2006-04-26 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 break;
2117
2118 case SHT_GNU_verneed:
2119 elf_dynverref (abfd) = shindex;
2120 elf_tdata (abfd)->dynverref_hdr = *hdr;
2121 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122 break;
2123
2124 case SHT_SHLIB:
2125 return TRUE;
2126
2127 case SHT_GROUP:
2128 /* We need a BFD section for objcopy and relocatable linking,
2129 and it's handy to have the signature available as the section
2130 name. */
2131 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2132 return FALSE;
2133 name = group_signature (abfd, hdr);
2134 if (name == NULL)
2135 return FALSE;
2136 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2137 return FALSE;
2138 if (hdr->contents != NULL)
2139 {
2140 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2141 unsigned int n_elt = hdr->sh_size / 4;
2142 asection *s;
2143
2144 if (idx->flags & GRP_COMDAT)
2145 hdr->bfd_section->flags
2146 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2147
2148 /* We try to keep the same section order as it comes in. */
2149 idx += n_elt;
2150 while (--n_elt != 0)
2151 if ((s = (--idx)->shdr->bfd_section) != NULL
2152 && elf_next_in_group (s) != NULL)
2153 {
2154 elf_next_in_group (hdr->bfd_section) = s;
2155 break;
2156 }
2157 }
2158 break;
2159
2160 default:
2161 /* Check for any processor-specific section types. */
2162 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2163 return TRUE;
2164
2165 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2166 {
2167 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2168 /* FIXME: How to properly handle allocated section reserved
2169 for applications? */
2170 (*_bfd_error_handler)
2171 (_("%B: don't know how to handle allocated, application "
2172 "specific section `%s' [0x%8x]"),
2173 abfd, name, hdr->sh_type);
2174 else
2175 /* Allow sections reserved for applications. */
2176 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2177 shindex);
2178 }
2179 else if (hdr->sh_type >= SHT_LOPROC
2180 && hdr->sh_type <= SHT_HIPROC)
2181 /* FIXME: We should handle this section. */
2182 (*_bfd_error_handler)
2183 (_("%B: don't know how to handle processor specific section "
2184 "`%s' [0x%8x]"),
2185 abfd, name, hdr->sh_type);
2186 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2187 /* FIXME: We should handle this section. */
2188 (*_bfd_error_handler)
2189 (_("%B: don't know how to handle OS specific section "
2190 "`%s' [0x%8x]"),
2191 abfd, name, hdr->sh_type);
2192 else
2193 /* FIXME: We should handle this section. */
2194 (*_bfd_error_handler)
2195 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197
2198 return FALSE;
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2205 Return SEC for sections that have no elf section, and NULL on error. */
2206
2207 asection *
2208 bfd_section_from_r_symndx (bfd *abfd,
2209 struct sym_sec_cache *cache,
2210 asection *sec,
2211 unsigned long r_symndx)
2212 {
2213 Elf_Internal_Shdr *symtab_hdr;
2214 unsigned char esym[sizeof (Elf64_External_Sym)];
2215 Elf_External_Sym_Shndx eshndx;
2216 Elf_Internal_Sym isym;
2217 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2218
2219 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2220 return cache->sec[ent];
2221
2222 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2223 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2224 &isym, esym, &eshndx) == NULL)
2225 return NULL;
2226
2227 if (cache->abfd != abfd)
2228 {
2229 memset (cache->indx, -1, sizeof (cache->indx));
2230 cache->abfd = abfd;
2231 }
2232 cache->indx[ent] = r_symndx;
2233 cache->sec[ent] = sec;
2234 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2235 || isym.st_shndx > SHN_HIRESERVE)
2236 {
2237 asection *s;
2238 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2239 if (s != NULL)
2240 cache->sec[ent] = s;
2241 }
2242 return cache->sec[ent];
2243 }
2244
2245 /* Given an ELF section number, retrieve the corresponding BFD
2246 section. */
2247
2248 asection *
2249 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2250 {
2251 if (index >= elf_numsections (abfd))
2252 return NULL;
2253 return elf_elfsections (abfd)[index]->bfd_section;
2254 }
2255
2256 static const struct bfd_elf_special_section special_sections_b[] =
2257 {
2258 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2259 { NULL, 0, 0, 0, 0 }
2260 };
2261
2262 static const struct bfd_elf_special_section special_sections_c[] =
2263 {
2264 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2265 { NULL, 0, 0, 0, 0 }
2266 };
2267
2268 static const struct bfd_elf_special_section special_sections_d[] =
2269 {
2270 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2271 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2272 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2273 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2274 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2275 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2276 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2277 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2278 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2279 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2280 { NULL, 0, 0, 0, 0 }
2281 };
2282
2283 static const struct bfd_elf_special_section special_sections_f[] =
2284 {
2285 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2286 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2287 { NULL, 0, 0, 0, 0 }
2288 };
2289
2290 static const struct bfd_elf_special_section special_sections_g[] =
2291 {
2292 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2293 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2294 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2295 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2296 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2297 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2298 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2299 { NULL, 0, 0, 0, 0 }
2300 };
2301
2302 static const struct bfd_elf_special_section special_sections_h[] =
2303 {
2304 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_i[] =
2309 {
2310 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2311 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2312 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2313 { NULL, 0, 0, 0, 0 }
2314 };
2315
2316 static const struct bfd_elf_special_section special_sections_l[] =
2317 {
2318 { ".line", 5, 0, SHT_PROGBITS, 0 },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_n[] =
2323 {
2324 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2325 { ".note", 5, -1, SHT_NOTE, 0 },
2326 { NULL, 0, 0, 0, 0 }
2327 };
2328
2329 static const struct bfd_elf_special_section special_sections_p[] =
2330 {
2331 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2332 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2333 { NULL, 0, 0, 0, 0 }
2334 };
2335
2336 static const struct bfd_elf_special_section special_sections_r[] =
2337 {
2338 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2339 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2340 { ".rela", 5, -1, SHT_RELA, 0 },
2341 { ".rel", 4, -1, SHT_REL, 0 },
2342 { NULL, 0, 0, 0, 0 }
2343 };
2344
2345 static const struct bfd_elf_special_section special_sections_s[] =
2346 {
2347 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2348 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2349 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2350 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_t[] =
2355 {
2356 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2357 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2358 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section *special_sections[] =
2363 {
2364 special_sections_b, /* 'b' */
2365 special_sections_c, /* 'b' */
2366 special_sections_d, /* 'd' */
2367 NULL, /* 'e' */
2368 special_sections_f, /* 'f' */
2369 special_sections_g, /* 'g' */
2370 special_sections_h, /* 'h' */
2371 special_sections_i, /* 'i' */
2372 NULL, /* 'j' */
2373 NULL, /* 'k' */
2374 special_sections_l, /* 'l' */
2375 NULL, /* 'm' */
2376 special_sections_n, /* 'n' */
2377 NULL, /* 'o' */
2378 special_sections_p, /* 'p' */
2379 NULL, /* 'q' */
2380 special_sections_r, /* 'r' */
2381 special_sections_s, /* 's' */
2382 special_sections_t, /* 't' */
2383 };
2384
2385 const struct bfd_elf_special_section *
2386 _bfd_elf_get_special_section (const char *name,
2387 const struct bfd_elf_special_section *spec,
2388 unsigned int rela)
2389 {
2390 int i;
2391 int len;
2392
2393 len = strlen (name);
2394
2395 for (i = 0; spec[i].prefix != NULL; i++)
2396 {
2397 int suffix_len;
2398 int prefix_len = spec[i].prefix_length;
2399
2400 if (len < prefix_len)
2401 continue;
2402 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2403 continue;
2404
2405 suffix_len = spec[i].suffix_length;
2406 if (suffix_len <= 0)
2407 {
2408 if (name[prefix_len] != 0)
2409 {
2410 if (suffix_len == 0)
2411 continue;
2412 if (name[prefix_len] != '.'
2413 && (suffix_len == -2
2414 || (rela && spec[i].type == SHT_REL)))
2415 continue;
2416 }
2417 }
2418 else
2419 {
2420 if (len < prefix_len + suffix_len)
2421 continue;
2422 if (memcmp (name + len - suffix_len,
2423 spec[i].prefix + prefix_len,
2424 suffix_len) != 0)
2425 continue;
2426 }
2427 return &spec[i];
2428 }
2429
2430 return NULL;
2431 }
2432
2433 const struct bfd_elf_special_section *
2434 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2435 {
2436 int i;
2437 const struct bfd_elf_special_section *spec;
2438 const struct elf_backend_data *bed;
2439
2440 /* See if this is one of the special sections. */
2441 if (sec->name == NULL)
2442 return NULL;
2443
2444 bed = get_elf_backend_data (abfd);
2445 spec = bed->special_sections;
2446 if (spec)
2447 {
2448 spec = _bfd_elf_get_special_section (sec->name,
2449 bed->special_sections,
2450 sec->use_rela_p);
2451 if (spec != NULL)
2452 return spec;
2453 }
2454
2455 if (sec->name[0] != '.')
2456 return NULL;
2457
2458 i = sec->name[1] - 'b';
2459 if (i < 0 || i > 't' - 'b')
2460 return NULL;
2461
2462 spec = special_sections[i];
2463
2464 if (spec == NULL)
2465 return NULL;
2466
2467 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2468 }
2469
2470 bfd_boolean
2471 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2472 {
2473 struct bfd_elf_section_data *sdata;
2474 const struct elf_backend_data *bed;
2475 const struct bfd_elf_special_section *ssect;
2476
2477 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2478 if (sdata == NULL)
2479 {
2480 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2481 if (sdata == NULL)
2482 return FALSE;
2483 sec->used_by_bfd = sdata;
2484 }
2485
2486 /* Indicate whether or not this section should use RELA relocations. */
2487 bed = get_elf_backend_data (abfd);
2488 sec->use_rela_p = bed->default_use_rela_p;
2489
2490 /* When we read a file, we don't need to set ELF section type and
2491 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2492 anyway. We will set ELF section type and flags for all linker
2493 created sections. If user specifies BFD section flags, we will
2494 set ELF section type and flags based on BFD section flags in
2495 elf_fake_sections. */
2496 if ((!sec->flags && abfd->direction != read_direction)
2497 || (sec->flags & SEC_LINKER_CREATED) != 0)
2498 {
2499 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2500 if (ssect != NULL)
2501 {
2502 elf_section_type (sec) = ssect->type;
2503 elf_section_flags (sec) = ssect->attr;
2504 }
2505 }
2506
2507 return TRUE;
2508 }
2509
2510 /* Create a new bfd section from an ELF program header.
2511
2512 Since program segments have no names, we generate a synthetic name
2513 of the form segment<NUM>, where NUM is generally the index in the
2514 program header table. For segments that are split (see below) we
2515 generate the names segment<NUM>a and segment<NUM>b.
2516
2517 Note that some program segments may have a file size that is different than
2518 (less than) the memory size. All this means is that at execution the
2519 system must allocate the amount of memory specified by the memory size,
2520 but only initialize it with the first "file size" bytes read from the
2521 file. This would occur for example, with program segments consisting
2522 of combined data+bss.
2523
2524 To handle the above situation, this routine generates TWO bfd sections
2525 for the single program segment. The first has the length specified by
2526 the file size of the segment, and the second has the length specified
2527 by the difference between the two sizes. In effect, the segment is split
2528 into it's initialized and uninitialized parts.
2529
2530 */
2531
2532 bfd_boolean
2533 _bfd_elf_make_section_from_phdr (bfd *abfd,
2534 Elf_Internal_Phdr *hdr,
2535 int index,
2536 const char *typename)
2537 {
2538 asection *newsect;
2539 char *name;
2540 char namebuf[64];
2541 size_t len;
2542 int split;
2543
2544 split = ((hdr->p_memsz > 0)
2545 && (hdr->p_filesz > 0)
2546 && (hdr->p_memsz > hdr->p_filesz));
2547 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2548 len = strlen (namebuf) + 1;
2549 name = bfd_alloc (abfd, len);
2550 if (!name)
2551 return FALSE;
2552 memcpy (name, namebuf, len);
2553 newsect = bfd_make_section (abfd, name);
2554 if (newsect == NULL)
2555 return FALSE;
2556 newsect->vma = hdr->p_vaddr;
2557 newsect->lma = hdr->p_paddr;
2558 newsect->size = hdr->p_filesz;
2559 newsect->filepos = hdr->p_offset;
2560 newsect->flags |= SEC_HAS_CONTENTS;
2561 newsect->alignment_power = bfd_log2 (hdr->p_align);
2562 if (hdr->p_type == PT_LOAD)
2563 {
2564 newsect->flags |= SEC_ALLOC;
2565 newsect->flags |= SEC_LOAD;
2566 if (hdr->p_flags & PF_X)
2567 {
2568 /* FIXME: all we known is that it has execute PERMISSION,
2569 may be data. */
2570 newsect->flags |= SEC_CODE;
2571 }
2572 }
2573 if (!(hdr->p_flags & PF_W))
2574 {
2575 newsect->flags |= SEC_READONLY;
2576 }
2577
2578 if (split)
2579 {
2580 sprintf (namebuf, "%s%db", typename, index);
2581 len = strlen (namebuf) + 1;
2582 name = bfd_alloc (abfd, len);
2583 if (!name)
2584 return FALSE;
2585 memcpy (name, namebuf, len);
2586 newsect = bfd_make_section (abfd, name);
2587 if (newsect == NULL)
2588 return FALSE;
2589 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2590 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2591 newsect->size = hdr->p_memsz - hdr->p_filesz;
2592 if (hdr->p_type == PT_LOAD)
2593 {
2594 newsect->flags |= SEC_ALLOC;
2595 if (hdr->p_flags & PF_X)
2596 newsect->flags |= SEC_CODE;
2597 }
2598 if (!(hdr->p_flags & PF_W))
2599 newsect->flags |= SEC_READONLY;
2600 }
2601
2602 return TRUE;
2603 }
2604
2605 bfd_boolean
2606 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2607 {
2608 const struct elf_backend_data *bed;
2609
2610 switch (hdr->p_type)
2611 {
2612 case PT_NULL:
2613 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2614
2615 case PT_LOAD:
2616 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2617
2618 case PT_DYNAMIC:
2619 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2620
2621 case PT_INTERP:
2622 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2623
2624 case PT_NOTE:
2625 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2626 return FALSE;
2627 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2628 return FALSE;
2629 return TRUE;
2630
2631 case PT_SHLIB:
2632 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2633
2634 case PT_PHDR:
2635 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2636
2637 case PT_GNU_EH_FRAME:
2638 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2639 "eh_frame_hdr");
2640
2641 case PT_GNU_STACK:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2643
2644 case PT_GNU_RELRO:
2645 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2646
2647 default:
2648 /* Check for any processor-specific program segment types. */
2649 bed = get_elf_backend_data (abfd);
2650 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2651 }
2652 }
2653
2654 /* Initialize REL_HDR, the section-header for new section, containing
2655 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2656 relocations; otherwise, we use REL relocations. */
2657
2658 bfd_boolean
2659 _bfd_elf_init_reloc_shdr (bfd *abfd,
2660 Elf_Internal_Shdr *rel_hdr,
2661 asection *asect,
2662 bfd_boolean use_rela_p)
2663 {
2664 char *name;
2665 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2666 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2667
2668 name = bfd_alloc (abfd, amt);
2669 if (name == NULL)
2670 return FALSE;
2671 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2672 rel_hdr->sh_name =
2673 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2674 FALSE);
2675 if (rel_hdr->sh_name == (unsigned int) -1)
2676 return FALSE;
2677 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2678 rel_hdr->sh_entsize = (use_rela_p
2679 ? bed->s->sizeof_rela
2680 : bed->s->sizeof_rel);
2681 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2682 rel_hdr->sh_flags = 0;
2683 rel_hdr->sh_addr = 0;
2684 rel_hdr->sh_size = 0;
2685 rel_hdr->sh_offset = 0;
2686
2687 return TRUE;
2688 }
2689
2690 /* Set up an ELF internal section header for a section. */
2691
2692 static void
2693 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2694 {
2695 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2696 bfd_boolean *failedptr = failedptrarg;
2697 Elf_Internal_Shdr *this_hdr;
2698
2699 if (*failedptr)
2700 {
2701 /* We already failed; just get out of the bfd_map_over_sections
2702 loop. */
2703 return;
2704 }
2705
2706 this_hdr = &elf_section_data (asect)->this_hdr;
2707
2708 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2709 asect->name, FALSE);
2710 if (this_hdr->sh_name == (unsigned int) -1)
2711 {
2712 *failedptr = TRUE;
2713 return;
2714 }
2715
2716 /* Don't clear sh_flags. Assembler may set additional bits. */
2717
2718 if ((asect->flags & SEC_ALLOC) != 0
2719 || asect->user_set_vma)
2720 this_hdr->sh_addr = asect->vma;
2721 else
2722 this_hdr->sh_addr = 0;
2723
2724 this_hdr->sh_offset = 0;
2725 this_hdr->sh_size = asect->size;
2726 this_hdr->sh_link = 0;
2727 this_hdr->sh_addralign = 1 << asect->alignment_power;
2728 /* The sh_entsize and sh_info fields may have been set already by
2729 copy_private_section_data. */
2730
2731 this_hdr->bfd_section = asect;
2732 this_hdr->contents = NULL;
2733
2734 /* If the section type is unspecified, we set it based on
2735 asect->flags. */
2736 if (this_hdr->sh_type == SHT_NULL)
2737 {
2738 if ((asect->flags & SEC_GROUP) != 0)
2739 this_hdr->sh_type = SHT_GROUP;
2740 else if ((asect->flags & SEC_ALLOC) != 0
2741 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2742 || (asect->flags & SEC_NEVER_LOAD) != 0))
2743 this_hdr->sh_type = SHT_NOBITS;
2744 else
2745 this_hdr->sh_type = SHT_PROGBITS;
2746 }
2747
2748 switch (this_hdr->sh_type)
2749 {
2750 default:
2751 break;
2752
2753 case SHT_STRTAB:
2754 case SHT_INIT_ARRAY:
2755 case SHT_FINI_ARRAY:
2756 case SHT_PREINIT_ARRAY:
2757 case SHT_NOTE:
2758 case SHT_NOBITS:
2759 case SHT_PROGBITS:
2760 break;
2761
2762 case SHT_HASH:
2763 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2764 break;
2765
2766 case SHT_DYNSYM:
2767 this_hdr->sh_entsize = bed->s->sizeof_sym;
2768 break;
2769
2770 case SHT_DYNAMIC:
2771 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2772 break;
2773
2774 case SHT_RELA:
2775 if (get_elf_backend_data (abfd)->may_use_rela_p)
2776 this_hdr->sh_entsize = bed->s->sizeof_rela;
2777 break;
2778
2779 case SHT_REL:
2780 if (get_elf_backend_data (abfd)->may_use_rel_p)
2781 this_hdr->sh_entsize = bed->s->sizeof_rel;
2782 break;
2783
2784 case SHT_GNU_versym:
2785 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2786 break;
2787
2788 case SHT_GNU_verdef:
2789 this_hdr->sh_entsize = 0;
2790 /* objcopy or strip will copy over sh_info, but may not set
2791 cverdefs. The linker will set cverdefs, but sh_info will be
2792 zero. */
2793 if (this_hdr->sh_info == 0)
2794 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2795 else
2796 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2797 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2798 break;
2799
2800 case SHT_GNU_verneed:
2801 this_hdr->sh_entsize = 0;
2802 /* objcopy or strip will copy over sh_info, but may not set
2803 cverrefs. The linker will set cverrefs, but sh_info will be
2804 zero. */
2805 if (this_hdr->sh_info == 0)
2806 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2807 else
2808 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2809 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2810 break;
2811
2812 case SHT_GROUP:
2813 this_hdr->sh_entsize = 4;
2814 break;
2815 }
2816
2817 if ((asect->flags & SEC_ALLOC) != 0)
2818 this_hdr->sh_flags |= SHF_ALLOC;
2819 if ((asect->flags & SEC_READONLY) == 0)
2820 this_hdr->sh_flags |= SHF_WRITE;
2821 if ((asect->flags & SEC_CODE) != 0)
2822 this_hdr->sh_flags |= SHF_EXECINSTR;
2823 if ((asect->flags & SEC_MERGE) != 0)
2824 {
2825 this_hdr->sh_flags |= SHF_MERGE;
2826 this_hdr->sh_entsize = asect->entsize;
2827 if ((asect->flags & SEC_STRINGS) != 0)
2828 this_hdr->sh_flags |= SHF_STRINGS;
2829 }
2830 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2831 this_hdr->sh_flags |= SHF_GROUP;
2832 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2833 {
2834 this_hdr->sh_flags |= SHF_TLS;
2835 if (asect->size == 0
2836 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2837 {
2838 struct bfd_link_order *o = asect->map_tail.link_order;
2839
2840 this_hdr->sh_size = 0;
2841 if (o != NULL)
2842 {
2843 this_hdr->sh_size = o->offset + o->size;
2844 if (this_hdr->sh_size != 0)
2845 this_hdr->sh_type = SHT_NOBITS;
2846 }
2847 }
2848 }
2849
2850 /* Check for processor-specific section types. */
2851 if (bed->elf_backend_fake_sections
2852 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2853 *failedptr = TRUE;
2854
2855 /* If the section has relocs, set up a section header for the
2856 SHT_REL[A] section. If two relocation sections are required for
2857 this section, it is up to the processor-specific back-end to
2858 create the other. */
2859 if ((asect->flags & SEC_RELOC) != 0
2860 && !_bfd_elf_init_reloc_shdr (abfd,
2861 &elf_section_data (asect)->rel_hdr,
2862 asect,
2863 asect->use_rela_p))
2864 *failedptr = TRUE;
2865 }
2866
2867 /* Fill in the contents of a SHT_GROUP section. */
2868
2869 void
2870 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2871 {
2872 bfd_boolean *failedptr = failedptrarg;
2873 unsigned long symindx;
2874 asection *elt, *first;
2875 unsigned char *loc;
2876 bfd_boolean gas;
2877
2878 /* Ignore linker created group section. See elfNN_ia64_object_p in
2879 elfxx-ia64.c. */
2880 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2881 || *failedptr)
2882 return;
2883
2884 symindx = 0;
2885 if (elf_group_id (sec) != NULL)
2886 symindx = elf_group_id (sec)->udata.i;
2887
2888 if (symindx == 0)
2889 {
2890 /* If called from the assembler, swap_out_syms will have set up
2891 elf_section_syms; If called for "ld -r", use target_index. */
2892 if (elf_section_syms (abfd) != NULL)
2893 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2894 else
2895 symindx = sec->target_index;
2896 }
2897 elf_section_data (sec)->this_hdr.sh_info = symindx;
2898
2899 /* The contents won't be allocated for "ld -r" or objcopy. */
2900 gas = TRUE;
2901 if (sec->contents == NULL)
2902 {
2903 gas = FALSE;
2904 sec->contents = bfd_alloc (abfd, sec->size);
2905
2906 /* Arrange for the section to be written out. */
2907 elf_section_data (sec)->this_hdr.contents = sec->contents;
2908 if (sec->contents == NULL)
2909 {
2910 *failedptr = TRUE;
2911 return;
2912 }
2913 }
2914
2915 loc = sec->contents + sec->size;
2916
2917 /* Get the pointer to the first section in the group that gas
2918 squirreled away here. objcopy arranges for this to be set to the
2919 start of the input section group. */
2920 first = elt = elf_next_in_group (sec);
2921
2922 /* First element is a flag word. Rest of section is elf section
2923 indices for all the sections of the group. Write them backwards
2924 just to keep the group in the same order as given in .section
2925 directives, not that it matters. */
2926 while (elt != NULL)
2927 {
2928 asection *s;
2929 unsigned int idx;
2930
2931 loc -= 4;
2932 s = elt;
2933 if (!gas)
2934 s = s->output_section;
2935 idx = 0;
2936 if (s != NULL)
2937 idx = elf_section_data (s)->this_idx;
2938 H_PUT_32 (abfd, idx, loc);
2939 elt = elf_next_in_group (elt);
2940 if (elt == first)
2941 break;
2942 }
2943
2944 if ((loc -= 4) != sec->contents)
2945 abort ();
2946
2947 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2948 }
2949
2950 /* Assign all ELF section numbers. The dummy first section is handled here
2951 too. The link/info pointers for the standard section types are filled
2952 in here too, while we're at it. */
2953
2954 static bfd_boolean
2955 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2956 {
2957 struct elf_obj_tdata *t = elf_tdata (abfd);
2958 asection *sec;
2959 unsigned int section_number, secn;
2960 Elf_Internal_Shdr **i_shdrp;
2961 struct bfd_elf_section_data *d;
2962
2963 section_number = 1;
2964
2965 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2966
2967 /* SHT_GROUP sections are in relocatable files only. */
2968 if (link_info == NULL || link_info->relocatable)
2969 {
2970 /* Put SHT_GROUP sections first. */
2971 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2972 {
2973 d = elf_section_data (sec);
2974
2975 if (d->this_hdr.sh_type == SHT_GROUP)
2976 {
2977 if (sec->flags & SEC_LINKER_CREATED)
2978 {
2979 /* Remove the linker created SHT_GROUP sections. */
2980 bfd_section_list_remove (abfd, sec);
2981 abfd->section_count--;
2982 }
2983 else
2984 {
2985 if (section_number == SHN_LORESERVE)
2986 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2987 d->this_idx = section_number++;
2988 }
2989 }
2990 }
2991 }
2992
2993 for (sec = abfd->sections; sec; sec = sec->next)
2994 {
2995 d = elf_section_data (sec);
2996
2997 if (d->this_hdr.sh_type != SHT_GROUP)
2998 {
2999 if (section_number == SHN_LORESERVE)
3000 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3001 d->this_idx = section_number++;
3002 }
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3004 if ((sec->flags & SEC_RELOC) == 0)
3005 d->rel_idx = 0;
3006 else
3007 {
3008 if (section_number == SHN_LORESERVE)
3009 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3010 d->rel_idx = section_number++;
3011 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3012 }
3013
3014 if (d->rel_hdr2)
3015 {
3016 if (section_number == SHN_LORESERVE)
3017 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3018 d->rel_idx2 = section_number++;
3019 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3020 }
3021 else
3022 d->rel_idx2 = 0;
3023 }
3024
3025 if (section_number == SHN_LORESERVE)
3026 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3027 t->shstrtab_section = section_number++;
3028 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3029 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3030
3031 if (bfd_get_symcount (abfd) > 0)
3032 {
3033 if (section_number == SHN_LORESERVE)
3034 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3035 t->symtab_section = section_number++;
3036 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3037 if (section_number > SHN_LORESERVE - 2)
3038 {
3039 if (section_number == SHN_LORESERVE)
3040 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3041 t->symtab_shndx_section = section_number++;
3042 t->symtab_shndx_hdr.sh_name
3043 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3044 ".symtab_shndx", FALSE);
3045 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3046 return FALSE;
3047 }
3048 if (section_number == SHN_LORESERVE)
3049 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3050 t->strtab_section = section_number++;
3051 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3052 }
3053
3054 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3055 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3056
3057 elf_numsections (abfd) = section_number;
3058 elf_elfheader (abfd)->e_shnum = section_number;
3059 if (section_number > SHN_LORESERVE)
3060 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3061
3062 /* Set up the list of section header pointers, in agreement with the
3063 indices. */
3064 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3065 if (i_shdrp == NULL)
3066 return FALSE;
3067
3068 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3069 if (i_shdrp[0] == NULL)
3070 {
3071 bfd_release (abfd, i_shdrp);
3072 return FALSE;
3073 }
3074
3075 elf_elfsections (abfd) = i_shdrp;
3076
3077 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3078 if (bfd_get_symcount (abfd) > 0)
3079 {
3080 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3081 if (elf_numsections (abfd) > SHN_LORESERVE)
3082 {
3083 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3084 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3085 }
3086 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3087 t->symtab_hdr.sh_link = t->strtab_section;
3088 }
3089
3090 for (sec = abfd->sections; sec; sec = sec->next)
3091 {
3092 struct bfd_elf_section_data *d = elf_section_data (sec);
3093 asection *s;
3094 const char *name;
3095
3096 i_shdrp[d->this_idx] = &d->this_hdr;
3097 if (d->rel_idx != 0)
3098 i_shdrp[d->rel_idx] = &d->rel_hdr;
3099 if (d->rel_idx2 != 0)
3100 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3101
3102 /* Fill in the sh_link and sh_info fields while we're at it. */
3103
3104 /* sh_link of a reloc section is the section index of the symbol
3105 table. sh_info is the section index of the section to which
3106 the relocation entries apply. */
3107 if (d->rel_idx != 0)
3108 {
3109 d->rel_hdr.sh_link = t->symtab_section;
3110 d->rel_hdr.sh_info = d->this_idx;
3111 }
3112 if (d->rel_idx2 != 0)
3113 {
3114 d->rel_hdr2->sh_link = t->symtab_section;
3115 d->rel_hdr2->sh_info = d->this_idx;
3116 }
3117
3118 /* We need to set up sh_link for SHF_LINK_ORDER. */
3119 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3120 {
3121 s = elf_linked_to_section (sec);
3122 if (s)
3123 {
3124 /* elf_linked_to_section points to the input section. */
3125 if (link_info != NULL)
3126 {
3127 /* Check discarded linkonce section. */
3128 if (elf_discarded_section (s))
3129 {
3130 asection *kept;
3131 (*_bfd_error_handler)
3132 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3133 abfd, d->this_hdr.bfd_section,
3134 s, s->owner);
3135 /* Point to the kept section if it has the same
3136 size as the discarded one. */
3137 kept = _bfd_elf_check_kept_section (s);
3138 if (kept == NULL)
3139 {
3140 bfd_set_error (bfd_error_bad_value);
3141 return FALSE;
3142 }
3143 s = kept;
3144 }
3145
3146 s = s->output_section;
3147 BFD_ASSERT (s != NULL);
3148 }
3149 else
3150 {
3151 /* Handle objcopy. */
3152 if (s->output_section == NULL)
3153 {
3154 (*_bfd_error_handler)
3155 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3156 abfd, d->this_hdr.bfd_section, s, s->owner);
3157 bfd_set_error (bfd_error_bad_value);
3158 return FALSE;
3159 }
3160 s = s->output_section;
3161 }
3162 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3163 }
3164 else
3165 {
3166 /* PR 290:
3167 The Intel C compiler generates SHT_IA_64_UNWIND with
3168 SHF_LINK_ORDER. But it doesn't set the sh_link or
3169 sh_info fields. Hence we could get the situation
3170 where s is NULL. */
3171 const struct elf_backend_data *bed
3172 = get_elf_backend_data (abfd);
3173 if (bed->link_order_error_handler)
3174 bed->link_order_error_handler
3175 (_("%B: warning: sh_link not set for section `%A'"),
3176 abfd, sec);
3177 }
3178 }
3179
3180 switch (d->this_hdr.sh_type)
3181 {
3182 case SHT_REL:
3183 case SHT_RELA:
3184 /* A reloc section which we are treating as a normal BFD
3185 section. sh_link is the section index of the symbol
3186 table. sh_info is the section index of the section to
3187 which the relocation entries apply. We assume that an
3188 allocated reloc section uses the dynamic symbol table.
