Fix mmix assembler test to account for changes in the error messages produced by...
[binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* Short-cuts to get to dynamic linker sections. */
3162 asection *sdynbss;
3163 asection *srelbss;
3164
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3166 asection *srelplt2;
3167
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3171 yet. */
3172 bfd_vma dt_tlsdesc_plt;
3173
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3175 above. */
3176 bfd_vma dt_tlsdesc_got;
3177
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3180
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3182 union
3183 {
3184 bfd_signed_vma refcount;
3185 bfd_vma offset;
3186 } tls_ldm_got;
3187
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
3190
3191 /* For convenience in allocate_dynrelocs. */
3192 bfd * obfd;
3193
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3197
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3200
3201 /* Linker stub bfd. */
3202 bfd *stub_bfd;
3203
3204 /* Linker call-backs. */
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3206 unsigned int);
3207 void (*layout_sections_again) (void);
3208
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
3211 struct map_stub *stub_group;
3212
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3215
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3219
3220 /* Number of elements in stub_group. */
3221 unsigned int top_id;
3222
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
3225 unsigned int top_index;
3226 asection **input_list;
3227 };
3228
3229 static inline int
3230 ctz (unsigned int mask)
3231 {
3232 #if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3234 #else
3235 unsigned int i;
3236
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3238 {
3239 if (mask & 0x1)
3240 break;
3241 mask = (mask >> 1);
3242 }
3243 return i;
3244 #endif
3245 }
3246
3247 static inline int
3248 popcount (unsigned int mask)
3249 {
3250 #if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3252 #else
3253 unsigned int i, sum = 0;
3254
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3256 {
3257 if (mask & 0x1)
3258 sum++;
3259 mask = (mask >> 1);
3260 }
3261 return sum;
3262 #endif
3263 }
3264
3265 /* Create an entry in an ARM ELF linker hash table. */
3266
3267 static struct bfd_hash_entry *
3268 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3269 struct bfd_hash_table * table,
3270 const char * string)
3271 {
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3274
3275 /* Allocate the structure if it has not already been allocated by a
3276 subclass. */
3277 if (ret == NULL)
3278 ret = (struct elf32_arm_link_hash_entry *)
3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3280 if (ret == NULL)
3281 return (struct bfd_hash_entry *) ret;
3282
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3286 table, string));
3287 if (ret != NULL)
3288 {
3289 ret->dyn_relocs = NULL;
3290 ret->tls_type = GOT_UNKNOWN;
3291 ret->tlsdesc_got = (bfd_vma) -1;
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
3297 ret->export_glue = NULL;
3298
3299 ret->stub_cache = NULL;
3300 }
3301
3302 return (struct bfd_hash_entry *) ret;
3303 }
3304
3305 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3306 symbols. */
3307
3308 static bfd_boolean
3309 elf32_arm_allocate_local_sym_info (bfd *abfd)
3310 {
3311 if (elf_local_got_refcounts (abfd) == NULL)
3312 {
3313 bfd_size_type num_syms;
3314 bfd_size_type size;
3315 char *data;
3316
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3320 + sizeof (bfd_vma)
3321 + sizeof (char));
3322 data = bfd_zalloc (abfd, size);
3323 if (data == NULL)
3324 return FALSE;
3325
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3328
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3331
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3334
3335 elf32_arm_local_got_tls_type (abfd) = data;
3336 }
3337 return TRUE;
3338 }
3339
3340 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3343
3344 static struct arm_local_iplt_info *
3345 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3346 {
3347 struct arm_local_iplt_info **ptr;
3348
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3350 return NULL;
3351
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3354 if (*ptr == NULL)
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3356 return *ptr;
3357 }
3358
3359 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3362
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3366
3367 static bfd_boolean
3368 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3372 {
3373 struct arm_local_iplt_info *local_iplt;
3374
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3376 return FALSE;
3377
3378 if (h != NULL)
3379 {
3380 *root_plt = &h->root.plt;
3381 *arm_plt = &h->plt;
3382 return TRUE;
3383 }
3384
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3386 return FALSE;
3387
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3390 return FALSE;
3391
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3394 return TRUE;
3395 }
3396
3397 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3398 before it. */
3399
3400 static bfd_boolean
3401 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3403 {
3404 struct elf32_arm_link_hash_table *htab;
3405
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3409 }
3410
3411 /* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3414
3415 static struct elf_dyn_relocs **
3416 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3418 {
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3420 {
3421 struct arm_local_iplt_info *local_iplt;
3422
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3425 return NULL;
3426 return &local_iplt->dyn_relocs;
3427 }
3428 else
3429 {
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3432 easily. Oh well. */
3433 asection *s;
3434 void *vpp;
3435
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3437 if (s == NULL)
3438 abort ();
3439
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3442 }
3443 }
3444
3445 /* Initialize an entry in the stub hash table. */
3446
3447 static struct bfd_hash_entry *
3448 stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3450 const char *string)
3451 {
3452 /* Allocate the structure if it has not already been allocated by a
3453 subclass. */
3454 if (entry == NULL)
3455 {
3456 entry = (struct bfd_hash_entry *)
3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3458 if (entry == NULL)
3459 return entry;
3460 }
3461
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3464 if (entry != NULL)
3465 {
3466 struct elf32_arm_stub_hash_entry *eh;
3467
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
3471 eh->stub_offset = (bfd_vma) -1;
3472 eh->source_value = 0;
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
3475 eh->orig_insn = 0;
3476 eh->stub_type = arm_stub_none;
3477 eh->stub_size = 0;
3478 eh->stub_template = NULL;
3479 eh->stub_template_size = -1;
3480 eh->h = NULL;
3481 eh->id_sec = NULL;
3482 eh->output_name = NULL;
3483 }
3484
3485 return entry;
3486 }
3487
3488 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3489 shortcuts to them in our hash table. */
3490
3491 static bfd_boolean
3492 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3493 {
3494 struct elf32_arm_link_hash_table *htab;
3495
3496 htab = elf32_arm_hash_table (info);
3497 if (htab == NULL)
3498 return FALSE;
3499
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3502 return TRUE;
3503
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3505 return FALSE;
3506
3507 return TRUE;
3508 }
3509
3510 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3511
3512 static bfd_boolean
3513 create_ifunc_sections (struct bfd_link_info *info)
3514 {
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3517 bfd *dynobj;
3518 asection *s;
3519 flagword flags;
3520
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3525
3526 if (htab->root.iplt == NULL)
3527 {
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
3530 if (s == NULL
3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3532 return FALSE;
3533 htab->root.iplt = s;
3534 }
3535
3536 if (htab->root.irelplt == NULL)
3537 {
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
3541 if (s == NULL
3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3543 return FALSE;
3544 htab->root.irelplt = s;
3545 }
3546
3547 if (htab->root.igotplt == NULL)
3548 {
3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3550 if (s == NULL
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3552 return FALSE;
3553 htab->root.igotplt = s;
3554 }
3555 return TRUE;
3556 }
3557
3558 /* Determine if we're dealing with a Thumb only architecture. */
3559
3560 static bfd_boolean
3561 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3562 {
3563 int arch;
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
3566
3567 if (profile)
3568 return profile == 'M';
3569
3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3571
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3576
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3582 return TRUE;
3583
3584 return FALSE;
3585 }
3586
3587 /* Determine if we're dealing with a Thumb-2 object. */
3588
3589 static bfd_boolean
3590 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3591 {
3592 int arch;
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3594 Tag_THUMB_ISA_use);
3595
3596 if (thumb_isa)
3597 return thumb_isa == 2;
3598
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3600
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3605
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
3611 }
3612
3613 /* Determine whether Thumb-2 BL instruction is available. */
3614
3615 static bfd_boolean
3616 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3617 {
3618 int arch =
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3620
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3625
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3629 }
3630
3631 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3633 hash table. */
3634
3635 static bfd_boolean
3636 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3637 {
3638 struct elf32_arm_link_hash_table *htab;
3639
3640 htab = elf32_arm_hash_table (info);
3641 if (htab == NULL)
3642 return FALSE;
3643
3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
3645 return FALSE;
3646
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3648 return FALSE;
3649
3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3651 if (!bfd_link_pic (info))
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
3654
3655 if (htab->vxworks_p)
3656 {
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3658 return FALSE;
3659
3660 if (bfd_link_pic (info))
3661 {
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3665 }
3666 else
3667 {
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3672 }
3673
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3676 }
3677 else
3678 {
3679 /* PR ld/16017
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3684
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3687 {
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3690 }
3691 htab->obfd = saved_obfd;
3692 }
3693
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
3696 || !htab->sdynbss
3697 || (!bfd_link_pic (info) && !htab->srelbss))
3698 abort ();
3699
3700 return TRUE;
3701 }
3702
3703 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3704
3705 static void
3706 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3709 {
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3711
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3714
3715 if (eind->dyn_relocs != NULL)
3716 {
3717 if (edir->dyn_relocs != NULL)
3718 {
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
3721
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3725 {
3726 struct elf_dyn_relocs *q;
3727
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
3730 {
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3733 *pp = p->next;
3734 break;
3735 }
3736 if (q == NULL)
3737 pp = &p->next;
3738 }
3739 *pp = edir->dyn_relocs;
3740 }
3741
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
3744 }
3745
3746 if (ind->root.type == bfd_link_hash_indirect)
3747 {
3748 /* Copy over PLT info. */
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3755
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
3759
3760 if (dir->got.refcount <= 0)
3761 {
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3764 }
3765 }
3766
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3768 }
3769
3770 /* Destroy an ARM elf linker hash table. */
3771
3772 static void
3773 elf32_arm_link_hash_table_free (bfd *obfd)
3774 {
3775 struct elf32_arm_link_hash_table *ret
3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3777
3778 bfd_hash_table_free (&ret->stub_hash_table);
3779 _bfd_elf_link_hash_table_free (obfd);
3780 }
3781
3782 /* Create an ARM elf linker hash table. */
3783
3784 static struct bfd_link_hash_table *
3785 elf32_arm_link_hash_table_create (bfd *abfd)
3786 {
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3789
3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3791 if (ret == NULL)
3792 return NULL;
3793
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
3796 sizeof (struct elf32_arm_link_hash_entry),
3797 ARM_ELF_DATA))
3798 {
3799 free (ret);
3800 return NULL;
3801 }
3802
3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3805 #ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3808 #else
3809 ret->plt_header_size = 20;
3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3811 #endif
3812 ret->use_rel = 1;
3813 ret->obfd = abfd;
3814
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3817 {
3818 _bfd_elf_link_hash_table_free (abfd);
3819 return NULL;
3820 }
3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3822
3823 return &ret->root.root;
3824 }
3825
3826 /* Determine what kind of NOPs are available. */
3827
3828 static bfd_boolean
3829 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3830 {
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3832 Tag_CPU_arch);
3833
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3838
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
3843 }
3844
3845 static bfd_boolean
3846 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3847 {
3848 switch (stub_type)
3849 {
3850 case arm_stub_long_branch_thumb_only:
3851 case arm_stub_long_branch_thumb2_only:
3852 case arm_stub_long_branch_thumb2_only_pure:
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
3857 case arm_stub_long_branch_thumb_only_pic:
3858 case arm_stub_cmse_branch_thumb_only:
3859 return TRUE;
3860 case arm_stub_none:
3861 BFD_FAIL ();
3862 return FALSE;
3863 break;
3864 default:
3865 return FALSE;
3866 }
3867 }
3868
3869 /* Determine the type of stub needed, if any, for a call. */
3870
3871 static enum elf32_arm_stub_type
3872 arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
3875 unsigned char st_type,
3876 enum arm_st_branch_type *actual_branch_type,
3877 struct elf32_arm_link_hash_entry *hash,
3878 bfd_vma destination,
3879 asection *sym_sec,
3880 bfd *input_bfd,
3881 const char *name)
3882 {
3883 bfd_vma location;
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
3889 int use_plt = 0;
3890 enum arm_st_branch_type branch_type = *actual_branch_type;
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
3893 int arch;
3894 int thumb2_movw;
3895
3896 if (branch_type == ST_BRANCH_LONG)
3897 return stub_type;
3898
3899 globals = elf32_arm_hash_table (info);
3900 if (globals == NULL)
3901 return stub_type;
3902
3903 thumb_only = using_thumb_only (globals);
3904 thumb2 = using_thumb2 (globals);
3905 thumb2_bl = using_thumb2_bl (globals);
3906
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3908
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3911
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3915 + rel->r_offset);
3916
3917 r_type = ELF32_R_TYPE (rel->r_info);
3918
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3925
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3932 &arm_plt)
3933 && root_plt->offset != (bfd_vma) -1)
3934 {
3935 asection *splt;
3936
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3939 else
3940 splt = globals->root.splt;
3941 if (splt != NULL)
3942 {
3943 use_plt = 1;
