GAS: Update the .section directive so that a numeric section index can be provided...
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || bfd_seek (abfd, offset, SEEK_SET) != 0
300 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
301 shstrtabsize)) == NULL)
302 {
303 /* Once we've failed to read it, make sure we don't keep
304 trying. Otherwise, we'll keep allocating space for
305 the string table over and over. */
306 i_shdrp[shindex]->sh_size = 0;
307 }
308 else
309 shstrtab[shstrtabsize] = '\0';
310 i_shdrp[shindex]->contents = shstrtab;
311 }
312 return (char *) shstrtab;
313 }
314
315 char *
316 bfd_elf_string_from_elf_section (bfd *abfd,
317 unsigned int shindex,
318 unsigned int strindex)
319 {
320 Elf_Internal_Shdr *hdr;
321
322 if (strindex == 0)
323 return "";
324
325 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
326 return NULL;
327
328 hdr = elf_elfsections (abfd)[shindex];
329
330 if (hdr->contents == NULL)
331 {
332 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
333 {
334 /* PR 17512: file: f057ec89. */
335 /* xgettext:c-format */
336 _bfd_error_handler (_("%pB: attempt to load strings from"
337 " a non-string section (number %d)"),
338 abfd, shindex);
339 return NULL;
340 }
341
342 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
343 return NULL;
344 }
345 else
346 {
347 /* PR 24273: The string section's contents may have already
348 been loaded elsewhere, eg because a corrupt file has the
349 string section index in the ELF header pointing at a group
350 section. So be paranoid, and test that the last byte of
351 the section is zero. */
352 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
353 return NULL;
354 }
355
356 if (strindex >= hdr->sh_size)
357 {
358 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
359 _bfd_error_handler
360 /* xgettext:c-format */
361 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
362 abfd, strindex, (uint64_t) hdr->sh_size,
363 (shindex == shstrndx && strindex == hdr->sh_name
364 ? ".shstrtab"
365 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
366 return NULL;
367 }
368
369 return ((char *) hdr->contents) + strindex;
370 }
371
372 /* Read and convert symbols to internal format.
373 SYMCOUNT specifies the number of symbols to read, starting from
374 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
375 are non-NULL, they are used to store the internal symbols, external
376 symbols, and symbol section index extensions, respectively.
377 Returns a pointer to the internal symbol buffer (malloced if necessary)
378 or NULL if there were no symbols or some kind of problem. */
379
380 Elf_Internal_Sym *
381 bfd_elf_get_elf_syms (bfd *ibfd,
382 Elf_Internal_Shdr *symtab_hdr,
383 size_t symcount,
384 size_t symoffset,
385 Elf_Internal_Sym *intsym_buf,
386 void *extsym_buf,
387 Elf_External_Sym_Shndx *extshndx_buf)
388 {
389 Elf_Internal_Shdr *shndx_hdr;
390 void *alloc_ext;
391 const bfd_byte *esym;
392 Elf_External_Sym_Shndx *alloc_extshndx;
393 Elf_External_Sym_Shndx *shndx;
394 Elf_Internal_Sym *alloc_intsym;
395 Elf_Internal_Sym *isym;
396 Elf_Internal_Sym *isymend;
397 const struct elf_backend_data *bed;
398 size_t extsym_size;
399 size_t amt;
400 file_ptr pos;
401
402 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
403 abort ();
404
405 if (symcount == 0)
406 return intsym_buf;
407
408 /* Normal syms might have section extension entries. */
409 shndx_hdr = NULL;
410 if (elf_symtab_shndx_list (ibfd) != NULL)
411 {
412 elf_section_list * entry;
413 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
414
415 /* Find an index section that is linked to this symtab section. */
416 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
417 {
418 /* PR 20063. */
419 if (entry->hdr.sh_link >= elf_numsections (ibfd))
420 continue;
421
422 if (sections[entry->hdr.sh_link] == symtab_hdr)
423 {
424 shndx_hdr = & entry->hdr;
425 break;
426 };
427 }
428
429 if (shndx_hdr == NULL)
430 {
431 if (symtab_hdr == & elf_symtab_hdr (ibfd))
432 /* Not really accurate, but this was how the old code used to work. */
433 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
434 /* Otherwise we do nothing. The assumption is that
435 the index table will not be needed. */
436 }
437 }
438
439 /* Read the symbols. */
440 alloc_ext = NULL;
441 alloc_extshndx = NULL;
442 alloc_intsym = NULL;
443 bed = get_elf_backend_data (ibfd);
444 extsym_size = bed->s->sizeof_sym;
445 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
446 {
447 bfd_set_error (bfd_error_file_too_big);
448 intsym_buf = NULL;
449 goto out;
450 }
451 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
452 if (extsym_buf == NULL)
453 {
454 alloc_ext = bfd_malloc (amt);
455 extsym_buf = alloc_ext;
456 }
457 if (extsym_buf == NULL
458 || bfd_seek (ibfd, pos, SEEK_SET) != 0
459 || bfd_bread (extsym_buf, amt, ibfd) != amt)
460 {
461 intsym_buf = NULL;
462 goto out;
463 }
464
465 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
466 extshndx_buf = NULL;
467 else
468 {
469 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
470 {
471 bfd_set_error (bfd_error_file_too_big);
472 intsym_buf = NULL;
473 goto out;
474 }
475 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
476 if (extshndx_buf == NULL)
477 {
478 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
493 {
494 bfd_set_error (bfd_error_file_too_big);
495 goto out;
496 }
497 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
498 intsym_buf = alloc_intsym;
499 if (intsym_buf == NULL)
500 goto out;
501 }
502
503 /* Convert the symbols to internal form. */
504 isymend = intsym_buf + symcount;
505 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
506 shndx = extshndx_buf;
507 isym < isymend;
508 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
509 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
510 {
511 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
512 /* xgettext:c-format */
513 _bfd_error_handler (_("%pB symbol number %lu references"
514 " nonexistent SHT_SYMTAB_SHNDX section"),
515 ibfd, (unsigned long) symoffset);
516 free (alloc_intsym);
517 intsym_buf = NULL;
518 goto out;
519 }
520
521 out:
522 free (alloc_ext);
523 free (alloc_extshndx);
524
525 return intsym_buf;
526 }
527
528 /* Look up a symbol name. */
529 const char *
530 bfd_elf_sym_name (bfd *abfd,
531 Elf_Internal_Shdr *symtab_hdr,
532 Elf_Internal_Sym *isym,
533 asection *sym_sec)
534 {
535 const char *name;
536 unsigned int iname = isym->st_name;
537 unsigned int shindex = symtab_hdr->sh_link;
538
539 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
540 /* Check for a bogus st_shndx to avoid crashing. */
541 && isym->st_shndx < elf_numsections (abfd))
542 {
543 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
544 shindex = elf_elfheader (abfd)->e_shstrndx;
545 }
546
547 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
548 if (name == NULL)
549 name = "(null)";
550 else if (sym_sec && *name == '\0')
551 name = bfd_section_name (sym_sec);
552
553 return name;
554 }
555
556 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
557 sections. The first element is the flags, the rest are section
558 pointers. */
559
560 typedef union elf_internal_group {
561 Elf_Internal_Shdr *shdr;
562 unsigned int flags;
563 } Elf_Internal_Group;
564
565 /* Return the name of the group signature symbol. Why isn't the
566 signature just a string? */
567
568 static const char *
569 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
570 {
571 Elf_Internal_Shdr *hdr;
572 unsigned char esym[sizeof (Elf64_External_Sym)];
573 Elf_External_Sym_Shndx eshndx;
574 Elf_Internal_Sym isym;
575
576 /* First we need to ensure the symbol table is available. Make sure
577 that it is a symbol table section. */
578 if (ghdr->sh_link >= elf_numsections (abfd))
579 return NULL;
580 hdr = elf_elfsections (abfd) [ghdr->sh_link];
581 if (hdr->sh_type != SHT_SYMTAB
582 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
583 return NULL;
584
585 /* Go read the symbol. */
586 hdr = &elf_tdata (abfd)->symtab_hdr;
587 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
588 &isym, esym, &eshndx) == NULL)
589 return NULL;
590
591 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
592 }
593
594 /* Set next_in_group list pointer, and group name for NEWSECT. */
595
596 static bfd_boolean
597 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
598 {
599 unsigned int num_group = elf_tdata (abfd)->num_group;
600
601 /* If num_group is zero, read in all SHT_GROUP sections. The count
602 is set to -1 if there are no SHT_GROUP sections. */
603 if (num_group == 0)
604 {
605 unsigned int i, shnum;
606
607 /* First count the number of groups. If we have a SHT_GROUP
608 section with just a flag word (ie. sh_size is 4), ignore it. */
609 shnum = elf_numsections (abfd);
610 num_group = 0;
611
612 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
613 ( (shdr)->sh_type == SHT_GROUP \
614 && (shdr)->sh_size >= minsize \
615 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
616 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
617
618 for (i = 0; i < shnum; i++)
619 {
620 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
621
622 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
623 num_group += 1;
624 }
625
626 if (num_group == 0)
627 {
628 num_group = (unsigned) -1;
629 elf_tdata (abfd)->num_group = num_group;
630 elf_tdata (abfd)->group_sect_ptr = NULL;
631 }
632 else
633 {
634 /* We keep a list of elf section headers for group sections,
635 so we can find them quickly. */
636 size_t amt;
637
638 elf_tdata (abfd)->num_group = num_group;
639 amt = num_group * sizeof (Elf_Internal_Shdr *);
640 elf_tdata (abfd)->group_sect_ptr
641 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
642 if (elf_tdata (abfd)->group_sect_ptr == NULL)
643 return FALSE;
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
666 shdr->contents = NULL;
667 if (_bfd_mul_overflow (shdr->sh_size,
668 sizeof (*dest) / 4, &amt)
669 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
670 || !(shdr->contents
671 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
672 {
673 _bfd_error_handler
674 /* xgettext:c-format */
675 (_("%pB: invalid size field in group section"
676 " header: %#" PRIx64 ""),
677 abfd, (uint64_t) shdr->sh_size);
678 bfd_set_error (bfd_error_bad_value);
679 -- num_group;
680 continue;
681 }
682
683 /* Translate raw contents, a flag word followed by an
684 array of elf section indices all in target byte order,
685 to the flag word followed by an array of elf section
686 pointers. */
687 src = shdr->contents + shdr->sh_size;
688 dest = (Elf_Internal_Group *) (shdr->contents + amt);
689
690 while (1)
691 {
692 unsigned int idx;
693
694 src -= 4;
695 --dest;
696 idx = H_GET_32 (abfd, src);
697 if (src == shdr->contents)
698 {
699 dest->shdr = NULL;
700 dest->flags = idx;
701 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
702 shdr->bfd_section->flags
703 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
704 break;
705 }
706 if (idx < shnum)
707 {
708 dest->shdr = elf_elfsections (abfd)[idx];
709 /* PR binutils/23199: All sections in a
710 section group should be marked with
711 SHF_GROUP. But some tools generate
712 broken objects without SHF_GROUP. Fix
713 them up here. */
714 dest->shdr->sh_flags |= SHF_GROUP;
715 }
716 if (idx >= shnum
717 || dest->shdr->sh_type == SHT_GROUP)
718 {
719 _bfd_error_handler
720 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
721 abfd, i);
722 dest->shdr = NULL;
723 }
724 }
725 }
726 }
727
728 /* PR 17510: Corrupt binaries might contain invalid groups. */
729 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
730 {
731 elf_tdata (abfd)->num_group = num_group;
732
733 /* If all groups are invalid then fail. */
734 if (num_group == 0)
735 {
736 elf_tdata (abfd)->group_sect_ptr = NULL;
737 elf_tdata (abfd)->num_group = num_group = -1;
738 _bfd_error_handler
739 (_("%pB: no valid group sections found"), abfd);
740 bfd_set_error (bfd_error_bad_value);
741 }
742 }
743 }
744 }
745
746 if (num_group != (unsigned) -1)
747 {
748 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
749 unsigned int j;
750
751 for (j = 0; j < num_group; j++)
752 {
753 /* Begin search from previous found group. */
754 unsigned i = (j + search_offset) % num_group;
755
756 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
757 Elf_Internal_Group *idx;
758 bfd_size_type n_elt;
759
760 if (shdr == NULL)
761 continue;
762
763 idx = (Elf_Internal_Group *) shdr->contents;
764 if (idx == NULL || shdr->sh_size < 4)
765 {
766 /* See PR 21957 for a reproducer. */
767 /* xgettext:c-format */
768 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
769 abfd, shdr->bfd_section);
770 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
771 bfd_set_error (bfd_error_bad_value);
772 return FALSE;
773 }
774 n_elt = shdr->sh_size / 4;
775
776 /* Look through this group's sections to see if current
777 section is a member. */
778 while (--n_elt != 0)
779 if ((++idx)->shdr == hdr)
780 {
781 asection *s = NULL;
782
783 /* We are a member of this group. Go looking through
784 other members to see if any others are linked via
785 next_in_group. */
786 idx = (Elf_Internal_Group *) shdr->contents;
787 n_elt = shdr->sh_size / 4;
788 while (--n_elt != 0)
789 if ((++idx)->shdr != NULL
790 && (s = idx->shdr->bfd_section) != NULL
791 && elf_next_in_group (s) != NULL)
792 break;
793 if (n_elt != 0)
794 {
795 /* Snarf the group name from other member, and
796 insert current section in circular list. */
797 elf_group_name (newsect) = elf_group_name (s);
798 elf_next_in_group (newsect) = elf_next_in_group (s);
799 elf_next_in_group (s) = newsect;
800 }
801 else
802 {
803 const char *gname;
804
805 gname = group_signature (abfd, shdr);
806 if (gname == NULL)
807 return FALSE;
808 elf_group_name (newsect) = gname;
809
810 /* Start a circular list with one element. */
811 elf_next_in_group (newsect) = newsect;
812 }
813
814 /* If the group section has been created, point to the
815 new member. */
816 if (shdr->bfd_section != NULL)
817 elf_next_in_group (shdr->bfd_section) = newsect;
818
819 elf_tdata (abfd)->group_search_offset = i;
820 j = num_group - 1;
821 break;
822 }
823 }
824 }
825
826 if (elf_group_name (newsect) == NULL)
827 {
828 /* xgettext:c-format */
829 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
830 abfd, newsect);
831 return FALSE;
832 }
833 return TRUE;
834 }
835
836 bfd_boolean
837 _bfd_elf_setup_sections (bfd *abfd)
838 {
839 unsigned int i;
840 unsigned int num_group = elf_tdata (abfd)->num_group;
841 bfd_boolean result = TRUE;
842 asection *s;
843
844 /* Process SHF_LINK_ORDER. */
845 for (s = abfd->sections; s != NULL; s = s->next)
846 {
847 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
848 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
849 {
850 unsigned int elfsec = this_hdr->sh_link;
851 /* An sh_link value of 0 is now allowed. It indicates that linked
852 to section has already been discarded, but that the current
853 section has been retained for some other reason. This linking
854 section is still a candidate for later garbage collection
855 however. */
856 if (elfsec == 0)
857 {
858 elf_linked_to_section (s) = NULL;
859 }
860 else
861 {
862 asection *linksec = NULL;
863
864 if (elfsec < elf_numsections (abfd))
865 {
866 this_hdr = elf_elfsections (abfd)[elfsec];
867 linksec = this_hdr->bfd_section;
868 }
869
870 /* PR 1991, 2008:
871 Some strip/objcopy may leave an incorrect value in
872 sh_link. We don't want to proceed. */
873 if (linksec == NULL)
874 {
875 _bfd_error_handler
876 /* xgettext:c-format */
877 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
878 s->owner, elfsec, s);
879 result = FALSE;
880 }
881
882 elf_linked_to_section (s) = linksec;
883 }
884 }
885 else if (this_hdr->sh_type == SHT_GROUP
886 && elf_next_in_group (s) == NULL)
887 {
888 _bfd_error_handler
889 /* xgettext:c-format */
890 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
891 abfd, elf_section_data (s)->this_idx);
892 result = FALSE;
893 }
894 }
895
896 /* Process section groups. */
897 if (num_group == (unsigned) -1)
898 return result;
899
900 for (i = 0; i < num_group; i++)
901 {
902 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
903 Elf_Internal_Group *idx;
904 unsigned int n_elt;
905
906 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
907 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: section group entry number %u is corrupt"),
912 abfd, i);
913 result = FALSE;
914 continue;
915 }
916
917 idx = (Elf_Internal_Group *) shdr->contents;
918 n_elt = shdr->sh_size / 4;
919
920 while (--n_elt != 0)
921 {
922 ++ idx;
923
924 if (idx->shdr == NULL)
925 continue;
926 else if (idx->shdr->bfd_section)
927 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
928 else if (idx->shdr->sh_type != SHT_RELA
929 && idx->shdr->sh_type != SHT_REL)
930 {
931 /* There are some unknown sections in the group. */
932 _bfd_error_handler
933 /* xgettext:c-format */
934 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
935 abfd,
936 idx->shdr->sh_type,
937 bfd_elf_string_from_elf_section (abfd,
938 (elf_elfheader (abfd)
939 ->e_shstrndx),
940 idx->shdr->sh_name),
941 shdr->bfd_section);
942 result = FALSE;
943 }
944 }
945 }
946
947 return result;
948 }
949
950 bfd_boolean
951 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
952 {
953 return elf_next_in_group (sec) != NULL;
954 }
955
956 const char *
957 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
958 {
959 if (elf_sec_group (sec) != NULL)
960 return elf_group_name (sec);
961 return NULL;
962 }
963
964 static char *
965 convert_debug_to_zdebug (bfd *abfd, const char *name)
966 {
967 unsigned int len = strlen (name);
968 char *new_name = bfd_alloc (abfd, len + 2);
969 if (new_name == NULL)
970 return NULL;
971 new_name[0] = '.';
972 new_name[1] = 'z';
973 memcpy (new_name + 2, name + 1, len);
974 return new_name;
975 }
976
977 static char *
978 convert_zdebug_to_debug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 memcpy (new_name + 1, name + 2, len - 1);
986 return new_name;
987 }
988
989 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
990
991 struct lto_section
992 {
993 int16_t major_version;
994 int16_t minor_version;
995 unsigned char slim_object;
996
997 /* Flags is a private field that is not defined publicly. */
998 uint16_t flags;
999 };
1000
1001 /* Make a BFD section from an ELF section. We store a pointer to the
1002 BFD section in the bfd_section field of the header. */
1003
1004 bfd_boolean
1005 _bfd_elf_make_section_from_shdr (bfd *abfd,
1006 Elf_Internal_Shdr *hdr,
1007 const char *name,
1008 int shindex)
1009 {
1010 asection *newsect;
1011 flagword flags;
1012 const struct elf_backend_data *bed;
1013 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 flags = SEC_NO_FLAGS;
1033 if (hdr->sh_type != SHT_NOBITS)
1034 flags |= SEC_HAS_CONTENTS;
1035 if (hdr->sh_type == SHT_GROUP)
1036 flags |= SEC_GROUP;
1037 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1038 {
1039 flags |= SEC_ALLOC;
1040 if (hdr->sh_type != SHT_NOBITS)
1041 flags |= SEC_LOAD;
1042 }
1043 if ((hdr->sh_flags & SHF_WRITE) == 0)
1044 flags |= SEC_READONLY;
1045 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1046 flags |= SEC_CODE;
1047 else if ((flags & SEC_LOAD) != 0)
1048 flags |= SEC_DATA;
1049 if ((hdr->sh_flags & SHF_MERGE) != 0)
1050 {
1051 flags |= SEC_MERGE;
1052 newsect->entsize = hdr->sh_entsize;
1053 }
1054 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1055 flags |= SEC_STRINGS;
1056 if (hdr->sh_flags & SHF_GROUP)
1057 if (!setup_group (abfd, hdr, newsect))
1058 return FALSE;
1059 if ((hdr->sh_flags & SHF_TLS) != 0)
1060 flags |= SEC_THREAD_LOCAL;
1061 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1062 flags |= SEC_EXCLUDE;
1063
1064 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1065 {
1066 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1067 but binutils as of 2019-07-23 did not set the EI_OSABI header
1068 byte. */
1069 case ELFOSABI_NONE:
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1074 break;
1075 }
1076
1077 if ((flags & SEC_ALLOC) == 0)
1078 {
1079 /* The debugging sections appear to be recognized only by name,
1080 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1081 if (name [0] == '.')
1082 {
1083 if (strncmp (name, ".debug", 6) == 0
1084 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1085 || strncmp (name, ".zdebug", 7) == 0)
1086 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1087 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1088 || strncmp (name, ".note.gnu", 9) == 0)
1089 {
1090 flags |= SEC_ELF_OCTETS;
1091 opb = 1;
1092 }
1093 else if (strncmp (name, ".line", 5) == 0
1094 || strncmp (name, ".stab", 5) == 0
1095 || strcmp (name, ".gdb_index") == 0)
1096 flags |= SEC_DEBUGGING;
1097 }
1098 }
1099
1100 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1101 || !bfd_set_section_size (newsect, hdr->sh_size)
1102 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1103 return FALSE;
1104
1105 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1106 only link a single copy of the section. This is used to support
1107 g++. g++ will emit each template expansion in its own section.
1108 The symbols will be defined as weak, so that multiple definitions
1109 are permitted. The GNU linker extension is to actually discard
1110 all but one of the sections. */
1111 if (CONST_STRNEQ (name, ".gnu.linkonce")
1112 && elf_next_in_group (newsect) == NULL)
1113 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1114
1115 if (!bfd_set_section_flags (newsect, flags))
1116 return FALSE;
1117
1118 bed = get_elf_backend_data (abfd);
1119 if (bed->elf_backend_section_flags)
1120 if (!bed->elf_backend_section_flags (hdr))
1121 return FALSE;
1122
1123 /* We do not parse the PT_NOTE segments as we are interested even in the
1124 separate debug info files which may have the segments offsets corrupted.
1125 PT_NOTEs from the core files are currently not parsed using BFD. */
1126 if (hdr->sh_type == SHT_NOTE)
1127 {
1128 bfd_byte *contents;
1129
1130 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1131 return FALSE;
1132
1133 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1134 hdr->sh_offset, hdr->sh_addralign);
1135 free (contents);
1136 }
1137
1138 if ((newsect->flags & SEC_ALLOC) != 0)
1139 {
1140 Elf_Internal_Phdr *phdr;
1141 unsigned int i, nload;
1142
1143 /* Some ELF linkers produce binaries with all the program header
1144 p_paddr fields zero. If we have such a binary with more than
1145 one PT_LOAD header, then leave the section lma equal to vma
1146 so that we don't create sections with overlapping lma. */
1147 phdr = elf_tdata (abfd)->phdr;
1148 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1149 if (phdr->p_paddr != 0)
1150 break;
1151 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1152 ++nload;
1153 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1154 return TRUE;
1155
1156 phdr = elf_tdata (abfd)->phdr;
1157 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1158 {
1159 if (((phdr->p_type == PT_LOAD
1160 && (hdr->sh_flags & SHF_TLS) == 0)
1161 || phdr->p_type == PT_TLS)
1162 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1163 {
1164 if ((newsect->flags & SEC_LOAD) == 0)
1165 newsect->lma = (phdr->p_paddr
1166 + hdr->sh_addr - phdr->p_vaddr) / opb;
1167 else
1168 /* We used to use the same adjustment for SEC_LOAD
1169 sections, but that doesn't work if the segment
1170 is packed with code from multiple VMAs.
1171 Instead we calculate the section LMA based on
1172 the segment LMA. It is assumed that the
1173 segment will contain sections with contiguous
1174 LMAs, even if the VMAs are not. */
1175 newsect->lma = (phdr->p_paddr
1176 + hdr->sh_offset - phdr->p_offset) / opb;
1177
1178 /* With contiguous segments, we can't tell from file
1179 offsets whether a section with zero size should
1180 be placed at the end of one segment or the
1181 beginning of the next. Decide based on vaddr. */
1182 if (hdr->sh_addr >= phdr->p_vaddr
1183 && (hdr->sh_addr + hdr->sh_size
1184 <= phdr->p_vaddr + phdr->p_memsz))
1185 break;
1186 }
1187 }
1188 }
1189
1190 /* Compress/decompress DWARF debug sections with names: .debug_* and
1191 .zdebug_*, after the section flags is set. */
1192 if ((newsect->flags & SEC_DEBUGGING)
1193 && ((name[1] == 'd' && name[6] == '_')
1194 || (name[1] == 'z' && name[7] == '_')))
1195 {
1196 enum { nothing, compress, decompress } action = nothing;
1197 int compression_header_size;
1198 bfd_size_type uncompressed_size;
1199 unsigned int uncompressed_align_power;
1200 bfd_boolean compressed
1201 = bfd_is_section_compressed_with_header (abfd, newsect,
1202 &compression_header_size,
1203 &uncompressed_size,
1204 &uncompressed_align_power);
1205 if (compressed)
1206 {
1207 /* Compressed section. Check if we should decompress. */
1208 if ((abfd->flags & BFD_DECOMPRESS))
1209 action = decompress;
1210 }
1211
1212 /* Compress the uncompressed section or convert from/to .zdebug*
1213 section. Check if we should compress. */
1214 if (action == nothing)
1215 {
1216 if (newsect->size != 0
1217 && (abfd->flags & BFD_COMPRESS)
1218 && compression_header_size >= 0
1219 && uncompressed_size > 0
1220 && (!compressed
1221 || ((compression_header_size > 0)
1222 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1223 action = compress;
1224 else
1225 return TRUE;
1226 }
1227
1228 if (action == compress)
1229 {
1230 if (!bfd_init_section_compress_status (abfd, newsect))
1231 {
1232 _bfd_error_handler
1233 /* xgettext:c-format */
1234 (_("%pB: unable to initialize compress status for section %s"),
1235 abfd, name);
1236 return FALSE;
1237 }
1238 }
1239 else
1240 {
1241 if (!bfd_init_section_decompress_status (abfd, newsect))
1242 {
1243 _bfd_error_handler
1244 /* xgettext:c-format */
1245 (_("%pB: unable to initialize decompress status for section %s"),
1246 abfd, name);
1247 return FALSE;
1248 }
1249 }
1250
1251 if (abfd->is_linker_input)
1252 {
1253 if (name[1] == 'z'
1254 && (action == decompress
1255 || (action == compress
1256 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1257 {
1258 /* Convert section name from .zdebug_* to .debug_* so
1259 that linker will consider this section as a debug
1260 section. */
1261 char *new_name = convert_zdebug_to_debug (abfd, name);
1262 if (new_name == NULL)
1263 return FALSE;
1264 bfd_rename_section (newsect, new_name);
1265 }
1266 }
1267 else
1268 /* For objdump, don't rename the section. For objcopy, delay
1269 section rename to elf_fake_sections. */
1270 newsect->flags |= SEC_ELF_RENAME;
1271 }
1272
1273 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1274 section. */
1275 const char *lto_section_name = ".gnu.lto_.lto.";
1276 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1277 {
1278 struct lto_section lsection;
1279 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1280 sizeof (struct lto_section)))
1281 abfd->lto_slim_object = lsection.slim_object;
1282 }
1283
1284 return TRUE;
1285 }
1286
1287 const char *const bfd_elf_section_type_names[] =
1288 {
1289 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1290 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1291 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1292 };
1293
1294 /* ELF relocs are against symbols. If we are producing relocatable
1295 output, and the reloc is against an external symbol, and nothing
1296 has given us any additional addend, the resulting reloc will also
1297 be against the same symbol. In such a case, we don't want to
1298 change anything about the way the reloc is handled, since it will
1299 all be done at final link time. Rather than put special case code
1300 into bfd_perform_relocation, all the reloc types use this howto
1301 function. It just short circuits the reloc if producing
1302 relocatable output against an external symbol. */
1303
1304 bfd_reloc_status_type
1305 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1306 arelent *reloc_entry,
1307 asymbol *symbol,
1308 void *data ATTRIBUTE_UNUSED,
1309 asection *input_section,
1310 bfd *output_bfd,
1311 char **error_message ATTRIBUTE_UNUSED)
1312 {
1313 if (output_bfd != NULL
1314 && (symbol->flags & BSF_SECTION_SYM) == 0
1315 && (! reloc_entry->howto->partial_inplace
1316 || reloc_entry->addend == 0))
1317 {
1318 reloc_entry->address += input_section->output_offset;
1319 return bfd_reloc_ok;
1320 }
1321
1322 return bfd_reloc_continue;
1323 }
1324 \f
1325 /* Returns TRUE if section A matches section B.
1326 Names, addresses and links may be different, but everything else
1327 should be the same. */
1328
1329 static bfd_boolean
1330 section_match (const Elf_Internal_Shdr * a,
1331 const Elf_Internal_Shdr * b)
1332 {
1333 if (a->sh_type != b->sh_type
1334 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1335 || a->sh_addralign != b->sh_addralign
1336 || a->sh_entsize != b->sh_entsize)
1337 return FALSE;
1338 if (a->sh_type == SHT_SYMTAB
1339 || a->sh_type == SHT_STRTAB)
1340 return TRUE;
1341 return a->sh_size == b->sh_size;
1342 }
1343
1344 /* Find a section in OBFD that has the same characteristics
1345 as IHEADER. Return the index of this section or SHN_UNDEF if
1346 none can be found. Check's section HINT first, as this is likely
1347 to be the correct section. */
1348
1349 static unsigned int
1350 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1351 const unsigned int hint)
1352 {
1353 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1354 unsigned int i;
1355
1356 BFD_ASSERT (iheader != NULL);
1357
1358 /* See PR 20922 for a reproducer of the NULL test. */
1359 if (hint < elf_numsections (obfd)
1360 && oheaders[hint] != NULL
1361 && section_match (oheaders[hint], iheader))
1362 return hint;
1363
1364 for (i = 1; i < elf_numsections (obfd); i++)
1365 {
1366 Elf_Internal_Shdr * oheader = oheaders[i];
1367
1368 if (oheader == NULL)
1369 continue;
1370 if (section_match (oheader, iheader))
1371 /* FIXME: Do we care if there is a potential for
1372 multiple matches ? */
1373 return i;
1374 }
1375
1376 return SHN_UNDEF;
1377 }
1378
1379 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1380 Processor specific section, based upon a matching input section.
1381 Returns TRUE upon success, FALSE otherwise. */
1382
1383 static bfd_boolean
1384 copy_special_section_fields (const bfd *ibfd,
1385 bfd *obfd,
1386 const Elf_Internal_Shdr *iheader,
1387 Elf_Internal_Shdr *oheader,
1388 const unsigned int secnum)
1389 {
1390 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1391 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1392 bfd_boolean changed = FALSE;
1393 unsigned int sh_link;
1394
1395 if (oheader->sh_type == SHT_NOBITS)
1396 {
1397 /* This is a feature for objcopy --only-keep-debug:
1398 When a section's type is changed to NOBITS, we preserve
1399 the sh_link and sh_info fields so that they can be
1400 matched up with the original.
1401
1402 Note: Strictly speaking these assignments are wrong.
1403 The sh_link and sh_info fields should point to the
1404 relevent sections in the output BFD, which may not be in
1405 the same location as they were in the input BFD. But
1406 the whole point of this action is to preserve the
1407 original values of the sh_link and sh_info fields, so
1408 that they can be matched up with the section headers in
1409 the original file. So strictly speaking we may be
1410 creating an invalid ELF file, but it is only for a file
1411 that just contains debug info and only for sections
1412 without any contents. */
1413 if (oheader->sh_link == 0)
1414 oheader->sh_link = iheader->sh_link;
1415 if (oheader->sh_info == 0)
1416 oheader->sh_info = iheader->sh_info;
1417 return TRUE;
1418 }
1419
1420 /* Allow the target a chance to decide how these fields should be set. */
1421 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1422 iheader, oheader))
1423 return TRUE;
1424
1425 /* We have an iheader which might match oheader, and which has non-zero
1426 sh_info and/or sh_link fields. Attempt to follow those links and find
1427 the section in the output bfd which corresponds to the linked section
1428 in the input bfd. */
1429 if (iheader->sh_link != SHN_UNDEF)
1430 {
1431 /* See PR 20931 for a reproducer. */
1432 if (iheader->sh_link >= elf_numsections (ibfd))
1433 {
1434 _bfd_error_handler
1435 /* xgettext:c-format */
1436 (_("%pB: invalid sh_link field (%d) in section number %d"),
1437 ibfd, iheader->sh_link, secnum);
1438 return FALSE;
1439 }
1440
1441 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1442 if (sh_link != SHN_UNDEF)
1443 {
1444 oheader->sh_link = sh_link;
1445 changed = TRUE;
1446 }
1447 else
1448 /* FIXME: Should we install iheader->sh_link
1449 if we could not find a match ? */
1450 _bfd_error_handler
1451 /* xgettext:c-format */
1452 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1453 }
1454
1455 if (iheader->sh_info)
1456 {
1457 /* The sh_info field can hold arbitrary information, but if the
1458 SHF_LINK_INFO flag is set then it should be interpreted as a
1459 section index. */
1460 if (iheader->sh_flags & SHF_INFO_LINK)
1461 {
1462 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1463 iheader->sh_info);
1464 if (sh_link != SHN_UNDEF)
1465 oheader->sh_flags |= SHF_INFO_LINK;
1466 }
1467 else
1468 /* No idea what it means - just copy it. */
1469 sh_link = iheader->sh_info;
1470
1471 if (sh_link != SHN_UNDEF)
1472 {
1473 oheader->sh_info = sh_link;
1474 changed = TRUE;
1475 }
1476 else
1477 _bfd_error_handler
1478 /* xgettext:c-format */
1479 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1480 }
1481
1482 return changed;
1483 }
1484
1485 /* Copy the program header and other data from one object module to
1486 another. */
1487
1488 bfd_boolean
1489 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1490 {
1491 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1492 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1493 const struct elf_backend_data *bed;
1494 unsigned int i;
1495
1496 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1497 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1498 return TRUE;
1499
1500 if (!elf_flags_init (obfd))
1501 {
1502 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1503 elf_flags_init (obfd) = TRUE;
1504 }
1505
1506 elf_gp (obfd) = elf_gp (ibfd);
1507
1508 /* Also copy the EI_OSABI field. */
1509 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1510 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1511
1512 /* If set, copy the EI_ABIVERSION field. */
1513 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1514 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1515 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1516
1517 /* Copy object attributes. */
1518 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1519
1520 if (iheaders == NULL || oheaders == NULL)
1521 return TRUE;
1522
1523 bed = get_elf_backend_data (obfd);
1524
1525 /* Possibly copy other fields in the section header. */
1526 for (i = 1; i < elf_numsections (obfd); i++)
1527 {
1528 unsigned int j;
1529 Elf_Internal_Shdr * oheader = oheaders[i];
1530
1531 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1532 because of a special case need for generating separate debug info
1533 files. See below for more details. */
1534 if (oheader == NULL
1535 || (oheader->sh_type != SHT_NOBITS
1536 && oheader->sh_type < SHT_LOOS))
1537 continue;
1538
1539 /* Ignore empty sections, and sections whose
1540 fields have already been initialised. */
1541 if (oheader->sh_size == 0
1542 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1543 continue;
1544
1545 /* Scan for the matching section in the input bfd.
1546 First we try for a direct mapping between the input and output sections. */
1547 for (j = 1; j < elf_numsections (ibfd); j++)
1548 {
1549 const Elf_Internal_Shdr * iheader = iheaders[j];
1550
1551 if (iheader == NULL)
1552 continue;
1553
1554 if (oheader->bfd_section != NULL
1555 && iheader->bfd_section != NULL
1556 && iheader->bfd_section->output_section != NULL
1557 && iheader->bfd_section->output_section == oheader->bfd_section)
1558 {
1559 /* We have found a connection from the input section to the
1560 output section. Attempt to copy the header fields. If
1561 this fails then do not try any further sections - there
1562 should only be a one-to-one mapping between input and output. */
1563 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1564 j = elf_numsections (ibfd);
1565 break;
1566 }
1567 }
1568
1569 if (j < elf_numsections (ibfd))
1570 continue;
1571
1572 /* That failed. So try to deduce the corresponding input section.
1573 Unfortunately we cannot compare names as the output string table
1574 is empty, so instead we check size, address and type. */
1575 for (j = 1; j < elf_numsections (ibfd); j++)
1576 {
1577 const Elf_Internal_Shdr * iheader = iheaders[j];
1578
1579 if (iheader == NULL)
1580 continue;
1581
1582 /* Try matching fields in the input section's header.
1583 Since --only-keep-debug turns all non-debug sections into
1584 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1585 input type. */
1586 if ((oheader->sh_type == SHT_NOBITS
1587 || iheader->sh_type == oheader->sh_type)
1588 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1589 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1590 && iheader->sh_addralign == oheader->sh_addralign
1591 && iheader->sh_entsize == oheader->sh_entsize
1592 && iheader->sh_size == oheader->sh_size
1593 && iheader->sh_addr == oheader->sh_addr
1594 && (iheader->sh_info != oheader->sh_info
1595 || iheader->sh_link != oheader->sh_link))
1596 {
1597 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1598 break;
1599 }
1600 }
1601
1602 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1603 {
1604 /* Final attempt. Call the backend copy function
1605 with a NULL input section. */
1606 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1607 NULL, oheader);
1608 }
1609 }
1610
1611 return TRUE;
1612 }
1613
1614 static const char *
1615 get_segment_type (unsigned int p_type)
1616 {
1617 const char *pt;
1618 switch (p_type)
1619 {
1620 case PT_NULL: pt = "NULL"; break;
1621 case PT_LOAD: pt = "LOAD"; break;
1622 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1623 case PT_INTERP: pt = "INTERP"; break;
1624 case PT_NOTE: pt = "NOTE"; break;
1625 case PT_SHLIB: pt = "SHLIB"; break;
1626 case PT_PHDR: pt = "PHDR"; break;
1627 case PT_TLS: pt = "TLS"; break;
1628 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1629 case PT_GNU_STACK: pt = "STACK"; break;
1630 case PT_GNU_RELRO: pt = "RELRO"; break;
1631 default: pt = NULL; break;
1632 }
1633 return pt;
1634 }
1635
1636 /* Print out the program headers. */
1637
1638 bfd_boolean
1639 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1640 {
1641 FILE *f = (FILE *) farg;
1642 Elf_Internal_Phdr *p;
1643 asection *s;
1644 bfd_byte *dynbuf = NULL;
1645
1646 p = elf_tdata (abfd)->phdr;
1647 if (p != NULL)
1648 {
1649 unsigned int i, c;
1650
1651 fprintf (f, _("\nProgram Header:\n"));
1652 c = elf_elfheader (abfd)->e_phnum;
1653 for (i = 0; i < c; i++, p++)
1654 {
1655 const char *pt = get_segment_type (p->p_type);
1656 char buf[20];
1657
1658 if (pt == NULL)
1659 {
1660 sprintf (buf, "0x%lx", p->p_type);
1661 pt = buf;
1662 }
1663 fprintf (f, "%8s off 0x", pt);
1664 bfd_fprintf_vma (abfd, f, p->p_offset);
1665 fprintf (f, " vaddr 0x");
1666 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1667 fprintf (f, " paddr 0x");
1668 bfd_fprintf_vma (abfd, f, p->p_paddr);
1669 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1670 fprintf (f, " filesz 0x");
1671 bfd_fprintf_vma (abfd, f, p->p_filesz);
1672 fprintf (f, " memsz 0x");
1673 bfd_fprintf_vma (abfd, f, p->p_memsz);
1674 fprintf (f, " flags %c%c%c",
1675 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1676 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1677 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1678 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1679 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1680 fprintf (f, "\n");
1681 }
1682 }
1683
1684 s = bfd_get_section_by_name (abfd, ".dynamic");
1685 if (s != NULL)
1686 {
1687 unsigned int elfsec;
1688 unsigned long shlink;
1689 bfd_byte *extdyn, *extdynend;
1690 size_t extdynsize;
1691 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1692
1693 fprintf (f, _("\nDynamic Section:\n"));
1694
1695 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1696 goto error_return;
1697
1698 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1699 if (elfsec == SHN_BAD)
1700 goto error_return;
1701 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1702
1703 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1704 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1705
1706 extdyn = dynbuf;
1707 /* PR 17512: file: 6f427532. */
1708 if (s->size < extdynsize)
1709 goto error_return;
1710 extdynend = extdyn + s->size;
1711 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1712 Fix range check. */
1713 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1714 {
1715 Elf_Internal_Dyn dyn;
1716 const char *name = "";
1717 char ab[20];
1718 bfd_boolean stringp;
1719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1720
1721 (*swap_dyn_in) (abfd, extdyn, &dyn);
1722
1723 if (dyn.d_tag == DT_NULL)
1724 break;
1725
1726 stringp = FALSE;
1727 switch (dyn.d_tag)
1728 {
1729 default:
1730 if (bed->elf_backend_get_target_dtag)
1731 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1732
1733 if (!strcmp (name, ""))
1734 {
1735 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1736 name = ab;
1737 }
1738 break;
1739
1740 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1741 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1742 case DT_PLTGOT: name = "PLTGOT"; break;
1743 case DT_HASH: name = "HASH"; break;
1744 case DT_STRTAB: name = "STRTAB"; break;
1745 case DT_SYMTAB: name = "SYMTAB"; break;
1746 case DT_RELA: name = "RELA"; break;
1747 case DT_RELASZ: name = "RELASZ"; break;
1748 case DT_RELAENT: name = "RELAENT"; break;
1749 case DT_STRSZ: name = "STRSZ"; break;
1750 case DT_SYMENT: name = "SYMENT"; break;
1751 case DT_INIT: name = "INIT"; break;
1752 case DT_FINI: name = "FINI"; break;
1753 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1754 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1755 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1756 case DT_REL: name = "REL"; break;
1757 case DT_RELSZ: name = "RELSZ"; break;
1758 case DT_RELENT: name = "RELENT"; break;
1759 case DT_PLTREL: name = "PLTREL"; break;
1760 case DT_DEBUG: name = "DEBUG"; break;
1761 case DT_TEXTREL: name = "TEXTREL"; break;
1762 case DT_JMPREL: name = "JMPREL"; break;
1763 case DT_BIND_NOW: name = "BIND_NOW"; break;
1764 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1765 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1766 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1767 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1768 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1769 case DT_FLAGS: name = "FLAGS"; break;
1770 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1771 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1772 case DT_CHECKSUM: name = "CHECKSUM"; break;
1773 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1774 case DT_MOVEENT: name = "MOVEENT"; break;
1775 case DT_MOVESZ: name = "MOVESZ"; break;
1776 case DT_FEATURE: name = "FEATURE"; break;
1777 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1778 case DT_SYMINSZ: name = "SYMINSZ"; break;
1779 case DT_SYMINENT: name = "SYMINENT"; break;
1780 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1781 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1782 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1783 case DT_PLTPAD: name = "PLTPAD"; break;
1784 case DT_MOVETAB: name = "MOVETAB"; break;
1785 case DT_SYMINFO: name = "SYMINFO"; break;
1786 case DT_RELACOUNT: name = "RELACOUNT"; break;
1787 case DT_RELCOUNT: name = "RELCOUNT"; break;
1788 case DT_FLAGS_1: name = "FLAGS_1"; break;
1789 case DT_VERSYM: name = "VERSYM"; break;
1790 case DT_VERDEF: name = "VERDEF"; break;
1791 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1792 case DT_VERNEED: name = "VERNEED"; break;
1793 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1794 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1795 case DT_USED: name = "USED"; break;
1796 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1797 case DT_GNU_HASH: name = "GNU_HASH"; break;
1798 }
1799
1800 fprintf (f, " %-20s ", name);
1801 if (! stringp)
1802 {
1803 fprintf (f, "0x");
1804 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1805 }
1806 else
1807 {
1808 const char *string;
1809 unsigned int tagv = dyn.d_un.d_val;
1810
1811 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1812 if (string == NULL)
1813 goto error_return;
1814 fprintf (f, "%s", string);
1815 }
1816 fprintf (f, "\n");
1817 }
1818
1819 free (dynbuf);
1820 dynbuf = NULL;
1821 }
1822
1823 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1824 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1825 {
1826 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1827 return FALSE;
1828 }
1829
1830 if (elf_dynverdef (abfd) != 0)
1831 {
1832 Elf_Internal_Verdef *t;
1833
1834 fprintf (f, _("\nVersion definitions:\n"));
1835 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1836 {
1837 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1838 t->vd_flags, t->vd_hash,
1839 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1840 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1841 {
1842 Elf_Internal_Verdaux *a;
1843
1844 fprintf (f, "\t");
1845 for (a = t->vd_auxptr->vda_nextptr;
1846 a != NULL;
1847 a = a->vda_nextptr)
1848 fprintf (f, "%s ",
1849 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1850 fprintf (f, "\n");
1851 }
1852 }
1853 }
1854
1855 if (elf_dynverref (abfd) != 0)
1856 {
1857 Elf_Internal_Verneed *t;
1858
1859 fprintf (f, _("\nVersion References:\n"));
1860 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1861 {
1862 Elf_Internal_Vernaux *a;
1863
1864 fprintf (f, _(" required from %s:\n"),
1865 t->vn_filename ? t->vn_filename : "<corrupt>");
1866 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1867 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1868 a->vna_flags, a->vna_other,
1869 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1870 }
1871 }
1872
1873 return TRUE;
1874
1875 error_return:
1876 free (dynbuf);
1877 return FALSE;
1878 }
1879
1880 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1881 and return symbol version for symbol version itself. */
1882
1883 const char *
1884 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1885 bfd_boolean base_p,
1886 bfd_boolean *hidden)
1887 {
1888 const char *version_string = NULL;
1889 if (elf_dynversym (abfd) != 0
1890 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1891 {
1892 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1893
1894 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1895 vernum &= VERSYM_VERSION;
1896
1897 if (vernum == 0)
1898 version_string = "";
1899 else if (vernum == 1
1900 && (vernum > elf_tdata (abfd)->cverdefs
1901 || (elf_tdata (abfd)->verdef[0].vd_flags
1902 == VER_FLG_BASE)))
1903 version_string = base_p ? "Base" : "";
1904 else if (vernum <= elf_tdata (abfd)->cverdefs)
1905 {
1906 const char *nodename
1907 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1908 version_string = "";
1909 if (base_p
1910 || nodename == NULL
1911 || symbol->name == NULL
1912 || strcmp (symbol->name, nodename) != 0)
1913 version_string = nodename;
1914 }
1915 else
1916 {
1917 Elf_Internal_Verneed *t;
1918
1919 version_string = _("<corrupt>");
1920 for (t = elf_tdata (abfd)->verref;
1921 t != NULL;
1922 t = t->vn_nextref)
1923 {
1924 Elf_Internal_Vernaux *a;
1925
1926 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1927 {
1928 if (a->vna_other == vernum)
1929 {
1930 version_string = a->vna_nodename;
1931 break;
1932 }
1933 }
1934 }
1935 }
1936 }
1937 return version_string;
1938 }
1939
1940 /* Display ELF-specific fields of a symbol. */
1941
1942 void
1943 bfd_elf_print_symbol (bfd *abfd,
1944 void *filep,
1945 asymbol *symbol,
1946 bfd_print_symbol_type how)
1947 {
1948 FILE *file = (FILE *) filep;
1949 switch (how)
1950 {
1951 case bfd_print_symbol_name:
1952 fprintf (file, "%s", symbol->name);
1953 break;
1954 case bfd_print_symbol_more:
1955 fprintf (file, "elf ");
1956 bfd_fprintf_vma (abfd, file, symbol->value);
1957 fprintf (file, " %x", symbol->flags);
1958 break;
1959 case bfd_print_symbol_all:
1960 {
1961 const char *section_name;
1962 const char *name = NULL;
1963 const struct elf_backend_data *bed;
1964 unsigned char st_other;
1965 bfd_vma val;
1966 const char *version_string;
1967 bfd_boolean hidden;
1968
1969 section_name = symbol->section ? symbol->section->name : "(*none*)";
1970
1971 bed = get_elf_backend_data (abfd);
1972 if (bed->elf_backend_print_symbol_all)
1973 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1974
1975 if (name == NULL)
1976 {
1977 name = symbol->name;
1978 bfd_print_symbol_vandf (abfd, file, symbol);
1979 }
1980
1981 fprintf (file, " %s\t", section_name);
1982 /* Print the "other" value for a symbol. For common symbols,
1983 we've already printed the size; now print the alignment.