3189 FIXME: How can we be sure? */
3190 s = bfd_get_section_by_name (abfd, ".dynsym");
3191 if (s != NULL)
3192 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3193
3194 /* We look up the section the relocs apply to by name. */
3195 name = sec->name;
3196 if (d->this_hdr.sh_type == SHT_REL)
3197 name += 4;
3198 else
3199 name += 5;
3200 s = bfd_get_section_by_name (abfd, name);
3201 if (s != NULL)
3202 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3203 break;
3204
3205 case SHT_STRTAB:
3206 /* We assume that a section named .stab*str is a stabs
3207 string section. We look for a section with the same name
3208 but without the trailing ``str'', and set its sh_link
3209 field to point to this section. */
3210 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3211 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3212 {
3213 size_t len;
3214 char *alc;
3215
3216 len = strlen (sec->name);
3217 alc = bfd_malloc (len - 2);
3218 if (alc == NULL)
3219 return FALSE;
3220 memcpy (alc, sec->name, len - 3);
3221 alc[len - 3] = '\0';
3222 s = bfd_get_section_by_name (abfd, alc);
3223 free (alc);
3224 if (s != NULL)
3225 {
3226 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3227
3228 /* This is a .stab section. */
3229 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3230 elf_section_data (s)->this_hdr.sh_entsize
3231 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3232 }
3233 }
3234 break;
3235
3236 case SHT_DYNAMIC:
3237 case SHT_DYNSYM:
3238 case SHT_GNU_verneed:
3239 case SHT_GNU_verdef:
3240 /* sh_link is the section header index of the string table
3241 used for the dynamic entries, or the symbol table, or the
3242 version strings. */
3243 s = bfd_get_section_by_name (abfd, ".dynstr");
3244 if (s != NULL)
3245 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3246 break;
3247
3248 case SHT_GNU_LIBLIST:
3249 /* sh_link is the section header index of the prelink library
3250 list
3251 used for the dynamic entries, or the symbol table, or the
3252 version strings. */
3253 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3254 ? ".dynstr" : ".gnu.libstr");
3255 if (s != NULL)
3256 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3257 break;
3258
3259 case SHT_HASH:
3260 case SHT_GNU_versym:
3261 /* sh_link is the section header index of the symbol table
3262 this hash table or version table is for. */
3263 s = bfd_get_section_by_name (abfd, ".dynsym");
3264 if (s != NULL)
3265 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3266 break;
3267
3268 case SHT_GROUP:
3269 d->this_hdr.sh_link = t->symtab_section;
3270 }
3271 }
3272
3273 for (secn = 1; secn < section_number; ++secn)
3274 if (i_shdrp[secn] == NULL)
3275 i_shdrp[secn] = i_shdrp[0];
3276 else
3277 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3278 i_shdrp[secn]->sh_name);
3279 return TRUE;
3280 }
3281
3282 /* Map symbol from it's internal number to the external number, moving
3283 all local symbols to be at the head of the list. */
3284
3285 static int
3286 sym_is_global (bfd *abfd, asymbol *sym)
3287 {
3288 /* If the backend has a special mapping, use it. */
3289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3290 if (bed->elf_backend_sym_is_global)
3291 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3292
3293 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3294 || bfd_is_und_section (bfd_get_section (sym))
3295 || bfd_is_com_section (bfd_get_section (sym)));
3296 }
3297
3298 static bfd_boolean
3299 elf_map_symbols (bfd *abfd)
3300 {
3301 unsigned int symcount = bfd_get_symcount (abfd);
3302 asymbol **syms = bfd_get_outsymbols (abfd);
3303 asymbol **sect_syms;
3304 unsigned int num_locals = 0;
3305 unsigned int num_globals = 0;
3306 unsigned int num_locals2 = 0;
3307 unsigned int num_globals2 = 0;
3308 int max_index = 0;
3309 unsigned int idx;
3310 asection *asect;
3311 asymbol **new_syms;
3312
3313 #ifdef DEBUG
3314 fprintf (stderr, "elf_map_symbols\n");
3315 fflush (stderr);
3316 #endif
3317
3318 for (asect = abfd->sections; asect; asect = asect->next)
3319 {
3320 if (max_index < asect->index)
3321 max_index = asect->index;
3322 }
3323
3324 max_index++;
3325 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3326 if (sect_syms == NULL)
3327 return FALSE;
3328 elf_section_syms (abfd) = sect_syms;
3329 elf_num_section_syms (abfd) = max_index;
3330
3331 /* Init sect_syms entries for any section symbols we have already
3332 decided to output. */
3333 for (idx = 0; idx < symcount; idx++)
3334 {
3335 asymbol *sym = syms[idx];
3336
3337 if ((sym->flags & BSF_SECTION_SYM) != 0
3338 && sym->value == 0)
3339 {
3340 asection *sec;
3341
3342 sec = sym->section;
3343
3344 if (sec->owner != NULL)
3345 {
3346 if (sec->owner != abfd)
3347 {
3348 if (sec->output_offset != 0)
3349 continue;
3350
3351 sec = sec->output_section;
3352
3353 /* Empty sections in the input files may have had a
3354 section symbol created for them. (See the comment
3355 near the end of _bfd_generic_link_output_symbols in
3356 linker.c). If the linker script discards such
3357 sections then we will reach this point. Since we know
3358 that we cannot avoid this case, we detect it and skip
3359 the abort and the assignment to the sect_syms array.
3360 To reproduce this particular case try running the
3361 linker testsuite test ld-scripts/weak.exp for an ELF
3362 port that uses the generic linker. */
3363 if (sec->owner == NULL)
3364 continue;
3365
3366 BFD_ASSERT (sec->owner == abfd);
3367 }
3368 sect_syms[sec->index] = syms[idx];
3369 }
3370 }
3371 }
3372
3373 /* Classify all of the symbols. */
3374 for (idx = 0; idx < symcount; idx++)
3375 {
3376 if (!sym_is_global (abfd, syms[idx]))
3377 num_locals++;
3378 else
3379 num_globals++;
3380 }
3381
3382 /* We will be adding a section symbol for each BFD section. Most normal
3383 sections will already have a section symbol in outsymbols, but
3384 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3385 at least in that case. */
3386 for (asect = abfd->sections; asect; asect = asect->next)
3387 {
3388 if (sect_syms[asect->index] == NULL)
3389 {
3390 if (!sym_is_global (abfd, asect->symbol))
3391 num_locals++;
3392 else
3393 num_globals++;
3394 }
3395 }
3396
3397 /* Now sort the symbols so the local symbols are first. */
3398 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3399
3400 if (new_syms == NULL)
3401 return FALSE;
3402
3403 for (idx = 0; idx < symcount; idx++)
3404 {
3405 asymbol *sym = syms[idx];
3406 unsigned int i;
3407
3408 if (!sym_is_global (abfd, sym))
3409 i = num_locals2++;
3410 else
3411 i = num_locals + num_globals2++;
3412 new_syms[i] = sym;
3413 sym->udata.i = i + 1;
3414 }
3415 for (asect = abfd->sections; asect; asect = asect->next)
3416 {
3417 if (sect_syms[asect->index] == NULL)
3418 {
3419 asymbol *sym = asect->symbol;
3420 unsigned int i;
3421
3422 sect_syms[asect->index] = sym;
3423 if (!sym_is_global (abfd, sym))
3424 i = num_locals2++;
3425 else
3426 i = num_locals + num_globals2++;
3427 new_syms[i] = sym;
3428 sym->udata.i = i + 1;
3429 }
3430 }
3431
3432 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3433
3434 elf_num_locals (abfd) = num_locals;
3435 elf_num_globals (abfd) = num_globals;
3436 return TRUE;
3437 }
3438
3439 /* Align to the maximum file alignment that could be required for any
3440 ELF data structure. */
3441
3442 static inline file_ptr
3443 align_file_position (file_ptr off, int align)
3444 {
3445 return (off + align - 1) & ~(align - 1);
3446 }
3447
3448 /* Assign a file position to a section, optionally aligning to the
3449 required section alignment. */
3450
3451 file_ptr
3452 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3453 file_ptr offset,
3454 bfd_boolean align)
3455 {
3456 if (align)
3457 {
3458 unsigned int al;
3459
3460 al = i_shdrp->sh_addralign;
3461 if (al > 1)
3462 offset = BFD_ALIGN (offset, al);
3463 }
3464 i_shdrp->sh_offset = offset;
3465 if (i_shdrp->bfd_section != NULL)
3466 i_shdrp->bfd_section->filepos = offset;
3467 if (i_shdrp->sh_type != SHT_NOBITS)
3468 offset += i_shdrp->sh_size;
3469 return offset;
3470 }
3471
3472 /* Compute the file positions we are going to put the sections at, and
3473 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3474 is not NULL, this is being called by the ELF backend linker. */
3475
3476 bfd_boolean
3477 _bfd_elf_compute_section_file_positions (bfd *abfd,
3478 struct bfd_link_info *link_info)
3479 {
3480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3481 bfd_boolean failed;
3482 struct bfd_strtab_hash *strtab = NULL;
3483 Elf_Internal_Shdr *shstrtab_hdr;
3484
3485 if (abfd->output_has_begun)
3486 return TRUE;
3487
3488 /* Do any elf backend specific processing first. */
3489 if (bed->elf_backend_begin_write_processing)
3490 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3491
3492 if (! prep_headers (abfd))
3493 return FALSE;
3494
3495 /* Post process the headers if necessary. */
3496 if (bed->elf_backend_post_process_headers)
3497 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3498
3499 failed = FALSE;
3500 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3501 if (failed)
3502 return FALSE;
3503
3504 if (!assign_section_numbers (abfd, link_info))
3505 return FALSE;
3506
3507 /* The backend linker builds symbol table information itself. */
3508 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3509 {
3510 /* Non-zero if doing a relocatable link. */
3511 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3512
3513 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3514 return FALSE;
3515 }
3516
3517 if (link_info == NULL)
3518 {
3519 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3520 if (failed)
3521 return FALSE;
3522 }
3523
3524 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3525 /* sh_name was set in prep_headers. */
3526 shstrtab_hdr->sh_type = SHT_STRTAB;
3527 shstrtab_hdr->sh_flags = 0;
3528 shstrtab_hdr->sh_addr = 0;
3529 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3530 shstrtab_hdr->sh_entsize = 0;
3531 shstrtab_hdr->sh_link = 0;
3532 shstrtab_hdr->sh_info = 0;
3533 /* sh_offset is set in assign_file_positions_except_relocs. */
3534 shstrtab_hdr->sh_addralign = 1;
3535
3536 if (!assign_file_positions_except_relocs (abfd, link_info))
3537 return FALSE;
3538
3539 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3540 {
3541 file_ptr off;
3542 Elf_Internal_Shdr *hdr;
3543
3544 off = elf_tdata (abfd)->next_file_pos;
3545
3546 hdr = &elf_tdata (abfd)->symtab_hdr;
3547 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3548
3549 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3550 if (hdr->sh_size != 0)
3551 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3552
3553 hdr = &elf_tdata (abfd)->strtab_hdr;
3554 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3555
3556 elf_tdata (abfd)->next_file_pos = off;
3557
3558 /* Now that we know where the .strtab section goes, write it
3559 out. */
3560 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3561 || ! _bfd_stringtab_emit (abfd, strtab))
3562 return FALSE;
3563 _bfd_stringtab_free (strtab);
3564 }
3565
3566 abfd->output_has_begun = TRUE;
3567
3568 return TRUE;
3569 }
3570
3571 /* Create a mapping from a set of sections to a program segment. */
3572
3573 static struct elf_segment_map *
3574 make_mapping (bfd *abfd,
3575 asection **sections,
3576 unsigned int from,
3577 unsigned int to,
3578 bfd_boolean phdr)
3579 {
3580 struct elf_segment_map *m;
3581 unsigned int i;
3582 asection **hdrpp;
3583 bfd_size_type amt;
3584
3585 amt = sizeof (struct elf_segment_map);
3586 amt += (to - from - 1) * sizeof (asection *);
3587 m = bfd_zalloc (abfd, amt);
3588 if (m == NULL)
3589 return NULL;
3590 m->next = NULL;
3591 m->p_type = PT_LOAD;
3592 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3593 m->sections[i - from] = *hdrpp;
3594 m->count = to - from;
3595
3596 if (from == 0 && phdr)
3597 {
3598 /* Include the headers in the first PT_LOAD segment. */
3599 m->includes_filehdr = 1;
3600 m->includes_phdrs = 1;
3601 }
3602
3603 return m;
3604 }
3605
3606 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3607 on failure. */
3608
3609 struct elf_segment_map *
3610 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3611 {
3612 struct elf_segment_map *m;
3613
3614 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3615 if (m == NULL)
3616 return NULL;
3617 m->next = NULL;
3618 m->p_type = PT_DYNAMIC;
3619 m->count = 1;
3620 m->sections[0] = dynsec;
3621
3622 return m;
3623 }
3624
3625 /* Set up a mapping from BFD sections to program segments. */
3626
3627 static bfd_boolean
3628 map_sections_to_segments (bfd *abfd)
3629 {
3630 asection **sections = NULL;
3631 asection *s;
3632 unsigned int i;
3633 unsigned int count;
3634 struct elf_segment_map *mfirst;
3635 struct elf_segment_map **pm;
3636 struct elf_segment_map *m;
3637 asection *last_hdr;
3638 bfd_vma last_size;
3639 unsigned int phdr_index;
3640 bfd_vma maxpagesize;
3641 asection **hdrpp;
3642 bfd_boolean phdr_in_segment = TRUE;
3643 bfd_boolean writable;
3644 int tls_count = 0;
3645 asection *first_tls = NULL;
3646 asection *dynsec, *eh_frame_hdr;
3647 bfd_size_type amt;
3648
3649 if (elf_tdata (abfd)->segment_map != NULL)
3650 return TRUE;
3651
3652 if (bfd_count_sections (abfd) == 0)
3653 return TRUE;
3654
3655 /* Select the allocated sections, and sort them. */
3656
3657 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3658 if (sections == NULL)
3659 goto error_return;
3660
3661 i = 0;
3662 for (s = abfd->sections; s != NULL; s = s->next)
3663 {
3664 if ((s->flags & SEC_ALLOC) != 0)
3665 {
3666 sections[i] = s;
3667 ++i;
3668 }
3669 }
3670 BFD_ASSERT (i <= bfd_count_sections (abfd));
3671 count = i;
3672
3673 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3674
3675 /* Build the mapping. */
3676
3677 mfirst = NULL;
3678 pm = &mfirst;
3679
3680 /* If we have a .interp section, then create a PT_PHDR segment for
3681 the program headers and a PT_INTERP segment for the .interp
3682 section. */
3683 s = bfd_get_section_by_name (abfd, ".interp");
3684 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3685 {
3686 amt = sizeof (struct elf_segment_map);
3687 m = bfd_zalloc (abfd, amt);
3688 if (m == NULL)
3689 goto error_return;
3690 m->next = NULL;
3691 m->p_type = PT_PHDR;
3692 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3693 m->p_flags = PF_R | PF_X;
3694 m->p_flags_valid = 1;
3695 m->includes_phdrs = 1;
3696
3697 *pm = m;
3698 pm = &m->next;
3699
3700 amt = sizeof (struct elf_segment_map);
3701 m = bfd_zalloc (abfd, amt);
3702 if (m == NULL)
3703 goto error_return;
3704 m->next = NULL;
3705 m->p_type = PT_INTERP;
3706 m->count = 1;
3707 m->sections[0] = s;
3708
3709 *pm = m;
3710 pm = &m->next;
3711 }
3712
3713 /* Look through the sections. We put sections in the same program
3714 segment when the start of the second section can be placed within
3715 a few bytes of the end of the first section. */
3716 last_hdr = NULL;
3717 last_size = 0;
3718 phdr_index = 0;
3719 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3720 writable = FALSE;
3721 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3722 if (dynsec != NULL
3723 && (dynsec->flags & SEC_LOAD) == 0)
3724 dynsec = NULL;
3725
3726 /* Deal with -Ttext or something similar such that the first section
3727 is not adjacent to the program headers. This is an
3728 approximation, since at this point we don't know exactly how many
3729 program headers we will need. */
3730 if (count > 0)
3731 {
3732 bfd_size_type phdr_size;
3733
3734 phdr_size = elf_tdata (abfd)->program_header_size;
3735 if (phdr_size == 0)
3736 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3737 if ((abfd->flags & D_PAGED) == 0
3738 || sections[0]->lma < phdr_size
3739 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3740 phdr_in_segment = FALSE;
3741 }
3742
3743 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3744 {
3745 asection *hdr;
3746 bfd_boolean new_segment;
3747
3748 hdr = *hdrpp;
3749
3750 /* See if this section and the last one will fit in the same
3751 segment. */
3752
3753 if (last_hdr == NULL)
3754 {
3755 /* If we don't have a segment yet, then we don't need a new
3756 one (we build the last one after this loop). */
3757 new_segment = FALSE;
3758 }
3759 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3760 {
3761 /* If this section has a different relation between the
3762 virtual address and the load address, then we need a new
3763 segment. */
3764 new_segment = TRUE;
3765 }
3766 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3767 < BFD_ALIGN (hdr->lma, maxpagesize))
3768 {
3769 /* If putting this section in this segment would force us to
3770 skip a page in the segment, then we need a new segment. */
3771 new_segment = TRUE;
3772 }
3773 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3774 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3775 {
3776 /* We don't want to put a loadable section after a
3777 nonloadable section in the same segment.