3944
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
3948 PLT stub. If a long branch stub is needed, we'll add a
3949 Thumb->Arm one and branch directly to the ARM PLT entry.
3950 Here, we have to check if a pre-PLT Thumb->ARM stub
3951 is needed and if it will be close enough. */
3952
3953 destination = (splt->output_section->vma
3954 + splt->output_offset
3955 + root_plt->offset);
3956 st_type = STT_FUNC;
3957
3958 /* Thumb branch/call to PLT: it can become a branch to ARM
3959 or to Thumb. We must perform the same checks and
3960 corrections as in elf32_arm_final_link_relocate. */
3961 if ((r_type == R_ARM_THM_CALL)
3962 || (r_type == R_ARM_THM_JUMP24))
3963 {
3964 if (globals->use_blx
3965 && r_type == R_ARM_THM_CALL
3966 && !thumb_only)
3967 {
3968 /* If the Thumb BLX instruction is available, convert
3969 the BL to a BLX instruction to call the ARM-mode
3970 PLT entry. */
3971 branch_type = ST_BRANCH_TO_ARM;
3972 }
3973 else
3974 {
3975 if (!thumb_only)
3976 /* Target the Thumb stub before the ARM PLT entry. */
3977 destination -= PLT_THUMB_STUB_SIZE;
3978 branch_type = ST_BRANCH_TO_THUMB;
3979 }
3980 }
3981 else
3982 {
3983 branch_type = ST_BRANCH_TO_ARM;
3984 }
3985 }
3986 }
3987 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3988 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3989
3990 branch_offset = (bfd_signed_vma)(destination - location);
3991
3992 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3993 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3994 {
3995 /* Handle cases where:
3996 - this call goes too far (different Thumb/Thumb2 max
3997 distance)
3998 - it's a Thumb->Arm call and blx is not available, or it's a
3999 Thumb->Arm branch (not bl). A stub is needed in this case,
4000 but only if this call is not through a PLT entry. Indeed,
4001 PLT stubs handle mode switching already. */
4002 if ((!thumb2_bl
4003 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4004 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4005 || (thumb2_bl
4006 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4007 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4008 || (thumb2
4009 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4010 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4011 && (r_type == R_ARM_THM_JUMP19))
4012 || (branch_type == ST_BRANCH_TO_ARM
4013 && (((r_type == R_ARM_THM_CALL
4014 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4015 || (r_type == R_ARM_THM_JUMP24)
4016 || (r_type == R_ARM_THM_JUMP19))
4017 && !use_plt))
4018 {
4019 /* If we need to insert a Thumb-Thumb long branch stub to a
4020 PLT, use one that branches directly to the ARM PLT
4021 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4022 stub, undo this now. */
4023 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4024 {
4025 branch_type = ST_BRANCH_TO_ARM;
4026 branch_offset += PLT_THUMB_STUB_SIZE;
4027 }
4028
4029 if (branch_type == ST_BRANCH_TO_THUMB)
4030 {
4031 /* Thumb to thumb. */
4032 if (!thumb_only)
4033 {
4034 if (input_sec->flags & SEC_ELF_PURECODE)
4035 _bfd_error_handler (_("\
4036 %B(%A): warning: long branch veneers used in section with SHF_ARM_PURECODE section \
4037 attribute is only supported for M-profile targets that implement the movw instruction."),
4038 input_sec);
4039
4040 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4041 /* PIC stubs. */
4042 ? ((globals->use_blx
4043 && (r_type == R_ARM_THM_CALL))
4044 /* V5T and above. Stub starts with ARM code, so
4045 we must be able to switch mode before
4046 reaching it, which is only possible for 'bl'
4047 (ie R_ARM_THM_CALL relocation). */
4048 ? arm_stub_long_branch_any_thumb_pic
4049 /* On V4T, use Thumb code only. */
4050 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4051
4052 /* non-PIC stubs. */
4053 : ((globals->use_blx
4054 && (r_type == R_ARM_THM_CALL))
4055 /* V5T and above. */
4056 ? arm_stub_long_branch_any_any
4057 /* V4T. */
4058 : arm_stub_long_branch_v4t_thumb_thumb);
4059 }
4060 else
4061 {
4062 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4063 stub_type = arm_stub_long_branch_thumb2_only_pure;
4064 else
4065 {
4066 if (input_sec->flags & SEC_ELF_PURECODE)
4067 _bfd_error_handler (_("\
4068 %B(%A): warning: long branch veneers used in section with SHF_ARM_PURECODE section \
4069 attribute is only supported for M-profile targets that implement the movw instruction."),
4070 input_sec);
4071
4072 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4073 /* PIC stub. */
4074 ? arm_stub_long_branch_thumb_only_pic
4075 /* non-PIC stub. */
4076 : (thumb2 ? arm_stub_long_branch_thumb2_only
4077 : arm_stub_long_branch_thumb_only);
4078 }
4079 }
4080 }
4081 else
4082 {
4083 if (input_sec->flags & SEC_ELF_PURECODE)
4084 _bfd_error_handler (_("%B(%s): warning: long branch "
4085 " veneers used in section with "
4086 "SHF_ARM_PURECODE section "
4087 "attribute is only supported"
4088 " for M-profile targets that "
4089 "implement the movw "
4090 "instruction."));
4091
4092 /* Thumb to arm. */
4093 if (sym_sec != NULL
4094 && sym_sec->owner != NULL
4095 && !INTERWORK_FLAG (sym_sec->owner))
4096 {
4097 _bfd_error_handler
4098 (_("%B(%s): warning: interworking not enabled.\n"
4099 " first occurrence: %B: Thumb call to ARM"),
4100 sym_sec->owner, input_bfd, name);
4101 }
4102
4103 stub_type =
4104 (bfd_link_pic (info) | globals->pic_veneer)
4105 /* PIC stubs. */
4106 ? (r_type == R_ARM_THM_TLS_CALL
4107 /* TLS PIC stubs. */
4108 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4109 : arm_stub_long_branch_v4t_thumb_tls_pic)
4110 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4111 /* V5T PIC and above. */
4112 ? arm_stub_long_branch_any_arm_pic
4113 /* V4T PIC stub. */
4114 : arm_stub_long_branch_v4t_thumb_arm_pic))
4115
4116 /* non-PIC stubs. */
4117 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4118 /* V5T and above. */
4119 ? arm_stub_long_branch_any_any
4120 /* V4T. */
4121 : arm_stub_long_branch_v4t_thumb_arm);
4122
4123 /* Handle v4t short branches. */
4124 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4125 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4126 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4127 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4128 }
4129 }
4130 }
4131 else if (r_type == R_ARM_CALL
4132 || r_type == R_ARM_JUMP24
4133 || r_type == R_ARM_PLT32
4134 || r_type == R_ARM_TLS_CALL)
4135 {
4136 if (input_sec->flags & SEC_ELF_PURECODE)
4137 _bfd_error_handler (_("%B(%s): warning: long branch "
4138 " veneers used in section with "
4139 "SHF_ARM_PURECODE section "
4140 "attribute is only supported"
4141 " for M-profile targets that "
4142 "implement the movw "
4143 "instruction."));
4144 if (branch_type == ST_BRANCH_TO_THUMB)
4145 {
4146 /* Arm to thumb. */
4147
4148 if (sym_sec != NULL
4149 && sym_sec->owner != NULL
4150 && !INTERWORK_FLAG (sym_sec->owner))
4151 {
4152 _bfd_error_handler
4153 (_("%B(%s): warning: interworking not enabled.\n"
4154 " first occurrence: %B: ARM call to Thumb"),
4155 sym_sec->owner, input_bfd, name);
4156 }
4157
4158 /* We have an extra 2-bytes reach because of
4159 the mode change (bit 24 (H) of BLX encoding). */
4160 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4161 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4162 || (r_type == R_ARM_CALL && !globals->use_blx)
4163 || (r_type == R_ARM_JUMP24)
4164 || (r_type == R_ARM_PLT32))
4165 {
4166 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4167 /* PIC stubs. */
4168 ? ((globals->use_blx)
4169 /* V5T and above. */
4170 ? arm_stub_long_branch_any_thumb_pic
4171 /* V4T stub. */
4172 : arm_stub_long_branch_v4t_arm_thumb_pic)
4173
4174 /* non-PIC stubs. */
4175 : ((globals->use_blx)
4176 /* V5T and above. */
4177 ? arm_stub_long_branch_any_any
4178 /* V4T. */
4179 : arm_stub_long_branch_v4t_arm_thumb);
4180 }
4181 }
4182 else
4183 {
4184 /* Arm to arm. */
4185 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4186 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4187 {
4188 stub_type =
4189 (bfd_link_pic (info) | globals->pic_veneer)
4190 /* PIC stubs. */
4191 ? (r_type == R_ARM_TLS_CALL
4192 /* TLS PIC Stub. */
4193 ? arm_stub_long_branch_any_tls_pic
4194 : (globals->nacl_p
4195 ? arm_stub_long_branch_arm_nacl_pic
4196 : arm_stub_long_branch_any_arm_pic))
4197 /* non-PIC stubs. */
4198 : (globals->nacl_p
4199 ? arm_stub_long_branch_arm_nacl
4200 : arm_stub_long_branch_any_any);
4201 }
4202 }
4203 }
4204
4205 /* If a stub is needed, record the actual destination type. */
4206 if (stub_type != arm_stub_none)
4207 *actual_branch_type = branch_type;
4208
4209 return stub_type;
4210 }
4211
4212 /* Build a name for an entry in the stub hash table. */
4213
4214 static char *
4215 elf32_arm_stub_name (const asection *input_section,
4216 const asection *sym_sec,
4217 const struct elf32_arm_link_hash_entry *hash,
4218 const Elf_Internal_Rela *rel,
4219 enum elf32_arm_stub_type stub_type)
4220 {
4221 char *stub_name;
4222 bfd_size_type len;
4223
4224 if (hash)
4225 {
4226 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4227 stub_name = (char *) bfd_malloc (len);
4228 if (stub_name != NULL)
4229 sprintf (stub_name, "%08x_%s+%x_%d",
4230 input_section->id & 0xffffffff,
4231 hash->root.root.root.string,
4232 (int) rel->r_addend & 0xffffffff,
4233 (int) stub_type);
4234 }
4235 else
4236 {
4237 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4238 stub_name = (char *) bfd_malloc (len);
4239 if (stub_name != NULL)
4240 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4241 input_section->id & 0xffffffff,
4242 sym_sec->id & 0xffffffff,
4243 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4244 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4245 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4246 (int) rel->r_addend & 0xffffffff,
4247 (int) stub_type);
4248 }
4249
4250 return stub_name;
4251 }
4252
4253 /* Look up an entry in the stub hash. Stub entries are cached because
4254 creating the stub name takes a bit of time. */
4255
4256 static struct elf32_arm_stub_hash_entry *
4257 elf32_arm_get_stub_entry (const asection *input_section,
4258 const asection *sym_sec,
4259 struct elf_link_hash_entry *hash,
4260 const Elf_Internal_Rela *rel,
4261 struct elf32_arm_link_hash_table *htab,
4262 enum elf32_arm_stub_type stub_type)
4263 {
4264 struct elf32_arm_stub_hash_entry *stub_entry;
4265 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4266 const asection *id_sec;
4267
4268 if ((input_section->flags & SEC_CODE) == 0)
4269 return NULL;
4270
4271 /* If this input section is part of a group of sections sharing one
4272 stub section, then use the id of the first section in the group.
