daily update
[binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
2021 enum stub_reloc_type
2022 {
2023 STUB_RELOC_NONE = 0,
2024 STUB_RELOC_ABS,
2025 STUB_RELOC_PIC,
2026 };
2027
2028 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2030 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2031 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2032 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2033
2034 typedef struct
2035 {
2036 bfd_vma data;
2037 enum stub_insn_type type;
2038 enum stub_reloc_type reloc_type;
2039 int reloc_addend;
2040 } insn_sequence;
2041
2042 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2043 to reach the stub if necessary. */
2044 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2045 {
2046 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2047 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2048 };
2049
2050 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2051 available. */
2052 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2053 {
2054 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2055 ARM_INSN(0xe12fff1c), /* bx ip */
2056 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2057 };
2058
2059 /* Thumb -> Thumb long branch stub. Used on architectures which
2060 support only this mode, or on V4T where it is expensive to switch
2061 to ARM. */
2062 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2063 {
2064 THUMB16_INSN(0xb401), /* push {r0} */
2065 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2066 THUMB16_INSN(0x4684), /* mov ip, r0 */
2067 THUMB16_INSN(0xbc01), /* pop {r0} */
2068 THUMB16_INSN(0x4760), /* bx ip */
2069 THUMB16_INSN(0xbf00), /* nop */
2070 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2071 };
2072
2073 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2074 available. */
2075 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2076 {
2077 THUMB16_INSN(0x4778), /* bx pc */
2078 THUMB16_INSN(0x46c0), /* nop */
2079 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2080 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2081 };
2082
2083 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2084 one, when the destination is close enough. */
2085 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2086 {
2087 THUMB16_INSN(0x4778), /* bx pc */
2088 THUMB16_INSN(0x46c0), /* nop */
2089 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2090 };
2091
2092 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2093 blx to reach the stub if necessary. */
2094 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2095 {
2096 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2097 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2098 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2099 };
2100
2101 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2102 blx to reach the stub if necessary. We can not add into pc;
2103 it is not guaranteed to mode switch (different in ARMv6 and
2104 ARMv7). */
2105 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2106 {
2107 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2108 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2109 ARM_INSN(0xe12fff1c), /* bx ip */
2110 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2111 };
2112
2113 /* Section name for stubs is the associated section name plus this
2114 string. */
2115 #define STUB_SUFFIX ".stub"
2116
2117 enum elf32_arm_stub_type
2118 {
2119 arm_stub_none,
2120 arm_stub_long_branch_any_any,
2121 arm_stub_long_branch_v4t_arm_thumb,
2122 arm_stub_long_branch_thumb_only,
2123 arm_stub_long_branch_v4t_thumb_arm,
2124 arm_stub_short_branch_v4t_thumb_arm,
2125 arm_stub_long_branch_any_arm_pic,
2126 arm_stub_long_branch_any_thumb_pic,
2127 };
2128
2129 struct elf32_arm_stub_hash_entry
2130 {
2131 /* Base hash table entry structure. */
2132 struct bfd_hash_entry root;
2133
2134 /* The stub section. */
2135 asection *stub_sec;
2136
2137 /* Offset within stub_sec of the beginning of this stub. */
2138 bfd_vma stub_offset;
2139
2140 /* Given the symbol's value and its section we can determine its final
2141 value when building the stubs (so the stub knows where to jump). */
2142 bfd_vma target_value;
2143 asection *target_section;
2144
2145 /* The stub type. */
2146 enum elf32_arm_stub_type stub_type;
2147 /* Its encoding size in bytes. */
2148 int stub_size;
2149 /* Its template. */
2150 const insn_sequence *stub_template;
2151 /* The size of the template (number of entries). */
2152 int stub_template_size;
2153
2154 /* The symbol table entry, if any, that this was derived from. */
2155 struct elf32_arm_link_hash_entry *h;
2156
2157 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2158 unsigned char st_type;
2159
2160 /* Where this stub is being called from, or, in the case of combined
2161 stub sections, the first input section in the group. */
2162 asection *id_sec;
2163
2164 /* The name for the local symbol at the start of this stub. The
2165 stub name in the hash table has to be unique; this does not, so
2166 it can be friendlier. */
2167 char *output_name;
2168 };
2169
2170 /* Used to build a map of a section. This is required for mixed-endian
2171 code/data. */
2172
2173 typedef struct elf32_elf_section_map
2174 {
2175 bfd_vma vma;
2176 char type;
2177 }
2178 elf32_arm_section_map;
2179
2180 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2181
2182 typedef enum
2183 {
2184 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2185 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2186 VFP11_ERRATUM_ARM_VENEER,
2187 VFP11_ERRATUM_THUMB_VENEER
2188 }
2189 elf32_vfp11_erratum_type;
2190
2191 typedef struct elf32_vfp11_erratum_list
2192 {
2193 struct elf32_vfp11_erratum_list *next;
2194 bfd_vma vma;
2195 union
2196 {
2197 struct
2198 {
2199 struct elf32_vfp11_erratum_list *veneer;
2200 unsigned int vfp_insn;
2201 } b;
2202 struct
2203 {
2204 struct elf32_vfp11_erratum_list *branch;
2205 unsigned int id;
2206 } v;
2207 } u;
2208 elf32_vfp11_erratum_type type;
2209 }
2210 elf32_vfp11_erratum_list;
2211
2212 typedef struct _arm_elf_section_data
2213 {
2214 struct bfd_elf_section_data elf;
2215 unsigned int mapcount;
2216 unsigned int mapsize;
2217 elf32_arm_section_map *map;
2218 unsigned int erratumcount;
2219 elf32_vfp11_erratum_list *erratumlist;
2220 }
2221 _arm_elf_section_data;
2222
2223 #define elf32_arm_section_data(sec) \
2224 ((_arm_elf_section_data *) elf_section_data (sec))
2225
2226 /* The size of the thread control block. */
2227 #define TCB_SIZE 8
2228
2229 struct elf_arm_obj_tdata
2230 {
2231 struct elf_obj_tdata root;
2232
2233 /* tls_type for each local got entry. */
2234 char *local_got_tls_type;
2235
2236 /* Zero to warn when linking objects with incompatible enum sizes. */
2237 int no_enum_size_warning;
2238
2239 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2240 int no_wchar_size_warning;
2241 };
2242
2243 #define elf_arm_tdata(bfd) \
2244 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2245
2246 #define elf32_arm_local_got_tls_type(bfd) \
2247 (elf_arm_tdata (bfd)->local_got_tls_type)
2248
2249 #define is_arm_elf(bfd) \
2250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2251 && elf_tdata (bfd) != NULL \
2252 && elf_object_id (bfd) == ARM_ELF_TDATA)
2253
2254 static bfd_boolean
2255 elf32_arm_mkobject (bfd *abfd)
2256 {
2257 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2258 ARM_ELF_TDATA);
2259 }
2260
2261 /* The ARM linker needs to keep track of the number of relocs that it
2262 decides to copy in check_relocs for each symbol. This is so that
2263 it can discard PC relative relocs if it doesn't need them when
2264 linking with -Bsymbolic. We store the information in a field
2265 extending the regular ELF linker hash table. */
2266
2267 /* This structure keeps track of the number of relocs we have copied
2268 for a given symbol. */
2269 struct elf32_arm_relocs_copied
2270 {
2271 /* Next section. */
2272 struct elf32_arm_relocs_copied * next;
2273 /* A section in dynobj. */
2274 asection * section;
2275 /* Number of relocs copied in this section. */
2276 bfd_size_type count;
2277 /* Number of PC-relative relocs copied in this section. */
2278 bfd_size_type pc_count;
2279 };
2280
2281 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2282
2283 /* Arm ELF linker hash entry. */
2284 struct elf32_arm_link_hash_entry
2285 {
2286 struct elf_link_hash_entry root;
2287
2288 /* Number of PC relative relocs copied for this symbol. */
2289 struct elf32_arm_relocs_copied * relocs_copied;
2290
2291 /* We reference count Thumb references to a PLT entry separately,
2292 so that we can emit the Thumb trampoline only if needed. */
2293 bfd_signed_vma plt_thumb_refcount;
2294
2295 /* Some references from Thumb code may be eliminated by BL->BLX
2296 conversion, so record them separately. */
2297 bfd_signed_vma plt_maybe_thumb_refcount;
2298
2299 /* Since PLT entries have variable size if the Thumb prologue is
2300 used, we need to record the index into .got.plt instead of
2301 recomputing it from the PLT offset. */
2302 bfd_signed_vma plt_got_offset;
2303
2304 #define GOT_UNKNOWN 0
2305 #define GOT_NORMAL 1
2306 #define GOT_TLS_GD 2
2307 #define GOT_TLS_IE 4
2308 unsigned char tls_type;
2309
2310 /* The symbol marking the real symbol location for exported thumb
2311 symbols with Arm stubs. */
2312 struct elf_link_hash_entry *export_glue;
2313
2314 /* A pointer to the most recently used stub hash entry against this
2315 symbol. */
2316 struct elf32_arm_stub_hash_entry *stub_cache;
2317 };
2318
2319 /* Traverse an arm ELF linker hash table. */
2320 #define elf32_arm_link_hash_traverse(table, func, info) \
2321 (elf_link_hash_traverse \
2322 (&(table)->root, \
2323 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2324 (info)))
2325
2326 /* Get the ARM elf linker hash table from a link_info structure. */
2327 #define elf32_arm_hash_table(info) \
2328 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2329
2330 #define arm_stub_hash_lookup(table, string, create, copy) \
2331 ((struct elf32_arm_stub_hash_entry *) \
2332 bfd_hash_lookup ((table), (string), (create), (copy)))
2333
2334 /* ARM ELF linker hash table. */
2335 struct elf32_arm_link_hash_table
2336 {
2337 /* The main hash table. */
2338 struct elf_link_hash_table root;
2339
2340 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2341 bfd_size_type thumb_glue_size;
2342
2343 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2344 bfd_size_type arm_glue_size;
2345
2346 /* The size in bytes of section containing the ARMv4 BX veneers. */
2347 bfd_size_type bx_glue_size;
2348
2349 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2350 veneer has been populated. */
2351 bfd_vma bx_glue_offset[15];
2352
2353 /* The size in bytes of the section containing glue for VFP11 erratum
2354 veneers. */
2355 bfd_size_type vfp11_erratum_glue_size;
2356
2357 /* An arbitrary input BFD chosen to hold the glue sections. */
2358 bfd * bfd_of_glue_owner;
2359
2360 /* Nonzero to output a BE8 image. */
2361 int byteswap_code;
2362
2363 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2364 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2365 int target1_is_rel;
2366
2367 /* The relocation to use for R_ARM_TARGET2 relocations. */
2368 int target2_reloc;
2369
2370 /* 0 = Ignore R_ARM_V4BX.
2371 1 = Convert BX to MOV PC.
2372 2 = Generate v4 interworing stubs. */
2373 int fix_v4bx;
2374
2375 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2376 int use_blx;
2377
2378 /* What sort of code sequences we should look for which may trigger the
2379 VFP11 denorm erratum. */
2380 bfd_arm_vfp11_fix vfp11_fix;
2381
2382 /* Global counter for the number of fixes we have emitted. */
2383 int num_vfp11_fixes;
2384
2385 /* Nonzero to force PIC branch veneers. */
2386 int pic_veneer;
2387
2388 /* The number of bytes in the initial entry in the PLT. */
2389 bfd_size_type plt_header_size;
2390
2391 /* The number of bytes in the subsequent PLT etries. */
2392 bfd_size_type plt_entry_size;
2393
2394 /* True if the target system is VxWorks. */
2395 int vxworks_p;
2396
2397 /* True if the target system is Symbian OS. */
2398 int symbian_p;
2399
2400 /* True if the target uses REL relocations. */
2401 int use_rel;
2402
2403 /* Short-cuts to get to dynamic linker sections. */
2404 asection *sgot;
2405 asection *sgotplt;
2406 asection *srelgot;
2407 asection *splt;
2408 asection *srelplt;
2409 asection *sdynbss;
2410 asection *srelbss;
2411
2412 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2413 asection *srelplt2;
2414
2415 /* Data for R_ARM_TLS_LDM32 relocations. */
2416 union
2417 {
2418 bfd_signed_vma refcount;
2419 bfd_vma offset;
2420 } tls_ldm_got;
2421
2422 /* Small local sym to section mapping cache. */
2423 struct sym_sec_cache sym_sec;
2424
2425 /* For convenience in allocate_dynrelocs. */
2426 bfd * obfd;
2427
2428 /* The stub hash table. */
2429 struct bfd_hash_table stub_hash_table;
2430
2431 /* Linker stub bfd. */
2432 bfd *stub_bfd;
2433
2434 /* Linker call-backs. */
2435 asection * (*add_stub_section) (const char *, asection *);
2436 void (*layout_sections_again) (void);
2437
2438 /* Array to keep track of which stub sections have been created, and
2439 information on stub grouping. */
2440 struct map_stub
2441 {
2442 /* This is the section to which stubs in the group will be
2443 attached. */
2444 asection *link_sec;
2445 /* The stub section. */
2446 asection *stub_sec;
2447 } *stub_group;
2448
2449 /* Assorted information used by elf32_arm_size_stubs. */
2450 unsigned int bfd_count;
2451 int top_index;
2452 asection **input_list;
2453 };
2454
2455 /* Create an entry in an ARM ELF linker hash table. */
2456
2457 static struct bfd_hash_entry *
2458 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2459 struct bfd_hash_table * table,
2460 const char * string)
2461 {
2462 struct elf32_arm_link_hash_entry * ret =
2463 (struct elf32_arm_link_hash_entry *) entry;
2464
2465 /* Allocate the structure if it has not already been allocated by a
2466 subclass. */
2467 if (ret == NULL)
2468 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2469 if (ret == NULL)
2470 return (struct bfd_hash_entry *) ret;
2471
2472 /* Call the allocation method of the superclass. */
2473 ret = ((struct elf32_arm_link_hash_entry *)
2474 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2475 table, string));
2476 if (ret != NULL)
2477 {
2478 ret->relocs_copied = NULL;
2479 ret->tls_type = GOT_UNKNOWN;
2480 ret->plt_thumb_refcount = 0;
2481 ret->plt_maybe_thumb_refcount = 0;
2482 ret->plt_got_offset = -1;
2483 ret->export_glue = NULL;
2484
2485 ret->stub_cache = NULL;
2486 }
2487
2488 return (struct bfd_hash_entry *) ret;
2489 }
2490
2491 /* Initialize an entry in the stub hash table. */
2492
2493 static struct bfd_hash_entry *
2494 stub_hash_newfunc (struct bfd_hash_entry *entry,
2495 struct bfd_hash_table *table,
2496 const char *string)
2497 {
2498 /* Allocate the structure if it has not already been allocated by a
2499 subclass. */
2500 if (entry == NULL)
2501 {
2502 entry = bfd_hash_allocate (table,
2503 sizeof (struct elf32_arm_stub_hash_entry));
2504 if (entry == NULL)
2505 return entry;
2506 }
2507
2508 /* Call the allocation method of the superclass. */
2509 entry = bfd_hash_newfunc (entry, table, string);
2510 if (entry != NULL)
2511 {
2512 struct elf32_arm_stub_hash_entry *eh;
2513
2514 /* Initialize the local fields. */
2515 eh = (struct elf32_arm_stub_hash_entry *) entry;
2516 eh->stub_sec = NULL;
2517 eh->stub_offset = 0;
2518 eh->target_value = 0;
2519 eh->target_section = NULL;
2520 eh->stub_type = arm_stub_none;
2521 eh->stub_size = 0;
2522 eh->stub_template = NULL;
2523 eh->stub_template_size = 0;
2524 eh->h = NULL;
2525 eh->id_sec = NULL;
2526 }
2527
2528 return entry;
2529 }
2530
2531 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2532 shortcuts to them in our hash table. */
2533
2534 static bfd_boolean
2535 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2536 {
2537 struct elf32_arm_link_hash_table *htab;
2538
2539 htab = elf32_arm_hash_table (info);
2540 /* BPABI objects never have a GOT, or associated sections. */
2541 if (htab->symbian_p)
2542 return TRUE;
2543
2544 if (! _bfd_elf_create_got_section (dynobj, info))
2545 return FALSE;
2546
2547 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2548 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2549 if (!htab->sgot || !htab->sgotplt)
2550 abort ();
2551
2552 htab->srelgot = bfd_make_section_with_flags (dynobj,
2553 RELOC_SECTION (htab, ".got"),
2554 (SEC_ALLOC | SEC_LOAD
2555 | SEC_HAS_CONTENTS
2556 | SEC_IN_MEMORY
2557 | SEC_LINKER_CREATED
2558 | SEC_READONLY));
2559 if (htab->srelgot == NULL
2560 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2561 return FALSE;
2562 return TRUE;
2563 }
2564
2565 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2566 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2567 hash table. */
2568
2569 static bfd_boolean
2570 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2571 {
2572 struct elf32_arm_link_hash_table *htab;
2573
2574 htab = elf32_arm_hash_table (info);
2575 if (!htab->sgot && !create_got_section (dynobj, info))
2576 return FALSE;
2577
2578 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2579 return FALSE;
2580
2581 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2582 htab->srelplt = bfd_get_section_by_name (dynobj,
2583 RELOC_SECTION (htab, ".plt"));
2584 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2585 if (!info->shared)
2586 htab->srelbss = bfd_get_section_by_name (dynobj,
2587 RELOC_SECTION (htab, ".bss"));
2588
2589 if (htab->vxworks_p)
2590 {
2591 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2592 return FALSE;
2593
2594 if (info->shared)
2595 {
2596 htab->plt_header_size = 0;
2597 htab->plt_entry_size
2598 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2599 }
2600 else
2601 {
2602 htab->plt_header_size
2603 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2604 htab->plt_entry_size
2605 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2606 }
2607 }
2608
2609 if (!htab->splt
2610 || !htab->srelplt
2611 || !htab->sdynbss
2612 || (!info->shared && !htab->srelbss))
2613 abort ();
2614
2615 return TRUE;
2616 }
2617
2618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2619
2620 static void
2621 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2622 struct elf_link_hash_entry *dir,
2623 struct elf_link_hash_entry *ind)
2624 {
2625 struct elf32_arm_link_hash_entry *edir, *eind;
2626
2627 edir = (struct elf32_arm_link_hash_entry *) dir;
2628 eind = (struct elf32_arm_link_hash_entry *) ind;
2629
2630 if (eind->relocs_copied != NULL)
2631 {
2632 if (edir->relocs_copied != NULL)
2633 {
2634 struct elf32_arm_relocs_copied **pp;
2635 struct elf32_arm_relocs_copied *p;
2636
2637 /* Add reloc counts against the indirect sym to the direct sym
2638 list. Merge any entries against the same section. */
2639 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2640 {
2641 struct elf32_arm_relocs_copied *q;
2642
2643 for (q = edir->relocs_copied; q != NULL; q = q->next)
2644 if (q->section == p->section)
2645 {
2646 q->pc_count += p->pc_count;
2647 q->count += p->count;
2648 *pp = p->next;
2649 break;
2650 }
2651 if (q == NULL)
2652 pp = &p->next;
2653 }
2654 *pp = edir->relocs_copied;
2655 }
2656
2657 edir->relocs_copied = eind->relocs_copied;
2658 eind->relocs_copied = NULL;
2659 }
2660
2661 if (ind->root.type == bfd_link_hash_indirect)
2662 {
2663 /* Copy over PLT info. */
2664 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2665 eind->plt_thumb_refcount = 0;
2666 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2667 eind->plt_maybe_thumb_refcount = 0;
2668
2669 if (dir->got.refcount <= 0)
2670 {
2671 edir->tls_type = eind->tls_type;
2672 eind->tls_type = GOT_UNKNOWN;
2673 }
2674 }
2675
2676 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2677 }
2678
2679 /* Create an ARM elf linker hash table. */
2680
2681 static struct bfd_link_hash_table *
2682 elf32_arm_link_hash_table_create (bfd *abfd)
2683 {
2684 struct elf32_arm_link_hash_table *ret;
2685 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2686
2687 ret = bfd_malloc (amt);
2688 if (ret == NULL)
2689 return NULL;
2690
2691 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2692 elf32_arm_link_hash_newfunc,
2693 sizeof (struct elf32_arm_link_hash_entry)))
2694 {
2695 free (ret);
2696 return NULL;
2697 }
2698
2699 ret->sgot = NULL;
2700 ret->sgotplt = NULL;
2701 ret->srelgot = NULL;
2702 ret->splt = NULL;
2703 ret->srelplt = NULL;
2704 ret->sdynbss = NULL;
2705 ret->srelbss = NULL;
2706 ret->srelplt2 = NULL;
2707 ret->thumb_glue_size = 0;
2708 ret->arm_glue_size = 0;
2709 ret->bx_glue_size = 0;
2710 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2711 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2712 ret->vfp11_erratum_glue_size = 0;
2713 ret->num_vfp11_fixes = 0;
2714 ret->bfd_of_glue_owner = NULL;
2715 ret->byteswap_code = 0;
2716 ret->target1_is_rel = 0;
2717 ret->target2_reloc = R_ARM_NONE;
2718 #ifdef FOUR_WORD_PLT
2719 ret->plt_header_size = 16;
2720 ret->plt_entry_size = 16;
2721 #else
2722 ret->plt_header_size = 20;
2723 ret->plt_entry_size = 12;
2724 #endif
2725 ret->fix_v4bx = 0;
2726 ret->use_blx = 0;
2727 ret->vxworks_p = 0;
2728 ret->symbian_p = 0;
2729 ret->use_rel = 1;
2730 ret->sym_sec.abfd = NULL;
2731 ret->obfd = abfd;
2732 ret->tls_ldm_got.refcount = 0;
2733 ret->stub_bfd = NULL;
2734 ret->add_stub_section = NULL;
2735 ret->layout_sections_again = NULL;
2736 ret->stub_group = NULL;
2737 ret->bfd_count = 0;
2738 ret->top_index = 0;
2739 ret->input_list = NULL;
2740
2741 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2742 sizeof (struct elf32_arm_stub_hash_entry)))
2743 {
2744 free (ret);
2745 return NULL;
2746 }
2747
2748 return &ret->root.root;
2749 }
2750
2751 /* Free the derived linker hash table. */
2752
2753 static void
2754 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2755 {
2756 struct elf32_arm_link_hash_table *ret
2757 = (struct elf32_arm_link_hash_table *) hash;
2758
2759 bfd_hash_table_free (&ret->stub_hash_table);
2760 _bfd_generic_link_hash_table_free (hash);
2761 }
2762
2763 /* Determine if we're dealing with a Thumb only architecture. */
2764
2765 static bfd_boolean
2766 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2767 {
2768 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2769 Tag_CPU_arch);
2770 int profile;
2771
2772 if (arch != TAG_CPU_ARCH_V7)
2773 return FALSE;
2774
2775 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2776 Tag_CPU_arch_profile);
2777
2778 return profile == 'M';
2779 }
2780
2781 /* Determine if we're dealing with a Thumb-2 object. */
2782
2783 static bfd_boolean
2784 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2785 {
2786 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2787 Tag_CPU_arch);
2788 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2789 }
2790
2791 static bfd_boolean
2792 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2793 {
2794 switch (stub_type)
2795 {
2796 case arm_stub_long_branch_thumb_only:
2797 case arm_stub_long_branch_v4t_thumb_arm:
2798 case arm_stub_short_branch_v4t_thumb_arm:
2799 return TRUE;
2800 case arm_stub_none:
2801 BFD_FAIL ();
2802 return FALSE;
2803 break;
2804 default:
2805 return FALSE;
2806 }
2807 }
2808
2809 /* Determine the type of stub needed, if any, for a call. */
2810
2811 static enum elf32_arm_stub_type
2812 arm_type_of_stub (struct bfd_link_info *info,
2813 asection *input_sec,
2814 const Elf_Internal_Rela *rel,
2815 unsigned char st_type,
2816 struct elf32_arm_link_hash_entry *hash,
2817 bfd_vma destination,
2818 asection *sym_sec,
2819 bfd *input_bfd,
2820 const char *name)
2821 {
2822 bfd_vma location;
2823 bfd_signed_vma branch_offset;
2824 unsigned int r_type;
2825 struct elf32_arm_link_hash_table * globals;
2826 int thumb2;
2827 int thumb_only;
2828 enum elf32_arm_stub_type stub_type = arm_stub_none;
2829
2830 /* We don't know the actual type of destination in case it is of
2831 type STT_SECTION: give up. */
2832 if (st_type == STT_SECTION)
2833 return stub_type;
2834
2835 globals = elf32_arm_hash_table (info);
2836
2837 thumb_only = using_thumb_only (globals);
2838
2839 thumb2 = using_thumb2 (globals);
2840
2841 /* Determine where the call point is. */
2842 location = (input_sec->output_offset
2843 + input_sec->output_section->vma
2844 + rel->r_offset);
2845
2846 branch_offset = (bfd_signed_vma)(destination - location);
2847
2848 r_type = ELF32_R_TYPE (rel->r_info);
2849
2850 /* If the call will go through a PLT entry then we do not need
2851 glue. */
2852 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2853 return stub_type;
2854
2855 if (r_type == R_ARM_THM_CALL)
2856 {
2857 if ((!thumb2
2858 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2859 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2860 || (thumb2
2861 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2862 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2863 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2864 {
2865 if (st_type == STT_ARM_TFUNC)
2866 {
2867 /* Thumb to thumb. */
2868 if (!thumb_only)
2869 {
2870 stub_type = (info->shared | globals->pic_veneer)
2871 /* PIC stubs. */
2872 ? ((globals->use_blx)
2873 /* V5T and above. */
2874 ? arm_stub_long_branch_any_thumb_pic
2875 /* not yet supported on V4T. */
2876 : arm_stub_none)
2877
2878 /* non-PIC stubs. */
2879 : ((globals->use_blx)
2880 /* V5T and above. */
2881 ? arm_stub_long_branch_any_any
2882 /* V4T. */
2883 : arm_stub_long_branch_thumb_only);
2884 }
2885 else
2886 {
2887 stub_type = (info->shared | globals->pic_veneer)
2888 /* PIC stub not yet supported on V4T. */
2889 ? arm_stub_none
2890 /* non-PIC stub. */
2891 : arm_stub_long_branch_thumb_only;
2892 }
2893 }
2894 else
2895 {
2896 /* Thumb to arm. */
2897 if (sym_sec != NULL
2898 && sym_sec->owner != NULL
2899 && !INTERWORK_FLAG (sym_sec->owner))
2900 {
2901 (*_bfd_error_handler)
2902 (_("%B(%s): warning: interworking not enabled.\n"
2903 " first occurrence: %B: Thumb call to ARM"),
2904 sym_sec->owner, input_bfd, name);
2905 }
2906
2907 stub_type = (info->shared | globals->pic_veneer)
2908 /* PIC stubs. */
2909 ? ((globals->use_blx)
2910 /* V5T and above. */
2911 ? arm_stub_long_branch_any_arm_pic
2912 /* not yet supported on V4T. */
2913 : arm_stub_none)
2914
2915 /* non-PIC stubs. */
2916 : ((globals->use_blx)
2917 /* V5T and above. */
2918 ? arm_stub_long_branch_any_any
2919 /* V4T. */
2920 : arm_stub_long_branch_v4t_thumb_arm);
2921
2922 /* Handle v4t short branches. */
2923 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2924 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2925 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2926 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2927 }
2928 }
2929 }
2930 else if (r_type == R_ARM_CALL)
2931 {
2932 if (st_type == STT_ARM_TFUNC)
2933 {
2934 /* Arm to thumb. */
2935
2936 if (sym_sec != NULL
2937 && sym_sec->owner != NULL
2938 && !INTERWORK_FLAG (sym_sec->owner))
2939 {
2940 (*_bfd_error_handler)
2941 (_("%B(%s): warning: interworking not enabled.\n"
2942 " first occurrence: %B: ARM call to Thumb"),
2943 sym_sec->owner, input_bfd, name);
2944 }
2945
2946 /* We have an extra 2-bytes reach because of
2947 the mode change (bit 24 (H) of BLX encoding). */
2948 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2949 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2950 || !globals->use_blx)
2951 {
2952 stub_type = (info->shared | globals->pic_veneer)
2953 /* PIC stubs. */
2954 ? arm_stub_long_branch_any_thumb_pic
2955 /* non-PIC stubs. */
2956 : ((globals->use_blx)
2957 /* V5T and above. */
2958 ? arm_stub_long_branch_any_any
2959 /* V4T. */
2960 : arm_stub_long_branch_v4t_arm_thumb);
2961 }
2962 }
2963 else
2964 {
2965 /* Arm to arm. */
2966 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2967 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2968 {
2969 stub_type = (info->shared | globals->pic_veneer)
2970 /* PIC stubs. */
2971 ? arm_stub_long_branch_any_arm_pic
2972 /* non-PIC stubs. */
2973 : arm_stub_long_branch_any_any;
2974 }
2975 }
2976 }
2977
2978 return stub_type;
2979 }
2980
2981 /* Build a name for an entry in the stub hash table. */
2982
2983 static char *
2984 elf32_arm_stub_name (const asection *input_section,
2985 const asection *sym_sec,
2986 const struct elf32_arm_link_hash_entry *hash,
2987 const Elf_Internal_Rela *rel)
2988 {
2989 char *stub_name;
2990 bfd_size_type len;
2991
2992 if (hash)
2993 {
2994 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2995 stub_name = bfd_malloc (len);
2996 if (stub_name != NULL)
2997 sprintf (stub_name, "%08x_%s+%x",
2998 input_section->id & 0xffffffff,
2999 hash->root.root.root.string,
3000 (int) rel->r_addend & 0xffffffff);
3001 }
3002 else
3003 {
3004 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3005 stub_name = bfd_malloc (len);
3006 if (stub_name != NULL)
3007 sprintf (stub_name, "%08x_%x:%x+%x",
3008 input_section->id & 0xffffffff,
3009 sym_sec->id & 0xffffffff,
3010 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3011 (int) rel->r_addend & 0xffffffff);
3012 }
3013
3014 return stub_name;
3015 }
3016
3017 /* Look up an entry in the stub hash. Stub entries are cached because
3018 creating the stub name takes a bit of time. */
3019
3020 static struct elf32_arm_stub_hash_entry *
3021 elf32_arm_get_stub_entry (const asection *input_section,
3022 const asection *sym_sec,
3023 struct elf_link_hash_entry *hash,
3024 const Elf_Internal_Rela *rel,
3025 struct elf32_arm_link_hash_table *htab)
3026 {
3027 struct elf32_arm_stub_hash_entry *stub_entry;
3028 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3029 const asection *id_sec;
3030
3031 if ((input_section->flags & SEC_CODE) == 0)
3032 return NULL;
3033
3034 /* If this input section is part of a group of sections sharing one
3035 stub section, then use the id of the first section in the group.
3036 Stub names need to include a section id, as there may well be
3037 more than one stub used to reach say, printf, and we need to
3038 distinguish between them. */
3039 id_sec = htab->stub_group[input_section->id].link_sec;
3040
3041 if (h != NULL && h->stub_cache != NULL
3042 && h->stub_cache->h == h
3043 && h->stub_cache->id_sec == id_sec)
3044 {
3045 stub_entry = h->stub_cache;
3046 }
3047 else
3048 {
3049 char *stub_name;
3050
3051 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3052 if (stub_name == NULL)
3053 return NULL;
3054
3055 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3056 stub_name, FALSE, FALSE);
3057 if (h != NULL)
3058 h->stub_cache = stub_entry;
3059
3060 free (stub_name);
3061 }
3062
3063 return stub_entry;
3064 }
3065
3066 /* Add a new stub entry to the stub hash. Not all fields of the new
3067 stub entry are initialised. */
3068
3069 static struct elf32_arm_stub_hash_entry *
3070 elf32_arm_add_stub (const char *stub_name,
3071 asection *section,
3072 struct elf32_arm_link_hash_table *htab)
3073 {
3074 asection *link_sec;
3075 asection *stub_sec;
3076 struct elf32_arm_stub_hash_entry *stub_entry;
3077
3078 link_sec = htab->stub_group[section->id].link_sec;
3079 stub_sec = htab->stub_group[section->id].stub_sec;
3080 if (stub_sec == NULL)
3081 {
3082 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3083 if (stub_sec == NULL)
3084 {
3085 size_t namelen;
3086 bfd_size_type len;
3087 char *s_name;
3088
3089 namelen = strlen (link_sec->name);
3090 len = namelen + sizeof (STUB_SUFFIX);
3091 s_name = bfd_alloc (htab->stub_bfd, len);
3092 if (s_name == NULL)
3093 return NULL;
3094
3095 memcpy (s_name, link_sec->name, namelen);
3096 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3097 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3098 if (stub_sec == NULL)
3099 return NULL;
3100 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3101 }
3102 htab->stub_group[section->id].stub_sec = stub_sec;
3103 }
3104
3105 /* Enter this entry into the linker stub hash table. */
3106 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3107 TRUE, FALSE);
3108 if (stub_entry == NULL)
3109 {
3110 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3111 section->owner,
3112 stub_name);
3113 return NULL;
3114 }
3115
3116 stub_entry->stub_sec = stub_sec;
3117 stub_entry->stub_offset = 0;
3118 stub_entry->id_sec = link_sec;
3119
3120 return stub_entry;
3121 }
3122
3123 /* Store an Arm insn into an output section not processed by
3124 elf32_arm_write_section. */
3125
3126 static void
3127 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3128 bfd * output_bfd, bfd_vma val, void * ptr)
3129 {
3130 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3131 bfd_putl32 (val, ptr);
3132 else
3133 bfd_putb32 (val, ptr);
3134 }
3135
3136 /* Store a 16-bit Thumb insn into an output section not processed by
3137 elf32_arm_write_section. */
3138
3139 static void
3140 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3141 bfd * output_bfd, bfd_vma val, void * ptr)
3142 {
3143 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3144 bfd_putl16 (val, ptr);
3145 else
3146 bfd_putb16 (val, ptr);
3147 }
3148
3149 static bfd_boolean
3150 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3151 void * in_arg)
3152 {
3153 struct elf32_arm_stub_hash_entry *stub_entry;
3154 struct bfd_link_info *info;
3155 struct elf32_arm_link_hash_table *htab;
3156 asection *stub_sec;
3157 bfd *stub_bfd;
3158 bfd_vma stub_addr;
3159 bfd_byte *loc;
3160 bfd_vma sym_value;
3161 int template_size;
3162 int size;
3163 const insn_sequence *template;
3164 int i;
3165 struct elf32_arm_link_hash_table * globals;
3166 int stub_reloc_idx = -1;
3167 int stub_reloc_offset = 0;
3168
3169 /* Massage our args to the form they really have. */
3170 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3171 info = (struct bfd_link_info *) in_arg;
3172
3173 globals = elf32_arm_hash_table (info);
3174
3175 htab = elf32_arm_hash_table (info);
3176 stub_sec = stub_entry->stub_sec;
3177
3178 /* Make a note of the offset within the stubs for this entry. */
3179 stub_entry->stub_offset = stub_sec->size;
3180 loc = stub_sec->contents + stub_entry->stub_offset;
3181
3182 stub_bfd = stub_sec->owner;
3183
3184 /* This is the address of the start of the stub. */
3185 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3186 + stub_entry->stub_offset;
3187
3188 /* This is the address of the stub destination. */
3189 sym_value = (stub_entry->target_value
3190 + stub_entry->target_section->output_offset
3191 + stub_entry->target_section->output_section->vma);
3192
3193 template = stub_entry->stub_template;
3194 template_size = stub_entry->stub_template_size;
3195
3196 size = 0;
3197 for (i = 0; i < template_size; i++)
3198 {
3199 switch (template[i].type)
3200 {
3201 case THUMB16_TYPE:
3202 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3203 size += 2;
3204 break;
3205
3206 case ARM_TYPE:
3207 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3208 /* Handle cases where the target is encoded within the
3209 instruction. */
3210 if (template[i].reloc_type == R_ARM_JUMP24)
3211 {
3212 stub_reloc_idx = i;
3213 stub_reloc_offset = size;
3214 }
3215 size += 4;
3216 break;
3217
3218 case DATA_TYPE:
3219 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3220 stub_reloc_idx = i;
3221 stub_reloc_offset = size;
3222 size += 4;
3223 break;
3224
3225 default:
3226 BFD_FAIL ();
3227 return FALSE;
3228 }
3229 }
3230
3231 stub_sec->size += size;
3232
3233 /* Stub size has already been computed in arm_size_one_stub. Check
3234 consistency. */
3235 BFD_ASSERT (size == stub_entry->stub_size);
3236
3237 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3238 if (stub_entry->st_type == STT_ARM_TFUNC)
3239 sym_value |= 1;
3240
3241 /* Assume there is one and only one entry to relocate in each stub. */
3242 BFD_ASSERT (stub_reloc_idx != -1);
3243
3244 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].reloc_type),
3245 stub_bfd, stub_sec, stub_sec->contents,
3246 stub_entry->stub_offset + stub_reloc_offset,
3247 sym_value, template[stub_reloc_idx].reloc_addend);
3248
3249 return TRUE;
3250 }
3251
3252 /* As above, but don't actually build the stub. Just bump offset so
3253 we know stub section sizes. */
3254
3255 static bfd_boolean
3256 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3257 void * in_arg)
3258 {
3259 struct elf32_arm_stub_hash_entry *stub_entry;
3260 struct elf32_arm_link_hash_table *htab;
3261 const insn_sequence *template;
3262 int template_size;
3263 int size;
3264 int i;
3265
3266 /* Massage our args to the form they really have. */
3267 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3268 htab = (struct elf32_arm_link_hash_table *) in_arg;
3269
3270 switch (stub_entry->stub_type)
3271 {
3272 case arm_stub_long_branch_any_any:
3273 template = elf32_arm_stub_long_branch_any_any;
3274 template_size = sizeof (elf32_arm_stub_long_branch_any_any) / sizeof (insn_sequence);
3275
3276 break;
3277 case arm_stub_long_branch_v4t_arm_thumb:
3278 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
3279 template_size = sizeof (elf32_arm_stub_long_branch_v4t_arm_thumb) / sizeof (insn_sequence);
3280 break;
3281 case arm_stub_long_branch_thumb_only:
3282 template = elf32_arm_stub_long_branch_thumb_only;
3283 template_size = sizeof (elf32_arm_stub_long_branch_thumb_only) / sizeof (insn_sequence);
3284 break;
3285 case arm_stub_long_branch_v4t_thumb_arm:
3286 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
3287 template_size = sizeof (elf32_arm_stub_long_branch_v4t_thumb_arm) / sizeof (insn_sequence);
3288 break;
3289 case arm_stub_short_branch_v4t_thumb_arm:
3290 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
3291 template_size = sizeof (elf32_arm_stub_short_branch_v4t_thumb_arm) / sizeof (insn_sequence);
3292 break;
3293 case arm_stub_long_branch_any_arm_pic:
3294 template = elf32_arm_stub_long_branch_any_arm_pic;
3295 template_size = sizeof (elf32_arm_stub_long_branch_any_arm_pic) / sizeof (insn_sequence);
3296 break;
3297 case arm_stub_long_branch_any_thumb_pic:
3298 template = elf32_arm_stub_long_branch_any_thumb_pic;
3299 template_size = sizeof (elf32_arm_stub_long_branch_any_thumb_pic) / sizeof (insn_sequence);
3300 break;
3301 default:
3302 BFD_FAIL ();
3303 return FALSE;
3304 }
3305
3306 size = 0;
3307 for (i = 0; i < template_size; i++)
3308 {
3309 switch (template[i].type)
3310 {
3311 case THUMB16_TYPE:
3312 size += 2;
3313 break;
3314
3315 case ARM_TYPE:
3316 size += 4;
3317 break;
3318
3319 case DATA_TYPE:
3320 size += 4;
3321 break;
3322
3323 default:
3324 BFD_FAIL ();
3325 return FALSE;
3326 }
3327 }
3328
3329 stub_entry->stub_size = size;
3330 stub_entry->stub_template = template;
3331 stub_entry->stub_template_size = template_size;
3332
3333 size = (size + 7) & ~7;
3334 stub_entry->stub_sec->size += size;
3335
3336 return TRUE;
3337 }
3338
3339 /* External entry points for sizing and building linker stubs. */
3340
3341 /* Set up various things so that we can make a list of input sections
3342 for each output section included in the link. Returns -1 on error,
3343 0 when no stubs will be needed, and 1 on success. */
3344
3345 int
3346 elf32_arm_setup_section_lists (bfd *output_bfd,
3347 struct bfd_link_info *info)
3348 {
3349 bfd *input_bfd;
3350 unsigned int bfd_count;
3351 int top_id, top_index;
3352 asection *section;
3353 asection **input_list, **list;
3354 bfd_size_type amt;
3355 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3356
3357 if (! is_elf_hash_table (htab))
3358 return 0;
3359
3360 /* Count the number of input BFDs and find the top input section id. */
3361 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3362 input_bfd != NULL;
3363 input_bfd = input_bfd->link_next)
3364 {
3365 bfd_count += 1;
3366 for (section = input_bfd->sections;
3367 section != NULL;
3368 section = section->next)
3369 {
3370 if (top_id < section->id)
3371 top_id = section->id;
3372 }
3373 }
3374 htab->bfd_count = bfd_count;
3375
3376 amt = sizeof (struct map_stub) * (top_id + 1);
3377 htab->stub_group = bfd_zmalloc (amt);
3378 if (htab->stub_group == NULL)
3379 return -1;
3380
3381 /* We can't use output_bfd->section_count here to find the top output
3382 section index as some sections may have been removed, and
3383 _bfd_strip_section_from_output doesn't renumber the indices. */
3384 for (section = output_bfd->sections, top_index = 0;
3385 section != NULL;
3386 section = section->next)
3387 {
3388 if (top_index < section->index)
3389 top_index = section->index;
3390 }
3391
3392 htab->top_index = top_index;
3393 amt = sizeof (asection *) * (top_index + 1);
3394 input_list = bfd_malloc (amt);
3395 htab->input_list = input_list;
3396 if (input_list == NULL)
3397 return -1;
3398
3399 /* For sections we aren't interested in, mark their entries with a
3400 value we can check later. */
3401 list = input_list + top_index;
3402 do
3403 *list = bfd_abs_section_ptr;
3404 while (list-- != input_list);
3405
3406 for (section = output_bfd->sections;
3407 section != NULL;
3408 section = section->next)
3409 {
3410 if ((section->flags & SEC_CODE) != 0)
3411 input_list[section->index] = NULL;
3412 }
3413
3414 return 1;
3415 }
3416
3417 /* The linker repeatedly calls this function for each input section,
3418 in the order that input sections are linked into output sections.
