Fix an illegal memory access when accessing corrupt dynamic secondary relocations.
[binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bfd_boolean
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return FALSE;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return FALSE;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return FALSE;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return FALSE;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return FALSE;
833 }
834 return TRUE;
835 }
836
837 bfd_boolean
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bfd_boolean result = TRUE;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = FALSE;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = FALSE;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = FALSE;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = FALSE;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bfd_boolean
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return TRUE;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return FALSE;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return FALSE;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (strncmp (name, ".debug", 6) == 0
1088 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1089 || strncmp (name, ".zdebug", 7) == 0)
1090 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1091 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1092 || strncmp (name, ".note.gnu", 9) == 0)
1093 {
1094 flags |= SEC_ELF_OCTETS;
1095 opb = 1;
1096 }
1097 else if (strncmp (name, ".line", 5) == 0
1098 || strncmp (name, ".stab", 5) == 0
1099 || strcmp (name, ".gdb_index") == 0)
1100 flags |= SEC_DEBUGGING;
1101 }
1102 }
1103
1104 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1105 || !bfd_set_section_size (newsect, hdr->sh_size)
1106 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1107 return FALSE;
1108
1109 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1110 only link a single copy of the section. This is used to support
1111 g++. g++ will emit each template expansion in its own section.
1112 The symbols will be defined as weak, so that multiple definitions
1113 are permitted. The GNU linker extension is to actually discard
1114 all but one of the sections. */
1115 if (CONST_STRNEQ (name, ".gnu.linkonce")
1116 && elf_next_in_group (newsect) == NULL)
1117 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1118
1119 if (!bfd_set_section_flags (newsect, flags))
1120 return FALSE;
1121
1122 bed = get_elf_backend_data (abfd);
1123 if (bed->elf_backend_section_flags)
1124 if (!bed->elf_backend_section_flags (hdr))
1125 return FALSE;
1126
1127 /* We do not parse the PT_NOTE segments as we are interested even in the
1128 separate debug info files which may have the segments offsets corrupted.
1129 PT_NOTEs from the core files are currently not parsed using BFD. */
1130 if (hdr->sh_type == SHT_NOTE)
1131 {
1132 bfd_byte *contents;
1133
1134 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1135 return FALSE;
1136
1137 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1138 hdr->sh_offset, hdr->sh_addralign);
1139 free (contents);
1140 }
1141
1142 if ((newsect->flags & SEC_ALLOC) != 0)
1143 {
1144 Elf_Internal_Phdr *phdr;
1145 unsigned int i, nload;
1146
1147 /* Some ELF linkers produce binaries with all the program header
1148 p_paddr fields zero. If we have such a binary with more than
1149 one PT_LOAD header, then leave the section lma equal to vma
1150 so that we don't create sections with overlapping lma. */
1151 phdr = elf_tdata (abfd)->phdr;
1152 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1153 if (phdr->p_paddr != 0)
1154 break;
1155 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1156 ++nload;
1157 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1158 return TRUE;
1159
1160 phdr = elf_tdata (abfd)->phdr;
1161 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1162 {
1163 if (((phdr->p_type == PT_LOAD
1164 && (hdr->sh_flags & SHF_TLS) == 0)
1165 || phdr->p_type == PT_TLS)
1166 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1167 {
1168 if ((newsect->flags & SEC_LOAD) == 0)
1169 newsect->lma = (phdr->p_paddr
1170 + hdr->sh_addr - phdr->p_vaddr) / opb;
1171 else
1172 /* We used to use the same adjustment for SEC_LOAD
1173 sections, but that doesn't work if the segment
1174 is packed with code from multiple VMAs.
1175 Instead we calculate the section LMA based on
1176 the segment LMA. It is assumed that the
1177 segment will contain sections with contiguous
1178 LMAs, even if the VMAs are not. */
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_offset - phdr->p_offset) / opb;
1181
1182 /* With contiguous segments, we can't tell from file
1183 offsets whether a section with zero size should
1184 be placed at the end of one segment or the
1185 beginning of the next. Decide based on vaddr. */
1186 if (hdr->sh_addr >= phdr->p_vaddr
1187 && (hdr->sh_addr + hdr->sh_size
1188 <= phdr->p_vaddr + phdr->p_memsz))
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Compress/decompress DWARF debug sections with names: .debug_* and
1195 .zdebug_*, after the section flags is set. */
1196 if ((newsect->flags & SEC_DEBUGGING)
1197 && ((name[1] == 'd' && name[6] == '_')
1198 || (name[1] == 'z' && name[7] == '_')))
1199 {
1200 enum { nothing, compress, decompress } action = nothing;
1201 int compression_header_size;
1202 bfd_size_type uncompressed_size;
1203 unsigned int uncompressed_align_power;
1204 bfd_boolean compressed
1205 = bfd_is_section_compressed_with_header (abfd, newsect,
1206 &compression_header_size,
1207 &uncompressed_size,
1208 &uncompressed_align_power);
1209 if (compressed)
1210 {
1211 /* Compressed section. Check if we should decompress. */
1212 if ((abfd->flags & BFD_DECOMPRESS))
1213 action = decompress;
1214 }
1215
1216 /* Compress the uncompressed section or convert from/to .zdebug*
1217 section. Check if we should compress. */
1218 if (action == nothing)
1219 {
1220 if (newsect->size != 0
1221 && (abfd->flags & BFD_COMPRESS)
1222 && compression_header_size >= 0
1223 && uncompressed_size > 0
1224 && (!compressed
1225 || ((compression_header_size > 0)
1226 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1227 action = compress;
1228 else
1229 return TRUE;
1230 }
1231
1232 if (action == compress)
1233 {
1234 if (!bfd_init_section_compress_status (abfd, newsect))
1235 {
1236 _bfd_error_handler
1237 /* xgettext:c-format */
1238 (_("%pB: unable to initialize compress status for section %s"),
1239 abfd, name);
1240 return FALSE;
1241 }
1242 }
1243 else
1244 {
1245 if (!bfd_init_section_decompress_status (abfd, newsect))
1246 {
1247 _bfd_error_handler
1248 /* xgettext:c-format */
1249 (_("%pB: unable to initialize decompress status for section %s"),
1250 abfd, name);
1251 return FALSE;
1252 }
1253 }
1254
1255 if (abfd->is_linker_input)
1256 {
1257 if (name[1] == 'z'
1258 && (action == decompress
1259 || (action == compress
1260 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1261 {
1262 /* Convert section name from .zdebug_* to .debug_* so
1263 that linker will consider this section as a debug
1264 section. */
1265 char *new_name = convert_zdebug_to_debug (abfd, name);
1266 if (new_name == NULL)
1267 return FALSE;
1268 bfd_rename_section (newsect, new_name);
1269 }
1270 }
1271 else
1272 /* For objdump, don't rename the section. For objcopy, delay
1273 section rename to elf_fake_sections. */
1274 newsect->flags |= SEC_ELF_RENAME;
1275 }
1276
1277 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1278 section. */
1279 const char *lto_section_name = ".gnu.lto_.lto.";
1280 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return TRUE;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function. It just short circuits the reloc if producing
1306 relocatable output against an external symbol. */
1307
1308 bfd_reloc_status_type
1309 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1310 arelent *reloc_entry,
1311 asymbol *symbol,
1312 void *data ATTRIBUTE_UNUSED,
1313 asection *input_section,
1314 bfd *output_bfd,
1315 char **error_message ATTRIBUTE_UNUSED)
1316 {
1317 if (output_bfd != NULL
1318 && (symbol->flags & BSF_SECTION_SYM) == 0
1319 && (! reloc_entry->howto->partial_inplace
1320 || reloc_entry->addend == 0))
1321 {
1322 reloc_entry->address += input_section->output_offset;
1323 return bfd_reloc_ok;
1324 }
1325
1326 return bfd_reloc_continue;
1327 }
1328 \f
1329 /* Returns TRUE if section A matches section B.
1330 Names, addresses and links may be different, but everything else
1331 should be the same. */
1332
1333 static bfd_boolean
1334 section_match (const Elf_Internal_Shdr * a,
1335 const Elf_Internal_Shdr * b)
1336 {
1337 if (a->sh_type != b->sh_type
1338 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1339 || a->sh_addralign != b->sh_addralign
1340 || a->sh_entsize != b->sh_entsize)
1341 return FALSE;
1342 if (a->sh_type == SHT_SYMTAB
1343 || a->sh_type == SHT_STRTAB)
1344 return TRUE;
1345 return a->sh_size == b->sh_size;
1346 }
1347
1348 /* Find a section in OBFD that has the same characteristics
1349 as IHEADER. Return the index of this section or SHN_UNDEF if
1350 none can be found. Check's section HINT first, as this is likely
1351 to be the correct section. */
1352
1353 static unsigned int
1354 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1355 const unsigned int hint)
1356 {
1357 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1358 unsigned int i;
1359
1360 BFD_ASSERT (iheader != NULL);
1361
1362 /* See PR 20922 for a reproducer of the NULL test. */
1363 if (hint < elf_numsections (obfd)
1364 && oheaders[hint] != NULL
1365 && section_match (oheaders[hint], iheader))
1366 return hint;
1367
1368 for (i = 1; i < elf_numsections (obfd); i++)
1369 {
1370 Elf_Internal_Shdr * oheader = oheaders[i];
1371
1372 if (oheader == NULL)
1373 continue;
1374 if (section_match (oheader, iheader))
1375 /* FIXME: Do we care if there is a potential for
1376 multiple matches ? */
1377 return i;
1378 }
1379
1380 return SHN_UNDEF;
1381 }
1382
1383 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1384 Processor specific section, based upon a matching input section.
1385 Returns TRUE upon success, FALSE otherwise. */
1386
1387 static bfd_boolean
1388 copy_special_section_fields (const bfd *ibfd,
1389 bfd *obfd,
1390 const Elf_Internal_Shdr *iheader,
1391 Elf_Internal_Shdr *oheader,
1392 const unsigned int secnum)
1393 {
1394 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1395 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1396 bfd_boolean changed = FALSE;
1397 unsigned int sh_link;
1398
1399 if (oheader->sh_type == SHT_NOBITS)
1400 {
1401 /* This is a feature for objcopy --only-keep-debug:
1402 When a section's type is changed to NOBITS, we preserve
1403 the sh_link and sh_info fields so that they can be
1404 matched up with the original.
1405
1406 Note: Strictly speaking these assignments are wrong.
1407 The sh_link and sh_info fields should point to the
1408 relevent sections in the output BFD, which may not be in
1409 the same location as they were in the input BFD. But
1410 the whole point of this action is to preserve the
1411 original values of the sh_link and sh_info fields, so
1412 that they can be matched up with the section headers in
1413 the original file. So strictly speaking we may be
1414 creating an invalid ELF file, but it is only for a file
1415 that just contains debug info and only for sections
1416 without any contents. */
1417 if (oheader->sh_link == 0)
1418 oheader->sh_link = iheader->sh_link;
1419 if (oheader->sh_info == 0)
1420 oheader->sh_info = iheader->sh_info;
1421 return TRUE;
1422 }
1423
1424 /* Allow the target a chance to decide how these fields should be set. */
1425 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1426 iheader, oheader))
1427 return TRUE;
1428
1429 /* We have an iheader which might match oheader, and which has non-zero
1430 sh_info and/or sh_link fields. Attempt to follow those links and find
1431 the section in the output bfd which corresponds to the linked section
1432 in the input bfd. */
1433 if (iheader->sh_link != SHN_UNDEF)
1434 {
1435 /* See PR 20931 for a reproducer. */
1436 if (iheader->sh_link >= elf_numsections (ibfd))
1437 {
1438 _bfd_error_handler
1439 /* xgettext:c-format */
1440 (_("%pB: invalid sh_link field (%d) in section number %d"),
1441 ibfd, iheader->sh_link, secnum);
1442 return FALSE;
1443 }
1444
1445 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1446 if (sh_link != SHN_UNDEF)
1447 {
1448 oheader->sh_link = sh_link;
1449 changed = TRUE;
1450 }
1451 else
1452 /* FIXME: Should we install iheader->sh_link
1453 if we could not find a match ? */
1454 _bfd_error_handler
1455 /* xgettext:c-format */
1456 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1457 }
1458
1459 if (iheader->sh_info)
1460 {
1461 /* The sh_info field can hold arbitrary information, but if the
1462 SHF_LINK_INFO flag is set then it should be interpreted as a
1463 section index. */
1464 if (iheader->sh_flags & SHF_INFO_LINK)
1465 {
1466 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1467 iheader->sh_info);
1468 if (sh_link != SHN_UNDEF)
1469 oheader->sh_flags |= SHF_INFO_LINK;
1470 }
1471 else
1472 /* No idea what it means - just copy it. */
1473 sh_link = iheader->sh_info;
1474
1475 if (sh_link != SHN_UNDEF)
1476 {
1477 oheader->sh_info = sh_link;
1478 changed = TRUE;
1479 }
1480 else
1481 _bfd_error_handler
1482 /* xgettext:c-format */
1483 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1484 }
1485
1486 return changed;
1487 }
1488
1489 /* Copy the program header and other data from one object module to
1490 another. */
1491
1492 bfd_boolean
1493 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1494 {
1495 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1496 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1497 const struct elf_backend_data *bed;
1498 unsigned int i;
1499
1500 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1501 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1502 return TRUE;
1503
1504 if (!elf_flags_init (obfd))
1505 {
1506 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1507 elf_flags_init (obfd) = TRUE;
1508 }
1509
1510 elf_gp (obfd) = elf_gp (ibfd);
1511
1512 /* Also copy the EI_OSABI field. */
1513 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1514 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1515
1516 /* If set, copy the EI_ABIVERSION field. */
1517 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1518 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1519 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1520
1521 /* Copy object attributes. */
1522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1523
1524 if (iheaders == NULL || oheaders == NULL)
1525 return TRUE;
1526
1527 bed = get_elf_backend_data (obfd);
1528
1529 /* Possibly copy other fields in the section header. */
1530 for (i = 1; i < elf_numsections (obfd); i++)
1531 {
1532 unsigned int j;
1533 Elf_Internal_Shdr * oheader = oheaders[i];
1534
1535 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1536 because of a special case need for generating separate debug info
1537 files. See below for more details. */
1538 if (oheader == NULL
1539 || (oheader->sh_type != SHT_NOBITS
1540 && oheader->sh_type < SHT_LOOS))
1541 continue;
1542
1543 /* Ignore empty sections, and sections whose
1544 fields have already been initialised. */
1545 if (oheader->sh_size == 0
1546 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1547 continue;
1548
1549 /* Scan for the matching section in the input bfd.
1550 First we try for a direct mapping between the input and output sections. */
1551 for (j = 1; j < elf_numsections (ibfd); j++)
1552 {
1553 const Elf_Internal_Shdr * iheader = iheaders[j];
1554
1555 if (iheader == NULL)
1556 continue;
1557
1558 if (oheader->bfd_section != NULL
1559 && iheader->bfd_section != NULL
1560 && iheader->bfd_section->output_section != NULL
1561 && iheader->bfd_section->output_section == oheader->bfd_section)
1562 {
1563 /* We have found a connection from the input section to the
1564 output section. Attempt to copy the header fields. If
1565 this fails then do not try any further sections - there
1566 should only be a one-to-one mapping between input and output. */
1567 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1568 j = elf_numsections (ibfd);
1569 break;
1570 }
1571 }
1572
1573 if (j < elf_numsections (ibfd))
1574 continue;
1575
1576 /* That failed. So try to deduce the corresponding input section.
1577 Unfortunately we cannot compare names as the output string table
1578 is empty, so instead we check size, address and type. */
1579 for (j = 1; j < elf_numsections (ibfd); j++)
1580 {
1581 const Elf_Internal_Shdr * iheader = iheaders[j];
1582
1583 if (iheader == NULL)
1584 continue;
1585
1586 /* Try matching fields in the input section's header.
1587 Since --only-keep-debug turns all non-debug sections into
1588 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1589 input type. */
1590 if ((oheader->sh_type == SHT_NOBITS
1591 || iheader->sh_type == oheader->sh_type)
1592 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1593 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1594 && iheader->sh_addralign == oheader->sh_addralign
1595 && iheader->sh_entsize == oheader->sh_entsize
1596 && iheader->sh_size == oheader->sh_size
1597 && iheader->sh_addr == oheader->sh_addr
1598 && (iheader->sh_info != oheader->sh_info
1599 || iheader->sh_link != oheader->sh_link))
1600 {
1601 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1602 break;
1603 }
1604 }
1605
1606 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1607 {
1608 /* Final attempt. Call the backend copy function
1609 with a NULL input section. */
1610 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1611 NULL, oheader);
1612 }
1613 }
1614
1615 return TRUE;
1616 }
1617
1618 static const char *
1619 get_segment_type (unsigned int p_type)
1620 {
1621 const char *pt;
1622 switch (p_type)
1623 {
1624 case PT_NULL: pt = "NULL"; break;
1625 case PT_LOAD: pt = "LOAD"; break;
1626 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1627 case PT_INTERP: pt = "INTERP"; break;
1628 case PT_NOTE: pt = "NOTE"; break;
1629 case PT_SHLIB: pt = "SHLIB"; break;
1630 case PT_PHDR: pt = "PHDR"; break;
1631 case PT_TLS: pt = "TLS"; break;
1632 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1633 case PT_GNU_STACK: pt = "STACK"; break;
1634 case PT_GNU_RELRO: pt = "RELRO"; break;
1635 default: pt = NULL; break;
1636 }
1637 return pt;
1638 }
1639
1640 /* Print out the program headers. */
1641
1642 bfd_boolean
1643 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1644 {
1645 FILE *f = (FILE *) farg;
1646 Elf_Internal_Phdr *p;
1647 asection *s;
1648 bfd_byte *dynbuf = NULL;
1649
1650 p = elf_tdata (abfd)->phdr;
1651 if (p != NULL)
1652 {
1653 unsigned int i, c;
1654
1655 fprintf (f, _("\nProgram Header:\n"));
1656 c = elf_elfheader (abfd)->e_phnum;
1657 for (i = 0; i < c; i++, p++)
1658 {
1659 const char *pt = get_segment_type (p->p_type);
1660 char buf[20];
1661
1662 if (pt == NULL)
1663 {
1664 sprintf (buf, "0x%lx", p->p_type);
1665 pt = buf;
1666 }
1667 fprintf (f, "%8s off 0x", pt);
1668 bfd_fprintf_vma (abfd, f, p->p_offset);
1669 fprintf (f, " vaddr 0x");
1670 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1671 fprintf (f, " paddr 0x");
1672 bfd_fprintf_vma (abfd, f, p->p_paddr);
1673 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1674 fprintf (f, " filesz 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_filesz);
1676 fprintf (f, " memsz 0x");
1677 bfd_fprintf_vma (abfd, f, p->p_memsz);
1678 fprintf (f, " flags %c%c%c",
1679 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1680 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1681 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1682 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1683 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1684 fprintf (f, "\n");
1685 }
1686 }
1687
1688 s = bfd_get_section_by_name (abfd, ".dynamic");
1689 if (s != NULL)
1690 {
1691 unsigned int elfsec;
1692 unsigned long shlink;
1693 bfd_byte *extdyn, *extdynend;
1694 size_t extdynsize;
1695 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1696
1697 fprintf (f, _("\nDynamic Section:\n"));
1698
1699 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1700 goto error_return;
1701
1702 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1703 if (elfsec == SHN_BAD)
1704 goto error_return;
1705 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1706
1707 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1708 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1709
1710 extdyn = dynbuf;
1711 /* PR 17512: file: 6f427532. */
1712 if (s->size < extdynsize)
1713 goto error_return;
1714 extdynend = extdyn + s->size;
1715 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1716 Fix range check. */
1717 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1718 {
1719 Elf_Internal_Dyn dyn;
1720 const char *name = "";
1721 char ab[20];
1722 bfd_boolean stringp;
1723 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1724
1725 (*swap_dyn_in) (abfd, extdyn, &dyn);
1726
1727 if (dyn.d_tag == DT_NULL)
1728 break;
1729
1730 stringp = FALSE;
1731 switch (dyn.d_tag)
1732 {
1733 default:
1734 if (bed->elf_backend_get_target_dtag)
1735 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1736
1737 if (!strcmp (name, ""))
1738 {
1739 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1740 name = ab;
1741 }
1742 break;
1743
1744 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1745 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1746 case DT_PLTGOT: name = "PLTGOT"; break;
1747 case DT_HASH: name = "HASH"; break;
1748 case DT_STRTAB: name = "STRTAB"; break;
1749 case DT_SYMTAB: name = "SYMTAB"; break;
1750 case DT_RELA: name = "RELA"; break;
1751 case DT_RELASZ: name = "RELASZ"; break;
1752 case DT_RELAENT: name = "RELAENT"; break;
1753 case DT_STRSZ: name = "STRSZ"; break;
1754 case DT_SYMENT: name = "SYMENT"; break;
1755 case DT_INIT: name = "INIT"; break;
1756 case DT_FINI: name = "FINI"; break;
1757 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1758 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1759 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1760 case DT_REL: name = "REL"; break;
1761 case DT_RELSZ: name = "RELSZ"; break;
1762 case DT_RELENT: name = "RELENT"; break;
1763 case DT_PLTREL: name = "PLTREL"; break;
1764 case DT_DEBUG: name = "DEBUG"; break;
1765 case DT_TEXTREL: name = "TEXTREL"; break;
1766 case DT_JMPREL: name = "JMPREL"; break;
1767 case DT_BIND_NOW: name = "BIND_NOW"; break;
1768 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1769 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1770 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1771 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1772 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1773 case DT_FLAGS: name = "FLAGS"; break;
1774 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1775 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1776 case DT_CHECKSUM: name = "CHECKSUM"; break;
1777 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1778 case DT_MOVEENT: name = "MOVEENT"; break;
1779 case DT_MOVESZ: name = "MOVESZ"; break;
1780 case DT_FEATURE: name = "FEATURE"; break;
1781 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1782 case DT_SYMINSZ: name = "SYMINSZ"; break;
1783 case DT_SYMINENT: name = "SYMINENT"; break;
1784 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1785 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1786 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1787 case DT_PLTPAD: name = "PLTPAD"; break;
1788 case DT_MOVETAB: name = "MOVETAB"; break;
1789 case DT_SYMINFO: name = "SYMINFO"; break;
1790 case DT_RELACOUNT: name = "RELACOUNT"; break;
1791 case DT_RELCOUNT: name = "RELCOUNT"; break;
1792 case DT_FLAGS_1: name = "FLAGS_1"; break;
1793 case DT_VERSYM: name = "VERSYM"; break;
1794 case DT_VERDEF: name = "VERDEF"; break;
1795 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1796 case DT_VERNEED: name = "VERNEED"; break;
1797 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1798 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1799 case DT_USED: name = "USED"; break;
1800 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1801 case DT_GNU_HASH: name = "GNU_HASH"; break;
1802 }
1803
1804 fprintf (f, " %-20s ", name);
1805 if (! stringp)
1806 {
1807 fprintf (f, "0x");
1808 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1809 }
1810 else
1811 {
1812 const char *string;
1813 unsigned int tagv = dyn.d_un.d_val;
1814
1815 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1816 if (string == NULL)
1817 goto error_return;
1818 fprintf (f, "%s", string);
1819 }
1820 fprintf (f, "\n");
1821 }
1822
1823 free (dynbuf);
1824 dynbuf = NULL;
1825 }
1826
1827 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1828 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1829 {
1830 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1831 return FALSE;
1832 }
1833
1834 if (elf_dynverdef (abfd) != 0)
1835 {
1836 Elf_Internal_Verdef *t;
1837
1838 fprintf (f, _("\nVersion definitions:\n"));
1839 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1840 {
1841 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1842 t->vd_flags, t->vd_hash,
1843 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1844 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1845 {
1846 Elf_Internal_Verdaux *a;
1847
1848 fprintf (f, "\t");
1849 for (a = t->vd_auxptr->vda_nextptr;
1850 a != NULL;
1851 a = a->vda_nextptr)
1852 fprintf (f, "%s ",
1853 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1854 fprintf (f, "\n");
1855 }
1856 }
1857 }
1858
1859 if (elf_dynverref (abfd) != 0)
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 fprintf (f, _("\nVersion References:\n"));
1864 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 fprintf (f, _(" required from %s:\n"),
1869 t->vn_filename ? t->vn_filename : "<corrupt>");
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1872 a->vna_flags, a->vna_other,
1873 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1874 }
1875 }
1876
1877 return TRUE;
1878
1879 error_return:
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1885 and return symbol version for symbol version itself. */
1886
1887 const char *
1888 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1889 bfd_boolean base_p,
1890 bfd_boolean *hidden)
1891 {
1892 const char *version_string = NULL;
1893 if (elf_dynversym (abfd) != 0
1894 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1895 {
1896 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1897
1898 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1899 vernum &= VERSYM_VERSION;
1900
1901 if (vernum == 0)
1902 version_string = "";
1903 else if (vernum == 1
1904 && (vernum > elf_tdata (abfd)->cverdefs
1905 || (elf_tdata (abfd)->verdef[0].vd_flags
1906 == VER_FLG_BASE)))
1907 version_string = base_p ? "Base" : "";
1908 else if (vernum <= elf_tdata (abfd)->cverdefs)
1909 {
1910 const char *nodename
1911 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1912 version_string = "";
1913 if (base_p
1914 || nodename == NULL
1915 || symbol->name == NULL
1916 || strcmp (symbol->name, nodename) != 0)
1917 version_string = nodename;
1918 }
1919 else
1920 {
1921 Elf_Internal_Verneed *t;
1922
1923 version_string = _("<corrupt>");
1924 for (t = elf_tdata (abfd)->verref;
1925 t != NULL;
1926 t = t->vn_nextref)
1927 {
1928 Elf_Internal_Vernaux *a;
1929
1930 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1931 {
1932 if (a->vna_other == vernum)
1933 {
1934 version_string = a->vna_nodename;
1935 break;
1936 }
1937 }
1938 }
1939 }
1940 }
1941 return version_string;
1942 }
1943
1944 /* Display ELF-specific fields of a symbol. */
1945
1946 void
1947 bfd_elf_print_symbol (bfd *abfd,
1948 void *filep,
1949 asymbol *symbol,
1950 bfd_print_symbol_type how)
1951 {
1952 FILE *file = (FILE *) filep;
1953 switch (how)
1954 {
1955 case bfd_print_symbol_name:
1956 fprintf (file, "%s", symbol->name);
1957 break;
1958 case bfd_print_symbol_more:
1959 fprintf (file, "elf ");
1960 bfd_fprintf_vma (abfd, file, symbol->value);
1961 fprintf (file, " %x", symbol->flags);
1962 break;
1963 case bfd_print_symbol_all:
1964 {
1965 const char *section_name;
1966 const char *name = NULL;
1967 const struct elf_backend_data *bed;
1968 unsigned char st_other;
1969 bfd_vma val;
1970 const char *version_string;
1971 bfd_boolean hidden;
1972
1973 section_name = symbol->section ? symbol->section->name : "(*none*)";
1974
1975 bed = get_elf_backend_data (abfd);
1976 if (bed->elf_backend_print_symbol_all)
1977 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1978
1979 if (name == NULL)
1980 {
1981 name = symbol->name;
1982 bfd_print_symbol_vandf (abfd, file, symbol);
1983 }
1984
1985 fprintf (file, " %s\t", section_name);
1986 /* Print the "other" value for a symbol. For common symbols,
1987 we've already printed the size; now print the alignment.
1988 For other symbols, we have no specified alignment, and
1989 we've printed the address; now print the size. */
1990 if (symbol->section && bfd_is_com_section (symbol->section))
1991 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1992 else
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1994 bfd_fprintf_vma (abfd, file, val);
1995
1996 /* If we have version information, print it. */
1997 version_string = _bfd_elf_get_symbol_version_string (abfd,
1998 symbol,
1999 TRUE,
2000 &hidden);
2001 if (version_string)
2002 {
2003 if (!hidden)
2004 fprintf (file, " %-11s", version_string);
2005 else
2006 {
2007 int i;
2008
2009 fprintf (file, " (%s)", version_string);
2010 for (i = 10 - strlen (version_string); i > 0; --i)
2011 putc (' ', file);
2012 }
2013 }
2014
2015 /* If the st_other field is not zero, print it. */
2016 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2017
2018 switch (st_other)
2019 {
2020 case 0: break;
2021 case STV_INTERNAL: fprintf (file, " .internal"); break;
2022 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2023 case STV_PROTECTED: fprintf (file, " .protected"); break;
2024 default:
2025 /* Some other non-defined flags are also present, so print
2026 everything hex. */
2027 fprintf (file, " 0x%02x", (unsigned int) st_other);
2028 }
2029
2030 fprintf (file, " %s", name);
2031 }
2032 break;
2033 }
2034 }
2035 \f
2036 /* ELF .o/exec file reading */
2037
2038 /* Create a new bfd section from an ELF section header. */
2039
2040 bfd_boolean
2041 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2042 {
2043 Elf_Internal_Shdr *hdr;
2044 Elf_Internal_Ehdr *ehdr;
2045 const struct elf_backend_data *bed;
2046 const char *name;
2047 bfd_boolean ret = TRUE;
2048 static bfd_boolean * sections_being_created = NULL;
2049 static bfd * sections_being_created_abfd = NULL;
2050 static unsigned int nesting = 0;
2051
2052 if (shindex >= elf_numsections (abfd))
2053 return FALSE;
2054
2055 if (++ nesting > 3)
2056 {
2057 /* PR17512: A corrupt ELF binary might contain a recursive group of
2058 sections, with each the string indices pointing to the next in the
2059 loop. Detect this here, by refusing to load a section that we are
2060 already in the process of loading. We only trigger this test if
2061 we have nested at least three sections deep as normal ELF binaries
2062 can expect to recurse at least once.
2063
2064 FIXME: It would be better if this array was attached to the bfd,
2065 rather than being held in a static pointer. */
2066
2067 if (sections_being_created_abfd != abfd)
2068 {
2069 free (sections_being_created);
2070 sections_being_created = NULL;
2071 }
2072 if (sections_being_created == NULL)
2073 {
2074 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2075
2076 /* PR 26005: Do not use bfd_zalloc here as the memory might
2077 be released before the bfd has been fully scanned. */
2078 sections_being_created = (bfd_boolean *) bfd_zmalloc (amt);
2079 if (sections_being_created == NULL)
2080 return FALSE;
2081 sections_being_created_abfd = abfd;
2082 }
2083 if (sections_being_created [shindex])
2084 {
2085 _bfd_error_handler
2086 (_("%pB: warning: loop in section dependencies detected"), abfd);
2087 return FALSE;
2088 }
2089 sections_being_created [shindex] = TRUE;
2090 }
2091
2092 hdr = elf_elfsections (abfd)[shindex];
2093 ehdr = elf_elfheader (abfd);
2094 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2095 hdr->sh_name);
2096 if (name == NULL)
2097 goto fail;
2098
2099 bed = get_elf_backend_data (abfd);
2100 switch (hdr->sh_type)
2101 {
2102 case SHT_NULL:
2103 /* Inactive section. Throw it away. */
2104 goto success;
2105
2106 case SHT_PROGBITS: /* Normal section with contents. */
2107 case SHT_NOBITS: /* .bss section. */
2108 case SHT_HASH: /* .hash section. */
2109 case SHT_NOTE: /* .note section. */
2110 case SHT_INIT_ARRAY: /* .init_array section. */
2111 case SHT_FINI_ARRAY: /* .fini_array section. */
2112 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2113 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2114 case SHT_GNU_HASH: /* .gnu.hash section. */
2115 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 goto success;
2117
2118 case SHT_DYNAMIC: /* Dynamic linking information. */
2119 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2120 goto fail;
2121
2122 if (hdr->sh_link > elf_numsections (abfd))
2123 {
2124 /* PR 10478: Accept Solaris binaries with a sh_link
2125 field set to SHN_BEFORE or SHN_AFTER. */
2126 switch (bfd_get_arch (abfd))
2127 {
2128 case bfd_arch_i386:
2129 case bfd_arch_sparc:
2130 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2131 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2132 break;
2133 /* Otherwise fall through. */
2134 default:
2135 goto fail;
2136 }
2137 }
2138 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2139 goto fail;
2140 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2141 {
2142 Elf_Internal_Shdr *dynsymhdr;
2143
2144 /* The shared libraries distributed with hpux11 have a bogus
2145 sh_link field for the ".dynamic" section. Find the
2146 string table for the ".dynsym" section instead. */
2147 if (elf_dynsymtab (abfd) != 0)
2148 {
2149 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 }
2152 else
2153 {
2154 unsigned int i, num_sec;
2155
2156 num_sec = elf_numsections (abfd);
2157 for (i = 1; i < num_sec; i++)
2158 {
2159 dynsymhdr = elf_elfsections (abfd)[i];
2160 if (dynsymhdr->sh_type == SHT_DYNSYM)
2161 {
2162 hdr->sh_link = dynsymhdr->sh_link;
2163 break;
2164 }
2165 }
2166 }
2167 }
2168 goto success;
2169
2170 case SHT_SYMTAB: /* A symbol table. */
2171 if (elf_onesymtab (abfd) == shindex)
2172 goto success;
2173
2174 if (hdr->sh_entsize != bed->s->sizeof_sym)
2175 goto fail;
2176
2177 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2178 {
2179 if (hdr->sh_size != 0)
2180 goto fail;
2181 /* Some assemblers erroneously set sh_info to one with a
2182 zero sh_size. ld sees this as a global symbol count
2183 of (unsigned) -1. Fix it here. */
2184 hdr->sh_info = 0;
2185 goto success;
2186 }
2187
2188 /* PR 18854: A binary might contain more than one symbol table.
2189 Unusual, but possible. Warn, but continue. */
2190 if (elf_onesymtab (abfd) != 0)
2191 {
2192 _bfd_error_handler
2193 /* xgettext:c-format */
2194 (_("%pB: warning: multiple symbol tables detected"
2195 " - ignoring the table in section %u"),
2196 abfd, shindex);
2197 goto success;
2198 }
2199 elf_onesymtab (abfd) = shindex;
2200 elf_symtab_hdr (abfd) = *hdr;
2201 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2202 abfd->flags |= HAS_SYMS;
2203
2204 /* Sometimes a shared object will map in the symbol table. If
2205 SHF_ALLOC is set, and this is a shared object, then we also
2206 treat this section as a BFD section. We can not base the
2207 decision purely on SHF_ALLOC, because that flag is sometimes
2208 set in a relocatable object file, which would confuse the
2209 linker. */
2210 if ((hdr->sh_flags & SHF_ALLOC) != 0
2211 && (abfd->flags & DYNAMIC) != 0
2212 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2213 shindex))
2214 goto fail;
2215
2216 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2217 can't read symbols without that section loaded as well. It
2218 is most likely specified by the next section header. */
2219 {
2220 elf_section_list * entry;
2221 unsigned int i, num_sec;
2222
2223 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2224 if (entry->hdr.sh_link == shindex)
2225 goto success;
2226
2227 num_sec = elf_numsections (abfd);
2228 for (i = shindex + 1; i < num_sec; i++)
2229 {
2230 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2231
2232 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2233 && hdr2->sh_link == shindex)
2234 break;
2235 }
2236
2237 if (i == num_sec)
2238 for (i = 1; i < shindex; i++)
2239 {
2240 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2241
2242 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2243 && hdr2->sh_link == shindex)
2244 break;
2245 }
2246
2247 if (i != shindex)
2248 ret = bfd_section_from_shdr (abfd, i);
2249 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2250 goto success;
2251 }
2252
2253 case SHT_DYNSYM: /* A dynamic symbol table. */
2254 if (elf_dynsymtab (abfd) == shindex)
2255 goto success;
2256
2257 if (hdr->sh_entsize != bed->s->sizeof_sym)
2258 goto fail;
2259
2260 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2261 {
2262 if (hdr->sh_size != 0)
2263 goto fail;
2264
2265 /* Some linkers erroneously set sh_info to one with a
2266 zero sh_size. ld sees this as a global symbol count
2267 of (unsigned) -1. Fix it here. */
2268 hdr->sh_info = 0;
2269 goto success;
2270 }
2271
2272 /* PR 18854: A binary might contain more than one dynamic symbol table.
2273 Unusual, but possible. Warn, but continue. */
2274 if (elf_dynsymtab (abfd) != 0)
2275 {
2276 _bfd_error_handler
2277 /* xgettext:c-format */
2278 (_("%pB: warning: multiple dynamic symbol tables detected"
2279 " - ignoring the table in section %u"),
2280 abfd, shindex);
2281 goto success;
2282 }
2283 elf_dynsymtab (abfd) = shindex;
2284 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2285 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2286 abfd->flags |= HAS_SYMS;
2287
2288 /* Besides being a symbol table, we also treat this as a regular
2289 section, so that objcopy can handle it. */
2290 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2291 goto success;
2292
2293 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2294 {
2295 elf_section_list * entry;
2296
2297 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2298 if (entry->ndx == shindex)
2299 goto success;
2300
2301 entry = bfd_alloc (abfd, sizeof (*entry));
2302 if (entry == NULL)
2303 goto fail;
2304 entry->ndx = shindex;
2305 entry->hdr = * hdr;
2306 entry->next = elf_symtab_shndx_list (abfd);
2307 elf_symtab_shndx_list (abfd) = entry;
2308 elf_elfsections (abfd)[shindex] = & entry->hdr;
2309 goto success;
2310 }
2311
2312 case SHT_STRTAB: /* A string table. */
2313 if (hdr->bfd_section != NULL)
2314 goto success;
2315
2316 if (ehdr->e_shstrndx == shindex)
2317 {
2318 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2319 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2320 goto success;
2321 }
2322
2323 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2324 {
2325 symtab_strtab:
2326 elf_tdata (abfd)->strtab_hdr = *hdr;
2327 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2328 goto success;
2329 }
2330
2331 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2332 {
2333 dynsymtab_strtab:
2334 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2335 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2336 elf_elfsections (abfd)[shindex] = hdr;
2337 /* We also treat this as a regular section, so that objcopy
2338 can handle it. */
2339 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2340 shindex);
2341 goto success;
2342 }
2343
2344 /* If the string table isn't one of the above, then treat it as a
2345 regular section. We need to scan all the headers to be sure,
2346 just in case this strtab section appeared before the above. */
2347 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2348 {
2349 unsigned int i, num_sec;
2350
2351 num_sec = elf_numsections (abfd);
2352 for (i = 1; i < num_sec; i++)
2353 {
2354 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2355 if (hdr2->sh_link == shindex)
2356 {
2357 /* Prevent endless recursion on broken objects. */
2358 if (i == shindex)
2359 goto fail;
2360 if (! bfd_section_from_shdr (abfd, i))
2361 goto fail;
2362 if (elf_onesymtab (abfd) == i)
2363 goto symtab_strtab;
2364 if (elf_dynsymtab (abfd) == i)
2365 goto dynsymtab_strtab;
2366 }
2367 }
2368 }
2369 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2370 goto success;
2371
2372 case SHT_REL:
2373 case SHT_RELA:
2374 /* *These* do a lot of work -- but build no sections! */
2375 {
2376 asection *target_sect;
2377 Elf_Internal_Shdr *hdr2, **p_hdr;
2378 unsigned int num_sec = elf_numsections (abfd);
2379 struct bfd_elf_section_data *esdt;
2380
2381 if (hdr->sh_entsize
2382 != (bfd_size_type) (hdr->sh_type == SHT_REL
2383 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2384 goto fail;
2385
2386 /* Check for a bogus link to avoid crashing. */
2387 if (hdr->sh_link >= num_sec)
2388 {
2389 _bfd_error_handler
2390 /* xgettext:c-format */
2391 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2392 abfd, hdr->sh_link, name, shindex);
2393 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2394 shindex);
2395 goto success;
2396 }
2397
2398 /* For some incomprehensible reason Oracle distributes
2399 libraries for Solaris in which some of the objects have
2400 bogus sh_link fields. It would be nice if we could just
2401 reject them, but, unfortunately, some people need to use
2402 them. We scan through the section headers; if we find only
2403 one suitable symbol table, we clobber the sh_link to point
2404 to it. I hope this doesn't break anything.
2405
2406 Don't do it on executable nor shared library. */
2407 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2408 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2410 {
2411 unsigned int scan;
2412 int found;
2413
2414 found = 0;
2415 for (scan = 1; scan < num_sec; scan++)
2416 {
2417 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2418 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2419 {
2420 if (found != 0)
2421 {
2422 found = 0;
2423 break;
2424 }
2425 found = scan;
2426 }
2427 }
2428 if (found != 0)
2429 hdr->sh_link = found;
2430 }
2431
2432 /* Get the symbol table. */
2433 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2434 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2435 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2436 goto fail;
2437
2438 /* If this is an alloc section in an executable or shared
2439 library, or the reloc section does not use the main symbol
2440 table we don't treat it as a reloc section. BFD can't
2441 adequately represent such a section, so at least for now,
2442 we don't try. We just present it as a normal section. We
2443 also can't use it as a reloc section if it points to the
2444 null section, an invalid section, another reloc section, or
2445 its sh_link points to the null section. */
2446 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2447 && (hdr->sh_flags & SHF_ALLOC) != 0)
2448 || hdr->sh_link == SHN_UNDEF
2449 || hdr->sh_link != elf_onesymtab (abfd)
2450 || hdr->sh_info == SHN_UNDEF
2451 || hdr->sh_info >= num_sec
2452 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2454 {
2455 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2456 shindex);
2457 goto success;
2458 }
2459
2460 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2461 goto fail;
2462
2463 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2464 if (target_sect == NULL)
2465 goto fail;
2466
2467 esdt = elf_section_data (target_sect);
2468 if (hdr->sh_type == SHT_RELA)
2469 p_hdr = &esdt->rela.hdr;
2470 else
2471 p_hdr = &esdt->rel.hdr;
2472
2473 /* PR 17512: file: 0b4f81b7.