4273 Stub names need to include a section id, as there may well be
4274 more than one stub used to reach say, printf, and we need to
4275 distinguish between them. */
4276 BFD_ASSERT (input_section->id <= htab->top_id);
4277 id_sec = htab->stub_group[input_section->id].link_sec;
4278
4279 if (h != NULL && h->stub_cache != NULL
4280 && h->stub_cache->h == h
4281 && h->stub_cache->id_sec == id_sec
4282 && h->stub_cache->stub_type == stub_type)
4283 {
4284 stub_entry = h->stub_cache;
4285 }
4286 else
4287 {
4288 char *stub_name;
4289
4290 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4291 if (stub_name == NULL)
4292 return NULL;
4293
4294 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4295 stub_name, FALSE, FALSE);
4296 if (h != NULL)
4297 h->stub_cache = stub_entry;
4298
4299 free (stub_name);
4300 }
4301
4302 return stub_entry;
4303 }
4304
4305 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4306 section. */
4307
4308 static bfd_boolean
4309 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4310 {
4311 if (stub_type >= max_stub_type)
4312 abort (); /* Should be unreachable. */
4313
4314 switch (stub_type)
4315 {
4316 case arm_stub_cmse_branch_thumb_only:
4317 return TRUE;
4318
4319 default:
4320 return FALSE;
4321 }
4322
4323 abort (); /* Should be unreachable. */
4324 }
4325
4326 /* Required alignment (as a power of 2) for the dedicated section holding
4327 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4328 with input sections. */
4329
4330 static int
4331 arm_dedicated_stub_output_section_required_alignment
4332 (enum elf32_arm_stub_type stub_type)
4333 {
4334 if (stub_type >= max_stub_type)
4335 abort (); /* Should be unreachable. */
4336
4337 switch (stub_type)
4338 {
4339 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4340 boundary. */
4341 case arm_stub_cmse_branch_thumb_only:
4342 return 5;
4343
4344 default:
4345 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4346 return 0;
4347 }
4348
4349 abort (); /* Should be unreachable. */
4350 }
4351
4352 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4353 NULL if veneers of this type are interspersed with input sections. */
4354
4355 static const char *
4356 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4357 {
4358 if (stub_type >= max_stub_type)
4359 abort (); /* Should be unreachable. */
4360
4361 switch (stub_type)
4362 {
4363 case arm_stub_cmse_branch_thumb_only:
4364 return ".gnu.sgstubs";
4365
4366 default:
4367 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4368 return NULL;
4369 }
4370
4371 abort (); /* Should be unreachable. */
4372 }
4373
4374 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4375 returns the address of the hash table field in HTAB holding a pointer to the
4376 corresponding input section. Otherwise, returns NULL. */
4377
4378 static asection **
4379 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4380 enum elf32_arm_stub_type stub_type)
4381 {
4382 if (stub_type >= max_stub_type)
4383 abort (); /* Should be unreachable. */
4384
4385 switch (stub_type)
4386 {
4387 case arm_stub_cmse_branch_thumb_only:
4388 return &htab->cmse_stub_sec;
4389
4390 default:
4391 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4392 return NULL;
4393 }
4394
4395 abort (); /* Should be unreachable. */
4396 }
4397
4398 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4399 is the section that branch into veneer and can be NULL if stub should go in
4400 a dedicated output section. Returns a pointer to the stub section, and the
4401 section to which the stub section will be attached (in *LINK_SEC_P).
4402 LINK_SEC_P may be NULL. */
4403
4404 static asection *
4405 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4406 struct elf32_arm_link_hash_table *htab,
4407 enum elf32_arm_stub_type stub_type)
4408 {
4409 asection *link_sec, *out_sec, **stub_sec_p;
4410 const char *stub_sec_prefix;
4411 bfd_boolean dedicated_output_section =
4412 arm_dedicated_stub_output_section_required (stub_type);
4413 int align;
4414
4415 if (dedicated_output_section)
4416 {
4417 bfd *output_bfd = htab->obfd;
4418 const char *out_sec_name =
4419 arm_dedicated_stub_output_section_name (stub_type);
4420 link_sec = NULL;
4421 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4422 stub_sec_prefix = out_sec_name;
4423 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4424 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4425 if (out_sec == NULL)
4426 {
4427 _bfd_error_handler (_("No address assigned to the veneers output "
4428 "section %s"), out_sec_name);
4429 return NULL;
4430 }
4431 }
4432 else
4433 {
4434 BFD_ASSERT (section->id <= htab->top_id);
4435 link_sec = htab->stub_group[section->id].link_sec;
4436 BFD_ASSERT (link_sec != NULL);
4437 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4438 if (*stub_sec_p == NULL)
4439 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4440 stub_sec_prefix = link_sec->name;
4441 out_sec = link_sec->output_section;
4442 align = htab->nacl_p ? 4 : 3;
4443 }
4444
4445 if (*stub_sec_p == NULL)
4446 {
4447 size_t namelen;
4448 bfd_size_type len;
4449 char *s_name;
4450
4451 namelen = strlen (stub_sec_prefix);
4452 len = namelen + sizeof (STUB_SUFFIX);
4453 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4454 if (s_name == NULL)
4455 return NULL;
4456
4457 memcpy (s_name, stub_sec_prefix, namelen);
4458 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4459 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4460 align);
4461 if (*stub_sec_p == NULL)
4462 return NULL;
4463
4464 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4465 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4466 | SEC_KEEP;
4467 }
4468
4469 if (!dedicated_output_section)
4470 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4471
4472 if (link_sec_p)
4473 *link_sec_p = link_sec;
4474
4475 return *stub_sec_p;
4476 }
4477
4478 /* Add a new stub entry to the stub hash. Not all fields of the new
4479 stub entry are initialised. */
4480
4481 static struct elf32_arm_stub_hash_entry *
4482 elf32_arm_add_stub (const char *stub_name, asection *section,
4483 struct elf32_arm_link_hash_table *htab,
4484 enum elf32_arm_stub_type stub_type)
4485 {
4486 asection *link_sec;
4487 asection *stub_sec;
4488 struct elf32_arm_stub_hash_entry *stub_entry;
4489
4490 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4491 stub_type);
4492 if (stub_sec == NULL)
4493 return NULL;
4494
4495 /* Enter this entry into the linker stub hash table. */
4496 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4497 TRUE, FALSE);
4498 if (stub_entry == NULL)
4499 {
4500 if (section == NULL)
4501 section = stub_sec;
4502 _bfd_error_handler (_("%s: cannot create stub entry %s"),
4503 section->owner, stub_name);
4504 return NULL;
4505 }
4506
4507 stub_entry->stub_sec = stub_sec;
4508 stub_entry->stub_offset = (bfd_vma) -1;
4509 stub_entry->id_sec = link_sec;
4510
4511 return stub_entry;
4512 }
4513
4514 /* Store an Arm insn into an output section not processed by
4515 elf32_arm_write_section. */
4516
4517 static void
4518 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4519 bfd * output_bfd, bfd_vma val, void * ptr)
4520 {
4521 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4522 bfd_putl32 (val, ptr);
4523 else
4524 bfd_putb32 (val, ptr);
4525 }
4526
4527 /* Store a 16-bit Thumb insn into an output section not processed by
4528 elf32_arm_write_section. */
4529
4530 static void
4531 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4532 bfd * output_bfd, bfd_vma val, void * ptr)
4533 {
4534 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4535 bfd_putl16 (val, ptr);
4536 else
4537 bfd_putb16 (val, ptr);
4538 }
4539
4540 /* Store a Thumb2 insn into an output section not processed by
4541 elf32_arm_write_section. */
4542
4543 static void
4544 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4545 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4546 {
4547 /* T2 instructions are 16-bit streamed. */
4548 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4549 {
4550 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4551 bfd_putl16 ((val & 0xffff), ptr + 2);
4552 }
4553 else
4554 {
4555 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4556 bfd_putb16 ((val & 0xffff), ptr + 2);
4557 }
4558 }
4559
4560 /* If it's possible to change R_TYPE to a more efficient access
4561 model, return the new reloc type. */
4562
4563 static unsigned
4564 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4565 struct elf_link_hash_entry *h)
4566 {
4567 int is_local = (h == NULL);
4568
4569 if (bfd_link_pic (info)
4570 || (h && h->root.type == bfd_link_hash_undefweak))
4571 return r_type;
4572
4573 /* We do not support relaxations for Old TLS models. */
4574 switch (r_type)
4575 {
4576 case R_ARM_TLS_GOTDESC:
4577 case R_ARM_TLS_CALL:
4578 case R_ARM_THM_TLS_CALL:
4579 case R_ARM_TLS_DESCSEQ:
4580 case R_ARM_THM_TLS_DESCSEQ:
4581 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4582 }
4583
4584 return r_type;
4585 }
4586
4587 static bfd_reloc_status_type elf32_arm_final_link_relocate
4588 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4589 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4590 const char *, unsigned char, enum arm_st_branch_type,
4591 struct elf_link_hash_entry *, bfd_boolean *, char **);
4592
4593 static unsigned int
4594 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4595 {
4596 switch (stub_type)
4597 {
4598 case arm_stub_a8_veneer_b_cond:
4599 case arm_stub_a8_veneer_b:
4600 case arm_stub_a8_veneer_bl:
4601 return 2;
4602
4603 case arm_stub_long_branch_any_any:
4604 case arm_stub_long_branch_v4t_arm_thumb:
4605 case arm_stub_long_branch_thumb_only:
4606 case arm_stub_long_branch_thumb2_only:
4607 case arm_stub_long_branch_thumb2_only_pure:
4608 case arm_stub_long_branch_v4t_thumb_thumb:
4609 case arm_stub_long_branch_v4t_thumb_arm:
4610 case arm_stub_short_branch_v4t_thumb_arm:
4611 case arm_stub_long_branch_any_arm_pic:
4612 case arm_stub_long_branch_any_thumb_pic:
4613 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4614 case arm_stub_long_branch_v4t_arm_thumb_pic:
4615 case arm_stub_long_branch_v4t_thumb_arm_pic:
4616 case arm_stub_long_branch_thumb_only_pic:
4617 case arm_stub_long_branch_any_tls_pic:
4618 case arm_stub_long_branch_v4t_thumb_tls_pic:
4619 case arm_stub_cmse_branch_thumb_only:
4620 case arm_stub_a8_veneer_blx:
4621 return 4;
4622
4623 case arm_stub_long_branch_arm_nacl:
4624 case arm_stub_long_branch_arm_nacl_pic:
4625 return 16;
4626
4627 default:
4628 abort (); /* Should be unreachable. */
4629 }
4630 }
4631
4632 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4633 veneering (TRUE) or have their own symbol (FALSE). */
4634
4635 static bfd_boolean
4636 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4637 {
4638 if (stub_type >= max_stub_type)
4639 abort (); /* Should be unreachable. */
4640
4641 switch (stub_type)
4642 {
4643 case arm_stub_cmse_branch_thumb_only:
4644 return TRUE;
4645
4646 default:
4647 return FALSE;
4648 }
4649
4650 abort (); /* Should be unreachable. */
4651 }
4652
4653 /* Returns the padding needed for the dedicated section used stubs of type
4654 STUB_TYPE. */
4655
4656 static int
4657 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4658 {
4659 if (stub_type >= max_stub_type)
4660 abort (); /* Should be unreachable. */
4661
4662 switch (stub_type)
4663 {
4664 case arm_stub_cmse_branch_thumb_only:
4665 return 32;
4666
4667 default:
4668 return 0;
4669 }
4670
4671 abort (); /* Should be unreachable. */
4672 }
4673
4674 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4675 returns the address of the hash table field in HTAB holding the offset at
4676 which new veneers should be layed out in the stub section. */
4677
4678 static bfd_vma*
4679 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4680 enum elf32_arm_stub_type stub_type)
4681 {
4682 switch (stub_type)
4683 {
4684 case arm_stub_cmse_branch_thumb_only:
4685 return &htab->new_cmse_stub_offset;
4686
4687 default:
4688 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4689 return NULL;
4690 }
4691 }
4692
4693 static bfd_boolean
4694 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4695 void * in_arg)
4696 {
4697 #define MAXRELOCS 3
4698 bfd_boolean removed_sg_veneer;
4699 struct elf32_arm_stub_hash_entry *stub_entry;
4700 struct elf32_arm_link_hash_table *globals;
4701 struct bfd_link_info *info;
4702 asection *stub_sec;