3419 Build lists of input sections to determine groupings between which
3420 we may insert linker stubs. */
3421
3422 void
3423 elf32_arm_next_input_section (struct bfd_link_info *info,
3424 asection *isec)
3425 {
3426 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3427
3428 if (isec->output_section->index <= htab->top_index)
3429 {
3430 asection **list = htab->input_list + isec->output_section->index;
3431
3432 if (*list != bfd_abs_section_ptr)
3433 {
3434 /* Steal the link_sec pointer for our list. */
3435 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3436 /* This happens to make the list in reverse order,
3437 which we reverse later. */
3438 PREV_SEC (isec) = *list;
3439 *list = isec;
3440 }
3441 }
3442 }
3443
3444 /* See whether we can group stub sections together. Grouping stub
3445 sections may result in fewer stubs. More importantly, we need to
3446 put all .init* and .fini* stubs at the end of the .init or
3447 .fini output sections respectively, because glibc splits the
3448 _init and _fini functions into multiple parts. Putting a stub in
3449 the middle of a function is not a good idea. */
3450
3451 static void
3452 group_sections (struct elf32_arm_link_hash_table *htab,
3453 bfd_size_type stub_group_size,
3454 bfd_boolean stubs_always_after_branch)
3455 {
3456 asection **list = htab->input_list;
3457
3458 do
3459 {
3460 asection *tail = *list;
3461 asection *head;
3462 asection *tp;
3463
3464 if (tail == bfd_abs_section_ptr)
3465 continue;
3466
3467 /* Reverse the list: we must avoid placing stubs at the
3468 beginning of the section because the beginning of the text
3469 section may be required for an interrupt vector in bare metal
3470 code. */
3471 #define NEXT_SEC PREV_SEC
3472 head = tail;
3473 tp = NULL;
3474 for (;;)
3475 {
3476 asection *h = PREV_SEC (head);
3477 NEXT_SEC (head) = tp;
3478 if (h == NULL)
3479 break;
3480 tp = head;
3481 head = h;
3482 }
3483
3484 while (head != NULL)
3485 {
3486 asection *curr;
3487 asection *next;
3488 bfd_size_type total;
3489
3490 curr = head;
3491 total = head->size;
3492 while ((next = NEXT_SEC (curr)) != NULL
3493 && ((total += next->output_offset - curr->output_offset)
3494 < stub_group_size))
3495 curr = next;
3496
3497 /* OK, the size from the start to the start of CURR is less
3498 than stub_group_size and thus can be handled by one stub
3499 section. (Or the head section is itself larger than
3500 stub_group_size, in which case we may be toast.)
3501 We should really be keeping track of the total size of
3502 stubs added here, as stubs contribute to the final output
3503 section size. */
3504 do
3505 {
3506 next = NEXT_SEC (head);
3507 /* Set up this stub group. */
3508 htab->stub_group[head->id].link_sec = curr;
3509 }
3510 while (head != curr && (head = next) != NULL);
3511
3512 /* But wait, there's more! Input sections up to stub_group_size
3513 bytes after the stub section can be handled by it too. */
3514 if (!stubs_always_after_branch)
3515 {
3516 total = 0;
3517 while (next != NULL
3518 && ((total += next->output_offset - head->output_offset)
3519 < stub_group_size))
3520 {
3521 head = next;
3522 next = NEXT_SEC (head);
3523 htab->stub_group[head->id].link_sec = curr;
3524 }
3525 }
3526 head = next;
3527 }
3528 }
3529 while (list++ != htab->input_list + htab->top_index);
3530
3531 free (htab->input_list);
3532 #undef PREV_SEC
3533 #undef NEXT_SEC
3534 }
3535
3536 /* Determine and set the size of the stub section for a final link.
3537
3538 The basic idea here is to examine all the relocations looking for
3539 PC-relative calls to a target that is unreachable with a "bl"
3540 instruction. */
3541
3542 bfd_boolean
3543 elf32_arm_size_stubs (bfd *output_bfd,
3544 bfd *stub_bfd,
3545 struct bfd_link_info *info,
3546 bfd_signed_vma group_size,
3547 asection * (*add_stub_section) (const char *, asection *),
3548 void (*layout_sections_again) (void))
3549 {
3550 bfd_size_type stub_group_size;
3551 bfd_boolean stubs_always_after_branch;
3552 bfd_boolean stub_changed = 0;
3553 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3554
3555 /* Propagate mach to stub bfd, because it may not have been
3556 finalized when we created stub_bfd. */
3557 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3558 bfd_get_mach (output_bfd));
3559
3560 /* Stash our params away. */
3561 htab->stub_bfd = stub_bfd;
3562 htab->add_stub_section = add_stub_section;
3563 htab->layout_sections_again = layout_sections_again;
3564 stubs_always_after_branch = group_size < 0;
3565 if (group_size < 0)
3566 stub_group_size = -group_size;
3567 else
3568 stub_group_size = group_size;
3569
3570 if (stub_group_size == 1)
3571 {
3572 /* Default values. */
3573 /* Thumb branch range is +-4MB has to be used as the default
3574 maximum size (a given section can contain both ARM and Thumb
3575 code, so the worst case has to be taken into account).
3576
3577 This value is 24K less than that, which allows for 2025
3578 12-byte stubs. If we exceed that, then we will fail to link.
3579 The user will have to relink with an explicit group size
3580 option. */
3581 stub_group_size = 4170000;
3582 }
3583
3584 group_sections (htab, stub_group_size, stubs_always_after_branch);
3585
3586 while (1)
3587 {
3588 bfd *input_bfd;
3589 unsigned int bfd_indx;
3590 asection *stub_sec;
3591
3592 for (input_bfd = info->input_bfds, bfd_indx = 0;
3593 input_bfd != NULL;
3594 input_bfd = input_bfd->link_next, bfd_indx++)
3595 {
3596 Elf_Internal_Shdr *symtab_hdr;
3597 asection *section;
3598 Elf_Internal_Sym *local_syms = NULL;
3599
3600 /* We'll need the symbol table in a second. */
3601 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3602 if (symtab_hdr->sh_info == 0)
3603 continue;
3604
3605 /* Walk over each section attached to the input bfd. */
3606 for (section = input_bfd->sections;
3607 section != NULL;
3608 section = section->next)
3609 {
3610 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3611
3612 /* If there aren't any relocs, then there's nothing more
3613 to do. */
3614 if ((section->flags & SEC_RELOC) == 0
3615 || section->reloc_count == 0
3616 || (section->flags & SEC_CODE) == 0)
3617 continue;
3618
3619 /* If this section is a link-once section that will be
3620 discarded, then don't create any stubs. */
3621 if (section->output_section == NULL
3622 || section->output_section->owner != output_bfd)
3623 continue;
3624
3625 /* Get the relocs. */
3626 internal_relocs
3627 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3628 NULL, info->keep_memory);
3629 if (internal_relocs == NULL)
3630 goto error_ret_free_local;
3631
3632 /* Now examine each relocation. */
3633 irela = internal_relocs;
3634 irelaend = irela + section->reloc_count;
3635 for (; irela < irelaend; irela++)
3636 {
3637 unsigned int r_type, r_indx;
3638 enum elf32_arm_stub_type stub_type;
3639 struct elf32_arm_stub_hash_entry *stub_entry;
3640 asection *sym_sec;
3641 bfd_vma sym_value;
3642 bfd_vma destination;
3643 struct elf32_arm_link_hash_entry *hash;
3644 const char *sym_name;
3645 char *stub_name;
3646 const asection *id_sec;
3647 unsigned char st_type;
3648
3649 r_type = ELF32_R_TYPE (irela->r_info);
3650 r_indx = ELF32_R_SYM (irela->r_info);
3651
3652 if (r_type >= (unsigned int) R_ARM_max)
3653 {
3654 bfd_set_error (bfd_error_bad_value);
3655 error_ret_free_internal:
3656 if (elf_section_data (section)->relocs == NULL)
3657 free (internal_relocs);
3658 goto error_ret_free_local;
3659 }
3660
3661 /* Only look for stubs on call instructions. */
3662 if ((r_type != (unsigned int) R_ARM_CALL)
3663 && (r_type != (unsigned int) R_ARM_THM_CALL))
3664 continue;
3665
3666 /* Now determine the call target, its name, value,
3667 section. */
3668 sym_sec = NULL;
3669 sym_value = 0;
3670 destination = 0;
3671 hash = NULL;
3672 sym_name = NULL;
3673 if (r_indx < symtab_hdr->sh_info)
3674 {
3675 /* It's a local symbol. */
3676 Elf_Internal_Sym *sym;
3677 Elf_Internal_Shdr *hdr;
3678
3679 if (local_syms == NULL)
3680 {
3681 local_syms
3682 = (Elf_Internal_Sym *) symtab_hdr->contents;
3683 if (local_syms == NULL)
3684 local_syms
3685 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3686 symtab_hdr->sh_info, 0,
3687 NULL, NULL, NULL);
3688 if (local_syms == NULL)
3689 goto error_ret_free_internal;
3690 }
3691
3692 sym = local_syms + r_indx;
3693 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3694 sym_sec = hdr->bfd_section;
3695 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3696 sym_value = sym->st_value;
3697 destination = (sym_value + irela->r_addend
3698 + sym_sec->output_offset
3699 + sym_sec->output_section->vma);
3700 st_type = ELF_ST_TYPE (sym->st_info);
3701 sym_name
3702 = bfd_elf_string_from_elf_section (input_bfd,
3703 symtab_hdr->sh_link,
3704 sym->st_name);
3705 }
3706 else
3707 {
3708 /* It's an external symbol. */
3709 int e_indx;
3710
3711 e_indx = r_indx - symtab_hdr->sh_info;
3712 hash = ((struct elf32_arm_link_hash_entry *)
3713 elf_sym_hashes (input_bfd)[e_indx]);
3714
3715 while (hash->root.root.type == bfd_link_hash_indirect
3716 || hash->root.root.type == bfd_link_hash_warning)
3717 hash = ((struct elf32_arm_link_hash_entry *)
3718 hash->root.root.u.i.link);
3719
3720 if (hash->root.root.type == bfd_link_hash_defined
3721 || hash->root.root.type == bfd_link_hash_defweak)
3722 {
3723 sym_sec = hash->root.root.u.def.section;
3724 sym_value = hash->root.root.u.def.value;
3725 if (sym_sec->output_section != NULL)
3726 destination = (sym_value + irela->r_addend
3727 + sym_sec->output_offset
3728 + sym_sec->output_section->vma);
3729 }
3730 else if (hash->root.root.type == bfd_link_hash_undefweak
3731 || hash->root.root.type == bfd_link_hash_undefined)
3732 /* For a shared library, these will need a PLT stub,
3733 which is treated separately.
3734 For absolute code, they cannot be handled. */
3735 continue;
3736 else
3737 {
3738 bfd_set_error (bfd_error_bad_value);
3739 goto error_ret_free_internal;
3740 }
3741 st_type = ELF_ST_TYPE (hash->root.type);
3742 sym_name = hash->root.root.root.string;
3743 }
3744
3745 /* Determine what (if any) linker stub is needed. */
3746 stub_type = arm_type_of_stub (info, section, irela, st_type,
3747 hash, destination, sym_sec,
3748 input_bfd, sym_name);
3749 if (stub_type == arm_stub_none)
3750 continue;
3751
3752 /* Support for grouping stub sections. */
3753 id_sec = htab->stub_group[section->id].link_sec;
3754
3755 /* Get the name of this stub. */
3756 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3757 if (!stub_name)
3758 goto error_ret_free_internal;
3759
3760 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3761 stub_name,
3762 FALSE, FALSE);
3763 if (stub_entry != NULL)
3764 {
3765 /* The proper stub has already been created. */
3766 free (stub_name);
3767 continue;
3768 }
3769
3770 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3771 if (stub_entry == NULL)
3772 {
3773 free (stub_name);
3774 goto error_ret_free_internal;
3775 }
3776
3777 stub_entry->target_value = sym_value;
3778 stub_entry->target_section = sym_sec;
3779 stub_entry->stub_type = stub_type;
3780 stub_entry->h = hash;
3781 stub_entry->st_type = st_type;
3782
3783 if (sym_name == NULL)
3784 sym_name = "unnamed";
3785 stub_entry->output_name
3786 = bfd_alloc (htab->stub_bfd,
3787 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3788 + strlen (sym_name));
3789 if (stub_entry->output_name == NULL)
3790 {
3791 free (stub_name);
3792 goto error_ret_free_internal;
3793 }
3794
3795 /* For historical reasons, use the existing names for
3796 ARM-to-Thumb and Thumb-to-ARM stubs. */
3797 if (r_type == (unsigned int) R_ARM_THM_CALL
3798 && st_type != STT_ARM_TFUNC)
3799 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3800 sym_name);
3801 else if (r_type == (unsigned int) R_ARM_CALL
3802 && st_type == STT_ARM_TFUNC)
3803 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3804 sym_name);
3805 else
3806 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3807 sym_name);
3808
3809 stub_changed = TRUE;
3810 }
3811
3812 /* We're done with the internal relocs, free them. */
3813 if (elf_section_data (section)->relocs == NULL)
3814 free (internal_relocs);
3815 }
3816 }
3817
3818 if (!stub_changed)
3819 break;
3820
3821 /* OK, we've added some stubs. Find out the new size of the
3822 stub sections. */
3823 for (stub_sec = htab->stub_bfd->sections;
3824 stub_sec != NULL;
3825 stub_sec = stub_sec->next)
3826 stub_sec->size = 0;
3827
3828 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3829
3830 /* Ask the linker to do its stuff. */
3831 (*htab->layout_sections_again) ();
3832 stub_changed = FALSE;
3833 }
3834
3835 return TRUE;
3836
3837 error_ret_free_local:
3838 return FALSE;
3839 }
3840
3841 /* Build all the stubs associated with the current output file. The
3842 stubs are kept in a hash table attached to the main linker hash
3843 table. We also set up the .plt entries for statically linked PIC
3844 functions here. This function is called via arm_elf_finish in the
3845 linker. */
3846
3847 bfd_boolean
3848 elf32_arm_build_stubs (struct bfd_link_info *info)
3849 {
3850 asection *stub_sec;
3851 struct bfd_hash_table *table;
3852 struct elf32_arm_link_hash_table *htab;
3853
3854 htab = elf32_arm_hash_table (info);
3855
3856 for (stub_sec = htab->stub_bfd->sections;
3857 stub_sec != NULL;
3858 stub_sec = stub_sec->next)
3859 {
3860 bfd_size_type size;
3861
3862 /* Ignore non-stub sections. */
3863 if (!strstr (stub_sec->name, STUB_SUFFIX))
3864 continue;
3865
3866 /* Allocate memory to hold the linker stubs. */
3867 size = stub_sec->size;
3868 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3869 if (stub_sec->contents == NULL && size != 0)
3870 return FALSE;
3871 stub_sec->size = 0;
3872 }
3873
3874 /* Build the stubs as directed by the stub hash table. */
3875 table = &htab->stub_hash_table;
3876 bfd_hash_traverse (table, arm_build_one_stub, info);
3877
3878 return TRUE;
3879 }
3880
3881 /* Locate the Thumb encoded calling stub for NAME. */
3882
3883 static struct elf_link_hash_entry *
3884 find_thumb_glue (struct bfd_link_info *link_info,
3885 const char *name,
3886 char **error_message)
3887 {
3888 char *tmp_name;
3889 struct elf_link_hash_entry *hash;
3890 struct elf32_arm_link_hash_table *hash_table;
3891
3892 /* We need a pointer to the armelf specific hash table. */
3893 hash_table = elf32_arm_hash_table (link_info);
3894
3895 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3896 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3897
3898 BFD_ASSERT (tmp_name);
3899
3900 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3901
3902 hash = elf_link_hash_lookup
3903 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3904
3905 if (hash == NULL
3906 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3907 tmp_name, name) == -1)
3908 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3909
3910 free (tmp_name);
3911
3912 return hash;
3913 }
3914
3915 /* Locate the ARM encoded calling stub for NAME. */
3916
3917 static struct elf_link_hash_entry *
3918 find_arm_glue (struct bfd_link_info *link_info,
3919 const char *name,
3920 char **error_message)
3921 {
3922 char *tmp_name;
3923 struct elf_link_hash_entry *myh;
3924 struct elf32_arm_link_hash_table *hash_table;
3925
3926 /* We need a pointer to the elfarm specific hash table. */
3927 hash_table = elf32_arm_hash_table (link_info);
3928
3929 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3930 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3931
3932 BFD_ASSERT (tmp_name);
3933
3934 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3935
3936 myh = elf_link_hash_lookup
3937 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3938
3939 if (myh == NULL
3940 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3941 tmp_name, name) == -1)
3942 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3943
3944 free (tmp_name);
3945
3946 return myh;
3947 }
3948
3949 /* ARM->Thumb glue (static images):
3950
3951 .arm
3952 __func_from_arm:
3953 ldr r12, __func_addr
3954 bx r12
3955 __func_addr:
3956 .word func @ behave as if you saw a ARM_32 reloc.
3957
3958 (v5t static images)
3959 .arm
3960 __func_from_arm:
3961 ldr pc, __func_addr
3962 __func_addr:
3963 .word func @ behave as if you saw a ARM_32 reloc.
3964
3965 (relocatable images)
3966 .arm
3967 __func_from_arm:
3968 ldr r12, __func_offset
3969 add r12, r12, pc
3970 bx r12
3971 __func_offset:
3972 .word func - . */
3973
3974 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3975 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3976 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3977 static const insn32 a2t3_func_addr_insn = 0x00000001;
3978
3979 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3980 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3981 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3982
3983 #define ARM2THUMB_PIC_GLUE_SIZE 16
3984 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3985 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3986 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3987
3988 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3989
3990 .thumb .thumb
3991 .align 2 .align 2
3992 __func_from_thumb: __func_from_thumb:
3993 bx pc push {r6, lr}
3994 nop ldr r6, __func_addr
3995 .arm mov lr, pc
3996 b func bx r6
3997 .arm
3998 ;; back_to_thumb
3999 ldmia r13! {r6, lr}
4000 bx lr
4001 __func_addr:
4002 .word func */
4003
4004 #define THUMB2ARM_GLUE_SIZE 8
4005 static const insn16 t2a1_bx_pc_insn = 0x4778;
4006 static const insn16 t2a2_noop_insn = 0x46c0;
4007 static const insn32 t2a3_b_insn = 0xea000000;
4008
4009 #define VFP11_ERRATUM_VENEER_SIZE 8
4010
4011 #define ARM_BX_VENEER_SIZE 12
4012 static const insn32 armbx1_tst_insn = 0xe3100001;
4013 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4014 static const insn32 armbx3_bx_insn = 0xe12fff10;
4015
4016 #ifndef ELFARM_NABI_C_INCLUDED
4017 static void
4018 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4019 {
4020 asection * s;
4021 bfd_byte * contents;
4022
4023 if (size == 0)
4024 return;
4025
4026 BFD_ASSERT (abfd != NULL);
4027
4028 s = bfd_get_section_by_name (abfd, name);
4029 BFD_ASSERT (s != NULL);
4030
4031 contents = bfd_alloc (abfd, size);
4032
4033 BFD_ASSERT (s->size == size);
4034 s->contents = contents;
4035 }
4036
4037 bfd_boolean
4038 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4039 {
4040 struct elf32_arm_link_hash_table * globals;
4041
4042 globals = elf32_arm_hash_table (info);
4043 BFD_ASSERT (globals != NULL);
4044
4045 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4046 globals->arm_glue_size,
4047 ARM2THUMB_GLUE_SECTION_NAME);
4048
4049 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4050 globals->thumb_glue_size,
4051 THUMB2ARM_GLUE_SECTION_NAME);
4052
4053 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4054 globals->vfp11_erratum_glue_size,
4055 VFP11_ERRATUM_VENEER_SECTION_NAME);
4056
4057 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4058 globals->bx_glue_size,
4059 ARM_BX_GLUE_SECTION_NAME);
4060
4061 return TRUE;
4062 }
4063
4064 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4065 returns the symbol identifying the stub. */
4066
4067 static struct elf_link_hash_entry *
4068 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4069 struct elf_link_hash_entry * h)
4070 {
4071 const char * name = h->root.root.string;
4072 asection * s;
4073 char * tmp_name;
4074 struct elf_link_hash_entry * myh;
4075 struct bfd_link_hash_entry * bh;
4076 struct elf32_arm_link_hash_table * globals;
4077 bfd_vma val;
4078 bfd_size_type size;
4079
4080 globals = elf32_arm_hash_table (link_info);
4081
4082 BFD_ASSERT (globals != NULL);
4083 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4084
4085 s = bfd_get_section_by_name
4086 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4087
4088 BFD_ASSERT (s != NULL);
4089
4090 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4091
4092 BFD_ASSERT (tmp_name);
4093
4094 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4095
4096 myh = elf_link_hash_lookup
4097 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4098
4099 if (myh != NULL)
4100 {
4101 /* We've already seen this guy. */
4102 free (tmp_name);
4103 return myh;
4104 }
4105
4106 /* The only trick here is using hash_table->arm_glue_size as the value.
4107 Even though the section isn't allocated yet, this is where we will be
4108 putting it. The +1 on the value marks that the stub has not been
4109 output yet - not that it is a Thumb function. */
4110 bh = NULL;
4111 val = globals->arm_glue_size + 1;
4112 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4113 tmp_name, BSF_GLOBAL, s, val,
4114 NULL, TRUE, FALSE, &bh);
4115
4116 myh = (struct elf_link_hash_entry *) bh;
4117 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4118 myh->forced_local = 1;
4119
4120 free (tmp_name);
4121
4122 if (link_info->shared || globals->root.is_relocatable_executable
4123 || globals->pic_veneer)
4124 size = ARM2THUMB_PIC_GLUE_SIZE;
4125 else if (globals->use_blx)
4126 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4127 else
4128 size = ARM2THUMB_STATIC_GLUE_SIZE;
4129
4130 s->size += size;
4131 globals->arm_glue_size += size;
4132
4133 return myh;
4134 }
4135
4136 static void
4137 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4138 struct elf_link_hash_entry *h)
4139 {
4140 const char *name = h->root.root.string;
4141 asection *s;
4142 char *tmp_name;
4143 struct elf_link_hash_entry *myh;
4144 struct bfd_link_hash_entry *bh;
4145 struct elf32_arm_link_hash_table *hash_table;
4146 bfd_vma val;
4147
4148 hash_table = elf32_arm_hash_table (link_info);
4149
4150 BFD_ASSERT (hash_table != NULL);
4151 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4152
4153 s = bfd_get_section_by_name
4154 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4155
4156 BFD_ASSERT (s != NULL);
4157
4158 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4159 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4160
4161 BFD_ASSERT (tmp_name);
4162
4163 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4164
4165 myh = elf_link_hash_lookup
4166 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4167
4168 if (myh != NULL)
4169 {
4170 /* We've already seen this guy. */
4171 free (tmp_name);
4172 return;
4173 }
4174
4175 /* The only trick here is using hash_table->thumb_glue_size as the value.
4176 Even though the section isn't allocated yet, this is where we will be
4177 putting it. The +1 on the value marks that the stub has not been
4178 output yet - not that it is a Thumb function. */
4179 bh = NULL;
4180 val = hash_table->thumb_glue_size + 1;
4181 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4182 tmp_name, BSF_GLOBAL, s, val,
4183 NULL, TRUE, FALSE, &bh);
4184
4185 /* If we mark it 'Thumb', the disassembler will do a better job. */
4186 myh = (struct elf_link_hash_entry *) bh;
4187 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4188 myh->forced_local = 1;
4189
4190 free (tmp_name);
4191
4192 #define CHANGE_TO_ARM "__%s_change_to_arm"
4193 #define BACK_FROM_ARM "__%s_back_from_arm"
4194
4195 /* Allocate another symbol to mark where we switch to Arm mode. */
4196 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4197 + strlen (CHANGE_TO_ARM) + 1);
4198
4199 BFD_ASSERT (tmp_name);
4200
4201 sprintf (tmp_name, CHANGE_TO_ARM, name);
4202
4203 bh = NULL;
4204 val = hash_table->thumb_glue_size + 4,
4205 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4206 tmp_name, BSF_LOCAL, s, val,
4207 NULL, TRUE, FALSE, &bh);
4208
4209 free (tmp_name);
4210
4211 s->size += THUMB2ARM_GLUE_SIZE;
4212 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4213 }
4214
4215
4216 /* Allocate space for ARMv4 BX veneers. */
4217
4218 static void
4219 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4220 {
4221 asection * s;
4222 struct elf32_arm_link_hash_table *globals;
4223 char *tmp_name;
4224 struct elf_link_hash_entry *myh;
4225 struct bfd_link_hash_entry *bh;
4226 bfd_vma val;
4227
4228 /* BX PC does not need a veneer. */
4229 if (reg == 15)
4230 return;
4231
4232 globals = elf32_arm_hash_table (link_info);
4233
4234 BFD_ASSERT (globals != NULL);
4235 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4236
4237 /* Check if this veneer has already been allocated. */
4238 if (globals->bx_glue_offset[reg])
4239 return;
4240
4241 s = bfd_get_section_by_name
4242 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4243
4244 BFD_ASSERT (s != NULL);
4245
4246 /* Add symbol for veneer. */
4247 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4248
4249 BFD_ASSERT (tmp_name);
4250
4251 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4252
4253 myh = elf_link_hash_lookup
4254 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4255
4256 BFD_ASSERT (myh == NULL);
4257
4258 bh = NULL;
4259 val = globals->bx_glue_size;
4260 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4261 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4262 NULL, TRUE, FALSE, &bh);
4263
4264 myh = (struct elf_link_hash_entry *) bh;
4265 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4266 myh->forced_local = 1;
4267
4268 s->size += ARM_BX_VENEER_SIZE;
4269 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4270 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4271 }
4272
4273
4274 /* Add an entry to the code/data map for section SEC. */
4275
4276 static void
4277 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4278 {
4279 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4280 unsigned int newidx;
4281
4282 if (sec_data->map == NULL)
4283 {
4284 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4285 sec_data->mapcount = 0;
4286 sec_data->mapsize = 1;
4287 }
4288
4289 newidx = sec_data->mapcount++;
4290
4291 if (sec_data->mapcount > sec_data->mapsize)
4292 {
4293 sec_data->mapsize *= 2;
4294 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4295 * sizeof (elf32_arm_section_map));
4296 }
4297
4298 if (sec_data->map)
4299 {
4300 sec_data->map[newidx].vma = vma;
4301 sec_data->map[newidx].type = type;
4302 }
4303 }
4304
4305
4306 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4307 veneers are handled for now. */
4308
4309 static bfd_vma
4310 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4311 elf32_vfp11_erratum_list *branch,
4312 bfd *branch_bfd,
4313 asection *branch_sec,
4314 unsigned int offset)
4315 {
4316 asection *s;
4317 struct elf32_arm_link_hash_table *hash_table;
4318 char *tmp_name;
4319 struct elf_link_hash_entry *myh;
4320 struct bfd_link_hash_entry *bh;
4321 bfd_vma val;
4322 struct _arm_elf_section_data *sec_data;
4323 int errcount;
4324 elf32_vfp11_erratum_list *newerr;
4325
4326 hash_table = elf32_arm_hash_table (link_info);
4327
4328 BFD_ASSERT (hash_table != NULL);
4329 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4330
4331 s = bfd_get_section_by_name
4332 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4333
4334 sec_data = elf32_arm_section_data (s);
4335
4336 BFD_ASSERT (s != NULL);
4337
4338 tmp_name = bfd_malloc ((bfd_size_type) strlen
4339 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4340
4341 BFD_ASSERT (tmp_name);
4342
4343 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4344 hash_table->num_vfp11_fixes);
4345
4346 myh = elf_link_hash_lookup
4347 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4348
4349 BFD_ASSERT (myh == NULL);
4350
4351 bh = NULL;
4352 val = hash_table->vfp11_erratum_glue_size;
4353 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4354 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4355 NULL, TRUE, FALSE, &bh);
4356
4357 myh = (struct elf_link_hash_entry *) bh;
4358 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4359 myh->forced_local = 1;
4360
4361 /* Link veneer back to calling location. */
4362 errcount = ++(sec_data->erratumcount);
4363 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4364
4365 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4366 newerr->vma = -1;
4367 newerr->u.v.branch = branch;
4368 newerr->u.v.id = hash_table->num_vfp11_fixes;
4369 branch->u.b.veneer = newerr;
4370
4371 newerr->next = sec_data->erratumlist;
4372 sec_data->erratumlist = newerr;
4373
4374 /* A symbol for the return from the veneer. */
4375 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4376 hash_table->num_vfp11_fixes);
4377
4378 myh = elf_link_hash_lookup
4379 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4380
4381 if (myh != NULL)
4382 abort ();
4383
4384 bh = NULL;
4385 val = offset + 4;
4386 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4387 branch_sec, val, NULL, TRUE, FALSE, &bh);
4388
4389 myh = (struct elf_link_hash_entry *) bh;
4390 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4391 myh->forced_local = 1;
4392
4393 free (tmp_name);
4394
4395 /* Generate a mapping symbol for the veneer section, and explicitly add an
4396 entry for that symbol to the code/data map for the section. */
4397 if (hash_table->vfp11_erratum_glue_size == 0)
4398 {
4399 bh = NULL;
4400 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4401 ever requires this erratum fix. */
4402 _bfd_generic_link_add_one_symbol (link_info,
4403 hash_table->bfd_of_glue_owner, "$a",
4404 BSF_LOCAL, s, 0, NULL,
4405 TRUE, FALSE, &bh);
4406
4407 myh = (struct elf_link_hash_entry *) bh;
4408 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4409 myh->forced_local = 1;
4410
4411 /* The elf32_arm_init_maps function only cares about symbols from input
4412 BFDs. We must make a note of this generated mapping symbol
4413 ourselves so that code byteswapping works properly in
4414 elf32_arm_write_section. */
4415 elf32_arm_section_map_add (s, 'a', 0);
4416 }
4417
4418 s->size += VFP11_ERRATUM_VENEER_SIZE;
4419 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4420 hash_table->num_vfp11_fixes++;
4421
4422 /* The offset of the veneer. */
4423 return val;
4424 }
4425
4426 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4427 would prevent elf_link_input_bfd() from processing the contents
4428 of the section. */
4429 #define ARM_GLUE_SECTION_FLAGS \
4430 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4431
4432 /* Create a fake section for use by the ARM backend of the linker. */
4433
4434 static bfd_boolean
4435 arm_make_glue_section (bfd * abfd, const char * name)
4436 {
4437 asection * sec;
4438
4439 sec = bfd_get_section_by_name (abfd, name);
4440 if (sec != NULL)
4441 /* Already made. */
4442 return TRUE;
4443
4444 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4445
4446 if (sec == NULL
4447 || !bfd_set_section_alignment (abfd, sec, 2))
4448 return FALSE;
4449
4450 /* Set the gc mark to prevent the section from being removed by garbage
4451 collection, despite the fact that no relocs refer to this section. */
4452 sec->gc_mark = 1;
4453
4454 return TRUE;
4455 }
4456
4457 /* Add the glue sections to ABFD. This function is called from the
4458 linker scripts in ld/emultempl/{armelf}.em. */
4459
4460 bfd_boolean
4461 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4462 struct bfd_link_info *info)
4463 {
4464 /* If we are only performing a partial
4465 link do not bother adding the glue. */
4466 if (info->relocatable)
4467 return TRUE;
4468
4469 /* Linker stubs don't need glue. */
4470 if (!strcmp (abfd->filename, "linker stubs"))
4471 return TRUE;
4472
4473 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4474 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4475 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4476 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4477 }
4478
4479 /* Select a BFD to be used to hold the sections used by the glue code.
4480 This function is called from the linker scripts in ld/emultempl/
4481 {armelf/pe}.em. */
4482
4483 bfd_boolean
4484 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4485 {
4486 struct elf32_arm_link_hash_table *globals;
4487
4488 /* If we are only performing a partial link
4489 do not bother getting a bfd to hold the glue. */
4490 if (info->relocatable)
4491 return TRUE;
4492
4493 /* Make sure we don't attach the glue sections to a dynamic object. */
4494 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4495
4496 globals = elf32_arm_hash_table (info);
4497
4498 BFD_ASSERT (globals != NULL);
4499
4500 if (globals->bfd_of_glue_owner != NULL)
4501 return TRUE;
4502
4503 /* Save the bfd for later use. */
4504 globals->bfd_of_glue_owner = abfd;
4505
4506 return TRUE;
4507 }
4508
4509 static void
4510 check_use_blx (struct elf32_arm_link_hash_table *globals)
4511 {
4512 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4513 Tag_CPU_arch) > 2)
4514 globals->use_blx = 1;
4515 }
4516
4517 bfd_boolean
4518 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4519 struct bfd_link_info *link_info)
4520 {
4521 Elf_Internal_Shdr *symtab_hdr;
4522 Elf_Internal_Rela *internal_relocs = NULL;
4523 Elf_Internal_Rela *irel, *irelend;
4524 bfd_byte *contents = NULL;
4525
4526 asection *sec;
4527 struct elf32_arm_link_hash_table *globals;
4528
4529 /* If we are only performing a partial link do not bother
4530 to construct any glue. */
4531 if (link_info->relocatable)
4532 return TRUE;
4533
4534 /* Here we have a bfd that is to be included on the link. We have a
4535 hook to do reloc rummaging, before section sizes are nailed down. */
4536 globals = elf32_arm_hash_table (link_info);
4537
4538 BFD_ASSERT (globals != NULL);
4539
4540 check_use_blx (globals);
4541
4542 if (globals->byteswap_code && !bfd_big_endian (abfd))
4543 {
4544 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4545 abfd);
4546 return FALSE;
4547 }
4548
4549 /* PR 5398: If we have not decided to include any loadable sections in
4550 the output then we will not have a glue owner bfd. This is OK, it
4551 just means that there is nothing else for us to do here. */
4552 if (globals->bfd_of_glue_owner == NULL)
4553 return TRUE;
4554
4555 /* Rummage around all the relocs and map the glue vectors. */
4556 sec = abfd->sections;
4557
4558 if (sec == NULL)
4559 return TRUE;
4560
4561 for (; sec != NULL; sec = sec->next)
4562 {
4563 if (sec->reloc_count == 0)
4564 continue;
4565
4566 if ((sec->flags & SEC_EXCLUDE) != 0)
4567 continue;
4568
4569 symtab_hdr = & elf_symtab_hdr (abfd);
4570
4571 /* Load the relocs. */
4572 internal_relocs
4573 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4574
4575 if (internal_relocs == NULL)
4576 goto error_return;
4577
4578 irelend = internal_relocs + sec->reloc_count;
4579 for (irel = internal_relocs; irel < irelend; irel++)
4580 {
4581 long r_type;
4582 unsigned long r_index;
4583
4584 struct elf_link_hash_entry *h;
4585
4586 r_type = ELF32_R_TYPE (irel->r_info);
4587 r_index = ELF32_R_SYM (irel->r_info);
4588
4589 /* These are the only relocation types we care about. */
4590 if ( r_type != R_ARM_PC24
4591 && r_type != R_ARM_PLT32
4592 && r_type != R_ARM_JUMP24
4593 && r_type != R_ARM_THM_JUMP24
4594 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4595 continue;
4596
4597 /* Get the section contents if we haven't done so already. */
4598 if (contents == NULL)
4599 {
4600 /* Get cached copy if it exists. */
4601 if (elf_section_data (sec)->this_hdr.contents != NULL)
4602 contents = elf_section_data (sec)->this_hdr.contents;
4603 else
4604 {
4605 /* Go get them off disk. */
4606 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4607 goto error_return;
4608 }
4609 }
4610
4611 if (r_type == R_ARM_V4BX)
4612 {
4613 int reg;
4614
4615 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4616 record_arm_bx_glue (link_info, reg);
4617 continue;
4618 }
4619
4620 /* If the relocation is not against a symbol it cannot concern us. */
4621 h = NULL;
4622
4623 /* We don't care about local symbols. */
4624 if (r_index < symtab_hdr->sh_info)
4625 continue;
4626
4627 /* This is an external symbol. */
4628 r_index -= symtab_hdr->sh_info;
4629 h = (struct elf_link_hash_entry *)
4630 elf_sym_hashes (abfd)[r_index];
4631
4632 /* If the relocation is against a static symbol it must be within
4633 the current section and so cannot be a cross ARM/Thumb relocation. */
4634 if (h == NULL)
4635 continue;
4636
4637 /* If the call will go through a PLT entry then we do not need
4638 glue. */
4639 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4640 continue;
4641
4642 switch (r_type)
4643 {
4644 case R_ARM_PC24:
4645 case R_ARM_PLT32:
4646 case R_ARM_JUMP24:
4647 /* This one is a call from arm code. We need to look up
4648 the target of the call. If it is a thumb target, we
4649 insert glue. */
4650 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4651 && !(r_type == R_ARM_CALL && globals->use_blx))
4652 record_arm_to_thumb_glue (link_info, h);
4653 break;
4654
4655 case R_ARM_THM_JUMP24:
4656 /* This one is a call from thumb code. We look
4657 up the target of the call. If it is not a thumb
4658 target, we insert glue. */
4659 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4660 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4661 && h->root.type != bfd_link_hash_undefweak)
4662 record_thumb_to_arm_glue (link_info, h);
4663 break;
4664
4665 default:
4666 abort ();
4667 }
4668 }
4669
4670 if (contents != NULL
4671 && elf_section_data (sec)->this_hdr.contents != contents)
4672 free (contents);
4673 contents = NULL;
4674
4675 if (internal_relocs != NULL
4676 && elf_section_data (sec)->relocs != internal_relocs)
4677 free (internal_relocs);
4678 internal_relocs = NULL;
4679 }
4680
4681 return TRUE;
4682
4683 error_return:
4684 if (contents != NULL
4685 && elf_section_data (sec)->this_hdr.contents != contents)
4686 free (contents);
4687 if (internal_relocs != NULL
4688 && elf_section_data (sec)->relocs != internal_relocs)
4689 free (internal_relocs);
4690
4691 return FALSE;
4692 }
4693 #endif
4694
4695
4696 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4697
4698 void
4699 bfd_elf32_arm_init_maps (bfd *abfd)
4700 {
4701 Elf_Internal_Sym *isymbuf;
4702 Elf_Internal_Shdr *hdr;
4703 unsigned int i, localsyms;
4704
4705 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4706 if (! is_arm_elf (abfd))
4707 return;
4708
4709 if ((abfd->flags & DYNAMIC) != 0)
4710 return;
4711
4712 hdr = & elf_symtab_hdr (abfd);
4713 localsyms = hdr->sh_info;
4714
4715 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4716 should contain the number of local symbols, which should come before any
4717 global symbols. Mapping symbols are always local. */
4718 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4719 NULL);
4720
4721 /* No internal symbols read? Skip this BFD. */
4722 if (isymbuf == NULL)
4723 return;
4724
4725 for (i = 0; i < localsyms; i++)
4726 {
4727 Elf_Internal_Sym *isym = &isymbuf[i];
4728 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4729 const char *name;
4730
4731 if (sec != NULL
4732 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4733 {
4734 name = bfd_elf_string_from_elf_section (abfd,
4735 hdr->sh_link, isym->st_name);
4736
4737 if (bfd_is_arm_special_symbol_name (name,
4738 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4739 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4740 }
4741 }
4742 }
4743
4744
4745 void
4746 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4747 {
4748 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4749 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4750
4751 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4752 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4753 {
4754 switch (globals->vfp11_fix)
4755 {
4756 case BFD_ARM_VFP11_FIX_DEFAULT:
4757 case BFD_ARM_VFP11_FIX_NONE:
4758 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4759 break;
4760
4761 default:
4762 /* Give a warning, but do as the user requests anyway. */
4763 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4764 "workaround is not necessary for target architecture"), obfd);
4765 }
4766 }
4767 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4768 /* For earlier architectures, we might need the workaround, but do not
4769 enable it by default. If users is running with broken hardware, they
4770 must enable the erratum fix explicitly. */
4771 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4772 }
4773
4774
4775 enum bfd_arm_vfp11_pipe
4776 {
4777 VFP11_FMAC,
4778 VFP11_LS,
4779 VFP11_DS,
4780 VFP11_BAD
4781 };
4782
4783 /* Return a VFP register number. This is encoded as RX:X for single-precision
4784 registers, or X:RX for double-precision registers, where RX is the group of
4785 four bits in the instruction encoding and X is the single extension bit.
