209 file_ptr off;
3210 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3211
3212 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3213 && bfd_get_format (abfd) != bfd_core)
3214 {
3215 Elf_Internal_Shdr **hdrpp;
3216 unsigned int i;
3217
3218 /* Start after the ELF header. */
3219 off = i_ehdrp->e_ehsize;
3220
3221 /* We are not creating an executable, which means that we are
3222 not creating a program header, and that the actual order of
3223 the sections in the file is unimportant. */
3224 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
3225 {
3226 Elf_Internal_Shdr *hdr;
3227
3228 hdr = *hdrpp;
3229 if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
3230 {
3231 hdr->sh_offset = -1;
3232 continue;
3233 }
3234 if (i == tdata->symtab_section
3235 || i == tdata->strtab_section)
3236 {
3237 hdr->sh_offset = -1;
3238 continue;
3239 }
3240
3241 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3242 }
3243 }
3244 else
3245 {
3246 unsigned int i;
3247 Elf_Internal_Shdr **hdrpp;
3248
3249 /* Assign file positions for the loaded sections based on the
3250 assignment of sections to segments. */
3251 if (! assign_file_positions_for_segments (abfd))
3252 return false;
3253
3254 /* Assign file positions for the other sections. */
3255
3256 off = elf_tdata (abfd)->next_file_pos;
3257 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
3258 {
3259 Elf_Internal_Shdr *hdr;
3260
3261 hdr = *hdrpp;
3262 if (hdr->bfd_section != NULL
3263 && hdr->bfd_section->filepos != 0)
3264 hdr->sh_offset = hdr->bfd_section->filepos;
3265 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
3266 {
3267 ((*_bfd_error_handler)
3268 (_("%s: warning: allocated section `%s' not in segment"),
3269 bfd_get_filename (abfd),
3270 (hdr->bfd_section == NULL
3271 ? "*unknown*"
3272 : hdr->bfd_section->name)));
3273 if ((abfd->flags & D_PAGED) != 0)
3274 off += (hdr->sh_addr - off) % bed->maxpagesize;
3275 else
3276 off += (hdr->sh_addr - off) % hdr->sh_addralign;
3277 off = _bfd_elf_assign_file_position_for_section (hdr, off,
3278 false);
3279 }
3280 else if (hdr->sh_type == SHT_REL
3281 || hdr->sh_type == SHT_RELA
3282 || hdr == i_shdrpp[tdata->symtab_section]
3283 || hdr == i_shdrpp[tdata->strtab_section])
3284 hdr->sh_offset = -1;
3285 else
3286 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3287 }
3288 }
3289
3290 /* Place the section headers. */
3291 off = align_file_position (off, bed->s->file_align);
3292 i_ehdrp->e_shoff = off;
3293 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
3294
3295 elf_tdata (abfd)->next_file_pos = off;
3296
3297 return true;
3298 }
3299
3300 static boolean
3301 prep_headers (abfd)
3302 bfd *abfd;
3303 {
3304 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
3305 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
3306 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
3307 int count;
3308 struct bfd_strtab_hash *shstrtab;
3309 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3310
3311 i_ehdrp = elf_elfheader (abfd);
3312 i_shdrp = elf_elfsections (abfd);
3313
3314 shstrtab = _bfd_elf_stringtab_init ();
3315 if (shstrtab == NULL)
3316 return false;
3317
3318 elf_shstrtab (abfd) = shstrtab;
3319
3320 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
3321 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
3322 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
3323 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
3324
3325 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
3326 i_ehdrp->e_ident[EI_DATA] =
3327 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
3328 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
3329
3330 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NONE;
3331 i_ehdrp->e_ident[EI_ABIVERSION] = 0;
3332
3333 for (count = EI_PAD; count < EI_NIDENT; count++)
3334 i_ehdrp->e_ident[count] = 0;
3335
3336 if ((abfd->flags & DYNAMIC) != 0)
3337 i_ehdrp->e_type = ET_DYN;
3338 else if ((abfd->flags & EXEC_P) != 0)
3339 i_ehdrp->e_type = ET_EXEC;
3340 else if (bfd_get_format (abfd) == bfd_core)
3341 i_ehdrp->e_type = ET_CORE;
3342 else
3343 i_ehdrp->e_type = ET_REL;
3344
3345 switch (bfd_get_arch (abfd))
3346 {
3347 case bfd_arch_unknown:
3348 i_ehdrp->e_machine = EM_NONE;
3349 break;
3350 case bfd_arch_sparc:
3351 if (bfd_get_arch_size (abfd) == 64)
3352 i_ehdrp->e_machine = EM_SPARCV9;
3353 else
3354 i_ehdrp->e_machine = EM_SPARC;
3355 break;
3356 case bfd_arch_i370:
3357 i_ehdrp->e_machine = EM_S370;
3358 break;
3359 case bfd_arch_i386:
3360 if (bfd_get_arch_size (abfd) == 64)
3361 i_ehdrp->e_machine = EM_X86_64;
3362 else
3363 i_ehdrp->e_machine = EM_386;
3364 break;
3365 case bfd_arch_ia64:
3366 i_ehdrp->e_machine = EM_IA_64;
3367 break;
3368 case bfd_arch_m68hc11:
3369 i_ehdrp->e_machine = EM_68HC11;
3370 break;
3371 case bfd_arch_m68hc12:
3372 i_ehdrp->e_machine = EM_68HC12;
3373 break;
3374 case bfd_arch_s390:
3375 i_ehdrp->e_machine = EM_S390;
3376 break;
3377 case bfd_arch_m68k:
3378 i_ehdrp->e_machine = EM_68K;
3379 break;
3380 case bfd_arch_m88k:
3381 i_ehdrp->e_machine = EM_88K;
3382 break;
3383 case bfd_arch_i860:
3384 i_ehdrp->e_machine = EM_860;
3385 break;
3386 case bfd_arch_i960:
3387 i_ehdrp->e_machine = EM_960;
3388 break;
3389 case bfd_arch_mips: /* MIPS Rxxxx */
3390 i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
3391 break;
3392 case bfd_arch_hppa:
3393 i_ehdrp->e_machine = EM_PARISC;
3394 break;
3395 case bfd_arch_powerpc:
3396 i_ehdrp->e_machine = EM_PPC;
3397 break;
3398 case bfd_arch_alpha:
3399 i_ehdrp->e_machine = EM_ALPHA;
3400 break;
3401 case bfd_arch_sh:
3402 i_ehdrp->e_machine = EM_SH;
3403 break;
3404 case bfd_arch_d10v:
3405 i_ehdrp->e_machine = EM_CYGNUS_D10V;
3406 break;
3407 case bfd_arch_d30v:
3408 i_ehdrp->e_machine = EM_CYGNUS_D30V;
3409 break;
3410 case bfd_arch_fr30:
3411 i_ehdrp->e_machine = EM_CYGNUS_FR30;
3412 break;
3413 case bfd_arch_mcore:
3414 i_ehdrp->e_machine = EM_MCORE;
3415 break;
3416 case bfd_arch_avr:
3417 i_ehdrp->e_machine = EM_AVR;
3418 break;
3419 case bfd_arch_v850:
3420 switch (bfd_get_mach (abfd))
3421 {
3422 default:
3423 case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break;
3424 }
3425 break;
3426 case bfd_arch_arc:
3427 i_ehdrp->e_machine = EM_CYGNUS_ARC;
3428 break;
3429 case bfd_arch_arm:
3430 i_ehdrp->e_machine = EM_ARM;
3431 break;
3432 case bfd_arch_m32r:
3433 i_ehdrp->e_machine = EM_CYGNUS_M32R;
3434 break;
3435 case bfd_arch_mn10200:
3436 i_ehdrp->e_machine = EM_CYGNUS_MN10200;
3437 break;
3438 case bfd_arch_mn10300:
3439 i_ehdrp->e_machine = EM_CYGNUS_MN10300;
3440 break;
3441 case bfd_arch_pj:
3442 i_ehdrp->e_machine = EM_PJ;
3443 break;
3444 case bfd_arch_cris:
3445 i_ehdrp->e_machine = EM_CRIS;
3446 break;
3447 case bfd_arch_openrisc:
3448 i_ehdrp->e_machine = EM_OPENRISC;
3449 break;
3450 /* Also note that EM_M32, AT&T WE32100 is unknown to bfd. */
3451 default:
3452 i_ehdrp->e_machine = EM_NONE;
3453 }
3454 i_ehdrp->e_version = bed->s->ev_current;
3455 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
3456
3457 /* No program header, for now. */
3458 i_ehdrp->e_phoff = 0;
3459 i_ehdrp->e_phentsize = 0;
3460 i_ehdrp->e_phnum = 0;
3461
3462 /* Each bfd section is section header entry. */
3463 i_ehdrp->e_entry = bfd_get_start_address (abfd);
3464 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
3465
3466 /* If we're building an executable, we'll need a program header table. */
3467 if (abfd->flags & EXEC_P)
3468 {
3469 /* It all happens later. */
3470 #if 0
3471 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
3472
3473 /* elf_build_phdrs() returns a (NULL-terminated) array of
3474 Elf_Internal_Phdrs. */
3475 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
3476 i_ehdrp->e_phoff = outbase;
3477 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
3478 #endif
3479 }
3480 else
3481 {
3482 i_ehdrp->e_phentsize = 0;
3483 i_phdrp = 0;
3484 i_ehdrp->e_phoff = 0;
3485 }
3486
3487 elf_tdata (abfd)->symtab_hdr.sh_name =
3488 (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
3489 elf_tdata (abfd)->strtab_hdr.sh_name =
3490 (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
3491 elf_tdata (abfd)->shstrtab_hdr.sh_name =
3492 (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
3493 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
3494 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
3495 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
3496 return false;
3497
3498 return true;
3499 }
3500
3501 /* Assign file positions for all the reloc sections which are not part
3502 of the loadable file image. */
3503
3504 void
3505 _bfd_elf_assign_file_positions_for_relocs (abfd)
3506 bfd *abfd;
3507 {
3508 file_ptr off;
3509 unsigned int i;
3510 Elf_Internal_Shdr **shdrpp;
3511
3512 off = elf_tdata (abfd)->next_file_pos;
3513
3514 for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
3515 i < elf_elfheader (abfd)->e_shnum;
3516 i++, shdrpp++)
3517 {
3518 Elf_Internal_Shdr *shdrp;
3519
3520 shdrp = *shdrpp;
3521 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
3522 && shdrp->sh_offset == -1)
3523 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
3524 }
3525
3526 elf_tdata (abfd)->next_file_pos = off;
3527 }
3528
3529 boolean
3530 _bfd_elf_write_object_contents (abfd)
3531 bfd *abfd;
3532 {
3533 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3534 Elf_Internal_Ehdr *i_ehdrp;
3535 Elf_Internal_Shdr **i_shdrp;
3536 boolean failed;
3537 unsigned int count;
3538
3539 if (! abfd->output_has_begun
3540 && ! _bfd_elf_compute_section_file_positions
3541 (abfd, (struct bfd_link_info *) NULL))
3542 return false;
3543
3544 i_shdrp = elf_elfsections (abfd);
3545 i_ehdrp = elf_elfheader (abfd);
3546
3547 failed = false;
3548 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
3549 if (failed)
3550 return false;
3551
3552 _bfd_elf_assign_file_positions_for_relocs (abfd);
3553
3554 /* After writing the headers, we need to write the sections too... */
3555 for (count = 1; count < i_ehdrp->e_shnum; count++)
3556 {
3557 if (bed->elf_backend_section_processing)
3558 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
3559 if (i_shdrp[count]->contents)
3560 {
3561 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
3562 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
3563 1, abfd)
3564 != i_shdrp[count]->sh_size))
3565 return false;
3566 }
3567 }
3568
3569 /* Write out the section header names. */
3570 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
3571 || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
3572 return false;
3573
3574 if (bed->elf_backend_final_write_processing)
3575 (*bed->elf_backend_final_write_processing) (abfd,
3576 elf_tdata (abfd)->linker);
3577
3578 return bed->s->write_shdrs_and_ehdr (abfd);
3579 }
3580
3581 boolean
3582 _bfd_elf_write_corefile_contents (abfd)
3583 bfd *abfd;
3584 {
3585 /* Hopefully this can be done just like an object file. */
3586 return _bfd_elf_write_object_contents (abfd);
3587 }
