PR binutils/3535
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 memset (table, 0, sizeof * table);
1596 table->init_got_refcount.refcount = can_refcount - 1;
1597 table->init_plt_refcount.refcount = can_refcount - 1;
1598 table->init_got_offset.offset = -(bfd_vma) 1;
1599 table->init_plt_offset.offset = -(bfd_vma) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table->dynsymcount = 1;
1602
1603 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1604 table->root.type = bfd_link_elf_hash_table;
1605
1606 return ret;
1607 }
1608
1609 /* Create an ELF linker hash table. */
1610
1611 struct bfd_link_hash_table *
1612 _bfd_elf_link_hash_table_create (bfd *abfd)
1613 {
1614 struct elf_link_hash_table *ret;
1615 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1616
1617 ret = bfd_malloc (amt);
1618 if (ret == NULL)
1619 return NULL;
1620
1621 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1622 sizeof (struct elf_link_hash_entry)))
1623 {
1624 free (ret);
1625 return NULL;
1626 }
1627
1628 return &ret->root;
1629 }
1630
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1634
1635 void
1636 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1637 {
1638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd) == bfd_object)
1640 elf_dt_name (abfd) = name;
1641 }
1642
1643 int
1644 bfd_elf_get_dyn_lib_class (bfd *abfd)
1645 {
1646 int lib_class;
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 lib_class = elf_dyn_lib_class (abfd);
1650 else
1651 lib_class = 0;
1652 return lib_class;
1653 }
1654
1655 void
1656 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1657 {
1658 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd) == bfd_object)
1660 elf_dyn_lib_class (abfd) = lib_class;
1661 }
1662
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1665
1666 struct bfd_link_needed_list *
1667 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1668 struct bfd_link_info *info)
1669 {
1670 if (! is_elf_hash_table (info->hash))
1671 return NULL;
1672 return elf_hash_table (info)->needed;
1673 }
1674
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1677
1678 struct bfd_link_needed_list *
1679 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1680 struct bfd_link_info *info)
1681 {
1682 if (! is_elf_hash_table (info->hash))
1683 return NULL;
1684 return elf_hash_table (info)->runpath;
1685 }
1686
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1690
1691 const char *
1692 bfd_elf_get_dt_soname (bfd *abfd)
1693 {
1694 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd) == bfd_object)
1696 return elf_dt_name (abfd);
1697 return NULL;
1698 }
1699
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1702
1703 bfd_boolean
1704 bfd_elf_get_bfd_needed_list (bfd *abfd,
1705 struct bfd_link_needed_list **pneeded)
1706 {
1707 asection *s;
1708 bfd_byte *dynbuf = NULL;
1709 int elfsec;
1710 unsigned long shlink;
1711 bfd_byte *extdyn, *extdynend;
1712 size_t extdynsize;
1713 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1714
1715 *pneeded = NULL;
1716
1717 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd) != bfd_object)
1719 return TRUE;
1720
1721 s = bfd_get_section_by_name (abfd, ".dynamic");
1722 if (s == NULL || s->size == 0)
1723 return TRUE;
1724
1725 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1726 goto error_return;
1727
1728 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1729 if (elfsec == -1)
1730 goto error_return;
1731
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1733
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1736
1737 extdyn = dynbuf;
1738 extdynend = extdyn + s->size;
1739 for (; extdyn < extdynend; extdyn += extdynsize)
1740 {
1741 Elf_Internal_Dyn dyn;
1742
1743 (*swap_dyn_in) (abfd, extdyn, &dyn);
1744
1745 if (dyn.d_tag == DT_NULL)
1746 break;
1747
1748 if (dyn.d_tag == DT_NEEDED)
1749 {
1750 const char *string;
1751 struct bfd_link_needed_list *l;
1752 unsigned int tagv = dyn.d_un.d_val;
1753 bfd_size_type amt;
1754
1755 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1756 if (string == NULL)
1757 goto error_return;
1758
1759 amt = sizeof *l;
1760 l = bfd_alloc (abfd, amt);
1761 if (l == NULL)
1762 goto error_return;
1763
1764 l->by = abfd;
1765 l->name = string;
1766 l->next = *pneeded;
1767 *pneeded = l;
1768 }
1769 }
1770
1771 free (dynbuf);
1772
1773 return TRUE;
1774
1775 error_return:
1776 if (dynbuf != NULL)
1777 free (dynbuf);
1778 return FALSE;
1779 }
1780 \f
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1782
1783 struct bfd_strtab_hash *
1784 _bfd_elf_stringtab_init (void)
1785 {
1786 struct bfd_strtab_hash *ret;
1787
1788 ret = _bfd_stringtab_init ();
1789 if (ret != NULL)
1790 {
1791 bfd_size_type loc;
1792
1793 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1794 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1795 if (loc == (bfd_size_type) -1)
1796 {
1797 _bfd_stringtab_free (ret);
1798 ret = NULL;
1799 }
1800 }
1801 return ret;
1802 }
1803 \f
1804 /* ELF .o/exec file reading */
1805
1806 /* Create a new bfd section from an ELF section header. */
1807
1808 bfd_boolean
1809 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1810 {
1811 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1812 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1814 const char *name;
1815
1816 name = bfd_elf_string_from_elf_section (abfd,
1817 elf_elfheader (abfd)->e_shstrndx,
1818 hdr->sh_name);
1819 if (name == NULL)
1820 return FALSE;
1821
1822 switch (hdr->sh_type)
1823 {
1824 case SHT_NULL:
1825 /* Inactive section. Throw it away. */
1826 return TRUE;
1827
1828 case SHT_PROGBITS: /* Normal section with contents. */
1829 case SHT_NOBITS: /* .bss section. */
1830 case SHT_HASH: /* .hash section. */
1831 case SHT_NOTE: /* .note section. */
1832 case SHT_INIT_ARRAY: /* .init_array section. */
1833 case SHT_FINI_ARRAY: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1838
1839 case SHT_DYNAMIC: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1841 return FALSE;
1842 if (hdr->sh_link > elf_numsections (abfd)
1843 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1844 return FALSE;
1845 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1846 {
1847 Elf_Internal_Shdr *dynsymhdr;
1848
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd) != 0)
1853 {
1854 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 }
1857 else
1858 {
1859 unsigned int i, num_sec;
1860
1861 num_sec = elf_numsections (abfd);
1862 for (i = 1; i < num_sec; i++)
1863 {
1864 dynsymhdr = elf_elfsections (abfd)[i];
1865 if (dynsymhdr->sh_type == SHT_DYNSYM)
1866 {
1867 hdr->sh_link = dynsymhdr->sh_link;
1868 break;
1869 }
1870 }
1871 }
1872 }
1873 break;
1874
1875 case SHT_SYMTAB: /* A symbol table */
1876 if (elf_onesymtab (abfd) == shindex)
1877 return TRUE;
1878
1879 if (hdr->sh_entsize != bed->s->sizeof_sym)
1880 return FALSE;
1881 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1882 elf_onesymtab (abfd) = shindex;
1883 elf_tdata (abfd)->symtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1885 abfd->flags |= HAS_SYMS;
1886
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1892 linker. */
1893 if ((hdr->sh_flags & SHF_ALLOC) != 0
1894 && (abfd->flags & DYNAMIC) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex))
1897 return FALSE;
1898
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1903 {
1904 unsigned int i, num_sec;
1905
1906 num_sec = elf_numsections (abfd);
1907 for (i = shindex + 1; i < num_sec; i++)
1908 {
1909 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1910 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1911 && hdr2->sh_link == shindex)
1912 break;
1913 }
1914 if (i == num_sec)
1915 for (i = 1; i < shindex; i++)
1916 {
1917 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1918 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1919 && hdr2->sh_link == shindex)
1920 break;
1921 }
1922 if (i != shindex)
1923 return bfd_section_from_shdr (abfd, i);
1924 }
1925 return TRUE;
1926
1927 case SHT_DYNSYM: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd) == shindex)
1929 return TRUE;
1930
1931 if (hdr->sh_entsize != bed->s->sizeof_sym)
1932 return FALSE;
1933 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1934 elf_dynsymtab (abfd) = shindex;
1935 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1937 abfd->flags |= HAS_SYMS;
1938
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1942
1943 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd) == shindex)
1945 return TRUE;
1946
1947 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1948 elf_symtab_shndx (abfd) = shindex;
1949 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1950 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1951 return TRUE;
1952
1953 case SHT_STRTAB: /* A string table */
1954 if (hdr->bfd_section != NULL)
1955 return TRUE;
1956 if (ehdr->e_shstrndx == shindex)
1957 {
1958 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1959 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1960 return TRUE;
1961 }
1962 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1963 {
1964 symtab_strtab:
1965 elf_tdata (abfd)->strtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1967 return TRUE;
1968 }
1969 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1970 {
1971 dynsymtab_strtab:
1972 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1973 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1974 elf_elfsections (abfd)[shindex] = hdr;
1975 /* We also treat this as a regular section, so that objcopy
1976 can handle it. */
1977 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1978 shindex);
1979 }
1980
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1985 {
1986 unsigned int i, num_sec;
1987
1988 num_sec = elf_numsections (abfd);
1989 for (i = 1; i < num_sec; i++)
1990 {
1991 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1992 if (hdr2->sh_link == shindex)
1993 {
1994 /* Prevent endless recursion on broken objects. */
1995 if (i == shindex)
1996 return FALSE;
1997 if (! bfd_section_from_shdr (abfd, i))
1998 return FALSE;
1999 if (elf_onesymtab (abfd) == i)
2000 goto symtab_strtab;
2001 if (elf_dynsymtab (abfd) == i)
2002 goto dynsymtab_strtab;
2003 }
2004 }
2005 }
2006 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2007
2008 case SHT_REL:
2009 case SHT_RELA:
2010 /* *These* do a lot of work -- but build no sections! */
2011 {
2012 asection *target_sect;
2013 Elf_Internal_Shdr *hdr2;
2014 unsigned int num_sec = elf_numsections (abfd);
2015
2016 if (hdr->sh_entsize
2017 != (bfd_size_type) (hdr->sh_type == SHT_REL
2018 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2019 return FALSE;
2020
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2023 || hdr->sh_link >= num_sec)
2024 {
2025 ((*_bfd_error_handler)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd, hdr->sh_link, name, shindex));
2028 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2029 shindex);
2030 }
2031
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2040 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2041 {
2042 unsigned int scan;
2043 int found;
2044
2045 found = 0;
2046 for (scan = 1; scan < num_sec; scan++)
2047 {
2048 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2049 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2050 {
2051 if (found != 0)
2052 {
2053 found = 0;
2054 break;
2055 }
2056 found = scan;
2057 }
2058 }
2059 if (found != 0)
2060 hdr->sh_link = found;
2061 }
2062
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2065 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2066 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2067 return FALSE;
2068
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr->sh_link != elf_onesymtab (abfd)
2076 || hdr->sh_info == SHN_UNDEF
2077 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2078 || hdr->sh_info >= num_sec
2079 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2080 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2081 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2082 shindex);
2083
2084 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2085 return FALSE;
2086 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2087 if (target_sect == NULL)
2088 return FALSE;
2089
2090 if ((target_sect->flags & SEC_RELOC) == 0
2091 || target_sect->reloc_count == 0)
2092 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2093 else
2094 {
2095 bfd_size_type amt;
2096 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2097 amt = sizeof (*hdr2);
2098 hdr2 = bfd_alloc (abfd, amt);
2099 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2100 }
2101 *hdr2 = *hdr;
2102 elf_elfsections (abfd)[shindex] = hdr2;
2103 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2104 target_sect->flags |= SEC_RELOC;
2105 target_sect->relocation = NULL;
2106 target_sect->rel_filepos = hdr->sh_offset;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr->sh_size != 0)
2110 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2111 abfd->flags |= HAS_RELOC;
2112 return TRUE;
2113 }
2114
2115 case SHT_GNU_verdef:
2116 elf_dynverdef (abfd) = shindex;
2117 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2118 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2119
2120 case SHT_GNU_versym:
2121 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2122 return FALSE;
2123 elf_dynversym (abfd) = shindex;
2124 elf_tdata (abfd)->dynversym_hdr = *hdr;
2125 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2126
2127 case SHT_GNU_verneed:
2128 elf_dynverref (abfd) = shindex;
2129 elf_tdata (abfd)->dynverref_hdr = *hdr;
2130 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2131
2132 case SHT_SHLIB:
2133 return TRUE;
2134
2135 case SHT_GROUP:
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2138 name. */
2139 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2140 return FALSE;
2141 name = group_signature (abfd, hdr);
2142 if (name == NULL)
2143 return FALSE;
2144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2145 return FALSE;
2146 if (hdr->contents != NULL)
2147 {
2148 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2149 unsigned int n_elt = hdr->sh_size / 4;
2150 asection *s;
2151
2152 if (idx->flags & GRP_COMDAT)
2153 hdr->bfd_section->flags
2154 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2155
2156 /* We try to keep the same section order as it comes in. */
2157 idx += n_elt;
2158 while (--n_elt != 0)
2159 if ((s = (--idx)->shdr->bfd_section) != NULL
2160 && elf_next_in_group (s) != NULL)
2161 {
2162 elf_next_in_group (hdr->bfd_section) = s;
2163 break;
2164 }
2165 }
2166 break;
2167
2168 default:
2169 /* Check for any processor-specific section types. */
2170 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2171 return TRUE;
2172
2173 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2174 {
2175 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd, name, hdr->sh_type);
2182 else
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2185 shindex);
2186 }
2187 else if (hdr->sh_type >= SHT_LOPROC
2188 && hdr->sh_type <= SHT_HIPROC)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler)
2191 (_("%B: don't know how to handle processor specific section "
2192 "`%s' [0x%8x]"),
2193 abfd, name, hdr->sh_type);
2194 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2195 {
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler)
2202 (_("%B: don't know how to handle OS specific section "
2203 "`%s' [0x%8x]"),
2204 abfd, name, hdr->sh_type);
2205 else
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2208 }
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2214
2215 return FALSE;
2216 }
2217
2218 return TRUE;
2219 }
2220
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2223
2224 asection *
2225 bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2229 {
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2235
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2238
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2243
2244 if (cache->abfd != abfd)
2245 {
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2248 }
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2253 {
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2258 }
2259 return cache->sec[ent];
2260 }
2261
2262 /* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2264
2265 asection *
2266 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2267 {
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2271 }
2272
2273 static const struct bfd_elf_special_section special_sections_b[] =
2274 {
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2277 };
2278
2279 static const struct bfd_elf_special_section special_sections_c[] =
2280 {
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2283 };
2284
2285 static const struct bfd_elf_special_section special_sections_d[] =
2286 {
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_f[] =
2301 {
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2305 };
2306
2307 static const struct bfd_elf_special_section special_sections_g[] =
2308 {
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_h[] =
2321 {
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2324 };
2325
2326 static const struct bfd_elf_special_section special_sections_i[] =
2327 {
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_l[] =
2335 {
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2338 };
2339
2340 static const struct bfd_elf_special_section special_sections_n[] =
2341 {
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2345 };
2346
2347 static const struct bfd_elf_special_section special_sections_p[] =
2348 {
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_r[] =
2355 {
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2361 };
2362
2363 static const struct bfd_elf_special_section special_sections_s[] =
2364 {
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2371 { NULL, 0, 0, 0, 0 }
2372 };
2373
2374 static const struct bfd_elf_special_section special_sections_t[] =
2375 {
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2379 { NULL, 0, 0, 0, 0 }
2380 };
2381
2382 static const struct bfd_elf_special_section *special_sections[] =
2383 {
2384 special_sections_b, /* 'b' */
2385 special_sections_c, /* 'b' */
2386 special_sections_d, /* 'd' */
2387 NULL, /* 'e' */
2388 special_sections_f, /* 'f' */
2389 special_sections_g, /* 'g' */
2390 special_sections_h, /* 'h' */
2391 special_sections_i, /* 'i' */
2392 NULL, /* 'j' */
2393 NULL, /* 'k' */
2394 special_sections_l, /* 'l' */
2395 NULL, /* 'm' */
2396 special_sections_n, /* 'n' */
2397 NULL, /* 'o' */
2398 special_sections_p, /* 'p' */
2399 NULL, /* 'q' */
2400 special_sections_r, /* 'r' */
2401 special_sections_s, /* 's' */
2402 special_sections_t, /* 't' */
2403 };
2404
2405 const struct bfd_elf_special_section *
2406 _bfd_elf_get_special_section (const char *name,
2407 const struct bfd_elf_special_section *spec,
2408 unsigned int rela)
2409 {
2410 int i;
2411 int len;
2412
2413 len = strlen (name);
2414
2415 for (i = 0; spec[i].prefix != NULL; i++)
2416 {
2417 int suffix_len;
2418 int prefix_len = spec[i].prefix_length;
2419
2420 if (len < prefix_len)
2421 continue;
2422 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2423 continue;
2424
2425 suffix_len = spec[i].suffix_length;
2426 if (suffix_len <= 0)
2427 {
2428 if (name[prefix_len] != 0)
2429 {
2430 if (suffix_len == 0)
2431 continue;
2432 if (name[prefix_len] != '.'
2433 && (suffix_len == -2
2434 || (rela && spec[i].type == SHT_REL)))
2435 continue;
2436 }
2437 }
2438 else
2439 {
2440 if (len < prefix_len + suffix_len)
2441 continue;
2442 if (memcmp (name + len - suffix_len,
2443 spec[i].prefix + prefix_len,
2444 suffix_len) != 0)
2445 continue;
2446 }
2447 return &spec[i];
2448 }
2449
2450 return NULL;
2451 }
2452
2453 const struct bfd_elf_special_section *
2454 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2455 {
2456 int i;
2457 const struct bfd_elf_special_section *spec;
2458 const struct elf_backend_data *bed;
2459
2460 /* See if this is one of the special sections. */
2461 if (sec->name == NULL)
2462 return NULL;
2463
2464 bed = get_elf_backend_data (abfd);
2465 spec = bed->special_sections;
2466 if (spec)
2467 {
2468 spec = _bfd_elf_get_special_section (sec->name,
2469 bed->special_sections,
2470 sec->use_rela_p);
2471 if (spec != NULL)
2472 return spec;
2473 }
2474
2475 if (sec->name[0] != '.')
2476 return NULL;
2477
2478 i = sec->name[1] - 'b';
2479 if (i < 0 || i > 't' - 'b')
2480 return NULL;
2481
2482 spec = special_sections[i];
2483
2484 if (spec == NULL)
2485 return NULL;
2486
2487 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2488 }
2489
2490 bfd_boolean
2491 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2492 {
2493 struct bfd_elf_section_data *sdata;
2494 const struct elf_backend_data *bed;
2495 const struct bfd_elf_special_section *ssect;
2496
2497 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2498 if (sdata == NULL)
2499 {
2500 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2501 if (sdata == NULL)
2502 return FALSE;
2503 sec->used_by_bfd = sdata;
2504 }
2505
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed = get_elf_backend_data (abfd);
2508 sec->use_rela_p = bed->default_use_rela_p;
2509
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec->flags && abfd->direction != read_direction)
2517 || (sec->flags & SEC_LINKER_CREATED) != 0)
2518 {
2519 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2520 if (ssect != NULL)
2521 {
2522 elf_section_type (sec) = ssect->type;
2523 elf_section_flags (sec) = ssect->attr;
2524 }
2525 }
2526
2527 return _bfd_generic_new_section_hook (abfd, sec);
2528 }
2529
2530 /* Create a new bfd section from an ELF program header.