4703 bfd *stub_bfd;
4704 bfd_byte *loc;
4705 bfd_vma sym_value;
4706 int template_size;
4707 int size;
4708 const insn_sequence *template_sequence;
4709 int i;
4710 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4711 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4712 int nrelocs = 0;
4713 int just_allocated = 0;
4714
4715 /* Massage our args to the form they really have. */
4716 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4717 info = (struct bfd_link_info *) in_arg;
4718
4719 globals = elf32_arm_hash_table (info);
4720 if (globals == NULL)
4721 return FALSE;
4722
4723 stub_sec = stub_entry->stub_sec;
4724
4725 if ((globals->fix_cortex_a8 < 0)
4726 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4727 /* We have to do less-strictly-aligned fixes last. */
4728 return TRUE;
4729
4730 /* Assign a slot at the end of section if none assigned yet. */
4731 if (stub_entry->stub_offset == (bfd_vma) -1)
4732 {
4733 stub_entry->stub_offset = stub_sec->size;
4734 just_allocated = 1;
4735 }
4736 loc = stub_sec->contents + stub_entry->stub_offset;
4737
4738 stub_bfd = stub_sec->owner;
4739
4740 /* This is the address of the stub destination. */
4741 sym_value = (stub_entry->target_value
4742 + stub_entry->target_section->output_offset
4743 + stub_entry->target_section->output_section->vma);
4744
4745 template_sequence = stub_entry->stub_template;
4746 template_size = stub_entry->stub_template_size;
4747
4748 size = 0;
4749 for (i = 0; i < template_size; i++)
4750 {
4751 switch (template_sequence[i].type)
4752 {
4753 case THUMB16_TYPE:
4754 {
4755 bfd_vma data = (bfd_vma) template_sequence[i].data;
4756 if (template_sequence[i].reloc_addend != 0)
4757 {
4758 /* We've borrowed the reloc_addend field to mean we should
4759 insert a condition code into this (Thumb-1 branch)
4760 instruction. See THUMB16_BCOND_INSN. */
4761 BFD_ASSERT ((data & 0xff00) == 0xd000);
4762 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4763 }
4764 bfd_put_16 (stub_bfd, data, loc + size);
4765 size += 2;
4766 }
4767 break;
4768
4769 case THUMB32_TYPE:
4770 bfd_put_16 (stub_bfd,
4771 (template_sequence[i].data >> 16) & 0xffff,
4772 loc + size);
4773 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4774 loc + size + 2);
4775 if (template_sequence[i].r_type != R_ARM_NONE)
4776 {
4777 stub_reloc_idx[nrelocs] = i;
4778 stub_reloc_offset[nrelocs++] = size;
4779 }
4780 size += 4;
4781 break;
4782
4783 case ARM_TYPE:
4784 bfd_put_32 (stub_bfd, template_sequence[i].data,
4785 loc + size);
4786 /* Handle cases where the target is encoded within the
4787 instruction. */
4788 if (template_sequence[i].r_type == R_ARM_JUMP24)
4789 {
4790 stub_reloc_idx[nrelocs] = i;
4791 stub_reloc_offset[nrelocs++] = size;
4792 }
4793 size += 4;
4794 break;
4795
4796 case DATA_TYPE:
4797 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4798 stub_reloc_idx[nrelocs] = i;
4799 stub_reloc_offset[nrelocs++] = size;
4800 size += 4;
4801 break;
4802
4803 default:
4804 BFD_FAIL ();
4805 return FALSE;
4806 }
4807 }
4808
4809 if (just_allocated)
4810 stub_sec->size += size;
4811
4812 /* Stub size has already been computed in arm_size_one_stub. Check
4813 consistency. */
4814 BFD_ASSERT (size == stub_entry->stub_size);
4815
4816 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4817 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4818 sym_value |= 1;
4819
4820 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4821 to relocate in each stub. */
4822 removed_sg_veneer =
4823 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4824 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4825
4826 for (i = 0; i < nrelocs; i++)
4827 {
4828 Elf_Internal_Rela rel;
4829 bfd_boolean unresolved_reloc;
4830 char *error_message;
4831 bfd_vma points_to =
4832 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4833
4834 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4835 rel.r_info = ELF32_R_INFO (0,
4836 template_sequence[stub_reloc_idx[i]].r_type);
4837 rel.r_addend = 0;
4838
4839 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4840 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4841 template should refer back to the instruction after the original
4842 branch. We use target_section as Cortex-A8 erratum workaround stubs
4843 are only generated when both source and target are in the same
4844 section. */
4845 points_to = stub_entry->target_section->output_section->vma
4846 + stub_entry->target_section->output_offset
4847 + stub_entry->source_value;
4848
4849 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4850 (template_sequence[stub_reloc_idx[i]].r_type),
4851 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4852 points_to, info, stub_entry->target_section, "", STT_FUNC,
4853 stub_entry->branch_type,
4854 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4855 &error_message);
4856 }
4857
4858 return TRUE;
4859 #undef MAXRELOCS
4860 }
4861
4862 /* Calculate the template, template size and instruction size for a stub.
4863 Return value is the instruction size. */
4864
4865 static unsigned int
4866 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4867 const insn_sequence **stub_template,
4868 int *stub_template_size)
4869 {
4870 const insn_sequence *template_sequence = NULL;
4871 int template_size = 0, i;
4872 unsigned int size;
4873
4874 template_sequence = stub_definitions[stub_type].template_sequence;
4875 if (stub_template)
4876 *stub_template = template_sequence;
4877
4878 template_size = stub_definitions[stub_type].template_size;
4879 if (stub_template_size)
4880 *stub_template_size = template_size;
4881
4882 size = 0;
4883 for (i = 0; i < template_size; i++)
4884 {
4885 switch (template_sequence[i].type)
4886 {
4887 case THUMB16_TYPE:
4888 size += 2;
4889 break;
4890
4891 case ARM_TYPE:
4892 case THUMB32_TYPE:
4893 case DATA_TYPE:
4894 size += 4;
4895 break;
4896
4897 default:
4898 BFD_FAIL ();
4899 return 0;
4900 }
4901 }
4902
4903 return size;
4904 }
4905
4906 /* As above, but don't actually build the stub. Just bump offset so
4907 we know stub section sizes. */
4908
4909 static bfd_boolean
4910 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4911 void *in_arg ATTRIBUTE_UNUSED)
4912 {
4913 struct elf32_arm_stub_hash_entry *stub_entry;
4914 const insn_sequence *template_sequence;
4915 int template_size, size;
4916
4917 /* Massage our args to the form they really have. */
4918 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4919
4920 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4921 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4922
4923 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4924 &template_size);
4925
4926 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4927 if (stub_entry->stub_template_size)
4928 {
4929 stub_entry->stub_size = size;
4930 stub_entry->stub_template = template_sequence;
4931 stub_entry->stub_template_size = template_size;
4932 }
4933
4934 /* Already accounted for. */
4935 if (stub_entry->stub_offset != (bfd_vma) -1)
4936 return TRUE;
4937
4938 size = (size + 7) & ~7;
4939 stub_entry->stub_sec->size += size;
4940
4941 return TRUE;
4942 }
4943
4944 /* External entry points for sizing and building linker stubs. */
4945
4946 /* Set up various things so that we can make a list of input sections
4947 for each output section included in the link. Returns -1 on error,
4948 0 when no stubs will be needed, and 1 on success. */
4949
4950 int
4951 elf32_arm_setup_section_lists (bfd *output_bfd,
4952 struct bfd_link_info *info)
4953 {
4954 bfd *input_bfd;
4955 unsigned int bfd_count;
4956 unsigned int top_id, top_index;
4957 asection *section;
4958 asection **input_list, **list;
4959 bfd_size_type amt;
4960 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4961
4962 if (htab == NULL)
4963 return 0;
4964 if (! is_elf_hash_table (htab))
4965 return 0;
4966
4967 /* Count the number of input BFDs and find the top input section id. */
4968 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4969 input_bfd != NULL;
4970 input_bfd = input_bfd->link.next)
4971 {
4972 bfd_count += 1;
4973 for (section = input_bfd->sections;
4974 section != NULL;
4975 section = section->next)
4976 {
4977 if (top_id < section->id)
4978 top_id = section->id;
4979 }
4980 }
4981 htab->bfd_count = bfd_count;
4982
4983 amt = sizeof (struct map_stub) * (top_id + 1);
4984 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4985 if (htab->stub_group == NULL)
4986 return -1;
4987 htab->top_id = top_id;
4988
4989 /* We can't use output_bfd->section_count here to find the top output
4990 section index as some sections may have been removed, and
4991 _bfd_strip_section_from_output doesn't renumber the indices. */
4992 for (section = output_bfd->sections, top_index = 0;
4993 section != NULL;
4994 section = section->next)
4995 {
4996 if (top_index < section->index)
4997 top_index = section->index;
4998 }
4999
5000 htab->top_index = top_index;
5001 amt = sizeof (asection *) * (top_index + 1);
5002 input_list = (asection **) bfd_malloc (amt);
5003 htab->input_list = input_list;
5004 if (input_list == NULL)
5005 return -1;
5006
5007 /* For sections we aren't interested in, mark their entries with a
5008 value we can check later. */
5009 list = input_list + top_index;
5010 do
5011 *list = bfd_abs_section_ptr;
5012 while (list-- != input_list);
5013
5014 for (section = output_bfd->sections;
5015 section != NULL;
5016 section = section->next)
5017 {
5018 if ((section->flags & SEC_CODE) != 0)
5019 input_list[section->index] = NULL;
5020 }
5021
5022 return 1;
5023 }
5024
5025 /* The linker repeatedly calls this function for each input section,
5026 in the order that input sections are linked into output sections.
5027 Build lists of input sections to determine groupings between which
5028 we may insert linker stubs. */
5029
5030 void
5031 elf32_arm_next_input_section (struct bfd_link_info *info,
5032 asection *isec)
5033 {
5034 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5035
5036 if (htab == NULL)
5037 return;
5038
5039 if (isec->output_section->index <= htab->top_index)
5040 {
5041 asection **list = htab->input_list + isec->output_section->index;
5042
5043 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5044 {
5045 /* Steal the link_sec pointer for our list. */
5046 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5047 /* This happens to make the list in reverse order,
5048 which we reverse later. */
5049 PREV_SEC (isec) = *list;
5050 *list = isec;
5051 }
5052 }
5053 }
5054
5055 /* See whether we can group stub sections together. Grouping stub
5056 sections may result in fewer stubs. More importantly, we need to
5057 put all .init* and .fini* stubs at the end of the .init or
5058 .fini output sections respectively, because glibc splits the
5059 _init and _fini functions into multiple parts. Putting a stub in
5060 the middle of a function is not a good idea. */
5061
5062 static void
5063 group_sections (struct elf32_arm_link_hash_table *htab,
5064 bfd_size_type stub_group_size,
5065 bfd_boolean stubs_always_after_branch)
5066 {
5067 asection **list = htab->input_list;
5068
5069 do
5070 {
5071 asection *tail = *list;
5072 asection *head;
5073
5074 if (tail == bfd_abs_section_ptr)
5075 continue;
5076
5077 /* Reverse the list: we must avoid placing stubs at the
5078 beginning of the section because the beginning of the text
5079 section may be required for an interrupt vector in bare metal
5080 code. */
5081 #define NEXT_SEC PREV_SEC
5082 head = NULL;
5083 while (tail != NULL)
5084 {
5085 /* Pop from tail. */
5086 asection *item = tail;
5087 tail = PREV_SEC (item);
5088
5089 /* Push on head. */
5090 NEXT_SEC (item) = head;
5091 head = item;
5092 }
5093
5094 while (head != NULL)
5095 {
5096 asection *curr;
5097 asection *next;
5098 bfd_vma stub_group_start = head->output_offset;
5099 bfd_vma end_of_next;
5100
5101 curr = head;
5102 while (NEXT_SEC (curr) != NULL)
5103 {
5104 next = NEXT_SEC (curr);
5105 end_of_next = next->output_offset + next->size;
5106 if (end_of_next - stub_group_start >= stub_group_size)
5107 /* End of NEXT is too far from start, so stop. */
5108 break;
5109 /* Add NEXT to the group. */
5110 curr = next;
5111 }
5112
5113 /* OK, the size from the start to the start of CURR is less
5114 than stub_group_size and thus can be handled by one stub
5115 section. (Or the head section is itself larger than
5116 stub_group_size, in which case we may be toast.)