4786 RX and X fields are specified using their lowest (starting) bit. The return
4787 value is:
4788
4789 0...31: single-precision registers s0...s31
4790 32...63: double-precision registers d0...d31.
4791
4792 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4793 encounter VFP3 instructions, so we allow the full range for DP registers. */
4794
4795 static unsigned int
4796 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4797 unsigned int x)
4798 {
4799 if (is_double)
4800 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4801 else
4802 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4803 }
4804
4805 /* Set bits in *WMASK according to a register number REG as encoded by
4806 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4807
4808 static void
4809 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4810 {
4811 if (reg < 32)
4812 *wmask |= 1 << reg;
4813 else if (reg < 48)
4814 *wmask |= 3 << ((reg - 32) * 2);
4815 }
4816
4817 /* Return TRUE if WMASK overwrites anything in REGS. */
4818
4819 static bfd_boolean
4820 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4821 {
4822 int i;
4823
4824 for (i = 0; i < numregs; i++)
4825 {
4826 unsigned int reg = regs[i];
4827
4828 if (reg < 32 && (wmask & (1 << reg)) != 0)
4829 return TRUE;
4830
4831 reg -= 32;
4832
4833 if (reg >= 16)
4834 continue;
4835
4836 if ((wmask & (3 << (reg * 2))) != 0)
4837 return TRUE;
4838 }
4839
4840 return FALSE;
4841 }
4842
4843 /* In this function, we're interested in two things: finding input registers
4844 for VFP data-processing instructions, and finding the set of registers which
4845 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4846 hold the written set, so FLDM etc. are easy to deal with (we're only
4847 interested in 32 SP registers or 16 dp registers, due to the VFP version
4848 implemented by the chip in question). DP registers are marked by setting
4849 both SP registers in the write mask). */
4850
4851 static enum bfd_arm_vfp11_pipe
4852 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4853 int *numregs)
4854 {
4855 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4856 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4857
4858 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4859 {
4860 unsigned int pqrs;
4861 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4862 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4863
4864 pqrs = ((insn & 0x00800000) >> 20)
4865 | ((insn & 0x00300000) >> 19)
4866 | ((insn & 0x00000040) >> 6);
4867
4868 switch (pqrs)
4869 {
4870 case 0: /* fmac[sd]. */
4871 case 1: /* fnmac[sd]. */
4872 case 2: /* fmsc[sd]. */
4873 case 3: /* fnmsc[sd]. */
4874 pipe = VFP11_FMAC;
4875 bfd_arm_vfp11_write_mask (destmask, fd);
4876 regs[0] = fd;
4877 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4878 regs[2] = fm;
4879 *numregs = 3;
4880 break;
4881
4882 case 4: /* fmul[sd]. */
4883 case 5: /* fnmul[sd]. */
4884 case 6: /* fadd[sd]. */
4885 case 7: /* fsub[sd]. */
4886 pipe = VFP11_FMAC;
4887 goto vfp_binop;
4888
4889 case 8: /* fdiv[sd]. */
4890 pipe = VFP11_DS;
4891 vfp_binop:
4892 bfd_arm_vfp11_write_mask (destmask, fd);
4893 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4894 regs[1] = fm;
4895 *numregs = 2;
4896 break;
4897
4898 case 15: /* extended opcode. */
4899 {
4900 unsigned int extn = ((insn >> 15) & 0x1e)
4901 | ((insn >> 7) & 1);
4902
4903 switch (extn)
4904 {
4905 case 0: /* fcpy[sd]. */
4906 case 1: /* fabs[sd]. */
4907 case 2: /* fneg[sd]. */
4908 case 8: /* fcmp[sd]. */
4909 case 9: /* fcmpe[sd]. */
4910 case 10: /* fcmpz[sd]. */
4911 case 11: /* fcmpez[sd]. */
4912 case 16: /* fuito[sd]. */
4913 case 17: /* fsito[sd]. */
4914 case 24: /* ftoui[sd]. */
4915 case 25: /* ftouiz[sd]. */
4916 case 26: /* ftosi[sd]. */
4917 case 27: /* ftosiz[sd]. */
4918 /* These instructions will not bounce due to underflow. */
4919 *numregs = 0;
4920 pipe = VFP11_FMAC;
4921 break;
4922
4923 case 3: /* fsqrt[sd]. */
4924 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4925 registers to cause the erratum in previous instructions. */
4926 bfd_arm_vfp11_write_mask (destmask, fd);
4927 pipe = VFP11_DS;
4928 break;
4929
4930 case 15: /* fcvt{ds,sd}. */
4931 {
4932 int rnum = 0;
4933
4934 bfd_arm_vfp11_write_mask (destmask, fd);
4935
4936 /* Only FCVTSD can underflow. */
4937 if ((insn & 0x100) != 0)
4938 regs[rnum++] = fm;
4939
4940 *numregs = rnum;
4941
4942 pipe = VFP11_FMAC;
4943 }
4944 break;
4945
4946 default:
4947 return VFP11_BAD;
4948 }
4949 }
4950 break;
4951
4952 default:
4953 return VFP11_BAD;
4954 }
4955 }
4956 /* Two-register transfer. */
4957 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4958 {
4959 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4960
4961 if ((insn & 0x100000) == 0)
4962 {
4963 if (is_double)
4964 bfd_arm_vfp11_write_mask (destmask, fm);
4965 else
4966 {
4967 bfd_arm_vfp11_write_mask (destmask, fm);
4968 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4969 }
4970 }
4971
4972 pipe = VFP11_LS;
4973 }
4974 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4975 {
4976 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4977 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4978
4979 switch (puw)
4980 {
4981 case 0: /* Two-reg transfer. We should catch these above. */
4982 abort ();
4983
4984 case 2: /* fldm[sdx]. */
4985 case 3:
4986 case 5:
4987 {
4988 unsigned int i, offset = insn & 0xff;
4989
4990 if (is_double)
4991 offset >>= 1;
4992
4993 for (i = fd; i < fd + offset; i++)
4994 bfd_arm_vfp11_write_mask (destmask, i);
4995 }
4996 break;
4997
4998 case 4: /* fld[sd]. */
4999 case 6:
5000 bfd_arm_vfp11_write_mask (destmask, fd);
5001 break;
5002
5003 default:
5004 return VFP11_BAD;
5005 }
5006
5007 pipe = VFP11_LS;
5008 }
5009 /* Single-register transfer. Note L==0. */
5010 else if ((insn & 0x0f100e10) == 0x0e000a10)
5011 {
5012 unsigned int opcode = (insn >> 21) & 7;
5013 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5014
5015 switch (opcode)
5016 {
5017 case 0: /* fmsr/fmdlr. */
5018 case 1: /* fmdhr. */
5019 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5020 destination register. I don't know if this is exactly right,
5021 but it is the conservative choice. */
5022 bfd_arm_vfp11_write_mask (destmask, fn);
5023 break;
5024
5025 case 7: /* fmxr. */
5026 break;
5027 }
5028
5029 pipe = VFP11_LS;
5030 }
5031
5032 return pipe;
5033 }
5034
5035
5036 static int elf32_arm_compare_mapping (const void * a, const void * b);
5037
5038
5039 /* Look for potentially-troublesome code sequences which might trigger the
5040 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5041 (available from ARM) for details of the erratum. A short version is
5042 described in ld.texinfo. */
5043
5044 bfd_boolean
5045 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5046 {
5047 asection *sec;
5048 bfd_byte *contents = NULL;
5049 int state = 0;
5050 int regs[3], numregs = 0;
5051 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5052 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5053
5054 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5055 The states transition as follows:
5056
5057 0 -> 1 (vector) or 0 -> 2 (scalar)
5058 A VFP FMAC-pipeline instruction has been seen. Fill
5059 regs[0]..regs[numregs-1] with its input operands. Remember this
5060 instruction in 'first_fmac'.
5061
5062 1 -> 2
5063 Any instruction, except for a VFP instruction which overwrites
5064 regs[*].
5065
5066 1 -> 3 [ -> 0 ] or
5067 2 -> 3 [ -> 0 ]
5068 A VFP instruction has been seen which overwrites any of regs[*].
5069 We must make a veneer! Reset state to 0 before examining next
5070 instruction.
5071
5072 2 -> 0
5073 If we fail to match anything in state 2, reset to state 0 and reset
5074 the instruction pointer to the instruction after 'first_fmac'.
5075
5076 If the VFP11 vector mode is in use, there must be at least two unrelated
5077 instructions between anti-dependent VFP11 instructions to properly avoid
5078 triggering the erratum, hence the use of the extra state 1. */
5079
5080 /* If we are only performing a partial link do not bother
5081 to construct any glue. */
5082 if (link_info->relocatable)
5083 return TRUE;
5084
5085 /* Skip if this bfd does not correspond to an ELF image. */
5086 if (! is_arm_elf (abfd))
5087 return TRUE;
5088
5089 /* We should have chosen a fix type by the time we get here. */
5090 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5091
5092 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5093 return TRUE;
5094
5095 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5096 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5097 return TRUE;
5098
5099 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5100 {
5101 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5102 struct _arm_elf_section_data *sec_data;
5103
5104 /* If we don't have executable progbits, we're not interested in this
5105 section. Also skip if section is to be excluded. */
5106 if (elf_section_type (sec) != SHT_PROGBITS
5107 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5108 || (sec->flags & SEC_EXCLUDE) != 0
5109 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5110 || sec->output_section == bfd_abs_section_ptr
5111 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5112 continue;
5113
5114 sec_data = elf32_arm_section_data (sec);
5115
5116 if (sec_data->mapcount == 0)
5117 continue;
5118
5119 if (elf_section_data (sec)->this_hdr.contents != NULL)
5120 contents = elf_section_data (sec)->this_hdr.contents;
5121 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5122 goto error_return;
5123
5124 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5125 elf32_arm_compare_mapping);
5126
5127 for (span = 0; span < sec_data->mapcount; span++)
5128 {
5129 unsigned int span_start = sec_data->map[span].vma;
5130 unsigned int span_end = (span == sec_data->mapcount - 1)
5131 ? sec->size : sec_data->map[span + 1].vma;
5132 char span_type = sec_data->map[span].type;
5133
5134 /* FIXME: Only ARM mode is supported at present. We may need to
5135 support Thumb-2 mode also at some point. */
5136 if (span_type != 'a')
5137 continue;
5138
5139 for (i = span_start; i < span_end;)
5140 {
5141 unsigned int next_i = i + 4;
5142 unsigned int insn = bfd_big_endian (abfd)
5143 ? (contents[i] << 24)
5144 | (contents[i + 1] << 16)
5145 | (contents[i + 2] << 8)
5146 | contents[i + 3]
5147 : (contents[i + 3] << 24)
5148 | (contents[i + 2] << 16)
5149 | (contents[i + 1] << 8)
5150 | contents[i];
5151 unsigned int writemask = 0;
5152 enum bfd_arm_vfp11_pipe pipe;
5153
5154 switch (state)
5155 {
5156 case 0:
5157 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5158 &numregs);
5159 /* I'm assuming the VFP11 erratum can trigger with denorm
5160 operands on either the FMAC or the DS pipeline. This might
5161 lead to slightly overenthusiastic veneer insertion. */
5162 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5163 {
5164 state = use_vector ? 1 : 2;
5165 first_fmac = i;
5166 veneer_of_insn = insn;
5167 }
5168 break;
5169
5170 case 1:
5171 {
5172 int other_regs[3], other_numregs;
5173 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5174 other_regs,
5175 &other_numregs);
5176 if (pipe != VFP11_BAD
5177 && bfd_arm_vfp11_antidependency (writemask, regs,
5178 numregs))
5179 state = 3;
5180 else
5181 state = 2;
5182 }
5183 break;
5184
5185 case 2:
5186 {
5187 int other_regs[3], other_numregs;
5188 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5189 other_regs,
5190 &other_numregs);
5191 if (pipe != VFP11_BAD
5192 && bfd_arm_vfp11_antidependency (writemask, regs,
5193 numregs))
5194 state = 3;
5195 else
5196 {
5197 state = 0;
5198 next_i = first_fmac + 4;
5199 }
5200 }
5201 break;
5202
5203 case 3:
5204 abort (); /* Should be unreachable. */
5205 }
5206
5207 if (state == 3)
5208 {
5209 elf32_vfp11_erratum_list *newerr
5210 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5211 int errcount;
5212
5213 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5214
5215 newerr->u.b.vfp_insn = veneer_of_insn;
5216
5217 switch (span_type)
5218 {
5219 case 'a':
5220 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5221 break;
5222
5223 default:
5224 abort ();
5225 }
5226
5227 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5228 first_fmac);
5229
5230 newerr->vma = -1;
5231
5232 newerr->next = sec_data->erratumlist;
5233 sec_data->erratumlist = newerr;
5234
5235 state = 0;
5236 }
5237
5238 i = next_i;
5239 }
5240 }
5241
5242 if (contents != NULL
5243 && elf_section_data (sec)->this_hdr.contents != contents)
5244 free (contents);
5245 contents = NULL;
5246 }
5247
5248 return TRUE;
5249
5250 error_return:
5251 if (contents != NULL
5252 && elf_section_data (sec)->this_hdr.contents != contents)
5253 free (contents);
5254
5255 return FALSE;
5256 }
5257
5258 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5259 after sections have been laid out, using specially-named symbols. */
5260
5261 void
5262 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5263 struct bfd_link_info *link_info)
5264 {
5265 asection *sec;
5266 struct elf32_arm_link_hash_table *globals;
5267 char *tmp_name;
5268
5269 if (link_info->relocatable)
5270 return;
5271
5272 /* Skip if this bfd does not correspond to an ELF image. */
5273 if (! is_arm_elf (abfd))
5274 return;
5275
5276 globals = elf32_arm_hash_table (link_info);
5277
5278 tmp_name = bfd_malloc ((bfd_size_type) strlen
5279 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5280
5281 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5282 {
5283 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5284 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5285
5286 for (; errnode != NULL; errnode = errnode->next)
5287 {
5288 struct elf_link_hash_entry *myh;
5289 bfd_vma vma;
5290
5291 switch (errnode->type)
5292 {
5293 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5294 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5295 /* Find veneer symbol. */
5296 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5297 errnode->u.b.veneer->u.v.id);
5298
5299 myh = elf_link_hash_lookup
5300 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5301
5302 if (myh == NULL)
5303 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5304 "`%s'"), abfd, tmp_name);
5305
5306 vma = myh->root.u.def.section->output_section->vma
5307 + myh->root.u.def.section->output_offset
5308 + myh->root.u.def.value;
5309
5310 errnode->u.b.veneer->vma = vma;
5311 break;
5312
5313 case VFP11_ERRATUM_ARM_VENEER:
5314 case VFP11_ERRATUM_THUMB_VENEER:
5315 /* Find return location. */
5316 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5317 errnode->u.v.id);
5318
5319 myh = elf_link_hash_lookup
5320 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5321
5322 if (myh == NULL)
5323 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5324 "`%s'"), abfd, tmp_name);
5325
5326 vma = myh->root.u.def.section->output_section->vma
5327 + myh->root.u.def.section->output_offset
5328 + myh->root.u.def.value;
5329
5330 errnode->u.v.branch->vma = vma;
5331 break;
5332
5333 default:
5334 abort ();
5335 }
5336 }
5337 }
5338
5339 free (tmp_name);
5340 }
5341
5342
5343 /* Set target relocation values needed during linking. */
5344
5345 void
5346 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5347 struct bfd_link_info *link_info,
5348 int target1_is_rel,
5349 char * target2_type,
5350 int fix_v4bx,
5351 int use_blx,
5352 bfd_arm_vfp11_fix vfp11_fix,
5353 int no_enum_warn, int no_wchar_warn,
5354 int pic_veneer)
5355 {
5356 struct elf32_arm_link_hash_table *globals;
5357
5358 globals = elf32_arm_hash_table (link_info);
5359
5360 globals->target1_is_rel = target1_is_rel;
5361 if (strcmp (target2_type, "rel") == 0)
5362 globals->target2_reloc = R_ARM_REL32;
5363 else if (strcmp (target2_type, "abs") == 0)
5364 globals->target2_reloc = R_ARM_ABS32;
5365 else if (strcmp (target2_type, "got-rel") == 0)
5366 globals->target2_reloc = R_ARM_GOT_PREL;
5367 else
5368 {
5369 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5370 target2_type);
5371 }
5372 globals->fix_v4bx = fix_v4bx;
5373 globals->use_blx |= use_blx;
5374 globals->vfp11_fix = vfp11_fix;
5375 globals->pic_veneer = pic_veneer;
5376
5377 BFD_ASSERT (is_arm_elf (output_bfd));
5378 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5379 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5380 }
5381
5382 /* Replace the target offset of a Thumb bl or b.w instruction. */
5383
5384 static void
5385 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5386 {
5387 bfd_vma upper;
5388 bfd_vma lower;
5389 int reloc_sign;
5390
5391 BFD_ASSERT ((offset & 1) == 0);
5392
5393 upper = bfd_get_16 (abfd, insn);
5394 lower = bfd_get_16 (abfd, insn + 2);
5395 reloc_sign = (offset < 0) ? 1 : 0;
5396 upper = (upper & ~(bfd_vma) 0x7ff)
5397 | ((offset >> 12) & 0x3ff)
5398 | (reloc_sign << 10);
5399 lower = (lower & ~(bfd_vma) 0x2fff)
5400 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5401 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5402 | ((offset >> 1) & 0x7ff);
5403 bfd_put_16 (abfd, upper, insn);
5404 bfd_put_16 (abfd, lower, insn + 2);
5405 }
5406
5407 /* Thumb code calling an ARM function. */
5408
5409 static int
5410 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5411 const char * name,
5412 bfd * input_bfd,
5413 bfd * output_bfd,
5414 asection * input_section,
5415 bfd_byte * hit_data,
5416 asection * sym_sec,
5417 bfd_vma offset,
5418 bfd_signed_vma addend,
5419 bfd_vma val,
5420 char **error_message)
5421 {
5422 asection * s = 0;
5423 bfd_vma my_offset;
5424 long int ret_offset;
5425 struct elf_link_hash_entry * myh;
5426 struct elf32_arm_link_hash_table * globals;
5427
5428 myh = find_thumb_glue (info, name, error_message);
5429 if (myh == NULL)
5430 return FALSE;
5431
5432 globals = elf32_arm_hash_table (info);
5433
5434 BFD_ASSERT (globals != NULL);
5435 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5436
5437 my_offset = myh->root.u.def.value;
5438
5439 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5440 THUMB2ARM_GLUE_SECTION_NAME);
5441
5442 BFD_ASSERT (s != NULL);
5443 BFD_ASSERT (s->contents != NULL);
5444 BFD_ASSERT (s->output_section != NULL);
5445
5446 if ((my_offset & 0x01) == 0x01)
5447 {
5448 if (sym_sec != NULL
5449 && sym_sec->owner != NULL
5450 && !INTERWORK_FLAG (sym_sec->owner))
5451 {
5452 (*_bfd_error_handler)
5453 (_("%B(%s): warning: interworking not enabled.\n"
5454 " first occurrence: %B: thumb call to arm"),
5455 sym_sec->owner, input_bfd, name);
5456
5457 return FALSE;
5458 }
5459
5460 --my_offset;
5461 myh->root.u.def.value = my_offset;
5462
5463 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5464 s->contents + my_offset);
5465
5466 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5467 s->contents + my_offset + 2);
5468
5469 ret_offset =
5470 /* Address of destination of the stub. */
5471 ((bfd_signed_vma) val)
5472 - ((bfd_signed_vma)
5473 /* Offset from the start of the current section
5474 to the start of the stubs. */
5475 (s->output_offset
5476 /* Offset of the start of this stub from the start of the stubs. */
5477 + my_offset
5478 /* Address of the start of the current section. */
5479 + s->output_section->vma)
5480 /* The branch instruction is 4 bytes into the stub. */
5481 + 4
5482 /* ARM branches work from the pc of the instruction + 8. */
5483 + 8);
5484
5485 put_arm_insn (globals, output_bfd,
5486 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5487 s->contents + my_offset + 4);
5488 }
5489
5490 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5491
5492 /* Now go back and fix up the original BL insn to point to here. */
5493 ret_offset =
5494 /* Address of where the stub is located. */
5495 (s->output_section->vma + s->output_offset + my_offset)
5496 /* Address of where the BL is located. */
5497 - (input_section->output_section->vma + input_section->output_offset
5498 + offset)
5499 /* Addend in the relocation. */
5500 - addend
5501 /* Biassing for PC-relative addressing. */
5502 - 8;
5503
5504 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5505
5506 return TRUE;
5507 }
5508
5509 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5510
5511 static struct elf_link_hash_entry *
5512 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5513 const char * name,
5514 bfd * input_bfd,
5515 bfd * output_bfd,
5516 asection * sym_sec,
5517 bfd_vma val,
5518 asection * s,
5519 char ** error_message)
5520 {
5521 bfd_vma my_offset;
5522 long int ret_offset;
5523 struct elf_link_hash_entry * myh;
5524 struct elf32_arm_link_hash_table * globals;
5525
5526 myh = find_arm_glue (info, name, error_message);
5527 if (myh == NULL)
5528 return NULL;
5529
5530 globals = elf32_arm_hash_table (info);
5531
5532 BFD_ASSERT (globals != NULL);
5533 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5534
5535 my_offset = myh->root.u.def.value;
5536
5537 if ((my_offset & 0x01) == 0x01)
5538 {
5539 if (sym_sec != NULL
5540 && sym_sec->owner != NULL
5541 && !INTERWORK_FLAG (sym_sec->owner))
5542 {
5543 (*_bfd_error_handler)
5544 (_("%B(%s): warning: interworking not enabled.\n"
5545 " first occurrence: %B: arm call to thumb"),
5546 sym_sec->owner, input_bfd, name);
5547 }
5548
5549 --my_offset;
5550 myh->root.u.def.value = my_offset;
5551
5552 if (info->shared || globals->root.is_relocatable_executable
5553 || globals->pic_veneer)
5554 {
5555 /* For relocatable objects we can't use absolute addresses,
5556 so construct the address from a relative offset. */
5557 /* TODO: If the offset is small it's probably worth
5558 constructing the address with adds. */
5559 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5560 s->contents + my_offset);
5561 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5562 s->contents + my_offset + 4);
5563 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5564 s->contents + my_offset + 8);
5565 /* Adjust the offset by 4 for the position of the add,
5566 and 8 for the pipeline offset. */
5567 ret_offset = (val - (s->output_offset
5568 + s->output_section->vma
5569 + my_offset + 12))
5570 | 1;
5571 bfd_put_32 (output_bfd, ret_offset,
5572 s->contents + my_offset + 12);
5573 }
5574 else if (globals->use_blx)
5575 {
5576 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5577 s->contents + my_offset);
5578
5579 /* It's a thumb address. Add the low order bit. */
5580 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5581 s->contents + my_offset + 4);
5582 }
5583 else
5584 {
5585 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5586 s->contents + my_offset);
5587
5588 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5589 s->contents + my_offset + 4);
5590
5591 /* It's a thumb address. Add the low order bit. */
5592 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5593 s->contents + my_offset + 8);
5594
5595 my_offset += 12;
5596 }
5597 }
5598
5599 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5600
5601 return myh;
5602 }
5603
5604 /* Arm code calling a Thumb function. */
5605
5606 static int
5607 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5608 const char * name,
5609 bfd * input_bfd,
5610 bfd * output_bfd,
5611 asection * input_section,
5612 bfd_byte * hit_data,
5613 asection * sym_sec,
5614 bfd_vma offset,
5615 bfd_signed_vma addend,
5616 bfd_vma val,
5617 char **error_message)
5618 {
5619 unsigned long int tmp;
5620 bfd_vma my_offset;
5621 asection * s;
5622 long int ret_offset;
5623 struct elf_link_hash_entry * myh;
5624 struct elf32_arm_link_hash_table * globals;
5625
5626 globals = elf32_arm_hash_table (info);
5627
5628 BFD_ASSERT (globals != NULL);
5629 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5630
5631 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5632 ARM2THUMB_GLUE_SECTION_NAME);
5633 BFD_ASSERT (s != NULL);
5634 BFD_ASSERT (s->contents != NULL);
5635 BFD_ASSERT (s->output_section != NULL);
5636
5637 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5638 sym_sec, val, s, error_message);
5639 if (!myh)
5640 return FALSE;
5641
5642 my_offset = myh->root.u.def.value;
5643 tmp = bfd_get_32 (input_bfd, hit_data);
5644 tmp = tmp & 0xFF000000;
5645
5646 /* Somehow these are both 4 too far, so subtract 8. */
5647 ret_offset = (s->output_offset
5648 + my_offset
5649 + s->output_section->vma
5650 - (input_section->output_offset
5651 + input_section->output_section->vma
5652 + offset + addend)
5653 - 8);
5654
5655 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5656
5657 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5658
5659 return TRUE;
5660 }
5661
5662 /* Populate Arm stub for an exported Thumb function. */
5663
5664 static bfd_boolean
5665 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5666 {
5667 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5668 asection * s;
5669 struct elf_link_hash_entry * myh;
5670 struct elf32_arm_link_hash_entry *eh;
5671 struct elf32_arm_link_hash_table * globals;
5672 asection *sec;
5673 bfd_vma val;
5674 char *error_message;
5675
5676 eh = elf32_arm_hash_entry (h);
5677 /* Allocate stubs for exported Thumb functions on v4t. */
5678 if (eh->export_glue == NULL)
5679 return TRUE;
5680
5681 globals = elf32_arm_hash_table (info);
5682
5683 BFD_ASSERT (globals != NULL);
5684 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5685
5686 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5687 ARM2THUMB_GLUE_SECTION_NAME);
5688 BFD_ASSERT (s != NULL);
5689 BFD_ASSERT (s->contents != NULL);
5690 BFD_ASSERT (s->output_section != NULL);
5691
5692 sec = eh->export_glue->root.u.def.section;
5693
5694 BFD_ASSERT (sec->output_section != NULL);
5695
5696 val = eh->export_glue->root.u.def.value + sec->output_offset
5697 + sec->output_section->vma;
5698
5699 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5700 h->root.u.def.section->owner,
5701 globals->obfd, sec, val, s,
5702 &error_message);
5703 BFD_ASSERT (myh);
5704 return TRUE;
5705 }
5706
5707 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5708
5709 static bfd_vma
5710 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5711 {
5712 bfd_byte *p;
5713 bfd_vma glue_addr;
5714 asection *s;
5715 struct elf32_arm_link_hash_table *globals;
5716
5717 globals = elf32_arm_hash_table (info);
5718
5719 BFD_ASSERT (globals != NULL);
5720 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5721
5722 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5723 ARM_BX_GLUE_SECTION_NAME);
5724 BFD_ASSERT (s != NULL);
5725 BFD_ASSERT (s->contents != NULL);
5726 BFD_ASSERT (s->output_section != NULL);
5727
5728 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5729
5730 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5731
5732 if ((globals->bx_glue_offset[reg] & 1) == 0)
5733 {
5734 p = s->contents + glue_addr;
5735 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5736 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5737 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5738 globals->bx_glue_offset[reg] |= 1;
5739 }
5740
5741 return glue_addr + s->output_section->vma + s->output_offset;
5742 }
5743
5744 /* Generate Arm stubs for exported Thumb symbols. */
5745 static void
5746 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5747 struct bfd_link_info *link_info)
5748 {
5749 struct elf32_arm_link_hash_table * globals;
5750
5751 if (link_info == NULL)
5752 /* Ignore this if we are not called by the ELF backend linker. */
5753 return;
5754
5755 globals = elf32_arm_hash_table (link_info);
5756 /* If blx is available then exported Thumb symbols are OK and there is
5757 nothing to do. */
5758 if (globals->use_blx)
5759 return;
5760
5761 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5762 link_info);
5763 }
5764
5765 /* Some relocations map to different relocations depending on the
5766 target. Return the real relocation. */
5767
5768 static int
5769 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5770 int r_type)
5771 {
5772 switch (r_type)
5773 {
5774 case R_ARM_TARGET1:
5775 if (globals->target1_is_rel)
5776 return R_ARM_REL32;
5777 else
5778 return R_ARM_ABS32;
5779
5780 case R_ARM_TARGET2:
5781 return globals->target2_reloc;
5782
5783 default:
5784 return r_type;
5785 }
5786 }
5787
5788 /* Return the base VMA address which should be subtracted from real addresses
5789 when resolving @dtpoff relocation.
5790 This is PT_TLS segment p_vaddr. */
5791
5792 static bfd_vma
5793 dtpoff_base (struct bfd_link_info *info)
5794 {
5795 /* If tls_sec is NULL, we should have signalled an error already. */
5796 if (elf_hash_table (info)->tls_sec == NULL)
5797 return 0;
5798 return elf_hash_table (info)->tls_sec->vma;
5799 }
5800
5801 /* Return the relocation value for @tpoff relocation
5802 if STT_TLS virtual address is ADDRESS. */
5803
5804 static bfd_vma
5805 tpoff (struct bfd_link_info *info, bfd_vma address)
5806 {
5807 struct elf_link_hash_table *htab = elf_hash_table (info);
5808 bfd_vma base;
5809
5810 /* If tls_sec is NULL, we should have signalled an error already. */
5811 if (htab->tls_sec == NULL)
5812 return 0;
5813 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5814 return address - htab->tls_sec->vma + base;
5815 }
5816
5817 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5818 VALUE is the relocation value. */
5819
5820 static bfd_reloc_status_type
5821 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5822 {
5823 if (value > 0xfff)
5824 return bfd_reloc_overflow;
5825
5826 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5827 bfd_put_32 (abfd, value, data);
5828 return bfd_reloc_ok;
5829 }
5830
5831 /* For a given value of n, calculate the value of G_n as required to
5832 deal with group relocations. We return it in the form of an
5833 encoded constant-and-rotation, together with the final residual. If n is
5834 specified as less than zero, then final_residual is filled with the
5835 input value and no further action is performed. */
5836
5837 static bfd_vma
5838 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5839 {
5840 int current_n;
5841 bfd_vma g_n;
5842 bfd_vma encoded_g_n = 0;
5843 bfd_vma residual = value; /* Also known as Y_n. */
5844
5845 for (current_n = 0; current_n <= n; current_n++)
5846 {
5847 int shift;
5848
5849 /* Calculate which part of the value to mask. */
5850 if (residual == 0)
5851 shift = 0;
5852 else
5853 {
5854 int msb;
5855
5856 /* Determine the most significant bit in the residual and
5857 align the resulting value to a 2-bit boundary. */
5858 for (msb = 30; msb >= 0; msb -= 2)
5859 if (residual & (3 << msb))
5860 break;
5861
5862 /* The desired shift is now (msb - 6), or zero, whichever
5863 is the greater. */
5864 shift = msb - 6;
5865 if (shift < 0)
5866 shift = 0;
5867 }
5868
5869 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5870 g_n = residual & (0xff << shift);
5871 encoded_g_n = (g_n >> shift)
5872 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5873
5874 /* Calculate the residual for the next time around. */
5875 residual &= ~g_n;
5876 }
5877
5878 *final_residual = residual;
5879
5880 return encoded_g_n;
5881 }
5882
5883 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5884 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5885
5886 static int
5887 identify_add_or_sub (bfd_vma insn)
5888 {
5889 int opcode = insn & 0x1e00000;
5890
5891 if (opcode == 1 << 23) /* ADD */
5892 return 1;
5893
5894 if (opcode == 1 << 22) /* SUB */
5895 return -1;
5896
5897 return 0;
5898 }
5899
5900 /* Perform a relocation as part of a final link. */
5901
5902 static bfd_reloc_status_type
5903 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5904 bfd * input_bfd,
5905 bfd * output_bfd,
5906 asection * input_section,
5907 bfd_byte * contents,
5908 Elf_Internal_Rela * rel,
5909 bfd_vma value,
5910 struct bfd_link_info * info,
5911 asection * sym_sec,
5912 const char * sym_name,
5913 int sym_flags,
5914 struct elf_link_hash_entry * h,
5915 bfd_boolean * unresolved_reloc_p,
5916 char ** error_message)
5917 {
5918 unsigned long r_type = howto->type;
5919 unsigned long r_symndx;
5920 bfd_byte * hit_data = contents + rel->r_offset;
5921 bfd * dynobj = NULL;
5922 Elf_Internal_Shdr * symtab_hdr;
5923 struct elf_link_hash_entry ** sym_hashes;
5924 bfd_vma * local_got_offsets;
5925 asection * sgot = NULL;
5926 asection * splt = NULL;
5927 asection * sreloc = NULL;
5928 bfd_vma addend;
5929 bfd_signed_vma signed_addend;
5930 struct elf32_arm_link_hash_table * globals;
5931
5932 globals = elf32_arm_hash_table (info);
5933
5934 BFD_ASSERT (is_arm_elf (input_bfd));
5935
5936 /* Some relocation types map to different relocations depending on the
5937 target. We pick the right one here. */
5938 r_type = arm_real_reloc_type (globals, r_type);
5939 if (r_type != howto->type)
5940 howto = elf32_arm_howto_from_type (r_type);
5941
5942 /* If the start address has been set, then set the EF_ARM_HASENTRY
5943 flag. Setting this more than once is redundant, but the cost is
5944 not too high, and it keeps the code simple.
5945
5946 The test is done here, rather than somewhere else, because the
5947 start address is only set just before the final link commences.
5948
5949 Note - if the user deliberately sets a start address of 0, the
5950 flag will not be set. */
5951 if (bfd_get_start_address (output_bfd) != 0)
5952 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5953
5954 dynobj = elf_hash_table (info)->dynobj;
5955 if (dynobj)
5956 {
5957 sgot = bfd_get_section_by_name (dynobj, ".got");
5958 splt = bfd_get_section_by_name (dynobj, ".plt");
5959 }
5960 symtab_hdr = & elf_symtab_hdr (input_bfd);
5961 sym_hashes = elf_sym_hashes (input_bfd);
5962 local_got_offsets = elf_local_got_offsets (input_bfd);
5963 r_symndx = ELF32_R_SYM (rel->r_info);
5964
5965 if (globals->use_rel)
5966 {
5967 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5968
5969 if (addend & ((howto->src_mask + 1) >> 1))
5970 {
5971 signed_addend = -1;
5972 signed_addend &= ~ howto->src_mask;
5973 signed_addend |= addend;
5974 }
5975 else
5976 signed_addend = addend;
5977 }
5978 else
5979 addend = signed_addend = rel->r_addend;
5980
5981 switch (r_type)
5982 {
5983 case R_ARM_NONE:
5984 /* We don't need to find a value for this symbol. It's just a
5985 marker. */
5986 *unresolved_reloc_p = FALSE;
5987 return bfd_reloc_ok;
5988
5989 case R_ARM_ABS12:
5990 if (!globals->vxworks_p)
5991 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5992
5993 case R_ARM_PC24:
5994 case R_ARM_ABS32:
5995 case R_ARM_ABS32_NOI:
5996 case R_ARM_REL32:
5997 case R_ARM_REL32_NOI:
5998 case R_ARM_CALL:
5999 case R_ARM_JUMP24:
6000 case R_ARM_XPC25:
6001 case R_ARM_PREL31:
6002 case R_ARM_PLT32:
6003 /* Handle relocations which should use the PLT entry. ABS32/REL32
6004 will use the symbol's value, which may point to a PLT entry, but we
6005 don't need to handle that here. If we created a PLT entry, all
6006 branches in this object should go to it. */
6007 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6008 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
6009 && h != NULL
6010 && splt != NULL
6011 && h->plt.offset != (bfd_vma) -1)
6012 {
6013 /* If we've created a .plt section, and assigned a PLT entry to
6014 this function, it should not be known to bind locally. If
6015 it were, we would have cleared the PLT entry. */
6016 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6017
6018 value = (splt->output_section->vma
6019 + splt->output_offset
6020 + h->plt.offset);
6021 *unresolved_reloc_p = FALSE;
6022 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6023 contents, rel->r_offset, value,
6024 rel->r_addend);
6025 }
6026
6027 /* When generating a shared object or relocatable executable, these
6028 relocations are copied into the output file to be resolved at
6029 run time. */
6030 if ((info->shared || globals->root.is_relocatable_executable)
6031 && (input_section->flags & SEC_ALLOC)
6032 && !(elf32_arm_hash_table (info)->vxworks_p
6033 && strcmp (input_section->output_section->name,
6034 ".tls_vars") == 0)
6035 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6036 || !SYMBOL_CALLS_LOCAL (info, h))
6037 && (h == NULL
6038 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6039 || h->root.type != bfd_link_hash_undefweak)
6040 && r_type != R_ARM_PC24
6041 && r_type != R_ARM_CALL
6042 && r_type != R_ARM_JUMP24
6043 && r_type != R_ARM_PREL31
6044 && r_type != R_ARM_PLT32)
6045 {
6046 Elf_Internal_Rela outrel;
6047 bfd_byte *loc;
6048 bfd_boolean skip, relocate;
6049
6050 *unresolved_reloc_p = FALSE;
6051
6052 if (sreloc == NULL)
6053 {
6054 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6055 ! globals->use_rel);
6056
6057 if (sreloc == NULL)
6058 return bfd_reloc_notsupported;
6059 }
6060
6061 skip = FALSE;
6062 relocate = FALSE;
6063
6064 outrel.r_addend = addend;
6065 outrel.r_offset =
6066 _bfd_elf_section_offset (output_bfd, info, input_section,
6067 rel->r_offset);
6068 if (outrel.r_offset == (bfd_vma) -1)
6069 skip = TRUE;
6070 else if (outrel.r_offset == (bfd_vma) -2)
6071 skip = TRUE, relocate = TRUE;
6072 outrel.r_offset += (input_section->output_section->vma
6073 + input_section->output_offset);
6074
6075 if (skip)
6076 memset (&outrel, 0, sizeof outrel);
6077 else if (h != NULL
6078 && h->dynindx != -1
6079 && (!info->shared
6080 || !info->symbolic
6081 || !h->def_regular))
6082 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6083 else
6084 {
6085 int symbol;
6086
6087 /* This symbol is local, or marked to become local. */
6088 if (sym_flags == STT_ARM_TFUNC)
6089 value |= 1;
6090 if (globals->symbian_p)
6091 {
6092 asection *osec;
6093
6094 /* On Symbian OS, the data segment and text segement
6095 can be relocated independently. Therefore, we
6096 must indicate the segment to which this
6097 relocation is relative. The BPABI allows us to
6098 use any symbol in the right segment; we just use
6099 the section symbol as it is convenient. (We
6100 cannot use the symbol given by "h" directly as it
6101 will not appear in the dynamic symbol table.)