3588
3589 /* Given a section, search the header to find them. */
3590
3591 int
3592 _bfd_elf_section_from_bfd_section (abfd, asect)
3593 bfd *abfd;
3594 struct sec *asect;
3595 {
3596 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3597 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
3598 int index;
3599 Elf_Internal_Shdr *hdr;
3600 int maxindex = elf_elfheader (abfd)->e_shnum;
3601
3602 for (index = 0; index < maxindex; index++)
3603 {
3604 hdr = i_shdrp[index];
3605 if (hdr->bfd_section == asect)
3606 return index;
3607 }
3608
3609 if (bed->elf_backend_section_from_bfd_section)
3610 {
3611 for (index = 0; index < maxindex; index++)
3612 {
3613 int retval;
3614
3615 hdr = i_shdrp[index];
3616 retval = index;
3617 if ((*bed->elf_backend_section_from_bfd_section)
3618 (abfd, hdr, asect, &retval))
3619 return retval;
3620 }
3621 }
3622
3623 if (bfd_is_abs_section (asect))
3624 return SHN_ABS;
3625 if (bfd_is_com_section (asect))
3626 return SHN_COMMON;
3627 if (bfd_is_und_section (asect))
3628 return SHN_UNDEF;
3629
3630 bfd_set_error (bfd_error_nonrepresentable_section);
3631
3632 return -1;
3633 }
3634
3635 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
3636 on error. */
3637
3638 int
3639 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
3640 bfd *abfd;
3641 asymbol **asym_ptr_ptr;
3642 {
3643 asymbol *asym_ptr = *asym_ptr_ptr;
3644 int idx;
3645 flagword flags = asym_ptr->flags;
3646
3647 /* When gas creates relocations against local labels, it creates its
3648 own symbol for the section, but does put the symbol into the
3649 symbol chain, so udata is 0. When the linker is generating
3650 relocatable output, this section symbol may be for one of the
3651 input sections rather than the output section. */
3652 if (asym_ptr->udata.i == 0
3653 && (flags & BSF_SECTION_SYM)
3654 && asym_ptr->section)
3655 {
3656 int indx;
3657
3658 if (asym_ptr->section->output_section != NULL)
3659 indx = asym_ptr->section->output_section->index;
3660 else
3661 indx = asym_ptr->section->index;
3662 if (indx < elf_num_section_syms (abfd)
3663 && elf_section_syms (abfd)[indx] != NULL)
3664 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
3665 }
3666
3667 idx = asym_ptr->udata.i;
3668
3669 if (idx == 0)
3670 {
3671 /* This case can occur when using --strip-symbol on a symbol
3672 which is used in a relocation entry. */
3673 (*_bfd_error_handler)
3674 (_("%s: symbol `%s' required but not present"),
3675 bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr));
3676 bfd_set_error (bfd_error_no_symbols);
3677 return -1;
3678 }
3679
3680 #if DEBUG & 4
3681 {
3682 fprintf (stderr,
3683 _("elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n"),
3684 (long) asym_ptr, asym_ptr->name, idx, flags,
3685 elf_symbol_flags (flags));
3686 fflush (stderr);
3687 }
3688 #endif
3689
3690 return idx;
3691 }
3692
3693 /* Copy private BFD data. This copies any program header information. */
3694
3695 static boolean
3696 copy_private_bfd_data (ibfd, obfd)
3697 bfd *ibfd;
3698 bfd *obfd;
3699 {
3700 Elf_Internal_Ehdr * iehdr;
3701 struct elf_segment_map * map;
3702 struct elf_segment_map * map_first;
3703 struct elf_segment_map ** pointer_to_map;
3704 Elf_Internal_Phdr * segment;
3705 asection * section;
3706 unsigned int i;
3707 unsigned int num_segments;
3708 boolean phdr_included = false;
3709 bfd_vma maxpagesize;
3710 struct elf_segment_map * phdr_adjust_seg = NULL;
3711 unsigned int phdr_adjust_num = 0;
3712
3713 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3714 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3715 return true;
3716
3717 if (elf_tdata (ibfd)->phdr == NULL)
3718 return true;
3719
3720 iehdr = elf_elfheader (ibfd);
3721
3722 map_first = NULL;
3723 pointer_to_map = &map_first;
3724
3725 num_segments = elf_elfheader (ibfd)->e_phnum;
3726 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
3727
3728 /* Returns the end address of the segment + 1. */
3729 #define SEGMENT_END(segment, start) \
3730 (start + (segment->p_memsz > segment->p_filesz \
3731 ? segment->p_memsz : segment->p_filesz))
3732
3733 /* Returns true if the given section is contained within
3734 the given segment. VMA addresses are compared. */
3735 #define IS_CONTAINED_BY_VMA(section, segment) \
3736 (section->vma >= segment->p_vaddr \
3737 && (section->vma + section->_raw_size) \
3738 <= (SEGMENT_END (segment, segment->p_vaddr)))
3739
3740 /* Returns true if the given section is contained within
3741 the given segment. LMA addresses are compared. */
3742 #define IS_CONTAINED_BY_LMA(section, segment, base) \
3743 (section->lma >= base \
3744 && (section->lma + section->_raw_size) \
3745 <= SEGMENT_END (segment, base))
3746
3747 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
3748 #define IS_COREFILE_NOTE(p, s) \
3749 (p->p_type == PT_NOTE \
3750 && bfd_get_format (ibfd) == bfd_core \
3751 && s->vma == 0 && s->lma == 0 \
3752 && (bfd_vma) s->filepos >= p->p_offset \
3753 && (bfd_vma) s->filepos + s->_raw_size \
3754 <= p->p_offset + p->p_filesz)
3755
3756 /* The complicated case when p_vaddr is 0 is to handle the Solaris
3757 linker, which generates a PT_INTERP section with p_vaddr and
3758 p_memsz set to 0. */
3759 #define IS_SOLARIS_PT_INTERP(p, s) \
3760 ( p->p_vaddr == 0 \
3761 && p->p_filesz > 0 \
3762 && (s->flags & SEC_HAS_CONTENTS) != 0 \
3763 && s->_raw_size > 0 \
3764 && (bfd_vma) s->filepos >= p->p_offset \
3765 && ((bfd_vma) s->filepos + s->_raw_size \
3766 <= p->p_offset + p->p_filesz))
3767
3768 /* Decide if the given section should be included in the given segment.
3769 A section will be included if:
3770 1. It is within the address space of the segment,
3771 2. It is an allocated segment,
3772 3. There is an output section associated with it,
3773 4. The section has not already been allocated to a previous segment. */
3774 #define INCLUDE_SECTION_IN_SEGMENT(section, segment) \
3775 ((((IS_CONTAINED_BY_VMA (section, segment) \
3776 || IS_SOLARIS_PT_INTERP (segment, section)) \
3777 && (section->flags & SEC_ALLOC) != 0) \
3778 || IS_COREFILE_NOTE (segment, section)) \
3779 && section->output_section != NULL \
3780 && section->segment_mark == false)
3781
3782 /* Returns true iff seg1 starts after the end of seg2. */
3783 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
3784 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
3785
3786 /* Returns true iff seg1 and seg2 overlap. */
3787 #define SEGMENT_OVERLAPS(seg1, seg2) \
3788 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
3789
3790 /* Initialise the segment mark field. */
3791 for (section = ibfd->sections; section != NULL; section = section->next)
3792 section->segment_mark = false;
3793
3794 /* Scan through the segments specified in the program header
3795 of the input BFD. For this first scan we look for overlaps
3796 in the loadable segments. These can be created by wierd
3797 parameters to objcopy. */
3798 for (i = 0, segment = elf_tdata (ibfd)->phdr;
3799 i < num_segments;
3800 i++, segment++)
3801 {
3802 unsigned int j;
3803 Elf_Internal_Phdr *segment2;
3804
3805 if (segment->p_type != PT_LOAD)
3806 continue;
3807
3808 /* Determine if this segment overlaps any previous segments. */
3809 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
3810 {
3811 bfd_signed_vma extra_length;
3812
3813 if (segment2->p_type != PT_LOAD
3814 || ! SEGMENT_OVERLAPS (segment, segment2))
3815 continue;
3816
3817 /* Merge the two segments together. */
3818 if (segment2->p_vaddr < segment->p_vaddr)
3819 {
3820 /* Extend SEGMENT2 to include SEGMENT and then delete
3821 SEGMENT. */
3822 extra_length =
3823 SEGMENT_END (segment, segment->p_vaddr)
3824 - SEGMENT_END (segment2, segment2->p_vaddr);
3825
3826 if (extra_length > 0)
3827 {
3828 segment2->p_memsz += extra_length;
3829 segment2->p_filesz += extra_length;
3830 }
3831
3832 segment->p_type = PT_NULL;
3833
3834 /* Since we have deleted P we must restart the outer loop. */
3835 i = 0;
3836 segment = elf_tdata (ibfd)->phdr;
3837 break;
3838 }
3839 else
3840 {
3841 /* Extend SEGMENT to include SEGMENT2 and then delete
3842 SEGMENT2. */
3843 extra_length =
3844 SEGMENT_END (segment2, segment2->p_vaddr)
3845 - SEGMENT_END (segment, segment->p_vaddr);
3846
3847 if (extra_length > 0)
3848 {
3849 segment->p_memsz += extra_length;
3850 segment->p_filesz += extra_length;
3851 }
3852
3853 segment2->p_type = PT_NULL;
3854 }
3855 }
3856 }
3857
3858 /* The second scan attempts to assign sections to segments. */
3859 for (i = 0, segment = elf_tdata (ibfd)->phdr;
3860 i < num_segments;
3861 i ++, segment ++)
3862 {
3863 unsigned int section_count;
3864 asection ** sections;
3865 asection * output_section;
3866 unsigned int isec;
3867 bfd_vma matching_lma;
3868 bfd_vma suggested_lma;
3869 unsigned int j;
3870
3871 if (segment->p_type == PT_NULL)
3872 continue;
3873
3874 /* Compute how many sections might be placed into this segment. */
3875 section_count = 0;
3876 for (section = ibfd->sections; section != NULL; section = section->next)
3877 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
3878 ++section_count;
3879
3880 /* Allocate a segment map big enough to contain all of the
3881 sections we have selected. */
3882 map = ((struct elf_segment_map *)
3883 bfd_alloc (obfd,
3884 (sizeof (struct elf_segment_map)
3885 + ((size_t) section_count - 1) * sizeof (asection *))));
3886 if (map == NULL)
3887 return false;
3888
3889 /* Initialise the fields of the segment map. Default to
3890 using the physical address of the segment in the input BFD. */
3891 map->next = NULL;
3892 map->p_type = segment->p_type;
3893 map->p_flags = segment->p_flags;
3894 map->p_flags_valid = 1;
3895 map->p_paddr = segment->p_paddr;
3896 map->p_paddr_valid = 1;
3897
3898 /* Determine if this segment contains the ELF file header
3899 and if it contains the program headers themselves. */
3900 map->includes_filehdr = (segment->p_offset == 0
3901 && segment->p_filesz >= iehdr->e_ehsize);
3902
3903 map->includes_phdrs = 0;
3904
3905 if (! phdr_included || segment->p_type != PT_LOAD)
3906 {
3907 map->includes_phdrs =
3908 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
3909 && (segment->p_offset + segment->p_filesz
3910 >= ((bfd_vma) iehdr->e_phoff
3911 + iehdr->e_phnum * iehdr->e_phentsize)));
3912
3913 if (segment->p_type == PT_LOAD && map->includes_phdrs)
3914 phdr_included = true;
3915 }
3916
3917 if (section_count == 0)
3918 {
3919 /* Special segments, such as the PT_PHDR segment, may contain
3920 no sections, but ordinary, loadable segments should contain
3921 something. */
3922 if (segment->p_type == PT_LOAD)
3923 _bfd_error_handler
3924 (_("%s: warning: Empty loadable segment detected\n"),
3925 bfd_get_filename (ibfd));
3926
3927 map->count = 0;
3928 *pointer_to_map = map;
3929 pointer_to_map = &map->next;
3930
3931 continue;
3932 }
3933
3934 /* Now scan the sections in the input BFD again and attempt
3935 to add their corresponding output sections to the segment map.