3778 Consider .tbss sections as loadable for this purpose. */
3779 new_segment = TRUE;
3780 }
3781 else if ((abfd->flags & D_PAGED) == 0)
3782 {
3783 /* If the file is not demand paged, which means that we
3784 don't require the sections to be correctly aligned in the
3785 file, then there is no other reason for a new segment. */
3786 new_segment = FALSE;
3787 }
3788 else if (! writable
3789 && (hdr->flags & SEC_READONLY) == 0
3790 && (((last_hdr->lma + last_size - 1)
3791 & ~(maxpagesize - 1))
3792 != (hdr->lma & ~(maxpagesize - 1))))
3793 {
3794 /* We don't want to put a writable section in a read only
3795 segment, unless they are on the same page in memory
3796 anyhow. We already know that the last section does not
3797 bring us past the current section on the page, so the
3798 only case in which the new section is not on the same
3799 page as the previous section is when the previous section
3800 ends precisely on a page boundary. */
3801 new_segment = TRUE;
3802 }
3803 else
3804 {
3805 /* Otherwise, we can use the same segment. */
3806 new_segment = FALSE;
3807 }
3808
3809 if (! new_segment)
3810 {
3811 if ((hdr->flags & SEC_READONLY) == 0)
3812 writable = TRUE;
3813 last_hdr = hdr;
3814 /* .tbss sections effectively have zero size. */
3815 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3816 last_size = hdr->size;
3817 else
3818 last_size = 0;
3819 continue;
3820 }
3821
3822 /* We need a new program segment. We must create a new program
3823 header holding all the sections from phdr_index until hdr. */
3824
3825 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3826 if (m == NULL)
3827 goto error_return;
3828
3829 *pm = m;
3830 pm = &m->next;
3831
3832 if ((hdr->flags & SEC_READONLY) == 0)
3833 writable = TRUE;
3834 else
3835 writable = FALSE;
3836
3837 last_hdr = hdr;
3838 /* .tbss sections effectively have zero size. */
3839 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3840 last_size = hdr->size;
3841 else
3842 last_size = 0;
3843 phdr_index = i;
3844 phdr_in_segment = FALSE;
3845 }
3846
3847 /* Create a final PT_LOAD program segment. */
3848 if (last_hdr != NULL)
3849 {
3850 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3851 if (m == NULL)
3852 goto error_return;
3853
3854 *pm = m;
3855 pm = &m->next;
3856 }
3857
3858 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3859 if (dynsec != NULL)
3860 {
3861 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3862 if (m == NULL)
3863 goto error_return;
3864 *pm = m;
3865 pm = &m->next;
3866 }
3867
3868 /* For each loadable .note section, add a PT_NOTE segment. We don't
3869 use bfd_get_section_by_name, because if we link together
3870 nonloadable .note sections and loadable .note sections, we will
3871 generate two .note sections in the output file. FIXME: Using
3872 names for section types is bogus anyhow. */
3873 for (s = abfd->sections; s != NULL; s = s->next)
3874 {
3875 if ((s->flags & SEC_LOAD) != 0
3876 && strncmp (s->name, ".note", 5) == 0)
3877 {
3878 amt = sizeof (struct elf_segment_map);
3879 m = bfd_zalloc (abfd, amt);
3880 if (m == NULL)
3881 goto error_return;
3882 m->next = NULL;
3883 m->p_type = PT_NOTE;
3884 m->count = 1;
3885 m->sections[0] = s;
3886
3887 *pm = m;
3888 pm = &m->next;
3889 }
3890 if (s->flags & SEC_THREAD_LOCAL)
3891 {
3892 if (! tls_count)
3893 first_tls = s;
3894 tls_count++;
3895 }
3896 }
3897
3898 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3899 if (tls_count > 0)
3900 {
3901 int i;
3902
3903 amt = sizeof (struct elf_segment_map);
3904 amt += (tls_count - 1) * sizeof (asection *);
3905 m = bfd_zalloc (abfd, amt);
3906 if (m == NULL)
3907 goto error_return;
3908 m->next = NULL;
3909 m->p_type = PT_TLS;
3910 m->count = tls_count;
3911 /* Mandated PF_R. */
3912 m->p_flags = PF_R;
3913 m->p_flags_valid = 1;
3914 for (i = 0; i < tls_count; ++i)
3915 {
3916 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3917 m->sections[i] = first_tls;
3918 first_tls = first_tls->next;
3919 }
3920
3921 *pm = m;
3922 pm = &m->next;
3923 }
3924
3925 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3926 segment. */
3927 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3928 if (eh_frame_hdr != NULL
3929 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3930 {
3931 amt = sizeof (struct elf_segment_map);
3932 m = bfd_zalloc (abfd, amt);
3933 if (m == NULL)
3934 goto error_return;
3935 m->next = NULL;
3936 m->p_type = PT_GNU_EH_FRAME;
3937 m->count = 1;
3938 m->sections[0] = eh_frame_hdr->output_section;
3939
3940 *pm = m;
3941 pm = &m->next;
3942 }
3943
3944 if (elf_tdata (abfd)->stack_flags)
3945 {
3946 amt = sizeof (struct elf_segment_map);
3947 m = bfd_zalloc (abfd, amt);
3948 if (m == NULL)
3949 goto error_return;
3950 m->next = NULL;
3951 m->p_type = PT_GNU_STACK;
3952 m->p_flags = elf_tdata (abfd)->stack_flags;
3953 m->p_flags_valid = 1;
3954
3955 *pm = m;
3956 pm = &m->next;
3957 }
3958
3959 if (elf_tdata (abfd)->relro)
3960 {
3961 amt = sizeof (struct elf_segment_map);
3962 m = bfd_zalloc (abfd, amt);
3963 if (m == NULL)
3964 goto error_return;
3965 m->next = NULL;
3966 m->p_type = PT_GNU_RELRO;
3967 m->p_flags = PF_R;
3968 m->p_flags_valid = 1;
3969
3970 *pm = m;
3971 pm = &m->next;
3972 }
3973
3974 free (sections);
3975 sections = NULL;
3976
3977 elf_tdata (abfd)->segment_map = mfirst;
3978 return TRUE;
3979
3980 error_return:
3981 if (sections != NULL)
3982 free (sections);
3983 return FALSE;
3984 }
3985
3986 /* Sort sections by address. */
3987
3988 static int
3989 elf_sort_sections (const void *arg1, const void *arg2)
3990 {
3991 const asection *sec1 = *(const asection **) arg1;
3992 const asection *sec2 = *(const asection **) arg2;
3993 bfd_size_type size1, size2;
3994
3995 /* Sort by LMA first, since this is the address used to
3996 place the section into a segment. */
3997 if (sec1->lma < sec2->lma)
3998 return -1;
3999 else if (sec1->lma > sec2->lma)
4000 return 1;
4001
4002 /* Then sort by VMA. Normally the LMA and the VMA will be
4003 the same, and this will do nothing. */
4004 if (sec1->vma < sec2->vma)
4005 return -1;
4006 else if (sec1->vma > sec2->vma)
4007 return 1;
4008
4009 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4010
4011 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4012
4013 if (TOEND (sec1))
4014 {
4015 if (TOEND (sec2))
4016 {
4017 /* If the indicies are the same, do not return 0
4018 here, but continue to try the next comparison. */
4019 if (sec1->target_index - sec2->target_index != 0)
4020 return sec1->target_index - sec2->target_index;
4021 }
4022 else
4023 return 1;
4024 }
4025 else if (TOEND (sec2))
4026 return -1;
4027
4028 #undef TOEND
4029
4030 /* Sort by size, to put zero sized sections
4031 before others at the same address. */
4032
4033 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4034 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4035
4036 if (size1 < size2)
4037 return -1;
4038 if (size1 > size2)
4039 return 1;
4040
4041 return sec1->target_index - sec2->target_index;
4042 }
4043
4044 /* Ian Lance Taylor writes:
4045
4046 We shouldn't be using % with a negative signed number. That's just
4047 not good. We have to make sure either that the number is not
4048 negative, or that the number has an unsigned type. When the types
4049 are all the same size they wind up as unsigned. When file_ptr is a
4050 larger signed type, the arithmetic winds up as signed long long,
4051 which is wrong.
4052
4053 What we're trying to say here is something like ``increase OFF by
4054 the least amount that will cause it to be equal to the VMA modulo
4055 the page size.'' */
4056 /* In other words, something like:
4057
4058 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4059 off_offset = off % bed->maxpagesize;
4060 if (vma_offset < off_offset)
4061 adjustment = vma_offset + bed->maxpagesize - off_offset;
4062 else
4063 adjustment = vma_offset - off_offset;
4064
4065 which can can be collapsed into the expression below. */
4066
4067 static file_ptr
4068 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4069 {
4070 return ((vma - off) % maxpagesize);
4071 }
4072
4073 static void
4074 print_segment_map (bfd *abfd)
4075 {
4076 struct elf_segment_map *m;
4077 unsigned int i, j;
4078
4079 fprintf (stderr, _(" Section to Segment mapping:\n"));
4080 fprintf (stderr, _(" Segment Sections...\n"));
4081
4082 for (i= 0, m = elf_tdata (abfd)->segment_map;
4083 m != NULL;
4084 i++, m = m->next)
4085 {
4086 const char *pt = get_segment_type (m->p_type);
4087 char buf[32];
4088
4089 if (pt == NULL)
4090 {
4091 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4092 sprintf (buf, "LOPROC+%7.7x",
4093 (unsigned int) (m->p_type - PT_LOPROC));
4094 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4095 sprintf (buf, "LOOS+%7.7x",
4096 (unsigned int) (m->p_type - PT_LOOS));
4097 else
4098 snprintf (buf, sizeof (buf), "%8.8x",
4099 (unsigned int) m->p_type);
4100 pt = buf;
4101 }
4102 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4103 for (j = 0; j < m->count; j++)
4104 fprintf (stderr, "%s ", m->sections [j]->name);
4105 putc ('\n',stderr);
4106 }
4107 }
4108
4109 /* Assign file positions to the sections based on the mapping from
4110 sections to segments. This function also sets up some fields in
4111 the file header, and writes out the program headers. */
4112
4113 static bfd_boolean
4114 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4115 {
4116 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4117 unsigned int count;
4118 struct elf_segment_map *m;
4119 unsigned int alloc;
4120 Elf_Internal_Phdr *phdrs;
4121 file_ptr off, voff;
4122 bfd_vma filehdr_vaddr, filehdr_paddr;
4123 bfd_vma phdrs_vaddr, phdrs_paddr;
4124 Elf_Internal_Phdr *p;
4125 Elf_Internal_Shdr **i_shdrpp;
4126 Elf_Internal_Shdr **hdrpp;
4127 unsigned int i;
4128 unsigned int num_sec;
4129
4130 if (elf_tdata (abfd)->segment_map == NULL)
4131 {
4132 if (! map_sections_to_segments (abfd))
4133 return FALSE;
4134 }
4135 else
4136 {
4137 /* The placement algorithm assumes that non allocated sections are
4138 not in PT_LOAD segments. We ensure this here by removing such
4139 sections from the segment map. We also remove excluded
4140 sections. */
4141 for (m = elf_tdata (abfd)->segment_map;
4142 m != NULL;
4143 m = m->next)
4144 {
4145 unsigned int new_count;
4146
4147 new_count = 0;
4148 for (i = 0; i < m->count; i ++)
4149 {
4150 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4151 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4152 || m->p_type != PT_LOAD))
4153 {
4154 if (i != new_count)
4155 m->sections[new_count] = m->sections[i];
4156
4157 new_count ++;
4158 }
4159 }
4160
4161 if (new_count != m->count)
4162 m->count = new_count;
4163 }
4164 }
4165
4166 if (bed->elf_backend_modify_segment_map)
4167 {
4168 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4169 return FALSE;
4170 }
4171
4172 count = 0;
4173 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4174 ++count;
4175
4176 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4177 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4178 elf_elfheader (abfd)->e_phnum = count;
4179
4180 if (count == 0)
4181 {
4182 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4183 return TRUE;
4184 }
4185
4186 /* If we already counted the number of program segments, make sure
4187 that we allocated enough space. This happens when SIZEOF_HEADERS
4188 is used in a linker script. */
4189 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4190 if (alloc != 0 && count > alloc)
4191 {
4192 ((*_bfd_error_handler)
4193 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4194 abfd, alloc, count));
4195 print_segment_map (abfd);
4196 bfd_set_error (bfd_error_bad_value);
4197 return FALSE;
4198 }
4199
4200 if (alloc == 0)
4201 alloc = count;
4202
4203 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4204 if (phdrs == NULL)
4205 return FALSE;
4206
4207 off = bed->s->sizeof_ehdr;
4208 off += alloc * bed->s->sizeof_phdr;
4209
4210 filehdr_vaddr = 0;
4211 filehdr_paddr = 0;
4212 phdrs_vaddr = 0;
4213 phdrs_paddr = 0;
4214
4215 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4216 m != NULL;
4217 m = m->next, p++)
4218 {
4219 asection **secpp;
4220
4221 /* If elf_segment_map is not from map_sections_to_segments, the
4222 sections may not be correctly ordered. NOTE: sorting should
4223 not be done to the PT_NOTE section of a corefile, which may
4224 contain several pseudo-sections artificially created by bfd.
4225 Sorting these pseudo-sections breaks things badly. */
4226 if (m->count > 1
4227 && !(elf_elfheader (abfd)->e_type == ET_CORE
4228 && m->p_type == PT_NOTE))
4229 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4230 elf_sort_sections);
4231
4232 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4233 number of sections with contents contributing to both p_filesz
4234 and p_memsz, followed by a number of sections with no contents
4235 that just contribute to p_memsz. In this loop, OFF tracks next
4236 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4237 an adjustment we use for segments that have no file contents
4238 but need zero filled memory allocation. */
4239 voff = 0;
4240 p->p_type = m->p_type;
4241 p->p_flags = m->p_flags;
4242
4243 if (p->p_type == PT_LOAD
4244 && m->count > 0)
4245 {
4246 bfd_size_type align;
4247 bfd_vma adjust;
4248 unsigned int align_power = 0;
4249
4250 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4251 {
4252 unsigned int secalign;
4253
4254 secalign = bfd_get_section_alignment (abfd, *secpp);
4255 if (secalign > align_power)
4256 align_power = secalign;
4257 }
4258 align = (bfd_size_type) 1 << align_power;
4259
4260 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4261 align = bed->maxpagesize;
4262
4263 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4264 off += adjust;
4265 if (adjust != 0
4266 && !m->includes_filehdr
4267 && !m->includes_phdrs
4268 && (ufile_ptr) off >= align)
4269 {
4270 /* If the first section isn't loadable, the same holds for
4271 any other sections. Since the segment won't need file
4272 space, we can make p_offset overlap some prior segment.
4273 However, .tbss is special. If a segment starts with
4274 .tbss, we need to look at the next section to decide
4275 whether the segment has any loadable sections. */
4276 i = 0;
4277 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4278 {
4279 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4280 || ++i >= m->count)
4281 {
4282 off -= adjust;
4283 voff = adjust - align;
4284 break;
4285 }
4286 }
4287 }
4288 }
4289 /* Make sure the .dynamic section is the first section in the
4290 PT_DYNAMIC segment. */
4291 else if (p->p_type == PT_DYNAMIC
4292 && m->count > 1
4293 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4294 {
4295 _bfd_error_handler
4296 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4297 abfd);
4298 bfd_set_error (bfd_error_bad_value);
4299 return FALSE;
4300 }
4301
4302 if (m->count == 0)
4303 p->p_vaddr = 0;
4304 else
4305 p->p_vaddr = m->sections[0]->vma;
4306
4307 if (m->p_paddr_valid)
4308 p->p_paddr = m->p_paddr;
4309 else if (m->count == 0)
4310 p->p_paddr = 0;
4311 else
4312 p->p_paddr = m->sections[0]->lma;
4313
4314 if (p->p_type == PT_LOAD
4315 && (abfd->flags & D_PAGED) != 0)
4316 p->p_align = bed->maxpagesize;
4317 else if (m->count == 0)
4318 p->p_align = 1 << bed->s->log_file_align;
4319 else
4320 p->p_align = 0;
4321
4322 p->p_offset = 0;
4323 p->p_filesz = 0;
4324 p->p_memsz = 0;
4325
4326 if (m->includes_filehdr)
4327 {
4328 if (! m->p_flags_valid)
4329 p->p_flags |= PF_R;
4330 p->p_offset = 0;
4331 p->p_filesz = bed->s->sizeof_ehdr;
4332 p->p_memsz = bed->s->sizeof_ehdr;
4333 if (m->count > 0)
4334 {
4335 BFD_ASSERT (p->p_type == PT_LOAD);
4336
4337 if (p->p_vaddr < (bfd_vma) off)
4338 {
4339 (*_bfd_error_handler)
4340 (_("%B: Not enough room for program headers, try linking with -N"),
4341 abfd);
4342 bfd_set_error (bfd_error_bad_value);
4343 return FALSE;
4344 }
4345
4346 p->p_vaddr -= off;
4347 if (! m->p_paddr_valid)
4348 p->p_paddr -= off;
4349 }
4350 if (p->p_type == PT_LOAD)
4351 {
4352 filehdr_vaddr = p->p_vaddr;
4353 filehdr_paddr = p->p_paddr;
4354 }
4355 }
4356
4357 if (m->includes_phdrs)
4358 {
4359 if (! m->p_flags_valid)
4360 p->p_flags |= PF_R;
4361
4362 if (m->includes_filehdr)
4363 {
4364 if (p->p_type == PT_LOAD)
4365 {
4366 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4367 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4368 }
4369 }
4370 else
4371 {
4372 p->p_offset = bed->s->sizeof_ehdr;
4373
4374 if (m->count > 0)
4375 {
4376 BFD_ASSERT (p->p_type == PT_LOAD);
4377 p->p_vaddr -= off - p->p_offset;
4378 if (! m->p_paddr_valid)
4379 p->p_paddr -= off - p->p_offset;
4380 }
4381
4382 if (p->p_type == PT_LOAD)
4383 {
4384 phdrs_vaddr = p->p_vaddr;
4385 phdrs_paddr = p->p_paddr;
4386 }
4387 else
4388 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4389 }
4390
4391 p->p_filesz += alloc * bed->s->sizeof_phdr;
4392 p->p_memsz += alloc * bed->s->sizeof_phdr;
4393 }
4394
4395 if (p->p_type == PT_LOAD
4396 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4397 {
4398 if (! m->includes_filehdr && ! m->includes_phdrs)
4399 p->p_offset = off + voff;
4400 else
4401 {
4402 file_ptr adjust;
4403
4404 adjust = off - (p->p_offset + p->p_filesz);
4405 p->p_filesz += adjust;
4406 p->p_memsz += adjust;
4407 }
4408 }
4409
4410 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4411 {
4412 asection *sec;
4413 flagword flags;
4414 bfd_size_type align;
4415
4416 sec = *secpp;
4417 flags = sec->flags;
4418 align = 1 << bfd_get_section_alignment (abfd, sec);
4419
4420 if (p->p_type == PT_LOAD
4421 || p->p_type == PT_TLS)
4422 {
4423 bfd_signed_vma adjust;
4424
4425 if ((flags & SEC_LOAD) != 0)
4426 {
4427 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4428 if (adjust < 0)
4429 {
4430 (*_bfd_error_handler)
4431 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4432 abfd, sec, (unsigned long) sec->lma);
4433 adjust = 0;
4434 }
4435 off += adjust;
4436 p->p_filesz += adjust;
4437 p->p_memsz += adjust;
4438 }
4439 /* .tbss is special. It doesn't contribute to p_memsz of
4440 normal segments. */
4441 else if ((flags & SEC_THREAD_LOCAL) == 0
4442 || p->p_type == PT_TLS)
4443 {
4444 /* The section VMA must equal the file position
4445 modulo the page size. */
4446 bfd_size_type page = align;
4447 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4448 page = bed->maxpagesize;
4449 adjust = vma_page_aligned_bias (sec->vma,
4450 p->p_vaddr + p->p_memsz,
4451 page);
4452 p->p_memsz += adjust;
4453 }
4454 }
4455
4456 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4457 {
4458 /* The section at i == 0 is the one that actually contains
4459 everything. */
4460 if (i == 0)
4461 {
4462 sec->filepos = off;
4463 off += sec->size;
4464 p->p_filesz = sec->size;
4465 p->p_memsz = 0;
4466 p->p_align = 1;
4467 }
4468 else
4469 {
4470 /* The rest are fake sections that shouldn't be written. */
4471 sec->filepos = 0;
4472 sec->size = 0;
4473 sec->flags = 0;
4474 continue;
4475 }
4476 }
4477 else
4478 {
4479 if (p->p_type == PT_LOAD)
4480 {
4481 sec->filepos = off;
4482 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4483 1997, and the exact reason for it isn't clear. One
4484 plausible explanation is that it is to work around
4485 a problem we have with linker scripts using data
4486 statements in NOLOAD sections. I don't think it
4487 makes a great deal of sense to have such a section
4488 assigned to a PT_LOAD segment, but apparently
4489 people do this. The data statement results in a
4490 bfd_data_link_order being built, and these need
4491 section contents to write into. Eventually, we get
4492 to _bfd_elf_write_object_contents which writes any
4493 section with contents to the output. Make room
4494 here for the write, so that following segments are
4495 not trashed. */
4496 if ((flags & SEC_LOAD) != 0
4497 || (flags & SEC_HAS_CONTENTS) != 0)
4498 off += sec->size;
4499 }
4500
4501 if ((flags & SEC_LOAD) != 0)
4502 {
4503 p->p_filesz += sec->size;
4504 p->p_memsz += sec->size;
4505 }
4506 /* PR ld/594: Sections in note segments which are not loaded
4507 contribute to the file size but not the in-memory size. */
4508 else if (p->p_type == PT_NOTE
4509 && (flags & SEC_HAS_CONTENTS) != 0)
4510 p->p_filesz += sec->size;
4511
4512 /* .tbss is special. It doesn't contribute to p_memsz of
4513 normal segments. */
4514 else if ((flags & SEC_THREAD_LOCAL) == 0
4515 || p->p_type == PT_TLS)
4516 p->p_memsz += sec->size;
4517
4518 if (p->p_type == PT_TLS
4519 && sec->size == 0
4520 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4521 {
4522 struct bfd_link_order *o = sec->map_tail.link_order;
4523 if (o != NULL)
4524 p->p_memsz += o->offset + o->size;
4525 }
4526
4527 if (align > p->p_align
4528 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4529 p->p_align = align;
4530 }
4531
4532 if (! m->p_flags_valid)
4533 {
4534 p->p_flags |= PF_R;
4535 if ((flags & SEC_CODE) != 0)
4536 p->p_flags |= PF_X;
4537 if ((flags & SEC_READONLY) == 0)
4538 p->p_flags |= PF_W;
4539 }
4540 }
4541 }
4542
4543 /* Assign file positions for the other sections. */
4544 i_shdrpp = elf_elfsections (abfd);
4545 num_sec = elf_numsections (abfd);
4546 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4547 {
4548 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4549 Elf_Internal_Shdr *hdr;
4550
4551 hdr = *hdrpp;
4552 if (hdr->bfd_section != NULL
4553 && hdr->bfd_section->filepos != 0)
4554 hdr->sh_offset = hdr->bfd_section->filepos;
4555 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4556 {
4557 ((*_bfd_error_handler)
4558 (_("%B: warning: allocated section `%s' not in segment"),
4559 abfd,
4560 (hdr->bfd_section == NULL
4561 ? "*unknown*"
4562 : hdr->bfd_section->name)));
4563 if ((abfd->flags & D_PAGED) != 0)
4564 off += vma_page_aligned_bias (hdr->sh_addr, off,
4565 bed->maxpagesize);
4566 else
4567 off += vma_page_aligned_bias (hdr->sh_addr, off,
4568 hdr->sh_addralign);
4569 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4570 FALSE);
4571 }
4572 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4573 && hdr->bfd_section == NULL)
4574 || hdr == i_shdrpp[tdata->symtab_section]
4575 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4576 || hdr == i_shdrpp[tdata->strtab_section])
4577 hdr->sh_offset = -1;
4578 else
4579 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4580
4581 if (i == SHN_LORESERVE - 1)
4582 {
4583 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4584 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4585 }
4586 }
4587
4588 /* Now that we have set the section file positions, we can set up
4589 the file positions for the non PT_LOAD segments. */
4590 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4591 m != NULL;
4592 m = m->next, p++)
4593 {
4594 if (p->p_type != PT_LOAD && m->count > 0)
4595 {
4596 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4597 /* If the section has not yet been assigned a file position,
4598 do so now. The ARM BPABI requires that .dynamic section
4599 not be marked SEC_ALLOC because it is not part of any
4600 PT_LOAD segment, so it will not be processed above. */
4601 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4602 {
4603 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4604
4605 i = 1;
4606 while (i_shdrpp[i]->bfd_section != m->sections[0])
4607 ++i;
4608 off = (_bfd_elf_assign_file_position_for_section
4609 (i_shdrpp[i], off, TRUE));
4610 p->p_filesz = m->sections[0]->size;
4611 }
4612 p->p_offset = m->sections[0]->filepos;
4613 }
4614 if (m->count == 0)
4615 {
4616 if (m->includes_filehdr)
4617 {
4618 p->p_vaddr = filehdr_vaddr;
4619 if (! m->p_paddr_valid)
4620 p->p_paddr = filehdr_paddr;
4621 }
4622 else if (m->includes_phdrs)
4623 {
4624 p->p_vaddr = phdrs_vaddr;
4625 if (! m->p_paddr_valid)
4626 p->p_paddr = phdrs_paddr;
4627 }
4628 else if (p->p_type == PT_GNU_RELRO)
4629 {
4630 Elf_Internal_Phdr *lp;
4631
4632 for (lp = phdrs; lp < phdrs + count; ++lp)
4633 {
4634 if (lp->p_type == PT_LOAD
4635 && lp->p_vaddr <= link_info->relro_end
4636 && lp->p_vaddr >= link_info->relro_start
4637 && lp->p_vaddr + lp->p_filesz
4638 >= link_info->relro_end)
4639 break;
4640 }
4641
4642 if (lp < phdrs + count
4643 && link_info->relro_end > lp->p_vaddr)
4644 {
4645 p->p_vaddr = lp->p_vaddr;
4646 p->p_paddr = lp->p_paddr;
4647 p->p_offset = lp->p_offset;
4648 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4649 p->p_memsz = p->p_filesz;
4650 p->p_align = 1;
4651 p->p_flags = (lp->p_flags & ~PF_W);
4652 }
4653 else
4654 {
4655 memset (p, 0, sizeof *p);
4656 p->p_type = PT_NULL;
4657 }
4658 }
4659 }
4660 }
4661
4662 /* Clear out any program headers we allocated but did not use. */
4663 for (; count < alloc; count++, p++)
4664 {
4665 memset (p, 0, sizeof *p);
4666 p->p_type = PT_NULL;
4667 }
4668
4669 elf_tdata (abfd)->phdr = phdrs;
4670
4671 elf_tdata (abfd)->next_file_pos = off;
4672
4673 /* Write out the program headers. */
4674 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4675 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4676 return FALSE;
4677
4678 return TRUE;
4679 }
4680
4681 /* Get the size of the program header.