1984 For other symbols, we have no specified alignment, and
1985 we've printed the address; now print the size. */
1986 if (symbol->section && bfd_is_com_section (symbol->section))
1987 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1988 else
1989 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1990 bfd_fprintf_vma (abfd, file, val);
1991
1992 /* If we have version information, print it. */
1993 version_string = _bfd_elf_get_symbol_version_string (abfd,
1994 symbol,
1995 TRUE,
1996 &hidden);
1997 if (version_string)
1998 {
1999 if (!hidden)
2000 fprintf (file, " %-11s", version_string);
2001 else
2002 {
2003 int i;
2004
2005 fprintf (file, " (%s)", version_string);
2006 for (i = 10 - strlen (version_string); i > 0; --i)
2007 putc (' ', file);
2008 }
2009 }
2010
2011 /* If the st_other field is not zero, print it. */
2012 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2013
2014 switch (st_other)
2015 {
2016 case 0: break;
2017 case STV_INTERNAL: fprintf (file, " .internal"); break;
2018 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2019 case STV_PROTECTED: fprintf (file, " .protected"); break;
2020 default:
2021 /* Some other non-defined flags are also present, so print
2022 everything hex. */
2023 fprintf (file, " 0x%02x", (unsigned int) st_other);
2024 }
2025
2026 fprintf (file, " %s", name);
2027 }
2028 break;
2029 }
2030 }
2031 \f
2032 /* ELF .o/exec file reading */
2033
2034 /* Create a new bfd section from an ELF section header. */
2035
2036 bfd_boolean
2037 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2038 {
2039 Elf_Internal_Shdr *hdr;
2040 Elf_Internal_Ehdr *ehdr;
2041 const struct elf_backend_data *bed;
2042 const char *name;
2043 bfd_boolean ret = TRUE;
2044 static bfd_boolean * sections_being_created = NULL;
2045 static bfd * sections_being_created_abfd = NULL;
2046 static unsigned int nesting = 0;
2047
2048 if (shindex >= elf_numsections (abfd))
2049 return FALSE;
2050
2051 if (++ nesting > 3)
2052 {
2053 /* PR17512: A corrupt ELF binary might contain a recursive group of
2054 sections, with each the string indices pointing to the next in the
2055 loop. Detect this here, by refusing to load a section that we are
2056 already in the process of loading. We only trigger this test if
2057 we have nested at least three sections deep as normal ELF binaries
2058 can expect to recurse at least once.
2059
2060 FIXME: It would be better if this array was attached to the bfd,
2061 rather than being held in a static pointer. */
2062
2063 if (sections_being_created_abfd != abfd)
2064 sections_being_created = NULL;
2065 if (sections_being_created == NULL)
2066 {
2067 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2068
2069 /* PR 26005: Do not use bfd_zalloc here as the memory might
2070 be released before the bfd has been fully scanned. */
2071 sections_being_created = (bfd_boolean *) bfd_malloc (amt);
2072 if (sections_being_created == NULL)
2073 return FALSE;
2074 memset (sections_being_created, FALSE, amt);
2075 sections_being_created_abfd = abfd;
2076 }
2077 if (sections_being_created [shindex])
2078 {
2079 _bfd_error_handler
2080 (_("%pB: warning: loop in section dependencies detected"), abfd);
2081 return FALSE;
2082 }
2083 sections_being_created [shindex] = TRUE;
2084 }
2085
2086 hdr = elf_elfsections (abfd)[shindex];
2087 ehdr = elf_elfheader (abfd);
2088 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2089 hdr->sh_name);
2090 if (name == NULL)
2091 goto fail;
2092
2093 bed = get_elf_backend_data (abfd);
2094 switch (hdr->sh_type)
2095 {
2096 case SHT_NULL:
2097 /* Inactive section. Throw it away. */
2098 goto success;
2099
2100 case SHT_PROGBITS: /* Normal section with contents. */
2101 case SHT_NOBITS: /* .bss section. */
2102 case SHT_HASH: /* .hash section. */
2103 case SHT_NOTE: /* .note section. */
2104 case SHT_INIT_ARRAY: /* .init_array section. */
2105 case SHT_FINI_ARRAY: /* .fini_array section. */
2106 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2107 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2108 case SHT_GNU_HASH: /* .gnu.hash section. */
2109 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2110 goto success;
2111
2112 case SHT_DYNAMIC: /* Dynamic linking information. */
2113 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2114 goto fail;
2115
2116 if (hdr->sh_link > elf_numsections (abfd))
2117 {
2118 /* PR 10478: Accept Solaris binaries with a sh_link
2119 field set to SHN_BEFORE or SHN_AFTER. */
2120 switch (bfd_get_arch (abfd))
2121 {
2122 case bfd_arch_i386:
2123 case bfd_arch_sparc:
2124 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2125 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2126 break;
2127 /* Otherwise fall through. */
2128 default:
2129 goto fail;
2130 }
2131 }
2132 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2133 goto fail;
2134 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2135 {
2136 Elf_Internal_Shdr *dynsymhdr;
2137
2138 /* The shared libraries distributed with hpux11 have a bogus
2139 sh_link field for the ".dynamic" section. Find the
2140 string table for the ".dynsym" section instead. */
2141 if (elf_dynsymtab (abfd) != 0)
2142 {
2143 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2144 hdr->sh_link = dynsymhdr->sh_link;
2145 }
2146 else
2147 {
2148 unsigned int i, num_sec;
2149
2150 num_sec = elf_numsections (abfd);
2151 for (i = 1; i < num_sec; i++)
2152 {
2153 dynsymhdr = elf_elfsections (abfd)[i];
2154 if (dynsymhdr->sh_type == SHT_DYNSYM)
2155 {
2156 hdr->sh_link = dynsymhdr->sh_link;
2157 break;
2158 }
2159 }
2160 }
2161 }
2162 goto success;
2163
2164 case SHT_SYMTAB: /* A symbol table. */
2165 if (elf_onesymtab (abfd) == shindex)
2166 goto success;
2167
2168 if (hdr->sh_entsize != bed->s->sizeof_sym)
2169 goto fail;
2170
2171 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2172 {
2173 if (hdr->sh_size != 0)
2174 goto fail;
2175 /* Some assemblers erroneously set sh_info to one with a
2176 zero sh_size. ld sees this as a global symbol count
2177 of (unsigned) -1. Fix it here. */
2178 hdr->sh_info = 0;
2179 goto success;
2180 }
2181
2182 /* PR 18854: A binary might contain more than one symbol table.
2183 Unusual, but possible. Warn, but continue. */
2184 if (elf_onesymtab (abfd) != 0)
2185 {
2186 _bfd_error_handler
2187 /* xgettext:c-format */
2188 (_("%pB: warning: multiple symbol tables detected"
2189 " - ignoring the table in section %u"),
2190 abfd, shindex);
2191 goto success;
2192 }
2193 elf_onesymtab (abfd) = shindex;
2194 elf_symtab_hdr (abfd) = *hdr;
2195 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2196 abfd->flags |= HAS_SYMS;
2197
2198 /* Sometimes a shared object will map in the symbol table. If
2199 SHF_ALLOC is set, and this is a shared object, then we also
2200 treat this section as a BFD section. We can not base the
2201 decision purely on SHF_ALLOC, because that flag is sometimes
2202 set in a relocatable object file, which would confuse the
2203 linker. */
2204 if ((hdr->sh_flags & SHF_ALLOC) != 0
2205 && (abfd->flags & DYNAMIC) != 0
2206 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2207 shindex))
2208 goto fail;
2209
2210 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2211 can't read symbols without that section loaded as well. It
2212 is most likely specified by the next section header. */
2213 {
2214 elf_section_list * entry;
2215 unsigned int i, num_sec;
2216
2217 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2218 if (entry->hdr.sh_link == shindex)
2219 goto success;
2220
2221 num_sec = elf_numsections (abfd);
2222 for (i = shindex + 1; i < num_sec; i++)
2223 {
2224 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2225
2226 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2227 && hdr2->sh_link == shindex)
2228 break;
2229 }
2230
2231 if (i == num_sec)
2232 for (i = 1; i < shindex; i++)
2233 {
2234 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2235
2236 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2237 && hdr2->sh_link == shindex)
2238 break;
2239 }
2240
2241 if (i != shindex)
2242 ret = bfd_section_from_shdr (abfd, i);
2243 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2244 goto success;
2245 }
2246
2247 case SHT_DYNSYM: /* A dynamic symbol table. */
2248 if (elf_dynsymtab (abfd) == shindex)
2249 goto success;
2250
2251 if (hdr->sh_entsize != bed->s->sizeof_sym)
2252 goto fail;
2253
2254 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2255 {
2256 if (hdr->sh_size != 0)
2257 goto fail;
2258
2259 /* Some linkers erroneously set sh_info to one with a
2260 zero sh_size. ld sees this as a global symbol count
2261 of (unsigned) -1. Fix it here. */
2262 hdr->sh_info = 0;
2263 goto success;
2264 }
2265
2266 /* PR 18854: A binary might contain more than one dynamic symbol table.
2267 Unusual, but possible. Warn, but continue. */
2268 if (elf_dynsymtab (abfd) != 0)
2269 {
2270 _bfd_error_handler
2271 /* xgettext:c-format */
2272 (_("%pB: warning: multiple dynamic symbol tables detected"
2273 " - ignoring the table in section %u"),
2274 abfd, shindex);
2275 goto success;
2276 }
2277 elf_dynsymtab (abfd) = shindex;
2278 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2279 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2280 abfd->flags |= HAS_SYMS;
2281
2282 /* Besides being a symbol table, we also treat this as a regular
2283 section, so that objcopy can handle it. */
2284 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2285 goto success;
2286
2287 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2288 {
2289 elf_section_list * entry;
2290
2291 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2292 if (entry->ndx == shindex)
2293 goto success;
2294
2295 entry = bfd_alloc (abfd, sizeof (*entry));
2296 if (entry == NULL)
2297 goto fail;
2298 entry->ndx = shindex;
2299 entry->hdr = * hdr;
2300 entry->next = elf_symtab_shndx_list (abfd);
2301 elf_symtab_shndx_list (abfd) = entry;
2302 elf_elfsections (abfd)[shindex] = & entry->hdr;
2303 goto success;
2304 }
2305
2306 case SHT_STRTAB: /* A string table. */
2307 if (hdr->bfd_section != NULL)
2308 goto success;
2309
2310 if (ehdr->e_shstrndx == shindex)
2311 {
2312 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2313 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2314 goto success;
2315 }
2316
2317 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2318 {
2319 symtab_strtab:
2320 elf_tdata (abfd)->strtab_hdr = *hdr;
2321 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2322 goto success;
2323 }
2324
2325 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2326 {
2327 dynsymtab_strtab:
2328 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2329 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2330 elf_elfsections (abfd)[shindex] = hdr;
2331 /* We also treat this as a regular section, so that objcopy
2332 can handle it. */
2333 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2334 shindex);
2335 goto success;
2336 }
2337
2338 /* If the string table isn't one of the above, then treat it as a
2339 regular section. We need to scan all the headers to be sure,
2340 just in case this strtab section appeared before the above. */
2341 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2342 {
2343 unsigned int i, num_sec;
2344
2345 num_sec = elf_numsections (abfd);
2346 for (i = 1; i < num_sec; i++)
2347 {
2348 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2349 if (hdr2->sh_link == shindex)
2350 {
2351 /* Prevent endless recursion on broken objects. */
2352 if (i == shindex)
2353 goto fail;
2354 if (! bfd_section_from_shdr (abfd, i))
2355 goto fail;
2356 if (elf_onesymtab (abfd) == i)
2357 goto symtab_strtab;
2358 if (elf_dynsymtab (abfd) == i)
2359 goto dynsymtab_strtab;
2360 }
2361 }
2362 }
2363 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2364 goto success;
2365
2366 case SHT_REL:
2367 case SHT_RELA:
2368 /* *These* do a lot of work -- but build no sections! */
2369 {
2370 asection *target_sect;
2371 Elf_Internal_Shdr *hdr2, **p_hdr;
2372 unsigned int num_sec = elf_numsections (abfd);
2373 struct bfd_elf_section_data *esdt;
2374
2375 if (hdr->sh_entsize
2376 != (bfd_size_type) (hdr->sh_type == SHT_REL
2377 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2378 goto fail;
2379
2380 /* Check for a bogus link to avoid crashing. */
2381 if (hdr->sh_link >= num_sec)
2382 {
2383 _bfd_error_handler
2384 /* xgettext:c-format */
2385 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2386 abfd, hdr->sh_link, name, shindex);
2387 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2388 shindex);
2389 goto success;
2390 }
2391
2392 /* For some incomprehensible reason Oracle distributes
2393 libraries for Solaris in which some of the objects have
2394 bogus sh_link fields. It would be nice if we could just
2395 reject them, but, unfortunately, some people need to use
2396 them. We scan through the section headers; if we find only
2397 one suitable symbol table, we clobber the sh_link to point
2398 to it. I hope this doesn't break anything.
2399
2400 Don't do it on executable nor shared library. */
2401 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2403 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2404 {
2405 unsigned int scan;
2406 int found;
2407
2408 found = 0;
2409 for (scan = 1; scan < num_sec; scan++)
2410 {
2411 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2412 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2413 {
2414 if (found != 0)
2415 {
2416 found = 0;
2417 break;
2418 }
2419 found = scan;
2420 }
2421 }
2422 if (found != 0)
2423 hdr->sh_link = found;
2424 }
2425
2426 /* Get the symbol table. */
2427 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2428 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2429 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2430 goto fail;
2431
2432 /* If this is an alloc section in an executable or shared
2433 library, or the reloc section does not use the main symbol
2434 table we don't treat it as a reloc section. BFD can't
2435 adequately represent such a section, so at least for now,
2436 we don't try. We just present it as a normal section. We
2437 also can't use it as a reloc section if it points to the
2438 null section, an invalid section, another reloc section, or
2439 its sh_link points to the null section. */
2440 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2441 && (hdr->sh_flags & SHF_ALLOC) != 0)
2442 || hdr->sh_link == SHN_UNDEF
2443 || hdr->sh_link != elf_onesymtab (abfd)
2444 || hdr->sh_info == SHN_UNDEF
2445 || hdr->sh_info >= num_sec
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2447 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2448 {
2449 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2450 shindex);
2451 goto success;
2452 }
2453
2454 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2455 goto fail;
2456
2457 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2458 if (target_sect == NULL)
2459 goto fail;
2460
2461 esdt = elf_section_data (target_sect);
2462 if (hdr->sh_type == SHT_RELA)
2463 p_hdr = &esdt->rela.hdr;
2464 else
2465 p_hdr = &esdt->rel.hdr;
2466
2467 /* PR 17512: file: 0b4f81b7.
2468 Also see PR 24456, for a file which deliberately has two reloc
2469 sections. */
2470 if (*p_hdr != NULL)
2471 {
2472 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2473 {
2474 _bfd_error_handler
2475 /* xgettext:c-format */
2476 (_("%pB: warning: secondary relocation section '%s' "
2477 "for section %pA found - ignoring"),
2478 abfd, name, target_sect);
2479 }
2480 goto success;
2481 }
2482
2483 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2484 if (hdr2 == NULL)
2485 goto fail;
2486 *hdr2 = *hdr;
2487 *p_hdr = hdr2;
2488 elf_elfsections (abfd)[shindex] = hdr2;
2489 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2490 * bed->s->int_rels_per_ext_rel);
2491 target_sect->flags |= SEC_RELOC;
2492 target_sect->relocation = NULL;
2493 target_sect->rel_filepos = hdr->sh_offset;
2494 /* In the section to which the relocations apply, mark whether
2495 its relocations are of the REL or RELA variety. */
2496 if (hdr->sh_size != 0)
2497 {
2498 if (hdr->sh_type == SHT_RELA)
2499 target_sect->use_rela_p = 1;
2500 }
2501 abfd->flags |= HAS_RELOC;
2502 goto success;
2503 }
2504
2505 case SHT_GNU_verdef:
2506 elf_dynverdef (abfd) = shindex;
2507 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2509 goto success;
2510
2511 case SHT_GNU_versym:
2512 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2513 goto fail;
2514
2515 elf_dynversym (abfd) = shindex;
2516 elf_tdata (abfd)->dynversym_hdr = *hdr;
2517 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2518 goto success;
2519
2520 case SHT_GNU_verneed:
2521 elf_dynverref (abfd) = shindex;
2522 elf_tdata (abfd)->dynverref_hdr = *hdr;
2523 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2524 goto success;
2525
2526 case SHT_SHLIB:
2527 goto success;
2528
2529 case SHT_GROUP:
2530 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2531 goto fail;
2532
2533 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2534 goto fail;
2535
2536 goto success;
2537
2538 default:
2539 /* Possibly an attributes section. */
2540 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2541 || hdr->sh_type == bed->obj_attrs_section_type)
2542 {
2543 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2544 goto fail;
2545 _bfd_elf_parse_attributes (abfd, hdr);
2546 goto success;
2547 }
2548
2549 /* Check for any processor-specific section types. */
2550 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2551 goto success;
2552
2553 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2554 {
2555 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2556 /* FIXME: How to properly handle allocated section reserved
2557 for applications? */
2558 _bfd_error_handler
2559 /* xgettext:c-format */
2560 (_("%pB: unknown type [%#x] section `%s'"),
2561 abfd, hdr->sh_type, name);
2562 else
2563 {
2564 /* Allow sections reserved for applications. */
2565 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2566 shindex);
2567 goto success;
2568 }
2569 }
2570 else if (hdr->sh_type >= SHT_LOPROC
2571 && hdr->sh_type <= SHT_HIPROC)
2572 /* FIXME: We should handle this section. */
2573 _bfd_error_handler
2574 /* xgettext:c-format */
2575 (_("%pB: unknown type [%#x] section `%s'"),
2576 abfd, hdr->sh_type, name);
2577 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2578 {
2579 /* Unrecognised OS-specific sections. */
2580 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2581 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2582 required to correctly process the section and the file should
2583 be rejected with an error message. */
2584 _bfd_error_handler
2585 /* xgettext:c-format */
2586 (_("%pB: unknown type [%#x] section `%s'"),
2587 abfd, hdr->sh_type, name);
2588 else
2589 {
2590 /* Otherwise it should be processed. */
2591 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2592 goto success;
2593 }
2594 }
2595 else
2596 /* FIXME: We should handle this section. */
2597 _bfd_error_handler
2598 /* xgettext:c-format */
2599 (_("%pB: unknown type [%#x] section `%s'"),
2600 abfd, hdr->sh_type, name);
2601
2602 goto fail;
2603 }
2604
2605 fail:
2606 ret = FALSE;
2607 success:
2608 if (sections_being_created && sections_being_created_abfd == abfd)
2609 sections_being_created [shindex] = FALSE;
2610 if (-- nesting == 0)
2611 {
2612 free (sections_being_created);
2613 sections_being_created = NULL;
2614 sections_being_created_abfd = NULL;
2615 }
2616 return ret;
2617 }
2618
2619 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2620
2621 Elf_Internal_Sym *
2622 bfd_sym_from_r_symndx (struct sym_cache *cache,
2623 bfd *abfd,
2624 unsigned long r_symndx)
2625 {
2626 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2627
2628 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2629 {
2630 Elf_Internal_Shdr *symtab_hdr;
2631 unsigned char esym[sizeof (Elf64_External_Sym)];
2632 Elf_External_Sym_Shndx eshndx;
2633
2634 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2635 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2636 &cache->sym[ent], esym, &eshndx) == NULL)
2637 return NULL;
2638
2639 if (cache->abfd != abfd)
2640 {
2641 memset (cache->indx, -1, sizeof (cache->indx));
2642 cache->abfd = abfd;
2643 }
2644 cache->indx[ent] = r_symndx;
2645 }
2646
2647 return &cache->sym[ent];
2648 }
2649
2650 /* Given an ELF section number, retrieve the corresponding BFD
2651 section. */
2652
2653 asection *
2654 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2655 {
2656 if (sec_index >= elf_numsections (abfd))
2657 return NULL;
2658 return elf_elfsections (abfd)[sec_index]->bfd_section;
2659 }
2660
2661 static const struct bfd_elf_special_section special_sections_b[] =
2662 {
2663 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2664 { NULL, 0, 0, 0, 0 }
2665 };
2666
2667 static const struct bfd_elf_special_section special_sections_c[] =
2668 {
2669 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2670 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_d[] =
2675 {
2676 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2677 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2678 /* There are more DWARF sections than these, but they needn't be added here
2679 unless you have to cope with broken compilers that don't emit section
2680 attributes or you want to help the user writing assembler. */
2681 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2682 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2683 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2684 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2685 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2687 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2688 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2689 { NULL, 0, 0, 0, 0 }
2690 };
2691
2692 static const struct bfd_elf_special_section special_sections_f[] =
2693 {
2694 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2695 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2696 { NULL, 0 , 0, 0, 0 }
2697 };
2698
2699 static const struct bfd_elf_special_section special_sections_g[] =
2700 {
2701 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2702 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2703 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2704 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2705 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2706 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2707 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2708 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2709 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_h[] =
2714 {
2715 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2716 { NULL, 0, 0, 0, 0 }
2717 };
2718
2719 static const struct bfd_elf_special_section special_sections_i[] =
2720 {
2721 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2722 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2723 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_l[] =
2728 {
2729 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2730 { NULL, 0, 0, 0, 0 }
2731 };
2732
2733 static const struct bfd_elf_special_section special_sections_n[] =
2734 {
2735 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2736 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2737 { NULL, 0, 0, 0, 0 }
2738 };
2739
2740 static const struct bfd_elf_special_section special_sections_p[] =
2741 {
2742 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2743 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2744 { NULL, 0, 0, 0, 0 }
2745 };
2746
2747 static const struct bfd_elf_special_section special_sections_r[] =
2748 {
2749 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2750 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2751 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2752 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2753 { NULL, 0, 0, 0, 0 }
2754 };
2755
2756 static const struct bfd_elf_special_section special_sections_s[] =
2757 {
2758 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2759 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2760 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2761 /* See struct bfd_elf_special_section declaration for the semantics of
2762 this special case where .prefix_length != strlen (.prefix). */
2763 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2764 { NULL, 0, 0, 0, 0 }
2765 };
2766
2767 static const struct bfd_elf_special_section special_sections_t[] =
2768 {
2769 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2770 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2771 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2772 { NULL, 0, 0, 0, 0 }
2773 };
2774
2775 static const struct bfd_elf_special_section special_sections_z[] =
2776 {
2777 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2778 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2779 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2781 { NULL, 0, 0, 0, 0 }
2782 };
2783
2784 static const struct bfd_elf_special_section * const special_sections[] =
2785 {
2786 special_sections_b, /* 'b' */
2787 special_sections_c, /* 'c' */
2788 special_sections_d, /* 'd' */
2789 NULL, /* 'e' */
2790 special_sections_f, /* 'f' */
2791 special_sections_g, /* 'g' */
2792 special_sections_h, /* 'h' */
2793 special_sections_i, /* 'i' */
2794 NULL, /* 'j' */
2795 NULL, /* 'k' */
2796 special_sections_l, /* 'l' */
2797 NULL, /* 'm' */
2798 special_sections_n, /* 'n' */
2799 NULL, /* 'o' */
2800 special_sections_p, /* 'p' */
2801 NULL, /* 'q' */
2802 special_sections_r, /* 'r' */
2803 special_sections_s, /* 's' */
2804 special_sections_t, /* 't' */
2805 NULL, /* 'u' */
2806 NULL, /* 'v' */
2807 NULL, /* 'w' */
2808 NULL, /* 'x' */
2809 NULL, /* 'y' */
2810 special_sections_z /* 'z' */
2811 };
2812
2813 const struct bfd_elf_special_section *
2814 _bfd_elf_get_special_section (const char *name,
2815 const struct bfd_elf_special_section *spec,
2816 unsigned int rela)
2817 {
2818 int i;
2819 int len;
2820
2821 len = strlen (name);
2822
2823 for (i = 0; spec[i].prefix != NULL; i++)
2824 {
2825 int suffix_len;
2826 int prefix_len = spec[i].prefix_length;
2827
2828 if (len < prefix_len)
2829 continue;
2830 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2831 continue;
2832
2833 suffix_len = spec[i].suffix_length;
2834 if (suffix_len <= 0)
2835 {
2836 if (name[prefix_len] != 0)
2837 {
2838 if (suffix_len == 0)
2839 continue;
2840 if (name[prefix_len] != '.'
2841 && (suffix_len == -2
2842 || (rela && spec[i].type == SHT_REL)))
2843 continue;
2844 }
2845 }
2846 else
2847 {
2848 if (len < prefix_len + suffix_len)
2849 continue;
2850 if (memcmp (name + len - suffix_len,
2851 spec[i].prefix + prefix_len,
2852 suffix_len) != 0)
2853 continue;
2854 }
2855 return &spec[i];
2856 }
2857
2858 return NULL;
2859 }
2860
2861 const struct bfd_elf_special_section *
2862 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2863 {
2864 int i;
2865 const struct bfd_elf_special_section *spec;
2866 const struct elf_backend_data *bed;
2867
2868 /* See if this is one of the special sections. */
2869 if (sec->name == NULL)
2870 return NULL;
2871
2872 bed = get_elf_backend_data (abfd);
2873 spec = bed->special_sections;
2874 if (spec)
2875 {
2876 spec = _bfd_elf_get_special_section (sec->name,
2877 bed->special_sections,
2878 sec->use_rela_p);
2879 if (spec != NULL)
2880 return spec;
2881 }
2882
2883 if (sec->name[0] != '.')
2884 return NULL;
2885
2886 i = sec->name[1] - 'b';
2887 if (i < 0 || i > 'z' - 'b')
2888 return NULL;
2889
2890 spec = special_sections[i];
2891
2892 if (spec == NULL)
2893 return NULL;
2894
2895 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2896 }
2897
2898 bfd_boolean
2899 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2900 {
2901 struct bfd_elf_section_data *sdata;
2902 const struct elf_backend_data *bed;
2903 const struct bfd_elf_special_section *ssect;
2904
2905 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2906 if (sdata == NULL)
2907 {
2908 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2909 sizeof (*sdata));
2910 if (sdata == NULL)
2911 return FALSE;
2912 sec->used_by_bfd = sdata;
2913 }
2914
2915 /* Indicate whether or not this section should use RELA relocations. */
2916 bed = get_elf_backend_data (abfd);
2917 sec->use_rela_p = bed->default_use_rela_p;
2918
2919 /* Set up ELF section type and flags for newly created sections, if
2920 there is an ABI mandated section. */
2921 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2922 if (ssect != NULL)
2923 {
2924 elf_section_type (sec) = ssect->type;
2925 elf_section_flags (sec) = ssect->attr;
2926 }
2927
2928 return _bfd_generic_new_section_hook (abfd, sec);
2929 }
2930
2931 /* Create a new bfd section from an ELF program header.
2932
2933 Since program segments have no names, we generate a synthetic name
2934 of the form segment<NUM>, where NUM is generally the index in the
2935 program header table. For segments that are split (see below) we
2936 generate the names segment<NUM>a and segment<NUM>b.
2937
2938 Note that some program segments may have a file size that is different than
2939 (less than) the memory size. All this means is that at execution the
2940 system must allocate the amount of memory specified by the memory size,
2941 but only initialize it with the first "file size" bytes read from the
2942 file. This would occur for example, with program segments consisting
2943 of combined data+bss.
2944
2945 To handle the above situation, this routine generates TWO bfd sections
2946 for the single program segment. The first has the length specified by
2947 the file size of the segment, and the second has the length specified
2948 by the difference between the two sizes. In effect, the segment is split
2949 into its initialized and uninitialized parts.
2950
2951 */
2952
2953 bfd_boolean
2954 _bfd_elf_make_section_from_phdr (bfd *abfd,
2955 Elf_Internal_Phdr *hdr,
2956 int hdr_index,
2957 const char *type_name)
2958 {
2959 asection *newsect;
2960 char *name;
2961 char namebuf[64];
2962 size_t len;
2963 int split;
2964 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2965
2966 split = ((hdr->p_memsz > 0)
2967 && (hdr->p_filesz > 0)
2968 && (hdr->p_memsz > hdr->p_filesz));
2969
2970 if (hdr->p_filesz > 0)
2971 {
2972 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2973 len = strlen (namebuf) + 1;
2974 name = (char *) bfd_alloc (abfd, len);
2975 if (!name)
2976 return FALSE;
2977 memcpy (name, namebuf, len);
2978 newsect = bfd_make_section (abfd, name);
2979 if (newsect == NULL)
2980 return FALSE;
2981 newsect->vma = hdr->p_vaddr / opb;
2982 newsect->lma = hdr->p_paddr / opb;
2983 newsect->size = hdr->p_filesz;
2984 newsect->filepos = hdr->p_offset;
2985 newsect->flags |= SEC_HAS_CONTENTS;
2986 newsect->alignment_power = bfd_log2 (hdr->p_align);
2987 if (hdr->p_type == PT_LOAD)
2988 {
2989 newsect->flags |= SEC_ALLOC;
2990 newsect->flags |= SEC_LOAD;
2991 if (hdr->p_flags & PF_X)
2992 {
2993 /* FIXME: all we known is that it has execute PERMISSION,
2994 may be data. */
2995 newsect->flags |= SEC_CODE;
2996 }
2997 }
2998 if (!(hdr->p_flags & PF_W))
2999 {
3000 newsect->flags |= SEC_READONLY;
3001 }
3002 }
3003
3004 if (hdr->p_memsz > hdr->p_filesz)
3005 {
3006 bfd_vma align;
3007
3008 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3009 len = strlen (namebuf) + 1;
3010 name = (char *) bfd_alloc (abfd, len);
3011 if (!name)
3012 return FALSE;
3013 memcpy (name, namebuf, len);
3014 newsect = bfd_make_section (abfd, name);
3015 if (newsect == NULL)
3016 return FALSE;
3017 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3018 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3019 newsect->size = hdr->p_memsz - hdr->p_filesz;
3020 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3021 align = newsect->vma & -newsect->vma;
3022 if (align == 0 || align > hdr->p_align)
3023 align = hdr->p_align;
3024 newsect->alignment_power = bfd_log2 (align);
3025 if (hdr->p_type == PT_LOAD)
3026 {
3027 newsect->flags |= SEC_ALLOC;
3028 if (hdr->p_flags & PF_X)
3029 newsect->flags |= SEC_CODE;
3030 }
3031 if (!(hdr->p_flags & PF_W))
3032 newsect->flags |= SEC_READONLY;
3033 }
3034
3035 return TRUE;
3036 }
3037
3038 static bfd_boolean
3039 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3040 {
3041 /* The return value is ignored. Build-ids are considered optional. */
3042 if (templ->xvec->flavour == bfd_target_elf_flavour)
3043 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3044 (templ, offset);
3045 return FALSE;
3046 }
3047
3048 bfd_boolean
3049 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3050 {
3051 const struct elf_backend_data *bed;
3052
3053 switch (hdr->p_type)
3054 {
3055 case PT_NULL:
3056 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3057
3058 case PT_LOAD:
3059 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3060 return FALSE;
3061 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3062 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3063 return TRUE;
3064
3065 case PT_DYNAMIC:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3067
3068 case PT_INTERP:
3069 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3070
3071 case PT_NOTE:
3072 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3073 return FALSE;
3074 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3075 hdr->p_align))
3076 return FALSE;
3077 return TRUE;
3078
3079 case PT_SHLIB:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3081
3082 case PT_PHDR:
3083 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3084
3085 case PT_GNU_EH_FRAME:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3087 "eh_frame_hdr");
3088
3089 case PT_GNU_STACK:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3091
3092 case PT_GNU_RELRO:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3094
3095 default:
3096 /* Check for any processor-specific program segment types. */
3097 bed = get_elf_backend_data (abfd);
3098 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3099 }
3100 }
3101
3102 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3103 REL or RELA. */
3104
3105 Elf_Internal_Shdr *
3106 _bfd_elf_single_rel_hdr (asection *sec)
3107 {
3108 if (elf_section_data (sec)->rel.hdr)
3109 {
3110 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3111 return elf_section_data (sec)->rel.hdr;
3112 }
3113 else
3114 return elf_section_data (sec)->rela.hdr;
3115 }
3116
3117 static bfd_boolean
3118 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3119 Elf_Internal_Shdr *rel_hdr,
3120 const char *sec_name,
3121 bfd_boolean use_rela_p)
3122 {
3123 char *name = (char *) bfd_alloc (abfd,
3124 sizeof ".rela" + strlen (sec_name));
3125 if (name == NULL)
3126 return FALSE;
3127
3128 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3129 rel_hdr->sh_name =
3130 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3131 FALSE);
3132 if (rel_hdr->sh_name == (unsigned int) -1)
3133 return FALSE;
3134
3135 return TRUE;
3136 }
3137
3138 /* Allocate and initialize a section-header for a new reloc section,
3139 containing relocations against ASECT. It is stored in RELDATA. If
3140 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3141 relocations. */
3142
3143 static bfd_boolean
3144 _bfd_elf_init_reloc_shdr (bfd *abfd,
3145 struct bfd_elf_section_reloc_data *reldata,
3146 const char *sec_name,
3147 bfd_boolean use_rela_p,
3148 bfd_boolean delay_st_name_p)
3149 {
3150 Elf_Internal_Shdr *rel_hdr;
3151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3152
3153 BFD_ASSERT (reldata->hdr == NULL);
3154 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3155 reldata->hdr = rel_hdr;
3156
3157 if (delay_st_name_p)
3158 rel_hdr->sh_name = (unsigned int) -1;
3159 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3160 use_rela_p))
3161 return FALSE;
3162 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3163 rel_hdr->sh_entsize = (use_rela_p
3164 ? bed->s->sizeof_rela
3165 : bed->s->sizeof_rel);
3166 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3167 rel_hdr->sh_flags = 0;
3168 rel_hdr->sh_addr = 0;
3169 rel_hdr->sh_size = 0;
3170 rel_hdr->sh_offset = 0;
3171
3172 return TRUE;
3173 }
3174
3175 /* Return the default section type based on the passed in section flags. */
3176
3177 int
3178 bfd_elf_get_default_section_type (flagword flags)
3179 {
3180 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3181 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3182 return SHT_NOBITS;
3183 return SHT_PROGBITS;
3184 }
3185
3186 struct fake_section_arg
3187 {
3188 struct bfd_link_info *link_info;
3189 bfd_boolean failed;
3190 };
3191
3192 /* Set up an ELF internal section header for a section. */
3193
3194 static void
3195 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3196 {
3197 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3199 struct bfd_elf_section_data *esd = elf_section_data (asect);
3200 Elf_Internal_Shdr *this_hdr;
3201 unsigned int sh_type;
3202 const char *name = asect->name;
3203 bfd_boolean delay_st_name_p = FALSE;
3204 bfd_vma mask;
3205
3206 if (arg->failed)
3207 {
3208 /* We already failed; just get out of the bfd_map_over_sections
3209 loop. */
3210 return;
3211 }
3212
3213 this_hdr = &esd->this_hdr;
3214
3215 if (arg->link_info)
3216 {
3217 /* ld: compress DWARF debug sections with names: .debug_*. */
3218 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3219 && (asect->flags & SEC_DEBUGGING)
3220 && name[1] == 'd'
3221 && name[6] == '_')
3222 {
3223 /* Set SEC_ELF_COMPRESS to indicate this section should be
3224 compressed. */
3225 asect->flags |= SEC_ELF_COMPRESS;
3226 /* If this section will be compressed, delay adding section
3227 name to section name section after it is compressed in
3228 _bfd_elf_assign_file_positions_for_non_load. */
3229 delay_st_name_p = TRUE;
3230 }
3231 }
3232 else if ((asect->flags & SEC_ELF_RENAME))
3233 {
3234 /* objcopy: rename output DWARF debug section. */
3235 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3236 {
3237 /* When we decompress or compress with SHF_COMPRESSED,
3238 convert section name from .zdebug_* to .debug_* if
3239 needed. */
3240 if (name[1] == 'z')
3241 {
3242 char *new_name = convert_zdebug_to_debug (abfd, name);
3243 if (new_name == NULL)
3244 {
3245 arg->failed = TRUE;
3246 return;
3247 }
3248 name = new_name;
3249 }
3250 }
3251 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3252 {
3253 /* PR binutils/18087: Compression does not always make a
3254 section smaller. So only rename the section when
3255 compression has actually taken place. If input section
3256 name is .zdebug_*, we should never compress it again. */
3257 char *new_name = convert_debug_to_zdebug (abfd, name);
3258 if (new_name == NULL)
3259 {
3260 arg->failed = TRUE;
3261 return;
3262 }
3263 BFD_ASSERT (name[1] != 'z');
3264 name = new_name;
3265 }
3266 }
3267
3268 if (delay_st_name_p)
3269 this_hdr->sh_name = (unsigned int) -1;
3270 else
3271 {
3272 this_hdr->sh_name
3273 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3274 name, FALSE);
3275 if (this_hdr->sh_name == (unsigned int) -1)
3276 {
3277 arg->failed = TRUE;
3278 return;
3279 }
3280 }
3281
3282 /* Don't clear sh_flags. Assembler may set additional bits. */
3283
3284 if ((asect->flags & SEC_ALLOC) != 0
3285 || asect->user_set_vma)
3286 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3287 else
3288 this_hdr->sh_addr = 0;
3289
3290 this_hdr->sh_offset = 0;
3291 this_hdr->sh_size = asect->size;
3292 this_hdr->sh_link = 0;
3293 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3294 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3295 {
3296 _bfd_error_handler
3297 /* xgettext:c-format */
3298 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3299 abfd, asect->alignment_power, asect);
3300 arg->failed = TRUE;
3301 return;
3302 }
3303 /* Set sh_addralign to the highest power of two given by alignment
3304 consistent with the section VMA. Linker scripts can force VMA. */
3305 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3306 this_hdr->sh_addralign = mask & -mask;
3307 /* The sh_entsize and sh_info fields may have been set already by
3308 copy_private_section_data. */
3309
3310 this_hdr->bfd_section = asect;
3311 this_hdr->contents = NULL;
3312
3313 /* If the section type is unspecified, we set it based on
3314 asect->flags. */
3315 if ((asect->flags & SEC_GROUP) != 0)
3316 sh_type = SHT_GROUP;
3317 else
3318 sh_type = bfd_elf_get_default_section_type (asect->flags);
3319
3320 if (this_hdr->sh_type == SHT_NULL)
3321 this_hdr->sh_type = sh_type;
3322 else if (this_hdr->sh_type == SHT_NOBITS
3323 && sh_type == SHT_PROGBITS
3324 && (asect->flags & SEC_ALLOC) != 0)
3325 {
3326 /* Warn if we are changing a NOBITS section to PROGBITS, but
3327 allow the link to proceed. This can happen when users link
3328 non-bss input sections to bss output sections, or emit data
3329 to a bss output section via a linker script. */
3330 _bfd_error_handler
3331 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3332 this_hdr->sh_type = sh_type;
3333 }
3334
3335 switch (this_hdr->sh_type)
3336 {
3337 default:
3338 break;
3339
3340 case SHT_STRTAB:
3341 case SHT_NOTE:
3342 case SHT_NOBITS:
3343 case SHT_PROGBITS:
3344 break;
3345
3346 case SHT_INIT_ARRAY:
3347 case SHT_FINI_ARRAY:
3348 case SHT_PREINIT_ARRAY:
3349 this_hdr->sh_entsize = bed->s->arch_size / 8;
3350 break;
3351
3352 case SHT_HASH:
3353 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3354 break;
3355
3356 case SHT_DYNSYM:
3357 this_hdr->sh_entsize = bed->s->sizeof_sym;
3358 break;
3359
3360 case SHT_DYNAMIC:
3361 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3362 break;
3363
3364 case SHT_RELA:
3365 if (get_elf_backend_data (abfd)->may_use_rela_p)
3366 this_hdr->sh_entsize = bed->s->sizeof_rela;
3367 break;
3368
3369 case SHT_REL:
3370 if (get_elf_backend_data (abfd)->may_use_rel_p)
3371 this_hdr->sh_entsize = bed->s->sizeof_rel;
3372 break;
3373
3374 case SHT_GNU_versym:
3375 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3376 break;
3377
3378 case SHT_GNU_verdef:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverdefs. The linker will set cverdefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3388 break;
3389
3390 case SHT_GNU_verneed:
3391 this_hdr->sh_entsize = 0;
3392 /* objcopy or strip will copy over sh_info, but may not set
3393 cverrefs. The linker will set cverrefs, but sh_info will be
3394 zero. */
3395 if (this_hdr->sh_info == 0)
3396 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3397 else
3398 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3399 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3400 break;
3401
3402 case SHT_GROUP:
3403 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3404 break;
3405
3406 case SHT_GNU_HASH:
3407 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3408 break;
3409 }
3410
3411 if ((asect->flags & SEC_ALLOC) != 0)
3412 this_hdr->sh_flags |= SHF_ALLOC;
3413 if ((asect->flags & SEC_READONLY) == 0)
3414 this_hdr->sh_flags |= SHF_WRITE;
3415 if ((asect->flags & SEC_CODE) != 0)
3416 this_hdr->sh_flags |= SHF_EXECINSTR;
3417 if ((asect->flags & SEC_MERGE) != 0)
3418 {
3419 this_hdr->sh_flags |= SHF_MERGE;
3420 this_hdr->sh_entsize = asect->entsize;
3421 }
3422 if ((asect->flags & SEC_STRINGS) != 0)
3423 this_hdr->sh_flags |= SHF_STRINGS;
3424 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3425 this_hdr->sh_flags |= SHF_GROUP;
3426 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_TLS;
3429 if (asect->size == 0
3430 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3431 {
3432 struct bfd_link_order *o = asect->map_tail.link_order;
3433
3434 this_hdr->sh_size = 0;
3435 if (o != NULL)
3436 {
3437 this_hdr->sh_size = o->offset + o->size;
3438 if (this_hdr->sh_size != 0)
3439 this_hdr->sh_type = SHT_NOBITS;
3440 }
3441 }
3442 }
3443 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3444 this_hdr->sh_flags |= SHF_EXCLUDE;
3445
3446 /* If the section has relocs, set up a section header for the
3447 SHT_REL[A] section. If two relocation sections are required for
3448 this section, it is up to the processor-specific back-end to
3449 create the other. */
3450 if ((asect->flags & SEC_RELOC) != 0)
3451 {
3452 /* When doing a relocatable link, create both REL and RELA sections if
3453 needed. */
3454 if (arg->link_info
3455 /* Do the normal setup if we wouldn't create any sections here. */
3456 && esd->rel.count + esd->rela.count > 0
3457 && (bfd_link_relocatable (arg->link_info)
3458 || arg->link_info->emitrelocations))
3459 {
3460 if (esd->rel.count && esd->rel.hdr == NULL
3461 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3462 FALSE, delay_st_name_p))
3463 {
3464 arg->failed = TRUE;
3465 return;
3466 }
3467 if (esd->rela.count && esd->rela.hdr == NULL
3468 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3469 TRUE, delay_st_name_p))
3470 {
3471 arg->failed = TRUE;
3472 return;
3473 }
3474 }
3475 else if (!_bfd_elf_init_reloc_shdr (abfd,
3476 (asect->use_rela_p
3477 ? &esd->rela : &esd->rel),
3478 name,
3479 asect->use_rela_p,
3480 delay_st_name_p))
3481 {
3482 arg->failed = TRUE;
3483 return;
3484 }
3485 }
3486
3487 /* Check for processor-specific section types. */
3488 sh_type = this_hdr->sh_type;
3489 if (bed->elf_backend_fake_sections
3490 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495
3496 if (sh_type == SHT_NOBITS && asect->size != 0)
3497 {
3498 /* Don't change the header type from NOBITS if we are being
3499 called for objcopy --only-keep-debug. */
3500 this_hdr->sh_type = sh_type;
3501 }
3502 }
3503
3504 /* Fill in the contents of a SHT_GROUP section. Called from
3505 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3506 when ELF targets use the generic linker, ld. Called for ld -r
3507 from bfd_elf_final_link. */
3508
3509 void
3510 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3511 {
3512 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3513 asection *elt, *first;
3514 unsigned char *loc;
3515 bfd_boolean gas;
3516
3517 /* Ignore linker created group section. See elfNN_ia64_object_p in
3518 elfxx-ia64.c. */
3519 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3520 || sec->size == 0
3521 || *failedptr)
3522 return;
3523
3524 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3525 {
3526 unsigned long symindx = 0;
3527
3528 /* elf_group_id will have been set up by objcopy and the
3529 generic linker. */
3530 if (elf_group_id (sec) != NULL)
3531 symindx = elf_group_id (sec)->udata.i;
3532
3533 if (symindx == 0)
3534 {
3535 /* If called from the assembler, swap_out_syms will have set up
3536 elf_section_syms.