2474 Also see PR 24456, for a file which deliberately has two reloc
2475 sections. */
2476 if (*p_hdr != NULL)
2477 {
2478 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2479 {
2480 _bfd_error_handler
2481 /* xgettext:c-format */
2482 (_("%pB: warning: secondary relocation section '%s' "
2483 "for section %pA found - ignoring"),
2484 abfd, name, target_sect);
2485 }
2486 goto success;
2487 }
2488
2489 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2490 if (hdr2 == NULL)
2491 goto fail;
2492 *hdr2 = *hdr;
2493 *p_hdr = hdr2;
2494 elf_elfsections (abfd)[shindex] = hdr2;
2495 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2496 * bed->s->int_rels_per_ext_rel);
2497 target_sect->flags |= SEC_RELOC;
2498 target_sect->relocation = NULL;
2499 target_sect->rel_filepos = hdr->sh_offset;
2500 /* In the section to which the relocations apply, mark whether
2501 its relocations are of the REL or RELA variety. */
2502 if (hdr->sh_size != 0)
2503 {
2504 if (hdr->sh_type == SHT_RELA)
2505 target_sect->use_rela_p = 1;
2506 }
2507 abfd->flags |= HAS_RELOC;
2508 goto success;
2509 }
2510
2511 case SHT_GNU_verdef:
2512 elf_dynverdef (abfd) = shindex;
2513 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2514 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2515 goto success;
2516
2517 case SHT_GNU_versym:
2518 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2519 goto fail;
2520
2521 elf_dynversym (abfd) = shindex;
2522 elf_tdata (abfd)->dynversym_hdr = *hdr;
2523 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2524 goto success;
2525
2526 case SHT_GNU_verneed:
2527 elf_dynverref (abfd) = shindex;
2528 elf_tdata (abfd)->dynverref_hdr = *hdr;
2529 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2530 goto success;
2531
2532 case SHT_SHLIB:
2533 goto success;
2534
2535 case SHT_GROUP:
2536 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2537 goto fail;
2538
2539 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2540 goto fail;
2541
2542 goto success;
2543
2544 default:
2545 /* Possibly an attributes section. */
2546 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2547 || hdr->sh_type == bed->obj_attrs_section_type)
2548 {
2549 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2550 goto fail;
2551 _bfd_elf_parse_attributes (abfd, hdr);
2552 goto success;
2553 }
2554
2555 /* Check for any processor-specific section types. */
2556 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2557 goto success;
2558
2559 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2560 {
2561 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2562 /* FIXME: How to properly handle allocated section reserved
2563 for applications? */
2564 _bfd_error_handler
2565 /* xgettext:c-format */
2566 (_("%pB: unknown type [%#x] section `%s'"),
2567 abfd, hdr->sh_type, name);
2568 else
2569 {
2570 /* Allow sections reserved for applications. */
2571 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2572 shindex);
2573 goto success;
2574 }
2575 }
2576 else if (hdr->sh_type >= SHT_LOPROC
2577 && hdr->sh_type <= SHT_HIPROC)
2578 /* FIXME: We should handle this section. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2584 {
2585 /* Unrecognised OS-specific sections. */
2586 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2587 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2588 required to correctly process the section and the file should
2589 be rejected with an error message. */
2590 _bfd_error_handler
2591 /* xgettext:c-format */
2592 (_("%pB: unknown type [%#x] section `%s'"),
2593 abfd, hdr->sh_type, name);
2594 else
2595 {
2596 /* Otherwise it should be processed. */
2597 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2598 goto success;
2599 }
2600 }
2601 else
2602 /* FIXME: We should handle this section. */
2603 _bfd_error_handler
2604 /* xgettext:c-format */
2605 (_("%pB: unknown type [%#x] section `%s'"),
2606 abfd, hdr->sh_type, name);
2607
2608 goto fail;
2609 }
2610
2611 fail:
2612 ret = FALSE;
2613 success:
2614 if (sections_being_created && sections_being_created_abfd == abfd)
2615 sections_being_created [shindex] = FALSE;
2616 if (-- nesting == 0)
2617 {
2618 free (sections_being_created);
2619 sections_being_created = NULL;
2620 sections_being_created_abfd = NULL;
2621 }
2622 return ret;
2623 }
2624
2625 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2626
2627 Elf_Internal_Sym *
2628 bfd_sym_from_r_symndx (struct sym_cache *cache,
2629 bfd *abfd,
2630 unsigned long r_symndx)
2631 {
2632 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2633
2634 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2635 {
2636 Elf_Internal_Shdr *symtab_hdr;
2637 unsigned char esym[sizeof (Elf64_External_Sym)];
2638 Elf_External_Sym_Shndx eshndx;
2639
2640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2641 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2642 &cache->sym[ent], esym, &eshndx) == NULL)
2643 return NULL;
2644
2645 if (cache->abfd != abfd)
2646 {
2647 memset (cache->indx, -1, sizeof (cache->indx));
2648 cache->abfd = abfd;
2649 }
2650 cache->indx[ent] = r_symndx;
2651 }
2652
2653 return &cache->sym[ent];
2654 }
2655
2656 /* Given an ELF section number, retrieve the corresponding BFD
2657 section. */
2658
2659 asection *
2660 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2661 {
2662 if (sec_index >= elf_numsections (abfd))
2663 return NULL;
2664 return elf_elfsections (abfd)[sec_index]->bfd_section;
2665 }
2666
2667 static const struct bfd_elf_special_section special_sections_b[] =
2668 {
2669 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2670 { NULL, 0, 0, 0, 0 }
2671 };
2672
2673 static const struct bfd_elf_special_section special_sections_c[] =
2674 {
2675 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2677 { NULL, 0, 0, 0, 0 }
2678 };
2679
2680 static const struct bfd_elf_special_section special_sections_d[] =
2681 {
2682 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2683 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2684 /* There are more DWARF sections than these, but they needn't be added here
2685 unless you have to cope with broken compilers that don't emit section
2686 attributes or you want to help the user writing assembler. */
2687 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2691 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2692 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2694 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_f[] =
2699 {
2700 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2701 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2702 { NULL, 0 , 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_g[] =
2706 {
2707 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2709 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2710 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2711 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2712 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2713 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2714 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2715 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2716 { NULL, 0, 0, 0, 0 }
2717 };
2718
2719 static const struct bfd_elf_special_section special_sections_h[] =
2720 {
2721 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2722 { NULL, 0, 0, 0, 0 }
2723 };
2724
2725 static const struct bfd_elf_special_section special_sections_i[] =
2726 {
2727 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2728 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2729 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2730 { NULL, 0, 0, 0, 0 }
2731 };
2732
2733 static const struct bfd_elf_special_section special_sections_l[] =
2734 {
2735 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2736 { NULL, 0, 0, 0, 0 }
2737 };
2738
2739 static const struct bfd_elf_special_section special_sections_n[] =
2740 {
2741 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2742 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2743 { NULL, 0, 0, 0, 0 }
2744 };
2745
2746 static const struct bfd_elf_special_section special_sections_p[] =
2747 {
2748 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2749 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2750 { NULL, 0, 0, 0, 0 }
2751 };
2752
2753 static const struct bfd_elf_special_section special_sections_r[] =
2754 {
2755 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2756 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2757 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2758 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2759 { NULL, 0, 0, 0, 0 }
2760 };
2761
2762 static const struct bfd_elf_special_section special_sections_s[] =
2763 {
2764 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2765 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2766 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2767 /* See struct bfd_elf_special_section declaration for the semantics of
2768 this special case where .prefix_length != strlen (.prefix). */
2769 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2770 { NULL, 0, 0, 0, 0 }
2771 };
2772
2773 static const struct bfd_elf_special_section special_sections_t[] =
2774 {
2775 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2776 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2777 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2778 { NULL, 0, 0, 0, 0 }
2779 };
2780
2781 static const struct bfd_elf_special_section special_sections_z[] =
2782 {
2783 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2784 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2785 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2786 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2787 { NULL, 0, 0, 0, 0 }
2788 };
2789
2790 static const struct bfd_elf_special_section * const special_sections[] =
2791 {
2792 special_sections_b, /* 'b' */
2793 special_sections_c, /* 'c' */
2794 special_sections_d, /* 'd' */
2795 NULL, /* 'e' */
2796 special_sections_f, /* 'f' */
2797 special_sections_g, /* 'g' */
2798 special_sections_h, /* 'h' */
2799 special_sections_i, /* 'i' */
2800 NULL, /* 'j' */
2801 NULL, /* 'k' */
2802 special_sections_l, /* 'l' */
2803 NULL, /* 'm' */
2804 special_sections_n, /* 'n' */
2805 NULL, /* 'o' */
2806 special_sections_p, /* 'p' */
2807 NULL, /* 'q' */
2808 special_sections_r, /* 'r' */
2809 special_sections_s, /* 's' */
2810 special_sections_t, /* 't' */
2811 NULL, /* 'u' */
2812 NULL, /* 'v' */
2813 NULL, /* 'w' */
2814 NULL, /* 'x' */
2815 NULL, /* 'y' */
2816 special_sections_z /* 'z' */
2817 };
2818
2819 const struct bfd_elf_special_section *
2820 _bfd_elf_get_special_section (const char *name,
2821 const struct bfd_elf_special_section *spec,
2822 unsigned int rela)
2823 {
2824 int i;
2825 int len;
2826
2827 len = strlen (name);
2828
2829 for (i = 0; spec[i].prefix != NULL; i++)
2830 {
2831 int suffix_len;
2832 int prefix_len = spec[i].prefix_length;
2833
2834 if (len < prefix_len)
2835 continue;
2836 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2837 continue;
2838
2839 suffix_len = spec[i].suffix_length;
2840 if (suffix_len <= 0)
2841 {
2842 if (name[prefix_len] != 0)
2843 {
2844 if (suffix_len == 0)
2845 continue;
2846 if (name[prefix_len] != '.'
2847 && (suffix_len == -2
2848 || (rela && spec[i].type == SHT_REL)))
2849 continue;
2850 }
2851 }
2852 else
2853 {
2854 if (len < prefix_len + suffix_len)
2855 continue;
2856 if (memcmp (name + len - suffix_len,
2857 spec[i].prefix + prefix_len,
2858 suffix_len) != 0)
2859 continue;
2860 }
2861 return &spec[i];
2862 }
2863
2864 return NULL;
2865 }
2866
2867 const struct bfd_elf_special_section *
2868 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2869 {
2870 int i;
2871 const struct bfd_elf_special_section *spec;
2872 const struct elf_backend_data *bed;
2873
2874 /* See if this is one of the special sections. */
2875 if (sec->name == NULL)
2876 return NULL;
2877
2878 bed = get_elf_backend_data (abfd);
2879 spec = bed->special_sections;
2880 if (spec)
2881 {
2882 spec = _bfd_elf_get_special_section (sec->name,
2883 bed->special_sections,
2884 sec->use_rela_p);
2885 if (spec != NULL)
2886 return spec;
2887 }
2888
2889 if (sec->name[0] != '.')
2890 return NULL;
2891
2892 i = sec->name[1] - 'b';
2893 if (i < 0 || i > 'z' - 'b')
2894 return NULL;
2895
2896 spec = special_sections[i];
2897
2898 if (spec == NULL)
2899 return NULL;
2900
2901 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2902 }
2903
2904 bfd_boolean
2905 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2906 {
2907 struct bfd_elf_section_data *sdata;
2908 const struct elf_backend_data *bed;
2909 const struct bfd_elf_special_section *ssect;
2910
2911 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2912 if (sdata == NULL)
2913 {
2914 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2915 sizeof (*sdata));
2916 if (sdata == NULL)
2917 return FALSE;
2918 sec->used_by_bfd = sdata;
2919 }
2920
2921 /* Indicate whether or not this section should use RELA relocations. */
2922 bed = get_elf_backend_data (abfd);
2923 sec->use_rela_p = bed->default_use_rela_p;
2924
2925 /* Set up ELF section type and flags for newly created sections, if
2926 there is an ABI mandated section. */
2927 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2928 if (ssect != NULL)
2929 {
2930 elf_section_type (sec) = ssect->type;
2931 elf_section_flags (sec) = ssect->attr;
2932 }
2933
2934 return _bfd_generic_new_section_hook (abfd, sec);
2935 }
2936
2937 /* Create a new bfd section from an ELF program header.
2938
2939 Since program segments have no names, we generate a synthetic name
2940 of the form segment<NUM>, where NUM is generally the index in the
2941 program header table. For segments that are split (see below) we
2942 generate the names segment<NUM>a and segment<NUM>b.
2943
2944 Note that some program segments may have a file size that is different than
2945 (less than) the memory size. All this means is that at execution the
2946 system must allocate the amount of memory specified by the memory size,
2947 but only initialize it with the first "file size" bytes read from the
2948 file. This would occur for example, with program segments consisting
2949 of combined data+bss.
2950
2951 To handle the above situation, this routine generates TWO bfd sections
2952 for the single program segment. The first has the length specified by
2953 the file size of the segment, and the second has the length specified
2954 by the difference between the two sizes. In effect, the segment is split
2955 into its initialized and uninitialized parts.
2956
2957 */
2958
2959 bfd_boolean
2960 _bfd_elf_make_section_from_phdr (bfd *abfd,
2961 Elf_Internal_Phdr *hdr,
2962 int hdr_index,
2963 const char *type_name)
2964 {
2965 asection *newsect;
2966 char *name;
2967 char namebuf[64];
2968 size_t len;
2969 int split;
2970 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2971
2972 split = ((hdr->p_memsz > 0)
2973 && (hdr->p_filesz > 0)
2974 && (hdr->p_memsz > hdr->p_filesz));
2975
2976 if (hdr->p_filesz > 0)
2977 {
2978 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2979 len = strlen (namebuf) + 1;
2980 name = (char *) bfd_alloc (abfd, len);
2981 if (!name)
2982 return FALSE;
2983 memcpy (name, namebuf, len);
2984 newsect = bfd_make_section (abfd, name);
2985 if (newsect == NULL)
2986 return FALSE;
2987 newsect->vma = hdr->p_vaddr / opb;
2988 newsect->lma = hdr->p_paddr / opb;
2989 newsect->size = hdr->p_filesz;
2990 newsect->filepos = hdr->p_offset;
2991 newsect->flags |= SEC_HAS_CONTENTS;
2992 newsect->alignment_power = bfd_log2 (hdr->p_align);
2993 if (hdr->p_type == PT_LOAD)
2994 {
2995 newsect->flags |= SEC_ALLOC;
2996 newsect->flags |= SEC_LOAD;
2997 if (hdr->p_flags & PF_X)
2998 {
2999 /* FIXME: all we known is that it has execute PERMISSION,
3000 may be data. */
3001 newsect->flags |= SEC_CODE;
3002 }
3003 }
3004 if (!(hdr->p_flags & PF_W))
3005 {
3006 newsect->flags |= SEC_READONLY;
3007 }
3008 }
3009
3010 if (hdr->p_memsz > hdr->p_filesz)
3011 {
3012 bfd_vma align;
3013
3014 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3015 len = strlen (namebuf) + 1;
3016 name = (char *) bfd_alloc (abfd, len);
3017 if (!name)
3018 return FALSE;
3019 memcpy (name, namebuf, len);
3020 newsect = bfd_make_section (abfd, name);
3021 if (newsect == NULL)
3022 return FALSE;
3023 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3024 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3025 newsect->size = hdr->p_memsz - hdr->p_filesz;
3026 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3027 align = newsect->vma & -newsect->vma;
3028 if (align == 0 || align > hdr->p_align)
3029 align = hdr->p_align;
3030 newsect->alignment_power = bfd_log2 (align);
3031 if (hdr->p_type == PT_LOAD)
3032 {
3033 newsect->flags |= SEC_ALLOC;
3034 if (hdr->p_flags & PF_X)
3035 newsect->flags |= SEC_CODE;
3036 }
3037 if (!(hdr->p_flags & PF_W))
3038 newsect->flags |= SEC_READONLY;
3039 }
3040
3041 return TRUE;
3042 }
3043
3044 static bfd_boolean
3045 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3046 {
3047 /* The return value is ignored. Build-ids are considered optional. */
3048 if (templ->xvec->flavour == bfd_target_elf_flavour)
3049 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3050 (templ, offset);
3051 return FALSE;
3052 }
3053
3054 bfd_boolean
3055 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3056 {
3057 const struct elf_backend_data *bed;
3058
3059 switch (hdr->p_type)
3060 {
3061 case PT_NULL:
3062 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3063
3064 case PT_LOAD:
3065 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3066 return FALSE;
3067 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3068 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3069 return TRUE;
3070
3071 case PT_DYNAMIC:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3073
3074 case PT_INTERP:
3075 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3076
3077 case PT_NOTE:
3078 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3079 return FALSE;
3080 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3081 hdr->p_align))
3082 return FALSE;
3083 return TRUE;
3084
3085 case PT_SHLIB:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3087
3088 case PT_PHDR:
3089 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3090
3091 case PT_GNU_EH_FRAME:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3093 "eh_frame_hdr");
3094
3095 case PT_GNU_STACK:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3097
3098 case PT_GNU_RELRO:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3100
3101 default:
3102 /* Check for any processor-specific program segment types. */
3103 bed = get_elf_backend_data (abfd);
3104 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3105 }
3106 }
3107
3108 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3109 REL or RELA. */
3110
3111 Elf_Internal_Shdr *
3112 _bfd_elf_single_rel_hdr (asection *sec)
3113 {
3114 if (elf_section_data (sec)->rel.hdr)
3115 {
3116 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3117 return elf_section_data (sec)->rel.hdr;
3118 }
3119 else
3120 return elf_section_data (sec)->rela.hdr;
3121 }
3122
3123 static bfd_boolean
3124 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3125 Elf_Internal_Shdr *rel_hdr,
3126 const char *sec_name,
3127 bfd_boolean use_rela_p)
3128 {
3129 char *name = (char *) bfd_alloc (abfd,
3130 sizeof ".rela" + strlen (sec_name));
3131 if (name == NULL)
3132 return FALSE;
3133
3134 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3135 rel_hdr->sh_name =
3136 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3137 FALSE);
3138 if (rel_hdr->sh_name == (unsigned int) -1)
3139 return FALSE;
3140
3141 return TRUE;
3142 }
3143
3144 /* Allocate and initialize a section-header for a new reloc section,
3145 containing relocations against ASECT. It is stored in RELDATA. If
3146 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3147 relocations. */
3148
3149 static bfd_boolean
3150 _bfd_elf_init_reloc_shdr (bfd *abfd,
3151 struct bfd_elf_section_reloc_data *reldata,
3152 const char *sec_name,
3153 bfd_boolean use_rela_p,
3154 bfd_boolean delay_st_name_p)
3155 {
3156 Elf_Internal_Shdr *rel_hdr;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158
3159 BFD_ASSERT (reldata->hdr == NULL);
3160 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3161 reldata->hdr = rel_hdr;
3162
3163 if (delay_st_name_p)
3164 rel_hdr->sh_name = (unsigned int) -1;
3165 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3166 use_rela_p))
3167 return FALSE;
3168 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3169 rel_hdr->sh_entsize = (use_rela_p
3170 ? bed->s->sizeof_rela
3171 : bed->s->sizeof_rel);
3172 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3173 rel_hdr->sh_flags = 0;
3174 rel_hdr->sh_addr = 0;
3175 rel_hdr->sh_size = 0;
3176 rel_hdr->sh_offset = 0;
3177
3178 return TRUE;
3179 }
3180
3181 /* Return the default section type based on the passed in section flags. */
3182
3183 int
3184 bfd_elf_get_default_section_type (flagword flags)
3185 {
3186 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3187 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3188 return SHT_NOBITS;
3189 return SHT_PROGBITS;
3190 }
3191
3192 struct fake_section_arg
3193 {
3194 struct bfd_link_info *link_info;
3195 bfd_boolean failed;
3196 };
3197
3198 /* Set up an ELF internal section header for a section. */
3199
3200 static void
3201 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3202 {
3203 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3205 struct bfd_elf_section_data *esd = elf_section_data (asect);
3206 Elf_Internal_Shdr *this_hdr;
3207 unsigned int sh_type;
3208 const char *name = asect->name;
3209 bfd_boolean delay_st_name_p = FALSE;
3210 bfd_vma mask;
3211
3212 if (arg->failed)
3213 {
3214 /* We already failed; just get out of the bfd_map_over_sections
3215 loop. */
3216 return;
3217 }
3218
3219 this_hdr = &esd->this_hdr;
3220
3221 if (arg->link_info)
3222 {
3223 /* ld: compress DWARF debug sections with names: .debug_*. */
3224 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3225 && (asect->flags & SEC_DEBUGGING)
3226 && name[1] == 'd'
3227 && name[6] == '_')
3228 {
3229 /* Set SEC_ELF_COMPRESS to indicate this section should be
3230 compressed. */
3231 asect->flags |= SEC_ELF_COMPRESS;
3232 /* If this section will be compressed, delay adding section
3233 name to section name section after it is compressed in
3234 _bfd_elf_assign_file_positions_for_non_load. */
3235 delay_st_name_p = TRUE;
3236 }
3237 }
3238 else if ((asect->flags & SEC_ELF_RENAME))
3239 {
3240 /* objcopy: rename output DWARF debug section. */
3241 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3242 {
3243 /* When we decompress or compress with SHF_COMPRESSED,
3244 convert section name from .zdebug_* to .debug_* if
3245 needed. */
3246 if (name[1] == 'z')
3247 {
3248 char *new_name = convert_zdebug_to_debug (abfd, name);
3249 if (new_name == NULL)
3250 {
3251 arg->failed = TRUE;
3252 return;
3253 }
3254 name = new_name;
3255 }
3256 }
3257 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3258 {
3259 /* PR binutils/18087: Compression does not always make a
3260 section smaller. So only rename the section when
3261 compression has actually taken place. If input section
3262 name is .zdebug_*, we should never compress it again. */
3263 char *new_name = convert_debug_to_zdebug (abfd, name);
3264 if (new_name == NULL)
3265 {
3266 arg->failed = TRUE;
3267 return;
3268 }
3269 BFD_ASSERT (name[1] != 'z');
3270 name = new_name;
3271 }
3272 }
3273
3274 if (delay_st_name_p)
3275 this_hdr->sh_name = (unsigned int) -1;
3276 else
3277 {
3278 this_hdr->sh_name
3279 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3280 name, FALSE);
3281 if (this_hdr->sh_name == (unsigned int) -1)
3282 {
3283 arg->failed = TRUE;
3284 return;
3285 }
3286 }
3287
3288 /* Don't clear sh_flags. Assembler may set additional bits. */
3289
3290 if ((asect->flags & SEC_ALLOC) != 0
3291 || asect->user_set_vma)
3292 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3293 else
3294 this_hdr->sh_addr = 0;
3295
3296 this_hdr->sh_offset = 0;
3297 this_hdr->sh_size = asect->size;
3298 this_hdr->sh_link = 0;
3299 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3300 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3301 {
3302 _bfd_error_handler
3303 /* xgettext:c-format */
3304 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3305 abfd, asect->alignment_power, asect);
3306 arg->failed = TRUE;
3307 return;
3308 }
3309 /* Set sh_addralign to the highest power of two given by alignment
3310 consistent with the section VMA. Linker scripts can force VMA. */
3311 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3312 this_hdr->sh_addralign = mask & -mask;
3313 /* The sh_entsize and sh_info fields may have been set already by
3314 copy_private_section_data. */
3315
3316 this_hdr->bfd_section = asect;
3317 this_hdr->contents = NULL;
3318
3319 /* If the section type is unspecified, we set it based on
3320 asect->flags. */
3321 if ((asect->flags & SEC_GROUP) != 0)
3322 sh_type = SHT_GROUP;
3323 else
3324 sh_type = bfd_elf_get_default_section_type (asect->flags);
3325
3326 if (this_hdr->sh_type == SHT_NULL)
3327 this_hdr->sh_type = sh_type;
3328 else if (this_hdr->sh_type == SHT_NOBITS
3329 && sh_type == SHT_PROGBITS
3330 && (asect->flags & SEC_ALLOC) != 0)
3331 {
3332 /* Warn if we are changing a NOBITS section to PROGBITS, but
3333 allow the link to proceed. This can happen when users link
3334 non-bss input sections to bss output sections, or emit data
3335 to a bss output section via a linker script. */
3336 _bfd_error_handler
3337 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3338 this_hdr->sh_type = sh_type;
3339 }
3340
3341 switch (this_hdr->sh_type)
3342 {
3343 default:
3344 break;
3345
3346 case SHT_STRTAB:
3347 case SHT_NOTE:
3348 case SHT_NOBITS:
3349 case SHT_PROGBITS:
3350 break;
3351
3352 case SHT_INIT_ARRAY:
3353 case SHT_FINI_ARRAY:
3354 case SHT_PREINIT_ARRAY:
3355 this_hdr->sh_entsize = bed->s->arch_size / 8;
3356 break;
3357
3358 case SHT_HASH:
3359 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3360 break;
3361
3362 case SHT_DYNSYM:
3363 this_hdr->sh_entsize = bed->s->sizeof_sym;
3364 break;
3365
3366 case SHT_DYNAMIC:
3367 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3368 break;
3369
3370 case SHT_RELA:
3371 if (get_elf_backend_data (abfd)->may_use_rela_p)
3372 this_hdr->sh_entsize = bed->s->sizeof_rela;
3373 break;
3374
3375 case SHT_REL:
3376 if (get_elf_backend_data (abfd)->may_use_rel_p)
3377 this_hdr->sh_entsize = bed->s->sizeof_rel;
3378 break;
3379
3380 case SHT_GNU_versym:
3381 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3382 break;
3383
3384 case SHT_GNU_verdef:
3385 this_hdr->sh_entsize = 0;
3386 /* objcopy or strip will copy over sh_info, but may not set
3387 cverdefs. The linker will set cverdefs, but sh_info will be
3388 zero. */
3389 if (this_hdr->sh_info == 0)
3390 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3391 else
3392 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3393 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3394 break;
3395
3396 case SHT_GNU_verneed:
3397 this_hdr->sh_entsize = 0;
3398 /* objcopy or strip will copy over sh_info, but may not set
3399 cverrefs. The linker will set cverrefs, but sh_info will be
3400 zero. */
3401 if (this_hdr->sh_info == 0)
3402 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3403 else
3404 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3405 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3406 break;
3407
3408 case SHT_GROUP:
3409 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3410 break;
3411
3412 case SHT_GNU_HASH:
3413 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3414 break;
3415 }
3416
3417 if ((asect->flags & SEC_ALLOC) != 0)
3418 this_hdr->sh_flags |= SHF_ALLOC;
3419 if ((asect->flags & SEC_READONLY) == 0)
3420 this_hdr->sh_flags |= SHF_WRITE;
3421 if ((asect->flags & SEC_CODE) != 0)
3422 this_hdr->sh_flags |= SHF_EXECINSTR;
3423 if ((asect->flags & SEC_MERGE) != 0)
3424 {
3425 this_hdr->sh_flags |= SHF_MERGE;
3426 this_hdr->sh_entsize = asect->entsize;
3427 }
3428 if ((asect->flags & SEC_STRINGS) != 0)
3429 this_hdr->sh_flags |= SHF_STRINGS;
3430 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3431 this_hdr->sh_flags |= SHF_GROUP;
3432 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3433 {
3434 this_hdr->sh_flags |= SHF_TLS;
3435 if (asect->size == 0
3436 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3437 {
3438 struct bfd_link_order *o = asect->map_tail.link_order;
3439
3440 this_hdr->sh_size = 0;
3441 if (o != NULL)
3442 {
3443 this_hdr->sh_size = o->offset + o->size;
3444 if (this_hdr->sh_size != 0)
3445 this_hdr->sh_type = SHT_NOBITS;
3446 }
3447 }
3448 }
3449 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3450 this_hdr->sh_flags |= SHF_EXCLUDE;
3451
3452 /* If the section has relocs, set up a section header for the
3453 SHT_REL[A] section. If two relocation sections are required for
3454 this section, it is up to the processor-specific back-end to
3455 create the other. */
3456 if ((asect->flags & SEC_RELOC) != 0)
3457 {
3458 /* When doing a relocatable link, create both REL and RELA sections if
3459 needed. */
3460 if (arg->link_info
3461 /* Do the normal setup if we wouldn't create any sections here. */
3462 && esd->rel.count + esd->rela.count > 0
3463 && (bfd_link_relocatable (arg->link_info)
3464 || arg->link_info->emitrelocations))
3465 {
3466 if (esd->rel.count && esd->rel.hdr == NULL
3467 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3468 FALSE, delay_st_name_p))
3469 {
3470 arg->failed = TRUE;
3471 return;
3472 }
3473 if (esd->rela.count && esd->rela.hdr == NULL
3474 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3475 TRUE, delay_st_name_p))
3476 {
3477 arg->failed = TRUE;
3478 return;
3479 }
3480 }
3481 else if (!_bfd_elf_init_reloc_shdr (abfd,
3482 (asect->use_rela_p
3483 ? &esd->rela : &esd->rel),
3484 name,
3485 asect->use_rela_p,
3486 delay_st_name_p))
3487 {
3488 arg->failed = TRUE;
3489 return;
3490 }
3491 }
3492
3493 /* Check for processor-specific section types. */
3494 sh_type = this_hdr->sh_type;
3495 if (bed->elf_backend_fake_sections
3496 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3497 {
3498 arg->failed = TRUE;
3499 return;
3500 }
3501
3502 if (sh_type == SHT_NOBITS && asect->size != 0)
3503 {
3504 /* Don't change the header type from NOBITS if we are being
3505 called for objcopy --only-keep-debug. */
3506 this_hdr->sh_type = sh_type;
3507 }
3508 }
3509
3510 /* Fill in the contents of a SHT_GROUP section. Called from
3511 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3512 when ELF targets use the generic linker, ld. Called for ld -r
3513 from bfd_elf_final_link. */
3514
3515 void
3516 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3517 {
3518 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3519 asection *elt, *first;
3520 unsigned char *loc;
3521 bfd_boolean gas;
3522
3523 /* Ignore linker created group section. See elfNN_ia64_object_p in
3524 elfxx-ia64.c. */
3525 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3526 || sec->size == 0
3527 || *failedptr)
3528 return;
3529
3530 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3531 {
3532 unsigned long symindx = 0;
3533
3534 /* elf_group_id will have been set up by objcopy and the
3535 generic linker. */
3536 if (elf_group_id (sec) != NULL)
3537 symindx = elf_group_id (sec)->udata.i;
3538
3539 if (symindx == 0)
3540 {
3541 /* If called from the assembler, swap_out_syms will have set up
3542 elf_section_syms.
3543 PR 25699: A corrupt input file could contain bogus group info. */
3544 if (elf_section_syms (abfd) == NULL)
3545 {
3546 *failedptr = TRUE;
3547 return;
3548 }
3549 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3550 }
3551 elf_section_data (sec)->this_hdr.sh_info = symindx;
3552 }
3553 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3554 {
3555 /* The ELF backend linker sets sh_info to -2 when the group
3556 signature symbol is global, and thus the index can't be
3557 set until all local symbols are output. */
3558 asection *igroup;
3559 struct bfd_elf_section_data *sec_data;
3560 unsigned long symndx;
3561 unsigned long extsymoff;
3562 struct elf_link_hash_entry *h;
3563
3564 /* The point of this little dance to the first SHF_GROUP section
3565 then back to the SHT_GROUP section is that this gets us to
3566 the SHT_GROUP in the input object. */
3567 igroup = elf_sec_group (elf_next_in_group (sec));
3568 sec_data = elf_section_data (igroup);
3569 symndx = sec_data->this_hdr.sh_info;
3570 extsymoff = 0;
3571 if (!elf_bad_symtab (igroup->owner))
3572 {
3573 Elf_Internal_Shdr *symtab_hdr;
3574
3575 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3576 extsymoff = symtab_hdr->sh_info;
3577 }
3578 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3579 while (h->root.type == bfd_link_hash_indirect
3580 || h->root.type == bfd_link_hash_warning)
3581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3582
3583 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3584 }
3585
3586 /* The contents won't be allocated for "ld -r" or objcopy. */
3587 gas = TRUE;
3588 if (sec->contents == NULL)
3589 {
3590 gas = FALSE;
3591 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3592
3593 /* Arrange for the section to be written out. */
3594 elf_section_data (sec)->this_hdr.contents = sec->contents;
3595 if (sec->contents == NULL)
3596 {
3597 *failedptr = TRUE;
3598 return;
3599 }
3600 }
3601
3602 loc = sec->contents + sec->size;
3603
3604 /* Get the pointer to the first section in the group that gas
3605 squirreled away here. objcopy arranges for this to be set to the
3606 start of the input section group. */
3607 first = elt = elf_next_in_group (sec);
3608
3609 /* First element is a flag word. Rest of section is elf section
3610 indices for all the sections of the group. Write them backwards
3611 just to keep the group in the same order as given in .section
3612 directives, not that it matters. */
3613 while (elt != NULL)
3614 {
3615 asection *s;
3616
3617 s = elt;
3618 if (!gas)
3619 s = s->output_section;
3620 if (s != NULL
3621 && !bfd_is_abs_section (s))
3622 {
3623 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3624 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3625
3626 if (elf_sec->rel.hdr != NULL
3627 && (gas
3628 || (input_elf_sec->rel.hdr != NULL
3629 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3630 {
3631 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3632 loc -= 4;
3633 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3634 }
3635 if (elf_sec->rela.hdr != NULL
3636 && (gas
3637 || (input_elf_sec->rela.hdr != NULL
3638 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3639 {
3640 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3641 loc -= 4;
3642 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3643 }
3644 loc -= 4;
3645 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3646 }
3647 elt = elf_next_in_group (elt);
3648 if (elt == first)
3649 break;
3650 }
3651
3652 loc -= 4;
3653 BFD_ASSERT (loc == sec->contents);
3654
3655 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3656 }
3657
3658 /* Given NAME, the name of a relocation section stripped of its
3659 .rel/.rela prefix, return the section in ABFD to which the
3660 relocations apply. */
3661
3662 asection *
3663 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3664 {
3665 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3666 section likely apply to .got.plt or .got section. */
3667 if (get_elf_backend_data (abfd)->want_got_plt
3668 && strcmp (name, ".plt") == 0)
3669 {
3670 asection *sec;
3671
3672 name = ".got.plt";
3673 sec = bfd_get_section_by_name (abfd, name);
3674 if (sec != NULL)
3675 return sec;
3676 name = ".got";
3677 }
3678
3679 return bfd_get_section_by_name (abfd, name);
3680 }
3681
3682 /* Return the section to which RELOC_SEC applies. */
3683
3684 static asection *
3685 elf_get_reloc_section (asection *reloc_sec)
3686 {
3687 const char *name;
3688 unsigned int type;
3689 bfd *abfd;
3690 const struct elf_backend_data *bed;
3691
3692 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3693 if (type != SHT_REL && type != SHT_RELA)
3694 return NULL;
3695
3696 /* We look up the section the relocs apply to by name. */
3697 name = reloc_sec->name;
3698 if (strncmp (name, ".rel", 4) != 0)
3699 return NULL;
3700 name += 4;
3701 if (type == SHT_RELA && *name++ != 'a')
3702 return NULL;
3703
3704 abfd = reloc_sec->owner;
3705 bed = get_elf_backend_data (abfd);
3706 return bed->get_reloc_section (abfd, name);
3707 }
3708
3709 /* Assign all ELF section numbers. The dummy first section is handled here
3710 too. The link/info pointers for the standard section types are filled
3711 in here too, while we're at it. LINK_INFO will be 0 when arriving
3712 here for objcopy, and when using the generic ELF linker. */
3713
3714 static bfd_boolean
3715 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3716 {
3717 struct elf_obj_tdata *t = elf_tdata (abfd);
3718 asection *sec;
3719 unsigned int section_number;
3720 Elf_Internal_Shdr **i_shdrp;
3721 struct bfd_elf_section_data *d;
3722 bfd_boolean need_symtab;
3723 size_t amt;
3724
3725 section_number = 1;
3726
3727 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3728
3729 /* SHT_GROUP sections are in relocatable files only. */
3730 if (link_info == NULL || !link_info->resolve_section_groups)
3731 {
3732 size_t reloc_count = 0;
3733
3734 /* Put SHT_GROUP sections first. */
3735 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3736 {
3737 d = elf_section_data (sec);
3738
3739 if (d->this_hdr.sh_type == SHT_GROUP)
3740 {
3741 if (sec->flags & SEC_LINKER_CREATED)
3742 {
3743 /* Remove the linker created SHT_GROUP sections. */
3744 bfd_section_list_remove (abfd, sec);
3745 abfd->section_count--;
3746 }
3747 else
3748 d->this_idx = section_number++;
3749 }
3750
3751 /* Count relocations. */
3752 reloc_count += sec->reloc_count;
3753 }
3754
3755 /* Clear HAS_RELOC if there are no relocations. */
3756 if (reloc_count == 0)
3757 abfd->flags &= ~HAS_RELOC;
3758 }
3759
3760 for (sec = abfd->sections; sec; sec = sec->next)
3761 {
3762 d = elf_section_data (sec);
3763
3764 if (d->this_hdr.sh_type != SHT_GROUP)
3765 d->this_idx = section_number++;
3766 if (d->this_hdr.sh_name != (unsigned int) -1)
3767 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3768 if (d->rel.hdr)
3769 {
3770 d->rel.idx = section_number++;
3771 if (d->rel.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3773 }
3774 else
3775 d->rel.idx = 0;
3776
3777 if (d->rela.hdr)
3778 {
3779 d->rela.idx = section_number++;
3780 if (d->rela.hdr->sh_name != (unsigned int) -1)
3781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3782 }
3783 else
3784 d->rela.idx = 0;
3785 }
3786
3787 need_symtab = (bfd_get_symcount (abfd) > 0
3788 || (link_info == NULL
3789 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3790 == HAS_RELOC)));
3791 if (need_symtab)
3792 {
3793 elf_onesymtab (abfd) = section_number++;
3794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3795 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3796 {
3797 elf_section_list *entry;
3798
3799 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3800
3801 entry = bfd_zalloc (abfd, sizeof (*entry));
3802 entry->ndx = section_number++;
3803 elf_symtab_shndx_list (abfd) = entry;
3804 entry->hdr.sh_name
3805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3806 ".symtab_shndx", FALSE);
3807 if (entry->hdr.sh_name == (unsigned int) -1)
3808 return FALSE;
3809 }
3810 elf_strtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3812 }
3813
3814 elf_shstrtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3816 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3817
3818 if (section_number >= SHN_LORESERVE)
3819 {
3820 /* xgettext:c-format */
3821 _bfd_error_handler (_("%pB: too many sections: %u"),
3822 abfd, section_number);
3823 return FALSE;
3824 }
3825
3826 elf_numsections (abfd) = section_number;
3827 elf_elfheader (abfd)->e_shnum = section_number;
3828
3829 /* Set up the list of section header pointers, in agreement with the
3830 indices. */
3831 amt = section_number * sizeof (Elf_Internal_Shdr *);
3832 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3833 if (i_shdrp == NULL)
3834 return FALSE;
3835
3836 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3837 sizeof (Elf_Internal_Shdr));
3838 if (i_shdrp[0] == NULL)
3839 {
3840 bfd_release (abfd, i_shdrp);
3841 return FALSE;
3842 }
3843
3844 elf_elfsections (abfd) = i_shdrp;
3845
3846 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3847 if (need_symtab)
3848 {
3849 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3850 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3851 {
3852 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3853 BFD_ASSERT (entry != NULL);
3854 i_shdrp[entry->ndx] = & entry->hdr;
3855 entry->hdr.sh_link = elf_onesymtab (abfd);
3856 }
3857 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3858 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3859 }
3860
3861 for (sec = abfd->sections; sec; sec = sec->next)
3862 {
3863 asection *s;
3864
3865 d = elf_section_data (sec);
3866
3867 i_shdrp[d->this_idx] = &d->this_hdr;
3868 if (d->rel.idx != 0)
3869 i_shdrp[d->rel.idx] = d->rel.hdr;
3870 if (d->rela.idx != 0)
3871 i_shdrp[d->rela.idx] = d->rela.hdr;
3872
3873 /* Fill in the sh_link and sh_info fields while we're at it. */
3874
3875 /* sh_link of a reloc section is the section index of the symbol
3876 table. sh_info is the section index of the section to which
3877 the relocation entries apply. */
3878 if (d->rel.idx != 0)
3879 {
3880 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rel.hdr->sh_info = d->this_idx;
3882 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884 if (d->rela.idx != 0)
3885 {
3886 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3887 d->rela.hdr->sh_info = d->this_idx;
3888 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3889 }
3890
3891 /* We need to set up sh_link for SHF_LINK_ORDER. */
3892 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3893 {
3894 s = elf_linked_to_section (sec);
3895 /* We can now have a NULL linked section pointer.
3896 This happens when the sh_link field is 0, which is done
3897 when a linked to section is discarded but the linking
3898 section has been retained for some reason. */
3899 if (s)
3900 {
3901 /* Check discarded linkonce section. */
3902 if (discarded_section (s))
3903 {
3904 asection *kept;
3905 _bfd_error_handler
3906 /* xgettext:c-format */
3907 (_("%pB: sh_link of section `%pA' points to"
3908 " discarded section `%pA' of `%pB'"),
3909 abfd, d->this_hdr.bfd_section, s, s->owner);
3910 /* Point to the kept section if it has the same
3911 size as the discarded one. */
3912 kept = _bfd_elf_check_kept_section (s, link_info);
3913 if (kept == NULL)
3914 {
3915 bfd_set_error (bfd_error_bad_value);
3916 return FALSE;
3917 }
3918 s = kept;
3919 }
3920 /* Handle objcopy. */
3921 else if (s->output_section == NULL)
3922 {
3923 _bfd_error_handler
3924 /* xgettext:c-format */
3925 (_("%pB: sh_link of section `%pA' points to"
3926 " removed section `%pA' of `%pB'"),
3927 abfd, d->this_hdr.bfd_section, s, s->owner);
3928 bfd_set_error (bfd_error_bad_value);
3929 return FALSE;
3930 }
3931 s = s->output_section;
3932 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3933 }
3934 }
3935
3936 switch (d->this_hdr.sh_type)
3937 {
3938 case SHT_REL:
3939 case SHT_RELA:
3940 /* A reloc section which we are treating as a normal BFD
3941 section. sh_link is the section index of the symbol
3942 table. sh_info is the section index of the section to
3943 which the relocation entries apply. We assume that an
3944 allocated reloc section uses the dynamic symbol table.
3945 FIXME: How can we be sure? */
3946 s = bfd_get_section_by_name (abfd, ".dynsym");
3947 if (s != NULL)
3948 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3949
3950 s = elf_get_reloc_section (sec);
3951 if (s != NULL)
3952 {
3953 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3954 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3955 }
3956 break;
3957
3958 case SHT_STRTAB:
3959 /* We assume that a section named .stab*str is a stabs
3960 string section. We look for a section with the same name
3961 but without the trailing ``str'', and set its sh_link
3962 field to point to this section. */
3963 if (CONST_STRNEQ (sec->name, ".stab")
3964 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3965 {
3966 size_t len;
3967 char *alc;
3968
3969 len = strlen (sec->name);
3970 alc = (char *) bfd_malloc (len - 2);
3971 if (alc == NULL)
3972 return FALSE;
3973 memcpy (alc, sec->name, len - 3);
3974 alc[len - 3] = '\0';
3975 s = bfd_get_section_by_name (abfd, alc);
3976 free (alc);
3977 if (s != NULL)
3978 {
3979 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3980
3981 /* This is a .stab section. */
3982 elf_section_data (s)->this_hdr.sh_entsize = 12;
3983 }
3984 }
3985 break;
3986
3987 case SHT_DYNAMIC:
3988 case SHT_DYNSYM:
3989 case SHT_GNU_verneed:
3990 case SHT_GNU_verdef:
3991 /* sh_link is the section header index of the string table
3992 used for the dynamic entries, or the symbol table, or the
3993 version strings. */
3994 s = bfd_get_section_by_name (abfd, ".dynstr");
3995 if (s != NULL)
3996 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3997 break;
3998
3999 case SHT_GNU_LIBLIST:
4000 /* sh_link is the section header index of the prelink library
4001 list used for the dynamic entries, or the symbol table, or
4002 the version strings. */
4003 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4004 ? ".dynstr" : ".gnu.libstr");
4005 if (s != NULL)
4006 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4007 break;
4008
4009 case SHT_HASH:
4010 case SHT_GNU_HASH:
4011 case SHT_GNU_versym:
4012 /* sh_link is the section header index of the symbol table
4013 this hash table or version table is for. */
4014 s = bfd_get_section_by_name (abfd, ".dynsym");
4015 if (s != NULL)
4016 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4017 break;
4018
4019 case SHT_GROUP:
4020 d->this_hdr.sh_link = elf_onesymtab (abfd);
4021 }
4022 }
4023
4024 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4025 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4026 debug section name from .debug_* to .zdebug_* if needed. */
4027
4028 return TRUE;
4029 }
4030
4031 static bfd_boolean
4032 sym_is_global (bfd *abfd, asymbol *sym)
4033 {
4034 /* If the backend has a special mapping, use it. */
4035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4036 if (bed->elf_backend_sym_is_global)
4037 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4038
4039 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4040 || bfd_is_und_section (bfd_asymbol_section (sym))
4041 || bfd_is_com_section (bfd_asymbol_section (sym)));
4042 }
4043
4044 /* Filter global symbols of ABFD to include in the import library. All
4045 SYMCOUNT symbols of ABFD can be examined from their pointers in
4046 SYMS. Pointers of symbols to keep should be stored contiguously at
4047 the beginning of that array.