3936 The problem here is how to handle an output section which has
3937 been moved (ie had its LMA changed). There are four possibilities:
3938
3939 1. None of the sections have been moved.
3940 In this case we can continue to use the segment LMA from the
3941 input BFD.
3942
3943 2. All of the sections have been moved by the same amount.
3944 In this case we can change the segment's LMA to match the LMA
3945 of the first section.
3946
3947 3. Some of the sections have been moved, others have not.
3948 In this case those sections which have not been moved can be
3949 placed in the current segment which will have to have its size,
3950 and possibly its LMA changed, and a new segment or segments will
3951 have to be created to contain the other sections.
3952
3953 4. The sections have been moved, but not be the same amount.
3954 In this case we can change the segment's LMA to match the LMA
3955 of the first section and we will have to create a new segment
3956 or segments to contain the other sections.
3957
3958 In order to save time, we allocate an array to hold the section
3959 pointers that we are interested in. As these sections get assigned
3960 to a segment, they are removed from this array. */
3961
3962 sections = (asection **) bfd_malloc
3963 (sizeof (asection *) * section_count);
3964 if (sections == NULL)
3965 return false;
3966
3967 /* Step One: Scan for segment vs section LMA conflicts.
3968 Also add the sections to the section array allocated above.
3969 Also add the sections to the current segment. In the common
3970 case, where the sections have not been moved, this means that
3971 we have completely filled the segment, and there is nothing
3972 more to do. */
3973 isec = 0;
3974 matching_lma = 0;
3975 suggested_lma = 0;
3976
3977 for (j = 0, section = ibfd->sections;
3978 section != NULL;
3979 section = section->next)
3980 {
3981 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
3982 {
3983 output_section = section->output_section;
3984
3985 sections[j ++] = section;
3986
3987 /* The Solaris native linker always sets p_paddr to 0.
3988 We try to catch that case here, and set it to the
3989 correct value. */
3990 if (segment->p_paddr == 0
3991 && segment->p_vaddr != 0
3992 && isec == 0
3993 && output_section->lma != 0
3994 && (output_section->vma == (segment->p_vaddr
3995 + (map->includes_filehdr
3996 ? iehdr->e_ehsize
3997 : 0)
3998 + (map->includes_phdrs
3999 ? iehdr->e_phnum * iehdr->e_phentsize
4000 : 0))))
4001 map->p_paddr = segment->p_vaddr;
4002
4003 /* Match up the physical address of the segment with the
4004 LMA address of the output section. */
4005 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4006 || IS_COREFILE_NOTE (segment, section))
4007 {
4008 if (matching_lma == 0)
4009 matching_lma = output_section->lma;
4010
4011 /* We assume that if the section fits within the segment
4012 then it does not overlap any other section within that
4013 segment. */
4014 map->sections[isec ++] = output_section;
4015 }
4016 else if (suggested_lma == 0)
4017 suggested_lma = output_section->lma;
4018 }
4019 }
4020
4021 BFD_ASSERT (j == section_count);
4022
4023 /* Step Two: Adjust the physical address of the current segment,
4024 if necessary. */
4025 if (isec == section_count)
4026 {
4027 /* All of the sections fitted within the segment as currently
4028 specified. This is the default case. Add the segment to
4029 the list of built segments and carry on to process the next
4030 program header in the input BFD. */
4031 map->count = section_count;
4032 *pointer_to_map = map;
4033 pointer_to_map = &map->next;
4034
4035 free (sections);
4036 continue;
4037 }
4038 else
4039 {
4040 if (matching_lma != 0)
4041 {
4042 /* At least one section fits inside the current segment.
4043 Keep it, but modify its physical address to match the
4044 LMA of the first section that fitted. */
4045 map->p_paddr = matching_lma;
4046 }
4047 else
4048 {
4049 /* None of the sections fitted inside the current segment.
4050 Change the current segment's physical address to match
4051 the LMA of the first section. */
4052 map->p_paddr = suggested_lma;
4053 }
4054
4055 /* Offset the segment physical address from the lma
4056 to allow for space taken up by elf headers. */
4057 if (map->includes_filehdr)
4058 map->p_paddr -= iehdr->e_ehsize;
4059
4060 if (map->includes_phdrs)
4061 {
4062 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4063
4064 /* iehdr->e_phnum is just an estimate of the number
4065 of program headers that we will need. Make a note
4066 here of the number we used and the segment we chose
4067 to hold these headers, so that we can adjust the
4068 offset when we know the correct value. */
4069 phdr_adjust_num = iehdr->e_phnum;
4070 phdr_adjust_seg = map;
4071 }
4072 }
4073
4074 /* Step Three: Loop over the sections again, this time assigning
4075 those that fit to the current segment and remvoing them from the
4076 sections array; but making sure not to leave large gaps. Once all
4077 possible sections have been assigned to the current segment it is
4078 added to the list of built segments and if sections still remain
4079 to be assigned, a new segment is constructed before repeating
4080 the loop. */
4081 isec = 0;
4082 do
4083 {
4084 map->count = 0;
4085 suggested_lma = 0;
4086
4087 /* Fill the current segment with sections that fit. */
4088 for (j = 0; j < section_count; j++)
4089 {
4090 section = sections[j];
4091
4092 if (section == NULL)
4093 continue;
4094
4095 output_section = section->output_section;
4096
4097 BFD_ASSERT (output_section != NULL);
4098
4099 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4100 || IS_COREFILE_NOTE (segment, section))
4101 {
4102 if (map->count == 0)
4103 {
4104 /* If the first section in a segment does not start at
4105 the beginning of the segment, then something is
4106 wrong. */
4107 if (output_section->lma !=
4108 (map->p_paddr
4109 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4110 + (map->includes_phdrs
4111 ? iehdr->e_phnum * iehdr->e_phentsize
4112 : 0)))
4113 abort ();
4114 }
4115 else
4116 {
4117 asection * prev_sec;
4118
4119 prev_sec = map->sections[map->count - 1];
4120
4121 /* If the gap between the end of the previous section
4122 and the start of this section is more than
4123 maxpagesize then we need to start a new segment. */
4124 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size, maxpagesize)
4125 < BFD_ALIGN (output_section->lma, maxpagesize))
4126 || ((prev_sec->lma + prev_sec->_raw_size) > output_section->lma))
4127 {
4128 if (suggested_lma == 0)
4129 suggested_lma = output_section->lma;
4130
4131 continue;
4132 }
4133 }
4134
4135 map->sections[map->count++] = output_section;
4136 ++isec;
4137 sections[j] = NULL;
4138 section->segment_mark = true;
4139 }
4140 else if (suggested_lma == 0)
4141 suggested_lma = output_section->lma;
4142 }
4143
4144 BFD_ASSERT (map->count > 0);
4145
4146 /* Add the current segment to the list of built segments. */
4147 *pointer_to_map = map;
4148 pointer_to_map = &map->next;
4149
4150 if (isec < section_count)
4151 {
4152 /* We still have not allocated all of the sections to
4153 segments. Create a new segment here, initialise it
4154 and carry on looping. */
4155 map = ((struct elf_segment_map *)
4156 bfd_alloc (obfd,
4157 (sizeof (struct elf_segment_map)
4158 + ((size_t) section_count - 1)
4159 * sizeof (asection *))));
4160 if (map == NULL)
4161 return false;
4162
4163 /* Initialise the fields of the segment map. Set the physical
4164 physical address to the LMA of the first section that has
4165 not yet been assigned. */
4166 map->next = NULL;
4167 map->p_type = segment->p_type;
4168 map->p_flags = segment->p_flags;
4169 map->p_flags_valid = 1;
4170 map->p_paddr = suggested_lma;
4171 map->p_paddr_valid = 1;
4172 map->includes_filehdr = 0;
4173 map->includes_phdrs = 0;
4174 }
4175 }
4176 while (isec < section_count);
4177
4178 free (sections);
4179 }
4180
4181 /* The Solaris linker creates program headers in which all the
4182 p_paddr fields are zero. When we try to objcopy or strip such a
4183 file, we get confused. Check for this case, and if we find it
4184 reset the p_paddr_valid fields. */
4185 for (map = map_first; map != NULL; map = map->next)
4186 if (map->p_paddr != 0)
4187 break;
4188 if (map == NULL)
4189 {
4190 for (map = map_first; map != NULL; map = map->next)
4191 map->p_paddr_valid = 0;
4192 }
4193
4194 elf_tdata (obfd)->segment_map = map_first;
4195
4196 /* If we had to estimate the number of program headers that were
4197 going to be needed, then check our estimate know and adjust
4198 the offset if necessary. */
4199 if (phdr_adjust_seg != NULL)
4200 {
4201 unsigned int count;
4202
4203 for (count = 0, map = map_first; map != NULL; map = map->next)
4204 count++;
4205
4206 if (count > phdr_adjust_num)
4207 phdr_adjust_seg->p_paddr
4208 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
4209 }
4210
4211 #if 0
4212 /* Final Step: Sort the segments into ascending order of physical
4213 address. */
4214 if (map_first != NULL)
4215 {
4216 struct elf_segment_map *prev;
4217
4218 prev = map_first;
4219 for (map = map_first->next; map != NULL; prev = map, map = map->next)
4220 {
4221 /* Yes I know - its a bubble sort.... */
4222 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
4223 {
4224 /* Swap map and map->next. */
4225 prev->next = map->next;
4226 map->next = map->next->next;
4227 prev->next->next = map;
4228
4229 /* Restart loop. */
4230 map = map_first;
4231 }
4232 }
4233 }
4234 #endif
4235
4236 #undef SEGMENT_END
4237 #undef IS_CONTAINED_BY_VMA
4238 #undef IS_CONTAINED_BY_LMA
4239 #undef IS_COREFILE_NOTE
4240 #undef IS_SOLARIS_PT_INTERP
4241 #undef INCLUDE_SECTION_IN_SEGMENT
4242 #undef SEGMENT_AFTER_SEGMENT
4243 #undef SEGMENT_OVERLAPS
4244 return true;
4245 }
4246
4247 /* Copy private section information. This copies over the entsize
4248 field, and sometimes the info field. */
4249
4250 boolean
4251 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
4252 bfd *ibfd;
4253 asection *isec;
4254 bfd *obfd;
4255 asection *osec;
4256 {
4257 Elf_Internal_Shdr *ihdr, *ohdr;
4258
4259 if (ibfd->xvec->flavour != bfd_target_elf_flavour
4260 || obfd->xvec->flavour != bfd_target_elf_flavour)
4261 return true;
4262
4263 /* Copy over private BFD data if it has not already been copied.