5117 We should really be keeping track of the total size of
5118 stubs added here, as stubs contribute to the final output
5119 section size. */
5120 do
5121 {
5122 next = NEXT_SEC (head);
5123 /* Set up this stub group. */
5124 htab->stub_group[head->id].link_sec = curr;
5125 }
5126 while (head != curr && (head = next) != NULL);
5127
5128 /* But wait, there's more! Input sections up to stub_group_size
5129 bytes after the stub section can be handled by it too. */
5130 if (!stubs_always_after_branch)
5131 {
5132 stub_group_start = curr->output_offset + curr->size;
5133
5134 while (next != NULL)
5135 {
5136 end_of_next = next->output_offset + next->size;
5137 if (end_of_next - stub_group_start >= stub_group_size)
5138 /* End of NEXT is too far from stubs, so stop. */
5139 break;
5140 /* Add NEXT to the stub group. */
5141 head = next;
5142 next = NEXT_SEC (head);
5143 htab->stub_group[head->id].link_sec = curr;
5144 }
5145 }
5146 head = next;
5147 }
5148 }
5149 while (list++ != htab->input_list + htab->top_index);
5150
5151 free (htab->input_list);
5152 #undef PREV_SEC
5153 #undef NEXT_SEC
5154 }
5155
5156 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5157 erratum fix. */
5158
5159 static int
5160 a8_reloc_compare (const void *a, const void *b)
5161 {
5162 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5163 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5164
5165 if (ra->from < rb->from)
5166 return -1;
5167 else if (ra->from > rb->from)
5168 return 1;
5169 else
5170 return 0;
5171 }
5172
5173 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5174 const char *, char **);
5175
5176 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5177 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5178 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5179 otherwise. */
5180
5181 static bfd_boolean
5182 cortex_a8_erratum_scan (bfd *input_bfd,
5183 struct bfd_link_info *info,
5184 struct a8_erratum_fix **a8_fixes_p,
5185 unsigned int *num_a8_fixes_p,
5186 unsigned int *a8_fix_table_size_p,
5187 struct a8_erratum_reloc *a8_relocs,
5188 unsigned int num_a8_relocs,
5189 unsigned prev_num_a8_fixes,
5190 bfd_boolean *stub_changed_p)
5191 {
5192 asection *section;
5193 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5194 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5195 unsigned int num_a8_fixes = *num_a8_fixes_p;
5196 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5197
5198 if (htab == NULL)
5199 return FALSE;
5200
5201 for (section = input_bfd->sections;
5202 section != NULL;
5203 section = section->next)
5204 {
5205 bfd_byte *contents = NULL;
5206 struct _arm_elf_section_data *sec_data;
5207 unsigned int span;
5208 bfd_vma base_vma;
5209
5210 if (elf_section_type (section) != SHT_PROGBITS
5211 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5212 || (section->flags & SEC_EXCLUDE) != 0
5213 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5214 || (section->output_section == bfd_abs_section_ptr))
5215 continue;
5216
5217 base_vma = section->output_section->vma + section->output_offset;
5218
5219 if (elf_section_data (section)->this_hdr.contents != NULL)
5220 contents = elf_section_data (section)->this_hdr.contents;
5221 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5222 return TRUE;
5223
5224 sec_data = elf32_arm_section_data (section);
5225
5226 for (span = 0; span < sec_data->mapcount; span++)
5227 {
5228 unsigned int span_start = sec_data->map[span].vma;
5229 unsigned int span_end = (span == sec_data->mapcount - 1)
5230 ? section->size : sec_data->map[span + 1].vma;
5231 unsigned int i;
5232 char span_type = sec_data->map[span].type;
5233 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5234
5235 if (span_type != 't')
5236 continue;
5237
5238 /* Span is entirely within a single 4KB region: skip scanning. */
5239 if (((base_vma + span_start) & ~0xfff)
5240 == ((base_vma + span_end) & ~0xfff))
5241 continue;
5242
5243 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5244
5245 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5246 * The branch target is in the same 4KB region as the
5247 first half of the branch.
5248 * The instruction before the branch is a 32-bit
5249 length non-branch instruction. */
5250 for (i = span_start; i < span_end;)
5251 {
5252 unsigned int insn = bfd_getl16 (&contents[i]);
5253 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5254 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5255
5256 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5257 insn_32bit = TRUE;
5258
5259 if (insn_32bit)
5260 {
5261 /* Load the rest of the insn (in manual-friendly order). */
5262 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5263
5264 /* Encoding T4: B<c>.W. */
5265 is_b = (insn & 0xf800d000) == 0xf0009000;
5266 /* Encoding T1: BL<c>.W. */
5267 is_bl = (insn & 0xf800d000) == 0xf000d000;
5268 /* Encoding T2: BLX<c>.W. */
5269 is_blx = (insn & 0xf800d000) == 0xf000c000;
5270 /* Encoding T3: B<c>.W (not permitted in IT block). */
5271 is_bcc = (insn & 0xf800d000) == 0xf0008000
5272 && (insn & 0x07f00000) != 0x03800000;
5273 }
5274
5275 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5276
5277 if (((base_vma + i) & 0xfff) == 0xffe
5278 && insn_32bit
5279 && is_32bit_branch
5280 && last_was_32bit
5281 && ! last_was_branch)
5282 {
5283 bfd_signed_vma offset = 0;
5284 bfd_boolean force_target_arm = FALSE;
5285 bfd_boolean force_target_thumb = FALSE;
5286 bfd_vma target;
5287 enum elf32_arm_stub_type stub_type = arm_stub_none;
5288 struct a8_erratum_reloc key, *found;
5289 bfd_boolean use_plt = FALSE;
5290
5291 key.from = base_vma + i;
5292 found = (struct a8_erratum_reloc *)
5293 bsearch (&key, a8_relocs, num_a8_relocs,
5294 sizeof (struct a8_erratum_reloc),
5295 &a8_reloc_compare);
5296
5297 if (found)
5298 {
5299 char *error_message = NULL;
5300 struct elf_link_hash_entry *entry;
5301
5302 /* We don't care about the error returned from this
5303 function, only if there is glue or not. */
5304 entry = find_thumb_glue (info, found->sym_name,
5305 &error_message);
5306
5307 if (entry)
5308 found->non_a8_stub = TRUE;
5309
5310 /* Keep a simpler condition, for the sake of clarity. */
5311 if (htab->root.splt != NULL && found->hash != NULL
5312 && found->hash->root.plt.offset != (bfd_vma) -1)
5313 use_plt = TRUE;
5314
5315 if (found->r_type == R_ARM_THM_CALL)
5316 {
5317 if (found->branch_type == ST_BRANCH_TO_ARM
5318 || use_plt)
5319 force_target_arm = TRUE;
5320 else
5321 force_target_thumb = TRUE;
5322 }
5323 }
5324
5325 /* Check if we have an offending branch instruction. */
5326
5327 if (found && found->non_a8_stub)
5328 /* We've already made a stub for this instruction, e.g.
5329 it's a long branch or a Thumb->ARM stub. Assume that
5330 stub will suffice to work around the A8 erratum (see
5331 setting of always_after_branch above). */
5332 ;
5333 else if (is_bcc)
5334 {
5335 offset = (insn & 0x7ff) << 1;
5336 offset |= (insn & 0x3f0000) >> 4;
5337 offset |= (insn & 0x2000) ? 0x40000 : 0;
5338 offset |= (insn & 0x800) ? 0x80000 : 0;
5339 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5340 if (offset & 0x100000)
5341 offset |= ~ ((bfd_signed_vma) 0xfffff);
5342 stub_type = arm_stub_a8_veneer_b_cond;
5343 }
5344 else if (is_b || is_bl || is_blx)
5345 {
5346 int s = (insn & 0x4000000) != 0;
5347 int j1 = (insn & 0x2000) != 0;
5348 int j2 = (insn & 0x800) != 0;
5349 int i1 = !(j1 ^ s);
5350 int i2 = !(j2 ^ s);
5351
5352 offset = (insn & 0x7ff) << 1;
5353 offset |= (insn & 0x3ff0000) >> 4;
5354 offset |= i2 << 22;
5355 offset |= i1 << 23;
5356 offset |= s << 24;
5357 if (offset & 0x1000000)
5358 offset |= ~ ((bfd_signed_vma) 0xffffff);
5359
5360 if (is_blx)
5361 offset &= ~ ((bfd_signed_vma) 3);
5362
5363 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5364 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5365 }
5366
5367 if (stub_type != arm_stub_none)
5368 {
5369 bfd_vma pc_for_insn = base_vma + i + 4;
5370
5371 /* The original instruction is a BL, but the target is
5372 an ARM instruction. If we were not making a stub,
5373 the BL would have been converted to a BLX. Use the
5374 BLX stub instead in that case. */
5375 if (htab->use_blx && force_target_arm
5376 && stub_type == arm_stub_a8_veneer_bl)
5377 {
5378 stub_type = arm_stub_a8_veneer_blx;
5379 is_blx = TRUE;
5380 is_bl = FALSE;
5381 }
5382 /* Conversely, if the original instruction was
5383 BLX but the target is Thumb mode, use the BL
5384 stub. */
5385 else if (force_target_thumb
5386 && stub_type == arm_stub_a8_veneer_blx)
5387 {
5388 stub_type = arm_stub_a8_veneer_bl;
5389 is_blx = FALSE;
5390 is_bl = TRUE;
5391 }
5392
5393 if (is_blx)
5394 pc_for_insn &= ~ ((bfd_vma) 3);
5395
5396 /* If we found a relocation, use the proper destination,
5397 not the offset in the (unrelocated) instruction.