4048
4049 Returns the number of symbols to keep. */
4050
4051 unsigned int
4052 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4053 asymbol **syms, long symcount)
4054 {
4055 long src_count, dst_count = 0;
4056
4057 for (src_count = 0; src_count < symcount; src_count++)
4058 {
4059 asymbol *sym = syms[src_count];
4060 char *name = (char *) bfd_asymbol_name (sym);
4061 struct bfd_link_hash_entry *h;
4062
4063 if (!sym_is_global (abfd, sym))
4064 continue;
4065
4066 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4067 if (h == NULL)
4068 continue;
4069 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4070 continue;
4071 if (h->linker_def || h->ldscript_def)
4072 continue;
4073
4074 syms[dst_count++] = sym;
4075 }
4076
4077 syms[dst_count] = NULL;
4078
4079 return dst_count;
4080 }
4081
4082 /* Don't output section symbols for sections that are not going to be
4083 output, that are duplicates or there is no BFD section. */
4084
4085 static bfd_boolean
4086 ignore_section_sym (bfd *abfd, asymbol *sym)
4087 {
4088 elf_symbol_type *type_ptr;
4089
4090 if (sym == NULL)
4091 return FALSE;
4092
4093 if ((sym->flags & BSF_SECTION_SYM) == 0)
4094 return FALSE;
4095
4096 if (sym->section == NULL)
4097 return TRUE;
4098
4099 type_ptr = elf_symbol_from (sym);
4100 return ((type_ptr != NULL
4101 && type_ptr->internal_elf_sym.st_shndx != 0
4102 && bfd_is_abs_section (sym->section))
4103 || !(sym->section->owner == abfd
4104 || (sym->section->output_section != NULL
4105 && sym->section->output_section->owner == abfd
4106 && sym->section->output_offset == 0)
4107 || bfd_is_abs_section (sym->section)));
4108 }
4109
4110 /* Map symbol from it's internal number to the external number, moving
4111 all local symbols to be at the head of the list. */
4112
4113 static bfd_boolean
4114 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4115 {
4116 unsigned int symcount = bfd_get_symcount (abfd);
4117 asymbol **syms = bfd_get_outsymbols (abfd);
4118 asymbol **sect_syms;
4119 unsigned int num_locals = 0;
4120 unsigned int num_globals = 0;
4121 unsigned int num_locals2 = 0;
4122 unsigned int num_globals2 = 0;
4123 unsigned int max_index = 0;
4124 unsigned int idx;
4125 asection *asect;
4126 asymbol **new_syms;
4127 size_t amt;
4128
4129 #ifdef DEBUG
4130 fprintf (stderr, "elf_map_symbols\n");
4131 fflush (stderr);
4132 #endif
4133
4134 for (asect = abfd->sections; asect; asect = asect->next)
4135 {
4136 if (max_index < asect->index)
4137 max_index = asect->index;
4138 }
4139
4140 max_index++;
4141 amt = max_index * sizeof (asymbol *);
4142 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4143 if (sect_syms == NULL)
4144 return FALSE;
4145 elf_section_syms (abfd) = sect_syms;
4146 elf_num_section_syms (abfd) = max_index;
4147
4148 /* Init sect_syms entries for any section symbols we have already
4149 decided to output. */
4150 for (idx = 0; idx < symcount; idx++)
4151 {
4152 asymbol *sym = syms[idx];
4153
4154 if ((sym->flags & BSF_SECTION_SYM) != 0
4155 && sym->value == 0
4156 && !ignore_section_sym (abfd, sym)
4157 && !bfd_is_abs_section (sym->section))
4158 {
4159 asection *sec = sym->section;
4160
4161 if (sec->owner != abfd)
4162 sec = sec->output_section;
4163
4164 sect_syms[sec->index] = syms[idx];
4165 }
4166 }
4167
4168 /* Classify all of the symbols. */
4169 for (idx = 0; idx < symcount; idx++)
4170 {
4171 if (sym_is_global (abfd, syms[idx]))
4172 num_globals++;
4173 else if (!ignore_section_sym (abfd, syms[idx]))
4174 num_locals++;
4175 }
4176
4177 /* We will be adding a section symbol for each normal BFD section. Most
4178 sections will already have a section symbol in outsymbols, but
4179 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4180 at least in that case. */
4181 for (asect = abfd->sections; asect; asect = asect->next)
4182 {
4183 if (sect_syms[asect->index] == NULL)
4184 {
4185 if (!sym_is_global (abfd, asect->symbol))
4186 num_locals++;
4187 else
4188 num_globals++;
4189 }
4190 }
4191
4192 /* Now sort the symbols so the local symbols are first. */
4193 amt = (num_locals + num_globals) * sizeof (asymbol *);
4194 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4195 if (new_syms == NULL)
4196 return FALSE;
4197
4198 for (idx = 0; idx < symcount; idx++)
4199 {
4200 asymbol *sym = syms[idx];
4201 unsigned int i;
4202
4203 if (sym_is_global (abfd, sym))
4204 i = num_locals + num_globals2++;
4205 else if (!ignore_section_sym (abfd, sym))
4206 i = num_locals2++;
4207 else
4208 continue;
4209 new_syms[i] = sym;
4210 sym->udata.i = i + 1;
4211 }
4212 for (asect = abfd->sections; asect; asect = asect->next)
4213 {
4214 if (sect_syms[asect->index] == NULL)
4215 {
4216 asymbol *sym = asect->symbol;
4217 unsigned int i;
4218
4219 sect_syms[asect->index] = sym;
4220 if (!sym_is_global (abfd, sym))
4221 i = num_locals2++;
4222 else
4223 i = num_locals + num_globals2++;
4224 new_syms[i] = sym;
4225 sym->udata.i = i + 1;
4226 }
4227 }
4228
4229 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4230
4231 *pnum_locals = num_locals;
4232 return TRUE;
4233 }
4234
4235 /* Align to the maximum file alignment that could be required for any
4236 ELF data structure. */
4237
4238 static inline file_ptr
4239 align_file_position (file_ptr off, int align)
4240 {
4241 return (off + align - 1) & ~(align - 1);
4242 }
4243
4244 /* Assign a file position to a section, optionally aligning to the
4245 required section alignment. */
4246
4247 file_ptr
4248 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4249 file_ptr offset,
4250 bfd_boolean align)
4251 {
4252 if (align && i_shdrp->sh_addralign > 1)
4253 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4254 i_shdrp->sh_offset = offset;
4255 if (i_shdrp->bfd_section != NULL)
4256 i_shdrp->bfd_section->filepos = offset;
4257 if (i_shdrp->sh_type != SHT_NOBITS)
4258 offset += i_shdrp->sh_size;
4259 return offset;
4260 }
4261
4262 /* Compute the file positions we are going to put the sections at, and
4263 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4264 is not NULL, this is being called by the ELF backend linker. */
4265
4266 bfd_boolean
4267 _bfd_elf_compute_section_file_positions (bfd *abfd,
4268 struct bfd_link_info *link_info)
4269 {
4270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4271 struct fake_section_arg fsargs;
4272 bfd_boolean failed;
4273 struct elf_strtab_hash *strtab = NULL;
4274 Elf_Internal_Shdr *shstrtab_hdr;
4275 bfd_boolean need_symtab;
4276
4277 if (abfd->output_has_begun)
4278 return TRUE;
4279
4280 /* Do any elf backend specific processing first. */
4281 if (bed->elf_backend_begin_write_processing)
4282 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4283
4284 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4285 return FALSE;
4286
4287 fsargs.failed = FALSE;
4288 fsargs.link_info = link_info;
4289 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4290 if (fsargs.failed)
4291 return FALSE;
4292
4293 if (!assign_section_numbers (abfd, link_info))
4294 return FALSE;
4295
4296 /* The backend linker builds symbol table information itself. */
4297 need_symtab = (link_info == NULL
4298 && (bfd_get_symcount (abfd) > 0
4299 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4300 == HAS_RELOC)));
4301 if (need_symtab)
4302 {
4303 /* Non-zero if doing a relocatable link. */
4304 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4305
4306 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4307 return FALSE;
4308 }
4309
4310 failed = FALSE;
4311 if (link_info == NULL)
4312 {
4313 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4314 if (failed)
4315 return FALSE;
4316 }
4317
4318 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4319 /* sh_name was set in init_file_header. */
4320 shstrtab_hdr->sh_type = SHT_STRTAB;
4321 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4322 shstrtab_hdr->sh_addr = 0;
4323 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4324 shstrtab_hdr->sh_entsize = 0;
4325 shstrtab_hdr->sh_link = 0;
4326 shstrtab_hdr->sh_info = 0;
4327 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4328 shstrtab_hdr->sh_addralign = 1;
4329
4330 if (!assign_file_positions_except_relocs (abfd, link_info))
4331 return FALSE;
4332
4333 if (need_symtab)
4334 {
4335 file_ptr off;
4336 Elf_Internal_Shdr *hdr;
4337
4338 off = elf_next_file_pos (abfd);
4339
4340 hdr = & elf_symtab_hdr (abfd);
4341 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4342
4343 if (elf_symtab_shndx_list (abfd) != NULL)
4344 {
4345 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4346 if (hdr->sh_size != 0)
4347 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4348 /* FIXME: What about other symtab_shndx sections in the list ? */
4349 }
4350
4351 hdr = &elf_tdata (abfd)->strtab_hdr;
4352 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4353
4354 elf_next_file_pos (abfd) = off;
4355
4356 /* Now that we know where the .strtab section goes, write it
4357 out. */
4358 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4359 || ! _bfd_elf_strtab_emit (abfd, strtab))
4360 return FALSE;
4361 _bfd_elf_strtab_free (strtab);
4362 }
4363
4364 abfd->output_has_begun = TRUE;
4365
4366 return TRUE;
4367 }
4368
4369 /* Make an initial estimate of the size of the program header. If we
4370 get the number wrong here, we'll redo section placement. */
4371
4372 static bfd_size_type
4373 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4374 {
4375 size_t segs;
4376 asection *s;
4377 const struct elf_backend_data *bed;
4378
4379 /* Assume we will need exactly two PT_LOAD segments: one for text
4380 and one for data. */
4381 segs = 2;
4382
4383 s = bfd_get_section_by_name (abfd, ".interp");
4384 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4385 {
4386 /* If we have a loadable interpreter section, we need a
4387 PT_INTERP segment. In this case, assume we also need a
4388 PT_PHDR segment, although that may not be true for all
4389 targets. */
4390 segs += 2;
4391 }
4392
4393 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4394 {
4395 /* We need a PT_DYNAMIC segment. */
4396 ++segs;
4397 }
4398
4399 if (info != NULL && info->relro)
4400 {
4401 /* We need a PT_GNU_RELRO segment. */
4402 ++segs;
4403 }
4404
4405 if (elf_eh_frame_hdr (abfd))
4406 {
4407 /* We need a PT_GNU_EH_FRAME segment. */
4408 ++segs;
4409 }
4410
4411 if (elf_stack_flags (abfd))
4412 {
4413 /* We need a PT_GNU_STACK segment. */
4414 ++segs;
4415 }
4416
4417 s = bfd_get_section_by_name (abfd,
4418 NOTE_GNU_PROPERTY_SECTION_NAME);
4419 if (s != NULL && s->size != 0)
4420 {
4421 /* We need a PT_GNU_PROPERTY segment. */
4422 ++segs;
4423 }
4424
4425 for (s = abfd->sections; s != NULL; s = s->next)
4426 {
4427 if ((s->flags & SEC_LOAD) != 0
4428 && elf_section_type (s) == SHT_NOTE)
4429 {
4430 unsigned int alignment_power;
4431 /* We need a PT_NOTE segment. */
4432 ++segs;
4433 /* Try to create just one PT_NOTE segment for all adjacent
4434 loadable SHT_NOTE sections. gABI requires that within a
4435 PT_NOTE segment (and also inside of each SHT_NOTE section)
4436 each note should have the same alignment. So we check
4437 whether the sections are correctly aligned. */
4438 alignment_power = s->alignment_power;
4439 while (s->next != NULL
4440 && s->next->alignment_power == alignment_power
4441 && (s->next->flags & SEC_LOAD) != 0
4442 && elf_section_type (s->next) == SHT_NOTE)
4443 s = s->next;
4444 }
4445 }
4446
4447 for (s = abfd->sections; s != NULL; s = s->next)
4448 {
4449 if (s->flags & SEC_THREAD_LOCAL)
4450 {
4451 /* We need a PT_TLS segment. */
4452 ++segs;
4453 break;
4454 }
4455 }
4456
4457 bed = get_elf_backend_data (abfd);
4458
4459 if ((abfd->flags & D_PAGED) != 0
4460 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4461 {
4462 /* Add a PT_GNU_MBIND segment for each mbind section. */
4463 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4464 for (s = abfd->sections; s != NULL; s = s->next)
4465 if (elf_section_flags (s) & SHF_GNU_MBIND)
4466 {
4467 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4468 {
4469 _bfd_error_handler
4470 /* xgettext:c-format */
4471 (_("%pB: GNU_MBIND section `%pA' has invalid "
4472 "sh_info field: %d"),
4473 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4474 continue;
4475 }
4476 /* Align mbind section to page size. */
4477 if (s->alignment_power < page_align_power)
4478 s->alignment_power = page_align_power;
4479 segs ++;
4480 }
4481 }
4482
4483 /* Let the backend count up any program headers it might need. */
4484 if (bed->elf_backend_additional_program_headers)
4485 {
4486 int a;
4487
4488 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4489 if (a == -1)
4490 abort ();
4491 segs += a;
4492 }
4493
4494 return segs * bed->s->sizeof_phdr;
4495 }
4496
4497 /* Find the segment that contains the output_section of section. */
4498
4499 Elf_Internal_Phdr *
4500 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4501 {
4502 struct elf_segment_map *m;
4503 Elf_Internal_Phdr *p;
4504
4505 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4506 m != NULL;
4507 m = m->next, p++)
4508 {
4509 int i;
4510
4511 for (i = m->count - 1; i >= 0; i--)
4512 if (m->sections[i] == section)
4513 return p;
4514 }
4515
4516 return NULL;
4517 }
4518
4519 /* Create a mapping from a set of sections to a program segment. */
4520
4521 static struct elf_segment_map *
4522 make_mapping (bfd *abfd,
4523 asection **sections,
4524 unsigned int from,
4525 unsigned int to,
4526 bfd_boolean phdr)
4527 {
4528 struct elf_segment_map *m;
4529 unsigned int i;
4530 asection **hdrpp;
4531 size_t amt;
4532
4533 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4534 amt += (to - from) * sizeof (asection *);
4535 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4536 if (m == NULL)
4537 return NULL;
4538 m->next = NULL;
4539 m->p_type = PT_LOAD;
4540 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4541 m->sections[i - from] = *hdrpp;
4542 m->count = to - from;
4543
4544 if (from == 0 && phdr)
4545 {
4546 /* Include the headers in the first PT_LOAD segment. */
4547 m->includes_filehdr = 1;
4548 m->includes_phdrs = 1;
4549 }
4550
4551 return m;
4552 }
4553
4554 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4555 on failure. */
4556
4557 struct elf_segment_map *
4558 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4559 {
4560 struct elf_segment_map *m;
4561
4562 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4563 sizeof (struct elf_segment_map));
4564 if (m == NULL)
4565 return NULL;
4566 m->next = NULL;
4567 m->p_type = PT_DYNAMIC;
4568 m->count = 1;
4569 m->sections[0] = dynsec;
4570
4571 return m;
4572 }
4573
4574 /* Possibly add or remove segments from the segment map. */
4575
4576 static bfd_boolean
4577 elf_modify_segment_map (bfd *abfd,
4578 struct bfd_link_info *info,
4579 bfd_boolean remove_empty_load)
4580 {
4581 struct elf_segment_map **m;
4582 const struct elf_backend_data *bed;
4583
4584 /* The placement algorithm assumes that non allocated sections are
4585 not in PT_LOAD segments. We ensure this here by removing such
4586 sections from the segment map. We also remove excluded
4587 sections. Finally, any PT_LOAD segment without sections is
4588 removed. */
4589 m = &elf_seg_map (abfd);
4590 while (*m)
4591 {
4592 unsigned int i, new_count;
4593
4594 for (new_count = 0, i = 0; i < (*m)->count; i++)
4595 {
4596 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4597 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4598 || (*m)->p_type != PT_LOAD))
4599 {
4600 (*m)->sections[new_count] = (*m)->sections[i];
4601 new_count++;
4602 }
4603 }
4604 (*m)->count = new_count;
4605
4606 if (remove_empty_load
4607 && (*m)->p_type == PT_LOAD
4608 && (*m)->count == 0
4609 && !(*m)->includes_phdrs)
4610 *m = (*m)->next;
4611 else
4612 m = &(*m)->next;
4613 }
4614
4615 bed = get_elf_backend_data (abfd);
4616 if (bed->elf_backend_modify_segment_map != NULL)
4617 {
4618 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4619 return FALSE;
4620 }
4621
4622 return TRUE;
4623 }
4624
4625 #define IS_TBSS(s) \
4626 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4627
4628 /* Set up a mapping from BFD sections to program segments. */
4629
4630 bfd_boolean
4631 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4632 {
4633 unsigned int count;
4634 struct elf_segment_map *m;
4635 asection **sections = NULL;
4636 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4637 bfd_boolean no_user_phdrs;
4638
4639 no_user_phdrs = elf_seg_map (abfd) == NULL;
4640
4641 if (info != NULL)
4642 info->user_phdrs = !no_user_phdrs;
4643
4644 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4645 {
4646 asection *s;
4647 unsigned int i;
4648 struct elf_segment_map *mfirst;
4649 struct elf_segment_map **pm;
4650 asection *last_hdr;
4651 bfd_vma last_size;
4652 unsigned int hdr_index;
4653 bfd_vma maxpagesize;
4654 asection **hdrpp;
4655 bfd_boolean phdr_in_segment;
4656 bfd_boolean writable;
4657 bfd_boolean executable;
4658 unsigned int tls_count = 0;
4659 asection *first_tls = NULL;
4660 asection *first_mbind = NULL;
4661 asection *dynsec, *eh_frame_hdr;
4662 size_t amt;
4663 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4664 bfd_size_type phdr_size; /* Octets/bytes. */
4665 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4666
4667 /* Select the allocated sections, and sort them. */
4668
4669 amt = bfd_count_sections (abfd) * sizeof (asection *);
4670 sections = (asection **) bfd_malloc (amt);
4671 if (sections == NULL)
4672 goto error_return;
4673
4674 /* Calculate top address, avoiding undefined behaviour of shift
4675 left operator when shift count is equal to size of type
4676 being shifted. */
4677 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4678 addr_mask = (addr_mask << 1) + 1;
4679
4680 i = 0;
4681 for (s = abfd->sections; s != NULL; s = s->next)
4682 {
4683 if ((s->flags & SEC_ALLOC) != 0)
4684 {
4685 /* target_index is unused until bfd_elf_final_link
4686 starts output of section symbols. Use it to make
4687 qsort stable. */
4688 s->target_index = i;
4689 sections[i] = s;
4690 ++i;
4691 /* A wrapping section potentially clashes with header. */
4692 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4693 wrap_to = (s->lma + s->size / opb) & addr_mask;
4694 }
4695 }
4696 BFD_ASSERT (i <= bfd_count_sections (abfd));
4697 count = i;
4698
4699 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4700
4701 phdr_size = elf_program_header_size (abfd);
4702 if (phdr_size == (bfd_size_type) -1)
4703 phdr_size = get_program_header_size (abfd, info);
4704 phdr_size += bed->s->sizeof_ehdr;
4705 /* phdr_size is compared to LMA values which are in bytes. */
4706 phdr_size /= opb;
4707 maxpagesize = bed->maxpagesize;
4708 if (maxpagesize == 0)
4709 maxpagesize = 1;
4710 phdr_in_segment = info != NULL && info->load_phdrs;
4711 if (count != 0
4712 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4713 >= (phdr_size & (maxpagesize - 1))))
4714 /* For compatibility with old scripts that may not be using
4715 SIZEOF_HEADERS, add headers when it looks like space has
4716 been left for them. */
4717 phdr_in_segment = TRUE;
4718
4719 /* Build the mapping. */
4720 mfirst = NULL;
4721 pm = &mfirst;
4722
4723 /* If we have a .interp section, then create a PT_PHDR segment for
4724 the program headers and a PT_INTERP segment for the .interp
4725 section. */
4726 s = bfd_get_section_by_name (abfd, ".interp");
4727 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4728 {
4729 amt = sizeof (struct elf_segment_map);
4730 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4731 if (m == NULL)
4732 goto error_return;
4733 m->next = NULL;
4734 m->p_type = PT_PHDR;
4735 m->p_flags = PF_R;
4736 m->p_flags_valid = 1;
4737 m->includes_phdrs = 1;
4738 phdr_in_segment = TRUE;
4739 *pm = m;
4740 pm = &m->next;
4741
4742 amt = sizeof (struct elf_segment_map);
4743 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4744 if (m == NULL)
4745 goto error_return;
4746 m->next = NULL;
4747 m->p_type = PT_INTERP;
4748 m->count = 1;
4749 m->sections[0] = s;
4750
4751 *pm = m;
4752 pm = &m->next;
4753 }
4754
4755 /* Look through the sections. We put sections in the same program
4756 segment when the start of the second section can be placed within
4757 a few bytes of the end of the first section. */
4758 last_hdr = NULL;
4759 last_size = 0;
4760 hdr_index = 0;
4761 writable = FALSE;
4762 executable = FALSE;
4763 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4764 if (dynsec != NULL
4765 && (dynsec->flags & SEC_LOAD) == 0)
4766 dynsec = NULL;
4767
4768 if ((abfd->flags & D_PAGED) == 0)
4769 phdr_in_segment = FALSE;
4770
4771 /* Deal with -Ttext or something similar such that the first section
4772 is not adjacent to the program headers. This is an
4773 approximation, since at this point we don't know exactly how many
4774 program headers we will need. */
4775 if (phdr_in_segment && count > 0)
4776 {
4777 bfd_vma phdr_lma; /* Bytes. */
4778 bfd_boolean separate_phdr = FALSE;
4779
4780 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4781 if (info != NULL
4782 && info->separate_code
4783 && (sections[0]->flags & SEC_CODE) != 0)
4784 {
4785 /* If data sections should be separate from code and
4786 thus not executable, and the first section is
4787 executable then put the file and program headers in
4788 their own PT_LOAD. */
4789 separate_phdr = TRUE;
4790 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4791 == (sections[0]->lma & addr_mask & -maxpagesize)))
4792 {
4793 /* The file and program headers are currently on the
4794 same page as the first section. Put them on the
4795 previous page if we can. */
4796 if (phdr_lma >= maxpagesize)
4797 phdr_lma -= maxpagesize;
4798 else
4799 separate_phdr = FALSE;
4800 }
4801 }
4802 if ((sections[0]->lma & addr_mask) < phdr_lma
4803 || (sections[0]->lma & addr_mask) < phdr_size)
4804 /* If file and program headers would be placed at the end
4805 of memory then it's probably better to omit them. */
4806 phdr_in_segment = FALSE;
4807 else if (phdr_lma < wrap_to)
4808 /* If a section wraps around to where we'll be placing
4809 file and program headers, then the headers will be
4810 overwritten. */
4811 phdr_in_segment = FALSE;
4812 else if (separate_phdr)
4813 {
4814 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4815 if (m == NULL)
4816 goto error_return;
4817 m->p_paddr = phdr_lma * opb;
4818 m->p_vaddr_offset
4819 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4820 m->p_paddr_valid = 1;
4821 *pm = m;
4822 pm = &m->next;
4823 phdr_in_segment = FALSE;
4824 }
4825 }
4826
4827 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4828 {
4829 asection *hdr;
4830 bfd_boolean new_segment;
4831
4832 hdr = *hdrpp;
4833
4834 /* See if this section and the last one will fit in the same
4835 segment. */
4836
4837 if (last_hdr == NULL)
4838 {
4839 /* If we don't have a segment yet, then we don't need a new
4840 one (we build the last one after this loop). */
4841 new_segment = FALSE;
4842 }
4843 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4844 {
4845 /* If this section has a different relation between the
4846 virtual address and the load address, then we need a new
4847 segment. */
4848 new_segment = TRUE;
4849 }
4850 else if (hdr->lma < last_hdr->lma + last_size
4851 || last_hdr->lma + last_size < last_hdr->lma)
4852 {
4853 /* If this section has a load address that makes it overlap
4854 the previous section, then we need a new segment. */
4855 new_segment = TRUE;
4856 }
4857 else if ((abfd->flags & D_PAGED) != 0
4858 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4859 == (hdr->lma & -maxpagesize)))
4860 {
4861 /* If we are demand paged then we can't map two disk
4862 pages onto the same memory page. */
4863 new_segment = FALSE;
4864 }
4865 /* In the next test we have to be careful when last_hdr->lma is close
4866 to the end of the address space. If the aligned address wraps
4867 around to the start of the address space, then there are no more
4868 pages left in memory and it is OK to assume that the current
4869 section can be included in the current segment. */
4870 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4871 + maxpagesize > last_hdr->lma)
4872 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4873 + maxpagesize <= hdr->lma))
4874 {
4875 /* If putting this section in this segment would force us to
4876 skip a page in the segment, then we need a new segment. */
4877 new_segment = TRUE;
4878 }
4879 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4880 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4881 {
4882 /* We don't want to put a loaded section after a
4883 nonloaded (ie. bss style) section in the same segment
4884 as that will force the non-loaded section to be loaded.
4885 Consider .tbss sections as loaded for this purpose. */
4886 new_segment = TRUE;
4887 }
4888 else if ((abfd->flags & D_PAGED) == 0)
4889 {
4890 /* If the file is not demand paged, which means that we
4891 don't require the sections to be correctly aligned in the
4892 file, then there is no other reason for a new segment. */
4893 new_segment = FALSE;
4894 }
4895 else if (info != NULL
4896 && info->separate_code
4897 && executable != ((hdr->flags & SEC_CODE) != 0))
4898 {
4899 new_segment = TRUE;
4900 }
4901 else if (! writable
4902 && (hdr->flags & SEC_READONLY) == 0)
4903 {
4904 /* We don't want to put a writable section in a read only
4905 segment. */
4906 new_segment = TRUE;
4907 }
4908 else
4909 {
4910 /* Otherwise, we can use the same segment. */
4911 new_segment = FALSE;
4912 }
4913
4914 /* Allow interested parties a chance to override our decision. */
4915 if (last_hdr != NULL
4916 && info != NULL
4917 && info->callbacks->override_segment_assignment != NULL)
4918 new_segment
4919 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4920 last_hdr,
4921 new_segment);
4922
4923 if (! new_segment)
4924 {
4925 if ((hdr->flags & SEC_READONLY) == 0)
4926 writable = TRUE;
4927 if ((hdr->flags & SEC_CODE) != 0)
4928 executable = TRUE;
4929 last_hdr = hdr;
4930 /* .tbss sections effectively have zero size. */
4931 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4932 continue;
4933 }
4934
4935 /* We need a new program segment. We must create a new program
4936 header holding all the sections from hdr_index until hdr. */
4937
4938 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4939 if (m == NULL)
4940 goto error_return;
4941
4942 *pm = m;
4943 pm = &m->next;
4944
4945 if ((hdr->flags & SEC_READONLY) == 0)
4946 writable = TRUE;
4947 else
4948 writable = FALSE;
4949
4950 if ((hdr->flags & SEC_CODE) == 0)
4951 executable = FALSE;
4952 else
4953 executable = TRUE;
4954
4955 last_hdr = hdr;
4956 /* .tbss sections effectively have zero size. */
4957 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4958 hdr_index = i;
4959 phdr_in_segment = FALSE;
4960 }
4961
4962 /* Create a final PT_LOAD program segment, but not if it's just
4963 for .tbss. */
4964 if (last_hdr != NULL
4965 && (i - hdr_index != 1
4966 || !IS_TBSS (last_hdr)))
4967 {
4968 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4969 if (m == NULL)
4970 goto error_return;
4971
4972 *pm = m;
4973 pm = &m->next;
4974 }
4975
4976 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4977 if (dynsec != NULL)
4978 {
4979 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4980 if (m == NULL)
4981 goto error_return;
4982 *pm = m;
4983 pm = &m->next;
4984 }
4985
4986 /* For each batch of consecutive loadable SHT_NOTE sections,
4987 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4988 because if we link together nonloadable .note sections and
4989 loadable .note sections, we will generate two .note sections
4990 in the output file. */
4991 for (s = abfd->sections; s != NULL; s = s->next)
4992 {
4993 if ((s->flags & SEC_LOAD) != 0
4994 && elf_section_type (s) == SHT_NOTE)
4995 {
4996 asection *s2;
4997 unsigned int alignment_power = s->alignment_power;
4998
4999 count = 1;
5000 for (s2 = s; s2->next != NULL; s2 = s2->next)
5001 {
5002 if (s2->next->alignment_power == alignment_power
5003 && (s2->next->flags & SEC_LOAD) != 0
5004 && elf_section_type (s2->next) == SHT_NOTE
5005 && align_power (s2->lma + s2->size / opb,
5006 alignment_power)
5007 == s2->next->lma)
5008 count++;
5009 else
5010 break;
5011 }
5012 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5013 amt += count * sizeof (asection *);
5014 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5015 if (m == NULL)
5016 goto error_return;
5017 m->next = NULL;
5018 m->p_type = PT_NOTE;
5019 m->count = count;
5020 while (count > 1)
5021 {
5022 m->sections[m->count - count--] = s;
5023 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5024 s = s->next;
5025 }
5026 m->sections[m->count - 1] = s;
5027 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5028 *pm = m;
5029 pm = &m->next;
5030 }
5031 if (s->flags & SEC_THREAD_LOCAL)
5032 {
5033 if (! tls_count)
5034 first_tls = s;
5035 tls_count++;
5036 }
5037 if (first_mbind == NULL
5038 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5039 first_mbind = s;
5040 }
5041
5042 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5043 if (tls_count > 0)
5044 {
5045 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5046 amt += tls_count * sizeof (asection *);
5047 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5048 if (m == NULL)
5049 goto error_return;
5050 m->next = NULL;
5051 m->p_type = PT_TLS;
5052 m->count = tls_count;
5053 /* Mandated PF_R. */
5054 m->p_flags = PF_R;
5055 m->p_flags_valid = 1;
5056 s = first_tls;
5057 for (i = 0; i < tls_count; ++i)
5058 {
5059 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5060 {
5061 _bfd_error_handler
5062 (_("%pB: TLS sections are not adjacent:"), abfd);
5063 s = first_tls;
5064 i = 0;
5065 while (i < tls_count)
5066 {
5067 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5068 {
5069 _bfd_error_handler (_(" TLS: %pA"), s);
5070 i++;
5071 }
5072 else
5073 _bfd_error_handler (_(" non-TLS: %pA"), s);
5074 s = s->next;
5075 }
5076 bfd_set_error (bfd_error_bad_value);
5077 goto error_return;
5078 }
5079 m->sections[i] = s;
5080 s = s->next;
5081 }
5082
5083 *pm = m;
5084 pm = &m->next;
5085 }
5086
5087 if (first_mbind
5088 && (abfd->flags & D_PAGED) != 0
5089 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5090 for (s = first_mbind; s != NULL; s = s->next)
5091 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5092 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5093 {
5094 /* Mandated PF_R. */
5095 unsigned long p_flags = PF_R;
5096 if ((s->flags & SEC_READONLY) == 0)
5097 p_flags |= PF_W;
5098 if ((s->flags & SEC_CODE) != 0)
5099 p_flags |= PF_X;
5100
5101 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5102 m = bfd_zalloc (abfd, amt);
5103 if (m == NULL)
5104 goto error_return;
5105 m->next = NULL;
5106 m->p_type = (PT_GNU_MBIND_LO
5107 + elf_section_data (s)->this_hdr.sh_info);
5108 m->count = 1;
5109 m->p_flags_valid = 1;
5110 m->sections[0] = s;
5111 m->p_flags = p_flags;
5112
5113 *pm = m;
5114 pm = &m->next;
5115 }
5116
5117 s = bfd_get_section_by_name (abfd,
5118 NOTE_GNU_PROPERTY_SECTION_NAME);
5119 if (s != NULL && s->size != 0)
5120 {
5121 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5122 m = bfd_zalloc (abfd, amt);
5123 if (m == NULL)
5124 goto error_return;
5125 m->next = NULL;
5126 m->p_type = PT_GNU_PROPERTY;
5127 m->count = 1;
5128 m->p_flags_valid = 1;
5129 m->sections[0] = s;
5130 m->p_flags = PF_R;
5131 *pm = m;
5132 pm = &m->next;
5133 }
5134
5135 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5136 segment. */
5137 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5138 if (eh_frame_hdr != NULL
5139 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5140 {
5141 amt = sizeof (struct elf_segment_map);
5142 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5143 if (m == NULL)
5144 goto error_return;
5145 m->next = NULL;
5146 m->p_type = PT_GNU_EH_FRAME;
5147 m->count = 1;
5148 m->sections[0] = eh_frame_hdr->output_section;
5149
5150 *pm = m;
5151 pm = &m->next;
5152 }
5153
5154 if (elf_stack_flags (abfd))
5155 {
5156 amt = sizeof (struct elf_segment_map);
5157 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5158 if (m == NULL)
5159 goto error_return;
5160 m->next = NULL;
5161 m->p_type = PT_GNU_STACK;
5162 m->p_flags = elf_stack_flags (abfd);
5163 m->p_align = bed->stack_align;
5164 m->p_flags_valid = 1;
5165 m->p_align_valid = m->p_align != 0;
5166 if (info->stacksize > 0)
5167 {
5168 m->p_size = info->stacksize;
5169 m->p_size_valid = 1;
5170 }
5171
5172 *pm = m;
5173 pm = &m->next;
5174 }
5175
5176 if (info != NULL && info->relro)
5177 {
5178 for (m = mfirst; m != NULL; m = m->next)
5179 {
5180 if (m->p_type == PT_LOAD
5181 && m->count != 0
5182 && m->sections[0]->vma >= info->relro_start
5183 && m->sections[0]->vma < info->relro_end)
5184 {
5185 i = m->count;
5186 while (--i != (unsigned) -1)
5187 {
5188 if (m->sections[i]->size > 0
5189 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5190 == (SEC_LOAD | SEC_HAS_CONTENTS))
5191 break;
5192 }
5193
5194 if (i != (unsigned) -1)
5195 break;
5196 }
5197 }
5198
5199 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5200 if (m != NULL)
5201 {
5202 amt = sizeof (struct elf_segment_map);
5203 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5204 if (m == NULL)
5205 goto error_return;
5206 m->next = NULL;
5207 m->p_type = PT_GNU_RELRO;
5208 *pm = m;
5209 pm = &m->next;
5210 }
5211 }
5212
5213 free (sections);
5214 elf_seg_map (abfd) = mfirst;
5215 }
5216
5217 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5218 return FALSE;
5219
5220 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5221 ++count;
5222 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5223
5224 return TRUE;
5225
5226 error_return:
5227 free (sections);
5228 return FALSE;
5229 }
5230
5231 /* Sort sections by address. */
5232
5233 static int
5234 elf_sort_sections (const void *arg1, const void *arg2)
5235 {
5236 const asection *sec1 = *(const asection **) arg1;
5237 const asection *sec2 = *(const asection **) arg2;
5238 bfd_size_type size1, size2;
5239
5240 /* Sort by LMA first, since this is the address used to
5241 place the section into a segment. */
5242 if (sec1->lma < sec2->lma)
5243 return -1;
5244 else if (sec1->lma > sec2->lma)
5245 return 1;
5246
5247 /* Then sort by VMA. Normally the LMA and the VMA will be
5248 the same, and this will do nothing. */
5249 if (sec1->vma < sec2->vma)
5250 return -1;
5251 else if (sec1->vma > sec2->vma)
5252 return 1;
5253
5254 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5255
5256 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5257
5258 if (TOEND (sec1))
5259 {
5260 if (!TOEND (sec2))
5261 return 1;
5262 }
5263 else if (TOEND (sec2))
5264 return -1;
5265
5266 #undef TOEND
5267
5268 /* Sort by size, to put zero sized sections
5269 before others at the same address. */
5270
5271 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5272 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5273
5274 if (size1 < size2)
5275 return -1;
5276 if (size1 > size2)
5277 return 1;
5278
5279 return sec1->target_index - sec2->target_index;
5280 }
5281
5282 /* This qsort comparison functions sorts PT_LOAD segments first and
5283 by p_paddr, for assign_file_positions_for_load_sections. */
5284
5285 static int
5286 elf_sort_segments (const void *arg1, const void *arg2)
5287 {
5288 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5289 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5290
5291 if (m1->p_type != m2->p_type)
5292 {
5293 if (m1->p_type == PT_NULL)
5294 return 1;
5295 if (m2->p_type == PT_NULL)
5296 return -1;
5297 return m1->p_type < m2->p_type ? -1 : 1;
5298 }
5299 if (m1->includes_filehdr != m2->includes_filehdr)
5300 return m1->includes_filehdr ? -1 : 1;
5301 if (m1->no_sort_lma != m2->no_sort_lma)
5302 return m1->no_sort_lma ? -1 : 1;
5303 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5304 {
5305 bfd_vma lma1, lma2; /* Octets. */
5306 lma1 = 0;
5307 if (m1->p_paddr_valid)
5308 lma1 = m1->p_paddr;
5309 else if (m1->count != 0)
5310 {
5311 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5312 m1->sections[0]);
5313 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5314 }
5315 lma2 = 0;
5316 if (m2->p_paddr_valid)
5317 lma2 = m2->p_paddr;
5318 else if (m2->count != 0)
5319 {
5320 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5321 m2->sections[0]);
5322 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5323 }
5324 if (lma1 != lma2)
5325 return lma1 < lma2 ? -1 : 1;
5326 }
5327 if (m1->idx != m2->idx)
5328 return m1->idx < m2->idx ? -1 : 1;
5329 return 0;
5330 }
5331
5332 /* Ian Lance Taylor writes:
5333
5334 We shouldn't be using % with a negative signed number. That's just
5335 not good. We have to make sure either that the number is not
5336 negative, or that the number has an unsigned type. When the types
5337 are all the same size they wind up as unsigned. When file_ptr is a
5338 larger signed type, the arithmetic winds up as signed long long,
5339 which is wrong.
5340
5341 What we're trying to say here is something like ``increase OFF by
5342 the least amount that will cause it to be equal to the VMA modulo
5343 the page size.'' */
5344 /* In other words, something like:
5345
5346 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5347 off_offset = off % bed->maxpagesize;
5348 if (vma_offset < off_offset)
5349 adjustment = vma_offset + bed->maxpagesize - off_offset;
5350 else
5351 adjustment = vma_offset - off_offset;
5352
5353 which can be collapsed into the expression below. */
5354
5355 static file_ptr
5356 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5357 {
5358 /* PR binutils/16199: Handle an alignment of zero. */
5359 if (maxpagesize == 0)
5360 maxpagesize = 1;
5361 return ((vma - off) % maxpagesize);
5362 }
5363
5364 static void
5365 print_segment_map (const struct elf_segment_map *m)
5366 {
5367 unsigned int j;
5368 const char *pt = get_segment_type (m->p_type);
5369 char buf[32];
5370
5371 if (pt == NULL)
5372 {
5373 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5374 sprintf (buf, "LOPROC+%7.7x",
5375 (unsigned int) (m->p_type - PT_LOPROC));
5376 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5377 sprintf (buf, "LOOS+%7.7x",
5378 (unsigned int) (m->p_type - PT_LOOS));
5379 else
5380 snprintf (buf, sizeof (buf), "%8.8x",
5381 (unsigned int) m->p_type);
5382 pt = buf;
5383 }
5384 fflush (stdout);
5385 fprintf (stderr, "%s:", pt);
5386 for (j = 0; j < m->count; j++)
5387 fprintf (stderr, " %s", m->sections [j]->name);
5388 putc ('\n',stderr);
5389 fflush (stderr);
5390 }
5391
5392 static bfd_boolean
5393 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5394 {
5395 void *buf;
5396 bfd_boolean ret;
5397
5398 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5399 return FALSE;
5400 buf = bfd_zmalloc (len);
5401 if (buf == NULL)
5402 return FALSE;
5403 ret = bfd_bwrite (buf, len, abfd) == len;
5404 free (buf);
5405 return ret;
5406 }
5407
5408 /* Assign file positions to the sections based on the mapping from
5409 sections to segments. This function also sets up some fields in
5410 the file header. */
5411
5412 static bfd_boolean
5413 assign_file_positions_for_load_sections (bfd *abfd,
5414 struct bfd_link_info *link_info)
5415 {
5416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5417 struct elf_segment_map *m;
5418 struct elf_segment_map *phdr_load_seg;
5419 Elf_Internal_Phdr *phdrs;
5420 Elf_Internal_Phdr *p;
5421 file_ptr off; /* Octets. */
5422 bfd_size_type maxpagesize;
5423 unsigned int alloc, actual;
5424 unsigned int i, j;
5425 struct elf_segment_map **sorted_seg_map;
5426 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5427
5428 if (link_info == NULL
5429 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5430 return FALSE;
5431
5432 alloc = 0;
5433 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5434 m->idx = alloc++;
5435
5436 if (alloc)
5437 {
5438 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5439 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5440 }
5441 else
5442 {
5443 /* PR binutils/12467. */
5444 elf_elfheader (abfd)->e_phoff = 0;
5445 elf_elfheader (abfd)->e_phentsize = 0;
5446 }
5447
5448 elf_elfheader (abfd)->e_phnum = alloc;
5449
5450 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5451 {
5452 actual = alloc;
5453 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5454 }
5455 else
5456 {
5457 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5458 BFD_ASSERT (elf_program_header_size (abfd)
5459 == actual * bed->s->sizeof_phdr);
5460 BFD_ASSERT (actual >= alloc);
5461 }
5462
5463 if (alloc == 0)
5464 {
5465 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5466 return TRUE;
5467 }
5468
5469 /* We're writing the size in elf_program_header_size (abfd),
5470 see assign_file_positions_except_relocs, so make sure we have
5471 that amount allocated, with trailing space cleared.
5472 The variable alloc contains the computed need, while
5473 elf_program_header_size (abfd) contains the size used for the
5474 layout.
5475 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5476 where the layout is forced to according to a larger size in the
5477 last iterations for the testcase ld-elf/header. */
5478 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5479 + alloc * sizeof (*sorted_seg_map)));
5480 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5481 elf_tdata (abfd)->phdr = phdrs;
5482 if (phdrs == NULL)
5483 return FALSE;
5484
5485 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5486 {
5487 sorted_seg_map[j] = m;
5488 /* If elf_segment_map is not from map_sections_to_segments, the
5489 sections may not be correctly ordered. NOTE: sorting should
5490 not be done to the PT_NOTE section of a corefile, which may
5491 contain several pseudo-sections artificially created by bfd.