3537 PR 25699: A corrupt input file could contain bogus group info. */
3538 if (elf_section_syms (abfd) == NULL)
3539 {
3540 *failedptr = TRUE;
3541 return;
3542 }
3543 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3544 }
3545 elf_section_data (sec)->this_hdr.sh_info = symindx;
3546 }
3547 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3548 {
3549 /* The ELF backend linker sets sh_info to -2 when the group
3550 signature symbol is global, and thus the index can't be
3551 set until all local symbols are output. */
3552 asection *igroup;
3553 struct bfd_elf_section_data *sec_data;
3554 unsigned long symndx;
3555 unsigned long extsymoff;
3556 struct elf_link_hash_entry *h;
3557
3558 /* The point of this little dance to the first SHF_GROUP section
3559 then back to the SHT_GROUP section is that this gets us to
3560 the SHT_GROUP in the input object. */
3561 igroup = elf_sec_group (elf_next_in_group (sec));
3562 sec_data = elf_section_data (igroup);
3563 symndx = sec_data->this_hdr.sh_info;
3564 extsymoff = 0;
3565 if (!elf_bad_symtab (igroup->owner))
3566 {
3567 Elf_Internal_Shdr *symtab_hdr;
3568
3569 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3570 extsymoff = symtab_hdr->sh_info;
3571 }
3572 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3573 while (h->root.type == bfd_link_hash_indirect
3574 || h->root.type == bfd_link_hash_warning)
3575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3576
3577 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3578 }
3579
3580 /* The contents won't be allocated for "ld -r" or objcopy. */
3581 gas = TRUE;
3582 if (sec->contents == NULL)
3583 {
3584 gas = FALSE;
3585 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3586
3587 /* Arrange for the section to be written out. */
3588 elf_section_data (sec)->this_hdr.contents = sec->contents;
3589 if (sec->contents == NULL)
3590 {
3591 *failedptr = TRUE;
3592 return;
3593 }
3594 }
3595
3596 loc = sec->contents + sec->size;
3597
3598 /* Get the pointer to the first section in the group that gas
3599 squirreled away here. objcopy arranges for this to be set to the
3600 start of the input section group. */
3601 first = elt = elf_next_in_group (sec);
3602
3603 /* First element is a flag word. Rest of section is elf section
3604 indices for all the sections of the group. Write them backwards
3605 just to keep the group in the same order as given in .section
3606 directives, not that it matters. */
3607 while (elt != NULL)
3608 {
3609 asection *s;
3610
3611 s = elt;
3612 if (!gas)
3613 s = s->output_section;
3614 if (s != NULL
3615 && !bfd_is_abs_section (s))
3616 {
3617 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3618 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3619
3620 if (elf_sec->rel.hdr != NULL
3621 && (gas
3622 || (input_elf_sec->rel.hdr != NULL
3623 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3624 {
3625 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3626 loc -= 4;
3627 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3628 }
3629 if (elf_sec->rela.hdr != NULL
3630 && (gas
3631 || (input_elf_sec->rela.hdr != NULL
3632 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3633 {
3634 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3635 loc -= 4;
3636 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3637 }
3638 loc -= 4;
3639 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3640 }
3641 elt = elf_next_in_group (elt);
3642 if (elt == first)
3643 break;
3644 }
3645
3646 loc -= 4;
3647 BFD_ASSERT (loc == sec->contents);
3648
3649 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3650 }
3651
3652 /* Given NAME, the name of a relocation section stripped of its
3653 .rel/.rela prefix, return the section in ABFD to which the
3654 relocations apply. */
3655
3656 asection *
3657 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3658 {
3659 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3660 section likely apply to .got.plt or .got section. */
3661 if (get_elf_backend_data (abfd)->want_got_plt
3662 && strcmp (name, ".plt") == 0)
3663 {
3664 asection *sec;
3665
3666 name = ".got.plt";
3667 sec = bfd_get_section_by_name (abfd, name);
3668 if (sec != NULL)
3669 return sec;
3670 name = ".got";
3671 }
3672
3673 return bfd_get_section_by_name (abfd, name);
3674 }
3675
3676 /* Return the section to which RELOC_SEC applies. */
3677
3678 static asection *
3679 elf_get_reloc_section (asection *reloc_sec)
3680 {
3681 const char *name;
3682 unsigned int type;
3683 bfd *abfd;
3684 const struct elf_backend_data *bed;
3685
3686 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3687 if (type != SHT_REL && type != SHT_RELA)
3688 return NULL;
3689
3690 /* We look up the section the relocs apply to by name. */
3691 name = reloc_sec->name;
3692 if (strncmp (name, ".rel", 4) != 0)
3693 return NULL;
3694 name += 4;
3695 if (type == SHT_RELA && *name++ != 'a')
3696 return NULL;
3697
3698 abfd = reloc_sec->owner;
3699 bed = get_elf_backend_data (abfd);
3700 return bed->get_reloc_section (abfd, name);
3701 }
3702
3703 /* Assign all ELF section numbers. The dummy first section is handled here
3704 too. The link/info pointers for the standard section types are filled
3705 in here too, while we're at it. LINK_INFO will be 0 when arriving
3706 here for objcopy, and when using the generic ELF linker. */
3707
3708 static bfd_boolean
3709 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3710 {
3711 struct elf_obj_tdata *t = elf_tdata (abfd);
3712 asection *sec;
3713 unsigned int section_number;
3714 Elf_Internal_Shdr **i_shdrp;
3715 struct bfd_elf_section_data *d;
3716 bfd_boolean need_symtab;
3717 size_t amt;
3718
3719 section_number = 1;
3720
3721 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3722
3723 /* SHT_GROUP sections are in relocatable files only. */
3724 if (link_info == NULL || !link_info->resolve_section_groups)
3725 {
3726 size_t reloc_count = 0;
3727
3728 /* Put SHT_GROUP sections first. */
3729 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3730 {
3731 d = elf_section_data (sec);
3732
3733 if (d->this_hdr.sh_type == SHT_GROUP)
3734 {
3735 if (sec->flags & SEC_LINKER_CREATED)
3736 {
3737 /* Remove the linker created SHT_GROUP sections. */
3738 bfd_section_list_remove (abfd, sec);
3739 abfd->section_count--;
3740 }
3741 else
3742 d->this_idx = section_number++;
3743 }
3744
3745 /* Count relocations. */
3746 reloc_count += sec->reloc_count;
3747 }
3748
3749 /* Clear HAS_RELOC if there are no relocations. */
3750 if (reloc_count == 0)
3751 abfd->flags &= ~HAS_RELOC;
3752 }
3753
3754 for (sec = abfd->sections; sec; sec = sec->next)
3755 {
3756 d = elf_section_data (sec);
3757
3758 if (d->this_hdr.sh_type != SHT_GROUP)
3759 d->this_idx = section_number++;
3760 if (d->this_hdr.sh_name != (unsigned int) -1)
3761 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3762 if (d->rel.hdr)
3763 {
3764 d->rel.idx = section_number++;
3765 if (d->rel.hdr->sh_name != (unsigned int) -1)
3766 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3767 }
3768 else
3769 d->rel.idx = 0;
3770
3771 if (d->rela.hdr)
3772 {
3773 d->rela.idx = section_number++;
3774 if (d->rela.hdr->sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3776 }
3777 else
3778 d->rela.idx = 0;
3779 }
3780
3781 need_symtab = (bfd_get_symcount (abfd) > 0
3782 || (link_info == NULL
3783 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3784 == HAS_RELOC)));
3785 if (need_symtab)
3786 {
3787 elf_onesymtab (abfd) = section_number++;
3788 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3789 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3790 {
3791 elf_section_list *entry;
3792
3793 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3794
3795 entry = bfd_zalloc (abfd, sizeof (*entry));
3796 entry->ndx = section_number++;
3797 elf_symtab_shndx_list (abfd) = entry;
3798 entry->hdr.sh_name
3799 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3800 ".symtab_shndx", FALSE);
3801 if (entry->hdr.sh_name == (unsigned int) -1)
3802 return FALSE;
3803 }
3804 elf_strtab_sec (abfd) = section_number++;
3805 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3806 }
3807
3808 elf_shstrtab_sec (abfd) = section_number++;
3809 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3810 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3811
3812 if (section_number >= SHN_LORESERVE)
3813 {
3814 /* xgettext:c-format */
3815 _bfd_error_handler (_("%pB: too many sections: %u"),
3816 abfd, section_number);
3817 return FALSE;
3818 }
3819
3820 elf_numsections (abfd) = section_number;
3821 elf_elfheader (abfd)->e_shnum = section_number;
3822
3823 /* Set up the list of section header pointers, in agreement with the
3824 indices. */
3825 amt = section_number * sizeof (Elf_Internal_Shdr *);
3826 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3827 if (i_shdrp == NULL)
3828 return FALSE;
3829
3830 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3831 sizeof (Elf_Internal_Shdr));
3832 if (i_shdrp[0] == NULL)
3833 {
3834 bfd_release (abfd, i_shdrp);
3835 return FALSE;
3836 }
3837
3838 elf_elfsections (abfd) = i_shdrp;
3839
3840 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3841 if (need_symtab)
3842 {
3843 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3844 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3845 {
3846 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3847 BFD_ASSERT (entry != NULL);
3848 i_shdrp[entry->ndx] = & entry->hdr;
3849 entry->hdr.sh_link = elf_onesymtab (abfd);
3850 }
3851 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3852 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3853 }
3854
3855 for (sec = abfd->sections; sec; sec = sec->next)
3856 {
3857 asection *s;
3858
3859 d = elf_section_data (sec);
3860
3861 i_shdrp[d->this_idx] = &d->this_hdr;
3862 if (d->rel.idx != 0)
3863 i_shdrp[d->rel.idx] = d->rel.hdr;
3864 if (d->rela.idx != 0)
3865 i_shdrp[d->rela.idx] = d->rela.hdr;
3866
3867 /* Fill in the sh_link and sh_info fields while we're at it. */
3868
3869 /* sh_link of a reloc section is the section index of the symbol
3870 table. sh_info is the section index of the section to which
3871 the relocation entries apply. */
3872 if (d->rel.idx != 0)
3873 {
3874 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3875 d->rel.hdr->sh_info = d->this_idx;
3876 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3877 }
3878 if (d->rela.idx != 0)
3879 {
3880 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rela.hdr->sh_info = d->this_idx;
3882 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884
3885 /* We need to set up sh_link for SHF_LINK_ORDER. */
3886 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3887 {
3888 s = elf_linked_to_section (sec);
3889 /* We can now have a NULL linked section pointer.
3890 This happens when the sh_link field is 0, which is done
3891 when a linked to section is discarded but the linking
3892 section has been retained for some reason. */
3893 if (s)
3894 {
3895 /* Check discarded linkonce section. */
3896 if (discarded_section (s))
3897 {
3898 asection *kept;
3899 _bfd_error_handler
3900 /* xgettext:c-format */
3901 (_("%pB: sh_link of section `%pA' points to"
3902 " discarded section `%pA' of `%pB'"),
3903 abfd, d->this_hdr.bfd_section, s, s->owner);
3904 /* Point to the kept section if it has the same
3905 size as the discarded one. */
3906 kept = _bfd_elf_check_kept_section (s, link_info);
3907 if (kept == NULL)
3908 {
3909 bfd_set_error (bfd_error_bad_value);
3910 return FALSE;
3911 }
3912 s = kept;
3913 }
3914 /* Handle objcopy. */
3915 else if (s->output_section == NULL)
3916 {
3917 _bfd_error_handler
3918 /* xgettext:c-format */
3919 (_("%pB: sh_link of section `%pA' points to"
3920 " removed section `%pA' of `%pB'"),
3921 abfd, d->this_hdr.bfd_section, s, s->owner);
3922 bfd_set_error (bfd_error_bad_value);
3923 return FALSE;
3924 }
3925 s = s->output_section;
3926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3927 }
3928 }
3929
3930 switch (d->this_hdr.sh_type)
3931 {
3932 case SHT_REL:
3933 case SHT_RELA:
3934 /* A reloc section which we are treating as a normal BFD
3935 section. sh_link is the section index of the symbol
3936 table. sh_info is the section index of the section to
3937 which the relocation entries apply. We assume that an
3938 allocated reloc section uses the dynamic symbol table.
3939 FIXME: How can we be sure? */
3940 s = bfd_get_section_by_name (abfd, ".dynsym");
3941 if (s != NULL)
3942 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3943
3944 s = elf_get_reloc_section (sec);
3945 if (s != NULL)
3946 {
3947 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3948 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3949 }
3950 break;
3951
3952 case SHT_STRTAB:
3953 /* We assume that a section named .stab*str is a stabs
3954 string section. We look for a section with the same name
3955 but without the trailing ``str'', and set its sh_link
3956 field to point to this section. */
3957 if (CONST_STRNEQ (sec->name, ".stab")
3958 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3959 {
3960 size_t len;
3961 char *alc;
3962
3963 len = strlen (sec->name);
3964 alc = (char *) bfd_malloc (len - 2);
3965 if (alc == NULL)
3966 return FALSE;
3967 memcpy (alc, sec->name, len - 3);
3968 alc[len - 3] = '\0';
3969 s = bfd_get_section_by_name (abfd, alc);
3970 free (alc);
3971 if (s != NULL)
3972 {
3973 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3974
3975 /* This is a .stab section. */
3976 elf_section_data (s)->this_hdr.sh_entsize = 12;
3977 }
3978 }
3979 break;
3980
3981 case SHT_DYNAMIC:
3982 case SHT_DYNSYM:
3983 case SHT_GNU_verneed:
3984 case SHT_GNU_verdef:
3985 /* sh_link is the section header index of the string table
3986 used for the dynamic entries, or the symbol table, or the
3987 version strings. */
3988 s = bfd_get_section_by_name (abfd, ".dynstr");
3989 if (s != NULL)
3990 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3991 break;
3992
3993 case SHT_GNU_LIBLIST:
3994 /* sh_link is the section header index of the prelink library
3995 list used for the dynamic entries, or the symbol table, or
3996 the version strings. */
3997 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3998 ? ".dynstr" : ".gnu.libstr");
3999 if (s != NULL)
4000 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4001 break;
4002
4003 case SHT_HASH:
4004 case SHT_GNU_HASH:
4005 case SHT_GNU_versym:
4006 /* sh_link is the section header index of the symbol table
4007 this hash table or version table is for. */
4008 s = bfd_get_section_by_name (abfd, ".dynsym");
4009 if (s != NULL)
4010 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4011 break;
4012
4013 case SHT_GROUP:
4014 d->this_hdr.sh_link = elf_onesymtab (abfd);
4015 }
4016 }
4017
4018 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4019 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4020 debug section name from .debug_* to .zdebug_* if needed. */
4021
4022 return TRUE;
4023 }
4024
4025 static bfd_boolean
4026 sym_is_global (bfd *abfd, asymbol *sym)
4027 {
4028 /* If the backend has a special mapping, use it. */
4029 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4030 if (bed->elf_backend_sym_is_global)
4031 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4032
4033 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4034 || bfd_is_und_section (bfd_asymbol_section (sym))
4035 || bfd_is_com_section (bfd_asymbol_section (sym)));
4036 }
4037
4038 /* Filter global symbols of ABFD to include in the import library. All
4039 SYMCOUNT symbols of ABFD can be examined from their pointers in
4040 SYMS. Pointers of symbols to keep should be stored contiguously at
4041 the beginning of that array.
4042
4043 Returns the number of symbols to keep. */
4044
4045 unsigned int
4046 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4047 asymbol **syms, long symcount)
4048 {
4049 long src_count, dst_count = 0;
4050
4051 for (src_count = 0; src_count < symcount; src_count++)
4052 {
4053 asymbol *sym = syms[src_count];
4054 char *name = (char *) bfd_asymbol_name (sym);
4055 struct bfd_link_hash_entry *h;
4056
4057 if (!sym_is_global (abfd, sym))
4058 continue;
4059
4060 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4061 if (h == NULL)
4062 continue;
4063 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4064 continue;
4065 if (h->linker_def || h->ldscript_def)
4066 continue;
4067
4068 syms[dst_count++] = sym;
4069 }
4070
4071 syms[dst_count] = NULL;
4072
4073 return dst_count;
4074 }
4075
4076 /* Don't output section symbols for sections that are not going to be
4077 output, that are duplicates or there is no BFD section. */
4078
4079 static bfd_boolean
4080 ignore_section_sym (bfd *abfd, asymbol *sym)
4081 {
4082 elf_symbol_type *type_ptr;
4083
4084 if (sym == NULL)
4085 return FALSE;
4086
4087 if ((sym->flags & BSF_SECTION_SYM) == 0)
4088 return FALSE;
4089
4090 if (sym->section == NULL)
4091 return TRUE;
4092
4093 type_ptr = elf_symbol_from (sym);
4094 return ((type_ptr != NULL
4095 && type_ptr->internal_elf_sym.st_shndx != 0
4096 && bfd_is_abs_section (sym->section))
4097 || !(sym->section->owner == abfd
4098 || (sym->section->output_section != NULL
4099 && sym->section->output_section->owner == abfd
4100 && sym->section->output_offset == 0)
4101 || bfd_is_abs_section (sym->section)));
4102 }
4103
4104 /* Map symbol from it's internal number to the external number, moving
4105 all local symbols to be at the head of the list. */
4106
4107 static bfd_boolean
4108 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4109 {
4110 unsigned int symcount = bfd_get_symcount (abfd);
4111 asymbol **syms = bfd_get_outsymbols (abfd);
4112 asymbol **sect_syms;
4113 unsigned int num_locals = 0;
4114 unsigned int num_globals = 0;
4115 unsigned int num_locals2 = 0;
4116 unsigned int num_globals2 = 0;
4117 unsigned int max_index = 0;
4118 unsigned int idx;
4119 asection *asect;
4120 asymbol **new_syms;
4121 size_t amt;
4122
4123 #ifdef DEBUG
4124 fprintf (stderr, "elf_map_symbols\n");
4125 fflush (stderr);
4126 #endif
4127
4128 for (asect = abfd->sections; asect; asect = asect->next)
4129 {
4130 if (max_index < asect->index)
4131 max_index = asect->index;
4132 }
4133
4134 max_index++;
4135 amt = max_index * sizeof (asymbol *);
4136 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4137 if (sect_syms == NULL)
4138 return FALSE;
4139 elf_section_syms (abfd) = sect_syms;
4140 elf_num_section_syms (abfd) = max_index;
4141
4142 /* Init sect_syms entries for any section symbols we have already
4143 decided to output. */
4144 for (idx = 0; idx < symcount; idx++)
4145 {
4146 asymbol *sym = syms[idx];
4147
4148 if ((sym->flags & BSF_SECTION_SYM) != 0
4149 && sym->value == 0
4150 && !ignore_section_sym (abfd, sym)
4151 && !bfd_is_abs_section (sym->section))
4152 {
4153 asection *sec = sym->section;
4154
4155 if (sec->owner != abfd)
4156 sec = sec->output_section;
4157
4158 sect_syms[sec->index] = syms[idx];
4159 }
4160 }
4161
4162 /* Classify all of the symbols. */
4163 for (idx = 0; idx < symcount; idx++)
4164 {
4165 if (sym_is_global (abfd, syms[idx]))
4166 num_globals++;
4167 else if (!ignore_section_sym (abfd, syms[idx]))
4168 num_locals++;
4169 }
4170
4171 /* We will be adding a section symbol for each normal BFD section. Most
4172 sections will already have a section symbol in outsymbols, but
4173 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4174 at least in that case. */
4175 for (asect = abfd->sections; asect; asect = asect->next)
4176 {
4177 if (sect_syms[asect->index] == NULL)
4178 {
4179 if (!sym_is_global (abfd, asect->symbol))
4180 num_locals++;
4181 else
4182 num_globals++;
4183 }
4184 }
4185
4186 /* Now sort the symbols so the local symbols are first. */
4187 amt = (num_locals + num_globals) * sizeof (asymbol *);
4188 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4189 if (new_syms == NULL)
4190 return FALSE;
4191
4192 for (idx = 0; idx < symcount; idx++)
4193 {
4194 asymbol *sym = syms[idx];
4195 unsigned int i;
4196
4197 if (sym_is_global (abfd, sym))
4198 i = num_locals + num_globals2++;
4199 else if (!ignore_section_sym (abfd, sym))
4200 i = num_locals2++;
4201 else
4202 continue;
4203 new_syms[i] = sym;
4204 sym->udata.i = i + 1;
4205 }
4206 for (asect = abfd->sections; asect; asect = asect->next)
4207 {
4208 if (sect_syms[asect->index] == NULL)
4209 {
4210 asymbol *sym = asect->symbol;
4211 unsigned int i;
4212
4213 sect_syms[asect->index] = sym;
4214 if (!sym_is_global (abfd, sym))
4215 i = num_locals2++;
4216 else
4217 i = num_locals + num_globals2++;
4218 new_syms[i] = sym;
4219 sym->udata.i = i + 1;
4220 }
4221 }
4222
4223 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4224
4225 *pnum_locals = num_locals;
4226 return TRUE;
4227 }
4228
4229 /* Align to the maximum file alignment that could be required for any
4230 ELF data structure. */
4231
4232 static inline file_ptr
4233 align_file_position (file_ptr off, int align)
4234 {
4235 return (off + align - 1) & ~(align - 1);
4236 }
4237
4238 /* Assign a file position to a section, optionally aligning to the
4239 required section alignment. */
4240
4241 file_ptr
4242 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4243 file_ptr offset,
4244 bfd_boolean align)
4245 {
4246 if (align && i_shdrp->sh_addralign > 1)
4247 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4248 i_shdrp->sh_offset = offset;
4249 if (i_shdrp->bfd_section != NULL)
4250 i_shdrp->bfd_section->filepos = offset;
4251 if (i_shdrp->sh_type != SHT_NOBITS)
4252 offset += i_shdrp->sh_size;
4253 return offset;
4254 }
4255
4256 /* Compute the file positions we are going to put the sections at, and
4257 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4258 is not NULL, this is being called by the ELF backend linker. */
4259
4260 bfd_boolean
4261 _bfd_elf_compute_section_file_positions (bfd *abfd,
4262 struct bfd_link_info *link_info)
4263 {
4264 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4265 struct fake_section_arg fsargs;
4266 bfd_boolean failed;
4267 struct elf_strtab_hash *strtab = NULL;
4268 Elf_Internal_Shdr *shstrtab_hdr;
4269 bfd_boolean need_symtab;
4270
4271 if (abfd->output_has_begun)
4272 return TRUE;
4273
4274 /* Do any elf backend specific processing first. */
4275 if (bed->elf_backend_begin_write_processing)
4276 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4277
4278 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4279 return FALSE;
4280
4281 fsargs.failed = FALSE;
4282 fsargs.link_info = link_info;
4283 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4284 if (fsargs.failed)
4285 return FALSE;
4286
4287 if (!assign_section_numbers (abfd, link_info))
4288 return FALSE;
4289
4290 /* The backend linker builds symbol table information itself. */
4291 need_symtab = (link_info == NULL
4292 && (bfd_get_symcount (abfd) > 0
4293 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4294 == HAS_RELOC)));
4295 if (need_symtab)
4296 {
4297 /* Non-zero if doing a relocatable link. */
4298 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4299
4300 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4301 return FALSE;
4302 }
4303
4304 failed = FALSE;
4305 if (link_info == NULL)
4306 {
4307 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4308 if (failed)
4309 return FALSE;
4310 }
4311
4312 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4313 /* sh_name was set in init_file_header. */
4314 shstrtab_hdr->sh_type = SHT_STRTAB;
4315 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4316 shstrtab_hdr->sh_addr = 0;
4317 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4318 shstrtab_hdr->sh_entsize = 0;
4319 shstrtab_hdr->sh_link = 0;
4320 shstrtab_hdr->sh_info = 0;
4321 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4322 shstrtab_hdr->sh_addralign = 1;
4323
4324 if (!assign_file_positions_except_relocs (abfd, link_info))
4325 return FALSE;
4326
4327 if (need_symtab)
4328 {
4329 file_ptr off;
4330 Elf_Internal_Shdr *hdr;
4331
4332 off = elf_next_file_pos (abfd);
4333
4334 hdr = & elf_symtab_hdr (abfd);
4335 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4336
4337 if (elf_symtab_shndx_list (abfd) != NULL)
4338 {
4339 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4340 if (hdr->sh_size != 0)
4341 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4342 /* FIXME: What about other symtab_shndx sections in the list ? */
4343 }
4344
4345 hdr = &elf_tdata (abfd)->strtab_hdr;
4346 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4347
4348 elf_next_file_pos (abfd) = off;
4349
4350 /* Now that we know where the .strtab section goes, write it
4351 out. */
4352 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4353 || ! _bfd_elf_strtab_emit (abfd, strtab))
4354 return FALSE;
4355 _bfd_elf_strtab_free (strtab);
4356 }
4357
4358 abfd->output_has_begun = TRUE;
4359
4360 return TRUE;
4361 }
4362
4363 /* Make an initial estimate of the size of the program header. If we
4364 get the number wrong here, we'll redo section placement. */
4365
4366 static bfd_size_type
4367 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4368 {
4369 size_t segs;
4370 asection *s;
4371 const struct elf_backend_data *bed;
4372
4373 /* Assume we will need exactly two PT_LOAD segments: one for text
4374 and one for data. */
4375 segs = 2;
4376
4377 s = bfd_get_section_by_name (abfd, ".interp");
4378 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4379 {
4380 /* If we have a loadable interpreter section, we need a
4381 PT_INTERP segment. In this case, assume we also need a
4382 PT_PHDR segment, although that may not be true for all
4383 targets. */
4384 segs += 2;
4385 }
4386
4387 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4388 {
4389 /* We need a PT_DYNAMIC segment. */
4390 ++segs;
4391 }
4392
4393 if (info != NULL && info->relro)
4394 {
4395 /* We need a PT_GNU_RELRO segment. */
4396 ++segs;
4397 }
4398
4399 if (elf_eh_frame_hdr (abfd))
4400 {
4401 /* We need a PT_GNU_EH_FRAME segment. */
4402 ++segs;
4403 }
4404
4405 if (elf_stack_flags (abfd))
4406 {
4407 /* We need a PT_GNU_STACK segment. */
4408 ++segs;
4409 }
4410
4411 s = bfd_get_section_by_name (abfd,
4412 NOTE_GNU_PROPERTY_SECTION_NAME);
4413 if (s != NULL && s->size != 0)
4414 {
4415 /* We need a PT_GNU_PROPERTY segment. */
4416 ++segs;
4417 }
4418
4419 for (s = abfd->sections; s != NULL; s = s->next)
4420 {
4421 if ((s->flags & SEC_LOAD) != 0
4422 && elf_section_type (s) == SHT_NOTE)
4423 {
4424 unsigned int alignment_power;
4425 /* We need a PT_NOTE segment. */
4426 ++segs;
4427 /* Try to create just one PT_NOTE segment for all adjacent
4428 loadable SHT_NOTE sections. gABI requires that within a
4429 PT_NOTE segment (and also inside of each SHT_NOTE section)
4430 each note should have the same alignment. So we check
4431 whether the sections are correctly aligned. */
4432 alignment_power = s->alignment_power;
4433 while (s->next != NULL
4434 && s->next->alignment_power == alignment_power
4435 && (s->next->flags & SEC_LOAD) != 0
4436 && elf_section_type (s->next) == SHT_NOTE)
4437 s = s->next;
4438 }
4439 }
4440
4441 for (s = abfd->sections; s != NULL; s = s->next)
4442 {
4443 if (s->flags & SEC_THREAD_LOCAL)
4444 {
4445 /* We need a PT_TLS segment. */
4446 ++segs;
4447 break;
4448 }
4449 }
4450
4451 bed = get_elf_backend_data (abfd);
4452
4453 if ((abfd->flags & D_PAGED) != 0
4454 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4455 {
4456 /* Add a PT_GNU_MBIND segment for each mbind section. */
4457 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4458 for (s = abfd->sections; s != NULL; s = s->next)
4459 if (elf_section_flags (s) & SHF_GNU_MBIND)
4460 {
4461 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4462 {
4463 _bfd_error_handler
4464 /* xgettext:c-format */
4465 (_("%pB: GNU_MBIND section `%pA' has invalid "
4466 "sh_info field: %d"),
4467 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4468 continue;
4469 }
4470 /* Align mbind section to page size. */
4471 if (s->alignment_power < page_align_power)
4472 s->alignment_power = page_align_power;
4473 segs ++;
4474 }
4475 }
4476
4477 /* Let the backend count up any program headers it might need. */
4478 if (bed->elf_backend_additional_program_headers)
4479 {
4480 int a;
4481
4482 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4483 if (a == -1)
4484 abort ();
4485 segs += a;
4486 }
4487
4488 return segs * bed->s->sizeof_phdr;
4489 }
4490
4491 /* Find the segment that contains the output_section of section. */
4492
4493 Elf_Internal_Phdr *
4494 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4495 {
4496 struct elf_segment_map *m;
4497 Elf_Internal_Phdr *p;
4498
4499 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4500 m != NULL;
4501 m = m->next, p++)
4502 {
4503 int i;
4504
4505 for (i = m->count - 1; i >= 0; i--)
4506 if (m->sections[i] == section)
4507 return p;
4508 }
4509
4510 return NULL;
4511 }
4512
4513 /* Create a mapping from a set of sections to a program segment. */
4514
4515 static struct elf_segment_map *
4516 make_mapping (bfd *abfd,
4517 asection **sections,
4518 unsigned int from,
4519 unsigned int to,
4520 bfd_boolean phdr)
4521 {
4522 struct elf_segment_map *m;
4523 unsigned int i;
4524 asection **hdrpp;
4525 size_t amt;
4526
4527 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4528 amt += (to - from) * sizeof (asection *);
4529 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4530 if (m == NULL)
4531 return NULL;
4532 m->next = NULL;
4533 m->p_type = PT_LOAD;
4534 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4535 m->sections[i - from] = *hdrpp;
4536 m->count = to - from;
4537
4538 if (from == 0 && phdr)
4539 {
4540 /* Include the headers in the first PT_LOAD segment. */
4541 m->includes_filehdr = 1;
4542 m->includes_phdrs = 1;
4543 }
4544
4545 return m;
4546 }
4547
4548 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4549 on failure. */
4550
4551 struct elf_segment_map *
4552 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4553 {
4554 struct elf_segment_map *m;
4555
4556 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4557 sizeof (struct elf_segment_map));
4558 if (m == NULL)
4559 return NULL;
4560 m->next = NULL;
4561 m->p_type = PT_DYNAMIC;
4562 m->count = 1;
4563 m->sections[0] = dynsec;
4564
4565 return m;
4566 }
4567
4568 /* Possibly add or remove segments from the segment map. */
4569
4570 static bfd_boolean
4571 elf_modify_segment_map (bfd *abfd,
4572 struct bfd_link_info *info,
4573 bfd_boolean remove_empty_load)
4574 {
4575 struct elf_segment_map **m;
4576 const struct elf_backend_data *bed;
4577
4578 /* The placement algorithm assumes that non allocated sections are
4579 not in PT_LOAD segments. We ensure this here by removing such
4580 sections from the segment map. We also remove excluded
4581 sections. Finally, any PT_LOAD segment without sections is
4582 removed. */
4583 m = &elf_seg_map (abfd);
4584 while (*m)
4585 {
4586 unsigned int i, new_count;
4587
4588 for (new_count = 0, i = 0; i < (*m)->count; i++)
4589 {
4590 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4591 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4592 || (*m)->p_type != PT_LOAD))
4593 {
4594 (*m)->sections[new_count] = (*m)->sections[i];
4595 new_count++;
4596 }
4597 }
4598 (*m)->count = new_count;
4599
4600 if (remove_empty_load
4601 && (*m)->p_type == PT_LOAD
4602 && (*m)->count == 0
4603 && !(*m)->includes_phdrs)
4604 *m = (*m)->next;
4605 else
4606 m = &(*m)->next;
4607 }
4608
4609 bed = get_elf_backend_data (abfd);
4610 if (bed->elf_backend_modify_segment_map != NULL)
4611 {
4612 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4613 return FALSE;
4614 }
4615
4616 return TRUE;
4617 }
4618
4619 #define IS_TBSS(s) \
4620 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4621
4622 /* Set up a mapping from BFD sections to program segments. */
4623
4624 bfd_boolean
4625 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4626 {
4627 unsigned int count;
4628 struct elf_segment_map *m;
4629 asection **sections = NULL;
4630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4631 bfd_boolean no_user_phdrs;
4632
4633 no_user_phdrs = elf_seg_map (abfd) == NULL;
4634
4635 if (info != NULL)
4636 info->user_phdrs = !no_user_phdrs;
4637
4638 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4639 {
4640 asection *s;
4641 unsigned int i;
4642 struct elf_segment_map *mfirst;
4643 struct elf_segment_map **pm;
4644 asection *last_hdr;
4645 bfd_vma last_size;
4646 unsigned int hdr_index;
4647 bfd_vma maxpagesize;
4648 asection **hdrpp;
4649 bfd_boolean phdr_in_segment;
4650 bfd_boolean writable;
4651 bfd_boolean executable;
4652 unsigned int tls_count = 0;
4653 asection *first_tls = NULL;
4654 asection *first_mbind = NULL;
4655 asection *dynsec, *eh_frame_hdr;
4656 size_t amt;
4657 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4658 bfd_size_type phdr_size; /* Octets/bytes. */
4659 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4660
4661 /* Select the allocated sections, and sort them. */
4662
4663 amt = bfd_count_sections (abfd) * sizeof (asection *);
4664 sections = (asection **) bfd_malloc (amt);
4665 if (sections == NULL)
4666 goto error_return;
4667
4668 /* Calculate top address, avoiding undefined behaviour of shift
4669 left operator when shift count is equal to size of type
4670 being shifted. */
4671 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4672 addr_mask = (addr_mask << 1) + 1;
4673
4674 i = 0;
4675 for (s = abfd->sections; s != NULL; s = s->next)
4676 {
4677 if ((s->flags & SEC_ALLOC) != 0)
4678 {
4679 /* target_index is unused until bfd_elf_final_link
4680 starts output of section symbols. Use it to make
4681 qsort stable. */
4682 s->target_index = i;
4683 sections[i] = s;
4684 ++i;
4685 /* A wrapping section potentially clashes with header. */
4686 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4687 wrap_to = (s->lma + s->size / opb) & addr_mask;
4688 }
4689 }
4690 BFD_ASSERT (i <= bfd_count_sections (abfd));
4691 count = i;
4692
4693 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4694
4695 phdr_size = elf_program_header_size (abfd);
4696 if (phdr_size == (bfd_size_type) -1)
4697 phdr_size = get_program_header_size (abfd, info);
4698 phdr_size += bed->s->sizeof_ehdr;
4699 /* phdr_size is compared to LMA values which are in bytes. */
4700 phdr_size /= opb;
4701 maxpagesize = bed->maxpagesize;
4702 if (maxpagesize == 0)
4703 maxpagesize = 1;
4704 phdr_in_segment = info != NULL && info->load_phdrs;
4705 if (count != 0
4706 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4707 >= (phdr_size & (maxpagesize - 1))))
4708 /* For compatibility with old scripts that may not be using
4709 SIZEOF_HEADERS, add headers when it looks like space has
4710 been left for them. */
4711 phdr_in_segment = TRUE;
4712
4713 /* Build the mapping. */
4714 mfirst = NULL;
4715 pm = &mfirst;
4716
4717 /* If we have a .interp section, then create a PT_PHDR segment for
4718 the program headers and a PT_INTERP segment for the .interp
4719 section. */
4720 s = bfd_get_section_by_name (abfd, ".interp");
4721 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4722 {
4723 amt = sizeof (struct elf_segment_map);
4724 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4725 if (m == NULL)
4726 goto error_return;
4727 m->next = NULL;
4728 m->p_type = PT_PHDR;
4729 m->p_flags = PF_R;
4730 m->p_flags_valid = 1;
4731 m->includes_phdrs = 1;
4732 phdr_in_segment = TRUE;
4733 *pm = m;
4734 pm = &m->next;
4735
4736 amt = sizeof (struct elf_segment_map);
4737 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4738 if (m == NULL)
4739 goto error_return;
4740 m->next = NULL;
4741 m->p_type = PT_INTERP;
4742 m->count = 1;
4743 m->sections[0] = s;
4744
4745 *pm = m;
4746 pm = &m->next;
4747 }
4748
4749 /* Look through the sections. We put sections in the same program
4750 segment when the start of the second section can be placed within
4751 a few bytes of the end of the first section. */
4752 last_hdr = NULL;
4753 last_size = 0;
4754 hdr_index = 0;
4755 writable = FALSE;
4756 executable = FALSE;
4757 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4758 if (dynsec != NULL
4759 && (dynsec->flags & SEC_LOAD) == 0)
4760 dynsec = NULL;
4761
4762 if ((abfd->flags & D_PAGED) == 0)
4763 phdr_in_segment = FALSE;
4764
4765 /* Deal with -Ttext or something similar such that the first section
4766 is not adjacent to the program headers. This is an
4767 approximation, since at this point we don't know exactly how many
4768 program headers we will need. */
4769 if (phdr_in_segment && count > 0)
4770 {
4771 bfd_vma phdr_lma; /* Bytes. */
4772 bfd_boolean separate_phdr = FALSE;
4773
4774 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4775 if (info != NULL
4776 && info->separate_code
4777 && (sections[0]->flags & SEC_CODE) != 0)
4778 {
4779 /* If data sections should be separate from code and
4780 thus not executable, and the first section is
4781 executable then put the file and program headers in
4782 their own PT_LOAD. */
4783 separate_phdr = TRUE;
4784 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4785 == (sections[0]->lma & addr_mask & -maxpagesize)))
4786 {
4787 /* The file and program headers are currently on the
4788 same page as the first section. Put them on the
4789 previous page if we can. */
4790 if (phdr_lma >= maxpagesize)
4791 phdr_lma -= maxpagesize;
4792 else
4793 separate_phdr = FALSE;
4794 }
4795 }
4796 if ((sections[0]->lma & addr_mask) < phdr_lma
4797 || (sections[0]->lma & addr_mask) < phdr_size)
4798 /* If file and program headers would be placed at the end
4799 of memory then it's probably better to omit them. */
4800 phdr_in_segment = FALSE;
4801 else if (phdr_lma < wrap_to)
4802 /* If a section wraps around to where we'll be placing
4803 file and program headers, then the headers will be
4804 overwritten. */
4805 phdr_in_segment = FALSE;
4806 else if (separate_phdr)
4807 {
4808 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4809 if (m == NULL)
4810 goto error_return;
4811 m->p_paddr = phdr_lma * opb;
4812 m->p_vaddr_offset
4813 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4814 m->p_paddr_valid = 1;
4815 *pm = m;
4816 pm = &m->next;
4817 phdr_in_segment = FALSE;
4818 }
4819 }
4820
4821 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4822 {
4823 asection *hdr;
4824 bfd_boolean new_segment;
4825
4826 hdr = *hdrpp;
4827
4828 /* See if this section and the last one will fit in the same
4829 segment. */
4830
4831 if (last_hdr == NULL)
4832 {
4833 /* If we don't have a segment yet, then we don't need a new
4834 one (we build the last one after this loop). */
4835 new_segment = FALSE;
4836 }
4837 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4838 {
4839 /* If this section has a different relation between the
4840 virtual address and the load address, then we need a new
4841 segment. */
4842 new_segment = TRUE;
4843 }
4844 else if (hdr->lma < last_hdr->lma + last_size
4845 || last_hdr->lma + last_size < last_hdr->lma)
4846 {
4847 /* If this section has a load address that makes it overlap
4848 the previous section, then we need a new segment. */
4849 new_segment = TRUE;
4850 }
4851 else if ((abfd->flags & D_PAGED) != 0
4852 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4853 == (hdr->lma & -maxpagesize)))
4854 {
4855 /* If we are demand paged then we can't map two disk
4856 pages onto the same memory page. */
4857 new_segment = FALSE;
4858 }
4859 /* In the next test we have to be careful when last_hdr->lma is close
4860 to the end of the address space. If the aligned address wraps
4861 around to the start of the address space, then there are no more
4862 pages left in memory and it is OK to assume that the current
4863 section can be included in the current segment. */
4864 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4865 + maxpagesize > last_hdr->lma)
4866 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4867 + maxpagesize <= hdr->lma))
4868 {
4869 /* If putting this section in this segment would force us to
4870 skip a page in the segment, then we need a new segment. */
4871 new_segment = TRUE;
4872 }
4873 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4874 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4875 {
4876 /* We don't want to put a loaded section after a
4877 nonloaded (ie. bss style) section in the same segment
4878 as that will force the non-loaded section to be loaded.