6102
6103 Note that the dynamic linker ignores the section
6104 symbol value, so we don't subtract osec->vma
6105 from the emitted reloc addend. */
6106 if (sym_sec)
6107 osec = sym_sec->output_section;
6108 else
6109 osec = input_section->output_section;
6110 symbol = elf_section_data (osec)->dynindx;
6111 if (symbol == 0)
6112 {
6113 struct elf_link_hash_table *htab = elf_hash_table (info);
6114
6115 if ((osec->flags & SEC_READONLY) == 0
6116 && htab->data_index_section != NULL)
6117 osec = htab->data_index_section;
6118 else
6119 osec = htab->text_index_section;
6120 symbol = elf_section_data (osec)->dynindx;
6121 }
6122 BFD_ASSERT (symbol != 0);
6123 }
6124 else
6125 /* On SVR4-ish systems, the dynamic loader cannot
6126 relocate the text and data segments independently,
6127 so the symbol does not matter. */
6128 symbol = 0;
6129 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6130 if (globals->use_rel)
6131 relocate = TRUE;
6132 else
6133 outrel.r_addend += value;
6134 }
6135
6136 loc = sreloc->contents;
6137 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6138 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6139
6140 /* If this reloc is against an external symbol, we do not want to
6141 fiddle with the addend. Otherwise, we need to include the symbol
6142 value so that it becomes an addend for the dynamic reloc. */
6143 if (! relocate)
6144 return bfd_reloc_ok;
6145
6146 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6147 contents, rel->r_offset, value,
6148 (bfd_vma) 0);
6149 }
6150 else switch (r_type)
6151 {
6152 case R_ARM_ABS12:
6153 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6154
6155 case R_ARM_XPC25: /* Arm BLX instruction. */
6156 case R_ARM_CALL:
6157 case R_ARM_JUMP24:
6158 case R_ARM_PC24: /* Arm B/BL instruction. */
6159 case R_ARM_PLT32:
6160 {
6161 bfd_vma from;
6162 bfd_signed_vma branch_offset;
6163 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6164
6165 from = (input_section->output_section->vma
6166 + input_section->output_offset
6167 + rel->r_offset);
6168 branch_offset = (bfd_signed_vma)(value - from);
6169
6170 if (r_type == R_ARM_XPC25)
6171 {
6172 /* Check for Arm calling Arm function. */
6173 /* FIXME: Should we translate the instruction into a BL
6174 instruction instead ? */
6175 if (sym_flags != STT_ARM_TFUNC)
6176 (*_bfd_error_handler)
6177 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6178 input_bfd,
6179 h ? h->root.root.string : "(local)");
6180 }
6181 else if (r_type != R_ARM_CALL)
6182 {
6183 /* Check for Arm calling Thumb function. */
6184 if (sym_flags == STT_ARM_TFUNC)
6185 {
6186 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6187 output_bfd, input_section,
6188 hit_data, sym_sec, rel->r_offset,
6189 signed_addend, value,
6190 error_message))
6191 return bfd_reloc_ok;
6192 else
6193 return bfd_reloc_dangerous;
6194 }
6195 }
6196
6197 /* Check if a stub has to be inserted because the
6198 destination is too far or we are changing mode. */
6199 if (r_type == R_ARM_CALL)
6200 {
6201 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6202 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6203 || sym_flags == STT_ARM_TFUNC)
6204 {
6205 /* The target is out of reach, so redirect the
6206 branch to the local stub for this function. */
6207
6208 stub_entry = elf32_arm_get_stub_entry (input_section,
6209 sym_sec, h,
6210 rel, globals);
6211 if (stub_entry != NULL)
6212 value = (stub_entry->stub_offset
6213 + stub_entry->stub_sec->output_offset
6214 + stub_entry->stub_sec->output_section->vma);
6215 }
6216 }
6217
6218 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6219 where:
6220 S is the address of the symbol in the relocation.
6221 P is address of the instruction being relocated.
6222 A is the addend (extracted from the instruction) in bytes.
6223
6224 S is held in 'value'.
6225 P is the base address of the section containing the
6226 instruction plus the offset of the reloc into that
6227 section, ie:
6228 (input_section->output_section->vma +
6229 input_section->output_offset +
6230 rel->r_offset).
6231 A is the addend, converted into bytes, ie:
6232 (signed_addend * 4)
6233
6234 Note: None of these operations have knowledge of the pipeline
6235 size of the processor, thus it is up to the assembler to
6236 encode this information into the addend. */
6237 value -= (input_section->output_section->vma
6238 + input_section->output_offset);
6239 value -= rel->r_offset;
6240 if (globals->use_rel)
6241 value += (signed_addend << howto->size);
6242 else
6243 /* RELA addends do not have to be adjusted by howto->size. */
6244 value += signed_addend;
6245
6246 signed_addend = value;
6247 signed_addend >>= howto->rightshift;
6248
6249 /* A branch to an undefined weak symbol is turned into a jump to
6250 the next instruction. */
6251 if (h && h->root.type == bfd_link_hash_undefweak)
6252 {
6253 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6254 | 0x0affffff;
6255 }
6256 else
6257 {
6258 /* Perform a signed range check. */
6259 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6260 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6261 return bfd_reloc_overflow;
6262
6263 addend = (value & 2);
6264
6265 value = (signed_addend & howto->dst_mask)
6266 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6267
6268 /* Set the H bit in the BLX instruction. */
6269 if (sym_flags == STT_ARM_TFUNC)
6270 {
6271 if (addend)
6272 value |= (1 << 24);
6273 else
6274 value &= ~(bfd_vma)(1 << 24);
6275 }
6276 if (r_type == R_ARM_CALL)
6277 {
6278 /* Select the correct instruction (BL or BLX). */
6279 /* Only if we are not handling a BL to a stub. In this
6280 case, mode switching is performed by the stub. */
6281 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6282 value |= (1 << 28);
6283 else
6284 {
6285 value &= ~(bfd_vma)(1 << 28);
6286 value |= (1 << 24);
6287 }
6288 }
6289 }
6290 }
6291 break;
6292
6293 case R_ARM_ABS32:
6294 value += addend;
6295 if (sym_flags == STT_ARM_TFUNC)
6296 value |= 1;
6297 break;
6298
6299 case R_ARM_ABS32_NOI:
6300 value += addend;
6301 break;
6302
6303 case R_ARM_REL32:
6304 value += addend;
6305 if (sym_flags == STT_ARM_TFUNC)
6306 value |= 1;
6307 value -= (input_section->output_section->vma
6308 + input_section->output_offset + rel->r_offset);
6309 break;
6310
6311 case R_ARM_REL32_NOI:
6312 value += addend;
6313 value -= (input_section->output_section->vma
6314 + input_section->output_offset + rel->r_offset);
6315 break;
6316
6317 case R_ARM_PREL31:
6318 value -= (input_section->output_section->vma
6319 + input_section->output_offset + rel->r_offset);
6320 value += signed_addend;
6321 if (! h || h->root.type != bfd_link_hash_undefweak)
6322 {
6323 /* Check for overflow. */
6324 if ((value ^ (value >> 1)) & (1 << 30))
6325 return bfd_reloc_overflow;
6326 }
6327 value &= 0x7fffffff;
6328 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6329 if (sym_flags == STT_ARM_TFUNC)
6330 value |= 1;
6331 break;
6332 }
6333
6334 bfd_put_32 (input_bfd, value, hit_data);
6335 return bfd_reloc_ok;
6336
6337 case R_ARM_ABS8:
6338 value += addend;
6339 if ((long) value > 0x7f || (long) value < -0x80)
6340 return bfd_reloc_overflow;
6341
6342 bfd_put_8 (input_bfd, value, hit_data);
6343 return bfd_reloc_ok;
6344
6345 case R_ARM_ABS16:
6346 value += addend;
6347
6348 if ((long) value > 0x7fff || (long) value < -0x8000)
6349 return bfd_reloc_overflow;
6350
6351 bfd_put_16 (input_bfd, value, hit_data);
6352 return bfd_reloc_ok;
6353
6354 case R_ARM_THM_ABS5:
6355 /* Support ldr and str instructions for the thumb. */
6356 if (globals->use_rel)
6357 {
6358 /* Need to refetch addend. */
6359 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6360 /* ??? Need to determine shift amount from operand size. */
6361 addend >>= howto->rightshift;
6362 }
6363 value += addend;
6364
6365 /* ??? Isn't value unsigned? */
6366 if ((long) value > 0x1f || (long) value < -0x10)
6367 return bfd_reloc_overflow;
6368
6369 /* ??? Value needs to be properly shifted into place first. */
6370 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6371 bfd_put_16 (input_bfd, value, hit_data);
6372 return bfd_reloc_ok;
6373
6374 case R_ARM_THM_ALU_PREL_11_0:
6375 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6376 {
6377 bfd_vma insn;
6378 bfd_signed_vma relocation;
6379
6380 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6381 | bfd_get_16 (input_bfd, hit_data + 2);
6382
6383 if (globals->use_rel)
6384 {
6385 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6386 | ((insn & (1 << 26)) >> 15);
6387 if (insn & 0xf00000)
6388 signed_addend = -signed_addend;
6389 }
6390
6391 relocation = value + signed_addend;
6392 relocation -= (input_section->output_section->vma
6393 + input_section->output_offset
6394 + rel->r_offset);
6395
6396 value = abs (relocation);
6397
6398 if (value >= 0x1000)
6399 return bfd_reloc_overflow;
6400
6401 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6402 | ((value & 0x700) << 4)
6403 | ((value & 0x800) << 15);
6404 if (relocation < 0)
6405 insn |= 0xa00000;
6406
6407 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6408 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6409
6410 return bfd_reloc_ok;
6411 }
6412
6413 case R_ARM_THM_PC12:
6414 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6415 {
6416 bfd_vma insn;
6417 bfd_signed_vma relocation;
6418
6419 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6420 | bfd_get_16 (input_bfd, hit_data + 2);
6421
6422 if (globals->use_rel)
6423 {
6424 signed_addend = insn & 0xfff;
6425 if (!(insn & (1 << 23)))
6426 signed_addend = -signed_addend;
6427 }
6428
6429 relocation = value + signed_addend;
6430 relocation -= (input_section->output_section->vma
6431 + input_section->output_offset
6432 + rel->r_offset);
6433
6434 value = abs (relocation);
6435
6436 if (value >= 0x1000)
6437 return bfd_reloc_overflow;
6438
6439 insn = (insn & 0xff7ff000) | value;
6440 if (relocation >= 0)
6441 insn |= (1 << 23);
6442
6443 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6444 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6445
6446 return bfd_reloc_ok;
6447 }
6448
6449 case R_ARM_THM_XPC22:
6450 case R_ARM_THM_CALL:
6451 case R_ARM_THM_JUMP24:
6452 /* Thumb BL (branch long instruction). */
6453 {
6454 bfd_vma relocation;
6455 bfd_vma reloc_sign;
6456 bfd_boolean overflow = FALSE;
6457 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6458 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6459 bfd_signed_vma reloc_signed_max;
6460 bfd_signed_vma reloc_signed_min;
6461 bfd_vma check;
6462 bfd_signed_vma signed_check;
6463 int bitsize;
6464 int thumb2 = using_thumb2 (globals);
6465
6466 /* A branch to an undefined weak symbol is turned into a jump to
6467 the next instruction unless a PLT entry will be created. */
6468 if (h && h->root.type == bfd_link_hash_undefweak
6469 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6470 {
6471 bfd_put_16 (input_bfd, 0xe000, hit_data);
6472 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6473 return bfd_reloc_ok;
6474 }
6475
6476 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6477 with Thumb-1) involving the J1 and J2 bits. */
6478 if (globals->use_rel)
6479 {
6480 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6481 bfd_vma upper = upper_insn & 0x3ff;
6482 bfd_vma lower = lower_insn & 0x7ff;
6483 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6484 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6485 bfd_vma i1 = j1 ^ s ? 0 : 1;
6486 bfd_vma i2 = j2 ^ s ? 0 : 1;
6487
6488 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6489 /* Sign extend. */
6490 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6491
6492 signed_addend = addend;
6493 }
6494
6495 if (r_type == R_ARM_THM_XPC22)
6496 {
6497 /* Check for Thumb to Thumb call. */
6498 /* FIXME: Should we translate the instruction into a BL
6499 instruction instead ? */
6500 if (sym_flags == STT_ARM_TFUNC)
6501 (*_bfd_error_handler)
6502 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6503 input_bfd,
6504 h ? h->root.root.string : "(local)");
6505 }
6506 else
6507 {
6508 /* If it is not a call to Thumb, assume call to Arm.
6509 If it is a call relative to a section name, then it is not a
6510 function call at all, but rather a long jump. Calls through
6511 the PLT do not require stubs. */
6512 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6513 && (h == NULL || splt == NULL
6514 || h->plt.offset == (bfd_vma) -1))
6515 {
6516 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6517 {
6518 /* Convert BL to BLX. */
6519 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6520 }
6521 else if (r_type != R_ARM_THM_CALL)
6522 {
6523 if (elf32_thumb_to_arm_stub
6524 (info, sym_name, input_bfd, output_bfd, input_section,
6525 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6526 error_message))
6527 return bfd_reloc_ok;
6528 else
6529 return bfd_reloc_dangerous;
6530 }
6531 }
6532 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6533 && r_type == R_ARM_THM_CALL)
6534 {
6535 /* Make sure this is a BL. */
6536 lower_insn |= 0x1800;
6537 }
6538 }
6539
6540 /* Handle calls via the PLT. */
6541 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6542 {
6543 value = (splt->output_section->vma
6544 + splt->output_offset
6545 + h->plt.offset);
6546 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6547 {
6548 /* If the Thumb BLX instruction is available, convert the
6549 BL to a BLX instruction to call the ARM-mode PLT entry. */
6550 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6551 }
6552 else
6553 /* Target the Thumb stub before the ARM PLT entry. */
6554 value -= PLT_THUMB_STUB_SIZE;
6555 *unresolved_reloc_p = FALSE;
6556 }
6557
6558 if (r_type == R_ARM_THM_CALL)
6559 {
6560 /* Check if a stub has to be inserted because the destination
6561 is too far. */
6562 bfd_vma from;
6563 bfd_signed_vma branch_offset;
6564 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6565
6566 from = (input_section->output_section->vma
6567 + input_section->output_offset
6568 + rel->r_offset);
6569 branch_offset = (bfd_signed_vma)(value - from);
6570
6571 if ((!thumb2
6572 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6573 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6574 ||
6575 (thumb2
6576 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6577 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6578 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6579 {
6580 /* The target is out of reach or we are changing modes, so
6581 redirect the branch to the local stub for this
6582 function. */
6583 stub_entry = elf32_arm_get_stub_entry (input_section,
6584 sym_sec, h,
6585 rel, globals);
6586 if (stub_entry != NULL)
6587 value = (stub_entry->stub_offset
6588 + stub_entry->stub_sec->output_offset
6589 + stub_entry->stub_sec->output_section->vma);
6590
6591 /* If this call becomes a call to Arm, force BLX. */
6592 if (globals->use_blx)
6593 {
6594 if ((stub_entry
6595 && !arm_stub_is_thumb (stub_entry->stub_type))
6596 || (sym_flags != STT_ARM_TFUNC))
6597 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6598 }
6599 }
6600 }
6601
6602 relocation = value + signed_addend;
6603
6604 relocation -= (input_section->output_section->vma
6605 + input_section->output_offset
6606 + rel->r_offset);
6607
6608 check = relocation >> howto->rightshift;
6609
6610 /* If this is a signed value, the rightshift just dropped
6611 leading 1 bits (assuming twos complement). */
6612 if ((bfd_signed_vma) relocation >= 0)
6613 signed_check = check;
6614 else
6615 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6616
6617 /* Calculate the permissable maximum and minimum values for
6618 this relocation according to whether we're relocating for
6619 Thumb-2 or not. */
6620 bitsize = howto->bitsize;
6621 if (!thumb2)
6622 bitsize -= 2;
6623 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6624 reloc_signed_min = ~reloc_signed_max;
6625
6626 /* Assumes two's complement. */
6627 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6628 overflow = TRUE;
6629
6630 if ((lower_insn & 0x5000) == 0x4000)
6631 /* For a BLX instruction, make sure that the relocation is rounded up
6632 to a word boundary. This follows the semantics of the instruction
6633 which specifies that bit 1 of the target address will come from bit
6634 1 of the base address. */
6635 relocation = (relocation + 2) & ~ 3;
6636
6637 /* Put RELOCATION back into the insn. Assumes two's complement.
6638 We use the Thumb-2 encoding, which is safe even if dealing with
6639 a Thumb-1 instruction by virtue of our overflow check above. */
6640 reloc_sign = (signed_check < 0) ? 1 : 0;
6641 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6642 | ((relocation >> 12) & 0x3ff)
6643 | (reloc_sign << 10);
6644 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6645 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6646 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6647 | ((relocation >> 1) & 0x7ff);
6648
6649 /* Put the relocated value back in the object file: */
6650 bfd_put_16 (input_bfd, upper_insn, hit_data);
6651 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6652
6653 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6654 }
6655 break;
6656
6657 case R_ARM_THM_JUMP19:
6658 /* Thumb32 conditional branch instruction. */
6659 {
6660 bfd_vma relocation;
6661 bfd_boolean overflow = FALSE;
6662 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6663 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6664 bfd_signed_vma reloc_signed_max = 0xffffe;
6665 bfd_signed_vma reloc_signed_min = -0x100000;
6666 bfd_signed_vma signed_check;
6667
6668 /* Need to refetch the addend, reconstruct the top three bits,
6669 and squish the two 11 bit pieces together. */
6670 if (globals->use_rel)
6671 {
6672 bfd_vma S = (upper_insn & 0x0400) >> 10;
6673 bfd_vma upper = (upper_insn & 0x003f);
6674 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6675 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6676 bfd_vma lower = (lower_insn & 0x07ff);
6677
6678 upper |= J1 << 6;
6679 upper |= J2 << 7;
6680 upper |= (!S) << 8;
6681 upper -= 0x0100; /* Sign extend. */
6682
6683 addend = (upper << 12) | (lower << 1);
6684 signed_addend = addend;
6685 }
6686
6687 /* Handle calls via the PLT. */
6688 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6689 {
6690 value = (splt->output_section->vma
6691 + splt->output_offset
6692 + h->plt.offset);
6693 /* Target the Thumb stub before the ARM PLT entry. */
6694 value -= PLT_THUMB_STUB_SIZE;
6695 *unresolved_reloc_p = FALSE;
6696 }
6697
6698 /* ??? Should handle interworking? GCC might someday try to
6699 use this for tail calls. */
6700
6701 relocation = value + signed_addend;
6702 relocation -= (input_section->output_section->vma
6703 + input_section->output_offset
6704 + rel->r_offset);
6705 signed_check = (bfd_signed_vma) relocation;
6706
6707 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6708 overflow = TRUE;
6709
6710 /* Put RELOCATION back into the insn. */
6711 {
6712 bfd_vma S = (relocation & 0x00100000) >> 20;
6713 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6714 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6715 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6716 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6717
6718 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6719 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6720 }
6721
6722 /* Put the relocated value back in the object file: */
6723 bfd_put_16 (input_bfd, upper_insn, hit_data);
6724 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6725
6726 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6727 }
6728
6729 case R_ARM_THM_JUMP11:
6730 case R_ARM_THM_JUMP8:
6731 case R_ARM_THM_JUMP6:
6732 /* Thumb B (branch) instruction). */
6733 {
6734 bfd_signed_vma relocation;
6735 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6736 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6737 bfd_signed_vma signed_check;
6738
6739 /* CZB cannot jump backward. */
6740 if (r_type == R_ARM_THM_JUMP6)
6741 reloc_signed_min = 0;
6742
6743 if (globals->use_rel)
6744 {
6745 /* Need to refetch addend. */
6746 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6747 if (addend & ((howto->src_mask + 1) >> 1))
6748 {
6749 signed_addend = -1;
6750 signed_addend &= ~ howto->src_mask;
6751 signed_addend |= addend;
6752 }
6753 else
6754 signed_addend = addend;
6755 /* The value in the insn has been right shifted. We need to
6756 undo this, so that we can perform the address calculation
6757 in terms of bytes. */
6758 signed_addend <<= howto->rightshift;
6759 }
6760 relocation = value + signed_addend;
6761
6762 relocation -= (input_section->output_section->vma
6763 + input_section->output_offset
6764 + rel->r_offset);
6765
6766 relocation >>= howto->rightshift;
6767 signed_check = relocation;
6768
6769 if (r_type == R_ARM_THM_JUMP6)
6770 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6771 else
6772 relocation &= howto->dst_mask;
6773 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6774
6775 bfd_put_16 (input_bfd, relocation, hit_data);
6776
6777 /* Assumes two's complement. */
6778 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6779 return bfd_reloc_overflow;
6780
6781 return bfd_reloc_ok;
6782 }
6783
6784 case R_ARM_ALU_PCREL7_0:
6785 case R_ARM_ALU_PCREL15_8:
6786 case R_ARM_ALU_PCREL23_15:
6787 {
6788 bfd_vma insn;
6789 bfd_vma relocation;
6790
6791 insn = bfd_get_32 (input_bfd, hit_data);
6792 if (globals->use_rel)
6793 {
6794 /* Extract the addend. */
6795 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6796 signed_addend = addend;
6797 }
6798 relocation = value + signed_addend;
6799
6800 relocation -= (input_section->output_section->vma
6801 + input_section->output_offset
6802 + rel->r_offset);
6803 insn = (insn & ~0xfff)
6804 | ((howto->bitpos << 7) & 0xf00)
6805 | ((relocation >> howto->bitpos) & 0xff);
6806 bfd_put_32 (input_bfd, value, hit_data);
6807 }
6808 return bfd_reloc_ok;
6809
6810 case R_ARM_GNU_VTINHERIT:
6811 case R_ARM_GNU_VTENTRY:
6812 return bfd_reloc_ok;
6813
6814 case R_ARM_GOTOFF32:
6815 /* Relocation is relative to the start of the
6816 global offset table. */
6817
6818 BFD_ASSERT (sgot != NULL);
6819 if (sgot == NULL)
6820 return bfd_reloc_notsupported;
6821
6822 /* If we are addressing a Thumb function, we need to adjust the
6823 address by one, so that attempts to call the function pointer will
6824 correctly interpret it as Thumb code. */
6825 if (sym_flags == STT_ARM_TFUNC)
6826 value += 1;
6827
6828 /* Note that sgot->output_offset is not involved in this
6829 calculation. We always want the start of .got. If we
6830 define _GLOBAL_OFFSET_TABLE in a different way, as is
6831 permitted by the ABI, we might have to change this
6832 calculation. */
6833 value -= sgot->output_section->vma;
6834 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6835 contents, rel->r_offset, value,
6836 rel->r_addend);
6837
6838 case R_ARM_GOTPC:
6839 /* Use global offset table as symbol value. */
6840 BFD_ASSERT (sgot != NULL);
6841
6842 if (sgot == NULL)
6843 return bfd_reloc_notsupported;
6844
6845 *unresolved_reloc_p = FALSE;
6846 value = sgot->output_section->vma;
6847 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6848 contents, rel->r_offset, value,
6849 rel->r_addend);
6850
6851 case R_ARM_GOT32:
6852 case R_ARM_GOT_PREL:
6853 /* Relocation is to the entry for this symbol in the
6854 global offset table. */
6855 if (sgot == NULL)
6856 return bfd_reloc_notsupported;
6857
6858 if (h != NULL)
6859 {
6860 bfd_vma off;
6861 bfd_boolean dyn;
6862
6863 off = h->got.offset;
6864 BFD_ASSERT (off != (bfd_vma) -1);
6865 dyn = globals->root.dynamic_sections_created;
6866
6867 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6868 || (info->shared
6869 && SYMBOL_REFERENCES_LOCAL (info, h))
6870 || (ELF_ST_VISIBILITY (h->other)
6871 && h->root.type == bfd_link_hash_undefweak))
6872 {
6873 /* This is actually a static link, or it is a -Bsymbolic link
6874 and the symbol is defined locally. We must initialize this
6875 entry in the global offset table. Since the offset must
6876 always be a multiple of 4, we use the least significant bit
6877 to record whether we have initialized it already.
6878
6879 When doing a dynamic link, we create a .rel(a).got relocation
6880 entry to initialize the value. This is done in the
6881 finish_dynamic_symbol routine. */
6882 if ((off & 1) != 0)
6883 off &= ~1;
6884 else
6885 {
6886 /* If we are addressing a Thumb function, we need to
6887 adjust the address by one, so that attempts to
6888 call the function pointer will correctly
6889 interpret it as Thumb code. */
6890 if (sym_flags == STT_ARM_TFUNC)
6891 value |= 1;
6892
6893 bfd_put_32 (output_bfd, value, sgot->contents + off);
6894 h->got.offset |= 1;
6895 }
6896 }
6897 else
6898 *unresolved_reloc_p = FALSE;
6899
6900 value = sgot->output_offset + off;
6901 }
6902 else
6903 {
6904 bfd_vma off;
6905
6906 BFD_ASSERT (local_got_offsets != NULL &&
6907 local_got_offsets[r_symndx] != (bfd_vma) -1);
6908
6909 off = local_got_offsets[r_symndx];
6910
6911 /* The offset must always be a multiple of 4. We use the
6912 least significant bit to record whether we have already
6913 generated the necessary reloc. */
6914 if ((off & 1) != 0)
6915 off &= ~1;
6916 else
6917 {
6918 /* If we are addressing a Thumb function, we need to
6919 adjust the address by one, so that attempts to
6920 call the function pointer will correctly
6921 interpret it as Thumb code. */
6922 if (sym_flags == STT_ARM_TFUNC)
6923 value |= 1;
6924
6925 if (globals->use_rel)
6926 bfd_put_32 (output_bfd, value, sgot->contents + off);
6927
6928 if (info->shared)
6929 {
6930 asection * srelgot;
6931 Elf_Internal_Rela outrel;
6932 bfd_byte *loc;
6933
6934 srelgot = (bfd_get_section_by_name
6935 (dynobj, RELOC_SECTION (globals, ".got")));
6936 BFD_ASSERT (srelgot != NULL);
6937
6938 outrel.r_addend = addend + value;
6939 outrel.r_offset = (sgot->output_section->vma
6940 + sgot->output_offset
6941 + off);
6942 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6943 loc = srelgot->contents;
6944 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6945 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6946 }
6947
6948 local_got_offsets[r_symndx] |= 1;
6949 }
6950
6951 value = sgot->output_offset + off;
6952 }
6953 if (r_type != R_ARM_GOT32)
6954 value += sgot->output_section->vma;
6955
6956 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6957 contents, rel->r_offset, value,
6958 rel->r_addend);
6959
6960 case R_ARM_TLS_LDO32:
6961 value = value - dtpoff_base (info);
6962
6963 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6964 contents, rel->r_offset, value,
6965 rel->r_addend);
6966
6967 case R_ARM_TLS_LDM32:
6968 {
6969 bfd_vma off;
6970
6971 if (globals->sgot == NULL)
6972 abort ();
6973
6974 off = globals->tls_ldm_got.offset;
6975
6976 if ((off & 1) != 0)
6977 off &= ~1;
6978 else
6979 {
6980 /* If we don't know the module number, create a relocation
6981 for it. */
6982 if (info->shared)
6983 {
6984 Elf_Internal_Rela outrel;
6985 bfd_byte *loc;
6986
6987 if (globals->srelgot == NULL)
6988 abort ();
6989
6990 outrel.r_addend = 0;
6991 outrel.r_offset = (globals->sgot->output_section->vma
6992 + globals->sgot->output_offset + off);
6993 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6994
6995 if (globals->use_rel)
6996 bfd_put_32 (output_bfd, outrel.r_addend,
6997 globals->sgot->contents + off);
6998
6999 loc = globals->srelgot->contents;
7000 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7001 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7002 }
7003 else
7004 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7005
7006 globals->tls_ldm_got.offset |= 1;
7007 }
7008
7009 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7010 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7011
7012 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7013 contents, rel->r_offset, value,
7014 rel->r_addend);
7015 }
7016
7017 case R_ARM_TLS_GD32:
7018 case R_ARM_TLS_IE32:
7019 {
7020 bfd_vma off;
7021 int indx;
7022 char tls_type;
7023
7024 if (globals->sgot == NULL)
7025 abort ();
7026
7027 indx = 0;
7028 if (h != NULL)
7029 {
7030 bfd_boolean dyn;
7031 dyn = globals->root.dynamic_sections_created;
7032 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7033 && (!info->shared
7034 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7035 {
7036 *unresolved_reloc_p = FALSE;
7037 indx = h->dynindx;
7038 }
7039 off = h->got.offset;
7040 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7041 }
7042 else
7043 {
7044 if (local_got_offsets == NULL)
7045 abort ();
7046 off = local_got_offsets[r_symndx];
7047 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7048 }
7049
7050 if (tls_type == GOT_UNKNOWN)
7051 abort ();
7052
7053 if ((off & 1) != 0)
7054 off &= ~1;
7055 else
7056 {
7057 bfd_boolean need_relocs = FALSE;
7058 Elf_Internal_Rela outrel;
7059 bfd_byte *loc = NULL;
7060 int cur_off = off;
7061
7062 /* The GOT entries have not been initialized yet. Do it
7063 now, and emit any relocations. If both an IE GOT and a
7064 GD GOT are necessary, we emit the GD first. */
7065
7066 if ((info->shared || indx != 0)
7067 && (h == NULL
7068 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7069 || h->root.type != bfd_link_hash_undefweak))
7070 {
7071 need_relocs = TRUE;
7072 if (globals->srelgot == NULL)
7073 abort ();
7074 loc = globals->srelgot->contents;
7075 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7076 }
7077
7078 if (tls_type & GOT_TLS_GD)
7079 {
7080 if (need_relocs)
7081 {
7082 outrel.r_addend = 0;
7083 outrel.r_offset = (globals->sgot->output_section->vma
7084 + globals->sgot->output_offset
7085 + cur_off);
7086 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7087
7088 if (globals->use_rel)
7089 bfd_put_32 (output_bfd, outrel.r_addend,
7090 globals->sgot->contents + cur_off);
7091
7092 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7093 globals->srelgot->reloc_count++;
7094 loc += RELOC_SIZE (globals);
7095
7096 if (indx == 0)
7097 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7098 globals->sgot->contents + cur_off + 4);
7099 else
7100 {
7101 outrel.r_addend = 0;
7102 outrel.r_info = ELF32_R_INFO (indx,
7103 R_ARM_TLS_DTPOFF32);
7104 outrel.r_offset += 4;
7105
7106 if (globals->use_rel)
7107 bfd_put_32 (output_bfd, outrel.r_addend,
7108 globals->sgot->contents + cur_off + 4);
7109
7110
7111 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7112 globals->srelgot->reloc_count++;
7113 loc += RELOC_SIZE (globals);
7114 }
7115 }
7116 else
7117 {
7118 /* If we are not emitting relocations for a
7119 general dynamic reference, then we must be in a
7120 static link or an executable link with the
7121 symbol binding locally. Mark it as belonging
7122 to module 1, the executable. */
7123 bfd_put_32 (output_bfd, 1,
7124 globals->sgot->contents + cur_off);
7125 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7126 globals->sgot->contents + cur_off + 4);
7127 }
7128
7129 cur_off += 8;
7130 }
7131
7132 if (tls_type & GOT_TLS_IE)
7133 {
7134 if (need_relocs)
7135 {
7136 if (indx == 0)
7137 outrel.r_addend = value - dtpoff_base (info);
7138 else
7139 outrel.r_addend = 0;
7140 outrel.r_offset = (globals->sgot->output_section->vma
7141 + globals->sgot->output_offset
7142 + cur_off);
7143 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7144
7145 if (globals->use_rel)
7146 bfd_put_32 (output_bfd, outrel.r_addend,
7147 globals->sgot->contents + cur_off);
7148
7149 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7150 globals->srelgot->reloc_count++;
7151 loc += RELOC_SIZE (globals);
7152 }
7153 else
7154 bfd_put_32 (output_bfd, tpoff (info, value),
7155 globals->sgot->contents + cur_off);
7156 cur_off += 4;
7157 }
7158
7159 if (h != NULL)
7160 h->got.offset |= 1;
7161 else
7162 local_got_offsets[r_symndx] |= 1;
7163 }
7164
7165 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7166 off += 8;
7167 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7168 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7169
7170 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7171 contents, rel->r_offset, value,
7172 rel->r_addend);
7173 }
7174
7175 case R_ARM_TLS_LE32:
7176 if (info->shared)
7177 {
7178 (*_bfd_error_handler)
7179 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7180 input_bfd, input_section,
7181 (long) rel->r_offset, howto->name);
7182 return FALSE;
7183 }
7184 else
7185 value = tpoff (info, value);
7186
7187 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7188 contents, rel->r_offset, value,
7189 rel->r_addend);
7190
7191 case R_ARM_V4BX:
7192 if (globals->fix_v4bx)
7193 {
7194 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7195
7196 /* Ensure that we have a BX instruction. */
7197 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7198
7199 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7200 {
7201 /* Branch to veneer. */
7202 bfd_vma glue_addr;
7203 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7204 glue_addr -= input_section->output_section->vma
7205 + input_section->output_offset
7206 + rel->r_offset + 8;
7207 insn = (insn & 0xf0000000) | 0x0a000000
7208 | ((glue_addr >> 2) & 0x00ffffff);
7209 }
7210 else
7211 {
7212 /* Preserve Rm (lowest four bits) and the condition code
7213 (highest four bits). Other bits encode MOV PC,Rm. */
7214 insn = (insn & 0xf000000f) | 0x01a0f000;
7215 }
7216
7217 bfd_put_32 (input_bfd, insn, hit_data);
7218 }
7219 return bfd_reloc_ok;
7220
7221 case R_ARM_MOVW_ABS_NC:
7222 case R_ARM_MOVT_ABS:
7223 case R_ARM_MOVW_PREL_NC:
7224 case R_ARM_MOVT_PREL:
7225 /* Until we properly support segment-base-relative addressing then
7226 we assume the segment base to be zero, as for the group relocations.
7227 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7228 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7229 case R_ARM_MOVW_BREL_NC:
7230 case R_ARM_MOVW_BREL:
7231 case R_ARM_MOVT_BREL:
7232 {
7233 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7234
7235 if (globals->use_rel)
7236 {
7237 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7238 signed_addend = (addend ^ 0x8000) - 0x8000;
7239 }
7240
7241 value += signed_addend;
7242
7243 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7244 value -= (input_section->output_section->vma
7245 + input_section->output_offset + rel->r_offset);
7246
7247 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7248 return bfd_reloc_overflow;
7249
7250 if (sym_flags == STT_ARM_TFUNC)
7251 value |= 1;
7252
7253 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7254 || r_type == R_ARM_MOVT_BREL)
7255 value >>= 16;
7256
7257 insn &= 0xfff0f000;
7258 insn |= value & 0xfff;
7259 insn |= (value & 0xf000) << 4;
7260 bfd_put_32 (input_bfd, insn, hit_data);
7261 }
7262 return bfd_reloc_ok;
7263
7264 case R_ARM_THM_MOVW_ABS_NC:
7265 case R_ARM_THM_MOVT_ABS:
7266 case R_ARM_THM_MOVW_PREL_NC:
7267 case R_ARM_THM_MOVT_PREL:
7268 /* Until we properly support segment-base-relative addressing then
7269 we assume the segment base to be zero, as for the above relocations.
7270 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7271 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7272 as R_ARM_THM_MOVT_ABS. */
7273 case R_ARM_THM_MOVW_BREL_NC:
7274 case R_ARM_THM_MOVW_BREL:
7275 case R_ARM_THM_MOVT_BREL:
7276 {
7277 bfd_vma insn;
7278
7279 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7280 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7281
7282 if (globals->use_rel)
7283 {
7284 addend = ((insn >> 4) & 0xf000)
7285 | ((insn >> 15) & 0x0800)
7286 | ((insn >> 4) & 0x0700)
7287 | (insn & 0x00ff);
7288 signed_addend = (addend ^ 0x8000) - 0x8000;
7289 }
7290
7291 value += signed_addend;
7292
7293 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7294 value -= (input_section->output_section->vma
7295 + input_section->output_offset + rel->r_offset);
7296
7297 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7298 return bfd_reloc_overflow;
7299
7300 if (sym_flags == STT_ARM_TFUNC)
7301 value |= 1;
7302
7303 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7304 || r_type == R_ARM_THM_MOVT_BREL)
7305 value >>= 16;
7306
7307 insn &= 0xfbf08f00;
7308 insn |= (value & 0xf000) << 4;
7309 insn |= (value & 0x0800) << 15;
7310 insn |= (value & 0x0700) << 4;
7311 insn |= (value & 0x00ff);
7312
7313 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7314 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7315 }
7316 return bfd_reloc_ok;
7317
7318 case R_ARM_ALU_PC_G0_NC:
7319 case R_ARM_ALU_PC_G1_NC:
7320 case R_ARM_ALU_PC_G0:
7321 case R_ARM_ALU_PC_G1:
7322 case R_ARM_ALU_PC_G2:
7323 case R_ARM_ALU_SB_G0_NC:
7324 case R_ARM_ALU_SB_G1_NC:
7325 case R_ARM_ALU_SB_G0:
7326 case R_ARM_ALU_SB_G1:
7327 case R_ARM_ALU_SB_G2:
7328 {
7329 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7330 bfd_vma pc = input_section->output_section->vma
7331 + input_section->output_offset + rel->r_offset;
7332 /* sb should be the origin of the *segment* containing the symbol.
7333 It is not clear how to obtain this OS-dependent value, so we
7334 make an arbitrary choice of zero. */
7335 bfd_vma sb = 0;
7336 bfd_vma residual;
7337 bfd_vma g_n;
7338 bfd_signed_vma signed_value;
7339 int group = 0;
7340
7341 /* Determine which group of bits to select. */
7342 switch (r_type)
7343 {
7344 case R_ARM_ALU_PC_G0_NC:
7345 case R_ARM_ALU_PC_G0:
7346 case R_ARM_ALU_SB_G0_NC:
7347 case R_ARM_ALU_SB_G0:
7348 group = 0;
7349 break;
7350
7351 case R_ARM_ALU_PC_G1_NC:
7352 case R_ARM_ALU_PC_G1:
7353 case R_ARM_ALU_SB_G1_NC:
7354 case R_ARM_ALU_SB_G1:
7355 group = 1;
7356 break;
7357
7358 case R_ARM_ALU_PC_G2:
7359 case R_ARM_ALU_SB_G2:
7360 group = 2;
7361 break;
7362
7363 default:
7364 abort ();
7365 }
7366
7367 /* If REL, extract the addend from the insn. If RELA, it will
7368 have already been fetched for us. */
7369 if (globals->use_rel)
7370 {
7371 int negative;
7372 bfd_vma constant = insn & 0xff;
7373 bfd_vma rotation = (insn & 0xf00) >> 8;
7374
7375 if (rotation == 0)
7376 signed_addend = constant;
7377 else
7378 {
7379 /* Compensate for the fact that in the instruction, the
7380 rotation is stored in multiples of 2 bits. */
7381 rotation *= 2;
7382
7383 /* Rotate "constant" right by "rotation" bits. */
7384 signed_addend = (constant >> rotation) |
7385 (constant << (8 * sizeof (bfd_vma) - rotation));
7386 }
7387
7388 /* Determine if the instruction is an ADD or a SUB.