5492 Sorting these pseudo-sections breaks things badly. */
5493 if (m->count > 1
5494 && !(elf_elfheader (abfd)->e_type == ET_CORE
5495 && m->p_type == PT_NOTE))
5496 {
5497 for (i = 0; i < m->count; i++)
5498 m->sections[i]->target_index = i;
5499 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5500 elf_sort_sections);
5501 }
5502 }
5503 if (alloc > 1)
5504 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5505 elf_sort_segments);
5506
5507 maxpagesize = 1;
5508 if ((abfd->flags & D_PAGED) != 0)
5509 maxpagesize = bed->maxpagesize;
5510
5511 /* Sections must map to file offsets past the ELF file header. */
5512 off = bed->s->sizeof_ehdr;
5513 /* And if one of the PT_LOAD headers doesn't include the program
5514 headers then we'll be mapping program headers in the usual
5515 position after the ELF file header. */
5516 phdr_load_seg = NULL;
5517 for (j = 0; j < alloc; j++)
5518 {
5519 m = sorted_seg_map[j];
5520 if (m->p_type != PT_LOAD)
5521 break;
5522 if (m->includes_phdrs)
5523 {
5524 phdr_load_seg = m;
5525 break;
5526 }
5527 }
5528 if (phdr_load_seg == NULL)
5529 off += actual * bed->s->sizeof_phdr;
5530
5531 for (j = 0; j < alloc; j++)
5532 {
5533 asection **secpp;
5534 bfd_vma off_adjust; /* Octets. */
5535 bfd_boolean no_contents;
5536
5537 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5538 number of sections with contents contributing to both p_filesz
5539 and p_memsz, followed by a number of sections with no contents
5540 that just contribute to p_memsz. In this loop, OFF tracks next
5541 available file offset for PT_LOAD and PT_NOTE segments. */
5542 m = sorted_seg_map[j];
5543 p = phdrs + m->idx;
5544 p->p_type = m->p_type;
5545 p->p_flags = m->p_flags;
5546
5547 if (m->count == 0)
5548 p->p_vaddr = m->p_vaddr_offset * opb;
5549 else
5550 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5551
5552 if (m->p_paddr_valid)
5553 p->p_paddr = m->p_paddr;
5554 else if (m->count == 0)
5555 p->p_paddr = 0;
5556 else
5557 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5558
5559 if (p->p_type == PT_LOAD
5560 && (abfd->flags & D_PAGED) != 0)
5561 {
5562 /* p_align in demand paged PT_LOAD segments effectively stores
5563 the maximum page size. When copying an executable with
5564 objcopy, we set m->p_align from the input file. Use this
5565 value for maxpagesize rather than bed->maxpagesize, which
5566 may be different. Note that we use maxpagesize for PT_TLS
5567 segment alignment later in this function, so we are relying
5568 on at least one PT_LOAD segment appearing before a PT_TLS
5569 segment. */
5570 if (m->p_align_valid)
5571 maxpagesize = m->p_align;
5572
5573 p->p_align = maxpagesize;
5574 }
5575 else if (m->p_align_valid)
5576 p->p_align = m->p_align;
5577 else if (m->count == 0)
5578 p->p_align = 1 << bed->s->log_file_align;
5579
5580 if (m == phdr_load_seg)
5581 {
5582 if (!m->includes_filehdr)
5583 p->p_offset = off;
5584 off += actual * bed->s->sizeof_phdr;
5585 }
5586
5587 no_contents = FALSE;
5588 off_adjust = 0;
5589 if (p->p_type == PT_LOAD
5590 && m->count > 0)
5591 {
5592 bfd_size_type align; /* Bytes. */
5593 unsigned int align_power = 0;
5594
5595 if (m->p_align_valid)
5596 align = p->p_align;
5597 else
5598 {
5599 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5600 {
5601 unsigned int secalign;
5602
5603 secalign = bfd_section_alignment (*secpp);
5604 if (secalign > align_power)
5605 align_power = secalign;
5606 }
5607 align = (bfd_size_type) 1 << align_power;
5608 if (align < maxpagesize)
5609 align = maxpagesize;
5610 }
5611
5612 for (i = 0; i < m->count; i++)
5613 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5614 /* If we aren't making room for this section, then
5615 it must be SHT_NOBITS regardless of what we've
5616 set via struct bfd_elf_special_section. */
5617 elf_section_type (m->sections[i]) = SHT_NOBITS;
5618
5619 /* Find out whether this segment contains any loadable
5620 sections. */
5621 no_contents = TRUE;
5622 for (i = 0; i < m->count; i++)
5623 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5624 {
5625 no_contents = FALSE;
5626 break;
5627 }
5628
5629 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5630
5631 /* Broken hardware and/or kernel require that files do not
5632 map the same page with different permissions on some hppa
5633 processors. */
5634 if (j != 0
5635 && (abfd->flags & D_PAGED) != 0
5636 && bed->no_page_alias
5637 && (off & (maxpagesize - 1)) != 0
5638 && ((off & -maxpagesize)
5639 == ((off + off_adjust) & -maxpagesize)))
5640 off_adjust += maxpagesize;
5641 off += off_adjust;
5642 if (no_contents)
5643 {
5644 /* We shouldn't need to align the segment on disk since
5645 the segment doesn't need file space, but the gABI
5646 arguably requires the alignment and glibc ld.so
5647 checks it. So to comply with the alignment
5648 requirement but not waste file space, we adjust
5649 p_offset for just this segment. (OFF_ADJUST is
5650 subtracted from OFF later.) This may put p_offset
5651 past the end of file, but that shouldn't matter. */
5652 }
5653 else
5654 off_adjust = 0;
5655 }
5656 /* Make sure the .dynamic section is the first section in the
5657 PT_DYNAMIC segment. */
5658 else if (p->p_type == PT_DYNAMIC
5659 && m->count > 1
5660 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5661 {
5662 _bfd_error_handler
5663 (_("%pB: The first section in the PT_DYNAMIC segment"
5664 " is not the .dynamic section"),
5665 abfd);
5666 bfd_set_error (bfd_error_bad_value);
5667 return FALSE;
5668 }
5669 /* Set the note section type to SHT_NOTE. */
5670 else if (p->p_type == PT_NOTE)
5671 for (i = 0; i < m->count; i++)
5672 elf_section_type (m->sections[i]) = SHT_NOTE;
5673
5674 if (m->includes_filehdr)
5675 {
5676 if (!m->p_flags_valid)
5677 p->p_flags |= PF_R;
5678 p->p_filesz = bed->s->sizeof_ehdr;
5679 p->p_memsz = bed->s->sizeof_ehdr;
5680 if (p->p_type == PT_LOAD)
5681 {
5682 if (m->count > 0)
5683 {
5684 if (p->p_vaddr < (bfd_vma) off
5685 || (!m->p_paddr_valid
5686 && p->p_paddr < (bfd_vma) off))
5687 {
5688 _bfd_error_handler
5689 (_("%pB: not enough room for program headers,"
5690 " try linking with -N"),
5691 abfd);
5692 bfd_set_error (bfd_error_bad_value);
5693 return FALSE;
5694 }
5695 p->p_vaddr -= off;
5696 if (!m->p_paddr_valid)
5697 p->p_paddr -= off;
5698 }
5699 }
5700 else if (sorted_seg_map[0]->includes_filehdr)
5701 {
5702 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5703 p->p_vaddr = filehdr->p_vaddr;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr = filehdr->p_paddr;
5706 }
5707 }
5708
5709 if (m->includes_phdrs)
5710 {
5711 if (!m->p_flags_valid)
5712 p->p_flags |= PF_R;
5713 p->p_filesz += actual * bed->s->sizeof_phdr;
5714 p->p_memsz += actual * bed->s->sizeof_phdr;
5715 if (!m->includes_filehdr)
5716 {
5717 if (p->p_type == PT_LOAD)
5718 {
5719 elf_elfheader (abfd)->e_phoff = p->p_offset;
5720 if (m->count > 0)
5721 {
5722 p->p_vaddr -= off - p->p_offset;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr -= off - p->p_offset;
5725 }
5726 }
5727 else if (phdr_load_seg != NULL)
5728 {
5729 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5730 bfd_vma phdr_off = 0; /* Octets. */
5731 if (phdr_load_seg->includes_filehdr)
5732 phdr_off = bed->s->sizeof_ehdr;
5733 p->p_vaddr = phdr->p_vaddr + phdr_off;
5734 if (!m->p_paddr_valid)
5735 p->p_paddr = phdr->p_paddr + phdr_off;
5736 p->p_offset = phdr->p_offset + phdr_off;
5737 }
5738 else
5739 p->p_offset = bed->s->sizeof_ehdr;
5740 }
5741 }
5742
5743 if (p->p_type == PT_LOAD
5744 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5745 {
5746 if (!m->includes_filehdr && !m->includes_phdrs)
5747 {
5748 p->p_offset = off;
5749 if (no_contents)
5750 {
5751 /* Put meaningless p_offset for PT_LOAD segments
5752 without file contents somewhere within the first
5753 page, in an attempt to not point past EOF. */
5754 bfd_size_type align = maxpagesize;
5755 if (align < p->p_align)
5756 align = p->p_align;
5757 if (align < 1)
5758 align = 1;
5759 p->p_offset = off % align;
5760 }
5761 }
5762 else
5763 {
5764 file_ptr adjust; /* Octets. */
5765
5766 adjust = off - (p->p_offset + p->p_filesz);
5767 if (!no_contents)
5768 p->p_filesz += adjust;
5769 p->p_memsz += adjust;
5770 }
5771 }
5772
5773 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5774 maps. Set filepos for sections in PT_LOAD segments, and in
5775 core files, for sections in PT_NOTE segments.
5776 assign_file_positions_for_non_load_sections will set filepos
5777 for other sections and update p_filesz for other segments. */
5778 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5779 {
5780 asection *sec;
5781 bfd_size_type align;
5782 Elf_Internal_Shdr *this_hdr;
5783
5784 sec = *secpp;
5785 this_hdr = &elf_section_data (sec)->this_hdr;
5786 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5787
5788 if ((p->p_type == PT_LOAD
5789 || p->p_type == PT_TLS)
5790 && (this_hdr->sh_type != SHT_NOBITS
5791 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5792 && ((this_hdr->sh_flags & SHF_TLS) == 0
5793 || p->p_type == PT_TLS))))
5794 {
5795 bfd_vma p_start = p->p_paddr; /* Octets. */
5796 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5797 bfd_vma s_start = sec->lma * opb; /* Octets. */
5798 bfd_vma adjust = s_start - p_end; /* Octets. */
5799
5800 if (adjust != 0
5801 && (s_start < p_end
5802 || p_end < p_start))
5803 {
5804 _bfd_error_handler
5805 /* xgettext:c-format */
5806 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5807 abfd, sec, (uint64_t) s_start / opb,
5808 (uint64_t) p_end / opb);
5809 adjust = 0;
5810 sec->lma = p_end / opb;
5811 }
5812 p->p_memsz += adjust;
5813
5814 if (p->p_type == PT_LOAD)
5815 {
5816 if (this_hdr->sh_type != SHT_NOBITS)
5817 {
5818 off_adjust = 0;
5819 if (p->p_filesz + adjust < p->p_memsz)
5820 {
5821 /* We have a PROGBITS section following NOBITS ones.
5822 Allocate file space for the NOBITS section(s) and
5823 zero it. */
5824 adjust = p->p_memsz - p->p_filesz;
5825 if (!write_zeros (abfd, off, adjust))
5826 return FALSE;
5827 }
5828 }
5829 /* We only adjust sh_offset in SHT_NOBITS sections
5830 as would seem proper for their address when the
5831 section is first in the segment. sh_offset
5832 doesn't really have any significance for
5833 SHT_NOBITS anyway, apart from a notional position
5834 relative to other sections. Historically we
5835 didn't bother with adjusting sh_offset and some
5836 programs depend on it not being adjusted. See
5837 pr12921 and pr25662. */
5838 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5839 {
5840 off += adjust;
5841 if (this_hdr->sh_type == SHT_NOBITS)
5842 off_adjust += adjust;
5843 }
5844 }
5845 if (this_hdr->sh_type != SHT_NOBITS)
5846 p->p_filesz += adjust;
5847 }
5848
5849 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5850 {
5851 /* The section at i == 0 is the one that actually contains
5852 everything. */
5853 if (i == 0)
5854 {
5855 this_hdr->sh_offset = sec->filepos = off;
5856 off += this_hdr->sh_size;
5857 p->p_filesz = this_hdr->sh_size;
5858 p->p_memsz = 0;
5859 p->p_align = 1;
5860 }
5861 else
5862 {
5863 /* The rest are fake sections that shouldn't be written. */
5864 sec->filepos = 0;
5865 sec->size = 0;
5866 sec->flags = 0;
5867 continue;
5868 }
5869 }
5870 else
5871 {
5872 if (p->p_type == PT_LOAD)
5873 {
5874 this_hdr->sh_offset = sec->filepos = off;
5875 if (this_hdr->sh_type != SHT_NOBITS)
5876 off += this_hdr->sh_size;
5877 }
5878 else if (this_hdr->sh_type == SHT_NOBITS
5879 && (this_hdr->sh_flags & SHF_TLS) != 0
5880 && this_hdr->sh_offset == 0)
5881 {
5882 /* This is a .tbss section that didn't get a PT_LOAD.
5883 (See _bfd_elf_map_sections_to_segments "Create a
5884 final PT_LOAD".) Set sh_offset to the value it
5885 would have if we had created a zero p_filesz and
5886 p_memsz PT_LOAD header for the section. This
5887 also makes the PT_TLS header have the same
5888 p_offset value. */
5889 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5890 off, align);
5891 this_hdr->sh_offset = sec->filepos = off + adjust;
5892 }
5893
5894 if (this_hdr->sh_type != SHT_NOBITS)
5895 {
5896 p->p_filesz += this_hdr->sh_size;
5897 /* A load section without SHF_ALLOC is something like
5898 a note section in a PT_NOTE segment. These take
5899 file space but are not loaded into memory. */
5900 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5901 p->p_memsz += this_hdr->sh_size;
5902 }
5903 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5904 {
5905 if (p->p_type == PT_TLS)
5906 p->p_memsz += this_hdr->sh_size;
5907
5908 /* .tbss is special. It doesn't contribute to p_memsz of
5909 normal segments. */
5910 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5911 p->p_memsz += this_hdr->sh_size;
5912 }
5913
5914 if (align > p->p_align
5915 && !m->p_align_valid
5916 && (p->p_type != PT_LOAD
5917 || (abfd->flags & D_PAGED) == 0))
5918 p->p_align = align;
5919 }
5920
5921 if (!m->p_flags_valid)
5922 {
5923 p->p_flags |= PF_R;
5924 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5925 p->p_flags |= PF_X;
5926 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5927 p->p_flags |= PF_W;
5928 }
5929 }
5930
5931 off -= off_adjust;
5932
5933 /* PR ld/20815 - Check that the program header segment, if
5934 present, will be loaded into memory. */
5935 if (p->p_type == PT_PHDR
5936 && phdr_load_seg == NULL
5937 && !(bed->elf_backend_allow_non_load_phdr != NULL
5938 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5939 {
5940 /* The fix for this error is usually to edit the linker script being
5941 used and set up the program headers manually. Either that or
5942 leave room for the headers at the start of the SECTIONS. */
5943 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5944 " by LOAD segment"),
5945 abfd);
5946 if (link_info == NULL)
5947 return FALSE;
5948 /* Arrange for the linker to exit with an error, deleting
5949 the output file unless --noinhibit-exec is given. */
5950 link_info->callbacks->info ("%X");
5951 }
5952
5953 /* Check that all sections are in a PT_LOAD segment.
5954 Don't check funky gdb generated core files. */
5955 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5956 {
5957 bfd_boolean check_vma = TRUE;
5958
5959 for (i = 1; i < m->count; i++)
5960 if (m->sections[i]->vma == m->sections[i - 1]->vma
5961 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5962 ->this_hdr), p) != 0
5963 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5964 ->this_hdr), p) != 0)
5965 {
5966 /* Looks like we have overlays packed into the segment. */
5967 check_vma = FALSE;
5968 break;
5969 }
5970
5971 for (i = 0; i < m->count; i++)
5972 {
5973 Elf_Internal_Shdr *this_hdr;
5974 asection *sec;
5975
5976 sec = m->sections[i];
5977 this_hdr = &(elf_section_data(sec)->this_hdr);
5978 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5979 && !ELF_TBSS_SPECIAL (this_hdr, p))
5980 {
5981 _bfd_error_handler
5982 /* xgettext:c-format */
5983 (_("%pB: section `%pA' can't be allocated in segment %d"),
5984 abfd, sec, j);
5985 print_segment_map (m);
5986 }
5987 }
5988 }
5989 }
5990
5991 elf_next_file_pos (abfd) = off;
5992
5993 if (link_info != NULL
5994 && phdr_load_seg != NULL
5995 && phdr_load_seg->includes_filehdr)
5996 {
5997 /* There is a segment that contains both the file headers and the
5998 program headers, so provide a symbol __ehdr_start pointing there.
5999 A program can use this to examine itself robustly. */
6000
6001 struct elf_link_hash_entry *hash
6002 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6003 FALSE, FALSE, TRUE);
6004 /* If the symbol was referenced and not defined, define it. */
6005 if (hash != NULL
6006 && (hash->root.type == bfd_link_hash_new
6007 || hash->root.type == bfd_link_hash_undefined
6008 || hash->root.type == bfd_link_hash_undefweak
6009 || hash->root.type == bfd_link_hash_common))
6010 {
6011 asection *s = NULL;
6012 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6013
6014 if (phdr_load_seg->count != 0)
6015 /* The segment contains sections, so use the first one. */
6016 s = phdr_load_seg->sections[0];
6017 else
6018 /* Use the first (i.e. lowest-addressed) section in any segment. */
6019 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6020 if (m->p_type == PT_LOAD && m->count != 0)
6021 {
6022 s = m->sections[0];
6023 break;
6024 }
6025
6026 if (s != NULL)
6027 {
6028 hash->root.u.def.value = filehdr_vaddr - s->vma;
6029 hash->root.u.def.section = s;
6030 }
6031 else
6032 {
6033 hash->root.u.def.value = filehdr_vaddr;
6034 hash->root.u.def.section = bfd_abs_section_ptr;
6035 }
6036
6037 hash->root.type = bfd_link_hash_defined;
6038 hash->def_regular = 1;
6039 hash->non_elf = 0;
6040 }
6041 }
6042
6043 return TRUE;
6044 }
6045
6046 /* Determine if a bfd is a debuginfo file. Unfortunately there
6047 is no defined method for detecting such files, so we have to
6048 use heuristics instead. */
6049
6050 bfd_boolean
6051 is_debuginfo_file (bfd *abfd)
6052 {
6053 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6054 return FALSE;
6055
6056 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6057 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6058 Elf_Internal_Shdr **headerp;
6059
6060 for (headerp = start_headers; headerp < end_headers; headerp ++)
6061 {
6062 Elf_Internal_Shdr *header = * headerp;
6063
6064 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6065 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6066 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6067 && header->sh_type != SHT_NOBITS
6068 && header->sh_type != SHT_NOTE)
6069 return FALSE;
6070 }
6071
6072 return TRUE;
6073 }
6074
6075 /* Assign file positions for the other sections, except for compressed debugging
6076 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6077
6078 static bfd_boolean
6079 assign_file_positions_for_non_load_sections (bfd *abfd,
6080 struct bfd_link_info *link_info)
6081 {
6082 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6083 Elf_Internal_Shdr **i_shdrpp;
6084 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6085 Elf_Internal_Phdr *phdrs;
6086 Elf_Internal_Phdr *p;
6087 struct elf_segment_map *m;
6088 file_ptr off;
6089 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6090
6091 i_shdrpp = elf_elfsections (abfd);
6092 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6093 off = elf_next_file_pos (abfd);
6094 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6095 {
6096 Elf_Internal_Shdr *hdr;
6097
6098 hdr = *hdrpp;
6099 if (hdr->bfd_section != NULL
6100 && (hdr->bfd_section->filepos != 0
6101 || (hdr->sh_type == SHT_NOBITS
6102 && hdr->contents == NULL)))
6103 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6104 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6105 {
6106 if (hdr->sh_size != 0
6107 /* PR 24717 - debuginfo files are known to be not strictly
6108 compliant with the ELF standard. In particular they often
6109 have .note.gnu.property sections that are outside of any
6110 loadable segment. This is not a problem for such files,
6111 so do not warn about them. */
6112 && ! is_debuginfo_file (abfd))
6113 _bfd_error_handler
6114 /* xgettext:c-format */
6115 (_("%pB: warning: allocated section `%s' not in segment"),
6116 abfd,
6117 (hdr->bfd_section == NULL
6118 ? "*unknown*"
6119 : hdr->bfd_section->name));
6120 /* We don't need to page align empty sections. */
6121 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6122 off += vma_page_aligned_bias (hdr->sh_addr, off,
6123 bed->maxpagesize);
6124 else
6125 off += vma_page_aligned_bias (hdr->sh_addr, off,
6126 hdr->sh_addralign);
6127 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6128 FALSE);
6129 }
6130 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6131 && hdr->bfd_section == NULL)
6132 /* We don't know the offset of these sections yet: their size has
6133 not been decided. */
6134 || (hdr->bfd_section != NULL
6135 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6136 || (bfd_section_is_ctf (hdr->bfd_section)
6137 && abfd->is_linker_output)))
6138 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6139 || (elf_symtab_shndx_list (abfd) != NULL
6140 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6141 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6142 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6143 hdr->sh_offset = -1;
6144 else
6145 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6146 }
6147 elf_next_file_pos (abfd) = off;
6148
6149 /* Now that we have set the section file positions, we can set up
6150 the file positions for the non PT_LOAD segments. */
6151 phdrs = elf_tdata (abfd)->phdr;
6152 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6153 {
6154 if (p->p_type == PT_GNU_RELRO)
6155 {
6156 bfd_vma start, end; /* Bytes. */
6157 bfd_boolean ok;
6158
6159 if (link_info != NULL)
6160 {
6161 /* During linking the range of the RELRO segment is passed
6162 in link_info. Note that there may be padding between
6163 relro_start and the first RELRO section. */
6164 start = link_info->relro_start;
6165 end = link_info->relro_end;
6166 }
6167 else if (m->count != 0)
6168 {
6169 if (!m->p_size_valid)
6170 abort ();
6171 start = m->sections[0]->vma;
6172 end = start + m->p_size / opb;
6173 }
6174 else
6175 {
6176 start = 0;
6177 end = 0;
6178 }
6179
6180 ok = FALSE;
6181 if (start < end)
6182 {
6183 struct elf_segment_map *lm;
6184 const Elf_Internal_Phdr *lp;
6185 unsigned int i;
6186
6187 /* Find a LOAD segment containing a section in the RELRO
6188 segment. */
6189 for (lm = elf_seg_map (abfd), lp = phdrs;
6190 lm != NULL;
6191 lm = lm->next, lp++)
6192 {
6193 if (lp->p_type == PT_LOAD
6194 && lm->count != 0
6195 && (lm->sections[lm->count - 1]->vma
6196 + (!IS_TBSS (lm->sections[lm->count - 1])
6197 ? lm->sections[lm->count - 1]->size / opb
6198 : 0)) > start
6199 && lm->sections[0]->vma < end)
6200 break;
6201 }
6202
6203 if (lm != NULL)
6204 {
6205 /* Find the section starting the RELRO segment. */
6206 for (i = 0; i < lm->count; i++)
6207 {
6208 asection *s = lm->sections[i];
6209 if (s->vma >= start
6210 && s->vma < end
6211 && s->size != 0)
6212 break;
6213 }
6214
6215 if (i < lm->count)
6216 {
6217 p->p_vaddr = lm->sections[i]->vma * opb;
6218 p->p_paddr = lm->sections[i]->lma * opb;
6219 p->p_offset = lm->sections[i]->filepos;
6220 p->p_memsz = end * opb - p->p_vaddr;
6221 p->p_filesz = p->p_memsz;
6222
6223 /* The RELRO segment typically ends a few bytes
6224 into .got.plt but other layouts are possible.
6225 In cases where the end does not match any
6226 loaded section (for instance is in file
6227 padding), trim p_filesz back to correspond to
6228 the end of loaded section contents. */
6229 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6230 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6231
6232 /* Preserve the alignment and flags if they are
6233 valid. The gold linker generates RW/4 for
6234 the PT_GNU_RELRO section. It is better for
6235 objcopy/strip to honor these attributes
6236 otherwise gdb will choke when using separate
6237 debug files. */
6238 if (!m->p_align_valid)
6239 p->p_align = 1;
6240 if (!m->p_flags_valid)
6241 p->p_flags = PF_R;
6242 ok = TRUE;
6243 }
6244 }
6245 }
6246 if (link_info != NULL)
6247 BFD_ASSERT (ok);
6248 if (!ok)
6249 memset (p, 0, sizeof *p);
6250 }
6251 else if (p->p_type == PT_GNU_STACK)
6252 {
6253 if (m->p_size_valid)
6254 p->p_memsz = m->p_size;
6255 }
6256 else if (m->count != 0)
6257 {
6258 unsigned int i;
6259
6260 if (p->p_type != PT_LOAD
6261 && (p->p_type != PT_NOTE
6262 || bfd_get_format (abfd) != bfd_core))
6263 {
6264 /* A user specified segment layout may include a PHDR
6265 segment that overlaps with a LOAD segment... */
6266 if (p->p_type == PT_PHDR)
6267 {
6268 m->count = 0;
6269 continue;
6270 }
6271
6272 if (m->includes_filehdr || m->includes_phdrs)
6273 {
6274 /* PR 17512: file: 2195325e. */
6275 _bfd_error_handler
6276 (_("%pB: error: non-load segment %d includes file header "
6277 "and/or program header"),
6278 abfd, (int) (p - phdrs));
6279 return FALSE;
6280 }
6281
6282 p->p_filesz = 0;
6283 p->p_offset = m->sections[0]->filepos;
6284 for (i = m->count; i-- != 0;)
6285 {
6286 asection *sect = m->sections[i];
6287 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6288 if (hdr->sh_type != SHT_NOBITS)
6289 {
6290 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6291 + hdr->sh_size);
6292 break;
6293 }
6294 }
6295 }
6296 }
6297 }
6298
6299 return TRUE;
6300 }
6301
6302 static elf_section_list *
6303 find_section_in_list (unsigned int i, elf_section_list * list)
6304 {
6305 for (;list != NULL; list = list->next)
6306 if (list->ndx == i)
6307 break;
6308 return list;
6309 }
6310
6311 /* Work out the file positions of all the sections. This is called by
6312 _bfd_elf_compute_section_file_positions. All the section sizes and
6313 VMAs must be known before this is called.
6314
6315 Reloc sections come in two flavours: Those processed specially as
6316 "side-channel" data attached to a section to which they apply, and those that
6317 bfd doesn't process as relocations. The latter sort are stored in a normal
6318 bfd section by bfd_section_from_shdr. We don't consider the former sort
6319 here, unless they form part of the loadable image. Reloc sections not
6320 assigned here (and compressed debugging sections and CTF sections which
6321 nothing else in the file can rely upon) will be handled later by
6322 assign_file_positions_for_relocs.
6323
6324 We also don't set the positions of the .symtab and .strtab here. */
6325
6326 static bfd_boolean
6327 assign_file_positions_except_relocs (bfd *abfd,
6328 struct bfd_link_info *link_info)
6329 {
6330 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6331 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6333 unsigned int alloc;
6334
6335 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6336 && bfd_get_format (abfd) != bfd_core)
6337 {
6338 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6339 unsigned int num_sec = elf_numsections (abfd);
6340 Elf_Internal_Shdr **hdrpp;
6341 unsigned int i;
6342 file_ptr off;
6343
6344 /* Start after the ELF header. */
6345 off = i_ehdrp->e_ehsize;
6346
6347 /* We are not creating an executable, which means that we are
6348 not creating a program header, and that the actual order of
6349 the sections in the file is unimportant. */
6350 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6351 {
6352 Elf_Internal_Shdr *hdr;
6353
6354 hdr = *hdrpp;
6355 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6356 && hdr->bfd_section == NULL)
6357 /* Do not assign offsets for these sections yet: we don't know
6358 their sizes. */
6359 || (hdr->bfd_section != NULL
6360 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6361 || (bfd_section_is_ctf (hdr->bfd_section)
6362 && abfd->is_linker_output)))
6363 || i == elf_onesymtab (abfd)
6364 || (elf_symtab_shndx_list (abfd) != NULL
6365 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6366 || i == elf_strtab_sec (abfd)
6367 || i == elf_shstrtab_sec (abfd))
6368 {
6369 hdr->sh_offset = -1;
6370 }
6371 else
6372 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6373 }
6374
6375 elf_next_file_pos (abfd) = off;
6376 elf_program_header_size (abfd) = 0;
6377 }
6378 else
6379 {
6380 /* Assign file positions for the loaded sections based on the
6381 assignment of sections to segments. */
6382 if (!assign_file_positions_for_load_sections (abfd, link_info))
6383 return FALSE;
6384
6385 /* And for non-load sections. */
6386 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6387 return FALSE;
6388 }
6389
6390 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6391 return FALSE;
6392
6393 /* Write out the program headers. */
6394 alloc = i_ehdrp->e_phnum;
6395 if (alloc != 0)
6396 {
6397 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6398 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6399 return FALSE;
6400 }
6401
6402 return TRUE;
6403 }
6404
6405 bfd_boolean
6406 _bfd_elf_init_file_header (bfd *abfd,
6407 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6408 {
6409 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6410 struct elf_strtab_hash *shstrtab;
6411 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6412
6413 i_ehdrp = elf_elfheader (abfd);
6414
6415 shstrtab = _bfd_elf_strtab_init ();
6416 if (shstrtab == NULL)
6417 return FALSE;
6418
6419 elf_shstrtab (abfd) = shstrtab;
6420
6421 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6422 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6423 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6424 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6425
6426 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6427 i_ehdrp->e_ident[EI_DATA] =
6428 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6429 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6430
6431 if ((abfd->flags & DYNAMIC) != 0)
6432 i_ehdrp->e_type = ET_DYN;
6433 else if ((abfd->flags & EXEC_P) != 0)
6434 i_ehdrp->e_type = ET_EXEC;
6435 else if (bfd_get_format (abfd) == bfd_core)
6436 i_ehdrp->e_type = ET_CORE;
6437 else
6438 i_ehdrp->e_type = ET_REL;
6439
6440 switch (bfd_get_arch (abfd))
6441 {
6442 case bfd_arch_unknown:
6443 i_ehdrp->e_machine = EM_NONE;
6444 break;
6445
6446 /* There used to be a long list of cases here, each one setting
6447 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6448 in the corresponding bfd definition. To avoid duplication,
6449 the switch was removed. Machines that need special handling
6450 can generally do it in elf_backend_final_write_processing(),
6451 unless they need the information earlier than the final write.
6452 Such need can generally be supplied by replacing the tests for
6453 e_machine with the conditions used to determine it. */
6454 default:
6455 i_ehdrp->e_machine = bed->elf_machine_code;
6456 }
6457
6458 i_ehdrp->e_version = bed->s->ev_current;
6459 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6460
6461 /* No program header, for now. */
6462 i_ehdrp->e_phoff = 0;
6463 i_ehdrp->e_phentsize = 0;
6464 i_ehdrp->e_phnum = 0;
6465
6466 /* Each bfd section is section header entry. */
6467 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6468 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6469
6470 elf_tdata (abfd)->symtab_hdr.sh_name =
6471 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6472 elf_tdata (abfd)->strtab_hdr.sh_name =
6473 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6474 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6475 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6476 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6477 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6478 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6479 return FALSE;
6480
6481 return TRUE;
6482 }
6483
6484 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6485
6486 FIXME: We used to have code here to sort the PT_LOAD segments into
6487 ascending order, as per the ELF spec. But this breaks some programs,
6488 including the Linux kernel. But really either the spec should be
6489 changed or the programs updated. */
6490
6491 bfd_boolean
6492 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6493 {
6494 if (link_info != NULL && bfd_link_pie (link_info))
6495 {
6496 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6497 unsigned int num_segments = i_ehdrp->e_phnum;
6498 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6499 Elf_Internal_Phdr *segment = tdata->phdr;
6500 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6501
6502 /* Find the lowest p_vaddr in PT_LOAD segments. */
6503 bfd_vma p_vaddr = (bfd_vma) -1;
6504 for (; segment < end_segment; segment++)
6505 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6506 p_vaddr = segment->p_vaddr;
6507
6508 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6509 segments is non-zero. */
6510 if (p_vaddr)
6511 i_ehdrp->e_type = ET_EXEC;
6512 }
6513 return TRUE;
6514 }
6515
6516 /* Assign file positions for all the reloc sections which are not part
6517 of the loadable file image, and the file position of section headers. */
6518
6519 static bfd_boolean
6520 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6521 {
6522 file_ptr off;
6523 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6524 Elf_Internal_Shdr *shdrp;
6525 Elf_Internal_Ehdr *i_ehdrp;
6526 const struct elf_backend_data *bed;
6527
6528 off = elf_next_file_pos (abfd);
6529
6530 shdrpp = elf_elfsections (abfd);
6531 end_shdrpp = shdrpp + elf_numsections (abfd);
6532 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6533 {
6534 shdrp = *shdrpp;
6535 if (shdrp->sh_offset == -1)
6536 {
6537 asection *sec = shdrp->bfd_section;
6538 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6539 || shdrp->sh_type == SHT_RELA);
6540 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6541 if (is_rel
6542 || is_ctf
6543 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6544 {
6545 if (!is_rel && !is_ctf)
6546 {
6547 const char *name = sec->name;
6548 struct bfd_elf_section_data *d;
6549
6550 /* Compress DWARF debug sections. */
6551 if (!bfd_compress_section (abfd, sec,
6552 shdrp->contents))
6553 return FALSE;
6554
6555 if (sec->compress_status == COMPRESS_SECTION_DONE
6556 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6557 {
6558 /* If section is compressed with zlib-gnu, convert
6559 section name from .debug_* to .zdebug_*. */
6560 char *new_name
6561 = convert_debug_to_zdebug (abfd, name);
6562 if (new_name == NULL)
6563 return FALSE;
6564 name = new_name;
6565 }
6566 /* Add section name to section name section. */
6567 if (shdrp->sh_name != (unsigned int) -1)
6568 abort ();
6569 shdrp->sh_name
6570 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6571 name, FALSE);
6572 d = elf_section_data (sec);
6573
6574 /* Add reloc section name to section name section. */
6575 if (d->rel.hdr
6576 && !_bfd_elf_set_reloc_sh_name (abfd,
6577 d->rel.hdr,
6578 name, FALSE))
6579 return FALSE;
6580 if (d->rela.hdr
6581 && !_bfd_elf_set_reloc_sh_name (abfd,
6582 d->rela.hdr,
6583 name, TRUE))
6584 return FALSE;
6585
6586 /* Update section size and contents. */
6587 shdrp->sh_size = sec->size;
6588 shdrp->contents = sec->contents;
6589 shdrp->bfd_section->contents = NULL;
6590 }
6591 else if (is_ctf)
6592 {
6593 /* Update section size and contents. */
6594 shdrp->sh_size = sec->size;
6595 shdrp->contents = sec->contents;
6596 }
6597
6598 off = _bfd_elf_assign_file_position_for_section (shdrp,
6599 off,
6600 TRUE);
6601 }
6602 }
6603 }
6604
6605 /* Place section name section after DWARF debug sections have been
6606 compressed. */
6607 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6608 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6609 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6610 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6611
6612 /* Place the section headers. */
6613 i_ehdrp = elf_elfheader (abfd);
6614 bed = get_elf_backend_data (abfd);
6615 off = align_file_position (off, 1 << bed->s->log_file_align);
6616 i_ehdrp->e_shoff = off;
6617 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6618 elf_next_file_pos (abfd) = off;
6619
6620 return TRUE;
6621 }
6622
6623 bfd_boolean
6624 _bfd_elf_write_object_contents (bfd *abfd)
6625 {
6626 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6627 Elf_Internal_Shdr **i_shdrp;
6628 bfd_boolean failed;
6629 unsigned int count, num_sec;
6630 struct elf_obj_tdata *t;
6631
6632 if (! abfd->output_has_begun
6633 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6634 return FALSE;
6635 /* Do not rewrite ELF data when the BFD has been opened for update.
6636 abfd->output_has_begun was set to TRUE on opening, so creation of new
6637 sections, and modification of existing section sizes was restricted.
6638 This means the ELF header, program headers and section headers can't have
6639 changed.
6640 If the contents of any sections has been modified, then those changes have
6641 already been written to the BFD. */
6642 else if (abfd->direction == both_direction)
6643 {
6644 BFD_ASSERT (abfd->output_has_begun);
6645 return TRUE;
6646 }
6647
6648 i_shdrp = elf_elfsections (abfd);
6649
6650 failed = FALSE;
6651 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6652 if (failed)
6653 return FALSE;
6654
6655 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6656 return FALSE;
6657
6658 /* After writing the headers, we need to write the sections too... */
6659 num_sec = elf_numsections (abfd);
6660 for (count = 1; count < num_sec; count++)
6661 {
6662 i_shdrp[count]->sh_name
6663 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6664 i_shdrp[count]->sh_name);
6665 if (bed->elf_backend_section_processing)
6666 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6667 return FALSE;
6668 if (i_shdrp[count]->contents)
6669 {
6670 bfd_size_type amt = i_shdrp[count]->sh_size;
6671
6672 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6673 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6674 return FALSE;
6675 }
6676 }
6677
6678 /* Write out the section header names. */
6679 t = elf_tdata (abfd);
6680 if (elf_shstrtab (abfd) != NULL
6681 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6682 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6683 return FALSE;
6684
6685 if (!(*bed->elf_backend_final_write_processing) (abfd))
6686 return FALSE;
6687
6688 if (!bed->s->write_shdrs_and_ehdr (abfd))
6689 return FALSE;
6690
6691 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6692 if (t->o->build_id.after_write_object_contents != NULL)
6693 return (*t->o->build_id.after_write_object_contents) (abfd);
6694
6695 return TRUE;
6696 }
6697
6698 bfd_boolean
6699 _bfd_elf_write_corefile_contents (bfd *abfd)
6700 {
6701 /* Hopefully this can be done just like an object file. */
6702 return _bfd_elf_write_object_contents (abfd);
6703 }
6704
6705 /* Given a section, search the header to find them. */
6706
6707 unsigned int
6708 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6709 {
6710 const struct elf_backend_data *bed;
6711 unsigned int sec_index;
6712
6713 if (elf_section_data (asect) != NULL
6714 && elf_section_data (asect)->this_idx != 0)
6715 return elf_section_data (asect)->this_idx;
6716
6717 if (bfd_is_abs_section (asect))
6718 sec_index = SHN_ABS;
6719 else if (bfd_is_com_section (asect))
6720 sec_index = SHN_COMMON;
6721 else if (bfd_is_und_section (asect))
6722 sec_index = SHN_UNDEF;
6723 else
6724 sec_index = SHN_BAD;
6725
6726 bed = get_elf_backend_data (abfd);
6727 if (bed->elf_backend_section_from_bfd_section)
6728 {
6729 int retval = sec_index;
6730
6731 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6732 return retval;
6733 }
6734
6735 if (sec_index == SHN_BAD)
6736 bfd_set_error (bfd_error_nonrepresentable_section);
6737
6738 return sec_index;
6739 }
6740
6741 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6742 on error. */
6743
6744 int
6745 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6746 {
6747 asymbol *asym_ptr = *asym_ptr_ptr;
6748 int idx;
6749 flagword flags = asym_ptr->flags;
6750
6751 /* When gas creates relocations against local labels, it creates its
6752 own symbol for the section, but does put the symbol into the
6753 symbol chain, so udata is 0. When the linker is generating
6754 relocatable output, this section symbol may be for one of the
6755 input sections rather than the output section. */
6756 if (asym_ptr->udata.i == 0
6757 && (flags & BSF_SECTION_SYM)
6758 && asym_ptr->section)
6759 {
6760 asection *sec;
6761 int indx;
6762
6763 sec = asym_ptr->section;
6764 if (sec->owner != abfd && sec->output_section != NULL)
6765 sec = sec->output_section;
6766 if (sec->owner == abfd
6767 && (indx = sec->index) < elf_num_section_syms (abfd)
6768 && elf_section_syms (abfd)[indx] != NULL)
6769 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6770 }
6771
6772 idx = asym_ptr->udata.i;
6773
6774 if (idx == 0)
6775 {
6776 /* This case can occur when using --strip-symbol on a symbol
6777 which is used in a relocation entry. */
6778 _bfd_error_handler
6779 /* xgettext:c-format */
6780 (_("%pB: symbol `%s' required but not present"),
6781 abfd, bfd_asymbol_name (asym_ptr));
6782 bfd_set_error (bfd_error_no_symbols);
6783 return -1;
6784 }
6785
6786 #if DEBUG & 4
6787 {
6788 fprintf (stderr,
6789 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6790 (long) asym_ptr, asym_ptr->name, idx, flags);
6791 fflush (stderr);
6792 }
6793 #endif
6794
6795 return idx;
6796 }
6797
6798 /* Rewrite program header information. */
6799
6800 static bfd_boolean
6801 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6802 {
6803 Elf_Internal_Ehdr *iehdr;
6804 struct elf_segment_map *map;
6805 struct elf_segment_map *map_first;
6806 struct elf_segment_map **pointer_to_map;
6807 Elf_Internal_Phdr *segment;
6808 asection *section;
6809 unsigned int i;
6810 unsigned int num_segments;
6811 bfd_boolean phdr_included = FALSE;
6812 bfd_boolean p_paddr_valid;
6813 bfd_vma maxpagesize;
6814 struct elf_segment_map *phdr_adjust_seg = NULL;
6815 unsigned int phdr_adjust_num = 0;
6816 const struct elf_backend_data *bed;
6817 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6818
6819 bed = get_elf_backend_data (ibfd);
6820 iehdr = elf_elfheader (ibfd);
6821
6822 map_first = NULL;
6823 pointer_to_map = &map_first;
6824
6825 num_segments = elf_elfheader (ibfd)->e_phnum;
6826 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6827
6828 /* Returns the end address of the segment + 1. */
6829 #define SEGMENT_END(segment, start) \
6830 (start + (segment->p_memsz > segment->p_filesz \
6831 ? segment->p_memsz : segment->p_filesz))
6832
6833 #define SECTION_SIZE(section, segment) \
6834 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6835 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6836 ? section->size : 0)
6837
6838 /* Returns TRUE if the given section is contained within
6839 the given segment. VMA addresses are compared. */
6840 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6841 (section->vma * (opb) >= segment->p_vaddr \
6842 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6843 <= (SEGMENT_END (segment, segment->p_vaddr))))
6844
6845 /* Returns TRUE if the given section is contained within
6846 the given segment. LMA addresses are compared. */
6847 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6848 (section->lma * (opb) >= base \
6849 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6850 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6851 <= SEGMENT_END (segment, base)))
6852
6853 /* Handle PT_NOTE segment. */
6854 #define IS_NOTE(p, s) \
6855 (p->p_type == PT_NOTE \
6856 && elf_section_type (s) == SHT_NOTE \
6857 && (bfd_vma) s->filepos >= p->p_offset \
6858 && ((bfd_vma) s->filepos + s->size \
6859 <= p->p_offset + p->p_filesz))
6860
6861 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6862 etc. */
6863 #define IS_COREFILE_NOTE(p, s) \
6864 (IS_NOTE (p, s) \
6865 && bfd_get_format (ibfd) == bfd_core \
6866 && s->vma == 0 \
6867 && s->lma == 0)
6868
6869 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6870 linker, which generates a PT_INTERP section with p_vaddr and
6871 p_memsz set to 0. */
6872 #define IS_SOLARIS_PT_INTERP(p, s) \
6873 (p->p_vaddr == 0 \
6874 && p->p_paddr == 0 \
6875 && p->p_memsz == 0 \
6876 && p->p_filesz > 0 \
6877 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6878 && s->size > 0 \
6879 && (bfd_vma) s->filepos >= p->p_offset \
6880 && ((bfd_vma) s->filepos + s->size \
6881 <= p->p_offset + p->p_filesz))
6882
6883 /* Decide if the given section should be included in the given segment.
6884 A section will be included if:
6885 1. It is within the address space of the segment -- we use the LMA
6886 if that is set for the segment and the VMA otherwise,
6887 2. It is an allocated section or a NOTE section in a PT_NOTE
6888 segment.
6889 3. There is an output section associated with it,
6890 4. The section has not already been allocated to a previous segment.
6891 5. PT_GNU_STACK segments do not include any sections.
6892 6. PT_TLS segment includes only SHF_TLS sections.