2531
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2536
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2543
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2549
2550 */
2551
2552 bfd_boolean
2553 _bfd_elf_make_section_from_phdr (bfd *abfd,
2554 Elf_Internal_Phdr *hdr,
2555 int index,
2556 const char *typename)
2557 {
2558 asection *newsect;
2559 char *name;
2560 char namebuf[64];
2561 size_t len;
2562 int split;
2563
2564 split = ((hdr->p_memsz > 0)
2565 && (hdr->p_filesz > 0)
2566 && (hdr->p_memsz > hdr->p_filesz));
2567 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2568 len = strlen (namebuf) + 1;
2569 name = bfd_alloc (abfd, len);
2570 if (!name)
2571 return FALSE;
2572 memcpy (name, namebuf, len);
2573 newsect = bfd_make_section (abfd, name);
2574 if (newsect == NULL)
2575 return FALSE;
2576 newsect->vma = hdr->p_vaddr;
2577 newsect->lma = hdr->p_paddr;
2578 newsect->size = hdr->p_filesz;
2579 newsect->filepos = hdr->p_offset;
2580 newsect->flags |= SEC_HAS_CONTENTS;
2581 newsect->alignment_power = bfd_log2 (hdr->p_align);
2582 if (hdr->p_type == PT_LOAD)
2583 {
2584 newsect->flags |= SEC_ALLOC;
2585 newsect->flags |= SEC_LOAD;
2586 if (hdr->p_flags & PF_X)
2587 {
2588 /* FIXME: all we known is that it has execute PERMISSION,
2589 may be data. */
2590 newsect->flags |= SEC_CODE;
2591 }
2592 }
2593 if (!(hdr->p_flags & PF_W))
2594 {
2595 newsect->flags |= SEC_READONLY;
2596 }
2597
2598 if (split)
2599 {
2600 sprintf (namebuf, "%s%db", typename, index);
2601 len = strlen (namebuf) + 1;
2602 name = bfd_alloc (abfd, len);
2603 if (!name)
2604 return FALSE;
2605 memcpy (name, namebuf, len);
2606 newsect = bfd_make_section (abfd, name);
2607 if (newsect == NULL)
2608 return FALSE;
2609 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2610 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2611 newsect->size = hdr->p_memsz - hdr->p_filesz;
2612 if (hdr->p_type == PT_LOAD)
2613 {
2614 newsect->flags |= SEC_ALLOC;
2615 if (hdr->p_flags & PF_X)
2616 newsect->flags |= SEC_CODE;
2617 }
2618 if (!(hdr->p_flags & PF_W))
2619 newsect->flags |= SEC_READONLY;
2620 }
2621
2622 return TRUE;
2623 }
2624
2625 bfd_boolean
2626 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2627 {
2628 const struct elf_backend_data *bed;
2629
2630 switch (hdr->p_type)
2631 {
2632 case PT_NULL:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2634
2635 case PT_LOAD:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2637
2638 case PT_DYNAMIC:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2640
2641 case PT_INTERP:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2643
2644 case PT_NOTE:
2645 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2646 return FALSE;
2647 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2648 return FALSE;
2649 return TRUE;
2650
2651 case PT_SHLIB:
2652 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2653
2654 case PT_PHDR:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2656
2657 case PT_GNU_EH_FRAME:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2659 "eh_frame_hdr");
2660
2661 case PT_GNU_STACK:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2663
2664 case PT_GNU_RELRO:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2666
2667 default:
2668 /* Check for any processor-specific program segment types. */
2669 bed = get_elf_backend_data (abfd);
2670 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2671 }
2672 }
2673
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2677
2678 bfd_boolean
2679 _bfd_elf_init_reloc_shdr (bfd *abfd,
2680 Elf_Internal_Shdr *rel_hdr,
2681 asection *asect,
2682 bfd_boolean use_rela_p)
2683 {
2684 char *name;
2685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2686 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2687
2688 name = bfd_alloc (abfd, amt);
2689 if (name == NULL)
2690 return FALSE;
2691 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2692 rel_hdr->sh_name =
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2694 FALSE);
2695 if (rel_hdr->sh_name == (unsigned int) -1)
2696 return FALSE;
2697 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2698 rel_hdr->sh_entsize = (use_rela_p
2699 ? bed->s->sizeof_rela
2700 : bed->s->sizeof_rel);
2701 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2702 rel_hdr->sh_flags = 0;
2703 rel_hdr->sh_addr = 0;
2704 rel_hdr->sh_size = 0;
2705 rel_hdr->sh_offset = 0;
2706
2707 return TRUE;
2708 }
2709
2710 /* Set up an ELF internal section header for a section. */
2711
2712 static void
2713 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2714 {
2715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2716 bfd_boolean *failedptr = failedptrarg;
2717 Elf_Internal_Shdr *this_hdr;
2718
2719 if (*failedptr)
2720 {
2721 /* We already failed; just get out of the bfd_map_over_sections
2722 loop. */
2723 return;
2724 }
2725
2726 this_hdr = &elf_section_data (asect)->this_hdr;
2727
2728 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2729 asect->name, FALSE);
2730 if (this_hdr->sh_name == (unsigned int) -1)
2731 {
2732 *failedptr = TRUE;
2733 return;
2734 }
2735
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2737
2738 if ((asect->flags & SEC_ALLOC) != 0
2739 || asect->user_set_vma)
2740 this_hdr->sh_addr = asect->vma;
2741 else
2742 this_hdr->sh_addr = 0;
2743
2744 this_hdr->sh_offset = 0;
2745 this_hdr->sh_size = asect->size;
2746 this_hdr->sh_link = 0;
2747 this_hdr->sh_addralign = 1 << asect->alignment_power;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2750
2751 this_hdr->bfd_section = asect;
2752 this_hdr->contents = NULL;
2753
2754 /* If the section type is unspecified, we set it based on
2755 asect->flags. */
2756 if (this_hdr->sh_type == SHT_NULL)
2757 {
2758 if ((asect->flags & SEC_GROUP) != 0)
2759 this_hdr->sh_type = SHT_GROUP;
2760 else if ((asect->flags & SEC_ALLOC) != 0
2761 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 || (asect->flags & SEC_NEVER_LOAD) != 0))
2763 this_hdr->sh_type = SHT_NOBITS;
2764 else
2765 this_hdr->sh_type = SHT_PROGBITS;
2766 }
2767
2768 switch (this_hdr->sh_type)
2769 {
2770 default:
2771 break;
2772
2773 case SHT_STRTAB:
2774 case SHT_INIT_ARRAY:
2775 case SHT_FINI_ARRAY:
2776 case SHT_PREINIT_ARRAY:
2777 case SHT_NOTE:
2778 case SHT_NOBITS:
2779 case SHT_PROGBITS:
2780 break;
2781
2782 case SHT_HASH:
2783 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2784 break;
2785
2786 case SHT_DYNSYM:
2787 this_hdr->sh_entsize = bed->s->sizeof_sym;
2788 break;
2789
2790 case SHT_DYNAMIC:
2791 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2792 break;
2793
2794 case SHT_RELA:
2795 if (get_elf_backend_data (abfd)->may_use_rela_p)
2796 this_hdr->sh_entsize = bed->s->sizeof_rela;
2797 break;
2798
2799 case SHT_REL:
2800 if (get_elf_backend_data (abfd)->may_use_rel_p)
2801 this_hdr->sh_entsize = bed->s->sizeof_rel;
2802 break;
2803
2804 case SHT_GNU_versym:
2805 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2806 break;
2807
2808 case SHT_GNU_verdef:
2809 this_hdr->sh_entsize = 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2812 zero. */
2813 if (this_hdr->sh_info == 0)
2814 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2815 else
2816 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2817 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2818 break;
2819
2820 case SHT_GNU_verneed:
2821 this_hdr->sh_entsize = 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2824 zero. */
2825 if (this_hdr->sh_info == 0)
2826 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2827 else
2828 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2829 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2830 break;
2831
2832 case SHT_GROUP:
2833 this_hdr->sh_entsize = 4;
2834 break;
2835
2836 case SHT_GNU_HASH:
2837 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2838 break;
2839 }
2840
2841 if ((asect->flags & SEC_ALLOC) != 0)
2842 this_hdr->sh_flags |= SHF_ALLOC;
2843 if ((asect->flags & SEC_READONLY) == 0)
2844 this_hdr->sh_flags |= SHF_WRITE;
2845 if ((asect->flags & SEC_CODE) != 0)
2846 this_hdr->sh_flags |= SHF_EXECINSTR;
2847 if ((asect->flags & SEC_MERGE) != 0)
2848 {
2849 this_hdr->sh_flags |= SHF_MERGE;
2850 this_hdr->sh_entsize = asect->entsize;
2851 if ((asect->flags & SEC_STRINGS) != 0)
2852 this_hdr->sh_flags |= SHF_STRINGS;
2853 }
2854 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2855 this_hdr->sh_flags |= SHF_GROUP;
2856 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2857 {
2858 this_hdr->sh_flags |= SHF_TLS;
2859 if (asect->size == 0
2860 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2861 {
2862 struct bfd_link_order *o = asect->map_tail.link_order;
2863
2864 this_hdr->sh_size = 0;
2865 if (o != NULL)
2866 {
2867 this_hdr->sh_size = o->offset + o->size;
2868 if (this_hdr->sh_size != 0)
2869 this_hdr->sh_type = SHT_NOBITS;
2870 }
2871 }
2872 }
2873
2874 /* Check for processor-specific section types. */
2875 if (bed->elf_backend_fake_sections
2876 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2877 *failedptr = TRUE;
2878
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect->flags & SEC_RELOC) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd,
2885 &elf_section_data (asect)->rel_hdr,
2886 asect,
2887 asect->use_rela_p))
2888 *failedptr = TRUE;
2889 }
2890
2891 /* Fill in the contents of a SHT_GROUP section. */
2892
2893 void
2894 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2895 {
2896 bfd_boolean *failedptr = failedptrarg;
2897 unsigned long symindx;
2898 asection *elt, *first;
2899 unsigned char *loc;
2900 bfd_boolean gas;
2901
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2903 elfxx-ia64.c. */
2904 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2905 || *failedptr)
2906 return;
2907
2908 symindx = 0;
2909 if (elf_group_id (sec) != NULL)
2910 symindx = elf_group_id (sec)->udata.i;
2911
2912 if (symindx == 0)
2913 {
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd) != NULL)
2917 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2918 else
2919 symindx = sec->target_index;
2920 }
2921 elf_section_data (sec)->this_hdr.sh_info = symindx;
2922
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2924 gas = TRUE;
2925 if (sec->contents == NULL)
2926 {
2927 gas = FALSE;
2928 sec->contents = bfd_alloc (abfd, sec->size);
2929
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec)->this_hdr.contents = sec->contents;
2932 if (sec->contents == NULL)
2933 {
2934 *failedptr = TRUE;
2935 return;
2936 }
2937 }
2938
2939 loc = sec->contents + sec->size;
2940
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first = elt = elf_next_in_group (sec);
2945
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2950 while (elt != NULL)
2951 {
2952 asection *s;
2953 unsigned int idx;
2954
2955 loc -= 4;
2956 s = elt;
2957 if (!gas)
2958 s = s->output_section;
2959 idx = 0;
2960 if (s != NULL)
2961 idx = elf_section_data (s)->this_idx;
2962 H_PUT_32 (abfd, idx, loc);
2963 elt = elf_next_in_group (elt);
2964 if (elt == first)
2965 break;
2966 }
2967
2968 if ((loc -= 4) != sec->contents)
2969 abort ();
2970
2971 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2972 }
2973
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2977
2978 static bfd_boolean
2979 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2980 {
2981 struct elf_obj_tdata *t = elf_tdata (abfd);
2982 asection *sec;
2983 unsigned int section_number, secn;
2984 Elf_Internal_Shdr **i_shdrp;
2985 struct bfd_elf_section_data *d;
2986
2987 section_number = 1;
2988
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2990
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info == NULL || link_info->relocatable)
2993 {
2994 /* Put SHT_GROUP sections first. */
2995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2996 {
2997 d = elf_section_data (sec);
2998
2999 if (d->this_hdr.sh_type == SHT_GROUP)
3000 {
3001 if (sec->flags & SEC_LINKER_CREATED)
3002 {
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd, sec);
3005 abfd->section_count--;
3006 }
3007 else
3008 {
3009 if (section_number == SHN_LORESERVE)
3010 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3011 d->this_idx = section_number++;
3012 }
3013 }
3014 }
3015 }
3016
3017 for (sec = abfd->sections; sec; sec = sec->next)
3018 {
3019 d = elf_section_data (sec);
3020
3021 if (d->this_hdr.sh_type != SHT_GROUP)
3022 {
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 d->this_idx = section_number++;
3026 }
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3028 if ((sec->flags & SEC_RELOC) == 0)
3029 d->rel_idx = 0;
3030 else
3031 {
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 d->rel_idx = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3036 }
3037
3038 if (d->rel_hdr2)
3039 {
3040 if (section_number == SHN_LORESERVE)
3041 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3042 d->rel_idx2 = section_number++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3044 }
3045 else
3046 d->rel_idx2 = 0;
3047 }
3048
3049 if (section_number == SHN_LORESERVE)
3050 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3051 t->shstrtab_section = section_number++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3053 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3054
3055 if (bfd_get_symcount (abfd) > 0)
3056 {
3057 if (section_number == SHN_LORESERVE)
3058 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059 t->symtab_section = section_number++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3061 if (section_number > SHN_LORESERVE - 2)
3062 {
3063 if (section_number == SHN_LORESERVE)
3064 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3065 t->symtab_shndx_section = section_number++;
3066 t->symtab_shndx_hdr.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3068 ".symtab_shndx", FALSE);
3069 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3070 return FALSE;
3071 }
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->strtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3076 }
3077
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3079 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3080
3081 elf_numsections (abfd) = section_number;
3082 elf_elfheader (abfd)->e_shnum = section_number;
3083 if (section_number > SHN_LORESERVE)
3084 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3085
3086 /* Set up the list of section header pointers, in agreement with the
3087 indices. */
3088 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3089 if (i_shdrp == NULL)
3090 return FALSE;
3091
3092 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3093 if (i_shdrp[0] == NULL)
3094 {
3095 bfd_release (abfd, i_shdrp);
3096 return FALSE;
3097 }
3098
3099 elf_elfsections (abfd) = i_shdrp;
3100
3101 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3102 if (bfd_get_symcount (abfd) > 0)
3103 {
3104 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3105 if (elf_numsections (abfd) > SHN_LORESERVE)
3106 {
3107 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3108 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3109 }
3110 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3111 t->symtab_hdr.sh_link = t->strtab_section;
3112 }
3113
3114 for (sec = abfd->sections; sec; sec = sec->next)
3115 {
3116 struct bfd_elf_section_data *d = elf_section_data (sec);
3117 asection *s;
3118 const char *name;
3119
3120 i_shdrp[d->this_idx] = &d->this_hdr;
3121 if (d->rel_idx != 0)
3122 i_shdrp[d->rel_idx] = &d->rel_hdr;
3123 if (d->rel_idx2 != 0)
3124 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3125
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3127
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d->rel_idx != 0)
3132 {
3133 d->rel_hdr.sh_link = t->symtab_section;
3134 d->rel_hdr.sh_info = d->this_idx;
3135 }
3136 if (d->rel_idx2 != 0)
3137 {
3138 d->rel_hdr2->sh_link = t->symtab_section;
3139 d->rel_hdr2->sh_info = d->this_idx;
3140 }
3141
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3144 {
3145 s = elf_linked_to_section (sec);
3146 if (s)
3147 {
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info != NULL)
3150 {
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s))
3153 {
3154 asection *kept;
3155 (*_bfd_error_handler)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd, d->this_hdr.bfd_section,
3158 s, s->owner);
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept = _bfd_elf_check_kept_section (s, link_info);
3162 if (kept == NULL)
3163 {
3164 bfd_set_error (bfd_error_bad_value);
3165 return FALSE;
3166 }
3167 s = kept;
3168 }
3169
3170 s = s->output_section;
3171 BFD_ASSERT (s != NULL);
3172 }
3173 else
3174 {
3175 /* Handle objcopy. */
3176 if (s->output_section == NULL)
3177 {
3178 (*_bfd_error_handler)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd, d->this_hdr.bfd_section, s, s->owner);
3181 bfd_set_error (bfd_error_bad_value);
3182 return FALSE;
3183 }
3184 s = s->output_section;
3185 }
3186 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3187 }
3188 else
3189 {
3190 /* PR 290:
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3194 where s is NULL. */
3195 const struct elf_backend_data *bed
3196 = get_elf_backend_data (abfd);
3197 if (bed->link_order_error_handler)
3198 bed->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3200 abfd, sec);
3201 }
3202 }
3203
3204 switch (d->this_hdr.sh_type)
3205 {
3206 case SHT_REL:
3207 case SHT_RELA:
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217
3218 /* We look up the section the relocs apply to by name. */
3219 name = sec->name;
3220 if (d->this_hdr.sh_type == SHT_REL)
3221 name += 4;
3222 else
3223 name += 5;
3224 s = bfd_get_section_by_name (abfd, name);
3225 if (s != NULL)
3226 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3227 break;
3228
3229 case SHT_STRTAB:
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec->name, ".stab")
3235 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3236 {
3237 size_t len;
3238 char *alc;
3239
3240 len = strlen (sec->name);
3241 alc = bfd_malloc (len - 2);
3242 if (alc == NULL)
3243 return FALSE;
3244 memcpy (alc, sec->name, len - 3);
3245 alc[len - 3] = '\0';
3246 s = bfd_get_section_by_name (abfd, alc);
3247 free (alc);
3248 if (s != NULL)
3249 {
3250 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3251
3252 /* This is a .stab section. */
3253 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3254 elf_section_data (s)->this_hdr.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3256 }
3257 }
3258 break;
3259
3260 case SHT_DYNAMIC:
3261 case SHT_DYNSYM:
3262 case SHT_GNU_verneed:
3263 case SHT_GNU_verdef:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3266 version strings. */
3267 s = bfd_get_section_by_name (abfd, ".dynstr");
3268 if (s != NULL)
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 break;
3271
3272 case SHT_GNU_LIBLIST:
3273 /* sh_link is the section header index of the prelink library
3274 list
3275 used for the dynamic entries, or the symbol table, or the
3276 version strings. */
3277 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3278 ? ".dynstr" : ".gnu.libstr");
3279 if (s != NULL)
3280 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3281 break;
3282
3283 case SHT_HASH:
3284 case SHT_GNU_HASH:
3285 case SHT_GNU_versym:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s = bfd_get_section_by_name (abfd, ".dynsym");
3289 if (s != NULL)
3290 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3291 break;
3292
3293 case SHT_GROUP:
3294 d->this_hdr.sh_link = t->symtab_section;
3295 }
3296 }
3297
3298 for (secn = 1; secn < section_number; ++secn)
3299 if (i_shdrp[secn] == NULL)
3300 i_shdrp[secn] = i_shdrp[0];
3301 else
3302 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3303 i_shdrp[secn]->sh_name);
3304 return TRUE;
3305 }
3306
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3309
3310 static bfd_boolean
3311 sym_is_global (bfd *abfd, asymbol *sym)
3312 {
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3315 if (bed->elf_backend_sym_is_global)
3316 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3317
3318 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym))
3320 || bfd_is_com_section (bfd_get_section (sym)));
3321 }
3322
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3326
3327 static bfd_boolean
3328 ignore_section_sym (bfd *abfd, asymbol *sym)
3329 {
3330 return ((sym->flags & BSF_SECTION_SYM) != 0
3331 && (sym->value != 0
3332 || (sym->section->owner != abfd
3333 && (sym->section->output_section->owner != abfd
3334 || sym->section->output_offset != 0))));
3335 }
3336
3337 static bfd_boolean
3338 elf_map_symbols (bfd *abfd)
3339 {
3340 unsigned int symcount = bfd_get_symcount (abfd);
3341 asymbol **syms = bfd_get_outsymbols (abfd);
3342 asymbol **sect_syms;
3343 unsigned int num_locals = 0;
3344 unsigned int num_globals = 0;
3345 unsigned int num_locals2 = 0;
3346 unsigned int num_globals2 = 0;
3347 int max_index = 0;
3348 unsigned int idx;
3349 asection *asect;
3350 asymbol **new_syms;
3351
3352 #ifdef DEBUG
3353 fprintf (stderr, "elf_map_symbols\n");
3354 fflush (stderr);
3355 #endif
3356
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (max_index < asect->index)
3360 max_index = asect->index;
3361 }
3362
3363 max_index++;
3364 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3365 if (sect_syms == NULL)
3366 return FALSE;
3367 elf_section_syms (abfd) = sect_syms;
3368 elf_num_section_syms (abfd) = max_index;
3369
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 asymbol *sym = syms[idx];
3375
3376 if ((sym->flags & BSF_SECTION_SYM) != 0
3377 && !ignore_section_sym (abfd, sym))
3378 {
3379 asection *sec = sym->section;
3380
3381 if (sec->owner != abfd)
3382 sec = sec->output_section;
3383
3384 sect_syms[sec->index] = syms[idx];
3385 }
3386 }
3387
3388 /* Classify all of the symbols. */
3389 for (idx = 0; idx < symcount; idx++)
3390 {
3391 if (ignore_section_sym (abfd, syms[idx]))
3392 continue;
3393 if (!sym_is_global (abfd, syms[idx]))
3394 num_locals++;
3395 else
3396 num_globals++;
3397 }
3398
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect = abfd->sections; asect; asect = asect->next)
3404 {
3405 if (sect_syms[asect->index] == NULL)
3406 {
3407 if (!sym_is_global (abfd, asect->symbol))
3408 num_locals++;
3409 else
3410 num_globals++;
3411 }
3412 }
3413
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3416
3417 if (new_syms == NULL)
3418 return FALSE;
3419
3420 for (idx = 0; idx < symcount; idx++)
3421 {
3422 asymbol *sym = syms[idx];
3423 unsigned int i;
3424
3425 if (ignore_section_sym (abfd, sym))
3426 continue;
3427 if (!sym_is_global (abfd, sym))
3428 i = num_locals2++;
3429 else
3430 i = num_locals + num_globals2++;
3431 new_syms[i] = sym;
3432 sym->udata.i = i + 1;
3433 }
3434 for (asect = abfd->sections; asect; asect = asect->next)
3435 {
3436 if (sect_syms[asect->index] == NULL)
3437 {
3438 asymbol *sym = asect->symbol;
3439 unsigned int i;
3440
3441 sect_syms[asect->index] = sym;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 }
3450
3451 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3452
3453 elf_num_locals (abfd) = num_locals;
3454 elf_num_globals (abfd) = num_globals;
3455 return TRUE;
3456 }
3457
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3460
3461 static inline file_ptr
3462 align_file_position (file_ptr off, int align)
3463 {
3464 return (off + align - 1) & ~(align - 1);
3465 }
3466
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3469
3470 file_ptr
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3472 file_ptr offset,
3473 bfd_boolean align)
3474 {
3475 if (align)
3476 {
3477 unsigned int al;
3478
3479 al = i_shdrp->sh_addralign;
3480 if (al > 1)
3481 offset = BFD_ALIGN (offset, al);
3482 }
3483 i_shdrp->sh_offset = offset;
3484 if (i_shdrp->bfd_section != NULL)
3485 i_shdrp->bfd_section->filepos = offset;
3486 if (i_shdrp->sh_type != SHT_NOBITS)
3487 offset += i_shdrp->sh_size;
3488 return offset;
3489 }
3490
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3494
3495 bfd_boolean
3496 _bfd_elf_compute_section_file_positions (bfd *abfd,
3497 struct bfd_link_info *link_info)
3498 {
3499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3500 bfd_boolean failed;
3501 struct bfd_strtab_hash *strtab = NULL;
3502 Elf_Internal_Shdr *shstrtab_hdr;
3503
3504 if (abfd->output_has_begun)
3505 return TRUE;
3506
3507 /* Do any elf backend specific processing first. */
3508 if (bed->elf_backend_begin_write_processing)
3509 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3510
3511 if (! prep_headers (abfd))
3512 return FALSE;
3513
3514 /* Post process the headers if necessary. */
3515 if (bed->elf_backend_post_process_headers)
3516 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3517
3518 failed = FALSE;
3519 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3520 if (failed)
3521 return FALSE;
3522
3523 if (!assign_section_numbers (abfd, link_info))
3524 return FALSE;
3525
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3528 {
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3531
3532 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3533 return FALSE;
3534 }
3535
3536 if (link_info == NULL)
3537 {
3538 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3539 if (failed)
3540 return FALSE;
3541 }
3542
3543 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr->sh_type = SHT_STRTAB;
3546 shstrtab_hdr->sh_flags = 0;
3547 shstrtab_hdr->sh_addr = 0;
3548 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3549 shstrtab_hdr->sh_entsize = 0;
3550 shstrtab_hdr->sh_link = 0;
3551 shstrtab_hdr->sh_info = 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr->sh_addralign = 1;
3554
3555 if (!assign_file_positions_except_relocs (abfd, link_info))
3556 return FALSE;
3557
3558 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3559 {
3560 file_ptr off;
3561 Elf_Internal_Shdr *hdr;
3562
3563 off = elf_tdata (abfd)->next_file_pos;
3564
3565 hdr = &elf_tdata (abfd)->symtab_hdr;
3566 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3567
3568 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3569 if (hdr->sh_size != 0)
3570 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3571
3572 hdr = &elf_tdata (abfd)->strtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3574
3575 elf_tdata (abfd)->next_file_pos = off;
3576
3577 /* Now that we know where the .strtab section goes, write it
3578 out. */
3579 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3580 || ! _bfd_stringtab_emit (abfd, strtab))
3581 return FALSE;
3582 _bfd_stringtab_free (strtab);
3583 }
3584
3585 abfd->output_has_begun = TRUE;
3586
3587 return TRUE;
3588 }
3589
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3592
3593 static bfd_size_type
3594 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3595 {
3596 size_t segs;
3597 asection *s;
3598 const struct elf_backend_data *bed;
3599
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3602 segs = 2;
3603
3604 s = bfd_get_section_by_name (abfd, ".interp");
3605 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3606 {
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3610 targets. */
3611 segs += 2;
3612 }
3613
3614 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3615 {
3616 /* We need a PT_DYNAMIC segment. */
3617 ++segs;
3618
3619 if (elf_tdata (abfd)->relro)
3620 {
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3623 ++segs;
3624 }
3625 }
3626
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3628 {
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3631 }
3632
3633 if (elf_tdata (abfd)->stack_flags)
3634 {
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3637 }
3638
3639 for (s = abfd->sections; s != NULL; s = s->next)
3640 {
3641 if ((s->flags & SEC_LOAD) != 0
3642 && CONST_STRNEQ (s->name, ".note"))
3643 {
3644 /* We need a PT_NOTE segment. */
3645 ++segs;
3646 }
3647 }
3648
3649 for (s = abfd->sections; s != NULL; s = s->next)
3650 {
3651 if (s->flags & SEC_THREAD_LOCAL)
3652 {
3653 /* We need a PT_TLS segment. */
3654 ++segs;
3655 break;
3656 }
3657 }
3658
3659 /* Let the backend count up any program headers it might need. */
3660 bed = get_elf_backend_data (abfd);
3661 if (bed->elf_backend_additional_program_headers)
3662 {
3663 int a;
3664
3665 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3666 if (a == -1)
3667 abort ();
3668 segs += a;
3669 }
3670
3671 return segs * bed->s->sizeof_phdr;
3672 }
3673
3674 /* Create a mapping from a set of sections to a program segment. */
3675
3676 static struct elf_segment_map *
3677 make_mapping (bfd *abfd,
3678 asection **sections,
3679 unsigned int from,
3680 unsigned int to,
3681 bfd_boolean phdr)
3682 {
3683 struct elf_segment_map *m;
3684 unsigned int i;
3685 asection **hdrpp;
3686 bfd_size_type amt;
3687
3688 amt = sizeof (struct elf_segment_map);
3689 amt += (to - from - 1) * sizeof (asection *);
3690 m = bfd_zalloc (abfd, amt);
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_LOAD;
3695 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3696 m->sections[i - from] = *hdrpp;
3697 m->count = to - from;
3698
3699 if (from == 0 && phdr)
3700 {
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m->includes_filehdr = 1;