4264 This must be done here, rather than in the copy_private_bfd_data
4265 entry point, because the latter is called after the section
4266 contents have been set, which means that the program headers have
4267 already been worked out. */
4268 if (elf_tdata (obfd)->segment_map == NULL
4269 && elf_tdata (ibfd)->phdr != NULL)
4270 {
4271 asection *s;
4272
4273 /* Only set up the segments if there are no more SEC_ALLOC
4274 sections. FIXME: This won't do the right thing if objcopy is
4275 used to remove the last SEC_ALLOC section, since objcopy
4276 won't call this routine in that case. */
4277 for (s = isec->next; s != NULL; s = s->next)
4278 if ((s->flags & SEC_ALLOC) != 0)
4279 break;
4280 if (s == NULL)
4281 {
4282 if (! copy_private_bfd_data (ibfd, obfd))
4283 return false;
4284 }
4285 }
4286
4287 ihdr = &elf_section_data (isec)->this_hdr;
4288 ohdr = &elf_section_data (osec)->this_hdr;
4289
4290 ohdr->sh_entsize = ihdr->sh_entsize;
4291
4292 if (ihdr->sh_type == SHT_SYMTAB
4293 || ihdr->sh_type == SHT_DYNSYM
4294 || ihdr->sh_type == SHT_GNU_verneed
4295 || ihdr->sh_type == SHT_GNU_verdef)
4296 ohdr->sh_info = ihdr->sh_info;
4297
4298 elf_section_data (osec)->use_rela_p
4299 = elf_section_data (isec)->use_rela_p;
4300
4301 return true;
4302 }
4303
4304 /* Copy private symbol information. If this symbol is in a section
4305 which we did not map into a BFD section, try to map the section
4306 index correctly. We use special macro definitions for the mapped
4307 section indices; these definitions are interpreted by the
4308 swap_out_syms function. */
4309
4310 #define MAP_ONESYMTAB (SHN_LORESERVE - 1)
4311 #define MAP_DYNSYMTAB (SHN_LORESERVE - 2)
4312 #define MAP_STRTAB (SHN_LORESERVE - 3)
4313 #define MAP_SHSTRTAB (SHN_LORESERVE - 4)
4314
4315 boolean
4316 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
4317 bfd *ibfd;
4318 asymbol *isymarg;
4319 bfd *obfd;
4320 asymbol *osymarg;
4321 {
4322 elf_symbol_type *isym, *osym;
4323
4324 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4325 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4326 return true;
4327
4328 isym = elf_symbol_from (ibfd, isymarg);
4329 osym = elf_symbol_from (obfd, osymarg);
4330
4331 if (isym != NULL
4332 && osym != NULL
4333 && bfd_is_abs_section (isym->symbol.section))
4334 {
4335 unsigned int shndx;
4336
4337 shndx = isym->internal_elf_sym.st_shndx;
4338 if (shndx == elf_onesymtab (ibfd))
4339 shndx = MAP_ONESYMTAB;
4340 else if (shndx == elf_dynsymtab (ibfd))
4341 shndx = MAP_DYNSYMTAB;
4342 else if (shndx == elf_tdata (ibfd)->strtab_section)
4343 shndx = MAP_STRTAB;
4344 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
4345 shndx = MAP_SHSTRTAB;
4346 osym->internal_elf_sym.st_shndx = shndx;
4347 }
4348
4349 return true;
4350 }
4351
4352 /* Swap out the symbols. */
4353
4354 static boolean
4355 swap_out_syms (abfd, sttp, relocatable_p)
4356 bfd *abfd;
4357 struct bfd_strtab_hash **sttp;
4358 int relocatable_p;
4359 {
4360 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4361
4362 if (!elf_map_symbols (abfd))
4363 return false;
4364
4365 /* Dump out the symtabs. */
4366 {
4367 int symcount = bfd_get_symcount (abfd);
4368 asymbol **syms = bfd_get_outsymbols (abfd);
4369 struct bfd_strtab_hash *stt;
4370 Elf_Internal_Shdr *symtab_hdr;
4371 Elf_Internal_Shdr *symstrtab_hdr;
4372 char *outbound_syms;
4373 int idx;
4374
4375 stt = _bfd_elf_stringtab_init ();
4376 if (stt == NULL)
4377 return false;
4378
4379 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4380 symtab_hdr->sh_type = SHT_SYMTAB;
4381 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
4382 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
4383 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
4384 symtab_hdr->sh_addralign = bed->s->file_align;
4385
4386 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4387 symstrtab_hdr->sh_type = SHT_STRTAB;
4388
4389 outbound_syms = bfd_alloc (abfd,
4390 (1 + symcount) * bed->s->sizeof_sym);
4391 if (outbound_syms == NULL)
4392 return false;
4393 symtab_hdr->contents = (PTR) outbound_syms;
4394
4395 /* now generate the data (for "contents") */
4396 {
4397 /* Fill in zeroth symbol and swap it out. */
4398 Elf_Internal_Sym sym;
4399 sym.st_name = 0;
4400 sym.st_value = 0;
4401 sym.st_size = 0;
4402 sym.st_info = 0;
4403 sym.st_other = 0;
4404 sym.st_shndx = SHN_UNDEF;
4405 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
4406 outbound_syms += bed->s->sizeof_sym;
4407 }
4408 for (idx = 0; idx < symcount; idx++)
4409 {
4410 Elf_Internal_Sym sym;
4411 bfd_vma value = syms[idx]->value;
4412 elf_symbol_type *type_ptr;
4413 flagword flags = syms[idx]->flags;
4414 int type;
4415
4416 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
4417 {
4418 /* Local section symbols have no name. */
4419 sym.st_name = 0;
4420 }
4421 else
4422 {
4423 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
4424 syms[idx]->name,
4425 true, false);
4426 if (sym.st_name == (unsigned long) -1)
4427 return false;
4428 }
4429
4430 type_ptr = elf_symbol_from (abfd, syms[idx]);
4431
4432 if ((flags & BSF_SECTION_SYM) == 0
4433 && bfd_is_com_section (syms[idx]->section))
4434 {
4435 /* ELF common symbols put the alignment into the `value' field,
4436 and the size into the `size' field. This is backwards from
4437 how BFD handles it, so reverse it here. */
4438 sym.st_size = value;
4439 if (type_ptr == NULL
4440 || type_ptr->internal_elf_sym.st_value == 0)
4441 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
4442 else
4443 sym.st_value = type_ptr->internal_elf_sym.st_value;
4444 sym.st_shndx = _bfd_elf_section_from_bfd_section
4445 (abfd, syms[idx]->section);
4446 }
4447 else
4448 {
4449 asection *sec = syms[idx]->section;
4450 int shndx;
4451
4452 if (sec->output_section)
4453 {
4454 value += sec->output_offset;
4455 sec = sec->output_section;
4456 }
4457 /* Don't add in the section vma for relocatable output. */
4458 if (! relocatable_p)
4459 value += sec->vma;
4460 sym.st_value = value;
4461 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
4462
4463 if (bfd_is_abs_section (sec)
4464 && type_ptr != NULL
4465 && type_ptr->internal_elf_sym.st_shndx != 0)
4466 {
4467 /* This symbol is in a real ELF section which we did
4468 not create as a BFD section. Undo the mapping done
4469 by copy_private_symbol_data. */
4470 shndx = type_ptr->internal_elf_sym.st_shndx;
4471 switch (shndx)
4472 {
4473 case MAP_ONESYMTAB:
4474 shndx = elf_onesymtab (abfd);
4475 break;
4476 case MAP_DYNSYMTAB:
4477 shndx = elf_dynsymtab (abfd);
4478 break;
4479 case MAP_STRTAB:
4480 shndx = elf_tdata (abfd)->strtab_section;
4481 break;
4482 case MAP_SHSTRTAB:
4483 shndx = elf_tdata (abfd)->shstrtab_section;
4484 break;
4485 default:
4486 break;
4487 }
4488 }
4489 else
4490 {
4491 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
4492
4493 if (shndx == -1)
4494 {
4495 asection *sec2;
4496
4497 /* Writing this would be a hell of a lot easier if
4498 we had some decent documentation on bfd, and
4499 knew what to expect of the library, and what to
4500 demand of applications. For example, it
4501 appears that `objcopy' might not set the
4502 section of a symbol to be a section that is
4503 actually in the output file. */
4504 sec2 = bfd_get_section_by_name (abfd, sec->name);
4505 BFD_ASSERT (sec2 != 0);
4506 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
4507 BFD_ASSERT (shndx != -1);
4508 }
4509 }
4510
4511 sym.st_shndx = shndx;
4512 }
4513
4514 if ((flags & BSF_FUNCTION) != 0)
4515 type = STT_FUNC;
4516 else if ((flags & BSF_OBJECT) != 0)
4517 type = STT_OBJECT;
4518 else
4519 type = STT_NOTYPE;
4520
4521 /* Processor-specific types */
4522 if (type_ptr != NULL
4523 && bed->elf_backend_get_symbol_type)
4524 type = (*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type);
4525
4526 if (flags & BSF_SECTION_SYM)
4527 {
4528 if (flags & BSF_GLOBAL)
4529 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
4530 else
4531 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4532 }
4533 else if (bfd_is_com_section (syms[idx]->section))
4534 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
4535 else if (bfd_is_und_section (syms[idx]->section))
4536 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
4537 ? STB_WEAK
4538 : STB_GLOBAL),
4539 type);
4540 else if (flags & BSF_FILE)
4541 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4542 else
4543 {
4544 int bind = STB_LOCAL;
4545
4546 if (flags & BSF_LOCAL)
4547 bind = STB_LOCAL;
4548 else if (flags & BSF_WEAK)
4549 bind = STB_WEAK;
4550 else if (flags & BSF_GLOBAL)
4551 bind = STB_GLOBAL;
4552
4553 sym.st_info = ELF_ST_INFO (bind, type);
4554 }
4555
4556 if (type_ptr != NULL)
4557 sym.st_other = type_ptr->internal_elf_sym.st_other;
4558 else
4559 sym.st_other = 0;
4560
4561 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
4562 outbound_syms += bed->s->sizeof_sym;
4563 }
4564
4565 *sttp = stt;
4566 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
4567 symstrtab_hdr->sh_type = SHT_STRTAB;
4568
4569 symstrtab_hdr->sh_flags = 0;
4570 symstrtab_hdr->sh_addr = 0;
4571 symstrtab_hdr->sh_entsize = 0;
4572 symstrtab_hdr->sh_link = 0;
4573 symstrtab_hdr->sh_info = 0;
4574 symstrtab_hdr->sh_addralign = 1;
4575 }
4576
4577 return true;
4578 }
4579
4580 /* Return the number of bytes required to hold the symtab vector.