4879 Consider .tbss sections as loaded for this purpose. */
4880 new_segment = TRUE;
4881 }
4882 else if ((abfd->flags & D_PAGED) == 0)
4883 {
4884 /* If the file is not demand paged, which means that we
4885 don't require the sections to be correctly aligned in the
4886 file, then there is no other reason for a new segment. */
4887 new_segment = FALSE;
4888 }
4889 else if (info != NULL
4890 && info->separate_code
4891 && executable != ((hdr->flags & SEC_CODE) != 0))
4892 {
4893 new_segment = TRUE;
4894 }
4895 else if (! writable
4896 && (hdr->flags & SEC_READONLY) == 0)
4897 {
4898 /* We don't want to put a writable section in a read only
4899 segment. */
4900 new_segment = TRUE;
4901 }
4902 else
4903 {
4904 /* Otherwise, we can use the same segment. */
4905 new_segment = FALSE;
4906 }
4907
4908 /* Allow interested parties a chance to override our decision. */
4909 if (last_hdr != NULL
4910 && info != NULL
4911 && info->callbacks->override_segment_assignment != NULL)
4912 new_segment
4913 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4914 last_hdr,
4915 new_segment);
4916
4917 if (! new_segment)
4918 {
4919 if ((hdr->flags & SEC_READONLY) == 0)
4920 writable = TRUE;
4921 if ((hdr->flags & SEC_CODE) != 0)
4922 executable = TRUE;
4923 last_hdr = hdr;
4924 /* .tbss sections effectively have zero size. */
4925 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4926 continue;
4927 }
4928
4929 /* We need a new program segment. We must create a new program
4930 header holding all the sections from hdr_index until hdr. */
4931
4932 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4933 if (m == NULL)
4934 goto error_return;
4935
4936 *pm = m;
4937 pm = &m->next;
4938
4939 if ((hdr->flags & SEC_READONLY) == 0)
4940 writable = TRUE;
4941 else
4942 writable = FALSE;
4943
4944 if ((hdr->flags & SEC_CODE) == 0)
4945 executable = FALSE;
4946 else
4947 executable = TRUE;
4948
4949 last_hdr = hdr;
4950 /* .tbss sections effectively have zero size. */
4951 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4952 hdr_index = i;
4953 phdr_in_segment = FALSE;
4954 }
4955
4956 /* Create a final PT_LOAD program segment, but not if it's just
4957 for .tbss. */
4958 if (last_hdr != NULL
4959 && (i - hdr_index != 1
4960 || !IS_TBSS (last_hdr)))
4961 {
4962 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4963 if (m == NULL)
4964 goto error_return;
4965
4966 *pm = m;
4967 pm = &m->next;
4968 }
4969
4970 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4971 if (dynsec != NULL)
4972 {
4973 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4974 if (m == NULL)
4975 goto error_return;
4976 *pm = m;
4977 pm = &m->next;
4978 }
4979
4980 /* For each batch of consecutive loadable SHT_NOTE sections,
4981 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4982 because if we link together nonloadable .note sections and
4983 loadable .note sections, we will generate two .note sections
4984 in the output file. */
4985 for (s = abfd->sections; s != NULL; s = s->next)
4986 {
4987 if ((s->flags & SEC_LOAD) != 0
4988 && elf_section_type (s) == SHT_NOTE)
4989 {
4990 asection *s2;
4991 unsigned int alignment_power = s->alignment_power;
4992
4993 count = 1;
4994 for (s2 = s; s2->next != NULL; s2 = s2->next)
4995 {
4996 if (s2->next->alignment_power == alignment_power
4997 && (s2->next->flags & SEC_LOAD) != 0
4998 && elf_section_type (s2->next) == SHT_NOTE
4999 && align_power (s2->lma + s2->size / opb,
5000 alignment_power)
5001 == s2->next->lma)
5002 count++;
5003 else
5004 break;
5005 }
5006 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5007 amt += count * sizeof (asection *);
5008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5009 if (m == NULL)
5010 goto error_return;
5011 m->next = NULL;
5012 m->p_type = PT_NOTE;
5013 m->count = count;
5014 while (count > 1)
5015 {
5016 m->sections[m->count - count--] = s;
5017 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5018 s = s->next;
5019 }
5020 m->sections[m->count - 1] = s;
5021 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5022 *pm = m;
5023 pm = &m->next;
5024 }
5025 if (s->flags & SEC_THREAD_LOCAL)
5026 {
5027 if (! tls_count)
5028 first_tls = s;
5029 tls_count++;
5030 }
5031 if (first_mbind == NULL
5032 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5033 first_mbind = s;
5034 }
5035
5036 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5037 if (tls_count > 0)
5038 {
5039 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5040 amt += tls_count * sizeof (asection *);
5041 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5042 if (m == NULL)
5043 goto error_return;
5044 m->next = NULL;
5045 m->p_type = PT_TLS;
5046 m->count = tls_count;
5047 /* Mandated PF_R. */
5048 m->p_flags = PF_R;
5049 m->p_flags_valid = 1;
5050 s = first_tls;
5051 for (i = 0; i < tls_count; ++i)
5052 {
5053 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5054 {
5055 _bfd_error_handler
5056 (_("%pB: TLS sections are not adjacent:"), abfd);
5057 s = first_tls;
5058 i = 0;
5059 while (i < tls_count)
5060 {
5061 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5062 {
5063 _bfd_error_handler (_(" TLS: %pA"), s);
5064 i++;
5065 }
5066 else
5067 _bfd_error_handler (_(" non-TLS: %pA"), s);
5068 s = s->next;
5069 }
5070 bfd_set_error (bfd_error_bad_value);
5071 goto error_return;
5072 }
5073 m->sections[i] = s;
5074 s = s->next;
5075 }
5076
5077 *pm = m;
5078 pm = &m->next;
5079 }
5080
5081 if (first_mbind
5082 && (abfd->flags & D_PAGED) != 0
5083 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5084 for (s = first_mbind; s != NULL; s = s->next)
5085 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5086 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5087 {
5088 /* Mandated PF_R. */
5089 unsigned long p_flags = PF_R;
5090 if ((s->flags & SEC_READONLY) == 0)
5091 p_flags |= PF_W;
5092 if ((s->flags & SEC_CODE) != 0)
5093 p_flags |= PF_X;
5094
5095 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5096 m = bfd_zalloc (abfd, amt);
5097 if (m == NULL)
5098 goto error_return;
5099 m->next = NULL;
5100 m->p_type = (PT_GNU_MBIND_LO
5101 + elf_section_data (s)->this_hdr.sh_info);
5102 m->count = 1;
5103 m->p_flags_valid = 1;
5104 m->sections[0] = s;
5105 m->p_flags = p_flags;
5106
5107 *pm = m;
5108 pm = &m->next;
5109 }
5110
5111 s = bfd_get_section_by_name (abfd,
5112 NOTE_GNU_PROPERTY_SECTION_NAME);
5113 if (s != NULL && s->size != 0)
5114 {
5115 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5116 m = bfd_zalloc (abfd, amt);
5117 if (m == NULL)
5118 goto error_return;
5119 m->next = NULL;
5120 m->p_type = PT_GNU_PROPERTY;
5121 m->count = 1;
5122 m->p_flags_valid = 1;
5123 m->sections[0] = s;
5124 m->p_flags = PF_R;
5125 *pm = m;
5126 pm = &m->next;
5127 }
5128
5129 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5130 segment. */
5131 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5132 if (eh_frame_hdr != NULL
5133 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5134 {
5135 amt = sizeof (struct elf_segment_map);
5136 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5137 if (m == NULL)
5138 goto error_return;
5139 m->next = NULL;
5140 m->p_type = PT_GNU_EH_FRAME;
5141 m->count = 1;
5142 m->sections[0] = eh_frame_hdr->output_section;
5143
5144 *pm = m;
5145 pm = &m->next;
5146 }
5147
5148 if (elf_stack_flags (abfd))
5149 {
5150 amt = sizeof (struct elf_segment_map);
5151 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5152 if (m == NULL)
5153 goto error_return;
5154 m->next = NULL;
5155 m->p_type = PT_GNU_STACK;
5156 m->p_flags = elf_stack_flags (abfd);
5157 m->p_align = bed->stack_align;
5158 m->p_flags_valid = 1;
5159 m->p_align_valid = m->p_align != 0;
5160 if (info->stacksize > 0)
5161 {
5162 m->p_size = info->stacksize;
5163 m->p_size_valid = 1;
5164 }
5165
5166 *pm = m;
5167 pm = &m->next;
5168 }
5169
5170 if (info != NULL && info->relro)
5171 {
5172 for (m = mfirst; m != NULL; m = m->next)
5173 {
5174 if (m->p_type == PT_LOAD
5175 && m->count != 0
5176 && m->sections[0]->vma >= info->relro_start
5177 && m->sections[0]->vma < info->relro_end)
5178 {
5179 i = m->count;
5180 while (--i != (unsigned) -1)
5181 {
5182 if (m->sections[i]->size > 0
5183 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5184 == (SEC_LOAD | SEC_HAS_CONTENTS))
5185 break;
5186 }
5187
5188 if (i != (unsigned) -1)
5189 break;
5190 }
5191 }
5192
5193 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5194 if (m != NULL)
5195 {
5196 amt = sizeof (struct elf_segment_map);
5197 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5198 if (m == NULL)
5199 goto error_return;
5200 m->next = NULL;
5201 m->p_type = PT_GNU_RELRO;
5202 *pm = m;
5203 pm = &m->next;
5204 }
5205 }
5206
5207 free (sections);
5208 elf_seg_map (abfd) = mfirst;
5209 }
5210
5211 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5212 return FALSE;
5213
5214 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5215 ++count;
5216 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5217
5218 return TRUE;
5219
5220 error_return:
5221 free (sections);
5222 return FALSE;
5223 }
5224
5225 /* Sort sections by address. */
5226
5227 static int
5228 elf_sort_sections (const void *arg1, const void *arg2)
5229 {
5230 const asection *sec1 = *(const asection **) arg1;
5231 const asection *sec2 = *(const asection **) arg2;
5232 bfd_size_type size1, size2;
5233
5234 /* Sort by LMA first, since this is the address used to
5235 place the section into a segment. */
5236 if (sec1->lma < sec2->lma)
5237 return -1;
5238 else if (sec1->lma > sec2->lma)
5239 return 1;
5240
5241 /* Then sort by VMA. Normally the LMA and the VMA will be
5242 the same, and this will do nothing. */
5243 if (sec1->vma < sec2->vma)
5244 return -1;
5245 else if (sec1->vma > sec2->vma)
5246 return 1;
5247
5248 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5249
5250 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5251
5252 if (TOEND (sec1))
5253 {
5254 if (!TOEND (sec2))
5255 return 1;
5256 }
5257 else if (TOEND (sec2))
5258 return -1;
5259
5260 #undef TOEND
5261
5262 /* Sort by size, to put zero sized sections
5263 before others at the same address. */
5264
5265 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5266 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5267
5268 if (size1 < size2)
5269 return -1;
5270 if (size1 > size2)
5271 return 1;
5272
5273 return sec1->target_index - sec2->target_index;
5274 }
5275
5276 /* This qsort comparison functions sorts PT_LOAD segments first and
5277 by p_paddr, for assign_file_positions_for_load_sections. */
5278
5279 static int
5280 elf_sort_segments (const void *arg1, const void *arg2)
5281 {
5282 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5283 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5284
5285 if (m1->p_type != m2->p_type)
5286 {
5287 if (m1->p_type == PT_NULL)
5288 return 1;
5289 if (m2->p_type == PT_NULL)
5290 return -1;
5291 return m1->p_type < m2->p_type ? -1 : 1;
5292 }
5293 if (m1->includes_filehdr != m2->includes_filehdr)
5294 return m1->includes_filehdr ? -1 : 1;
5295 if (m1->no_sort_lma != m2->no_sort_lma)
5296 return m1->no_sort_lma ? -1 : 1;
5297 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5298 {
5299 bfd_vma lma1, lma2; /* Octets. */
5300 lma1 = 0;
5301 if (m1->p_paddr_valid)
5302 lma1 = m1->p_paddr;
5303 else if (m1->count != 0)
5304 {
5305 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5306 m1->sections[0]);
5307 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5308 }
5309 lma2 = 0;
5310 if (m2->p_paddr_valid)
5311 lma2 = m2->p_paddr;
5312 else if (m2->count != 0)
5313 {
5314 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5315 m2->sections[0]);
5316 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5317 }
5318 if (lma1 != lma2)
5319 return lma1 < lma2 ? -1 : 1;
5320 }
5321 if (m1->idx != m2->idx)
5322 return m1->idx < m2->idx ? -1 : 1;
5323 return 0;
5324 }
5325
5326 /* Ian Lance Taylor writes:
5327
5328 We shouldn't be using % with a negative signed number. That's just
5329 not good. We have to make sure either that the number is not
5330 negative, or that the number has an unsigned type. When the types
5331 are all the same size they wind up as unsigned. When file_ptr is a
5332 larger signed type, the arithmetic winds up as signed long long,
5333 which is wrong.
5334
5335 What we're trying to say here is something like ``increase OFF by
5336 the least amount that will cause it to be equal to the VMA modulo
5337 the page size.'' */
5338 /* In other words, something like:
5339
5340 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5341 off_offset = off % bed->maxpagesize;
5342 if (vma_offset < off_offset)
5343 adjustment = vma_offset + bed->maxpagesize - off_offset;
5344 else
5345 adjustment = vma_offset - off_offset;
5346
5347 which can be collapsed into the expression below. */
5348
5349 static file_ptr
5350 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5351 {
5352 /* PR binutils/16199: Handle an alignment of zero. */
5353 if (maxpagesize == 0)
5354 maxpagesize = 1;
5355 return ((vma - off) % maxpagesize);
5356 }
5357
5358 static void
5359 print_segment_map (const struct elf_segment_map *m)
5360 {
5361 unsigned int j;
5362 const char *pt = get_segment_type (m->p_type);
5363 char buf[32];
5364
5365 if (pt == NULL)
5366 {
5367 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5368 sprintf (buf, "LOPROC+%7.7x",
5369 (unsigned int) (m->p_type - PT_LOPROC));
5370 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5371 sprintf (buf, "LOOS+%7.7x",
5372 (unsigned int) (m->p_type - PT_LOOS));
5373 else
5374 snprintf (buf, sizeof (buf), "%8.8x",
5375 (unsigned int) m->p_type);
5376 pt = buf;
5377 }
5378 fflush (stdout);
5379 fprintf (stderr, "%s:", pt);
5380 for (j = 0; j < m->count; j++)
5381 fprintf (stderr, " %s", m->sections [j]->name);
5382 putc ('\n',stderr);
5383 fflush (stderr);
5384 }
5385
5386 static bfd_boolean
5387 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5388 {
5389 void *buf;
5390 bfd_boolean ret;
5391
5392 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5393 return FALSE;
5394 buf = bfd_zmalloc (len);
5395 if (buf == NULL)
5396 return FALSE;
5397 ret = bfd_bwrite (buf, len, abfd) == len;
5398 free (buf);
5399 return ret;
5400 }
5401
5402 /* Assign file positions to the sections based on the mapping from
5403 sections to segments. This function also sets up some fields in
5404 the file header. */
5405
5406 static bfd_boolean
5407 assign_file_positions_for_load_sections (bfd *abfd,
5408 struct bfd_link_info *link_info)
5409 {
5410 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5411 struct elf_segment_map *m;
5412 struct elf_segment_map *phdr_load_seg;
5413 Elf_Internal_Phdr *phdrs;
5414 Elf_Internal_Phdr *p;
5415 file_ptr off; /* Octets. */
5416 bfd_size_type maxpagesize;
5417 unsigned int alloc, actual;
5418 unsigned int i, j;
5419 struct elf_segment_map **sorted_seg_map;
5420 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5421
5422 if (link_info == NULL
5423 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5424 return FALSE;
5425
5426 alloc = 0;
5427 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5428 m->idx = alloc++;
5429
5430 if (alloc)
5431 {
5432 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5433 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5434 }
5435 else
5436 {
5437 /* PR binutils/12467. */
5438 elf_elfheader (abfd)->e_phoff = 0;
5439 elf_elfheader (abfd)->e_phentsize = 0;
5440 }
5441
5442 elf_elfheader (abfd)->e_phnum = alloc;
5443
5444 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5445 {
5446 actual = alloc;
5447 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5448 }
5449 else
5450 {
5451 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5452 BFD_ASSERT (elf_program_header_size (abfd)
5453 == actual * bed->s->sizeof_phdr);
5454 BFD_ASSERT (actual >= alloc);
5455 }
5456
5457 if (alloc == 0)
5458 {
5459 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5460 return TRUE;
5461 }
5462
5463 /* We're writing the size in elf_program_header_size (abfd),
5464 see assign_file_positions_except_relocs, so make sure we have
5465 that amount allocated, with trailing space cleared.
5466 The variable alloc contains the computed need, while
5467 elf_program_header_size (abfd) contains the size used for the
5468 layout.
5469 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5470 where the layout is forced to according to a larger size in the
5471 last iterations for the testcase ld-elf/header. */
5472 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5473 + alloc * sizeof (*sorted_seg_map)));
5474 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5475 elf_tdata (abfd)->phdr = phdrs;
5476 if (phdrs == NULL)
5477 return FALSE;
5478
5479 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5480 {
5481 sorted_seg_map[j] = m;
5482 /* If elf_segment_map is not from map_sections_to_segments, the
5483 sections may not be correctly ordered. NOTE: sorting should
5484 not be done to the PT_NOTE section of a corefile, which may
5485 contain several pseudo-sections artificially created by bfd.
5486 Sorting these pseudo-sections breaks things badly. */
5487 if (m->count > 1
5488 && !(elf_elfheader (abfd)->e_type == ET_CORE
5489 && m->p_type == PT_NOTE))
5490 {
5491 for (i = 0; i < m->count; i++)
5492 m->sections[i]->target_index = i;
5493 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5494 elf_sort_sections);
5495 }
5496 }
5497 if (alloc > 1)
5498 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5499 elf_sort_segments);
5500
5501 maxpagesize = 1;
5502 if ((abfd->flags & D_PAGED) != 0)
5503 maxpagesize = bed->maxpagesize;
5504
5505 /* Sections must map to file offsets past the ELF file header. */
5506 off = bed->s->sizeof_ehdr;
5507 /* And if one of the PT_LOAD headers doesn't include the program
5508 headers then we'll be mapping program headers in the usual
5509 position after the ELF file header. */
5510 phdr_load_seg = NULL;
5511 for (j = 0; j < alloc; j++)
5512 {
5513 m = sorted_seg_map[j];
5514 if (m->p_type != PT_LOAD)
5515 break;
5516 if (m->includes_phdrs)
5517 {
5518 phdr_load_seg = m;
5519 break;
5520 }
5521 }
5522 if (phdr_load_seg == NULL)
5523 off += actual * bed->s->sizeof_phdr;
5524
5525 for (j = 0; j < alloc; j++)
5526 {
5527 asection **secpp;
5528 bfd_vma off_adjust; /* Octets. */
5529 bfd_boolean no_contents;
5530
5531 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5532 number of sections with contents contributing to both p_filesz
5533 and p_memsz, followed by a number of sections with no contents
5534 that just contribute to p_memsz. In this loop, OFF tracks next
5535 available file offset for PT_LOAD and PT_NOTE segments. */
5536 m = sorted_seg_map[j];
5537 p = phdrs + m->idx;
5538 p->p_type = m->p_type;
5539 p->p_flags = m->p_flags;
5540
5541 if (m->count == 0)
5542 p->p_vaddr = m->p_vaddr_offset * opb;
5543 else
5544 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5545
5546 if (m->p_paddr_valid)
5547 p->p_paddr = m->p_paddr;
5548 else if (m->count == 0)
5549 p->p_paddr = 0;
5550 else
5551 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5552
5553 if (p->p_type == PT_LOAD
5554 && (abfd->flags & D_PAGED) != 0)
5555 {
5556 /* p_align in demand paged PT_LOAD segments effectively stores
5557 the maximum page size. When copying an executable with
5558 objcopy, we set m->p_align from the input file. Use this
5559 value for maxpagesize rather than bed->maxpagesize, which
5560 may be different. Note that we use maxpagesize for PT_TLS
5561 segment alignment later in this function, so we are relying
5562 on at least one PT_LOAD segment appearing before a PT_TLS
5563 segment. */
5564 if (m->p_align_valid)
5565 maxpagesize = m->p_align;
5566
5567 p->p_align = maxpagesize;
5568 }
5569 else if (m->p_align_valid)
5570 p->p_align = m->p_align;
5571 else if (m->count == 0)
5572 p->p_align = 1 << bed->s->log_file_align;
5573
5574 if (m == phdr_load_seg)
5575 {
5576 if (!m->includes_filehdr)
5577 p->p_offset = off;
5578 off += actual * bed->s->sizeof_phdr;
5579 }
5580
5581 no_contents = FALSE;
5582 off_adjust = 0;
5583 if (p->p_type == PT_LOAD
5584 && m->count > 0)
5585 {
5586 bfd_size_type align; /* Bytes. */
5587 unsigned int align_power = 0;
5588
5589 if (m->p_align_valid)
5590 align = p->p_align;
5591 else
5592 {
5593 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5594 {
5595 unsigned int secalign;
5596
5597 secalign = bfd_section_alignment (*secpp);
5598 if (secalign > align_power)
5599 align_power = secalign;
5600 }
5601 align = (bfd_size_type) 1 << align_power;
5602 if (align < maxpagesize)
5603 align = maxpagesize;
5604 }
5605
5606 for (i = 0; i < m->count; i++)
5607 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5608 /* If we aren't making room for this section, then
5609 it must be SHT_NOBITS regardless of what we've
5610 set via struct bfd_elf_special_section. */
5611 elf_section_type (m->sections[i]) = SHT_NOBITS;
5612
5613 /* Find out whether this segment contains any loadable
5614 sections. */
5615 no_contents = TRUE;
5616 for (i = 0; i < m->count; i++)
5617 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5618 {
5619 no_contents = FALSE;
5620 break;
5621 }
5622
5623 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5624
5625 /* Broken hardware and/or kernel require that files do not
5626 map the same page with different permissions on some hppa
5627 processors. */
5628 if (j != 0
5629 && (abfd->flags & D_PAGED) != 0
5630 && bed->no_page_alias
5631 && (off & (maxpagesize - 1)) != 0
5632 && ((off & -maxpagesize)
5633 == ((off + off_adjust) & -maxpagesize)))
5634 off_adjust += maxpagesize;
5635 off += off_adjust;
5636 if (no_contents)
5637 {
5638 /* We shouldn't need to align the segment on disk since
5639 the segment doesn't need file space, but the gABI
5640 arguably requires the alignment and glibc ld.so
5641 checks it. So to comply with the alignment
5642 requirement but not waste file space, we adjust
5643 p_offset for just this segment. (OFF_ADJUST is
5644 subtracted from OFF later.) This may put p_offset
5645 past the end of file, but that shouldn't matter. */
5646 }
5647 else
5648 off_adjust = 0;
5649 }
5650 /* Make sure the .dynamic section is the first section in the
5651 PT_DYNAMIC segment. */
5652 else if (p->p_type == PT_DYNAMIC
5653 && m->count > 1
5654 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5655 {
5656 _bfd_error_handler
5657 (_("%pB: The first section in the PT_DYNAMIC segment"
5658 " is not the .dynamic section"),
5659 abfd);
5660 bfd_set_error (bfd_error_bad_value);
5661 return FALSE;
5662 }
5663 /* Set the note section type to SHT_NOTE. */
5664 else if (p->p_type == PT_NOTE)
5665 for (i = 0; i < m->count; i++)
5666 elf_section_type (m->sections[i]) = SHT_NOTE;
5667
5668 if (m->includes_filehdr)
5669 {
5670 if (!m->p_flags_valid)
5671 p->p_flags |= PF_R;
5672 p->p_filesz = bed->s->sizeof_ehdr;
5673 p->p_memsz = bed->s->sizeof_ehdr;
5674 if (p->p_type == PT_LOAD)
5675 {
5676 if (m->count > 0)
5677 {
5678 if (p->p_vaddr < (bfd_vma) off
5679 || (!m->p_paddr_valid
5680 && p->p_paddr < (bfd_vma) off))
5681 {
5682 _bfd_error_handler
5683 (_("%pB: not enough room for program headers,"
5684 " try linking with -N"),
5685 abfd);
5686 bfd_set_error (bfd_error_bad_value);
5687 return FALSE;
5688 }
5689 p->p_vaddr -= off;
5690 if (!m->p_paddr_valid)
5691 p->p_paddr -= off;
5692 }
5693 }
5694 else if (sorted_seg_map[0]->includes_filehdr)
5695 {
5696 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5697 p->p_vaddr = filehdr->p_vaddr;
5698 if (!m->p_paddr_valid)
5699 p->p_paddr = filehdr->p_paddr;
5700 }
5701 }
5702
5703 if (m->includes_phdrs)
5704 {
5705 if (!m->p_flags_valid)
5706 p->p_flags |= PF_R;
5707 p->p_filesz += actual * bed->s->sizeof_phdr;
5708 p->p_memsz += actual * bed->s->sizeof_phdr;
5709 if (!m->includes_filehdr)
5710 {
5711 if (p->p_type == PT_LOAD)
5712 {
5713 elf_elfheader (abfd)->e_phoff = p->p_offset;
5714 if (m->count > 0)
5715 {
5716 p->p_vaddr -= off - p->p_offset;
5717 if (!m->p_paddr_valid)
5718 p->p_paddr -= off - p->p_offset;
5719 }
5720 }
5721 else if (phdr_load_seg != NULL)
5722 {
5723 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5724 bfd_vma phdr_off = 0; /* Octets. */
5725 if (phdr_load_seg->includes_filehdr)
5726 phdr_off = bed->s->sizeof_ehdr;
5727 p->p_vaddr = phdr->p_vaddr + phdr_off;
5728 if (!m->p_paddr_valid)
5729 p->p_paddr = phdr->p_paddr + phdr_off;
5730 p->p_offset = phdr->p_offset + phdr_off;
5731 }
5732 else
5733 p->p_offset = bed->s->sizeof_ehdr;
5734 }
5735 }
5736
5737 if (p->p_type == PT_LOAD
5738 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5739 {
5740 if (!m->includes_filehdr && !m->includes_phdrs)
5741 {
5742 p->p_offset = off;
5743 if (no_contents)
5744 {
5745 /* Put meaningless p_offset for PT_LOAD segments
5746 without file contents somewhere within the first
5747 page, in an attempt to not point past EOF. */
5748 bfd_size_type align = maxpagesize;
5749 if (align < p->p_align)
5750 align = p->p_align;
5751 if (align < 1)
5752 align = 1;
5753 p->p_offset = off % align;
5754 }
5755 }
5756 else
5757 {
5758 file_ptr adjust; /* Octets. */
5759
5760 adjust = off - (p->p_offset + p->p_filesz);
5761 if (!no_contents)
5762 p->p_filesz += adjust;
5763 p->p_memsz += adjust;
5764 }
5765 }
5766
5767 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5768 maps. Set filepos for sections in PT_LOAD segments, and in
5769 core files, for sections in PT_NOTE segments.
5770 assign_file_positions_for_non_load_sections will set filepos
5771 for other sections and update p_filesz for other segments. */
5772 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5773 {
5774 asection *sec;
5775 bfd_size_type align;
5776 Elf_Internal_Shdr *this_hdr;
5777
5778 sec = *secpp;
5779 this_hdr = &elf_section_data (sec)->this_hdr;
5780 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5781
5782 if ((p->p_type == PT_LOAD
5783 || p->p_type == PT_TLS)
5784 && (this_hdr->sh_type != SHT_NOBITS
5785 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5786 && ((this_hdr->sh_flags & SHF_TLS) == 0
5787 || p->p_type == PT_TLS))))
5788 {
5789 bfd_vma p_start = p->p_paddr; /* Octets. */
5790 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5791 bfd_vma s_start = sec->lma * opb; /* Octets. */
5792 bfd_vma adjust = s_start - p_end; /* Octets. */
5793
5794 if (adjust != 0
5795 && (s_start < p_end
5796 || p_end < p_start))
5797 {
5798 _bfd_error_handler
5799 /* xgettext:c-format */
5800 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5801 abfd, sec, (uint64_t) s_start / opb,
5802 (uint64_t) p_end / opb);
5803 adjust = 0;
5804 sec->lma = p_end / opb;
5805 }
5806 p->p_memsz += adjust;
5807
5808 if (p->p_type == PT_LOAD)
5809 {
5810 if (this_hdr->sh_type != SHT_NOBITS)
5811 {
5812 off_adjust = 0;
5813 if (p->p_filesz + adjust < p->p_memsz)
5814 {
5815 /* We have a PROGBITS section following NOBITS ones.
5816 Allocate file space for the NOBITS section(s) and
5817 zero it. */
5818 adjust = p->p_memsz - p->p_filesz;
5819 if (!write_zeros (abfd, off, adjust))
5820 return FALSE;
5821 }
5822 }
5823 /* We only adjust sh_offset in SHT_NOBITS sections
5824 as would seem proper for their address when the
5825 section is first in the segment. sh_offset
5826 doesn't really have any significance for
5827 SHT_NOBITS anyway, apart from a notional position
5828 relative to other sections. Historically we
5829 didn't bother with adjusting sh_offset and some
5830 programs depend on it not being adjusted. See
5831 pr12921 and pr25662. */
5832 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5833 {
5834 off += adjust;
5835 if (this_hdr->sh_type == SHT_NOBITS)
5836 off_adjust += adjust;
5837 }
5838 }
5839 if (this_hdr->sh_type != SHT_NOBITS)
5840 p->p_filesz += adjust;
5841 }
5842
5843 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5844 {
5845 /* The section at i == 0 is the one that actually contains
5846 everything. */
5847 if (i == 0)
5848 {
5849 this_hdr->sh_offset = sec->filepos = off;
5850 off += this_hdr->sh_size;
5851 p->p_filesz = this_hdr->sh_size;
5852 p->p_memsz = 0;
5853 p->p_align = 1;
5854 }
5855 else
5856 {
5857 /* The rest are fake sections that shouldn't be written. */
5858 sec->filepos = 0;
5859 sec->size = 0;
5860 sec->flags = 0;
5861 continue;
5862 }
5863 }
5864 else
5865 {
5866 if (p->p_type == PT_LOAD)
5867 {
5868 this_hdr->sh_offset = sec->filepos = off;
5869 if (this_hdr->sh_type != SHT_NOBITS)
5870 off += this_hdr->sh_size;
5871 }
5872 else if (this_hdr->sh_type == SHT_NOBITS
5873 && (this_hdr->sh_flags & SHF_TLS) != 0
5874 && this_hdr->sh_offset == 0)
5875 {
5876 /* This is a .tbss section that didn't get a PT_LOAD.
5877 (See _bfd_elf_map_sections_to_segments "Create a
5878 final PT_LOAD".) Set sh_offset to the value it
5879 would have if we had created a zero p_filesz and
5880 p_memsz PT_LOAD header for the section. This
5881 also makes the PT_TLS header have the same
5882 p_offset value. */
5883 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5884 off, align);
5885 this_hdr->sh_offset = sec->filepos = off + adjust;
5886 }
5887
5888 if (this_hdr->sh_type != SHT_NOBITS)
5889 {
5890 p->p_filesz += this_hdr->sh_size;
5891 /* A load section without SHF_ALLOC is something like
5892 a note section in a PT_NOTE segment. These take
5893 file space but are not loaded into memory. */
5894 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5895 p->p_memsz += this_hdr->sh_size;
5896 }
5897 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5898 {
5899 if (p->p_type == PT_TLS)
5900 p->p_memsz += this_hdr->sh_size;
5901
5902 /* .tbss is special. It doesn't contribute to p_memsz of
5903 normal segments. */
5904 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5905 p->p_memsz += this_hdr->sh_size;
5906 }
5907
5908 if (align > p->p_align
5909 && !m->p_align_valid
5910 && (p->p_type != PT_LOAD
5911 || (abfd->flags & D_PAGED) == 0))
5912 p->p_align = align;
5913 }
5914
5915 if (!m->p_flags_valid)
5916 {
5917 p->p_flags |= PF_R;
5918 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5919 p->p_flags |= PF_X;
5920 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5921 p->p_flags |= PF_W;
5922 }
5923 }
5924
5925 off -= off_adjust;
5926
5927 /* PR ld/20815 - Check that the program header segment, if
5928 present, will be loaded into memory. */
5929 if (p->p_type == PT_PHDR
5930 && phdr_load_seg == NULL
5931 && !(bed->elf_backend_allow_non_load_phdr != NULL
5932 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5933 {
5934 /* The fix for this error is usually to edit the linker script being
5935 used and set up the program headers manually. Either that or
5936 leave room for the headers at the start of the SECTIONS. */
5937 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5938 " by LOAD segment"),
5939 abfd);
5940 if (link_info == NULL)
5941 return FALSE;
5942 /* Arrange for the linker to exit with an error, deleting
5943 the output file unless --noinhibit-exec is given. */
5944 link_info->callbacks->info ("%X");
5945 }
5946
5947 /* Check that all sections are in a PT_LOAD segment.
5948 Don't check funky gdb generated core files. */
5949 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5950 {
5951 bfd_boolean check_vma = TRUE;
5952
5953 for (i = 1; i < m->count; i++)
5954 if (m->sections[i]->vma == m->sections[i - 1]->vma
5955 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5956 ->this_hdr), p) != 0
5957 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5958 ->this_hdr), p) != 0)
5959 {
5960 /* Looks like we have overlays packed into the segment. */
5961 check_vma = FALSE;
5962 break;
5963 }
5964
5965 for (i = 0; i < m->count; i++)
5966 {
5967 Elf_Internal_Shdr *this_hdr;
5968 asection *sec;
5969
5970 sec = m->sections[i];
5971 this_hdr = &(elf_section_data(sec)->this_hdr);
5972 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5973 && !ELF_TBSS_SPECIAL (this_hdr, p))
5974 {
5975 _bfd_error_handler
5976 /* xgettext:c-format */
5977 (_("%pB: section `%pA' can't be allocated in segment %d"),
5978 abfd, sec, j);
5979 print_segment_map (m);
5980 }
5981 }
5982 }
5983 }
5984
5985 elf_next_file_pos (abfd) = off;
5986
5987 if (link_info != NULL
5988 && phdr_load_seg != NULL
5989 && phdr_load_seg->includes_filehdr)
5990 {
5991 /* There is a segment that contains both the file headers and the
5992 program headers, so provide a symbol __ehdr_start pointing there.
5993 A program can use this to examine itself robustly. */
5994
5995 struct elf_link_hash_entry *hash
5996 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5997 FALSE, FALSE, TRUE);
5998 /* If the symbol was referenced and not defined, define it. */
5999 if (hash != NULL
6000 && (hash->root.type == bfd_link_hash_new
6001 || hash->root.type == bfd_link_hash_undefined
6002 || hash->root.type == bfd_link_hash_undefweak
6003 || hash->root.type == bfd_link_hash_common))
6004 {
6005 asection *s = NULL;
6006 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6007
6008 if (phdr_load_seg->count != 0)
6009 /* The segment contains sections, so use the first one. */
6010 s = phdr_load_seg->sections[0];
6011 else
6012 /* Use the first (i.e. lowest-addressed) section in any segment. */
6013 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6014 if (m->p_type == PT_LOAD && m->count != 0)
6015 {
6016 s = m->sections[0];
6017 break;
6018 }
6019
6020 if (s != NULL)
6021 {
6022 hash->root.u.def.value = filehdr_vaddr - s->vma;
6023 hash->root.u.def.section = s;
6024 }
6025 else
6026 {
6027 hash->root.u.def.value = filehdr_vaddr;
6028 hash->root.u.def.section = bfd_abs_section_ptr;
6029 }
6030
6031 hash->root.type = bfd_link_hash_defined;
6032 hash->def_regular = 1;
6033 hash->non_elf = 0;
6034 }
6035 }
6036
6037 return TRUE;
6038 }
6039
6040 /* Determine if a bfd is a debuginfo file. Unfortunately there
6041 is no defined method for detecting such files, so we have to
6042 use heuristics instead. */
6043
6044 bfd_boolean
6045 is_debuginfo_file (bfd *abfd)
6046 {
6047 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6048 return FALSE;
6049
6050 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6051 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6052 Elf_Internal_Shdr **headerp;
6053
6054 for (headerp = start_headers; headerp < end_headers; headerp ++)
6055 {
6056 Elf_Internal_Shdr *header = * headerp;
6057
6058 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6059 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6060 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6061 && header->sh_type != SHT_NOBITS
6062 && header->sh_type != SHT_NOTE)
6063 return FALSE;
6064 }
6065
6066 return TRUE;
6067 }
6068
6069 /* Assign file positions for the other sections, except for compressed debugging
6070 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6071
6072 static bfd_boolean
6073 assign_file_positions_for_non_load_sections (bfd *abfd,
6074 struct bfd_link_info *link_info)
6075 {
6076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6077 Elf_Internal_Shdr **i_shdrpp;
6078 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6079 Elf_Internal_Phdr *phdrs;
6080 Elf_Internal_Phdr *p;
6081 struct elf_segment_map *m;
6082 file_ptr off;
6083 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6084
6085 i_shdrpp = elf_elfsections (abfd);
6086 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6087 off = elf_next_file_pos (abfd);
6088 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6089 {
6090 Elf_Internal_Shdr *hdr;
6091
6092 hdr = *hdrpp;
6093 if (hdr->bfd_section != NULL
6094 && (hdr->bfd_section->filepos != 0
6095 || (hdr->sh_type == SHT_NOBITS
6096 && hdr->contents == NULL)))
6097 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6098 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6099 {
6100 if (hdr->sh_size != 0
6101 /* PR 24717 - debuginfo files are known to be not strictly
6102 compliant with the ELF standard. In particular they often
6103 have .note.gnu.property sections that are outside of any
6104 loadable segment. This is not a problem for such files,
6105 so do not warn about them. */
6106 && ! is_debuginfo_file (abfd))
6107 _bfd_error_handler
6108 /* xgettext:c-format */
6109 (_("%pB: warning: allocated section `%s' not in segment"),
6110 abfd,
6111 (hdr->bfd_section == NULL
6112 ? "*unknown*"
6113 : hdr->bfd_section->name));
6114 /* We don't need to page align empty sections. */
6115 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6116 off += vma_page_aligned_bias (hdr->sh_addr, off,
6117 bed->maxpagesize);
6118 else
6119 off += vma_page_aligned_bias (hdr->sh_addr, off,
6120 hdr->sh_addralign);
6121 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6122 FALSE);
6123 }
6124 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6125 && hdr->bfd_section == NULL)
6126 /* We don't know the offset of these sections yet: their size has
6127 not been decided. */
6128 || (hdr->bfd_section != NULL
6129 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6130 || (bfd_section_is_ctf (hdr->bfd_section)
6131 && abfd->is_linker_output)))
6132 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6133 || (elf_symtab_shndx_list (abfd) != NULL
6134 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6135 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6136 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6137 hdr->sh_offset = -1;
6138 else
6139 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6140 }
6141 elf_next_file_pos (abfd) = off;
6142
6143 /* Now that we have set the section file positions, we can set up
6144 the file positions for the non PT_LOAD segments. */
6145 phdrs = elf_tdata (abfd)->phdr;
6146 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6147 {
6148 if (p->p_type == PT_GNU_RELRO)
6149 {
6150 bfd_vma start, end; /* Bytes. */
6151 bfd_boolean ok;
6152
6153 if (link_info != NULL)
6154 {
6155 /* During linking the range of the RELRO segment is passed
6156 in link_info. Note that there may be padding between
6157 relro_start and the first RELRO section. */
6158 start = link_info->relro_start;
6159 end = link_info->relro_end;
6160 }
6161 else if (m->count != 0)
6162 {
6163 if (!m->p_size_valid)
6164 abort ();
6165 start = m->sections[0]->vma;
6166 end = start + m->p_size / opb;
6167 }
6168 else
6169 {
6170 start = 0;
6171 end = 0;
6172 }
6173
6174 ok = FALSE;
6175 if (start < end)
6176 {
6177 struct elf_segment_map *lm;
6178 const Elf_Internal_Phdr *lp;
6179 unsigned int i;
6180
6181 /* Find a LOAD segment containing a section in the RELRO
6182 segment. */
6183 for (lm = elf_seg_map (abfd), lp = phdrs;
6184 lm != NULL;
6185 lm = lm->next, lp++)
6186 {
6187 if (lp->p_type == PT_LOAD
6188 && lm->count != 0
6189 && (lm->sections[lm->count - 1]->vma
6190 + (!IS_TBSS (lm->sections[lm->count - 1])
6191 ? lm->sections[lm->count - 1]->size / opb
6192 : 0)) > start
6193 && lm->sections[0]->vma < end)
6194 break;
6195 }
6196
6197 if (lm != NULL)
6198 {
6199 /* Find the section starting the RELRO segment. */
6200 for (i = 0; i < lm->count; i++)
6201 {
6202 asection *s = lm->sections[i];
6203 if (s->vma >= start
6204 && s->vma < end
6205 && s->size != 0)
6206 break;
6207 }
6208
6209 if (i < lm->count)
6210 {
6211 p->p_vaddr = lm->sections[i]->vma * opb;
6212 p->p_paddr = lm->sections[i]->lma * opb;
6213 p->p_offset = lm->sections[i]->filepos;
6214 p->p_memsz = end * opb - p->p_vaddr;
6215 p->p_filesz = p->p_memsz;
6216
6217 /* The RELRO segment typically ends a few bytes
6218 into .got.plt but other layouts are possible.
6219 In cases where the end does not match any
6220 loaded section (for instance is in file
6221 padding), trim p_filesz back to correspond to
6222 the end of loaded section contents. */
6223 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6224 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6225
6226 /* Preserve the alignment and flags if they are
6227 valid. The gold linker generates RW/4 for
6228 the PT_GNU_RELRO section. It is better for
6229 objcopy/strip to honor these attributes
6230 otherwise gdb will choke when using separate
6231 debug files. */
6232 if (!m->p_align_valid)
6233 p->p_align = 1;
6234 if (!m->p_flags_valid)
6235 p->p_flags = PF_R;
6236 ok = TRUE;
6237 }
6238 }
6239 }
6240 if (link_info != NULL)
6241 BFD_ASSERT (ok);
6242 if (!ok)
6243 memset (p, 0, sizeof *p);
6244 }
6245 else if (p->p_type == PT_GNU_STACK)
6246 {
6247 if (m->p_size_valid)
6248 p->p_memsz = m->p_size;
6249 }
6250 else if (m->count != 0)
6251 {
6252 unsigned int i;
6253
6254 if (p->p_type != PT_LOAD
6255 && (p->p_type != PT_NOTE
6256 || bfd_get_format (abfd) != bfd_core))
6257 {
6258 /* A user specified segment layout may include a PHDR
6259 segment that overlaps with a LOAD segment... */
6260 if (p->p_type == PT_PHDR)
6261 {
6262 m->count = 0;
6263 continue;
6264 }
6265
6266 if (m->includes_filehdr || m->includes_phdrs)
6267 {
6268 /* PR 17512: file: 2195325e. */
6269 _bfd_error_handler
6270 (_("%pB: error: non-load segment %d includes file header "
6271 "and/or program header"),
6272 abfd, (int) (p - phdrs));
6273 return FALSE;
6274 }
6275
6276 p->p_filesz = 0;
6277 p->p_offset = m->sections[0]->filepos;
6278 for (i = m->count; i-- != 0;)
6279 {
6280 asection *sect = m->sections[i];
6281 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6282 if (hdr->sh_type != SHT_NOBITS)
6283 {
6284 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6285 + hdr->sh_size);
6286 break;
6287 }
6288 }
6289 }
6290 }
6291 }
6292
6293 return TRUE;
6294 }
6295
6296 static elf_section_list *
6297 find_section_in_list (unsigned int i, elf_section_list * list)
6298 {
6299 for (;list != NULL; list = list->next)
6300 if (list->ndx == i)
6301 break;
6302 return list;
6303 }
6304
6305 /* Work out the file positions of all the sections. This is called by
6306 _bfd_elf_compute_section_file_positions. All the section sizes and
6307 VMAs must be known before this is called.
6308
6309 Reloc sections come in two flavours: Those processed specially as
6310 "side-channel" data attached to a section to which they apply, and those that
6311 bfd doesn't process as relocations. The latter sort are stored in a normal
6312 bfd section by bfd_section_from_shdr. We don't consider the former sort
6313 here, unless they form part of the loadable image. Reloc sections not
6314 assigned here (and compressed debugging sections and CTF sections which
6315 nothing else in the file can rely upon) will be handled later by
6316 assign_file_positions_for_relocs.
6317
6318 We also don't set the positions of the .symtab and .strtab here. */
6319
6320 static bfd_boolean
6321 assign_file_positions_except_relocs (bfd *abfd,
6322 struct bfd_link_info *link_info)
6323 {
6324 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6325 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6326 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6327 unsigned int alloc;
6328
6329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6330 && bfd_get_format (abfd) != bfd_core)
6331 {
6332 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6333 unsigned int num_sec = elf_numsections (abfd);
6334 Elf_Internal_Shdr **hdrpp;
6335 unsigned int i;
6336 file_ptr off;
6337
6338 /* Start after the ELF header. */
6339 off = i_ehdrp->e_ehsize;
6340
6341 /* We are not creating an executable, which means that we are
6342 not creating a program header, and that the actual order of
6343 the sections in the file is unimportant. */
6344 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6345 {
6346 Elf_Internal_Shdr *hdr;
6347
6348 hdr = *hdrpp;
6349 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6350 && hdr->bfd_section == NULL)
6351 /* Do not assign offsets for these sections yet: we don't know
6352 their sizes. */
6353 || (hdr->bfd_section != NULL
6354 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6355 || (bfd_section_is_ctf (hdr->bfd_section)
6356 && abfd->is_linker_output)))
6357 || i == elf_onesymtab (abfd)
6358 || (elf_symtab_shndx_list (abfd) != NULL
6359 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6360 || i == elf_strtab_sec (abfd)
6361 || i == elf_shstrtab_sec (abfd))
6362 {
6363 hdr->sh_offset = -1;
6364 }
6365 else
6366 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6367 }
6368
6369 elf_next_file_pos (abfd) = off;
6370 elf_program_header_size (abfd) = 0;
6371 }
6372 else
6373 {
6374 /* Assign file positions for the loaded sections based on the
6375 assignment of sections to segments. */
6376 if (!assign_file_positions_for_load_sections (abfd, link_info))
6377 return FALSE;
6378
6379 /* And for non-load sections. */
6380 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6381 return FALSE;
6382 }
6383
6384 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6385 return FALSE;
6386
6387 /* Write out the program headers. */
6388 alloc = i_ehdrp->e_phnum;
6389 if (alloc != 0)
6390 {
6391 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6392 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6393 return FALSE;
6394 }
6395
6396 return TRUE;
6397 }
6398
6399 bfd_boolean
6400 _bfd_elf_init_file_header (bfd *abfd,
6401 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6402 {
6403 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6404 struct elf_strtab_hash *shstrtab;
6405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6406
6407 i_ehdrp = elf_elfheader (abfd);
6408
6409 shstrtab = _bfd_elf_strtab_init ();
6410 if (shstrtab == NULL)
6411 return FALSE;
6412
6413 elf_shstrtab (abfd) = shstrtab;
6414
6415 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6416 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6417 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6418 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6419
6420 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6421 i_ehdrp->e_ident[EI_DATA] =
6422 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6423 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6424
6425 if ((abfd->flags & DYNAMIC) != 0)
6426 i_ehdrp->e_type = ET_DYN;
6427 else if ((abfd->flags & EXEC_P) != 0)
6428 i_ehdrp->e_type = ET_EXEC;
6429 else if (bfd_get_format (abfd) == bfd_core)
6430 i_ehdrp->e_type = ET_CORE;
6431 else
6432 i_ehdrp->e_type = ET_REL;
6433
6434 switch (bfd_get_arch (abfd))
6435 {
6436 case bfd_arch_unknown:
6437 i_ehdrp->e_machine = EM_NONE;
6438 break;
6439
6440 /* There used to be a long list of cases here, each one setting
6441 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6442 in the corresponding bfd definition. To avoid duplication,
6443 the switch was removed. Machines that need special handling
6444 can generally do it in elf_backend_final_write_processing(),
6445 unless they need the information earlier than the final write.