3703 m->includes_phdrs = 1;
3704 }
3705
3706 return m;
3707 }
3708
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3710 on failure. */
3711
3712 struct elf_segment_map *
3713 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3714 {
3715 struct elf_segment_map *m;
3716
3717 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3718 if (m == NULL)
3719 return NULL;
3720 m->next = NULL;
3721 m->p_type = PT_DYNAMIC;
3722 m->count = 1;
3723 m->sections[0] = dynsec;
3724
3725 return m;
3726 }
3727
3728 /* Possibly add or remove segments from the segment map. */
3729
3730 static bfd_boolean
3731 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3732 {
3733 struct elf_segment_map **m;
3734 const struct elf_backend_data *bed;
3735
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3740 removed. */
3741 m = &elf_tdata (abfd)->segment_map;
3742 while (*m)
3743 {
3744 unsigned int i, new_count;
3745
3746 for (new_count = 0, i = 0; i < (*m)->count; i++)
3747 {
3748 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3749 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3750 || (*m)->p_type != PT_LOAD))
3751 {
3752 (*m)->sections[new_count] = (*m)->sections[i];
3753 new_count++;
3754 }
3755 }
3756 (*m)->count = new_count;
3757
3758 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3759 *m = (*m)->next;
3760 else
3761 m = &(*m)->next;
3762 }
3763
3764 bed = get_elf_backend_data (abfd);
3765 if (bed->elf_backend_modify_segment_map != NULL)
3766 {
3767 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3768 return FALSE;
3769 }
3770
3771 return TRUE;
3772 }
3773
3774 /* Set up a mapping from BFD sections to program segments. */
3775
3776 bfd_boolean
3777 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3778 {
3779 unsigned int count;
3780 struct elf_segment_map *m;
3781 asection **sections = NULL;
3782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3783
3784 if (elf_tdata (abfd)->segment_map == NULL
3785 && bfd_count_sections (abfd) != 0)
3786 {
3787 asection *s;
3788 unsigned int i;
3789 struct elf_segment_map *mfirst;
3790 struct elf_segment_map **pm;
3791 asection *last_hdr;
3792 bfd_vma last_size;
3793 unsigned int phdr_index;
3794 bfd_vma maxpagesize;
3795 asection **hdrpp;
3796 bfd_boolean phdr_in_segment = TRUE;
3797 bfd_boolean writable;
3798 int tls_count = 0;
3799 asection *first_tls = NULL;
3800 asection *dynsec, *eh_frame_hdr;
3801 bfd_size_type amt;
3802
3803 /* Select the allocated sections, and sort them. */
3804
3805 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3806 if (sections == NULL)
3807 goto error_return;
3808
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3811 {
3812 if ((s->flags & SEC_ALLOC) != 0)
3813 {
3814 sections[i] = s;
3815 ++i;
3816 }
3817 }
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3820
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3822
3823 /* Build the mapping. */
3824
3825 mfirst = NULL;
3826 pm = &mfirst;
3827
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3833 {
3834 amt = sizeof (struct elf_segment_map);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3844
3845 *pm = m;
3846 pm = &m->next;
3847
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3856
3857 *pm = m;
3858 pm = &m->next;
3859 }
3860
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3873
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3879 {
3880 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3881
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 if ((abfd->flags & D_PAGED) == 0
3885 || sections[0]->lma < phdr_size
3886 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3887 phdr_in_segment = FALSE;
3888 }
3889
3890 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3891 {
3892 asection *hdr;
3893 bfd_boolean new_segment;
3894
3895 hdr = *hdrpp;
3896
3897 /* See if this section and the last one will fit in the same
3898 segment. */
3899
3900 if (last_hdr == NULL)
3901 {
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment = FALSE;
3905 }
3906 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3907 {
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3910 segment. */
3911 new_segment = TRUE;
3912 }
3913 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3914 < BFD_ALIGN (hdr->lma, maxpagesize))
3915 {
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3918 new_segment = TRUE;
3919 }
3920 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3921 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3922 {
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3926 new_segment = TRUE;
3927 }
3928 else if ((abfd->flags & D_PAGED) == 0)
3929 {
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment = FALSE;
3934 }
3935 else if (! writable
3936 && (hdr->flags & SEC_READONLY) == 0
3937 && (((last_hdr->lma + last_size - 1)
3938 & ~(maxpagesize - 1))
3939 != (hdr->lma & ~(maxpagesize - 1))))
3940 {
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3948 new_segment = TRUE;
3949 }
3950 else
3951 {
3952 /* Otherwise, we can use the same segment. */
3953 new_segment = FALSE;
3954 }
3955
3956 /* Allow interested parties a chance to override our decision. */
3957 if (last_hdr && info->callbacks->override_segment_assignment)
3958 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3959
3960 if (! new_segment)
3961 {
3962 if ((hdr->flags & SEC_READONLY) == 0)
3963 writable = TRUE;
3964 last_hdr = hdr;
3965 /* .tbss sections effectively have zero size. */
3966 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3967 != SEC_THREAD_LOCAL)
3968 last_size = hdr->size;
3969 else
3970 last_size = 0;
3971 continue;
3972 }
3973
3974 /* We need a new program segment. We must create a new program
3975 header holding all the sections from phdr_index until hdr. */
3976
3977 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3978 if (m == NULL)
3979 goto error_return;
3980
3981 *pm = m;
3982 pm = &m->next;
3983
3984 if ((hdr->flags & SEC_READONLY) == 0)
3985 writable = TRUE;
3986 else
3987 writable = FALSE;
3988
3989 last_hdr = hdr;
3990 /* .tbss sections effectively have zero size. */
3991 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3992 last_size = hdr->size;
3993 else
3994 last_size = 0;
3995 phdr_index = i;
3996 phdr_in_segment = FALSE;
3997 }
3998
3999 /* Create a final PT_LOAD program segment. */
4000 if (last_hdr != NULL)
4001 {
4002 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4003 if (m == NULL)
4004 goto error_return;
4005
4006 *pm = m;
4007 pm = &m->next;
4008 }
4009
4010 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4011 if (dynsec != NULL)
4012 {
4013 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4014 if (m == NULL)
4015 goto error_return;
4016 *pm = m;
4017 pm = &m->next;
4018 }
4019
4020 /* For each loadable .note section, add a PT_NOTE segment. We don't
4021 use bfd_get_section_by_name, because if we link together
4022 nonloadable .note sections and loadable .note sections, we will
4023 generate two .note sections in the output file. FIXME: Using
4024 names for section types is bogus anyhow. */
4025 for (s = abfd->sections; s != NULL; s = s->next)
4026 {
4027 if ((s->flags & SEC_LOAD) != 0
4028 && CONST_STRNEQ (s->name, ".note"))
4029 {
4030 amt = sizeof (struct elf_segment_map);
4031 m = bfd_zalloc (abfd, amt);
4032 if (m == NULL)
4033 goto error_return;
4034 m->next = NULL;
4035 m->p_type = PT_NOTE;
4036 m->count = 1;
4037 m->sections[0] = s;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042 if (s->flags & SEC_THREAD_LOCAL)
4043 {
4044 if (! tls_count)
4045 first_tls = s;
4046 tls_count++;
4047 }
4048 }
4049
4050 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4051 if (tls_count > 0)
4052 {
4053 int i;
4054
4055 amt = sizeof (struct elf_segment_map);
4056 amt += (tls_count - 1) * sizeof (asection *);
4057 m = bfd_zalloc (abfd, amt);
4058 if (m == NULL)
4059 goto error_return;
4060 m->next = NULL;
4061 m->p_type = PT_TLS;
4062 m->count = tls_count;
4063 /* Mandated PF_R. */
4064 m->p_flags = PF_R;
4065 m->p_flags_valid = 1;
4066 for (i = 0; i < tls_count; ++i)
4067 {
4068 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4069 m->sections[i] = first_tls;
4070 first_tls = first_tls->next;
4071 }
4072
4073 *pm = m;
4074 pm = &m->next;
4075 }
4076
4077 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4078 segment. */
4079 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4080 if (eh_frame_hdr != NULL
4081 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4082 {
4083 amt = sizeof (struct elf_segment_map);
4084 m = bfd_zalloc (abfd, amt);
4085 if (m == NULL)
4086 goto error_return;
4087 m->next = NULL;
4088 m->p_type = PT_GNU_EH_FRAME;
4089 m->count = 1;
4090 m->sections[0] = eh_frame_hdr->output_section;
4091
4092 *pm = m;
4093 pm = &m->next;
4094 }
4095
4096 if (elf_tdata (abfd)->stack_flags)
4097 {
4098 amt = sizeof (struct elf_segment_map);
4099 m = bfd_zalloc (abfd, amt);
4100 if (m == NULL)
4101 goto error_return;
4102 m->next = NULL;
4103 m->p_type = PT_GNU_STACK;
4104 m->p_flags = elf_tdata (abfd)->stack_flags;
4105 m->p_flags_valid = 1;
4106
4107 *pm = m;
4108 pm = &m->next;
4109 }
4110
4111 if (dynsec != NULL && elf_tdata (abfd)->relro)
4112 {
4113 /* We make a PT_GNU_RELRO segment only when there is a
4114 PT_DYNAMIC segment. */
4115 amt = sizeof (struct elf_segment_map);
4116 m = bfd_zalloc (abfd, amt);
4117 if (m == NULL)
4118 goto error_return;
4119 m->next = NULL;
4120 m->p_type = PT_GNU_RELRO;
4121 m->p_flags = PF_R;
4122 m->p_flags_valid = 1;
4123
4124 *pm = m;
4125 pm = &m->next;
4126 }
4127
4128 free (sections);
4129 elf_tdata (abfd)->segment_map = mfirst;
4130 }
4131
4132 if (!elf_modify_segment_map (abfd, info))
4133 return FALSE;
4134
4135 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4136 ++count;
4137 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4138
4139 return TRUE;
4140
4141 error_return:
4142 if (sections != NULL)
4143 free (sections);
4144 return FALSE;
4145 }
4146
4147 /* Sort sections by address. */
4148
4149 static int
4150 elf_sort_sections (const void *arg1, const void *arg2)
4151 {
4152 const asection *sec1 = *(const asection **) arg1;
4153 const asection *sec2 = *(const asection **) arg2;
4154 bfd_size_type size1, size2;
4155
4156 /* Sort by LMA first, since this is the address used to
4157 place the section into a segment. */
4158 if (sec1->lma < sec2->lma)
4159 return -1;
4160 else if (sec1->lma > sec2->lma)
4161 return 1;
4162
4163 /* Then sort by VMA. Normally the LMA and the VMA will be
4164 the same, and this will do nothing. */
4165 if (sec1->vma < sec2->vma)
4166 return -1;
4167 else if (sec1->vma > sec2->vma)
4168 return 1;
4169
4170 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4171
4172 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4173
4174 if (TOEND (sec1))
4175 {
4176 if (TOEND (sec2))
4177 {
4178 /* If the indicies are the same, do not return 0
4179 here, but continue to try the next comparison. */
4180 if (sec1->target_index - sec2->target_index != 0)
4181 return sec1->target_index - sec2->target_index;
4182 }
4183 else
4184 return 1;
4185 }
4186 else if (TOEND (sec2))
4187 return -1;
4188
4189 #undef TOEND
4190
4191 /* Sort by size, to put zero sized sections
4192 before others at the same address. */
4193
4194 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4195 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4196
4197 if (size1 < size2)
4198 return -1;
4199 if (size1 > size2)
4200 return 1;
4201
4202 return sec1->target_index - sec2->target_index;
4203 }
4204
4205 /* Ian Lance Taylor writes:
4206
4207 We shouldn't be using % with a negative signed number. That's just
4208 not good. We have to make sure either that the number is not
4209 negative, or that the number has an unsigned type. When the types
4210 are all the same size they wind up as unsigned. When file_ptr is a
4211 larger signed type, the arithmetic winds up as signed long long,
4212 which is wrong.
4213
4214 What we're trying to say here is something like ``increase OFF by
4215 the least amount that will cause it to be equal to the VMA modulo
4216 the page size.'' */
4217 /* In other words, something like:
4218
4219 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4220 off_offset = off % bed->maxpagesize;
4221 if (vma_offset < off_offset)
4222 adjustment = vma_offset + bed->maxpagesize - off_offset;
4223 else
4224 adjustment = vma_offset - off_offset;
4225
4226 which can can be collapsed into the expression below. */
4227
4228 static file_ptr
4229 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4230 {
4231 return ((vma - off) % maxpagesize);
4232 }
4233
4234 /* Assign file positions to the sections based on the mapping from
4235 sections to segments. This function also sets up some fields in
4236 the file header. */
4237
4238 static bfd_boolean
4239 assign_file_positions_for_load_sections (bfd *abfd,
4240 struct bfd_link_info *link_info)
4241 {
4242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4243 struct elf_segment_map *m;
4244 Elf_Internal_Phdr *phdrs;
4245 Elf_Internal_Phdr *p;
4246 file_ptr off, voff;
4247 bfd_size_type maxpagesize;
4248 unsigned int alloc;
4249 unsigned int i;
4250
4251 if (link_info == NULL
4252 && !elf_modify_segment_map (abfd, link_info))
4253 return FALSE;
4254
4255 alloc = 0;
4256 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4257 ++alloc;
4258
4259 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4260 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4261 elf_elfheader (abfd)->e_phnum = alloc;
4262
4263 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4264 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4265 else
4266 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4267 >= alloc * bed->s->sizeof_phdr);
4268
4269 if (alloc == 0)
4270 {
4271 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4272 return TRUE;
4273 }
4274
4275 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4276 elf_tdata (abfd)->phdr = phdrs;
4277 if (phdrs == NULL)
4278 return FALSE;
4279
4280 maxpagesize = 1;
4281 if ((abfd->flags & D_PAGED) != 0)
4282 maxpagesize = bed->maxpagesize;
4283
4284 off = bed->s->sizeof_ehdr;
4285 off += alloc * bed->s->sizeof_phdr;
4286
4287 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4288 m != NULL;
4289 m = m->next, p++)
4290 {
4291 asection **secpp;
4292
4293 /* If elf_segment_map is not from map_sections_to_segments, the
4294 sections may not be correctly ordered. NOTE: sorting should
4295 not be done to the PT_NOTE section of a corefile, which may
4296 contain several pseudo-sections artificially created by bfd.
4297 Sorting these pseudo-sections breaks things badly. */
4298 if (m->count > 1
4299 && !(elf_elfheader (abfd)->e_type == ET_CORE
4300 && m->p_type == PT_NOTE))
4301 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4302 elf_sort_sections);
4303
4304 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4305 number of sections with contents contributing to both p_filesz
4306 and p_memsz, followed by a number of sections with no contents
4307 that just contribute to p_memsz. In this loop, OFF tracks next
4308 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4309 an adjustment we use for segments that have no file contents
4310 but need zero filled memory allocation. */
4311 voff = 0;
4312 p->p_type = m->p_type;
4313 p->p_flags = m->p_flags;
4314
4315 if (m->count == 0)
4316 p->p_vaddr = 0;
4317 else
4318 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4319
4320 if (m->p_paddr_valid)
4321 p->p_paddr = m->p_paddr;
4322 else if (m->count == 0)
4323 p->p_paddr = 0;
4324 else
4325 p->p_paddr = m->sections[0]->lma;
4326
4327 if (p->p_type == PT_LOAD
4328 && (abfd->flags & D_PAGED) != 0)
4329 {
4330 /* p_align in demand paged PT_LOAD segments effectively stores
4331 the maximum page size. When copying an executable with
4332 objcopy, we set m->p_align from the input file. Use this
4333 value for maxpagesize rather than bed->maxpagesize, which
4334 may be different. Note that we use maxpagesize for PT_TLS
4335 segment alignment later in this function, so we are relying
4336 on at least one PT_LOAD segment appearing before a PT_TLS
4337 segment. */
4338 if (m->p_align_valid)
4339 maxpagesize = m->p_align;
4340
4341 p->p_align = maxpagesize;
4342 }
4343 else if (m->count == 0)
4344 p->p_align = 1 << bed->s->log_file_align;
4345 else if (m->p_align_valid)
4346 p->p_align = m->p_align;
4347 else
4348 p->p_align = 0;
4349
4350 if (p->p_type == PT_LOAD
4351 && m->count > 0)
4352 {
4353 bfd_size_type align;
4354 bfd_vma adjust;
4355 unsigned int align_power = 0;
4356
4357 if (m->p_align_valid)
4358 align = p->p_align;
4359 else
4360 {
4361 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4362 {
4363 unsigned int secalign;
4364
4365 secalign = bfd_get_section_alignment (abfd, *secpp);
4366 if (secalign > align_power)
4367 align_power = secalign;
4368 }
4369 align = (bfd_size_type) 1 << align_power;
4370 if (align < maxpagesize)
4371 align = maxpagesize;
4372 }
4373
4374 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4375 off += adjust;
4376 if (adjust != 0
4377 && !m->includes_filehdr
4378 && !m->includes_phdrs
4379 && (ufile_ptr) off >= align)
4380 {
4381 /* If the first section isn't loadable, the same holds for
4382 any other sections. Since the segment won't need file
4383 space, we can make p_offset overlap some prior segment.
4384 However, .tbss is special. If a segment starts with
4385 .tbss, we need to look at the next section to decide
4386 whether the segment has any loadable sections. */
4387 i = 0;
4388 while ((m->sections[i]->flags & SEC_LOAD) == 0
4389 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4390 {
4391 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4392 || ++i >= m->count)
4393 {
4394 off -= adjust;
4395 voff = adjust - align;
4396 break;
4397 }
4398 }
4399 }
4400 }
4401 /* Make sure the .dynamic section is the first section in the
4402 PT_DYNAMIC segment. */
4403 else if (p->p_type == PT_DYNAMIC
4404 && m->count > 1
4405 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4406 {
4407 _bfd_error_handler
4408 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4409 abfd);
4410 bfd_set_error (bfd_error_bad_value);
4411 return FALSE;
4412 }
4413
4414 p->p_offset = 0;
4415 p->p_filesz = 0;
4416 p->p_memsz = 0;
4417
4418 if (m->includes_filehdr)
4419 {
4420 if (! m->p_flags_valid)
4421 p->p_flags |= PF_R;
4422 p->p_filesz = bed->s->sizeof_ehdr;
4423 p->p_memsz = bed->s->sizeof_ehdr;
4424 if (m->count > 0)
4425 {
4426 BFD_ASSERT (p->p_type == PT_LOAD);
4427
4428 if (p->p_vaddr < (bfd_vma) off)
4429 {
4430 (*_bfd_error_handler)
4431 (_("%B: Not enough room for program headers, try linking with -N"),
4432 abfd);
4433 bfd_set_error (bfd_error_bad_value);
4434 return FALSE;
4435 }
4436
4437 p->p_vaddr -= off;
4438 if (! m->p_paddr_valid)
4439 p->p_paddr -= off;
4440 }
4441 }
4442
4443 if (m->includes_phdrs)
4444 {
4445 if (! m->p_flags_valid)
4446 p->p_flags |= PF_R;
4447
4448 if (!m->includes_filehdr)
4449 {
4450 p->p_offset = bed->s->sizeof_ehdr;
4451
4452 if (m->count > 0)
4453 {
4454 BFD_ASSERT (p->p_type == PT_LOAD);
4455 p->p_vaddr -= off - p->p_offset;
4456 if (! m->p_paddr_valid)
4457 p->p_paddr -= off - p->p_offset;
4458 }
4459 }
4460
4461 p->p_filesz += alloc * bed->s->sizeof_phdr;
4462 p->p_memsz += alloc * bed->s->sizeof_phdr;
4463 }
4464
4465 if (p->p_type == PT_LOAD
4466 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4467 {
4468 if (! m->includes_filehdr && ! m->includes_phdrs)
4469 p->p_offset = off + voff;
4470 else
4471 {
4472 file_ptr adjust;
4473
4474 adjust = off - (p->p_offset + p->p_filesz);
4475 p->p_filesz += adjust;
4476 p->p_memsz += adjust;
4477 }
4478 }
4479
4480 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4481 maps. Set filepos for sections in PT_LOAD segments, and in
4482 core files, for sections in PT_NOTE segments.
4483 assign_file_positions_for_non_load_sections will set filepos
4484 for other sections and update p_filesz for other segments. */
4485 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4486 {
4487 asection *sec;
4488 flagword flags;
4489 bfd_size_type align;
4490
4491 sec = *secpp;
4492 flags = sec->flags;
4493 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4494
4495 if (p->p_type == PT_LOAD
4496 || p->p_type == PT_TLS)
4497 {
4498 bfd_signed_vma adjust;
4499
4500 if ((flags & SEC_LOAD) != 0)
4501 {
4502 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4503 if (adjust < 0)
4504 {
4505 (*_bfd_error_handler)
4506 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4507 abfd, sec, (unsigned long) sec->lma);
4508 adjust = 0;
4509 }
4510 off += adjust;
4511 p->p_filesz += adjust;
4512 p->p_memsz += adjust;
4513 }
4514 /* .tbss is special. It doesn't contribute to p_memsz of
4515 normal segments. */
4516 else if ((flags & SEC_ALLOC) != 0
4517 && ((flags & SEC_THREAD_LOCAL) == 0
4518 || p->p_type == PT_TLS))
4519 {
4520 /* The section VMA must equal the file position
4521 modulo the page size. */
4522 bfd_size_type page = align;
4523 if (page < maxpagesize)
4524 page = maxpagesize;
4525 adjust = vma_page_aligned_bias (sec->vma,
4526 p->p_vaddr + p->p_memsz,
4527 page);
4528 p->p_memsz += adjust;
4529 }
4530 }
4531
4532 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4533 {
4534 /* The section at i == 0 is the one that actually contains
4535 everything. */
4536 if (i == 0)
4537 {
4538 sec->filepos = off;
4539 off += sec->size;
4540 p->p_filesz = sec->size;
4541 p->p_memsz = 0;
4542 p->p_align = 1;
4543 }
4544 else
4545 {
4546 /* The rest are fake sections that shouldn't be written. */
4547 sec->filepos = 0;
4548 sec->size = 0;
4549 sec->flags = 0;
4550 continue;
4551 }
4552 }
4553 else
4554 {
4555 if (p->p_type == PT_LOAD)
4556 {
4557 sec->filepos = off + voff;
4558 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4559 1997, and the exact reason for it isn't clear. One
4560 plausible explanation is that it is to work around
4561 a problem we have with linker scripts using data
4562 statements in NOLOAD sections. I don't think it
4563 makes a great deal of sense to have such a section
4564 assigned to a PT_LOAD segment, but apparently
4565 people do this. The data statement results in a
4566 bfd_data_link_order being built, and these need
4567 section contents to write into. Eventually, we get
4568 to _bfd_elf_write_object_contents which writes any
4569 section with contents to the output. Make room
4570 here for the write, so that following segments are
4571 not trashed. */
4572 if ((flags & SEC_LOAD) != 0
4573 || (flags & SEC_HAS_CONTENTS) != 0)
4574 off += sec->size;
4575 }
4576
4577 if ((flags & SEC_LOAD) != 0)
4578 {
4579 p->p_filesz += sec->size;
4580 p->p_memsz += sec->size;
4581 }
4582
4583 /* .tbss is special. It doesn't contribute to p_memsz of
4584 normal segments. */
4585 else if ((flags & SEC_ALLOC) != 0
4586 && ((flags & SEC_THREAD_LOCAL) == 0
4587 || p->p_type == PT_TLS))
4588 p->p_memsz += sec->size;
4589
4590 if (p->p_type == PT_TLS
4591 && sec->size == 0
4592 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4593 {
4594 struct bfd_link_order *o = sec->map_tail.link_order;
4595 if (o != NULL)
4596 p->p_memsz += o->offset + o->size;
4597 }
4598
4599 if (p->p_type == PT_GNU_RELRO)
4600 p->p_align = 1;
4601 else if (align > p->p_align
4602 && !m->p_align_valid
4603 && (p->p_type != PT_LOAD
4604 || (abfd->flags & D_PAGED) == 0))
4605 p->p_align = align;
4606 }
4607
4608 if (! m->p_flags_valid)
4609 {
4610 p->p_flags |= PF_R;
4611 if ((flags & SEC_CODE) != 0)
4612 p->p_flags |= PF_X;
4613 if ((flags & SEC_READONLY) == 0)
4614 p->p_flags |= PF_W;
4615 }
4616 }
4617 }
4618
4619 elf_tdata (abfd)->next_file_pos = off;
4620 return TRUE;
4621 }
4622
4623 /* Assign file positions for the other sections. */
4624
4625 static bfd_boolean
4626 assign_file_positions_for_non_load_sections (bfd *abfd,
4627 struct bfd_link_info *link_info)
4628 {
4629 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4630 Elf_Internal_Shdr **i_shdrpp;
4631 Elf_Internal_Shdr **hdrpp;
4632 Elf_Internal_Phdr *phdrs;
4633 Elf_Internal_Phdr *p;
4634 struct elf_segment_map *m;
4635 bfd_vma filehdr_vaddr, filehdr_paddr;
4636 bfd_vma phdrs_vaddr, phdrs_paddr;
4637 file_ptr off;
4638 unsigned int num_sec;
4639 unsigned int i;
4640 unsigned int count;
4641
4642 i_shdrpp = elf_elfsections (abfd);
4643 num_sec = elf_numsections (abfd);
4644 off = elf_tdata (abfd)->next_file_pos;
4645 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4646 {
4647 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4648 Elf_Internal_Shdr *hdr;
4649
4650 hdr = *hdrpp;
4651 if (hdr->bfd_section != NULL
4652 && (hdr->bfd_section->filepos != 0
4653 || (hdr->sh_type == SHT_NOBITS
4654 && hdr->contents == NULL)))
4655 hdr->sh_offset = hdr->bfd_section->filepos;
4656 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4657 {
4658 if (hdr->sh_size != 0)
4659 ((*_bfd_error_handler)
4660 (_("%B: warning: allocated section `%s' not in segment"),
4661 abfd,
4662 (hdr->bfd_section == NULL
4663 ? "*unknown*"
4664 : hdr->bfd_section->name)));
4665 /* We don't need to page align empty sections. */
4666 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4667 off += vma_page_aligned_bias (hdr->sh_addr, off,
4668 bed->maxpagesize);
4669 else
4670 off += vma_page_aligned_bias (hdr->sh_addr, off,
4671 hdr->sh_addralign);
4672 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4673 FALSE);
4674 }
4675 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4676 && hdr->bfd_section == NULL)
4677 || hdr == i_shdrpp[tdata->symtab_section]
4678 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4679 || hdr == i_shdrpp[tdata->strtab_section])
4680 hdr->sh_offset = -1;
4681 else
4682 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4683
4684 if (i == SHN_LORESERVE - 1)
4685 {
4686 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4687 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4688 }
4689 }
4690
4691 /* Now that we have set the section file positions, we can set up
4692 the file positions for the non PT_LOAD segments. */
4693 count = 0;
4694 filehdr_vaddr = 0;
4695 filehdr_paddr = 0;
4696 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4697 phdrs_paddr = 0;
4698 phdrs = elf_tdata (abfd)->phdr;
4699 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4700 m != NULL;
4701 m = m->next, p++)
4702 {
4703 ++count;
4704 if (p->p_type != PT_LOAD)
4705 continue;
4706
4707 if (m->includes_filehdr)
4708 {
4709 filehdr_vaddr = p->p_vaddr;
4710 filehdr_paddr = p->p_paddr;
4711 }
4712 if (m->includes_phdrs)
4713 {
4714 phdrs_vaddr = p->p_vaddr;
4715 phdrs_paddr = p->p_paddr;
4716 if (m->includes_filehdr)
4717 {
4718 phdrs_vaddr += bed->s->sizeof_ehdr;
4719 phdrs_paddr += bed->s->sizeof_ehdr;
4720 }
4721 }
4722 }
4723
4724 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4725 m != NULL;
4726 m = m->next, p++)
4727 {
4728 if (m->count != 0)
4729 {
4730 if (p->p_type != PT_LOAD
4731 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4732 {
4733 Elf_Internal_Shdr *hdr;
4734 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4735
4736 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4737 p->p_filesz = (m->sections[m->count - 1]->filepos
4738 - m->sections[0]->filepos);
4739 if (hdr->sh_type != SHT_NOBITS)
4740 p->p_filesz += hdr->sh_size;
4741
4742 p->p_offset = m->sections[0]->filepos;
4743 }
4744 }
4745 else
4746 {
4747 if (m->includes_filehdr)
4748 {
4749 p->p_vaddr = filehdr_vaddr;
4750 if (! m->p_paddr_valid)
4751 p->p_paddr = filehdr_paddr;
4752 }
4753 else if (m->includes_phdrs)
4754 {
4755 p->p_vaddr = phdrs_vaddr;
4756 if (! m->p_paddr_valid)
4757 p->p_paddr = phdrs_paddr;
4758 }
4759 else if (p->p_type == PT_GNU_RELRO)
4760 {
4761 Elf_Internal_Phdr *lp;
4762
4763 for (lp = phdrs; lp < phdrs + count; ++lp)
4764 {
4765 if (lp->p_type == PT_LOAD
4766 && lp->p_vaddr <= link_info->relro_end
4767 && lp->p_vaddr >= link_info->relro_start
4768 && (lp->p_vaddr + lp->p_filesz
4769 >= link_info->relro_end))
4770 break;
4771 }
4772
4773 if (lp < phdrs + count
4774 && link_info->relro_end > lp->p_vaddr)
4775 {
4776 p->p_vaddr = lp->p_vaddr;
4777 p->p_paddr = lp->p_paddr;
4778 p->p_offset = lp->p_offset;
4779 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4780 p->p_memsz = p->p_filesz;
4781 p->p_align = 1;
4782 p->p_flags = (lp->p_flags & ~PF_W);
4783 }
4784 else
4785 {
4786 memset (p, 0, sizeof *p);
4787 p->p_type = PT_NULL;
4788 }
4789 }
4790 }
4791 }
4792
4793 elf_tdata (abfd)->next_file_pos = off;
4794
4795 return TRUE;
4796 }
4797
4798 /* Work out the file positions of all the sections. This is called by
4799 _bfd_elf_compute_section_file_positions. All the section sizes and
4800 VMAs must be known before this is called.
4801
4802 Reloc sections come in two flavours: Those processed specially as
4803 "side-channel" data attached to a section to which they apply, and
4804 those that bfd doesn't process as relocations. The latter sort are
4805 stored in a normal bfd section by bfd_section_from_shdr. We don't
4806 consider the former sort here, unless they form part of the loadable
4807 image. Reloc sections not assigned here will be handled later by
4808 assign_file_positions_for_relocs.