4581
4582 Note that we base it on the count plus 1, since we will null terminate
4583 the vector allocated based on this size. However, the ELF symbol table
4584 always has a dummy entry as symbol #0, so it ends up even. */
4585
4586 long
4587 _bfd_elf_get_symtab_upper_bound (abfd)
4588 bfd *abfd;
4589 {
4590 long symcount;
4591 long symtab_size;
4592 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
4593
4594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
4595 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
4596
4597 return symtab_size;
4598 }
4599
4600 long
4601 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
4602 bfd *abfd;
4603 {
4604 long symcount;
4605 long symtab_size;
4606 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4607
4608 if (elf_dynsymtab (abfd) == 0)
4609 {
4610 bfd_set_error (bfd_error_invalid_operation);
4611 return -1;
4612 }
4613
4614 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
4615 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
4616
4617 return symtab_size;
4618 }
4619
4620 long
4621 _bfd_elf_get_reloc_upper_bound (abfd, asect)
4622 bfd *abfd ATTRIBUTE_UNUSED;
4623 sec_ptr asect;
4624 {
4625 return (asect->reloc_count + 1) * sizeof (arelent *);
4626 }
4627
4628 /* Canonicalize the relocs. */
4629
4630 long
4631 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
4632 bfd *abfd;
4633 sec_ptr section;
4634 arelent **relptr;
4635 asymbol **symbols;
4636 {
4637 arelent *tblptr;
4638 unsigned int i;
4639
4640 if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd,
4641 section,
4642 symbols,
4643 false))
4644 return -1;
4645
4646 tblptr = section->relocation;
4647 for (i = 0; i < section->reloc_count; i++)
4648 *relptr++ = tblptr++;
4649
4650 *relptr = NULL;
4651
4652 return section->reloc_count;
4653 }
4654
4655 long
4656 _bfd_elf_get_symtab (abfd, alocation)
4657 bfd *abfd;
4658 asymbol **alocation;
4659 {
4660 long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table
4661 (abfd, alocation, false);
4662
4663 if (symcount >= 0)
4664 bfd_get_symcount (abfd) = symcount;
4665 return symcount;
4666 }
4667
4668 long
4669 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
4670 bfd *abfd;
4671 asymbol **alocation;
4672 {
4673 return get_elf_backend_data (abfd)->s->slurp_symbol_table
4674 (abfd, alocation, true);
4675 }
4676
4677 /* Return the size required for the dynamic reloc entries. Any
4678 section that was actually installed in the BFD, and has type
4679 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
4680 considered to be a dynamic reloc section. */
4681
4682 long
4683 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
4684 bfd *abfd;
4685 {
4686 long ret;
4687 asection *s;
4688
4689 if (elf_dynsymtab (abfd) == 0)
4690 {
4691 bfd_set_error (bfd_error_invalid_operation);
4692 return -1;
4693 }
4694
4695 ret = sizeof (arelent *);
4696 for (s = abfd->sections; s != NULL; s = s->next)
4697 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
4698 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
4699 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
4700 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
4701 * sizeof (arelent *));
4702
4703 return ret;
4704 }
4705
4706 /* Canonicalize the dynamic relocation entries. Note that we return
4707 the dynamic relocations as a single block, although they are
4708 actually associated with particular sections; the interface, which
4709 was designed for SunOS style shared libraries, expects that there
4710 is only one set of dynamic relocs. Any section that was actually
4711 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
4712 the dynamic symbol table, is considered to be a dynamic reloc
4713 section. */
4714
4715 long
4716 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
4717 bfd *abfd;
4718 arelent **storage;
4719 asymbol **syms;
4720 {
4721 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
4722 asection *s;
4723 long ret;
4724
4725 if (elf_dynsymtab (abfd) == 0)
4726 {
4727 bfd_set_error (bfd_error_invalid_operation);
4728 return -1;
4729 }
4730
4731 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
4732 ret = 0;
4733 for (s = abfd->sections; s != NULL; s = s->next)
4734 {
4735 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
4736 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
4737 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
4738 {
4739 arelent *p;
4740 long count, i;
4741
4742 if (! (*slurp_relocs) (abfd, s, syms, true))
4743 return -1;
4744 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
4745 p = s->relocation;
4746 for (i = 0; i < count; i++)
4747 *storage++ = p++;
4748 ret += count;
4749 }
4750 }
4751
4752 *storage = NULL;
4753
4754 return ret;
4755 }
4756 \f
4757 /* Read in the version information. */
4758
4759 boolean
4760 _bfd_elf_slurp_version_tables (abfd)
4761 bfd *abfd;
4762 {
4763 bfd_byte *contents = NULL;
4764
4765 if (elf_dynverdef (abfd) != 0)
4766 {
4767 Elf_Internal_Shdr *hdr;
4768 Elf_External_Verdef *everdef;
4769 Elf_Internal_Verdef *iverdef;
4770 Elf_Internal_Verdef *iverdefarr;
4771 Elf_Internal_Verdef iverdefmem;
4772 unsigned int i;
4773 unsigned int maxidx;
4774
4775 hdr = &elf_tdata (abfd)->dynverdef_hdr;
4776
4777 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4778 if (contents == NULL)
4779 goto error_return;
4780 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4781 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
4782 goto error_return;
4783
4784 /* We know the number of entries in the section but not the maximum
4785 index. Therefore we have to run through all entries and find
4786 the maximum. */
4787 everdef = (Elf_External_Verdef *) contents;
4788 maxidx = 0;
4789 for (i = 0; i < hdr->sh_info; ++i)
4790 {
4791 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
4792
4793 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
4794 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
4795
4796 everdef = ((Elf_External_Verdef *)
4797 ((bfd_byte *) everdef + iverdefmem.vd_next));
4798 }
4799
4800 elf_tdata (abfd)->verdef =
4801 ((Elf_Internal_Verdef *)
4802 bfd_zalloc (abfd, maxidx * sizeof (Elf_Internal_Verdef)));
4803 if (elf_tdata (abfd)->verdef == NULL)
4804 goto error_return;
4805
4806 elf_tdata (abfd)->cverdefs = maxidx;
4807
4808 everdef = (Elf_External_Verdef *) contents;
4809 iverdefarr = elf_tdata (abfd)->verdef;
4810 for (i = 0; i < hdr->sh_info; i++)
4811 {
4812 Elf_External_Verdaux *everdaux;
4813 Elf_Internal_Verdaux *iverdaux;
4814 unsigned int j;
4815
4816 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
4817
4818 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
4819 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
4820
4821 iverdef->vd_bfd = abfd;
4822
4823 iverdef->vd_auxptr = ((Elf_Internal_Verdaux *)
4824 bfd_alloc (abfd,
4825 (iverdef->vd_cnt
4826 * sizeof (Elf_Internal_Verdaux))));
4827 if (iverdef->vd_auxptr == NULL)
4828 goto error_return;
4829
4830 everdaux = ((Elf_External_Verdaux *)
4831 ((bfd_byte *) everdef + iverdef->vd_aux));
4832 iverdaux = iverdef->vd_auxptr;
4833 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
4834 {
4835 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
4836
4837 iverdaux->vda_nodename =
4838 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4839 iverdaux->vda_name);
4840 if (iverdaux->vda_nodename == NULL)
4841 goto error_return;
4842
4843 if (j + 1 < iverdef->vd_cnt)
4844 iverdaux->vda_nextptr = iverdaux + 1;
4845 else
4846 iverdaux->vda_nextptr = NULL;
4847
4848 everdaux = ((Elf_External_Verdaux *)
4849 ((bfd_byte *) everdaux + iverdaux->vda_next));
4850 }
4851
4852 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
4853
4854 if (i + 1 < hdr->sh_info)
4855 iverdef->vd_nextdef = iverdef + 1;
4856 else
4857 iverdef->vd_nextdef = NULL;
4858
4859 everdef = ((Elf_External_Verdef *)
4860 ((bfd_byte *) everdef + iverdef->vd_next));
4861 }
4862
4863 free (contents);
4864 contents = NULL;
4865 }
4866
4867 if (elf_dynverref (abfd) != 0)
4868 {
4869 Elf_Internal_Shdr *hdr;
4870 Elf_External_Verneed *everneed;
4871 Elf_Internal_Verneed *iverneed;
4872 unsigned int i;
4873
4874 hdr = &elf_tdata (abfd)->dynverref_hdr;
4875
4876 elf_tdata (abfd)->verref =
4877 ((Elf_Internal_Verneed *)
4878 bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed)));
4879 if (elf_tdata (abfd)->verref == NULL)
4880 goto error_return;
4881
4882 elf_tdata (abfd)->cverrefs = hdr->sh_info;
4883
4884 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4885 if (contents == NULL)
4886 goto error_return;
4887 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4888 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
4889 goto error_return;
4890
4891 everneed = (Elf_External_Verneed *) contents;
4892 iverneed = elf_tdata (abfd)->verref;
4893 for (i = 0; i < hdr->sh_info; i++, iverneed++)
4894 {
4895 Elf_External_Vernaux *evernaux;
4896 Elf_Internal_Vernaux *ivernaux;
4897 unsigned int j;
4898
4899 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
4900
4901 iverneed->vn_bfd = abfd;
4902
4903 iverneed->vn_filename =
4904 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4905 iverneed->vn_file);
4906 if (iverneed->vn_filename == NULL)
4907 goto error_return;
4908
4909 iverneed->vn_auxptr =
4910 ((Elf_Internal_Vernaux *)
4911 bfd_alloc (abfd,
4912 iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux)));
4913
4914 evernaux = ((Elf_External_Vernaux *)
4915 ((bfd_byte *) everneed + iverneed->vn_aux));
4916 ivernaux = iverneed->vn_auxptr;
4917 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
4918 {
4919 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
4920
4921 ivernaux->vna_nodename =
4922 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4923 ivernaux->vna_name);
4924 if (ivernaux->vna_nodename == NULL)
4925 goto error_return;
4926
4927 if (j + 1 < iverneed->vn_cnt)
4928 ivernaux->vna_nextptr = ivernaux + 1;
4929 else
4930 ivernaux->vna_nextptr = NULL;
4931
4932 evernaux = ((Elf_External_Vernaux *)
4933 ((bfd_byte *) evernaux + ivernaux->vna_next));
4934 }
4935
4936 if (i + 1 < hdr->sh_info)
4937 iverneed->vn_nextref = iverneed + 1;
4938 else
4939 iverneed->vn_nextref = NULL;
4940
4941 everneed = ((Elf_External_Verneed *)
4942 ((bfd_byte *) everneed + iverneed->vn_next));
4943 }
4944
4945 free (contents);
4946 contents = NULL;
4947 }
4948
4949 return true;
4950
4951 error_return:
4952 if (contents == NULL)
4953 free (contents);
4954 return false;
4955 }
4956 \f
4957 asymbol *
4958 _bfd_elf_make_empty_symbol (abfd)
4959 bfd *abfd;
4960 {
4961 elf_symbol_type *newsym;
4962
4963 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
4964 if (!newsym)
4965 return NULL;
4966 else
4967 {
4968 newsym->symbol.the_bfd = abfd;
4969 return &newsym->symbol;
4970 }
4971 }
4972
4973 void
4974 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
4975 bfd *ignore_abfd ATTRIBUTE_UNUSED;
4976 asymbol *symbol;
4977 symbol_info *ret;
4978 {
4979 bfd_symbol_info (symbol, ret);
4980 }
4981
4982 /* Return whether a symbol name implies a local symbol. Most targets
4983 use this function for the is_local_label_name entry point, but some
4984 override it. */
4985
4986 boolean
4987 _bfd_elf_is_local_label_name (abfd, name)
4988 bfd *abfd ATTRIBUTE_UNUSED;
4989 const char *name;
4990 {
4991 /* Normal local symbols start with ``.L''. */
4992 if (name[0] == '.' && name[1] == 'L')
4993 return true;
4994
4995 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
4996 DWARF debugging symbols starting with ``..''. */
4997 if (name[0] == '.' && name[1] == '.')