6446 Such need can generally be supplied by replacing the tests for
6447 e_machine with the conditions used to determine it. */
6448 default:
6449 i_ehdrp->e_machine = bed->elf_machine_code;
6450 }
6451
6452 i_ehdrp->e_version = bed->s->ev_current;
6453 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6454
6455 /* No program header, for now. */
6456 i_ehdrp->e_phoff = 0;
6457 i_ehdrp->e_phentsize = 0;
6458 i_ehdrp->e_phnum = 0;
6459
6460 /* Each bfd section is section header entry. */
6461 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6462 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6463
6464 elf_tdata (abfd)->symtab_hdr.sh_name =
6465 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6466 elf_tdata (abfd)->strtab_hdr.sh_name =
6467 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6468 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6469 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6470 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6471 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6472 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6473 return FALSE;
6474
6475 return TRUE;
6476 }
6477
6478 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6479
6480 FIXME: We used to have code here to sort the PT_LOAD segments into
6481 ascending order, as per the ELF spec. But this breaks some programs,
6482 including the Linux kernel. But really either the spec should be
6483 changed or the programs updated. */
6484
6485 bfd_boolean
6486 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6487 {
6488 if (link_info != NULL && bfd_link_pie (link_info))
6489 {
6490 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6491 unsigned int num_segments = i_ehdrp->e_phnum;
6492 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6493 Elf_Internal_Phdr *segment = tdata->phdr;
6494 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6495
6496 /* Find the lowest p_vaddr in PT_LOAD segments. */
6497 bfd_vma p_vaddr = (bfd_vma) -1;
6498 for (; segment < end_segment; segment++)
6499 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6500 p_vaddr = segment->p_vaddr;
6501
6502 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6503 segments is non-zero. */
6504 if (p_vaddr)
6505 i_ehdrp->e_type = ET_EXEC;
6506 }
6507 return TRUE;
6508 }
6509
6510 /* Assign file positions for all the reloc sections which are not part
6511 of the loadable file image, and the file position of section headers. */
6512
6513 static bfd_boolean
6514 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6515 {
6516 file_ptr off;
6517 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6518 Elf_Internal_Shdr *shdrp;
6519 Elf_Internal_Ehdr *i_ehdrp;
6520 const struct elf_backend_data *bed;
6521
6522 off = elf_next_file_pos (abfd);
6523
6524 shdrpp = elf_elfsections (abfd);
6525 end_shdrpp = shdrpp + elf_numsections (abfd);
6526 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6527 {
6528 shdrp = *shdrpp;
6529 if (shdrp->sh_offset == -1)
6530 {
6531 asection *sec = shdrp->bfd_section;
6532 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6533 || shdrp->sh_type == SHT_RELA);
6534 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6535 if (is_rel
6536 || is_ctf
6537 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6538 {
6539 if (!is_rel && !is_ctf)
6540 {
6541 const char *name = sec->name;
6542 struct bfd_elf_section_data *d;
6543
6544 /* Compress DWARF debug sections. */
6545 if (!bfd_compress_section (abfd, sec,
6546 shdrp->contents))
6547 return FALSE;
6548
6549 if (sec->compress_status == COMPRESS_SECTION_DONE
6550 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6551 {
6552 /* If section is compressed with zlib-gnu, convert
6553 section name from .debug_* to .zdebug_*. */
6554 char *new_name
6555 = convert_debug_to_zdebug (abfd, name);
6556 if (new_name == NULL)
6557 return FALSE;
6558 name = new_name;
6559 }
6560 /* Add section name to section name section. */
6561 if (shdrp->sh_name != (unsigned int) -1)
6562 abort ();
6563 shdrp->sh_name
6564 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6565 name, FALSE);
6566 d = elf_section_data (sec);
6567
6568 /* Add reloc section name to section name section. */
6569 if (d->rel.hdr
6570 && !_bfd_elf_set_reloc_sh_name (abfd,
6571 d->rel.hdr,
6572 name, FALSE))
6573 return FALSE;
6574 if (d->rela.hdr
6575 && !_bfd_elf_set_reloc_sh_name (abfd,
6576 d->rela.hdr,
6577 name, TRUE))
6578 return FALSE;
6579
6580 /* Update section size and contents. */
6581 shdrp->sh_size = sec->size;
6582 shdrp->contents = sec->contents;
6583 shdrp->bfd_section->contents = NULL;
6584 }
6585 else if (is_ctf)
6586 {
6587 /* Update section size and contents. */
6588 shdrp->sh_size = sec->size;
6589 shdrp->contents = sec->contents;
6590 }
6591
6592 off = _bfd_elf_assign_file_position_for_section (shdrp,
6593 off,
6594 TRUE);
6595 }
6596 }
6597 }
6598
6599 /* Place section name section after DWARF debug sections have been
6600 compressed. */
6601 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6602 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6603 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6604 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6605
6606 /* Place the section headers. */
6607 i_ehdrp = elf_elfheader (abfd);
6608 bed = get_elf_backend_data (abfd);
6609 off = align_file_position (off, 1 << bed->s->log_file_align);
6610 i_ehdrp->e_shoff = off;
6611 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6612 elf_next_file_pos (abfd) = off;
6613
6614 return TRUE;
6615 }
6616
6617 bfd_boolean
6618 _bfd_elf_write_object_contents (bfd *abfd)
6619 {
6620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6621 Elf_Internal_Shdr **i_shdrp;
6622 bfd_boolean failed;
6623 unsigned int count, num_sec;
6624 struct elf_obj_tdata *t;
6625
6626 if (! abfd->output_has_begun
6627 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6628 return FALSE;
6629 /* Do not rewrite ELF data when the BFD has been opened for update.
6630 abfd->output_has_begun was set to TRUE on opening, so creation of new
6631 sections, and modification of existing section sizes was restricted.
6632 This means the ELF header, program headers and section headers can't have
6633 changed.
6634 If the contents of any sections has been modified, then those changes have
6635 already been written to the BFD. */
6636 else if (abfd->direction == both_direction)
6637 {
6638 BFD_ASSERT (abfd->output_has_begun);
6639 return TRUE;
6640 }
6641
6642 i_shdrp = elf_elfsections (abfd);
6643
6644 failed = FALSE;
6645 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6646 if (failed)
6647 return FALSE;
6648
6649 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6650 return FALSE;
6651
6652 /* After writing the headers, we need to write the sections too... */
6653 num_sec = elf_numsections (abfd);
6654 for (count = 1; count < num_sec; count++)
6655 {
6656 i_shdrp[count]->sh_name
6657 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6658 i_shdrp[count]->sh_name);
6659 if (bed->elf_backend_section_processing)
6660 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6661 return FALSE;
6662 if (i_shdrp[count]->contents)
6663 {
6664 bfd_size_type amt = i_shdrp[count]->sh_size;
6665
6666 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6667 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6668 return FALSE;
6669 }
6670 }
6671
6672 /* Write out the section header names. */
6673 t = elf_tdata (abfd);
6674 if (elf_shstrtab (abfd) != NULL
6675 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6676 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6677 return FALSE;
6678
6679 if (!(*bed->elf_backend_final_write_processing) (abfd))
6680 return FALSE;
6681
6682 if (!bed->s->write_shdrs_and_ehdr (abfd))
6683 return FALSE;
6684
6685 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6686 if (t->o->build_id.after_write_object_contents != NULL)
6687 return (*t->o->build_id.after_write_object_contents) (abfd);
6688
6689 return TRUE;
6690 }
6691
6692 bfd_boolean
6693 _bfd_elf_write_corefile_contents (bfd *abfd)
6694 {
6695 /* Hopefully this can be done just like an object file. */
6696 return _bfd_elf_write_object_contents (abfd);
6697 }
6698
6699 /* Given a section, search the header to find them. */
6700
6701 unsigned int
6702 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6703 {
6704 const struct elf_backend_data *bed;
6705 unsigned int sec_index;
6706
6707 if (elf_section_data (asect) != NULL
6708 && elf_section_data (asect)->this_idx != 0)
6709 return elf_section_data (asect)->this_idx;
6710
6711 if (bfd_is_abs_section (asect))
6712 sec_index = SHN_ABS;
6713 else if (bfd_is_com_section (asect))
6714 sec_index = SHN_COMMON;
6715 else if (bfd_is_und_section (asect))
6716 sec_index = SHN_UNDEF;
6717 else
6718 sec_index = SHN_BAD;
6719
6720 bed = get_elf_backend_data (abfd);
6721 if (bed->elf_backend_section_from_bfd_section)
6722 {
6723 int retval = sec_index;
6724
6725 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6726 return retval;
6727 }
6728
6729 if (sec_index == SHN_BAD)
6730 bfd_set_error (bfd_error_nonrepresentable_section);
6731
6732 return sec_index;
6733 }
6734
6735 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6736 on error. */
6737
6738 int
6739 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6740 {
6741 asymbol *asym_ptr = *asym_ptr_ptr;
6742 int idx;
6743 flagword flags = asym_ptr->flags;
6744
6745 /* When gas creates relocations against local labels, it creates its
6746 own symbol for the section, but does put the symbol into the
6747 symbol chain, so udata is 0. When the linker is generating
6748 relocatable output, this section symbol may be for one of the
6749 input sections rather than the output section. */
6750 if (asym_ptr->udata.i == 0
6751 && (flags & BSF_SECTION_SYM)
6752 && asym_ptr->section)
6753 {
6754 asection *sec;
6755 int indx;
6756
6757 sec = asym_ptr->section;
6758 if (sec->owner != abfd && sec->output_section != NULL)
6759 sec = sec->output_section;
6760 if (sec->owner == abfd
6761 && (indx = sec->index) < elf_num_section_syms (abfd)
6762 && elf_section_syms (abfd)[indx] != NULL)
6763 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6764 }
6765
6766 idx = asym_ptr->udata.i;
6767
6768 if (idx == 0)
6769 {
6770 /* This case can occur when using --strip-symbol on a symbol
6771 which is used in a relocation entry. */
6772 _bfd_error_handler
6773 /* xgettext:c-format */
6774 (_("%pB: symbol `%s' required but not present"),
6775 abfd, bfd_asymbol_name (asym_ptr));
6776 bfd_set_error (bfd_error_no_symbols);
6777 return -1;
6778 }
6779
6780 #if DEBUG & 4
6781 {
6782 fprintf (stderr,
6783 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6784 (long) asym_ptr, asym_ptr->name, idx, flags);
6785 fflush (stderr);
6786 }
6787 #endif
6788
6789 return idx;
6790 }
6791
6792 /* Rewrite program header information. */
6793
6794 static bfd_boolean
6795 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6796 {
6797 Elf_Internal_Ehdr *iehdr;
6798 struct elf_segment_map *map;
6799 struct elf_segment_map *map_first;
6800 struct elf_segment_map **pointer_to_map;
6801 Elf_Internal_Phdr *segment;
6802 asection *section;
6803 unsigned int i;
6804 unsigned int num_segments;
6805 bfd_boolean phdr_included = FALSE;
6806 bfd_boolean p_paddr_valid;
6807 bfd_vma maxpagesize;
6808 struct elf_segment_map *phdr_adjust_seg = NULL;
6809 unsigned int phdr_adjust_num = 0;
6810 const struct elf_backend_data *bed;
6811 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6812
6813 bed = get_elf_backend_data (ibfd);
6814 iehdr = elf_elfheader (ibfd);
6815
6816 map_first = NULL;
6817 pointer_to_map = &map_first;
6818
6819 num_segments = elf_elfheader (ibfd)->e_phnum;
6820 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6821
6822 /* Returns the end address of the segment + 1. */
6823 #define SEGMENT_END(segment, start) \
6824 (start + (segment->p_memsz > segment->p_filesz \
6825 ? segment->p_memsz : segment->p_filesz))
6826
6827 #define SECTION_SIZE(section, segment) \
6828 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6829 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6830 ? section->size : 0)
6831
6832 /* Returns TRUE if the given section is contained within
6833 the given segment. VMA addresses are compared. */
6834 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6835 (section->vma * (opb) >= segment->p_vaddr \
6836 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6837 <= (SEGMENT_END (segment, segment->p_vaddr))))
6838
6839 /* Returns TRUE if the given section is contained within
6840 the given segment. LMA addresses are compared. */
6841 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6842 (section->lma * (opb) >= base \
6843 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6844 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6845 <= SEGMENT_END (segment, base)))
6846
6847 /* Handle PT_NOTE segment. */
6848 #define IS_NOTE(p, s) \
6849 (p->p_type == PT_NOTE \
6850 && elf_section_type (s) == SHT_NOTE \
6851 && (bfd_vma) s->filepos >= p->p_offset \
6852 && ((bfd_vma) s->filepos + s->size \
6853 <= p->p_offset + p->p_filesz))
6854
6855 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6856 etc. */
6857 #define IS_COREFILE_NOTE(p, s) \
6858 (IS_NOTE (p, s) \
6859 && bfd_get_format (ibfd) == bfd_core \
6860 && s->vma == 0 \
6861 && s->lma == 0)
6862
6863 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6864 linker, which generates a PT_INTERP section with p_vaddr and
6865 p_memsz set to 0. */
6866 #define IS_SOLARIS_PT_INTERP(p, s) \
6867 (p->p_vaddr == 0 \
6868 && p->p_paddr == 0 \
6869 && p->p_memsz == 0 \
6870 && p->p_filesz > 0 \
6871 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6872 && s->size > 0 \
6873 && (bfd_vma) s->filepos >= p->p_offset \
6874 && ((bfd_vma) s->filepos + s->size \
6875 <= p->p_offset + p->p_filesz))
6876
6877 /* Decide if the given section should be included in the given segment.
6878 A section will be included if:
6879 1. It is within the address space of the segment -- we use the LMA
6880 if that is set for the segment and the VMA otherwise,
6881 2. It is an allocated section or a NOTE section in a PT_NOTE
6882 segment.
6883 3. There is an output section associated with it,
6884 4. The section has not already been allocated to a previous segment.
6885 5. PT_GNU_STACK segments do not include any sections.
6886 6. PT_TLS segment includes only SHF_TLS sections.
6887 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6888 8. PT_DYNAMIC should not contain empty sections at the beginning
6889 (with the possible exception of .dynamic). */
6890 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6891 ((((segment->p_paddr \
6892 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6893 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6894 && (section->flags & SEC_ALLOC) != 0) \
6895 || IS_NOTE (segment, section)) \
6896 && segment->p_type != PT_GNU_STACK \
6897 && (segment->p_type != PT_TLS \
6898 || (section->flags & SEC_THREAD_LOCAL)) \
6899 && (segment->p_type == PT_LOAD \
6900 || segment->p_type == PT_TLS \
6901 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6902 && (segment->p_type != PT_DYNAMIC \
6903 || SECTION_SIZE (section, segment) > 0 \
6904 || (segment->p_paddr \
6905 ? segment->p_paddr != section->lma * (opb) \
6906 : segment->p_vaddr != section->vma * (opb)) \
6907 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6908 && (segment->p_type != PT_LOAD || !section->segment_mark))
6909
6910 /* If the output section of a section in the input segment is NULL,
6911 it is removed from the corresponding output segment. */
6912 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6913 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6914 && section->output_section != NULL)
6915
6916 /* Returns TRUE iff seg1 starts after the end of seg2. */
6917 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6918 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6919
6920 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6921 their VMA address ranges and their LMA address ranges overlap.
6922 It is possible to have overlapping VMA ranges without overlapping LMA
6923 ranges. RedBoot images for example can have both .data and .bss mapped
6924 to the same VMA range, but with the .data section mapped to a different
6925 LMA. */
6926 #define SEGMENT_OVERLAPS(seg1, seg2) \
6927 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6928 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6929 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6930 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6931
6932 /* Initialise the segment mark field. */
6933 for (section = ibfd->sections; section != NULL; section = section->next)
6934 section->segment_mark = FALSE;
6935
6936 /* The Solaris linker creates program headers in which all the
6937 p_paddr fields are zero. When we try to objcopy or strip such a
6938 file, we get confused. Check for this case, and if we find it
6939 don't set the p_paddr_valid fields. */
6940 p_paddr_valid = FALSE;
6941 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6942 i < num_segments;
6943 i++, segment++)
6944 if (segment->p_paddr != 0)
6945 {
6946 p_paddr_valid = TRUE;
6947 break;
6948 }
6949
6950 /* Scan through the segments specified in the program header
6951 of the input BFD. For this first scan we look for overlaps
6952 in the loadable segments. These can be created by weird
6953 parameters to objcopy. Also, fix some solaris weirdness. */
6954 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6955 i < num_segments;
6956 i++, segment++)
6957 {
6958 unsigned int j;
6959 Elf_Internal_Phdr *segment2;
6960
6961 if (segment->p_type == PT_INTERP)
6962 for (section = ibfd->sections; section; section = section->next)
6963 if (IS_SOLARIS_PT_INTERP (segment, section))
6964 {
6965 /* Mininal change so that the normal section to segment
6966 assignment code will work. */
6967 segment->p_vaddr = section->vma * opb;
6968 break;
6969 }
6970
6971 if (segment->p_type != PT_LOAD)
6972 {
6973 /* Remove PT_GNU_RELRO segment. */
6974 if (segment->p_type == PT_GNU_RELRO)
6975 segment->p_type = PT_NULL;
6976 continue;
6977 }
6978
6979 /* Determine if this segment overlaps any previous segments. */
6980 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6981 {
6982 bfd_signed_vma extra_length;
6983
6984 if (segment2->p_type != PT_LOAD
6985 || !SEGMENT_OVERLAPS (segment, segment2))
6986 continue;
6987
6988 /* Merge the two segments together. */
6989 if (segment2->p_vaddr < segment->p_vaddr)
6990 {
6991 /* Extend SEGMENT2 to include SEGMENT and then delete
6992 SEGMENT. */
6993 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6994 - SEGMENT_END (segment2, segment2->p_vaddr));
6995
6996 if (extra_length > 0)
6997 {
6998 segment2->p_memsz += extra_length;
6999 segment2->p_filesz += extra_length;
7000 }
7001
7002 segment->p_type = PT_NULL;
7003
7004 /* Since we have deleted P we must restart the outer loop. */
7005 i = 0;
7006 segment = elf_tdata (ibfd)->phdr;
7007 break;
7008 }
7009 else
7010 {
7011 /* Extend SEGMENT to include SEGMENT2 and then delete
7012 SEGMENT2. */
7013 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7014 - SEGMENT_END (segment, segment->p_vaddr));
7015
7016 if (extra_length > 0)
7017 {
7018 segment->p_memsz += extra_length;
7019 segment->p_filesz += extra_length;
7020 }
7021
7022 segment2->p_type = PT_NULL;
7023 }
7024 }
7025 }
7026
7027 /* The second scan attempts to assign sections to segments. */
7028 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7029 i < num_segments;
7030 i++, segment++)
7031 {
7032 unsigned int section_count;
7033 asection **sections;
7034 asection *output_section;
7035 unsigned int isec;
7036 asection *matching_lma;
7037 asection *suggested_lma;
7038 unsigned int j;
7039 size_t amt;
7040 asection *first_section;
7041
7042 if (segment->p_type == PT_NULL)
7043 continue;
7044
7045 first_section = NULL;
7046 /* Compute how many sections might be placed into this segment. */
7047 for (section = ibfd->sections, section_count = 0;
7048 section != NULL;
7049 section = section->next)
7050 {
7051 /* Find the first section in the input segment, which may be
7052 removed from the corresponding output segment. */
7053 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7054 {
7055 if (first_section == NULL)
7056 first_section = section;
7057 if (section->output_section != NULL)
7058 ++section_count;
7059 }
7060 }
7061
7062 /* Allocate a segment map big enough to contain
7063 all of the sections we have selected. */
7064 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7065 amt += section_count * sizeof (asection *);
7066 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7067 if (map == NULL)
7068 return FALSE;
7069
7070 /* Initialise the fields of the segment map. Default to
7071 using the physical address of the segment in the input BFD. */
7072 map->next = NULL;
7073 map->p_type = segment->p_type;
7074 map->p_flags = segment->p_flags;
7075 map->p_flags_valid = 1;
7076
7077 /* If the first section in the input segment is removed, there is
7078 no need to preserve segment physical address in the corresponding
7079 output segment. */
7080 if (!first_section || first_section->output_section != NULL)
7081 {
7082 map->p_paddr = segment->p_paddr;
7083 map->p_paddr_valid = p_paddr_valid;
7084 }
7085
7086 /* Determine if this segment contains the ELF file header
7087 and if it contains the program headers themselves. */
7088 map->includes_filehdr = (segment->p_offset == 0
7089 && segment->p_filesz >= iehdr->e_ehsize);
7090 map->includes_phdrs = 0;
7091
7092 if (!phdr_included || segment->p_type != PT_LOAD)
7093 {
7094 map->includes_phdrs =
7095 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7096 && (segment->p_offset + segment->p_filesz
7097 >= ((bfd_vma) iehdr->e_phoff
7098 + iehdr->e_phnum * iehdr->e_phentsize)));
7099
7100 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7101 phdr_included = TRUE;
7102 }
7103
7104 if (section_count == 0)
7105 {
7106 /* Special segments, such as the PT_PHDR segment, may contain
7107 no sections, but ordinary, loadable segments should contain
7108 something. They are allowed by the ELF spec however, so only
7109 a warning is produced.
7110 There is however the valid use case of embedded systems which
7111 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7112 flash memory with zeros. No warning is shown for that case. */
7113 if (segment->p_type == PT_LOAD
7114 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7115 /* xgettext:c-format */
7116 _bfd_error_handler
7117 (_("%pB: warning: empty loadable segment detected"
7118 " at vaddr=%#" PRIx64 ", is this intentional?"),
7119 ibfd, (uint64_t) segment->p_vaddr);
7120
7121 map->p_vaddr_offset = segment->p_vaddr / opb;
7122 map->count = 0;
7123 *pointer_to_map = map;
7124 pointer_to_map = &map->next;
7125
7126 continue;
7127 }
7128
7129 /* Now scan the sections in the input BFD again and attempt
7130 to add their corresponding output sections to the segment map.
7131 The problem here is how to handle an output section which has
7132 been moved (ie had its LMA changed). There are four possibilities:
7133
7134 1. None of the sections have been moved.
7135 In this case we can continue to use the segment LMA from the
7136 input BFD.
7137
7138 2. All of the sections have been moved by the same amount.
7139 In this case we can change the segment's LMA to match the LMA
7140 of the first section.
7141
7142 3. Some of the sections have been moved, others have not.
7143 In this case those sections which have not been moved can be
7144 placed in the current segment which will have to have its size,
7145 and possibly its LMA changed, and a new segment or segments will
7146 have to be created to contain the other sections.
7147
7148 4. The sections have been moved, but not by the same amount.
7149 In this case we can change the segment's LMA to match the LMA
7150 of the first section and we will have to create a new segment
7151 or segments to contain the other sections.
7152
7153 In order to save time, we allocate an array to hold the section
7154 pointers that we are interested in. As these sections get assigned
7155 to a segment, they are removed from this array. */
7156
7157 amt = section_count * sizeof (asection *);
7158 sections = (asection **) bfd_malloc (amt);
7159 if (sections == NULL)
7160 return FALSE;
7161
7162 /* Step One: Scan for segment vs section LMA conflicts.
7163 Also add the sections to the section array allocated above.
7164 Also add the sections to the current segment. In the common
7165 case, where the sections have not been moved, this means that
7166 we have completely filled the segment, and there is nothing
7167 more to do. */
7168 isec = 0;
7169 matching_lma = NULL;
7170 suggested_lma = NULL;
7171
7172 for (section = first_section, j = 0;
7173 section != NULL;
7174 section = section->next)
7175 {
7176 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7177 {
7178 output_section = section->output_section;
7179
7180 sections[j++] = section;
7181
7182 /* The Solaris native linker always sets p_paddr to 0.
7183 We try to catch that case here, and set it to the
7184 correct value. Note - some backends require that
7185 p_paddr be left as zero. */
7186 if (!p_paddr_valid
7187 && segment->p_vaddr != 0
7188 && !bed->want_p_paddr_set_to_zero
7189 && isec == 0
7190 && output_section->lma != 0
7191 && (align_power (segment->p_vaddr
7192 + (map->includes_filehdr
7193 ? iehdr->e_ehsize : 0)
7194 + (map->includes_phdrs
7195 ? iehdr->e_phnum * iehdr->e_phentsize
7196 : 0),
7197 output_section->alignment_power * opb)
7198 == (output_section->vma * opb)))
7199 map->p_paddr = segment->p_vaddr;
7200
7201 /* Match up the physical address of the segment with the
7202 LMA address of the output section. */
7203 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7204 opb)
7205 || IS_COREFILE_NOTE (segment, section)
7206 || (bed->want_p_paddr_set_to_zero
7207 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7208 {
7209 if (matching_lma == NULL
7210 || output_section->lma < matching_lma->lma)
7211 matching_lma = output_section;
7212
7213 /* We assume that if the section fits within the segment
7214 then it does not overlap any other section within that
7215 segment. */
7216 map->sections[isec++] = output_section;
7217 }
7218 else if (suggested_lma == NULL)
7219 suggested_lma = output_section;
7220
7221 if (j == section_count)
7222 break;
7223 }
7224 }
7225
7226 BFD_ASSERT (j == section_count);
7227
7228 /* Step Two: Adjust the physical address of the current segment,
7229 if necessary. */
7230 if (isec == section_count)
7231 {
7232 /* All of the sections fitted within the segment as currently
7233 specified. This is the default case. Add the segment to
7234 the list of built segments and carry on to process the next
7235 program header in the input BFD. */
7236 map->count = section_count;
7237 *pointer_to_map = map;
7238 pointer_to_map = &map->next;
7239
7240 if (p_paddr_valid
7241 && !bed->want_p_paddr_set_to_zero)
7242 {
7243 bfd_vma hdr_size = 0;
7244 if (map->includes_filehdr)
7245 hdr_size = iehdr->e_ehsize;
7246 if (map->includes_phdrs)
7247 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7248
7249 /* Account for padding before the first section in the
7250 segment. */
7251 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7252 - matching_lma->lma);
7253 }
7254
7255 free (sections);
7256 continue;
7257 }
7258 else
7259 {
7260 /* Change the current segment's physical address to match
7261 the LMA of the first section that fitted, or if no
7262 section fitted, the first section. */
7263 if (matching_lma == NULL)
7264 matching_lma = suggested_lma;
7265
7266 map->p_paddr = matching_lma->lma * opb;
7267
7268 /* Offset the segment physical address from the lma
7269 to allow for space taken up by elf headers. */
7270 if (map->includes_phdrs)
7271 {
7272 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7273
7274 /* iehdr->e_phnum is just an estimate of the number
7275 of program headers that we will need. Make a note
7276 here of the number we used and the segment we chose
7277 to hold these headers, so that we can adjust the
7278 offset when we know the correct value. */
7279 phdr_adjust_num = iehdr->e_phnum;
7280 phdr_adjust_seg = map;
7281 }
7282
7283 if (map->includes_filehdr)
7284 {
7285 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7286 map->p_paddr -= iehdr->e_ehsize;
7287 /* We've subtracted off the size of headers from the
7288 first section lma, but there may have been some
7289 alignment padding before that section too. Try to
7290 account for that by adjusting the segment lma down to
7291 the same alignment. */
7292 if (segment->p_align != 0 && segment->p_align < align)
7293 align = segment->p_align;
7294 map->p_paddr &= -(align * opb);
7295 }
7296 }
7297
7298 /* Step Three: Loop over the sections again, this time assigning
7299 those that fit to the current segment and removing them from the
7300 sections array; but making sure not to leave large gaps. Once all
7301 possible sections have been assigned to the current segment it is
7302 added to the list of built segments and if sections still remain
7303 to be assigned, a new segment is constructed before repeating
7304 the loop. */
7305 isec = 0;
7306 do
7307 {
7308 map->count = 0;
7309 suggested_lma = NULL;
7310
7311 /* Fill the current segment with sections that fit. */
7312 for (j = 0; j < section_count; j++)
7313 {
7314 section = sections[j];
7315
7316 if (section == NULL)
7317 continue;
7318
7319 output_section = section->output_section;
7320
7321 BFD_ASSERT (output_section != NULL);
7322
7323 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7324 opb)
7325 || IS_COREFILE_NOTE (segment, section))
7326 {
7327 if (map->count == 0)
7328 {
7329 /* If the first section in a segment does not start at
7330 the beginning of the segment, then something is
7331 wrong. */
7332 if (align_power (map->p_paddr
7333 + (map->includes_filehdr
7334 ? iehdr->e_ehsize : 0)
7335 + (map->includes_phdrs
7336 ? iehdr->e_phnum * iehdr->e_phentsize
7337 : 0),
7338 output_section->alignment_power * opb)
7339 != output_section->lma * opb)
7340 goto sorry;
7341 }
7342 else
7343 {
7344 asection *prev_sec;
7345
7346 prev_sec = map->sections[map->count - 1];
7347
7348 /* If the gap between the end of the previous section
7349 and the start of this section is more than
7350 maxpagesize then we need to start a new segment. */
7351 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7352 maxpagesize)
7353 < BFD_ALIGN (output_section->lma, maxpagesize))
7354 || (prev_sec->lma + prev_sec->size
7355 > output_section->lma))
7356 {
7357 if (suggested_lma == NULL)
7358 suggested_lma = output_section;
7359
7360 continue;
7361 }
7362 }
7363
7364 map->sections[map->count++] = output_section;
7365 ++isec;
7366 sections[j] = NULL;
7367 if (segment->p_type == PT_LOAD)
7368 section->segment_mark = TRUE;
7369 }
7370 else if (suggested_lma == NULL)
7371 suggested_lma = output_section;
7372 }
7373
7374 /* PR 23932. A corrupt input file may contain sections that cannot
7375 be assigned to any segment - because for example they have a
7376 negative size - or segments that do not contain any sections.
7377 But there are also valid reasons why a segment can be empty.
7378 So allow a count of zero. */
7379
7380 /* Add the current segment to the list of built segments. */
7381 *pointer_to_map = map;
7382 pointer_to_map = &map->next;
7383
7384 if (isec < section_count)
7385 {
7386 /* We still have not allocated all of the sections to
7387 segments. Create a new segment here, initialise it
7388 and carry on looping. */
7389 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7390 amt += section_count * sizeof (asection *);
7391 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7392 if (map == NULL)
7393 {
7394 free (sections);
7395 return FALSE;
7396 }
7397
7398 /* Initialise the fields of the segment map. Set the physical
7399 physical address to the LMA of the first section that has
7400 not yet been assigned. */
7401 map->next = NULL;
7402 map->p_type = segment->p_type;
7403 map->p_flags = segment->p_flags;
7404 map->p_flags_valid = 1;
7405 map->p_paddr = suggested_lma->lma * opb;
7406 map->p_paddr_valid = p_paddr_valid;
7407 map->includes_filehdr = 0;
7408 map->includes_phdrs = 0;
7409 }
7410
7411 continue;
7412 sorry:
7413 bfd_set_error (bfd_error_sorry);
7414 free (sections);
7415 return FALSE;
7416 }
7417 while (isec < section_count);
7418
7419 free (sections);
7420 }
7421
7422 elf_seg_map (obfd) = map_first;
7423
7424 /* If we had to estimate the number of program headers that were
7425 going to be needed, then check our estimate now and adjust
7426 the offset if necessary. */
7427 if (phdr_adjust_seg != NULL)
7428 {
7429 unsigned int count;
7430
7431 for (count = 0, map = map_first; map != NULL; map = map->next)
7432 count++;
7433
7434 if (count > phdr_adjust_num)
7435 phdr_adjust_seg->p_paddr
7436 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7437
7438 for (map = map_first; map != NULL; map = map->next)
7439 if (map->p_type == PT_PHDR)
7440 {
7441 bfd_vma adjust
7442 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7443 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7444 break;
7445 }
7446 }
7447
7448 #undef SEGMENT_END
7449 #undef SECTION_SIZE
7450 #undef IS_CONTAINED_BY_VMA
7451 #undef IS_CONTAINED_BY_LMA
7452 #undef IS_NOTE
7453 #undef IS_COREFILE_NOTE
7454 #undef IS_SOLARIS_PT_INTERP
7455 #undef IS_SECTION_IN_INPUT_SEGMENT
7456 #undef INCLUDE_SECTION_IN_SEGMENT
7457 #undef SEGMENT_AFTER_SEGMENT
7458 #undef SEGMENT_OVERLAPS
7459 return TRUE;
7460 }
7461
7462 /* Copy ELF program header information. */
7463
7464 static bfd_boolean
7465 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7466 {
7467 Elf_Internal_Ehdr *iehdr;
7468 struct elf_segment_map *map;
7469 struct elf_segment_map *map_first;
7470 struct elf_segment_map **pointer_to_map;
7471 Elf_Internal_Phdr *segment;
7472 unsigned int i;
7473 unsigned int num_segments;
7474 bfd_boolean phdr_included = FALSE;
7475 bfd_boolean p_paddr_valid;
7476 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7477
7478 iehdr = elf_elfheader (ibfd);
7479
7480 map_first = NULL;
7481 pointer_to_map = &map_first;
7482
7483 /* If all the segment p_paddr fields are zero, don't set
7484 map->p_paddr_valid. */
7485 p_paddr_valid = FALSE;
7486 num_segments = elf_elfheader (ibfd)->e_phnum;
7487 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7488 i < num_segments;
7489 i++, segment++)
7490 if (segment->p_paddr != 0)
7491 {
7492 p_paddr_valid = TRUE;
7493 break;
7494 }
7495
7496 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7497 i < num_segments;
7498 i++, segment++)
7499 {
7500 asection *section;
7501 unsigned int section_count;
7502 size_t amt;
7503 Elf_Internal_Shdr *this_hdr;
7504 asection *first_section = NULL;
7505 asection *lowest_section;
7506
7507 /* Compute how many sections are in this segment. */
7508 for (section = ibfd->sections, section_count = 0;
7509 section != NULL;
7510 section = section->next)
7511 {
7512 this_hdr = &(elf_section_data(section)->this_hdr);
7513 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7514 {
7515 if (first_section == NULL)
7516 first_section = section;
7517 section_count++;
7518 }
7519 }
7520
7521 /* Allocate a segment map big enough to contain
7522 all of the sections we have selected. */
7523 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7524 amt += section_count * sizeof (asection *);
7525 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7526 if (map == NULL)
7527 return FALSE;
7528
7529 /* Initialize the fields of the output segment map with the
7530 input segment. */
7531 map->next = NULL;
7532 map->p_type = segment->p_type;
7533 map->p_flags = segment->p_flags;
7534 map->p_flags_valid = 1;
7535 map->p_paddr = segment->p_paddr;
7536 map->p_paddr_valid = p_paddr_valid;
7537 map->p_align = segment->p_align;
7538 map->p_align_valid = 1;
7539 map->p_vaddr_offset = 0;
7540
7541 if (map->p_type == PT_GNU_RELRO
7542 || map->p_type == PT_GNU_STACK)
7543 {
7544 /* The PT_GNU_RELRO segment may contain the first a few
7545 bytes in the .got.plt section even if the whole .got.plt
7546 section isn't in the PT_GNU_RELRO segment. We won't
7547 change the size of the PT_GNU_RELRO segment.
7548 Similarly, PT_GNU_STACK size is significant on uclinux
7549 systems. */
7550 map->p_size = segment->p_memsz;
7551 map->p_size_valid = 1;
7552 }
7553
7554 /* Determine if this segment contains the ELF file header
7555 and if it contains the program headers themselves. */
7556 map->includes_filehdr = (segment->p_offset == 0
7557 && segment->p_filesz >= iehdr->e_ehsize);
7558
7559 map->includes_phdrs = 0;
7560 if (! phdr_included || segment->p_type != PT_LOAD)
7561 {
7562 map->includes_phdrs =
7563 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7564 && (segment->p_offset + segment->p_filesz
7565 >= ((bfd_vma) iehdr->e_phoff
7566 + iehdr->e_phnum * iehdr->e_phentsize)));
7567
7568 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7569 phdr_included = TRUE;
7570 }
7571
7572 lowest_section = NULL;
7573 if (section_count != 0)
7574 {
7575 unsigned int isec = 0;
7576
7577 for (section = first_section;
7578 section != NULL;
7579 section = section->next)
7580 {
7581 this_hdr = &(elf_section_data(section)->this_hdr);
7582 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7583 {
7584 map->sections[isec++] = section->output_section;
7585 if ((section->flags & SEC_ALLOC) != 0)
7586 {
7587 bfd_vma seg_off;
7588
7589 if (lowest_section == NULL
7590 || section->lma < lowest_section->lma)
7591 lowest_section = section;
7592
7593 /* Section lmas are set up from PT_LOAD header
7594 p_paddr in _bfd_elf_make_section_from_shdr.
7595 If this header has a p_paddr that disagrees
7596 with the section lma, flag the p_paddr as
7597 invalid. */
7598 if ((section->flags & SEC_LOAD) != 0)
7599 seg_off = this_hdr->sh_offset - segment->p_offset;
7600 else
7601 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7602 if (section->lma * opb - segment->p_paddr != seg_off)
7603 map->p_paddr_valid = FALSE;
7604 }
7605 if (isec == section_count)
7606 break;
7607 }
7608 }
7609 }
7610
7611 if (section_count == 0)
7612 map->p_vaddr_offset = segment->p_vaddr / opb;
7613 else if (map->p_paddr_valid)
7614 {
7615 /* Account for padding before the first section in the segment. */
7616 bfd_vma hdr_size = 0;
7617 if (map->includes_filehdr)
7618 hdr_size = iehdr->e_ehsize;
7619 if (map->includes_phdrs)
7620 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7621
7622 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7623 - (lowest_section ? lowest_section->lma : 0));
7624 }
7625
7626 map->count = section_count;
7627 *pointer_to_map = map;
7628 pointer_to_map = &map->next;
7629 }
7630
7631 elf_seg_map (obfd) = map_first;
7632 return TRUE;
7633 }
7634
7635 /* Copy private BFD data. This copies or rewrites ELF program header
7636 information. */
7637
7638 static bfd_boolean
7639 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7640 {
7641 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7642 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7643 return TRUE;
7644
7645 if (elf_tdata (ibfd)->phdr == NULL)
7646 return TRUE;
7647
7648 if (ibfd->xvec == obfd->xvec)
7649 {
7650 /* Check to see if any sections in the input BFD
7651 covered by ELF program header have changed. */
7652 Elf_Internal_Phdr *segment;
7653 asection *section, *osec;
7654 unsigned int i, num_segments;
7655 Elf_Internal_Shdr *this_hdr;
7656 const struct elf_backend_data *bed;
7657
7658 bed = get_elf_backend_data (ibfd);
7659
7660 /* Regenerate the segment map if p_paddr is set to 0. */
7661 if (bed->want_p_paddr_set_to_zero)
7662 goto rewrite;
7663
7664 /* Initialize the segment mark field. */
7665 for (section = obfd->sections; section != NULL;
7666 section = section->next)
7667 section->segment_mark = FALSE;
7668
7669 num_segments = elf_elfheader (ibfd)->e_phnum;
7670 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7671 i < num_segments;
7672 i++, segment++)
7673 {
7674 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7675 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7676 which severly confuses things, so always regenerate the segment
7677 map in this case. */
7678 if (segment->p_paddr == 0
7679 && segment->p_memsz == 0
7680 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7681 goto rewrite;
7682
7683 for (section = ibfd->sections;
7684 section != NULL; section = section->next)
7685 {
7686 /* We mark the output section so that we know it comes
7687 from the input BFD. */
7688 osec = section->output_section;
7689 if (osec)
7690 osec->segment_mark = TRUE;
7691
7692 /* Check if this section is covered by the segment. */
7693 this_hdr = &(elf_section_data(section)->this_hdr);
7694 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7695 {
7696 /* FIXME: Check if its output section is changed or
7697 removed. What else do we need to check? */
7698 if (osec == NULL
7699 || section->flags != osec->flags
7700 || section->lma != osec->lma
7701 || section->vma != osec->vma
7702 || section->size != osec->size
7703 || section->rawsize != osec->rawsize
7704 || section->alignment_power != osec->alignment_power)
7705 goto rewrite;
7706 }
7707 }
7708 }
7709
7710 /* Check to see if any output section do not come from the
7711 input BFD. */
7712 for (section = obfd->sections; section != NULL;
7713 section = section->next)
7714 {
7715 if (!section->segment_mark)
7716 goto rewrite;
7717 else
7718 section->segment_mark = FALSE;
7719 }
7720
7721 return copy_elf_program_header (ibfd, obfd);
7722 }
7723
7724 rewrite:
7725 if (ibfd->xvec == obfd->xvec)
7726 {
7727 /* When rewriting program header, set the output maxpagesize to
7728 the maximum alignment of input PT_LOAD segments. */
7729 Elf_Internal_Phdr *segment;
7730 unsigned int i;
7731 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7732 bfd_vma maxpagesize = 0;
7733
7734 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7735 i < num_segments;
7736 i++, segment++)
7737 if (segment->p_type == PT_LOAD
7738 && maxpagesize < segment->p_align)
7739 {
7740 /* PR 17512: file: f17299af. */
7741 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7742 /* xgettext:c-format */
7743 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7744 PRIx64 " is too large"),
7745 ibfd, (uint64_t) segment->p_align);
7746 else
7747 maxpagesize = segment->p_align;
7748 }
7749
7750 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7751 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7752 }
7753
7754 return rewrite_elf_program_header (ibfd, obfd);
7755 }
7756
7757 /* Initialize private output section information from input section. */
7758
7759 bfd_boolean
7760 _bfd_elf_init_private_section_data (bfd *ibfd,
7761 asection *isec,
7762 bfd *obfd,
7763 asection *osec,
7764 struct bfd_link_info *link_info)
7765
7766 {
7767 Elf_Internal_Shdr *ihdr, *ohdr;
7768 bfd_boolean final_link = (link_info != NULL
7769 && !bfd_link_relocatable (link_info));
7770
7771 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7772 || obfd->xvec->flavour != bfd_target_elf_flavour)
7773 return TRUE;
7774
7775 BFD_ASSERT (elf_section_data (osec) != NULL);
7776
7777 /* If this is a known ABI section, ELF section type and flags may
7778 have been set up when OSEC was created. For normal sections we
7779 allow the user to override the type and flags other than
7780 SHF_MASKOS and SHF_MASKPROC. */
7781 if (elf_section_type (osec) == SHT_PROGBITS
7782 || elf_section_type (osec) == SHT_NOTE
7783 || elf_section_type (osec) == SHT_NOBITS)
7784 elf_section_type (osec) = SHT_NULL;
7785 /* For objcopy and relocatable link, copy the ELF section type from
7786 the input file if the BFD section flags are the same. (If they
7787 are different the user may be doing something like
7788 "objcopy --set-section-flags .text=alloc,data".) For a final
7789 link allow some flags that the linker clears to differ. */
7790 if (elf_section_type (osec) == SHT_NULL
7791 && (osec->flags == isec->flags
7792 || (final_link
7793 && ((osec->flags ^ isec->flags)
7794 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7795 elf_section_type (osec) = elf_section_type (isec);
7796
7797 /* FIXME: Is this correct for all OS/PROC specific flags? */
7798 elf_section_flags (osec) = (elf_section_flags (isec)
7799 & (SHF_MASKOS | SHF_MASKPROC));
7800
7801 /* Copy sh_info from input for mbind section. */
7802 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7803 && elf_section_flags (isec) & SHF_GNU_MBIND)
7804 elf_section_data (osec)->this_hdr.sh_info
7805 = elf_section_data (isec)->this_hdr.sh_info;
7806
7807 /* Set things up for objcopy and relocatable link. The output
7808 SHT_GROUP section will have its elf_next_in_group pointing back
7809 to the input group members. Ignore linker created group section.
7810 See elfNN_ia64_object_p in elfxx-ia64.c. */
7811 if ((link_info == NULL
7812 || !link_info->resolve_section_groups)
7813 && (elf_sec_group (isec) == NULL
7814 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7815 {
7816 if (elf_section_flags (isec) & SHF_GROUP)
7817 elf_section_flags (osec) |= SHF_GROUP;
7818 elf_next_in_group (osec) = elf_next_in_group (isec);
7819 elf_section_data (osec)->group = elf_section_data (isec)->group;
7820 }
7821
7822 /* If not decompress, preserve SHF_COMPRESSED. */
7823 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7824 elf_section_flags (osec) |= (elf_section_flags (isec)
7825 & SHF_COMPRESSED);
7826
7827 ihdr = &elf_section_data (isec)->this_hdr;
7828
7829 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7830 don't use the output section of the linked-to section since it
7831 may be NULL at this point. */
7832 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7833 {
7834 ohdr = &elf_section_data (osec)->this_hdr;
7835 ohdr->sh_flags |= SHF_LINK_ORDER;
7836 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7837 }
7838
7839 osec->use_rela_p = isec->use_rela_p;
7840
7841 return TRUE;
7842 }
7843
7844 /* Copy private section information. This copies over the entsize
7845 field, and sometimes the info field. */
7846
7847 bfd_boolean
7848 _bfd_elf_copy_private_section_data (bfd *ibfd,
7849 asection *isec,
7850 bfd *obfd,
7851 asection *osec)
7852 {
7853 Elf_Internal_Shdr *ihdr, *ohdr;
7854
7855 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7856 || obfd->xvec->flavour != bfd_target_elf_flavour)
7857 return TRUE;
7858
7859 ihdr = &elf_section_data (isec)->this_hdr;
7860 ohdr = &elf_section_data (osec)->this_hdr;
7861
7862 ohdr->sh_entsize = ihdr->sh_entsize;
7863
7864 if (ihdr->sh_type == SHT_SYMTAB
7865 || ihdr->sh_type == SHT_DYNSYM
7866 || ihdr->sh_type == SHT_GNU_verneed
7867 || ihdr->sh_type == SHT_GNU_verdef)
7868 ohdr->sh_info = ihdr->sh_info;
7869
7870 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7871 NULL);
7872 }
7873
7874 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7875 necessary if we are removing either the SHT_GROUP section or any of
7876 the group member sections. DISCARDED is the value that a section's
7877 output_section has if the section will be discarded, NULL when this
7878 function is called from objcopy, bfd_abs_section_ptr when called
7879 from the linker. */
7880
7881 bfd_boolean
7882 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7883 {
7884 asection *isec;
7885
7886 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7887 if (elf_section_type (isec) == SHT_GROUP)
7888 {
7889 asection *first = elf_next_in_group (isec);
7890 asection *s = first;
7891 bfd_size_type removed = 0;
7892
7893 while (s != NULL)
7894 {
7895 /* If this member section is being output but the
7896 SHT_GROUP section is not, then clear the group info
7897 set up by _bfd_elf_copy_private_section_data. */
7898 if (s->output_section != discarded
7899 && isec->output_section == discarded)
7900 {
7901 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7902 elf_group_name (s->output_section) = NULL;
7903 }
7904 else
7905 {
7906 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7907 if (s->output_section == discarded
7908 && isec->output_section != discarded)
7909 {
7910 /* Conversely, if the member section is not being
7911 output but the SHT_GROUP section is, then adjust
7912 its size. */
7913 removed += 4;
7914 if (elf_sec->rel.hdr != NULL
7915 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7916 removed += 4;
7917 if (elf_sec->rela.hdr != NULL
7918 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7919 removed += 4;
7920 }
7921 else
7922 {
7923 /* Also adjust for zero-sized relocation member
7924 section. */
7925 if (elf_sec->rel.hdr != NULL
7926 && elf_sec->rel.hdr->sh_size == 0)
7927 removed += 4;
7928 if (elf_sec->rela.hdr != NULL
7929 && elf_sec->rela.hdr->sh_size == 0)
7930 removed += 4;
7931 }
7932 }
7933 s = elf_next_in_group (s);
7934 if (s == first)
7935 break;
7936 }
7937 if (removed != 0)
7938 {
7939 if (discarded != NULL)
7940 {
7941 /* If we've been called for ld -r, then we need to
7942 adjust the input section size. */
7943 if (isec->rawsize == 0)
7944 isec->rawsize = isec->size;
7945 isec->size = isec->rawsize - removed;
7946 if (isec->size <= 4)
7947 {
7948 isec->size = 0;
7949 isec->flags |= SEC_EXCLUDE;
7950 }
7951 }
7952 else
7953 {
7954 /* Adjust the output section size when called from
7955 objcopy. */
7956 isec->output_section->size -= removed;
7957 if (isec->output_section->size <= 4)
7958 {
7959 isec->output_section->size = 0;
7960 isec->output_section->flags |= SEC_EXCLUDE;
7961 }
7962 }
7963 }
7964 }
7965
7966 return TRUE;
7967 }
7968
7969 /* Copy private header information. */
7970
7971 bfd_boolean
7972 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7973 {
7974 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7975 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7976 return TRUE;
7977
7978 /* Copy over private BFD data if it has not already been copied.