5398 Note this is always done if we switched the stub type
5399 above. */
5400 if (found)
5401 offset =
5402 (bfd_signed_vma) (found->destination - pc_for_insn);
5403
5404 /* If the stub will use a Thumb-mode branch to a
5405 PLT target, redirect it to the preceding Thumb
5406 entry point. */
5407 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5408 offset -= PLT_THUMB_STUB_SIZE;
5409
5410 target = pc_for_insn + offset;
5411
5412 /* The BLX stub is ARM-mode code. Adjust the offset to
5413 take the different PC value (+8 instead of +4) into
5414 account. */
5415 if (stub_type == arm_stub_a8_veneer_blx)
5416 offset += 4;
5417
5418 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5419 {
5420 char *stub_name = NULL;
5421
5422 if (num_a8_fixes == a8_fix_table_size)
5423 {
5424 a8_fix_table_size *= 2;
5425 a8_fixes = (struct a8_erratum_fix *)
5426 bfd_realloc (a8_fixes,
5427 sizeof (struct a8_erratum_fix)
5428 * a8_fix_table_size);
5429 }
5430
5431 if (num_a8_fixes < prev_num_a8_fixes)
5432 {
5433 /* If we're doing a subsequent scan,
5434 check if we've found the same fix as
5435 before, and try and reuse the stub
5436 name. */
5437 stub_name = a8_fixes[num_a8_fixes].stub_name;
5438 if ((a8_fixes[num_a8_fixes].section != section)
5439 || (a8_fixes[num_a8_fixes].offset != i))
5440 {
5441 free (stub_name);
5442 stub_name = NULL;
5443 *stub_changed_p = TRUE;
5444 }
5445 }
5446
5447 if (!stub_name)
5448 {
5449 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5450 if (stub_name != NULL)
5451 sprintf (stub_name, "%x:%x", section->id, i);
5452 }
5453
5454 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5455 a8_fixes[num_a8_fixes].section = section;
5456 a8_fixes[num_a8_fixes].offset = i;
5457 a8_fixes[num_a8_fixes].target_offset =
5458 target - base_vma;
5459 a8_fixes[num_a8_fixes].orig_insn = insn;
5460 a8_fixes[num_a8_fixes].stub_name = stub_name;
5461 a8_fixes[num_a8_fixes].stub_type = stub_type;
5462 a8_fixes[num_a8_fixes].branch_type =
5463 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5464
5465 num_a8_fixes++;
5466 }
5467 }
5468 }
5469
5470 i += insn_32bit ? 4 : 2;
5471 last_was_32bit = insn_32bit;
5472 last_was_branch = is_32bit_branch;
5473 }
5474 }
5475
5476 if (elf_section_data (section)->this_hdr.contents == NULL)
5477 free (contents);
5478 }
5479
5480 *a8_fixes_p = a8_fixes;
5481 *num_a8_fixes_p = num_a8_fixes;
5482 *a8_fix_table_size_p = a8_fix_table_size;
5483
5484 return FALSE;
5485 }
5486
5487 /* Create or update a stub entry depending on whether the stub can already be
5488 found in HTAB. The stub is identified by:
5489 - its type STUB_TYPE
5490 - its source branch (note that several can share the same stub) whose
5491 section and relocation (if any) are given by SECTION and IRELA
5492 respectively
5493 - its target symbol whose input section, hash, name, value and branch type
5494 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5495 respectively
5496
5497 If found, the value of the stub's target symbol is updated from SYM_VALUE
5498 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5499 TRUE and the stub entry is initialized.
5500
5501 Returns the stub that was created or updated, or NULL if an error
5502 occurred. */
5503
5504 static struct elf32_arm_stub_hash_entry *
5505 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5506 enum elf32_arm_stub_type stub_type, asection *section,
5507 Elf_Internal_Rela *irela, asection *sym_sec,
5508 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5509 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5510 bfd_boolean *new_stub)
5511 {
5512 const asection *id_sec;
5513 char *stub_name;
5514 struct elf32_arm_stub_hash_entry *stub_entry;
5515 unsigned int r_type;
5516 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5517
5518 BFD_ASSERT (stub_type != arm_stub_none);
5519 *new_stub = FALSE;
5520
5521 if (sym_claimed)
5522 stub_name = sym_name;
5523 else
5524 {
5525 BFD_ASSERT (irela);
5526 BFD_ASSERT (section);
5527 BFD_ASSERT (section->id <= htab->top_id);
5528
5529 /* Support for grouping stub sections. */
5530 id_sec = htab->stub_group[section->id].link_sec;
5531
5532 /* Get the name of this stub. */
5533 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5534 stub_type);
5535 if (!stub_name)
5536 return NULL;
5537 }
5538
5539 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5540 FALSE);
5541 /* The proper stub has already been created, just update its value. */
5542 if (stub_entry != NULL)
5543 {
5544 if (!sym_claimed)
5545 free (stub_name);
5546 stub_entry->target_value = sym_value;
5547 return stub_entry;
5548 }
5549
5550 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5551 if (stub_entry == NULL)
5552 {
5553 if (!sym_claimed)
5554 free (stub_name);
5555 return NULL;
5556 }
5557
5558 stub_entry->target_value = sym_value;
5559 stub_entry->target_section = sym_sec;
5560 stub_entry->stub_type = stub_type;
5561 stub_entry->h = hash;
5562 stub_entry->branch_type = branch_type;
5563
5564 if (sym_claimed)
5565 stub_entry->output_name = sym_name;
5566 else
5567 {
5568 if (sym_name == NULL)
5569 sym_name = "unnamed";
5570 stub_entry->output_name = (char *)
5571 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5572 + strlen (sym_name));
5573 if (stub_entry->output_name == NULL)
5574 {
5575 free (stub_name);
5576 return NULL;
5577 }
5578
5579 /* For historical reasons, use the existing names for ARM-to-Thumb and
5580 Thumb-to-ARM stubs. */
5581 r_type = ELF32_R_TYPE (irela->r_info);
5582 if ((r_type == (unsigned int) R_ARM_THM_CALL
5583 || r_type == (unsigned int) R_ARM_THM_JUMP24
5584 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5585 && branch_type == ST_BRANCH_TO_ARM)
5586 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5587 else if ((r_type == (unsigned int) R_ARM_CALL
5588 || r_type == (unsigned int) R_ARM_JUMP24)
5589 && branch_type == ST_BRANCH_TO_THUMB)
5590 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5591 else
5592 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5593 }
5594
5595 *new_stub = TRUE;
5596 return stub_entry;
5597 }
5598
5599 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5600 gateway veneer to transition from non secure to secure state and create them
5601 accordingly.
5602
5603 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5604 defines the conditions that govern Secure Gateway veneer creation for a
5605 given symbol <SYM> as follows:
5606 - it has function type
5607 - it has non local binding
5608 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5609 same type, binding and value as <SYM> (called normal symbol).
5610 An entry function can handle secure state transition itself in which case
5611 its special symbol would have a different value from the normal symbol.
5612
5613 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5614 entry mapping while HTAB gives the name to hash entry mapping.
5615 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5616 created.
5617
5618 The return value gives whether a stub failed to be allocated. */
5619
5620 static bfd_boolean
5621 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5622 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5623 int *cmse_stub_created)
5624 {
5625 const struct elf_backend_data *bed;
5626 Elf_Internal_Shdr *symtab_hdr;
5627 unsigned i, j, sym_count, ext_start;
5628 Elf_Internal_Sym *cmse_sym, *local_syms;
5629 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5630 enum arm_st_branch_type branch_type;
5631 char *sym_name, *lsym_name;
5632 bfd_vma sym_value;
5633 asection *section;
5634 struct elf32_arm_stub_hash_entry *stub_entry;
5635 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5636
5637 bed = get_elf_backend_data (input_bfd);
5638 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5639 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5640 ext_start = symtab_hdr->sh_info;
5641 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5642 && out_attr[Tag_CPU_arch_profile].i == 'M');
5643
5644 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5645 if (local_syms == NULL)
5646 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5647 symtab_hdr->sh_info, 0, NULL, NULL,
5648 NULL);
5649 if (symtab_hdr->sh_info && local_syms == NULL)
5650 return FALSE;
5651
5652 /* Scan symbols. */
5653 for (i = 0; i < sym_count; i++)
5654 {
5655 cmse_invalid = FALSE;
5656
5657 if (i < ext_start)
5658 {
5659 cmse_sym = &local_syms[i];
5660 /* Not a special symbol. */
5661 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5662 continue;
5663 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5664 symtab_hdr->sh_link,
5665 cmse_sym->st_name);
5666 /* Special symbol with local binding. */
5667 cmse_invalid = TRUE;
5668 }
5669 else
5670 {
5671 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5672 sym_name = (char *) cmse_hash->root.root.root.string;
5673
5674 /* Not a special symbol. */
5675 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5676 continue;
5677
5678 /* Special symbol has incorrect binding or type. */
5679 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5680 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5681 || cmse_hash->root.type != STT_FUNC)
5682 cmse_invalid = TRUE;
5683 }
5684
5685 if (!is_v8m)
5686 {
5687 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5688 "ARMv8-M architecture or later."),
5689 input_bfd, sym_name);
5690 is_v8m = TRUE; /* Avoid multiple warning. */
5691 ret = FALSE;
5692 }
5693
5694 if (cmse_invalid)
5695 {
5696 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5697 input_bfd, sym_name);
5698 _bfd_error_handler (_("It must be a global or weak function "
5699 "symbol."));
5700 ret = FALSE;
5701 if (i < ext_start)
5702 continue;
5703 }
5704
5705 sym_name += strlen (CMSE_PREFIX);
5706 hash = (struct elf32_arm_link_hash_entry *)
5707 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5708
5709 /* No associated normal symbol or it is neither global nor weak. */
5710 if (!hash
5711 || (hash->root.root.type != bfd_link_hash_defined
5712 && hash->root.root.type != bfd_link_hash_defweak)
5713 || hash->root.type != STT_FUNC)
5714 {
5715 /* Initialize here to avoid warning about use of possibly
5716 uninitialized variable. */
5717 j = 0;
5718
5719 if (!hash)
5720 {
5721 /* Searching for a normal symbol with local binding. */
5722 for (; j < ext_start; j++)
5723 {
5724 lsym_name =
5725 bfd_elf_string_from_elf_section (input_bfd,
5726 symtab_hdr->sh_link,
5727 local_syms[j].st_name);
5728 if (!strcmp (sym_name, lsym_name))
5729 break;
5730 }
5731 }
5732
5733 if (hash || j < ext_start)
5734 {
5735 _bfd_error_handler
5736 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5737 _bfd_error_handler
5738 (_("It must be a global or weak function symbol."));
5739 }
5740 else
5741 _bfd_error_handler
5742 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5743 ret = FALSE;
5744 if (!hash)
5745 continue;
5746 }
5747
5748 sym_value = hash->root.root.u.def.value;
5749 section = hash->root.root.u.def.section;
5750
5751 if (cmse_hash->root.root.u.def.section != section)
5752 {
5753 _bfd_error_handler
5754 (_("%B: `%s' and its special symbol are in different sections."),
5755 input_bfd, sym_name);
5756 ret = FALSE;
5757 }
5758 if (cmse_hash->root.root.u.def.value != sym_value)
5759 continue; /* Ignore: could be an entry function starting with SG. */
5760
5761 /* If this section is a link-once section that will be discarded, then
5762 don't create any stubs. */
5763 if (section->output_section == NULL)
5764 {
5765 _bfd_error_handler
5766 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5767 continue;
5768 }
5769
5770 if (hash->root.size == 0)
5771 {
5772 _bfd_error_handler
5773 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5774 ret = FALSE;
5775 }
5776
5777 if (!ret)
5778 continue;
5779 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5780 stub_entry
5781 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5782 NULL, NULL, section, hash, sym_name,
5783 sym_value, branch_type, &new_stub);
5784
5785 if (stub_entry == NULL)
5786 ret = FALSE;
5787 else
5788 {
5789 BFD_ASSERT (new_stub);
5790 (*cmse_stub_created)++;
5791 }
5792 }
5793
5794 if (!symtab_hdr->contents)
5795 free (local_syms);
5796 return ret;
5797 }
5798
5799 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5800 code entry function, ie can be called from non secure code without using a
5801 veneer. */
5802
5803 static bfd_boolean
5804 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5805 {
5806 bfd_byte contents[4];
5807 uint32_t first_insn;
5808 asection *section;
5809 file_ptr offset;
5810 bfd *abfd;
5811
5812 /* Defined symbol of function type. */
5813 if (hash->root.root.type != bfd_link_hash_defined
5814 && hash->root.root.type != bfd_link_hash_defweak)
5815 return FALSE;
5816 if (hash->root.type != STT_FUNC)
5817 return FALSE;
5818
5819 /* Read first instruction. */
5820 section = hash->root.root.u.def.section;
5821 abfd = section->owner;
5822 offset = hash->root.root.u.def.value - section->vma;
5823 if (!bfd_get_section_contents (abfd, section, contents, offset,
5824 sizeof (contents)))
5825 return FALSE;
5826
5827 first_insn = bfd_get_32 (abfd, contents);
5828
5829 /* Starts by SG instruction. */
5830 return first_insn == 0xe97fe97f;
5831 }
5832
5833 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5834 secure gateway veneers (ie. the veneers was not in the input import library)
5835 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5836
5837 static bfd_boolean
5838 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5839 {
5840 struct elf32_arm_stub_hash_entry *stub_entry;
5841 struct bfd_link_info *info;
5842
5843 /* Massage our args to the form they really have. */
5844 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5845 info = (struct bfd_link_info *) gen_info;
5846
5847 if (info->out_implib_bfd)
5848 return TRUE;
5849
5850 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5851 return TRUE;
5852
5853 if (stub_entry->stub_offset == (bfd_vma) -1)
5854 _bfd_error_handler (" %s", stub_entry->output_name);
5855
5856 return TRUE;
5857 }
5858
5859 /* Set offset of each secure gateway veneers so that its address remain
5860 identical to the one in the input import library referred by
5861 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5862 (present in input import library but absent from the executable being
5863 linked) or if new veneers appeared and there is no output import library
5864 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5865 number of secure gateway veneers found in the input import library.