4998 return true;
4999
5000 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5001 emitting DWARF debugging output. I suspect this is actually a
5002 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5003 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5004 underscore to be emitted on some ELF targets). For ease of use,
5005 we treat such symbols as local. */
5006 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5007 return true;
5008
5009 return false;
5010 }
5011
5012 alent *
5013 _bfd_elf_get_lineno (ignore_abfd, symbol)
5014 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5015 asymbol *symbol ATTRIBUTE_UNUSED;
5016 {
5017 abort ();
5018 return NULL;
5019 }
5020
5021 boolean
5022 _bfd_elf_set_arch_mach (abfd, arch, machine)
5023 bfd *abfd;
5024 enum bfd_architecture arch;
5025 unsigned long machine;
5026 {
5027 /* If this isn't the right architecture for this backend, and this
5028 isn't the generic backend, fail. */
5029 if (arch != get_elf_backend_data (abfd)->arch
5030 && arch != bfd_arch_unknown
5031 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5032 return false;
5033
5034 return bfd_default_set_arch_mach (abfd, arch, machine);
5035 }
5036
5037 /* Find the function to a particular section and offset,
5038 for error reporting. */
5039
5040 static boolean
5041 elf_find_function (abfd, section, symbols, offset,
5042 filename_ptr, functionname_ptr)
5043 bfd *abfd ATTRIBUTE_UNUSED;
5044 asection *section;
5045 asymbol **symbols;
5046 bfd_vma offset;
5047 const char **filename_ptr;
5048 const char **functionname_ptr;
5049 {
5050 const char *filename;
5051 asymbol *func;
5052 bfd_vma low_func;
5053 asymbol **p;
5054
5055 filename = NULL;
5056 func = NULL;
5057 low_func = 0;
5058
5059 for (p = symbols; *p != NULL; p++)
5060 {
5061 elf_symbol_type *q;
5062
5063 q = (elf_symbol_type *) *p;
5064
5065 if (bfd_get_section (&q->symbol) != section)
5066 continue;
5067
5068 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5069 {
5070 default:
5071 break;
5072 case STT_FILE:
5073 filename = bfd_asymbol_name (&q->symbol);
5074 break;
5075 case STT_NOTYPE:
5076 case STT_FUNC:
5077 if (q->symbol.section == section
5078 && q->symbol.value >= low_func
5079 && q->symbol.value <= offset)
5080 {
5081 func = (asymbol *) q;
5082 low_func = q->symbol.value;
5083 }
5084 break;
5085 }
5086 }
5087
5088 if (func == NULL)
5089 return false;
5090
5091 if (filename_ptr)
5092 *filename_ptr = filename;
5093 if (functionname_ptr)
5094 *functionname_ptr = bfd_asymbol_name (func);
5095
5096 return true;
5097 }
5098
5099 /* Find the nearest line to a particular section and offset,
5100 for error reporting. */
5101
5102 boolean
5103 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
5104 filename_ptr, functionname_ptr, line_ptr)
5105 bfd *abfd;
5106 asection *section;
5107 asymbol **symbols;
5108 bfd_vma offset;
5109 const char **filename_ptr;
5110 const char **functionname_ptr;
5111 unsigned int *line_ptr;
5112 {
5113 boolean found;
5114
5115 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5116 filename_ptr, functionname_ptr,
5117 line_ptr))
5118 {
5119 if (!*functionname_ptr)
5120 elf_find_function (abfd, section, symbols, offset,
5121 *filename_ptr ? NULL : filename_ptr,
5122 functionname_ptr);
5123
5124 return true;
5125 }
5126
5127 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
5128 filename_ptr, functionname_ptr,
5129 line_ptr, 0,
5130 &elf_tdata (abfd)->dwarf2_find_line_info))
5131 {
5132 if (!*functionname_ptr)
5133 elf_find_function (abfd, section, symbols, offset,
5134 *filename_ptr ? NULL : filename_ptr,
5135 functionname_ptr);
5136
5137 return true;
5138 }
5139
5140 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5141 &found, filename_ptr,
5142 functionname_ptr, line_ptr,
5143 &elf_tdata (abfd)->line_info))
5144 return false;
5145 if (found)
5146 return true;
5147
5148 if (symbols == NULL)
5149 return false;
5150
5151 if (! elf_find_function (abfd, section, symbols, offset,
5152 filename_ptr, functionname_ptr))
5153 return false;
5154
5155 *line_ptr = 0;
5156 return true;
5157 }
5158
5159 int
5160 _bfd_elf_sizeof_headers (abfd, reloc)
5161 bfd *abfd;
5162 boolean reloc;
5163 {
5164 int ret;
5165
5166 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
5167 if (! reloc)
5168 ret += get_program_header_size (abfd);
5169 return ret;
5170 }
5171
5172 boolean
5173 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
5174 bfd *abfd;
5175 sec_ptr section;
5176 PTR location;
5177 file_ptr offset;
5178 bfd_size_type count;
5179 {
5180 Elf_Internal_Shdr *hdr;
5181
5182 if (! abfd->output_has_begun
5183 && ! _bfd_elf_compute_section_file_positions
5184 (abfd, (struct bfd_link_info *) NULL))
5185 return false;
5186
5187 hdr = &elf_section_data (section)->this_hdr;
5188
5189 if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
5190 return false;
5191 if (bfd_write (location, 1, count, abfd) != count)
5192 return false;
5193
5194 return true;
5195 }
5196
5197 void
5198 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
5199 bfd *abfd ATTRIBUTE_UNUSED;
5200 arelent *cache_ptr ATTRIBUTE_UNUSED;
5201 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
5202 {
5203 abort ();
5204 }
5205
5206 #if 0
5207 void
5208 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
5209 bfd *abfd;
5210 arelent *cache_ptr;
5211 Elf_Internal_Rel *dst;
5212 {
5213 abort ();
5214 }
5215 #endif
5216
5217 /* Try to convert a non-ELF reloc into an ELF one. */
5218
5219 boolean
5220 _bfd_elf_validate_reloc (abfd, areloc)
5221 bfd *abfd;
5222 arelent *areloc;
5223 {
5224 /* Check whether we really have an ELF howto. */
5225
5226 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
5227 {
5228 bfd_reloc_code_real_type code;
5229 reloc_howto_type *howto;
5230
5231 /* Alien reloc: Try to determine its type to replace it with an
5232 equivalent ELF reloc. */
5233
5234 if (areloc->howto->pc_relative)
5235 {
5236 switch (areloc->howto->bitsize)
5237 {
5238 case 8:
5239 code = BFD_RELOC_8_PCREL;
5240 break;
5241 case 12:
5242 code = BFD_RELOC_12_PCREL;
5243 break;
5244 case 16:
5245 code = BFD_RELOC_16_PCREL;
5246 break;
5247 case 24:
5248 code = BFD_RELOC_24_PCREL;
5249 break;
5250 case 32:
5251 code = BFD_RELOC_32_PCREL;
5252 break;
5253 case 64:
5254 code = BFD_RELOC_64_PCREL;
5255 break;
5256 default:
5257 goto fail;
5258 }
5259
5260 howto = bfd_reloc_type_lookup (abfd, code);
5261
5262 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
5263 {
5264 if (howto->pcrel_offset)
5265 areloc->addend += areloc->address;
5266 else
5267 areloc->addend -= areloc->address; /* addend is unsigned!! */
5268 }
5269 }
5270 else
5271 {
5272 switch (areloc->howto->bitsize)
5273 {
5274 case 8:
5275 code = BFD_RELOC_8;
5276 break;
5277 case 14:
5278 code = BFD_RELOC_14;
5279 break;
5280 case 16:
5281 code = BFD_RELOC_16;
5282 break;
5283 case 26:
5284 code = BFD_RELOC_26;
5285 break;
5286 case 32:
5287 code = BFD_RELOC_32;
5288 break;
5289 case 64:
5290 code = BFD_RELOC_64;
5291 break;
5292 default:
5293 goto fail;
5294 }
5295
5296 howto = bfd_reloc_type_lookup (abfd, code);
5297 }
5298
5299 if (howto)
5300 areloc->howto = howto;
5301 else
5302 goto fail;
5303 }
5304
5305 return true;
5306
5307 fail:
5308 (*_bfd_error_handler)
5309 (_("%s: unsupported relocation type %s"),
5310 bfd_get_filename (abfd), areloc->howto->name);
5311 bfd_set_error (bfd_error_bad_value);
5312 return false;
5313 }
5314
5315 boolean
5316 _bfd_elf_close_and_cleanup (abfd)
5317 bfd *abfd;
5318 {
5319 if (bfd_get_format (abfd) == bfd_object)
5320 {
5321 if (elf_shstrtab (abfd) != NULL)
5322 _bfd_stringtab_free (elf_shstrtab (abfd));
5323 }
5324
5325 return _bfd_generic_close_and_cleanup (abfd);
5326 }
5327
5328 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
5329 in the relocation's offset. Thus we cannot allow any sort of sanity
5330 range-checking to interfere. There is nothing else to do in processing
5331 this reloc. */
5332
5333 bfd_reloc_status_type
5334 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
5335 bfd *abfd ATTRIBUTE_UNUSED;
5336 arelent *re ATTRIBUTE_UNUSED;
5337 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
5338 PTR data ATTRIBUTE_UNUSED;
5339 asection *is ATTRIBUTE_UNUSED;
5340 bfd *obfd ATTRIBUTE_UNUSED;
5341 char **errmsg ATTRIBUTE_UNUSED;
5342 {
5343 return bfd_reloc_ok;
5344 }
5345 \f
5346 /* Elf core file support. Much of this only works on native
5347 toolchains, since we rely on knowing the
5348 machine-dependent procfs structure in order to pick
5349 out details about the corefile. */
5350
5351 #ifdef HAVE_SYS_PROCFS_H
5352 # include <sys/procfs.h>
5353 #endif
5354
5355 /* FIXME: this is kinda wrong, but it's what gdb wants. */
5356
5357 static int
5358 elfcore_make_pid (abfd)
5359 bfd *abfd;
5360 {
5361 return ((elf_tdata (abfd)->core_lwpid << 16)
5362 + (elf_tdata (abfd)->core_pid));
5363 }
5364
5365 /* If there isn't a section called NAME, make one, using
5366 data from SECT. Note, this function will generate a
5367 reference to NAME, so you shouldn't deallocate or
5368 overwrite it. */
5369
5370 static boolean
5371 elfcore_maybe_make_sect (abfd, name, sect)
5372 bfd *abfd;
5373 char *name;
5374 asection *sect;
5375 {
5376 asection *sect2;
5377
5378 if (bfd_get_section_by_name (abfd, name) != NULL)
5379 return true;
5380
5381 sect2 = bfd_make_section (abfd, name);
5382 if (sect2 == NULL)
5383 return false;
5384
5385 sect2->_raw_size = sect->_raw_size;
5386 sect2->filepos = sect->filepos;
5387 sect2->flags = sect->flags;
5388 sect2->alignment_power = sect->alignment_power;
5389 return true;
5390 }
5391
5392 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
5393 actually creates up to two pseudosections:
5394 - For the single-threaded case, a section named NAME, unless
5395 such a section already exists.