7979 This must be done here, rather than in the copy_private_bfd_data
7980 entry point, because the latter is called after the section
7981 contents have been set, which means that the program headers have
7982 already been worked out. */
7983 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7984 {
7985 if (! copy_private_bfd_data (ibfd, obfd))
7986 return FALSE;
7987 }
7988
7989 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7990 }
7991
7992 /* Copy private symbol information. If this symbol is in a section
7993 which we did not map into a BFD section, try to map the section
7994 index correctly. We use special macro definitions for the mapped
7995 section indices; these definitions are interpreted by the
7996 swap_out_syms function. */
7997
7998 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7999 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8000 #define MAP_STRTAB (SHN_HIOS + 3)
8001 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8002 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8003
8004 bfd_boolean
8005 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8006 asymbol *isymarg,
8007 bfd *obfd,
8008 asymbol *osymarg)
8009 {
8010 elf_symbol_type *isym, *osym;
8011
8012 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8013 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8014 return TRUE;
8015
8016 isym = elf_symbol_from (isymarg);
8017 osym = elf_symbol_from (osymarg);
8018
8019 if (isym != NULL
8020 && isym->internal_elf_sym.st_shndx != 0
8021 && osym != NULL
8022 && bfd_is_abs_section (isym->symbol.section))
8023 {
8024 unsigned int shndx;
8025
8026 shndx = isym->internal_elf_sym.st_shndx;
8027 if (shndx == elf_onesymtab (ibfd))
8028 shndx = MAP_ONESYMTAB;
8029 else if (shndx == elf_dynsymtab (ibfd))
8030 shndx = MAP_DYNSYMTAB;
8031 else if (shndx == elf_strtab_sec (ibfd))
8032 shndx = MAP_STRTAB;
8033 else if (shndx == elf_shstrtab_sec (ibfd))
8034 shndx = MAP_SHSTRTAB;
8035 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8036 shndx = MAP_SYM_SHNDX;
8037 osym->internal_elf_sym.st_shndx = shndx;
8038 }
8039
8040 return TRUE;
8041 }
8042
8043 /* Swap out the symbols. */
8044
8045 static bfd_boolean
8046 swap_out_syms (bfd *abfd,
8047 struct elf_strtab_hash **sttp,
8048 int relocatable_p)
8049 {
8050 const struct elf_backend_data *bed;
8051 unsigned int symcount;
8052 asymbol **syms;
8053 struct elf_strtab_hash *stt;
8054 Elf_Internal_Shdr *symtab_hdr;
8055 Elf_Internal_Shdr *symtab_shndx_hdr;
8056 Elf_Internal_Shdr *symstrtab_hdr;
8057 struct elf_sym_strtab *symstrtab;
8058 bfd_byte *outbound_syms;
8059 bfd_byte *outbound_shndx;
8060 unsigned long outbound_syms_index;
8061 unsigned long outbound_shndx_index;
8062 unsigned int idx;
8063 unsigned int num_locals;
8064 size_t amt;
8065 bfd_boolean name_local_sections;
8066
8067 if (!elf_map_symbols (abfd, &num_locals))
8068 return FALSE;
8069
8070 /* Dump out the symtabs. */
8071 stt = _bfd_elf_strtab_init ();
8072 if (stt == NULL)
8073 return FALSE;
8074
8075 bed = get_elf_backend_data (abfd);
8076 symcount = bfd_get_symcount (abfd);
8077 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8078 symtab_hdr->sh_type = SHT_SYMTAB;
8079 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8080 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8081 symtab_hdr->sh_info = num_locals + 1;
8082 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8083
8084 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8085 symstrtab_hdr->sh_type = SHT_STRTAB;
8086
8087 /* Allocate buffer to swap out the .strtab section. */
8088 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8089 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8090 {
8091 bfd_set_error (bfd_error_no_memory);
8092 _bfd_elf_strtab_free (stt);
8093 return FALSE;
8094 }
8095
8096 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8097 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8098 {
8099 error_no_mem:
8100 bfd_set_error (bfd_error_no_memory);
8101 error_return:
8102 free (symstrtab);
8103 _bfd_elf_strtab_free (stt);
8104 return FALSE;
8105 }
8106 symtab_hdr->contents = outbound_syms;
8107 outbound_syms_index = 0;
8108
8109 outbound_shndx = NULL;
8110 outbound_shndx_index = 0;
8111
8112 if (elf_symtab_shndx_list (abfd))
8113 {
8114 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8115 if (symtab_shndx_hdr->sh_name != 0)
8116 {
8117 if (_bfd_mul_overflow (symcount + 1,
8118 sizeof (Elf_External_Sym_Shndx), &amt))
8119 goto error_no_mem;
8120 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8121 if (outbound_shndx == NULL)
8122 goto error_return;
8123
8124 symtab_shndx_hdr->contents = outbound_shndx;
8125 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8126 symtab_shndx_hdr->sh_size = amt;
8127 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8128 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8129 }
8130 /* FIXME: What about any other headers in the list ? */
8131 }
8132
8133 /* Now generate the data (for "contents"). */
8134 {
8135 /* Fill in zeroth symbol and swap it out. */
8136 Elf_Internal_Sym sym;
8137 sym.st_name = 0;
8138 sym.st_value = 0;
8139 sym.st_size = 0;
8140 sym.st_info = 0;
8141 sym.st_other = 0;
8142 sym.st_shndx = SHN_UNDEF;
8143 sym.st_target_internal = 0;
8144 symstrtab[0].sym = sym;
8145 symstrtab[0].dest_index = outbound_syms_index;
8146 symstrtab[0].destshndx_index = outbound_shndx_index;
8147 outbound_syms_index++;
8148 if (outbound_shndx != NULL)
8149 outbound_shndx_index++;
8150 }
8151
8152 name_local_sections
8153 = (bed->elf_backend_name_local_section_symbols
8154 && bed->elf_backend_name_local_section_symbols (abfd));
8155
8156 syms = bfd_get_outsymbols (abfd);
8157 for (idx = 0; idx < symcount;)
8158 {
8159 Elf_Internal_Sym sym;
8160 bfd_vma value = syms[idx]->value;
8161 elf_symbol_type *type_ptr;
8162 flagword flags = syms[idx]->flags;
8163 int type;
8164
8165 if (!name_local_sections
8166 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8167 {
8168 /* Local section symbols have no name. */
8169 sym.st_name = (unsigned long) -1;
8170 }
8171 else
8172 {
8173 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8174 to get the final offset for st_name. */
8175 sym.st_name
8176 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8177 FALSE);
8178 if (sym.st_name == (unsigned long) -1)
8179 goto error_return;
8180 }
8181
8182 type_ptr = elf_symbol_from (syms[idx]);
8183
8184 if ((flags & BSF_SECTION_SYM) == 0
8185 && bfd_is_com_section (syms[idx]->section))
8186 {
8187 /* ELF common symbols put the alignment into the `value' field,
8188 and the size into the `size' field. This is backwards from
8189 how BFD handles it, so reverse it here. */
8190 sym.st_size = value;
8191 if (type_ptr == NULL
8192 || type_ptr->internal_elf_sym.st_value == 0)
8193 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8194 else
8195 sym.st_value = type_ptr->internal_elf_sym.st_value;
8196 sym.st_shndx = _bfd_elf_section_from_bfd_section
8197 (abfd, syms[idx]->section);
8198 }
8199 else
8200 {
8201 asection *sec = syms[idx]->section;
8202 unsigned int shndx;
8203
8204 if (sec->output_section)
8205 {
8206 value += sec->output_offset;
8207 sec = sec->output_section;
8208 }
8209
8210 /* Don't add in the section vma for relocatable output. */
8211 if (! relocatable_p)
8212 value += sec->vma;
8213 sym.st_value = value;
8214 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8215
8216 if (bfd_is_abs_section (sec)
8217 && type_ptr != NULL
8218 && type_ptr->internal_elf_sym.st_shndx != 0)
8219 {
8220 /* This symbol is in a real ELF section which we did
8221 not create as a BFD section. Undo the mapping done
8222 by copy_private_symbol_data. */
8223 shndx = type_ptr->internal_elf_sym.st_shndx;
8224 switch (shndx)
8225 {
8226 case MAP_ONESYMTAB:
8227 shndx = elf_onesymtab (abfd);
8228 break;
8229 case MAP_DYNSYMTAB:
8230 shndx = elf_dynsymtab (abfd);
8231 break;
8232 case MAP_STRTAB:
8233 shndx = elf_strtab_sec (abfd);
8234 break;
8235 case MAP_SHSTRTAB:
8236 shndx = elf_shstrtab_sec (abfd);
8237 break;
8238 case MAP_SYM_SHNDX:
8239 if (elf_symtab_shndx_list (abfd))
8240 shndx = elf_symtab_shndx_list (abfd)->ndx;
8241 break;
8242 case SHN_COMMON:
8243 case SHN_ABS:
8244 shndx = SHN_ABS;
8245 break;
8246 default:
8247 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8248 {
8249 if (bed->symbol_section_index)
8250 shndx = bed->symbol_section_index (abfd, type_ptr);
8251 /* Otherwise just leave the index alone. */
8252 }
8253 else
8254 {
8255 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8256 _bfd_error_handler (_("%pB: \
8257 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8258 abfd, shndx);
8259 shndx = SHN_ABS;
8260 }
8261 break;
8262 }
8263 }
8264 else
8265 {
8266 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8267
8268 if (shndx == SHN_BAD)
8269 {
8270 asection *sec2;
8271
8272 /* Writing this would be a hell of a lot easier if
8273 we had some decent documentation on bfd, and
8274 knew what to expect of the library, and what to
8275 demand of applications. For example, it
8276 appears that `objcopy' might not set the
8277 section of a symbol to be a section that is
8278 actually in the output file. */
8279 sec2 = bfd_get_section_by_name (abfd, sec->name);
8280 if (sec2 != NULL)
8281 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8282 if (shndx == SHN_BAD)
8283 {
8284 /* xgettext:c-format */
8285 _bfd_error_handler
8286 (_("unable to find equivalent output section"
8287 " for symbol '%s' from section '%s'"),
8288 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8289 sec->name);
8290 bfd_set_error (bfd_error_invalid_operation);
8291 goto error_return;
8292 }
8293 }
8294 }
8295
8296 sym.st_shndx = shndx;
8297 }
8298
8299 if ((flags & BSF_THREAD_LOCAL) != 0)
8300 type = STT_TLS;
8301 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8302 type = STT_GNU_IFUNC;
8303 else if ((flags & BSF_FUNCTION) != 0)
8304 type = STT_FUNC;
8305 else if ((flags & BSF_OBJECT) != 0)
8306 type = STT_OBJECT;
8307 else if ((flags & BSF_RELC) != 0)
8308 type = STT_RELC;
8309 else if ((flags & BSF_SRELC) != 0)
8310 type = STT_SRELC;
8311 else
8312 type = STT_NOTYPE;
8313
8314 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8315 type = STT_TLS;
8316
8317 /* Processor-specific types. */
8318 if (type_ptr != NULL
8319 && bed->elf_backend_get_symbol_type)
8320 type = ((*bed->elf_backend_get_symbol_type)
8321 (&type_ptr->internal_elf_sym, type));
8322
8323 if (flags & BSF_SECTION_SYM)
8324 {
8325 if (flags & BSF_GLOBAL)
8326 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8327 else
8328 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8329 }
8330 else if (bfd_is_com_section (syms[idx]->section))
8331 {
8332 if (type != STT_TLS)
8333 {
8334 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8335 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8336 ? STT_COMMON : STT_OBJECT);
8337 else
8338 type = ((flags & BSF_ELF_COMMON) != 0
8339 ? STT_COMMON : STT_OBJECT);
8340 }
8341 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8342 }
8343 else if (bfd_is_und_section (syms[idx]->section))
8344 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8345 ? STB_WEAK
8346 : STB_GLOBAL),
8347 type);
8348 else if (flags & BSF_FILE)
8349 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8350 else
8351 {
8352 int bind = STB_LOCAL;
8353
8354 if (flags & BSF_LOCAL)
8355 bind = STB_LOCAL;
8356 else if (flags & BSF_GNU_UNIQUE)
8357 bind = STB_GNU_UNIQUE;
8358 else if (flags & BSF_WEAK)
8359 bind = STB_WEAK;
8360 else if (flags & BSF_GLOBAL)
8361 bind = STB_GLOBAL;
8362
8363 sym.st_info = ELF_ST_INFO (bind, type);
8364 }
8365
8366 if (type_ptr != NULL)
8367 {
8368 sym.st_other = type_ptr->internal_elf_sym.st_other;
8369 sym.st_target_internal
8370 = type_ptr->internal_elf_sym.st_target_internal;
8371 }
8372 else
8373 {
8374 sym.st_other = 0;
8375 sym.st_target_internal = 0;
8376 }
8377
8378 idx++;
8379 symstrtab[idx].sym = sym;
8380 symstrtab[idx].dest_index = outbound_syms_index;
8381 symstrtab[idx].destshndx_index = outbound_shndx_index;
8382
8383 outbound_syms_index++;
8384 if (outbound_shndx != NULL)
8385 outbound_shndx_index++;
8386 }
8387
8388 /* Finalize the .strtab section. */
8389 _bfd_elf_strtab_finalize (stt);
8390
8391 /* Swap out the .strtab section. */
8392 for (idx = 0; idx <= symcount; idx++)
8393 {
8394 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8395 if (elfsym->sym.st_name == (unsigned long) -1)
8396 elfsym->sym.st_name = 0;
8397 else
8398 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8399 elfsym->sym.st_name);
8400 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8401 (outbound_syms
8402 + (elfsym->dest_index
8403 * bed->s->sizeof_sym)),
8404 (outbound_shndx
8405 + (elfsym->destshndx_index
8406 * sizeof (Elf_External_Sym_Shndx))));
8407 }
8408 free (symstrtab);
8409
8410 *sttp = stt;
8411 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8412 symstrtab_hdr->sh_type = SHT_STRTAB;
8413 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8414 symstrtab_hdr->sh_addr = 0;
8415 symstrtab_hdr->sh_entsize = 0;
8416 symstrtab_hdr->sh_link = 0;
8417 symstrtab_hdr->sh_info = 0;
8418 symstrtab_hdr->sh_addralign = 1;
8419
8420 return TRUE;
8421 }
8422
8423 /* Return the number of bytes required to hold the symtab vector.
8424
8425 Note that we base it on the count plus 1, since we will null terminate
8426 the vector allocated based on this size. However, the ELF symbol table
8427 always has a dummy entry as symbol #0, so it ends up even. */
8428
8429 long
8430 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8431 {
8432 bfd_size_type symcount;
8433 long symtab_size;
8434 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8435
8436 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8437 if (symcount > LONG_MAX / sizeof (asymbol *))
8438 {
8439 bfd_set_error (bfd_error_file_too_big);
8440 return -1;
8441 }
8442 symtab_size = symcount * (sizeof (asymbol *));
8443 if (symcount == 0)
8444 symtab_size = sizeof (asymbol *);
8445 else if (!bfd_write_p (abfd))
8446 {
8447 ufile_ptr filesize = bfd_get_file_size (abfd);
8448
8449 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8450 {
8451 bfd_set_error (bfd_error_file_truncated);
8452 return -1;
8453 }
8454 }
8455
8456 return symtab_size;
8457 }
8458
8459 long
8460 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8461 {
8462 bfd_size_type symcount;
8463 long symtab_size;
8464 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8465
8466 if (elf_dynsymtab (abfd) == 0)
8467 {
8468 bfd_set_error (bfd_error_invalid_operation);
8469 return -1;
8470 }
8471
8472 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8473 if (symcount > LONG_MAX / sizeof (asymbol *))
8474 {
8475 bfd_set_error (bfd_error_file_too_big);
8476 return -1;
8477 }
8478 symtab_size = symcount * (sizeof (asymbol *));
8479 if (symcount == 0)
8480 symtab_size = sizeof (asymbol *);
8481 else if (!bfd_write_p (abfd))
8482 {
8483 ufile_ptr filesize = bfd_get_file_size (abfd);
8484
8485 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8486 {
8487 bfd_set_error (bfd_error_file_truncated);
8488 return -1;
8489 }
8490 }
8491
8492 return symtab_size;
8493 }
8494
8495 long
8496 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8497 {
8498 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8499 {
8500 /* Sanity check reloc section size. */
8501 struct bfd_elf_section_data *d = elf_section_data (asect);
8502 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8503 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8504 ufile_ptr filesize = bfd_get_file_size (abfd);
8505
8506 if (filesize != 0 && ext_rel_size > filesize)
8507 {
8508 bfd_set_error (bfd_error_file_truncated);
8509 return -1;
8510 }
8511 }
8512
8513 #if SIZEOF_LONG == SIZEOF_INT
8514 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8515 {
8516 bfd_set_error (bfd_error_file_too_big);
8517 return -1;
8518 }
8519 #endif
8520 return (asect->reloc_count + 1) * sizeof (arelent *);
8521 }
8522
8523 /* Canonicalize the relocs. */
8524
8525 long
8526 _bfd_elf_canonicalize_reloc (bfd *abfd,
8527 sec_ptr section,
8528 arelent **relptr,
8529 asymbol **symbols)
8530 {
8531 arelent *tblptr;
8532 unsigned int i;
8533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8534
8535 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8536 return -1;
8537
8538 tblptr = section->relocation;
8539 for (i = 0; i < section->reloc_count; i++)
8540 *relptr++ = tblptr++;
8541
8542 *relptr = NULL;
8543
8544 return section->reloc_count;
8545 }
8546
8547 long
8548 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8549 {
8550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8551 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8552
8553 if (symcount >= 0)
8554 abfd->symcount = symcount;
8555 return symcount;
8556 }
8557
8558 long
8559 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8560 asymbol **allocation)
8561 {
8562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8563 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8564
8565 if (symcount >= 0)
8566 abfd->dynsymcount = symcount;
8567 return symcount;
8568 }
8569
8570 /* Return the size required for the dynamic reloc entries. Any loadable
8571 section that was actually installed in the BFD, and has type SHT_REL
8572 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8573 dynamic reloc section. */
8574
8575 long
8576 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8577 {
8578 bfd_size_type count, ext_rel_size;
8579 asection *s;
8580
8581 if (elf_dynsymtab (abfd) == 0)
8582 {
8583 bfd_set_error (bfd_error_invalid_operation);
8584 return -1;
8585 }
8586
8587 count = 1;
8588 ext_rel_size = 0;
8589 for (s = abfd->sections; s != NULL; s = s->next)
8590 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8591 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8592 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8593 {
8594 ext_rel_size += s->size;
8595 if (ext_rel_size < s->size)
8596 {
8597 bfd_set_error (bfd_error_file_truncated);
8598 return -1;
8599 }
8600 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8601 if (count > LONG_MAX / sizeof (arelent *))
8602 {
8603 bfd_set_error (bfd_error_file_too_big);
8604 return -1;
8605 }
8606 }
8607 if (count > 1 && !bfd_write_p (abfd))
8608 {
8609 /* Sanity check reloc section sizes. */
8610 ufile_ptr filesize = bfd_get_file_size (abfd);
8611 if (filesize != 0 && ext_rel_size > filesize)
8612 {
8613 bfd_set_error (bfd_error_file_truncated);
8614 return -1;
8615 }
8616 }
8617 return count * sizeof (arelent *);
8618 }
8619
8620 /* Canonicalize the dynamic relocation entries. Note that we return the
8621 dynamic relocations as a single block, although they are actually
8622 associated with particular sections; the interface, which was
8623 designed for SunOS style shared libraries, expects that there is only
8624 one set of dynamic relocs. Any loadable section that was actually
8625 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8626 dynamic symbol table, is considered to be a dynamic reloc section. */
8627
8628 long
8629 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8630 arelent **storage,
8631 asymbol **syms)
8632 {
8633 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8634 asection *s;
8635 long ret;
8636
8637 if (elf_dynsymtab (abfd) == 0)
8638 {
8639 bfd_set_error (bfd_error_invalid_operation);
8640 return -1;
8641 }
8642
8643 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8644 ret = 0;
8645 for (s = abfd->sections; s != NULL; s = s->next)
8646 {
8647 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8648 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8649 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8650 {
8651 arelent *p;
8652 long count, i;
8653
8654 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8655 return -1;
8656 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8657 p = s->relocation;
8658 for (i = 0; i < count; i++)
8659 *storage++ = p++;
8660 ret += count;
8661 }
8662 }
8663
8664 *storage = NULL;
8665
8666 return ret;
8667 }
8668 \f
8669 /* Read in the version information. */
8670
8671 bfd_boolean
8672 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8673 {
8674 bfd_byte *contents = NULL;
8675 unsigned int freeidx = 0;
8676 size_t amt;
8677
8678 if (elf_dynverref (abfd) != 0)
8679 {
8680 Elf_Internal_Shdr *hdr;
8681 Elf_External_Verneed *everneed;
8682 Elf_Internal_Verneed *iverneed;
8683 unsigned int i;
8684 bfd_byte *contents_end;
8685
8686 hdr = &elf_tdata (abfd)->dynverref_hdr;
8687
8688 if (hdr->sh_info == 0
8689 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8690 {
8691 error_return_bad_verref:
8692 _bfd_error_handler
8693 (_("%pB: .gnu.version_r invalid entry"), abfd);
8694 bfd_set_error (bfd_error_bad_value);
8695 error_return_verref:
8696 elf_tdata (abfd)->verref = NULL;
8697 elf_tdata (abfd)->cverrefs = 0;
8698 goto error_return;
8699 }
8700
8701 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8702 goto error_return_verref;
8703 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8704 if (contents == NULL)
8705 goto error_return_verref;
8706
8707 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8708 {
8709 bfd_set_error (bfd_error_file_too_big);
8710 goto error_return_verref;
8711 }
8712 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8713 if (elf_tdata (abfd)->verref == NULL)
8714 goto error_return_verref;
8715
8716 BFD_ASSERT (sizeof (Elf_External_Verneed)
8717 == sizeof (Elf_External_Vernaux));
8718 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8719 everneed = (Elf_External_Verneed *) contents;
8720 iverneed = elf_tdata (abfd)->verref;
8721 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8722 {
8723 Elf_External_Vernaux *evernaux;
8724 Elf_Internal_Vernaux *ivernaux;
8725 unsigned int j;
8726
8727 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8728
8729 iverneed->vn_bfd = abfd;
8730
8731 iverneed->vn_filename =
8732 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8733 iverneed->vn_file);
8734 if (iverneed->vn_filename == NULL)
8735 goto error_return_bad_verref;
8736
8737 if (iverneed->vn_cnt == 0)
8738 iverneed->vn_auxptr = NULL;
8739 else
8740 {
8741 if (_bfd_mul_overflow (iverneed->vn_cnt,
8742 sizeof (Elf_Internal_Vernaux), &amt))
8743 {
8744 bfd_set_error (bfd_error_file_too_big);
8745 goto error_return_verref;
8746 }
8747 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8748 bfd_alloc (abfd, amt);
8749 if (iverneed->vn_auxptr == NULL)
8750 goto error_return_verref;
8751 }
8752
8753 if (iverneed->vn_aux
8754 > (size_t) (contents_end - (bfd_byte *) everneed))
8755 goto error_return_bad_verref;
8756
8757 evernaux = ((Elf_External_Vernaux *)
8758 ((bfd_byte *) everneed + iverneed->vn_aux));
8759 ivernaux = iverneed->vn_auxptr;
8760 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8761 {
8762 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8763
8764 ivernaux->vna_nodename =
8765 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8766 ivernaux->vna_name);
8767 if (ivernaux->vna_nodename == NULL)
8768 goto error_return_bad_verref;
8769
8770 if (ivernaux->vna_other > freeidx)
8771 freeidx = ivernaux->vna_other;
8772
8773 ivernaux->vna_nextptr = NULL;
8774 if (ivernaux->vna_next == 0)
8775 {
8776 iverneed->vn_cnt = j + 1;
8777 break;
8778 }
8779 if (j + 1 < iverneed->vn_cnt)
8780 ivernaux->vna_nextptr = ivernaux + 1;
8781
8782 if (ivernaux->vna_next
8783 > (size_t) (contents_end - (bfd_byte *) evernaux))
8784 goto error_return_bad_verref;
8785
8786 evernaux = ((Elf_External_Vernaux *)
8787 ((bfd_byte *) evernaux + ivernaux->vna_next));
8788 }
8789
8790 iverneed->vn_nextref = NULL;
8791 if (iverneed->vn_next == 0)
8792 break;
8793 if (i + 1 < hdr->sh_info)
8794 iverneed->vn_nextref = iverneed + 1;
8795
8796 if (iverneed->vn_next
8797 > (size_t) (contents_end - (bfd_byte *) everneed))
8798 goto error_return_bad_verref;
8799
8800 everneed = ((Elf_External_Verneed *)
8801 ((bfd_byte *) everneed + iverneed->vn_next));
8802 }
8803 elf_tdata (abfd)->cverrefs = i;
8804
8805 free (contents);
8806 contents = NULL;
8807 }
8808
8809 if (elf_dynverdef (abfd) != 0)
8810 {
8811 Elf_Internal_Shdr *hdr;
8812 Elf_External_Verdef *everdef;
8813 Elf_Internal_Verdef *iverdef;
8814 Elf_Internal_Verdef *iverdefarr;
8815 Elf_Internal_Verdef iverdefmem;
8816 unsigned int i;
8817 unsigned int maxidx;
8818 bfd_byte *contents_end_def, *contents_end_aux;
8819
8820 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8821
8822 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8823 {
8824 error_return_bad_verdef:
8825 _bfd_error_handler
8826 (_("%pB: .gnu.version_d invalid entry"), abfd);
8827 bfd_set_error (bfd_error_bad_value);
8828 error_return_verdef:
8829 elf_tdata (abfd)->verdef = NULL;
8830 elf_tdata (abfd)->cverdefs = 0;
8831 goto error_return;
8832 }
8833
8834 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8835 goto error_return_verdef;
8836 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8837 if (contents == NULL)
8838 goto error_return_verdef;
8839
8840 BFD_ASSERT (sizeof (Elf_External_Verdef)
8841 >= sizeof (Elf_External_Verdaux));
8842 contents_end_def = contents + hdr->sh_size
8843 - sizeof (Elf_External_Verdef);
8844 contents_end_aux = contents + hdr->sh_size
8845 - sizeof (Elf_External_Verdaux);
8846
8847 /* We know the number of entries in the section but not the maximum
8848 index. Therefore we have to run through all entries and find
8849 the maximum. */
8850 everdef = (Elf_External_Verdef *) contents;
8851 maxidx = 0;
8852 for (i = 0; i < hdr->sh_info; ++i)
8853 {
8854 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8855
8856 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8857 goto error_return_bad_verdef;
8858 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8859 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8860
8861 if (iverdefmem.vd_next == 0)
8862 break;
8863
8864 if (iverdefmem.vd_next
8865 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8866 goto error_return_bad_verdef;
8867
8868 everdef = ((Elf_External_Verdef *)
8869 ((bfd_byte *) everdef + iverdefmem.vd_next));
8870 }
8871
8872 if (default_imported_symver)
8873 {
8874 if (freeidx > maxidx)
8875 maxidx = ++freeidx;
8876 else
8877 freeidx = ++maxidx;
8878 }
8879 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8880 {
8881 bfd_set_error (bfd_error_file_too_big);
8882 goto error_return_verdef;
8883 }
8884 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8885 if (elf_tdata (abfd)->verdef == NULL)
8886 goto error_return_verdef;
8887
8888 elf_tdata (abfd)->cverdefs = maxidx;
8889
8890 everdef = (Elf_External_Verdef *) contents;
8891 iverdefarr = elf_tdata (abfd)->verdef;
8892 for (i = 0; i < hdr->sh_info; i++)
8893 {
8894 Elf_External_Verdaux *everdaux;
8895 Elf_Internal_Verdaux *iverdaux;
8896 unsigned int j;
8897
8898 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8899
8900 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8901 goto error_return_bad_verdef;
8902
8903 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8904 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8905
8906 iverdef->vd_bfd = abfd;
8907
8908 if (iverdef->vd_cnt == 0)
8909 iverdef->vd_auxptr = NULL;
8910 else
8911 {
8912 if (_bfd_mul_overflow (iverdef->vd_cnt,
8913 sizeof (Elf_Internal_Verdaux), &amt))
8914 {
8915 bfd_set_error (bfd_error_file_too_big);
8916 goto error_return_verdef;
8917 }
8918 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8919 bfd_alloc (abfd, amt);
8920 if (iverdef->vd_auxptr == NULL)
8921 goto error_return_verdef;
8922 }
8923
8924 if (iverdef->vd_aux
8925 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8926 goto error_return_bad_verdef;
8927
8928 everdaux = ((Elf_External_Verdaux *)
8929 ((bfd_byte *) everdef + iverdef->vd_aux));
8930 iverdaux = iverdef->vd_auxptr;
8931 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8932 {
8933 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8934
8935 iverdaux->vda_nodename =
8936 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8937 iverdaux->vda_name);
8938 if (iverdaux->vda_nodename == NULL)
8939 goto error_return_bad_verdef;
8940
8941 iverdaux->vda_nextptr = NULL;
8942 if (iverdaux->vda_next == 0)
8943 {
8944 iverdef->vd_cnt = j + 1;
8945 break;
8946 }
8947 if (j + 1 < iverdef->vd_cnt)
8948 iverdaux->vda_nextptr = iverdaux + 1;
8949
8950 if (iverdaux->vda_next
8951 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8952 goto error_return_bad_verdef;
8953
8954 everdaux = ((Elf_External_Verdaux *)
8955 ((bfd_byte *) everdaux + iverdaux->vda_next));
8956 }
8957
8958 iverdef->vd_nodename = NULL;
8959 if (iverdef->vd_cnt)
8960 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8961
8962 iverdef->vd_nextdef = NULL;
8963 if (iverdef->vd_next == 0)
8964 break;
8965 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8966 iverdef->vd_nextdef = iverdef + 1;
8967
8968 everdef = ((Elf_External_Verdef *)
8969 ((bfd_byte *) everdef + iverdef->vd_next));
8970 }
8971
8972 free (contents);
8973 contents = NULL;
8974 }
8975 else if (default_imported_symver)
8976 {
8977 if (freeidx < 3)
8978 freeidx = 3;
8979 else
8980 freeidx++;
8981
8982 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8983 {
8984 bfd_set_error (bfd_error_file_too_big);
8985 goto error_return;
8986 }
8987 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8988 if (elf_tdata (abfd)->verdef == NULL)
8989 goto error_return;
8990
8991 elf_tdata (abfd)->cverdefs = freeidx;
8992 }
8993
8994 /* Create a default version based on the soname. */
8995 if (default_imported_symver)
8996 {
8997 Elf_Internal_Verdef *iverdef;
8998 Elf_Internal_Verdaux *iverdaux;
8999
9000 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9001
9002 iverdef->vd_version = VER_DEF_CURRENT;
9003 iverdef->vd_flags = 0;
9004 iverdef->vd_ndx = freeidx;
9005 iverdef->vd_cnt = 1;
9006
9007 iverdef->vd_bfd = abfd;
9008
9009 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9010 if (iverdef->vd_nodename == NULL)
9011 goto error_return_verdef;
9012 iverdef->vd_nextdef = NULL;
9013 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9014 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9015 if (iverdef->vd_auxptr == NULL)
9016 goto error_return_verdef;
9017
9018 iverdaux = iverdef->vd_auxptr;
9019 iverdaux->vda_nodename = iverdef->vd_nodename;
9020 }
9021
9022 return TRUE;
9023
9024 error_return:
9025 free (contents);
9026 return FALSE;
9027 }
9028 \f
9029 asymbol *
9030 _bfd_elf_make_empty_symbol (bfd *abfd)
9031 {
9032 elf_symbol_type *newsym;
9033
9034 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9035 if (!newsym)
9036 return NULL;
9037 newsym->symbol.the_bfd = abfd;
9038 return &newsym->symbol;
9039 }
9040
9041 void
9042 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9043 asymbol *symbol,
9044 symbol_info *ret)
9045 {
9046 bfd_symbol_info (symbol, ret);
9047 }
9048
9049 /* Return whether a symbol name implies a local symbol. Most targets
9050 use this function for the is_local_label_name entry point, but some
9051 override it. */
9052
9053 bfd_boolean
9054 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9055 const char *name)
9056 {
9057 /* Normal local symbols start with ``.L''. */
9058 if (name[0] == '.' && name[1] == 'L')
9059 return TRUE;
9060
9061 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9062 DWARF debugging symbols starting with ``..''. */
9063 if (name[0] == '.' && name[1] == '.')
9064 return TRUE;
9065
9066 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9067 emitting DWARF debugging output. I suspect this is actually a
9068 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9069 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9070 underscore to be emitted on some ELF targets). For ease of use,
9071 we treat such symbols as local. */
9072 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9073 return TRUE;
9074
9075 /* Treat assembler generated fake symbols, dollar local labels and
9076 forward-backward labels (aka local labels) as locals.
9077 These labels have the form:
9078
9079 L0^A.* (fake symbols)
9080
9081 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9082
9083 Versions which start with .L will have already been matched above,
9084 so we only need to match the rest. */
9085 if (name[0] == 'L' && ISDIGIT (name[1]))
9086 {
9087 bfd_boolean ret = FALSE;
9088 const char * p;
9089 char c;
9090
9091 for (p = name + 2; (c = *p); p++)
9092 {
9093 if (c == 1 || c == 2)
9094 {
9095 if (c == 1 && p == name + 2)
9096 /* A fake symbol. */
9097 return TRUE;
9098
9099 /* FIXME: We are being paranoid here and treating symbols like
9100 L0^Bfoo as if there were non-local, on the grounds that the
9101 assembler will never generate them. But can any symbol
9102 containing an ASCII value in the range 1-31 ever be anything
9103 other than some kind of local ? */
9104 ret = TRUE;
9105 }
9106
9107 if (! ISDIGIT (c))
9108 {
9109 ret = FALSE;
9110 break;
9111 }
9112 }
9113 return ret;
9114 }
9115
9116 return FALSE;
9117 }
9118
9119 alent *
9120 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9121 asymbol *symbol ATTRIBUTE_UNUSED)
9122 {
9123 abort ();
9124 return NULL;
9125 }
9126
9127 bfd_boolean
9128 _bfd_elf_set_arch_mach (bfd *abfd,
9129 enum bfd_architecture arch,
9130 unsigned long machine)
9131 {
9132 /* If this isn't the right architecture for this backend, and this
9133 isn't the generic backend, fail. */
9134 if (arch != get_elf_backend_data (abfd)->arch
9135 && arch != bfd_arch_unknown
9136 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9137 return FALSE;
9138
9139 return bfd_default_set_arch_mach (abfd, arch, machine);
9140 }
9141
9142 /* Find the nearest line to a particular section and offset,
9143 for error reporting. */
9144
9145 bfd_boolean
9146 _bfd_elf_find_nearest_line (bfd *abfd,
9147 asymbol **symbols,
9148 asection *section,
9149 bfd_vma offset,
9150 const char **filename_ptr,
9151 const char **functionname_ptr,
9152 unsigned int *line_ptr,
9153 unsigned int *discriminator_ptr)
9154 {
9155 bfd_boolean found;
9156
9157 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9158 filename_ptr, functionname_ptr,
9159 line_ptr, discriminator_ptr,
9160 dwarf_debug_sections,
9161 &elf_tdata (abfd)->dwarf2_find_line_info))
9162 return TRUE;
9163
9164 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9165 filename_ptr, functionname_ptr, line_ptr))
9166 {
9167 if (!*functionname_ptr)
9168 _bfd_elf_find_function (abfd, symbols, section, offset,
9169 *filename_ptr ? NULL : filename_ptr,
9170 functionname_ptr);
9171 return TRUE;
9172 }
9173
9174 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9175 &found, filename_ptr,
9176 functionname_ptr, line_ptr,
9177 &elf_tdata (abfd)->line_info))
9178 return FALSE;
9179 if (found && (*functionname_ptr || *line_ptr))
9180 return TRUE;
9181
9182 if (symbols == NULL)
9183 return FALSE;
9184
9185 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9186 filename_ptr, functionname_ptr))
9187 return FALSE;
9188
9189 *line_ptr = 0;
9190 return TRUE;
9191 }
9192
9193 /* Find the line for a symbol. */
9194
9195 bfd_boolean
9196 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9197 const char **filename_ptr, unsigned int *line_ptr)
9198 {
9199 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9200 filename_ptr, NULL, line_ptr, NULL,
9201 dwarf_debug_sections,
9202 &elf_tdata (abfd)->dwarf2_find_line_info);
9203 }
9204
9205 /* After a call to bfd_find_nearest_line, successive calls to
9206 bfd_find_inliner_info can be used to get source information about
9207 each level of function inlining that terminated at the address
9208 passed to bfd_find_nearest_line. Currently this is only supported
9209 for DWARF2 with appropriate DWARF3 extensions. */
9210
9211 bfd_boolean
9212 _bfd_elf_find_inliner_info (bfd *abfd,
9213 const char **filename_ptr,
9214 const char **functionname_ptr,
9215 unsigned int *line_ptr)
9216 {
9217 bfd_boolean found;
9218 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9219 functionname_ptr, line_ptr,
9220 & elf_tdata (abfd)->dwarf2_find_line_info);
9221 return found;
9222 }
9223
9224 int
9225 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9226 {
9227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9228 int ret = bed->s->sizeof_ehdr;
9229
9230 if (!bfd_link_relocatable (info))
9231 {
9232 bfd_size_type phdr_size = elf_program_header_size (abfd);
9233
9234 if (phdr_size == (bfd_size_type) -1)
9235 {
9236 struct elf_segment_map *m;
9237
9238 phdr_size = 0;
9239 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9240 phdr_size += bed->s->sizeof_phdr;
9241
9242 if (phdr_size == 0)
9243 phdr_size = get_program_header_size (abfd, info);
9244 }
9245
9246 elf_program_header_size (abfd) = phdr_size;
9247 ret += phdr_size;
9248 }
9249
9250 return ret;
9251 }
9252
9253 bfd_boolean
9254 _bfd_elf_set_section_contents (bfd *abfd,
9255 sec_ptr section,
9256 const void *location,
9257 file_ptr offset,
9258 bfd_size_type count)
9259 {
9260 Elf_Internal_Shdr *hdr;
9261 file_ptr pos;
9262
9263 if (! abfd->output_has_begun
9264 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9265 return FALSE;
9266
9267 if (!count)
9268 return TRUE;
9269
9270 hdr = &elf_section_data (section)->this_hdr;
9271 if (hdr->sh_offset == (file_ptr) -1)
9272 {
9273 unsigned char *contents;
9274
9275 if (bfd_section_is_ctf (section))
9276 /* Nothing to do with this section: the contents are generated
9277 later. */
9278 return TRUE;
9279
9280 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9281 {
9282 _bfd_error_handler
9283 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9284 abfd, section);
9285 bfd_set_error (bfd_error_invalid_operation);
9286 return FALSE;
9287 }
9288
9289 if ((offset + count) > hdr->sh_size)
9290 {
9291 _bfd_error_handler
9292 (_("%pB:%pA: error: attempting to write over the end of the section"),
9293 abfd, section);
9294
9295 bfd_set_error (bfd_error_invalid_operation);
9296 return FALSE;
9297 }
9298
9299 contents = hdr->contents;
9300 if (contents == NULL)
9301 {
9302 _bfd_error_handler
9303 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9304 abfd, section);
9305
9306 bfd_set_error (bfd_error_invalid_operation);
9307 return FALSE;
9308 }
9309
9310 memcpy (contents + offset, location, count);
9311 return TRUE;
9312 }
9313
9314 pos = hdr->sh_offset + offset;
9315 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9316 || bfd_bwrite (location, count, abfd) != count)
9317 return FALSE;
9318
9319 return TRUE;
9320 }
9321
9322 bfd_boolean
9323 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9324 arelent *cache_ptr ATTRIBUTE_UNUSED,
9325 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9326 {
9327 abort ();
9328 return FALSE;
9329 }
9330
9331 /* Try to convert a non-ELF reloc into an ELF one. */
9332
9333 bfd_boolean
9334 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9335 {
9336 /* Check whether we really have an ELF howto. */
9337
9338 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9339 {
9340 bfd_reloc_code_real_type code;
9341 reloc_howto_type *howto;
9342
9343 /* Alien reloc: Try to determine its type to replace it with an
9344 equivalent ELF reloc. */
9345
9346 if (areloc->howto->pc_relative)
9347 {
9348 switch (areloc->howto->bitsize)
9349 {
9350 case 8:
9351 code = BFD_RELOC_8_PCREL;
9352 break;
9353 case 12:
9354 code = BFD_RELOC_12_PCREL;
9355 break;
9356 case 16:
9357 code = BFD_RELOC_16_PCREL;
9358 break;
9359 case 24:
9360 code = BFD_RELOC_24_PCREL;
9361 break;
9362 case 32:
9363 code = BFD_RELOC_32_PCREL;
9364 break;
9365 case 64:
9366 code = BFD_RELOC_64_PCREL;
9367 break;
9368 default:
9369 goto fail;
9370 }
9371
9372 howto = bfd_reloc_type_lookup (abfd, code);
9373
9374 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9375 {
9376 if (howto->pcrel_offset)
9377 areloc->addend += areloc->address;
9378 else
9379 areloc->addend -= areloc->address; /* addend is unsigned!! */
9380 }
9381 }
9382 else
9383 {
9384 switch (areloc->howto->bitsize)
9385 {
9386 case 8:
9387 code = BFD_RELOC_8;
9388 break;
9389 case 14:
9390 code = BFD_RELOC_14;
9391 break;
9392 case 16:
9393 code = BFD_RELOC_16;
9394 break;
9395 case 26:
9396 code = BFD_RELOC_26;
9397 break;
9398 case 32:
9399 code = BFD_RELOC_32;
9400 break;
9401 case 64:
9402 code = BFD_RELOC_64;
9403 break;
9404 default:
9405 goto fail;
9406 }
9407
9408 howto = bfd_reloc_type_lookup (abfd, code);
9409 }
9410
9411 if (howto)
9412 areloc->howto = howto;
9413 else
9414 goto fail;
9415 }
9416
9417 return TRUE;
9418
9419 fail:
9420 /* xgettext:c-format */
9421 _bfd_error_handler (_("%pB: %s unsupported"),
9422 abfd, areloc->howto->name);
9423 bfd_set_error (bfd_error_sorry);
9424 return FALSE;
9425 }
9426
9427 bfd_boolean
9428 _bfd_elf_close_and_cleanup (bfd *abfd)
9429 {
9430 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9431 if (tdata != NULL
9432 && (bfd_get_format (abfd) == bfd_object
9433 || bfd_get_format (abfd) == bfd_core))
9434 {
9435 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9436 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9437 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9438 }
9439
9440 return _bfd_generic_close_and_cleanup (abfd);
9441 }
9442
9443 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9444 in the relocation's offset. Thus we cannot allow any sort of sanity
9445 range-checking to interfere. There is nothing else to do in processing
9446 this reloc. */
9447
9448 bfd_reloc_status_type
9449 _bfd_elf_rel_vtable_reloc_fn
9450 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9451 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9452 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9453 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9454 {
9455 return bfd_reloc_ok;
9456 }
9457 \f
9458 /* Elf core file support. Much of this only works on native
9459 toolchains, since we rely on knowing the
9460 machine-dependent procfs structure in order to pick
9461 out details about the corefile. */
9462
9463 #ifdef HAVE_SYS_PROCFS_H
9464 # include <sys/procfs.h>
9465 #endif
9466
9467 /* Return a PID that identifies a "thread" for threaded cores, or the
9468 PID of the main process for non-threaded cores. */
9469
9470 static int
9471 elfcore_make_pid (bfd *abfd)
9472 {
9473 int pid;
9474
9475 pid = elf_tdata (abfd)->core->lwpid;
9476 if (pid == 0)
9477 pid = elf_tdata (abfd)->core->pid;
9478
9479 return pid;
9480 }
9481
9482 /* If there isn't a section called NAME, make one, using
9483 data from SECT. Note, this function will generate a
9484 reference to NAME, so you shouldn't deallocate or
9485 overwrite it. */
9486
9487 static bfd_boolean
9488 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9489 {
9490 asection *sect2;
9491
9492 if (bfd_get_section_by_name (abfd, name) != NULL)
9493 return TRUE;
9494
9495 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9496 if (sect2 == NULL)
9497 return FALSE;
9498
9499 sect2->size = sect->size;
9500 sect2->filepos = sect->filepos;
9501 sect2->alignment_power = sect->alignment_power;
9502 return TRUE;
9503 }
9504
9505 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9506 actually creates up to two pseudosections:
9507 - For the single-threaded case, a section named NAME, unless
9508 such a section already exists.