7389 (For REL, this determines the sign of the addend.) */
7390 negative = identify_add_or_sub (insn);
7391 if (negative == 0)
7392 {
7393 (*_bfd_error_handler)
7394 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7395 input_bfd, input_section,
7396 (long) rel->r_offset, howto->name);
7397 return bfd_reloc_overflow;
7398 }
7399
7400 signed_addend *= negative;
7401 }
7402
7403 /* Compute the value (X) to go in the place. */
7404 if (r_type == R_ARM_ALU_PC_G0_NC
7405 || r_type == R_ARM_ALU_PC_G1_NC
7406 || r_type == R_ARM_ALU_PC_G0
7407 || r_type == R_ARM_ALU_PC_G1
7408 || r_type == R_ARM_ALU_PC_G2)
7409 /* PC relative. */
7410 signed_value = value - pc + signed_addend;
7411 else
7412 /* Section base relative. */
7413 signed_value = value - sb + signed_addend;
7414
7415 /* If the target symbol is a Thumb function, then set the
7416 Thumb bit in the address. */
7417 if (sym_flags == STT_ARM_TFUNC)
7418 signed_value |= 1;
7419
7420 /* Calculate the value of the relevant G_n, in encoded
7421 constant-with-rotation format. */
7422 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7423 &residual);
7424
7425 /* Check for overflow if required. */
7426 if ((r_type == R_ARM_ALU_PC_G0
7427 || r_type == R_ARM_ALU_PC_G1
7428 || r_type == R_ARM_ALU_PC_G2
7429 || r_type == R_ARM_ALU_SB_G0
7430 || r_type == R_ARM_ALU_SB_G1
7431 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7432 {
7433 (*_bfd_error_handler)
7434 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7435 input_bfd, input_section,
7436 (long) rel->r_offset, abs (signed_value), howto->name);
7437 return bfd_reloc_overflow;
7438 }
7439
7440 /* Mask out the value and the ADD/SUB part of the opcode; take care
7441 not to destroy the S bit. */
7442 insn &= 0xff1ff000;
7443
7444 /* Set the opcode according to whether the value to go in the
7445 place is negative. */
7446 if (signed_value < 0)
7447 insn |= 1 << 22;
7448 else
7449 insn |= 1 << 23;
7450
7451 /* Encode the offset. */
7452 insn |= g_n;
7453
7454 bfd_put_32 (input_bfd, insn, hit_data);
7455 }
7456 return bfd_reloc_ok;
7457
7458 case R_ARM_LDR_PC_G0:
7459 case R_ARM_LDR_PC_G1:
7460 case R_ARM_LDR_PC_G2:
7461 case R_ARM_LDR_SB_G0:
7462 case R_ARM_LDR_SB_G1:
7463 case R_ARM_LDR_SB_G2:
7464 {
7465 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7466 bfd_vma pc = input_section->output_section->vma
7467 + input_section->output_offset + rel->r_offset;
7468 bfd_vma sb = 0; /* See note above. */
7469 bfd_vma residual;
7470 bfd_signed_vma signed_value;
7471 int group = 0;
7472
7473 /* Determine which groups of bits to calculate. */
7474 switch (r_type)
7475 {
7476 case R_ARM_LDR_PC_G0:
7477 case R_ARM_LDR_SB_G0:
7478 group = 0;
7479 break;
7480
7481 case R_ARM_LDR_PC_G1:
7482 case R_ARM_LDR_SB_G1:
7483 group = 1;
7484 break;
7485
7486 case R_ARM_LDR_PC_G2:
7487 case R_ARM_LDR_SB_G2:
7488 group = 2;
7489 break;
7490
7491 default:
7492 abort ();
7493 }
7494
7495 /* If REL, extract the addend from the insn. If RELA, it will
7496 have already been fetched for us. */
7497 if (globals->use_rel)
7498 {
7499 int negative = (insn & (1 << 23)) ? 1 : -1;
7500 signed_addend = negative * (insn & 0xfff);
7501 }
7502
7503 /* Compute the value (X) to go in the place. */
7504 if (r_type == R_ARM_LDR_PC_G0
7505 || r_type == R_ARM_LDR_PC_G1
7506 || r_type == R_ARM_LDR_PC_G2)
7507 /* PC relative. */
7508 signed_value = value - pc + signed_addend;
7509 else
7510 /* Section base relative. */
7511 signed_value = value - sb + signed_addend;
7512
7513 /* Calculate the value of the relevant G_{n-1} to obtain
7514 the residual at that stage. */
7515 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7516
7517 /* Check for overflow. */
7518 if (residual >= 0x1000)
7519 {
7520 (*_bfd_error_handler)
7521 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7522 input_bfd, input_section,
7523 (long) rel->r_offset, abs (signed_value), howto->name);
7524 return bfd_reloc_overflow;
7525 }
7526
7527 /* Mask out the value and U bit. */
7528 insn &= 0xff7ff000;
7529
7530 /* Set the U bit if the value to go in the place is non-negative. */
7531 if (signed_value >= 0)
7532 insn |= 1 << 23;
7533
7534 /* Encode the offset. */
7535 insn |= residual;
7536
7537 bfd_put_32 (input_bfd, insn, hit_data);
7538 }
7539 return bfd_reloc_ok;
7540
7541 case R_ARM_LDRS_PC_G0:
7542 case R_ARM_LDRS_PC_G1:
7543 case R_ARM_LDRS_PC_G2:
7544 case R_ARM_LDRS_SB_G0:
7545 case R_ARM_LDRS_SB_G1:
7546 case R_ARM_LDRS_SB_G2:
7547 {
7548 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7549 bfd_vma pc = input_section->output_section->vma
7550 + input_section->output_offset + rel->r_offset;
7551 bfd_vma sb = 0; /* See note above. */
7552 bfd_vma residual;
7553 bfd_signed_vma signed_value;
7554 int group = 0;
7555
7556 /* Determine which groups of bits to calculate. */
7557 switch (r_type)
7558 {
7559 case R_ARM_LDRS_PC_G0:
7560 case R_ARM_LDRS_SB_G0:
7561 group = 0;
7562 break;
7563
7564 case R_ARM_LDRS_PC_G1:
7565 case R_ARM_LDRS_SB_G1:
7566 group = 1;
7567 break;
7568
7569 case R_ARM_LDRS_PC_G2:
7570 case R_ARM_LDRS_SB_G2:
7571 group = 2;
7572 break;
7573
7574 default:
7575 abort ();
7576 }
7577
7578 /* If REL, extract the addend from the insn. If RELA, it will
7579 have already been fetched for us. */
7580 if (globals->use_rel)
7581 {
7582 int negative = (insn & (1 << 23)) ? 1 : -1;
7583 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7584 }
7585
7586 /* Compute the value (X) to go in the place. */
7587 if (r_type == R_ARM_LDRS_PC_G0
7588 || r_type == R_ARM_LDRS_PC_G1
7589 || r_type == R_ARM_LDRS_PC_G2)
7590 /* PC relative. */
7591 signed_value = value - pc + signed_addend;
7592 else
7593 /* Section base relative. */
7594 signed_value = value - sb + signed_addend;
7595
7596 /* Calculate the value of the relevant G_{n-1} to obtain
7597 the residual at that stage. */
7598 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7599
7600 /* Check for overflow. */
7601 if (residual >= 0x100)
7602 {
7603 (*_bfd_error_handler)
7604 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7605 input_bfd, input_section,
7606 (long) rel->r_offset, abs (signed_value), howto->name);
7607 return bfd_reloc_overflow;
7608 }
7609
7610 /* Mask out the value and U bit. */
7611 insn &= 0xff7ff0f0;
7612
7613 /* Set the U bit if the value to go in the place is non-negative. */
7614 if (signed_value >= 0)
7615 insn |= 1 << 23;
7616
7617 /* Encode the offset. */
7618 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7619
7620 bfd_put_32 (input_bfd, insn, hit_data);
7621 }
7622 return bfd_reloc_ok;
7623
7624 case R_ARM_LDC_PC_G0:
7625 case R_ARM_LDC_PC_G1:
7626 case R_ARM_LDC_PC_G2:
7627 case R_ARM_LDC_SB_G0:
7628 case R_ARM_LDC_SB_G1:
7629 case R_ARM_LDC_SB_G2:
7630 {
7631 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7632 bfd_vma pc = input_section->output_section->vma
7633 + input_section->output_offset + rel->r_offset;
7634 bfd_vma sb = 0; /* See note above. */
7635 bfd_vma residual;
7636 bfd_signed_vma signed_value;
7637 int group = 0;
7638
7639 /* Determine which groups of bits to calculate. */
7640 switch (r_type)
7641 {
7642 case R_ARM_LDC_PC_G0:
7643 case R_ARM_LDC_SB_G0:
7644 group = 0;
7645 break;
7646
7647 case R_ARM_LDC_PC_G1:
7648 case R_ARM_LDC_SB_G1:
7649 group = 1;
7650 break;
7651
7652 case R_ARM_LDC_PC_G2:
7653 case R_ARM_LDC_SB_G2:
7654 group = 2;
7655 break;
7656
7657 default:
7658 abort ();
7659 }
7660
7661 /* If REL, extract the addend from the insn. If RELA, it will
7662 have already been fetched for us. */
7663 if (globals->use_rel)
7664 {
7665 int negative = (insn & (1 << 23)) ? 1 : -1;
7666 signed_addend = negative * ((insn & 0xff) << 2);
7667 }
7668
7669 /* Compute the value (X) to go in the place. */
7670 if (r_type == R_ARM_LDC_PC_G0
7671 || r_type == R_ARM_LDC_PC_G1
7672 || r_type == R_ARM_LDC_PC_G2)
7673 /* PC relative. */
7674 signed_value = value - pc + signed_addend;
7675 else
7676 /* Section base relative. */
7677 signed_value = value - sb + signed_addend;
7678
7679 /* Calculate the value of the relevant G_{n-1} to obtain
7680 the residual at that stage. */
7681 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7682
7683 /* Check for overflow. (The absolute value to go in the place must be
7684 divisible by four and, after having been divided by four, must
7685 fit in eight bits.) */
7686 if ((residual & 0x3) != 0 || residual >= 0x400)
7687 {
7688 (*_bfd_error_handler)
7689 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7690 input_bfd, input_section,
7691 (long) rel->r_offset, abs (signed_value), howto->name);
7692 return bfd_reloc_overflow;
7693 }
7694
7695 /* Mask out the value and U bit. */
7696 insn &= 0xff7fff00;
7697
7698 /* Set the U bit if the value to go in the place is non-negative. */
7699 if (signed_value >= 0)
7700 insn |= 1 << 23;
7701
7702 /* Encode the offset. */
7703 insn |= residual >> 2;
7704
7705 bfd_put_32 (input_bfd, insn, hit_data);
7706 }
7707 return bfd_reloc_ok;
7708
7709 default:
7710 return bfd_reloc_notsupported;
7711 }
7712 }
7713
7714 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7715 static void
7716 arm_add_to_rel (bfd * abfd,
7717 bfd_byte * address,
7718 reloc_howto_type * howto,
7719 bfd_signed_vma increment)
7720 {
7721 bfd_signed_vma addend;
7722
7723 if (howto->type == R_ARM_THM_CALL
7724 || howto->type == R_ARM_THM_JUMP24)
7725 {
7726 int upper_insn, lower_insn;
7727 int upper, lower;
7728
7729 upper_insn = bfd_get_16 (abfd, address);
7730 lower_insn = bfd_get_16 (abfd, address + 2);
7731 upper = upper_insn & 0x7ff;
7732 lower = lower_insn & 0x7ff;
7733
7734 addend = (upper << 12) | (lower << 1);
7735 addend += increment;
7736 addend >>= 1;
7737
7738 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7739 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7740
7741 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7742 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7743 }
7744 else
7745 {
7746 bfd_vma contents;
7747
7748 contents = bfd_get_32 (abfd, address);
7749
7750 /* Get the (signed) value from the instruction. */
7751 addend = contents & howto->src_mask;
7752 if (addend & ((howto->src_mask + 1) >> 1))
7753 {
7754 bfd_signed_vma mask;
7755
7756 mask = -1;
7757 mask &= ~ howto->src_mask;
7758 addend |= mask;
7759 }
7760
7761 /* Add in the increment, (which is a byte value). */
7762 switch (howto->type)
7763 {
7764 default:
7765 addend += increment;
7766 break;
7767
7768 case R_ARM_PC24:
7769 case R_ARM_PLT32:
7770 case R_ARM_CALL:
7771 case R_ARM_JUMP24:
7772 addend <<= howto->size;
7773 addend += increment;
7774
7775 /* Should we check for overflow here ? */
7776
7777 /* Drop any undesired bits. */
7778 addend >>= howto->rightshift;
7779 break;
7780 }
7781
7782 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7783
7784 bfd_put_32 (abfd, contents, address);
7785 }
7786 }
7787
7788 #define IS_ARM_TLS_RELOC(R_TYPE) \
7789 ((R_TYPE) == R_ARM_TLS_GD32 \
7790 || (R_TYPE) == R_ARM_TLS_LDO32 \
7791 || (R_TYPE) == R_ARM_TLS_LDM32 \
7792 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7793 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7794 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7795 || (R_TYPE) == R_ARM_TLS_LE32 \
7796 || (R_TYPE) == R_ARM_TLS_IE32)
7797
7798 /* Relocate an ARM ELF section. */
7799
7800 static bfd_boolean
7801 elf32_arm_relocate_section (bfd * output_bfd,
7802 struct bfd_link_info * info,
7803 bfd * input_bfd,
7804 asection * input_section,
7805 bfd_byte * contents,
7806 Elf_Internal_Rela * relocs,
7807 Elf_Internal_Sym * local_syms,
7808 asection ** local_sections)
7809 {
7810 Elf_Internal_Shdr *symtab_hdr;
7811 struct elf_link_hash_entry **sym_hashes;
7812 Elf_Internal_Rela *rel;
7813 Elf_Internal_Rela *relend;
7814 const char *name;
7815 struct elf32_arm_link_hash_table * globals;
7816
7817 globals = elf32_arm_hash_table (info);
7818
7819 symtab_hdr = & elf_symtab_hdr (input_bfd);
7820 sym_hashes = elf_sym_hashes (input_bfd);
7821
7822 rel = relocs;
7823 relend = relocs + input_section->reloc_count;
7824 for (; rel < relend; rel++)
7825 {
7826 int r_type;
7827 reloc_howto_type * howto;
7828 unsigned long r_symndx;
7829 Elf_Internal_Sym * sym;
7830 asection * sec;
7831 struct elf_link_hash_entry * h;
7832 bfd_vma relocation;
7833 bfd_reloc_status_type r;
7834 arelent bfd_reloc;
7835 char sym_type;
7836 bfd_boolean unresolved_reloc = FALSE;
7837 char *error_message = NULL;
7838
7839 r_symndx = ELF32_R_SYM (rel->r_info);
7840 r_type = ELF32_R_TYPE (rel->r_info);
7841 r_type = arm_real_reloc_type (globals, r_type);
7842
7843 if ( r_type == R_ARM_GNU_VTENTRY
7844 || r_type == R_ARM_GNU_VTINHERIT)
7845 continue;
7846
7847 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7848 howto = bfd_reloc.howto;
7849
7850 h = NULL;
7851 sym = NULL;
7852 sec = NULL;
7853
7854 if (r_symndx < symtab_hdr->sh_info)
7855 {
7856 sym = local_syms + r_symndx;
7857 sym_type = ELF32_ST_TYPE (sym->st_info);
7858 sec = local_sections[r_symndx];
7859 if (globals->use_rel)
7860 {
7861 relocation = (sec->output_section->vma
7862 + sec->output_offset
7863 + sym->st_value);
7864 if (!info->relocatable
7865 && (sec->flags & SEC_MERGE)
7866 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7867 {
7868 asection *msec;
7869 bfd_vma addend, value;
7870
7871 switch (r_type)
7872 {
7873 case R_ARM_MOVW_ABS_NC:
7874 case R_ARM_MOVT_ABS:
7875 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7876 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7877 addend = (addend ^ 0x8000) - 0x8000;
7878 break;
7879
7880 case R_ARM_THM_MOVW_ABS_NC:
7881 case R_ARM_THM_MOVT_ABS:
7882 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7883 << 16;
7884 value |= bfd_get_16 (input_bfd,
7885 contents + rel->r_offset + 2);
7886 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7887 | ((value & 0x04000000) >> 15);
7888 addend = (addend ^ 0x8000) - 0x8000;
7889 break;
7890
7891 default:
7892 if (howto->rightshift
7893 || (howto->src_mask & (howto->src_mask + 1)))
7894 {
7895 (*_bfd_error_handler)
7896 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7897 input_bfd, input_section,
7898 (long) rel->r_offset, howto->name);
7899 return FALSE;
7900 }
7901
7902 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7903
7904 /* Get the (signed) value from the instruction. */
7905 addend = value & howto->src_mask;
7906 if (addend & ((howto->src_mask + 1) >> 1))
7907 {
7908 bfd_signed_vma mask;
7909
7910 mask = -1;
7911 mask &= ~ howto->src_mask;
7912 addend |= mask;
7913 }
7914 break;
7915 }
7916
7917 msec = sec;
7918 addend =
7919 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7920 - relocation;
7921 addend += msec->output_section->vma + msec->output_offset;
7922
7923 /* Cases here must match those in the preceeding
7924 switch statement. */
7925 switch (r_type)
7926 {
7927 case R_ARM_MOVW_ABS_NC:
7928 case R_ARM_MOVT_ABS:
7929 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7930 | (addend & 0xfff);
7931 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7932 break;
7933
7934 case R_ARM_THM_MOVW_ABS_NC:
7935 case R_ARM_THM_MOVT_ABS:
7936 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7937 | (addend & 0xff) | ((addend & 0x0800) << 15);
7938 bfd_put_16 (input_bfd, value >> 16,
7939 contents + rel->r_offset);
7940 bfd_put_16 (input_bfd, value,
7941 contents + rel->r_offset + 2);
7942 break;
7943
7944 default:
7945 value = (value & ~ howto->dst_mask)
7946 | (addend & howto->dst_mask);
7947 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7948 break;
7949 }
7950 }
7951 }
7952 else
7953 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7954 }
7955 else
7956 {
7957 bfd_boolean warned;
7958
7959 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7960 r_symndx, symtab_hdr, sym_hashes,
7961 h, sec, relocation,
7962 unresolved_reloc, warned);
7963
7964 sym_type = h->type;
7965 }
7966
7967 if (sec != NULL && elf_discarded_section (sec))
7968 {
7969 /* For relocs against symbols from removed linkonce sections,
7970 or sections discarded by a linker script, we just want the
7971 section contents zeroed. Avoid any special processing. */
7972 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7973 rel->r_info = 0;
7974 rel->r_addend = 0;
7975 continue;
7976 }
7977
7978 if (info->relocatable)
7979 {
7980 /* This is a relocatable link. We don't have to change
7981 anything, unless the reloc is against a section symbol,
7982 in which case we have to adjust according to where the
7983 section symbol winds up in the output section. */
7984 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7985 {
7986 if (globals->use_rel)
7987 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7988 howto, (bfd_signed_vma) sec->output_offset);
7989 else
7990 rel->r_addend += sec->output_offset;
7991 }
7992 continue;
7993 }
7994
7995 if (h != NULL)
7996 name = h->root.root.string;
7997 else
7998 {
7999 name = (bfd_elf_string_from_elf_section
8000 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8001 if (name == NULL || *name == '\0')
8002 name = bfd_section_name (input_bfd, sec);
8003 }
8004
8005 if (r_symndx != 0
8006 && r_type != R_ARM_NONE
8007 && (h == NULL
8008 || h->root.type == bfd_link_hash_defined
8009 || h->root.type == bfd_link_hash_defweak)
8010 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8011 {
8012 (*_bfd_error_handler)
8013 ((sym_type == STT_TLS
8014 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8015 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8016 input_bfd,
8017 input_section,
8018 (long) rel->r_offset,
8019 howto->name,
8020 name);
8021 }
8022
8023 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8024 input_section, contents, rel,
8025 relocation, info, sec, name,
8026 (h ? ELF_ST_TYPE (h->type) :
8027 ELF_ST_TYPE (sym->st_info)), h,
8028 &unresolved_reloc, &error_message);
8029
8030 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8031 because such sections are not SEC_ALLOC and thus ld.so will
8032 not process them. */
8033 if (unresolved_reloc
8034 && !((input_section->flags & SEC_DEBUGGING) != 0
8035 && h->def_dynamic))
8036 {
8037 (*_bfd_error_handler)
8038 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8039 input_bfd,
8040 input_section,
8041 (long) rel->r_offset,
8042 howto->name,
8043 h->root.root.string);
8044 return FALSE;
8045 }
8046
8047 if (r != bfd_reloc_ok)
8048 {
8049 switch (r)
8050 {
8051 case bfd_reloc_overflow:
8052 /* If the overflowing reloc was to an undefined symbol,
8053 we have already printed one error message and there
8054 is no point complaining again. */
8055 if ((! h ||
8056 h->root.type != bfd_link_hash_undefined)
8057 && (!((*info->callbacks->reloc_overflow)
8058 (info, (h ? &h->root : NULL), name, howto->name,
8059 (bfd_vma) 0, input_bfd, input_section,
8060 rel->r_offset))))
8061 return FALSE;
8062 break;
8063
8064 case bfd_reloc_undefined:
8065 if (!((*info->callbacks->undefined_symbol)
8066 (info, name, input_bfd, input_section,
8067 rel->r_offset, TRUE)))
8068 return FALSE;
8069 break;
8070
8071 case bfd_reloc_outofrange:
8072 error_message = _("out of range");
8073 goto common_error;
8074
8075 case bfd_reloc_notsupported:
8076 error_message = _("unsupported relocation");
8077 goto common_error;
8078
8079 case bfd_reloc_dangerous:
8080 /* error_message should already be set. */
8081 goto common_error;
8082
8083 default:
8084 error_message = _("unknown error");
8085 /* Fall through. */
8086
8087 common_error:
8088 BFD_ASSERT (error_message != NULL);
8089 if (!((*info->callbacks->reloc_dangerous)
8090 (info, error_message, input_bfd, input_section,
8091 rel->r_offset)))
8092 return FALSE;
8093 break;
8094 }
8095 }
8096 }
8097
8098 return TRUE;
8099 }
8100
8101 /* Set the right machine number. */
8102
8103 static bfd_boolean
8104 elf32_arm_object_p (bfd *abfd)
8105 {
8106 unsigned int mach;
8107
8108 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8109
8110 if (mach != bfd_mach_arm_unknown)
8111 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8112
8113 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8114 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8115
8116 else
8117 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8118
8119 return TRUE;
8120 }
8121
8122 /* Function to keep ARM specific flags in the ELF header. */
8123
8124 static bfd_boolean
8125 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8126 {
8127 if (elf_flags_init (abfd)
8128 && elf_elfheader (abfd)->e_flags != flags)
8129 {
8130 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8131 {
8132 if (flags & EF_ARM_INTERWORK)
8133 (*_bfd_error_handler)
8134 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8135 abfd);
8136 else
8137 _bfd_error_handler
8138 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8139 abfd);
8140 }
8141 }
8142 else
8143 {
8144 elf_elfheader (abfd)->e_flags = flags;
8145 elf_flags_init (abfd) = TRUE;
8146 }
8147
8148 return TRUE;
8149 }
8150
8151 /* Copy backend specific data from one object module to another. */
8152
8153 static bfd_boolean
8154 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8155 {
8156 flagword in_flags;
8157 flagword out_flags;
8158
8159 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8160 return TRUE;
8161
8162 in_flags = elf_elfheader (ibfd)->e_flags;
8163 out_flags = elf_elfheader (obfd)->e_flags;
8164
8165 if (elf_flags_init (obfd)
8166 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8167 && in_flags != out_flags)
8168 {
8169 /* Cannot mix APCS26 and APCS32 code. */
8170 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8171 return FALSE;
8172
8173 /* Cannot mix float APCS and non-float APCS code. */
8174 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8175 return FALSE;
8176
8177 /* If the src and dest have different interworking flags
8178 then turn off the interworking bit. */
8179 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8180 {
8181 if (out_flags & EF_ARM_INTERWORK)
8182 _bfd_error_handler
8183 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8184 obfd, ibfd);
8185
8186 in_flags &= ~EF_ARM_INTERWORK;
8187 }
8188
8189 /* Likewise for PIC, though don't warn for this case. */
8190 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8191 in_flags &= ~EF_ARM_PIC;
8192 }
8193
8194 elf_elfheader (obfd)->e_flags = in_flags;
8195 elf_flags_init (obfd) = TRUE;
8196
8197 /* Also copy the EI_OSABI field. */
8198 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8199 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8200
8201 /* Copy object attributes. */
8202 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8203
8204 return TRUE;
8205 }
8206
8207 /* Values for Tag_ABI_PCS_R9_use. */
8208 enum
8209 {
8210 AEABI_R9_V6,
8211 AEABI_R9_SB,
8212 AEABI_R9_TLS,
8213 AEABI_R9_unused
8214 };
8215
8216 /* Values for Tag_ABI_PCS_RW_data. */
8217 enum
8218 {
8219 AEABI_PCS_RW_data_absolute,
8220 AEABI_PCS_RW_data_PCrel,
8221 AEABI_PCS_RW_data_SBrel,
8222 AEABI_PCS_RW_data_unused
8223 };
8224
8225 /* Values for Tag_ABI_enum_size. */
8226 enum
8227 {
8228 AEABI_enum_unused,
8229 AEABI_enum_short,
8230 AEABI_enum_wide,
8231 AEABI_enum_forced_wide
8232 };
8233
8234 /* Determine whether an object attribute tag takes an integer, a
8235 string or both. */
8236
8237 static int
8238 elf32_arm_obj_attrs_arg_type (int tag)
8239 {
8240 if (tag == Tag_compatibility)
8241 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8242 else if (tag == Tag_nodefaults)
8243 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8244 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8245 return ATTR_TYPE_FLAG_STR_VAL;
8246 else if (tag < 32)
8247 return ATTR_TYPE_FLAG_INT_VAL;
8248 else
8249 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8250 }
8251
8252 /* The ABI defines that Tag_conformance should be emitted first, and that
8253 Tag_nodefaults should be second (if either is defined). This sets those
8254 two positions, and bumps up the position of all the remaining tags to
8255 compensate. */
8256 static int
8257 elf32_arm_obj_attrs_order (int num)
8258 {
8259 if (num == 4)
8260 return Tag_conformance;
8261 if (num == 5)
8262 return Tag_nodefaults;
8263 if ((num - 2) < Tag_nodefaults)
8264 return num - 2;
8265 if ((num - 1) < Tag_conformance)
8266 return num - 1;
8267 return num;
8268 }
8269
8270 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8271 Returns -1 if no architecture could be read. */
8272
8273 static int
8274 get_secondary_compatible_arch (bfd *abfd)
8275 {
8276 obj_attribute *attr =
8277 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8278
8279 /* Note: the tag and its argument below are uleb128 values, though
8280 currently-defined values fit in one byte for each. */
8281 if (attr->s
8282 && attr->s[0] == Tag_CPU_arch
8283 && (attr->s[1] & 128) != 128
8284 && attr->s[2] == 0)
8285 return attr->s[1];
8286
8287 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8288 return -1;
8289 }
8290
8291 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8292 The tag is removed if ARCH is -1. */
8293
8294 static void
8295 set_secondary_compatible_arch (bfd *abfd, int arch)
8296 {
8297 obj_attribute *attr =
8298 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8299
8300 if (arch == -1)
8301 {
8302 attr->s = NULL;
8303 return;
8304 }
8305
8306 /* Note: the tag and its argument below are uleb128 values, though
8307 currently-defined values fit in one byte for each. */
8308 if (!attr->s)
8309 attr->s = bfd_alloc (abfd, 3);
8310 attr->s[0] = Tag_CPU_arch;
8311 attr->s[1] = arch;
8312 attr->s[2] = '\0';
8313 }
8314
8315 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8316 into account. */
8317
8318 static int
8319 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8320 int newtag, int secondary_compat)
8321 {
8322 #define T(X) TAG_CPU_ARCH_##X
8323 int tagl, tagh, result;
8324 const int v6t2[] =
8325 {
8326 T(V6T2), /* PRE_V4. */
8327 T(V6T2), /* V4. */
8328 T(V6T2), /* V4T. */
8329 T(V6T2), /* V5T. */
8330 T(V6T2), /* V5TE. */
8331 T(V6T2), /* V5TEJ. */
8332 T(V6T2), /* V6. */
8333 T(V7), /* V6KZ. */
8334 T(V6T2) /* V6T2. */
8335 };
8336 const int v6k[] =
8337 {
8338 T(V6K), /* PRE_V4. */
8339 T(V6K), /* V4. */
8340 T(V6K), /* V4T. */
8341 T(V6K), /* V5T. */
8342 T(V6K), /* V5TE. */
8343 T(V6K), /* V5TEJ. */
8344 T(V6K), /* V6. */
8345 T(V6KZ), /* V6KZ. */
8346 T(V7), /* V6T2. */
8347 T(V6K) /* V6K. */
8348 };
8349 const int v7[] =
8350 {
8351 T(V7), /* PRE_V4. */
8352 T(V7), /* V4. */
8353 T(V7), /* V4T. */
8354 T(V7), /* V5T. */
8355 T(V7), /* V5TE. */
8356 T(V7), /* V5TEJ. */
8357 T(V7), /* V6. */
8358 T(V7), /* V6KZ. */
8359 T(V7), /* V6T2. */
8360 T(V7), /* V6K. */
8361 T(V7) /* V7. */
8362 };
8363 const int v6_m[] =
8364 {
8365 -1, /* PRE_V4. */
8366 -1, /* V4. */
8367 T(V6K), /* V4T. */
8368 T(V6K), /* V5T. */
8369 T(V6K), /* V5TE. */
8370 T(V6K), /* V5TEJ. */
8371 T(V6K), /* V6. */
8372 T(V6KZ), /* V6KZ. */
8373 T(V7), /* V6T2. */
8374 T(V6K), /* V6K. */
8375 T(V7), /* V7. */
8376 T(V6_M) /* V6_M. */
8377 };
8378 const int v6s_m[] =
8379 {
8380 -1, /* PRE_V4. */
8381 -1, /* V4. */
8382 T(V6K), /* V4T. */
8383 T(V6K), /* V5T. */
8384 T(V6K), /* V5TE. */
8385 T(V6K), /* V5TEJ. */
8386 T(V6K), /* V6. */
8387 T(V6KZ), /* V6KZ. */
8388 T(V7), /* V6T2. */
8389 T(V6K), /* V6K. */
8390 T(V7), /* V7. */
8391 T(V6S_M), /* V6_M. */
8392 T(V6S_M) /* V6S_M. */
8393 };
8394 const int v4t_plus_v6_m[] =
8395 {
8396 -1, /* PRE_V4. */
8397 -1, /* V4. */
8398 T(V4T), /* V4T. */
8399 T(V5T), /* V5T. */
8400 T(V5TE), /* V5TE. */
8401 T(V5TEJ), /* V5TEJ. */
8402 T(V6), /* V6. */
8403 T(V6KZ), /* V6KZ. */
8404 T(V6T2), /* V6T2. */
8405 T(V6K), /* V6K. */
8406 T(V7), /* V7. */
8407 T(V6_M), /* V6_M. */
8408 T(V6S_M), /* V6S_M. */
8409 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8410 };
8411 const int *comb[] =
8412 {
8413 v6t2,
8414 v6k,
8415 v7,
8416 v6_m,
8417 v6s_m,
8418 /* Pseudo-architecture. */
8419 v4t_plus_v6_m
8420 };
8421
8422 /* Check we've not got a higher architecture than we know about. */
8423
8424 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8425 {
8426 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd);
8427 return -1;
8428 }
8429
8430 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8431
8432 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8433 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8434 oldtag = T(V4T_PLUS_V6_M);
8435
8436 /* And override the new tag if we have a Tag_also_compatible_with on the
8437 input. */
8438
8439 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8440 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8441 newtag = T(V4T_PLUS_V6_M);
8442
8443 tagl = (oldtag < newtag) ? oldtag : newtag;
8444 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8445
8446 /* Architectures before V6KZ add features monotonically. */
8447 if (tagh <= TAG_CPU_ARCH_V6KZ)
8448 return result;
8449
8450 result = comb[tagh - T(V6T2)][tagl];
8451
8452 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8453 as the canonical version. */
8454 if (result == T(V4T_PLUS_V6_M))
8455 {
8456 result = T(V4T);
8457 *secondary_compat_out = T(V6_M);
8458 }
8459 else
8460 *secondary_compat_out = -1;
8461
8462 if (result == -1)
8463 {
8464 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8465 ibfd, oldtag, newtag);
8466 return -1;
8467 }
8468
8469 return result;
8470 #undef T
8471 }
8472
8473 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8474 are conflicting attributes. */
8475
8476 static bfd_boolean
8477 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8478 {
8479 obj_attribute *in_attr;
8480 obj_attribute *out_attr;
8481 obj_attribute_list *in_list;
8482 obj_attribute_list *out_list;
8483 obj_attribute_list **out_listp;
8484 /* Some tags have 0 = don't care, 1 = strong requirement,
8485 2 = weak requirement. */
8486 static const int order_021[3] = {0, 2, 1};
8487 /* For use with Tag_VFP_arch. */
8488 static const int order_01243[5] = {0, 1, 2, 4, 3};
8489 int i;
8490 bfd_boolean result = TRUE;
8491
8492 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8493 {
8494 /* This is the first object. Copy the attributes. */
8495 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8496
8497 /* Use the Tag_null value to indicate the attributes have been
8498 initialized. */
8499 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8500
8501 return TRUE;
8502 }
8503
8504 in_attr = elf_known_obj_attributes_proc (ibfd);
8505 out_attr = elf_known_obj_attributes_proc (obfd);
8506 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8507 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8508 {
8509 /* Ignore mismatches if the object doesn't use floating point. */
8510 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8511 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8512 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8513 {
8514 _bfd_error_handler
8515 (_("ERROR: %B uses VFP register arguments, %B does not"),
8516 ibfd, obfd);
8517 result = FALSE;
8518 }
8519 }
8520
8521 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8522 {
8523 /* Merge this attribute with existing attributes. */
8524 switch (i)
8525 {
8526 case Tag_CPU_raw_name:
8527 case Tag_CPU_name:
8528 /* These are merged after Tag_CPU_arch. */
8529 break;
8530
8531 case Tag_ABI_optimization_goals:
8532 case Tag_ABI_FP_optimization_goals:
8533 /* Use the first value seen. */
8534 break;
8535
8536 case Tag_CPU_arch:
8537 {
8538 int secondary_compat = -1, secondary_compat_out = -1;
8539 unsigned int saved_out_attr = out_attr[i].i;
8540 static const char *name_table[] = {
8541 /* These aren't real CPU names, but we can't guess
8542 that from the architecture version alone. */
8543 "Pre v4",
8544 "ARM v4",
8545 "ARM v4T",
8546 "ARM v5T",
8547 "ARM v5TE",
8548 "ARM v5TEJ",
8549 "ARM v6",
8550 "ARM v6KZ",
8551 "ARM v6T2",
8552 "ARM v6K",
8553 "ARM v7",
8554 "ARM v6-M",
8555 "ARM v6S-M"
8556 };
8557
8558 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8559 secondary_compat = get_secondary_compatible_arch (ibfd);
8560 secondary_compat_out = get_secondary_compatible_arch (obfd);
8561 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8562 &secondary_compat_out,
8563 in_attr[i].i,
8564 secondary_compat);
8565 set_secondary_compatible_arch (obfd, secondary_compat_out);
8566
8567 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8568 if (out_attr[i].i == saved_out_attr)
8569 ; /* Leave the names alone. */
8570 else if (out_attr[i].i == in_attr[i].i)
8571 {
8572 /* The output architecture has been changed to match the
8573 input architecture. Use the input names. */
8574 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8575 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8576 : NULL;
8577 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8578 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8579 : NULL;
8580 }
8581 else
8582 {
8583 out_attr[Tag_CPU_name].s = NULL;
8584 out_attr[Tag_CPU_raw_name].s = NULL;
8585 }
8586
8587 /* If we still don't have a value for Tag_CPU_name,
8588 make one up now. Tag_CPU_raw_name remains blank. */
8589 if (out_attr[Tag_CPU_name].s == NULL
8590 && out_attr[i].i < ARRAY_SIZE (name_table))
8591 out_attr[Tag_CPU_name].s =
8592 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8593 }
8594 break;
8595
8596 case Tag_ARM_ISA_use:
8597 case Tag_THUMB_ISA_use:
8598 case Tag_WMMX_arch:
8599 case Tag_Advanced_SIMD_arch:
8600 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8601 case Tag_ABI_FP_rounding:
8602 case Tag_ABI_FP_exceptions:
8603 case Tag_ABI_FP_user_exceptions:
8604 case Tag_ABI_FP_number_model:
8605 case Tag_VFP_HP_extension:
8606 case Tag_CPU_unaligned_access:
8607 case Tag_T2EE_use:
8608 case Tag_Virtualization_use:
8609 case Tag_MPextension_use:
8610 /* Use the largest value specified. */
8611 if (in_attr[i].i > out_attr[i].i)
8612 out_attr[i].i = in_attr[i].i;
8613 break;
8614
8615 case Tag_ABI_align8_preserved:
8616 case Tag_ABI_PCS_RO_data:
8617 /* Use the smallest value specified. */
8618 if (in_attr[i].i < out_attr[i].i)
8619 out_attr[i].i = in_attr[i].i;
8620 break;
8621
8622 case Tag_ABI_align8_needed:
8623 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8624 && (in_attr[Tag_ABI_align8_preserved].i == 0
8625 || out_attr[Tag_ABI_align8_preserved].i == 0))
8626 {
8627 /* This error message should be enabled once all non-conformant
8628 binaries in the toolchain have had the attributes set
8629 properly.
8630 _bfd_error_handler
8631 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8632 obfd, ibfd);
8633 result = FALSE; */
8634 }
8635 /* Fall through. */
8636 case Tag_ABI_FP_denormal:
8637 case Tag_ABI_PCS_GOT_use:
8638 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8639 value if greater than 2 (for future-proofing). */
8640 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8641 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8642 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8643 out_attr[i].i = in_attr[i].i;
8644 break;
8645
8646
8647 case Tag_CPU_arch_profile:
8648 if (out_attr[i].i != in_attr[i].i)
8649 {
8650 /* 0 will merge with anything.
8651 'A' and 'S' merge to 'A'.
8652 'R' and 'S' merge to 'R'.
8653 'M' and 'A|R|S' is an error. */
8654 if (out_attr[i].i == 0
8655 || (out_attr[i].i == 'S'
8656 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8657 out_attr[i].i = in_attr[i].i;
8658 else if (in_attr[i].i == 0
8659 || (in_attr[i].i == 'S'
8660 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8661 ; /* Do nothing. */
8662 else
8663 {
8664 _bfd_error_handler
8665 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8666 ibfd,
8667 in_attr[i].i ? in_attr[i].i : '0',
8668 out_attr[i].i ? out_attr[i].i : '0');
8669 result = FALSE;
8670 }
8671 }
8672 break;
8673 case Tag_VFP_arch:
8674 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8675 largest value if greater than 4 (for future-proofing). */
8676 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8677 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8678 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8679 out_attr[i].i = in_attr[i].i;
8680 break;
8681 case Tag_PCS_config:
8682 if (out_attr[i].i == 0)
8683 out_attr[i].i = in_attr[i].i;
8684 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8685 {
8686 /* It's sometimes ok to mix different configs, so this is only
8687 a warning. */
8688 _bfd_error_handler
8689 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8690 }
8691 break;
8692 case Tag_ABI_PCS_R9_use:
8693 if (in_attr[i].i != out_attr[i].i
8694 && out_attr[i].i != AEABI_R9_unused
8695 && in_attr[i].i != AEABI_R9_unused)
8696 {
8697 _bfd_error_handler
8698 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8699 result = FALSE;
8700 }
8701 if (out_attr[i].i == AEABI_R9_unused)
8702 out_attr[i].i = in_attr[i].i;
8703 break;
8704 case Tag_ABI_PCS_RW_data:
8705 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8706 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8707 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8708 {
8709 _bfd_error_handler
8710 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8711 ibfd);
8712 result = FALSE;
8713 }
8714 /* Use the smallest value specified. */
8715 if (in_attr[i].i < out_attr[i].i)
8716 out_attr[i].i = in_attr[i].i;
8717 break;
8718 case Tag_ABI_PCS_wchar_t:
8719 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8720 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8721 {
8722 _bfd_error_handler
8723 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8724 ibfd, in_attr[i].i, out_attr[i].i);
8725 }
8726 else if (in_attr[i].i && !out_attr[i].i)
8727 out_attr[i].i = in_attr[i].i;
8728 break;
8729 case Tag_ABI_enum_size:
8730 if (in_attr[i].i != AEABI_enum_unused)
8731 {
8732 if (out_attr[i].i == AEABI_enum_unused
8733 || out_attr[i].i == AEABI_enum_forced_wide)
8734 {
8735 /* The existing object is compatible with anything.