5396 - For the multi-threaded case, a section named "NAME/PID", where
5397 PID is elfcore_make_pid (abfd).
5398 Both pseudosections have identical contents. */
5399 boolean
5400 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
5401 bfd *abfd;
5402 char *name;
5403 int size;
5404 int filepos;
5405 {
5406 char buf[100];
5407 char *threaded_name;
5408 asection *sect;
5409
5410 /* Build the section name. */
5411
5412 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
5413 threaded_name = bfd_alloc (abfd, strlen (buf) + 1);
5414 if (threaded_name == NULL)
5415 return false;
5416 strcpy (threaded_name, buf);
5417
5418 sect = bfd_make_section (abfd, threaded_name);
5419 if (sect == NULL)
5420 return false;
5421 sect->_raw_size = size;
5422 sect->filepos = filepos;
5423 sect->flags = SEC_HAS_CONTENTS;
5424 sect->alignment_power = 2;
5425
5426 return elfcore_maybe_make_sect (abfd, name, sect);
5427 }
5428
5429 /* prstatus_t exists on:
5430 solaris 2.5+
5431 linux 2.[01] + glibc
5432 unixware 4.2
5433 */
5434
5435 #if defined (HAVE_PRSTATUS_T)
5436 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
5437
5438 static boolean
5439 elfcore_grok_prstatus (abfd, note)
5440 bfd *abfd;
5441 Elf_Internal_Note *note;
5442 {
5443 int raw_size;
5444 int offset;
5445
5446 if (note->descsz == sizeof (prstatus_t))
5447 {
5448 prstatus_t prstat;
5449
5450 raw_size = sizeof (prstat.pr_reg);
5451 offset = offsetof (prstatus_t, pr_reg);
5452 memcpy (&prstat, note->descdata, sizeof (prstat));
5453
5454 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
5455 elf_tdata (abfd)->core_pid = prstat.pr_pid;
5456
5457 /* pr_who exists on:
5458 solaris 2.5+
5459 unixware 4.2
5460 pr_who doesn't exist on:
5461 linux 2.[01]
5462 */
5463 #if defined (HAVE_PRSTATUS_T_PR_WHO)
5464 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
5465 #endif
5466 }
5467 #if defined (HAVE_PRSTATUS32_T)
5468 else if (note->descsz == sizeof (prstatus32_t))
5469 {
5470 /* 64-bit host, 32-bit corefile */
5471 prstatus32_t prstat;
5472
5473 raw_size = sizeof (prstat.pr_reg);
5474 offset = offsetof (prstatus32_t, pr_reg);
5475 memcpy (&prstat, note->descdata, sizeof (prstat));
5476
5477 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
5478 elf_tdata (abfd)->core_pid = prstat.pr_pid;
5479
5480 /* pr_who exists on:
5481 solaris 2.5+
5482 unixware 4.2
5483 pr_who doesn't exist on:
5484 linux 2.[01]
5485 */
5486 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
5487 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
5488 #endif
5489 }
5490 #endif /* HAVE_PRSTATUS32_T */
5491 else
5492 {
5493 /* Fail - we don't know how to handle any other
5494 note size (ie. data object type). */
5495 return true;
5496 }
5497
5498 /* Make a ".reg/999" section and a ".reg" section. */
5499 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
5500 raw_size, note->descpos + offset);
5501 }
5502 #endif /* defined (HAVE_PRSTATUS_T) */
5503
5504 /* Create a pseudosection containing the exact contents of NOTE. */
5505 static boolean
5506 elfcore_make_note_pseudosection (abfd, name, note)
5507 bfd *abfd;
5508 char *name;
5509 Elf_Internal_Note *note;
5510 {
5511 return _bfd_elfcore_make_pseudosection (abfd, name,
5512 note->descsz, note->descpos);
5513 }
5514
5515 /* There isn't a consistent prfpregset_t across platforms,
5516 but it doesn't matter, because we don't have to pick this
5517 data structure apart. */
5518
5519 static boolean
5520 elfcore_grok_prfpreg (abfd, note)
5521 bfd *abfd;
5522 Elf_Internal_Note *note;
5523 {
5524 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
5525 }
5526
5527 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
5528 type of 5 (NT_PRXFPREG). Just include the whole note's contents
5529 literally. */
5530
5531 static boolean
5532 elfcore_grok_prxfpreg (abfd, note)
5533 bfd *abfd;
5534 Elf_Internal_Note *note;
5535 {
5536 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
5537 }
5538
5539 #if defined (HAVE_PRPSINFO_T)
5540 typedef prpsinfo_t elfcore_psinfo_t;
5541 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
5542 typedef prpsinfo32_t elfcore_psinfo32_t;
5543 #endif
5544 #endif
5545
5546 #if defined (HAVE_PSINFO_T)
5547 typedef psinfo_t elfcore_psinfo_t;
5548 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
5549 typedef psinfo32_t elfcore_psinfo32_t;
5550 #endif
5551 #endif
5552
5553 /* return a malloc'ed copy of a string at START which is at
5554 most MAX bytes long, possibly without a terminating '\0'.
5555 the copy will always have a terminating '\0'. */
5556
5557 char *
5558 _bfd_elfcore_strndup (abfd, start, max)
5559 bfd *abfd;
5560 char *start;
5561 int max;
5562 {
5563 char *dup;
5564 char *end = memchr (start, '\0', max);
5565 int len;
5566
5567 if (end == NULL)
5568 len = max;
5569 else
5570 len = end - start;
5571
5572 dup = bfd_alloc (abfd, len + 1);
5573 if (dup == NULL)
5574 return NULL;
5575
5576 memcpy (dup, start, len);
5577 dup[len] = '\0';
5578
5579 return dup;
5580 }
5581
5582 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
5583 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
5584
5585 static boolean
5586 elfcore_grok_psinfo (abfd, note)
5587 bfd *abfd;
5588 Elf_Internal_Note *note;
5589 {
5590 if (note->descsz == sizeof (elfcore_psinfo_t))
5591 {
5592 elfcore_psinfo_t psinfo;
5593
5594 memcpy (&psinfo, note->descdata, sizeof (psinfo));
5595
5596 elf_tdata (abfd)->core_program
5597 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
5598 sizeof (psinfo.pr_fname));
5599
5600 elf_tdata (abfd)->core_command
5601 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
5602 sizeof (psinfo.pr_psargs));
5603 }
5604 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
5605 else if (note->descsz == sizeof (elfcore_psinfo32_t))
5606 {
5607 /* 64-bit host, 32-bit corefile */
5608 elfcore_psinfo32_t psinfo;
5609
5610 memcpy (&psinfo, note->descdata, sizeof (psinfo));
5611
5612 elf_tdata (abfd)->core_program
5613 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
5614 sizeof (psinfo.pr_fname));
5615
5616 elf_tdata (abfd)->core_command
5617 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
5618 sizeof (psinfo.pr_psargs));
5619 }
5620 #endif
5621
5622 else
5623 {
5624 /* Fail - we don't know how to handle any other
5625 note size (ie. data object type). */
5626 return true;
5627 }
5628
5629 /* Note that for some reason, a spurious space is tacked
5630 onto the end of the args in some (at least one anyway)
5631 implementations, so strip it off if it exists. */
5632
5633 {
5634 char *command = elf_tdata (abfd)->core_command;
5635 int n = strlen (command);
5636
5637 if (0 < n && command[n - 1] == ' ')
5638 command[n - 1] = '\0';
5639 }
5640
5641 return true;
5642 }
5643 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
5644
5645 #if defined (HAVE_PSTATUS_T)
5646 static boolean
5647 elfcore_grok_pstatus (abfd, note)
5648 bfd *abfd;
5649 Elf_Internal_Note *note;
5650 {
5651 if (note->descsz == sizeof (pstatus_t)
5652 #if defined (HAVE_PXSTATUS_T)
5653 || note->descsz == sizeof (pxstatus_t)
5654 #endif
5655 )
5656 {
5657 pstatus_t pstat;
5658
5659 memcpy (&pstat, note->descdata, sizeof (pstat));
5660
5661 elf_tdata (abfd)->core_pid = pstat.pr_pid;
5662 }
5663 #if defined (HAVE_PSTATUS32_T)
5664 else if (note->descsz == sizeof (pstatus32_t))
5665 {
5666 /* 64-bit host, 32-bit corefile */
5667 pstatus32_t pstat;
5668
5669 memcpy (&pstat, note->descdata, sizeof (pstat));
5670
5671 elf_tdata (abfd)->core_pid = pstat.pr_pid;
5672 }
5673 #endif
5674 /* Could grab some more details from the "representative"
5675 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
5676 NT_LWPSTATUS note, presumably. */
5677
5678 return true;
5679 }
5680 #endif /* defined (HAVE_PSTATUS_T) */
5681
5682 #if defined (HAVE_LWPSTATUS_T)
5683 static boolean
5684 elfcore_grok_lwpstatus (abfd, note)
5685 bfd *abfd;
5686 Elf_Internal_Note *note;
5687 {
5688 lwpstatus_t lwpstat;
5689 char buf[100];
5690 char *name;
5691 asection *sect;
5692
5693 if (note->descsz != sizeof (lwpstat)
5694 #if defined (HAVE_LWPXSTATUS_T)
5695 && note->descsz != sizeof (lwpxstatus_t)
5696 #endif
5697 )
5698 return true;
5699
5700 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
5701
5702 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
5703 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
5704
5705 /* Make a ".reg/999" section. */
5706
5707 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
5708 name = bfd_alloc (abfd, strlen (buf) + 1);
5709 if (name == NULL)
5710 return false;
5711 strcpy (name, buf);
5712
5713 sect = bfd_make_section (abfd, name);
5714 if (sect == NULL)
5715 return false;
5716
5717 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
5718 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
5719 sect->filepos = note->descpos
5720 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
5721 #endif
5722
5723 #if defined (HAVE_LWPSTATUS_T_PR_REG)
5724 sect->_raw_size = sizeof (lwpstat.pr_reg);