9509 - For the multi-threaded case, a section named "NAME/PID", where
9510 PID is elfcore_make_pid (abfd).
9511 Both pseudosections have identical contents. */
9512 bfd_boolean
9513 _bfd_elfcore_make_pseudosection (bfd *abfd,
9514 char *name,
9515 size_t size,
9516 ufile_ptr filepos)
9517 {
9518 char buf[100];
9519 char *threaded_name;
9520 size_t len;
9521 asection *sect;
9522
9523 /* Build the section name. */
9524
9525 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9526 len = strlen (buf) + 1;
9527 threaded_name = (char *) bfd_alloc (abfd, len);
9528 if (threaded_name == NULL)
9529 return FALSE;
9530 memcpy (threaded_name, buf, len);
9531
9532 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9533 SEC_HAS_CONTENTS);
9534 if (sect == NULL)
9535 return FALSE;
9536 sect->size = size;
9537 sect->filepos = filepos;
9538 sect->alignment_power = 2;
9539
9540 return elfcore_maybe_make_sect (abfd, name, sect);
9541 }
9542
9543 static bfd_boolean
9544 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9545 size_t offs)
9546 {
9547 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9548 SEC_HAS_CONTENTS);
9549
9550 if (sect == NULL)
9551 return FALSE;
9552
9553 sect->size = note->descsz - offs;
9554 sect->filepos = note->descpos + offs;
9555 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9556
9557 return TRUE;
9558 }
9559
9560 /* prstatus_t exists on:
9561 solaris 2.5+
9562 linux 2.[01] + glibc
9563 unixware 4.2
9564 */
9565
9566 #if defined (HAVE_PRSTATUS_T)
9567
9568 static bfd_boolean
9569 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9570 {
9571 size_t size;
9572 int offset;
9573
9574 if (note->descsz == sizeof (prstatus_t))
9575 {
9576 prstatus_t prstat;
9577
9578 size = sizeof (prstat.pr_reg);
9579 offset = offsetof (prstatus_t, pr_reg);
9580 memcpy (&prstat, note->descdata, sizeof (prstat));
9581
9582 /* Do not overwrite the core signal if it
9583 has already been set by another thread. */
9584 if (elf_tdata (abfd)->core->signal == 0)
9585 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9586 if (elf_tdata (abfd)->core->pid == 0)
9587 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9588
9589 /* pr_who exists on:
9590 solaris 2.5+
9591 unixware 4.2
9592 pr_who doesn't exist on:
9593 linux 2.[01]
9594 */
9595 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9596 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9597 #else
9598 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9599 #endif
9600 }
9601 #if defined (HAVE_PRSTATUS32_T)
9602 else if (note->descsz == sizeof (prstatus32_t))
9603 {
9604 /* 64-bit host, 32-bit corefile */
9605 prstatus32_t prstat;
9606
9607 size = sizeof (prstat.pr_reg);
9608 offset = offsetof (prstatus32_t, pr_reg);
9609 memcpy (&prstat, note->descdata, sizeof (prstat));
9610
9611 /* Do not overwrite the core signal if it
9612 has already been set by another thread. */
9613 if (elf_tdata (abfd)->core->signal == 0)
9614 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9615 if (elf_tdata (abfd)->core->pid == 0)
9616 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9617
9618 /* pr_who exists on:
9619 solaris 2.5+
9620 unixware 4.2
9621 pr_who doesn't exist on:
9622 linux 2.[01]
9623 */
9624 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9625 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9626 #else
9627 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9628 #endif
9629 }
9630 #endif /* HAVE_PRSTATUS32_T */
9631 else
9632 {
9633 /* Fail - we don't know how to handle any other
9634 note size (ie. data object type). */
9635 return TRUE;
9636 }
9637
9638 /* Make a ".reg/999" section and a ".reg" section. */
9639 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9640 size, note->descpos + offset);
9641 }
9642 #endif /* defined (HAVE_PRSTATUS_T) */
9643
9644 /* Create a pseudosection containing the exact contents of NOTE. */
9645 static bfd_boolean
9646 elfcore_make_note_pseudosection (bfd *abfd,
9647 char *name,
9648 Elf_Internal_Note *note)
9649 {
9650 return _bfd_elfcore_make_pseudosection (abfd, name,
9651 note->descsz, note->descpos);
9652 }
9653
9654 /* There isn't a consistent prfpregset_t across platforms,
9655 but it doesn't matter, because we don't have to pick this
9656 data structure apart. */
9657
9658 static bfd_boolean
9659 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9660 {
9661 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9662 }
9663
9664 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9665 type of NT_PRXFPREG. Just include the whole note's contents
9666 literally. */
9667
9668 static bfd_boolean
9669 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9670 {
9671 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9672 }
9673
9674 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9675 with a note type of NT_X86_XSTATE. Just include the whole note's
9676 contents literally. */
9677
9678 static bfd_boolean
9679 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9680 {
9681 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9682 }
9683
9684 static bfd_boolean
9685 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9686 {
9687 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9688 }
9689
9690 static bfd_boolean
9691 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9692 {
9693 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9694 }
9695
9696 static bfd_boolean
9697 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9706 }
9707
9708 static bfd_boolean
9709 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9712 }
9713
9714 static bfd_boolean
9715 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9716 {
9717 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9718 }
9719
9720 static bfd_boolean
9721 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9724 }
9725
9726 static bfd_boolean
9727 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9728 {
9729 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9730 }
9731
9732 static bfd_boolean
9733 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9734 {
9735 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9736 }
9737
9738 static bfd_boolean
9739 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9742 }
9743
9744 static bfd_boolean
9745 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9748 }
9749
9750 static bfd_boolean
9751 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9754 }
9755
9756 static bfd_boolean
9757 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9760 }
9761
9762 static bfd_boolean
9763 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9766 }
9767
9768 static bfd_boolean
9769 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9772 }
9773
9774 static bfd_boolean
9775 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9778 }
9779
9780 static bfd_boolean
9781 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9784 }
9785
9786 static bfd_boolean
9787 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9790 }
9791
9792 static bfd_boolean
9793 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9796 }
9797
9798 static bfd_boolean
9799 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9802 }
9803
9804 static bfd_boolean
9805 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9808 }
9809
9810 static bfd_boolean
9811 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9814 }
9815
9816 static bfd_boolean
9817 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9820 }
9821
9822 static bfd_boolean
9823 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9826 }
9827
9828 static bfd_boolean
9829 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9832 }
9833
9834 static bfd_boolean
9835 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9844 }
9845
9846 static bfd_boolean
9847 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9850 }
9851
9852 static bfd_boolean
9853 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9856 }
9857
9858 static bfd_boolean
9859 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9868 }
9869
9870 static bfd_boolean
9871 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9874 }
9875
9876 static bfd_boolean
9877 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9880 }
9881
9882 static bfd_boolean
9883 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9886 }
9887
9888 static bfd_boolean
9889 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9892 }
9893
9894 #if defined (HAVE_PRPSINFO_T)
9895 typedef prpsinfo_t elfcore_psinfo_t;
9896 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9897 typedef prpsinfo32_t elfcore_psinfo32_t;
9898 #endif
9899 #endif
9900
9901 #if defined (HAVE_PSINFO_T)
9902 typedef psinfo_t elfcore_psinfo_t;
9903 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9904 typedef psinfo32_t elfcore_psinfo32_t;
9905 #endif
9906 #endif
9907
9908 /* return a malloc'ed copy of a string at START which is at
9909 most MAX bytes long, possibly without a terminating '\0'.
9910 the copy will always have a terminating '\0'. */
9911
9912 char *
9913 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9914 {
9915 char *dups;
9916 char *end = (char *) memchr (start, '\0', max);
9917 size_t len;
9918
9919 if (end == NULL)
9920 len = max;
9921 else
9922 len = end - start;
9923
9924 dups = (char *) bfd_alloc (abfd, len + 1);
9925 if (dups == NULL)
9926 return NULL;
9927
9928 memcpy (dups, start, len);
9929 dups[len] = '\0';
9930
9931 return dups;
9932 }
9933
9934 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9935 static bfd_boolean
9936 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9937 {
9938 if (note->descsz == sizeof (elfcore_psinfo_t))
9939 {
9940 elfcore_psinfo_t psinfo;
9941
9942 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9943
9944 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9945 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9946 #endif
9947 elf_tdata (abfd)->core->program
9948 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9949 sizeof (psinfo.pr_fname));
9950
9951 elf_tdata (abfd)->core->command
9952 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9953 sizeof (psinfo.pr_psargs));
9954 }
9955 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9956 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9957 {
9958 /* 64-bit host, 32-bit corefile */
9959 elfcore_psinfo32_t psinfo;
9960
9961 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9962
9963 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9964 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9965 #endif
9966 elf_tdata (abfd)->core->program
9967 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9968 sizeof (psinfo.pr_fname));
9969
9970 elf_tdata (abfd)->core->command
9971 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9972 sizeof (psinfo.pr_psargs));
9973 }
9974 #endif
9975
9976 else
9977 {
9978 /* Fail - we don't know how to handle any other
9979 note size (ie. data object type). */
9980 return TRUE;
9981 }
9982
9983 /* Note that for some reason, a spurious space is tacked
9984 onto the end of the args in some (at least one anyway)
9985 implementations, so strip it off if it exists. */
9986
9987 {
9988 char *command = elf_tdata (abfd)->core->command;
9989 int n = strlen (command);
9990
9991 if (0 < n && command[n - 1] == ' ')
9992 command[n - 1] = '\0';
9993 }
9994
9995 return TRUE;
9996 }
9997 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9998
9999 #if defined (HAVE_PSTATUS_T)
10000 static bfd_boolean
10001 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10002 {
10003 if (note->descsz == sizeof (pstatus_t)
10004 #if defined (HAVE_PXSTATUS_T)
10005 || note->descsz == sizeof (pxstatus_t)
10006 #endif
10007 )
10008 {
10009 pstatus_t pstat;
10010
10011 memcpy (&pstat, note->descdata, sizeof (pstat));
10012
10013 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10014 }
10015 #if defined (HAVE_PSTATUS32_T)
10016 else if (note->descsz == sizeof (pstatus32_t))
10017 {
10018 /* 64-bit host, 32-bit corefile */
10019 pstatus32_t pstat;
10020
10021 memcpy (&pstat, note->descdata, sizeof (pstat));
10022
10023 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10024 }
10025 #endif
10026 /* Could grab some more details from the "representative"
10027 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10028 NT_LWPSTATUS note, presumably. */
10029
10030 return TRUE;
10031 }
10032 #endif /* defined (HAVE_PSTATUS_T) */
10033
10034 #if defined (HAVE_LWPSTATUS_T)
10035 static bfd_boolean
10036 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10037 {
10038 lwpstatus_t lwpstat;
10039 char buf[100];
10040 char *name;
10041 size_t len;
10042 asection *sect;
10043
10044 if (note->descsz != sizeof (lwpstat)
10045 #if defined (HAVE_LWPXSTATUS_T)
10046 && note->descsz != sizeof (lwpxstatus_t)
10047 #endif
10048 )
10049 return TRUE;
10050
10051 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10052
10053 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10054 /* Do not overwrite the core signal if it has already been set by
10055 another thread. */
10056 if (elf_tdata (abfd)->core->signal == 0)
10057 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10058
10059 /* Make a ".reg/999" section. */
10060
10061 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10062 len = strlen (buf) + 1;
10063 name = bfd_alloc (abfd, len);
10064 if (name == NULL)
10065 return FALSE;
10066 memcpy (name, buf, len);
10067
10068 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10069 if (sect == NULL)
10070 return FALSE;
10071
10072 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10073 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10074 sect->filepos = note->descpos
10075 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10076 #endif
10077
10078 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10079 sect->size = sizeof (lwpstat.pr_reg);
10080 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10081 #endif
10082
10083 sect->alignment_power = 2;
10084
10085 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10086 return FALSE;
10087
10088 /* Make a ".reg2/999" section */
10089
10090 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10091 len = strlen (buf) + 1;
10092 name = bfd_alloc (abfd, len);
10093 if (name == NULL)
10094 return FALSE;
10095 memcpy (name, buf, len);
10096
10097 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10098 if (sect == NULL)
10099 return FALSE;
10100
10101 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10102 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10103 sect->filepos = note->descpos
10104 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10105 #endif
10106
10107 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10108 sect->size = sizeof (lwpstat.pr_fpreg);
10109 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10110 #endif
10111
10112 sect->alignment_power = 2;
10113
10114 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10115 }
10116 #endif /* defined (HAVE_LWPSTATUS_T) */
10117
10118 /* These constants, and the structure offsets used below, are defined by
10119 Cygwin's core_dump.h */
10120 #define NOTE_INFO_PROCESS 1
10121 #define NOTE_INFO_THREAD 2
10122 #define NOTE_INFO_MODULE 3
10123 #define NOTE_INFO_MODULE64 4
10124
10125 static bfd_boolean
10126 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10127 {
10128 char buf[30];
10129 char *name;
10130 size_t len;
10131 unsigned int name_size;
10132 asection *sect;
10133 unsigned int type;
10134 int is_active_thread;
10135 bfd_vma base_addr;
10136
10137 if (note->descsz < 4)
10138 return TRUE;
10139
10140 if (! CONST_STRNEQ (note->namedata, "win32"))
10141 return TRUE;
10142
10143 type = bfd_get_32 (abfd, note->descdata);
10144
10145 struct {
10146 const char *type_name;
10147 unsigned long min_size;
10148 } size_check[] =
10149 {
10150 { "NOTE_INFO_PROCESS", 12 },
10151 { "NOTE_INFO_THREAD", 12 },
10152 { "NOTE_INFO_MODULE", 12 },
10153 { "NOTE_INFO_MODULE64", 16 },
10154 };
10155
10156 if (type > (sizeof(size_check)/sizeof(size_check[0])))
10157 return TRUE;
10158
10159 if (note->descsz < size_check[type - 1].min_size)
10160 {
10161 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10162 abfd, size_check[type - 1].type_name, note->descsz);
10163 return TRUE;
10164 }
10165
10166 switch (type)
10167 {
10168 case NOTE_INFO_PROCESS:
10169 /* FIXME: need to add ->core->command. */
10170 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10171 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10172 break;
10173
10174 case NOTE_INFO_THREAD:
10175 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10176 structure. */
10177 /* thread_info.tid */
10178 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10179
10180 len = strlen (buf) + 1;
10181 name = (char *) bfd_alloc (abfd, len);
10182 if (name == NULL)
10183 return FALSE;
10184
10185 memcpy (name, buf, len);
10186
10187 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10188 if (sect == NULL)
10189 return FALSE;
10190
10191 /* sizeof (thread_info.thread_context) */
10192 sect->size = note->descsz - 12;
10193 /* offsetof (thread_info.thread_context) */
10194 sect->filepos = note->descpos + 12;
10195 sect->alignment_power = 2;
10196
10197 /* thread_info.is_active_thread */
10198 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10199
10200 if (is_active_thread)
10201 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10202 return FALSE;
10203 break;
10204
10205 case NOTE_INFO_MODULE:
10206 case NOTE_INFO_MODULE64:
10207 /* Make a ".module/xxxxxxxx" section. */
10208 if (type == NOTE_INFO_MODULE)
10209 {
10210 /* module_info.base_address */
10211 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10212 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10213 /* module_info.module_name_size */
10214 name_size = bfd_get_32 (abfd, note->descdata + 8);
10215 }
10216 else /* NOTE_INFO_MODULE64 */
10217 {
10218 /* module_info.base_address */
10219 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10220 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10221 /* module_info.module_name_size */
10222 name_size = bfd_get_32 (abfd, note->descdata + 12);
10223 }
10224
10225 len = strlen (buf) + 1;
10226 name = (char *) bfd_alloc (abfd, len);
10227 if (name == NULL)
10228 return FALSE;
10229
10230 memcpy (name, buf, len);
10231
10232 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10233
10234 if (sect == NULL)
10235 return FALSE;
10236
10237 if (note->descsz < 12 + name_size)
10238 {
10239 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10240 abfd, note->descsz, name_size);
10241 return TRUE;
10242 }
10243
10244 sect->size = note->descsz;
10245 sect->filepos = note->descpos;
10246 sect->alignment_power = 2;
10247 break;
10248
10249 default:
10250 return TRUE;
10251 }
10252
10253 return TRUE;
10254 }
10255
10256 static bfd_boolean
10257 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10258 {
10259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10260
10261 switch (note->type)
10262 {
10263 default:
10264 return TRUE;
10265
10266 case NT_PRSTATUS:
10267 if (bed->elf_backend_grok_prstatus)
10268 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10269 return TRUE;
10270 #if defined (HAVE_PRSTATUS_T)
10271 return elfcore_grok_prstatus (abfd, note);
10272 #else
10273 return TRUE;
10274 #endif
10275
10276 #if defined (HAVE_PSTATUS_T)
10277 case NT_PSTATUS:
10278 return elfcore_grok_pstatus (abfd, note);
10279 #endif
10280
10281 #if defined (HAVE_LWPSTATUS_T)
10282 case NT_LWPSTATUS:
10283 return elfcore_grok_lwpstatus (abfd, note);
10284 #endif
10285
10286 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10287 return elfcore_grok_prfpreg (abfd, note);
10288
10289 case NT_WIN32PSTATUS:
10290 return elfcore_grok_win32pstatus (abfd, note);
10291
10292 case NT_PRXFPREG: /* Linux SSE extension */
10293 if (note->namesz == 6
10294 && strcmp (note->namedata, "LINUX") == 0)
10295 return elfcore_grok_prxfpreg (abfd, note);
10296 else
10297 return TRUE;
10298
10299 case NT_X86_XSTATE: /* Linux XSAVE extension */
10300 if (note->namesz == 6
10301 && strcmp (note->namedata, "LINUX") == 0)
10302 return elfcore_grok_xstatereg (abfd, note);
10303 else
10304 return TRUE;
10305
10306 case NT_PPC_VMX:
10307 if (note->namesz == 6
10308 && strcmp (note->namedata, "LINUX") == 0)
10309 return elfcore_grok_ppc_vmx (abfd, note);
10310 else
10311 return TRUE;
10312
10313 case NT_PPC_VSX:
10314 if (note->namesz == 6
10315 && strcmp (note->namedata, "LINUX") == 0)
10316 return elfcore_grok_ppc_vsx (abfd, note);
10317 else
10318 return TRUE;
10319
10320 case NT_PPC_TAR:
10321 if (note->namesz == 6
10322 && strcmp (note->namedata, "LINUX") == 0)
10323 return elfcore_grok_ppc_tar (abfd, note);
10324 else
10325 return TRUE;
10326
10327 case NT_PPC_PPR:
10328 if (note->namesz == 6
10329 && strcmp (note->namedata, "LINUX") == 0)
10330 return elfcore_grok_ppc_ppr (abfd, note);
10331 else
10332 return TRUE;
10333
10334 case NT_PPC_DSCR:
10335 if (note->namesz == 6
10336 && strcmp (note->namedata, "LINUX") == 0)
10337 return elfcore_grok_ppc_dscr (abfd, note);
10338 else
10339 return TRUE;
10340
10341 case NT_PPC_EBB:
10342 if (note->namesz == 6
10343 && strcmp (note->namedata, "LINUX") == 0)
10344 return elfcore_grok_ppc_ebb (abfd, note);
10345 else
10346 return TRUE;
10347
10348 case NT_PPC_PMU:
10349 if (note->namesz == 6
10350 && strcmp (note->namedata, "LINUX") == 0)
10351 return elfcore_grok_ppc_pmu (abfd, note);
10352 else
10353 return TRUE;
10354
10355 case NT_PPC_TM_CGPR:
10356 if (note->namesz == 6
10357 && strcmp (note->namedata, "LINUX") == 0)
10358 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10359 else
10360 return TRUE;
10361
10362 case NT_PPC_TM_CFPR:
10363 if (note->namesz == 6
10364 && strcmp (note->namedata, "LINUX") == 0)
10365 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10366 else
10367 return TRUE;
10368
10369 case NT_PPC_TM_CVMX:
10370 if (note->namesz == 6
10371 && strcmp (note->namedata, "LINUX") == 0)
10372 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10373 else
10374 return TRUE;
10375
10376 case NT_PPC_TM_CVSX:
10377 if (note->namesz == 6
10378 && strcmp (note->namedata, "LINUX") == 0)
10379 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10380 else
10381 return TRUE;
10382
10383 case NT_PPC_TM_SPR:
10384 if (note->namesz == 6
10385 && strcmp (note->namedata, "LINUX") == 0)
10386 return elfcore_grok_ppc_tm_spr (abfd, note);
10387 else
10388 return TRUE;
10389
10390 case NT_PPC_TM_CTAR:
10391 if (note->namesz == 6
10392 && strcmp (note->namedata, "LINUX") == 0)
10393 return elfcore_grok_ppc_tm_ctar (abfd, note);
10394 else
10395 return TRUE;
10396
10397 case NT_PPC_TM_CPPR:
10398 if (note->namesz == 6
10399 && strcmp (note->namedata, "LINUX") == 0)
10400 return elfcore_grok_ppc_tm_cppr (abfd, note);
10401 else
10402 return TRUE;
10403
10404 case NT_PPC_TM_CDSCR:
10405 if (note->namesz == 6
10406 && strcmp (note->namedata, "LINUX") == 0)
10407 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10408 else
10409 return TRUE;
10410
10411 case NT_S390_HIGH_GPRS:
10412 if (note->namesz == 6
10413 && strcmp (note->namedata, "LINUX") == 0)
10414 return elfcore_grok_s390_high_gprs (abfd, note);
10415 else
10416 return TRUE;
10417
10418 case NT_S390_TIMER:
10419 if (note->namesz == 6
10420 && strcmp (note->namedata, "LINUX") == 0)
10421 return elfcore_grok_s390_timer (abfd, note);
10422 else
10423 return TRUE;
10424
10425 case NT_S390_TODCMP:
10426 if (note->namesz == 6
10427 && strcmp (note->namedata, "LINUX") == 0)
10428 return elfcore_grok_s390_todcmp (abfd, note);
10429 else
10430 return TRUE;
10431
10432 case NT_S390_TODPREG:
10433 if (note->namesz == 6
10434 && strcmp (note->namedata, "LINUX") == 0)
10435 return elfcore_grok_s390_todpreg (abfd, note);
10436 else
10437 return TRUE;
10438
10439 case NT_S390_CTRS:
10440 if (note->namesz == 6
10441 && strcmp (note->namedata, "LINUX") == 0)
10442 return elfcore_grok_s390_ctrs (abfd, note);
10443 else
10444 return TRUE;
10445
10446 case NT_S390_PREFIX:
10447 if (note->namesz == 6
10448 && strcmp (note->namedata, "LINUX") == 0)
10449 return elfcore_grok_s390_prefix (abfd, note);
10450 else
10451 return TRUE;
10452
10453 case NT_S390_LAST_BREAK:
10454 if (note->namesz == 6
10455 && strcmp (note->namedata, "LINUX") == 0)
10456 return elfcore_grok_s390_last_break (abfd, note);
10457 else
10458 return TRUE;
10459
10460 case NT_S390_SYSTEM_CALL:
10461 if (note->namesz == 6
10462 && strcmp (note->namedata, "LINUX") == 0)
10463 return elfcore_grok_s390_system_call (abfd, note);
10464 else
10465 return TRUE;
10466
10467 case NT_S390_TDB:
10468 if (note->namesz == 6
10469 && strcmp (note->namedata, "LINUX") == 0)
10470 return elfcore_grok_s390_tdb (abfd, note);
10471 else
10472 return TRUE;
10473
10474 case NT_S390_VXRS_LOW:
10475 if (note->namesz == 6
10476 && strcmp (note->namedata, "LINUX") == 0)
10477 return elfcore_grok_s390_vxrs_low (abfd, note);
10478 else
10479 return TRUE;
10480
10481 case NT_S390_VXRS_HIGH:
10482 if (note->namesz == 6
10483 && strcmp (note->namedata, "LINUX") == 0)
10484 return elfcore_grok_s390_vxrs_high (abfd, note);
10485 else
10486 return TRUE;
10487
10488 case NT_S390_GS_CB:
10489 if (note->namesz == 6
10490 && strcmp (note->namedata, "LINUX") == 0)
10491 return elfcore_grok_s390_gs_cb (abfd, note);
10492 else
10493 return TRUE;
10494
10495 case NT_S390_GS_BC:
10496 if (note->namesz == 6
10497 && strcmp (note->namedata, "LINUX") == 0)
10498 return elfcore_grok_s390_gs_bc (abfd, note);
10499 else
10500 return TRUE;
10501
10502 case NT_ARC_V2:
10503 if (note->namesz == 6
10504 && strcmp (note->namedata, "LINUX") == 0)
10505 return elfcore_grok_arc_v2 (abfd, note);
10506 else
10507 return TRUE;
10508
10509 case NT_ARM_VFP:
10510 if (note->namesz == 6
10511 && strcmp (note->namedata, "LINUX") == 0)
10512 return elfcore_grok_arm_vfp (abfd, note);
10513 else
10514 return TRUE;
10515
10516 case NT_ARM_TLS:
10517 if (note->namesz == 6
10518 && strcmp (note->namedata, "LINUX") == 0)
10519 return elfcore_grok_aarch_tls (abfd, note);
10520 else
10521 return TRUE;
10522
10523 case NT_ARM_HW_BREAK:
10524 if (note->namesz == 6
10525 && strcmp (note->namedata, "LINUX") == 0)
10526 return elfcore_grok_aarch_hw_break (abfd, note);
10527 else
10528 return TRUE;
10529
10530 case NT_ARM_HW_WATCH:
10531 if (note->namesz == 6
10532 && strcmp (note->namedata, "LINUX") == 0)
10533 return elfcore_grok_aarch_hw_watch (abfd, note);
10534 else
10535 return TRUE;
10536
10537 case NT_ARM_SVE:
10538 if (note->namesz == 6
10539 && strcmp (note->namedata, "LINUX") == 0)
10540 return elfcore_grok_aarch_sve (abfd, note);
10541 else
10542 return TRUE;
10543
10544 case NT_ARM_PAC_MASK:
10545 if (note->namesz == 6
10546 && strcmp (note->namedata, "LINUX") == 0)
10547 return elfcore_grok_aarch_pauth (abfd, note);
10548 else
10549 return TRUE;
10550
10551 case NT_PRPSINFO:
10552 case NT_PSINFO:
10553 if (bed->elf_backend_grok_psinfo)
10554 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10555 return TRUE;
10556 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10557 return elfcore_grok_psinfo (abfd, note);
10558 #else
10559 return TRUE;
10560 #endif
10561
10562 case NT_AUXV:
10563 return elfcore_make_auxv_note_section (abfd, note, 0);
10564
10565 case NT_FILE:
10566 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10567 note);
10568
10569 case NT_SIGINFO:
10570 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10571 note);
10572
10573 }
10574 }
10575
10576 static bfd_boolean
10577 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10578 {
10579 struct bfd_build_id* build_id;
10580
10581 if (note->descsz == 0)
10582 return FALSE;
10583
10584 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10585 if (build_id == NULL)
10586 return FALSE;
10587
10588 build_id->size = note->descsz;
10589 memcpy (build_id->data, note->descdata, note->descsz);
10590 abfd->build_id = build_id;
10591
10592 return TRUE;
10593 }
10594
10595 static bfd_boolean
10596 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10597 {
10598 switch (note->type)
10599 {
10600 default:
10601 return TRUE;
10602
10603 case NT_GNU_PROPERTY_TYPE_0:
10604 return _bfd_elf_parse_gnu_properties (abfd, note);
10605
10606 case NT_GNU_BUILD_ID:
10607 return elfobj_grok_gnu_build_id (abfd, note);
10608 }
10609 }
10610
10611 static bfd_boolean
10612 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10613 {
10614 struct sdt_note *cur =
10615 (struct sdt_note *) bfd_alloc (abfd,
10616 sizeof (struct sdt_note) + note->descsz);
10617
10618 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10619 cur->size = (bfd_size_type) note->descsz;
10620 memcpy (cur->data, note->descdata, note->descsz);
10621
10622 elf_tdata (abfd)->sdt_note_head = cur;
10623
10624 return TRUE;
10625 }
10626
10627 static bfd_boolean
10628 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10629 {
10630 switch (note->type)
10631 {
10632 case NT_STAPSDT:
10633 return elfobj_grok_stapsdt_note_1 (abfd, note);
10634
10635 default:
10636 return TRUE;
10637 }
10638 }
10639
10640 static bfd_boolean
10641 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10642 {
10643 size_t offset;
10644
10645 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10646 {
10647 case ELFCLASS32:
10648 if (note->descsz < 108)
10649 return FALSE;
10650 break;
10651
10652 case ELFCLASS64:
10653 if (note->descsz < 120)
10654 return FALSE;
10655 break;
10656
10657 default:
10658 return FALSE;
10659 }
10660
10661 /* Check for version 1 in pr_version. */
10662 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10663 return FALSE;
10664
10665 offset = 4;
10666
10667 /* Skip over pr_psinfosz. */
10668 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10669 offset += 4;
10670 else
10671 {
10672 offset += 4; /* Padding before pr_psinfosz. */
10673 offset += 8;
10674 }
10675
10676 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10677 elf_tdata (abfd)->core->program
10678 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10679 offset += 17;
10680
10681 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10682 elf_tdata (abfd)->core->command
10683 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10684 offset += 81;
10685
10686 /* Padding before pr_pid. */
10687 offset += 2;
10688
10689 /* The pr_pid field was added in version "1a". */
10690 if (note->descsz < offset + 4)
10691 return TRUE;
10692
10693 elf_tdata (abfd)->core->pid
10694 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10695
10696 return TRUE;
10697 }
10698
10699 static bfd_boolean
10700 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10701 {
10702 size_t offset;
10703 size_t size;
10704 size_t min_size;
10705
10706 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10707 Also compute minimum size of this note. */
10708 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10709 {
10710 case ELFCLASS32:
10711 offset = 4 + 4;
10712 min_size = offset + (4 * 2) + 4 + 4 + 4;
10713 break;
10714
10715 case ELFCLASS64:
10716 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10717 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10718 break;
10719
10720 default:
10721 return FALSE;
10722 }
10723
10724 if (note->descsz < min_size)
10725 return FALSE;
10726
10727 /* Check for version 1 in pr_version. */
10728 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10729 return FALSE;
10730
10731 /* Extract size of pr_reg from pr_gregsetsz. */
10732 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10733 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10734 {
10735 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10736 offset += 4 * 2;
10737 }
10738 else
10739 {
10740 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10741 offset += 8 * 2;
10742 }
10743
10744 /* Skip over pr_osreldate. */
10745 offset += 4;
10746
10747 /* Read signal from pr_cursig. */
10748 if (elf_tdata (abfd)->core->signal == 0)
10749 elf_tdata (abfd)->core->signal
10750 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10751 offset += 4;
10752
10753 /* Read TID from pr_pid. */
10754 elf_tdata (abfd)->core->lwpid
10755 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10756 offset += 4;
10757
10758 /* Padding before pr_reg. */
10759 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10760 offset += 4;
10761
10762 /* Make sure that there is enough data remaining in the note. */
10763 if ((note->descsz - offset) < size)
10764 return FALSE;
10765
10766 /* Make a ".reg/999" section and a ".reg" section. */
10767 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10768 size, note->descpos + offset);
10769 }
10770
10771 static bfd_boolean
10772 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10773 {
10774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10775
10776 switch (note->type)
10777 {
10778 case NT_PRSTATUS:
10779 if (bed->elf_backend_grok_freebsd_prstatus)
10780 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10781 return TRUE;
10782 return elfcore_grok_freebsd_prstatus (abfd, note);
10783
10784 case NT_FPREGSET:
10785 return elfcore_grok_prfpreg (abfd, note);
10786
10787 case NT_PRPSINFO:
10788 return elfcore_grok_freebsd_psinfo (abfd, note);
10789
10790 case NT_FREEBSD_THRMISC:
10791 if (note->namesz == 8)
10792 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10793 else
10794 return TRUE;
10795
10796 case NT_FREEBSD_PROCSTAT_PROC:
10797 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10798 note);
10799
10800 case NT_FREEBSD_PROCSTAT_FILES:
10801 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10802 note);
10803
10804 case NT_FREEBSD_PROCSTAT_VMMAP:
10805 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10806 note);
10807
10808 case NT_FREEBSD_PROCSTAT_AUXV:
10809 return elfcore_make_auxv_note_section (abfd, note, 4);
10810
10811 case NT_X86_XSTATE:
10812 if (note->namesz == 8)
10813 return elfcore_grok_xstatereg (abfd, note);
10814 else
10815 return TRUE;
10816
10817 case NT_FREEBSD_PTLWPINFO:
10818 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10819 note);
10820
10821 case NT_ARM_VFP:
10822 return elfcore_grok_arm_vfp (abfd, note);
10823
10824 default:
10825 return TRUE;
10826 }
10827 }
10828
10829 static bfd_boolean
10830 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10831 {
10832 char *cp;
10833
10834 cp = strchr (note->namedata, '@');
10835 if (cp != NULL)
10836 {
10837 *lwpidp = atoi(cp + 1);
10838 return TRUE;
10839 }
10840 return FALSE;
10841 }
10842
10843 static bfd_boolean
10844 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10845 {
10846 if (note->descsz <= 0x7c + 31)
10847 return FALSE;
10848
10849 /* Signal number at offset 0x08. */
10850 elf_tdata (abfd)->core->signal
10851 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10852
10853 /* Process ID at offset 0x50. */
10854 elf_tdata (abfd)->core->pid
10855 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10856
10857 /* Command name at 0x7c (max 32 bytes, including nul). */
10858 elf_tdata (abfd)->core->command
10859 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10860
10861 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10862 note);
10863 }
10864
10865 static bfd_boolean
10866 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10867 {
10868 int lwp;
10869
10870 if (elfcore_netbsd_get_lwpid (note, &lwp))
10871 elf_tdata (abfd)->core->lwpid = lwp;
10872
10873 switch (note->type)
10874 {
10875 case NT_NETBSDCORE_PROCINFO:
10876 /* NetBSD-specific core "procinfo". Note that we expect to
10877 find this note before any of the others, which is fine,
10878 since the kernel writes this note out first when it
10879 creates a core file. */
10880 return elfcore_grok_netbsd_procinfo (abfd, note);
10881 #ifdef NT_NETBSDCORE_AUXV
10882 case NT_NETBSDCORE_AUXV:
10883 /* NetBSD-specific Elf Auxiliary Vector data. */
10884 return elfcore_make_auxv_note_section (abfd, note, 4);
10885 #endif
10886 #ifdef NT_NETBSDCORE_LWPSTATUS
10887 case NT_NETBSDCORE_LWPSTATUS:
10888 return elfcore_make_note_pseudosection (abfd,
10889 ".note.netbsdcore.lwpstatus",
10890 note);
10891 #endif
10892 default:
10893 break;
10894 }
10895
10896 /* As of March 2020 there are no other machine-independent notes
10897 defined for NetBSD core files. If the note type is less
10898 than the start of the machine-dependent note types, we don't
10899 understand it. */
10900
10901 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10902 return TRUE;
10903
10904
10905 switch (bfd_get_arch (abfd))
10906 {
10907 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10908 PT_GETFPREGS == mach+2. */
10909
10910 case bfd_arch_aarch64:
10911 case bfd_arch_alpha:
10912 case bfd_arch_sparc:
10913 switch (note->type)
10914 {
10915 case NT_NETBSDCORE_FIRSTMACH+0:
10916 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10917
10918 case NT_NETBSDCORE_FIRSTMACH+2:
10919 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10920
10921 default:
10922 return TRUE;
10923 }
10924
10925 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10926 There's also old PT___GETREGS40 == mach + 1 for old reg
10927 structure which lacks GBR. */
10928
10929 case bfd_arch_sh:
10930 switch (note->type)
10931 {
10932 case NT_NETBSDCORE_FIRSTMACH+3:
10933 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10934
10935 case NT_NETBSDCORE_FIRSTMACH+5:
10936 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10937
10938 default:
10939 return TRUE;
10940 }
10941
10942 /* On all other arch's, PT_GETREGS == mach+1 and
10943 PT_GETFPREGS == mach+3. */
10944
10945 default:
10946 switch (note->type)
10947 {
10948 case NT_NETBSDCORE_FIRSTMACH+1:
10949 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10950
10951 case NT_NETBSDCORE_FIRSTMACH+3:
10952 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10953
10954 default:
10955 return TRUE;
10956 }
10957 }
10958 /* NOTREACHED */
10959 }
10960
10961 static bfd_boolean
10962 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10963 {
10964 if (note->descsz <= 0x48 + 31)
10965 return FALSE;
10966
10967 /* Signal number at offset 0x08. */
10968 elf_tdata (abfd)->core->signal
10969 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10970
10971 /* Process ID at offset 0x20. */
10972 elf_tdata (abfd)->core->pid
10973 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10974
10975 /* Command name at 0x48 (max 32 bytes, including nul). */
10976 elf_tdata (abfd)->core->command
10977 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10978
10979 return TRUE;
10980 }
10981
10982 static bfd_boolean
10983 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10984 {
10985 if (note->type == NT_OPENBSD_PROCINFO)
10986 return elfcore_grok_openbsd_procinfo (abfd, note);
10987
10988 if (note->type == NT_OPENBSD_REGS)
10989 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10990
10991 if (note->type == NT_OPENBSD_FPREGS)
10992 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10993
10994 if (note->type == NT_OPENBSD_XFPREGS)
10995 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10996
10997 if (note->type == NT_OPENBSD_AUXV)
10998 return elfcore_make_auxv_note_section (abfd, note, 0);
10999
11000 if (note->type == NT_OPENBSD_WCOOKIE)
11001 {
11002 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11003 SEC_HAS_CONTENTS);
11004
11005 if (sect == NULL)
11006 return FALSE;
11007 sect->size = note->descsz;
11008 sect->filepos = note->descpos;
11009 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11010
11011 return TRUE;
11012 }
11013
11014 return TRUE;
11015 }
11016
11017 static bfd_boolean
11018 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11019 {
11020 void *ddata = note->descdata;
11021 char buf[100];
11022 char *name;
11023 asection *sect;
11024 short sig;
11025 unsigned flags;
11026
11027 if (note->descsz < 16)
11028 return FALSE;
11029
11030 /* nto_procfs_status 'pid' field is at offset 0. */
11031 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11032
11033 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11034 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11035
11036 /* nto_procfs_status 'flags' field is at offset 8. */
11037 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11038
11039 /* nto_procfs_status 'what' field is at offset 14. */
11040 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11041 {
11042 elf_tdata (abfd)->core->signal = sig;
11043 elf_tdata (abfd)->core->lwpid = *tid;
11044 }
11045
11046 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11047 do not come from signals so we make sure we set the current
11048 thread just in case. */
11049 if (flags & 0x00000080)
11050 elf_tdata (abfd)->core->lwpid = *tid;
11051
11052 /* Make a ".qnx_core_status/%d" section. */
11053 sprintf (buf, ".qnx_core_status/%ld", *tid);
11054
11055 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11056 if (name == NULL)
11057 return FALSE;
11058 strcpy (name, buf);
11059
11060 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11061 if (sect == NULL)
11062 return FALSE;
11063
11064 sect->size = note->descsz;
11065 sect->filepos = note->descpos;
11066 sect->alignment_power = 2;
11067
11068 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11069 }
11070
11071 static bfd_boolean
11072 elfcore_grok_nto_regs (bfd *abfd,
11073 Elf_Internal_Note *note,
11074 long tid,
11075 char *base)
11076 {
11077 char buf[100];
11078 char *name;
11079 asection *sect;
11080
11081 /* Make a "(base)/%d" section. */
11082 sprintf (buf, "%s/%ld", base, tid);
11083
11084 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11085 if (name == NULL)
11086 return FALSE;
11087 strcpy (name, buf);
11088
11089 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11090 if (sect == NULL)
11091 return FALSE;
11092
11093 sect->size = note->descsz;
11094 sect->filepos = note->descpos;
11095 sect->alignment_power = 2;
11096
11097 /* This is the current thread. */
11098 if (elf_tdata (abfd)->core->lwpid == tid)
11099 return elfcore_maybe_make_sect (abfd, base, sect);
11100
11101 return TRUE;
11102 }
11103
11104 #define BFD_QNT_CORE_INFO 7
11105 #define BFD_QNT_CORE_STATUS 8
11106 #define BFD_QNT_CORE_GREG 9
11107 #define BFD_QNT_CORE_FPREG 10
11108
11109 static bfd_boolean
11110 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11111 {
11112 /* Every GREG section has a STATUS section before it. Store the
11113 tid from the previous call to pass down to the next gregs
11114 function. */
11115 static long tid = 1;
11116
11117 switch (note->type)
11118 {
11119 case BFD_QNT_CORE_INFO:
11120 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11121 case BFD_QNT_CORE_STATUS:
11122 return elfcore_grok_nto_status (abfd, note, &tid);
11123 case BFD_QNT_CORE_GREG:
11124 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11125 case BFD_QNT_CORE_FPREG:
11126 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11127 default:
11128 return TRUE;
11129 }
11130 }
11131
11132 static bfd_boolean
11133 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11134 {
11135 char *name;
11136 asection *sect;
11137 size_t len;
11138
11139 /* Use note name as section name. */
11140 len = note->namesz;
11141 name = (char *) bfd_alloc (abfd, len);
11142 if (name == NULL)
11143 return FALSE;
11144 memcpy (name, note->namedata, len);
11145 name[len - 1] = '\0';
11146
11147 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11148 if (sect == NULL)
11149 return FALSE;
11150
11151 sect->size = note->descsz;
11152 sect->filepos = note->descpos;
11153 sect->alignment_power = 1;
11154
11155 return TRUE;
11156 }
11157
11158 /* Function: elfcore_write_note
11159
11160 Inputs:
11161 buffer to hold note, and current size of buffer
11162 name of note
11163 type of note
11164 data for note
11165 size of data for note
11166
11167 Writes note to end of buffer. ELF64 notes are written exactly as
11168 for ELF32, despite the current (as of 2006) ELF gabi specifying
11169 that they ought to have 8-byte namesz and descsz field, and have
11170 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11171
11172 Return:
11173 Pointer to realloc'd buffer, *BUFSIZ updated. */
11174
11175 char *
11176 elfcore_write_note (bfd *abfd,
11177 char *buf,
11178 int *bufsiz,
11179 const char *name,
11180 int type,
11181 const void *input,
11182 int size)
11183 {
11184 Elf_External_Note *xnp;
11185 size_t namesz;
11186 size_t newspace;
11187 char *dest;
11188
11189 namesz = 0;
11190 if (name != NULL)
11191 namesz = strlen (name) + 1;
11192
11193 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11194
11195 buf = (char *) realloc (buf, *bufsiz + newspace);
11196 if (buf == NULL)
11197 return buf;
11198 dest = buf + *bufsiz;
11199 *bufsiz += newspace;
11200 xnp = (Elf_External_Note *) dest;
11201 H_PUT_32 (abfd, namesz, xnp->namesz);
11202 H_PUT_32 (abfd, size, xnp->descsz);
11203 H_PUT_32 (abfd, type, xnp->type);
11204 dest = xnp->name;
11205 if (name != NULL)
11206 {
11207 memcpy (dest, name, namesz);
11208 dest += namesz;
11209 while (namesz & 3)
11210 {
11211 *dest++ = '\0';
11212 ++namesz;
11213 }
11214 }
11215 memcpy (dest, input, size);
11216 dest += size;
11217 while (size & 3)
11218 {
11219 *dest++ = '\0';
11220 ++size;
11221 }
11222 return buf;
11223 }
11224
11225 /* gcc-8 warns (*) on all the strncpy calls in this function about
11226 possible string truncation. The "truncation" is not a bug. We
11227 have an external representation of structs with fields that are not
11228 necessarily NULL terminated and corresponding internal
11229 representation fields that are one larger so that they can always
11230 be NULL terminated.
11231 gcc versions between 4.2 and 4.6 do not allow pragma control of
11232 diagnostics inside functions, giving a hard error if you try to use
11233 the finer control available with later versions.
11234 gcc prior to 4.2 warns about diagnostic push and pop.