4809
4810 We also don't set the positions of the .symtab and .strtab here. */
4811
4812 static bfd_boolean
4813 assign_file_positions_except_relocs (bfd *abfd,
4814 struct bfd_link_info *link_info)
4815 {
4816 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4817 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4818 file_ptr off;
4819 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4820
4821 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4822 && bfd_get_format (abfd) != bfd_core)
4823 {
4824 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4825 unsigned int num_sec = elf_numsections (abfd);
4826 Elf_Internal_Shdr **hdrpp;
4827 unsigned int i;
4828
4829 /* Start after the ELF header. */
4830 off = i_ehdrp->e_ehsize;
4831
4832 /* We are not creating an executable, which means that we are
4833 not creating a program header, and that the actual order of
4834 the sections in the file is unimportant. */
4835 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4836 {
4837 Elf_Internal_Shdr *hdr;
4838
4839 hdr = *hdrpp;
4840 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4841 && hdr->bfd_section == NULL)
4842 || i == tdata->symtab_section
4843 || i == tdata->symtab_shndx_section
4844 || i == tdata->strtab_section)
4845 {
4846 hdr->sh_offset = -1;
4847 }
4848 else
4849 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4850
4851 if (i == SHN_LORESERVE - 1)
4852 {
4853 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4854 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4855 }
4856 }
4857 }
4858 else
4859 {
4860 unsigned int alloc;
4861
4862 /* Assign file positions for the loaded sections based on the
4863 assignment of sections to segments. */
4864 if (!assign_file_positions_for_load_sections (abfd, link_info))
4865 return FALSE;
4866
4867 /* And for non-load sections. */
4868 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4869 return FALSE;
4870
4871 if (bed->elf_backend_modify_program_headers != NULL)
4872 {
4873 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4874 return FALSE;
4875 }
4876
4877 /* Write out the program headers. */
4878 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4879 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4880 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4881 return FALSE;
4882
4883 off = tdata->next_file_pos;
4884 }
4885
4886 /* Place the section headers. */
4887 off = align_file_position (off, 1 << bed->s->log_file_align);
4888 i_ehdrp->e_shoff = off;
4889 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4890
4891 tdata->next_file_pos = off;
4892
4893 return TRUE;
4894 }
4895
4896 static bfd_boolean
4897 prep_headers (bfd *abfd)
4898 {
4899 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4900 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4901 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4902 struct elf_strtab_hash *shstrtab;
4903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4904
4905 i_ehdrp = elf_elfheader (abfd);
4906 i_shdrp = elf_elfsections (abfd);
4907
4908 shstrtab = _bfd_elf_strtab_init ();
4909 if (shstrtab == NULL)
4910 return FALSE;
4911
4912 elf_shstrtab (abfd) = shstrtab;
4913
4914 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4915 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4916 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4917 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4918
4919 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4920 i_ehdrp->e_ident[EI_DATA] =
4921 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4922 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4923
4924 if ((abfd->flags & DYNAMIC) != 0)
4925 i_ehdrp->e_type = ET_DYN;
4926 else if ((abfd->flags & EXEC_P) != 0)
4927 i_ehdrp->e_type = ET_EXEC;
4928 else if (bfd_get_format (abfd) == bfd_core)
4929 i_ehdrp->e_type = ET_CORE;
4930 else
4931 i_ehdrp->e_type = ET_REL;
4932
4933 switch (bfd_get_arch (abfd))
4934 {
4935 case bfd_arch_unknown:
4936 i_ehdrp->e_machine = EM_NONE;
4937 break;
4938
4939 /* There used to be a long list of cases here, each one setting
4940 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4941 in the corresponding bfd definition. To avoid duplication,
4942 the switch was removed. Machines that need special handling
4943 can generally do it in elf_backend_final_write_processing(),
4944 unless they need the information earlier than the final write.
4945 Such need can generally be supplied by replacing the tests for
4946 e_machine with the conditions used to determine it. */
4947 default:
4948 i_ehdrp->e_machine = bed->elf_machine_code;
4949 }
4950
4951 i_ehdrp->e_version = bed->s->ev_current;
4952 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4953
4954 /* No program header, for now. */
4955 i_ehdrp->e_phoff = 0;
4956 i_ehdrp->e_phentsize = 0;
4957 i_ehdrp->e_phnum = 0;
4958
4959 /* Each bfd section is section header entry. */
4960 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4961 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4962
4963 /* If we're building an executable, we'll need a program header table. */
4964 if (abfd->flags & EXEC_P)
4965 /* It all happens later. */
4966 ;
4967 else
4968 {
4969 i_ehdrp->e_phentsize = 0;
4970 i_phdrp = 0;
4971 i_ehdrp->e_phoff = 0;
4972 }
4973
4974 elf_tdata (abfd)->symtab_hdr.sh_name =
4975 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4976 elf_tdata (abfd)->strtab_hdr.sh_name =
4977 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4978 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4979 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4980 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4981 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4982 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4983 return FALSE;
4984
4985 return TRUE;
4986 }
4987
4988 /* Assign file positions for all the reloc sections which are not part
4989 of the loadable file image. */
4990
4991 void
4992 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4993 {
4994 file_ptr off;
4995 unsigned int i, num_sec;
4996 Elf_Internal_Shdr **shdrpp;
4997
4998 off = elf_tdata (abfd)->next_file_pos;
4999
5000 num_sec = elf_numsections (abfd);
5001 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5002 {
5003 Elf_Internal_Shdr *shdrp;
5004
5005 shdrp = *shdrpp;
5006 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5007 && shdrp->sh_offset == -1)
5008 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5009 }
5010
5011 elf_tdata (abfd)->next_file_pos = off;
5012 }
5013
5014 bfd_boolean
5015 _bfd_elf_write_object_contents (bfd *abfd)
5016 {
5017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5018 Elf_Internal_Ehdr *i_ehdrp;
5019 Elf_Internal_Shdr **i_shdrp;
5020 bfd_boolean failed;
5021 unsigned int count, num_sec;
5022
5023 if (! abfd->output_has_begun
5024 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5025 return FALSE;
5026
5027 i_shdrp = elf_elfsections (abfd);
5028 i_ehdrp = elf_elfheader (abfd);
5029
5030 failed = FALSE;
5031 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5032 if (failed)
5033 return FALSE;
5034
5035 _bfd_elf_assign_file_positions_for_relocs (abfd);
5036
5037 /* After writing the headers, we need to write the sections too... */
5038 num_sec = elf_numsections (abfd);
5039 for (count = 1; count < num_sec; count++)
5040 {
5041 if (bed->elf_backend_section_processing)
5042 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5043 if (i_shdrp[count]->contents)
5044 {
5045 bfd_size_type amt = i_shdrp[count]->sh_size;
5046
5047 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5048 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5049 return FALSE;
5050 }
5051 if (count == SHN_LORESERVE - 1)
5052 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5053 }
5054
5055 /* Write out the section header names. */
5056 if (elf_shstrtab (abfd) != NULL
5057 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5058 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5059 return FALSE;
5060
5061 if (bed->elf_backend_final_write_processing)
5062 (*bed->elf_backend_final_write_processing) (abfd,
5063 elf_tdata (abfd)->linker);
5064
5065 return bed->s->write_shdrs_and_ehdr (abfd);
5066 }
5067
5068 bfd_boolean
5069 _bfd_elf_write_corefile_contents (bfd *abfd)
5070 {
5071 /* Hopefully this can be done just like an object file. */
5072 return _bfd_elf_write_object_contents (abfd);
5073 }
5074
5075 /* Given a section, search the header to find them. */
5076
5077 int
5078 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5079 {
5080 const struct elf_backend_data *bed;
5081 int index;
5082
5083 if (elf_section_data (asect) != NULL
5084 && elf_section_data (asect)->this_idx != 0)
5085 return elf_section_data (asect)->this_idx;
5086
5087 if (bfd_is_abs_section (asect))
5088 index = SHN_ABS;
5089 else if (bfd_is_com_section (asect))
5090 index = SHN_COMMON;
5091 else if (bfd_is_und_section (asect))
5092 index = SHN_UNDEF;
5093 else
5094 index = -1;
5095
5096 bed = get_elf_backend_data (abfd);
5097 if (bed->elf_backend_section_from_bfd_section)
5098 {
5099 int retval = index;
5100
5101 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5102 return retval;
5103 }
5104
5105 if (index == -1)
5106 bfd_set_error (bfd_error_nonrepresentable_section);
5107
5108 return index;
5109 }
5110
5111 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5112 on error. */
5113
5114 int
5115 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5116 {
5117 asymbol *asym_ptr = *asym_ptr_ptr;
5118 int idx;
5119 flagword flags = asym_ptr->flags;
5120
5121 /* When gas creates relocations against local labels, it creates its
5122 own symbol for the section, but does put the symbol into the
5123 symbol chain, so udata is 0. When the linker is generating
5124 relocatable output, this section symbol may be for one of the
5125 input sections rather than the output section. */
5126 if (asym_ptr->udata.i == 0
5127 && (flags & BSF_SECTION_SYM)
5128 && asym_ptr->section)
5129 {
5130 asection *sec;
5131 int indx;
5132
5133 sec = asym_ptr->section;
5134 if (sec->owner != abfd && sec->output_section != NULL)
5135 sec = sec->output_section;
5136 if (sec->owner == abfd
5137 && (indx = sec->index) < elf_num_section_syms (abfd)
5138 && elf_section_syms (abfd)[indx] != NULL)
5139 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5140 }
5141
5142 idx = asym_ptr->udata.i;
5143
5144 if (idx == 0)
5145 {
5146 /* This case can occur when using --strip-symbol on a symbol
5147 which is used in a relocation entry. */
5148 (*_bfd_error_handler)
5149 (_("%B: symbol `%s' required but not present"),
5150 abfd, bfd_asymbol_name (asym_ptr));
5151 bfd_set_error (bfd_error_no_symbols);
5152 return -1;
5153 }
5154
5155 #if DEBUG & 4
5156 {
5157 fprintf (stderr,
5158 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5159 (long) asym_ptr, asym_ptr->name, idx, flags,
5160 elf_symbol_flags (flags));
5161 fflush (stderr);
5162 }
5163 #endif
5164
5165 return idx;
5166 }
5167
5168 /* Rewrite program header information. */
5169
5170 static bfd_boolean
5171 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5172 {
5173 Elf_Internal_Ehdr *iehdr;
5174 struct elf_segment_map *map;
5175 struct elf_segment_map *map_first;
5176 struct elf_segment_map **pointer_to_map;
5177 Elf_Internal_Phdr *segment;
5178 asection *section;
5179 unsigned int i;
5180 unsigned int num_segments;
5181 bfd_boolean phdr_included = FALSE;
5182 bfd_vma maxpagesize;
5183 struct elf_segment_map *phdr_adjust_seg = NULL;
5184 unsigned int phdr_adjust_num = 0;
5185 const struct elf_backend_data *bed;
5186
5187 bed = get_elf_backend_data (ibfd);
5188 iehdr = elf_elfheader (ibfd);
5189
5190 map_first = NULL;
5191 pointer_to_map = &map_first;
5192
5193 num_segments = elf_elfheader (ibfd)->e_phnum;
5194 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5195
5196 /* Returns the end address of the segment + 1. */
5197 #define SEGMENT_END(segment, start) \
5198 (start + (segment->p_memsz > segment->p_filesz \
5199 ? segment->p_memsz : segment->p_filesz))
5200
5201 #define SECTION_SIZE(section, segment) \
5202 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5203 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5204 ? section->size : 0)
5205
5206 /* Returns TRUE if the given section is contained within
5207 the given segment. VMA addresses are compared. */
5208 #define IS_CONTAINED_BY_VMA(section, segment) \
5209 (section->vma >= segment->p_vaddr \
5210 && (section->vma + SECTION_SIZE (section, segment) \
5211 <= (SEGMENT_END (segment, segment->p_vaddr))))
5212
5213 /* Returns TRUE if the given section is contained within
5214 the given segment. LMA addresses are compared. */
5215 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5216 (section->lma >= base \
5217 && (section->lma + SECTION_SIZE (section, segment) \
5218 <= SEGMENT_END (segment, base)))
5219
5220 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5221 #define IS_COREFILE_NOTE(p, s) \
5222 (p->p_type == PT_NOTE \
5223 && bfd_get_format (ibfd) == bfd_core \
5224 && s->vma == 0 && s->lma == 0 \
5225 && (bfd_vma) s->filepos >= p->p_offset \
5226 && ((bfd_vma) s->filepos + s->size \
5227 <= p->p_offset + p->p_filesz))
5228
5229 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5230 linker, which generates a PT_INTERP section with p_vaddr and
5231 p_memsz set to 0. */
5232 #define IS_SOLARIS_PT_INTERP(p, s) \
5233 (p->p_vaddr == 0 \
5234 && p->p_paddr == 0 \
5235 && p->p_memsz == 0 \
5236 && p->p_filesz > 0 \
5237 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5238 && s->size > 0 \
5239 && (bfd_vma) s->filepos >= p->p_offset \
5240 && ((bfd_vma) s->filepos + s->size \
5241 <= p->p_offset + p->p_filesz))
5242
5243 /* Decide if the given section should be included in the given segment.
5244 A section will be included if:
5245 1. It is within the address space of the segment -- we use the LMA
5246 if that is set for the segment and the VMA otherwise,
5247 2. It is an allocated segment,
5248 3. There is an output section associated with it,
5249 4. The section has not already been allocated to a previous segment.
5250 5. PT_GNU_STACK segments do not include any sections.
5251 6. PT_TLS segment includes only SHF_TLS sections.
5252 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5253 8. PT_DYNAMIC should not contain empty sections at the beginning
5254 (with the possible exception of .dynamic). */
5255 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5256 ((((segment->p_paddr \
5257 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5258 : IS_CONTAINED_BY_VMA (section, segment)) \
5259 && (section->flags & SEC_ALLOC) != 0) \
5260 || IS_COREFILE_NOTE (segment, section)) \
5261 && segment->p_type != PT_GNU_STACK \
5262 && (segment->p_type != PT_TLS \
5263 || (section->flags & SEC_THREAD_LOCAL)) \
5264 && (segment->p_type == PT_LOAD \
5265 || segment->p_type == PT_TLS \
5266 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5267 && (segment->p_type != PT_DYNAMIC \
5268 || SECTION_SIZE (section, segment) > 0 \
5269 || (segment->p_paddr \
5270 ? segment->p_paddr != section->lma \
5271 : segment->p_vaddr != section->vma) \
5272 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5273 == 0)) \
5274 && ! section->segment_mark)
5275
5276 /* If the output section of a section in the input segment is NULL,
5277 it is removed from the corresponding output segment. */
5278 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5279 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5280 && section->output_section != NULL)
5281
5282 /* Returns TRUE iff seg1 starts after the end of seg2. */
5283 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5284 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5285
5286 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5287 their VMA address ranges and their LMA address ranges overlap.
5288 It is possible to have overlapping VMA ranges without overlapping LMA
5289 ranges. RedBoot images for example can have both .data and .bss mapped
5290 to the same VMA range, but with the .data section mapped to a different
5291 LMA. */
5292 #define SEGMENT_OVERLAPS(seg1, seg2) \
5293 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5294 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5295 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5296 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5297
5298 /* Initialise the segment mark field. */
5299 for (section = ibfd->sections; section != NULL; section = section->next)
5300 section->segment_mark = FALSE;
5301
5302 /* Scan through the segments specified in the program header
5303 of the input BFD. For this first scan we look for overlaps
5304 in the loadable segments. These can be created by weird
5305 parameters to objcopy. Also, fix some solaris weirdness. */
5306 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5307 i < num_segments;
5308 i++, segment++)
5309 {
5310 unsigned int j;
5311 Elf_Internal_Phdr *segment2;
5312
5313 if (segment->p_type == PT_INTERP)
5314 for (section = ibfd->sections; section; section = section->next)
5315 if (IS_SOLARIS_PT_INTERP (segment, section))
5316 {
5317 /* Mininal change so that the normal section to segment
5318 assignment code will work. */
5319 segment->p_vaddr = section->vma;
5320 break;
5321 }
5322
5323 if (segment->p_type != PT_LOAD)
5324 continue;
5325
5326 /* Determine if this segment overlaps any previous segments. */
5327 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5328 {
5329 bfd_signed_vma extra_length;
5330
5331 if (segment2->p_type != PT_LOAD
5332 || ! SEGMENT_OVERLAPS (segment, segment2))
5333 continue;
5334
5335 /* Merge the two segments together. */
5336 if (segment2->p_vaddr < segment->p_vaddr)
5337 {
5338 /* Extend SEGMENT2 to include SEGMENT and then delete
5339 SEGMENT. */
5340 extra_length =
5341 SEGMENT_END (segment, segment->p_vaddr)
5342 - SEGMENT_END (segment2, segment2->p_vaddr);
5343
5344 if (extra_length > 0)
5345 {
5346 segment2->p_memsz += extra_length;
5347 segment2->p_filesz += extra_length;
5348 }
5349
5350 segment->p_type = PT_NULL;
5351
5352 /* Since we have deleted P we must restart the outer loop. */
5353 i = 0;
5354 segment = elf_tdata (ibfd)->phdr;
5355 break;
5356 }
5357 else
5358 {
5359 /* Extend SEGMENT to include SEGMENT2 and then delete
5360 SEGMENT2. */
5361 extra_length =
5362 SEGMENT_END (segment2, segment2->p_vaddr)
5363 - SEGMENT_END (segment, segment->p_vaddr);
5364
5365 if (extra_length > 0)
5366 {
5367 segment->p_memsz += extra_length;
5368 segment->p_filesz += extra_length;
5369 }
5370
5371 segment2->p_type = PT_NULL;
5372 }
5373 }
5374 }
5375
5376 /* The second scan attempts to assign sections to segments. */
5377 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5378 i < num_segments;
5379 i ++, segment ++)
5380 {
5381 unsigned int section_count;
5382 asection ** sections;
5383 asection * output_section;
5384 unsigned int isec;
5385 bfd_vma matching_lma;
5386 bfd_vma suggested_lma;
5387 unsigned int j;
5388 bfd_size_type amt;
5389 asection * first_section;
5390
5391 if (segment->p_type == PT_NULL)
5392 continue;
5393
5394 first_section = NULL;
5395 /* Compute how many sections might be placed into this segment. */
5396 for (section = ibfd->sections, section_count = 0;
5397 section != NULL;
5398 section = section->next)
5399 {
5400 /* Find the first section in the input segment, which may be
5401 removed from the corresponding output segment. */
5402 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5403 {
5404 if (first_section == NULL)
5405 first_section = section;
5406 if (section->output_section != NULL)
5407 ++section_count;
5408 }
5409 }
5410
5411 /* Allocate a segment map big enough to contain
5412 all of the sections we have selected. */
5413 amt = sizeof (struct elf_segment_map);
5414 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5415 map = bfd_zalloc (obfd, amt);
5416 if (map == NULL)
5417 return FALSE;
5418
5419 /* Initialise the fields of the segment map. Default to
5420 using the physical address of the segment in the input BFD. */
5421 map->next = NULL;
5422 map->p_type = segment->p_type;
5423 map->p_flags = segment->p_flags;
5424 map->p_flags_valid = 1;
5425
5426 /* If the first section in the input segment is removed, there is
5427 no need to preserve segment physical address in the corresponding
5428 output segment. */
5429 if (!first_section || first_section->output_section != NULL)
5430 {
5431 map->p_paddr = segment->p_paddr;
5432 map->p_paddr_valid = 1;
5433 }
5434
5435 /* Determine if this segment contains the ELF file header
5436 and if it contains the program headers themselves. */
5437 map->includes_filehdr = (segment->p_offset == 0
5438 && segment->p_filesz >= iehdr->e_ehsize);
5439
5440 map->includes_phdrs = 0;
5441
5442 if (! phdr_included || segment->p_type != PT_LOAD)
5443 {
5444 map->includes_phdrs =
5445 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5446 && (segment->p_offset + segment->p_filesz
5447 >= ((bfd_vma) iehdr->e_phoff
5448 + iehdr->e_phnum * iehdr->e_phentsize)));
5449
5450 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5451 phdr_included = TRUE;
5452 }
5453
5454 if (section_count == 0)
5455 {
5456 /* Special segments, such as the PT_PHDR segment, may contain
5457 no sections, but ordinary, loadable segments should contain
5458 something. They are allowed by the ELF spec however, so only
5459 a warning is produced. */
5460 if (segment->p_type == PT_LOAD)
5461 (*_bfd_error_handler)
5462 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5463 ibfd);
5464
5465 map->count = 0;
5466 *pointer_to_map = map;
5467 pointer_to_map = &map->next;
5468
5469 continue;
5470 }
5471
5472 /* Now scan the sections in the input BFD again and attempt
5473 to add their corresponding output sections to the segment map.
5474 The problem here is how to handle an output section which has
5475 been moved (ie had its LMA changed). There are four possibilities:
5476
5477 1. None of the sections have been moved.
5478 In this case we can continue to use the segment LMA from the
5479 input BFD.
5480
5481 2. All of the sections have been moved by the same amount.
5482 In this case we can change the segment's LMA to match the LMA
5483 of the first section.
5484
5485 3. Some of the sections have been moved, others have not.
5486 In this case those sections which have not been moved can be
5487 placed in the current segment which will have to have its size,
5488 and possibly its LMA changed, and a new segment or segments will
5489 have to be created to contain the other sections.
5490
5491 4. The sections have been moved, but not by the same amount.
5492 In this case we can change the segment's LMA to match the LMA
5493 of the first section and we will have to create a new segment
5494 or segments to contain the other sections.
5495
5496 In order to save time, we allocate an array to hold the section
5497 pointers that we are interested in. As these sections get assigned
5498 to a segment, they are removed from this array. */
5499
5500 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5501 to work around this long long bug. */
5502 sections = bfd_malloc2 (section_count, sizeof (asection *));
5503 if (sections == NULL)
5504 return FALSE;
5505
5506 /* Step One: Scan for segment vs section LMA conflicts.
5507 Also add the sections to the section array allocated above.
5508 Also add the sections to the current segment. In the common
5509 case, where the sections have not been moved, this means that
5510 we have completely filled the segment, and there is nothing
5511 more to do. */
5512 isec = 0;
5513 matching_lma = 0;
5514 suggested_lma = 0;
5515
5516 for (j = 0, section = ibfd->sections;
5517 section != NULL;
5518 section = section->next)
5519 {
5520 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5521 {
5522 output_section = section->output_section;
5523
5524 sections[j ++] = section;
5525
5526 /* The Solaris native linker always sets p_paddr to 0.