6893 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6894 8. PT_DYNAMIC should not contain empty sections at the beginning
6895 (with the possible exception of .dynamic). */
6896 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6897 ((((segment->p_paddr \
6898 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6899 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6900 && (section->flags & SEC_ALLOC) != 0) \
6901 || IS_NOTE (segment, section)) \
6902 && segment->p_type != PT_GNU_STACK \
6903 && (segment->p_type != PT_TLS \
6904 || (section->flags & SEC_THREAD_LOCAL)) \
6905 && (segment->p_type == PT_LOAD \
6906 || segment->p_type == PT_TLS \
6907 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6908 && (segment->p_type != PT_DYNAMIC \
6909 || SECTION_SIZE (section, segment) > 0 \
6910 || (segment->p_paddr \
6911 ? segment->p_paddr != section->lma * (opb) \
6912 : segment->p_vaddr != section->vma * (opb)) \
6913 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6914 && (segment->p_type != PT_LOAD || !section->segment_mark))
6915
6916 /* If the output section of a section in the input segment is NULL,
6917 it is removed from the corresponding output segment. */
6918 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6919 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6920 && section->output_section != NULL)
6921
6922 /* Returns TRUE iff seg1 starts after the end of seg2. */
6923 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6924 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6925
6926 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6927 their VMA address ranges and their LMA address ranges overlap.
6928 It is possible to have overlapping VMA ranges without overlapping LMA
6929 ranges. RedBoot images for example can have both .data and .bss mapped
6930 to the same VMA range, but with the .data section mapped to a different
6931 LMA. */
6932 #define SEGMENT_OVERLAPS(seg1, seg2) \
6933 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6934 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6935 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6936 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6937
6938 /* Initialise the segment mark field. */
6939 for (section = ibfd->sections; section != NULL; section = section->next)
6940 section->segment_mark = FALSE;
6941
6942 /* The Solaris linker creates program headers in which all the
6943 p_paddr fields are zero. When we try to objcopy or strip such a
6944 file, we get confused. Check for this case, and if we find it
6945 don't set the p_paddr_valid fields. */
6946 p_paddr_valid = FALSE;
6947 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6948 i < num_segments;
6949 i++, segment++)
6950 if (segment->p_paddr != 0)
6951 {
6952 p_paddr_valid = TRUE;
6953 break;
6954 }
6955
6956 /* Scan through the segments specified in the program header
6957 of the input BFD. For this first scan we look for overlaps
6958 in the loadable segments. These can be created by weird
6959 parameters to objcopy. Also, fix some solaris weirdness. */
6960 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6961 i < num_segments;
6962 i++, segment++)
6963 {
6964 unsigned int j;
6965 Elf_Internal_Phdr *segment2;
6966
6967 if (segment->p_type == PT_INTERP)
6968 for (section = ibfd->sections; section; section = section->next)
6969 if (IS_SOLARIS_PT_INTERP (segment, section))
6970 {
6971 /* Mininal change so that the normal section to segment
6972 assignment code will work. */
6973 segment->p_vaddr = section->vma * opb;
6974 break;
6975 }
6976
6977 if (segment->p_type != PT_LOAD)
6978 {
6979 /* Remove PT_GNU_RELRO segment. */
6980 if (segment->p_type == PT_GNU_RELRO)
6981 segment->p_type = PT_NULL;
6982 continue;
6983 }
6984
6985 /* Determine if this segment overlaps any previous segments. */
6986 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6987 {
6988 bfd_signed_vma extra_length;
6989
6990 if (segment2->p_type != PT_LOAD
6991 || !SEGMENT_OVERLAPS (segment, segment2))
6992 continue;
6993
6994 /* Merge the two segments together. */
6995 if (segment2->p_vaddr < segment->p_vaddr)
6996 {
6997 /* Extend SEGMENT2 to include SEGMENT and then delete
6998 SEGMENT. */
6999 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7000 - SEGMENT_END (segment2, segment2->p_vaddr));
7001
7002 if (extra_length > 0)
7003 {
7004 segment2->p_memsz += extra_length;
7005 segment2->p_filesz += extra_length;
7006 }
7007
7008 segment->p_type = PT_NULL;
7009
7010 /* Since we have deleted P we must restart the outer loop. */
7011 i = 0;
7012 segment = elf_tdata (ibfd)->phdr;
7013 break;
7014 }
7015 else
7016 {
7017 /* Extend SEGMENT to include SEGMENT2 and then delete
7018 SEGMENT2. */
7019 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7020 - SEGMENT_END (segment, segment->p_vaddr));
7021
7022 if (extra_length > 0)
7023 {
7024 segment->p_memsz += extra_length;
7025 segment->p_filesz += extra_length;
7026 }
7027
7028 segment2->p_type = PT_NULL;
7029 }
7030 }
7031 }
7032
7033 /* The second scan attempts to assign sections to segments. */
7034 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7035 i < num_segments;
7036 i++, segment++)
7037 {
7038 unsigned int section_count;
7039 asection **sections;
7040 asection *output_section;
7041 unsigned int isec;
7042 asection *matching_lma;
7043 asection *suggested_lma;
7044 unsigned int j;
7045 size_t amt;
7046 asection *first_section;
7047
7048 if (segment->p_type == PT_NULL)
7049 continue;
7050
7051 first_section = NULL;
7052 /* Compute how many sections might be placed into this segment. */
7053 for (section = ibfd->sections, section_count = 0;
7054 section != NULL;
7055 section = section->next)
7056 {
7057 /* Find the first section in the input segment, which may be
7058 removed from the corresponding output segment. */
7059 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7060 {
7061 if (first_section == NULL)
7062 first_section = section;
7063 if (section->output_section != NULL)
7064 ++section_count;
7065 }
7066 }
7067
7068 /* Allocate a segment map big enough to contain
7069 all of the sections we have selected. */
7070 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7071 amt += section_count * sizeof (asection *);
7072 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7073 if (map == NULL)
7074 return FALSE;
7075
7076 /* Initialise the fields of the segment map. Default to
7077 using the physical address of the segment in the input BFD. */
7078 map->next = NULL;
7079 map->p_type = segment->p_type;
7080 map->p_flags = segment->p_flags;
7081 map->p_flags_valid = 1;
7082
7083 /* If the first section in the input segment is removed, there is
7084 no need to preserve segment physical address in the corresponding
7085 output segment. */
7086 if (!first_section || first_section->output_section != NULL)
7087 {
7088 map->p_paddr = segment->p_paddr;
7089 map->p_paddr_valid = p_paddr_valid;
7090 }
7091
7092 /* Determine if this segment contains the ELF file header
7093 and if it contains the program headers themselves. */
7094 map->includes_filehdr = (segment->p_offset == 0
7095 && segment->p_filesz >= iehdr->e_ehsize);
7096 map->includes_phdrs = 0;
7097
7098 if (!phdr_included || segment->p_type != PT_LOAD)
7099 {
7100 map->includes_phdrs =
7101 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7102 && (segment->p_offset + segment->p_filesz
7103 >= ((bfd_vma) iehdr->e_phoff
7104 + iehdr->e_phnum * iehdr->e_phentsize)));
7105
7106 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7107 phdr_included = TRUE;
7108 }
7109
7110 if (section_count == 0)
7111 {
7112 /* Special segments, such as the PT_PHDR segment, may contain
7113 no sections, but ordinary, loadable segments should contain
7114 something. They are allowed by the ELF spec however, so only
7115 a warning is produced.
7116 There is however the valid use case of embedded systems which
7117 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7118 flash memory with zeros. No warning is shown for that case. */
7119 if (segment->p_type == PT_LOAD
7120 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7121 /* xgettext:c-format */
7122 _bfd_error_handler
7123 (_("%pB: warning: empty loadable segment detected"
7124 " at vaddr=%#" PRIx64 ", is this intentional?"),
7125 ibfd, (uint64_t) segment->p_vaddr);
7126
7127 map->p_vaddr_offset = segment->p_vaddr / opb;
7128 map->count = 0;
7129 *pointer_to_map = map;
7130 pointer_to_map = &map->next;
7131
7132 continue;
7133 }
7134
7135 /* Now scan the sections in the input BFD again and attempt
7136 to add their corresponding output sections to the segment map.
7137 The problem here is how to handle an output section which has
7138 been moved (ie had its LMA changed). There are four possibilities:
7139
7140 1. None of the sections have been moved.
7141 In this case we can continue to use the segment LMA from the
7142 input BFD.
7143
7144 2. All of the sections have been moved by the same amount.
7145 In this case we can change the segment's LMA to match the LMA
7146 of the first section.
7147
7148 3. Some of the sections have been moved, others have not.
7149 In this case those sections which have not been moved can be
7150 placed in the current segment which will have to have its size,
7151 and possibly its LMA changed, and a new segment or segments will
7152 have to be created to contain the other sections.
7153
7154 4. The sections have been moved, but not by the same amount.
7155 In this case we can change the segment's LMA to match the LMA
7156 of the first section and we will have to create a new segment
7157 or segments to contain the other sections.
7158
7159 In order to save time, we allocate an array to hold the section
7160 pointers that we are interested in. As these sections get assigned
7161 to a segment, they are removed from this array. */
7162
7163 amt = section_count * sizeof (asection *);
7164 sections = (asection **) bfd_malloc (amt);
7165 if (sections == NULL)
7166 return FALSE;
7167
7168 /* Step One: Scan for segment vs section LMA conflicts.
7169 Also add the sections to the section array allocated above.
7170 Also add the sections to the current segment. In the common
7171 case, where the sections have not been moved, this means that
7172 we have completely filled the segment, and there is nothing
7173 more to do. */
7174 isec = 0;
7175 matching_lma = NULL;
7176 suggested_lma = NULL;
7177
7178 for (section = first_section, j = 0;
7179 section != NULL;
7180 section = section->next)
7181 {
7182 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7183 {
7184 output_section = section->output_section;
7185
7186 sections[j++] = section;
7187
7188 /* The Solaris native linker always sets p_paddr to 0.
7189 We try to catch that case here, and set it to the
7190 correct value. Note - some backends require that
7191 p_paddr be left as zero. */
7192 if (!p_paddr_valid
7193 && segment->p_vaddr != 0
7194 && !bed->want_p_paddr_set_to_zero
7195 && isec == 0
7196 && output_section->lma != 0
7197 && (align_power (segment->p_vaddr
7198 + (map->includes_filehdr
7199 ? iehdr->e_ehsize : 0)
7200 + (map->includes_phdrs
7201 ? iehdr->e_phnum * iehdr->e_phentsize
7202 : 0),
7203 output_section->alignment_power * opb)
7204 == (output_section->vma * opb)))
7205 map->p_paddr = segment->p_vaddr;
7206
7207 /* Match up the physical address of the segment with the
7208 LMA address of the output section. */
7209 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7210 opb)
7211 || IS_COREFILE_NOTE (segment, section)
7212 || (bed->want_p_paddr_set_to_zero
7213 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7214 {
7215 if (matching_lma == NULL
7216 || output_section->lma < matching_lma->lma)
7217 matching_lma = output_section;
7218
7219 /* We assume that if the section fits within the segment
7220 then it does not overlap any other section within that
7221 segment. */
7222 map->sections[isec++] = output_section;
7223 }
7224 else if (suggested_lma == NULL)
7225 suggested_lma = output_section;
7226
7227 if (j == section_count)
7228 break;
7229 }
7230 }
7231
7232 BFD_ASSERT (j == section_count);
7233
7234 /* Step Two: Adjust the physical address of the current segment,
7235 if necessary. */
7236 if (isec == section_count)
7237 {
7238 /* All of the sections fitted within the segment as currently
7239 specified. This is the default case. Add the segment to
7240 the list of built segments and carry on to process the next
7241 program header in the input BFD. */
7242 map->count = section_count;
7243 *pointer_to_map = map;
7244 pointer_to_map = &map->next;
7245
7246 if (p_paddr_valid
7247 && !bed->want_p_paddr_set_to_zero)
7248 {
7249 bfd_vma hdr_size = 0;
7250 if (map->includes_filehdr)
7251 hdr_size = iehdr->e_ehsize;
7252 if (map->includes_phdrs)
7253 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7254
7255 /* Account for padding before the first section in the
7256 segment. */
7257 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7258 - matching_lma->lma);
7259 }
7260
7261 free (sections);
7262 continue;
7263 }
7264 else
7265 {
7266 /* Change the current segment's physical address to match
7267 the LMA of the first section that fitted, or if no
7268 section fitted, the first section. */
7269 if (matching_lma == NULL)
7270 matching_lma = suggested_lma;
7271
7272 map->p_paddr = matching_lma->lma * opb;
7273
7274 /* Offset the segment physical address from the lma
7275 to allow for space taken up by elf headers. */
7276 if (map->includes_phdrs)
7277 {
7278 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7279
7280 /* iehdr->e_phnum is just an estimate of the number
7281 of program headers that we will need. Make a note
7282 here of the number we used and the segment we chose
7283 to hold these headers, so that we can adjust the
7284 offset when we know the correct value. */
7285 phdr_adjust_num = iehdr->e_phnum;
7286 phdr_adjust_seg = map;
7287 }
7288
7289 if (map->includes_filehdr)
7290 {
7291 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7292 map->p_paddr -= iehdr->e_ehsize;
7293 /* We've subtracted off the size of headers from the
7294 first section lma, but there may have been some
7295 alignment padding before that section too. Try to
7296 account for that by adjusting the segment lma down to
7297 the same alignment. */
7298 if (segment->p_align != 0 && segment->p_align < align)
7299 align = segment->p_align;
7300 map->p_paddr &= -(align * opb);
7301 }
7302 }
7303
7304 /* Step Three: Loop over the sections again, this time assigning
7305 those that fit to the current segment and removing them from the
7306 sections array; but making sure not to leave large gaps. Once all
7307 possible sections have been assigned to the current segment it is
7308 added to the list of built segments and if sections still remain
7309 to be assigned, a new segment is constructed before repeating
7310 the loop. */
7311 isec = 0;
7312 do
7313 {
7314 map->count = 0;
7315 suggested_lma = NULL;
7316
7317 /* Fill the current segment with sections that fit. */
7318 for (j = 0; j < section_count; j++)
7319 {
7320 section = sections[j];
7321
7322 if (section == NULL)
7323 continue;
7324
7325 output_section = section->output_section;
7326
7327 BFD_ASSERT (output_section != NULL);
7328
7329 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7330 opb)
7331 || IS_COREFILE_NOTE (segment, section))
7332 {
7333 if (map->count == 0)
7334 {
7335 /* If the first section in a segment does not start at
7336 the beginning of the segment, then something is
7337 wrong. */
7338 if (align_power (map->p_paddr
7339 + (map->includes_filehdr
7340 ? iehdr->e_ehsize : 0)
7341 + (map->includes_phdrs
7342 ? iehdr->e_phnum * iehdr->e_phentsize
7343 : 0),
7344 output_section->alignment_power * opb)
7345 != output_section->lma * opb)
7346 goto sorry;
7347 }
7348 else
7349 {
7350 asection *prev_sec;
7351
7352 prev_sec = map->sections[map->count - 1];
7353
7354 /* If the gap between the end of the previous section
7355 and the start of this section is more than
7356 maxpagesize then we need to start a new segment. */
7357 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7358 maxpagesize)
7359 < BFD_ALIGN (output_section->lma, maxpagesize))
7360 || (prev_sec->lma + prev_sec->size
7361 > output_section->lma))
7362 {
7363 if (suggested_lma == NULL)
7364 suggested_lma = output_section;
7365
7366 continue;
7367 }
7368 }
7369
7370 map->sections[map->count++] = output_section;
7371 ++isec;
7372 sections[j] = NULL;
7373 if (segment->p_type == PT_LOAD)
7374 section->segment_mark = TRUE;
7375 }
7376 else if (suggested_lma == NULL)
7377 suggested_lma = output_section;
7378 }
7379
7380 /* PR 23932. A corrupt input file may contain sections that cannot
7381 be assigned to any segment - because for example they have a
7382 negative size - or segments that do not contain any sections.
7383 But there are also valid reasons why a segment can be empty.
7384 So allow a count of zero. */
7385
7386 /* Add the current segment to the list of built segments. */
7387 *pointer_to_map = map;
7388 pointer_to_map = &map->next;
7389
7390 if (isec < section_count)
7391 {
7392 /* We still have not allocated all of the sections to
7393 segments. Create a new segment here, initialise it
7394 and carry on looping. */
7395 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7396 amt += section_count * sizeof (asection *);
7397 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7398 if (map == NULL)
7399 {
7400 free (sections);
7401 return FALSE;
7402 }
7403
7404 /* Initialise the fields of the segment map. Set the physical
7405 physical address to the LMA of the first section that has
7406 not yet been assigned. */
7407 map->next = NULL;
7408 map->p_type = segment->p_type;
7409 map->p_flags = segment->p_flags;
7410 map->p_flags_valid = 1;
7411 map->p_paddr = suggested_lma->lma * opb;
7412 map->p_paddr_valid = p_paddr_valid;
7413 map->includes_filehdr = 0;
7414 map->includes_phdrs = 0;
7415 }
7416
7417 continue;
7418 sorry:
7419 bfd_set_error (bfd_error_sorry);
7420 free (sections);
7421 return FALSE;
7422 }
7423 while (isec < section_count);
7424
7425 free (sections);
7426 }
7427
7428 elf_seg_map (obfd) = map_first;
7429
7430 /* If we had to estimate the number of program headers that were
7431 going to be needed, then check our estimate now and adjust
7432 the offset if necessary. */
7433 if (phdr_adjust_seg != NULL)
7434 {
7435 unsigned int count;
7436
7437 for (count = 0, map = map_first; map != NULL; map = map->next)
7438 count++;
7439
7440 if (count > phdr_adjust_num)
7441 phdr_adjust_seg->p_paddr
7442 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7443
7444 for (map = map_first; map != NULL; map = map->next)
7445 if (map->p_type == PT_PHDR)
7446 {
7447 bfd_vma adjust
7448 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7449 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7450 break;
7451 }
7452 }
7453
7454 #undef SEGMENT_END
7455 #undef SECTION_SIZE
7456 #undef IS_CONTAINED_BY_VMA
7457 #undef IS_CONTAINED_BY_LMA
7458 #undef IS_NOTE
7459 #undef IS_COREFILE_NOTE
7460 #undef IS_SOLARIS_PT_INTERP
7461 #undef IS_SECTION_IN_INPUT_SEGMENT
7462 #undef INCLUDE_SECTION_IN_SEGMENT
7463 #undef SEGMENT_AFTER_SEGMENT
7464 #undef SEGMENT_OVERLAPS
7465 return TRUE;
7466 }
7467
7468 /* Copy ELF program header information. */
7469
7470 static bfd_boolean
7471 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7472 {
7473 Elf_Internal_Ehdr *iehdr;
7474 struct elf_segment_map *map;
7475 struct elf_segment_map *map_first;
7476 struct elf_segment_map **pointer_to_map;
7477 Elf_Internal_Phdr *segment;
7478 unsigned int i;
7479 unsigned int num_segments;
7480 bfd_boolean phdr_included = FALSE;
7481 bfd_boolean p_paddr_valid;
7482 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7483
7484 iehdr = elf_elfheader (ibfd);
7485
7486 map_first = NULL;
7487 pointer_to_map = &map_first;
7488
7489 /* If all the segment p_paddr fields are zero, don't set
7490 map->p_paddr_valid. */
7491 p_paddr_valid = FALSE;
7492 num_segments = elf_elfheader (ibfd)->e_phnum;
7493 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7494 i < num_segments;
7495 i++, segment++)
7496 if (segment->p_paddr != 0)
7497 {
7498 p_paddr_valid = TRUE;
7499 break;
7500 }
7501
7502 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7503 i < num_segments;
7504 i++, segment++)
7505 {
7506 asection *section;
7507 unsigned int section_count;
7508 size_t amt;
7509 Elf_Internal_Shdr *this_hdr;
7510 asection *first_section = NULL;
7511 asection *lowest_section;
7512
7513 /* Compute how many sections are in this segment. */
7514 for (section = ibfd->sections, section_count = 0;
7515 section != NULL;
7516 section = section->next)
7517 {
7518 this_hdr = &(elf_section_data(section)->this_hdr);
7519 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7520 {
7521 if (first_section == NULL)
7522 first_section = section;
7523 section_count++;
7524 }
7525 }
7526
7527 /* Allocate a segment map big enough to contain
7528 all of the sections we have selected. */
7529 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7530 amt += section_count * sizeof (asection *);
7531 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7532 if (map == NULL)
7533 return FALSE;
7534
7535 /* Initialize the fields of the output segment map with the
7536 input segment. */
7537 map->next = NULL;
7538 map->p_type = segment->p_type;
7539 map->p_flags = segment->p_flags;
7540 map->p_flags_valid = 1;
7541 map->p_paddr = segment->p_paddr;
7542 map->p_paddr_valid = p_paddr_valid;
7543 map->p_align = segment->p_align;
7544 map->p_align_valid = 1;
7545 map->p_vaddr_offset = 0;
7546
7547 if (map->p_type == PT_GNU_RELRO
7548 || map->p_type == PT_GNU_STACK)
7549 {
7550 /* The PT_GNU_RELRO segment may contain the first a few
7551 bytes in the .got.plt section even if the whole .got.plt
7552 section isn't in the PT_GNU_RELRO segment. We won't
7553 change the size of the PT_GNU_RELRO segment.
7554 Similarly, PT_GNU_STACK size is significant on uclinux
7555 systems. */
7556 map->p_size = segment->p_memsz;
7557 map->p_size_valid = 1;
7558 }
7559
7560 /* Determine if this segment contains the ELF file header
7561 and if it contains the program headers themselves. */
7562 map->includes_filehdr = (segment->p_offset == 0
7563 && segment->p_filesz >= iehdr->e_ehsize);
7564
7565 map->includes_phdrs = 0;
7566 if (! phdr_included || segment->p_type != PT_LOAD)
7567 {
7568 map->includes_phdrs =
7569 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7570 && (segment->p_offset + segment->p_filesz
7571 >= ((bfd_vma) iehdr->e_phoff
7572 + iehdr->e_phnum * iehdr->e_phentsize)));
7573
7574 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7575 phdr_included = TRUE;
7576 }
7577
7578 lowest_section = NULL;
7579 if (section_count != 0)
7580 {
7581 unsigned int isec = 0;
7582
7583 for (section = first_section;
7584 section != NULL;
7585 section = section->next)
7586 {
7587 this_hdr = &(elf_section_data(section)->this_hdr);
7588 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7589 {
7590 map->sections[isec++] = section->output_section;
7591 if ((section->flags & SEC_ALLOC) != 0)
7592 {
7593 bfd_vma seg_off;
7594
7595 if (lowest_section == NULL
7596 || section->lma < lowest_section->lma)
7597 lowest_section = section;
7598
7599 /* Section lmas are set up from PT_LOAD header
7600 p_paddr in _bfd_elf_make_section_from_shdr.
7601 If this header has a p_paddr that disagrees
7602 with the section lma, flag the p_paddr as
7603 invalid. */
7604 if ((section->flags & SEC_LOAD) != 0)
7605 seg_off = this_hdr->sh_offset - segment->p_offset;
7606 else
7607 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7608 if (section->lma * opb - segment->p_paddr != seg_off)
7609 map->p_paddr_valid = FALSE;
7610 }
7611 if (isec == section_count)
7612 break;
7613 }
7614 }
7615 }
7616
7617 if (section_count == 0)
7618 map->p_vaddr_offset = segment->p_vaddr / opb;
7619 else if (map->p_paddr_valid)
7620 {
7621 /* Account for padding before the first section in the segment. */
7622 bfd_vma hdr_size = 0;
7623 if (map->includes_filehdr)
7624 hdr_size = iehdr->e_ehsize;
7625 if (map->includes_phdrs)
7626 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7627
7628 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7629 - (lowest_section ? lowest_section->lma : 0));
7630 }
7631
7632 map->count = section_count;
7633 *pointer_to_map = map;
7634 pointer_to_map = &map->next;
7635 }
7636
7637 elf_seg_map (obfd) = map_first;
7638 return TRUE;
7639 }
7640
7641 /* Copy private BFD data. This copies or rewrites ELF program header
7642 information. */
7643
7644 static bfd_boolean
7645 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7646 {
7647 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7648 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7649 return TRUE;
7650
7651 if (elf_tdata (ibfd)->phdr == NULL)
7652 return TRUE;
7653
7654 if (ibfd->xvec == obfd->xvec)
7655 {
7656 /* Check to see if any sections in the input BFD
7657 covered by ELF program header have changed. */
7658 Elf_Internal_Phdr *segment;
7659 asection *section, *osec;
7660 unsigned int i, num_segments;
7661 Elf_Internal_Shdr *this_hdr;
7662 const struct elf_backend_data *bed;
7663
7664 bed = get_elf_backend_data (ibfd);
7665
7666 /* Regenerate the segment map if p_paddr is set to 0. */
7667 if (bed->want_p_paddr_set_to_zero)
7668 goto rewrite;
7669
7670 /* Initialize the segment mark field. */
7671 for (section = obfd->sections; section != NULL;
7672 section = section->next)
7673 section->segment_mark = FALSE;
7674
7675 num_segments = elf_elfheader (ibfd)->e_phnum;
7676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7677 i < num_segments;
7678 i++, segment++)
7679 {
7680 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7681 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7682 which severly confuses things, so always regenerate the segment
7683 map in this case. */
7684 if (segment->p_paddr == 0
7685 && segment->p_memsz == 0
7686 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7687 goto rewrite;
7688
7689 for (section = ibfd->sections;
7690 section != NULL; section = section->next)
7691 {
7692 /* We mark the output section so that we know it comes
7693 from the input BFD. */
7694 osec = section->output_section;
7695 if (osec)
7696 osec->segment_mark = TRUE;
7697
7698 /* Check if this section is covered by the segment. */
7699 this_hdr = &(elf_section_data(section)->this_hdr);
7700 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7701 {
7702 /* FIXME: Check if its output section is changed or
7703 removed. What else do we need to check? */
7704 if (osec == NULL
7705 || section->flags != osec->flags
7706 || section->lma != osec->lma
7707 || section->vma != osec->vma
7708 || section->size != osec->size
7709 || section->rawsize != osec->rawsize
7710 || section->alignment_power != osec->alignment_power)
7711 goto rewrite;
7712 }
7713 }
7714 }
7715
7716 /* Check to see if any output section do not come from the
7717 input BFD. */
7718 for (section = obfd->sections; section != NULL;
7719 section = section->next)
7720 {
7721 if (!section->segment_mark)
7722 goto rewrite;
7723 else
7724 section->segment_mark = FALSE;
7725 }
7726
7727 return copy_elf_program_header (ibfd, obfd);
7728 }
7729
7730 rewrite:
7731 if (ibfd->xvec == obfd->xvec)
7732 {
7733 /* When rewriting program header, set the output maxpagesize to
7734 the maximum alignment of input PT_LOAD segments. */
7735 Elf_Internal_Phdr *segment;
7736 unsigned int i;
7737 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7738 bfd_vma maxpagesize = 0;
7739
7740 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7741 i < num_segments;
7742 i++, segment++)
7743 if (segment->p_type == PT_LOAD
7744 && maxpagesize < segment->p_align)
7745 {
7746 /* PR 17512: file: f17299af. */
7747 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7748 /* xgettext:c-format */
7749 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7750 PRIx64 " is too large"),
7751 ibfd, (uint64_t) segment->p_align);
7752 else
7753 maxpagesize = segment->p_align;
7754 }
7755
7756 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7757 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7758 }
7759
7760 return rewrite_elf_program_header (ibfd, obfd);
7761 }
7762
7763 /* Initialize private output section information from input section. */
7764
7765 bfd_boolean
7766 _bfd_elf_init_private_section_data (bfd *ibfd,
7767 asection *isec,
7768 bfd *obfd,
7769 asection *osec,
7770 struct bfd_link_info *link_info)
7771
7772 {
7773 Elf_Internal_Shdr *ihdr, *ohdr;
7774 bfd_boolean final_link = (link_info != NULL
7775 && !bfd_link_relocatable (link_info));
7776
7777 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7778 || obfd->xvec->flavour != bfd_target_elf_flavour)
7779 return TRUE;
7780
7781 BFD_ASSERT (elf_section_data (osec) != NULL);
7782
7783 /* If this is a known ABI section, ELF section type and flags may
7784 have been set up when OSEC was created. For normal sections we
7785 allow the user to override the type and flags other than
7786 SHF_MASKOS and SHF_MASKPROC. */
7787 if (elf_section_type (osec) == SHT_PROGBITS
7788 || elf_section_type (osec) == SHT_NOTE
7789 || elf_section_type (osec) == SHT_NOBITS)
7790 elf_section_type (osec) = SHT_NULL;
7791 /* For objcopy and relocatable link, copy the ELF section type from
7792 the input file if the BFD section flags are the same. (If they
7793 are different the user may be doing something like
7794 "objcopy --set-section-flags .text=alloc,data".) For a final
7795 link allow some flags that the linker clears to differ. */
7796 if (elf_section_type (osec) == SHT_NULL
7797 && (osec->flags == isec->flags
7798 || (final_link
7799 && ((osec->flags ^ isec->flags)
7800 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7801 elf_section_type (osec) = elf_section_type (isec);
7802
7803 /* FIXME: Is this correct for all OS/PROC specific flags? */
7804 elf_section_flags (osec) = (elf_section_flags (isec)
7805 & (SHF_MASKOS | SHF_MASKPROC));
7806
7807 /* Copy sh_info from input for mbind section. */
7808 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7809 && elf_section_flags (isec) & SHF_GNU_MBIND)
7810 elf_section_data (osec)->this_hdr.sh_info
7811 = elf_section_data (isec)->this_hdr.sh_info;
7812
7813 /* Set things up for objcopy and relocatable link. The output
7814 SHT_GROUP section will have its elf_next_in_group pointing back
7815 to the input group members. Ignore linker created group section.
7816 See elfNN_ia64_object_p in elfxx-ia64.c. */
7817 if ((link_info == NULL
7818 || !link_info->resolve_section_groups)
7819 && (elf_sec_group (isec) == NULL
7820 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7821 {
7822 if (elf_section_flags (isec) & SHF_GROUP)
7823 elf_section_flags (osec) |= SHF_GROUP;
7824 elf_next_in_group (osec) = elf_next_in_group (isec);
7825 elf_section_data (osec)->group = elf_section_data (isec)->group;
7826 }
7827
7828 /* If not decompress, preserve SHF_COMPRESSED. */
7829 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7830 elf_section_flags (osec) |= (elf_section_flags (isec)
7831 & SHF_COMPRESSED);
7832
7833 ihdr = &elf_section_data (isec)->this_hdr;
7834
7835 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7836 don't use the output section of the linked-to section since it
7837 may be NULL at this point. */
7838 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7839 {
7840 ohdr = &elf_section_data (osec)->this_hdr;
7841 ohdr->sh_flags |= SHF_LINK_ORDER;
7842 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7843 }
7844
7845 osec->use_rela_p = isec->use_rela_p;
7846
7847 return TRUE;
7848 }
7849
7850 /* Copy private section information. This copies over the entsize
7851 field, and sometimes the info field. */
7852
7853 bfd_boolean
7854 _bfd_elf_copy_private_section_data (bfd *ibfd,
7855 asection *isec,
7856 bfd *obfd,
7857 asection *osec)
7858 {
7859 Elf_Internal_Shdr *ihdr, *ohdr;
7860
7861 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7862 || obfd->xvec->flavour != bfd_target_elf_flavour)
7863 return TRUE;
7864
7865 ihdr = &elf_section_data (isec)->this_hdr;
7866 ohdr = &elf_section_data (osec)->this_hdr;
7867
7868 ohdr->sh_entsize = ihdr->sh_entsize;
7869
7870 if (ihdr->sh_type == SHT_SYMTAB
7871 || ihdr->sh_type == SHT_DYNSYM
7872 || ihdr->sh_type == SHT_GNU_verneed
7873 || ihdr->sh_type == SHT_GNU_verdef)
7874 ohdr->sh_info = ihdr->sh_info;
7875
7876 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7877 NULL);
7878 }
7879
7880 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7881 necessary if we are removing either the SHT_GROUP section or any of
7882 the group member sections. DISCARDED is the value that a section's
7883 output_section has if the section will be discarded, NULL when this
7884 function is called from objcopy, bfd_abs_section_ptr when called
7885 from the linker. */
7886
7887 bfd_boolean
7888 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7889 {
7890 asection *isec;
7891
7892 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7893 if (elf_section_type (isec) == SHT_GROUP)
7894 {
7895 asection *first = elf_next_in_group (isec);
7896 asection *s = first;
7897 bfd_size_type removed = 0;
7898
7899 while (s != NULL)
7900 {
7901 /* If this member section is being output but the
7902 SHT_GROUP section is not, then clear the group info
7903 set up by _bfd_elf_copy_private_section_data. */
7904 if (s->output_section != discarded
7905 && isec->output_section == discarded)
7906 {
7907 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7908 elf_group_name (s->output_section) = NULL;
7909 }
7910 else
7911 {
7912 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7913 if (s->output_section == discarded
7914 && isec->output_section != discarded)
7915 {
7916 /* Conversely, if the member section is not being
7917 output but the SHT_GROUP section is, then adjust
7918 its size. */
7919 removed += 4;
7920 if (elf_sec->rel.hdr != NULL
7921 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7922 removed += 4;
7923 if (elf_sec->rela.hdr != NULL
7924 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7925 removed += 4;
7926 }
7927 else
7928 {
7929 /* Also adjust for zero-sized relocation member
7930 section. */
7931 if (elf_sec->rel.hdr != NULL
7932 && elf_sec->rel.hdr->sh_size == 0)
7933 removed += 4;
7934 if (elf_sec->rela.hdr != NULL
7935 && elf_sec->rela.hdr->sh_size == 0)
7936 removed += 4;
7937 }
7938 }
7939 s = elf_next_in_group (s);
7940 if (s == first)
7941 break;
7942 }
7943 if (removed != 0)
7944 {
7945 if (discarded != NULL)
7946 {
7947 /* If we've been called for ld -r, then we need to
7948 adjust the input section size. */
7949 if (isec->rawsize == 0)
7950 isec->rawsize = isec->size;
7951 isec->size = isec->rawsize - removed;
7952 if (isec->size <= 4)
7953 {
7954 isec->size = 0;
7955 isec->flags |= SEC_EXCLUDE;
7956 }
7957 }
7958 else
7959 {
7960 /* Adjust the output section size when called from
7961 objcopy. */
7962 isec->output_section->size -= removed;
7963 if (isec->output_section->size <= 4)
7964 {
7965 isec->output_section->size = 0;
7966 isec->output_section->flags |= SEC_EXCLUDE;
7967 }
7968 }
7969 }
7970 }
7971
7972 return TRUE;
7973 }
7974
7975 /* Copy private header information. */
7976
7977 bfd_boolean
7978 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7979 {
7980 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7981 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7982 return TRUE;
7983
7984 /* Copy over private BFD data if it has not already been copied.
7985 This must be done here, rather than in the copy_private_bfd_data
7986 entry point, because the latter is called after the section
7987 contents have been set, which means that the program headers have
7988 already been worked out. */
7989 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7990 {
7991 if (! copy_private_bfd_data (ibfd, obfd))
7992 return FALSE;
7993 }
7994
7995 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7996 }
7997
7998 /* Copy private symbol information. If this symbol is in a section
7999 which we did not map into a BFD section, try to map the section
8000 index correctly. We use special macro definitions for the mapped
8001 section indices; these definitions are interpreted by the
8002 swap_out_syms function. */
8003
8004 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8005 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8006 #define MAP_STRTAB (SHN_HIOS + 3)
8007 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8008 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8009
8010 bfd_boolean
8011 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8012 asymbol *isymarg,
8013 bfd *obfd,
8014 asymbol *osymarg)
8015 {
8016 elf_symbol_type *isym, *osym;
8017
8018 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8019 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8020 return TRUE;
8021
8022 isym = elf_symbol_from (isymarg);
8023 osym = elf_symbol_from (osymarg);
8024
8025 if (isym != NULL
8026 && isym->internal_elf_sym.st_shndx != 0
8027 && osym != NULL
8028 && bfd_is_abs_section (isym->symbol.section))
8029 {
8030 unsigned int shndx;
8031
8032 shndx = isym->internal_elf_sym.st_shndx;
8033 if (shndx == elf_onesymtab (ibfd))
8034 shndx = MAP_ONESYMTAB;
8035 else if (shndx == elf_dynsymtab (ibfd))
8036 shndx = MAP_DYNSYMTAB;
8037 else if (shndx == elf_strtab_sec (ibfd))
8038 shndx = MAP_STRTAB;
8039 else if (shndx == elf_shstrtab_sec (ibfd))
8040 shndx = MAP_SHSTRTAB;
8041 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8042 shndx = MAP_SYM_SHNDX;
8043 osym->internal_elf_sym.st_shndx = shndx;
8044 }
8045
8046 return TRUE;
8047 }
8048
8049 /* Swap out the symbols. */
8050
8051 static bfd_boolean
8052 swap_out_syms (bfd *abfd,
8053 struct elf_strtab_hash **sttp,
8054 int relocatable_p,
8055 struct bfd_link_info *info)
8056 {
8057 const struct elf_backend_data *bed;
8058 unsigned int symcount;
8059 asymbol **syms;
8060 struct elf_strtab_hash *stt;
8061 Elf_Internal_Shdr *symtab_hdr;
8062 Elf_Internal_Shdr *symtab_shndx_hdr;
8063 Elf_Internal_Shdr *symstrtab_hdr;
8064 struct elf_sym_strtab *symstrtab;
8065 bfd_byte *outbound_syms;
8066 bfd_byte *outbound_shndx;
8067 unsigned long outbound_syms_index;
8068 unsigned long outbound_shndx_index;
8069 unsigned int idx;
8070 unsigned int num_locals;
8071 size_t amt;
8072 bfd_boolean name_local_sections;
8073
8074 if (!elf_map_symbols (abfd, &num_locals))
8075 return FALSE;
8076
8077 /* Dump out the symtabs. */
8078 stt = _bfd_elf_strtab_init ();
8079 if (stt == NULL)
8080 return FALSE;
8081
8082 bed = get_elf_backend_data (abfd);
8083 symcount = bfd_get_symcount (abfd);
8084 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8085 symtab_hdr->sh_type = SHT_SYMTAB;
8086 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8087 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8088 symtab_hdr->sh_info = num_locals + 1;
8089 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8090
8091 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8092 symstrtab_hdr->sh_type = SHT_STRTAB;
8093
8094 /* Allocate buffer to swap out the .strtab section. */
8095 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8096 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8097 {
8098 bfd_set_error (bfd_error_no_memory);
8099 _bfd_elf_strtab_free (stt);
8100 return FALSE;
8101 }
8102
8103 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8104 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8105 {
8106 error_no_mem:
8107 bfd_set_error (bfd_error_no_memory);
8108 error_return:
8109 free (symstrtab);
8110 _bfd_elf_strtab_free (stt);
8111 return FALSE;
8112 }
8113 symtab_hdr->contents = outbound_syms;
8114 outbound_syms_index = 0;
8115
8116 outbound_shndx = NULL;
8117 outbound_shndx_index = 0;
8118
8119 if (elf_symtab_shndx_list (abfd))
8120 {
8121 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8122 if (symtab_shndx_hdr->sh_name != 0)
8123 {
8124 if (_bfd_mul_overflow (symcount + 1,
8125 sizeof (Elf_External_Sym_Shndx), &amt))
8126 goto error_no_mem;
8127 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8128 if (outbound_shndx == NULL)
8129 goto error_return;
8130
8131 symtab_shndx_hdr->contents = outbound_shndx;
8132 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8133 symtab_shndx_hdr->sh_size = amt;
8134 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8135 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8136 }
8137 /* FIXME: What about any other headers in the list ? */
8138 }
8139
8140 /* Now generate the data (for "contents"). */
8141 {
8142 /* Fill in zeroth symbol and swap it out. */
8143 Elf_Internal_Sym sym;
8144 sym.st_name = 0;
8145 sym.st_value = 0;
8146 sym.st_size = 0;
8147 sym.st_info = 0;
8148 sym.st_other = 0;
8149 sym.st_shndx = SHN_UNDEF;
8150 sym.st_target_internal = 0;
8151 symstrtab[0].sym = sym;
8152 symstrtab[0].dest_index = outbound_syms_index;
8153 symstrtab[0].destshndx_index = outbound_shndx_index;
8154 outbound_syms_index++;
8155 if (outbound_shndx != NULL)
8156 outbound_shndx_index++;
8157 }
8158
8159 name_local_sections
8160 = (bed->elf_backend_name_local_section_symbols
8161 && bed->elf_backend_name_local_section_symbols (abfd));
8162
8163 syms = bfd_get_outsymbols (abfd);
8164 for (idx = 0; idx < symcount;)
8165 {
8166 Elf_Internal_Sym sym;
8167 bfd_vma value = syms[idx]->value;
8168 elf_symbol_type *type_ptr;
8169 flagword flags = syms[idx]->flags;
8170 int type;
8171
8172 if (!name_local_sections
8173 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8174 {
8175 /* Local section symbols have no name. */
8176 sym.st_name = (unsigned long) -1;
8177 }
8178 else
8179 {
8180 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8181 to get the final offset for st_name. */
8182 sym.st_name
8183 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8184 FALSE);
8185 if (sym.st_name == (unsigned long) -1)
8186 goto error_return;
8187 }
8188
8189 type_ptr = elf_symbol_from (syms[idx]);
8190
8191 if ((flags & BSF_SECTION_SYM) == 0
8192 && bfd_is_com_section (syms[idx]->section))
8193 {
8194 /* ELF common symbols put the alignment into the `value' field,
8195 and the size into the `size' field. This is backwards from
8196 how BFD handles it, so reverse it here. */
8197 sym.st_size = value;
8198 if (type_ptr == NULL
8199 || type_ptr->internal_elf_sym.st_value == 0)
8200 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8201 else
8202 sym.st_value = type_ptr->internal_elf_sym.st_value;
8203 sym.st_shndx = _bfd_elf_section_from_bfd_section
8204 (abfd, syms[idx]->section);
8205 }
8206 else
8207 {
8208 asection *sec = syms[idx]->section;
8209 unsigned int shndx;
8210
8211 if (sec->output_section)
8212 {
8213 value += sec->output_offset;
8214 sec = sec->output_section;
8215 }
8216
8217 /* Don't add in the section vma for relocatable output. */
8218 if (! relocatable_p)
8219 value += sec->vma;
8220 sym.st_value = value;
8221 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8222
8223 if (bfd_is_abs_section (sec)
8224 && type_ptr != NULL
8225 && type_ptr->internal_elf_sym.st_shndx != 0)
8226 {
8227 /* This symbol is in a real ELF section which we did
8228 not create as a BFD section. Undo the mapping done
8229 by copy_private_symbol_data. */
8230 shndx = type_ptr->internal_elf_sym.st_shndx;
8231 switch (shndx)
8232 {
8233 case MAP_ONESYMTAB:
8234 shndx = elf_onesymtab (abfd);
8235 break;
8236 case MAP_DYNSYMTAB:
8237 shndx = elf_dynsymtab (abfd);
8238 break;
8239 case MAP_STRTAB:
8240 shndx = elf_strtab_sec (abfd);
8241 break;
8242 case MAP_SHSTRTAB:
8243 shndx = elf_shstrtab_sec (abfd);
8244 break;
8245 case MAP_SYM_SHNDX:
8246 if (elf_symtab_shndx_list (abfd))
8247 shndx = elf_symtab_shndx_list (abfd)->ndx;
8248 break;
8249 case SHN_COMMON:
8250 case SHN_ABS:
8251 shndx = SHN_ABS;
8252 break;
8253 default:
8254 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8255 {
8256 if (bed->symbol_section_index)
8257 shndx = bed->symbol_section_index (abfd, type_ptr);
8258 /* Otherwise just leave the index alone. */
8259 }
8260 else
8261 {
8262 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8263 _bfd_error_handler (_("%pB: \
8264 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8265 abfd, shndx);
8266 shndx = SHN_ABS;
8267 }
8268 break;
8269 }
8270 }
8271 else
8272 {
8273 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8274
8275 if (shndx == SHN_BAD)
8276 {
8277 asection *sec2;
8278
8279 /* Writing this would be a hell of a lot easier if
8280 we had some decent documentation on bfd, and
8281 knew what to expect of the library, and what to
8282 demand of applications. For example, it
8283 appears that `objcopy' might not set the
8284 section of a symbol to be a section that is
8285 actually in the output file. */
8286 sec2 = bfd_get_section_by_name (abfd, sec->name);
8287 if (sec2 != NULL)
8288 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8289 if (shndx == SHN_BAD)
8290 {
8291 /* xgettext:c-format */
8292 _bfd_error_handler
8293 (_("unable to find equivalent output section"
8294 " for symbol '%s' from section '%s'"),
8295 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8296 sec->name);
8297 bfd_set_error (bfd_error_invalid_operation);
8298 goto error_return;
8299 }
8300 }
8301 }
8302
8303 sym.st_shndx = shndx;
8304 }
8305
8306 if ((flags & BSF_THREAD_LOCAL) != 0)
8307 type = STT_TLS;
8308 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8309 type = STT_GNU_IFUNC;
8310 else if ((flags & BSF_FUNCTION) != 0)
8311 type = STT_FUNC;
8312 else if ((flags & BSF_OBJECT) != 0)
8313 type = STT_OBJECT;
8314 else if ((flags & BSF_RELC) != 0)
8315 type = STT_RELC;
8316 else if ((flags & BSF_SRELC) != 0)
8317 type = STT_SRELC;
8318 else
8319 type = STT_NOTYPE;
8320
8321 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8322 type = STT_TLS;
8323
8324 /* Processor-specific types. */
8325 if (type_ptr != NULL
8326 && bed->elf_backend_get_symbol_type)
8327 type = ((*bed->elf_backend_get_symbol_type)
8328 (&type_ptr->internal_elf_sym, type));
8329
8330 if (flags & BSF_SECTION_SYM)
8331 {
8332 if (flags & BSF_GLOBAL)
8333 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8334 else
8335 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8336 }
8337 else if (bfd_is_com_section (syms[idx]->section))
8338 {
8339 if (type != STT_TLS)
8340 {
8341 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8342 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8343 ? STT_COMMON : STT_OBJECT);
8344 else
8345 type = ((flags & BSF_ELF_COMMON) != 0
8346 ? STT_COMMON : STT_OBJECT);
8347 }
8348 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8349 }
8350 else if (bfd_is_und_section (syms[idx]->section))
8351 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8352 ? STB_WEAK
8353 : STB_GLOBAL),
8354 type);
8355 else if (flags & BSF_FILE)
8356 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8357 else
8358 {
8359 int bind = STB_LOCAL;
8360
8361 if (flags & BSF_LOCAL)
8362 bind = STB_LOCAL;
8363 else if (flags & BSF_GNU_UNIQUE)
8364 bind = STB_GNU_UNIQUE;
8365 else if (flags & BSF_WEAK)
8366 bind = STB_WEAK;
8367 else if (flags & BSF_GLOBAL)
8368 bind = STB_GLOBAL;
8369
8370 sym.st_info = ELF_ST_INFO (bind, type);
8371 }
8372
8373 if (type_ptr != NULL)
8374 {
8375 sym.st_other = type_ptr->internal_elf_sym.st_other;
8376 sym.st_target_internal
8377 = type_ptr->internal_elf_sym.st_target_internal;
8378 }
8379 else
8380 {
8381 sym.st_other = 0;
8382 sym.st_target_internal = 0;
8383 }
8384
8385 idx++;
8386 symstrtab[idx].sym = sym;
8387 symstrtab[idx].dest_index = outbound_syms_index;
8388 symstrtab[idx].destshndx_index = outbound_shndx_index;
8389
8390 outbound_syms_index++;
8391 if (outbound_shndx != NULL)
8392 outbound_shndx_index++;
8393 }
8394
8395 /* Finalize the .strtab section. */
8396 _bfd_elf_strtab_finalize (stt);
8397
8398 /* Swap out the .strtab section. */
8399 for (idx = 0; idx <= symcount; idx++)
8400 {
8401 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8402 if (elfsym->sym.st_name == (unsigned long) -1)
8403 elfsym->sym.st_name = 0;
8404 else
8405 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8406 elfsym->sym.st_name);
8407 if (info && info->callbacks->ctf_new_symbol)
8408 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8409 &elfsym->sym);
8410
8411 /* Inform the linker of the addition of this symbol. */
8412
8413 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8414 (outbound_syms
8415 + (elfsym->dest_index
8416 * bed->s->sizeof_sym)),
8417 (outbound_shndx
8418 + (elfsym->destshndx_index
8419 * sizeof (Elf_External_Sym_Shndx))));
8420 }
8421 free (symstrtab);
8422
8423 *sttp = stt;
8424 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8425 symstrtab_hdr->sh_type = SHT_STRTAB;
8426 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8427 symstrtab_hdr->sh_addr = 0;
8428 symstrtab_hdr->sh_entsize = 0;
8429 symstrtab_hdr->sh_link = 0;
8430 symstrtab_hdr->sh_info = 0;
8431 symstrtab_hdr->sh_addralign = 1;
8432
8433 return TRUE;
8434 }
8435
8436 /* Return the number of bytes required to hold the symtab vector.