11235 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11236 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11237 (*) Depending on your system header files! */
11238 #if GCC_VERSION >= 8000
11239 # pragma GCC diagnostic push
11240 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11241 #endif
11242 char *
11243 elfcore_write_prpsinfo (bfd *abfd,
11244 char *buf,
11245 int *bufsiz,
11246 const char *fname,
11247 const char *psargs)
11248 {
11249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11250
11251 if (bed->elf_backend_write_core_note != NULL)
11252 {
11253 char *ret;
11254 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11255 NT_PRPSINFO, fname, psargs);
11256 if (ret != NULL)
11257 return ret;
11258 }
11259
11260 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11261 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11262 if (bed->s->elfclass == ELFCLASS32)
11263 {
11264 # if defined (HAVE_PSINFO32_T)
11265 psinfo32_t data;
11266 int note_type = NT_PSINFO;
11267 # else
11268 prpsinfo32_t data;
11269 int note_type = NT_PRPSINFO;
11270 # endif
11271
11272 memset (&data, 0, sizeof (data));
11273 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11274 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11275 return elfcore_write_note (abfd, buf, bufsiz,
11276 "CORE", note_type, &data, sizeof (data));
11277 }
11278 else
11279 # endif
11280 {
11281 # if defined (HAVE_PSINFO_T)
11282 psinfo_t data;
11283 int note_type = NT_PSINFO;
11284 # else
11285 prpsinfo_t data;
11286 int note_type = NT_PRPSINFO;
11287 # endif
11288
11289 memset (&data, 0, sizeof (data));
11290 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11291 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11292 return elfcore_write_note (abfd, buf, bufsiz,
11293 "CORE", note_type, &data, sizeof (data));
11294 }
11295 #endif /* PSINFO_T or PRPSINFO_T */
11296
11297 free (buf);
11298 return NULL;
11299 }
11300 #if GCC_VERSION >= 8000
11301 # pragma GCC diagnostic pop
11302 #endif
11303
11304 char *
11305 elfcore_write_linux_prpsinfo32
11306 (bfd *abfd, char *buf, int *bufsiz,
11307 const struct elf_internal_linux_prpsinfo *prpsinfo)
11308 {
11309 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11310 {
11311 struct elf_external_linux_prpsinfo32_ugid16 data;
11312
11313 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11314 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11315 &data, sizeof (data));
11316 }
11317 else
11318 {
11319 struct elf_external_linux_prpsinfo32_ugid32 data;
11320
11321 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11322 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11323 &data, sizeof (data));
11324 }
11325 }
11326
11327 char *
11328 elfcore_write_linux_prpsinfo64
11329 (bfd *abfd, char *buf, int *bufsiz,
11330 const struct elf_internal_linux_prpsinfo *prpsinfo)
11331 {
11332 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11333 {
11334 struct elf_external_linux_prpsinfo64_ugid16 data;
11335
11336 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 "CORE", NT_PRPSINFO, &data, sizeof (data));
11339 }
11340 else
11341 {
11342 struct elf_external_linux_prpsinfo64_ugid32 data;
11343
11344 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11345 return elfcore_write_note (abfd, buf, bufsiz,
11346 "CORE", NT_PRPSINFO, &data, sizeof (data));
11347 }
11348 }
11349
11350 char *
11351 elfcore_write_prstatus (bfd *abfd,
11352 char *buf,
11353 int *bufsiz,
11354 long pid,
11355 int cursig,
11356 const void *gregs)
11357 {
11358 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11359
11360 if (bed->elf_backend_write_core_note != NULL)
11361 {
11362 char *ret;
11363 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11364 NT_PRSTATUS,
11365 pid, cursig, gregs);
11366 if (ret != NULL)
11367 return ret;
11368 }
11369
11370 #if defined (HAVE_PRSTATUS_T)
11371 #if defined (HAVE_PRSTATUS32_T)
11372 if (bed->s->elfclass == ELFCLASS32)
11373 {
11374 prstatus32_t prstat;
11375
11376 memset (&prstat, 0, sizeof (prstat));
11377 prstat.pr_pid = pid;
11378 prstat.pr_cursig = cursig;
11379 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11380 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11381 NT_PRSTATUS, &prstat, sizeof (prstat));
11382 }
11383 else
11384 #endif
11385 {
11386 prstatus_t prstat;
11387
11388 memset (&prstat, 0, sizeof (prstat));
11389 prstat.pr_pid = pid;
11390 prstat.pr_cursig = cursig;
11391 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11392 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11393 NT_PRSTATUS, &prstat, sizeof (prstat));
11394 }
11395 #endif /* HAVE_PRSTATUS_T */
11396
11397 free (buf);
11398 return NULL;
11399 }
11400
11401 #if defined (HAVE_LWPSTATUS_T)
11402 char *
11403 elfcore_write_lwpstatus (bfd *abfd,
11404 char *buf,
11405 int *bufsiz,
11406 long pid,
11407 int cursig,
11408 const void *gregs)
11409 {
11410 lwpstatus_t lwpstat;
11411 const char *note_name = "CORE";
11412
11413 memset (&lwpstat, 0, sizeof (lwpstat));
11414 lwpstat.pr_lwpid = pid >> 16;
11415 lwpstat.pr_cursig = cursig;
11416 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11417 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11418 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11419 #if !defined(gregs)
11420 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11421 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11422 #else
11423 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11424 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11425 #endif
11426 #endif
11427 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11428 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11429 }
11430 #endif /* HAVE_LWPSTATUS_T */
11431
11432 #if defined (HAVE_PSTATUS_T)
11433 char *
11434 elfcore_write_pstatus (bfd *abfd,
11435 char *buf,
11436 int *bufsiz,
11437 long pid,
11438 int cursig ATTRIBUTE_UNUSED,
11439 const void *gregs ATTRIBUTE_UNUSED)
11440 {
11441 const char *note_name = "CORE";
11442 #if defined (HAVE_PSTATUS32_T)
11443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11444
11445 if (bed->s->elfclass == ELFCLASS32)
11446 {
11447 pstatus32_t pstat;
11448
11449 memset (&pstat, 0, sizeof (pstat));
11450 pstat.pr_pid = pid & 0xffff;
11451 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11452 NT_PSTATUS, &pstat, sizeof (pstat));
11453 return buf;
11454 }
11455 else
11456 #endif
11457 {
11458 pstatus_t pstat;
11459
11460 memset (&pstat, 0, sizeof (pstat));
11461 pstat.pr_pid = pid & 0xffff;
11462 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11463 NT_PSTATUS, &pstat, sizeof (pstat));
11464 return buf;
11465 }
11466 }
11467 #endif /* HAVE_PSTATUS_T */
11468
11469 char *
11470 elfcore_write_prfpreg (bfd *abfd,
11471 char *buf,
11472 int *bufsiz,
11473 const void *fpregs,
11474 int size)
11475 {
11476 const char *note_name = "CORE";
11477 return elfcore_write_note (abfd, buf, bufsiz,
11478 note_name, NT_FPREGSET, fpregs, size);
11479 }
11480
11481 char *
11482 elfcore_write_prxfpreg (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const void *xfpregs,
11486 int size)
11487 {
11488 char *note_name = "LINUX";
11489 return elfcore_write_note (abfd, buf, bufsiz,
11490 note_name, NT_PRXFPREG, xfpregs, size);
11491 }
11492
11493 char *
11494 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11495 const void *xfpregs, int size)
11496 {
11497 char *note_name;
11498 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11499 note_name = "FreeBSD";
11500 else
11501 note_name = "LINUX";
11502 return elfcore_write_note (abfd, buf, bufsiz,
11503 note_name, NT_X86_XSTATE, xfpregs, size);
11504 }
11505
11506 char *
11507 elfcore_write_ppc_vmx (bfd *abfd,
11508 char *buf,
11509 int *bufsiz,
11510 const void *ppc_vmx,
11511 int size)
11512 {
11513 char *note_name = "LINUX";
11514 return elfcore_write_note (abfd, buf, bufsiz,
11515 note_name, NT_PPC_VMX, ppc_vmx, size);
11516 }
11517
11518 char *
11519 elfcore_write_ppc_vsx (bfd *abfd,
11520 char *buf,
11521 int *bufsiz,
11522 const void *ppc_vsx,
11523 int size)
11524 {
11525 char *note_name = "LINUX";
11526 return elfcore_write_note (abfd, buf, bufsiz,
11527 note_name, NT_PPC_VSX, ppc_vsx, size);
11528 }
11529
11530 char *
11531 elfcore_write_ppc_tar (bfd *abfd,
11532 char *buf,
11533 int *bufsiz,
11534 const void *ppc_tar,
11535 int size)
11536 {
11537 char *note_name = "LINUX";
11538 return elfcore_write_note (abfd, buf, bufsiz,
11539 note_name, NT_PPC_TAR, ppc_tar, size);
11540 }
11541
11542 char *
11543 elfcore_write_ppc_ppr (bfd *abfd,
11544 char *buf,
11545 int *bufsiz,
11546 const void *ppc_ppr,
11547 int size)
11548 {
11549 char *note_name = "LINUX";
11550 return elfcore_write_note (abfd, buf, bufsiz,
11551 note_name, NT_PPC_PPR, ppc_ppr, size);
11552 }
11553
11554 char *
11555 elfcore_write_ppc_dscr (bfd *abfd,
11556 char *buf,
11557 int *bufsiz,
11558 const void *ppc_dscr,
11559 int size)
11560 {
11561 char *note_name = "LINUX";
11562 return elfcore_write_note (abfd, buf, bufsiz,
11563 note_name, NT_PPC_DSCR, ppc_dscr, size);
11564 }
11565
11566 char *
11567 elfcore_write_ppc_ebb (bfd *abfd,
11568 char *buf,
11569 int *bufsiz,
11570 const void *ppc_ebb,
11571 int size)
11572 {
11573 char *note_name = "LINUX";
11574 return elfcore_write_note (abfd, buf, bufsiz,
11575 note_name, NT_PPC_EBB, ppc_ebb, size);
11576 }
11577
11578 char *
11579 elfcore_write_ppc_pmu (bfd *abfd,
11580 char *buf,
11581 int *bufsiz,
11582 const void *ppc_pmu,
11583 int size)
11584 {
11585 char *note_name = "LINUX";
11586 return elfcore_write_note (abfd, buf, bufsiz,
11587 note_name, NT_PPC_PMU, ppc_pmu, size);
11588 }
11589
11590 char *
11591 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11592 char *buf,
11593 int *bufsiz,
11594 const void *ppc_tm_cgpr,
11595 int size)
11596 {
11597 char *note_name = "LINUX";
11598 return elfcore_write_note (abfd, buf, bufsiz,
11599 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11600 }
11601
11602 char *
11603 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11604 char *buf,
11605 int *bufsiz,
11606 const void *ppc_tm_cfpr,
11607 int size)
11608 {
11609 char *note_name = "LINUX";
11610 return elfcore_write_note (abfd, buf, bufsiz,
11611 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11612 }
11613
11614 char *
11615 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11616 char *buf,
11617 int *bufsiz,
11618 const void *ppc_tm_cvmx,
11619 int size)
11620 {
11621 char *note_name = "LINUX";
11622 return elfcore_write_note (abfd, buf, bufsiz,
11623 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11624 }
11625
11626 char *
11627 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11628 char *buf,
11629 int *bufsiz,
11630 const void *ppc_tm_cvsx,
11631 int size)
11632 {
11633 char *note_name = "LINUX";
11634 return elfcore_write_note (abfd, buf, bufsiz,
11635 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11636 }
11637
11638 char *
11639 elfcore_write_ppc_tm_spr (bfd *abfd,
11640 char *buf,
11641 int *bufsiz,
11642 const void *ppc_tm_spr,
11643 int size)
11644 {
11645 char *note_name = "LINUX";
11646 return elfcore_write_note (abfd, buf, bufsiz,
11647 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11648 }
11649
11650 char *
11651 elfcore_write_ppc_tm_ctar (bfd *abfd,
11652 char *buf,
11653 int *bufsiz,
11654 const void *ppc_tm_ctar,
11655 int size)
11656 {
11657 char *note_name = "LINUX";
11658 return elfcore_write_note (abfd, buf, bufsiz,
11659 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11660 }
11661
11662 char *
11663 elfcore_write_ppc_tm_cppr (bfd *abfd,
11664 char *buf,
11665 int *bufsiz,
11666 const void *ppc_tm_cppr,
11667 int size)
11668 {
11669 char *note_name = "LINUX";
11670 return elfcore_write_note (abfd, buf, bufsiz,
11671 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11672 }
11673
11674 char *
11675 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11676 char *buf,
11677 int *bufsiz,
11678 const void *ppc_tm_cdscr,
11679 int size)
11680 {
11681 char *note_name = "LINUX";
11682 return elfcore_write_note (abfd, buf, bufsiz,
11683 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11684 }
11685
11686 static char *
11687 elfcore_write_s390_high_gprs (bfd *abfd,
11688 char *buf,
11689 int *bufsiz,
11690 const void *s390_high_gprs,
11691 int size)
11692 {
11693 char *note_name = "LINUX";
11694 return elfcore_write_note (abfd, buf, bufsiz,
11695 note_name, NT_S390_HIGH_GPRS,
11696 s390_high_gprs, size);
11697 }
11698
11699 char *
11700 elfcore_write_s390_timer (bfd *abfd,
11701 char *buf,
11702 int *bufsiz,
11703 const void *s390_timer,
11704 int size)
11705 {
11706 char *note_name = "LINUX";
11707 return elfcore_write_note (abfd, buf, bufsiz,
11708 note_name, NT_S390_TIMER, s390_timer, size);
11709 }
11710
11711 char *
11712 elfcore_write_s390_todcmp (bfd *abfd,
11713 char *buf,
11714 int *bufsiz,
11715 const void *s390_todcmp,
11716 int size)
11717 {
11718 char *note_name = "LINUX";
11719 return elfcore_write_note (abfd, buf, bufsiz,
11720 note_name, NT_S390_TODCMP, s390_todcmp, size);
11721 }
11722
11723 char *
11724 elfcore_write_s390_todpreg (bfd *abfd,
11725 char *buf,
11726 int *bufsiz,
11727 const void *s390_todpreg,
11728 int size)
11729 {
11730 char *note_name = "LINUX";
11731 return elfcore_write_note (abfd, buf, bufsiz,
11732 note_name, NT_S390_TODPREG, s390_todpreg, size);
11733 }
11734
11735 char *
11736 elfcore_write_s390_ctrs (bfd *abfd,
11737 char *buf,
11738 int *bufsiz,
11739 const void *s390_ctrs,
11740 int size)
11741 {
11742 char *note_name = "LINUX";
11743 return elfcore_write_note (abfd, buf, bufsiz,
11744 note_name, NT_S390_CTRS, s390_ctrs, size);
11745 }
11746
11747 char *
11748 elfcore_write_s390_prefix (bfd *abfd,
11749 char *buf,
11750 int *bufsiz,
11751 const void *s390_prefix,
11752 int size)
11753 {
11754 char *note_name = "LINUX";
11755 return elfcore_write_note (abfd, buf, bufsiz,
11756 note_name, NT_S390_PREFIX, s390_prefix, size);
11757 }
11758
11759 char *
11760 elfcore_write_s390_last_break (bfd *abfd,
11761 char *buf,
11762 int *bufsiz,
11763 const void *s390_last_break,
11764 int size)
11765 {
11766 char *note_name = "LINUX";
11767 return elfcore_write_note (abfd, buf, bufsiz,
11768 note_name, NT_S390_LAST_BREAK,
11769 s390_last_break, size);
11770 }
11771
11772 char *
11773 elfcore_write_s390_system_call (bfd *abfd,
11774 char *buf,
11775 int *bufsiz,
11776 const void *s390_system_call,
11777 int size)
11778 {
11779 char *note_name = "LINUX";
11780 return elfcore_write_note (abfd, buf, bufsiz,
11781 note_name, NT_S390_SYSTEM_CALL,
11782 s390_system_call, size);
11783 }
11784
11785 char *
11786 elfcore_write_s390_tdb (bfd *abfd,
11787 char *buf,
11788 int *bufsiz,
11789 const void *s390_tdb,
11790 int size)
11791 {
11792 char *note_name = "LINUX";
11793 return elfcore_write_note (abfd, buf, bufsiz,
11794 note_name, NT_S390_TDB, s390_tdb, size);
11795 }
11796
11797 char *
11798 elfcore_write_s390_vxrs_low (bfd *abfd,
11799 char *buf,
11800 int *bufsiz,
11801 const void *s390_vxrs_low,
11802 int size)
11803 {
11804 char *note_name = "LINUX";
11805 return elfcore_write_note (abfd, buf, bufsiz,
11806 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11807 }
11808
11809 char *
11810 elfcore_write_s390_vxrs_high (bfd *abfd,
11811 char *buf,
11812 int *bufsiz,
11813 const void *s390_vxrs_high,
11814 int size)
11815 {
11816 char *note_name = "LINUX";
11817 return elfcore_write_note (abfd, buf, bufsiz,
11818 note_name, NT_S390_VXRS_HIGH,
11819 s390_vxrs_high, size);
11820 }
11821
11822 char *
11823 elfcore_write_s390_gs_cb (bfd *abfd,
11824 char *buf,
11825 int *bufsiz,
11826 const void *s390_gs_cb,
11827 int size)
11828 {
11829 char *note_name = "LINUX";
11830 return elfcore_write_note (abfd, buf, bufsiz,
11831 note_name, NT_S390_GS_CB,
11832 s390_gs_cb, size);
11833 }
11834
11835 char *
11836 elfcore_write_s390_gs_bc (bfd *abfd,
11837 char *buf,
11838 int *bufsiz,
11839 const void *s390_gs_bc,
11840 int size)
11841 {
11842 char *note_name = "LINUX";
11843 return elfcore_write_note (abfd, buf, bufsiz,
11844 note_name, NT_S390_GS_BC,
11845 s390_gs_bc, size);
11846 }
11847
11848 char *
11849 elfcore_write_arm_vfp (bfd *abfd,
11850 char *buf,
11851 int *bufsiz,
11852 const void *arm_vfp,
11853 int size)
11854 {
11855 char *note_name = "LINUX";
11856 return elfcore_write_note (abfd, buf, bufsiz,
11857 note_name, NT_ARM_VFP, arm_vfp, size);
11858 }
11859
11860 char *
11861 elfcore_write_aarch_tls (bfd *abfd,
11862 char *buf,
11863 int *bufsiz,
11864 const void *aarch_tls,
11865 int size)
11866 {
11867 char *note_name = "LINUX";
11868 return elfcore_write_note (abfd, buf, bufsiz,
11869 note_name, NT_ARM_TLS, aarch_tls, size);
11870 }
11871
11872 char *
11873 elfcore_write_aarch_hw_break (bfd *abfd,
11874 char *buf,
11875 int *bufsiz,
11876 const void *aarch_hw_break,
11877 int size)
11878 {
11879 char *note_name = "LINUX";
11880 return elfcore_write_note (abfd, buf, bufsiz,
11881 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11882 }
11883
11884 char *
11885 elfcore_write_aarch_hw_watch (bfd *abfd,
11886 char *buf,
11887 int *bufsiz,
11888 const void *aarch_hw_watch,
11889 int size)
11890 {
11891 char *note_name = "LINUX";
11892 return elfcore_write_note (abfd, buf, bufsiz,
11893 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11894 }
11895
11896 char *
11897 elfcore_write_aarch_sve (bfd *abfd,
11898 char *buf,
11899 int *bufsiz,
11900 const void *aarch_sve,
11901 int size)
11902 {
11903 char *note_name = "LINUX";
11904 return elfcore_write_note (abfd, buf, bufsiz,
11905 note_name, NT_ARM_SVE, aarch_sve, size);
11906 }
11907
11908 char *
11909 elfcore_write_aarch_pauth (bfd *abfd,
11910 char *buf,
11911 int *bufsiz,
11912 const void *aarch_pauth,
11913 int size)
11914 {
11915 char *note_name = "LINUX";
11916 return elfcore_write_note (abfd, buf, bufsiz,
11917 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11918 }
11919
11920 char *
11921 elfcore_write_arc_v2 (bfd *abfd,
11922 char *buf,
11923 int *bufsiz,
11924 const void *arc_v2,
11925 int size)
11926 {
11927 char *note_name = "LINUX";
11928 return elfcore_write_note (abfd, buf, bufsiz,
11929 note_name, NT_ARC_V2, arc_v2, size);
11930 }
11931
11932 char *
11933 elfcore_write_register_note (bfd *abfd,
11934 char *buf,
11935 int *bufsiz,
11936 const char *section,
11937 const void *data,
11938 int size)
11939 {
11940 if (strcmp (section, ".reg2") == 0)
11941 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11942 if (strcmp (section, ".reg-xfp") == 0)
11943 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11944 if (strcmp (section, ".reg-xstate") == 0)
11945 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11946 if (strcmp (section, ".reg-ppc-vmx") == 0)
11947 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11948 if (strcmp (section, ".reg-ppc-vsx") == 0)
11949 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11950 if (strcmp (section, ".reg-ppc-tar") == 0)
11951 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11952 if (strcmp (section, ".reg-ppc-ppr") == 0)
11953 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11954 if (strcmp (section, ".reg-ppc-dscr") == 0)
11955 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11956 if (strcmp (section, ".reg-ppc-ebb") == 0)
11957 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11958 if (strcmp (section, ".reg-ppc-pmu") == 0)
11959 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11960 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11961 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11962 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11963 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11964 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11965 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11966 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11967 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11968 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11969 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11970 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11971 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11972 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11973 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11974 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11975 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11976 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11977 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11978 if (strcmp (section, ".reg-s390-timer") == 0)
11979 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11980 if (strcmp (section, ".reg-s390-todcmp") == 0)
11981 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11982 if (strcmp (section, ".reg-s390-todpreg") == 0)
11983 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11984 if (strcmp (section, ".reg-s390-ctrs") == 0)
11985 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11986 if (strcmp (section, ".reg-s390-prefix") == 0)
11987 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11988 if (strcmp (section, ".reg-s390-last-break") == 0)
11989 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11990 if (strcmp (section, ".reg-s390-system-call") == 0)
11991 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11992 if (strcmp (section, ".reg-s390-tdb") == 0)
11993 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11994 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11995 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11996 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11997 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11998 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11999 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12000 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12001 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12002 if (strcmp (section, ".reg-arm-vfp") == 0)
12003 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12004 if (strcmp (section, ".reg-aarch-tls") == 0)
12005 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12006 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12007 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12008 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12009 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12010 if (strcmp (section, ".reg-aarch-sve") == 0)
12011 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12012 if (strcmp (section, ".reg-aarch-pauth") == 0)
12013 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12014 if (strcmp (section, ".reg-arc-v2") == 0)
12015 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12016 return NULL;
12017 }
12018
12019 static bfd_boolean
12020 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12021 size_t align)
12022 {
12023 char *p;
12024
12025 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12026 gABI specifies that PT_NOTE alignment should be aligned to 4
12027 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12028 align is less than 4, we use 4 byte alignment. */
12029 if (align < 4)
12030 align = 4;
12031 if (align != 4 && align != 8)
12032 return FALSE;
12033
12034 p = buf;
12035 while (p < buf + size)
12036 {
12037 Elf_External_Note *xnp = (Elf_External_Note *) p;
12038 Elf_Internal_Note in;
12039
12040 if (offsetof (Elf_External_Note, name) > buf - p + size)
12041 return FALSE;
12042
12043 in.type = H_GET_32 (abfd, xnp->type);
12044
12045 in.namesz = H_GET_32 (abfd, xnp->namesz);
12046 in.namedata = xnp->name;
12047 if (in.namesz > buf - in.namedata + size)
12048 return FALSE;
12049
12050 in.descsz = H_GET_32 (abfd, xnp->descsz);
12051 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12052 in.descpos = offset + (in.descdata - buf);
12053 if (in.descsz != 0
12054 && (in.descdata >= buf + size
12055 || in.descsz > buf - in.descdata + size))
12056 return FALSE;
12057
12058 switch (bfd_get_format (abfd))
12059 {
12060 default:
12061 return TRUE;
12062
12063 case bfd_core:
12064 {
12065 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12066 struct
12067 {
12068 const char * string;
12069 size_t len;
12070 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12071 }
12072 grokers[] =
12073 {
12074 GROKER_ELEMENT ("", elfcore_grok_note),
12075 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12076 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12077 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12078 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12079 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12080 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12081 };
12082 #undef GROKER_ELEMENT
12083 int i;
12084
12085 for (i = ARRAY_SIZE (grokers); i--;)
12086 {
12087 if (in.namesz >= grokers[i].len
12088 && strncmp (in.namedata, grokers[i].string,
12089 grokers[i].len) == 0)
12090 {
12091 if (! grokers[i].func (abfd, & in))
12092 return FALSE;
12093 break;
12094 }
12095 }
12096 break;
12097 }
12098
12099 case bfd_object:
12100 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12101 {
12102 if (! elfobj_grok_gnu_note (abfd, &in))
12103 return FALSE;
12104 }
12105 else if (in.namesz == sizeof "stapsdt"
12106 && strcmp (in.namedata, "stapsdt") == 0)
12107 {
12108 if (! elfobj_grok_stapsdt_note (abfd, &in))
12109 return FALSE;
12110 }
12111 break;
12112 }
12113
12114 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12115 }
12116
12117 return TRUE;
12118 }
12119
12120 bfd_boolean
12121 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12122 size_t align)
12123 {
12124 char *buf;
12125
12126 if (size == 0 || (size + 1) == 0)
12127 return TRUE;
12128
12129 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12130 return FALSE;
12131
12132 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12133 if (buf == NULL)
12134 return FALSE;
12135
12136 /* PR 17512: file: ec08f814
12137 0-termintate the buffer so that string searches will not overflow. */
12138 buf[size] = 0;
12139
12140 if (!elf_parse_notes (abfd, buf, size, offset, align))
12141 {
12142 free (buf);
12143 return FALSE;
12144 }
12145
12146 free (buf);
12147 return TRUE;
12148 }
12149 \f
12150 /* Providing external access to the ELF program header table. */
12151
12152 /* Return an upper bound on the number of bytes required to store a
12153 copy of ABFD's program header table entries. Return -1 if an error
12154 occurs; bfd_get_error will return an appropriate code. */
12155
12156 long
12157 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12158 {
12159 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12160 {
12161 bfd_set_error (bfd_error_wrong_format);
12162 return -1;
12163 }
12164
12165 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12166 }
12167
12168 /* Copy ABFD's program header table entries to *PHDRS. The entries
12169 will be stored as an array of Elf_Internal_Phdr structures, as
12170 defined in include/elf/internal.h. To find out how large the
12171 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12172
12173 Return the number of program header table entries read, or -1 if an
12174 error occurs; bfd_get_error will return an appropriate code. */
12175
12176 int
12177 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12178 {
12179 int num_phdrs;
12180
12181 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12182 {
12183 bfd_set_error (bfd_error_wrong_format);
12184 return -1;
12185 }
12186
12187 num_phdrs = elf_elfheader (abfd)->e_phnum;
12188 if (num_phdrs != 0)
12189 memcpy (phdrs, elf_tdata (abfd)->phdr,
12190 num_phdrs * sizeof (Elf_Internal_Phdr));
12191
12192 return num_phdrs;
12193 }
12194
12195 enum elf_reloc_type_class
12196 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12197 const asection *rel_sec ATTRIBUTE_UNUSED,
12198 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12199 {
12200 return reloc_class_normal;
12201 }
12202
12203 /* For RELA architectures, return the relocation value for a
12204 relocation against a local symbol. */
12205
12206 bfd_vma
12207 _bfd_elf_rela_local_sym (bfd *abfd,
12208 Elf_Internal_Sym *sym,
12209 asection **psec,
12210 Elf_Internal_Rela *rel)
12211 {
12212 asection *sec = *psec;
12213 bfd_vma relocation;
12214
12215 relocation = (sec->output_section->vma
12216 + sec->output_offset
12217 + sym->st_value);
12218 if ((sec->flags & SEC_MERGE)
12219 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12220 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12221 {
12222 rel->r_addend =
12223 _bfd_merged_section_offset (abfd, psec,
12224 elf_section_data (sec)->sec_info,
12225 sym->st_value + rel->r_addend);
12226 if (sec != *psec)
12227 {
12228 /* If we have changed the section, and our original section is
12229 marked with SEC_EXCLUDE, it means that the original
12230 SEC_MERGE section has been completely subsumed in some
12231 other SEC_MERGE section. In this case, we need to leave
12232 some info around for --emit-relocs. */
12233 if ((sec->flags & SEC_EXCLUDE) != 0)
12234 sec->kept_section = *psec;
12235 sec = *psec;
12236 }
12237 rel->r_addend -= relocation;
12238 rel->r_addend += sec->output_section->vma + sec->output_offset;
12239 }
12240 return relocation;
12241 }
12242
12243 bfd_vma
12244 _bfd_elf_rel_local_sym (bfd *abfd,
12245 Elf_Internal_Sym *sym,
12246 asection **psec,
12247 bfd_vma addend)
12248 {
12249 asection *sec = *psec;
12250
12251 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12252 return sym->st_value + addend;
12253
12254 return _bfd_merged_section_offset (abfd, psec,
12255 elf_section_data (sec)->sec_info,
12256 sym->st_value + addend);
12257 }
12258
12259 /* Adjust an address within a section. Given OFFSET within SEC, return
12260 the new offset within the section, based upon changes made to the
12261 section. Returns -1 if the offset is now invalid.
12262 The offset (in abnd out) is in target sized bytes, however big a
12263 byte may be. */
12264
12265 bfd_vma
12266 _bfd_elf_section_offset (bfd *abfd,
12267 struct bfd_link_info *info,
12268 asection *sec,
12269 bfd_vma offset)
12270 {
12271 switch (sec->sec_info_type)
12272 {
12273 case SEC_INFO_TYPE_STABS:
12274 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12275 offset);
12276 case SEC_INFO_TYPE_EH_FRAME:
12277 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12278
12279 default:
12280 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12281 {
12282 /* Reverse the offset. */
12283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12284 bfd_size_type address_size = bed->s->arch_size / 8;
12285
12286 /* address_size and sec->size are in octets. Convert
12287 to bytes before subtracting the original offset. */
12288 offset = ((sec->size - address_size)
12289 / bfd_octets_per_byte (abfd, sec) - offset);
12290 }
12291 return offset;
12292 }
12293 }
12294 \f
12295 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12296 reconstruct an ELF file by reading the segments out of remote memory
12297 based on the ELF file header at EHDR_VMA and the ELF program headers it
12298 points to. If not null, *LOADBASEP is filled in with the difference
12299 between the VMAs from which the segments were read, and the VMAs the
12300 file headers (and hence BFD's idea of each section's VMA) put them at.
12301
12302 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12303 remote memory at target address VMA into the local buffer at MYADDR; it
12304 should return zero on success or an `errno' code on failure. TEMPL must
12305 be a BFD for an ELF target with the word size and byte order found in
12306 the remote memory. */
12307
12308 bfd *
12309 bfd_elf_bfd_from_remote_memory
12310 (bfd *templ,
12311 bfd_vma ehdr_vma,
12312 bfd_size_type size,
12313 bfd_vma *loadbasep,
12314 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12315 {
12316 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12317 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12318 }
12319 \f
12320 long
12321 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12322 long symcount ATTRIBUTE_UNUSED,
12323 asymbol **syms ATTRIBUTE_UNUSED,
12324 long dynsymcount,
12325 asymbol **dynsyms,
12326 asymbol **ret)
12327 {
12328 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12329 asection *relplt;
12330 asymbol *s;
12331 const char *relplt_name;
12332 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12333 arelent *p;
12334 long count, i, n;
12335 size_t size;
12336 Elf_Internal_Shdr *hdr;
12337 char *names;
12338 asection *plt;
12339
12340 *ret = NULL;
12341
12342 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12343 return 0;
12344
12345 if (dynsymcount <= 0)
12346 return 0;
12347
12348 if (!bed->plt_sym_val)
12349 return 0;
12350
12351 relplt_name = bed->relplt_name;
12352 if (relplt_name == NULL)
12353 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12354 relplt = bfd_get_section_by_name (abfd, relplt_name);
12355 if (relplt == NULL)
12356 return 0;
12357
12358 hdr = &elf_section_data (relplt)->this_hdr;
12359 if (hdr->sh_link != elf_dynsymtab (abfd)
12360 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12361 return 0;
12362
12363 plt = bfd_get_section_by_name (abfd, ".plt");
12364 if (plt == NULL)
12365 return 0;
12366
12367 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12368 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12369 return -1;
12370
12371 count = relplt->size / hdr->sh_entsize;
12372 size = count * sizeof (asymbol);
12373 p = relplt->relocation;
12374 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12375 {
12376 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12377 if (p->addend != 0)
12378 {
12379 #ifdef BFD64
12380 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12381 #else
12382 size += sizeof ("+0x") - 1 + 8;
12383 #endif
12384 }
12385 }
12386
12387 s = *ret = (asymbol *) bfd_malloc (size);
12388 if (s == NULL)
12389 return -1;
12390
12391 names = (char *) (s + count);
12392 p = relplt->relocation;
12393 n = 0;
12394 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12395 {
12396 size_t len;
12397 bfd_vma addr;
12398
12399 addr = bed->plt_sym_val (i, plt, p);
12400 if (addr == (bfd_vma) -1)
12401 continue;
12402
12403 *s = **p->sym_ptr_ptr;
12404 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12405 we are defining a symbol, ensure one of them is set. */
12406 if ((s->flags & BSF_LOCAL) == 0)
12407 s->flags |= BSF_GLOBAL;
12408 s->flags |= BSF_SYNTHETIC;
12409 s->section = plt;
12410 s->value = addr - plt->vma;
12411 s->name = names;
12412 s->udata.p = NULL;
12413 len = strlen ((*p->sym_ptr_ptr)->name);
12414 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12415 names += len;
12416 if (p->addend != 0)
12417 {
12418 char buf[30], *a;
12419
12420 memcpy (names, "+0x", sizeof ("+0x") - 1);
12421 names += sizeof ("+0x") - 1;
12422 bfd_sprintf_vma (abfd, buf, p->addend);
12423 for (a = buf; *a == '0'; ++a)
12424 ;
12425 len = strlen (a);
12426 memcpy (names, a, len);
12427 names += len;
12428 }
12429 memcpy (names, "@plt", sizeof ("@plt"));
12430 names += sizeof ("@plt");
12431 ++s, ++n;
12432 }
12433
12434 return n;
12435 }
12436
12437 /* It is only used by x86-64 so far.
12438 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12439 but current usage would allow all of _bfd_std_section to be zero. */
12440 static const asymbol lcomm_sym
12441 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12442 asection _bfd_elf_large_com_section
12443 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12444 "LARGE_COMMON", 0, SEC_IS_COMMON);
12445
12446 bfd_boolean
12447 _bfd_elf_final_write_processing (bfd *abfd)
12448 {
12449 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12450
12451 i_ehdrp = elf_elfheader (abfd);
12452
12453 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12454 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12455
12456 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12457 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12458 STB_GNU_UNIQUE binding. */
12459 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12460 {
12461 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12462 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12463 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12464 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12465 {
12466 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12467 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12468 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12469 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12470 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12471 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12472 bfd_set_error (bfd_error_sorry);
12473 return FALSE;
12474 }
12475 }
12476 return TRUE;
12477 }
12478
12479
12480 /* Return TRUE for ELF symbol types that represent functions.
12481 This is the default version of this function, which is sufficient for
12482 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12483
12484 bfd_boolean
12485 _bfd_elf_is_function_type (unsigned int type)
12486 {
12487 return (type == STT_FUNC
12488 || type == STT_GNU_IFUNC);
12489 }
12490
12491 /* If the ELF symbol SYM might be a function in SEC, return the
12492 function size and set *CODE_OFF to the function's entry point,
12493 otherwise return zero. */
12494
12495 bfd_size_type
12496 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12497 bfd_vma *code_off)
12498 {
12499 bfd_size_type size;
12500
12501 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12502 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12503 || sym->section != sec)
12504 return 0;
12505
12506 *code_off = sym->value;
12507 size = 0;
12508 if (!(sym->flags & BSF_SYNTHETIC))
12509 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12510 if (size == 0)
12511 size = 1;
12512 return size;
12513 }
12514
12515 /* Set to non-zero to enable some debug messages. */
12516 #define DEBUG_SECONDARY_RELOCS 0
12517
12518 /* An internal-to-the-bfd-library only section type
12519 used to indicate a cached secondary reloc section. */
12520 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12521
12522 /* Create a BFD section to hold a secondary reloc section. */
12523
12524 bfd_boolean
12525 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12526 Elf_Internal_Shdr *hdr,
12527 const char * name,
12528 unsigned int shindex)
12529 {
12530 /* We only support RELA secondary relocs. */
12531 if (hdr->sh_type != SHT_RELA)
12532 return FALSE;
12533
12534 #if DEBUG_SECONDARY_RELOCS
12535 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12536 #endif
12537 hdr->sh_type = SHT_SECONDARY_RELOC;
12538 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12539 }
12540
12541 /* Read in any secondary relocs associated with SEC. */
12542
12543 bfd_boolean
12544 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12545 asection * sec,
12546 asymbol ** symbols)
12547 {
12548 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12549 asection * relsec;
12550 bfd_boolean result = TRUE;
12551 bfd_vma (*r_sym) (bfd_vma);
12552
12553 #if BFD_DEFAULT_TARGET_SIZE > 32
12554 if (bfd_arch_bits_per_address (abfd) != 32)
12555 r_sym = elf64_r_sym;
12556 else
12557 #endif
12558 r_sym = elf32_r_sym;
12559
12560 /* Discover if there are any secondary reloc sections
12561 associated with SEC. */
12562 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12563 {
12564 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12565
12566 if (hdr->sh_type == SHT_SECONDARY_RELOC
12567 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12568 && (hdr->sh_entsize == ebd->s->sizeof_rel
12569 || hdr->sh_entsize == ebd->s->sizeof_rela))
12570 {
12571 bfd_byte * native_relocs;
12572 bfd_byte * native_reloc;
12573 arelent * internal_relocs;
12574 arelent * internal_reloc;
12575 unsigned int i;
12576 unsigned int entsize;
12577 unsigned int symcount;
12578 unsigned int reloc_count;
12579 size_t amt;
12580
12581 if (ebd->elf_info_to_howto == NULL)
12582 return FALSE;
12583
12584 #if DEBUG_SECONDARY_RELOCS
12585 fprintf (stderr, "read secondary relocs for %s from %s\n",
12586 sec->name, relsec->name);
12587 #endif
12588 entsize = hdr->sh_entsize;
12589
12590 native_relocs = bfd_malloc (hdr->sh_size);
12591 if (native_relocs == NULL)
12592 {
12593 result = FALSE;
12594 continue;
12595 }
12596
12597 reloc_count = NUM_SHDR_ENTRIES (hdr);
12598 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12599 {
12600 free (native_relocs);
12601 bfd_set_error (bfd_error_file_too_big);
12602 result = FALSE;
12603 continue;
12604 }
12605
12606 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12607 if (internal_relocs == NULL)
12608 {
12609 free (native_relocs);
12610 result = FALSE;
12611 continue;
12612 }
12613
12614 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12615 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12616 != hdr->sh_size))
12617 {
12618 free (native_relocs);
12619 /* The internal_relocs will be freed when
12620 the memory for the bfd is released. */
12621 result = FALSE;
12622 continue;
12623 }
12624
12625 symcount = bfd_get_symcount (abfd);
12626
12627 for (i = 0, internal_reloc = internal_relocs,
12628 native_reloc = native_relocs;
12629 i < reloc_count;
12630 i++, internal_reloc++, native_reloc += entsize)
12631 {
12632 bfd_boolean res;
12633 Elf_Internal_Rela rela;
12634
12635 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12636
12637 /* The address of an ELF reloc is section relative for an object
12638 file, and absolute for an executable file or shared library.
12639 The address of a normal BFD reloc is always section relative,
12640 and the address of a dynamic reloc is absolute.. */
12641 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12642 internal_reloc->address = rela.r_offset;
12643 else
12644 internal_reloc->address = rela.r_offset - sec->vma;
12645
12646 if (r_sym (rela.r_info) == STN_UNDEF)
12647 {
12648 /* FIXME: This and the error case below mean that we
12649 have a symbol on relocs that is not elf_symbol_type. */
12650 internal_reloc->sym_ptr_ptr =
12651 bfd_abs_section_ptr->symbol_ptr_ptr;
12652 }
12653 else if (r_sym (rela.r_info) > symcount)
12654 {
12655 _bfd_error_handler
12656 /* xgettext:c-format */
12657 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12658 abfd, sec, i, (long) r_sym (rela.r_info));
12659 bfd_set_error (bfd_error_bad_value);
12660 internal_reloc->sym_ptr_ptr =
12661 bfd_abs_section_ptr->symbol_ptr_ptr;
12662 result = FALSE;
12663 }
12664 else
12665 {
12666 asymbol **ps;
12667
12668 ps = symbols + r_sym (rela.r_info) - 1;
12669
12670 internal_reloc->sym_ptr_ptr = ps;
12671 /* Make sure that this symbol is not removed by strip. */
12672 (*ps)->flags |= BSF_KEEP;
12673 }
12674
12675 internal_reloc->addend = rela.r_addend;
12676
12677 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12678 if (! res || internal_reloc->howto == NULL)
12679 {
12680 #if DEBUG_SECONDARY_RELOCS
12681 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12682 rela.r_info);
12683 #endif
12684 result = FALSE;
12685 }
12686 }
12687
12688 free (native_relocs);
12689 /* Store the internal relocs. */
12690 elf_section_data (relsec)->sec_info = internal_relocs;
12691 }
12692 }
12693
12694 return result;
12695 }
12696
12697 /* Set the ELF section header fields of an output secondary reloc section. */
12698
12699 bfd_boolean
12700 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12701 bfd * obfd ATTRIBUTE_UNUSED,
12702 const Elf_Internal_Shdr * isection,
12703 Elf_Internal_Shdr * osection)
12704 {
12705 asection * isec;
12706 asection * osec;
12707 struct bfd_elf_section_data * esd;
12708
12709 if (isection == NULL)
12710 return FALSE;
12711
12712 if (isection->sh_type != SHT_SECONDARY_RELOC)
12713 return TRUE;
12714
12715 isec = isection->bfd_section;
12716 if (isec == NULL)
12717 return FALSE;
12718
12719 osec = osection->bfd_section;
12720 if (osec == NULL)
12721 return FALSE;
12722
12723 esd = elf_section_data (osec);
12724 BFD_ASSERT (esd->sec_info == NULL);
12725 esd->sec_info = elf_section_data (isec)->sec_info;
12726 osection->sh_type = SHT_RELA;
12727 osection->sh_link = elf_onesymtab (obfd);
12728 if (osection->sh_link == 0)
12729 {
12730 /* There is no symbol table - we are hosed... */
12731 _bfd_error_handler
12732 /* xgettext:c-format */
12733 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12734 obfd, osec);
12735 bfd_set_error (bfd_error_bad_value);
12736 return FALSE;
12737 }
12738
12739 /* Find the output section that corresponds to the isection's sh_info link. */
12740 if (isection->sh_info == 0
12741 || isection->sh_info >= elf_numsections (ibfd))
12742 {
12743 _bfd_error_handler
12744 /* xgettext:c-format */
12745 (_("%pB(%pA): info section index is invalid"),
12746 obfd, osec);
12747 bfd_set_error (bfd_error_bad_value);
12748 return FALSE;
12749 }
12750
12751 isection = elf_elfsections (ibfd)[isection->sh_info];
12752
12753 if (isection == NULL
12754 || isection->bfd_section == NULL
12755 || isection->bfd_section->output_section == NULL)
12756 {
12757 _bfd_error_handler
12758 /* xgettext:c-format */
12759 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12760 obfd, osec);
12761 bfd_set_error (bfd_error_bad_value);
12762 return FALSE;
12763 }
12764
12765 esd = elf_section_data (isection->bfd_section->output_section);
12766 BFD_ASSERT (esd != NULL);
12767 osection->sh_info = esd->this_idx;
12768 esd->has_secondary_relocs = TRUE;
12769 #if DEBUG_SECONDARY_RELOCS
12770 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12771 osec->name, osection->sh_link, osection->sh_info);
12772 fprintf (stderr, "mark section %s as having secondary relocs\n",
12773 bfd_section_name (isection->bfd_section->output_section));
12774 #endif
12775
12776 return TRUE;
12777 }
12778
12779 /* Write out a secondary reloc section.
12780
12781 FIXME: Currently this function can result in a serious performance penalty
12782 for files with secondary relocs and lots of sections. The proper way to
12783 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12784 relocs together and then to have this function just walk that chain. */
12785
12786 bfd_boolean
12787 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12788 {
12789 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12790 bfd_vma addr_offset;
12791 asection * relsec;
12792 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12793 bfd_boolean result = TRUE;
12794
12795 if (sec == NULL)
12796 return FALSE;
12797
12798 #if BFD_DEFAULT_TARGET_SIZE > 32
12799 if (bfd_arch_bits_per_address (abfd) != 32)
12800 r_info = elf64_r_info;
12801 else
12802 #endif
12803 r_info = elf32_r_info;
12804
12805 /* The address of an ELF reloc is section relative for an object
12806 file, and absolute for an executable file or shared library.
12807 The address of a BFD reloc is always section relative. */
12808 addr_offset = 0;
12809 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12810 addr_offset = sec->vma;
12811
12812 /* Discover if there are any secondary reloc sections
12813 associated with SEC. */
12814 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12815 {
12816 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12817 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12818
12819 if (hdr->sh_type == SHT_RELA
12820 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12821 {
12822 asymbol * last_sym;
12823 int last_sym_idx;
12824 unsigned int reloc_count;
12825 unsigned int idx;
12826 arelent * src_irel;
12827 bfd_byte * dst_rela;
12828
12829 if (hdr->contents != NULL)
12830 {
12831 _bfd_error_handler
12832 /* xgettext:c-format */
12833 (_("%pB(%pA): error: secondary reloc section processed twice"),
12834 abfd, relsec);
12835 bfd_set_error (bfd_error_bad_value);
12836 result = FALSE;
12837 continue;
12838 }
12839
12840 if (hdr->sh_entsize == 0)
12841 {
12842 _bfd_error_handler
12843 /* xgettext:c-format */
12844 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12845 abfd, relsec);
12846 bfd_set_error (bfd_error_bad_value);
12847 result = FALSE;
12848 continue;
12849 }
12850
12851 reloc_count = hdr->sh_size / hdr->sh_entsize;
12852 if (reloc_count <= 0)
12853 {
12854 _bfd_error_handler
12855 /* xgettext:c-format */
12856 (_("%pB(%pA): error: secondary reloc section is empty!"),
12857 abfd, relsec);
12858 bfd_set_error (bfd_error_bad_value);
12859 result = FALSE;
12860 continue;
12861 }
12862
12863 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12864 if (hdr->contents == NULL)
12865 continue;
12866
12867 #if DEBUG_SECONDARY_RELOCS
12868 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12869 reloc_count, sec->name, relsec->name);
12870 #endif
12871 last_sym = NULL;
12872 last_sym_idx = 0;
12873 dst_rela = hdr->contents;
12874 src_irel = (arelent *) esd->sec_info;
12875 if (src_irel == NULL)
12876 {
12877 _bfd_error_handler
12878 /* xgettext:c-format */
12879 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12880 abfd, relsec);
12881 bfd_set_error (bfd_error_bad_value);
12882 result = FALSE;
12883 continue;
12884 }
12885
12886 for (idx = 0; idx < reloc_count; idx++, dst_rela += hdr->sh_entsize)
12887 {
12888 Elf_Internal_Rela src_rela;
12889 arelent *ptr;
12890 asymbol *sym;
12891 int n;
12892
12893 ptr = src_irel + idx;
12894 if (ptr == NULL)
12895 {
12896 _bfd_error_handler
12897 /* xgettext:c-format */
12898 (_("%pB(%pA): error: reloc table entry %u is empty"),
12899 abfd, relsec, idx);
12900 bfd_set_error (bfd_error_bad_value);
12901 result = FALSE;
12902 break;
12903 }
12904
12905 if (ptr->sym_ptr_ptr == NULL)
12906 {
12907 /* FIXME: Is this an error ? */
12908 n = 0;
12909 }
12910 else
12911 {
12912 sym = *ptr->sym_ptr_ptr;
12913
12914 if (sym == last_sym)
12915 n = last_sym_idx;
12916 else
12917 {
12918 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12919 if (n < 0)
12920 {
12921 _bfd_error_handler
12922 /* xgettext:c-format */
12923 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12924 abfd, relsec, idx);
12925 bfd_set_error (bfd_error_bad_value);
12926 result = FALSE;
12927 n = 0;
12928 }
12929
12930 last_sym = sym;
12931 last_sym_idx = n;
12932 }
12933
12934 if (sym->the_bfd != NULL
12935 && sym->the_bfd->xvec != abfd->xvec
12936 && ! _bfd_elf_validate_reloc (abfd, ptr))
12937 {
12938 _bfd_error_handler
12939 /* xgettext:c-format */
12940 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12941 abfd, relsec, idx);
12942 bfd_set_error (bfd_error_bad_value);
12943 result = FALSE;
12944 n = 0;
12945 }
12946 }
12947
12948 src_rela.r_offset = ptr->address + addr_offset;
12949 if (ptr->howto == NULL)
12950 {
12951 _bfd_error_handler
12952 /* xgettext:c-format */
12953 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12954 abfd, relsec, idx);
12955 bfd_set_error (bfd_error_bad_value);
12956 result = FALSE;
12957 src_rela.r_info = r_info (0, 0);
12958 }
12959 else
12960 src_rela.r_info = r_info (n, ptr->howto->type);
12961 src_rela.r_addend = ptr->addend;
12962 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
12963 }
12964 }
12965 }
12966
12967 return result;
12968 }