5866
5867 The function returns whether an error occurred. If no error occurred,
5868 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5869 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5870 veneer observed set for new veneers to be layed out after. */
5871
5872 static bfd_boolean
5873 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5874 struct elf32_arm_link_hash_table *htab,
5875 int *cmse_stub_created)
5876 {
5877 long symsize;
5878 char *sym_name;
5879 flagword flags;
5880 long i, symcount;
5881 bfd *in_implib_bfd;
5882 asection *stub_out_sec;
5883 bfd_boolean ret = TRUE;
5884 Elf_Internal_Sym *intsym;
5885 const char *out_sec_name;
5886 bfd_size_type cmse_stub_size;
5887 asymbol **sympp = NULL, *sym;
5888 struct elf32_arm_link_hash_entry *hash;
5889 const insn_sequence *cmse_stub_template;
5890 struct elf32_arm_stub_hash_entry *stub_entry;
5891 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5892 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5893 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5894
5895 /* No input secure gateway import library. */
5896 if (!htab->in_implib_bfd)
5897 return TRUE;
5898
5899 in_implib_bfd = htab->in_implib_bfd;
5900 if (!htab->cmse_implib)
5901 {
5902 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5903 "Gateway import libraries."), in_implib_bfd);
5904 return FALSE;
5905 }
5906
5907 /* Get symbol table size. */
5908 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5909 if (symsize < 0)
5910 return FALSE;
5911
5912 /* Read in the input secure gateway import library's symbol table. */
5913 sympp = (asymbol **) xmalloc (symsize);
5914 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5915 if (symcount < 0)
5916 {
5917 ret = FALSE;
5918 goto free_sym_buf;
5919 }
5920
5921 htab->new_cmse_stub_offset = 0;
5922 cmse_stub_size =
5923 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5924 &cmse_stub_template,
5925 &cmse_stub_template_size);
5926 out_sec_name =
5927 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5928 stub_out_sec =
5929 bfd_get_section_by_name (htab->obfd, out_sec_name);
5930 if (stub_out_sec != NULL)
5931 cmse_stub_sec_vma = stub_out_sec->vma;
5932
5933 /* Set addresses of veneers mentionned in input secure gateway import
5934 library's symbol table. */
5935 for (i = 0; i < symcount; i++)
5936 {
5937 sym = sympp[i];
5938 flags = sym->flags;
5939 sym_name = (char *) bfd_asymbol_name (sym);
5940 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5941
5942 if (sym->section != bfd_abs_section_ptr
5943 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5944 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5945 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5946 != ST_BRANCH_TO_THUMB))
5947 {
5948 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5949 in_implib_bfd, sym_name);
5950 _bfd_error_handler (_("Symbol should be absolute, global and "
5951 "refer to Thumb functions."));
5952 ret = FALSE;
5953 continue;
5954 }
5955
5956 veneer_value = bfd_asymbol_value (sym);
5957 stub_offset = veneer_value - cmse_stub_sec_vma;
5958 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5959 FALSE, FALSE);
5960 hash = (struct elf32_arm_link_hash_entry *)
5961 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5962
5963 /* Stub entry should have been created by cmse_scan or the symbol be of
5964 a secure function callable from non secure code. */
5965 if (!stub_entry && !hash)
5966 {
5967 bfd_boolean new_stub;
5968
5969 _bfd_error_handler
5970 (_("Entry function `%s' disappeared from secure code."), sym_name);
5971 hash = (struct elf32_arm_link_hash_entry *)
5972 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5973 stub_entry
5974 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5975 NULL, NULL, bfd_abs_section_ptr, hash,
5976 sym_name, veneer_value,
5977 ST_BRANCH_TO_THUMB, &new_stub);
5978 if (stub_entry == NULL)
5979 ret = FALSE;
5980 else
5981 {
5982 BFD_ASSERT (new_stub);
5983 new_cmse_stubs_created++;
5984 (*cmse_stub_created)++;
5985 }
5986 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5987 stub_entry->stub_offset = stub_offset;
5988 }
5989 /* Symbol found is not callable from non secure code. */
5990 else if (!stub_entry)
5991 {
5992 if (!cmse_entry_fct_p (hash))
5993 {
5994 _bfd_error_handler (_("`%s' refers to a non entry function."),
5995 sym_name);
5996 ret = FALSE;
5997 }
5998 continue;
5999 }
6000 else
6001 {
6002 /* Only stubs for SG veneers should have been created. */
6003 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6004
6005 /* Check visibility hasn't changed. */
6006 if (!!(flags & BSF_GLOBAL)
6007 != (hash->root.root.type == bfd_link_hash_defined))
6008 _bfd_error_handler
6009 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6010 sym_name);
6011
6012 stub_entry->stub_offset = stub_offset;
6013 }
6014
6015 /* Size should match that of a SG veneer. */
6016 if (intsym->st_size != cmse_stub_size)
6017 {
6018 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6019 in_implib_bfd, sym_name);
6020 ret = FALSE;
6021 }
6022
6023 /* Previous veneer address is before current SG veneer section. */
6024 if (veneer_value < cmse_stub_sec_vma)
6025 {
6026 /* Avoid offset underflow. */
6027 if (stub_entry)
6028 stub_entry->stub_offset = 0;
6029 stub_offset = 0;
6030 ret = FALSE;
6031 }
6032
6033 /* Complain if stub offset not a multiple of stub size. */
6034 if (stub_offset % cmse_stub_size)
6035 {
6036 _bfd_error_handler
6037 (_("Offset of veneer for entry function `%s' not a multiple of "
6038 "its size."), sym_name);
6039 ret = FALSE;
6040 }
6041
6042 if (!ret)
6043 continue;
6044
6045 new_cmse_stubs_created--;
6046 if (veneer_value < cmse_stub_array_start)
6047 cmse_stub_array_start = veneer_value;
6048 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6049 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6050 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6051 }
6052
6053 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6054 {
6055 BFD_ASSERT (new_cmse_stubs_created > 0);
6056 _bfd_error_handler
6057 (_("new entry function(s) introduced but no output import library "
6058 "specified:"));
6059 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6060 }
6061
6062 if (cmse_stub_array_start != cmse_stub_sec_vma)
6063 {
6064 _bfd_error_handler
6065 (_("Start address of `%s' is different from previous link."),
6066 out_sec_name);
6067 ret = FALSE;
6068 }
6069
6070 free_sym_buf:
6071 free (sympp);
6072 return ret;
6073 }
6074
6075 /* Determine and set the size of the stub section for a final link.
6076
6077 The basic idea here is to examine all the relocations looking for
6078 PC-relative calls to a target that is unreachable with a "bl"
6079 instruction. */
6080
6081 bfd_boolean
6082 elf32_arm_size_stubs (bfd *output_bfd,
6083 bfd *stub_bfd,
6084 struct bfd_link_info *info,
6085 bfd_signed_vma group_size,
6086 asection * (*add_stub_section) (const char *, asection *,
6087 asection *,
6088 unsigned int),
6089 void (*layout_sections_again) (void))
6090 {
6091 bfd_boolean ret = TRUE;
6092 obj_attribute *out_attr;
6093 int cmse_stub_created = 0;
6094 bfd_size_type stub_group_size;
6095 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6096 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6097 struct a8_erratum_fix *a8_fixes = NULL;
6098 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6099 struct a8_erratum_reloc *a8_relocs = NULL;
6100 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6101
6102 if (htab == NULL)
6103 return FALSE;
6104
6105 if (htab->fix_cortex_a8)
6106 {
6107 a8_fixes = (struct a8_erratum_fix *)
6108 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6109 a8_relocs = (struct a8_erratum_reloc *)
6110 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6111 }
6112
6113 /* Propagate mach to stub bfd, because it may not have been
6114 finalized when we created stub_bfd. */
6115 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6116 bfd_get_mach (output_bfd));
6117
6118 /* Stash our params away. */
6119 htab->stub_bfd = stub_bfd;
6120 htab->add_stub_section = add_stub_section;
6121 htab->layout_sections_again = layout_sections_again;
6122 stubs_always_after_branch = group_size < 0;
6123
6124 out_attr = elf_known_obj_attributes_proc (output_bfd);
6125 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6126
6127 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6128 as the first half of a 32-bit branch straddling two 4K pages. This is a
6129 crude way of enforcing that. */
6130 if (htab->fix_cortex_a8)
6131 stubs_always_after_branch = 1;
6132
6133 if (group_size < 0)
6134 stub_group_size = -group_size;
6135 else
6136 stub_group_size = group_size;
6137
6138 if (stub_group_size == 1)
6139 {
6140 /* Default values. */
6141 /* Thumb branch range is +-4MB has to be used as the default
6142 maximum size (a given section can contain both ARM and Thumb
6143 code, so the worst case has to be taken into account).
6144
6145 This value is 24K less than that, which allows for 2025
6146 12-byte stubs. If we exceed that, then we will fail to link.