8736 Use whatever requirements the new object has. */
8737 out_attr[i].i = in_attr[i].i;
8738 }
8739 else if (in_attr[i].i != AEABI_enum_forced_wide
8740 && out_attr[i].i != in_attr[i].i
8741 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8742 {
8743 static const char *aeabi_enum_names[] =
8744 { "", "variable-size", "32-bit", "" };
8745 const char *in_name =
8746 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8747 ? aeabi_enum_names[in_attr[i].i]
8748 : "<unknown>";
8749 const char *out_name =
8750 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8751 ? aeabi_enum_names[out_attr[i].i]
8752 : "<unknown>";
8753 _bfd_error_handler
8754 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8755 ibfd, in_name, out_name);
8756 }
8757 }
8758 break;
8759 case Tag_ABI_VFP_args:
8760 /* Aready done. */
8761 break;
8762 case Tag_ABI_WMMX_args:
8763 if (in_attr[i].i != out_attr[i].i)
8764 {
8765 _bfd_error_handler
8766 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8767 ibfd, obfd);
8768 result = FALSE;
8769 }
8770 break;
8771 case Tag_compatibility:
8772 /* Merged in target-independent code. */
8773 break;
8774 case Tag_ABI_HardFP_use:
8775 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8776 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8777 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8778 out_attr[i].i = 3;
8779 else if (in_attr[i].i > out_attr[i].i)
8780 out_attr[i].i = in_attr[i].i;
8781 break;
8782 case Tag_ABI_FP_16bit_format:
8783 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8784 {
8785 if (in_attr[i].i != out_attr[i].i)
8786 {
8787 _bfd_error_handler
8788 (_("ERROR: fp16 format mismatch between %B and %B"),
8789 ibfd, obfd);
8790 result = FALSE;
8791 }
8792 }
8793 if (in_attr[i].i != 0)
8794 out_attr[i].i = in_attr[i].i;
8795 break;
8796
8797 case Tag_nodefaults:
8798 /* This tag is set if it exists, but the value is unused (and is
8799 typically zero). We don't actually need to do anything here -
8800 the merge happens automatically when the type flags are merged
8801 below. */
8802 break;
8803 case Tag_also_compatible_with:
8804 /* Already done in Tag_CPU_arch. */
8805 break;
8806 case Tag_conformance:
8807 /* Keep the attribute if it matches. Throw it away otherwise.
8808 No attribute means no claim to conform. */
8809 if (!in_attr[i].s || !out_attr[i].s
8810 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8811 out_attr[i].s = NULL;
8812 break;
8813
8814 default:
8815 {
8816 bfd *err_bfd = NULL;
8817
8818 /* The "known_obj_attributes" table does contain some undefined
8819 attributes. Ensure that there are unused. */
8820 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8821 err_bfd = obfd;
8822 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8823 err_bfd = ibfd;
8824
8825 if (err_bfd != NULL)
8826 {
8827 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8828 if ((i & 127) < 64)
8829 {
8830 _bfd_error_handler
8831 (_("%B: Unknown mandatory EABI object attribute %d"),
8832 err_bfd, i);
8833 bfd_set_error (bfd_error_bad_value);
8834 result = FALSE;
8835 }
8836 else
8837 {
8838 _bfd_error_handler
8839 (_("Warning: %B: Unknown EABI object attribute %d"),
8840 err_bfd, i);
8841 }
8842 }
8843
8844 /* Only pass on attributes that match in both inputs. */
8845 if (in_attr[i].i != out_attr[i].i
8846 || in_attr[i].s != out_attr[i].s
8847 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8848 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8849 {
8850 out_attr[i].i = 0;
8851 out_attr[i].s = NULL;
8852 }
8853 }
8854 }
8855
8856 /* If out_attr was copied from in_attr then it won't have a type yet. */
8857 if (in_attr[i].type && !out_attr[i].type)
8858 out_attr[i].type = in_attr[i].type;
8859 }
8860
8861 /* Merge Tag_compatibility attributes and any common GNU ones. */
8862 _bfd_elf_merge_object_attributes (ibfd, obfd);
8863
8864 /* Check for any attributes not known on ARM. */
8865 in_list = elf_other_obj_attributes_proc (ibfd);
8866 out_listp = &elf_other_obj_attributes_proc (obfd);
8867 out_list = *out_listp;
8868
8869 for (; in_list || out_list; )
8870 {
8871 bfd *err_bfd = NULL;
8872 int err_tag = 0;
8873
8874 /* The tags for each list are in numerical order. */
8875 /* If the tags are equal, then merge. */
8876 if (out_list && (!in_list || in_list->tag > out_list->tag))
8877 {
8878 /* This attribute only exists in obfd. We can't merge, and we don't
8879 know what the tag means, so delete it. */
8880 err_bfd = obfd;
8881 err_tag = out_list->tag;
8882 *out_listp = out_list->next;
8883 out_list = *out_listp;
8884 }
8885 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8886 {
8887 /* This attribute only exists in ibfd. We can't merge, and we don't
8888 know what the tag means, so ignore it. */
8889 err_bfd = ibfd;
8890 err_tag = in_list->tag;
8891 in_list = in_list->next;
8892 }
8893 else /* The tags are equal. */
8894 {
8895 /* As present, all attributes in the list are unknown, and
8896 therefore can't be merged meaningfully. */
8897 err_bfd = obfd;
8898 err_tag = out_list->tag;
8899
8900 /* Only pass on attributes that match in both inputs. */
8901 if (in_list->attr.i != out_list->attr.i
8902 || in_list->attr.s != out_list->attr.s
8903 || (in_list->attr.s && out_list->attr.s
8904 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8905 {
8906 /* No match. Delete the attribute. */
8907 *out_listp = out_list->next;
8908 out_list = *out_listp;
8909 }
8910 else
8911 {
8912 /* Matched. Keep the attribute and move to the next. */
8913 out_list = out_list->next;
8914 in_list = in_list->next;
8915 }
8916 }
8917
8918 if (err_bfd)
8919 {
8920 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8921 if ((err_tag & 127) < 64)
8922 {
8923 _bfd_error_handler
8924 (_("%B: Unknown mandatory EABI object attribute %d"),
8925 err_bfd, err_tag);
8926 bfd_set_error (bfd_error_bad_value);
8927 result = FALSE;
8928 }
8929 else
8930 {
8931 _bfd_error_handler
8932 (_("Warning: %B: Unknown EABI object attribute %d"),
8933 err_bfd, err_tag);
8934 }
8935 }
8936 }
8937 return result;
8938 }
8939
8940
8941 /* Return TRUE if the two EABI versions are incompatible. */
8942
8943 static bfd_boolean
8944 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8945 {
8946 /* v4 and v5 are the same spec before and after it was released,
8947 so allow mixing them. */
8948 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8949 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8950 return TRUE;
8951
8952 return (iver == over);
8953 }
8954
8955 /* Merge backend specific data from an object file to the output
8956 object file when linking. */
8957
8958 static bfd_boolean
8959 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8960 {
8961 flagword out_flags;
8962 flagword in_flags;
8963 bfd_boolean flags_compatible = TRUE;
8964 asection *sec;
8965
8966 /* Check if we have the same endianess. */
8967 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8968 return FALSE;
8969
8970 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8971 return TRUE;
8972
8973 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8974 return FALSE;
8975
8976 /* The input BFD must have had its flags initialised. */
8977 /* The following seems bogus to me -- The flags are initialized in
8978 the assembler but I don't think an elf_flags_init field is
8979 written into the object. */
8980 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8981
8982 in_flags = elf_elfheader (ibfd)->e_flags;
8983 out_flags = elf_elfheader (obfd)->e_flags;
8984
8985 /* In theory there is no reason why we couldn't handle this. However
8986 in practice it isn't even close to working and there is no real
8987 reason to want it. */
8988 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8989 && !(ibfd->flags & DYNAMIC)
8990 && (in_flags & EF_ARM_BE8))
8991 {
8992 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8993 ibfd);
8994 return FALSE;
8995 }
8996
8997 if (!elf_flags_init (obfd))
8998 {
8999 /* If the input is the default architecture and had the default
9000 flags then do not bother setting the flags for the output
9001 architecture, instead allow future merges to do this. If no
9002 future merges ever set these flags then they will retain their
9003 uninitialised values, which surprise surprise, correspond
9004 to the default values. */
9005 if (bfd_get_arch_info (ibfd)->the_default
9006 && elf_elfheader (ibfd)->e_flags == 0)
9007 return TRUE;
9008
9009 elf_flags_init (obfd) = TRUE;
9010 elf_elfheader (obfd)->e_flags = in_flags;
9011
9012 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9013 && bfd_get_arch_info (obfd)->the_default)
9014 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9015
9016 return TRUE;
9017 }
9018
9019 /* Determine what should happen if the input ARM architecture
9020 does not match the output ARM architecture. */
9021 if (! bfd_arm_merge_machines (ibfd, obfd))
9022 return FALSE;
9023
9024 /* Identical flags must be compatible. */
9025 if (in_flags == out_flags)
9026 return TRUE;
9027
9028 /* Check to see if the input BFD actually contains any sections. If
9029 not, its flags may not have been initialised either, but it
9030 cannot actually cause any incompatiblity. Do not short-circuit
9031 dynamic objects; their section list may be emptied by
9032 elf_link_add_object_symbols.
9033
9034 Also check to see if there are no code sections in the input.
9035 In this case there is no need to check for code specific flags.
9036 XXX - do we need to worry about floating-point format compatability
9037 in data sections ? */
9038 if (!(ibfd->flags & DYNAMIC))
9039 {
9040 bfd_boolean null_input_bfd = TRUE;
9041 bfd_boolean only_data_sections = TRUE;
9042
9043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9044 {
9045 /* Ignore synthetic glue sections. */
9046 if (strcmp (sec->name, ".glue_7")
9047 && strcmp (sec->name, ".glue_7t"))
9048 {
9049 if ((bfd_get_section_flags (ibfd, sec)
9050 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9051 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9052 only_data_sections = FALSE;
9053
9054 null_input_bfd = FALSE;
9055 break;
9056 }
9057 }
9058
9059 if (null_input_bfd || only_data_sections)
9060 return TRUE;
9061 }
9062
9063 /* Complain about various flag mismatches. */
9064 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9065 EF_ARM_EABI_VERSION (out_flags)))
9066 {
9067 _bfd_error_handler
9068 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
9069 ibfd, obfd,
9070 (in_flags & EF_ARM_EABIMASK) >> 24,
9071 (out_flags & EF_ARM_EABIMASK) >> 24);
9072 return FALSE;
9073 }
9074
9075 /* Not sure what needs to be checked for EABI versions >= 1. */
9076 /* VxWorks libraries do not use these flags. */
9077 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9078 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9079 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
9080 {
9081 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9082 {
9083 _bfd_error_handler
9084 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9085 ibfd, obfd,
9086 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9087 out_flags & EF_ARM_APCS_26 ? 26 : 32);
9088 flags_compatible = FALSE;
9089 }
9090
9091 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9092 {
9093 if (in_flags & EF_ARM_APCS_FLOAT)
9094 _bfd_error_handler
9095 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
9096 ibfd, obfd);
9097 else
9098 _bfd_error_handler
9099 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
9100 ibfd, obfd);
9101
9102 flags_compatible = FALSE;
9103 }
9104
9105 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9106 {
9107 if (in_flags & EF_ARM_VFP_FLOAT)
9108 _bfd_error_handler
9109 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
9110 ibfd, obfd);
9111 else
9112 _bfd_error_handler
9113 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
9114 ibfd, obfd);
9115
9116 flags_compatible = FALSE;
9117 }
9118
9119 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9120 {
9121 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9122 _bfd_error_handler
9123 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9124 ibfd, obfd);
9125 else
9126 _bfd_error_handler
9127 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9128 ibfd, obfd);
9129
9130 flags_compatible = FALSE;
9131 }
9132
9133 #ifdef EF_ARM_SOFT_FLOAT
9134 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9135 {
9136 /* We can allow interworking between code that is VFP format
9137 layout, and uses either soft float or integer regs for
9138 passing floating point arguments and results. We already
9139 know that the APCS_FLOAT flags match; similarly for VFP
9140 flags. */
9141 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9142 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9143 {
9144 if (in_flags & EF_ARM_SOFT_FLOAT)
9145 _bfd_error_handler
9146 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9147 ibfd, obfd);
9148 else
9149 _bfd_error_handler
9150 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9151 ibfd, obfd);
9152
9153 flags_compatible = FALSE;
9154 }
9155 }
9156 #endif
9157
9158 /* Interworking mismatch is only a warning. */
9159 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9160 {
9161 if (in_flags & EF_ARM_INTERWORK)
9162 {
9163 _bfd_error_handler
9164 (_("Warning: %B supports interworking, whereas %B does not"),
9165 ibfd, obfd);
9166 }
9167 else
9168 {
9169 _bfd_error_handler
9170 (_("Warning: %B does not support interworking, whereas %B does"),
9171 ibfd, obfd);
9172 }
9173 }
9174 }
9175
9176 return flags_compatible;
9177 }
9178
9179 /* Display the flags field. */
9180
9181 static bfd_boolean
9182 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9183 {
9184 FILE * file = (FILE *) ptr;
9185 unsigned long flags;
9186
9187 BFD_ASSERT (abfd != NULL && ptr != NULL);
9188
9189 /* Print normal ELF private data. */
9190 _bfd_elf_print_private_bfd_data (abfd, ptr);
9191
9192 flags = elf_elfheader (abfd)->e_flags;
9193 /* Ignore init flag - it may not be set, despite the flags field
9194 containing valid data. */
9195
9196 /* xgettext:c-format */
9197 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9198
9199 switch (EF_ARM_EABI_VERSION (flags))
9200 {
9201 case EF_ARM_EABI_UNKNOWN:
9202 /* The following flag bits are GNU extensions and not part of the
9203 official ARM ELF extended ABI. Hence they are only decoded if
9204 the EABI version is not set. */
9205 if (flags & EF_ARM_INTERWORK)
9206 fprintf (file, _(" [interworking enabled]"));
9207
9208 if (flags & EF_ARM_APCS_26)
9209 fprintf (file, " [APCS-26]");
9210 else
9211 fprintf (file, " [APCS-32]");
9212
9213 if (flags & EF_ARM_VFP_FLOAT)
9214 fprintf (file, _(" [VFP float format]"));
9215 else if (flags & EF_ARM_MAVERICK_FLOAT)
9216 fprintf (file, _(" [Maverick float format]"));
9217 else
9218 fprintf (file, _(" [FPA float format]"));
9219
9220 if (flags & EF_ARM_APCS_FLOAT)
9221 fprintf (file, _(" [floats passed in float registers]"));
9222
9223 if (flags & EF_ARM_PIC)
9224 fprintf (file, _(" [position independent]"));
9225
9226 if (flags & EF_ARM_NEW_ABI)
9227 fprintf (file, _(" [new ABI]"));
9228
9229 if (flags & EF_ARM_OLD_ABI)
9230 fprintf (file, _(" [old ABI]"));
9231
9232 if (flags & EF_ARM_SOFT_FLOAT)
9233 fprintf (file, _(" [software FP]"));
9234
9235 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9236 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9237 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9238 | EF_ARM_MAVERICK_FLOAT);
9239 break;
9240
9241 case EF_ARM_EABI_VER1:
9242 fprintf (file, _(" [Version1 EABI]"));
9243
9244 if (flags & EF_ARM_SYMSARESORTED)
9245 fprintf (file, _(" [sorted symbol table]"));
9246 else
9247 fprintf (file, _(" [unsorted symbol table]"));
9248
9249 flags &= ~ EF_ARM_SYMSARESORTED;
9250 break;
9251
9252 case EF_ARM_EABI_VER2:
9253 fprintf (file, _(" [Version2 EABI]"));
9254
9255 if (flags & EF_ARM_SYMSARESORTED)
9256 fprintf (file, _(" [sorted symbol table]"));
9257 else
9258 fprintf (file, _(" [unsorted symbol table]"));
9259
9260 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9261 fprintf (file, _(" [dynamic symbols use segment index]"));
9262
9263 if (flags & EF_ARM_MAPSYMSFIRST)
9264 fprintf (file, _(" [mapping symbols precede others]"));
9265
9266 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9267 | EF_ARM_MAPSYMSFIRST);
9268 break;
9269
9270 case EF_ARM_EABI_VER3:
9271 fprintf (file, _(" [Version3 EABI]"));
9272 break;
9273
9274 case EF_ARM_EABI_VER4:
9275 fprintf (file, _(" [Version4 EABI]"));
9276 goto eabi;
9277
9278 case EF_ARM_EABI_VER5:
9279 fprintf (file, _(" [Version5 EABI]"));
9280 eabi:
9281 if (flags & EF_ARM_BE8)
9282 fprintf (file, _(" [BE8]"));
9283
9284 if (flags & EF_ARM_LE8)
9285 fprintf (file, _(" [LE8]"));
9286
9287 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9288 break;
9289
9290 default:
9291 fprintf (file, _(" <EABI version unrecognised>"));
9292 break;
9293 }
9294
9295 flags &= ~ EF_ARM_EABIMASK;
9296
9297 if (flags & EF_ARM_RELEXEC)
9298 fprintf (file, _(" [relocatable executable]"));
9299
9300 if (flags & EF_ARM_HASENTRY)
9301 fprintf (file, _(" [has entry point]"));
9302
9303 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9304
9305 if (flags)
9306 fprintf (file, _("<Unrecognised flag bits set>"));
9307
9308 fputc ('\n', file);
9309
9310 return TRUE;
9311 }
9312
9313 static int
9314 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9315 {
9316 switch (ELF_ST_TYPE (elf_sym->st_info))
9317 {
9318 case STT_ARM_TFUNC:
9319 return ELF_ST_TYPE (elf_sym->st_info);
9320
9321 case STT_ARM_16BIT:
9322 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9323 This allows us to distinguish between data used by Thumb instructions
9324 and non-data (which is probably code) inside Thumb regions of an
9325 executable. */
9326 if (type != STT_OBJECT && type != STT_TLS)
9327 return ELF_ST_TYPE (elf_sym->st_info);
9328 break;
9329
9330 default:
9331 break;
9332 }
9333
9334 return type;
9335 }
9336
9337 static asection *
9338 elf32_arm_gc_mark_hook (asection *sec,
9339 struct bfd_link_info *info,
9340 Elf_Internal_Rela *rel,
9341 struct elf_link_hash_entry *h,
9342 Elf_Internal_Sym *sym)
9343 {
9344 if (h != NULL)
9345 switch (ELF32_R_TYPE (rel->r_info))
9346 {
9347 case R_ARM_GNU_VTINHERIT:
9348 case R_ARM_GNU_VTENTRY:
9349 return NULL;
9350 }
9351
9352 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9353 }
9354
9355 /* Update the got entry reference counts for the section being removed. */
9356
9357 static bfd_boolean
9358 elf32_arm_gc_sweep_hook (bfd * abfd,
9359 struct bfd_link_info * info,
9360 asection * sec,
9361 const Elf_Internal_Rela * relocs)
9362 {
9363 Elf_Internal_Shdr *symtab_hdr;
9364 struct elf_link_hash_entry **sym_hashes;
9365 bfd_signed_vma *local_got_refcounts;
9366 const Elf_Internal_Rela *rel, *relend;
9367 struct elf32_arm_link_hash_table * globals;
9368
9369 if (info->relocatable)
9370 return TRUE;
9371
9372 globals = elf32_arm_hash_table (info);
9373
9374 elf_section_data (sec)->local_dynrel = NULL;
9375
9376 symtab_hdr = & elf_symtab_hdr (abfd);
9377 sym_hashes = elf_sym_hashes (abfd);
9378 local_got_refcounts = elf_local_got_refcounts (abfd);
9379
9380 check_use_blx (globals);
9381
9382 relend = relocs + sec->reloc_count;
9383 for (rel = relocs; rel < relend; rel++)
9384 {
9385 unsigned long r_symndx;
9386 struct elf_link_hash_entry *h = NULL;
9387 int r_type;
9388
9389 r_symndx = ELF32_R_SYM (rel->r_info);
9390 if (r_symndx >= symtab_hdr->sh_info)
9391 {
9392 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9393 while (h->root.type == bfd_link_hash_indirect
9394 || h->root.type == bfd_link_hash_warning)
9395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9396 }
9397
9398 r_type = ELF32_R_TYPE (rel->r_info);
9399 r_type = arm_real_reloc_type (globals, r_type);
9400 switch (r_type)
9401 {
9402 case R_ARM_GOT32:
9403 case R_ARM_GOT_PREL:
9404 case R_ARM_TLS_GD32:
9405 case R_ARM_TLS_IE32:
9406 if (h != NULL)
9407 {
9408 if (h->got.refcount > 0)
9409 h->got.refcount -= 1;
9410 }
9411 else if (local_got_refcounts != NULL)
9412 {
9413 if (local_got_refcounts[r_symndx] > 0)
9414 local_got_refcounts[r_symndx] -= 1;
9415 }
9416 break;
9417
9418 case R_ARM_TLS_LDM32:
9419 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9420 break;
9421
9422 case R_ARM_ABS32:
9423 case R_ARM_ABS32_NOI:
9424 case R_ARM_REL32:
9425 case R_ARM_REL32_NOI:
9426 case R_ARM_PC24:
9427 case R_ARM_PLT32:
9428 case R_ARM_CALL:
9429 case R_ARM_JUMP24:
9430 case R_ARM_PREL31:
9431 case R_ARM_THM_CALL:
9432 case R_ARM_THM_JUMP24:
9433 case R_ARM_THM_JUMP19:
9434 case R_ARM_MOVW_ABS_NC:
9435 case R_ARM_MOVT_ABS:
9436 case R_ARM_MOVW_PREL_NC:
9437 case R_ARM_MOVT_PREL:
9438 case R_ARM_THM_MOVW_ABS_NC:
9439 case R_ARM_THM_MOVT_ABS:
9440 case R_ARM_THM_MOVW_PREL_NC:
9441 case R_ARM_THM_MOVT_PREL:
9442 /* Should the interworking branches be here also? */
9443
9444 if (h != NULL)
9445 {
9446 struct elf32_arm_link_hash_entry *eh;
9447 struct elf32_arm_relocs_copied **pp;
9448 struct elf32_arm_relocs_copied *p;
9449
9450 eh = (struct elf32_arm_link_hash_entry *) h;
9451
9452 if (h->plt.refcount > 0)
9453 {
9454 h->plt.refcount -= 1;
9455 if (r_type == R_ARM_THM_CALL)
9456 eh->plt_maybe_thumb_refcount--;
9457
9458 if (r_type == R_ARM_THM_JUMP24
9459 || r_type == R_ARM_THM_JUMP19)
9460 eh->plt_thumb_refcount--;
9461 }
9462
9463 if (r_type == R_ARM_ABS32
9464 || r_type == R_ARM_REL32
9465 || r_type == R_ARM_ABS32_NOI
9466 || r_type == R_ARM_REL32_NOI)
9467 {
9468 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9469 pp = &p->next)
9470 if (p->section == sec)
9471 {
9472 p->count -= 1;
9473 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9474 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9475 p->pc_count -= 1;
9476 if (p->count == 0)
9477 *pp = p->next;
9478 break;
9479 }
9480 }
9481 }
9482 break;
9483
9484 default:
9485 break;
9486 }
9487 }
9488
9489 return TRUE;
9490 }
9491
9492 /* Look through the relocs for a section during the first phase. */
9493
9494 static bfd_boolean
9495 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9496 asection *sec, const Elf_Internal_Rela *relocs)
9497 {
9498 Elf_Internal_Shdr *symtab_hdr;
9499 struct elf_link_hash_entry **sym_hashes;
9500 const Elf_Internal_Rela *rel;
9501 const Elf_Internal_Rela *rel_end;
9502 bfd *dynobj;
9503 asection *sreloc;
9504 bfd_vma *local_got_offsets;
9505 struct elf32_arm_link_hash_table *htab;
9506 bfd_boolean needs_plt;
9507
9508 if (info->relocatable)
9509 return TRUE;
9510
9511 BFD_ASSERT (is_arm_elf (abfd));
9512
9513 htab = elf32_arm_hash_table (info);
9514 sreloc = NULL;
9515
9516 /* Create dynamic sections for relocatable executables so that we can
9517 copy relocations. */
9518 if (htab->root.is_relocatable_executable
9519 && ! htab->root.dynamic_sections_created)
9520 {
9521 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9522 return FALSE;
9523 }
9524
9525 dynobj = elf_hash_table (info)->dynobj;
9526 local_got_offsets = elf_local_got_offsets (abfd);
9527
9528 symtab_hdr = & elf_symtab_hdr (abfd);
9529 sym_hashes = elf_sym_hashes (abfd);
9530
9531 rel_end = relocs + sec->reloc_count;
9532 for (rel = relocs; rel < rel_end; rel++)
9533 {
9534 struct elf_link_hash_entry *h;
9535 struct elf32_arm_link_hash_entry *eh;
9536 unsigned long r_symndx;
9537 int r_type;
9538
9539 r_symndx = ELF32_R_SYM (rel->r_info);
9540 r_type = ELF32_R_TYPE (rel->r_info);
9541 r_type = arm_real_reloc_type (htab, r_type);
9542
9543 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9544 {
9545 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9546 r_symndx);
9547 return FALSE;
9548 }
9549
9550 if (r_symndx < symtab_hdr->sh_info)
9551 h = NULL;
9552 else
9553 {
9554 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9555 while (h->root.type == bfd_link_hash_indirect
9556 || h->root.type == bfd_link_hash_warning)
9557 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9558 }
9559
9560 eh = (struct elf32_arm_link_hash_entry *) h;
9561
9562 switch (r_type)
9563 {
9564 case R_ARM_GOT32:
9565 case R_ARM_GOT_PREL:
9566 case R_ARM_TLS_GD32:
9567 case R_ARM_TLS_IE32:
9568 /* This symbol requires a global offset table entry. */
9569 {
9570 int tls_type, old_tls_type;
9571
9572 switch (r_type)
9573 {
9574 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9575 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9576 default: tls_type = GOT_NORMAL; break;
9577 }
9578
9579 if (h != NULL)
9580 {
9581 h->got.refcount++;
9582 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9583 }
9584 else
9585 {
9586 bfd_signed_vma *local_got_refcounts;
9587
9588 /* This is a global offset table entry for a local symbol. */
9589 local_got_refcounts = elf_local_got_refcounts (abfd);
9590 if (local_got_refcounts == NULL)
9591 {
9592 bfd_size_type size;
9593
9594 size = symtab_hdr->sh_info;
9595 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9596 local_got_refcounts = bfd_zalloc (abfd, size);
9597 if (local_got_refcounts == NULL)
9598 return FALSE;
9599 elf_local_got_refcounts (abfd) = local_got_refcounts;
9600 elf32_arm_local_got_tls_type (abfd)
9601 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9602 }
9603 local_got_refcounts[r_symndx] += 1;
9604 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9605 }
9606
9607 /* We will already have issued an error message if there is a
9608 TLS / non-TLS mismatch, based on the symbol type. We don't
9609 support any linker relaxations. So just combine any TLS
9610 types needed. */
9611 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9612 && tls_type != GOT_NORMAL)
9613 tls_type |= old_tls_type;
9614
9615 if (old_tls_type != tls_type)
9616 {
9617 if (h != NULL)
9618 elf32_arm_hash_entry (h)->tls_type = tls_type;
9619 else
9620 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9621 }
9622 }
9623 /* Fall through. */
9624
9625 case R_ARM_TLS_LDM32:
9626 if (r_type == R_ARM_TLS_LDM32)
9627 htab->tls_ldm_got.refcount++;
9628 /* Fall through. */
9629
9630 case R_ARM_GOTOFF32:
9631 case R_ARM_GOTPC:
9632 if (htab->sgot == NULL)
9633 {
9634 if (htab->root.dynobj == NULL)
9635 htab->root.dynobj = abfd;
9636 if (!create_got_section (htab->root.dynobj, info))
9637 return FALSE;
9638 }
9639 break;
9640
9641 case R_ARM_ABS12:
9642 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9643 ldr __GOTT_INDEX__ offsets. */
9644 if (!htab->vxworks_p)
9645 break;
9646 /* Fall through. */
9647
9648 case R_ARM_PC24:
9649 case R_ARM_PLT32:
9650 case R_ARM_CALL:
9651 case R_ARM_JUMP24:
9652 case R_ARM_PREL31:
9653 case R_ARM_THM_CALL:
9654 case R_ARM_THM_JUMP24:
9655 case R_ARM_THM_JUMP19:
9656 needs_plt = 1;
9657 goto normal_reloc;
9658
9659 case R_ARM_ABS32:
9660 case R_ARM_ABS32_NOI:
9661 case R_ARM_REL32:
9662 case R_ARM_REL32_NOI:
9663 case R_ARM_MOVW_ABS_NC:
9664 case R_ARM_MOVT_ABS:
9665 case R_ARM_MOVW_PREL_NC:
9666 case R_ARM_MOVT_PREL:
9667 case R_ARM_THM_MOVW_ABS_NC:
9668 case R_ARM_THM_MOVT_ABS:
9669 case R_ARM_THM_MOVW_PREL_NC:
9670 case R_ARM_THM_MOVT_PREL:
9671 needs_plt = 0;
9672 normal_reloc:
9673
9674 /* Should the interworking branches be listed here? */
9675 if (h != NULL)
9676 {
9677 /* If this reloc is in a read-only section, we might
9678 need a copy reloc. We can't check reliably at this
9679 stage whether the section is read-only, as input
9680 sections have not yet been mapped to output sections.
9681 Tentatively set the flag for now, and correct in
9682 adjust_dynamic_symbol. */
9683 if (!info->shared)
9684 h->non_got_ref = 1;
9685
9686 /* We may need a .plt entry if the function this reloc
9687 refers to is in a different object. We can't tell for
9688 sure yet, because something later might force the
9689 symbol local. */
9690 if (needs_plt)
9691 h->needs_plt = 1;
9692
9693 /* If we create a PLT entry, this relocation will reference
9694 it, even if it's an ABS32 relocation. */
9695 h->plt.refcount += 1;
9696
9697 /* It's too early to use htab->use_blx here, so we have to
9698 record possible blx references separately from
9699 relocs that definitely need a thumb stub. */
9700
9701 if (r_type == R_ARM_THM_CALL)
9702 eh->plt_maybe_thumb_refcount += 1;
9703
9704 if (r_type == R_ARM_THM_JUMP24
9705 || r_type == R_ARM_THM_JUMP19)
9706 eh->plt_thumb_refcount += 1;
9707 }
9708
9709 /* If we are creating a shared library or relocatable executable,
9710 and this is a reloc against a global symbol, or a non PC
9711 relative reloc against a local symbol, then we need to copy
9712 the reloc into the shared library. However, if we are linking
9713 with -Bsymbolic, we do not need to copy a reloc against a
9714 global symbol which is defined in an object we are
9715 including in the link (i.e., DEF_REGULAR is set). At
9716 this point we have not seen all the input files, so it is
9717 possible that DEF_REGULAR is not set now but will be set
9718 later (it is never cleared). We account for that
9719 possibility below by storing information in the
9720 relocs_copied field of the hash table entry. */
9721 if ((info->shared || htab->root.is_relocatable_executable)
9722 && (sec->flags & SEC_ALLOC) != 0
9723 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9724 || (h != NULL && ! h->needs_plt
9725 && (! info->symbolic || ! h->def_regular))))
9726 {
9727 struct elf32_arm_relocs_copied *p, **head;
9728
9729 /* When creating a shared object, we must copy these
9730 reloc types into the output file. We create a reloc
9731 section in dynobj and make room for this reloc. */
9732 if (sreloc == NULL)
9733 {
9734 sreloc = _bfd_elf_make_dynamic_reloc_section
9735 (sec, dynobj, 2, abfd, ! htab->use_rel);
9736
9737 if (sreloc == NULL)
9738 return FALSE;
9739
9740 /* BPABI objects never have dynamic relocations mapped. */
9741 if (! htab->symbian_p)
9742 {
9743 flagword flags;
9744
9745 flags = bfd_get_section_flags (dynobj, sreloc);
9746 flags |= (SEC_LOAD | SEC_ALLOC);
9747 bfd_set_section_flags (dynobj, sreloc, flags);
9748 }
9749 }
9750
9751 /* If this is a global symbol, we count the number of
9752 relocations we need for this symbol. */
9753 if (h != NULL)
9754 {
9755 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9756 }
9757 else
9758 {
9759 /* Track dynamic relocs needed for local syms too.
9760 We really need local syms available to do this
9761 easily. Oh well. */
9762
9763 asection *s;
9764 void *vpp;
9765
9766 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9767 sec, r_symndx);
9768 if (s == NULL)
9769 return FALSE;
9770
9771 vpp = &elf_section_data (s)->local_dynrel;
9772 head = (struct elf32_arm_relocs_copied **) vpp;
9773 }
9774
9775 p = *head;
9776 if (p == NULL || p->section != sec)
9777 {
9778 bfd_size_type amt = sizeof *p;
9779
9780 p = bfd_alloc (htab->root.dynobj, amt);
9781 if (p == NULL)
9782 return FALSE;
9783 p->next = *head;
9784 *head = p;
9785 p->section = sec;
9786 p->count = 0;
9787 p->pc_count = 0;
9788 }
9789
9790 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9791 p->pc_count += 1;
9792 p->count += 1;
9793 }
9794 break;
9795
9796 /* This relocation describes the C++ object vtable hierarchy.
9797 Reconstruct it for later use during GC. */
9798 case R_ARM_GNU_VTINHERIT:
9799 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9800 return FALSE;
9801 break;
9802
9803 /* This relocation describes which C++ vtable entries are actually
9804 used. Record for later use during GC. */
9805 case R_ARM_GNU_VTENTRY:
9806 BFD_ASSERT (h != NULL);
9807 if (h != NULL
9808 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9809 return FALSE;
9810 break;
9811 }
9812 }
9813
9814 return TRUE;
9815 }
9816
9817 /* Unwinding tables are not referenced directly. This pass marks them as
9818 required if the corresponding code section is marked. */
9819
9820 static bfd_boolean
9821 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9822 elf_gc_mark_hook_fn gc_mark_hook)
9823 {
9824 bfd *sub;
9825 Elf_Internal_Shdr **elf_shdrp;
9826 bfd_boolean again;
9827
9828 /* Marking EH data may cause additional code sections to be marked,
9829 requiring multiple passes. */
9830 again = TRUE;
9831 while (again)
9832 {
9833 again = FALSE;
9834 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9835 {
9836 asection *o;
9837
9838 if (! is_arm_elf (sub))
9839 continue;
9840
9841 elf_shdrp = elf_elfsections (sub);
9842 for (o = sub->sections; o != NULL; o = o->next)
9843 {
9844 Elf_Internal_Shdr *hdr;
9845
9846 hdr = &elf_section_data (o)->this_hdr;
9847 if (hdr->sh_type == SHT_ARM_EXIDX
9848 && hdr->sh_link
9849 && hdr->sh_link < elf_numsections (sub)
9850 && !o->gc_mark
9851 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9852 {
9853 again = TRUE;
9854 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9855 return FALSE;
9856 }
9857 }
9858 }
9859 }
9860
9861 return TRUE;
9862 }
9863
9864 /* Treat mapping symbols as special target symbols. */
9865
9866 static bfd_boolean
9867 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9868 {
9869 return bfd_is_arm_special_symbol_name (sym->name,
9870 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9871 }
9872
9873 /* This is a copy of elf_find_function() from elf.c except that
9874 ARM mapping symbols are ignored when looking for function names
9875 and STT_ARM_TFUNC is considered to a function type. */
9876
9877 static bfd_boolean
9878 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9879 asection * section,
9880 asymbol ** symbols,
9881 bfd_vma offset,
9882 const char ** filename_ptr,
9883 const char ** functionname_ptr)
9884 {
9885 const char * filename = NULL;
9886 asymbol * func = NULL;
9887 bfd_vma low_func = 0;
9888 asymbol ** p;
9889
9890 for (p = symbols; *p != NULL; p++)
9891 {
9892 elf_symbol_type *q;
9893
9894 q = (elf_symbol_type *) *p;
9895
9896 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9897 {
9898 default:
9899 break;
9900 case STT_FILE:
9901 filename = bfd_asymbol_name (&q->symbol);
9902 break;
9903 case STT_FUNC:
9904 case STT_ARM_TFUNC:
9905 case STT_NOTYPE:
9906 /* Skip mapping symbols. */
9907 if ((q->symbol.flags & BSF_LOCAL)
9908 && bfd_is_arm_special_symbol_name (q->symbol.name,
9909 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9910 continue;
9911 /* Fall through. */
9912 if (bfd_get_section (&q->symbol) == section
9913 && q->symbol.value >= low_func
9914 && q->symbol.value <= offset)
9915 {
9916 func = (asymbol *) q;
9917 low_func = q->symbol.value;
9918 }
9919 break;
9920 }
9921 }
9922
9923 if (func == NULL)
9924 return FALSE;
9925
9926 if (filename_ptr)
9927 *filename_ptr = filename;
9928 if (functionname_ptr)
9929 *functionname_ptr = bfd_asymbol_name (func);
9930
9931 return TRUE;
9932 }
9933
9934
9935 /* Find the nearest line to a particular section and offset, for error
9936 reporting. This code is a duplicate of the code in elf.c, except
9937 that it uses arm_elf_find_function. */
9938
9939 static bfd_boolean
9940 elf32_arm_find_nearest_line (bfd * abfd,
9941 asection * section,
9942 asymbol ** symbols,
9943 bfd_vma offset,
9944 const char ** filename_ptr,
9945 const char ** functionname_ptr,
9946 unsigned int * line_ptr)
9947 {
9948 bfd_boolean found = FALSE;
9949
9950 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9951
9952 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9953 filename_ptr, functionname_ptr,
9954 line_ptr, 0,
9955 & elf_tdata (abfd)->dwarf2_find_line_info))
9956 {
9957 if (!*functionname_ptr)
9958 arm_elf_find_function (abfd, section, symbols, offset,
9959 *filename_ptr ? NULL : filename_ptr,
9960 functionname_ptr);
9961
9962 return TRUE;
9963 }
9964
9965 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9966 & found, filename_ptr,
9967 functionname_ptr, line_ptr,
9968 & elf_tdata (abfd)->line_info))
9969 return FALSE;
9970
9971 if (found && (*functionname_ptr || *line_ptr))
9972 return TRUE;
9973
9974 if (symbols == NULL)
9975 return FALSE;
9976
9977 if (! arm_elf_find_function (abfd, section, symbols, offset,
9978 filename_ptr, functionname_ptr))
9979 return FALSE;
9980
9981 *line_ptr = 0;
9982 return TRUE;
9983 }
9984
9985 static bfd_boolean
9986 elf32_arm_find_inliner_info (bfd * abfd,
9987 const char ** filename_ptr,
9988 const char ** functionname_ptr,
9989 unsigned int * line_ptr)
9990 {
9991 bfd_boolean found;
9992 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9993 functionname_ptr, line_ptr,
9994 & elf_tdata (abfd)->dwarf2_find_line_info);
9995 return found;
9996 }
9997
9998 /* Adjust a symbol defined by a dynamic object and referenced by a
9999 regular object. The current definition is in some section of the
10000 dynamic object, but we're not including those sections. We have to
10001 change the definition to something the rest of the link can
10002 understand. */
10003
10004 static bfd_boolean
10005 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10006 struct elf_link_hash_entry * h)
10007 {
10008 bfd * dynobj;
10009 asection * s;
10010 struct elf32_arm_link_hash_entry * eh;
10011 struct elf32_arm_link_hash_table *globals;
10012
10013 globals = elf32_arm_hash_table (info);
10014 dynobj = elf_hash_table (info)->dynobj;
10015
10016 /* Make sure we know what is going on here. */
10017 BFD_ASSERT (dynobj != NULL
10018 && (h->needs_plt
10019 || h->u.weakdef != NULL
10020 || (h->def_dynamic
10021 && h->ref_regular
10022 && !h->def_regular)));
10023
10024 eh = (struct elf32_arm_link_hash_entry *) h;
10025
10026 /* If this is a function, put it in the procedure linkage table. We
10027 will fill in the contents of the procedure linkage table later,
10028 when we know the address of the .got section. */
10029 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
10030 || h->needs_plt)
10031 {
10032 if (h->plt.refcount <= 0
10033 || SYMBOL_CALLS_LOCAL (info, h)
10034 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10035 && h->root.type == bfd_link_hash_undefweak))
10036 {
10037 /* This case can occur if we saw a PLT32 reloc in an input
10038 file, but the symbol was never referred to by a dynamic
10039 object, or if all references were garbage collected. In
10040 such a case, we don't actually need to build a procedure
10041 linkage table, and we can just do a PC24 reloc instead. */
10042 h->plt.offset = (bfd_vma) -1;
10043 eh->plt_thumb_refcount = 0;
10044 eh->plt_maybe_thumb_refcount = 0;
10045 h->needs_plt = 0;
10046 }
10047
10048 return TRUE;
10049 }
10050 else
10051 {
10052 /* It's possible that we incorrectly decided a .plt reloc was
10053 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10054 in check_relocs. We can't decide accurately between function
10055 and non-function syms in check-relocs; Objects loaded later in
10056 the link may change h->type. So fix it now. */
10057 h->plt.offset = (bfd_vma) -1;
10058 eh->plt_thumb_refcount = 0;
10059 eh->plt_maybe_thumb_refcount = 0;
10060 }
10061
10062 /* If this is a weak symbol, and there is a real definition, the
10063 processor independent code will have arranged for us to see the
10064 real definition first, and we can just use the same value. */
10065 if (h->u.weakdef != NULL)
10066 {
10067 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10068 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10069 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10070 h->root.u.def.value = h->u.weakdef->root.u.def.value;
10071 return TRUE;
10072 }
10073
10074 /* If there are no non-GOT references, we do not need a copy
10075 relocation. */
10076 if (!h->non_got_ref)
10077 return TRUE;
10078
10079 /* This is a reference to a symbol defined by a dynamic object which
10080 is not a function. */
10081
10082 /* If we are creating a shared library, we must presume that the
10083 only references to the symbol are via the global offset table.