4682
4683 If this is called by the linker before any of the section VMA's are set, it
4684 can't calculate the correct value for a strange memory layout. This only
4685 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4686 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4687 data segment (exclusive of .interp and .dynamic).
4688
4689 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4690 will be two segments. */
4691
4692 static bfd_size_type
4693 get_program_header_size (bfd *abfd)
4694 {
4695 size_t segs;
4696 asection *s;
4697 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4698
4699 /* We can't return a different result each time we're called. */
4700 if (elf_tdata (abfd)->program_header_size != 0)
4701 return elf_tdata (abfd)->program_header_size;
4702
4703 if (elf_tdata (abfd)->segment_map != NULL)
4704 {
4705 struct elf_segment_map *m;
4706
4707 segs = 0;
4708 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4709 ++segs;
4710 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4711 return elf_tdata (abfd)->program_header_size;
4712 }
4713
4714 /* Assume we will need exactly two PT_LOAD segments: one for text
4715 and one for data. */
4716 segs = 2;
4717
4718 s = bfd_get_section_by_name (abfd, ".interp");
4719 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4720 {
4721 /* If we have a loadable interpreter section, we need a
4722 PT_INTERP segment. In this case, assume we also need a
4723 PT_PHDR segment, although that may not be true for all
4724 targets. */
4725 segs += 2;
4726 }
4727
4728 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4729 {
4730 /* We need a PT_DYNAMIC segment. */
4731 ++segs;
4732 }
4733
4734 if (elf_tdata (abfd)->eh_frame_hdr)
4735 {
4736 /* We need a PT_GNU_EH_FRAME segment. */
4737 ++segs;
4738 }
4739
4740 if (elf_tdata (abfd)->stack_flags)
4741 {
4742 /* We need a PT_GNU_STACK segment. */
4743 ++segs;
4744 }
4745
4746 if (elf_tdata (abfd)->relro)
4747 {
4748 /* We need a PT_GNU_RELRO segment. */
4749 ++segs;
4750 }
4751
4752 for (s = abfd->sections; s != NULL; s = s->next)
4753 {
4754 if ((s->flags & SEC_LOAD) != 0
4755 && strncmp (s->name, ".note", 5) == 0)
4756 {
4757 /* We need a PT_NOTE segment. */
4758 ++segs;
4759 }
4760 }
4761
4762 for (s = abfd->sections; s != NULL; s = s->next)
4763 {
4764 if (s->flags & SEC_THREAD_LOCAL)
4765 {
4766 /* We need a PT_TLS segment. */
4767 ++segs;
4768 break;
4769 }
4770 }
4771
4772 /* Let the backend count up any program headers it might need. */
4773 if (bed->elf_backend_additional_program_headers)
4774 {
4775 int a;
4776
4777 a = (*bed->elf_backend_additional_program_headers) (abfd);
4778 if (a == -1)
4779 abort ();
4780 segs += a;
4781 }
4782
4783 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4784 return elf_tdata (abfd)->program_header_size;
4785 }
4786
4787 /* Work out the file positions of all the sections. This is called by
4788 _bfd_elf_compute_section_file_positions. All the section sizes and
4789 VMAs must be known before this is called.
4790
4791 Reloc sections come in two flavours: Those processed specially as
4792 "side-channel" data attached to a section to which they apply, and
4793 those that bfd doesn't process as relocations. The latter sort are
4794 stored in a normal bfd section by bfd_section_from_shdr. We don't
4795 consider the former sort here, unless they form part of the loadable
4796 image. Reloc sections not assigned here will be handled later by
4797 assign_file_positions_for_relocs.
4798
4799 We also don't set the positions of the .symtab and .strtab here. */
4800
4801 static bfd_boolean
4802 assign_file_positions_except_relocs (bfd *abfd,
4803 struct bfd_link_info *link_info)
4804 {
4805 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4806 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4807 file_ptr off;
4808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4809
4810 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4811 && bfd_get_format (abfd) != bfd_core)
4812 {
4813 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4814 unsigned int num_sec = elf_numsections (abfd);
4815 Elf_Internal_Shdr **hdrpp;
4816 unsigned int i;
4817
4818 /* Start after the ELF header. */
4819 off = i_ehdrp->e_ehsize;
4820
4821 /* We are not creating an executable, which means that we are
4822 not creating a program header, and that the actual order of
4823 the sections in the file is unimportant. */
4824 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4825 {
4826 Elf_Internal_Shdr *hdr;
4827
4828 hdr = *hdrpp;
4829 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4830 && hdr->bfd_section == NULL)
4831 || i == tdata->symtab_section
4832 || i == tdata->symtab_shndx_section
4833 || i == tdata->strtab_section)
4834 {
4835 hdr->sh_offset = -1;
4836 }
4837 else
4838 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4839
4840 if (i == SHN_LORESERVE - 1)
4841 {
4842 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4843 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4844 }
4845 }
4846 }
4847 else
4848 {
4849 /* Assign file positions for the loaded sections based on the
4850 assignment of sections to segments. */
4851 if (! assign_file_positions_for_segments (abfd, link_info))
4852 return FALSE;
4853
4854 off = tdata->next_file_pos;
4855 }
4856
4857 /* Place the section headers. */
4858 off = align_file_position (off, 1 << bed->s->log_file_align);
4859 i_ehdrp->e_shoff = off;
4860 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4861
4862 tdata->next_file_pos = off;
4863
4864 return TRUE;
4865 }
4866
4867 static bfd_boolean
4868 prep_headers (bfd *abfd)
4869 {
4870 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4871 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4872 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4873 struct elf_strtab_hash *shstrtab;
4874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4875
4876 i_ehdrp = elf_elfheader (abfd);
4877 i_shdrp = elf_elfsections (abfd);
4878
4879 shstrtab = _bfd_elf_strtab_init ();
4880 if (shstrtab == NULL)
4881 return FALSE;
4882
4883 elf_shstrtab (abfd) = shstrtab;
4884
4885 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4886 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4887 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4888 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4889
4890 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4891 i_ehdrp->e_ident[EI_DATA] =
4892 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4893 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4894
4895 if ((abfd->flags & DYNAMIC) != 0)
4896 i_ehdrp->e_type = ET_DYN;
4897 else if ((abfd->flags & EXEC_P) != 0)
4898 i_ehdrp->e_type = ET_EXEC;
4899 else if (bfd_get_format (abfd) == bfd_core)
4900 i_ehdrp->e_type = ET_CORE;
4901 else
4902 i_ehdrp->e_type = ET_REL;
4903
4904 switch (bfd_get_arch (abfd))
4905 {
4906 case bfd_arch_unknown:
4907 i_ehdrp->e_machine = EM_NONE;
4908 break;
4909
4910 /* There used to be a long list of cases here, each one setting
4911 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4912 in the corresponding bfd definition. To avoid duplication,
4913 the switch was removed. Machines that need special handling
4914 can generally do it in elf_backend_final_write_processing(),
4915 unless they need the information earlier than the final write.
4916 Such need can generally be supplied by replacing the tests for
4917 e_machine with the conditions used to determine it. */
4918 default:
4919 i_ehdrp->e_machine = bed->elf_machine_code;
4920 }
4921
4922 i_ehdrp->e_version = bed->s->ev_current;
4923 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4924
4925 /* No program header, for now. */
4926 i_ehdrp->e_phoff = 0;
4927 i_ehdrp->e_phentsize = 0;
4928 i_ehdrp->e_phnum = 0;
4929
4930 /* Each bfd section is section header entry. */
4931 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4932 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4933
4934 /* If we're building an executable, we'll need a program header table. */
4935 if (abfd->flags & EXEC_P)
4936 /* It all happens later. */
4937 ;
4938 else
4939 {
4940 i_ehdrp->e_phentsize = 0;
4941 i_phdrp = 0;
4942 i_ehdrp->e_phoff = 0;
4943 }
4944
4945 elf_tdata (abfd)->symtab_hdr.sh_name =
4946 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4947 elf_tdata (abfd)->strtab_hdr.sh_name =
4948 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4949 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4950 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4951 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4952 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4953 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4954 return FALSE;
4955
4956 return TRUE;
4957 }
4958
4959 /* Assign file positions for all the reloc sections which are not part
4960 of the loadable file image. */
4961
4962 void
4963 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4964 {
4965 file_ptr off;
4966 unsigned int i, num_sec;
4967 Elf_Internal_Shdr **shdrpp;
4968
4969 off = elf_tdata (abfd)->next_file_pos;
4970
4971 num_sec = elf_numsections (abfd);
4972 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4973 {
4974 Elf_Internal_Shdr *shdrp;
4975
4976 shdrp = *shdrpp;
4977 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4978 && shdrp->sh_offset == -1)
4979 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4980 }
4981
4982 elf_tdata (abfd)->next_file_pos = off;
4983 }
4984
4985 bfd_boolean
4986 _bfd_elf_write_object_contents (bfd *abfd)
4987 {
4988 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4989 Elf_Internal_Ehdr *i_ehdrp;
4990 Elf_Internal_Shdr **i_shdrp;
4991 bfd_boolean failed;
4992 unsigned int count, num_sec;
4993
4994 if (! abfd->output_has_begun
4995 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4996 return FALSE;
4997
4998 i_shdrp = elf_elfsections (abfd);
4999 i_ehdrp = elf_elfheader (abfd);
5000
5001 failed = FALSE;
5002 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5003 if (failed)
5004 return FALSE;
5005
5006 _bfd_elf_assign_file_positions_for_relocs (abfd);
5007
5008 /* After writing the headers, we need to write the sections too... */
5009 num_sec = elf_numsections (abfd);
5010 for (count = 1; count < num_sec; count++)
5011 {
5012 if (bed->elf_backend_section_processing)
5013 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5014 if (i_shdrp[count]->contents)
5015 {
5016 bfd_size_type amt = i_shdrp[count]->sh_size;
5017
5018 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5019 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5020 return FALSE;
5021 }
5022 if (count == SHN_LORESERVE - 1)
5023 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5024 }
5025
5026 /* Write out the section header names. */
5027 if (elf_shstrtab (abfd) != NULL
5028 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5029 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5030 return FALSE;
5031
5032 if (bed->elf_backend_final_write_processing)
5033 (*bed->elf_backend_final_write_processing) (abfd,
5034 elf_tdata (abfd)->linker);
5035
5036 return bed->s->write_shdrs_and_ehdr (abfd);
5037 }
5038
5039 bfd_boolean
5040 _bfd_elf_write_corefile_contents (bfd *abfd)
5041 {
5042 /* Hopefully this can be done just like an object file. */
5043 return _bfd_elf_write_object_contents (abfd);
5044 }
5045
5046 /* Given a section, search the header to find them. */
5047
5048 int
5049 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5050 {
5051 const struct elf_backend_data *bed;
5052 int index;
5053
5054 if (elf_section_data (asect) != NULL
5055 && elf_section_data (asect)->this_idx != 0)
5056 return elf_section_data (asect)->this_idx;
5057
5058 if (bfd_is_abs_section (asect))
5059 index = SHN_ABS;
5060 else if (bfd_is_com_section (asect))
5061 index = SHN_COMMON;
5062 else if (bfd_is_und_section (asect))
5063 index = SHN_UNDEF;
5064 else
5065 index = -1;
5066
5067 bed = get_elf_backend_data (abfd);
5068 if (bed->elf_backend_section_from_bfd_section)
5069 {
5070 int retval = index;
5071
5072 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5073 return retval;
5074 }
5075
5076 if (index == -1)
5077 bfd_set_error (bfd_error_nonrepresentable_section);
5078
5079 return index;
5080 }
5081
5082 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5083 on error. */
5084
5085 int
5086 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5087 {
5088 asymbol *asym_ptr = *asym_ptr_ptr;
5089 int idx;
5090 flagword flags = asym_ptr->flags;
5091
5092 /* When gas creates relocations against local labels, it creates its
5093 own symbol for the section, but does put the symbol into the
5094 symbol chain, so udata is 0. When the linker is generating
5095 relocatable output, this section symbol may be for one of the
5096 input sections rather than the output section. */
5097 if (asym_ptr->udata.i == 0
5098 && (flags & BSF_SECTION_SYM)
5099 && asym_ptr->section)
5100 {
5101 int indx;
5102
5103 if (asym_ptr->section->output_section != NULL)
5104 indx = asym_ptr->section->output_section->index;
5105 else
5106 indx = asym_ptr->section->index;
5107 if (indx < elf_num_section_syms (abfd)
5108 && elf_section_syms (abfd)[indx] != NULL)
5109 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5110 }
5111
5112 idx = asym_ptr->udata.i;
5113
5114 if (idx == 0)
5115 {
5116 /* This case can occur when using --strip-symbol on a symbol
5117 which is used in a relocation entry. */
5118 (*_bfd_error_handler)
5119 (_("%B: symbol `%s' required but not present"),
5120 abfd, bfd_asymbol_name (asym_ptr));
5121 bfd_set_error (bfd_error_no_symbols);
5122 return -1;
5123 }
5124
5125 #if DEBUG & 4
5126 {
5127 fprintf (stderr,
5128 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5129 (long) asym_ptr, asym_ptr->name, idx, flags,
5130 elf_symbol_flags (flags));
5131 fflush (stderr);
5132 }
5133 #endif
5134
5135 return idx;
5136 }
5137
5138 /* Rewrite program header information. */
5139
5140 static bfd_boolean
5141 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5142 {
5143 Elf_Internal_Ehdr *iehdr;
5144 struct elf_segment_map *map;
5145 struct elf_segment_map *map_first;
5146 struct elf_segment_map **pointer_to_map;
5147 Elf_Internal_Phdr *segment;
5148 asection *section;
5149 unsigned int i;
5150 unsigned int num_segments;
5151 bfd_boolean phdr_included = FALSE;
5152 bfd_vma maxpagesize;
5153 struct elf_segment_map *phdr_adjust_seg = NULL;
5154 unsigned int phdr_adjust_num = 0;
5155 const struct elf_backend_data *bed;
5156
5157 bed = get_elf_backend_data (ibfd);
5158 iehdr = elf_elfheader (ibfd);
5159
5160 map_first = NULL;
5161 pointer_to_map = &map_first;
5162
5163 num_segments = elf_elfheader (ibfd)->e_phnum;
5164 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5165
5166 /* Returns the end address of the segment + 1. */
5167 #define SEGMENT_END(segment, start) \
5168 (start + (segment->p_memsz > segment->p_filesz \
5169 ? segment->p_memsz : segment->p_filesz))
5170
5171 #define SECTION_SIZE(section, segment) \
5172 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5173 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5174 ? section->size : 0)
5175
5176 /* Returns TRUE if the given section is contained within
5177 the given segment. VMA addresses are compared. */
5178 #define IS_CONTAINED_BY_VMA(section, segment) \
5179 (section->vma >= segment->p_vaddr \
5180 && (section->vma + SECTION_SIZE (section, segment) \
5181 <= (SEGMENT_END (segment, segment->p_vaddr))))
5182
5183 /* Returns TRUE if the given section is contained within
5184 the given segment. LMA addresses are compared. */
5185 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5186 (section->lma >= base \
5187 && (section->lma + SECTION_SIZE (section, segment) \
5188 <= SEGMENT_END (segment, base)))
5189
5190 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5191 #define IS_COREFILE_NOTE(p, s) \
5192 (p->p_type == PT_NOTE \
5193 && bfd_get_format (ibfd) == bfd_core \
5194 && s->vma == 0 && s->lma == 0 \
5195 && (bfd_vma) s->filepos >= p->p_offset \
5196 && ((bfd_vma) s->filepos + s->size \
5197 <= p->p_offset + p->p_filesz))
5198
5199 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5200 linker, which generates a PT_INTERP section with p_vaddr and
5201 p_memsz set to 0. */
5202 #define IS_SOLARIS_PT_INTERP(p, s) \
5203 (p->p_vaddr == 0 \
5204 && p->p_paddr == 0 \
5205 && p->p_memsz == 0 \
5206 && p->p_filesz > 0 \
5207 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5208 && s->size > 0 \
5209 && (bfd_vma) s->filepos >= p->p_offset \
5210 && ((bfd_vma) s->filepos + s->size \
5211 <= p->p_offset + p->p_filesz))
5212
5213 /* Decide if the given section should be included in the given segment.
5214 A section will be included if:
5215 1. It is within the address space of the segment -- we use the LMA
5216 if that is set for the segment and the VMA otherwise,
5217 2. It is an allocated segment,
5218 3. There is an output section associated with it,
5219 4. The section has not already been allocated to a previous segment.
5220 5. PT_GNU_STACK segments do not include any sections.
5221 6. PT_TLS segment includes only SHF_TLS sections.
5222 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5223 8. PT_DYNAMIC should not contain empty sections at the beginning
5224 (with the possible exception of .dynamic). */
5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5226 ((((segment->p_paddr \
5227 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5228 : IS_CONTAINED_BY_VMA (section, segment)) \
5229 && (section->flags & SEC_ALLOC) != 0) \
5230 || IS_COREFILE_NOTE (segment, section)) \
5231 && section->output_section != NULL \
5232 && segment->p_type != PT_GNU_STACK \
5233 && (segment->p_type != PT_TLS \
5234 || (section->flags & SEC_THREAD_LOCAL)) \
5235 && (segment->p_type == PT_LOAD \
5236 || segment->p_type == PT_TLS \
5237 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5238 && (segment->p_type != PT_DYNAMIC \
5239 || SECTION_SIZE (section, segment) > 0 \
5240 || (segment->p_paddr \
5241 ? segment->p_paddr != section->lma \
5242 : segment->p_vaddr != section->vma) \
5243 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5244 == 0)) \
5245 && ! section->segment_mark)
5246
5247 /* Returns TRUE iff seg1 starts after the end of seg2. */
5248 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5249 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5250
5251 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5252 their VMA address ranges and their LMA address ranges overlap.
5253 It is possible to have overlapping VMA ranges without overlapping LMA
5254 ranges. RedBoot images for example can have both .data and .bss mapped
5255 to the same VMA range, but with the .data section mapped to a different
5256 LMA. */
5257 #define SEGMENT_OVERLAPS(seg1, seg2) \
5258 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5259 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5260 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5261 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5262
5263 /* Initialise the segment mark field. */
5264 for (section = ibfd->sections; section != NULL; section = section->next)
5265 section->segment_mark = FALSE;
5266
5267 /* Scan through the segments specified in the program header
5268 of the input BFD. For this first scan we look for overlaps
5269 in the loadable segments. These can be created by weird
5270 parameters to objcopy. Also, fix some solaris weirdness. */
5271 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5272 i < num_segments;
5273 i++, segment++)
5274 {
5275 unsigned int j;
5276 Elf_Internal_Phdr *segment2;
5277
5278 if (segment->p_type == PT_INTERP)
5279 for (section = ibfd->sections; section; section = section->next)
5280 if (IS_SOLARIS_PT_INTERP (segment, section))
5281 {
5282 /* Mininal change so that the normal section to segment
5283 assignment code will work. */
5284 segment->p_vaddr = section->vma;
5285 break;
5286 }
5287
5288 if (segment->p_type != PT_LOAD)
5289 continue;
5290
5291 /* Determine if this segment overlaps any previous segments. */
5292 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5293 {
5294 bfd_signed_vma extra_length;
5295
5296 if (segment2->p_type != PT_LOAD
5297 || ! SEGMENT_OVERLAPS (segment, segment2))
5298 continue;
5299
5300 /* Merge the two segments together. */
5301 if (segment2->p_vaddr < segment->p_vaddr)
5302 {
5303 /* Extend SEGMENT2 to include SEGMENT and then delete
5304 SEGMENT. */
5305 extra_length =
5306 SEGMENT_END (segment, segment->p_vaddr)
5307 - SEGMENT_END (segment2, segment2->p_vaddr);
5308
5309 if (extra_length > 0)
5310 {
5311 segment2->p_memsz += extra_length;
5312 segment2->p_filesz += extra_length;
5313 }
5314
5315 segment->p_type = PT_NULL;
5316
5317 /* Since we have deleted P we must restart the outer loop. */
5318 i = 0;
5319 segment = elf_tdata (ibfd)->phdr;
5320 break;
5321 }
5322 else
5323 {
5324 /* Extend SEGMENT to include SEGMENT2 and then delete
5325 SEGMENT2. */
5326 extra_length =
5327 SEGMENT_END (segment2, segment2->p_vaddr)
5328 - SEGMENT_END (segment, segment->p_vaddr);
5329
5330 if (extra_length > 0)
5331 {
5332 segment->p_memsz += extra_length;
5333 segment->p_filesz += extra_length;
5334 }
5335
5336 segment2->p_type = PT_NULL;
5337 }
5338 }
5339 }
5340
5341 /* The second scan attempts to assign sections to segments. */
5342 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5343 i < num_segments;
5344 i ++, segment ++)
5345 {
5346 unsigned int section_count;
5347 asection ** sections;
5348 asection * output_section;
5349 unsigned int isec;
5350 bfd_vma matching_lma;
5351 bfd_vma suggested_lma;
5352 unsigned int j;
5353 bfd_size_type amt;
5354
5355 if (segment->p_type == PT_NULL)
5356 continue;
5357
5358 /* Compute how many sections might be placed into this segment. */
5359 for (section = ibfd->sections, section_count = 0;
5360 section != NULL;
5361 section = section->next)
5362 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5363 ++section_count;
5364
5365 /* Allocate a segment map big enough to contain
5366 all of the sections we have selected. */
5367 amt = sizeof (struct elf_segment_map);
5368 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5369 map = bfd_alloc (obfd, amt);
5370 if (map == NULL)
5371 return FALSE;
5372
5373 /* Initialise the fields of the segment map. Default to
5374 using the physical address of the segment in the input BFD. */
5375 map->next = NULL;
5376 map->p_type = segment->p_type;
5377 map->p_flags = segment->p_flags;
5378 map->p_flags_valid = 1;
5379 map->p_paddr = segment->p_paddr;
5380 map->p_paddr_valid = 1;
5381
5382 /* Determine if this segment contains the ELF file header
5383 and if it contains the program headers themselves. */
5384 map->includes_filehdr = (segment->p_offset == 0
5385 && segment->p_filesz >= iehdr->e_ehsize);
5386
5387 map->includes_phdrs = 0;
5388
5389 if (! phdr_included || segment->p_type != PT_LOAD)
5390 {
5391 map->includes_phdrs =
5392 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5393 && (segment->p_offset + segment->p_filesz
5394 >= ((bfd_vma) iehdr->e_phoff
5395 + iehdr->e_phnum * iehdr->e_phentsize)));
5396
5397 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5398 phdr_included = TRUE;
5399 }
5400
5401 if (section_count == 0)
5402 {
5403 /* Special segments, such as the PT_PHDR segment, may contain
5404 no sections, but ordinary, loadable segments should contain
5405 something. They are allowed by the ELF spec however, so only
5406 a warning is produced. */
5407 if (segment->p_type == PT_LOAD)
5408 (*_bfd_error_handler)
5409 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5410 ibfd);
5411
5412 map->count = 0;
5413 *pointer_to_map = map;
5414 pointer_to_map = &map->next;
5415
5416 continue;
5417 }
5418
5419 /* Now scan the sections in the input BFD again and attempt
5420 to add their corresponding output sections to the segment map.