5527 We try to catch that case here, and set it to the
5528 correct value. Note - some backends require that
5529 p_paddr be left as zero. */
5530 if (segment->p_paddr == 0
5531 && segment->p_vaddr != 0
5532 && (! bed->want_p_paddr_set_to_zero)
5533 && isec == 0
5534 && output_section->lma != 0
5535 && (output_section->vma == (segment->p_vaddr
5536 + (map->includes_filehdr
5537 ? iehdr->e_ehsize
5538 : 0)
5539 + (map->includes_phdrs
5540 ? (iehdr->e_phnum
5541 * iehdr->e_phentsize)
5542 : 0))))
5543 map->p_paddr = segment->p_vaddr;
5544
5545 /* Match up the physical address of the segment with the
5546 LMA address of the output section. */
5547 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5548 || IS_COREFILE_NOTE (segment, section)
5549 || (bed->want_p_paddr_set_to_zero &&
5550 IS_CONTAINED_BY_VMA (output_section, segment))
5551 )
5552 {
5553 if (matching_lma == 0)
5554 matching_lma = output_section->lma;
5555
5556 /* We assume that if the section fits within the segment
5557 then it does not overlap any other section within that
5558 segment. */
5559 map->sections[isec ++] = output_section;
5560 }
5561 else if (suggested_lma == 0)
5562 suggested_lma = output_section->lma;
5563 }
5564 }
5565
5566 BFD_ASSERT (j == section_count);
5567
5568 /* Step Two: Adjust the physical address of the current segment,
5569 if necessary. */
5570 if (isec == section_count)
5571 {
5572 /* All of the sections fitted within the segment as currently
5573 specified. This is the default case. Add the segment to
5574 the list of built segments and carry on to process the next
5575 program header in the input BFD. */
5576 map->count = section_count;
5577 *pointer_to_map = map;
5578 pointer_to_map = &map->next;
5579
5580 if (matching_lma != map->p_paddr
5581 && !map->includes_filehdr && !map->includes_phdrs)
5582 /* There is some padding before the first section in the
5583 segment. So, we must account for that in the output
5584 segment's vma. */
5585 map->p_vaddr_offset = matching_lma - map->p_paddr;
5586
5587 free (sections);
5588 continue;
5589 }
5590 else
5591 {
5592 if (matching_lma != 0)
5593 {
5594 /* At least one section fits inside the current segment.
5595 Keep it, but modify its physical address to match the
5596 LMA of the first section that fitted. */
5597 map->p_paddr = matching_lma;
5598 }
5599 else
5600 {
5601 /* None of the sections fitted inside the current segment.
5602 Change the current segment's physical address to match
5603 the LMA of the first section. */
5604 map->p_paddr = suggested_lma;
5605 }
5606
5607 /* Offset the segment physical address from the lma
5608 to allow for space taken up by elf headers. */
5609 if (map->includes_filehdr)
5610 map->p_paddr -= iehdr->e_ehsize;
5611
5612 if (map->includes_phdrs)
5613 {
5614 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5615
5616 /* iehdr->e_phnum is just an estimate of the number
5617 of program headers that we will need. Make a note
5618 here of the number we used and the segment we chose
5619 to hold these headers, so that we can adjust the
5620 offset when we know the correct value. */
5621 phdr_adjust_num = iehdr->e_phnum;
5622 phdr_adjust_seg = map;
5623 }
5624 }
5625
5626 /* Step Three: Loop over the sections again, this time assigning
5627 those that fit to the current segment and removing them from the
5628 sections array; but making sure not to leave large gaps. Once all
5629 possible sections have been assigned to the current segment it is
5630 added to the list of built segments and if sections still remain
5631 to be assigned, a new segment is constructed before repeating
5632 the loop. */
5633 isec = 0;
5634 do
5635 {
5636 map->count = 0;
5637 suggested_lma = 0;
5638
5639 /* Fill the current segment with sections that fit. */
5640 for (j = 0; j < section_count; j++)
5641 {
5642 section = sections[j];
5643
5644 if (section == NULL)
5645 continue;
5646
5647 output_section = section->output_section;
5648
5649 BFD_ASSERT (output_section != NULL);
5650
5651 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5652 || IS_COREFILE_NOTE (segment, section))
5653 {
5654 if (map->count == 0)
5655 {
5656 /* If the first section in a segment does not start at
5657 the beginning of the segment, then something is
5658 wrong. */
5659 if (output_section->lma !=
5660 (map->p_paddr
5661 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5662 + (map->includes_phdrs
5663 ? iehdr->e_phnum * iehdr->e_phentsize
5664 : 0)))
5665 abort ();
5666 }
5667 else
5668 {
5669 asection * prev_sec;
5670
5671 prev_sec = map->sections[map->count - 1];
5672
5673 /* If the gap between the end of the previous section
5674 and the start of this section is more than
5675 maxpagesize then we need to start a new segment. */
5676 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5677 maxpagesize)
5678 < BFD_ALIGN (output_section->lma, maxpagesize))
5679 || ((prev_sec->lma + prev_sec->size)
5680 > output_section->lma))
5681 {
5682 if (suggested_lma == 0)
5683 suggested_lma = output_section->lma;
5684
5685 continue;
5686 }
5687 }
5688
5689 map->sections[map->count++] = output_section;
5690 ++isec;
5691 sections[j] = NULL;
5692 section->segment_mark = TRUE;
5693 }
5694 else if (suggested_lma == 0)
5695 suggested_lma = output_section->lma;
5696 }
5697
5698 BFD_ASSERT (map->count > 0);
5699
5700 /* Add the current segment to the list of built segments. */
5701 *pointer_to_map = map;
5702 pointer_to_map = &map->next;
5703
5704 if (isec < section_count)
5705 {
5706 /* We still have not allocated all of the sections to
5707 segments. Create a new segment here, initialise it
5708 and carry on looping. */
5709 amt = sizeof (struct elf_segment_map);
5710 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5711 map = bfd_alloc (obfd, amt);
5712 if (map == NULL)
5713 {
5714 free (sections);
5715 return FALSE;
5716 }
5717
5718 /* Initialise the fields of the segment map. Set the physical
5719 physical address to the LMA of the first section that has
5720 not yet been assigned. */
5721 map->next = NULL;
5722 map->p_type = segment->p_type;
5723 map->p_flags = segment->p_flags;
5724 map->p_flags_valid = 1;
5725 map->p_paddr = suggested_lma;
5726 map->p_paddr_valid = 1;
5727 map->includes_filehdr = 0;
5728 map->includes_phdrs = 0;
5729 }
5730 }
5731 while (isec < section_count);
5732
5733 free (sections);
5734 }
5735
5736 /* The Solaris linker creates program headers in which all the
5737 p_paddr fields are zero. When we try to objcopy or strip such a
5738 file, we get confused. Check for this case, and if we find it
5739 reset the p_paddr_valid fields. */
5740 for (map = map_first; map != NULL; map = map->next)
5741 if (map->p_paddr != 0)
5742 break;
5743 if (map == NULL)
5744 for (map = map_first; map != NULL; map = map->next)
5745 map->p_paddr_valid = 0;
5746
5747 elf_tdata (obfd)->segment_map = map_first;
5748
5749 /* If we had to estimate the number of program headers that were
5750 going to be needed, then check our estimate now and adjust
5751 the offset if necessary. */
5752 if (phdr_adjust_seg != NULL)
5753 {
5754 unsigned int count;
5755
5756 for (count = 0, map = map_first; map != NULL; map = map->next)
5757 count++;
5758
5759 if (count > phdr_adjust_num)
5760 phdr_adjust_seg->p_paddr
5761 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5762 }
5763
5764 #undef SEGMENT_END
5765 #undef SECTION_SIZE
5766 #undef IS_CONTAINED_BY_VMA
5767 #undef IS_CONTAINED_BY_LMA
5768 #undef IS_COREFILE_NOTE
5769 #undef IS_SOLARIS_PT_INTERP
5770 #undef IS_SECTION_IN_INPUT_SEGMENT
5771 #undef INCLUDE_SECTION_IN_SEGMENT
5772 #undef SEGMENT_AFTER_SEGMENT
5773 #undef SEGMENT_OVERLAPS
5774 return TRUE;
5775 }
5776
5777 /* Copy ELF program header information. */
5778
5779 static bfd_boolean
5780 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5781 {
5782 Elf_Internal_Ehdr *iehdr;
5783 struct elf_segment_map *map;
5784 struct elf_segment_map *map_first;
5785 struct elf_segment_map **pointer_to_map;
5786 Elf_Internal_Phdr *segment;
5787 unsigned int i;
5788 unsigned int num_segments;
5789 bfd_boolean phdr_included = FALSE;
5790
5791 iehdr = elf_elfheader (ibfd);
5792
5793 map_first = NULL;
5794 pointer_to_map = &map_first;
5795
5796 num_segments = elf_elfheader (ibfd)->e_phnum;
5797 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5798 i < num_segments;
5799 i++, segment++)
5800 {
5801 asection *section;
5802 unsigned int section_count;
5803 bfd_size_type amt;
5804 Elf_Internal_Shdr *this_hdr;
5805 asection *first_section = NULL;
5806
5807 /* FIXME: Do we need to copy PT_NULL segment? */
5808 if (segment->p_type == PT_NULL)
5809 continue;
5810
5811 /* Compute how many sections are in this segment. */
5812 for (section = ibfd->sections, section_count = 0;
5813 section != NULL;
5814 section = section->next)
5815 {
5816 this_hdr = &(elf_section_data(section)->this_hdr);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5818 {
5819 if (!first_section)
5820 first_section = section;
5821 section_count++;
5822 }
5823 }
5824
5825 /* Allocate a segment map big enough to contain
5826 all of the sections we have selected. */
5827 amt = sizeof (struct elf_segment_map);
5828 if (section_count != 0)
5829 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5830 map = bfd_zalloc (obfd, amt);
5831 if (map == NULL)
5832 return FALSE;
5833
5834 /* Initialize the fields of the output segment map with the
5835 input segment. */
5836 map->next = NULL;
5837 map->p_type = segment->p_type;
5838 map->p_flags = segment->p_flags;
5839 map->p_flags_valid = 1;
5840 map->p_paddr = segment->p_paddr;
5841 map->p_paddr_valid = 1;
5842 map->p_align = segment->p_align;
5843 map->p_align_valid = 1;
5844 map->p_vaddr_offset = 0;
5845
5846 /* Determine if this segment contains the ELF file header
5847 and if it contains the program headers themselves. */
5848 map->includes_filehdr = (segment->p_offset == 0
5849 && segment->p_filesz >= iehdr->e_ehsize);
5850
5851 map->includes_phdrs = 0;
5852 if (! phdr_included || segment->p_type != PT_LOAD)
5853 {
5854 map->includes_phdrs =
5855 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5856 && (segment->p_offset + segment->p_filesz
5857 >= ((bfd_vma) iehdr->e_phoff
5858 + iehdr->e_phnum * iehdr->e_phentsize)));
5859
5860 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5861 phdr_included = TRUE;
5862 }
5863
5864 if (!map->includes_phdrs && !map->includes_filehdr)
5865 /* There is some other padding before the first section. */
5866 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5867 - segment->p_paddr);
5868
5869 if (section_count != 0)
5870 {
5871 unsigned int isec = 0;
5872
5873 for (section = first_section;
5874 section != NULL;
5875 section = section->next)
5876 {
5877 this_hdr = &(elf_section_data(section)->this_hdr);
5878 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5879 {
5880 map->sections[isec++] = section->output_section;
5881 if (isec == section_count)
5882 break;
5883 }
5884 }
5885 }
5886
5887 map->count = section_count;
5888 *pointer_to_map = map;
5889 pointer_to_map = &map->next;
5890 }
5891
5892 elf_tdata (obfd)->segment_map = map_first;
5893 return TRUE;
5894 }
5895
5896 /* Copy private BFD data. This copies or rewrites ELF program header
5897 information. */
5898
5899 static bfd_boolean
5900 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5901 {
5902 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5903 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5904 return TRUE;
5905
5906 if (elf_tdata (ibfd)->phdr == NULL)
5907 return TRUE;
5908
5909 if (ibfd->xvec == obfd->xvec)
5910 {
5911 /* Check to see if any sections in the input BFD
5912 covered by ELF program header have changed. */
5913 Elf_Internal_Phdr *segment;
5914 asection *section, *osec;
5915 unsigned int i, num_segments;
5916 Elf_Internal_Shdr *this_hdr;
5917
5918 /* Initialize the segment mark field. */
5919 for (section = obfd->sections; section != NULL;
5920 section = section->next)
5921 section->segment_mark = FALSE;
5922
5923 num_segments = elf_elfheader (ibfd)->e_phnum;
5924 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5925 i < num_segments;
5926 i++, segment++)
5927 {
5928 /* This is a different version of the IS_SOLARIS_PT_INTERP
5929 macro to the one defined in rewrite_elf_program_header(). */
5930 #define IS_SOLARIS_PT_INTERP(p) \
5931 (p->p_type == PT_INTERP \
5932 && p->p_vaddr == 0 \
5933 && p->p_paddr == 0 \
5934 && p->p_memsz == 0 \
5935 && p->p_filesz > 0)
5936
5937 /* PR binutils/3535. The Solaris interpreter program header
5938 needs special treatment, so we always rewrite the headers
5939 when one is detected. */
5940 if (IS_SOLARIS_PT_INTERP (segment))
5941 goto rewrite;
5942
5943 for (section = ibfd->sections;
5944 section != NULL; section = section->next)
5945 {
5946 /* We mark the output section so that we know it comes
5947 from the input BFD. */
5948 osec = section->output_section;
5949 if (osec)
5950 osec->segment_mark = TRUE;
5951
5952 /* Check if this section is covered by the segment. */
5953 this_hdr = &(elf_section_data(section)->this_hdr);
5954 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5955 {
5956 /* FIXME: Check if its output section is changed or
5957 removed. What else do we need to check? */
5958 if (osec == NULL
5959 || section->flags != osec->flags
5960 || section->lma != osec->lma
5961 || section->vma != osec->vma
5962 || section->size != osec->size
5963 || section->rawsize != osec->rawsize
5964 || section->alignment_power != osec->alignment_power)
5965 goto rewrite;
5966 }
5967 }
5968 }
5969
5970 /* Check to see if any output section do not come from the
5971 input BFD. */
5972 for (section = obfd->sections; section != NULL;
5973 section = section->next)
5974 {
5975 if (section->segment_mark == FALSE)
5976 goto rewrite;
5977 else
5978 section->segment_mark = FALSE;
5979 }
5980
5981 return copy_elf_program_header (ibfd, obfd);
5982 }
5983
5984 rewrite:
5985 return rewrite_elf_program_header (ibfd, obfd);
5986 }
5987
5988 /* Initialize private output section information from input section. */
5989
5990 bfd_boolean
5991 _bfd_elf_init_private_section_data (bfd *ibfd,
5992 asection *isec,
5993 bfd *obfd,
5994 asection *osec,
5995 struct bfd_link_info *link_info)
5996
5997 {
5998 Elf_Internal_Shdr *ihdr, *ohdr;
5999 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6000
6001 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6002 || obfd->xvec->flavour != bfd_target_elf_flavour)
6003 return TRUE;
6004
6005 /* Don't copy the output ELF section type from input if the
6006 output BFD section flags have been set to something different.
6007 elf_fake_sections will set ELF section type based on BFD
6008 section flags. */
6009 if (osec->flags == isec->flags || !osec->flags)
6010 {
6011 BFD_ASSERT (osec->flags == isec->flags
6012 || (!osec->flags
6013 && elf_section_type (osec) == SHT_NULL));
6014 elf_section_type (osec) = elf_section_type (isec);
6015 }
6016
6017 /* FIXME: Is this correct for all OS/PROC specific flags? */
6018 elf_section_flags (osec) |= (elf_section_flags (isec)
6019 & (SHF_MASKOS | SHF_MASKPROC));
6020
6021 /* Set things up for objcopy and relocatable link. The output
6022 SHT_GROUP section will have its elf_next_in_group pointing back
6023 to the input group members. Ignore linker created group section.
6024 See elfNN_ia64_object_p in elfxx-ia64.c. */
6025 if (need_group)
6026 {
6027 if (elf_sec_group (isec) == NULL
6028 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6029 {
6030 if (elf_section_flags (isec) & SHF_GROUP)
6031 elf_section_flags (osec) |= SHF_GROUP;
6032 elf_next_in_group (osec) = elf_next_in_group (isec);
6033 elf_group_name (osec) = elf_group_name (isec);
6034 }
6035 }
6036
6037 ihdr = &elf_section_data (isec)->this_hdr;
6038
6039 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6040 don't use the output section of the linked-to section since it
6041 may be NULL at this point. */
6042 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6043 {
6044 ohdr = &elf_section_data (osec)->this_hdr;
6045 ohdr->sh_flags |= SHF_LINK_ORDER;
6046 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6047 }
6048
6049 osec->use_rela_p = isec->use_rela_p;
6050
6051 return TRUE;
6052 }
6053
6054 /* Copy private section information. This copies over the entsize
6055 field, and sometimes the info field. */
6056
6057 bfd_boolean
6058 _bfd_elf_copy_private_section_data (bfd *ibfd,
6059 asection *isec,
6060 bfd *obfd,
6061 asection *osec)
6062 {
6063 Elf_Internal_Shdr *ihdr, *ohdr;
6064
6065 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6066 || obfd->xvec->flavour != bfd_target_elf_flavour)
6067 return TRUE;
6068
6069 ihdr = &elf_section_data (isec)->this_hdr;
6070 ohdr = &elf_section_data (osec)->this_hdr;
6071
6072 ohdr->sh_entsize = ihdr->sh_entsize;
6073
6074 if (ihdr->sh_type == SHT_SYMTAB
6075 || ihdr->sh_type == SHT_DYNSYM
6076 || ihdr->sh_type == SHT_GNU_verneed
6077 || ihdr->sh_type == SHT_GNU_verdef)
6078 ohdr->sh_info = ihdr->sh_info;
6079
6080 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6081 NULL);
6082 }
6083
6084 /* Copy private header information. */
6085
6086 bfd_boolean
6087 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6088 {
6089 asection *isec;
6090
6091 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6092 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6093 return TRUE;
6094
6095 /* Copy over private BFD data if it has not already been copied.
6096 This must be done here, rather than in the copy_private_bfd_data
6097 entry point, because the latter is called after the section
6098 contents have been set, which means that the program headers have
6099 already been worked out. */
6100 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6101 {
6102 if (! copy_private_bfd_data (ibfd, obfd))
6103 return FALSE;
6104 }
6105
6106 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6107 but this might be wrong if we deleted the group section. */
6108 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6109 if (elf_section_type (isec) == SHT_GROUP
6110 && isec->output_section == NULL)
6111 {
6112 asection *first = elf_next_in_group (isec);
6113 asection *s = first;
6114 while (s != NULL)
6115 {
6116 if (s->output_section != NULL)
6117 {
6118 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6119 elf_group_name (s->output_section) = NULL;
6120 }
6121 s = elf_next_in_group (s);
6122 if (s == first)
6123 break;
6124 }
6125 }
6126
6127 return TRUE;
6128 }
6129
6130 /* Copy private symbol information. If this symbol is in a section
6131 which we did not map into a BFD section, try to map the section
6132 index correctly. We use special macro definitions for the mapped
6133 section indices; these definitions are interpreted by the
6134 swap_out_syms function. */
6135
6136 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6137 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6138 #define MAP_STRTAB (SHN_HIOS + 3)
6139 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6140 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6141
6142 bfd_boolean
6143 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6144 asymbol *isymarg,
6145 bfd *obfd,
6146 asymbol *osymarg)
6147 {
6148 elf_symbol_type *isym, *osym;
6149
6150 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6151 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6152 return TRUE;
6153
6154 isym = elf_symbol_from (ibfd, isymarg);
6155 osym = elf_symbol_from (obfd, osymarg);
6156
6157 if (isym != NULL
6158 && osym != NULL
6159 && bfd_is_abs_section (isym->symbol.section))
6160 {
6161 unsigned int shndx;
6162
6163 shndx = isym->internal_elf_sym.st_shndx;
6164 if (shndx == elf_onesymtab (ibfd))
6165 shndx = MAP_ONESYMTAB;
6166 else if (shndx == elf_dynsymtab (ibfd))
6167 shndx = MAP_DYNSYMTAB;
6168 else if (shndx == elf_tdata (ibfd)->strtab_section)
6169 shndx = MAP_STRTAB;
6170 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6171 shndx = MAP_SHSTRTAB;
6172 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6173 shndx = MAP_SYM_SHNDX;
6174 osym->internal_elf_sym.st_shndx = shndx;
6175 }
6176
6177 return TRUE;
6178 }
6179
6180 /* Swap out the symbols. */
6181
6182 static bfd_boolean
6183 swap_out_syms (bfd *abfd,
6184 struct bfd_strtab_hash **sttp,
6185 int relocatable_p)
6186 {
6187 const struct elf_backend_data *bed;
6188 int symcount;
6189 asymbol **syms;
6190 struct bfd_strtab_hash *stt;
6191 Elf_Internal_Shdr *symtab_hdr;
6192 Elf_Internal_Shdr *symtab_shndx_hdr;
6193 Elf_Internal_Shdr *symstrtab_hdr;
6194 bfd_byte *outbound_syms;
6195 bfd_byte *outbound_shndx;
6196 int idx;
6197 bfd_size_type amt;
6198 bfd_boolean name_local_sections;
6199
6200 if (!elf_map_symbols (abfd))
6201 return FALSE;
6202
6203 /* Dump out the symtabs. */
6204 stt = _bfd_elf_stringtab_init ();
6205 if (stt == NULL)
6206 return FALSE;
6207
6208 bed = get_elf_backend_data (abfd);
6209 symcount = bfd_get_symcount (abfd);
6210 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6211 symtab_hdr->sh_type = SHT_SYMTAB;
6212 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6213 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6214 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6215 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6216
6217 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6218 symstrtab_hdr->sh_type = SHT_STRTAB;
6219
6220 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6221 if (outbound_syms == NULL)
6222 {
6223 _bfd_stringtab_free (stt);
6224 return FALSE;
6225 }
6226 symtab_hdr->contents = outbound_syms;
6227
6228 outbound_shndx = NULL;
6229 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6230 if (symtab_shndx_hdr->sh_name != 0)
6231 {
6232 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6233 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6234 sizeof (Elf_External_Sym_Shndx));
6235 if (outbound_shndx == NULL)
6236 {
6237 _bfd_stringtab_free (stt);
6238 return FALSE;
6239 }
6240
6241 symtab_shndx_hdr->contents = outbound_shndx;
6242 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6243 symtab_shndx_hdr->sh_size = amt;
6244 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6245 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6246 }
6247
6248 /* Now generate the data (for "contents"). */
6249 {
6250 /* Fill in zeroth symbol and swap it out. */
6251 Elf_Internal_Sym sym;
6252 sym.st_name = 0;
6253 sym.st_value = 0;
6254 sym.st_size = 0;
6255 sym.st_info = 0;
6256 sym.st_other = 0;
6257 sym.st_shndx = SHN_UNDEF;
6258 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6259 outbound_syms += bed->s->sizeof_sym;
6260 if (outbound_shndx != NULL)
6261 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6262 }
6263
6264 name_local_sections
6265 = (bed->elf_backend_name_local_section_symbols
6266 && bed->elf_backend_name_local_section_symbols (abfd));
6267
6268 syms = bfd_get_outsymbols (abfd);
6269 for (idx = 0; idx < symcount; idx++)
6270 {
6271 Elf_Internal_Sym sym;
6272 bfd_vma value = syms[idx]->value;
6273 elf_symbol_type *type_ptr;
6274 flagword flags = syms[idx]->flags;
6275 int type;
6276
6277 if (!name_local_sections
6278 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6279 {
6280 /* Local section symbols have no name. */
6281 sym.st_name = 0;
6282 }
6283 else
6284 {
6285 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6286 syms[idx]->name,
6287 TRUE, FALSE);
6288 if (sym.st_name == (unsigned long) -1)
6289 {
6290 _bfd_stringtab_free (stt);
6291 return FALSE;
6292 }
6293 }
6294
6295 type_ptr = elf_symbol_from (abfd, syms[idx]);
6296
6297 if ((flags & BSF_SECTION_SYM) == 0
6298 && bfd_is_com_section (syms[idx]->section))
6299 {
6300 /* ELF common symbols put the alignment into the `value' field,
6301 and the size into the `size' field. This is backwards from
6302 how BFD handles it, so reverse it here. */
6303 sym.st_size = value;
6304 if (type_ptr == NULL
6305 || type_ptr->internal_elf_sym.st_value == 0)
6306 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6307 else
6308 sym.st_value = type_ptr->internal_elf_sym.st_value;
6309 sym.st_shndx = _bfd_elf_section_from_bfd_section
6310 (abfd, syms[idx]->section);
6311 }
6312 else
6313 {
6314 asection *sec = syms[idx]->section;
6315 int shndx;
6316
6317 if (sec->output_section)
6318 {
6319 value += sec->output_offset;
6320 sec = sec->output_section;
6321 }
6322
6323 /* Don't add in the section vma for relocatable output. */
6324 if (! relocatable_p)
6325 value += sec->vma;
6326 sym.st_value = value;
6327 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6328
6329 if (bfd_is_abs_section (sec)
6330 && type_ptr != NULL
6331 && type_ptr->internal_elf_sym.st_shndx != 0)
6332 {
6333 /* This symbol is in a real ELF section which we did
6334 not create as a BFD section. Undo the mapping done
6335 by copy_private_symbol_data. */
6336 shndx = type_ptr->internal_elf_sym.st_shndx;
6337 switch (shndx)
6338 {
6339 case MAP_ONESYMTAB:
6340 shndx = elf_onesymtab (abfd);
6341 break;
6342 case MAP_DYNSYMTAB:
6343 shndx = elf_dynsymtab (abfd);
6344 break;
6345 case MAP_STRTAB:
6346 shndx = elf_tdata (abfd)->strtab_section;
6347 break;
6348 case MAP_SHSTRTAB:
6349 shndx = elf_tdata (abfd)->shstrtab_section;
6350 break;
6351 case MAP_SYM_SHNDX:
6352 shndx = elf_tdata (abfd)->symtab_shndx_section;
6353 break;
6354 default:
6355 break;
6356 }
6357 }
6358 else
6359 {
6360 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6361
6362 if (shndx == -1)
6363 {
6364 asection *sec2;
6365
6366 /* Writing this would be a hell of a lot easier if
6367 we had some decent documentation on bfd, and
6368 knew what to expect of the library, and what to
6369 demand of applications. For example, it
6370 appears that `objcopy' might not set the
6371 section of a symbol to be a section that is
6372 actually in the output file. */
6373 sec2 = bfd_get_section_by_name (abfd, sec->name);
6374 if (sec2 == NULL)
6375 {
6376 _bfd_error_handler (_("\
6377 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6378 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6379 sec->name);
6380 bfd_set_error (bfd_error_invalid_operation);
6381 _bfd_stringtab_free (stt);
6382 return FALSE;
6383 }
6384
6385 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6386 BFD_ASSERT (shndx != -1);
6387 }
6388 }
6389
6390 sym.st_shndx = shndx;
6391 }
6392
6393 if ((flags & BSF_THREAD_LOCAL) != 0)
6394 type = STT_TLS;
6395 else if ((flags & BSF_FUNCTION) != 0)
6396 type = STT_FUNC;
6397 else if ((flags & BSF_OBJECT) != 0)
6398 type = STT_OBJECT;
6399 else if ((flags & BSF_RELC) != 0)
6400 type = STT_RELC;
6401 else if ((flags & BSF_SRELC) != 0)
6402 type = STT_SRELC;
6403 else
6404 type = STT_NOTYPE;
6405
6406 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6407 type = STT_TLS;
6408
6409 /* Processor-specific types. */
6410 if (type_ptr != NULL
6411 && bed->elf_backend_get_symbol_type)
6412 type = ((*bed->elf_backend_get_symbol_type)
6413 (&type_ptr->internal_elf_sym, type));
6414
6415 if (flags & BSF_SECTION_SYM)
6416 {
6417 if (flags & BSF_GLOBAL)
6418 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6419 else
6420 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6421 }
6422 else if (bfd_is_com_section (syms[idx]->section))
6423 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6424 else if (bfd_is_und_section (syms[idx]->section))
6425 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6426 ? STB_WEAK
6427 : STB_GLOBAL),
6428 type);
6429 else if (flags & BSF_FILE)
6430 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6431 else
6432 {
6433 int bind = STB_LOCAL;
6434
6435 if (flags & BSF_LOCAL)
6436 bind = STB_LOCAL;
6437 else if (flags & BSF_WEAK)
6438 bind = STB_WEAK;
6439 else if (flags & BSF_GLOBAL)
6440 bind = STB_GLOBAL;
6441
6442 sym.st_info = ELF_ST_INFO (bind, type);
6443 }
6444
6445 if (type_ptr != NULL)
6446 sym.st_other = type_ptr->internal_elf_sym.st_other;
6447 else
6448 sym.st_other = 0;
6449
6450 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6451 outbound_syms += bed->s->sizeof_sym;
6452 if (outbound_shndx != NULL)
6453 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6454 }
6455
6456 *sttp = stt;
6457 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6458 symstrtab_hdr->sh_type = SHT_STRTAB;
6459
6460 symstrtab_hdr->sh_flags = 0;
6461 symstrtab_hdr->sh_addr = 0;
6462 symstrtab_hdr->sh_entsize = 0;
6463 symstrtab_hdr->sh_link = 0;
6464 symstrtab_hdr->sh_info = 0;
6465 symstrtab_hdr->sh_addralign = 1;
6466
6467 return TRUE;
6468 }
6469
6470 /* Return the number of bytes required to hold the symtab vector.