8437
8438 Note that we base it on the count plus 1, since we will null terminate
8439 the vector allocated based on this size. However, the ELF symbol table
8440 always has a dummy entry as symbol #0, so it ends up even. */
8441
8442 long
8443 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8444 {
8445 bfd_size_type symcount;
8446 long symtab_size;
8447 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8448
8449 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8450 if (symcount > LONG_MAX / sizeof (asymbol *))
8451 {
8452 bfd_set_error (bfd_error_file_too_big);
8453 return -1;
8454 }
8455 symtab_size = symcount * (sizeof (asymbol *));
8456 if (symcount == 0)
8457 symtab_size = sizeof (asymbol *);
8458 else if (!bfd_write_p (abfd))
8459 {
8460 ufile_ptr filesize = bfd_get_file_size (abfd);
8461
8462 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8463 {
8464 bfd_set_error (bfd_error_file_truncated);
8465 return -1;
8466 }
8467 }
8468
8469 return symtab_size;
8470 }
8471
8472 long
8473 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8474 {
8475 bfd_size_type symcount;
8476 long symtab_size;
8477 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8478
8479 if (elf_dynsymtab (abfd) == 0)
8480 {
8481 bfd_set_error (bfd_error_invalid_operation);
8482 return -1;
8483 }
8484
8485 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8486 if (symcount > LONG_MAX / sizeof (asymbol *))
8487 {
8488 bfd_set_error (bfd_error_file_too_big);
8489 return -1;
8490 }
8491 symtab_size = symcount * (sizeof (asymbol *));
8492 if (symcount == 0)
8493 symtab_size = sizeof (asymbol *);
8494 else if (!bfd_write_p (abfd))
8495 {
8496 ufile_ptr filesize = bfd_get_file_size (abfd);
8497
8498 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8499 {
8500 bfd_set_error (bfd_error_file_truncated);
8501 return -1;
8502 }
8503 }
8504
8505 return symtab_size;
8506 }
8507
8508 long
8509 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8510 {
8511 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8512 {
8513 /* Sanity check reloc section size. */
8514 struct bfd_elf_section_data *d = elf_section_data (asect);
8515 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8516 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8517 ufile_ptr filesize = bfd_get_file_size (abfd);
8518
8519 if (filesize != 0 && ext_rel_size > filesize)
8520 {
8521 bfd_set_error (bfd_error_file_truncated);
8522 return -1;
8523 }
8524 }
8525
8526 #if SIZEOF_LONG == SIZEOF_INT
8527 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8528 {
8529 bfd_set_error (bfd_error_file_too_big);
8530 return -1;
8531 }
8532 #endif
8533 return (asect->reloc_count + 1) * sizeof (arelent *);
8534 }
8535
8536 /* Canonicalize the relocs. */
8537
8538 long
8539 _bfd_elf_canonicalize_reloc (bfd *abfd,
8540 sec_ptr section,
8541 arelent **relptr,
8542 asymbol **symbols)
8543 {
8544 arelent *tblptr;
8545 unsigned int i;
8546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8547
8548 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8549 return -1;
8550
8551 tblptr = section->relocation;
8552 for (i = 0; i < section->reloc_count; i++)
8553 *relptr++ = tblptr++;
8554
8555 *relptr = NULL;
8556
8557 return section->reloc_count;
8558 }
8559
8560 long
8561 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8562 {
8563 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8564 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8565
8566 if (symcount >= 0)
8567 abfd->symcount = symcount;
8568 return symcount;
8569 }
8570
8571 long
8572 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8573 asymbol **allocation)
8574 {
8575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8576 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8577
8578 if (symcount >= 0)
8579 abfd->dynsymcount = symcount;
8580 return symcount;
8581 }
8582
8583 /* Return the size required for the dynamic reloc entries. Any loadable
8584 section that was actually installed in the BFD, and has type SHT_REL
8585 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8586 dynamic reloc section. */
8587
8588 long
8589 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8590 {
8591 bfd_size_type count, ext_rel_size;
8592 asection *s;
8593
8594 if (elf_dynsymtab (abfd) == 0)
8595 {
8596 bfd_set_error (bfd_error_invalid_operation);
8597 return -1;
8598 }
8599
8600 count = 1;
8601 ext_rel_size = 0;
8602 for (s = abfd->sections; s != NULL; s = s->next)
8603 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8604 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8605 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8606 {
8607 ext_rel_size += s->size;
8608 if (ext_rel_size < s->size)
8609 {
8610 bfd_set_error (bfd_error_file_truncated);
8611 return -1;
8612 }
8613 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8614 if (count > LONG_MAX / sizeof (arelent *))
8615 {
8616 bfd_set_error (bfd_error_file_too_big);
8617 return -1;
8618 }
8619 }
8620 if (count > 1 && !bfd_write_p (abfd))
8621 {
8622 /* Sanity check reloc section sizes. */
8623 ufile_ptr filesize = bfd_get_file_size (abfd);
8624 if (filesize != 0 && ext_rel_size > filesize)
8625 {
8626 bfd_set_error (bfd_error_file_truncated);
8627 return -1;
8628 }
8629 }
8630 return count * sizeof (arelent *);
8631 }
8632
8633 /* Canonicalize the dynamic relocation entries. Note that we return the
8634 dynamic relocations as a single block, although they are actually
8635 associated with particular sections; the interface, which was
8636 designed for SunOS style shared libraries, expects that there is only
8637 one set of dynamic relocs. Any loadable section that was actually
8638 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8639 dynamic symbol table, is considered to be a dynamic reloc section. */
8640
8641 long
8642 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8643 arelent **storage,
8644 asymbol **syms)
8645 {
8646 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8647 asection *s;
8648 long ret;
8649
8650 if (elf_dynsymtab (abfd) == 0)
8651 {
8652 bfd_set_error (bfd_error_invalid_operation);
8653 return -1;
8654 }
8655
8656 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8657 ret = 0;
8658 for (s = abfd->sections; s != NULL; s = s->next)
8659 {
8660 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8661 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8662 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8663 {
8664 arelent *p;
8665 long count, i;
8666
8667 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8668 return -1;
8669 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8670 p = s->relocation;
8671 for (i = 0; i < count; i++)
8672 *storage++ = p++;
8673 ret += count;
8674 }
8675 }
8676
8677 *storage = NULL;
8678
8679 return ret;
8680 }
8681 \f
8682 /* Read in the version information. */
8683
8684 bfd_boolean
8685 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8686 {
8687 bfd_byte *contents = NULL;
8688 unsigned int freeidx = 0;
8689 size_t amt;
8690
8691 if (elf_dynverref (abfd) != 0)
8692 {
8693 Elf_Internal_Shdr *hdr;
8694 Elf_External_Verneed *everneed;
8695 Elf_Internal_Verneed *iverneed;
8696 unsigned int i;
8697 bfd_byte *contents_end;
8698
8699 hdr = &elf_tdata (abfd)->dynverref_hdr;
8700
8701 if (hdr->sh_info == 0
8702 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8703 {
8704 error_return_bad_verref:
8705 _bfd_error_handler
8706 (_("%pB: .gnu.version_r invalid entry"), abfd);
8707 bfd_set_error (bfd_error_bad_value);
8708 error_return_verref:
8709 elf_tdata (abfd)->verref = NULL;
8710 elf_tdata (abfd)->cverrefs = 0;
8711 goto error_return;
8712 }
8713
8714 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8715 goto error_return_verref;
8716 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8717 if (contents == NULL)
8718 goto error_return_verref;
8719
8720 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8721 {
8722 bfd_set_error (bfd_error_file_too_big);
8723 goto error_return_verref;
8724 }
8725 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8726 if (elf_tdata (abfd)->verref == NULL)
8727 goto error_return_verref;
8728
8729 BFD_ASSERT (sizeof (Elf_External_Verneed)
8730 == sizeof (Elf_External_Vernaux));
8731 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8732 everneed = (Elf_External_Verneed *) contents;
8733 iverneed = elf_tdata (abfd)->verref;
8734 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8735 {
8736 Elf_External_Vernaux *evernaux;
8737 Elf_Internal_Vernaux *ivernaux;
8738 unsigned int j;
8739
8740 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8741
8742 iverneed->vn_bfd = abfd;
8743
8744 iverneed->vn_filename =
8745 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8746 iverneed->vn_file);
8747 if (iverneed->vn_filename == NULL)
8748 goto error_return_bad_verref;
8749
8750 if (iverneed->vn_cnt == 0)
8751 iverneed->vn_auxptr = NULL;
8752 else
8753 {
8754 if (_bfd_mul_overflow (iverneed->vn_cnt,
8755 sizeof (Elf_Internal_Vernaux), &amt))
8756 {
8757 bfd_set_error (bfd_error_file_too_big);
8758 goto error_return_verref;
8759 }
8760 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8761 bfd_alloc (abfd, amt);
8762 if (iverneed->vn_auxptr == NULL)
8763 goto error_return_verref;
8764 }
8765
8766 if (iverneed->vn_aux
8767 > (size_t) (contents_end - (bfd_byte *) everneed))
8768 goto error_return_bad_verref;
8769
8770 evernaux = ((Elf_External_Vernaux *)
8771 ((bfd_byte *) everneed + iverneed->vn_aux));
8772 ivernaux = iverneed->vn_auxptr;
8773 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8774 {
8775 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8776
8777 ivernaux->vna_nodename =
8778 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8779 ivernaux->vna_name);
8780 if (ivernaux->vna_nodename == NULL)
8781 goto error_return_bad_verref;
8782
8783 if (ivernaux->vna_other > freeidx)
8784 freeidx = ivernaux->vna_other;
8785
8786 ivernaux->vna_nextptr = NULL;
8787 if (ivernaux->vna_next == 0)
8788 {
8789 iverneed->vn_cnt = j + 1;
8790 break;
8791 }
8792 if (j + 1 < iverneed->vn_cnt)
8793 ivernaux->vna_nextptr = ivernaux + 1;
8794
8795 if (ivernaux->vna_next
8796 > (size_t) (contents_end - (bfd_byte *) evernaux))
8797 goto error_return_bad_verref;
8798
8799 evernaux = ((Elf_External_Vernaux *)
8800 ((bfd_byte *) evernaux + ivernaux->vna_next));
8801 }
8802
8803 iverneed->vn_nextref = NULL;
8804 if (iverneed->vn_next == 0)
8805 break;
8806 if (i + 1 < hdr->sh_info)
8807 iverneed->vn_nextref = iverneed + 1;
8808
8809 if (iverneed->vn_next
8810 > (size_t) (contents_end - (bfd_byte *) everneed))
8811 goto error_return_bad_verref;
8812
8813 everneed = ((Elf_External_Verneed *)
8814 ((bfd_byte *) everneed + iverneed->vn_next));
8815 }
8816 elf_tdata (abfd)->cverrefs = i;
8817
8818 free (contents);
8819 contents = NULL;
8820 }
8821
8822 if (elf_dynverdef (abfd) != 0)
8823 {
8824 Elf_Internal_Shdr *hdr;
8825 Elf_External_Verdef *everdef;
8826 Elf_Internal_Verdef *iverdef;
8827 Elf_Internal_Verdef *iverdefarr;
8828 Elf_Internal_Verdef iverdefmem;
8829 unsigned int i;
8830 unsigned int maxidx;
8831 bfd_byte *contents_end_def, *contents_end_aux;
8832
8833 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8834
8835 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8836 {
8837 error_return_bad_verdef:
8838 _bfd_error_handler
8839 (_("%pB: .gnu.version_d invalid entry"), abfd);
8840 bfd_set_error (bfd_error_bad_value);
8841 error_return_verdef:
8842 elf_tdata (abfd)->verdef = NULL;
8843 elf_tdata (abfd)->cverdefs = 0;
8844 goto error_return;
8845 }
8846
8847 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8848 goto error_return_verdef;
8849 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8850 if (contents == NULL)
8851 goto error_return_verdef;
8852
8853 BFD_ASSERT (sizeof (Elf_External_Verdef)
8854 >= sizeof (Elf_External_Verdaux));
8855 contents_end_def = contents + hdr->sh_size
8856 - sizeof (Elf_External_Verdef);
8857 contents_end_aux = contents + hdr->sh_size
8858 - sizeof (Elf_External_Verdaux);
8859
8860 /* We know the number of entries in the section but not the maximum
8861 index. Therefore we have to run through all entries and find
8862 the maximum. */
8863 everdef = (Elf_External_Verdef *) contents;
8864 maxidx = 0;
8865 for (i = 0; i < hdr->sh_info; ++i)
8866 {
8867 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8868
8869 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8870 goto error_return_bad_verdef;
8871 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8872 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8873
8874 if (iverdefmem.vd_next == 0)
8875 break;
8876
8877 if (iverdefmem.vd_next
8878 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8879 goto error_return_bad_verdef;
8880
8881 everdef = ((Elf_External_Verdef *)
8882 ((bfd_byte *) everdef + iverdefmem.vd_next));
8883 }
8884
8885 if (default_imported_symver)
8886 {
8887 if (freeidx > maxidx)
8888 maxidx = ++freeidx;
8889 else
8890 freeidx = ++maxidx;
8891 }
8892 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8893 {
8894 bfd_set_error (bfd_error_file_too_big);
8895 goto error_return_verdef;
8896 }
8897 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8898 if (elf_tdata (abfd)->verdef == NULL)
8899 goto error_return_verdef;
8900
8901 elf_tdata (abfd)->cverdefs = maxidx;
8902
8903 everdef = (Elf_External_Verdef *) contents;
8904 iverdefarr = elf_tdata (abfd)->verdef;
8905 for (i = 0; i < hdr->sh_info; i++)
8906 {
8907 Elf_External_Verdaux *everdaux;
8908 Elf_Internal_Verdaux *iverdaux;
8909 unsigned int j;
8910
8911 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8912
8913 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8914 goto error_return_bad_verdef;
8915
8916 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8917 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8918
8919 iverdef->vd_bfd = abfd;
8920
8921 if (iverdef->vd_cnt == 0)
8922 iverdef->vd_auxptr = NULL;
8923 else
8924 {
8925 if (_bfd_mul_overflow (iverdef->vd_cnt,
8926 sizeof (Elf_Internal_Verdaux), &amt))
8927 {
8928 bfd_set_error (bfd_error_file_too_big);
8929 goto error_return_verdef;
8930 }
8931 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8932 bfd_alloc (abfd, amt);
8933 if (iverdef->vd_auxptr == NULL)
8934 goto error_return_verdef;
8935 }
8936
8937 if (iverdef->vd_aux
8938 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8939 goto error_return_bad_verdef;
8940
8941 everdaux = ((Elf_External_Verdaux *)
8942 ((bfd_byte *) everdef + iverdef->vd_aux));
8943 iverdaux = iverdef->vd_auxptr;
8944 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8945 {
8946 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8947
8948 iverdaux->vda_nodename =
8949 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8950 iverdaux->vda_name);
8951 if (iverdaux->vda_nodename == NULL)
8952 goto error_return_bad_verdef;
8953
8954 iverdaux->vda_nextptr = NULL;
8955 if (iverdaux->vda_next == 0)
8956 {
8957 iverdef->vd_cnt = j + 1;
8958 break;
8959 }
8960 if (j + 1 < iverdef->vd_cnt)
8961 iverdaux->vda_nextptr = iverdaux + 1;
8962
8963 if (iverdaux->vda_next
8964 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8965 goto error_return_bad_verdef;
8966
8967 everdaux = ((Elf_External_Verdaux *)
8968 ((bfd_byte *) everdaux + iverdaux->vda_next));
8969 }
8970
8971 iverdef->vd_nodename = NULL;
8972 if (iverdef->vd_cnt)
8973 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8974
8975 iverdef->vd_nextdef = NULL;
8976 if (iverdef->vd_next == 0)
8977 break;
8978 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8979 iverdef->vd_nextdef = iverdef + 1;
8980
8981 everdef = ((Elf_External_Verdef *)
8982 ((bfd_byte *) everdef + iverdef->vd_next));
8983 }
8984
8985 free (contents);
8986 contents = NULL;
8987 }
8988 else if (default_imported_symver)
8989 {
8990 if (freeidx < 3)
8991 freeidx = 3;
8992 else
8993 freeidx++;
8994
8995 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8996 {
8997 bfd_set_error (bfd_error_file_too_big);
8998 goto error_return;
8999 }
9000 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9001 if (elf_tdata (abfd)->verdef == NULL)
9002 goto error_return;
9003
9004 elf_tdata (abfd)->cverdefs = freeidx;
9005 }
9006
9007 /* Create a default version based on the soname. */
9008 if (default_imported_symver)
9009 {
9010 Elf_Internal_Verdef *iverdef;
9011 Elf_Internal_Verdaux *iverdaux;
9012
9013 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9014
9015 iverdef->vd_version = VER_DEF_CURRENT;
9016 iverdef->vd_flags = 0;
9017 iverdef->vd_ndx = freeidx;
9018 iverdef->vd_cnt = 1;
9019
9020 iverdef->vd_bfd = abfd;
9021
9022 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9023 if (iverdef->vd_nodename == NULL)
9024 goto error_return_verdef;
9025 iverdef->vd_nextdef = NULL;
9026 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9027 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9028 if (iverdef->vd_auxptr == NULL)
9029 goto error_return_verdef;
9030
9031 iverdaux = iverdef->vd_auxptr;
9032 iverdaux->vda_nodename = iverdef->vd_nodename;
9033 }
9034
9035 return TRUE;
9036
9037 error_return:
9038 free (contents);
9039 return FALSE;
9040 }
9041 \f
9042 asymbol *
9043 _bfd_elf_make_empty_symbol (bfd *abfd)
9044 {
9045 elf_symbol_type *newsym;
9046
9047 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9048 if (!newsym)
9049 return NULL;
9050 newsym->symbol.the_bfd = abfd;
9051 return &newsym->symbol;
9052 }
9053
9054 void
9055 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9056 asymbol *symbol,
9057 symbol_info *ret)
9058 {
9059 bfd_symbol_info (symbol, ret);
9060 }
9061
9062 /* Return whether a symbol name implies a local symbol. Most targets
9063 use this function for the is_local_label_name entry point, but some
9064 override it. */
9065
9066 bfd_boolean
9067 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9068 const char *name)
9069 {
9070 /* Normal local symbols start with ``.L''. */
9071 if (name[0] == '.' && name[1] == 'L')
9072 return TRUE;
9073
9074 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9075 DWARF debugging symbols starting with ``..''. */
9076 if (name[0] == '.' && name[1] == '.')
9077 return TRUE;
9078
9079 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9080 emitting DWARF debugging output. I suspect this is actually a
9081 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9082 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9083 underscore to be emitted on some ELF targets). For ease of use,
9084 we treat such symbols as local. */
9085 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9086 return TRUE;
9087
9088 /* Treat assembler generated fake symbols, dollar local labels and
9089 forward-backward labels (aka local labels) as locals.
9090 These labels have the form:
9091
9092 L0^A.* (fake symbols)
9093
9094 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9095
9096 Versions which start with .L will have already been matched above,
9097 so we only need to match the rest. */
9098 if (name[0] == 'L' && ISDIGIT (name[1]))
9099 {
9100 bfd_boolean ret = FALSE;
9101 const char * p;
9102 char c;
9103
9104 for (p = name + 2; (c = *p); p++)
9105 {
9106 if (c == 1 || c == 2)
9107 {
9108 if (c == 1 && p == name + 2)
9109 /* A fake symbol. */
9110 return TRUE;
9111
9112 /* FIXME: We are being paranoid here and treating symbols like
9113 L0^Bfoo as if there were non-local, on the grounds that the
9114 assembler will never generate them. But can any symbol
9115 containing an ASCII value in the range 1-31 ever be anything
9116 other than some kind of local ? */
9117 ret = TRUE;
9118 }
9119
9120 if (! ISDIGIT (c))
9121 {
9122 ret = FALSE;
9123 break;
9124 }
9125 }
9126 return ret;
9127 }
9128
9129 return FALSE;
9130 }
9131
9132 alent *
9133 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9134 asymbol *symbol ATTRIBUTE_UNUSED)
9135 {
9136 abort ();
9137 return NULL;
9138 }
9139
9140 bfd_boolean
9141 _bfd_elf_set_arch_mach (bfd *abfd,
9142 enum bfd_architecture arch,
9143 unsigned long machine)
9144 {
9145 /* If this isn't the right architecture for this backend, and this
9146 isn't the generic backend, fail. */
9147 if (arch != get_elf_backend_data (abfd)->arch
9148 && arch != bfd_arch_unknown
9149 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9150 return FALSE;
9151
9152 return bfd_default_set_arch_mach (abfd, arch, machine);
9153 }
9154
9155 /* Find the nearest line to a particular section and offset,
9156 for error reporting. */
9157
9158 bfd_boolean
9159 _bfd_elf_find_nearest_line (bfd *abfd,
9160 asymbol **symbols,
9161 asection *section,
9162 bfd_vma offset,
9163 const char **filename_ptr,
9164 const char **functionname_ptr,
9165 unsigned int *line_ptr,
9166 unsigned int *discriminator_ptr)
9167 {
9168 bfd_boolean found;
9169
9170 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9171 filename_ptr, functionname_ptr,
9172 line_ptr, discriminator_ptr,
9173 dwarf_debug_sections,
9174 &elf_tdata (abfd)->dwarf2_find_line_info))
9175 return TRUE;
9176
9177 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9178 filename_ptr, functionname_ptr, line_ptr))
9179 {
9180 if (!*functionname_ptr)
9181 _bfd_elf_find_function (abfd, symbols, section, offset,
9182 *filename_ptr ? NULL : filename_ptr,
9183 functionname_ptr);
9184 return TRUE;
9185 }
9186
9187 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9188 &found, filename_ptr,
9189 functionname_ptr, line_ptr,
9190 &elf_tdata (abfd)->line_info))
9191 return FALSE;
9192 if (found && (*functionname_ptr || *line_ptr))
9193 return TRUE;
9194
9195 if (symbols == NULL)
9196 return FALSE;
9197
9198 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9199 filename_ptr, functionname_ptr))
9200 return FALSE;
9201
9202 *line_ptr = 0;
9203 return TRUE;
9204 }
9205
9206 /* Find the line for a symbol. */
9207
9208 bfd_boolean
9209 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9210 const char **filename_ptr, unsigned int *line_ptr)
9211 {
9212 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9213 filename_ptr, NULL, line_ptr, NULL,
9214 dwarf_debug_sections,
9215 &elf_tdata (abfd)->dwarf2_find_line_info);
9216 }
9217
9218 /* After a call to bfd_find_nearest_line, successive calls to
9219 bfd_find_inliner_info can be used to get source information about
9220 each level of function inlining that terminated at the address
9221 passed to bfd_find_nearest_line. Currently this is only supported
9222 for DWARF2 with appropriate DWARF3 extensions. */
9223
9224 bfd_boolean
9225 _bfd_elf_find_inliner_info (bfd *abfd,
9226 const char **filename_ptr,
9227 const char **functionname_ptr,
9228 unsigned int *line_ptr)
9229 {
9230 bfd_boolean found;
9231 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9232 functionname_ptr, line_ptr,
9233 & elf_tdata (abfd)->dwarf2_find_line_info);
9234 return found;
9235 }
9236
9237 int
9238 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9239 {
9240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9241 int ret = bed->s->sizeof_ehdr;
9242
9243 if (!bfd_link_relocatable (info))
9244 {
9245 bfd_size_type phdr_size = elf_program_header_size (abfd);
9246
9247 if (phdr_size == (bfd_size_type) -1)
9248 {
9249 struct elf_segment_map *m;
9250
9251 phdr_size = 0;
9252 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9253 phdr_size += bed->s->sizeof_phdr;
9254
9255 if (phdr_size == 0)
9256 phdr_size = get_program_header_size (abfd, info);
9257 }
9258
9259 elf_program_header_size (abfd) = phdr_size;
9260 ret += phdr_size;
9261 }
9262
9263 return ret;
9264 }
9265
9266 bfd_boolean
9267 _bfd_elf_set_section_contents (bfd *abfd,
9268 sec_ptr section,
9269 const void *location,
9270 file_ptr offset,
9271 bfd_size_type count)
9272 {
9273 Elf_Internal_Shdr *hdr;
9274 file_ptr pos;
9275
9276 if (! abfd->output_has_begun
9277 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9278 return FALSE;
9279
9280 if (!count)
9281 return TRUE;
9282
9283 hdr = &elf_section_data (section)->this_hdr;
9284 if (hdr->sh_offset == (file_ptr) -1)
9285 {
9286 unsigned char *contents;
9287
9288 if (bfd_section_is_ctf (section))
9289 /* Nothing to do with this section: the contents are generated
9290 later. */
9291 return TRUE;
9292
9293 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9294 {
9295 _bfd_error_handler
9296 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9297 abfd, section);
9298 bfd_set_error (bfd_error_invalid_operation);
9299 return FALSE;
9300 }
9301
9302 if ((offset + count) > hdr->sh_size)
9303 {
9304 _bfd_error_handler
9305 (_("%pB:%pA: error: attempting to write over the end of the section"),
9306 abfd, section);
9307
9308 bfd_set_error (bfd_error_invalid_operation);
9309 return FALSE;
9310 }
9311
9312 contents = hdr->contents;
9313 if (contents == NULL)
9314 {
9315 _bfd_error_handler
9316 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9317 abfd, section);
9318
9319 bfd_set_error (bfd_error_invalid_operation);
9320 return FALSE;
9321 }
9322
9323 memcpy (contents + offset, location, count);
9324 return TRUE;
9325 }
9326
9327 pos = hdr->sh_offset + offset;
9328 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9329 || bfd_bwrite (location, count, abfd) != count)
9330 return FALSE;
9331
9332 return TRUE;
9333 }
9334
9335 bfd_boolean
9336 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9337 arelent *cache_ptr ATTRIBUTE_UNUSED,
9338 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9339 {
9340 abort ();
9341 return FALSE;
9342 }
9343
9344 /* Try to convert a non-ELF reloc into an ELF one. */
9345
9346 bfd_boolean
9347 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9348 {
9349 /* Check whether we really have an ELF howto. */
9350
9351 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9352 {
9353 bfd_reloc_code_real_type code;
9354 reloc_howto_type *howto;
9355
9356 /* Alien reloc: Try to determine its type to replace it with an
9357 equivalent ELF reloc. */
9358
9359 if (areloc->howto->pc_relative)
9360 {
9361 switch (areloc->howto->bitsize)
9362 {
9363 case 8:
9364 code = BFD_RELOC_8_PCREL;
9365 break;
9366 case 12:
9367 code = BFD_RELOC_12_PCREL;
9368 break;
9369 case 16:
9370 code = BFD_RELOC_16_PCREL;
9371 break;
9372 case 24:
9373 code = BFD_RELOC_24_PCREL;
9374 break;
9375 case 32:
9376 code = BFD_RELOC_32_PCREL;
9377 break;
9378 case 64:
9379 code = BFD_RELOC_64_PCREL;
9380 break;
9381 default:
9382 goto fail;
9383 }
9384
9385 howto = bfd_reloc_type_lookup (abfd, code);
9386
9387 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9388 {
9389 if (howto->pcrel_offset)
9390 areloc->addend += areloc->address;
9391 else
9392 areloc->addend -= areloc->address; /* addend is unsigned!! */
9393 }
9394 }
9395 else
9396 {
9397 switch (areloc->howto->bitsize)
9398 {
9399 case 8:
9400 code = BFD_RELOC_8;
9401 break;
9402 case 14:
9403 code = BFD_RELOC_14;
9404 break;
9405 case 16:
9406 code = BFD_RELOC_16;
9407 break;
9408 case 26:
9409 code = BFD_RELOC_26;
9410 break;
9411 case 32:
9412 code = BFD_RELOC_32;
9413 break;
9414 case 64:
9415 code = BFD_RELOC_64;
9416 break;
9417 default:
9418 goto fail;
9419 }
9420
9421 howto = bfd_reloc_type_lookup (abfd, code);
9422 }
9423
9424 if (howto)
9425 areloc->howto = howto;
9426 else
9427 goto fail;
9428 }
9429
9430 return TRUE;
9431
9432 fail:
9433 /* xgettext:c-format */
9434 _bfd_error_handler (_("%pB: %s unsupported"),
9435 abfd, areloc->howto->name);
9436 bfd_set_error (bfd_error_sorry);
9437 return FALSE;
9438 }
9439
9440 bfd_boolean
9441 _bfd_elf_close_and_cleanup (bfd *abfd)
9442 {
9443 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9444 if (tdata != NULL
9445 && (bfd_get_format (abfd) == bfd_object
9446 || bfd_get_format (abfd) == bfd_core))
9447 {
9448 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9449 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9450 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9451 }
9452
9453 return _bfd_generic_close_and_cleanup (abfd);
9454 }
9455
9456 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9457 in the relocation's offset. Thus we cannot allow any sort of sanity
9458 range-checking to interfere. There is nothing else to do in processing
9459 this reloc. */
9460
9461 bfd_reloc_status_type
9462 _bfd_elf_rel_vtable_reloc_fn
9463 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9464 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9465 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9466 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9467 {
9468 return bfd_reloc_ok;
9469 }
9470 \f
9471 /* Elf core file support. Much of this only works on native
9472 toolchains, since we rely on knowing the
9473 machine-dependent procfs structure in order to pick
9474 out details about the corefile. */
9475
9476 #ifdef HAVE_SYS_PROCFS_H
9477 # include <sys/procfs.h>
9478 #endif
9479
9480 /* Return a PID that identifies a "thread" for threaded cores, or the
9481 PID of the main process for non-threaded cores. */
9482
9483 static int
9484 elfcore_make_pid (bfd *abfd)
9485 {
9486 int pid;
9487
9488 pid = elf_tdata (abfd)->core->lwpid;
9489 if (pid == 0)
9490 pid = elf_tdata (abfd)->core->pid;
9491
9492 return pid;
9493 }
9494
9495 /* If there isn't a section called NAME, make one, using
9496 data from SECT. Note, this function will generate a
9497 reference to NAME, so you shouldn't deallocate or
9498 overwrite it. */
9499
9500 static bfd_boolean
9501 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9502 {
9503 asection *sect2;
9504
9505 if (bfd_get_section_by_name (abfd, name) != NULL)
9506 return TRUE;
9507
9508 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9509 if (sect2 == NULL)
9510 return FALSE;
9511
9512 sect2->size = sect->size;
9513 sect2->filepos = sect->filepos;
9514 sect2->alignment_power = sect->alignment_power;
9515 return TRUE;
9516 }
9517
9518 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9519 actually creates up to two pseudosections:
9520 - For the single-threaded case, a section named NAME, unless
9521 such a section already exists.
9522 - For the multi-threaded case, a section named "NAME/PID", where
9523 PID is elfcore_make_pid (abfd).
9524 Both pseudosections have identical contents. */
9525 bfd_boolean
9526 _bfd_elfcore_make_pseudosection (bfd *abfd,
9527 char *name,
9528 size_t size,
9529 ufile_ptr filepos)
9530 {
9531 char buf[100];
9532 char *threaded_name;
9533 size_t len;
9534 asection *sect;
9535
9536 /* Build the section name. */
9537
9538 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9539 len = strlen (buf) + 1;
9540 threaded_name = (char *) bfd_alloc (abfd, len);
9541 if (threaded_name == NULL)
9542 return FALSE;
9543 memcpy (threaded_name, buf, len);
9544
9545 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9546 SEC_HAS_CONTENTS);
9547 if (sect == NULL)
9548 return FALSE;
9549 sect->size = size;
9550 sect->filepos = filepos;
9551 sect->alignment_power = 2;
9552
9553 return elfcore_maybe_make_sect (abfd, name, sect);
9554 }
9555
9556 static bfd_boolean
9557 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9558 size_t offs)
9559 {
9560 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9561 SEC_HAS_CONTENTS);
9562
9563 if (sect == NULL)
9564 return FALSE;
9565
9566 sect->size = note->descsz - offs;
9567 sect->filepos = note->descpos + offs;
9568 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9569
9570 return TRUE;
9571 }
9572
9573 /* prstatus_t exists on:
9574 solaris 2.5+
9575 linux 2.[01] + glibc
9576 unixware 4.2
9577 */
9578
9579 #if defined (HAVE_PRSTATUS_T)
9580
9581 static bfd_boolean
9582 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9583 {
9584 size_t size;
9585 int offset;
9586
9587 if (note->descsz == sizeof (prstatus_t))
9588 {
9589 prstatus_t prstat;
9590
9591 size = sizeof (prstat.pr_reg);
9592 offset = offsetof (prstatus_t, pr_reg);
9593 memcpy (&prstat, note->descdata, sizeof (prstat));
9594
9595 /* Do not overwrite the core signal if it
9596 has already been set by another thread. */
9597 if (elf_tdata (abfd)->core->signal == 0)
9598 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9599 if (elf_tdata (abfd)->core->pid == 0)
9600 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9601
9602 /* pr_who exists on:
9603 solaris 2.5+
9604 unixware 4.2
9605 pr_who doesn't exist on:
9606 linux 2.[01]
9607 */
9608 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9609 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9610 #else
9611 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9612 #endif
9613 }
9614 #if defined (HAVE_PRSTATUS32_T)
9615 else if (note->descsz == sizeof (prstatus32_t))
9616 {
9617 /* 64-bit host, 32-bit corefile */
9618 prstatus32_t prstat;
9619
9620 size = sizeof (prstat.pr_reg);
9621 offset = offsetof (prstatus32_t, pr_reg);
9622 memcpy (&prstat, note->descdata, sizeof (prstat));
9623
9624 /* Do not overwrite the core signal if it
9625 has already been set by another thread. */
9626 if (elf_tdata (abfd)->core->signal == 0)
9627 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9628 if (elf_tdata (abfd)->core->pid == 0)
9629 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9630
9631 /* pr_who exists on:
9632 solaris 2.5+
9633 unixware 4.2
9634 pr_who doesn't exist on:
9635 linux 2.[01]
9636 */
9637 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9638 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9639 #else
9640 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9641 #endif
9642 }
9643 #endif /* HAVE_PRSTATUS32_T */
9644 else
9645 {
9646 /* Fail - we don't know how to handle any other
9647 note size (ie. data object type). */
9648 return TRUE;
9649 }
9650
9651 /* Make a ".reg/999" section and a ".reg" section. */
9652 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9653 size, note->descpos + offset);
9654 }
9655 #endif /* defined (HAVE_PRSTATUS_T) */
9656
9657 /* Create a pseudosection containing the exact contents of NOTE. */
9658 static bfd_boolean
9659 elfcore_make_note_pseudosection (bfd *abfd,
9660 char *name,
9661 Elf_Internal_Note *note)
9662 {
9663 return _bfd_elfcore_make_pseudosection (abfd, name,
9664 note->descsz, note->descpos);
9665 }
9666
9667 /* There isn't a consistent prfpregset_t across platforms,
9668 but it doesn't matter, because we don't have to pick this
9669 data structure apart. */
9670
9671 static bfd_boolean
9672 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9673 {
9674 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9675 }
9676
9677 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9678 type of NT_PRXFPREG. Just include the whole note's contents
9679 literally. */
9680
9681 static bfd_boolean
9682 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9683 {
9684 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9685 }
9686
9687 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9688 with a note type of NT_X86_XSTATE. Just include the whole note's
9689 contents literally. */
9690
9691 static bfd_boolean
9692 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9693 {
9694 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9695 }
9696
9697 static bfd_boolean
9698 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9699 {
9700 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9701 }
9702
9703 static bfd_boolean
9704 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9705 {
9706 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9707 }
9708
9709 static bfd_boolean
9710 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9711 {
9712 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9713 }
9714
9715 static bfd_boolean
9716 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9717 {
9718 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9719 }
9720
9721 static bfd_boolean
9722 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9723 {
9724 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9725 }
9726
9727 static bfd_boolean
9728 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9729 {
9730 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9731 }
9732
9733 static bfd_boolean
9734 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9735 {
9736 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9737 }
9738
9739 static bfd_boolean
9740 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9741 {
9742 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9743 }
9744
9745 static bfd_boolean
9746 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9747 {
9748 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9749 }
9750
9751 static bfd_boolean
9752 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9753 {
9754 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9755 }
9756
9757 static bfd_boolean
9758 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9759 {
9760 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9761 }
9762
9763 static bfd_boolean
9764 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9765 {
9766 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9767 }
9768
9769 static bfd_boolean
9770 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9771 {
9772 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9773 }
9774
9775 static bfd_boolean
9776 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9777 {
9778 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9779 }
9780
9781 static bfd_boolean
9782 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9783 {
9784 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9785 }
9786
9787 static bfd_boolean
9788 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9789 {
9790 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9791 }
9792
9793 static bfd_boolean
9794 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9795 {
9796 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9797 }
9798
9799 static bfd_boolean
9800 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9801 {
9802 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9803 }
9804
9805 static bfd_boolean
9806 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9807 {
9808 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9809 }
9810
9811 static bfd_boolean
9812 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9813 {
9814 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9815 }
9816
9817 static bfd_boolean
9818 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9819 {
9820 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9821 }
9822
9823 static bfd_boolean
9824 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9825 {
9826 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9827 }
9828
9829 static bfd_boolean
9830 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9831 {
9832 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9833 }
9834
9835 static bfd_boolean
9836 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9837 {
9838 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9839 }
9840
9841 static bfd_boolean
9842 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9843 {
9844 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9845 }
9846
9847 static bfd_boolean
9848 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9849 {
9850 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9851 }
9852
9853 static bfd_boolean
9854 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9855 {
9856 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9857 }
9858
9859 static bfd_boolean
9860 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9861 {
9862 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9863 }
9864
9865 static bfd_boolean
9866 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9867 {
9868 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9869 }
9870
9871 static bfd_boolean
9872 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9873 {
9874 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9875 }
9876
9877 static bfd_boolean
9878 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9879 {
9880 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9881 }
9882
9883 static bfd_boolean
9884 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9885 {
9886 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9887 }
9888
9889 static bfd_boolean
9890 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9891 {
9892 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9893 }
9894
9895 static bfd_boolean
9896 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9897 {
9898 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9899 }
9900
9901 static bfd_boolean
9902 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9903 {
9904 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9905 }
9906
9907 #if defined (HAVE_PRPSINFO_T)
9908 typedef prpsinfo_t elfcore_psinfo_t;
9909 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9910 typedef prpsinfo32_t elfcore_psinfo32_t;
9911 #endif
9912 #endif
9913
9914 #if defined (HAVE_PSINFO_T)
9915 typedef psinfo_t elfcore_psinfo_t;
9916 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9917 typedef psinfo32_t elfcore_psinfo32_t;
9918 #endif
9919 #endif
9920
9921 /* return a malloc'ed copy of a string at START which is at
9922 most MAX bytes long, possibly without a terminating '\0'.