5421 The problem here is how to handle an output section which has
5422 been moved (ie had its LMA changed). There are four possibilities:
5423
5424 1. None of the sections have been moved.
5425 In this case we can continue to use the segment LMA from the
5426 input BFD.
5427
5428 2. All of the sections have been moved by the same amount.
5429 In this case we can change the segment's LMA to match the LMA
5430 of the first section.
5431
5432 3. Some of the sections have been moved, others have not.
5433 In this case those sections which have not been moved can be
5434 placed in the current segment which will have to have its size,
5435 and possibly its LMA changed, and a new segment or segments will
5436 have to be created to contain the other sections.
5437
5438 4. The sections have been moved, but not by the same amount.
5439 In this case we can change the segment's LMA to match the LMA
5440 of the first section and we will have to create a new segment
5441 or segments to contain the other sections.
5442
5443 In order to save time, we allocate an array to hold the section
5444 pointers that we are interested in. As these sections get assigned
5445 to a segment, they are removed from this array. */
5446
5447 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5448 to work around this long long bug. */
5449 sections = bfd_malloc2 (section_count, sizeof (asection *));
5450 if (sections == NULL)
5451 return FALSE;
5452
5453 /* Step One: Scan for segment vs section LMA conflicts.
5454 Also add the sections to the section array allocated above.
5455 Also add the sections to the current segment. In the common
5456 case, where the sections have not been moved, this means that
5457 we have completely filled the segment, and there is nothing
5458 more to do. */
5459 isec = 0;
5460 matching_lma = 0;
5461 suggested_lma = 0;
5462
5463 for (j = 0, section = ibfd->sections;
5464 section != NULL;
5465 section = section->next)
5466 {
5467 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5468 {
5469 output_section = section->output_section;
5470
5471 sections[j ++] = section;
5472
5473 /* The Solaris native linker always sets p_paddr to 0.
5474 We try to catch that case here, and set it to the
5475 correct value. Note - some backends require that
5476 p_paddr be left as zero. */
5477 if (segment->p_paddr == 0
5478 && segment->p_vaddr != 0
5479 && (! bed->want_p_paddr_set_to_zero)
5480 && isec == 0
5481 && output_section->lma != 0
5482 && (output_section->vma == (segment->p_vaddr
5483 + (map->includes_filehdr
5484 ? iehdr->e_ehsize
5485 : 0)
5486 + (map->includes_phdrs
5487 ? (iehdr->e_phnum
5488 * iehdr->e_phentsize)
5489 : 0))))
5490 map->p_paddr = segment->p_vaddr;
5491
5492 /* Match up the physical address of the segment with the
5493 LMA address of the output section. */
5494 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5495 || IS_COREFILE_NOTE (segment, section)
5496 || (bed->want_p_paddr_set_to_zero &&
5497 IS_CONTAINED_BY_VMA (output_section, segment))
5498 )
5499 {
5500 if (matching_lma == 0)
5501 matching_lma = output_section->lma;
5502
5503 /* We assume that if the section fits within the segment
5504 then it does not overlap any other section within that
5505 segment. */
5506 map->sections[isec ++] = output_section;
5507 }
5508 else if (suggested_lma == 0)
5509 suggested_lma = output_section->lma;
5510 }
5511 }
5512
5513 BFD_ASSERT (j == section_count);
5514
5515 /* Step Two: Adjust the physical address of the current segment,
5516 if necessary. */
5517 if (isec == section_count)
5518 {
5519 /* All of the sections fitted within the segment as currently
5520 specified. This is the default case. Add the segment to
5521 the list of built segments and carry on to process the next
5522 program header in the input BFD. */
5523 map->count = section_count;
5524 *pointer_to_map = map;
5525 pointer_to_map = &map->next;
5526
5527 free (sections);
5528 continue;
5529 }
5530 else
5531 {
5532 if (matching_lma != 0)
5533 {
5534 /* At least one section fits inside the current segment.
5535 Keep it, but modify its physical address to match the
5536 LMA of the first section that fitted. */
5537 map->p_paddr = matching_lma;
5538 }
5539 else
5540 {
5541 /* None of the sections fitted inside the current segment.
5542 Change the current segment's physical address to match
5543 the LMA of the first section. */
5544 map->p_paddr = suggested_lma;
5545 }
5546
5547 /* Offset the segment physical address from the lma
5548 to allow for space taken up by elf headers. */
5549 if (map->includes_filehdr)
5550 map->p_paddr -= iehdr->e_ehsize;
5551
5552 if (map->includes_phdrs)
5553 {
5554 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5555
5556 /* iehdr->e_phnum is just an estimate of the number
5557 of program headers that we will need. Make a note
5558 here of the number we used and the segment we chose
5559 to hold these headers, so that we can adjust the
5560 offset when we know the correct value. */
5561 phdr_adjust_num = iehdr->e_phnum;
5562 phdr_adjust_seg = map;
5563 }
5564 }
5565
5566 /* Step Three: Loop over the sections again, this time assigning
5567 those that fit to the current segment and removing them from the
5568 sections array; but making sure not to leave large gaps. Once all
5569 possible sections have been assigned to the current segment it is
5570 added to the list of built segments and if sections still remain
5571 to be assigned, a new segment is constructed before repeating
5572 the loop. */
5573 isec = 0;
5574 do
5575 {
5576 map->count = 0;
5577 suggested_lma = 0;
5578
5579 /* Fill the current segment with sections that fit. */
5580 for (j = 0; j < section_count; j++)
5581 {
5582 section = sections[j];
5583
5584 if (section == NULL)
5585 continue;
5586
5587 output_section = section->output_section;
5588
5589 BFD_ASSERT (output_section != NULL);
5590
5591 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5592 || IS_COREFILE_NOTE (segment, section))
5593 {
5594 if (map->count == 0)
5595 {
5596 /* If the first section in a segment does not start at
5597 the beginning of the segment, then something is
5598 wrong. */
5599 if (output_section->lma !=
5600 (map->p_paddr
5601 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5602 + (map->includes_phdrs
5603 ? iehdr->e_phnum * iehdr->e_phentsize
5604 : 0)))
5605 abort ();
5606 }
5607 else
5608 {
5609 asection * prev_sec;
5610
5611 prev_sec = map->sections[map->count - 1];
5612
5613 /* If the gap between the end of the previous section
5614 and the start of this section is more than
5615 maxpagesize then we need to start a new segment. */
5616 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5617 maxpagesize)
5618 < BFD_ALIGN (output_section->lma, maxpagesize))
5619 || ((prev_sec->lma + prev_sec->size)
5620 > output_section->lma))
5621 {
5622 if (suggested_lma == 0)
5623 suggested_lma = output_section->lma;
5624
5625 continue;
5626 }
5627 }
5628
5629 map->sections[map->count++] = output_section;
5630 ++isec;
5631 sections[j] = NULL;
5632 section->segment_mark = TRUE;
5633 }
5634 else if (suggested_lma == 0)
5635 suggested_lma = output_section->lma;
5636 }
5637
5638 BFD_ASSERT (map->count > 0);
5639
5640 /* Add the current segment to the list of built segments. */
5641 *pointer_to_map = map;
5642 pointer_to_map = &map->next;
5643
5644 if (isec < section_count)
5645 {
5646 /* We still have not allocated all of the sections to
5647 segments. Create a new segment here, initialise it
5648 and carry on looping. */
5649 amt = sizeof (struct elf_segment_map);
5650 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5651 map = bfd_alloc (obfd, amt);
5652 if (map == NULL)
5653 {
5654 free (sections);
5655 return FALSE;
5656 }
5657
5658 /* Initialise the fields of the segment map. Set the physical
5659 physical address to the LMA of the first section that has
5660 not yet been assigned. */
5661 map->next = NULL;
5662 map->p_type = segment->p_type;
5663 map->p_flags = segment->p_flags;
5664 map->p_flags_valid = 1;
5665 map->p_paddr = suggested_lma;
5666 map->p_paddr_valid = 1;
5667 map->includes_filehdr = 0;
5668 map->includes_phdrs = 0;
5669 }
5670 }
5671 while (isec < section_count);
5672
5673 free (sections);
5674 }
5675
5676 /* The Solaris linker creates program headers in which all the
5677 p_paddr fields are zero. When we try to objcopy or strip such a
5678 file, we get confused. Check for this case, and if we find it
5679 reset the p_paddr_valid fields. */
5680 for (map = map_first; map != NULL; map = map->next)
5681 if (map->p_paddr != 0)
5682 break;
5683 if (map == NULL)
5684 for (map = map_first; map != NULL; map = map->next)
5685 map->p_paddr_valid = 0;
5686
5687 elf_tdata (obfd)->segment_map = map_first;
5688
5689 /* If we had to estimate the number of program headers that were
5690 going to be needed, then check our estimate now and adjust
5691 the offset if necessary. */
5692 if (phdr_adjust_seg != NULL)
5693 {
5694 unsigned int count;
5695
5696 for (count = 0, map = map_first; map != NULL; map = map->next)
5697 count++;
5698
5699 if (count > phdr_adjust_num)
5700 phdr_adjust_seg->p_paddr
5701 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5702 }
5703
5704 #undef SEGMENT_END
5705 #undef SECTION_SIZE
5706 #undef IS_CONTAINED_BY_VMA
5707 #undef IS_CONTAINED_BY_LMA
5708 #undef IS_COREFILE_NOTE
5709 #undef IS_SOLARIS_PT_INTERP
5710 #undef INCLUDE_SECTION_IN_SEGMENT
5711 #undef SEGMENT_AFTER_SEGMENT
5712 #undef SEGMENT_OVERLAPS
5713 return TRUE;
5714 }
5715
5716 /* Copy ELF program header information. */
5717
5718 static bfd_boolean
5719 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5720 {
5721 Elf_Internal_Ehdr *iehdr;
5722 struct elf_segment_map *map;
5723 struct elf_segment_map *map_first;
5724 struct elf_segment_map **pointer_to_map;
5725 Elf_Internal_Phdr *segment;
5726 unsigned int i;
5727 unsigned int num_segments;
5728 bfd_boolean phdr_included = FALSE;
5729
5730 iehdr = elf_elfheader (ibfd);
5731
5732 map_first = NULL;
5733 pointer_to_map = &map_first;
5734
5735 num_segments = elf_elfheader (ibfd)->e_phnum;
5736 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5737 i < num_segments;
5738 i++, segment++)
5739 {
5740 asection *section;
5741 unsigned int section_count;
5742 bfd_size_type amt;
5743 Elf_Internal_Shdr *this_hdr;
5744
5745 /* FIXME: Do we need to copy PT_NULL segment? */
5746 if (segment->p_type == PT_NULL)
5747 continue;
5748
5749 /* Compute how many sections are in this segment. */
5750 for (section = ibfd->sections, section_count = 0;
5751 section != NULL;
5752 section = section->next)
5753 {
5754 this_hdr = &(elf_section_data(section)->this_hdr);
5755 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5756 section_count++;
5757 }
5758
5759 /* Allocate a segment map big enough to contain
5760 all of the sections we have selected. */
5761 amt = sizeof (struct elf_segment_map);
5762 if (section_count != 0)
5763 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5764 map = bfd_alloc (obfd, amt);
5765 if (map == NULL)
5766 return FALSE;
5767
5768 /* Initialize the fields of the output segment map with the
5769 input segment. */
5770 map->next = NULL;
5771 map->p_type = segment->p_type;
5772 map->p_flags = segment->p_flags;
5773 map->p_flags_valid = 1;
5774 map->p_paddr = segment->p_paddr;
5775 map->p_paddr_valid = 1;
5776
5777 /* Determine if this segment contains the ELF file header
5778 and if it contains the program headers themselves. */
5779 map->includes_filehdr = (segment->p_offset == 0
5780 && segment->p_filesz >= iehdr->e_ehsize);
5781
5782 map->includes_phdrs = 0;
5783 if (! phdr_included || segment->p_type != PT_LOAD)
5784 {
5785 map->includes_phdrs =
5786 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5787 && (segment->p_offset + segment->p_filesz
5788 >= ((bfd_vma) iehdr->e_phoff
5789 + iehdr->e_phnum * iehdr->e_phentsize)));
5790
5791 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5792 phdr_included = TRUE;
5793 }
5794
5795 if (section_count != 0)
5796 {
5797 unsigned int isec = 0;
5798
5799 for (section = ibfd->sections;
5800 section != NULL;
5801 section = section->next)
5802 {
5803 this_hdr = &(elf_section_data(section)->this_hdr);
5804 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5805 map->sections[isec++] = section->output_section;
5806 }
5807 }
5808
5809 map->count = section_count;
5810 *pointer_to_map = map;
5811 pointer_to_map = &map->next;
5812 }
5813
5814 elf_tdata (obfd)->segment_map = map_first;
5815 return TRUE;
5816 }
5817
5818 /* Copy private BFD data. This copies or rewrites ELF program header
5819 information. */
5820
5821 static bfd_boolean
5822 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5823 {
5824 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5825 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5826 return TRUE;
5827
5828 if (elf_tdata (ibfd)->phdr == NULL)
5829 return TRUE;
5830
5831 if (ibfd->xvec == obfd->xvec)
5832 {
5833 /* Check if any sections in the input BFD covered by ELF program
5834 header are changed. */
5835 Elf_Internal_Phdr *segment;
5836 asection *section, *osec;
5837 unsigned int i, num_segments;
5838 Elf_Internal_Shdr *this_hdr;
5839
5840 /* Initialize the segment mark field. */
5841 for (section = obfd->sections; section != NULL;
5842 section = section->next)
5843 section->segment_mark = FALSE;
5844
5845 num_segments = elf_elfheader (ibfd)->e_phnum;
5846 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5847 i < num_segments;
5848 i++, segment++)
5849 {
5850 for (section = ibfd->sections;
5851 section != NULL; section = section->next)
5852 {
5853 /* We mark the output section so that we know it comes
5854 from the input BFD. */
5855 osec = section->output_section;
5856 if (osec)
5857 osec->segment_mark = TRUE;
5858
5859 /* Check if this section is covered by the segment. */
5860 this_hdr = &(elf_section_data(section)->this_hdr);
5861 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5862 {
5863 /* FIXME: Check if its output section is changed or
5864 removed. What else do we need to check? */
5865 if (osec == NULL
5866 || section->flags != osec->flags
5867 || section->lma != osec->lma
5868 || section->vma != osec->vma
5869 || section->size != osec->size
5870 || section->rawsize != osec->rawsize
5871 || section->alignment_power != osec->alignment_power)
5872 goto rewrite;
5873 }
5874 }
5875 }
5876
5877 /* Check to see if any output section doesn't come from the
5878 input BFD. */
5879 for (section = obfd->sections; section != NULL;
5880 section = section->next)
5881 {
5882 if (section->segment_mark == FALSE)
5883 goto rewrite;
5884 else
5885 section->segment_mark = FALSE;
5886 }
5887
5888 return copy_elf_program_header (ibfd, obfd);
5889 }
5890
5891 rewrite:
5892 return rewrite_elf_program_header (ibfd, obfd);
5893 }
5894
5895 /* Initialize private output section information from input section. */
5896
5897 bfd_boolean
5898 _bfd_elf_init_private_section_data (bfd *ibfd,
5899 asection *isec,
5900 bfd *obfd,
5901 asection *osec,
5902 struct bfd_link_info *link_info)
5903
5904 {
5905 Elf_Internal_Shdr *ihdr, *ohdr;
5906 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5907
5908 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5909 || obfd->xvec->flavour != bfd_target_elf_flavour)
5910 return TRUE;
5911
5912 /* Don't copy the output ELF section type from input if the
5913 output BFD section flags has been set to something different.
5914 elf_fake_sections will set ELF section type based on BFD
5915 section flags. */
5916 if (osec->flags == isec->flags || !osec->flags)
5917 elf_section_type (osec) = elf_section_type (isec);
5918
5919 /* Set things up for objcopy and relocatable link. The output
5920 SHT_GROUP section will have its elf_next_in_group pointing back
5921 to the input group members. Ignore linker created group section.
5922 See elfNN_ia64_object_p in elfxx-ia64.c. */
5923
5924 if (need_group)
5925 {
5926 if (elf_sec_group (isec) == NULL
5927 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5928 {
5929 if (elf_section_flags (isec) & SHF_GROUP)
5930 elf_section_flags (osec) |= SHF_GROUP;
5931 elf_next_in_group (osec) = elf_next_in_group (isec);
5932 elf_group_name (osec) = elf_group_name (isec);
5933 }
5934 }
5935
5936 ihdr = &elf_section_data (isec)->this_hdr;
5937
5938 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5939 don't use the output section of the linked-to section since it
5940 may be NULL at this point. */
5941 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5942 {
5943 ohdr = &elf_section_data (osec)->this_hdr;
5944 ohdr->sh_flags |= SHF_LINK_ORDER;
5945 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5946 }
5947
5948 osec->use_rela_p = isec->use_rela_p;
5949
5950 return TRUE;
5951 }
5952
5953 /* Copy private section information. This copies over the entsize
5954 field, and sometimes the info field. */
5955
5956 bfd_boolean
5957 _bfd_elf_copy_private_section_data (bfd *ibfd,
5958 asection *isec,
5959 bfd *obfd,
5960 asection *osec)
5961 {
5962 Elf_Internal_Shdr *ihdr, *ohdr;
5963
5964 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5965 || obfd->xvec->flavour != bfd_target_elf_flavour)
5966 return TRUE;
5967
5968 ihdr = &elf_section_data (isec)->this_hdr;
5969 ohdr = &elf_section_data (osec)->this_hdr;
5970
5971 ohdr->sh_entsize = ihdr->sh_entsize;
5972
5973 if (ihdr->sh_type == SHT_SYMTAB
5974 || ihdr->sh_type == SHT_DYNSYM
5975 || ihdr->sh_type == SHT_GNU_verneed
5976 || ihdr->sh_type == SHT_GNU_verdef)
5977 ohdr->sh_info = ihdr->sh_info;
5978
5979 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5980 NULL);
5981 }
5982
5983 /* Copy private header information. */
5984
5985 bfd_boolean
5986 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5987 {
5988 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5989 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5990 return TRUE;
5991
5992 /* Copy over private BFD data if it has not already been copied.