10084 For such cases we need not do anything here; the relocations will
10085 be handled correctly by relocate_section. Relocatable executables
10086 can reference data in shared objects directly, so we don't need to
10087 do anything here. */
10088 if (info->shared || globals->root.is_relocatable_executable)
10089 return TRUE;
10090
10091 if (h->size == 0)
10092 {
10093 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10094 h->root.root.string);
10095 return TRUE;
10096 }
10097
10098 /* We must allocate the symbol in our .dynbss section, which will
10099 become part of the .bss section of the executable. There will be
10100 an entry for this symbol in the .dynsym section. The dynamic
10101 object will contain position independent code, so all references
10102 from the dynamic object to this symbol will go through the global
10103 offset table. The dynamic linker will use the .dynsym entry to
10104 determine the address it must put in the global offset table, so
10105 both the dynamic object and the regular object will refer to the
10106 same memory location for the variable. */
10107 s = bfd_get_section_by_name (dynobj, ".dynbss");
10108 BFD_ASSERT (s != NULL);
10109
10110 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10111 copy the initial value out of the dynamic object and into the
10112 runtime process image. We need to remember the offset into the
10113 .rel(a).bss section we are going to use. */
10114 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10115 {
10116 asection *srel;
10117
10118 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10119 BFD_ASSERT (srel != NULL);
10120 srel->size += RELOC_SIZE (globals);
10121 h->needs_copy = 1;
10122 }
10123
10124 return _bfd_elf_adjust_dynamic_copy (h, s);
10125 }
10126
10127 /* Allocate space in .plt, .got and associated reloc sections for
10128 dynamic relocs. */
10129
10130 static bfd_boolean
10131 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10132 {
10133 struct bfd_link_info *info;
10134 struct elf32_arm_link_hash_table *htab;
10135 struct elf32_arm_link_hash_entry *eh;
10136 struct elf32_arm_relocs_copied *p;
10137 bfd_signed_vma thumb_refs;
10138
10139 eh = (struct elf32_arm_link_hash_entry *) h;
10140
10141 if (h->root.type == bfd_link_hash_indirect)
10142 return TRUE;
10143
10144 if (h->root.type == bfd_link_hash_warning)
10145 /* When warning symbols are created, they **replace** the "real"
10146 entry in the hash table, thus we never get to see the real
10147 symbol in a hash traversal. So look at it now. */
10148 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10149
10150 info = (struct bfd_link_info *) inf;
10151 htab = elf32_arm_hash_table (info);
10152
10153 if (htab->root.dynamic_sections_created
10154 && h->plt.refcount > 0)
10155 {
10156 /* Make sure this symbol is output as a dynamic symbol.
10157 Undefined weak syms won't yet be marked as dynamic. */
10158 if (h->dynindx == -1
10159 && !h->forced_local)
10160 {
10161 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10162 return FALSE;
10163 }
10164
10165 if (info->shared
10166 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10167 {
10168 asection *s = htab->splt;
10169
10170 /* If this is the first .plt entry, make room for the special
10171 first entry. */
10172 if (s->size == 0)
10173 s->size += htab->plt_header_size;
10174
10175 h->plt.offset = s->size;
10176
10177 /* If we will insert a Thumb trampoline before this PLT, leave room
10178 for it. */
10179 thumb_refs = eh->plt_thumb_refcount;
10180 if (!htab->use_blx)
10181 thumb_refs += eh->plt_maybe_thumb_refcount;
10182
10183 if (thumb_refs > 0)
10184 {
10185 h->plt.offset += PLT_THUMB_STUB_SIZE;
10186 s->size += PLT_THUMB_STUB_SIZE;
10187 }
10188
10189 /* If this symbol is not defined in a regular file, and we are
10190 not generating a shared library, then set the symbol to this
10191 location in the .plt. This is required to make function
10192 pointers compare as equal between the normal executable and
10193 the shared library. */
10194 if (! info->shared
10195 && !h->def_regular)
10196 {
10197 h->root.u.def.section = s;
10198 h->root.u.def.value = h->plt.offset;
10199
10200 /* Make sure the function is not marked as Thumb, in case
10201 it is the target of an ABS32 relocation, which will
10202 point to the PLT entry. */
10203 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10204 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10205 }
10206
10207 /* Make room for this entry. */
10208 s->size += htab->plt_entry_size;
10209
10210 if (!htab->symbian_p)
10211 {
10212 /* We also need to make an entry in the .got.plt section, which
10213 will be placed in the .got section by the linker script. */
10214 eh->plt_got_offset = htab->sgotplt->size;
10215 htab->sgotplt->size += 4;
10216 }
10217
10218 /* We also need to make an entry in the .rel(a).plt section. */
10219 htab->srelplt->size += RELOC_SIZE (htab);
10220
10221 /* VxWorks executables have a second set of relocations for
10222 each PLT entry. They go in a separate relocation section,
10223 which is processed by the kernel loader. */
10224 if (htab->vxworks_p && !info->shared)
10225 {
10226 /* There is a relocation for the initial PLT entry:
10227 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10228 if (h->plt.offset == htab->plt_header_size)
10229 htab->srelplt2->size += RELOC_SIZE (htab);
10230
10231 /* There are two extra relocations for each subsequent
10232 PLT entry: an R_ARM_32 relocation for the GOT entry,
10233 and an R_ARM_32 relocation for the PLT entry. */
10234 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10235 }
10236 }
10237 else
10238 {
10239 h->plt.offset = (bfd_vma) -1;
10240 h->needs_plt = 0;
10241 }
10242 }
10243 else
10244 {
10245 h->plt.offset = (bfd_vma) -1;
10246 h->needs_plt = 0;
10247 }
10248
10249 if (h->got.refcount > 0)
10250 {
10251 asection *s;
10252 bfd_boolean dyn;
10253 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10254 int indx;
10255
10256 /* Make sure this symbol is output as a dynamic symbol.
10257 Undefined weak syms won't yet be marked as dynamic. */
10258 if (h->dynindx == -1
10259 && !h->forced_local)
10260 {
10261 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10262 return FALSE;
10263 }
10264
10265 if (!htab->symbian_p)
10266 {
10267 s = htab->sgot;
10268 h->got.offset = s->size;
10269
10270 if (tls_type == GOT_UNKNOWN)
10271 abort ();
10272
10273 if (tls_type == GOT_NORMAL)
10274 /* Non-TLS symbols need one GOT slot. */
10275 s->size += 4;
10276 else
10277 {
10278 if (tls_type & GOT_TLS_GD)
10279 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10280 s->size += 8;
10281 if (tls_type & GOT_TLS_IE)
10282 /* R_ARM_TLS_IE32 needs one GOT slot. */
10283 s->size += 4;
10284 }
10285
10286 dyn = htab->root.dynamic_sections_created;
10287
10288 indx = 0;
10289 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10290 && (!info->shared
10291 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10292 indx = h->dynindx;
10293
10294 if (tls_type != GOT_NORMAL
10295 && (info->shared || indx != 0)
10296 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10297 || h->root.type != bfd_link_hash_undefweak))
10298 {
10299 if (tls_type & GOT_TLS_IE)
10300 htab->srelgot->size += RELOC_SIZE (htab);
10301
10302 if (tls_type & GOT_TLS_GD)
10303 htab->srelgot->size += RELOC_SIZE (htab);
10304
10305 if ((tls_type & GOT_TLS_GD) && indx != 0)
10306 htab->srelgot->size += RELOC_SIZE (htab);
10307 }
10308 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10309 || h->root.type != bfd_link_hash_undefweak)
10310 && (info->shared
10311 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10312 htab->srelgot->size += RELOC_SIZE (htab);
10313 }
10314 }
10315 else
10316 h->got.offset = (bfd_vma) -1;
10317
10318 /* Allocate stubs for exported Thumb functions on v4t. */
10319 if (!htab->use_blx && h->dynindx != -1
10320 && h->def_regular
10321 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10322 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10323 {
10324 struct elf_link_hash_entry * th;
10325 struct bfd_link_hash_entry * bh;
10326 struct elf_link_hash_entry * myh;
10327 char name[1024];
10328 asection *s;
10329 bh = NULL;
10330 /* Create a new symbol to regist the real location of the function. */
10331 s = h->root.u.def.section;
10332 sprintf (name, "__real_%s", h->root.root.string);
10333 _bfd_generic_link_add_one_symbol (info, s->owner,
10334 name, BSF_GLOBAL, s,
10335 h->root.u.def.value,
10336 NULL, TRUE, FALSE, &bh);
10337
10338 myh = (struct elf_link_hash_entry *) bh;
10339 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10340 myh->forced_local = 1;
10341 eh->export_glue = myh;
10342 th = record_arm_to_thumb_glue (info, h);
10343 /* Point the symbol at the stub. */
10344 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10345 h->root.u.def.section = th->root.u.def.section;
10346 h->root.u.def.value = th->root.u.def.value & ~1;
10347 }
10348
10349 if (eh->relocs_copied == NULL)
10350 return TRUE;
10351
10352 /* In the shared -Bsymbolic case, discard space allocated for
10353 dynamic pc-relative relocs against symbols which turn out to be
10354 defined in regular objects. For the normal shared case, discard
10355 space for pc-relative relocs that have become local due to symbol
10356 visibility changes. */
10357
10358 if (info->shared || htab->root.is_relocatable_executable)
10359 {
10360 /* The only relocs that use pc_count are R_ARM_REL32 and
10361 R_ARM_REL32_NOI, which will appear on something like
10362 ".long foo - .". We want calls to protected symbols to resolve
10363 directly to the function rather than going via the plt. If people
10364 want function pointer comparisons to work as expected then they
10365 should avoid writing assembly like ".long foo - .". */
10366 if (SYMBOL_CALLS_LOCAL (info, h))
10367 {
10368 struct elf32_arm_relocs_copied **pp;
10369
10370 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10371 {
10372 p->count -= p->pc_count;
10373 p->pc_count = 0;
10374 if (p->count == 0)
10375 *pp = p->next;
10376 else
10377 pp = &p->next;
10378 }
10379 }
10380
10381 if (elf32_arm_hash_table (info)->vxworks_p)
10382 {
10383 struct elf32_arm_relocs_copied **pp;
10384
10385 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10386 {
10387 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10388 *pp = p->next;
10389 else
10390 pp = &p->next;
10391 }
10392 }
10393
10394 /* Also discard relocs on undefined weak syms with non-default
10395 visibility. */
10396 if (eh->relocs_copied != NULL
10397 && h->root.type == bfd_link_hash_undefweak)
10398 {
10399 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10400 eh->relocs_copied = NULL;
10401
10402 /* Make sure undefined weak symbols are output as a dynamic
10403 symbol in PIEs. */
10404 else if (h->dynindx == -1
10405 && !h->forced_local)
10406 {
10407 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10408 return FALSE;
10409 }
10410 }
10411
10412 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10413 && h->root.type == bfd_link_hash_new)
10414 {
10415 /* Output absolute symbols so that we can create relocations
10416 against them. For normal symbols we output a relocation
10417 against the section that contains them. */
10418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10419 return FALSE;
10420 }
10421
10422 }
10423 else
10424 {
10425 /* For the non-shared case, discard space for relocs against
10426 symbols which turn out to need copy relocs or are not
10427 dynamic. */
10428
10429 if (!h->non_got_ref
10430 && ((h->def_dynamic
10431 && !h->def_regular)
10432 || (htab->root.dynamic_sections_created
10433 && (h->root.type == bfd_link_hash_undefweak
10434 || h->root.type == bfd_link_hash_undefined))))
10435 {
10436 /* Make sure this symbol is output as a dynamic symbol.
10437 Undefined weak syms won't yet be marked as dynamic. */
10438 if (h->dynindx == -1
10439 && !h->forced_local)
10440 {
10441 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10442 return FALSE;
10443 }
10444
10445 /* If that succeeded, we know we'll be keeping all the
10446 relocs. */
10447 if (h->dynindx != -1)
10448 goto keep;
10449 }
10450
10451 eh->relocs_copied = NULL;
10452
10453 keep: ;
10454 }
10455
10456 /* Finally, allocate space. */
10457 for (p = eh->relocs_copied; p != NULL; p = p->next)
10458 {
10459 asection *sreloc = elf_section_data (p->section)->sreloc;
10460 sreloc->size += p->count * RELOC_SIZE (htab);
10461 }
10462
10463 return TRUE;
10464 }
10465
10466 /* Find any dynamic relocs that apply to read-only sections. */
10467
10468 static bfd_boolean
10469 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10470 {
10471 struct elf32_arm_link_hash_entry * eh;
10472 struct elf32_arm_relocs_copied * p;
10473
10474 if (h->root.type == bfd_link_hash_warning)
10475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10476
10477 eh = (struct elf32_arm_link_hash_entry *) h;
10478 for (p = eh->relocs_copied; p != NULL; p = p->next)
10479 {
10480 asection *s = p->section;
10481
10482 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10483 {
10484 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10485
10486 info->flags |= DF_TEXTREL;
10487
10488 /* Not an error, just cut short the traversal. */
10489 return FALSE;
10490 }
10491 }
10492 return TRUE;
10493 }
10494
10495 void
10496 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10497 int byteswap_code)
10498 {
10499 struct elf32_arm_link_hash_table *globals;
10500
10501 globals = elf32_arm_hash_table (info);
10502 globals->byteswap_code = byteswap_code;
10503 }
10504
10505 /* Set the sizes of the dynamic sections. */
10506
10507 static bfd_boolean
10508 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10509 struct bfd_link_info * info)
10510 {
10511 bfd * dynobj;
10512 asection * s;
10513 bfd_boolean plt;
10514 bfd_boolean relocs;
10515 bfd *ibfd;
10516 struct elf32_arm_link_hash_table *htab;
10517
10518 htab = elf32_arm_hash_table (info);
10519 dynobj = elf_hash_table (info)->dynobj;
10520 BFD_ASSERT (dynobj != NULL);
10521 check_use_blx (htab);
10522
10523 if (elf_hash_table (info)->dynamic_sections_created)
10524 {
10525 /* Set the contents of the .interp section to the interpreter. */
10526 if (info->executable)
10527 {
10528 s = bfd_get_section_by_name (dynobj, ".interp");
10529 BFD_ASSERT (s != NULL);
10530 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10531 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10532 }
10533 }
10534
10535 /* Set up .got offsets for local syms, and space for local dynamic
10536 relocs. */
10537 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10538 {
10539 bfd_signed_vma *local_got;
10540 bfd_signed_vma *end_local_got;
10541 char *local_tls_type;
10542 bfd_size_type locsymcount;
10543 Elf_Internal_Shdr *symtab_hdr;
10544 asection *srel;
10545 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10546
10547 if (! is_arm_elf (ibfd))
10548 continue;
10549
10550 for (s = ibfd->sections; s != NULL; s = s->next)
10551 {
10552 struct elf32_arm_relocs_copied *p;
10553
10554 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10555 {
10556 if (!bfd_is_abs_section (p->section)
10557 && bfd_is_abs_section (p->section->output_section))
10558 {
10559 /* Input section has been discarded, either because
10560 it is a copy of a linkonce section or due to
10561 linker script /DISCARD/, so we'll be discarding
10562 the relocs too. */
10563 }
10564 else if (is_vxworks
10565 && strcmp (p->section->output_section->name,
10566 ".tls_vars") == 0)
10567 {
10568 /* Relocations in vxworks .tls_vars sections are
10569 handled specially by the loader. */
10570 }
10571 else if (p->count != 0)
10572 {
10573 srel = elf_section_data (p->section)->sreloc;
10574 srel->size += p->count * RELOC_SIZE (htab);
10575 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10576 info->flags |= DF_TEXTREL;
10577 }
10578 }
10579 }
10580
10581 local_got = elf_local_got_refcounts (ibfd);
10582 if (!local_got)
10583 continue;
10584
10585 symtab_hdr = & elf_symtab_hdr (ibfd);
10586 locsymcount = symtab_hdr->sh_info;
10587 end_local_got = local_got + locsymcount;
10588 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10589 s = htab->sgot;
10590 srel = htab->srelgot;
10591 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10592 {
10593 if (*local_got > 0)
10594 {
10595 *local_got = s->size;
10596 if (*local_tls_type & GOT_TLS_GD)
10597 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10598 s->size += 8;
10599 if (*local_tls_type & GOT_TLS_IE)
10600 s->size += 4;
10601 if (*local_tls_type == GOT_NORMAL)
10602 s->size += 4;
10603
10604 if (info->shared || *local_tls_type == GOT_TLS_GD)
10605 srel->size += RELOC_SIZE (htab);
10606 }
10607 else
10608 *local_got = (bfd_vma) -1;
10609 }
10610 }
10611
10612 if (htab->tls_ldm_got.refcount > 0)
10613 {
10614 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10615 for R_ARM_TLS_LDM32 relocations. */
10616 htab->tls_ldm_got.offset = htab->sgot->size;
10617 htab->sgot->size += 8;
10618 if (info->shared)
10619 htab->srelgot->size += RELOC_SIZE (htab);
10620 }
10621 else
10622 htab->tls_ldm_got.offset = -1;
10623
10624 /* Allocate global sym .plt and .got entries, and space for global
10625 sym dynamic relocs. */
10626 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10627
10628 /* Here we rummage through the found bfds to collect glue information. */
10629 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10630 {
10631 if (! is_arm_elf (ibfd))
10632 continue;
10633
10634 /* Initialise mapping tables for code/data. */
10635 bfd_elf32_arm_init_maps (ibfd);
10636
10637 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10638 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10639 /* xgettext:c-format */
10640 _bfd_error_handler (_("Errors encountered processing file %s"),
10641 ibfd->filename);
10642 }
10643
10644 /* The check_relocs and adjust_dynamic_symbol entry points have
10645 determined the sizes of the various dynamic sections. Allocate
10646 memory for them. */
10647 plt = FALSE;
10648 relocs = FALSE;
10649 for (s = dynobj->sections; s != NULL; s = s->next)
10650 {
10651 const char * name;
10652
10653 if ((s->flags & SEC_LINKER_CREATED) == 0)
10654 continue;
10655
10656 /* It's OK to base decisions on the section name, because none
10657 of the dynobj section names depend upon the input files. */
10658 name = bfd_get_section_name (dynobj, s);
10659
10660 if (strcmp (name, ".plt") == 0)
10661 {
10662 /* Remember whether there is a PLT. */
10663 plt = s->size != 0;
10664 }
10665 else if (CONST_STRNEQ (name, ".rel"))
10666 {
10667 if (s->size != 0)
10668 {
10669 /* Remember whether there are any reloc sections other
10670 than .rel(a).plt and .rela.plt.unloaded. */
10671 if (s != htab->srelplt && s != htab->srelplt2)
10672 relocs = TRUE;
10673
10674 /* We use the reloc_count field as a counter if we need
10675 to copy relocs into the output file. */
10676 s->reloc_count = 0;
10677 }
10678 }
10679 else if (! CONST_STRNEQ (name, ".got")
10680 && strcmp (name, ".dynbss") != 0)
10681 {
10682 /* It's not one of our sections, so don't allocate space. */
10683 continue;
10684 }
10685
10686 if (s->size == 0)
10687 {
10688 /* If we don't need this section, strip it from the
10689 output file. This is mostly to handle .rel(a).bss and
10690 .rel(a).plt. We must create both sections in
10691 create_dynamic_sections, because they must be created
10692 before the linker maps input sections to output
10693 sections. The linker does that before
10694 adjust_dynamic_symbol is called, and it is that
10695 function which decides whether anything needs to go
10696 into these sections. */
10697 s->flags |= SEC_EXCLUDE;
10698 continue;
10699 }
10700
10701 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10702 continue;
10703
10704 /* Allocate memory for the section contents. */
10705 s->contents = bfd_zalloc (dynobj, s->size);
10706 if (s->contents == NULL)
10707 return FALSE;
10708 }
10709
10710 if (elf_hash_table (info)->dynamic_sections_created)
10711 {
10712 /* Add some entries to the .dynamic section. We fill in the
10713 values later, in elf32_arm_finish_dynamic_sections, but we
10714 must add the entries now so that we get the correct size for
10715 the .dynamic section. The DT_DEBUG entry is filled in by the
10716 dynamic linker and used by the debugger. */
10717 #define add_dynamic_entry(TAG, VAL) \
10718 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10719
10720 if (info->executable)
10721 {
10722 if (!add_dynamic_entry (DT_DEBUG, 0))
10723 return FALSE;
10724 }
10725
10726 if (plt)
10727 {
10728 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10729 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10730 || !add_dynamic_entry (DT_PLTREL,
10731 htab->use_rel ? DT_REL : DT_RELA)
10732 || !add_dynamic_entry (DT_JMPREL, 0))
10733 return FALSE;
10734 }
10735
10736 if (relocs)
10737 {
10738 if (htab->use_rel)
10739 {
10740 if (!add_dynamic_entry (DT_REL, 0)
10741 || !add_dynamic_entry (DT_RELSZ, 0)
10742 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10743 return FALSE;
10744 }
10745 else
10746 {
10747 if (!add_dynamic_entry (DT_RELA, 0)
10748 || !add_dynamic_entry (DT_RELASZ, 0)
10749 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10750 return FALSE;
10751 }
10752 }
10753
10754 /* If any dynamic relocs apply to a read-only section,
10755 then we need a DT_TEXTREL entry. */
10756 if ((info->flags & DF_TEXTREL) == 0)
10757 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10758 info);
10759
10760 if ((info->flags & DF_TEXTREL) != 0)
10761 {
10762 if (!add_dynamic_entry (DT_TEXTREL, 0))
10763 return FALSE;
10764 }
10765 if (htab->vxworks_p
10766 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10767 return FALSE;
10768 }
10769 #undef add_dynamic_entry
10770
10771 return TRUE;
10772 }
10773
10774 /* Finish up dynamic symbol handling. We set the contents of various
10775 dynamic sections here. */
10776
10777 static bfd_boolean
10778 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10779 struct bfd_link_info * info,
10780 struct elf_link_hash_entry * h,
10781 Elf_Internal_Sym * sym)
10782 {
10783 bfd * dynobj;
10784 struct elf32_arm_link_hash_table *htab;
10785 struct elf32_arm_link_hash_entry *eh;
10786
10787 dynobj = elf_hash_table (info)->dynobj;
10788 htab = elf32_arm_hash_table (info);
10789 eh = (struct elf32_arm_link_hash_entry *) h;
10790
10791 if (h->plt.offset != (bfd_vma) -1)
10792 {
10793 asection * splt;
10794 asection * srel;
10795 bfd_byte *loc;
10796 bfd_vma plt_index;
10797 Elf_Internal_Rela rel;
10798
10799 /* This symbol has an entry in the procedure linkage table. Set
10800 it up. */
10801
10802 BFD_ASSERT (h->dynindx != -1);
10803
10804 splt = bfd_get_section_by_name (dynobj, ".plt");
10805 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10806 BFD_ASSERT (splt != NULL && srel != NULL);
10807
10808 /* Fill in the entry in the procedure linkage table. */
10809 if (htab->symbian_p)
10810 {
10811 put_arm_insn (htab, output_bfd,
10812 elf32_arm_symbian_plt_entry[0],
10813 splt->contents + h->plt.offset);
10814 bfd_put_32 (output_bfd,
10815 elf32_arm_symbian_plt_entry[1],
10816 splt->contents + h->plt.offset + 4);
10817
10818 /* Fill in the entry in the .rel.plt section. */
10819 rel.r_offset = (splt->output_section->vma
10820 + splt->output_offset
10821 + h->plt.offset + 4);
10822 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10823
10824 /* Get the index in the procedure linkage table which
10825 corresponds to this symbol. This is the index of this symbol
10826 in all the symbols for which we are making plt entries. The
10827 first entry in the procedure linkage table is reserved. */
10828 plt_index = ((h->plt.offset - htab->plt_header_size)
10829 / htab->plt_entry_size);
10830 }
10831 else
10832 {
10833 bfd_vma got_offset, got_address, plt_address;
10834 bfd_vma got_displacement;
10835 asection * sgot;
10836 bfd_byte * ptr;
10837
10838 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10839 BFD_ASSERT (sgot != NULL);
10840
10841 /* Get the offset into the .got.plt table of the entry that
10842 corresponds to this function. */
10843 got_offset = eh->plt_got_offset;
10844
10845 /* Get the index in the procedure linkage table which
10846 corresponds to this symbol. This is the index of this symbol
10847 in all the symbols for which we are making plt entries. The
10848 first three entries in .got.plt are reserved; after that
10849 symbols appear in the same order as in .plt. */
10850 plt_index = (got_offset - 12) / 4;
10851
10852 /* Calculate the address of the GOT entry. */
10853 got_address = (sgot->output_section->vma
10854 + sgot->output_offset
10855 + got_offset);
10856
10857 /* ...and the address of the PLT entry. */
10858 plt_address = (splt->output_section->vma
10859 + splt->output_offset
10860 + h->plt.offset);
10861
10862 ptr = htab->splt->contents + h->plt.offset;
10863 if (htab->vxworks_p && info->shared)
10864 {
10865 unsigned int i;
10866 bfd_vma val;
10867
10868 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10869 {
10870 val = elf32_arm_vxworks_shared_plt_entry[i];
10871 if (i == 2)
10872 val |= got_address - sgot->output_section->vma;
10873 if (i == 5)
10874 val |= plt_index * RELOC_SIZE (htab);
10875 if (i == 2 || i == 5)
10876 bfd_put_32 (output_bfd, val, ptr);
10877 else
10878 put_arm_insn (htab, output_bfd, val, ptr);
10879 }
10880 }
10881 else if (htab->vxworks_p)
10882 {
10883 unsigned int i;
10884 bfd_vma val;
10885
10886 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10887 {
10888 val = elf32_arm_vxworks_exec_plt_entry[i];
10889 if (i == 2)
10890 val |= got_address;
10891 if (i == 4)
10892 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10893 if (i == 5)
10894 val |= plt_index * RELOC_SIZE (htab);
10895 if (i == 2 || i == 5)
10896 bfd_put_32 (output_bfd, val, ptr);
10897 else
10898 put_arm_insn (htab, output_bfd, val, ptr);
10899 }
10900
10901 loc = (htab->srelplt2->contents
10902 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10903
10904 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10905 referencing the GOT for this PLT entry. */
10906 rel.r_offset = plt_address + 8;
10907 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10908 rel.r_addend = got_offset;
10909 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10910 loc += RELOC_SIZE (htab);
10911
10912 /* Create the R_ARM_ABS32 relocation referencing the
10913 beginning of the PLT for this GOT entry. */
10914 rel.r_offset = got_address;
10915 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10916 rel.r_addend = 0;
10917 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10918 }
10919 else
10920 {
10921 bfd_signed_vma thumb_refs;
10922 /* Calculate the displacement between the PLT slot and the
10923 entry in the GOT. The eight-byte offset accounts for the
10924 value produced by adding to pc in the first instruction
10925 of the PLT stub. */
10926 got_displacement = got_address - (plt_address + 8);
10927
10928 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10929
10930 thumb_refs = eh->plt_thumb_refcount;
10931 if (!htab->use_blx)
10932 thumb_refs += eh->plt_maybe_thumb_refcount;
10933
10934 if (thumb_refs > 0)
10935 {
10936 put_thumb_insn (htab, output_bfd,
10937 elf32_arm_plt_thumb_stub[0], ptr - 4);
10938 put_thumb_insn (htab, output_bfd,
10939 elf32_arm_plt_thumb_stub[1], ptr - 2);
10940 }
10941
10942 put_arm_insn (htab, output_bfd,
10943 elf32_arm_plt_entry[0]
10944 | ((got_displacement & 0x0ff00000) >> 20),
10945 ptr + 0);
10946 put_arm_insn (htab, output_bfd,
10947 elf32_arm_plt_entry[1]
10948 | ((got_displacement & 0x000ff000) >> 12),
10949 ptr+ 4);
10950 put_arm_insn (htab, output_bfd,
10951 elf32_arm_plt_entry[2]
10952 | (got_displacement & 0x00000fff),
10953 ptr + 8);
10954 #ifdef FOUR_WORD_PLT
10955 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10956 #endif
10957 }
10958
10959 /* Fill in the entry in the global offset table. */
10960 bfd_put_32 (output_bfd,
10961 (splt->output_section->vma
10962 + splt->output_offset),
10963 sgot->contents + got_offset);
10964
10965 /* Fill in the entry in the .rel(a).plt section. */
10966 rel.r_addend = 0;
10967 rel.r_offset = got_address;
10968 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10969 }
10970
10971 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10972 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10973
10974 if (!h->def_regular)
10975 {
10976 /* Mark the symbol as undefined, rather than as defined in
10977 the .plt section. Leave the value alone. */
10978 sym->st_shndx = SHN_UNDEF;
10979 /* If the symbol is weak, we do need to clear the value.
10980 Otherwise, the PLT entry would provide a definition for
10981 the symbol even if the symbol wasn't defined anywhere,
10982 and so the symbol would never be NULL. */
10983 if (!h->ref_regular_nonweak)
10984 sym->st_value = 0;
10985 }
10986 }
10987
10988 if (h->got.offset != (bfd_vma) -1
10989 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10990 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10991 {
10992 asection * sgot;
10993 asection * srel;
10994 Elf_Internal_Rela rel;
10995 bfd_byte *loc;
10996 bfd_vma offset;
10997
10998 /* This symbol has an entry in the global offset table. Set it
10999 up. */
11000 sgot = bfd_get_section_by_name (dynobj, ".got");
11001 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
11002 BFD_ASSERT (sgot != NULL && srel != NULL);
11003
11004 offset = (h->got.offset & ~(bfd_vma) 1);
11005 rel.r_addend = 0;
11006 rel.r_offset = (sgot->output_section->vma
11007 + sgot->output_offset
11008 + offset);
11009
11010 /* If this is a static link, or it is a -Bsymbolic link and the
11011 symbol is defined locally or was forced to be local because
11012 of a version file, we just want to emit a RELATIVE reloc.
11013 The entry in the global offset table will already have been
11014 initialized in the relocate_section function. */
11015 if (info->shared
11016 && SYMBOL_REFERENCES_LOCAL (info, h))
11017 {
11018 BFD_ASSERT ((h->got.offset & 1) != 0);
11019 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11020 if (!htab->use_rel)
11021 {
11022 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11023 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11024 }
11025 }
11026 else
11027 {
11028 BFD_ASSERT ((h->got.offset & 1) == 0);
11029 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11030 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11031 }
11032
11033 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11034 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11035 }
11036
11037 if (h->needs_copy)
11038 {
11039 asection * s;
11040 Elf_Internal_Rela rel;
11041 bfd_byte *loc;
11042
11043 /* This symbol needs a copy reloc. Set it up. */
11044 BFD_ASSERT (h->dynindx != -1
11045 && (h->root.type == bfd_link_hash_defined
11046 || h->root.type == bfd_link_hash_defweak));
11047
11048 s = bfd_get_section_by_name (h->root.u.def.section->owner,
11049 RELOC_SECTION (htab, ".bss"));
11050 BFD_ASSERT (s != NULL);
11051
11052 rel.r_addend = 0;
11053 rel.r_offset = (h->root.u.def.value
11054 + h->root.u.def.section->output_section->vma
11055 + h->root.u.def.section->output_offset);
11056 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
11057 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11058 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11059 }
11060
11061 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11062 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11063 to the ".got" section. */
11064 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
11065 || (!htab->vxworks_p && h == htab->root.hgot))
11066 sym->st_shndx = SHN_ABS;
11067
11068 return TRUE;
11069 }
11070
11071 /* Finish up the dynamic sections. */
11072
11073 static bfd_boolean
11074 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
11075 {
11076 bfd * dynobj;
11077 asection * sgot;
11078 asection * sdyn;
11079
11080 dynobj = elf_hash_table (info)->dynobj;
11081
11082 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11083 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
11084 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11085
11086 if (elf_hash_table (info)->dynamic_sections_created)
11087 {
11088 asection *splt;
11089 Elf32_External_Dyn *dyncon, *dynconend;
11090 struct elf32_arm_link_hash_table *htab;
11091
11092 htab = elf32_arm_hash_table (info);
11093 splt = bfd_get_section_by_name (dynobj, ".plt");
11094 BFD_ASSERT (splt != NULL && sdyn != NULL);
11095
11096 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11097 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11098
11099 for (; dyncon < dynconend; dyncon++)
11100 {
11101 Elf_Internal_Dyn dyn;
11102 const char * name;
11103 asection * s;
11104
11105 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11106
11107 switch (dyn.d_tag)
11108 {
11109 unsigned int type;
11110
11111 default:
11112 if (htab->vxworks_p
11113 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11114 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11115 break;
11116
11117 case DT_HASH:
11118 name = ".hash";
11119 goto get_vma_if_bpabi;
11120 case DT_STRTAB:
11121 name = ".dynstr";
11122 goto get_vma_if_bpabi;
11123 case DT_SYMTAB:
11124 name = ".dynsym";
11125 goto get_vma_if_bpabi;
11126 case DT_VERSYM:
11127 name = ".gnu.version";
11128 goto get_vma_if_bpabi;
11129 case DT_VERDEF:
11130 name = ".gnu.version_d";
11131 goto get_vma_if_bpabi;
11132 case DT_VERNEED:
11133 name = ".gnu.version_r";
11134 goto get_vma_if_bpabi;
11135
11136 case DT_PLTGOT:
11137 name = ".got";
11138 goto get_vma;
11139 case DT_JMPREL:
11140 name = RELOC_SECTION (htab, ".plt");
11141 get_vma:
11142 s = bfd_get_section_by_name (output_bfd, name);
11143 BFD_ASSERT (s != NULL);
11144 if (!htab->symbian_p)
11145 dyn.d_un.d_ptr = s->vma;
11146 else
11147 /* In the BPABI, tags in the PT_DYNAMIC section point
11148 at the file offset, not the memory address, for the
11149 convenience of the post linker. */
11150 dyn.d_un.d_ptr = s->filepos;
11151 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11152 break;
11153
11154 get_vma_if_bpabi:
11155 if (htab->symbian_p)
11156 goto get_vma;
11157 break;
11158
11159 case DT_PLTRELSZ:
11160 s = bfd_get_section_by_name (output_bfd,
11161 RELOC_SECTION (htab, ".plt"));
11162 BFD_ASSERT (s != NULL);
11163 dyn.d_un.d_val = s->size;
11164 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11165 break;
11166
11167 case DT_RELSZ:
11168 case DT_RELASZ:
11169 if (!htab->symbian_p)
11170 {
11171 /* My reading of the SVR4 ABI indicates that the
11172 procedure linkage table relocs (DT_JMPREL) should be
11173 included in the overall relocs (DT_REL). This is
11174 what Solaris does. However, UnixWare can not handle
11175 that case. Therefore, we override the DT_RELSZ entry
11176 here to make it not include the JMPREL relocs. Since
11177 the linker script arranges for .rel(a).plt to follow all
11178 other relocation sections, we don't have to worry
11179 about changing the DT_REL entry. */
11180 s = bfd_get_section_by_name (output_bfd,
11181 RELOC_SECTION (htab, ".plt"));
11182 if (s != NULL)
11183 dyn.d_un.d_val -= s->size;
11184 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11185 break;
11186 }
11187 /* Fall through. */
11188
11189 case DT_REL:
11190 case DT_RELA:
11191 /* In the BPABI, the DT_REL tag must point at the file
11192 offset, not the VMA, of the first relocation
11193 section. So, we use code similar to that in
11194 elflink.c, but do not check for SHF_ALLOC on the
11195 relcoation section, since relocations sections are
11196 never allocated under the BPABI. The comments above
11197 about Unixware notwithstanding, we include all of the
11198 relocations here. */
11199 if (htab->symbian_p)
11200 {
11201 unsigned int i;
11202 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11203 ? SHT_REL : SHT_RELA);
11204 dyn.d_un.d_val = 0;
11205 for (i = 1; i < elf_numsections (output_bfd); i++)
11206 {
11207 Elf_Internal_Shdr *hdr
11208 = elf_elfsections (output_bfd)[i];
11209 if (hdr->sh_type == type)
11210 {
11211 if (dyn.d_tag == DT_RELSZ
11212 || dyn.d_tag == DT_RELASZ)
11213 dyn.d_un.d_val += hdr->sh_size;
11214 else if ((ufile_ptr) hdr->sh_offset
11215 <= dyn.d_un.d_val - 1)
11216 dyn.d_un.d_val = hdr->sh_offset;
11217 }
11218 }
11219 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11220 }
11221 break;
11222
11223 /* Set the bottom bit of DT_INIT/FINI if the
11224 corresponding function is Thumb. */
11225 case DT_INIT:
11226 name = info->init_function;
11227 goto get_sym;
11228 case DT_FINI:
11229 name = info->fini_function;
11230 get_sym:
11231 /* If it wasn't set by elf_bfd_final_link
11232 then there is nothing to adjust. */
11233 if (dyn.d_un.d_val != 0)
11234 {
11235 struct elf_link_hash_entry * eh;
11236
11237 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11238 FALSE, FALSE, TRUE);
11239 if (eh != NULL
11240 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11241 {
11242 dyn.d_un.d_val |= 1;
11243 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11244 }
11245 }
11246 break;
11247 }
11248 }
11249
11250 /* Fill in the first entry in the procedure linkage table. */
11251 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11252 {
11253 const bfd_vma *plt0_entry;
11254 bfd_vma got_address, plt_address, got_displacement;
11255
11256 /* Calculate the addresses of the GOT and PLT. */
11257 got_address = sgot->output_section->vma + sgot->output_offset;
11258 plt_address = splt->output_section->vma + splt->output_offset;
11259
11260 if (htab->vxworks_p)
11261 {
11262 /* The VxWorks GOT is relocated by the dynamic linker.