9923 the copy will always have a terminating '\0'. */
9924
9925 char *
9926 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9927 {
9928 char *dups;
9929 char *end = (char *) memchr (start, '\0', max);
9930 size_t len;
9931
9932 if (end == NULL)
9933 len = max;
9934 else
9935 len = end - start;
9936
9937 dups = (char *) bfd_alloc (abfd, len + 1);
9938 if (dups == NULL)
9939 return NULL;
9940
9941 memcpy (dups, start, len);
9942 dups[len] = '\0';
9943
9944 return dups;
9945 }
9946
9947 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9948 static bfd_boolean
9949 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9950 {
9951 if (note->descsz == sizeof (elfcore_psinfo_t))
9952 {
9953 elfcore_psinfo_t psinfo;
9954
9955 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9956
9957 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9958 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9959 #endif
9960 elf_tdata (abfd)->core->program
9961 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9962 sizeof (psinfo.pr_fname));
9963
9964 elf_tdata (abfd)->core->command
9965 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9966 sizeof (psinfo.pr_psargs));
9967 }
9968 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9969 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9970 {
9971 /* 64-bit host, 32-bit corefile */
9972 elfcore_psinfo32_t psinfo;
9973
9974 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9975
9976 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9977 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9978 #endif
9979 elf_tdata (abfd)->core->program
9980 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9981 sizeof (psinfo.pr_fname));
9982
9983 elf_tdata (abfd)->core->command
9984 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9985 sizeof (psinfo.pr_psargs));
9986 }
9987 #endif
9988
9989 else
9990 {
9991 /* Fail - we don't know how to handle any other
9992 note size (ie. data object type). */
9993 return TRUE;
9994 }
9995
9996 /* Note that for some reason, a spurious space is tacked
9997 onto the end of the args in some (at least one anyway)
9998 implementations, so strip it off if it exists. */
9999
10000 {
10001 char *command = elf_tdata (abfd)->core->command;
10002 int n = strlen (command);
10003
10004 if (0 < n && command[n - 1] == ' ')
10005 command[n - 1] = '\0';
10006 }
10007
10008 return TRUE;
10009 }
10010 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10011
10012 #if defined (HAVE_PSTATUS_T)
10013 static bfd_boolean
10014 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10015 {
10016 if (note->descsz == sizeof (pstatus_t)
10017 #if defined (HAVE_PXSTATUS_T)
10018 || note->descsz == sizeof (pxstatus_t)
10019 #endif
10020 )
10021 {
10022 pstatus_t pstat;
10023
10024 memcpy (&pstat, note->descdata, sizeof (pstat));
10025
10026 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10027 }
10028 #if defined (HAVE_PSTATUS32_T)
10029 else if (note->descsz == sizeof (pstatus32_t))
10030 {
10031 /* 64-bit host, 32-bit corefile */
10032 pstatus32_t pstat;
10033
10034 memcpy (&pstat, note->descdata, sizeof (pstat));
10035
10036 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10037 }
10038 #endif
10039 /* Could grab some more details from the "representative"
10040 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10041 NT_LWPSTATUS note, presumably. */
10042
10043 return TRUE;
10044 }
10045 #endif /* defined (HAVE_PSTATUS_T) */
10046
10047 #if defined (HAVE_LWPSTATUS_T)
10048 static bfd_boolean
10049 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10050 {
10051 lwpstatus_t lwpstat;
10052 char buf[100];
10053 char *name;
10054 size_t len;
10055 asection *sect;
10056
10057 if (note->descsz != sizeof (lwpstat)
10058 #if defined (HAVE_LWPXSTATUS_T)
10059 && note->descsz != sizeof (lwpxstatus_t)
10060 #endif
10061 )
10062 return TRUE;
10063
10064 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10065
10066 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10067 /* Do not overwrite the core signal if it has already been set by
10068 another thread. */
10069 if (elf_tdata (abfd)->core->signal == 0)
10070 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10071
10072 /* Make a ".reg/999" section. */
10073
10074 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10075 len = strlen (buf) + 1;
10076 name = bfd_alloc (abfd, len);
10077 if (name == NULL)
10078 return FALSE;
10079 memcpy (name, buf, len);
10080
10081 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10082 if (sect == NULL)
10083 return FALSE;
10084
10085 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10086 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10087 sect->filepos = note->descpos
10088 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10089 #endif
10090
10091 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10092 sect->size = sizeof (lwpstat.pr_reg);
10093 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10094 #endif
10095
10096 sect->alignment_power = 2;
10097
10098 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10099 return FALSE;
10100
10101 /* Make a ".reg2/999" section */
10102
10103 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10104 len = strlen (buf) + 1;
10105 name = bfd_alloc (abfd, len);
10106 if (name == NULL)
10107 return FALSE;
10108 memcpy (name, buf, len);
10109
10110 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10111 if (sect == NULL)
10112 return FALSE;
10113
10114 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10115 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10116 sect->filepos = note->descpos
10117 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10118 #endif
10119
10120 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10121 sect->size = sizeof (lwpstat.pr_fpreg);
10122 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10123 #endif
10124
10125 sect->alignment_power = 2;
10126
10127 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10128 }
10129 #endif /* defined (HAVE_LWPSTATUS_T) */
10130
10131 /* These constants, and the structure offsets used below, are defined by
10132 Cygwin's core_dump.h */
10133 #define NOTE_INFO_PROCESS 1
10134 #define NOTE_INFO_THREAD 2
10135 #define NOTE_INFO_MODULE 3
10136 #define NOTE_INFO_MODULE64 4
10137
10138 static bfd_boolean
10139 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10140 {
10141 char buf[30];
10142 char *name;
10143 size_t len;
10144 unsigned int name_size;
10145 asection *sect;
10146 unsigned int type;
10147 int is_active_thread;
10148 bfd_vma base_addr;
10149
10150 if (note->descsz < 4)
10151 return TRUE;
10152
10153 if (! CONST_STRNEQ (note->namedata, "win32"))
10154 return TRUE;
10155
10156 type = bfd_get_32 (abfd, note->descdata);
10157
10158 struct {
10159 const char *type_name;
10160 unsigned long min_size;
10161 } size_check[] =
10162 {
10163 { "NOTE_INFO_PROCESS", 12 },
10164 { "NOTE_INFO_THREAD", 12 },
10165 { "NOTE_INFO_MODULE", 12 },
10166 { "NOTE_INFO_MODULE64", 16 },
10167 };
10168
10169 if (type > (sizeof(size_check)/sizeof(size_check[0])))
10170 return TRUE;
10171
10172 if (note->descsz < size_check[type - 1].min_size)
10173 {
10174 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10175 abfd, size_check[type - 1].type_name, note->descsz);
10176 return TRUE;
10177 }
10178
10179 switch (type)
10180 {
10181 case NOTE_INFO_PROCESS:
10182 /* FIXME: need to add ->core->command. */
10183 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10184 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10185 break;
10186
10187 case NOTE_INFO_THREAD:
10188 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10189 structure. */
10190 /* thread_info.tid */
10191 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10192
10193 len = strlen (buf) + 1;
10194 name = (char *) bfd_alloc (abfd, len);
10195 if (name == NULL)
10196 return FALSE;
10197
10198 memcpy (name, buf, len);
10199
10200 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10201 if (sect == NULL)
10202 return FALSE;
10203
10204 /* sizeof (thread_info.thread_context) */
10205 sect->size = note->descsz - 12;
10206 /* offsetof (thread_info.thread_context) */
10207 sect->filepos = note->descpos + 12;
10208 sect->alignment_power = 2;
10209
10210 /* thread_info.is_active_thread */
10211 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10212
10213 if (is_active_thread)
10214 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10215 return FALSE;
10216 break;
10217
10218 case NOTE_INFO_MODULE:
10219 case NOTE_INFO_MODULE64:
10220 /* Make a ".module/xxxxxxxx" section. */
10221 if (type == NOTE_INFO_MODULE)
10222 {
10223 /* module_info.base_address */
10224 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10225 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10226 /* module_info.module_name_size */
10227 name_size = bfd_get_32 (abfd, note->descdata + 8);
10228 }
10229 else /* NOTE_INFO_MODULE64 */
10230 {
10231 /* module_info.base_address */
10232 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10233 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10234 /* module_info.module_name_size */
10235 name_size = bfd_get_32 (abfd, note->descdata + 12);
10236 }
10237
10238 len = strlen (buf) + 1;
10239 name = (char *) bfd_alloc (abfd, len);
10240 if (name == NULL)
10241 return FALSE;
10242
10243 memcpy (name, buf, len);
10244
10245 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10246
10247 if (sect == NULL)
10248 return FALSE;
10249
10250 if (note->descsz < 12 + name_size)
10251 {
10252 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10253 abfd, note->descsz, name_size);
10254 return TRUE;
10255 }
10256
10257 sect->size = note->descsz;
10258 sect->filepos = note->descpos;
10259 sect->alignment_power = 2;
10260 break;
10261
10262 default:
10263 return TRUE;
10264 }
10265
10266 return TRUE;
10267 }
10268
10269 static bfd_boolean
10270 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10271 {
10272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10273
10274 switch (note->type)
10275 {
10276 default:
10277 return TRUE;
10278
10279 case NT_PRSTATUS:
10280 if (bed->elf_backend_grok_prstatus)
10281 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10282 return TRUE;
10283 #if defined (HAVE_PRSTATUS_T)
10284 return elfcore_grok_prstatus (abfd, note);
10285 #else
10286 return TRUE;
10287 #endif
10288
10289 #if defined (HAVE_PSTATUS_T)
10290 case NT_PSTATUS:
10291 return elfcore_grok_pstatus (abfd, note);
10292 #endif
10293
10294 #if defined (HAVE_LWPSTATUS_T)
10295 case NT_LWPSTATUS:
10296 return elfcore_grok_lwpstatus (abfd, note);
10297 #endif
10298
10299 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10300 return elfcore_grok_prfpreg (abfd, note);
10301
10302 case NT_WIN32PSTATUS:
10303 return elfcore_grok_win32pstatus (abfd, note);
10304
10305 case NT_PRXFPREG: /* Linux SSE extension */
10306 if (note->namesz == 6
10307 && strcmp (note->namedata, "LINUX") == 0)
10308 return elfcore_grok_prxfpreg (abfd, note);
10309 else
10310 return TRUE;
10311
10312 case NT_X86_XSTATE: /* Linux XSAVE extension */
10313 if (note->namesz == 6
10314 && strcmp (note->namedata, "LINUX") == 0)
10315 return elfcore_grok_xstatereg (abfd, note);
10316 else
10317 return TRUE;
10318
10319 case NT_PPC_VMX:
10320 if (note->namesz == 6
10321 && strcmp (note->namedata, "LINUX") == 0)
10322 return elfcore_grok_ppc_vmx (abfd, note);
10323 else
10324 return TRUE;
10325
10326 case NT_PPC_VSX:
10327 if (note->namesz == 6
10328 && strcmp (note->namedata, "LINUX") == 0)
10329 return elfcore_grok_ppc_vsx (abfd, note);
10330 else
10331 return TRUE;
10332
10333 case NT_PPC_TAR:
10334 if (note->namesz == 6
10335 && strcmp (note->namedata, "LINUX") == 0)
10336 return elfcore_grok_ppc_tar (abfd, note);
10337 else
10338 return TRUE;
10339
10340 case NT_PPC_PPR:
10341 if (note->namesz == 6
10342 && strcmp (note->namedata, "LINUX") == 0)
10343 return elfcore_grok_ppc_ppr (abfd, note);
10344 else
10345 return TRUE;
10346
10347 case NT_PPC_DSCR:
10348 if (note->namesz == 6
10349 && strcmp (note->namedata, "LINUX") == 0)
10350 return elfcore_grok_ppc_dscr (abfd, note);
10351 else
10352 return TRUE;
10353
10354 case NT_PPC_EBB:
10355 if (note->namesz == 6
10356 && strcmp (note->namedata, "LINUX") == 0)
10357 return elfcore_grok_ppc_ebb (abfd, note);
10358 else
10359 return TRUE;
10360
10361 case NT_PPC_PMU:
10362 if (note->namesz == 6
10363 && strcmp (note->namedata, "LINUX") == 0)
10364 return elfcore_grok_ppc_pmu (abfd, note);
10365 else
10366 return TRUE;
10367
10368 case NT_PPC_TM_CGPR:
10369 if (note->namesz == 6
10370 && strcmp (note->namedata, "LINUX") == 0)
10371 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10372 else
10373 return TRUE;
10374
10375 case NT_PPC_TM_CFPR:
10376 if (note->namesz == 6
10377 && strcmp (note->namedata, "LINUX") == 0)
10378 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10379 else
10380 return TRUE;
10381
10382 case NT_PPC_TM_CVMX:
10383 if (note->namesz == 6
10384 && strcmp (note->namedata, "LINUX") == 0)
10385 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10386 else
10387 return TRUE;
10388
10389 case NT_PPC_TM_CVSX:
10390 if (note->namesz == 6
10391 && strcmp (note->namedata, "LINUX") == 0)
10392 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10393 else
10394 return TRUE;
10395
10396 case NT_PPC_TM_SPR:
10397 if (note->namesz == 6
10398 && strcmp (note->namedata, "LINUX") == 0)
10399 return elfcore_grok_ppc_tm_spr (abfd, note);
10400 else
10401 return TRUE;
10402
10403 case NT_PPC_TM_CTAR:
10404 if (note->namesz == 6
10405 && strcmp (note->namedata, "LINUX") == 0)
10406 return elfcore_grok_ppc_tm_ctar (abfd, note);
10407 else
10408 return TRUE;
10409
10410 case NT_PPC_TM_CPPR:
10411 if (note->namesz == 6
10412 && strcmp (note->namedata, "LINUX") == 0)
10413 return elfcore_grok_ppc_tm_cppr (abfd, note);
10414 else
10415 return TRUE;
10416
10417 case NT_PPC_TM_CDSCR:
10418 if (note->namesz == 6
10419 && strcmp (note->namedata, "LINUX") == 0)
10420 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10421 else
10422 return TRUE;
10423
10424 case NT_S390_HIGH_GPRS:
10425 if (note->namesz == 6
10426 && strcmp (note->namedata, "LINUX") == 0)
10427 return elfcore_grok_s390_high_gprs (abfd, note);
10428 else
10429 return TRUE;
10430
10431 case NT_S390_TIMER:
10432 if (note->namesz == 6
10433 && strcmp (note->namedata, "LINUX") == 0)
10434 return elfcore_grok_s390_timer (abfd, note);
10435 else
10436 return TRUE;
10437
10438 case NT_S390_TODCMP:
10439 if (note->namesz == 6
10440 && strcmp (note->namedata, "LINUX") == 0)
10441 return elfcore_grok_s390_todcmp (abfd, note);
10442 else
10443 return TRUE;
10444
10445 case NT_S390_TODPREG:
10446 if (note->namesz == 6
10447 && strcmp (note->namedata, "LINUX") == 0)
10448 return elfcore_grok_s390_todpreg (abfd, note);
10449 else
10450 return TRUE;
10451
10452 case NT_S390_CTRS:
10453 if (note->namesz == 6
10454 && strcmp (note->namedata, "LINUX") == 0)
10455 return elfcore_grok_s390_ctrs (abfd, note);
10456 else
10457 return TRUE;
10458
10459 case NT_S390_PREFIX:
10460 if (note->namesz == 6
10461 && strcmp (note->namedata, "LINUX") == 0)
10462 return elfcore_grok_s390_prefix (abfd, note);
10463 else
10464 return TRUE;
10465
10466 case NT_S390_LAST_BREAK:
10467 if (note->namesz == 6
10468 && strcmp (note->namedata, "LINUX") == 0)
10469 return elfcore_grok_s390_last_break (abfd, note);
10470 else
10471 return TRUE;
10472
10473 case NT_S390_SYSTEM_CALL:
10474 if (note->namesz == 6
10475 && strcmp (note->namedata, "LINUX") == 0)
10476 return elfcore_grok_s390_system_call (abfd, note);
10477 else
10478 return TRUE;
10479
10480 case NT_S390_TDB:
10481 if (note->namesz == 6
10482 && strcmp (note->namedata, "LINUX") == 0)
10483 return elfcore_grok_s390_tdb (abfd, note);
10484 else
10485 return TRUE;
10486
10487 case NT_S390_VXRS_LOW:
10488 if (note->namesz == 6
10489 && strcmp (note->namedata, "LINUX") == 0)
10490 return elfcore_grok_s390_vxrs_low (abfd, note);
10491 else
10492 return TRUE;
10493
10494 case NT_S390_VXRS_HIGH:
10495 if (note->namesz == 6
10496 && strcmp (note->namedata, "LINUX") == 0)
10497 return elfcore_grok_s390_vxrs_high (abfd, note);
10498 else
10499 return TRUE;
10500
10501 case NT_S390_GS_CB:
10502 if (note->namesz == 6
10503 && strcmp (note->namedata, "LINUX") == 0)
10504 return elfcore_grok_s390_gs_cb (abfd, note);
10505 else
10506 return TRUE;
10507
10508 case NT_S390_GS_BC:
10509 if (note->namesz == 6
10510 && strcmp (note->namedata, "LINUX") == 0)
10511 return elfcore_grok_s390_gs_bc (abfd, note);
10512 else
10513 return TRUE;
10514
10515 case NT_ARC_V2:
10516 if (note->namesz == 6
10517 && strcmp (note->namedata, "LINUX") == 0)
10518 return elfcore_grok_arc_v2 (abfd, note);
10519 else
10520 return TRUE;
10521
10522 case NT_ARM_VFP:
10523 if (note->namesz == 6
10524 && strcmp (note->namedata, "LINUX") == 0)
10525 return elfcore_grok_arm_vfp (abfd, note);
10526 else
10527 return TRUE;
10528
10529 case NT_ARM_TLS:
10530 if (note->namesz == 6
10531 && strcmp (note->namedata, "LINUX") == 0)
10532 return elfcore_grok_aarch_tls (abfd, note);
10533 else
10534 return TRUE;
10535
10536 case NT_ARM_HW_BREAK:
10537 if (note->namesz == 6
10538 && strcmp (note->namedata, "LINUX") == 0)
10539 return elfcore_grok_aarch_hw_break (abfd, note);
10540 else
10541 return TRUE;
10542
10543 case NT_ARM_HW_WATCH:
10544 if (note->namesz == 6
10545 && strcmp (note->namedata, "LINUX") == 0)
10546 return elfcore_grok_aarch_hw_watch (abfd, note);
10547 else
10548 return TRUE;
10549
10550 case NT_ARM_SVE:
10551 if (note->namesz == 6
10552 && strcmp (note->namedata, "LINUX") == 0)
10553 return elfcore_grok_aarch_sve (abfd, note);
10554 else
10555 return TRUE;
10556
10557 case NT_ARM_PAC_MASK:
10558 if (note->namesz == 6
10559 && strcmp (note->namedata, "LINUX") == 0)
10560 return elfcore_grok_aarch_pauth (abfd, note);
10561 else
10562 return TRUE;
10563
10564 case NT_PRPSINFO:
10565 case NT_PSINFO:
10566 if (bed->elf_backend_grok_psinfo)
10567 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10568 return TRUE;
10569 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10570 return elfcore_grok_psinfo (abfd, note);
10571 #else
10572 return TRUE;
10573 #endif
10574
10575 case NT_AUXV:
10576 return elfcore_make_auxv_note_section (abfd, note, 0);
10577
10578 case NT_FILE:
10579 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10580 note);
10581
10582 case NT_SIGINFO:
10583 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10584 note);
10585
10586 }
10587 }
10588
10589 static bfd_boolean
10590 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10591 {
10592 struct bfd_build_id* build_id;
10593
10594 if (note->descsz == 0)
10595 return FALSE;
10596
10597 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10598 if (build_id == NULL)
10599 return FALSE;
10600
10601 build_id->size = note->descsz;
10602 memcpy (build_id->data, note->descdata, note->descsz);
10603 abfd->build_id = build_id;
10604
10605 return TRUE;
10606 }
10607
10608 static bfd_boolean
10609 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10610 {
10611 switch (note->type)
10612 {
10613 default:
10614 return TRUE;
10615
10616 case NT_GNU_PROPERTY_TYPE_0:
10617 return _bfd_elf_parse_gnu_properties (abfd, note);
10618
10619 case NT_GNU_BUILD_ID:
10620 return elfobj_grok_gnu_build_id (abfd, note);
10621 }
10622 }
10623
10624 static bfd_boolean
10625 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10626 {
10627 struct sdt_note *cur =
10628 (struct sdt_note *) bfd_alloc (abfd,
10629 sizeof (struct sdt_note) + note->descsz);
10630
10631 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10632 cur->size = (bfd_size_type) note->descsz;
10633 memcpy (cur->data, note->descdata, note->descsz);
10634
10635 elf_tdata (abfd)->sdt_note_head = cur;
10636
10637 return TRUE;
10638 }
10639
10640 static bfd_boolean
10641 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10642 {
10643 switch (note->type)
10644 {
10645 case NT_STAPSDT:
10646 return elfobj_grok_stapsdt_note_1 (abfd, note);
10647
10648 default:
10649 return TRUE;
10650 }
10651 }
10652
10653 static bfd_boolean
10654 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10655 {
10656 size_t offset;
10657
10658 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10659 {
10660 case ELFCLASS32:
10661 if (note->descsz < 108)
10662 return FALSE;
10663 break;
10664
10665 case ELFCLASS64:
10666 if (note->descsz < 120)
10667 return FALSE;
10668 break;
10669
10670 default:
10671 return FALSE;
10672 }
10673
10674 /* Check for version 1 in pr_version. */
10675 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10676 return FALSE;
10677
10678 offset = 4;
10679
10680 /* Skip over pr_psinfosz. */
10681 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10682 offset += 4;
10683 else
10684 {
10685 offset += 4; /* Padding before pr_psinfosz. */
10686 offset += 8;
10687 }
10688
10689 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10690 elf_tdata (abfd)->core->program
10691 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10692 offset += 17;
10693
10694 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10695 elf_tdata (abfd)->core->command
10696 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10697 offset += 81;
10698
10699 /* Padding before pr_pid. */
10700 offset += 2;
10701
10702 /* The pr_pid field was added in version "1a". */
10703 if (note->descsz < offset + 4)
10704 return TRUE;
10705
10706 elf_tdata (abfd)->core->pid
10707 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10708
10709 return TRUE;
10710 }
10711
10712 static bfd_boolean
10713 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10714 {
10715 size_t offset;
10716 size_t size;
10717 size_t min_size;
10718
10719 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10720 Also compute minimum size of this note. */
10721 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10722 {
10723 case ELFCLASS32:
10724 offset = 4 + 4;
10725 min_size = offset + (4 * 2) + 4 + 4 + 4;
10726 break;
10727
10728 case ELFCLASS64:
10729 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10730 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10731 break;
10732
10733 default:
10734 return FALSE;
10735 }
10736
10737 if (note->descsz < min_size)
10738 return FALSE;
10739
10740 /* Check for version 1 in pr_version. */
10741 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10742 return FALSE;
10743
10744 /* Extract size of pr_reg from pr_gregsetsz. */
10745 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10746 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10747 {
10748 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10749 offset += 4 * 2;
10750 }
10751 else
10752 {
10753 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10754 offset += 8 * 2;
10755 }
10756
10757 /* Skip over pr_osreldate. */
10758 offset += 4;
10759
10760 /* Read signal from pr_cursig. */
10761 if (elf_tdata (abfd)->core->signal == 0)
10762 elf_tdata (abfd)->core->signal
10763 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10764 offset += 4;
10765
10766 /* Read TID from pr_pid. */
10767 elf_tdata (abfd)->core->lwpid
10768 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10769 offset += 4;
10770
10771 /* Padding before pr_reg. */
10772 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10773 offset += 4;
10774
10775 /* Make sure that there is enough data remaining in the note. */
10776 if ((note->descsz - offset) < size)
10777 return FALSE;
10778
10779 /* Make a ".reg/999" section and a ".reg" section. */
10780 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10781 size, note->descpos + offset);
10782 }
10783
10784 static bfd_boolean
10785 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10786 {
10787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10788
10789 switch (note->type)
10790 {
10791 case NT_PRSTATUS:
10792 if (bed->elf_backend_grok_freebsd_prstatus)
10793 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10794 return TRUE;
10795 return elfcore_grok_freebsd_prstatus (abfd, note);
10796
10797 case NT_FPREGSET:
10798 return elfcore_grok_prfpreg (abfd, note);
10799
10800 case NT_PRPSINFO:
10801 return elfcore_grok_freebsd_psinfo (abfd, note);
10802
10803 case NT_FREEBSD_THRMISC:
10804 if (note->namesz == 8)
10805 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10806 else
10807 return TRUE;
10808
10809 case NT_FREEBSD_PROCSTAT_PROC:
10810 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10811 note);
10812
10813 case NT_FREEBSD_PROCSTAT_FILES:
10814 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10815 note);
10816
10817 case NT_FREEBSD_PROCSTAT_VMMAP:
10818 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10819 note);
10820
10821 case NT_FREEBSD_PROCSTAT_AUXV:
10822 return elfcore_make_auxv_note_section (abfd, note, 4);
10823
10824 case NT_X86_XSTATE:
10825 if (note->namesz == 8)
10826 return elfcore_grok_xstatereg (abfd, note);
10827 else
10828 return TRUE;
10829
10830 case NT_FREEBSD_PTLWPINFO:
10831 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10832 note);
10833
10834 case NT_ARM_VFP:
10835 return elfcore_grok_arm_vfp (abfd, note);
10836
10837 default:
10838 return TRUE;
10839 }
10840 }
10841
10842 static bfd_boolean
10843 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10844 {
10845 char *cp;
10846
10847 cp = strchr (note->namedata, '@');
10848 if (cp != NULL)
10849 {
10850 *lwpidp = atoi(cp + 1);
10851 return TRUE;
10852 }
10853 return FALSE;
10854 }
10855
10856 static bfd_boolean
10857 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10858 {
10859 if (note->descsz <= 0x7c + 31)
10860 return FALSE;
10861
10862 /* Signal number at offset 0x08. */
10863 elf_tdata (abfd)->core->signal
10864 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10865
10866 /* Process ID at offset 0x50. */
10867 elf_tdata (abfd)->core->pid
10868 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10869
10870 /* Command name at 0x7c (max 32 bytes, including nul). */
10871 elf_tdata (abfd)->core->command
10872 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10873
10874 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10875 note);
10876 }
10877
10878 static bfd_boolean
10879 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10880 {
10881 int lwp;
10882
10883 if (elfcore_netbsd_get_lwpid (note, &lwp))
10884 elf_tdata (abfd)->core->lwpid = lwp;
10885
10886 switch (note->type)
10887 {
10888 case NT_NETBSDCORE_PROCINFO:
10889 /* NetBSD-specific core "procinfo". Note that we expect to
10890 find this note before any of the others, which is fine,
10891 since the kernel writes this note out first when it
10892 creates a core file. */
10893 return elfcore_grok_netbsd_procinfo (abfd, note);
10894 #ifdef NT_NETBSDCORE_AUXV
10895 case NT_NETBSDCORE_AUXV:
10896 /* NetBSD-specific Elf Auxiliary Vector data. */
10897 return elfcore_make_auxv_note_section (abfd, note, 4);
10898 #endif
10899 #ifdef NT_NETBSDCORE_LWPSTATUS
10900 case NT_NETBSDCORE_LWPSTATUS:
10901 return elfcore_make_note_pseudosection (abfd,
10902 ".note.netbsdcore.lwpstatus",
10903 note);
10904 #endif
10905 default:
10906 break;
10907 }
10908
10909 /* As of March 2020 there are no other machine-independent notes
10910 defined for NetBSD core files. If the note type is less
10911 than the start of the machine-dependent note types, we don't
10912 understand it. */
10913
10914 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10915 return TRUE;
10916
10917
10918 switch (bfd_get_arch (abfd))
10919 {
10920 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10921 PT_GETFPREGS == mach+2. */
10922
10923 case bfd_arch_aarch64:
10924 case bfd_arch_alpha:
10925 case bfd_arch_sparc:
10926 switch (note->type)
10927 {
10928 case NT_NETBSDCORE_FIRSTMACH+0:
10929 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10930
10931 case NT_NETBSDCORE_FIRSTMACH+2:
10932 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10933
10934 default:
10935 return TRUE;
10936 }
10937
10938 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10939 There's also old PT___GETREGS40 == mach + 1 for old reg
10940 structure which lacks GBR. */
10941
10942 case bfd_arch_sh:
10943 switch (note->type)
10944 {
10945 case NT_NETBSDCORE_FIRSTMACH+3:
10946 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10947
10948 case NT_NETBSDCORE_FIRSTMACH+5:
10949 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10950
10951 default:
10952 return TRUE;
10953 }
10954
10955 /* On all other arch's, PT_GETREGS == mach+1 and
10956 PT_GETFPREGS == mach+3. */
10957
10958 default:
10959 switch (note->type)
10960 {
10961 case NT_NETBSDCORE_FIRSTMACH+1:
10962 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10963
10964 case NT_NETBSDCORE_FIRSTMACH+3:
10965 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10966
10967 default:
10968 return TRUE;
10969 }
10970 }
10971 /* NOTREACHED */
10972 }
10973
10974 static bfd_boolean
10975 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10976 {
10977 if (note->descsz <= 0x48 + 31)
10978 return FALSE;
10979
10980 /* Signal number at offset 0x08. */
10981 elf_tdata (abfd)->core->signal
10982 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10983
10984 /* Process ID at offset 0x20. */
10985 elf_tdata (abfd)->core->pid
10986 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10987
10988 /* Command name at 0x48 (max 32 bytes, including nul). */
10989 elf_tdata (abfd)->core->command
10990 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10991
10992 return TRUE;
10993 }
10994
10995 static bfd_boolean
10996 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10997 {
10998 if (note->type == NT_OPENBSD_PROCINFO)
10999 return elfcore_grok_openbsd_procinfo (abfd, note);
11000
11001 if (note->type == NT_OPENBSD_REGS)
11002 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11003
11004 if (note->type == NT_OPENBSD_FPREGS)
11005 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11006
11007 if (note->type == NT_OPENBSD_XFPREGS)
11008 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11009
11010 if (note->type == NT_OPENBSD_AUXV)
11011 return elfcore_make_auxv_note_section (abfd, note, 0);
11012
11013 if (note->type == NT_OPENBSD_WCOOKIE)
11014 {
11015 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11016 SEC_HAS_CONTENTS);
11017
11018 if (sect == NULL)
11019 return FALSE;
11020 sect->size = note->descsz;
11021 sect->filepos = note->descpos;
11022 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11023
11024 return TRUE;
11025 }
11026
11027 return TRUE;
11028 }
11029
11030 static bfd_boolean
11031 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11032 {
11033 void *ddata = note->descdata;
11034 char buf[100];
11035 char *name;
11036 asection *sect;
11037 short sig;
11038 unsigned flags;
11039
11040 if (note->descsz < 16)
11041 return FALSE;
11042
11043 /* nto_procfs_status 'pid' field is at offset 0. */
11044 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11045
11046 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11047 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11048
11049 /* nto_procfs_status 'flags' field is at offset 8. */
11050 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11051
11052 /* nto_procfs_status 'what' field is at offset 14. */
11053 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11054 {
11055 elf_tdata (abfd)->core->signal = sig;
11056 elf_tdata (abfd)->core->lwpid = *tid;
11057 }
11058
11059 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11060 do not come from signals so we make sure we set the current
11061 thread just in case. */
11062 if (flags & 0x00000080)
11063 elf_tdata (abfd)->core->lwpid = *tid;
11064
11065 /* Make a ".qnx_core_status/%d" section. */
11066 sprintf (buf, ".qnx_core_status/%ld", *tid);
11067
11068 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11069 if (name == NULL)
11070 return FALSE;
11071 strcpy (name, buf);
11072
11073 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11074 if (sect == NULL)
11075 return FALSE;
11076
11077 sect->size = note->descsz;
11078 sect->filepos = note->descpos;
11079 sect->alignment_power = 2;
11080
11081 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11082 }
11083
11084 static bfd_boolean
11085 elfcore_grok_nto_regs (bfd *abfd,
11086 Elf_Internal_Note *note,
11087 long tid,
11088 char *base)
11089 {
11090 char buf[100];
11091 char *name;
11092 asection *sect;
11093
11094 /* Make a "(base)/%d" section. */
11095 sprintf (buf, "%s/%ld", base, tid);
11096
11097 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11098 if (name == NULL)
11099 return FALSE;
11100 strcpy (name, buf);
11101
11102 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11103 if (sect == NULL)
11104 return FALSE;
11105
11106 sect->size = note->descsz;
11107 sect->filepos = note->descpos;
11108 sect->alignment_power = 2;
11109
11110 /* This is the current thread. */
11111 if (elf_tdata (abfd)->core->lwpid == tid)
11112 return elfcore_maybe_make_sect (abfd, base, sect);
11113
11114 return TRUE;
11115 }
11116
11117 #define BFD_QNT_CORE_INFO 7
11118 #define BFD_QNT_CORE_STATUS 8
11119 #define BFD_QNT_CORE_GREG 9
11120 #define BFD_QNT_CORE_FPREG 10
11121
11122 static bfd_boolean
11123 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11124 {
11125 /* Every GREG section has a STATUS section before it. Store the
11126 tid from the previous call to pass down to the next gregs
11127 function. */
11128 static long tid = 1;
11129
11130 switch (note->type)
11131 {
11132 case BFD_QNT_CORE_INFO:
11133 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11134 case BFD_QNT_CORE_STATUS:
11135 return elfcore_grok_nto_status (abfd, note, &tid);
11136 case BFD_QNT_CORE_GREG:
11137 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11138 case BFD_QNT_CORE_FPREG:
11139 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11140 default:
11141 return TRUE;
11142 }
11143 }
11144
11145 static bfd_boolean
11146 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11147 {
11148 char *name;
11149 asection *sect;
11150 size_t len;
11151
11152 /* Use note name as section name. */
11153 len = note->namesz;
11154 name = (char *) bfd_alloc (abfd, len);
11155 if (name == NULL)
11156 return FALSE;
11157 memcpy (name, note->namedata, len);
11158 name[len - 1] = '\0';
11159
11160 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11161 if (sect == NULL)
11162 return FALSE;
11163
11164 sect->size = note->descsz;
11165 sect->filepos = note->descpos;
11166 sect->alignment_power = 1;
11167
11168 return TRUE;
11169 }
11170
11171 /* Function: elfcore_write_note
11172
11173 Inputs:
11174 buffer to hold note, and current size of buffer
11175 name of note
11176 type of note
11177 data for note
11178 size of data for note
11179
11180 Writes note to end of buffer. ELF64 notes are written exactly as
11181 for ELF32, despite the current (as of 2006) ELF gabi specifying
11182 that they ought to have 8-byte namesz and descsz field, and have
11183 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11184
11185 Return:
11186 Pointer to realloc'd buffer, *BUFSIZ updated. */
11187
11188 char *
11189 elfcore_write_note (bfd *abfd,
11190 char *buf,
11191 int *bufsiz,
11192 const char *name,
11193 int type,
11194 const void *input,
11195 int size)
11196 {
11197 Elf_External_Note *xnp;
11198 size_t namesz;
11199 size_t newspace;
11200 char *dest;
11201
11202 namesz = 0;
11203 if (name != NULL)
11204 namesz = strlen (name) + 1;
11205
11206 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11207
11208 buf = (char *) realloc (buf, *bufsiz + newspace);
11209 if (buf == NULL)
11210 return buf;
11211 dest = buf + *bufsiz;
11212 *bufsiz += newspace;
11213 xnp = (Elf_External_Note *) dest;
11214 H_PUT_32 (abfd, namesz, xnp->namesz);
11215 H_PUT_32 (abfd, size, xnp->descsz);
11216 H_PUT_32 (abfd, type, xnp->type);
11217 dest = xnp->name;
11218 if (name != NULL)
11219 {
11220 memcpy (dest, name, namesz);
11221 dest += namesz;
11222 while (namesz & 3)
11223 {
11224 *dest++ = '\0';
11225 ++namesz;
11226 }
11227 }
11228 memcpy (dest, input, size);
11229 dest += size;
11230 while (size & 3)
11231 {
11232 *dest++ = '\0';
11233 ++size;
11234 }
11235 return buf;
11236 }
11237
11238 /* gcc-8 warns (*) on all the strncpy calls in this function about
11239 possible string truncation. The "truncation" is not a bug. We
11240 have an external representation of structs with fields that are not
11241 necessarily NULL terminated and corresponding internal
11242 representation fields that are one larger so that they can always
11243 be NULL terminated.
11244 gcc versions between 4.2 and 4.6 do not allow pragma control of
11245 diagnostics inside functions, giving a hard error if you try to use
11246 the finer control available with later versions.
11247 gcc prior to 4.2 warns about diagnostic push and pop.