5993 This must be done here, rather than in the copy_private_bfd_data
5994 entry point, because the latter is called after the section
5995 contents have been set, which means that the program headers have
5996 already been worked out. */
5997 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5998 {
5999 if (! copy_private_bfd_data (ibfd, obfd))
6000 return FALSE;
6001 }
6002
6003 return TRUE;
6004 }
6005
6006 /* Copy private symbol information. If this symbol is in a section
6007 which we did not map into a BFD section, try to map the section
6008 index correctly. We use special macro definitions for the mapped
6009 section indices; these definitions are interpreted by the
6010 swap_out_syms function. */
6011
6012 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6013 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6014 #define MAP_STRTAB (SHN_HIOS + 3)
6015 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6016 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6017
6018 bfd_boolean
6019 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6020 asymbol *isymarg,
6021 bfd *obfd,
6022 asymbol *osymarg)
6023 {
6024 elf_symbol_type *isym, *osym;
6025
6026 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6027 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6028 return TRUE;
6029
6030 isym = elf_symbol_from (ibfd, isymarg);
6031 osym = elf_symbol_from (obfd, osymarg);
6032
6033 if (isym != NULL
6034 && osym != NULL
6035 && bfd_is_abs_section (isym->symbol.section))
6036 {
6037 unsigned int shndx;
6038
6039 shndx = isym->internal_elf_sym.st_shndx;
6040 if (shndx == elf_onesymtab (ibfd))
6041 shndx = MAP_ONESYMTAB;
6042 else if (shndx == elf_dynsymtab (ibfd))
6043 shndx = MAP_DYNSYMTAB;
6044 else if (shndx == elf_tdata (ibfd)->strtab_section)
6045 shndx = MAP_STRTAB;
6046 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6047 shndx = MAP_SHSTRTAB;
6048 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6049 shndx = MAP_SYM_SHNDX;
6050 osym->internal_elf_sym.st_shndx = shndx;
6051 }
6052
6053 return TRUE;
6054 }
6055
6056 /* Swap out the symbols. */
6057
6058 static bfd_boolean
6059 swap_out_syms (bfd *abfd,
6060 struct bfd_strtab_hash **sttp,
6061 int relocatable_p)
6062 {
6063 const struct elf_backend_data *bed;
6064 int symcount;
6065 asymbol **syms;
6066 struct bfd_strtab_hash *stt;
6067 Elf_Internal_Shdr *symtab_hdr;
6068 Elf_Internal_Shdr *symtab_shndx_hdr;
6069 Elf_Internal_Shdr *symstrtab_hdr;
6070 bfd_byte *outbound_syms;
6071 bfd_byte *outbound_shndx;
6072 int idx;
6073 bfd_size_type amt;
6074 bfd_boolean name_local_sections;
6075
6076 if (!elf_map_symbols (abfd))
6077 return FALSE;
6078
6079 /* Dump out the symtabs. */
6080 stt = _bfd_elf_stringtab_init ();
6081 if (stt == NULL)
6082 return FALSE;
6083
6084 bed = get_elf_backend_data (abfd);
6085 symcount = bfd_get_symcount (abfd);
6086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6087 symtab_hdr->sh_type = SHT_SYMTAB;
6088 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6089 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6090 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6091 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6092
6093 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6094 symstrtab_hdr->sh_type = SHT_STRTAB;
6095
6096 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6097 if (outbound_syms == NULL)
6098 {
6099 _bfd_stringtab_free (stt);
6100 return FALSE;
6101 }
6102 symtab_hdr->contents = outbound_syms;
6103
6104 outbound_shndx = NULL;
6105 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6106 if (symtab_shndx_hdr->sh_name != 0)
6107 {
6108 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6109 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6110 sizeof (Elf_External_Sym_Shndx));
6111 if (outbound_shndx == NULL)
6112 {
6113 _bfd_stringtab_free (stt);
6114 return FALSE;
6115 }
6116
6117 symtab_shndx_hdr->contents = outbound_shndx;
6118 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6119 symtab_shndx_hdr->sh_size = amt;
6120 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6121 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6122 }
6123
6124 /* Now generate the data (for "contents"). */
6125 {
6126 /* Fill in zeroth symbol and swap it out. */
6127 Elf_Internal_Sym sym;
6128 sym.st_name = 0;
6129 sym.st_value = 0;
6130 sym.st_size = 0;
6131 sym.st_info = 0;
6132 sym.st_other = 0;
6133 sym.st_shndx = SHN_UNDEF;
6134 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6135 outbound_syms += bed->s->sizeof_sym;
6136 if (outbound_shndx != NULL)
6137 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6138 }
6139
6140 name_local_sections
6141 = (bed->elf_backend_name_local_section_symbols
6142 && bed->elf_backend_name_local_section_symbols (abfd));
6143
6144 syms = bfd_get_outsymbols (abfd);
6145 for (idx = 0; idx < symcount; idx++)
6146 {
6147 Elf_Internal_Sym sym;
6148 bfd_vma value = syms[idx]->value;
6149 elf_symbol_type *type_ptr;
6150 flagword flags = syms[idx]->flags;
6151 int type;
6152
6153 if (!name_local_sections
6154 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6155 {
6156 /* Local section symbols have no name. */
6157 sym.st_name = 0;
6158 }
6159 else
6160 {
6161 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6162 syms[idx]->name,
6163 TRUE, FALSE);
6164 if (sym.st_name == (unsigned long) -1)
6165 {
6166 _bfd_stringtab_free (stt);
6167 return FALSE;
6168 }
6169 }
6170
6171 type_ptr = elf_symbol_from (abfd, syms[idx]);
6172
6173 if ((flags & BSF_SECTION_SYM) == 0
6174 && bfd_is_com_section (syms[idx]->section))
6175 {
6176 /* ELF common symbols put the alignment into the `value' field,
6177 and the size into the `size' field. This is backwards from
6178 how BFD handles it, so reverse it here. */
6179 sym.st_size = value;
6180 if (type_ptr == NULL
6181 || type_ptr->internal_elf_sym.st_value == 0)
6182 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6183 else
6184 sym.st_value = type_ptr->internal_elf_sym.st_value;
6185 sym.st_shndx = _bfd_elf_section_from_bfd_section
6186 (abfd, syms[idx]->section);
6187 }
6188 else
6189 {
6190 asection *sec = syms[idx]->section;
6191 int shndx;
6192
6193 if (sec->output_section)
6194 {
6195 value += sec->output_offset;
6196 sec = sec->output_section;
6197 }
6198
6199 /* Don't add in the section vma for relocatable output. */
6200 if (! relocatable_p)
6201 value += sec->vma;
6202 sym.st_value = value;
6203 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6204
6205 if (bfd_is_abs_section (sec)
6206 && type_ptr != NULL
6207 && type_ptr->internal_elf_sym.st_shndx != 0)
6208 {
6209 /* This symbol is in a real ELF section which we did
6210 not create as a BFD section. Undo the mapping done
6211 by copy_private_symbol_data. */
6212 shndx = type_ptr->internal_elf_sym.st_shndx;
6213 switch (shndx)
6214 {
6215 case MAP_ONESYMTAB:
6216 shndx = elf_onesymtab (abfd);
6217 break;
6218 case MAP_DYNSYMTAB:
6219 shndx = elf_dynsymtab (abfd);
6220 break;
6221 case MAP_STRTAB:
6222 shndx = elf_tdata (abfd)->strtab_section;
6223 break;
6224 case MAP_SHSTRTAB:
6225 shndx = elf_tdata (abfd)->shstrtab_section;
6226 break;
6227 case MAP_SYM_SHNDX:
6228 shndx = elf_tdata (abfd)->symtab_shndx_section;
6229 break;
6230 default:
6231 break;
6232 }
6233 }
6234 else
6235 {
6236 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6237
6238 if (shndx == -1)
6239 {
6240 asection *sec2;
6241
6242 /* Writing this would be a hell of a lot easier if
6243 we had some decent documentation on bfd, and
6244 knew what to expect of the library, and what to
6245 demand of applications. For example, it
6246 appears that `objcopy' might not set the
6247 section of a symbol to be a section that is
6248 actually in the output file. */
6249 sec2 = bfd_get_section_by_name (abfd, sec->name);
6250 if (sec2 == NULL)
6251 {
6252 _bfd_error_handler (_("\
6253 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6254 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6255 sec->name);
6256 bfd_set_error (bfd_error_invalid_operation);
6257 _bfd_stringtab_free (stt);
6258 return FALSE;
6259 }
6260
6261 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6262 BFD_ASSERT (shndx != -1);
6263 }
6264 }
6265
6266 sym.st_shndx = shndx;
6267 }
6268
6269 if ((flags & BSF_THREAD_LOCAL) != 0)
6270 type = STT_TLS;
6271 else if ((flags & BSF_FUNCTION) != 0)
6272 type = STT_FUNC;
6273 else if ((flags & BSF_OBJECT) != 0)
6274 type = STT_OBJECT;
6275 else
6276 type = STT_NOTYPE;
6277
6278 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6279 type = STT_TLS;
6280
6281 /* Processor-specific types. */
6282 if (type_ptr != NULL
6283 && bed->elf_backend_get_symbol_type)
6284 type = ((*bed->elf_backend_get_symbol_type)
6285 (&type_ptr->internal_elf_sym, type));
6286
6287 if (flags & BSF_SECTION_SYM)
6288 {
6289 if (flags & BSF_GLOBAL)
6290 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6291 else
6292 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6293 }
6294 else if (bfd_is_com_section (syms[idx]->section))
6295 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6296 else if (bfd_is_und_section (syms[idx]->section))
6297 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6298 ? STB_WEAK
6299 : STB_GLOBAL),
6300 type);
6301 else if (flags & BSF_FILE)
6302 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6303 else
6304 {
6305 int bind = STB_LOCAL;
6306
6307 if (flags & BSF_LOCAL)
6308 bind = STB_LOCAL;
6309 else if (flags & BSF_WEAK)
6310 bind = STB_WEAK;
6311 else if (flags & BSF_GLOBAL)
6312 bind = STB_GLOBAL;
6313
6314 sym.st_info = ELF_ST_INFO (bind, type);
6315 }
6316
6317 if (type_ptr != NULL)
6318 sym.st_other = type_ptr->internal_elf_sym.st_other;
6319 else
6320 sym.st_other = 0;
6321
6322 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6323 outbound_syms += bed->s->sizeof_sym;
6324 if (outbound_shndx != NULL)
6325 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6326 }
6327
6328 *sttp = stt;
6329 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6330 symstrtab_hdr->sh_type = SHT_STRTAB;
6331
6332 symstrtab_hdr->sh_flags = 0;
6333 symstrtab_hdr->sh_addr = 0;
6334 symstrtab_hdr->sh_entsize = 0;
6335 symstrtab_hdr->sh_link = 0;
6336 symstrtab_hdr->sh_info = 0;
6337 symstrtab_hdr->sh_addralign = 1;
6338
6339 return TRUE;
6340 }
6341
6342 /* Return the number of bytes required to hold the symtab vector.
6343
6344 Note that we base it on the count plus 1, since we will null terminate
6345 the vector allocated based on this size. However, the ELF symbol table
6346 always has a dummy entry as symbol #0, so it ends up even. */
6347
6348 long
6349 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6350 {
6351 long symcount;
6352 long symtab_size;
6353 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6354
6355 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6356 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6357 if (symcount > 0)
6358 symtab_size -= sizeof (asymbol *);
6359
6360 return symtab_size;
6361 }
6362
6363 long
6364 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6365 {
6366 long symcount;
6367 long symtab_size;
6368 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6369
6370 if (elf_dynsymtab (abfd) == 0)
6371 {
6372 bfd_set_error (bfd_error_invalid_operation);
6373 return -1;
6374 }
6375
6376 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6377 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6378 if (symcount > 0)
6379 symtab_size -= sizeof (asymbol *);
6380
6381 return symtab_size;
6382 }
6383
6384 long
6385 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6386 sec_ptr asect)
6387 {
6388 return (asect->reloc_count + 1) * sizeof (arelent *);
6389 }
6390
6391 /* Canonicalize the relocs. */
6392
6393 long
6394 _bfd_elf_canonicalize_reloc (bfd *abfd,
6395 sec_ptr section,
6396 arelent **relptr,
6397 asymbol **symbols)
6398 {
6399 arelent *tblptr;
6400 unsigned int i;
6401 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6402
6403 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6404 return -1;
6405
6406 tblptr = section->relocation;
6407 for (i = 0; i < section->reloc_count; i++)
6408 *relptr++ = tblptr++;
6409
6410 *relptr = NULL;
6411
6412 return section->reloc_count;
6413 }
6414
6415 long
6416 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6417 {
6418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6419 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6420
6421 if (symcount >= 0)
6422 bfd_get_symcount (abfd) = symcount;
6423 return symcount;
6424 }
6425
6426 long
6427 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6428 asymbol **allocation)
6429 {
6430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6431 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6432
6433 if (symcount >= 0)
6434 bfd_get_dynamic_symcount (abfd) = symcount;
6435 return symcount;
6436 }
6437
6438 /* Return the size required for the dynamic reloc entries. Any loadable
6439 section that was actually installed in the BFD, and has type SHT_REL
6440 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6441 dynamic reloc section. */
6442
6443 long
6444 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6445 {
6446 long ret;
6447 asection *s;
6448
6449 if (elf_dynsymtab (abfd) == 0)
6450 {
6451 bfd_set_error (bfd_error_invalid_operation);
6452 return -1;
6453 }
6454
6455 ret = sizeof (arelent *);
6456 for (s = abfd->sections; s != NULL; s = s->next)
6457 if ((s->flags & SEC_LOAD) != 0
6458 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6459 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6460 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6461 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6462 * sizeof (arelent *));
6463
6464 return ret;
6465 }
6466
6467 /* Canonicalize the dynamic relocation entries. Note that we return the
6468 dynamic relocations as a single block, although they are actually
6469 associated with particular sections; the interface, which was
6470 designed for SunOS style shared libraries, expects that there is only
6471 one set of dynamic relocs. Any loadable section that was actually
6472 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6473 dynamic symbol table, is considered to be a dynamic reloc section. */
6474
6475 long
6476 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6477 arelent **storage,
6478 asymbol **syms)
6479 {
6480 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6481 asection *s;
6482 long ret;
6483
6484 if (elf_dynsymtab (abfd) == 0)
6485 {
6486 bfd_set_error (bfd_error_invalid_operation);
6487 return -1;
6488 }
6489
6490 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6491 ret = 0;
6492 for (s = abfd->sections; s != NULL; s = s->next)
6493 {
6494 if ((s->flags & SEC_LOAD) != 0
6495 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6496 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6497 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6498 {
6499 arelent *p;
6500 long count, i;
6501
6502 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6503 return -1;
6504 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6505 p = s->relocation;
6506 for (i = 0; i < count; i++)
6507 *storage++ = p++;
6508 ret += count;
6509 }
6510 }
6511
6512 *storage = NULL;
6513
6514 return ret;
6515 }
6516 \f
6517 /* Read in the version information. */
6518
6519 bfd_boolean
6520 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6521 {
6522 bfd_byte *contents = NULL;
6523 unsigned int freeidx = 0;
6524
6525 if (elf_dynverref (abfd) != 0)
6526 {
6527 Elf_Internal_Shdr *hdr;
6528 Elf_External_Verneed *everneed;
6529 Elf_Internal_Verneed *iverneed;
6530 unsigned int i;
6531 bfd_byte *contents_end;
6532
6533 hdr = &elf_tdata (abfd)->dynverref_hdr;
6534
6535 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6536 sizeof (Elf_Internal_Verneed));
6537 if (elf_tdata (abfd)->verref == NULL)
6538 goto error_return;
6539
6540 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6541
6542 contents = bfd_malloc (hdr->sh_size);
6543 if (contents == NULL)
6544 {
6545 error_return_verref:
6546 elf_tdata (abfd)->verref = NULL;
6547 elf_tdata (abfd)->cverrefs = 0;
6548 goto error_return;
6549 }
6550 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6551 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6552 goto error_return_verref;
6553
6554 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6555 goto error_return_verref;
6556
6557 BFD_ASSERT (sizeof (Elf_External_Verneed)
6558 == sizeof (Elf_External_Vernaux));
6559 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6560 everneed = (Elf_External_Verneed *) contents;
6561 iverneed = elf_tdata (abfd)->verref;
6562 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6563 {
6564 Elf_External_Vernaux *evernaux;
6565 Elf_Internal_Vernaux *ivernaux;
6566 unsigned int j;
6567
6568 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6569
6570 iverneed->vn_bfd = abfd;
6571
6572 iverneed->vn_filename =
6573 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6574 iverneed->vn_file);
6575 if (iverneed->vn_filename == NULL)
6576 goto error_return_verref;
6577
6578 if (iverneed->vn_cnt == 0)
6579 iverneed->vn_auxptr = NULL;
6580 else
6581 {
6582 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6583 sizeof (Elf_Internal_Vernaux));
6584 if (iverneed->vn_auxptr == NULL)
6585 goto error_return_verref;
6586 }
6587
6588 if (iverneed->vn_aux
6589 > (size_t) (contents_end - (bfd_byte *) everneed))
6590 goto error_return_verref;
6591
6592 evernaux = ((Elf_External_Vernaux *)
6593 ((bfd_byte *) everneed + iverneed->vn_aux));
6594 ivernaux = iverneed->vn_auxptr;
6595 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6596 {
6597 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6598
6599 ivernaux->vna_nodename =
6600 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6601 ivernaux->vna_name);
6602 if (ivernaux->vna_nodename == NULL)
6603 goto error_return_verref;
6604
6605 if (j + 1 < iverneed->vn_cnt)
6606 ivernaux->vna_nextptr = ivernaux + 1;
6607 else
6608 ivernaux->vna_nextptr = NULL;
6609
6610 if (ivernaux->vna_next
6611 > (size_t) (contents_end - (bfd_byte *) evernaux))
6612 goto error_return_verref;
6613
6614 evernaux = ((Elf_External_Vernaux *)
6615 ((bfd_byte *) evernaux + ivernaux->vna_next));
6616
6617 if (ivernaux->vna_other > freeidx)
6618 freeidx = ivernaux->vna_other;
6619 }
6620
6621 if (i + 1 < hdr->sh_info)
6622 iverneed->vn_nextref = iverneed + 1;
6623 else
6624 iverneed->vn_nextref = NULL;
6625
6626 if (iverneed->vn_next
6627 > (size_t) (contents_end - (bfd_byte *) everneed))
6628 goto error_return_verref;
6629
6630 everneed = ((Elf_External_Verneed *)
6631 ((bfd_byte *) everneed + iverneed->vn_next));
6632 }
6633
6634 free (contents);
6635 contents = NULL;
6636 }
6637
6638 if (elf_dynverdef (abfd) != 0)
6639 {
6640 Elf_Internal_Shdr *hdr;
6641 Elf_External_Verdef *everdef;
6642 Elf_Internal_Verdef *iverdef;
6643 Elf_Internal_Verdef *iverdefarr;
6644 Elf_Internal_Verdef iverdefmem;
6645 unsigned int i;
6646 unsigned int maxidx;
6647 bfd_byte *contents_end_def, *contents_end_aux;
6648
6649 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6650
6651 contents = bfd_malloc (hdr->sh_size);
6652 if (contents == NULL)
6653 goto error_return;
6654 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6655 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6656 goto error_return;
6657
6658 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6659 goto error_return;
6660
6661 BFD_ASSERT (sizeof (Elf_External_Verdef)
6662 >= sizeof (Elf_External_Verdaux));
6663 contents_end_def = contents + hdr->sh_size
6664 - sizeof (Elf_External_Verdef);
6665 contents_end_aux = contents + hdr->sh_size
6666 - sizeof (Elf_External_Verdaux);
6667
6668 /* We know the number of entries in the section but not the maximum
6669 index. Therefore we have to run through all entries and find
6670 the maximum. */
6671 everdef = (Elf_External_Verdef *) contents;
6672 maxidx = 0;
6673 for (i = 0; i < hdr->sh_info; ++i)
6674 {
6675 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6676
6677 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6678 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6679
6680 if (iverdefmem.vd_next
6681 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6682 goto error_return;
6683
6684 everdef = ((Elf_External_Verdef *)
6685 ((bfd_byte *) everdef + iverdefmem.vd_next));
6686 }
6687
6688 if (default_imported_symver)
6689 {
6690 if (freeidx > maxidx)
6691 maxidx = ++freeidx;
6692 else
6693 freeidx = ++maxidx;
6694 }
6695 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6696 sizeof (Elf_Internal_Verdef));
6697 if (elf_tdata (abfd)->verdef == NULL)
6698 goto error_return;
6699
6700 elf_tdata (abfd)->cverdefs = maxidx;
6701
6702 everdef = (Elf_External_Verdef *) contents;
6703 iverdefarr = elf_tdata (abfd)->verdef;
6704 for (i = 0; i < hdr->sh_info; i++)
6705 {
6706 Elf_External_Verdaux *everdaux;
6707 Elf_Internal_Verdaux *iverdaux;
6708 unsigned int j;
6709
6710 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6711
6712 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6713 {
6714 error_return_verdef:
6715 elf_tdata (abfd)->verdef = NULL;
6716 elf_tdata (abfd)->cverdefs = 0;
6717 goto error_return;
6718 }
6719
6720 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6721 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6722
6723 iverdef->vd_bfd = abfd;
6724
6725 if (iverdef->vd_cnt == 0)
6726 iverdef->vd_auxptr = NULL;
6727 else
6728 {
6729 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6730 sizeof (Elf_Internal_Verdaux));
6731 if (iverdef->vd_auxptr == NULL)
6732 goto error_return_verdef;
6733 }
6734
6735 if (iverdef->vd_aux
6736 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6737 goto error_return_verdef;
6738
6739 everdaux = ((Elf_External_Verdaux *)
6740 ((bfd_byte *) everdef + iverdef->vd_aux));
6741 iverdaux = iverdef->vd_auxptr;
6742 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6743 {
6744 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6745
6746 iverdaux->vda_nodename =
6747 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6748 iverdaux->vda_name);
6749 if (iverdaux->vda_nodename == NULL)
6750 goto error_return_verdef;
6751
6752 if (j + 1 < iverdef->vd_cnt)
6753 iverdaux->vda_nextptr = iverdaux + 1;
6754 else
6755 iverdaux->vda_nextptr = NULL;
6756
6757 if (iverdaux->vda_next
6758 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6759 goto error_return_verdef;
6760
6761 everdaux = ((Elf_External_Verdaux *)
6762 ((bfd_byte *) everdaux + iverdaux->vda_next));
6763 }
6764
6765 if (iverdef->vd_cnt)
6766 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6767
6768 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6769 iverdef->vd_nextdef = iverdef + 1;
6770 else
6771 iverdef->vd_nextdef = NULL;
6772
6773 everdef = ((Elf_External_Verdef *)
6774 ((bfd_byte *) everdef + iverdef->vd_next));
6775 }
6776
6777 free (contents);
6778 contents = NULL;
6779 }
6780 else if (default_imported_symver)
6781 {
6782 if (freeidx < 3)
6783 freeidx = 3;
6784 else
6785 freeidx++;
6786
6787 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6788 sizeof (Elf_Internal_Verdef));
6789 if (elf_tdata (abfd)->verdef == NULL)
6790 goto error_return;
6791
6792 elf_tdata (abfd)->cverdefs = freeidx;
6793 }
6794
6795 /* Create a default version based on the soname. */
6796 if (default_imported_symver)
6797 {
6798 Elf_Internal_Verdef *iverdef;
6799 Elf_Internal_Verdaux *iverdaux;
6800
6801 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6802
6803 iverdef->vd_version = VER_DEF_CURRENT;
6804 iverdef->vd_flags = 0;
6805 iverdef->vd_ndx = freeidx;
6806 iverdef->vd_cnt = 1;
6807
6808 iverdef->vd_bfd = abfd;
6809
6810 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6811 if (iverdef->vd_nodename == NULL)
6812 goto error_return_verdef;
6813 iverdef->vd_nextdef = NULL;
6814 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6815 if (iverdef->vd_auxptr == NULL)
6816 goto error_return_verdef;
6817
6818 iverdaux = iverdef->vd_auxptr;
6819 iverdaux->vda_nodename = iverdef->vd_nodename;
6820 iverdaux->vda_nextptr = NULL;
6821 }
6822
6823 return TRUE;
6824
6825 error_return:
6826 if (contents != NULL)
6827 free (contents);
6828 return FALSE;
6829 }
6830 \f
6831 asymbol *
6832 _bfd_elf_make_empty_symbol (bfd *abfd)
6833 {
6834 elf_symbol_type *newsym;
6835 bfd_size_type amt = sizeof (elf_symbol_type);
6836
6837 newsym = bfd_zalloc (abfd, amt);
6838 if (!newsym)
6839 return NULL;
6840 else
6841 {
6842 newsym->symbol.the_bfd = abfd;
6843 return &newsym->symbol;
6844 }
6845 }
6846
6847 void
6848 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6849 asymbol *symbol,
6850 symbol_info *ret)
6851 {
6852 bfd_symbol_info (symbol, ret);
6853 }
6854
6855 /* Return whether a symbol name implies a local symbol. Most targets
6856 use this function for the is_local_label_name entry point, but some
6857 override it. */
6858
6859 bfd_boolean
6860 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6861 const char *name)
6862 {
6863 /* Normal local symbols start with ``.L''. */
6864 if (name[0] == '.' && name[1] == 'L')
6865 return TRUE;
6866
6867 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6868 DWARF debugging symbols starting with ``..''. */
6869 if (name[0] == '.' && name[1] == '.')