11263 Therefore, we must emit relocations rather than simply
11264 computing the values now. */
11265 Elf_Internal_Rela rel;
11266
11267 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11268 put_arm_insn (htab, output_bfd, plt0_entry[0],
11269 splt->contents + 0);
11270 put_arm_insn (htab, output_bfd, plt0_entry[1],
11271 splt->contents + 4);
11272 put_arm_insn (htab, output_bfd, plt0_entry[2],
11273 splt->contents + 8);
11274 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11275
11276 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11277 rel.r_offset = plt_address + 12;
11278 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11279 rel.r_addend = 0;
11280 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11281 htab->srelplt2->contents);
11282 }
11283 else
11284 {
11285 got_displacement = got_address - (plt_address + 16);
11286
11287 plt0_entry = elf32_arm_plt0_entry;
11288 put_arm_insn (htab, output_bfd, plt0_entry[0],
11289 splt->contents + 0);
11290 put_arm_insn (htab, output_bfd, plt0_entry[1],
11291 splt->contents + 4);
11292 put_arm_insn (htab, output_bfd, plt0_entry[2],
11293 splt->contents + 8);
11294 put_arm_insn (htab, output_bfd, plt0_entry[3],
11295 splt->contents + 12);
11296
11297 #ifdef FOUR_WORD_PLT
11298 /* The displacement value goes in the otherwise-unused
11299 last word of the second entry. */
11300 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11301 #else
11302 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11303 #endif
11304 }
11305 }
11306
11307 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11308 really seem like the right value. */
11309 if (splt->output_section->owner == output_bfd)
11310 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11311
11312 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11313 {
11314 /* Correct the .rel(a).plt.unloaded relocations. They will have
11315 incorrect symbol indexes. */
11316 int num_plts;
11317 unsigned char *p;
11318
11319 num_plts = ((htab->splt->size - htab->plt_header_size)
11320 / htab->plt_entry_size);
11321 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11322
11323 for (; num_plts; num_plts--)
11324 {
11325 Elf_Internal_Rela rel;
11326
11327 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11328 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11329 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11330 p += RELOC_SIZE (htab);
11331
11332 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11333 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11334 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11335 p += RELOC_SIZE (htab);
11336 }
11337 }
11338 }
11339
11340 /* Fill in the first three entries in the global offset table. */
11341 if (sgot)
11342 {
11343 if (sgot->size > 0)
11344 {
11345 if (sdyn == NULL)
11346 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11347 else
11348 bfd_put_32 (output_bfd,
11349 sdyn->output_section->vma + sdyn->output_offset,
11350 sgot->contents);
11351 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11352 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11353 }
11354
11355 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11356 }
11357
11358 return TRUE;
11359 }
11360
11361 static void
11362 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11363 {
11364 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11365 struct elf32_arm_link_hash_table *globals;
11366
11367 i_ehdrp = elf_elfheader (abfd);
11368
11369 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11370 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11371 else
11372 i_ehdrp->e_ident[EI_OSABI] = 0;
11373 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11374
11375 if (link_info)
11376 {
11377 globals = elf32_arm_hash_table (link_info);
11378 if (globals->byteswap_code)
11379 i_ehdrp->e_flags |= EF_ARM_BE8;
11380 }
11381 }
11382
11383 static enum elf_reloc_type_class
11384 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11385 {
11386 switch ((int) ELF32_R_TYPE (rela->r_info))
11387 {
11388 case R_ARM_RELATIVE:
11389 return reloc_class_relative;
11390 case R_ARM_JUMP_SLOT:
11391 return reloc_class_plt;
11392 case R_ARM_COPY:
11393 return reloc_class_copy;
11394 default:
11395 return reloc_class_normal;
11396 }
11397 }
11398
11399 /* Set the right machine number for an Arm ELF file. */
11400
11401 static bfd_boolean
11402 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11403 {
11404 if (hdr->sh_type == SHT_NOTE)
11405 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11406
11407 return TRUE;
11408 }
11409
11410 static void
11411 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11412 {
11413 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11414 }
11415
11416 /* Return TRUE if this is an unwinding table entry. */
11417
11418 static bfd_boolean
11419 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11420 {
11421 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11422 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11423 }
11424
11425
11426 /* Set the type and flags for an ARM section. We do this by
11427 the section name, which is a hack, but ought to work. */
11428
11429 static bfd_boolean
11430 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11431 {
11432 const char * name;
11433
11434 name = bfd_get_section_name (abfd, sec);
11435
11436 if (is_arm_elf_unwind_section_name (abfd, name))
11437 {
11438 hdr->sh_type = SHT_ARM_EXIDX;
11439 hdr->sh_flags |= SHF_LINK_ORDER;
11440 }
11441 return TRUE;
11442 }
11443
11444 /* Handle an ARM specific section when reading an object file. This is
11445 called when bfd_section_from_shdr finds a section with an unknown
11446 type. */
11447
11448 static bfd_boolean
11449 elf32_arm_section_from_shdr (bfd *abfd,
11450 Elf_Internal_Shdr * hdr,
11451 const char *name,
11452 int shindex)
11453 {
11454 /* There ought to be a place to keep ELF backend specific flags, but
11455 at the moment there isn't one. We just keep track of the
11456 sections by their name, instead. Fortunately, the ABI gives
11457 names for all the ARM specific sections, so we will probably get
11458 away with this. */
11459 switch (hdr->sh_type)
11460 {
11461 case SHT_ARM_EXIDX:
11462 case SHT_ARM_PREEMPTMAP:
11463 case SHT_ARM_ATTRIBUTES:
11464 break;
11465
11466 default:
11467 return FALSE;
11468 }
11469
11470 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11471 return FALSE;
11472
11473 return TRUE;
11474 }
11475
11476 /* A structure used to record a list of sections, independently
11477 of the next and prev fields in the asection structure. */
11478 typedef struct section_list
11479 {
11480 asection * sec;
11481 struct section_list * next;
11482 struct section_list * prev;
11483 }
11484 section_list;
11485
11486 /* Unfortunately we need to keep a list of sections for which
11487 an _arm_elf_section_data structure has been allocated. This
11488 is because it is possible for functions like elf32_arm_write_section
11489 to be called on a section which has had an elf_data_structure
11490 allocated for it (and so the used_by_bfd field is valid) but
11491 for which the ARM extended version of this structure - the
11492 _arm_elf_section_data structure - has not been allocated. */
11493 static section_list * sections_with_arm_elf_section_data = NULL;
11494
11495 static void
11496 record_section_with_arm_elf_section_data (asection * sec)
11497 {
11498 struct section_list * entry;
11499
11500 entry = bfd_malloc (sizeof (* entry));
11501 if (entry == NULL)
11502 return;
11503 entry->sec = sec;
11504 entry->next = sections_with_arm_elf_section_data;
11505 entry->prev = NULL;
11506 if (entry->next != NULL)
11507 entry->next->prev = entry;
11508 sections_with_arm_elf_section_data = entry;
11509 }
11510
11511 static struct section_list *
11512 find_arm_elf_section_entry (asection * sec)
11513 {
11514 struct section_list * entry;
11515 static struct section_list * last_entry = NULL;
11516
11517 /* This is a short cut for the typical case where the sections are added
11518 to the sections_with_arm_elf_section_data list in forward order and
11519 then looked up here in backwards order. This makes a real difference
11520 to the ld-srec/sec64k.exp linker test. */
11521 entry = sections_with_arm_elf_section_data;
11522 if (last_entry != NULL)
11523 {
11524 if (last_entry->sec == sec)
11525 entry = last_entry;
11526 else if (last_entry->next != NULL
11527 && last_entry->next->sec == sec)
11528 entry = last_entry->next;
11529 }
11530
11531 for (; entry; entry = entry->next)
11532 if (entry->sec == sec)
11533 break;
11534
11535 if (entry)
11536 /* Record the entry prior to this one - it is the entry we are most
11537 likely to want to locate next time. Also this way if we have been
11538 called from unrecord_section_with_arm_elf_section_data() we will not
11539 be caching a pointer that is about to be freed. */
11540 last_entry = entry->prev;
11541
11542 return entry;
11543 }
11544
11545 static _arm_elf_section_data *
11546 get_arm_elf_section_data (asection * sec)
11547 {
11548 struct section_list * entry;
11549
11550 entry = find_arm_elf_section_entry (sec);
11551
11552 if (entry)
11553 return elf32_arm_section_data (entry->sec);
11554 else
11555 return NULL;
11556 }
11557
11558 static void
11559 unrecord_section_with_arm_elf_section_data (asection * sec)
11560 {
11561 struct section_list * entry;
11562
11563 entry = find_arm_elf_section_entry (sec);
11564
11565 if (entry)
11566 {
11567 if (entry->prev != NULL)
11568 entry->prev->next = entry->next;
11569 if (entry->next != NULL)
11570 entry->next->prev = entry->prev;
11571 if (entry == sections_with_arm_elf_section_data)
11572 sections_with_arm_elf_section_data = entry->next;
11573 free (entry);
11574 }
11575 }
11576
11577
11578 typedef struct
11579 {
11580 void *finfo;
11581 struct bfd_link_info *info;
11582 asection *sec;
11583 int sec_shndx;
11584 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11585 asection *, struct elf_link_hash_entry *);
11586 } output_arch_syminfo;
11587
11588 enum map_symbol_type
11589 {
11590 ARM_MAP_ARM,
11591 ARM_MAP_THUMB,
11592 ARM_MAP_DATA
11593 };
11594
11595
11596 /* Output a single mapping symbol. */
11597
11598 static bfd_boolean
11599 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11600 enum map_symbol_type type,
11601 bfd_vma offset)
11602 {
11603 static const char *names[3] = {"$a", "$t", "$d"};
11604 struct elf32_arm_link_hash_table *htab;
11605 Elf_Internal_Sym sym;
11606
11607 htab = elf32_arm_hash_table (osi->info);
11608 sym.st_value = osi->sec->output_section->vma
11609 + osi->sec->output_offset
11610 + offset;
11611 sym.st_size = 0;
11612 sym.st_other = 0;
11613 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11614 sym.st_shndx = osi->sec_shndx;
11615 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11616 return FALSE;
11617 return TRUE;
11618 }
11619
11620
11621 /* Output mapping symbols for PLT entries associated with H. */
11622
11623 static bfd_boolean
11624 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11625 {
11626 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11627 struct elf32_arm_link_hash_table *htab;
11628 struct elf32_arm_link_hash_entry *eh;
11629 bfd_vma addr;
11630
11631 htab = elf32_arm_hash_table (osi->info);
11632
11633 if (h->root.type == bfd_link_hash_indirect)
11634 return TRUE;
11635
11636 if (h->root.type == bfd_link_hash_warning)
11637 /* When warning symbols are created, they **replace** the "real"
11638 entry in the hash table, thus we never get to see the real
11639 symbol in a hash traversal. So look at it now. */
11640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11641
11642 if (h->plt.offset == (bfd_vma) -1)
11643 return TRUE;
11644
11645 eh = (struct elf32_arm_link_hash_entry *) h;
11646 addr = h->plt.offset;
11647 if (htab->symbian_p)
11648 {
11649 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11650 return FALSE;
11651 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11652 return FALSE;
11653 }
11654 else if (htab->vxworks_p)
11655 {
11656 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11657 return FALSE;
11658 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11659 return FALSE;
11660 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11661 return FALSE;
11662 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11663 return FALSE;
11664 }
11665 else
11666 {
11667 bfd_signed_vma thumb_refs;
11668
11669 thumb_refs = eh->plt_thumb_refcount;
11670 if (!htab->use_blx)
11671 thumb_refs += eh->plt_maybe_thumb_refcount;
11672
11673 if (thumb_refs > 0)
11674 {
11675 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11676 return FALSE;
11677 }
11678 #ifdef FOUR_WORD_PLT
11679 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11680 return FALSE;
11681 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11682 return FALSE;
11683 #else
11684 /* A three-word PLT with no Thumb thunk contains only Arm code,
11685 so only need to output a mapping symbol for the first PLT entry and
11686 entries with thumb thunks. */
11687 if (thumb_refs > 0 || addr == 20)
11688 {
11689 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11690 return FALSE;
11691 }
11692 #endif
11693 }
11694
11695 return TRUE;
11696 }
11697
11698 /* Output a single local symbol for a generated stub. */
11699
11700 static bfd_boolean
11701 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11702 bfd_vma offset, bfd_vma size)
11703 {
11704 struct elf32_arm_link_hash_table *htab;
11705 Elf_Internal_Sym sym;
11706
11707 htab = elf32_arm_hash_table (osi->info);
11708 sym.st_value = osi->sec->output_section->vma
11709 + osi->sec->output_offset
11710 + offset;
11711 sym.st_size = size;
11712 sym.st_other = 0;
11713 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11714 sym.st_shndx = osi->sec_shndx;
11715 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11716 return FALSE;
11717 return TRUE;
11718 }
11719
11720 static bfd_boolean
11721 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11722 void * in_arg)
11723 {
11724 struct elf32_arm_stub_hash_entry *stub_entry;
11725 struct bfd_link_info *info;
11726 struct elf32_arm_link_hash_table *htab;
11727 asection *stub_sec;
11728 bfd_vma addr;
11729 char *stub_name;
11730 output_arch_syminfo *osi;
11731 const insn_sequence *template;
11732 enum stub_insn_type prev_type;
11733 int size;
11734 int i;
11735 enum map_symbol_type sym_type;
11736
11737 /* Massage our args to the form they really have. */
11738 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11739 osi = (output_arch_syminfo *) in_arg;
11740
11741 info = osi->info;
11742
11743 htab = elf32_arm_hash_table (info);
11744 stub_sec = stub_entry->stub_sec;
11745
11746 /* Ensure this stub is attached to the current section being
11747 processed. */
11748 if (stub_sec != osi->sec)
11749 return TRUE;
11750
11751 addr = (bfd_vma) stub_entry->stub_offset;
11752 stub_name = stub_entry->output_name;
11753
11754 template = stub_entry->stub_template;
11755 switch (template[0].type)
11756 {
11757 case ARM_TYPE:
11758 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
11759 return FALSE;
11760 break;
11761 case THUMB16_TYPE:
11762 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11763 stub_entry->stub_size))
11764 return FALSE;
11765 break;
11766 default:
11767 BFD_FAIL ();
11768 return FALSE;
11769 }
11770
11771 prev_type = DATA_TYPE;
11772 size = 0;
11773 for (i = 0; i < stub_entry->stub_template_size; i++)
11774 {
11775 switch (template[i].type)
11776 {
11777 case ARM_TYPE:
11778 sym_type = ARM_MAP_ARM;
11779 break;
11780
11781 case THUMB16_TYPE:
11782 sym_type = ARM_MAP_THUMB;
11783 break;
11784
11785 case DATA_TYPE:
11786 sym_type = ARM_MAP_DATA;
11787 break;
11788
11789 default:
11790 BFD_FAIL ();
11791 return FALSE;
11792 }
11793
11794 if (template[i].type != prev_type)
11795 {
11796 prev_type = template[i].type;
11797 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11798 return FALSE;
11799 }
11800
11801 switch (template[i].type)
11802 {
11803 case ARM_TYPE:
11804 size += 4;
11805 break;
11806
11807 case THUMB16_TYPE:
11808 size += 2;
11809 break;
11810
11811 case DATA_TYPE:
11812 size += 4;
11813 break;
11814
11815 default:
11816 BFD_FAIL ();
11817 return FALSE;
11818 }
11819 }
11820
11821 return TRUE;
11822 }
11823
11824 /* Output mapping symbols for linker generated sections. */
11825
11826 static bfd_boolean
11827 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11828 struct bfd_link_info *info,
11829 void *finfo,
11830 bfd_boolean (*func) (void *, const char *,
11831 Elf_Internal_Sym *,
11832 asection *,
11833 struct elf_link_hash_entry *))
11834 {
11835 output_arch_syminfo osi;
11836 struct elf32_arm_link_hash_table *htab;
11837 bfd_vma offset;
11838 bfd_size_type size;
11839
11840 htab = elf32_arm_hash_table (info);
11841 check_use_blx (htab);
11842
11843 osi.finfo = finfo;
11844 osi.info = info;
11845 osi.func = func;
11846
11847 /* ARM->Thumb glue. */
11848 if (htab->arm_glue_size > 0)
11849 {
11850 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11851 ARM2THUMB_GLUE_SECTION_NAME);
11852
11853 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11854 (output_bfd, osi.sec->output_section);
11855 if (info->shared || htab->root.is_relocatable_executable
11856 || htab->pic_veneer)
11857 size = ARM2THUMB_PIC_GLUE_SIZE;
11858 else if (htab->use_blx)
11859 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11860 else
11861 size = ARM2THUMB_STATIC_GLUE_SIZE;
11862
11863 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11864 {
11865 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11866 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11867 }
11868 }
11869
11870 /* Thumb->ARM glue. */
11871 if (htab->thumb_glue_size > 0)
11872 {
11873 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11874 THUMB2ARM_GLUE_SECTION_NAME);
11875
11876 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11877 (output_bfd, osi.sec->output_section);
11878 size = THUMB2ARM_GLUE_SIZE;
11879
11880 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11881 {
11882 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11883 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11884 }
11885 }
11886
11887 /* ARMv4 BX veneers. */
11888 if (htab->bx_glue_size > 0)
11889 {
11890 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11891 ARM_BX_GLUE_SECTION_NAME);
11892
11893 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11894 (output_bfd, osi.sec->output_section);
11895
11896 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11897 }
11898
11899 /* Long calls stubs. */
11900 if (htab->stub_bfd && htab->stub_bfd->sections)
11901 {
11902 asection* stub_sec;
11903
11904 for (stub_sec = htab->stub_bfd->sections;
11905 stub_sec != NULL;
11906 stub_sec = stub_sec->next)
11907 {
11908 /* Ignore non-stub sections. */
11909 if (!strstr (stub_sec->name, STUB_SUFFIX))
11910 continue;
11911
11912 osi.sec = stub_sec;
11913
11914 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11915 (output_bfd, osi.sec->output_section);
11916
11917 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11918 }
11919 }
11920
11921 /* Finally, output mapping symbols for the PLT. */
11922 if (!htab->splt || htab->splt->size == 0)
11923 return TRUE;
11924
11925 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11926 htab->splt->output_section);
11927 osi.sec = htab->splt;
11928 /* Output mapping symbols for the plt header. SymbianOS does not have a
11929 plt header. */
11930 if (htab->vxworks_p)
11931 {
11932 /* VxWorks shared libraries have no PLT header. */
11933 if (!info->shared)
11934 {
11935 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11936 return FALSE;
11937 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11938 return FALSE;
11939 }
11940 }
11941 else if (!htab->symbian_p)
11942 {
11943 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11944 return FALSE;
11945 #ifndef FOUR_WORD_PLT
11946 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11947 return FALSE;
11948 #endif
11949 }
11950
11951 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11952 return TRUE;
11953 }
11954
11955 /* Allocate target specific section data. */
11956
11957 static bfd_boolean
11958 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11959 {
11960 if (!sec->used_by_bfd)
11961 {
11962 _arm_elf_section_data *sdata;
11963 bfd_size_type amt = sizeof (*sdata);
11964
11965 sdata = bfd_zalloc (abfd, amt);
11966 if (sdata == NULL)
11967 return FALSE;
11968 sec->used_by_bfd = sdata;
11969 }
11970
11971 record_section_with_arm_elf_section_data (sec);
11972
11973 return _bfd_elf_new_section_hook (abfd, sec);
11974 }
11975
11976
11977 /* Used to order a list of mapping symbols by address. */
11978
11979 static int
11980 elf32_arm_compare_mapping (const void * a, const void * b)
11981 {
11982 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11983 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11984
11985 if (amap->vma > bmap->vma)
11986 return 1;
11987 else if (amap->vma < bmap->vma)
11988 return -1;
11989 else if (amap->type > bmap->type)
11990 /* Ensure results do not depend on the host qsort for objects with
11991 multiple mapping symbols at the same address by sorting on type
11992 after vma. */
11993 return 1;
11994 else if (amap->type < bmap->type)
11995 return -1;
11996 else
11997 return 0;
11998 }
11999
12000
12001 /* Do code byteswapping. Return FALSE afterwards so that the section is
12002 written out as normal. */
12003
12004 static bfd_boolean
12005 elf32_arm_write_section (bfd *output_bfd,
12006 struct bfd_link_info *link_info,
12007 asection *sec,
12008 bfd_byte *contents)
12009 {
12010 int mapcount, errcount;
12011 _arm_elf_section_data *arm_data;
12012 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
12013 elf32_arm_section_map *map;
12014 elf32_vfp11_erratum_list *errnode;
12015 bfd_vma ptr;
12016 bfd_vma end;
12017 bfd_vma offset = sec->output_section->vma + sec->output_offset;
12018 bfd_byte tmp;
12019 int i;
12020
12021 /* If this section has not been allocated an _arm_elf_section_data
12022 structure then we cannot record anything. */
12023 arm_data = get_arm_elf_section_data (sec);
12024 if (arm_data == NULL)
12025 return FALSE;
12026
12027 mapcount = arm_data->mapcount;
12028 map = arm_data->map;
12029 errcount = arm_data->erratumcount;
12030
12031 if (errcount != 0)
12032 {
12033 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12034
12035 for (errnode = arm_data->erratumlist; errnode != 0;
12036 errnode = errnode->next)
12037 {
12038 bfd_vma index = errnode->vma - offset;
12039
12040 switch (errnode->type)
12041 {
12042 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12043 {
12044 bfd_vma branch_to_veneer;
12045 /* Original condition code of instruction, plus bit mask for
12046 ARM B instruction. */
12047 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12048 | 0x0a000000;
12049
12050 /* The instruction is before the label. */
12051 index -= 4;
12052
12053 /* Above offset included in -4 below. */
12054 branch_to_veneer = errnode->u.b.veneer->vma
12055 - errnode->vma - 4;
12056
12057 if ((signed) branch_to_veneer < -(1 << 25)
12058 || (signed) branch_to_veneer >= (1 << 25))
12059 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12060 "range"), output_bfd);
12061
12062 insn |= (branch_to_veneer >> 2) & 0xffffff;
12063 contents[endianflip ^ index] = insn & 0xff;
12064 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12065 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12066 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12067 }
12068 break;
12069
12070 case VFP11_ERRATUM_ARM_VENEER:
12071 {
12072 bfd_vma branch_from_veneer;
12073 unsigned int insn;
12074
12075 /* Take size of veneer into account. */
12076 branch_from_veneer = errnode->u.v.branch->vma
12077 - errnode->vma - 12;
12078
12079 if ((signed) branch_from_veneer < -(1 << 25)
12080 || (signed) branch_from_veneer >= (1 << 25))
12081 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12082 "range"), output_bfd);
12083
12084 /* Original instruction. */
12085 insn = errnode->u.v.branch->u.b.vfp_insn;
12086 contents[endianflip ^ index] = insn & 0xff;
12087 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12088 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12089 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12090
12091 /* Branch back to insn after original insn. */
12092 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12093 contents[endianflip ^ (index + 4)] = insn & 0xff;
12094 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12095 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12096 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12097 }
12098 break;
12099
12100 default:
12101 abort ();
12102 }
12103 }
12104 }
12105
12106 if (mapcount == 0)
12107 return FALSE;
12108
12109 if (globals->byteswap_code)
12110 {
12111 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12112
12113 ptr = map[0].vma;
12114 for (i = 0; i < mapcount; i++)
12115 {
12116 if (i == mapcount - 1)
12117 end = sec->size;
12118 else
12119 end = map[i + 1].vma;
12120
12121 switch (map[i].type)
12122 {
12123 case 'a':
12124 /* Byte swap code words. */
12125 while (ptr + 3 < end)
12126 {
12127 tmp = contents[ptr];
12128 contents[ptr] = contents[ptr + 3];
12129 contents[ptr + 3] = tmp;
12130 tmp = contents[ptr + 1];
12131 contents[ptr + 1] = contents[ptr + 2];
12132 contents[ptr + 2] = tmp;
12133 ptr += 4;
12134 }
12135 break;
12136
12137 case 't':
12138 /* Byte swap code halfwords. */
12139 while (ptr + 1 < end)
12140 {
12141 tmp = contents[ptr];
12142 contents[ptr] = contents[ptr + 1];
12143 contents[ptr + 1] = tmp;
12144 ptr += 2;
12145 }
12146 break;
12147
12148 case 'd':
12149 /* Leave data alone. */
12150 break;
12151 }
12152 ptr = end;
12153 }
12154 }
12155
12156 free (map);
12157 arm_data->mapcount = 0;
12158 arm_data->mapsize = 0;
12159 arm_data->map = NULL;
12160 unrecord_section_with_arm_elf_section_data (sec);
12161
12162 return FALSE;
12163 }
12164
12165 static void
12166 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12167 asection * sec,
12168 void * ignore ATTRIBUTE_UNUSED)
12169 {
12170 unrecord_section_with_arm_elf_section_data (sec);
12171 }
12172
12173 static bfd_boolean
12174 elf32_arm_close_and_cleanup (bfd * abfd)
12175 {
12176 if (abfd->sections)
12177 bfd_map_over_sections (abfd,
12178 unrecord_section_via_map_over_sections,
12179 NULL);
12180
12181 return _bfd_elf_close_and_cleanup (abfd);
12182 }
12183
12184 static bfd_boolean
12185 elf32_arm_bfd_free_cached_info (bfd * abfd)
12186 {
12187 if (abfd->sections)
12188 bfd_map_over_sections (abfd,
12189 unrecord_section_via_map_over_sections,
12190 NULL);
12191
12192 return _bfd_free_cached_info (abfd);
12193 }
12194
12195 /* Display STT_ARM_TFUNC symbols as functions. */
12196
12197 static void
12198 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12199 asymbol *asym)
12200 {
12201 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12202
12203 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12204 elfsym->symbol.flags |= BSF_FUNCTION;
12205 }
12206
12207
12208 /* Mangle thumb function symbols as we read them in. */
12209
12210 static bfd_boolean
12211 elf32_arm_swap_symbol_in (bfd * abfd,
12212 const void *psrc,
12213 const void *pshn,
12214 Elf_Internal_Sym *dst)
12215 {
12216 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12217 return FALSE;
12218
12219 /* New EABI objects mark thumb function symbols by setting the low bit of
12220 the address. Turn these into STT_ARM_TFUNC. */
12221 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12222 && (dst->st_value & 1))
12223 {
12224 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12225 dst->st_value &= ~(bfd_vma) 1;
12226 }
12227 return TRUE;
12228 }
12229
12230
12231 /* Mangle thumb function symbols as we write them out. */
12232
12233 static void
12234 elf32_arm_swap_symbol_out (bfd *abfd,
12235 const Elf_Internal_Sym *src,
12236 void *cdst,
12237 void *shndx)
12238 {
12239 Elf_Internal_Sym newsym;
12240
12241 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12242 of the address set, as per the new EABI. We do this unconditionally
12243 because objcopy does not set the elf header flags until after
12244 it writes out the symbol table. */
12245 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12246 {
12247 newsym = *src;
12248 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12249 if (newsym.st_shndx != SHN_UNDEF)
12250 {
12251 /* Do this only for defined symbols. At link type, the static
12252 linker will simulate the work of dynamic linker of resolving
12253 symbols and will carry over the thumbness of found symbols to
12254 the output symbol table. It's not clear how it happens, but
12255 the thumbness of undefined symbols can well be different at
12256 runtime, and writing '1' for them will be confusing for users
12257 and possibly for dynamic linker itself.
12258 */
12259 newsym.st_value |= 1;
12260 }
12261
12262 src = &newsym;
12263 }
12264 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12265 }
12266
12267 /* Add the PT_ARM_EXIDX program header. */
12268
12269 static bfd_boolean
12270 elf32_arm_modify_segment_map (bfd *abfd,
12271 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12272 {
12273 struct elf_segment_map *m;
12274 asection *sec;
12275
12276 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12277 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12278 {
12279 /* If there is already a PT_ARM_EXIDX header, then we do not
12280 want to add another one. This situation arises when running
12281 "strip"; the input binary already has the header. */
12282 m = elf_tdata (abfd)->segment_map;
12283 while (m && m->p_type != PT_ARM_EXIDX)
12284 m = m->next;
12285 if (!m)
12286 {
12287 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12288 if (m == NULL)
12289 return FALSE;
12290 m->p_type = PT_ARM_EXIDX;
12291 m->count = 1;
12292 m->sections[0] = sec;
12293
12294 m->next = elf_tdata (abfd)->segment_map;
12295 elf_tdata (abfd)->segment_map = m;
12296 }
12297 }
12298
12299 return TRUE;
12300 }
12301
12302 /* We may add a PT_ARM_EXIDX program header. */
12303
12304 static int
12305 elf32_arm_additional_program_headers (bfd *abfd,
12306 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12307 {
12308 asection *sec;
12309
12310 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12311 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12312 return 1;
12313 else
12314 return 0;
12315 }
12316
12317 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12318
12319 static bfd_boolean
12320 elf32_arm_is_function_type (unsigned int type)
12321 {
12322 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12323 }
12324
12325 /* We use this to override swap_symbol_in and swap_symbol_out. */
12326 const struct elf_size_info elf32_arm_size_info =
12327 {
12328 sizeof (Elf32_External_Ehdr),
12329 sizeof (Elf32_External_Phdr),
12330 sizeof (Elf32_External_Shdr),
12331 sizeof (Elf32_External_Rel),
12332 sizeof (Elf32_External_Rela),
12333 sizeof (Elf32_External_Sym),
12334 sizeof (Elf32_External_Dyn),
12335 sizeof (Elf_External_Note),
12336 4,
12337 1,
12338 32, 2,
12339 ELFCLASS32, EV_CURRENT,
12340 bfd_elf32_write_out_phdrs,
12341 bfd_elf32_write_shdrs_and_ehdr,
12342 bfd_elf32_checksum_contents,
12343 bfd_elf32_write_relocs,
12344 elf32_arm_swap_symbol_in,
12345 elf32_arm_swap_symbol_out,
12346 bfd_elf32_slurp_reloc_table,
12347 bfd_elf32_slurp_symbol_table,
12348 bfd_elf32_swap_dyn_in,
12349 bfd_elf32_swap_dyn_out,
12350 bfd_elf32_swap_reloc_in,
12351 bfd_elf32_swap_reloc_out,
12352 bfd_elf32_swap_reloca_in,
12353 bfd_elf32_swap_reloca_out
12354 };
12355
12356 #define ELF_ARCH bfd_arch_arm
12357 #define ELF_MACHINE_CODE EM_ARM
12358 #ifdef __QNXTARGET__
12359 #define ELF_MAXPAGESIZE 0x1000
12360 #else
12361 #define ELF_MAXPAGESIZE 0x8000
12362 #endif
12363 #define ELF_MINPAGESIZE 0x1000
12364 #define ELF_COMMONPAGESIZE 0x1000
12365
12366 #define bfd_elf32_mkobject elf32_arm_mkobject
12367
12368 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12369 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12370 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12371 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12372 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12373 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12374 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12375 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12376 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12377 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12378 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12379 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12380 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12381 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12382
12383 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12384 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12385 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12386 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12387 #define elf_backend_check_relocs elf32_arm_check_relocs
12388 #define elf_backend_relocate_section elf32_arm_relocate_section
12389 #define elf_backend_write_section elf32_arm_write_section
12390 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12391 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12392 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12393 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12394 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12395 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12396 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12397 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12398 #define elf_backend_object_p elf32_arm_object_p
12399 #define elf_backend_section_flags elf32_arm_section_flags
12400 #define elf_backend_fake_sections elf32_arm_fake_sections
12401 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12402 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12403 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12404 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12405 #define elf_backend_size_info elf32_arm_size_info
12406 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12407 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12408 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12409 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12410 #define elf_backend_is_function_type elf32_arm_is_function_type
12411
12412 #define elf_backend_can_refcount 1
12413 #define elf_backend_can_gc_sections 1
12414 #define elf_backend_plt_readonly 1
12415 #define elf_backend_want_got_plt 1
12416 #define elf_backend_want_plt_sym 0
12417 #define elf_backend_may_use_rel_p 1
12418 #define elf_backend_may_use_rela_p 0
12419 #define elf_backend_default_use_rela_p 0
12420
12421 #define elf_backend_got_header_size 12
12422
12423 #undef elf_backend_obj_attrs_vendor
12424 #define elf_backend_obj_attrs_vendor "aeabi"
12425 #undef elf_backend_obj_attrs_section
12426 #define elf_backend_obj_attrs_section ".ARM.attributes"
12427 #undef elf_backend_obj_attrs_arg_type
12428 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12429 #undef elf_backend_obj_attrs_section_type
12430 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12431 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12432
12433 #include "elf32-target.h"
12434
12435 /* VxWorks Targets. */
12436
12437 #undef TARGET_LITTLE_SYM
12438 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12439 #undef TARGET_LITTLE_NAME
12440 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12441 #undef TARGET_BIG_SYM
12442 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12443 #undef TARGET_BIG_NAME
12444 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12445
12446 /* Like elf32_arm_link_hash_table_create -- but overrides
12447 appropriately for VxWorks. */
12448
12449 static struct bfd_link_hash_table *
12450 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12451 {
12452 struct bfd_link_hash_table *ret;
12453
12454 ret = elf32_arm_link_hash_table_create (abfd);
12455 if (ret)
12456 {
12457 struct elf32_arm_link_hash_table *htab
12458 = (struct elf32_arm_link_hash_table *) ret;
12459 htab->use_rel = 0;
12460 htab->vxworks_p = 1;
12461 }
12462 return ret;
12463 }
12464
12465 static void
12466 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12467 {
12468 elf32_arm_final_write_processing (abfd, linker);
12469 elf_vxworks_final_write_processing (abfd, linker);
12470 }
12471
12472 #undef elf32_bed
12473 #define elf32_bed elf32_arm_vxworks_bed
12474
12475 #undef bfd_elf32_bfd_link_hash_table_create
12476 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12477 #undef elf_backend_add_symbol_hook
12478 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12479 #undef elf_backend_final_write_processing
12480 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12481 #undef elf_backend_emit_relocs
12482 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12483
12484 #undef elf_backend_may_use_rel_p
12485 #define elf_backend_may_use_rel_p 0
12486 #undef elf_backend_may_use_rela_p
12487 #define elf_backend_may_use_rela_p 1
12488 #undef elf_backend_default_use_rela_p
12489 #define elf_backend_default_use_rela_p 1
12490 #undef elf_backend_want_plt_sym
12491 #define elf_backend_want_plt_sym 1
12492 #undef ELF_MAXPAGESIZE
12493 #define ELF_MAXPAGESIZE 0x1000
12494
12495 #include "elf32-target.h"
12496
12497
12498 /* Symbian OS Targets. */
12499
12500 #undef TARGET_LITTLE_SYM
12501 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12502 #undef TARGET_LITTLE_NAME
12503 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12504 #undef TARGET_BIG_SYM
12505 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12506 #undef TARGET_BIG_NAME
12507 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12508
12509 /* Like elf32_arm_link_hash_table_create -- but overrides
12510 appropriately for Symbian OS. */
12511
12512 static struct bfd_link_hash_table *
12513 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12514 {
12515 struct bfd_link_hash_table *ret;
12516
12517 ret = elf32_arm_link_hash_table_create (abfd);
12518 if (ret)
12519 {
12520 struct elf32_arm_link_hash_table *htab
12521 = (struct elf32_arm_link_hash_table *)ret;
12522 /* There is no PLT header for Symbian OS. */
12523 htab->plt_header_size = 0;
12524 /* The PLT entries are each one instruction and one word. */
12525 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12526 htab->symbian_p = 1;
12527 /* Symbian uses armv5t or above, so use_blx is always true. */
12528 htab->use_blx = 1;
12529 htab->root.is_relocatable_executable = 1;
12530 }
12531 return ret;
12532 }
12533
12534 static const struct bfd_elf_special_section
12535 elf32_arm_symbian_special_sections[] =
12536 {
12537 /* In a BPABI executable, the dynamic linking sections do not go in
12538 the loadable read-only segment. The post-linker may wish to
12539 refer to these sections, but they are not part of the final
12540 program image. */
12541 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12542 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12543 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12544 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12545 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12546 /* These sections do not need to be writable as the SymbianOS
12547 postlinker will arrange things so that no dynamic relocation is
12548 required. */
12549 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12550 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12551 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12552 { NULL, 0, 0, 0, 0 }
12553 };
12554
12555 static void
12556 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12557 struct bfd_link_info *link_info)
12558 {
12559 /* BPABI objects are never loaded directly by an OS kernel; they are
12560 processed by a postlinker first, into an OS-specific format. If
12561 the D_PAGED bit is set on the file, BFD will align segments on
12562 page boundaries, so that an OS can directly map the file. With
12563 BPABI objects, that just results in wasted space. In addition,
12564 because we clear the D_PAGED bit, map_sections_to_segments will
12565 recognize that the program headers should not be mapped into any
12566 loadable segment. */
12567 abfd->flags &= ~D_PAGED;
12568 elf32_arm_begin_write_processing (abfd, link_info);
12569 }
12570
12571 static bfd_boolean
12572 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12573 struct bfd_link_info *info)
12574 {
12575 struct elf_segment_map *m;
12576 asection *dynsec;
12577
12578 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12579 segment. However, because the .dynamic section is not marked
12580 with SEC_LOAD, the generic ELF code will not create such a
12581 segment. */
12582 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12583 if (dynsec)
12584 {
12585 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12586 if (m->p_type == PT_DYNAMIC)
12587 break;
12588
12589 if (m == NULL)
12590 {
12591 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12592 m->next = elf_tdata (abfd)->segment_map;
12593 elf_tdata (abfd)->segment_map = m;
12594 }
12595 }
12596
12597 /* Also call the generic arm routine. */
12598 return elf32_arm_modify_segment_map (abfd, info);
12599 }
12600
12601 /* Return address for Ith PLT stub in section PLT, for relocation REL
12602 or (bfd_vma) -1 if it should not be included. */
12603
12604 static bfd_vma
12605 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12606 const arelent *rel ATTRIBUTE_UNUSED)
12607 {
12608 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12609 }
12610
12611
12612 #undef elf32_bed
12613 #define elf32_bed elf32_arm_symbian_bed
12614
12615 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12616 will process them and then discard them. */
12617 #undef ELF_DYNAMIC_SEC_FLAGS
12618 #define ELF_DYNAMIC_SEC_FLAGS \
12619 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12620
12621 #undef elf_backend_add_symbol_hook
12622 #undef elf_backend_emit_relocs
12623
12624 #undef bfd_elf32_bfd_link_hash_table_create
12625 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12626 #undef elf_backend_special_sections
12627 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12628 #undef elf_backend_begin_write_processing
12629 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12630 #undef elf_backend_final_write_processing
12631 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12632
12633 #undef elf_backend_modify_segment_map
12634 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12635
12636 /* There is no .got section for BPABI objects, and hence no header. */
12637 #undef elf_backend_got_header_size
12638 #define elf_backend_got_header_size 0
12639
12640 /* Similarly, there is no .got.plt section. */
12641 #undef elf_backend_want_got_plt
12642 #define elf_backend_want_got_plt 0
12643
12644 #undef elf_backend_plt_sym_val
12645 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12646
12647 #undef elf_backend_may_use_rel_p
12648 #define elf_backend_may_use_rel_p 1
12649 #undef elf_backend_may_use_rela_p
12650 #define elf_backend_may_use_rela_p 0
12651 #undef elf_backend_default_use_rela_p
12652 #define elf_backend_default_use_rela_p 0
12653 #undef elf_backend_want_plt_sym
12654 #define elf_backend_want_plt_sym 0
12655 #undef ELF_MAXPAGESIZE
12656 #define ELF_MAXPAGESIZE 0x8000
12657
12658 #include "elf32-target.h"