6471
6472 Note that we base it on the count plus 1, since we will null terminate
6473 the vector allocated based on this size. However, the ELF symbol table
6474 always has a dummy entry as symbol #0, so it ends up even. */
6475
6476 long
6477 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6478 {
6479 long symcount;
6480 long symtab_size;
6481 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6482
6483 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6484 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6485 if (symcount > 0)
6486 symtab_size -= sizeof (asymbol *);
6487
6488 return symtab_size;
6489 }
6490
6491 long
6492 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6493 {
6494 long symcount;
6495 long symtab_size;
6496 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6497
6498 if (elf_dynsymtab (abfd) == 0)
6499 {
6500 bfd_set_error (bfd_error_invalid_operation);
6501 return -1;
6502 }
6503
6504 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6505 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6506 if (symcount > 0)
6507 symtab_size -= sizeof (asymbol *);
6508
6509 return symtab_size;
6510 }
6511
6512 long
6513 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6514 sec_ptr asect)
6515 {
6516 return (asect->reloc_count + 1) * sizeof (arelent *);
6517 }
6518
6519 /* Canonicalize the relocs. */
6520
6521 long
6522 _bfd_elf_canonicalize_reloc (bfd *abfd,
6523 sec_ptr section,
6524 arelent **relptr,
6525 asymbol **symbols)
6526 {
6527 arelent *tblptr;
6528 unsigned int i;
6529 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6530
6531 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6532 return -1;
6533
6534 tblptr = section->relocation;
6535 for (i = 0; i < section->reloc_count; i++)
6536 *relptr++ = tblptr++;
6537
6538 *relptr = NULL;
6539
6540 return section->reloc_count;
6541 }
6542
6543 long
6544 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6545 {
6546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6547 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6548
6549 if (symcount >= 0)
6550 bfd_get_symcount (abfd) = symcount;
6551 return symcount;
6552 }
6553
6554 long
6555 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6556 asymbol **allocation)
6557 {
6558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6559 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6560
6561 if (symcount >= 0)
6562 bfd_get_dynamic_symcount (abfd) = symcount;
6563 return symcount;
6564 }
6565
6566 /* Return the size required for the dynamic reloc entries. Any loadable
6567 section that was actually installed in the BFD, and has type SHT_REL
6568 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6569 dynamic reloc section. */
6570
6571 long
6572 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6573 {
6574 long ret;
6575 asection *s;
6576
6577 if (elf_dynsymtab (abfd) == 0)
6578 {
6579 bfd_set_error (bfd_error_invalid_operation);
6580 return -1;
6581 }
6582
6583 ret = sizeof (arelent *);
6584 for (s = abfd->sections; s != NULL; s = s->next)
6585 if ((s->flags & SEC_LOAD) != 0
6586 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6587 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6588 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6589 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6590 * sizeof (arelent *));
6591
6592 return ret;
6593 }
6594
6595 /* Canonicalize the dynamic relocation entries. Note that we return the
6596 dynamic relocations as a single block, although they are actually
6597 associated with particular sections; the interface, which was
6598 designed for SunOS style shared libraries, expects that there is only
6599 one set of dynamic relocs. Any loadable section that was actually
6600 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6601 dynamic symbol table, is considered to be a dynamic reloc section. */
6602
6603 long
6604 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6605 arelent **storage,
6606 asymbol **syms)
6607 {
6608 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6609 asection *s;
6610 long ret;
6611
6612 if (elf_dynsymtab (abfd) == 0)
6613 {
6614 bfd_set_error (bfd_error_invalid_operation);
6615 return -1;
6616 }
6617
6618 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6619 ret = 0;
6620 for (s = abfd->sections; s != NULL; s = s->next)
6621 {
6622 if ((s->flags & SEC_LOAD) != 0
6623 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6624 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6625 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6626 {
6627 arelent *p;
6628 long count, i;
6629
6630 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6631 return -1;
6632 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6633 p = s->relocation;
6634 for (i = 0; i < count; i++)
6635 *storage++ = p++;
6636 ret += count;
6637 }
6638 }
6639
6640 *storage = NULL;
6641
6642 return ret;
6643 }
6644 \f
6645 /* Read in the version information. */
6646
6647 bfd_boolean
6648 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6649 {
6650 bfd_byte *contents = NULL;
6651 unsigned int freeidx = 0;
6652
6653 if (elf_dynverref (abfd) != 0)
6654 {
6655 Elf_Internal_Shdr *hdr;
6656 Elf_External_Verneed *everneed;
6657 Elf_Internal_Verneed *iverneed;
6658 unsigned int i;
6659 bfd_byte *contents_end;
6660
6661 hdr = &elf_tdata (abfd)->dynverref_hdr;
6662
6663 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6664 sizeof (Elf_Internal_Verneed));
6665 if (elf_tdata (abfd)->verref == NULL)
6666 goto error_return;
6667
6668 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6669
6670 contents = bfd_malloc (hdr->sh_size);
6671 if (contents == NULL)
6672 {
6673 error_return_verref:
6674 elf_tdata (abfd)->verref = NULL;
6675 elf_tdata (abfd)->cverrefs = 0;
6676 goto error_return;
6677 }
6678 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6679 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6680 goto error_return_verref;
6681
6682 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6683 goto error_return_verref;
6684
6685 BFD_ASSERT (sizeof (Elf_External_Verneed)
6686 == sizeof (Elf_External_Vernaux));
6687 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6688 everneed = (Elf_External_Verneed *) contents;
6689 iverneed = elf_tdata (abfd)->verref;
6690 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6691 {
6692 Elf_External_Vernaux *evernaux;
6693 Elf_Internal_Vernaux *ivernaux;
6694 unsigned int j;
6695
6696 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6697
6698 iverneed->vn_bfd = abfd;
6699
6700 iverneed->vn_filename =
6701 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6702 iverneed->vn_file);
6703 if (iverneed->vn_filename == NULL)
6704 goto error_return_verref;
6705
6706 if (iverneed->vn_cnt == 0)
6707 iverneed->vn_auxptr = NULL;
6708 else
6709 {
6710 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6711 sizeof (Elf_Internal_Vernaux));
6712 if (iverneed->vn_auxptr == NULL)
6713 goto error_return_verref;
6714 }
6715
6716 if (iverneed->vn_aux
6717 > (size_t) (contents_end - (bfd_byte *) everneed))
6718 goto error_return_verref;
6719
6720 evernaux = ((Elf_External_Vernaux *)
6721 ((bfd_byte *) everneed + iverneed->vn_aux));
6722 ivernaux = iverneed->vn_auxptr;
6723 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6724 {
6725 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6726
6727 ivernaux->vna_nodename =
6728 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6729 ivernaux->vna_name);
6730 if (ivernaux->vna_nodename == NULL)
6731 goto error_return_verref;
6732
6733 if (j + 1 < iverneed->vn_cnt)
6734 ivernaux->vna_nextptr = ivernaux + 1;
6735 else
6736 ivernaux->vna_nextptr = NULL;
6737
6738 if (ivernaux->vna_next
6739 > (size_t) (contents_end - (bfd_byte *) evernaux))
6740 goto error_return_verref;
6741
6742 evernaux = ((Elf_External_Vernaux *)
6743 ((bfd_byte *) evernaux + ivernaux->vna_next));
6744
6745 if (ivernaux->vna_other > freeidx)
6746 freeidx = ivernaux->vna_other;
6747 }
6748
6749 if (i + 1 < hdr->sh_info)
6750 iverneed->vn_nextref = iverneed + 1;
6751 else
6752 iverneed->vn_nextref = NULL;
6753
6754 if (iverneed->vn_next
6755 > (size_t) (contents_end - (bfd_byte *) everneed))
6756 goto error_return_verref;
6757
6758 everneed = ((Elf_External_Verneed *)
6759 ((bfd_byte *) everneed + iverneed->vn_next));
6760 }
6761
6762 free (contents);
6763 contents = NULL;
6764 }
6765
6766 if (elf_dynverdef (abfd) != 0)
6767 {
6768 Elf_Internal_Shdr *hdr;
6769 Elf_External_Verdef *everdef;
6770 Elf_Internal_Verdef *iverdef;
6771 Elf_Internal_Verdef *iverdefarr;
6772 Elf_Internal_Verdef iverdefmem;
6773 unsigned int i;
6774 unsigned int maxidx;
6775 bfd_byte *contents_end_def, *contents_end_aux;
6776
6777 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6778
6779 contents = bfd_malloc (hdr->sh_size);
6780 if (contents == NULL)
6781 goto error_return;
6782 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6783 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6784 goto error_return;
6785
6786 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6787 goto error_return;
6788
6789 BFD_ASSERT (sizeof (Elf_External_Verdef)
6790 >= sizeof (Elf_External_Verdaux));
6791 contents_end_def = contents + hdr->sh_size
6792 - sizeof (Elf_External_Verdef);
6793 contents_end_aux = contents + hdr->sh_size
6794 - sizeof (Elf_External_Verdaux);
6795
6796 /* We know the number of entries in the section but not the maximum
6797 index. Therefore we have to run through all entries and find
6798 the maximum. */
6799 everdef = (Elf_External_Verdef *) contents;
6800 maxidx = 0;
6801 for (i = 0; i < hdr->sh_info; ++i)
6802 {
6803 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6804
6805 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6806 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6807
6808 if (iverdefmem.vd_next
6809 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6810 goto error_return;
6811
6812 everdef = ((Elf_External_Verdef *)
6813 ((bfd_byte *) everdef + iverdefmem.vd_next));
6814 }
6815
6816 if (default_imported_symver)
6817 {
6818 if (freeidx > maxidx)
6819 maxidx = ++freeidx;
6820 else
6821 freeidx = ++maxidx;
6822 }
6823 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6824 sizeof (Elf_Internal_Verdef));
6825 if (elf_tdata (abfd)->verdef == NULL)
6826 goto error_return;
6827
6828 elf_tdata (abfd)->cverdefs = maxidx;
6829
6830 everdef = (Elf_External_Verdef *) contents;
6831 iverdefarr = elf_tdata (abfd)->verdef;
6832 for (i = 0; i < hdr->sh_info; i++)
6833 {
6834 Elf_External_Verdaux *everdaux;
6835 Elf_Internal_Verdaux *iverdaux;
6836 unsigned int j;
6837
6838 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6839
6840 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6841 {
6842 error_return_verdef:
6843 elf_tdata (abfd)->verdef = NULL;
6844 elf_tdata (abfd)->cverdefs = 0;
6845 goto error_return;
6846 }
6847
6848 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6849 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6850
6851 iverdef->vd_bfd = abfd;
6852
6853 if (iverdef->vd_cnt == 0)
6854 iverdef->vd_auxptr = NULL;
6855 else
6856 {
6857 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6858 sizeof (Elf_Internal_Verdaux));
6859 if (iverdef->vd_auxptr == NULL)
6860 goto error_return_verdef;
6861 }
6862
6863 if (iverdef->vd_aux
6864 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6865 goto error_return_verdef;
6866
6867 everdaux = ((Elf_External_Verdaux *)
6868 ((bfd_byte *) everdef + iverdef->vd_aux));
6869 iverdaux = iverdef->vd_auxptr;
6870 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6871 {
6872 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6873
6874 iverdaux->vda_nodename =
6875 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6876 iverdaux->vda_name);
6877 if (iverdaux->vda_nodename == NULL)
6878 goto error_return_verdef;
6879
6880 if (j + 1 < iverdef->vd_cnt)
6881 iverdaux->vda_nextptr = iverdaux + 1;
6882 else
6883 iverdaux->vda_nextptr = NULL;
6884
6885 if (iverdaux->vda_next
6886 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6887 goto error_return_verdef;
6888
6889 everdaux = ((Elf_External_Verdaux *)
6890 ((bfd_byte *) everdaux + iverdaux->vda_next));
6891 }
6892
6893 if (iverdef->vd_cnt)
6894 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6895
6896 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6897 iverdef->vd_nextdef = iverdef + 1;
6898 else
6899 iverdef->vd_nextdef = NULL;
6900
6901 everdef = ((Elf_External_Verdef *)
6902 ((bfd_byte *) everdef + iverdef->vd_next));
6903 }
6904
6905 free (contents);
6906 contents = NULL;
6907 }
6908 else if (default_imported_symver)
6909 {
6910 if (freeidx < 3)
6911 freeidx = 3;
6912 else
6913 freeidx++;
6914
6915 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6916 sizeof (Elf_Internal_Verdef));
6917 if (elf_tdata (abfd)->verdef == NULL)
6918 goto error_return;
6919
6920 elf_tdata (abfd)->cverdefs = freeidx;
6921 }
6922
6923 /* Create a default version based on the soname. */
6924 if (default_imported_symver)
6925 {
6926 Elf_Internal_Verdef *iverdef;
6927 Elf_Internal_Verdaux *iverdaux;
6928
6929 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6930
6931 iverdef->vd_version = VER_DEF_CURRENT;
6932 iverdef->vd_flags = 0;
6933 iverdef->vd_ndx = freeidx;
6934 iverdef->vd_cnt = 1;
6935
6936 iverdef->vd_bfd = abfd;
6937
6938 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6939 if (iverdef->vd_nodename == NULL)
6940 goto error_return_verdef;
6941 iverdef->vd_nextdef = NULL;
6942 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6943 if (iverdef->vd_auxptr == NULL)
6944 goto error_return_verdef;
6945
6946 iverdaux = iverdef->vd_auxptr;
6947 iverdaux->vda_nodename = iverdef->vd_nodename;
6948 iverdaux->vda_nextptr = NULL;
6949 }
6950
6951 return TRUE;
6952
6953 error_return:
6954 if (contents != NULL)
6955 free (contents);
6956 return FALSE;
6957 }
6958 \f
6959 asymbol *
6960 _bfd_elf_make_empty_symbol (bfd *abfd)
6961 {
6962 elf_symbol_type *newsym;
6963 bfd_size_type amt = sizeof (elf_symbol_type);
6964
6965 newsym = bfd_zalloc (abfd, amt);
6966 if (!newsym)
6967 return NULL;
6968 else
6969 {
6970 newsym->symbol.the_bfd = abfd;
6971 return &newsym->symbol;
6972 }
6973 }
6974
6975 void
6976 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6977 asymbol *symbol,
6978 symbol_info *ret)
6979 {
6980 bfd_symbol_info (symbol, ret);
6981 }
6982
6983 /* Return whether a symbol name implies a local symbol. Most targets
6984 use this function for the is_local_label_name entry point, but some
6985 override it. */
6986
6987 bfd_boolean
6988 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6989 const char *name)
6990 {
6991 /* Normal local symbols start with ``.L''. */
6992 if (name[0] == '.' && name[1] == 'L')
6993 return TRUE;
6994
6995 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6996 DWARF debugging symbols starting with ``..''. */
6997 if (name[0] == '.' && name[1] == '.')
6998 return TRUE;
6999
7000 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7001 emitting DWARF debugging output. I suspect this is actually a
7002 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7003 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7004 underscore to be emitted on some ELF targets). For ease of use,
7005 we treat such symbols as local. */
7006 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7007 return TRUE;
7008
7009 return FALSE;
7010 }
7011
7012 alent *
7013 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7014 asymbol *symbol ATTRIBUTE_UNUSED)
7015 {
7016 abort ();
7017 return NULL;
7018 }
7019
7020 bfd_boolean
7021 _bfd_elf_set_arch_mach (bfd *abfd,
7022 enum bfd_architecture arch,
7023 unsigned long machine)
7024 {
7025 /* If this isn't the right architecture for this backend, and this
7026 isn't the generic backend, fail. */
7027 if (arch != get_elf_backend_data (abfd)->arch
7028 && arch != bfd_arch_unknown
7029 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7030 return FALSE;
7031
7032 return bfd_default_set_arch_mach (abfd, arch, machine);
7033 }
7034
7035 /* Find the function to a particular section and offset,
7036 for error reporting. */
7037
7038 static bfd_boolean
7039 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7040 asection *section,
7041 asymbol **symbols,
7042 bfd_vma offset,
7043 const char **filename_ptr,
7044 const char **functionname_ptr)
7045 {
7046 const char *filename;
7047 asymbol *func, *file;
7048 bfd_vma low_func;
7049 asymbol **p;
7050 /* ??? Given multiple file symbols, it is impossible to reliably
7051 choose the right file name for global symbols. File symbols are
7052 local symbols, and thus all file symbols must sort before any
7053 global symbols. The ELF spec may be interpreted to say that a
7054 file symbol must sort before other local symbols, but currently
7055 ld -r doesn't do this. So, for ld -r output, it is possible to
7056 make a better choice of file name for local symbols by ignoring
7057 file symbols appearing after a given local symbol. */
7058 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7059
7060 filename = NULL;
7061 func = NULL;
7062 file = NULL;
7063 low_func = 0;
7064 state = nothing_seen;
7065
7066 for (p = symbols; *p != NULL; p++)
7067 {
7068 elf_symbol_type *q;
7069
7070 q = (elf_symbol_type *) *p;
7071
7072 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7073 {
7074 default:
7075 break;
7076 case STT_FILE:
7077 file = &q->symbol;
7078 if (state == symbol_seen)
7079 state = file_after_symbol_seen;
7080 continue;
7081 case STT_NOTYPE:
7082 case STT_FUNC:
7083 if (bfd_get_section (&q->symbol) == section
7084 && q->symbol.value >= low_func
7085 && q->symbol.value <= offset)
7086 {
7087 func = (asymbol *) q;
7088 low_func = q->symbol.value;
7089 filename = NULL;
7090 if (file != NULL
7091 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7092 || state != file_after_symbol_seen))
7093 filename = bfd_asymbol_name (file);
7094 }
7095 break;
7096 }
7097 if (state == nothing_seen)
7098 state = symbol_seen;
7099 }
7100
7101 if (func == NULL)
7102 return FALSE;
7103
7104 if (filename_ptr)
7105 *filename_ptr = filename;
7106 if (functionname_ptr)
7107 *functionname_ptr = bfd_asymbol_name (func);
7108
7109 return TRUE;
7110 }
7111
7112 /* Find the nearest line to a particular section and offset,
7113 for error reporting. */
7114
7115 bfd_boolean
7116 _bfd_elf_find_nearest_line (bfd *abfd,
7117 asection *section,
7118 asymbol **symbols,
7119 bfd_vma offset,
7120 const char **filename_ptr,
7121 const char **functionname_ptr,
7122 unsigned int *line_ptr)
7123 {
7124 bfd_boolean found;
7125
7126 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7127 filename_ptr, functionname_ptr,
7128 line_ptr))
7129 {
7130 if (!*functionname_ptr)
7131 elf_find_function (abfd, section, symbols, offset,
7132 *filename_ptr ? NULL : filename_ptr,
7133 functionname_ptr);
7134
7135 return TRUE;
7136 }
7137
7138 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7139 filename_ptr, functionname_ptr,
7140 line_ptr, 0,
7141 &elf_tdata (abfd)->dwarf2_find_line_info))
7142 {
7143 if (!*functionname_ptr)
7144 elf_find_function (abfd, section, symbols, offset,
7145 *filename_ptr ? NULL : filename_ptr,
7146 functionname_ptr);
7147
7148 return TRUE;
7149 }
7150
7151 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7152 &found, filename_ptr,
7153 functionname_ptr, line_ptr,
7154 &elf_tdata (abfd)->line_info))
7155 return FALSE;
7156 if (found && (*functionname_ptr || *line_ptr))
7157 return TRUE;
7158
7159 if (symbols == NULL)
7160 return FALSE;
7161
7162 if (! elf_find_function (abfd, section, symbols, offset,
7163 filename_ptr, functionname_ptr))
7164 return FALSE;
7165
7166 *line_ptr = 0;
7167 return TRUE;
7168 }
7169
7170 /* Find the line for a symbol. */
7171
7172 bfd_boolean
7173 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7174 const char **filename_ptr, unsigned int *line_ptr)
7175 {
7176 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7177 filename_ptr, line_ptr, 0,
7178 &elf_tdata (abfd)->dwarf2_find_line_info);
7179 }
7180
7181 /* After a call to bfd_find_nearest_line, successive calls to
7182 bfd_find_inliner_info can be used to get source information about
7183 each level of function inlining that terminated at the address
7184 passed to bfd_find_nearest_line. Currently this is only supported
7185 for DWARF2 with appropriate DWARF3 extensions. */
7186
7187 bfd_boolean
7188 _bfd_elf_find_inliner_info (bfd *abfd,
7189 const char **filename_ptr,
7190 const char **functionname_ptr,
7191 unsigned int *line_ptr)
7192 {
7193 bfd_boolean found;
7194 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7195 functionname_ptr, line_ptr,
7196 & elf_tdata (abfd)->dwarf2_find_line_info);
7197 return found;
7198 }
7199
7200 int
7201 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7202 {
7203 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7204 int ret = bed->s->sizeof_ehdr;
7205
7206 if (!info->relocatable)
7207 {
7208 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7209
7210 if (phdr_size == (bfd_size_type) -1)
7211 {
7212 struct elf_segment_map *m;
7213
7214 phdr_size = 0;
7215 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7216 phdr_size += bed->s->sizeof_phdr;
7217
7218 if (phdr_size == 0)
7219 phdr_size = get_program_header_size (abfd, info);
7220 }
7221
7222 elf_tdata (abfd)->program_header_size = phdr_size;
7223 ret += phdr_size;
7224 }
7225
7226 return ret;
7227 }
7228
7229 bfd_boolean
7230 _bfd_elf_set_section_contents (bfd *abfd,
7231 sec_ptr section,
7232 const void *location,
7233 file_ptr offset,
7234 bfd_size_type count)
7235 {
7236 Elf_Internal_Shdr *hdr;
7237 bfd_signed_vma pos;
7238
7239 if (! abfd->output_has_begun
7240 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7241 return FALSE;
7242
7243 hdr = &elf_section_data (section)->this_hdr;
7244 pos = hdr->sh_offset + offset;
7245 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7246 || bfd_bwrite (location, count, abfd) != count)
7247 return FALSE;
7248
7249 return TRUE;
7250 }
7251
7252 void
7253 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7254 arelent *cache_ptr ATTRIBUTE_UNUSED,
7255 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7256 {
7257 abort ();
7258 }
7259
7260 /* Try to convert a non-ELF reloc into an ELF one. */
7261
7262 bfd_boolean
7263 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7264 {
7265 /* Check whether we really have an ELF howto. */
7266
7267 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7268 {
7269 bfd_reloc_code_real_type code;
7270 reloc_howto_type *howto;
7271
7272 /* Alien reloc: Try to determine its type to replace it with an
7273 equivalent ELF reloc. */
7274
7275 if (areloc->howto->pc_relative)
7276 {
7277 switch (areloc->howto->bitsize)
7278 {
7279 case 8:
7280 code = BFD_RELOC_8_PCREL;
7281 break;
7282 case 12:
7283 code = BFD_RELOC_12_PCREL;
7284 break;
7285 case 16:
7286 code = BFD_RELOC_16_PCREL;
7287 break;
7288 case 24:
7289 code = BFD_RELOC_24_PCREL;
7290 break;
7291 case 32:
7292 code = BFD_RELOC_32_PCREL;
7293 break;
7294 case 64:
7295 code = BFD_RELOC_64_PCREL;
7296 break;
7297 default:
7298 goto fail;
7299 }
7300
7301 howto = bfd_reloc_type_lookup (abfd, code);
7302
7303 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7304 {
7305 if (howto->pcrel_offset)
7306 areloc->addend += areloc->address;
7307 else
7308 areloc->addend -= areloc->address; /* addend is unsigned!! */
7309 }
7310 }
7311 else
7312 {
7313 switch (areloc->howto->bitsize)
7314 {
7315 case 8:
7316 code = BFD_RELOC_8;
7317 break;
7318 case 14:
7319 code = BFD_RELOC_14;
7320 break;
7321 case 16:
7322 code = BFD_RELOC_16;
7323 break;
7324 case 26:
7325 code = BFD_RELOC_26;
7326 break;
7327 case 32:
7328 code = BFD_RELOC_32;
7329 break;
7330 case 64:
7331 code = BFD_RELOC_64;
7332 break;
7333 default:
7334 goto fail;
7335 }
7336
7337 howto = bfd_reloc_type_lookup (abfd, code);
7338 }
7339
7340 if (howto)
7341 areloc->howto = howto;
7342 else
7343 goto fail;
7344 }
7345
7346 return TRUE;
7347
7348 fail:
7349 (*_bfd_error_handler)
7350 (_("%B: unsupported relocation type %s"),
7351 abfd, areloc->howto->name);
7352 bfd_set_error (bfd_error_bad_value);
7353 return FALSE;
7354 }
7355
7356 bfd_boolean
7357 _bfd_elf_close_and_cleanup (bfd *abfd)
7358 {
7359 if (bfd_get_format (abfd) == bfd_object)
7360 {
7361 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7362 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7363 _bfd_dwarf2_cleanup_debug_info (abfd);
7364 }
7365
7366 return _bfd_generic_close_and_cleanup (abfd);
7367 }
7368
7369 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7370 in the relocation's offset. Thus we cannot allow any sort of sanity
7371 range-checking to interfere. There is nothing else to do in processing
7372 this reloc. */
7373
7374 bfd_reloc_status_type
7375 _bfd_elf_rel_vtable_reloc_fn
7376 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7377 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7378 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7379 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7380 {
7381 return bfd_reloc_ok;
7382 }
7383 \f
7384 /* Elf core file support. Much of this only works on native
7385 toolchains, since we rely on knowing the
7386 machine-dependent procfs structure in order to pick
7387 out details about the corefile. */
7388
7389 #ifdef HAVE_SYS_PROCFS_H
7390 # include <sys/procfs.h>
7391 #endif
7392
7393 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7394
7395 static int
7396 elfcore_make_pid (bfd *abfd)
7397 {
7398 return ((elf_tdata (abfd)->core_lwpid << 16)
7399 + (elf_tdata (abfd)->core_pid));
7400 }
7401
7402 /* If there isn't a section called NAME, make one, using
7403 data from SECT. Note, this function will generate a
7404 reference to NAME, so you shouldn't deallocate or
7405 overwrite it. */
7406
7407 static bfd_boolean
7408 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7409 {
7410 asection *sect2;
7411
7412 if (bfd_get_section_by_name (abfd, name) != NULL)
7413 return TRUE;
7414
7415 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7416 if (sect2 == NULL)
7417 return FALSE;
7418
7419 sect2->size = sect->size;
7420 sect2->filepos = sect->filepos;
7421 sect2->alignment_power = sect->alignment_power;
7422 return TRUE;
7423 }
7424
7425 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7426 actually creates up to two pseudosections:
7427 - For the single-threaded case, a section named NAME, unless
7428 such a section already exists.