6870 return TRUE;
6871
6872 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6873 emitting DWARF debugging output. I suspect this is actually a
6874 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6875 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6876 underscore to be emitted on some ELF targets). For ease of use,
6877 we treat such symbols as local. */
6878 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6879 return TRUE;
6880
6881 return FALSE;
6882 }
6883
6884 alent *
6885 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6886 asymbol *symbol ATTRIBUTE_UNUSED)
6887 {
6888 abort ();
6889 return NULL;
6890 }
6891
6892 bfd_boolean
6893 _bfd_elf_set_arch_mach (bfd *abfd,
6894 enum bfd_architecture arch,
6895 unsigned long machine)
6896 {
6897 /* If this isn't the right architecture for this backend, and this
6898 isn't the generic backend, fail. */
6899 if (arch != get_elf_backend_data (abfd)->arch
6900 && arch != bfd_arch_unknown
6901 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6902 return FALSE;
6903
6904 return bfd_default_set_arch_mach (abfd, arch, machine);
6905 }
6906
6907 /* Find the function to a particular section and offset,
6908 for error reporting. */
6909
6910 static bfd_boolean
6911 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6912 asection *section,
6913 asymbol **symbols,
6914 bfd_vma offset,
6915 const char **filename_ptr,
6916 const char **functionname_ptr)
6917 {
6918 const char *filename;
6919 asymbol *func, *file;
6920 bfd_vma low_func;
6921 asymbol **p;
6922 /* ??? Given multiple file symbols, it is impossible to reliably
6923 choose the right file name for global symbols. File symbols are
6924 local symbols, and thus all file symbols must sort before any
6925 global symbols. The ELF spec may be interpreted to say that a
6926 file symbol must sort before other local symbols, but currently
6927 ld -r doesn't do this. So, for ld -r output, it is possible to
6928 make a better choice of file name for local symbols by ignoring
6929 file symbols appearing after a given local symbol. */
6930 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6931
6932 filename = NULL;
6933 func = NULL;
6934 file = NULL;
6935 low_func = 0;
6936 state = nothing_seen;
6937
6938 for (p = symbols; *p != NULL; p++)
6939 {
6940 elf_symbol_type *q;
6941
6942 q = (elf_symbol_type *) *p;
6943
6944 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6945 {
6946 default:
6947 break;
6948 case STT_FILE:
6949 file = &q->symbol;
6950 if (state == symbol_seen)
6951 state = file_after_symbol_seen;
6952 continue;
6953 case STT_NOTYPE:
6954 case STT_FUNC:
6955 if (bfd_get_section (&q->symbol) == section
6956 && q->symbol.value >= low_func
6957 && q->symbol.value <= offset)
6958 {
6959 func = (asymbol *) q;
6960 low_func = q->symbol.value;
6961 filename = NULL;
6962 if (file != NULL
6963 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6964 || state != file_after_symbol_seen))
6965 filename = bfd_asymbol_name (file);
6966 }
6967 break;
6968 }
6969 if (state == nothing_seen)
6970 state = symbol_seen;
6971 }
6972
6973 if (func == NULL)
6974 return FALSE;
6975
6976 if (filename_ptr)
6977 *filename_ptr = filename;
6978 if (functionname_ptr)
6979 *functionname_ptr = bfd_asymbol_name (func);
6980
6981 return TRUE;
6982 }
6983
6984 /* Find the nearest line to a particular section and offset,
6985 for error reporting. */
6986
6987 bfd_boolean
6988 _bfd_elf_find_nearest_line (bfd *abfd,
6989 asection *section,
6990 asymbol **symbols,
6991 bfd_vma offset,
6992 const char **filename_ptr,
6993 const char **functionname_ptr,
6994 unsigned int *line_ptr)
6995 {
6996 bfd_boolean found;
6997
6998 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6999 filename_ptr, functionname_ptr,
7000 line_ptr))
7001 {
7002 if (!*functionname_ptr)
7003 elf_find_function (abfd, section, symbols, offset,
7004 *filename_ptr ? NULL : filename_ptr,
7005 functionname_ptr);
7006
7007 return TRUE;
7008 }
7009
7010 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7011 filename_ptr, functionname_ptr,
7012 line_ptr, 0,
7013 &elf_tdata (abfd)->dwarf2_find_line_info))
7014 {
7015 if (!*functionname_ptr)
7016 elf_find_function (abfd, section, symbols, offset,
7017 *filename_ptr ? NULL : filename_ptr,
7018 functionname_ptr);
7019
7020 return TRUE;
7021 }
7022
7023 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7024 &found, filename_ptr,
7025 functionname_ptr, line_ptr,
7026 &elf_tdata (abfd)->line_info))
7027 return FALSE;
7028 if (found && (*functionname_ptr || *line_ptr))
7029 return TRUE;
7030
7031 if (symbols == NULL)
7032 return FALSE;
7033
7034 if (! elf_find_function (abfd, section, symbols, offset,
7035 filename_ptr, functionname_ptr))
7036 return FALSE;
7037
7038 *line_ptr = 0;
7039 return TRUE;
7040 }
7041
7042 /* Find the line for a symbol. */
7043
7044 bfd_boolean
7045 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7046 const char **filename_ptr, unsigned int *line_ptr)
7047 {
7048 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7049 filename_ptr, line_ptr, 0,
7050 &elf_tdata (abfd)->dwarf2_find_line_info);
7051 }
7052
7053 /* After a call to bfd_find_nearest_line, successive calls to
7054 bfd_find_inliner_info can be used to get source information about
7055 each level of function inlining that terminated at the address
7056 passed to bfd_find_nearest_line. Currently this is only supported
7057 for DWARF2 with appropriate DWARF3 extensions. */
7058
7059 bfd_boolean
7060 _bfd_elf_find_inliner_info (bfd *abfd,
7061 const char **filename_ptr,
7062 const char **functionname_ptr,
7063 unsigned int *line_ptr)
7064 {
7065 bfd_boolean found;
7066 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7067 functionname_ptr, line_ptr,
7068 & elf_tdata (abfd)->dwarf2_find_line_info);
7069 return found;
7070 }
7071
7072 int
7073 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7074 {
7075 int ret;
7076
7077 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7078 if (! reloc)
7079 ret += get_program_header_size (abfd);
7080 return ret;
7081 }
7082
7083 bfd_boolean
7084 _bfd_elf_set_section_contents (bfd *abfd,
7085 sec_ptr section,
7086 const void *location,
7087 file_ptr offset,
7088 bfd_size_type count)
7089 {
7090 Elf_Internal_Shdr *hdr;
7091 bfd_signed_vma pos;
7092
7093 if (! abfd->output_has_begun
7094 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7095 return FALSE;
7096
7097 hdr = &elf_section_data (section)->this_hdr;
7098 pos = hdr->sh_offset + offset;
7099 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7100 || bfd_bwrite (location, count, abfd) != count)
7101 return FALSE;
7102
7103 return TRUE;
7104 }
7105
7106 void
7107 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7108 arelent *cache_ptr ATTRIBUTE_UNUSED,
7109 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7110 {
7111 abort ();
7112 }
7113
7114 /* Try to convert a non-ELF reloc into an ELF one. */
7115
7116 bfd_boolean
7117 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7118 {
7119 /* Check whether we really have an ELF howto. */
7120
7121 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7122 {
7123 bfd_reloc_code_real_type code;
7124 reloc_howto_type *howto;
7125
7126 /* Alien reloc: Try to determine its type to replace it with an
7127 equivalent ELF reloc. */
7128
7129 if (areloc->howto->pc_relative)
7130 {
7131 switch (areloc->howto->bitsize)
7132 {
7133 case 8:
7134 code = BFD_RELOC_8_PCREL;
7135 break;
7136 case 12:
7137 code = BFD_RELOC_12_PCREL;
7138 break;
7139 case 16:
7140 code = BFD_RELOC_16_PCREL;
7141 break;
7142 case 24:
7143 code = BFD_RELOC_24_PCREL;
7144 break;
7145 case 32:
7146 code = BFD_RELOC_32_PCREL;
7147 break;
7148 case 64:
7149 code = BFD_RELOC_64_PCREL;
7150 break;
7151 default:
7152 goto fail;
7153 }
7154
7155 howto = bfd_reloc_type_lookup (abfd, code);
7156
7157 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7158 {
7159 if (howto->pcrel_offset)
7160 areloc->addend += areloc->address;
7161 else
7162 areloc->addend -= areloc->address; /* addend is unsigned!! */
7163 }
7164 }
7165 else
7166 {
7167 switch (areloc->howto->bitsize)
7168 {
7169 case 8:
7170 code = BFD_RELOC_8;
7171 break;
7172 case 14:
7173 code = BFD_RELOC_14;
7174 break;
7175 case 16:
7176 code = BFD_RELOC_16;
7177 break;
7178 case 26:
7179 code = BFD_RELOC_26;
7180 break;
7181 case 32:
7182 code = BFD_RELOC_32;
7183 break;
7184 case 64:
7185 code = BFD_RELOC_64;
7186 break;
7187 default:
7188 goto fail;
7189 }
7190
7191 howto = bfd_reloc_type_lookup (abfd, code);
7192 }
7193
7194 if (howto)
7195 areloc->howto = howto;
7196 else
7197 goto fail;
7198 }
7199
7200 return TRUE;
7201
7202 fail:
7203 (*_bfd_error_handler)
7204 (_("%B: unsupported relocation type %s"),
7205 abfd, areloc->howto->name);
7206 bfd_set_error (bfd_error_bad_value);
7207 return FALSE;
7208 }
7209
7210 bfd_boolean
7211 _bfd_elf_close_and_cleanup (bfd *abfd)
7212 {
7213 if (bfd_get_format (abfd) == bfd_object)
7214 {
7215 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7216 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7217 _bfd_dwarf2_cleanup_debug_info (abfd);
7218 }
7219
7220 return _bfd_generic_close_and_cleanup (abfd);
7221 }
7222
7223 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7224 in the relocation's offset. Thus we cannot allow any sort of sanity
7225 range-checking to interfere. There is nothing else to do in processing
7226 this reloc. */
7227
7228 bfd_reloc_status_type
7229 _bfd_elf_rel_vtable_reloc_fn
7230 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7231 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7232 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7233 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7234 {
7235 return bfd_reloc_ok;
7236 }
7237 \f
7238 /* Elf core file support. Much of this only works on native
7239 toolchains, since we rely on knowing the
7240 machine-dependent procfs structure in order to pick
7241 out details about the corefile. */
7242
7243 #ifdef HAVE_SYS_PROCFS_H
7244 # include <sys/procfs.h>
7245 #endif
7246
7247 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7248
7249 static int
7250 elfcore_make_pid (bfd *abfd)
7251 {
7252 return ((elf_tdata (abfd)->core_lwpid << 16)
7253 + (elf_tdata (abfd)->core_pid));
7254 }
7255
7256 /* If there isn't a section called NAME, make one, using
7257 data from SECT. Note, this function will generate a
7258 reference to NAME, so you shouldn't deallocate or
7259 overwrite it. */
7260
7261 static bfd_boolean
7262 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7263 {
7264 asection *sect2;
7265
7266 if (bfd_get_section_by_name (abfd, name) != NULL)
7267 return TRUE;
7268
7269 sect2 = bfd_make_section (abfd, name);
7270 if (sect2 == NULL)
7271 return FALSE;
7272
7273 sect2->size = sect->size;
7274 sect2->filepos = sect->filepos;
7275 sect2->flags = sect->flags;
7276 sect2->alignment_power = sect->alignment_power;
7277 return TRUE;
7278 }
7279
7280 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7281 actually creates up to two pseudosections:
7282 - For the single-threaded case, a section named NAME, unless
7283 such a section already exists.
7284 - For the multi-threaded case, a section named "NAME/PID", where
7285 PID is elfcore_make_pid (abfd).
7286 Both pseudosections have identical contents. */
7287 bfd_boolean
7288 _bfd_elfcore_make_pseudosection (bfd *abfd,
7289 char *name,
7290 size_t size,
7291 ufile_ptr filepos)
7292 {
7293 char buf[100];
7294 char *threaded_name;
7295 size_t len;
7296 asection *sect;
7297
7298 /* Build the section name. */
7299
7300 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7301 len = strlen (buf) + 1;
7302 threaded_name = bfd_alloc (abfd, len);
7303 if (threaded_name == NULL)
7304 return FALSE;
7305 memcpy (threaded_name, buf, len);
7306
7307 sect = bfd_make_section_anyway (abfd, threaded_name);
7308 if (sect == NULL)
7309 return FALSE;
7310 sect->size = size;
7311 sect->filepos = filepos;
7312 sect->flags = SEC_HAS_CONTENTS;
7313 sect->alignment_power = 2;
7314
7315 return elfcore_maybe_make_sect (abfd, name, sect);
7316 }
7317
7318 /* prstatus_t exists on:
7319 solaris 2.5+
7320 linux 2.[01] + glibc
7321 unixware 4.2
7322 */
7323
7324 #if defined (HAVE_PRSTATUS_T)
7325
7326 static bfd_boolean
7327 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7328 {
7329 size_t size;
7330 int offset;
7331
7332 if (note->descsz == sizeof (prstatus_t))
7333 {
7334 prstatus_t prstat;
7335
7336 size = sizeof (prstat.pr_reg);
7337 offset = offsetof (prstatus_t, pr_reg);
7338 memcpy (&prstat, note->descdata, sizeof (prstat));
7339
7340 /* Do not overwrite the core signal if it
7341 has already been set by another thread. */
7342 if (elf_tdata (abfd)->core_signal == 0)
7343 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7344 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7345
7346 /* pr_who exists on:
7347 solaris 2.5+
7348 unixware 4.2
7349 pr_who doesn't exist on:
7350 linux 2.[01]
7351 */
7352 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7353 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7354 #endif
7355 }
7356 #if defined (HAVE_PRSTATUS32_T)
7357 else if (note->descsz == sizeof (prstatus32_t))
7358 {
7359 /* 64-bit host, 32-bit corefile */
7360 prstatus32_t prstat;
7361
7362 size = sizeof (prstat.pr_reg);
7363 offset = offsetof (prstatus32_t, pr_reg);
7364 memcpy (&prstat, note->descdata, sizeof (prstat));
7365
7366 /* Do not overwrite the core signal if it
7367 has already been set by another thread. */
7368 if (elf_tdata (abfd)->core_signal == 0)
7369 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7370 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7371
7372 /* pr_who exists on:
7373 solaris 2.5+
7374 unixware 4.2
7375 pr_who doesn't exist on:
7376 linux 2.[01]
7377 */
7378 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7379 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7380 #endif
7381 }
7382 #endif /* HAVE_PRSTATUS32_T */
7383 else
7384 {
7385 /* Fail - we don't know how to handle any other
7386 note size (ie. data object type). */
7387 return TRUE;
7388 }
7389
7390 /* Make a ".reg/999" section and a ".reg" section. */
7391 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7392 size, note->descpos + offset);
7393 }
7394 #endif /* defined (HAVE_PRSTATUS_T) */
7395
7396 /* Create a pseudosection containing the exact contents of NOTE. */
7397 static bfd_boolean
7398 elfcore_make_note_pseudosection (bfd *abfd,
7399 char *name,
7400 Elf_Internal_Note *note)
7401 {
7402 return _bfd_elfcore_make_pseudosection (abfd, name,
7403 note->descsz, note->descpos);
7404 }
7405
7406 /* There isn't a consistent prfpregset_t across platforms,
7407 but it doesn't matter, because we don't have to pick this
7408 data structure apart. */
7409
7410 static bfd_boolean
7411 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7412 {
7413 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7414 }
7415
7416 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7417 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7418 literally. */
7419
7420 static bfd_boolean
7421 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7422 {
7423 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7424 }
7425
7426 #if defined (HAVE_PRPSINFO_T)
7427 typedef prpsinfo_t elfcore_psinfo_t;
7428 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7429 typedef prpsinfo32_t elfcore_psinfo32_t;
7430 #endif
7431 #endif
7432
7433 #if defined (HAVE_PSINFO_T)
7434 typedef psinfo_t elfcore_psinfo_t;
7435 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7436 typedef psinfo32_t elfcore_psinfo32_t;
7437 #endif
7438 #endif
7439
7440 /* return a malloc'ed copy of a string at START which is at
7441 most MAX bytes long, possibly without a terminating '\0'.
7442 the copy will always have a terminating '\0'. */
7443
7444 char *
7445 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7446 {
7447 char *dups;
7448 char *end = memchr (start, '\0', max);
7449 size_t len;
7450
7451 if (end == NULL)
7452 len = max;
7453 else
7454 len = end - start;
7455
7456 dups = bfd_alloc (abfd, len + 1);
7457 if (dups == NULL)
7458 return NULL;
7459
7460 memcpy (dups, start, len);
7461 dups[len] = '\0';
7462
7463 return dups;
7464 }
7465
7466 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7467 static bfd_boolean
7468 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7469 {
7470 if (note->descsz == sizeof (elfcore_psinfo_t))
7471 {
7472 elfcore_psinfo_t psinfo;
7473
7474 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7475
7476 elf_tdata (abfd)->core_program
7477 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7478 sizeof (psinfo.pr_fname));
7479
7480 elf_tdata (abfd)->core_command
7481 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7482 sizeof (psinfo.pr_psargs));
7483 }
7484 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7485 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7486 {
7487 /* 64-bit host, 32-bit corefile */
7488 elfcore_psinfo32_t psinfo;
7489
7490 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7491
7492 elf_tdata (abfd)->core_program
7493 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7494 sizeof (psinfo.pr_fname));
7495
7496 elf_tdata (abfd)->core_command
7497 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7498 sizeof (psinfo.pr_psargs));
7499 }
7500 #endif
7501
7502 else
7503 {
7504 /* Fail - we don't know how to handle any other
7505 note size (ie. data object type). */
7506 return TRUE;
7507 }
7508
7509 /* Note that for some reason, a spurious space is tacked
7510 onto the end of the args in some (at least one anyway)
7511 implementations, so strip it off if it exists. */
7512
7513 {
7514 char *command = elf_tdata (abfd)->core_command;
7515 int n = strlen (command);
7516
7517 if (0 < n && command[n - 1] == ' ')
7518 command[n - 1] = '\0';
7519 }
7520
7521 return TRUE;
7522 }
7523 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7524
7525 #if defined (HAVE_PSTATUS_T)
7526 static bfd_boolean
7527 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7528 {
7529 if (note->descsz == sizeof (pstatus_t)
7530 #if defined (HAVE_PXSTATUS_T)
7531 || note->descsz == sizeof (pxstatus_t)
7532 #endif
7533 )
7534 {
7535 pstatus_t pstat;
7536
7537 memcpy (&pstat, note->descdata, sizeof (pstat));
7538
7539 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7540 }
7541 #if defined (HAVE_PSTATUS32_T)
7542 else if (note->descsz == sizeof (pstatus32_t))
7543 {
7544 /* 64-bit host, 32-bit corefile */
7545 pstatus32_t pstat;
7546
7547 memcpy (&pstat, note->descdata, sizeof (pstat));
7548
7549 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7550 }
7551 #endif
7552 /* Could grab some more details from the "representative"
7553 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7554 NT_LWPSTATUS note, presumably. */
7555
7556 return TRUE;
7557 }
7558 #endif /* defined (HAVE_PSTATUS_T) */
7559
7560 #if defined (HAVE_LWPSTATUS_T)
7561 static bfd_boolean
7562 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7563 {
7564 lwpstatus_t lwpstat;
7565 char buf[100];
7566 char *name;
7567 size_t len;
7568 asection *sect;
7569
7570 if (note->descsz != sizeof (lwpstat)
7571 #if defined (HAVE_LWPXSTATUS_T)
7572 && note->descsz != sizeof (lwpxstatus_t)
7573 #endif
7574 )
7575 return TRUE;
7576
7577 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7578
7579 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7580 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7581
7582 /* Make a ".reg/999" section. */
7583
7584 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7585 len = strlen (buf) + 1;
7586 name = bfd_alloc (abfd, len);
7587 if (name == NULL)
7588 return FALSE;
7589 memcpy (name, buf, len);
7590
7591 sect = bfd_make_section_anyway (abfd, name);
7592 if (sect == NULL)
7593 return FALSE;
7594
7595 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7596 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7597 sect->filepos = note->descpos
7598 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7599 #endif
7600
7601 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7602 sect->size = sizeof (lwpstat.pr_reg);
7603 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7604 #endif
7605
7606 sect->flags = SEC_HAS_CONTENTS;
7607 sect->alignment_power = 2;
7608
7609 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7610 return FALSE;
7611
7612 /* Make a ".reg2/999" section */
7613
7614 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7615 len = strlen (buf) + 1;
7616 name = bfd_alloc (abfd, len);
7617 if (name == NULL)
7618 return FALSE;
7619 memcpy (name, buf, len);
7620
7621 sect = bfd_make_section_anyway (abfd, name);
7622 if (sect == NULL)
7623 return FALSE;
7624
7625 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7626 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7627 sect->filepos = note->descpos
7628 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7629 #endif
7630
7631 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7632 sect->size = sizeof (lwpstat.pr_fpreg);
7633 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7634 #endif
7635
7636 sect->flags = SEC_HAS_CONTENTS;
7637 sect->alignment_power = 2;
7638
7639 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7640 }
7641 #endif /* defined (HAVE_LWPSTATUS_T) */
7642
7643 #if defined (HAVE_WIN32_PSTATUS_T)
7644 static bfd_boolean
7645 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7646 {
7647 char buf[30];
7648 char *name;
7649 size_t len;
7650 asection *sect;
7651 win32_pstatus_t pstatus;
7652
7653 if (note->descsz < sizeof (pstatus))
7654 return TRUE;
7655
7656 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7657
7658 switch (pstatus.data_type)
7659 {
7660 case NOTE_INFO_PROCESS:
7661 /* FIXME: need to add ->core_command. */
7662 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7663 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7664 break;
7665
7666 case NOTE_INFO_THREAD:
7667 /* Make a ".reg/999" section. */
7668 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7669
7670 len = strlen (buf) + 1;
7671 name = bfd_alloc (abfd, len);
7672 if (name == NULL)
7673 return FALSE;
7674
7675 memcpy (name, buf, len);
7676
7677 sect = bfd_make_section_anyway (abfd, name);
7678 if (sect == NULL)
7679 return FALSE;
7680
7681 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7682 sect->filepos = (note->descpos
7683 + offsetof (struct win32_pstatus,
7684 data.thread_info.thread_context));
7685 sect->flags = SEC_HAS_CONTENTS;
7686 sect->alignment_power = 2;
7687
7688 if (pstatus.data.thread_info.is_active_thread)
7689 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7690 return FALSE;
7691 break;
7692
7693 case NOTE_INFO_MODULE:
7694 /* Make a ".module/xxxxxxxx" section. */
7695 sprintf (buf, ".module/%08lx",
7696 (long) pstatus.data.module_info.base_address);
7697
7698 len = strlen (buf) + 1;
7699 name = bfd_alloc (abfd, len);
7700 if (name == NULL)
7701 return FALSE;
7702
7703 memcpy (name, buf, len);
7704
7705 sect = bfd_make_section_anyway (abfd, name);
7706
7707 if (sect == NULL)
7708 return FALSE;
7709
7710 sect->size = note->descsz;
7711 sect->filepos = note->descpos;
7712 sect->flags = SEC_HAS_CONTENTS;
7713 sect->alignment_power = 2;
7714 break;
7715
7716 default:
7717 return TRUE;
7718 }
7719
7720 return TRUE;
7721 }
7722 #endif /* HAVE_WIN32_PSTATUS_T */
7723
7724 static bfd_boolean
7725 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7726 {
7727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7728
7729 switch (note->type)
7730 {
7731 default:
7732 return TRUE;
7733
7734 case NT_PRSTATUS:
7735 if (bed->elf_backend_grok_prstatus)
7736 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7737 return TRUE;
7738 #if defined (HAVE_PRSTATUS_T)
7739 return elfcore_grok_prstatus (abfd, note);
7740 #else
7741 return TRUE;
7742 #endif
7743
7744 #if defined (HAVE_PSTATUS_T)
7745 case NT_PSTATUS:
7746 return elfcore_grok_pstatus (abfd, note);
7747 #endif
7748
7749 #if defined (HAVE_LWPSTATUS_T)
7750 case NT_LWPSTATUS:
7751 return elfcore_grok_lwpstatus (abfd, note);
7752 #endif
7753
7754 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7755 return elfcore_grok_prfpreg (abfd, note);
7756
7757 #if defined (HAVE_WIN32_PSTATUS_T)
7758 case NT_WIN32PSTATUS:
7759 return elfcore_grok_win32pstatus (abfd, note);
7760 #endif
7761
7762 case NT_PRXFPREG: /* Linux SSE extension */
7763 if (note->namesz == 6
7764 && strcmp (note->namedata, "LINUX") == 0)
7765 return elfcore_grok_prxfpreg (abfd, note);
7766 else
7767 return TRUE;
7768
7769 case NT_PRPSINFO:
7770 case NT_PSINFO:
7771 if (bed->elf_backend_grok_psinfo)
7772 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7773 return TRUE;
7774 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7775 return elfcore_grok_psinfo (abfd, note);
7776 #else
7777 return TRUE;
7778 #endif
7779
7780 case NT_AUXV:
7781 {
7782 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7783
7784 if (sect == NULL)
7785 return FALSE;
7786 sect->size = note->descsz;
7787 sect->filepos = note->descpos;
7788 sect->flags = SEC_HAS_CONTENTS;
7789 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7790
7791 return TRUE;
7792 }
7793 }
7794 }
7795
7796 static bfd_boolean
7797 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7798 {
7799 char *cp;
7800
7801 cp = strchr (note->namedata, '@');
7802 if (cp != NULL)
7803 {
7804 *lwpidp = atoi(cp + 1);
7805 return TRUE;
7806 }
7807 return FALSE;
7808 }
7809
7810 static bfd_boolean
7811 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7812 {
7813
7814 /* Signal number at offset 0x08. */
7815 elf_tdata (abfd)->core_signal
7816 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7817
7818 /* Process ID at offset 0x50. */
7819 elf_tdata (abfd)->core_pid
7820 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7821
7822 /* Command name at 0x7c (max 32 bytes, including nul). */
7823 elf_tdata (abfd)->core_command
7824 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7825
7826 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7827 note);
7828 }
7829
7830 static bfd_boolean