5725 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
5726 #endif
5727
5728 sect->flags = SEC_HAS_CONTENTS;
5729 sect->alignment_power = 2;
5730
5731 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
5732 return false;
5733
5734 /* Make a ".reg2/999" section */
5735
5736 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
5737 name = bfd_alloc (abfd, strlen (buf) + 1);
5738 if (name == NULL)
5739 return false;
5740 strcpy (name, buf);
5741
5742 sect = bfd_make_section (abfd, name);
5743 if (sect == NULL)
5744 return false;
5745
5746 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
5747 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
5748 sect->filepos = note->descpos
5749 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
5750 #endif
5751
5752 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
5753 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
5754 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
5755 #endif
5756
5757 sect->flags = SEC_HAS_CONTENTS;
5758 sect->alignment_power = 2;
5759
5760 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
5761 }
5762 #endif /* defined (HAVE_LWPSTATUS_T) */
5763
5764 #if defined (HAVE_WIN32_PSTATUS_T)
5765 static boolean
5766 elfcore_grok_win32pstatus (abfd, note)
5767 bfd *abfd;
5768 Elf_Internal_Note *note;
5769 {
5770 char buf[30];
5771 char *name;
5772 asection *sect;
5773 win32_pstatus_t pstatus;
5774
5775 if (note->descsz < sizeof (pstatus))
5776 return true;
5777
5778 memcpy (&pstatus, note->descdata, note->descsz);
5779
5780 switch (pstatus.data_type)
5781 {
5782 case NOTE_INFO_PROCESS:
5783 /* FIXME: need to add ->core_command. */
5784 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
5785 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
5786 break;
5787
5788 case NOTE_INFO_THREAD:
5789 /* Make a ".reg/999" section. */
5790 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
5791
5792 name = bfd_alloc (abfd, strlen (buf) + 1);
5793 if (name == NULL)
5794 return false;
5795
5796 strcpy (name, buf);
5797
5798 sect = bfd_make_section (abfd, name);
5799 if (sect == NULL)
5800 return false;
5801
5802 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
5803 sect->filepos = note->descpos + offsetof (struct win32_pstatus,
5804 data.thread_info.thread_context);
5805 sect->flags = SEC_HAS_CONTENTS;
5806 sect->alignment_power = 2;
5807
5808 if (pstatus.data.thread_info.is_active_thread)
5809 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
5810 return false;
5811 break;
5812
5813 case NOTE_INFO_MODULE:
5814 /* Make a ".module/xxxxxxxx" section. */
5815 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
5816
5817 name = bfd_alloc (abfd, strlen (buf) + 1);
5818 if (name == NULL)
5819 return false;
5820
5821 strcpy (name, buf);
5822
5823 sect = bfd_make_section (abfd, name);
5824
5825 if (sect == NULL)
5826 return false;
5827
5828 sect->_raw_size = note->descsz;
5829 sect->filepos = note->descpos;
5830 sect->flags = SEC_HAS_CONTENTS;
5831 sect->alignment_power = 2;
5832 break;
5833
5834 default:
5835 return true;
5836 }
5837
5838 return true;
5839 }
5840 #endif /* HAVE_WIN32_PSTATUS_T */
5841
5842 static boolean
5843 elfcore_grok_note (abfd, note)
5844 bfd *abfd;
5845 Elf_Internal_Note *note;
5846 {
5847 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5848
5849 switch (note->type)
5850 {
5851 default:
5852 return true;
5853
5854 case NT_PRSTATUS:
5855 if (bed->elf_backend_grok_prstatus)
5856 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
5857 return true;
5858 #if defined (HAVE_PRSTATUS_T)
5859 return elfcore_grok_prstatus (abfd, note);
5860 #else
5861 return true;
5862 #endif
5863
5864 #if defined (HAVE_PSTATUS_T)
5865 case NT_PSTATUS:
5866 return elfcore_grok_pstatus (abfd, note);
5867 #endif
5868
5869 #if defined (HAVE_LWPSTATUS_T)
5870 case NT_LWPSTATUS:
5871 return elfcore_grok_lwpstatus (abfd, note);
5872 #endif
5873
5874 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
5875 return elfcore_grok_prfpreg (abfd, note);
5876
5877 #if defined (HAVE_WIN32_PSTATUS_T)
5878 case NT_WIN32PSTATUS:
5879 return elfcore_grok_win32pstatus (abfd, note);
5880 #endif
5881
5882 case NT_PRXFPREG: /* Linux SSE extension */
5883 if (note->namesz == 5
5884 && ! strcmp (note->namedata, "LINUX"))
5885 return elfcore_grok_prxfpreg (abfd, note);
5886 else
5887 return true;
5888
5889 case NT_PRPSINFO:
5890 case NT_PSINFO:
5891 if (bed->elf_backend_grok_psinfo)
5892 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
5893 return true;
5894 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
5895 return elfcore_grok_psinfo (abfd, note);
5896 #else
5897 return true;
5898 #endif
5899 }
5900 }
5901
5902 static boolean
5903 elfcore_read_notes (abfd, offset, size)
5904 bfd *abfd;
5905 bfd_vma offset;
5906 bfd_vma size;
5907 {
5908 char *buf;
5909 char *p;
5910
5911 if (size <= 0)
5912 return true;
5913
5914 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5915 return false;
5916
5917 buf = bfd_malloc ((size_t) size);
5918 if (buf == NULL)
5919 return false;
5920
5921 if (bfd_read (buf, size, 1, abfd) != size)
5922 {
5923 error:
5924 free (buf);
5925 return false;
5926 }
5927
5928 p = buf;
5929 while (p < buf + size)
5930 {
5931 /* FIXME: bad alignment assumption. */
5932 Elf_External_Note *xnp = (Elf_External_Note *) p;
5933 Elf_Internal_Note in;
5934
5935 in.type = bfd_h_get_32 (abfd, (bfd_byte *) xnp->type);
5936
5937 in.namesz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->namesz);
5938 in.namedata = xnp->name;
5939
5940 in.descsz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->descsz);
5941 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
5942 in.descpos = offset + (in.descdata - buf);
5943
5944 if (! elfcore_grok_note (abfd, &in))
5945 goto error;
5946
5947 p = in.descdata + BFD_ALIGN (in.descsz, 4);
5948 }
5949
5950 free (buf);
5951 return true;
5952 }
5953 \f
5954 /* Providing external access to the ELF program header table. */
5955
5956 /* Return an upper bound on the number of bytes required to store a
5957 copy of ABFD's program header table entries. Return -1 if an error
5958 occurs; bfd_get_error will return an appropriate code. */
5959
5960 long
5961 bfd_get_elf_phdr_upper_bound (abfd)
5962 bfd *abfd;
5963 {
5964 if (abfd->xvec->flavour != bfd_target_elf_flavour)
5965 {
5966 bfd_set_error (bfd_error_wrong_format);
5967 return -1;
5968 }
5969
5970 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
5971 }
5972
5973 /* Copy ABFD's program header table entries to *PHDRS. The entries
5974 will be stored as an array of Elf_Internal_Phdr structures, as
5975 defined in include/elf/internal.h. To find out how large the
5976 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
5977
5978 Return the number of program header table entries read, or -1 if an
5979 error occurs; bfd_get_error will return an appropriate code. */
5980
5981 int
5982 bfd_get_elf_phdrs (abfd, phdrs)
5983 bfd *abfd;
5984 void *phdrs;
5985 {
5986 int num_phdrs;
5987
5988 if (abfd->xvec->flavour != bfd_target_elf_flavour)
5989 {
5990 bfd_set_error (bfd_error_wrong_format);
5991 return -1;
5992 }
5993
5994 num_phdrs = elf_elfheader (abfd)->e_phnum;
5995 memcpy (phdrs, elf_tdata (abfd)->phdr,
5996 num_phdrs * sizeof (Elf_Internal_Phdr));
5997
5998 return num_phdrs;
5999 }
6000
6001 void
6002 _bfd_elf_sprintf_vma (abfd, buf, value)
6003 bfd *abfd ATTRIBUTE_UNUSED;
6004 char *buf;
6005 bfd_vma value;
6006 {
6007 #ifdef BFD64
6008 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
6009
6010 i_ehdrp = elf_elfheader (abfd);
6011 if (i_ehdrp == NULL)
6012 sprintf_vma (buf, value);
6013 else
6014 {
6015 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
6016 {
6017 #if BFD_HOST_64BIT_LONG
6018 sprintf (buf, "%016lx", value);
6019 #else
6020 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
6021 _bfd_int64_low (value));
6022 #endif
6023 }
6024 else
6025 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
6026 }
6027 #else
6028 sprintf_vma (buf, value);
6029 #endif
6030 }
6031
6032 void
6033 _bfd_elf_fprintf_vma (abfd, stream, value)
6034 bfd *abfd ATTRIBUTE_UNUSED;
6035 PTR stream;
6036 bfd_vma value;
6037 {
6038 #ifdef BFD64
6039 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
6040
6041 i_ehdrp = elf_elfheader (abfd);
6042 if (i_ehdrp == NULL)
6043 fprintf_vma ((FILE *) stream, value);
6044 else
6045 {
6046 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
6047 {
6048 #if BFD_HOST_64BIT_LONG
6049 fprintf ((FILE *) stream, "%016lx", value);
6050 #else
6051 fprintf ((FILE *) stream, "%08lx%08lx",
6052 _bfd_int64_high (value), _bfd_int64_low (value));
6053 #endif
6054 }
6055 else
6056 fprintf ((FILE *) stream, "%08lx",
6057 (unsigned long) (value & 0xffffffff));
6058 }
6059 #else
6060 fprintf_vma ((FILE *) stream, value);
6061 #endif
6062 }
6063
6064 enum elf_reloc_type_class
6065 _bfd_elf_reloc_type_class (type)
6066 int type;
6067 {
6068 return reloc_class_normal;
6069 }