7429 - For the multi-threaded case, a section named "NAME/PID", where
7430 PID is elfcore_make_pid (abfd).
7431 Both pseudosections have identical contents. */
7432 bfd_boolean
7433 _bfd_elfcore_make_pseudosection (bfd *abfd,
7434 char *name,
7435 size_t size,
7436 ufile_ptr filepos)
7437 {
7438 char buf[100];
7439 char *threaded_name;
7440 size_t len;
7441 asection *sect;
7442
7443 /* Build the section name. */
7444
7445 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7446 len = strlen (buf) + 1;
7447 threaded_name = bfd_alloc (abfd, len);
7448 if (threaded_name == NULL)
7449 return FALSE;
7450 memcpy (threaded_name, buf, len);
7451
7452 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7453 SEC_HAS_CONTENTS);
7454 if (sect == NULL)
7455 return FALSE;
7456 sect->size = size;
7457 sect->filepos = filepos;
7458 sect->alignment_power = 2;
7459
7460 return elfcore_maybe_make_sect (abfd, name, sect);
7461 }
7462
7463 /* prstatus_t exists on:
7464 solaris 2.5+
7465 linux 2.[01] + glibc
7466 unixware 4.2
7467 */
7468
7469 #if defined (HAVE_PRSTATUS_T)
7470
7471 static bfd_boolean
7472 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7473 {
7474 size_t size;
7475 int offset;
7476
7477 if (note->descsz == sizeof (prstatus_t))
7478 {
7479 prstatus_t prstat;
7480
7481 size = sizeof (prstat.pr_reg);
7482 offset = offsetof (prstatus_t, pr_reg);
7483 memcpy (&prstat, note->descdata, sizeof (prstat));
7484
7485 /* Do not overwrite the core signal if it
7486 has already been set by another thread. */
7487 if (elf_tdata (abfd)->core_signal == 0)
7488 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7489 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7490
7491 /* pr_who exists on:
7492 solaris 2.5+
7493 unixware 4.2
7494 pr_who doesn't exist on:
7495 linux 2.[01]
7496 */
7497 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7498 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7499 #endif
7500 }
7501 #if defined (HAVE_PRSTATUS32_T)
7502 else if (note->descsz == sizeof (prstatus32_t))
7503 {
7504 /* 64-bit host, 32-bit corefile */
7505 prstatus32_t prstat;
7506
7507 size = sizeof (prstat.pr_reg);
7508 offset = offsetof (prstatus32_t, pr_reg);
7509 memcpy (&prstat, note->descdata, sizeof (prstat));
7510
7511 /* Do not overwrite the core signal if it
7512 has already been set by another thread. */
7513 if (elf_tdata (abfd)->core_signal == 0)
7514 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7515 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7516
7517 /* pr_who exists on:
7518 solaris 2.5+
7519 unixware 4.2
7520 pr_who doesn't exist on:
7521 linux 2.[01]
7522 */
7523 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7524 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7525 #endif
7526 }
7527 #endif /* HAVE_PRSTATUS32_T */
7528 else
7529 {
7530 /* Fail - we don't know how to handle any other
7531 note size (ie. data object type). */
7532 return TRUE;
7533 }
7534
7535 /* Make a ".reg/999" section and a ".reg" section. */
7536 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7537 size, note->descpos + offset);
7538 }
7539 #endif /* defined (HAVE_PRSTATUS_T) */
7540
7541 /* Create a pseudosection containing the exact contents of NOTE. */
7542 static bfd_boolean
7543 elfcore_make_note_pseudosection (bfd *abfd,
7544 char *name,
7545 Elf_Internal_Note *note)
7546 {
7547 return _bfd_elfcore_make_pseudosection (abfd, name,
7548 note->descsz, note->descpos);
7549 }
7550
7551 /* There isn't a consistent prfpregset_t across platforms,
7552 but it doesn't matter, because we don't have to pick this
7553 data structure apart. */
7554
7555 static bfd_boolean
7556 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7557 {
7558 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7559 }
7560
7561 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7562 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7563 literally. */
7564
7565 static bfd_boolean
7566 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7567 {
7568 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7569 }
7570
7571 #if defined (HAVE_PRPSINFO_T)
7572 typedef prpsinfo_t elfcore_psinfo_t;
7573 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7574 typedef prpsinfo32_t elfcore_psinfo32_t;
7575 #endif
7576 #endif
7577
7578 #if defined (HAVE_PSINFO_T)
7579 typedef psinfo_t elfcore_psinfo_t;
7580 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7581 typedef psinfo32_t elfcore_psinfo32_t;
7582 #endif
7583 #endif
7584
7585 /* return a malloc'ed copy of a string at START which is at
7586 most MAX bytes long, possibly without a terminating '\0'.
7587 the copy will always have a terminating '\0'. */
7588
7589 char *
7590 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7591 {
7592 char *dups;
7593 char *end = memchr (start, '\0', max);
7594 size_t len;
7595
7596 if (end == NULL)
7597 len = max;
7598 else
7599 len = end - start;
7600
7601 dups = bfd_alloc (abfd, len + 1);
7602 if (dups == NULL)
7603 return NULL;
7604
7605 memcpy (dups, start, len);
7606 dups[len] = '\0';
7607
7608 return dups;
7609 }
7610
7611 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7612 static bfd_boolean
7613 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7614 {
7615 if (note->descsz == sizeof (elfcore_psinfo_t))
7616 {
7617 elfcore_psinfo_t psinfo;
7618
7619 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7620
7621 elf_tdata (abfd)->core_program
7622 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7623 sizeof (psinfo.pr_fname));
7624
7625 elf_tdata (abfd)->core_command
7626 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7627 sizeof (psinfo.pr_psargs));
7628 }
7629 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7630 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7631 {
7632 /* 64-bit host, 32-bit corefile */
7633 elfcore_psinfo32_t psinfo;
7634
7635 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7636
7637 elf_tdata (abfd)->core_program
7638 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7639 sizeof (psinfo.pr_fname));
7640
7641 elf_tdata (abfd)->core_command
7642 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7643 sizeof (psinfo.pr_psargs));
7644 }
7645 #endif
7646
7647 else
7648 {
7649 /* Fail - we don't know how to handle any other
7650 note size (ie. data object type). */
7651 return TRUE;
7652 }
7653
7654 /* Note that for some reason, a spurious space is tacked
7655 onto the end of the args in some (at least one anyway)
7656 implementations, so strip it off if it exists. */
7657
7658 {
7659 char *command = elf_tdata (abfd)->core_command;
7660 int n = strlen (command);
7661
7662 if (0 < n && command[n - 1] == ' ')
7663 command[n - 1] = '\0';
7664 }
7665
7666 return TRUE;
7667 }
7668 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7669
7670 #if defined (HAVE_PSTATUS_T)
7671 static bfd_boolean
7672 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7673 {
7674 if (note->descsz == sizeof (pstatus_t)
7675 #if defined (HAVE_PXSTATUS_T)
7676 || note->descsz == sizeof (pxstatus_t)
7677 #endif
7678 )
7679 {
7680 pstatus_t pstat;
7681
7682 memcpy (&pstat, note->descdata, sizeof (pstat));
7683
7684 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7685 }
7686 #if defined (HAVE_PSTATUS32_T)
7687 else if (note->descsz == sizeof (pstatus32_t))
7688 {
7689 /* 64-bit host, 32-bit corefile */
7690 pstatus32_t pstat;
7691
7692 memcpy (&pstat, note->descdata, sizeof (pstat));
7693
7694 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7695 }
7696 #endif
7697 /* Could grab some more details from the "representative"
7698 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7699 NT_LWPSTATUS note, presumably. */
7700
7701 return TRUE;
7702 }
7703 #endif /* defined (HAVE_PSTATUS_T) */
7704
7705 #if defined (HAVE_LWPSTATUS_T)
7706 static bfd_boolean
7707 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7708 {
7709 lwpstatus_t lwpstat;
7710 char buf[100];
7711 char *name;
7712 size_t len;
7713 asection *sect;
7714
7715 if (note->descsz != sizeof (lwpstat)
7716 #if defined (HAVE_LWPXSTATUS_T)
7717 && note->descsz != sizeof (lwpxstatus_t)
7718 #endif
7719 )
7720 return TRUE;
7721
7722 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7723
7724 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7725 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7726
7727 /* Make a ".reg/999" section. */
7728
7729 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7730 len = strlen (buf) + 1;
7731 name = bfd_alloc (abfd, len);
7732 if (name == NULL)
7733 return FALSE;
7734 memcpy (name, buf, len);
7735
7736 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7737 if (sect == NULL)
7738 return FALSE;
7739
7740 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7741 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7742 sect->filepos = note->descpos
7743 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7744 #endif
7745
7746 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7747 sect->size = sizeof (lwpstat.pr_reg);
7748 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7749 #endif
7750
7751 sect->alignment_power = 2;
7752
7753 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7754 return FALSE;
7755
7756 /* Make a ".reg2/999" section */
7757
7758 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7759 len = strlen (buf) + 1;
7760 name = bfd_alloc (abfd, len);
7761 if (name == NULL)
7762 return FALSE;
7763 memcpy (name, buf, len);
7764
7765 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7766 if (sect == NULL)
7767 return FALSE;
7768
7769 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7770 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7771 sect->filepos = note->descpos
7772 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7773 #endif
7774
7775 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7776 sect->size = sizeof (lwpstat.pr_fpreg);
7777 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7778 #endif
7779
7780 sect->alignment_power = 2;
7781
7782 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7783 }
7784 #endif /* defined (HAVE_LWPSTATUS_T) */
7785
7786 #if defined (HAVE_WIN32_PSTATUS_T)
7787 static bfd_boolean
7788 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7789 {
7790 char buf[30];
7791 char *name;
7792 size_t len;
7793 asection *sect;
7794 win32_pstatus_t pstatus;
7795
7796 if (note->descsz < sizeof (pstatus))
7797 return TRUE;
7798
7799 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7800
7801 switch (pstatus.data_type)
7802 {
7803 case NOTE_INFO_PROCESS:
7804 /* FIXME: need to add ->core_command. */
7805 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7806 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7807 break;
7808
7809 case NOTE_INFO_THREAD:
7810 /* Make a ".reg/999" section. */
7811 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7812
7813 len = strlen (buf) + 1;
7814 name = bfd_alloc (abfd, len);
7815 if (name == NULL)
7816 return FALSE;
7817
7818 memcpy (name, buf, len);
7819
7820 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7821 if (sect == NULL)
7822 return FALSE;
7823
7824 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7825 sect->filepos = (note->descpos
7826 + offsetof (struct win32_pstatus,
7827 data.thread_info.thread_context));
7828 sect->alignment_power = 2;
7829
7830 if (pstatus.data.thread_info.is_active_thread)
7831 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7832 return FALSE;
7833 break;
7834
7835 case NOTE_INFO_MODULE:
7836 /* Make a ".module/xxxxxxxx" section. */
7837 sprintf (buf, ".module/%08lx",
7838 (long) pstatus.data.module_info.base_address);
7839
7840 len = strlen (buf) + 1;
7841 name = bfd_alloc (abfd, len);
7842 if (name == NULL)
7843 return FALSE;
7844
7845 memcpy (name, buf, len);
7846
7847 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7848
7849 if (sect == NULL)
7850 return FALSE;
7851
7852 sect->size = note->descsz;
7853 sect->filepos = note->descpos;
7854 sect->alignment_power = 2;
7855 break;
7856
7857 default:
7858 return TRUE;
7859 }
7860
7861 return TRUE;
7862 }
7863 #endif /* HAVE_WIN32_PSTATUS_T */
7864
7865 static bfd_boolean
7866 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7867 {
7868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7869
7870 switch (note->type)
7871 {
7872 default:
7873 return TRUE;
7874
7875 case NT_PRSTATUS:
7876 if (bed->elf_backend_grok_prstatus)
7877 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7878 return TRUE;
7879 #if defined (HAVE_PRSTATUS_T)
7880 return elfcore_grok_prstatus (abfd, note);
7881 #else
7882 return TRUE;
7883 #endif
7884
7885 #if defined (HAVE_PSTATUS_T)
7886 case NT_PSTATUS:
7887 return elfcore_grok_pstatus (abfd, note);
7888 #endif
7889
7890 #if defined (HAVE_LWPSTATUS_T)
7891 case NT_LWPSTATUS:
7892 return elfcore_grok_lwpstatus (abfd, note);
7893 #endif
7894
7895 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7896 return elfcore_grok_prfpreg (abfd, note);
7897
7898 #if defined (HAVE_WIN32_PSTATUS_T)
7899 case NT_WIN32PSTATUS:
7900 return elfcore_grok_win32pstatus (abfd, note);
7901 #endif
7902
7903 case NT_PRXFPREG: /* Linux SSE extension */
7904 if (note->namesz == 6
7905 && strcmp (note->namedata, "LINUX") == 0)
7906 return elfcore_grok_prxfpreg (abfd, note);
7907 else
7908 return TRUE;
7909
7910 case NT_PRPSINFO:
7911 case NT_PSINFO:
7912 if (bed->elf_backend_grok_psinfo)
7913 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7914 return TRUE;
7915 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7916 return elfcore_grok_psinfo (abfd, note);
7917 #else
7918 return TRUE;
7919 #endif
7920
7921 case NT_AUXV:
7922 {
7923 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7924 SEC_HAS_CONTENTS);
7925
7926 if (sect == NULL)
7927 return FALSE;
7928 sect->size = note->descsz;
7929 sect->filepos = note->descpos;
7930 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7931
7932 return TRUE;
7933 }
7934 }
7935 }
7936
7937 static bfd_boolean
7938 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7939 {
7940 char *cp;
7941
7942 cp = strchr (note->namedata, '@');
7943 if (cp != NULL)
7944 {
7945 *lwpidp = atoi(cp + 1);
7946 return TRUE;
7947 }
7948 return FALSE;
7949 }
7950
7951 static bfd_boolean
7952 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7953 {
7954
7955 /* Signal number at offset 0x08. */
7956 elf_tdata (abfd)->core_signal
7957 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7958
7959 /* Process ID at offset 0x50. */
7960 elf_tdata (abfd)->core_pid
7961 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7962
7963 /* Command name at 0x7c (max 32 bytes, including nul). */
7964 elf_tdata (abfd)->core_command
7965 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7966
7967 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7968 note);
7969 }
7970
7971 static bfd_boolean
7972 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7973 {
7974 int lwp;
7975
7976 if (elfcore_netbsd_get_lwpid (note, &lwp))
7977 elf_tdata (abfd)->core_lwpid = lwp;
7978
7979 if (note->type == NT_NETBSDCORE_PROCINFO)
7980 {
7981 /* NetBSD-specific core "procinfo". Note that we expect to
7982 find this note before any of the others, which is fine,
7983 since the kernel writes this note out first when it
7984 creates a core file. */
7985
7986 return elfcore_grok_netbsd_procinfo (abfd, note);
7987 }
7988
7989 /* As of Jan 2002 there are no other machine-independent notes
7990 defined for NetBSD core files. If the note type is less
7991 than the start of the machine-dependent note types, we don't
7992 understand it. */
7993
7994 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7995 return TRUE;
7996
7997
7998 switch (bfd_get_arch (abfd))
7999 {
8000 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8001 PT_GETFPREGS == mach+2. */
8002
8003 case bfd_arch_alpha:
8004 case bfd_arch_sparc:
8005 switch (note->type)
8006 {
8007 case NT_NETBSDCORE_FIRSTMACH+0:
8008 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8009
8010 case NT_NETBSDCORE_FIRSTMACH+2:
8011 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8012
8013 default:
8014 return TRUE;
8015 }
8016
8017 /* On all other arch's, PT_GETREGS == mach+1 and
8018 PT_GETFPREGS == mach+3. */
8019
8020 default:
8021 switch (note->type)
8022 {
8023 case NT_NETBSDCORE_FIRSTMACH+1:
8024 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8025
8026 case NT_NETBSDCORE_FIRSTMACH+3:
8027 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8028
8029 default:
8030 return TRUE;
8031 }
8032 }
8033 /* NOTREACHED */
8034 }
8035
8036 static bfd_boolean
8037 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8038 {
8039 void *ddata = note->descdata;
8040 char buf[100];
8041 char *name;
8042 asection *sect;
8043 short sig;
8044 unsigned flags;
8045
8046 /* nto_procfs_status 'pid' field is at offset 0. */
8047 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8048
8049 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8050 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8051
8052 /* nto_procfs_status 'flags' field is at offset 8. */
8053 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8054
8055 /* nto_procfs_status 'what' field is at offset 14. */
8056 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8057 {
8058 elf_tdata (abfd)->core_signal = sig;
8059 elf_tdata (abfd)->core_lwpid = *tid;
8060 }
8061
8062 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8063 do not come from signals so we make sure we set the current
8064 thread just in case. */
8065 if (flags & 0x00000080)
8066 elf_tdata (abfd)->core_lwpid = *tid;
8067
8068 /* Make a ".qnx_core_status/%d" section. */
8069 sprintf (buf, ".qnx_core_status/%ld", *tid);
8070
8071 name = bfd_alloc (abfd, strlen (buf) + 1);
8072 if (name == NULL)
8073 return FALSE;
8074 strcpy (name, buf);
8075
8076 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8077 if (sect == NULL)
8078 return FALSE;
8079
8080 sect->size = note->descsz;
8081 sect->filepos = note->descpos;
8082 sect->alignment_power = 2;
8083
8084 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8085 }
8086
8087 static bfd_boolean
8088 elfcore_grok_nto_regs (bfd *abfd,
8089 Elf_Internal_Note *note,
8090 long tid,
8091 char *base)
8092 {
8093 char buf[100];
8094 char *name;
8095 asection *sect;
8096
8097 /* Make a "(base)/%d" section. */
8098 sprintf (buf, "%s/%ld", base, tid);
8099
8100 name = bfd_alloc (abfd, strlen (buf) + 1);
8101 if (name == NULL)
8102 return FALSE;
8103 strcpy (name, buf);
8104
8105 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8106 if (sect == NULL)
8107 return FALSE;
8108
8109 sect->size = note->descsz;
8110 sect->filepos = note->descpos;
8111 sect->alignment_power = 2;
8112
8113 /* This is the current thread. */
8114 if (elf_tdata (abfd)->core_lwpid == tid)
8115 return elfcore_maybe_make_sect (abfd, base, sect);
8116
8117 return TRUE;
8118 }
8119
8120 #define BFD_QNT_CORE_INFO 7
8121 #define BFD_QNT_CORE_STATUS 8
8122 #define BFD_QNT_CORE_GREG 9
8123 #define BFD_QNT_CORE_FPREG 10
8124
8125 static bfd_boolean
8126 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8127 {
8128 /* Every GREG section has a STATUS section before it. Store the
8129 tid from the previous call to pass down to the next gregs
8130 function. */
8131 static long tid = 1;
8132
8133 switch (note->type)
8134 {
8135 case BFD_QNT_CORE_INFO:
8136 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8137 case BFD_QNT_CORE_STATUS:
8138 return elfcore_grok_nto_status (abfd, note, &tid);
8139 case BFD_QNT_CORE_GREG:
8140 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8141 case BFD_QNT_CORE_FPREG:
8142 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8143 default:
8144 return TRUE;
8145 }
8146 }
8147
8148 /* Function: elfcore_write_note
8149
8150 Inputs:
8151 buffer to hold note, and current size of buffer
8152 name of note
8153 type of note
8154 data for note
8155 size of data for note
8156
8157 Writes note to end of buffer. ELF64 notes are written exactly as
8158 for ELF32, despite the current (as of 2006) ELF gabi specifying
8159 that they ought to have 8-byte namesz and descsz field, and have
8160 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8161
8162 Return:
8163 Pointer to realloc'd buffer, *BUFSIZ updated. */
8164
8165 char *
8166 elfcore_write_note (bfd *abfd,
8167 char *buf,
8168 int *bufsiz,
8169 const char *name,
8170 int type,
8171 const void *input,
8172 int size)
8173 {
8174 Elf_External_Note *xnp;
8175 size_t namesz;
8176 size_t newspace;
8177 char *dest;
8178
8179 namesz = 0;
8180 if (name != NULL)
8181 namesz = strlen (name) + 1;
8182
8183 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8184
8185 buf = realloc (buf, *bufsiz + newspace);
8186 dest = buf + *bufsiz;
8187 *bufsiz += newspace;
8188 xnp = (Elf_External_Note *) dest;
8189 H_PUT_32 (abfd, namesz, xnp->namesz);
8190 H_PUT_32 (abfd, size, xnp->descsz);
8191 H_PUT_32 (abfd, type, xnp->type);
8192 dest = xnp->name;
8193 if (name != NULL)
8194 {
8195 memcpy (dest, name, namesz);
8196 dest += namesz;
8197 while (namesz & 3)
8198 {
8199 *dest++ = '\0';
8200 ++namesz;
8201 }
8202 }
8203 memcpy (dest, input, size);
8204 dest += size;
8205 while (size & 3)
8206 {
8207 *dest++ = '\0';
8208 ++size;
8209 }
8210 return buf;
8211 }
8212
8213 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8214 char *
8215 elfcore_write_prpsinfo (bfd *abfd,
8216 char *buf,
8217 int *bufsiz,
8218 const char *fname,
8219 const char *psargs)
8220 {
8221 const char *note_name = "CORE";
8222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8223
8224 if (bed->elf_backend_write_core_note != NULL)
8225 {
8226 char *ret;
8227 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8228 NT_PRPSINFO, fname, psargs);
8229 if (ret != NULL)
8230 return ret;
8231 }
8232
8233 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8234 if (bed->s->elfclass == ELFCLASS32)
8235 {
8236 #if defined (HAVE_PSINFO32_T)
8237 psinfo32_t data;
8238 int note_type = NT_PSINFO;
8239 #else
8240 prpsinfo32_t data;
8241 int note_type = NT_PRPSINFO;
8242 #endif
8243
8244 memset (&data, 0, sizeof (data));
8245 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8246 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8247 return elfcore_write_note (abfd, buf, bufsiz,
8248 note_name, note_type, &data, sizeof (data));
8249 }
8250 else
8251 #endif
8252 {
8253 #if defined (HAVE_PSINFO_T)
8254 psinfo_t data;
8255 int note_type = NT_PSINFO;
8256 #else
8257 prpsinfo_t data;
8258 int note_type = NT_PRPSINFO;
8259 #endif
8260
8261 memset (&data, 0, sizeof (data));
8262 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8263 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8264 return elfcore_write_note (abfd, buf, bufsiz,
8265 note_name, note_type, &data, sizeof (data));
8266 }
8267 }
8268 #endif /* PSINFO_T or PRPSINFO_T */
8269
8270 #if defined (HAVE_PRSTATUS_T)
8271 char *
8272 elfcore_write_prstatus (bfd *abfd,
8273 char *buf,
8274 int *bufsiz,
8275 long pid,
8276 int cursig,
8277 const void *gregs)
8278 {
8279 const char *note_name = "CORE";
8280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8281
8282 if (bed->elf_backend_write_core_note != NULL)
8283 {
8284 char *ret;
8285 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8286 NT_PRSTATUS,
8287 pid, cursig, gregs);
8288 if (ret != NULL)
8289 return ret;
8290 }
8291
8292 #if defined (HAVE_PRSTATUS32_T)
8293 if (bed->s->elfclass == ELFCLASS32)
8294 {
8295 prstatus32_t prstat;
8296
8297 memset (&prstat, 0, sizeof (prstat));