7831 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7832 {
7833 int lwp;
7834
7835 if (elfcore_netbsd_get_lwpid (note, &lwp))
7836 elf_tdata (abfd)->core_lwpid = lwp;
7837
7838 if (note->type == NT_NETBSDCORE_PROCINFO)
7839 {
7840 /* NetBSD-specific core "procinfo". Note that we expect to
7841 find this note before any of the others, which is fine,
7842 since the kernel writes this note out first when it
7843 creates a core file. */
7844
7845 return elfcore_grok_netbsd_procinfo (abfd, note);
7846 }
7847
7848 /* As of Jan 2002 there are no other machine-independent notes
7849 defined for NetBSD core files. If the note type is less
7850 than the start of the machine-dependent note types, we don't
7851 understand it. */
7852
7853 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7854 return TRUE;
7855
7856
7857 switch (bfd_get_arch (abfd))
7858 {
7859 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7860 PT_GETFPREGS == mach+2. */
7861
7862 case bfd_arch_alpha:
7863 case bfd_arch_sparc:
7864 switch (note->type)
7865 {
7866 case NT_NETBSDCORE_FIRSTMACH+0:
7867 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7868
7869 case NT_NETBSDCORE_FIRSTMACH+2:
7870 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7871
7872 default:
7873 return TRUE;
7874 }
7875
7876 /* On all other arch's, PT_GETREGS == mach+1 and
7877 PT_GETFPREGS == mach+3. */
7878
7879 default:
7880 switch (note->type)
7881 {
7882 case NT_NETBSDCORE_FIRSTMACH+1:
7883 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7884
7885 case NT_NETBSDCORE_FIRSTMACH+3:
7886 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7887
7888 default:
7889 return TRUE;
7890 }
7891 }
7892 /* NOTREACHED */
7893 }
7894
7895 static bfd_boolean
7896 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7897 {
7898 void *ddata = note->descdata;
7899 char buf[100];
7900 char *name;
7901 asection *sect;
7902 short sig;
7903 unsigned flags;
7904
7905 /* nto_procfs_status 'pid' field is at offset 0. */
7906 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7907
7908 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7909 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7910
7911 /* nto_procfs_status 'flags' field is at offset 8. */
7912 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7913
7914 /* nto_procfs_status 'what' field is at offset 14. */
7915 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7916 {
7917 elf_tdata (abfd)->core_signal = sig;
7918 elf_tdata (abfd)->core_lwpid = *tid;
7919 }
7920
7921 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7922 do not come from signals so we make sure we set the current
7923 thread just in case. */
7924 if (flags & 0x00000080)
7925 elf_tdata (abfd)->core_lwpid = *tid;
7926
7927 /* Make a ".qnx_core_status/%d" section. */
7928 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7929
7930 name = bfd_alloc (abfd, strlen (buf) + 1);
7931 if (name == NULL)
7932 return FALSE;
7933 strcpy (name, buf);
7934
7935 sect = bfd_make_section_anyway (abfd, name);
7936 if (sect == NULL)
7937 return FALSE;
7938
7939 sect->size = note->descsz;
7940 sect->filepos = note->descpos;
7941 sect->flags = SEC_HAS_CONTENTS;
7942 sect->alignment_power = 2;
7943
7944 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7945 }
7946
7947 static bfd_boolean
7948 elfcore_grok_nto_regs (bfd *abfd,
7949 Elf_Internal_Note *note,
7950 pid_t tid,
7951 char *base)
7952 {
7953 char buf[100];
7954 char *name;
7955 asection *sect;
7956
7957 /* Make a "(base)/%d" section. */
7958 sprintf (buf, "%s/%ld", base, (long) tid);
7959
7960 name = bfd_alloc (abfd, strlen (buf) + 1);
7961 if (name == NULL)
7962 return FALSE;
7963 strcpy (name, buf);
7964
7965 sect = bfd_make_section_anyway (abfd, name);
7966 if (sect == NULL)
7967 return FALSE;
7968
7969 sect->size = note->descsz;
7970 sect->filepos = note->descpos;
7971 sect->flags = SEC_HAS_CONTENTS;
7972 sect->alignment_power = 2;
7973
7974 /* This is the current thread. */
7975 if (elf_tdata (abfd)->core_lwpid == tid)
7976 return elfcore_maybe_make_sect (abfd, base, sect);
7977
7978 return TRUE;
7979 }
7980
7981 #define BFD_QNT_CORE_INFO 7
7982 #define BFD_QNT_CORE_STATUS 8
7983 #define BFD_QNT_CORE_GREG 9
7984 #define BFD_QNT_CORE_FPREG 10
7985
7986 static bfd_boolean
7987 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7988 {
7989 /* Every GREG section has a STATUS section before it. Store the
7990 tid from the previous call to pass down to the next gregs
7991 function. */
7992 static pid_t tid = 1;
7993
7994 switch (note->type)
7995 {
7996 case BFD_QNT_CORE_INFO:
7997 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7998 case BFD_QNT_CORE_STATUS:
7999 return elfcore_grok_nto_status (abfd, note, &tid);
8000 case BFD_QNT_CORE_GREG:
8001 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8002 case BFD_QNT_CORE_FPREG:
8003 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8004 default:
8005 return TRUE;
8006 }
8007 }
8008
8009 /* Function: elfcore_write_note
8010
8011 Inputs:
8012 buffer to hold note
8013 name of note
8014 type of note
8015 data for note
8016 size of data for note
8017
8018 Return:
8019 End of buffer containing note. */
8020
8021 char *
8022 elfcore_write_note (bfd *abfd,
8023 char *buf,
8024 int *bufsiz,
8025 const char *name,
8026 int type,
8027 const void *input,
8028 int size)
8029 {
8030 Elf_External_Note *xnp;
8031 size_t namesz;
8032 size_t pad;
8033 size_t newspace;
8034 char *p, *dest;
8035
8036 namesz = 0;
8037 pad = 0;
8038 if (name != NULL)
8039 {
8040 const struct elf_backend_data *bed;
8041
8042 namesz = strlen (name) + 1;
8043 bed = get_elf_backend_data (abfd);
8044 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8045 }
8046
8047 newspace = 12 + namesz + pad + size;
8048
8049 p = realloc (buf, *bufsiz + newspace);
8050 dest = p + *bufsiz;
8051 *bufsiz += newspace;
8052 xnp = (Elf_External_Note *) dest;
8053 H_PUT_32 (abfd, namesz, xnp->namesz);
8054 H_PUT_32 (abfd, size, xnp->descsz);
8055 H_PUT_32 (abfd, type, xnp->type);
8056 dest = xnp->name;
8057 if (name != NULL)
8058 {
8059 memcpy (dest, name, namesz);
8060 dest += namesz;
8061 while (pad != 0)
8062 {
8063 *dest++ = '\0';
8064 --pad;
8065 }
8066 }
8067 memcpy (dest, input, size);
8068 return p;
8069 }
8070
8071 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8072 char *
8073 elfcore_write_prpsinfo (bfd *abfd,
8074 char *buf,
8075 int *bufsiz,
8076 const char *fname,
8077 const char *psargs)
8078 {
8079 int note_type;
8080 char *note_name = "CORE";
8081
8082 #if defined (HAVE_PSINFO_T)
8083 psinfo_t data;
8084 note_type = NT_PSINFO;
8085 #else
8086 prpsinfo_t data;
8087 note_type = NT_PRPSINFO;
8088 #endif
8089
8090 memset (&data, 0, sizeof (data));
8091 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8092 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8093 return elfcore_write_note (abfd, buf, bufsiz,
8094 note_name, note_type, &data, sizeof (data));
8095 }
8096 #endif /* PSINFO_T or PRPSINFO_T */
8097
8098 #if defined (HAVE_PRSTATUS_T)
8099 char *
8100 elfcore_write_prstatus (bfd *abfd,
8101 char *buf,
8102 int *bufsiz,
8103 long pid,
8104 int cursig,
8105 const void *gregs)
8106 {
8107 prstatus_t prstat;
8108 char *note_name = "CORE";
8109
8110 memset (&prstat, 0, sizeof (prstat));
8111 prstat.pr_pid = pid;
8112 prstat.pr_cursig = cursig;
8113 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8114 return elfcore_write_note (abfd, buf, bufsiz,
8115 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8116 }
8117 #endif /* HAVE_PRSTATUS_T */
8118
8119 #if defined (HAVE_LWPSTATUS_T)
8120 char *
8121 elfcore_write_lwpstatus (bfd *abfd,
8122 char *buf,
8123 int *bufsiz,
8124 long pid,
8125 int cursig,
8126 const void *gregs)
8127 {
8128 lwpstatus_t lwpstat;
8129 char *note_name = "CORE";
8130
8131 memset (&lwpstat, 0, sizeof (lwpstat));
8132 lwpstat.pr_lwpid = pid >> 16;
8133 lwpstat.pr_cursig = cursig;
8134 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8135 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8136 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8137 #if !defined(gregs)
8138 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8139 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8140 #else
8141 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8142 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8143 #endif
8144 #endif
8145 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8146 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8147 }
8148 #endif /* HAVE_LWPSTATUS_T */
8149
8150 #if defined (HAVE_PSTATUS_T)
8151 char *
8152 elfcore_write_pstatus (bfd *abfd,
8153 char *buf,
8154 int *bufsiz,
8155 long pid,
8156 int cursig ATTRIBUTE_UNUSED,
8157 const void *gregs ATTRIBUTE_UNUSED)
8158 {
8159 pstatus_t pstat;
8160 char *note_name = "CORE";
8161
8162 memset (&pstat, 0, sizeof (pstat));
8163 pstat.pr_pid = pid & 0xffff;
8164 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8165 NT_PSTATUS, &pstat, sizeof (pstat));
8166 return buf;
8167 }
8168 #endif /* HAVE_PSTATUS_T */
8169
8170 char *
8171 elfcore_write_prfpreg (bfd *abfd,
8172 char *buf,
8173 int *bufsiz,
8174 const void *fpregs,
8175 int size)
8176 {
8177 char *note_name = "CORE";
8178 return elfcore_write_note (abfd, buf, bufsiz,
8179 note_name, NT_FPREGSET, fpregs, size);
8180 }
8181
8182 char *
8183 elfcore_write_prxfpreg (bfd *abfd,
8184 char *buf,
8185 int *bufsiz,
8186 const void *xfpregs,
8187 int size)
8188 {
8189 char *note_name = "LINUX";
8190 return elfcore_write_note (abfd, buf, bufsiz,
8191 note_name, NT_PRXFPREG, xfpregs, size);
8192 }
8193
8194 static bfd_boolean
8195 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8196 {
8197 char *buf;
8198 char *p;
8199
8200 if (size <= 0)
8201 return TRUE;
8202
8203 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8204 return FALSE;
8205
8206 buf = bfd_malloc (size);
8207 if (buf == NULL)
8208 return FALSE;
8209
8210 if (bfd_bread (buf, size, abfd) != size)
8211 {
8212 error:
8213 free (buf);
8214 return FALSE;
8215 }
8216
8217 p = buf;
8218 while (p < buf + size)
8219 {
8220 /* FIXME: bad alignment assumption. */
8221 Elf_External_Note *xnp = (Elf_External_Note *) p;
8222 Elf_Internal_Note in;
8223
8224 in.type = H_GET_32 (abfd, xnp->type);
8225
8226 in.namesz = H_GET_32 (abfd, xnp->namesz);
8227 in.namedata = xnp->name;
8228
8229 in.descsz = H_GET_32 (abfd, xnp->descsz);
8230 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8231 in.descpos = offset + (in.descdata - buf);
8232
8233 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8234 {
8235 if (! elfcore_grok_netbsd_note (abfd, &in))
8236 goto error;
8237 }
8238 else if (strncmp (in.namedata, "QNX", 3) == 0)
8239 {
8240 if (! elfcore_grok_nto_note (abfd, &in))
8241 goto error;
8242 }
8243 else
8244 {
8245 if (! elfcore_grok_note (abfd, &in))
8246 goto error;
8247 }
8248
8249 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8250 }
8251
8252 free (buf);
8253 return TRUE;
8254 }
8255 \f
8256 /* Providing external access to the ELF program header table. */
8257
8258 /* Return an upper bound on the number of bytes required to store a
8259 copy of ABFD's program header table entries. Return -1 if an error
8260 occurs; bfd_get_error will return an appropriate code. */
8261
8262 long
8263 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8264 {
8265 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8266 {
8267 bfd_set_error (bfd_error_wrong_format);
8268 return -1;
8269 }
8270
8271 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8272 }
8273
8274 /* Copy ABFD's program header table entries to *PHDRS. The entries
8275 will be stored as an array of Elf_Internal_Phdr structures, as
8276 defined in include/elf/internal.h. To find out how large the
8277 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8278
8279 Return the number of program header table entries read, or -1 if an
8280 error occurs; bfd_get_error will return an appropriate code. */
8281
8282 int
8283 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8284 {
8285 int num_phdrs;
8286
8287 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8288 {
8289 bfd_set_error (bfd_error_wrong_format);
8290 return -1;
8291 }
8292
8293 num_phdrs = elf_elfheader (abfd)->e_phnum;
8294 memcpy (phdrs, elf_tdata (abfd)->phdr,
8295 num_phdrs * sizeof (Elf_Internal_Phdr));
8296
8297 return num_phdrs;
8298 }
8299
8300 void
8301 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8302 {
8303 #ifdef BFD64
8304 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8305
8306 i_ehdrp = elf_elfheader (abfd);
8307 if (i_ehdrp == NULL)
8308 sprintf_vma (buf, value);
8309 else
8310 {
8311 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8312 {
8313 #if BFD_HOST_64BIT_LONG
8314 sprintf (buf, "%016lx", value);
8315 #else
8316 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8317 _bfd_int64_low (value));
8318 #endif
8319 }
8320 else
8321 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8322 }
8323 #else
8324 sprintf_vma (buf, value);
8325 #endif
8326 }
8327
8328 void
8329 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8330 {
8331 #ifdef BFD64
8332 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8333
8334 i_ehdrp = elf_elfheader (abfd);
8335 if (i_ehdrp == NULL)
8336 fprintf_vma ((FILE *) stream, value);
8337 else
8338 {
8339 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8340 {
8341 #if BFD_HOST_64BIT_LONG
8342 fprintf ((FILE *) stream, "%016lx", value);
8343 #else
8344 fprintf ((FILE *) stream, "%08lx%08lx",
8345 _bfd_int64_high (value), _bfd_int64_low (value));
8346 #endif
8347 }
8348 else
8349 fprintf ((FILE *) stream, "%08lx",
8350 (unsigned long) (value & 0xffffffff));
8351 }
8352 #else
8353 fprintf_vma ((FILE *) stream, value);
8354 #endif
8355 }
8356
8357 enum elf_reloc_type_class
8358 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8359 {
8360 return reloc_class_normal;
8361 }
8362
8363 /* For RELA architectures, return the relocation value for a
8364 relocation against a local symbol. */
8365
8366 bfd_vma
8367 _bfd_elf_rela_local_sym (bfd *abfd,
8368 Elf_Internal_Sym *sym,
8369 asection **psec,
8370 Elf_Internal_Rela *rel)
8371 {
8372 asection *sec = *psec;
8373 bfd_vma relocation;
8374
8375 relocation = (sec->output_section->vma
8376 + sec->output_offset
8377 + sym->st_value);
8378 if ((sec->flags & SEC_MERGE)
8379 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8380 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8381 {
8382 rel->r_addend =
8383 _bfd_merged_section_offset (abfd, psec,
8384 elf_section_data (sec)->sec_info,
8385 sym->st_value + rel->r_addend);
8386 if (sec != *psec)
8387 {
8388 /* If we have changed the section, and our original section is
8389 marked with SEC_EXCLUDE, it means that the original
8390 SEC_MERGE section has been completely subsumed in some
8391 other SEC_MERGE section. In this case, we need to leave
8392 some info around for --emit-relocs. */
8393 if ((sec->flags & SEC_EXCLUDE) != 0)
8394 sec->kept_section = *psec;
8395 sec = *psec;
8396 }
8397 rel->r_addend -= relocation;
8398 rel->r_addend += sec->output_section->vma + sec->output_offset;
8399 }
8400 return relocation;
8401 }
8402
8403 bfd_vma
8404 _bfd_elf_rel_local_sym (bfd *abfd,
8405 Elf_Internal_Sym *sym,
8406 asection **psec,
8407 bfd_vma addend)
8408 {
8409 asection *sec = *psec;
8410
8411 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8412 return sym->st_value + addend;
8413
8414 return _bfd_merged_section_offset (abfd, psec,
8415 elf_section_data (sec)->sec_info,
8416 sym->st_value + addend);
8417 }
8418
8419 bfd_vma
8420 _bfd_elf_section_offset (bfd *abfd,
8421 struct bfd_link_info *info,
8422 asection *sec,
8423 bfd_vma offset)
8424 {
8425 switch (sec->sec_info_type)
8426 {
8427 case ELF_INFO_TYPE_STABS:
8428 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8429 offset);
8430 case ELF_INFO_TYPE_EH_FRAME:
8431 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8432 default:
8433 return offset;
8434 }
8435 }
8436 \f
8437 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8438 reconstruct an ELF file by reading the segments out of remote memory
8439 based on the ELF file header at EHDR_VMA and the ELF program headers it
8440 points to. If not null, *LOADBASEP is filled in with the difference
8441 between the VMAs from which the segments were read, and the VMAs the
8442 file headers (and hence BFD's idea of each section's VMA) put them at.
8443
8444 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8445 remote memory at target address VMA into the local buffer at MYADDR; it
8446 should return zero on success or an `errno' code on failure. TEMPL must
8447 be a BFD for an ELF target with the word size and byte order found in
8448 the remote memory. */
8449
8450 bfd *
8451 bfd_elf_bfd_from_remote_memory
8452 (bfd *templ,
8453 bfd_vma ehdr_vma,
8454 bfd_vma *loadbasep,
8455 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8456 {
8457 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8458 (templ, ehdr_vma, loadbasep, target_read_memory);
8459 }
8460 \f
8461 long
8462 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8463 long symcount ATTRIBUTE_UNUSED,
8464 asymbol **syms ATTRIBUTE_UNUSED,
8465 long dynsymcount,
8466 asymbol **dynsyms,
8467 asymbol **ret)
8468 {
8469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8470 asection *relplt;
8471 asymbol *s;
8472 const char *relplt_name;
8473 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8474 arelent *p;
8475 long count, i, n;
8476 size_t size;
8477 Elf_Internal_Shdr *hdr;
8478 char *names;
8479 asection *plt;
8480
8481 *ret = NULL;
8482
8483 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8484 return 0;
8485
8486 if (dynsymcount <= 0)
8487 return 0;
8488
8489 if (!bed->plt_sym_val)
8490 return 0;
8491
8492 relplt_name = bed->relplt_name;
8493 if (relplt_name == NULL)
8494 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8495 relplt = bfd_get_section_by_name (abfd, relplt_name);
8496 if (relplt == NULL)
8497 return 0;
8498
8499 hdr = &elf_section_data (relplt)->this_hdr;
8500 if (hdr->sh_link != elf_dynsymtab (abfd)
8501 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8502 return 0;
8503
8504 plt = bfd_get_section_by_name (abfd, ".plt");
8505 if (plt == NULL)
8506 return 0;
8507
8508 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8509 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8510 return -1;
8511
8512 count = relplt->size / hdr->sh_entsize;
8513 size = count * sizeof (asymbol);
8514 p = relplt->relocation;
8515 for (i = 0; i < count; i++, s++, p++)
8516 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8517
8518 s = *ret = bfd_malloc (size);
8519 if (s == NULL)
8520 return -1;
8521
8522 names = (char *) (s + count);
8523 p = relplt->relocation;
8524 n = 0;
8525 for (i = 0; i < count; i++, s++, p++)
8526 {
8527 size_t len;
8528 bfd_vma addr;
8529
8530 addr = bed->plt_sym_val (i, plt, p);
8531 if (addr == (bfd_vma) -1)
8532 continue;
8533
8534 *s = **p->sym_ptr_ptr;
8535 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8536 we are defining a symbol, ensure one of them is set. */
8537 if ((s->flags & BSF_LOCAL) == 0)
8538 s->flags |= BSF_GLOBAL;
8539 s->section = plt;
8540 s->value = addr - plt->vma;
8541 s->name = names;
8542 len = strlen ((*p->sym_ptr_ptr)->name);
8543 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8544 names += len;
8545 memcpy (names, "@plt", sizeof ("@plt"));
8546 names += sizeof ("@plt");
8547 ++n;
8548 }
8549
8550 return n;
8551 }
8552
8553 /* Sort symbol by binding and section. We want to put definitions
8554 sorted by section at the beginning. */
8555
8556 static int
8557 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8558 {
8559 const Elf_Internal_Sym *s1;
8560 const Elf_Internal_Sym *s2;
8561 int shndx;
8562
8563 /* Make sure that undefined symbols are at the end. */
8564 s1 = (const Elf_Internal_Sym *) arg1;
8565 if (s1->st_shndx == SHN_UNDEF)
8566 return 1;
8567 s2 = (const Elf_Internal_Sym *) arg2;
8568 if (s2->st_shndx == SHN_UNDEF)
8569 return -1;
8570
8571 /* Sorted by section index. */
8572 shndx = s1->st_shndx - s2->st_shndx;
8573 if (shndx != 0)
8574 return shndx;
8575
8576 /* Sorted by binding. */
8577 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8578 }
8579
8580 struct elf_symbol
8581 {
8582 Elf_Internal_Sym *sym;
8583 const char *name;
8584 };
8585
8586 static int
8587 elf_sym_name_compare (const void *arg1, const void *arg2)
8588 {
8589 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8590 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8591 return strcmp (s1->name, s2->name);
8592 }
8593
8594 /* Check if 2 sections define the same set of local and global
8595 symbols. */
8596
8597 bfd_boolean
8598 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8599 {
8600 bfd *bfd1, *bfd2;
8601 const struct elf_backend_data *bed1, *bed2;
8602 Elf_Internal_Shdr *hdr1, *hdr2;
8603 bfd_size_type symcount1, symcount2;
8604 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8605 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8606 Elf_Internal_Sym *isymend;
8607 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8608 bfd_size_type count1, count2, i;
8609 int shndx1, shndx2;
8610 bfd_boolean result;
8611
8612 bfd1 = sec1->owner;
8613 bfd2 = sec2->owner;
8614
8615 /* If both are .gnu.linkonce sections, they have to have the same
8616 section name. */
8617 if (strncmp (sec1->name, ".gnu.linkonce",
8618 sizeof ".gnu.linkonce" - 1) == 0
8619 && strncmp (sec2->name, ".gnu.linkonce",
8620 sizeof ".gnu.linkonce" - 1) == 0)
8621 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8622 sec2->name + sizeof ".gnu.linkonce") == 0;
8623
8624 /* Both sections have to be in ELF. */
8625 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8626 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8627 return FALSE;
8628
8629 if (elf_section_type (sec1) != elf_section_type (sec2))
8630 return FALSE;
8631
8632 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8633 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8634 {
8635 /* If both are members of section groups, they have to have the
8636 same group name. */
8637 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8638 return FALSE;
8639 }
8640
8641 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8642 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8643 if (shndx1 == -1 || shndx2 == -1)
8644 return FALSE;
8645
8646 bed1 = get_elf_backend_data (bfd1);
8647 bed2 = get_elf_backend_data (bfd2);
8648 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8649 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8650 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8651 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8652
8653 if (symcount1 == 0 || symcount2 == 0)
8654 return FALSE;
8655
8656 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8657 NULL, NULL, NULL);
8658 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8659 NULL, NULL, NULL);
8660
8661 result = FALSE;
8662 if (isymbuf1 == NULL || isymbuf2 == NULL)
8663 goto done;
8664
8665 /* Sort symbols by binding and section. Global definitions are at
8666 the beginning. */
8667 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8668 elf_sort_elf_symbol);
8669 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8670 elf_sort_elf_symbol);
8671
8672 /* Count definitions in the section. */
8673 count1 = 0;
8674 for (isym = isymbuf1, isymend = isym + symcount1;
8675 isym < isymend; isym++)
8676 {
8677 if (isym->st_shndx == (unsigned int) shndx1)
8678 {
8679 if (count1 == 0)
8680 isymstart1 = isym;
8681 count1++;
8682 }
8683
8684 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8685 break;
8686 }
8687
8688 count2 = 0;
8689 for (isym = isymbuf2, isymend = isym + symcount2;
8690 isym < isymend; isym++)
8691 {
8692 if (isym->st_shndx == (unsigned int) shndx2)
8693 {
8694 if (count2 == 0)
8695 isymstart2 = isym;
8696 count2++;
8697 }
8698
8699 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8700 break;
8701 }
8702
8703 if (count1 == 0 || count2 == 0 || count1 != count2)
8704 goto done;
8705
8706 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8707 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8708
8709 if (symtable1 == NULL || symtable2 == NULL)
8710 goto done;
8711
8712 symp = symtable1;
8713 for (isym = isymstart1, isymend = isym + count1;
8714 isym < isymend; isym++)
8715 {
8716 symp->sym = isym;
8717 symp->name = bfd_elf_string_from_elf_section (bfd1,
8718 hdr1->sh_link,
8719 isym->st_name);
8720 symp++;
8721 }
8722
8723 symp = symtable2;
8724 for (isym = isymstart2, isymend = isym + count1;
8725 isym < isymend; isym++)
8726 {
8727 symp->sym = isym;
8728 symp->name = bfd_elf_string_from_elf_section (bfd2,
8729 hdr2->sh_link,
8730 isym->st_name);
8731 symp++;
8732 }
8733
8734 /* Sort symbol by name. */
8735 qsort (symtable1, count1, sizeof (struct elf_symbol),
8736 elf_sym_name_compare);
8737 qsort (symtable2, count1, sizeof (struct elf_symbol),
8738 elf_sym_name_compare);
8739
8740 for (i = 0; i < count1; i++)
8741 /* Two symbols must have the same binding, type and name. */
8742 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8743 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8744 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8745 goto done;
8746
8747 result = TRUE;
8748
8749 done:
8750 if (symtable1)
8751 free (symtable1);
8752 if (symtable2)
8753 free (symtable2);
8754 if (isymbuf1)
8755 free (isymbuf1);
8756 if (isymbuf2)
8757 free (isymbuf2);
8758
8759 return result;
8760 }
8761
8762 /* It is only used by x86-64 so far. */
8763 asection _bfd_elf_large_com_section
8764 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8765 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8766 0);
8767
8768 /* Return TRUE if 2 section types are compatible. */
8769
8770 bfd_boolean
8771 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8772 bfd *bbfd, const asection *bsec)
8773 {
8774 if (asec == NULL
8775 || bsec == NULL
8776 || abfd->xvec->flavour != bfd_target_elf_flavour
8777 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8778 return TRUE;
8779
8780 return elf_section_type (asec) == elf_section_type (bsec);
8781 }