11248 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11249 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11250 (*) Depending on your system header files! */
11251 #if GCC_VERSION >= 8000
11252 # pragma GCC diagnostic push
11253 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11254 #endif
11255 char *
11256 elfcore_write_prpsinfo (bfd *abfd,
11257 char *buf,
11258 int *bufsiz,
11259 const char *fname,
11260 const char *psargs)
11261 {
11262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11263
11264 if (bed->elf_backend_write_core_note != NULL)
11265 {
11266 char *ret;
11267 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11268 NT_PRPSINFO, fname, psargs);
11269 if (ret != NULL)
11270 return ret;
11271 }
11272
11273 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11274 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11275 if (bed->s->elfclass == ELFCLASS32)
11276 {
11277 # if defined (HAVE_PSINFO32_T)
11278 psinfo32_t data;
11279 int note_type = NT_PSINFO;
11280 # else
11281 prpsinfo32_t data;
11282 int note_type = NT_PRPSINFO;
11283 # endif
11284
11285 memset (&data, 0, sizeof (data));
11286 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11287 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11288 return elfcore_write_note (abfd, buf, bufsiz,
11289 "CORE", note_type, &data, sizeof (data));
11290 }
11291 else
11292 # endif
11293 {
11294 # if defined (HAVE_PSINFO_T)
11295 psinfo_t data;
11296 int note_type = NT_PSINFO;
11297 # else
11298 prpsinfo_t data;
11299 int note_type = NT_PRPSINFO;
11300 # endif
11301
11302 memset (&data, 0, sizeof (data));
11303 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11304 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11305 return elfcore_write_note (abfd, buf, bufsiz,
11306 "CORE", note_type, &data, sizeof (data));
11307 }
11308 #endif /* PSINFO_T or PRPSINFO_T */
11309
11310 free (buf);
11311 return NULL;
11312 }
11313 #if GCC_VERSION >= 8000
11314 # pragma GCC diagnostic pop
11315 #endif
11316
11317 char *
11318 elfcore_write_linux_prpsinfo32
11319 (bfd *abfd, char *buf, int *bufsiz,
11320 const struct elf_internal_linux_prpsinfo *prpsinfo)
11321 {
11322 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11323 {
11324 struct elf_external_linux_prpsinfo32_ugid16 data;
11325
11326 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11327 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11328 &data, sizeof (data));
11329 }
11330 else
11331 {
11332 struct elf_external_linux_prpsinfo32_ugid32 data;
11333
11334 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11335 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11336 &data, sizeof (data));
11337 }
11338 }
11339
11340 char *
11341 elfcore_write_linux_prpsinfo64
11342 (bfd *abfd, char *buf, int *bufsiz,
11343 const struct elf_internal_linux_prpsinfo *prpsinfo)
11344 {
11345 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11346 {
11347 struct elf_external_linux_prpsinfo64_ugid16 data;
11348
11349 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11350 return elfcore_write_note (abfd, buf, bufsiz,
11351 "CORE", NT_PRPSINFO, &data, sizeof (data));
11352 }
11353 else
11354 {
11355 struct elf_external_linux_prpsinfo64_ugid32 data;
11356
11357 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11358 return elfcore_write_note (abfd, buf, bufsiz,
11359 "CORE", NT_PRPSINFO, &data, sizeof (data));
11360 }
11361 }
11362
11363 char *
11364 elfcore_write_prstatus (bfd *abfd,
11365 char *buf,
11366 int *bufsiz,
11367 long pid,
11368 int cursig,
11369 const void *gregs)
11370 {
11371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11372
11373 if (bed->elf_backend_write_core_note != NULL)
11374 {
11375 char *ret;
11376 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11377 NT_PRSTATUS,
11378 pid, cursig, gregs);
11379 if (ret != NULL)
11380 return ret;
11381 }
11382
11383 #if defined (HAVE_PRSTATUS_T)
11384 #if defined (HAVE_PRSTATUS32_T)
11385 if (bed->s->elfclass == ELFCLASS32)
11386 {
11387 prstatus32_t prstat;
11388
11389 memset (&prstat, 0, sizeof (prstat));
11390 prstat.pr_pid = pid;
11391 prstat.pr_cursig = cursig;
11392 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11393 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11394 NT_PRSTATUS, &prstat, sizeof (prstat));
11395 }
11396 else
11397 #endif
11398 {
11399 prstatus_t prstat;
11400
11401 memset (&prstat, 0, sizeof (prstat));
11402 prstat.pr_pid = pid;
11403 prstat.pr_cursig = cursig;
11404 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11405 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11406 NT_PRSTATUS, &prstat, sizeof (prstat));
11407 }
11408 #endif /* HAVE_PRSTATUS_T */
11409
11410 free (buf);
11411 return NULL;
11412 }
11413
11414 #if defined (HAVE_LWPSTATUS_T)
11415 char *
11416 elfcore_write_lwpstatus (bfd *abfd,
11417 char *buf,
11418 int *bufsiz,
11419 long pid,
11420 int cursig,
11421 const void *gregs)
11422 {
11423 lwpstatus_t lwpstat;
11424 const char *note_name = "CORE";
11425
11426 memset (&lwpstat, 0, sizeof (lwpstat));
11427 lwpstat.pr_lwpid = pid >> 16;
11428 lwpstat.pr_cursig = cursig;
11429 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11430 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11431 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11432 #if !defined(gregs)
11433 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11434 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11435 #else
11436 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11437 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11438 #endif
11439 #endif
11440 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11441 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11442 }
11443 #endif /* HAVE_LWPSTATUS_T */
11444
11445 #if defined (HAVE_PSTATUS_T)
11446 char *
11447 elfcore_write_pstatus (bfd *abfd,
11448 char *buf,
11449 int *bufsiz,
11450 long pid,
11451 int cursig ATTRIBUTE_UNUSED,
11452 const void *gregs ATTRIBUTE_UNUSED)
11453 {
11454 const char *note_name = "CORE";
11455 #if defined (HAVE_PSTATUS32_T)
11456 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11457
11458 if (bed->s->elfclass == ELFCLASS32)
11459 {
11460 pstatus32_t pstat;
11461
11462 memset (&pstat, 0, sizeof (pstat));
11463 pstat.pr_pid = pid & 0xffff;
11464 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11465 NT_PSTATUS, &pstat, sizeof (pstat));
11466 return buf;
11467 }
11468 else
11469 #endif
11470 {
11471 pstatus_t pstat;
11472
11473 memset (&pstat, 0, sizeof (pstat));
11474 pstat.pr_pid = pid & 0xffff;
11475 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11476 NT_PSTATUS, &pstat, sizeof (pstat));
11477 return buf;
11478 }
11479 }
11480 #endif /* HAVE_PSTATUS_T */
11481
11482 char *
11483 elfcore_write_prfpreg (bfd *abfd,
11484 char *buf,
11485 int *bufsiz,
11486 const void *fpregs,
11487 int size)
11488 {
11489 const char *note_name = "CORE";
11490 return elfcore_write_note (abfd, buf, bufsiz,
11491 note_name, NT_FPREGSET, fpregs, size);
11492 }
11493
11494 char *
11495 elfcore_write_prxfpreg (bfd *abfd,
11496 char *buf,
11497 int *bufsiz,
11498 const void *xfpregs,
11499 int size)
11500 {
11501 char *note_name = "LINUX";
11502 return elfcore_write_note (abfd, buf, bufsiz,
11503 note_name, NT_PRXFPREG, xfpregs, size);
11504 }
11505
11506 char *
11507 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11508 const void *xfpregs, int size)
11509 {
11510 char *note_name;
11511 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11512 note_name = "FreeBSD";
11513 else
11514 note_name = "LINUX";
11515 return elfcore_write_note (abfd, buf, bufsiz,
11516 note_name, NT_X86_XSTATE, xfpregs, size);
11517 }
11518
11519 char *
11520 elfcore_write_ppc_vmx (bfd *abfd,
11521 char *buf,
11522 int *bufsiz,
11523 const void *ppc_vmx,
11524 int size)
11525 {
11526 char *note_name = "LINUX";
11527 return elfcore_write_note (abfd, buf, bufsiz,
11528 note_name, NT_PPC_VMX, ppc_vmx, size);
11529 }
11530
11531 char *
11532 elfcore_write_ppc_vsx (bfd *abfd,
11533 char *buf,
11534 int *bufsiz,
11535 const void *ppc_vsx,
11536 int size)
11537 {
11538 char *note_name = "LINUX";
11539 return elfcore_write_note (abfd, buf, bufsiz,
11540 note_name, NT_PPC_VSX, ppc_vsx, size);
11541 }
11542
11543 char *
11544 elfcore_write_ppc_tar (bfd *abfd,
11545 char *buf,
11546 int *bufsiz,
11547 const void *ppc_tar,
11548 int size)
11549 {
11550 char *note_name = "LINUX";
11551 return elfcore_write_note (abfd, buf, bufsiz,
11552 note_name, NT_PPC_TAR, ppc_tar, size);
11553 }
11554
11555 char *
11556 elfcore_write_ppc_ppr (bfd *abfd,
11557 char *buf,
11558 int *bufsiz,
11559 const void *ppc_ppr,
11560 int size)
11561 {
11562 char *note_name = "LINUX";
11563 return elfcore_write_note (abfd, buf, bufsiz,
11564 note_name, NT_PPC_PPR, ppc_ppr, size);
11565 }
11566
11567 char *
11568 elfcore_write_ppc_dscr (bfd *abfd,
11569 char *buf,
11570 int *bufsiz,
11571 const void *ppc_dscr,
11572 int size)
11573 {
11574 char *note_name = "LINUX";
11575 return elfcore_write_note (abfd, buf, bufsiz,
11576 note_name, NT_PPC_DSCR, ppc_dscr, size);
11577 }
11578
11579 char *
11580 elfcore_write_ppc_ebb (bfd *abfd,
11581 char *buf,
11582 int *bufsiz,
11583 const void *ppc_ebb,
11584 int size)
11585 {
11586 char *note_name = "LINUX";
11587 return elfcore_write_note (abfd, buf, bufsiz,
11588 note_name, NT_PPC_EBB, ppc_ebb, size);
11589 }
11590
11591 char *
11592 elfcore_write_ppc_pmu (bfd *abfd,
11593 char *buf,
11594 int *bufsiz,
11595 const void *ppc_pmu,
11596 int size)
11597 {
11598 char *note_name = "LINUX";
11599 return elfcore_write_note (abfd, buf, bufsiz,
11600 note_name, NT_PPC_PMU, ppc_pmu, size);
11601 }
11602
11603 char *
11604 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11605 char *buf,
11606 int *bufsiz,
11607 const void *ppc_tm_cgpr,
11608 int size)
11609 {
11610 char *note_name = "LINUX";
11611 return elfcore_write_note (abfd, buf, bufsiz,
11612 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11613 }
11614
11615 char *
11616 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11617 char *buf,
11618 int *bufsiz,
11619 const void *ppc_tm_cfpr,
11620 int size)
11621 {
11622 char *note_name = "LINUX";
11623 return elfcore_write_note (abfd, buf, bufsiz,
11624 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11625 }
11626
11627 char *
11628 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11629 char *buf,
11630 int *bufsiz,
11631 const void *ppc_tm_cvmx,
11632 int size)
11633 {
11634 char *note_name = "LINUX";
11635 return elfcore_write_note (abfd, buf, bufsiz,
11636 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11637 }
11638
11639 char *
11640 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11641 char *buf,
11642 int *bufsiz,
11643 const void *ppc_tm_cvsx,
11644 int size)
11645 {
11646 char *note_name = "LINUX";
11647 return elfcore_write_note (abfd, buf, bufsiz,
11648 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11649 }
11650
11651 char *
11652 elfcore_write_ppc_tm_spr (bfd *abfd,
11653 char *buf,
11654 int *bufsiz,
11655 const void *ppc_tm_spr,
11656 int size)
11657 {
11658 char *note_name = "LINUX";
11659 return elfcore_write_note (abfd, buf, bufsiz,
11660 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11661 }
11662
11663 char *
11664 elfcore_write_ppc_tm_ctar (bfd *abfd,
11665 char *buf,
11666 int *bufsiz,
11667 const void *ppc_tm_ctar,
11668 int size)
11669 {
11670 char *note_name = "LINUX";
11671 return elfcore_write_note (abfd, buf, bufsiz,
11672 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11673 }
11674
11675 char *
11676 elfcore_write_ppc_tm_cppr (bfd *abfd,
11677 char *buf,
11678 int *bufsiz,
11679 const void *ppc_tm_cppr,
11680 int size)
11681 {
11682 char *note_name = "LINUX";
11683 return elfcore_write_note (abfd, buf, bufsiz,
11684 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11685 }
11686
11687 char *
11688 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11689 char *buf,
11690 int *bufsiz,
11691 const void *ppc_tm_cdscr,
11692 int size)
11693 {
11694 char *note_name = "LINUX";
11695 return elfcore_write_note (abfd, buf, bufsiz,
11696 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11697 }
11698
11699 static char *
11700 elfcore_write_s390_high_gprs (bfd *abfd,
11701 char *buf,
11702 int *bufsiz,
11703 const void *s390_high_gprs,
11704 int size)
11705 {
11706 char *note_name = "LINUX";
11707 return elfcore_write_note (abfd, buf, bufsiz,
11708 note_name, NT_S390_HIGH_GPRS,
11709 s390_high_gprs, size);
11710 }
11711
11712 char *
11713 elfcore_write_s390_timer (bfd *abfd,
11714 char *buf,
11715 int *bufsiz,
11716 const void *s390_timer,
11717 int size)
11718 {
11719 char *note_name = "LINUX";
11720 return elfcore_write_note (abfd, buf, bufsiz,
11721 note_name, NT_S390_TIMER, s390_timer, size);
11722 }
11723
11724 char *
11725 elfcore_write_s390_todcmp (bfd *abfd,
11726 char *buf,
11727 int *bufsiz,
11728 const void *s390_todcmp,
11729 int size)
11730 {
11731 char *note_name = "LINUX";
11732 return elfcore_write_note (abfd, buf, bufsiz,
11733 note_name, NT_S390_TODCMP, s390_todcmp, size);
11734 }
11735
11736 char *
11737 elfcore_write_s390_todpreg (bfd *abfd,
11738 char *buf,
11739 int *bufsiz,
11740 const void *s390_todpreg,
11741 int size)
11742 {
11743 char *note_name = "LINUX";
11744 return elfcore_write_note (abfd, buf, bufsiz,
11745 note_name, NT_S390_TODPREG, s390_todpreg, size);
11746 }
11747
11748 char *
11749 elfcore_write_s390_ctrs (bfd *abfd,
11750 char *buf,
11751 int *bufsiz,
11752 const void *s390_ctrs,
11753 int size)
11754 {
11755 char *note_name = "LINUX";
11756 return elfcore_write_note (abfd, buf, bufsiz,
11757 note_name, NT_S390_CTRS, s390_ctrs, size);
11758 }
11759
11760 char *
11761 elfcore_write_s390_prefix (bfd *abfd,
11762 char *buf,
11763 int *bufsiz,
11764 const void *s390_prefix,
11765 int size)
11766 {
11767 char *note_name = "LINUX";
11768 return elfcore_write_note (abfd, buf, bufsiz,
11769 note_name, NT_S390_PREFIX, s390_prefix, size);
11770 }
11771
11772 char *
11773 elfcore_write_s390_last_break (bfd *abfd,
11774 char *buf,
11775 int *bufsiz,
11776 const void *s390_last_break,
11777 int size)
11778 {
11779 char *note_name = "LINUX";
11780 return elfcore_write_note (abfd, buf, bufsiz,
11781 note_name, NT_S390_LAST_BREAK,
11782 s390_last_break, size);
11783 }
11784
11785 char *
11786 elfcore_write_s390_system_call (bfd *abfd,
11787 char *buf,
11788 int *bufsiz,
11789 const void *s390_system_call,
11790 int size)
11791 {
11792 char *note_name = "LINUX";
11793 return elfcore_write_note (abfd, buf, bufsiz,
11794 note_name, NT_S390_SYSTEM_CALL,
11795 s390_system_call, size);
11796 }
11797
11798 char *
11799 elfcore_write_s390_tdb (bfd *abfd,
11800 char *buf,
11801 int *bufsiz,
11802 const void *s390_tdb,
11803 int size)
11804 {
11805 char *note_name = "LINUX";
11806 return elfcore_write_note (abfd, buf, bufsiz,
11807 note_name, NT_S390_TDB, s390_tdb, size);
11808 }
11809
11810 char *
11811 elfcore_write_s390_vxrs_low (bfd *abfd,
11812 char *buf,
11813 int *bufsiz,
11814 const void *s390_vxrs_low,
11815 int size)
11816 {
11817 char *note_name = "LINUX";
11818 return elfcore_write_note (abfd, buf, bufsiz,
11819 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11820 }
11821
11822 char *
11823 elfcore_write_s390_vxrs_high (bfd *abfd,
11824 char *buf,
11825 int *bufsiz,
11826 const void *s390_vxrs_high,
11827 int size)
11828 {
11829 char *note_name = "LINUX";
11830 return elfcore_write_note (abfd, buf, bufsiz,
11831 note_name, NT_S390_VXRS_HIGH,
11832 s390_vxrs_high, size);
11833 }
11834
11835 char *
11836 elfcore_write_s390_gs_cb (bfd *abfd,
11837 char *buf,
11838 int *bufsiz,
11839 const void *s390_gs_cb,
11840 int size)
11841 {
11842 char *note_name = "LINUX";
11843 return elfcore_write_note (abfd, buf, bufsiz,
11844 note_name, NT_S390_GS_CB,
11845 s390_gs_cb, size);
11846 }
11847
11848 char *
11849 elfcore_write_s390_gs_bc (bfd *abfd,
11850 char *buf,
11851 int *bufsiz,
11852 const void *s390_gs_bc,
11853 int size)
11854 {
11855 char *note_name = "LINUX";
11856 return elfcore_write_note (abfd, buf, bufsiz,
11857 note_name, NT_S390_GS_BC,
11858 s390_gs_bc, size);
11859 }
11860
11861 char *
11862 elfcore_write_arm_vfp (bfd *abfd,
11863 char *buf,
11864 int *bufsiz,
11865 const void *arm_vfp,
11866 int size)
11867 {
11868 char *note_name = "LINUX";
11869 return elfcore_write_note (abfd, buf, bufsiz,
11870 note_name, NT_ARM_VFP, arm_vfp, size);
11871 }
11872
11873 char *
11874 elfcore_write_aarch_tls (bfd *abfd,
11875 char *buf,
11876 int *bufsiz,
11877 const void *aarch_tls,
11878 int size)
11879 {
11880 char *note_name = "LINUX";
11881 return elfcore_write_note (abfd, buf, bufsiz,
11882 note_name, NT_ARM_TLS, aarch_tls, size);
11883 }
11884
11885 char *
11886 elfcore_write_aarch_hw_break (bfd *abfd,
11887 char *buf,
11888 int *bufsiz,
11889 const void *aarch_hw_break,
11890 int size)
11891 {
11892 char *note_name = "LINUX";
11893 return elfcore_write_note (abfd, buf, bufsiz,
11894 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11895 }
11896
11897 char *
11898 elfcore_write_aarch_hw_watch (bfd *abfd,
11899 char *buf,
11900 int *bufsiz,
11901 const void *aarch_hw_watch,
11902 int size)
11903 {
11904 char *note_name = "LINUX";
11905 return elfcore_write_note (abfd, buf, bufsiz,
11906 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11907 }
11908
11909 char *
11910 elfcore_write_aarch_sve (bfd *abfd,
11911 char *buf,
11912 int *bufsiz,
11913 const void *aarch_sve,
11914 int size)
11915 {
11916 char *note_name = "LINUX";
11917 return elfcore_write_note (abfd, buf, bufsiz,
11918 note_name, NT_ARM_SVE, aarch_sve, size);
11919 }
11920
11921 char *
11922 elfcore_write_aarch_pauth (bfd *abfd,
11923 char *buf,
11924 int *bufsiz,
11925 const void *aarch_pauth,
11926 int size)
11927 {
11928 char *note_name = "LINUX";
11929 return elfcore_write_note (abfd, buf, bufsiz,
11930 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11931 }
11932
11933 char *
11934 elfcore_write_arc_v2 (bfd *abfd,
11935 char *buf,
11936 int *bufsiz,
11937 const void *arc_v2,
11938 int size)
11939 {
11940 char *note_name = "LINUX";
11941 return elfcore_write_note (abfd, buf, bufsiz,
11942 note_name, NT_ARC_V2, arc_v2, size);
11943 }
11944
11945 char *
11946 elfcore_write_register_note (bfd *abfd,
11947 char *buf,
11948 int *bufsiz,
11949 const char *section,
11950 const void *data,
11951 int size)
11952 {
11953 if (strcmp (section, ".reg2") == 0)
11954 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11955 if (strcmp (section, ".reg-xfp") == 0)
11956 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11957 if (strcmp (section, ".reg-xstate") == 0)
11958 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11959 if (strcmp (section, ".reg-ppc-vmx") == 0)
11960 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11961 if (strcmp (section, ".reg-ppc-vsx") == 0)
11962 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11963 if (strcmp (section, ".reg-ppc-tar") == 0)
11964 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11965 if (strcmp (section, ".reg-ppc-ppr") == 0)
11966 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11967 if (strcmp (section, ".reg-ppc-dscr") == 0)
11968 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11969 if (strcmp (section, ".reg-ppc-ebb") == 0)
11970 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11971 if (strcmp (section, ".reg-ppc-pmu") == 0)
11972 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11973 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11974 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11975 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11976 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11977 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11978 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11979 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11980 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11981 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11982 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11983 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11984 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11985 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11986 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11987 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11988 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11989 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11990 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11991 if (strcmp (section, ".reg-s390-timer") == 0)
11992 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11993 if (strcmp (section, ".reg-s390-todcmp") == 0)
11994 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11995 if (strcmp (section, ".reg-s390-todpreg") == 0)
11996 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11997 if (strcmp (section, ".reg-s390-ctrs") == 0)
11998 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11999 if (strcmp (section, ".reg-s390-prefix") == 0)
12000 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12001 if (strcmp (section, ".reg-s390-last-break") == 0)
12002 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12003 if (strcmp (section, ".reg-s390-system-call") == 0)
12004 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12005 if (strcmp (section, ".reg-s390-tdb") == 0)
12006 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12007 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12008 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12009 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12010 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12011 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12012 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12013 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12014 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12015 if (strcmp (section, ".reg-arm-vfp") == 0)
12016 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12017 if (strcmp (section, ".reg-aarch-tls") == 0)
12018 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12019 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12020 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12021 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12022 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12023 if (strcmp (section, ".reg-aarch-sve") == 0)
12024 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12025 if (strcmp (section, ".reg-aarch-pauth") == 0)
12026 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12027 if (strcmp (section, ".reg-arc-v2") == 0)
12028 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12029 return NULL;
12030 }
12031
12032 static bfd_boolean
12033 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12034 size_t align)
12035 {
12036 char *p;
12037
12038 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12039 gABI specifies that PT_NOTE alignment should be aligned to 4
12040 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12041 align is less than 4, we use 4 byte alignment. */
12042 if (align < 4)
12043 align = 4;
12044 if (align != 4 && align != 8)
12045 return FALSE;
12046
12047 p = buf;
12048 while (p < buf + size)
12049 {
12050 Elf_External_Note *xnp = (Elf_External_Note *) p;
12051 Elf_Internal_Note in;
12052
12053 if (offsetof (Elf_External_Note, name) > buf - p + size)
12054 return FALSE;
12055
12056 in.type = H_GET_32 (abfd, xnp->type);
12057
12058 in.namesz = H_GET_32 (abfd, xnp->namesz);
12059 in.namedata = xnp->name;
12060 if (in.namesz > buf - in.namedata + size)
12061 return FALSE;
12062
12063 in.descsz = H_GET_32 (abfd, xnp->descsz);
12064 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12065 in.descpos = offset + (in.descdata - buf);
12066 if (in.descsz != 0
12067 && (in.descdata >= buf + size
12068 || in.descsz > buf - in.descdata + size))
12069 return FALSE;
12070
12071 switch (bfd_get_format (abfd))
12072 {
12073 default:
12074 return TRUE;
12075
12076 case bfd_core:
12077 {
12078 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12079 struct
12080 {
12081 const char * string;
12082 size_t len;
12083 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12084 }
12085 grokers[] =
12086 {
12087 GROKER_ELEMENT ("", elfcore_grok_note),
12088 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12089 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12090 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12091 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12092 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12093 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12094 };
12095 #undef GROKER_ELEMENT
12096 int i;
12097
12098 for (i = ARRAY_SIZE (grokers); i--;)
12099 {
12100 if (in.namesz >= grokers[i].len
12101 && strncmp (in.namedata, grokers[i].string,
12102 grokers[i].len) == 0)
12103 {
12104 if (! grokers[i].func (abfd, & in))
12105 return FALSE;
12106 break;
12107 }
12108 }
12109 break;
12110 }
12111
12112 case bfd_object:
12113 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12114 {
12115 if (! elfobj_grok_gnu_note (abfd, &in))
12116 return FALSE;
12117 }
12118 else if (in.namesz == sizeof "stapsdt"
12119 && strcmp (in.namedata, "stapsdt") == 0)
12120 {
12121 if (! elfobj_grok_stapsdt_note (abfd, &in))
12122 return FALSE;
12123 }
12124 break;
12125 }
12126
12127 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12128 }
12129
12130 return TRUE;
12131 }
12132
12133 bfd_boolean
12134 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12135 size_t align)
12136 {
12137 char *buf;
12138
12139 if (size == 0 || (size + 1) == 0)
12140 return TRUE;
12141
12142 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12143 return FALSE;
12144
12145 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12146 if (buf == NULL)
12147 return FALSE;
12148
12149 /* PR 17512: file: ec08f814
12150 0-termintate the buffer so that string searches will not overflow. */
12151 buf[size] = 0;
12152
12153 if (!elf_parse_notes (abfd, buf, size, offset, align))
12154 {
12155 free (buf);
12156 return FALSE;
12157 }
12158
12159 free (buf);
12160 return TRUE;
12161 }
12162 \f
12163 /* Providing external access to the ELF program header table. */
12164
12165 /* Return an upper bound on the number of bytes required to store a
12166 copy of ABFD's program header table entries. Return -1 if an error
12167 occurs; bfd_get_error will return an appropriate code. */
12168
12169 long
12170 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12171 {
12172 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12173 {
12174 bfd_set_error (bfd_error_wrong_format);
12175 return -1;
12176 }
12177
12178 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12179 }
12180
12181 /* Copy ABFD's program header table entries to *PHDRS. The entries
12182 will be stored as an array of Elf_Internal_Phdr structures, as
12183 defined in include/elf/internal.h. To find out how large the
12184 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12185
12186 Return the number of program header table entries read, or -1 if an
12187 error occurs; bfd_get_error will return an appropriate code. */
12188
12189 int
12190 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12191 {
12192 int num_phdrs;
12193
12194 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12195 {
12196 bfd_set_error (bfd_error_wrong_format);
12197 return -1;
12198 }
12199
12200 num_phdrs = elf_elfheader (abfd)->e_phnum;
12201 if (num_phdrs != 0)
12202 memcpy (phdrs, elf_tdata (abfd)->phdr,
12203 num_phdrs * sizeof (Elf_Internal_Phdr));
12204
12205 return num_phdrs;
12206 }
12207
12208 enum elf_reloc_type_class
12209 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12210 const asection *rel_sec ATTRIBUTE_UNUSED,
12211 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12212 {
12213 return reloc_class_normal;
12214 }
12215
12216 /* For RELA architectures, return the relocation value for a
12217 relocation against a local symbol. */
12218
12219 bfd_vma
12220 _bfd_elf_rela_local_sym (bfd *abfd,
12221 Elf_Internal_Sym *sym,
12222 asection **psec,
12223 Elf_Internal_Rela *rel)
12224 {
12225 asection *sec = *psec;
12226 bfd_vma relocation;
12227
12228 relocation = (sec->output_section->vma
12229 + sec->output_offset
12230 + sym->st_value);
12231 if ((sec->flags & SEC_MERGE)
12232 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12233 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12234 {
12235 rel->r_addend =
12236 _bfd_merged_section_offset (abfd, psec,
12237 elf_section_data (sec)->sec_info,
12238 sym->st_value + rel->r_addend);
12239 if (sec != *psec)
12240 {
12241 /* If we have changed the section, and our original section is
12242 marked with SEC_EXCLUDE, it means that the original
12243 SEC_MERGE section has been completely subsumed in some
12244 other SEC_MERGE section. In this case, we need to leave
12245 some info around for --emit-relocs. */
12246 if ((sec->flags & SEC_EXCLUDE) != 0)
12247 sec->kept_section = *psec;
12248 sec = *psec;
12249 }
12250 rel->r_addend -= relocation;
12251 rel->r_addend += sec->output_section->vma + sec->output_offset;
12252 }
12253 return relocation;
12254 }
12255
12256 bfd_vma
12257 _bfd_elf_rel_local_sym (bfd *abfd,
12258 Elf_Internal_Sym *sym,
12259 asection **psec,
12260 bfd_vma addend)
12261 {
12262 asection *sec = *psec;
12263
12264 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12265 return sym->st_value + addend;
12266
12267 return _bfd_merged_section_offset (abfd, psec,
12268 elf_section_data (sec)->sec_info,
12269 sym->st_value + addend);
12270 }
12271
12272 /* Adjust an address within a section. Given OFFSET within SEC, return
12273 the new offset within the section, based upon changes made to the
12274 section. Returns -1 if the offset is now invalid.
12275 The offset (in abnd out) is in target sized bytes, however big a
12276 byte may be. */
12277
12278 bfd_vma
12279 _bfd_elf_section_offset (bfd *abfd,
12280 struct bfd_link_info *info,
12281 asection *sec,
12282 bfd_vma offset)
12283 {
12284 switch (sec->sec_info_type)
12285 {
12286 case SEC_INFO_TYPE_STABS:
12287 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12288 offset);
12289 case SEC_INFO_TYPE_EH_FRAME:
12290 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12291
12292 default:
12293 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12294 {
12295 /* Reverse the offset. */
12296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12297 bfd_size_type address_size = bed->s->arch_size / 8;
12298
12299 /* address_size and sec->size are in octets. Convert
12300 to bytes before subtracting the original offset. */
12301 offset = ((sec->size - address_size)
12302 / bfd_octets_per_byte (abfd, sec) - offset);
12303 }
12304 return offset;
12305 }
12306 }
12307 \f
12308 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12309 reconstruct an ELF file by reading the segments out of remote memory
12310 based on the ELF file header at EHDR_VMA and the ELF program headers it
12311 points to. If not null, *LOADBASEP is filled in with the difference
12312 between the VMAs from which the segments were read, and the VMAs the
12313 file headers (and hence BFD's idea of each section's VMA) put them at.
12314
12315 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12316 remote memory at target address VMA into the local buffer at MYADDR; it
12317 should return zero on success or an `errno' code on failure. TEMPL must
12318 be a BFD for an ELF target with the word size and byte order found in
12319 the remote memory. */
12320
12321 bfd *
12322 bfd_elf_bfd_from_remote_memory
12323 (bfd *templ,
12324 bfd_vma ehdr_vma,
12325 bfd_size_type size,
12326 bfd_vma *loadbasep,
12327 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12328 {
12329 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12330 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12331 }
12332 \f
12333 long
12334 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12335 long symcount ATTRIBUTE_UNUSED,
12336 asymbol **syms ATTRIBUTE_UNUSED,
12337 long dynsymcount,
12338 asymbol **dynsyms,
12339 asymbol **ret)
12340 {
12341 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12342 asection *relplt;
12343 asymbol *s;
12344 const char *relplt_name;
12345 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12346 arelent *p;
12347 long count, i, n;
12348 size_t size;
12349 Elf_Internal_Shdr *hdr;
12350 char *names;
12351 asection *plt;
12352
12353 *ret = NULL;
12354
12355 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12356 return 0;
12357
12358 if (dynsymcount <= 0)
12359 return 0;
12360
12361 if (!bed->plt_sym_val)
12362 return 0;
12363
12364 relplt_name = bed->relplt_name;
12365 if (relplt_name == NULL)
12366 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12367 relplt = bfd_get_section_by_name (abfd, relplt_name);
12368 if (relplt == NULL)
12369 return 0;
12370
12371 hdr = &elf_section_data (relplt)->this_hdr;
12372 if (hdr->sh_link != elf_dynsymtab (abfd)
12373 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12374 return 0;
12375
12376 plt = bfd_get_section_by_name (abfd, ".plt");
12377 if (plt == NULL)
12378 return 0;
12379
12380 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12381 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12382 return -1;
12383
12384 count = relplt->size / hdr->sh_entsize;
12385 size = count * sizeof (asymbol);
12386 p = relplt->relocation;
12387 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12388 {
12389 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12390 if (p->addend != 0)
12391 {
12392 #ifdef BFD64
12393 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12394 #else
12395 size += sizeof ("+0x") - 1 + 8;
12396 #endif
12397 }
12398 }
12399
12400 s = *ret = (asymbol *) bfd_malloc (size);
12401 if (s == NULL)
12402 return -1;
12403
12404 names = (char *) (s + count);
12405 p = relplt->relocation;
12406 n = 0;
12407 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12408 {
12409 size_t len;
12410 bfd_vma addr;
12411
12412 addr = bed->plt_sym_val (i, plt, p);
12413 if (addr == (bfd_vma) -1)
12414 continue;
12415
12416 *s = **p->sym_ptr_ptr;
12417 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12418 we are defining a symbol, ensure one of them is set. */
12419 if ((s->flags & BSF_LOCAL) == 0)
12420 s->flags |= BSF_GLOBAL;
12421 s->flags |= BSF_SYNTHETIC;
12422 s->section = plt;
12423 s->value = addr - plt->vma;
12424 s->name = names;
12425 s->udata.p = NULL;
12426 len = strlen ((*p->sym_ptr_ptr)->name);
12427 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12428 names += len;
12429 if (p->addend != 0)
12430 {
12431 char buf[30], *a;
12432
12433 memcpy (names, "+0x", sizeof ("+0x") - 1);
12434 names += sizeof ("+0x") - 1;
12435 bfd_sprintf_vma (abfd, buf, p->addend);
12436 for (a = buf; *a == '0'; ++a)
12437 ;
12438 len = strlen (a);
12439 memcpy (names, a, len);
12440 names += len;
12441 }
12442 memcpy (names, "@plt", sizeof ("@plt"));
12443 names += sizeof ("@plt");
12444 ++s, ++n;
12445 }
12446
12447 return n;
12448 }
12449
12450 /* It is only used by x86-64 so far.
12451 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12452 but current usage would allow all of _bfd_std_section to be zero. */
12453 static const asymbol lcomm_sym
12454 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12455 asection _bfd_elf_large_com_section
12456 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12457 "LARGE_COMMON", 0, SEC_IS_COMMON);
12458
12459 bfd_boolean
12460 _bfd_elf_final_write_processing (bfd *abfd)
12461 {
12462 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12463
12464 i_ehdrp = elf_elfheader (abfd);
12465
12466 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12467 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12468
12469 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12470 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12471 or STB_GNU_UNIQUE binding. */
12472 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12473 {
12474 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12475 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12476 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12477 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12478 {
12479 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12480 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12481 "and FreeBSD targets"));
12482 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12483 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12484 "only by GNU and FreeBSD targets"));
12485 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12486 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12487 "only by GNU and FreeBSD targets"));
12488 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12489 _bfd_error_handler (_("GNU_RETAIN section is supported "
12490 "only by GNU and FreeBSD targets"));
12491 bfd_set_error (bfd_error_sorry);
12492 return FALSE;
12493 }
12494 }
12495 return TRUE;
12496 }
12497
12498
12499 /* Return TRUE for ELF symbol types that represent functions.
12500 This is the default version of this function, which is sufficient for
12501 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12502
12503 bfd_boolean
12504 _bfd_elf_is_function_type (unsigned int type)
12505 {
12506 return (type == STT_FUNC
12507 || type == STT_GNU_IFUNC);
12508 }
12509
12510 /* If the ELF symbol SYM might be a function in SEC, return the
12511 function size and set *CODE_OFF to the function's entry point,
12512 otherwise return zero. */
12513
12514 bfd_size_type
12515 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12516 bfd_vma *code_off)
12517 {
12518 bfd_size_type size;
12519
12520 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12521 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12522 || sym->section != sec)
12523 return 0;
12524
12525 *code_off = sym->value;
12526 size = 0;
12527 if (!(sym->flags & BSF_SYNTHETIC))
12528 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12529 if (size == 0)
12530 size = 1;
12531 return size;
12532 }
12533
12534 /* Set to non-zero to enable some debug messages. */
12535 #define DEBUG_SECONDARY_RELOCS 0
12536
12537 /* An internal-to-the-bfd-library only section type
12538 used to indicate a cached secondary reloc section. */
12539 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12540
12541 /* Create a BFD section to hold a secondary reloc section. */
12542
12543 bfd_boolean
12544 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12545 Elf_Internal_Shdr *hdr,
12546 const char * name,
12547 unsigned int shindex)
12548 {
12549 /* We only support RELA secondary relocs. */
12550 if (hdr->sh_type != SHT_RELA)
12551 return FALSE;
12552
12553 #if DEBUG_SECONDARY_RELOCS
12554 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12555 #endif
12556 hdr->sh_type = SHT_SECONDARY_RELOC;
12557 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12558 }
12559
12560 /* Read in any secondary relocs associated with SEC. */
12561
12562 bfd_boolean
12563 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12564 asection * sec,
12565 asymbol ** symbols,
12566 bfd_boolean dynamic)
12567 {
12568 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12569 asection * relsec;
12570 bfd_boolean result = TRUE;
12571 bfd_vma (*r_sym) (bfd_vma);
12572
12573 #if BFD_DEFAULT_TARGET_SIZE > 32
12574 if (bfd_arch_bits_per_address (abfd) != 32)
12575 r_sym = elf64_r_sym;
12576 else
12577 #endif
12578 r_sym = elf32_r_sym;
12579
12580 /* Discover if there are any secondary reloc sections
12581 associated with SEC. */
12582 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12583 {
12584 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12585
12586 if (hdr->sh_type == SHT_SECONDARY_RELOC
12587 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12588 && (hdr->sh_entsize == ebd->s->sizeof_rel
12589 || hdr->sh_entsize == ebd->s->sizeof_rela))
12590 {
12591 bfd_byte * native_relocs;
12592 bfd_byte * native_reloc;
12593 arelent * internal_relocs;
12594 arelent * internal_reloc;
12595 unsigned int i;
12596 unsigned int entsize;
12597 unsigned int symcount;
12598 unsigned int reloc_count;
12599 size_t amt;
12600
12601 if (ebd->elf_info_to_howto == NULL)
12602 return FALSE;
12603
12604 #if DEBUG_SECONDARY_RELOCS
12605 fprintf (stderr, "read secondary relocs for %s from %s\n",
12606 sec->name, relsec->name);
12607 #endif
12608 entsize = hdr->sh_entsize;
12609
12610 native_relocs = bfd_malloc (hdr->sh_size);
12611 if (native_relocs == NULL)
12612 {
12613 result = FALSE;
12614 continue;
12615 }
12616
12617 reloc_count = NUM_SHDR_ENTRIES (hdr);
12618 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12619 {
12620 free (native_relocs);
12621 bfd_set_error (bfd_error_file_too_big);
12622 result = FALSE;
12623 continue;
12624 }
12625
12626 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12627 if (internal_relocs == NULL)
12628 {
12629 free (native_relocs);
12630 result = FALSE;
12631 continue;
12632 }
12633
12634 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12635 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12636 != hdr->sh_size))
12637 {
12638 free (native_relocs);
12639 /* The internal_relocs will be freed when
12640 the memory for the bfd is released. */
12641 result = FALSE;
12642 continue;
12643 }
12644
12645 if (dynamic)
12646 symcount = bfd_get_dynamic_symcount (abfd);
12647 else
12648 symcount = bfd_get_symcount (abfd);
12649
12650 for (i = 0, internal_reloc = internal_relocs,
12651 native_reloc = native_relocs;
12652 i < reloc_count;
12653 i++, internal_reloc++, native_reloc += entsize)
12654 {
12655 bfd_boolean res;
12656 Elf_Internal_Rela rela;
12657
12658 if (entsize == ebd->s->sizeof_rel)
12659 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12660 else /* entsize == ebd->s->sizeof_rela */
12661 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12662
12663 /* The address of an ELF reloc is section relative for an object
12664 file, and absolute for an executable file or shared library.
12665 The address of a normal BFD reloc is always section relative,
12666 and the address of a dynamic reloc is absolute.. */
12667 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12668 internal_reloc->address = rela.r_offset;
12669 else
12670 internal_reloc->address = rela.r_offset - sec->vma;
12671
12672 if (r_sym (rela.r_info) == STN_UNDEF)
12673 {
12674 /* FIXME: This and the error case below mean that we
12675 have a symbol on relocs that is not elf_symbol_type. */
12676 internal_reloc->sym_ptr_ptr =
12677 bfd_abs_section_ptr->symbol_ptr_ptr;
12678 }
12679 else if (r_sym (rela.r_info) > symcount)
12680 {
12681 _bfd_error_handler
12682 /* xgettext:c-format */
12683 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12684 abfd, sec, i, (long) r_sym (rela.r_info));
12685 bfd_set_error (bfd_error_bad_value);
12686 internal_reloc->sym_ptr_ptr =
12687 bfd_abs_section_ptr->symbol_ptr_ptr;
12688 result = FALSE;
12689 }
12690 else
12691 {
12692 asymbol **ps;
12693
12694 ps = symbols + r_sym (rela.r_info) - 1;
12695 internal_reloc->sym_ptr_ptr = ps;
12696 /* Make sure that this symbol is not removed by strip. */
12697 (*ps)->flags |= BSF_KEEP;
12698 }
12699
12700 internal_reloc->addend = rela.r_addend;
12701
12702 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12703 if (! res || internal_reloc->howto == NULL)
12704 {
12705 #if DEBUG_SECONDARY_RELOCS
12706 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12707 rela.r_info);
12708 #endif
12709 result = FALSE;
12710 }
12711 }
12712
12713 free (native_relocs);
12714 /* Store the internal relocs. */
12715 elf_section_data (relsec)->sec_info = internal_relocs;
12716 }
12717 }
12718
12719 return result;
12720 }
12721
12722 /* Set the ELF section header fields of an output secondary reloc section. */
12723
12724 bfd_boolean
12725 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12726 bfd * obfd ATTRIBUTE_UNUSED,
12727 const Elf_Internal_Shdr * isection,
12728 Elf_Internal_Shdr * osection)
12729 {
12730 asection * isec;
12731 asection * osec;
12732 struct bfd_elf_section_data * esd;
12733
12734 if (isection == NULL)
12735 return FALSE;
12736
12737 if (isection->sh_type != SHT_SECONDARY_RELOC)
12738 return TRUE;
12739
12740 isec = isection->bfd_section;
12741 if (isec == NULL)
12742 return FALSE;
12743
12744 osec = osection->bfd_section;
12745 if (osec == NULL)
12746 return FALSE;
12747
12748 esd = elf_section_data (osec);
12749 BFD_ASSERT (esd->sec_info == NULL);
12750 esd->sec_info = elf_section_data (isec)->sec_info;
12751 osection->sh_type = SHT_RELA;
12752 osection->sh_link = elf_onesymtab (obfd);
12753 if (osection->sh_link == 0)
12754 {
12755 /* There is no symbol table - we are hosed... */
12756 _bfd_error_handler
12757 /* xgettext:c-format */
12758 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12759 obfd, osec);
12760 bfd_set_error (bfd_error_bad_value);
12761 return FALSE;
12762 }
12763
12764 /* Find the output section that corresponds to the isection's sh_info link. */
12765 if (isection->sh_info == 0
12766 || isection->sh_info >= elf_numsections (ibfd))
12767 {
12768 _bfd_error_handler
12769 /* xgettext:c-format */
12770 (_("%pB(%pA): info section index is invalid"),
12771 obfd, osec);
12772 bfd_set_error (bfd_error_bad_value);
12773 return FALSE;
12774 }
12775
12776 isection = elf_elfsections (ibfd)[isection->sh_info];
12777
12778 if (isection == NULL
12779 || isection->bfd_section == NULL
12780 || isection->bfd_section->output_section == NULL)
12781 {
12782 _bfd_error_handler
12783 /* xgettext:c-format */
12784 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12785 obfd, osec);
12786 bfd_set_error (bfd_error_bad_value);
12787 return FALSE;
12788 }
12789
12790 esd = elf_section_data (isection->bfd_section->output_section);
12791 BFD_ASSERT (esd != NULL);
12792 osection->sh_info = esd->this_idx;
12793 esd->has_secondary_relocs = TRUE;
12794 #if DEBUG_SECONDARY_RELOCS
12795 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12796 osec->name, osection->sh_link, osection->sh_info);
12797 fprintf (stderr, "mark section %s as having secondary relocs\n",
12798 bfd_section_name (isection->bfd_section->output_section));
12799 #endif
12800
12801 return TRUE;
12802 }
12803
12804 /* Write out a secondary reloc section.
12805
12806 FIXME: Currently this function can result in a serious performance penalty
12807 for files with secondary relocs and lots of sections. The proper way to
12808 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12809 relocs together and then to have this function just walk that chain. */
12810
12811 bfd_boolean
12812 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12813 {
12814 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12815 bfd_vma addr_offset;
12816 asection * relsec;
12817 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12818 bfd_boolean result = TRUE;
12819
12820 if (sec == NULL)
12821 return FALSE;
12822
12823 #if BFD_DEFAULT_TARGET_SIZE > 32
12824 if (bfd_arch_bits_per_address (abfd) != 32)
12825 r_info = elf64_r_info;
12826 else
12827 #endif
12828 r_info = elf32_r_info;
12829
12830 /* The address of an ELF reloc is section relative for an object
12831 file, and absolute for an executable file or shared library.
12832 The address of a BFD reloc is always section relative. */
12833 addr_offset = 0;
12834 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12835 addr_offset = sec->vma;
12836
12837 /* Discover if there are any secondary reloc sections
12838 associated with SEC. */
12839 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12840 {
12841 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12842 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12843
12844 if (hdr->sh_type == SHT_RELA
12845 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12846 {
12847 asymbol * last_sym;
12848 int last_sym_idx;
12849 unsigned int reloc_count;
12850 unsigned int idx;
12851 unsigned int entsize;
12852 arelent * src_irel;
12853 bfd_byte * dst_rela;
12854
12855 if (hdr->contents != NULL)
12856 {
12857 _bfd_error_handler
12858 /* xgettext:c-format */
12859 (_("%pB(%pA): error: secondary reloc section processed twice"),
12860 abfd, relsec);
12861 bfd_set_error (bfd_error_bad_value);
12862 result = FALSE;
12863 continue;
12864 }
12865
12866 entsize = hdr->sh_entsize;
12867 if (entsize == 0)
12868 {
12869 _bfd_error_handler
12870 /* xgettext:c-format */
12871 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12872 abfd, relsec);
12873 bfd_set_error (bfd_error_bad_value);
12874 result = FALSE;
12875 continue;
12876 }
12877 else if (entsize != ebd->s->sizeof_rel
12878 && entsize != ebd->s->sizeof_rela)
12879 {
12880 _bfd_error_handler
12881 /* xgettext:c-format */
12882 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
12883 abfd, relsec);
12884 bfd_set_error (bfd_error_bad_value);
12885 result = FALSE;
12886 continue;
12887 }
12888
12889 reloc_count = hdr->sh_size / entsize;
12890 if (reloc_count <= 0)
12891 {
12892 _bfd_error_handler
12893 /* xgettext:c-format */
12894 (_("%pB(%pA): error: secondary reloc section is empty!"),
12895 abfd, relsec);
12896 bfd_set_error (bfd_error_bad_value);
12897 result = FALSE;
12898 continue;
12899 }
12900
12901 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12902 if (hdr->contents == NULL)
12903 continue;
12904
12905 #if DEBUG_SECONDARY_RELOCS
12906 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12907 reloc_count, sec->name, relsec->name);
12908 #endif
12909 last_sym = NULL;
12910 last_sym_idx = 0;
12911 dst_rela = hdr->contents;
12912 src_irel = (arelent *) esd->sec_info;
12913 if (src_irel == NULL)
12914 {
12915 _bfd_error_handler
12916 /* xgettext:c-format */
12917 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12918 abfd, relsec);
12919 bfd_set_error (bfd_error_bad_value);
12920 result = FALSE;
12921 continue;
12922 }
12923
12924 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
12925 {
12926 Elf_Internal_Rela src_rela;
12927 arelent *ptr;
12928 asymbol *sym;
12929 int n;
12930
12931 ptr = src_irel + idx;
12932 if (ptr == NULL)
12933 {
12934 _bfd_error_handler
12935 /* xgettext:c-format */
12936 (_("%pB(%pA): error: reloc table entry %u is empty"),
12937 abfd, relsec, idx);
12938 bfd_set_error (bfd_error_bad_value);
12939 result = FALSE;
12940 break;
12941 }
12942
12943 if (ptr->sym_ptr_ptr == NULL)
12944 {
12945 /* FIXME: Is this an error ? */
12946 n = 0;
12947 }
12948 else
12949 {
12950 sym = *ptr->sym_ptr_ptr;
12951
12952 if (sym == last_sym)
12953 n = last_sym_idx;
12954 else
12955 {
12956 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12957 if (n < 0)
12958 {
12959 _bfd_error_handler
12960 /* xgettext:c-format */
12961 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12962 abfd, relsec, idx);
12963 bfd_set_error (bfd_error_bad_value);
12964 result = FALSE;
12965 n = 0;
12966 }
12967
12968 last_sym = sym;
12969 last_sym_idx = n;
12970 }
12971
12972 if (sym->the_bfd != NULL
12973 && sym->the_bfd->xvec != abfd->xvec
12974 && ! _bfd_elf_validate_reloc (abfd, ptr))
12975 {
12976 _bfd_error_handler
12977 /* xgettext:c-format */
12978 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12979 abfd, relsec, idx);
12980 bfd_set_error (bfd_error_bad_value);
12981 result = FALSE;
12982 n = 0;
12983 }
12984 }
12985
12986 src_rela.r_offset = ptr->address + addr_offset;
12987 if (ptr->howto == NULL)
12988 {
12989 _bfd_error_handler
12990 /* xgettext:c-format */
12991 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12992 abfd, relsec, idx);
12993 bfd_set_error (bfd_error_bad_value);
12994 result = FALSE;
12995 src_rela.r_info = r_info (0, 0);
12996 }
12997 else
12998 src_rela.r_info = r_info (n, ptr->howto->type);
12999 src_rela.r_addend = ptr->addend;
13000
13001 if (entsize == ebd->s->sizeof_rel)
13002 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13003 else /* entsize == ebd->s->sizeof_rela */
13004 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13005 }
13006 }
13007 }
13008
13009 return result;
13010 }