8298 prstat.pr_pid = pid;
8299 prstat.pr_cursig = cursig;
8300 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8301 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8302 NT_PRSTATUS, &prstat, sizeof (prstat));
8303 }
8304 else
8305 #endif
8306 {
8307 prstatus_t prstat;
8308
8309 memset (&prstat, 0, sizeof (prstat));
8310 prstat.pr_pid = pid;
8311 prstat.pr_cursig = cursig;
8312 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8313 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8314 NT_PRSTATUS, &prstat, sizeof (prstat));
8315 }
8316 }
8317 #endif /* HAVE_PRSTATUS_T */
8318
8319 #if defined (HAVE_LWPSTATUS_T)
8320 char *
8321 elfcore_write_lwpstatus (bfd *abfd,
8322 char *buf,
8323 int *bufsiz,
8324 long pid,
8325 int cursig,
8326 const void *gregs)
8327 {
8328 lwpstatus_t lwpstat;
8329 const char *note_name = "CORE";
8330
8331 memset (&lwpstat, 0, sizeof (lwpstat));
8332 lwpstat.pr_lwpid = pid >> 16;
8333 lwpstat.pr_cursig = cursig;
8334 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8335 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8336 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8337 #if !defined(gregs)
8338 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8339 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8340 #else
8341 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8342 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8343 #endif
8344 #endif
8345 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8346 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8347 }
8348 #endif /* HAVE_LWPSTATUS_T */
8349
8350 #if defined (HAVE_PSTATUS_T)
8351 char *
8352 elfcore_write_pstatus (bfd *abfd,
8353 char *buf,
8354 int *bufsiz,
8355 long pid,
8356 int cursig ATTRIBUTE_UNUSED,
8357 const void *gregs ATTRIBUTE_UNUSED)
8358 {
8359 const char *note_name = "CORE";
8360 #if defined (HAVE_PSTATUS32_T)
8361 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8362
8363 if (bed->s->elfclass == ELFCLASS32)
8364 {
8365 pstatus32_t pstat;
8366
8367 memset (&pstat, 0, sizeof (pstat));
8368 pstat.pr_pid = pid & 0xffff;
8369 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8370 NT_PSTATUS, &pstat, sizeof (pstat));
8371 return buf;
8372 }
8373 else
8374 #endif
8375 {
8376 pstatus_t pstat;
8377
8378 memset (&pstat, 0, sizeof (pstat));
8379 pstat.pr_pid = pid & 0xffff;
8380 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8381 NT_PSTATUS, &pstat, sizeof (pstat));
8382 return buf;
8383 }
8384 }
8385 #endif /* HAVE_PSTATUS_T */
8386
8387 char *
8388 elfcore_write_prfpreg (bfd *abfd,
8389 char *buf,
8390 int *bufsiz,
8391 const void *fpregs,
8392 int size)
8393 {
8394 const char *note_name = "CORE";
8395 return elfcore_write_note (abfd, buf, bufsiz,
8396 note_name, NT_FPREGSET, fpregs, size);
8397 }
8398
8399 char *
8400 elfcore_write_prxfpreg (bfd *abfd,
8401 char *buf,
8402 int *bufsiz,
8403 const void *xfpregs,
8404 int size)
8405 {
8406 char *note_name = "LINUX";
8407 return elfcore_write_note (abfd, buf, bufsiz,
8408 note_name, NT_PRXFPREG, xfpregs, size);
8409 }
8410
8411 static bfd_boolean
8412 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8413 {
8414 char *buf;
8415 char *p;
8416
8417 if (size <= 0)
8418 return TRUE;
8419
8420 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8421 return FALSE;
8422
8423 buf = bfd_malloc (size);
8424 if (buf == NULL)
8425 return FALSE;
8426
8427 if (bfd_bread (buf, size, abfd) != size)
8428 {
8429 error:
8430 free (buf);
8431 return FALSE;
8432 }
8433
8434 p = buf;
8435 while (p < buf + size)
8436 {
8437 /* FIXME: bad alignment assumption. */
8438 Elf_External_Note *xnp = (Elf_External_Note *) p;
8439 Elf_Internal_Note in;
8440
8441 in.type = H_GET_32 (abfd, xnp->type);
8442
8443 in.namesz = H_GET_32 (abfd, xnp->namesz);
8444 in.namedata = xnp->name;
8445
8446 in.descsz = H_GET_32 (abfd, xnp->descsz);
8447 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8448 in.descpos = offset + (in.descdata - buf);
8449
8450 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8451 {
8452 if (! elfcore_grok_netbsd_note (abfd, &in))
8453 goto error;
8454 }
8455 else if (CONST_STRNEQ (in.namedata, "QNX"))
8456 {
8457 if (! elfcore_grok_nto_note (abfd, &in))
8458 goto error;
8459 }
8460 else
8461 {
8462 if (! elfcore_grok_note (abfd, &in))
8463 goto error;
8464 }
8465
8466 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8467 }
8468
8469 free (buf);
8470 return TRUE;
8471 }
8472 \f
8473 /* Providing external access to the ELF program header table. */
8474
8475 /* Return an upper bound on the number of bytes required to store a
8476 copy of ABFD's program header table entries. Return -1 if an error
8477 occurs; bfd_get_error will return an appropriate code. */
8478
8479 long
8480 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8481 {
8482 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8483 {
8484 bfd_set_error (bfd_error_wrong_format);
8485 return -1;
8486 }
8487
8488 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8489 }
8490
8491 /* Copy ABFD's program header table entries to *PHDRS. The entries
8492 will be stored as an array of Elf_Internal_Phdr structures, as
8493 defined in include/elf/internal.h. To find out how large the
8494 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8495
8496 Return the number of program header table entries read, or -1 if an
8497 error occurs; bfd_get_error will return an appropriate code. */
8498
8499 int
8500 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8501 {
8502 int num_phdrs;
8503
8504 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8505 {
8506 bfd_set_error (bfd_error_wrong_format);
8507 return -1;
8508 }
8509
8510 num_phdrs = elf_elfheader (abfd)->e_phnum;
8511 memcpy (phdrs, elf_tdata (abfd)->phdr,
8512 num_phdrs * sizeof (Elf_Internal_Phdr));
8513
8514 return num_phdrs;
8515 }
8516
8517 void
8518 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8519 {
8520 #ifdef BFD64
8521 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8522
8523 i_ehdrp = elf_elfheader (abfd);
8524 if (i_ehdrp == NULL)
8525 sprintf_vma (buf, value);
8526 else
8527 {
8528 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8529 {
8530 #if BFD_HOST_64BIT_LONG
8531 sprintf (buf, "%016lx", value);
8532 #else
8533 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8534 _bfd_int64_low (value));
8535 #endif
8536 }
8537 else
8538 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8539 }
8540 #else
8541 sprintf_vma (buf, value);
8542 #endif
8543 }
8544
8545 void
8546 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8547 {
8548 #ifdef BFD64
8549 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8550
8551 i_ehdrp = elf_elfheader (abfd);
8552 if (i_ehdrp == NULL)
8553 fprintf_vma ((FILE *) stream, value);
8554 else
8555 {
8556 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8557 {
8558 #if BFD_HOST_64BIT_LONG
8559 fprintf ((FILE *) stream, "%016lx", value);
8560 #else
8561 fprintf ((FILE *) stream, "%08lx%08lx",
8562 _bfd_int64_high (value), _bfd_int64_low (value));
8563 #endif
8564 }
8565 else
8566 fprintf ((FILE *) stream, "%08lx",
8567 (unsigned long) (value & 0xffffffff));
8568 }
8569 #else
8570 fprintf_vma ((FILE *) stream, value);
8571 #endif
8572 }
8573
8574 enum elf_reloc_type_class
8575 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8576 {
8577 return reloc_class_normal;
8578 }
8579
8580 /* For RELA architectures, return the relocation value for a
8581 relocation against a local symbol. */
8582
8583 bfd_vma
8584 _bfd_elf_rela_local_sym (bfd *abfd,
8585 Elf_Internal_Sym *sym,
8586 asection **psec,
8587 Elf_Internal_Rela *rel)
8588 {
8589 asection *sec = *psec;
8590 bfd_vma relocation;
8591
8592 relocation = (sec->output_section->vma
8593 + sec->output_offset
8594 + sym->st_value);
8595 if ((sec->flags & SEC_MERGE)
8596 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8597 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8598 {
8599 rel->r_addend =
8600 _bfd_merged_section_offset (abfd, psec,
8601 elf_section_data (sec)->sec_info,
8602 sym->st_value + rel->r_addend);
8603 if (sec != *psec)
8604 {
8605 /* If we have changed the section, and our original section is
8606 marked with SEC_EXCLUDE, it means that the original
8607 SEC_MERGE section has been completely subsumed in some
8608 other SEC_MERGE section. In this case, we need to leave
8609 some info around for --emit-relocs. */
8610 if ((sec->flags & SEC_EXCLUDE) != 0)
8611 sec->kept_section = *psec;
8612 sec = *psec;
8613 }
8614 rel->r_addend -= relocation;
8615 rel->r_addend += sec->output_section->vma + sec->output_offset;
8616 }
8617 return relocation;
8618 }
8619
8620 bfd_vma
8621 _bfd_elf_rel_local_sym (bfd *abfd,
8622 Elf_Internal_Sym *sym,
8623 asection **psec,
8624 bfd_vma addend)
8625 {
8626 asection *sec = *psec;
8627
8628 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8629 return sym->st_value + addend;
8630
8631 return _bfd_merged_section_offset (abfd, psec,
8632 elf_section_data (sec)->sec_info,
8633 sym->st_value + addend);
8634 }
8635
8636 bfd_vma
8637 _bfd_elf_section_offset (bfd *abfd,
8638 struct bfd_link_info *info,
8639 asection *sec,
8640 bfd_vma offset)
8641 {
8642 switch (sec->sec_info_type)
8643 {
8644 case ELF_INFO_TYPE_STABS:
8645 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8646 offset);
8647 case ELF_INFO_TYPE_EH_FRAME:
8648 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8649 default:
8650 return offset;
8651 }
8652 }
8653 \f
8654 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8655 reconstruct an ELF file by reading the segments out of remote memory
8656 based on the ELF file header at EHDR_VMA and the ELF program headers it
8657 points to. If not null, *LOADBASEP is filled in with the difference
8658 between the VMAs from which the segments were read, and the VMAs the
8659 file headers (and hence BFD's idea of each section's VMA) put them at.
8660
8661 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8662 remote memory at target address VMA into the local buffer at MYADDR; it
8663 should return zero on success or an `errno' code on failure. TEMPL must
8664 be a BFD for an ELF target with the word size and byte order found in
8665 the remote memory. */
8666
8667 bfd *
8668 bfd_elf_bfd_from_remote_memory
8669 (bfd *templ,
8670 bfd_vma ehdr_vma,
8671 bfd_vma *loadbasep,
8672 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8673 {
8674 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8675 (templ, ehdr_vma, loadbasep, target_read_memory);
8676 }
8677 \f
8678 long
8679 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8680 long symcount ATTRIBUTE_UNUSED,
8681 asymbol **syms ATTRIBUTE_UNUSED,
8682 long dynsymcount,
8683 asymbol **dynsyms,
8684 asymbol **ret)
8685 {
8686 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8687 asection *relplt;
8688 asymbol *s;
8689 const char *relplt_name;
8690 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8691 arelent *p;
8692 long count, i, n;
8693 size_t size;
8694 Elf_Internal_Shdr *hdr;
8695 char *names;
8696 asection *plt;
8697
8698 *ret = NULL;
8699
8700 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8701 return 0;
8702
8703 if (dynsymcount <= 0)
8704 return 0;
8705
8706 if (!bed->plt_sym_val)
8707 return 0;
8708
8709 relplt_name = bed->relplt_name;
8710 if (relplt_name == NULL)
8711 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8712 relplt = bfd_get_section_by_name (abfd, relplt_name);
8713 if (relplt == NULL)
8714 return 0;
8715
8716 hdr = &elf_section_data (relplt)->this_hdr;
8717 if (hdr->sh_link != elf_dynsymtab (abfd)
8718 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8719 return 0;
8720
8721 plt = bfd_get_section_by_name (abfd, ".plt");
8722 if (plt == NULL)
8723 return 0;
8724
8725 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8726 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8727 return -1;
8728
8729 count = relplt->size / hdr->sh_entsize;
8730 size = count * sizeof (asymbol);
8731 p = relplt->relocation;
8732 for (i = 0; i < count; i++, s++, p++)
8733 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8734
8735 s = *ret = bfd_malloc (size);
8736 if (s == NULL)
8737 return -1;
8738
8739 names = (char *) (s + count);
8740 p = relplt->relocation;
8741 n = 0;
8742 for (i = 0; i < count; i++, s++, p++)
8743 {
8744 size_t len;
8745 bfd_vma addr;
8746
8747 addr = bed->plt_sym_val (i, plt, p);
8748 if (addr == (bfd_vma) -1)
8749 continue;
8750
8751 *s = **p->sym_ptr_ptr;
8752 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8753 we are defining a symbol, ensure one of them is set. */
8754 if ((s->flags & BSF_LOCAL) == 0)
8755 s->flags |= BSF_GLOBAL;
8756 s->section = plt;
8757 s->value = addr - plt->vma;
8758 s->name = names;
8759 len = strlen ((*p->sym_ptr_ptr)->name);
8760 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8761 names += len;
8762 memcpy (names, "@plt", sizeof ("@plt"));
8763 names += sizeof ("@plt");
8764 ++n;
8765 }
8766
8767 return n;
8768 }
8769
8770 struct elf_symbuf_symbol
8771 {
8772 unsigned long st_name; /* Symbol name, index in string tbl */
8773 unsigned char st_info; /* Type and binding attributes */
8774 unsigned char st_other; /* Visibilty, and target specific */
8775 };
8776
8777 struct elf_symbuf_head
8778 {
8779 struct elf_symbuf_symbol *ssym;
8780 bfd_size_type count;
8781 unsigned int st_shndx;
8782 };
8783
8784 struct elf_symbol
8785 {
8786 union
8787 {
8788 Elf_Internal_Sym *isym;
8789 struct elf_symbuf_symbol *ssym;
8790 } u;
8791 const char *name;
8792 };
8793
8794 /* Sort references to symbols by ascending section number. */
8795
8796 static int
8797 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8798 {
8799 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8800 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8801
8802 return s1->st_shndx - s2->st_shndx;
8803 }
8804
8805 static int
8806 elf_sym_name_compare (const void *arg1, const void *arg2)
8807 {
8808 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8809 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8810 return strcmp (s1->name, s2->name);
8811 }
8812
8813 static struct elf_symbuf_head *
8814 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8815 {
8816 Elf_Internal_Sym **ind, **indbufend, **indbuf
8817 = bfd_malloc2 (symcount, sizeof (*indbuf));
8818 struct elf_symbuf_symbol *ssym;
8819 struct elf_symbuf_head *ssymbuf, *ssymhead;
8820 bfd_size_type i, shndx_count;
8821
8822 if (indbuf == NULL)
8823 return NULL;
8824
8825 for (ind = indbuf, i = 0; i < symcount; i++)
8826 if (isymbuf[i].st_shndx != SHN_UNDEF)
8827 *ind++ = &isymbuf[i];
8828 indbufend = ind;
8829
8830 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8831 elf_sort_elf_symbol);
8832
8833 shndx_count = 0;
8834 if (indbufend > indbuf)
8835 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8836 if (ind[0]->st_shndx != ind[1]->st_shndx)
8837 shndx_count++;
8838
8839 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8840 + (indbufend - indbuf) * sizeof (*ssymbuf));
8841 if (ssymbuf == NULL)
8842 {
8843 free (indbuf);
8844 return NULL;
8845 }
8846
8847 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8848 ssymbuf->ssym = NULL;
8849 ssymbuf->count = shndx_count;
8850 ssymbuf->st_shndx = 0;
8851 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8852 {
8853 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8854 {
8855 ssymhead++;
8856 ssymhead->ssym = ssym;
8857 ssymhead->count = 0;
8858 ssymhead->st_shndx = (*ind)->st_shndx;
8859 }
8860 ssym->st_name = (*ind)->st_name;
8861 ssym->st_info = (*ind)->st_info;
8862 ssym->st_other = (*ind)->st_other;
8863 ssymhead->count++;
8864 }
8865 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8866
8867 free (indbuf);
8868 return ssymbuf;
8869 }
8870
8871 /* Check if 2 sections define the same set of local and global
8872 symbols. */
8873
8874 bfd_boolean
8875 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8876 struct bfd_link_info *info)
8877 {
8878 bfd *bfd1, *bfd2;
8879 const struct elf_backend_data *bed1, *bed2;
8880 Elf_Internal_Shdr *hdr1, *hdr2;
8881 bfd_size_type symcount1, symcount2;
8882 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8883 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8884 Elf_Internal_Sym *isym, *isymend;
8885 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8886 bfd_size_type count1, count2, i;
8887 int shndx1, shndx2;
8888 bfd_boolean result;
8889
8890 bfd1 = sec1->owner;
8891 bfd2 = sec2->owner;
8892
8893 /* If both are .gnu.linkonce sections, they have to have the same
8894 section name. */
8895 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8896 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8897 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8898 sec2->name + sizeof ".gnu.linkonce") == 0;
8899
8900 /* Both sections have to be in ELF. */
8901 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8902 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8903 return FALSE;
8904
8905 if (elf_section_type (sec1) != elf_section_type (sec2))
8906 return FALSE;
8907
8908 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8909 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8910 {
8911 /* If both are members of section groups, they have to have the
8912 same group name. */
8913 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8914 return FALSE;
8915 }
8916
8917 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8918 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8919 if (shndx1 == -1 || shndx2 == -1)
8920 return FALSE;
8921
8922 bed1 = get_elf_backend_data (bfd1);
8923 bed2 = get_elf_backend_data (bfd2);
8924 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8925 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8926 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8927 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8928
8929 if (symcount1 == 0 || symcount2 == 0)
8930 return FALSE;
8931
8932 result = FALSE;
8933 isymbuf1 = NULL;
8934 isymbuf2 = NULL;
8935 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8936 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8937
8938 if (ssymbuf1 == NULL)
8939 {
8940 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8941 NULL, NULL, NULL);
8942 if (isymbuf1 == NULL)
8943 goto done;
8944
8945 if (!info->reduce_memory_overheads)
8946 elf_tdata (bfd1)->symbuf = ssymbuf1
8947 = elf_create_symbuf (symcount1, isymbuf1);
8948 }
8949
8950 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8951 {
8952 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8953 NULL, NULL, NULL);
8954 if (isymbuf2 == NULL)
8955 goto done;
8956
8957 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8958 elf_tdata (bfd2)->symbuf = ssymbuf2
8959 = elf_create_symbuf (symcount2, isymbuf2);
8960 }
8961
8962 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8963 {
8964 /* Optimized faster version. */
8965 bfd_size_type lo, hi, mid;
8966 struct elf_symbol *symp;
8967 struct elf_symbuf_symbol *ssym, *ssymend;
8968
8969 lo = 0;
8970 hi = ssymbuf1->count;
8971 ssymbuf1++;
8972 count1 = 0;
8973 while (lo < hi)
8974 {
8975 mid = (lo + hi) / 2;
8976 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
8977 hi = mid;
8978 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
8979 lo = mid + 1;
8980 else
8981 {
8982 count1 = ssymbuf1[mid].count;
8983 ssymbuf1 += mid;
8984 break;
8985 }
8986 }
8987
8988 lo = 0;
8989 hi = ssymbuf2->count;
8990 ssymbuf2++;
8991 count2 = 0;
8992 while (lo < hi)
8993 {
8994 mid = (lo + hi) / 2;
8995 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
8996 hi = mid;
8997 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
8998 lo = mid + 1;
8999 else
9000 {
9001 count2 = ssymbuf2[mid].count;
9002 ssymbuf2 += mid;
9003 break;
9004 }
9005 }
9006
9007 if (count1 == 0 || count2 == 0 || count1 != count2)
9008 goto done;
9009
9010 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
9011 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
9012 if (symtable1 == NULL || symtable2 == NULL)
9013 goto done;
9014
9015 symp = symtable1;
9016 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
9017 ssym < ssymend; ssym++, symp++)
9018 {
9019 symp->u.ssym = ssym;
9020 symp->name = bfd_elf_string_from_elf_section (bfd1,
9021 hdr1->sh_link,
9022 ssym->st_name);
9023 }
9024
9025 symp = symtable2;
9026 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9027 ssym < ssymend; ssym++, symp++)
9028 {
9029 symp->u.ssym = ssym;
9030 symp->name = bfd_elf_string_from_elf_section (bfd2,
9031 hdr2->sh_link,
9032 ssym->st_name);
9033 }
9034
9035 /* Sort symbol by name. */
9036 qsort (symtable1, count1, sizeof (struct elf_symbol),
9037 elf_sym_name_compare);
9038 qsort (symtable2, count1, sizeof (struct elf_symbol),
9039 elf_sym_name_compare);
9040
9041 for (i = 0; i < count1; i++)
9042 /* Two symbols must have the same binding, type and name. */
9043 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9044 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9045 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9046 goto done;
9047
9048 result = TRUE;
9049 goto done;
9050 }
9051
9052 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9053 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9054 if (symtable1 == NULL || symtable2 == NULL)
9055 goto done;
9056
9057 /* Count definitions in the section. */
9058 count1 = 0;
9059 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9060 if (isym->st_shndx == (unsigned int) shndx1)
9061 symtable1[count1++].u.isym = isym;
9062
9063 count2 = 0;
9064 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9065 if (isym->st_shndx == (unsigned int) shndx2)
9066 symtable2[count2++].u.isym = isym;
9067
9068 if (count1 == 0 || count2 == 0 || count1 != count2)
9069 goto done;
9070
9071 for (i = 0; i < count1; i++)
9072 symtable1[i].name
9073 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9074 symtable1[i].u.isym->st_name);
9075
9076 for (i = 0; i < count2; i++)
9077 symtable2[i].name
9078 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9079 symtable2[i].u.isym->st_name);
9080
9081 /* Sort symbol by name. */
9082 qsort (symtable1, count1, sizeof (struct elf_symbol),
9083 elf_sym_name_compare);
9084 qsort (symtable2, count1, sizeof (struct elf_symbol),
9085 elf_sym_name_compare);
9086
9087 for (i = 0; i < count1; i++)
9088 /* Two symbols must have the same binding, type and name. */
9089 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9090 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9091 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9092 goto done;
9093
9094 result = TRUE;
9095
9096 done:
9097 if (symtable1)
9098 free (symtable1);
9099 if (symtable2)
9100 free (symtable2);
9101 if (isymbuf1)
9102 free (isymbuf1);
9103 if (isymbuf2)
9104 free (isymbuf2);
9105
9106 return result;
9107 }
9108
9109 /* It is only used by x86-64 so far. */
9110 asection _bfd_elf_large_com_section
9111 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9112 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9113
9114 /* Return TRUE if 2 section types are compatible. */
9115
9116 bfd_boolean
9117 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9118 bfd *bbfd, const asection *bsec)
9119 {
9120 if (asec == NULL
9121 || bsec == NULL
9122 || abfd->xvec->flavour != bfd_target_elf_flavour
9123 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9124 return TRUE;
9125
9126 return elf_section_type (asec) == elf_section_type (bsec);
9127 }