6147 The user will have to relink with an explicit group size
6148 option. */
6149 stub_group_size = 4170000;
6150 }
6151
6152 group_sections (htab, stub_group_size, stubs_always_after_branch);
6153
6154 /* If we're applying the cortex A8 fix, we need to determine the
6155 program header size now, because we cannot change it later --
6156 that could alter section placements. Notice the A8 erratum fix
6157 ends up requiring the section addresses to remain unchanged
6158 modulo the page size. That's something we cannot represent
6159 inside BFD, and we don't want to force the section alignment to
6160 be the page size. */
6161 if (htab->fix_cortex_a8)
6162 (*htab->layout_sections_again) ();
6163
6164 while (1)
6165 {
6166 bfd *input_bfd;
6167 unsigned int bfd_indx;
6168 asection *stub_sec;
6169 enum elf32_arm_stub_type stub_type;
6170 bfd_boolean stub_changed = FALSE;
6171 unsigned prev_num_a8_fixes = num_a8_fixes;
6172
6173 num_a8_fixes = 0;
6174 for (input_bfd = info->input_bfds, bfd_indx = 0;
6175 input_bfd != NULL;
6176 input_bfd = input_bfd->link.next, bfd_indx++)
6177 {
6178 Elf_Internal_Shdr *symtab_hdr;
6179 asection *section;
6180 Elf_Internal_Sym *local_syms = NULL;
6181
6182 if (!is_arm_elf (input_bfd))
6183 continue;
6184
6185 num_a8_relocs = 0;
6186
6187 /* We'll need the symbol table in a second. */
6188 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6189 if (symtab_hdr->sh_info == 0)
6190 continue;
6191
6192 /* Limit scan of symbols to object file whose profile is
6193 Microcontroller to not hinder performance in the general case. */
6194 if (m_profile && first_veneer_scan)
6195 {
6196 struct elf_link_hash_entry **sym_hashes;
6197
6198 sym_hashes = elf_sym_hashes (input_bfd);
6199 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6200 &cmse_stub_created))
6201 goto error_ret_free_local;
6202
6203 if (cmse_stub_created != 0)
6204 stub_changed = TRUE;
6205 }
6206
6207 /* Walk over each section attached to the input bfd. */
6208 for (section = input_bfd->sections;
6209 section != NULL;
6210 section = section->next)
6211 {
6212 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6213
6214 /* If there aren't any relocs, then there's nothing more
6215 to do. */
6216 if ((section->flags & SEC_RELOC) == 0
6217 || section->reloc_count == 0
6218 || (section->flags & SEC_CODE) == 0)
6219 continue;
6220
6221 /* If this section is a link-once section that will be
6222 discarded, then don't create any stubs. */
6223 if (section->output_section == NULL
6224 || section->output_section->owner != output_bfd)
6225 continue;
6226
6227 /* Get the relocs. */
6228 internal_relocs
6229 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6230 NULL, info->keep_memory);
6231 if (internal_relocs == NULL)
6232 goto error_ret_free_local;
6233
6234 /* Now examine each relocation. */
6235 irela = internal_relocs;
6236 irelaend = irela + section->reloc_count;
6237 for (; irela < irelaend; irela++)
6238 {
6239 unsigned int r_type, r_indx;
6240 asection *sym_sec;
6241 bfd_vma sym_value;
6242 bfd_vma destination;
6243 struct elf32_arm_link_hash_entry *hash;
6244 const char *sym_name;
6245 unsigned char st_type;
6246 enum arm_st_branch_type branch_type;
6247 bfd_boolean created_stub = FALSE;
6248
6249 r_type = ELF32_R_TYPE (irela->r_info);
6250 r_indx = ELF32_R_SYM (irela->r_info);
6251
6252 if (r_type >= (unsigned int) R_ARM_max)
6253 {
6254 bfd_set_error (bfd_error_bad_value);
6255 error_ret_free_internal:
6256 if (elf_section_data (section)->relocs == NULL)
6257 free (internal_relocs);
6258 /* Fall through. */
6259 error_ret_free_local:
6260 if (local_syms != NULL
6261 && (symtab_hdr->contents
6262 != (unsigned char *) local_syms))
6263 free (local_syms);
6264 return FALSE;
6265 }
6266
6267 hash = NULL;
6268 if (r_indx >= symtab_hdr->sh_info)
6269 hash = elf32_arm_hash_entry
6270 (elf_sym_hashes (input_bfd)
6271 [r_indx - symtab_hdr->sh_info]);
6272
6273 /* Only look for stubs on branch instructions, or
6274 non-relaxed TLSCALL */
6275 if ((r_type != (unsigned int) R_ARM_CALL)
6276 && (r_type != (unsigned int) R_ARM_THM_CALL)
6277 && (r_type != (unsigned int) R_ARM_JUMP24)
6278 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6279 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6280 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6281 && (r_type != (unsigned int) R_ARM_PLT32)
6282 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6283 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6284 && r_type == elf32_arm_tls_transition
6285 (info, r_type, &hash->root)
6286 && ((hash ? hash->tls_type
6287 : (elf32_arm_local_got_tls_type
6288 (input_bfd)[r_indx]))
6289 & GOT_TLS_GDESC) != 0))
6290 continue;
6291
6292 /* Now determine the call target, its name, value,
6293 section. */
6294 sym_sec = NULL;
6295 sym_value = 0;
6296 destination = 0;
6297 sym_name = NULL;
6298
6299 if (r_type == (unsigned int) R_ARM_TLS_CALL
6300 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6301 {
6302 /* A non-relaxed TLS call. The target is the
6303 plt-resident trampoline and nothing to do
6304 with the symbol. */
6305 BFD_ASSERT (htab->tls_trampoline > 0);
6306 sym_sec = htab->root.splt;
6307 sym_value = htab->tls_trampoline;
6308 hash = 0;
6309 st_type = STT_FUNC;
6310 branch_type = ST_BRANCH_TO_ARM;
6311 }
6312 else if (!hash)
6313 {
6314 /* It's a local symbol. */
6315 Elf_Internal_Sym *sym;
6316
6317 if (local_syms == NULL)
6318 {
6319 local_syms
6320 = (Elf_Internal_Sym *) symtab_hdr->contents;
6321 if (local_syms == NULL)
6322 local_syms
6323 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6324 symtab_hdr->sh_info, 0,
6325 NULL, NULL, NULL);
6326 if (local_syms == NULL)
6327 goto error_ret_free_internal;
6328 }
6329
6330 sym = local_syms + r_indx;
6331 if (sym->st_shndx == SHN_UNDEF)
6332 sym_sec = bfd_und_section_ptr;
6333 else if (sym->st_shndx == SHN_ABS)
6334 sym_sec = bfd_abs_section_ptr;
6335 else if (sym->st_shndx == SHN_COMMON)
6336 sym_sec = bfd_com_section_ptr;
6337 else
6338 sym_sec =
6339 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6340
6341 if (!sym_sec)
6342 /* This is an undefined symbol. It can never
6343 be resolved. */
6344 continue;
6345
6346 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6347 sym_value = sym->st_value;
6348 destination = (sym_value + irela->r_addend
6349 + sym_sec->output_offset
6350 + sym_sec->output_section->vma);
6351 st_type = ELF_ST_TYPE (sym->st_info);
6352 branch_type =
6353 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6354 sym_name
6355 = bfd_elf_string_from_elf_section (input_bfd,
6356 symtab_hdr->sh_link,
6357 sym->st_name);
6358 }
6359 else
6360 {
6361 /* It's an external symbol. */
6362 while (hash->root.root.type == bfd_link_hash_indirect
6363 || hash->root.root.type == bfd_link_hash_warning)
6364 hash = ((struct elf32_arm_link_hash_entry *)
6365 hash->root.root.u.i.link);
6366
6367 if (hash->root.root.type == bfd_link_hash_defined
6368 || hash->root.root.type == bfd_link_hash_defweak)
6369 {
6370 sym_sec = hash->root.root.u.def.section;
6371 sym_value = hash->root.root.u.def.value;
6372
6373 struct elf32_arm_link_hash_table *globals =
6374 elf32_arm_hash_table (info);
6375
6376 /* For a destination in a shared library,
6377 use the PLT stub as target address to
6378 decide whether a branch stub is
6379 needed. */
6380 if (globals != NULL
6381 && globals->root.splt != NULL
6382 && hash != NULL
6383 && hash->root.plt.offset != (bfd_vma) -1)
6384 {
6385 sym_sec = globals->root.splt;
6386 sym_value = hash->root.plt.offset;
6387 if (sym_sec->output_section != NULL)
6388 destination = (sym_value
6389 + sym_sec->output_offset
6390 + sym_sec->output_section->vma);
6391 }
6392 else if (sym_sec->output_section != NULL)
6393 destination = (sym_value + irela->r_addend
6394 + sym_sec->output_offset
6395 + sym_sec->output_section->vma);
6396 }
6397 else if ((hash->root.root.type == bfd_link_hash_undefined)
6398 || (hash->root.root.type == bfd_link_hash_undefweak))
6399 {
6400 /* For a shared library, use the PLT stub as
6401 target address to decide whether a long
6402 branch stub is needed.
6403 For absolute code, they cannot be handled. */
6404 struct elf32_arm_link_hash_table *globals =
6405 elf32_arm_hash_table (info);
6406
6407 if (globals != NULL
6408 && globals->root.splt != NULL
6409 && hash != NULL
6410 && hash->root.plt.offset != (bfd_vma) -1)
6411 {
6412 sym_sec = globals->root.splt;
6413 sym_value = hash->root.plt.offset;
6414 if (sym_sec->output_section != NULL)
6415 destination = (sym_value
6416 + sym_sec->output_offset
6417 + sym_sec->output_section->vma);
6418 }
6419 else
6420 continue;
6421 }
6422 else
6423 {
6424 bfd_set_error (bfd_error_bad_value);
6425 goto error_ret_free_internal;
6426 }
6427 st_type = hash->root.type;
6428 branch_type =
6429 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6430 sym_name = hash->root.root.root.string;
6431 }
6432
6433 do
6434 {
6435 bfd_boolean new_stub;
6436 struct elf32_arm_stub_hash_entry *stub_entry;
6437
6438 /* Determine what (if any) linker stub is needed. */
6439 stub_type = arm_type_of_stub (info, section, irela,
6440 st_type, &branch_type,
6441 hash, destination, sym_sec,
6442 input_bfd, sym_name);
6443 if (stub_type == arm_stub_none)
6444 break;
6445
6446 /* We've either created a stub for this reloc already,
6447 or we are about to. */
6448 stub_entry =
6449 elf32_arm_create_stub (htab, stub_type, section, irela,
6450 sym_sec, hash,
6451 (char *) sym_name, sym_value,
6452 branch_type, &new_stub);
6453
6454 created_stub = stub_entry != NULL;
6455 if (!created_stub)
6456 goto error_ret_free_internal;
6457 else if (!new_stub)
6458 break;
6459 else
6460 stub_changed = TRUE;
6461 }
6462 while (0);
6463
6464 /* Look for relocations which might trigger Cortex-A8
6465 erratum. */
6466 if (htab->fix_cortex_a8
6467 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6468 || r_type == (unsigned int) R_ARM_THM_JUMP19
6469 || r_type == (unsigned int) R_ARM_THM_CALL
6470 || r_type == (unsigned int) R_ARM_THM_XPC22))
6471 {
6472 bfd_vma from = section->output_section->vma
6473 + section->output_offset
6474 + irela->r_offset;
6475
6476 if ((from & 0xfff) == 0xffe)
6477 {
6478 /* Found a candidate. Note we haven't checked the
6479 destination is within 4K here: if we do so (and
6480 don't create an entry in a8_relocs) we can't tell
6481 that a branch should have been relocated when
6482 scanning later. */
6483 if (num_a8_relocs == a8_reloc_table_size)
6484 {
6485 a8_reloc_table_size *= 2;
6486 a8_relocs = (struct a8_erratum_reloc *)
6487 bfd_realloc (a8_relocs,
6488 sizeof (struct a8_erratum_reloc)
6489 * a8_reloc_table_size);
6490 }
6491
6492 a8_relocs[num_a8_relocs].from = from;
6493 a8_relocs[num_a8_relocs].destination = destination;
6494 a8_relocs[num_a8_relocs].r_type = r_type;
6495 a8_relocs[num_a8_relocs].branch_type = branch_type;
6496 a8_relocs[num_a8_relocs].sym_name = sym_name;
6497 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6498 a8_relocs[num_a8_relocs].hash = hash;
6499
6500 num_a8_relocs++;
6501 }
6502 }
6503 }
6504
6505 /* We're done with the internal relocs, free them. */
6506 if (elf_section_data (section)->relocs == NULL)
6507 free (internal_relocs);
6508 }
6509
6510 if (htab->fix_cortex_a8)
6511 {
6512 /* Sort relocs which might apply to Cortex-A8 erratum. */
6513 qsort (a8_relocs, num_a8_relocs,
6514 sizeof (struct a8_erratum_reloc),
6515 &a8_reloc_compare);
6516
6517 /* Scan for branches which might trigger Cortex-A8 erratum. */
6518 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6519 &num_a8_fixes, &a8_fix_table_size,
6520 a8_relocs, num_a8_relocs,
6521 prev_num_a8_fixes, &stub_changed)
6522 != 0)
6523 goto error_ret_free_local;
6524 }
6525
6526 if (local_syms != NULL
6527 && symtab_hdr->contents != (unsigned char *) local_syms)
6528 {
6529 if (!info->keep_memory)
6530 free (local_syms);
6531 else
6532 symtab_hdr->contents = (unsigned char *) local_syms;
6533 }
6534 }
6535
6536 if (first_veneer_scan
6537 && !set_cmse_veneer_addr_from_implib (info, htab,
6538 &cmse_stub_created))
6539 ret = FALSE;
6540
6541 if (prev_num_a8_fixes != num_a8_fixes)
6542 stub_changed = TRUE;
6543
6544 if (!stub_changed)
6545 break;
6546
6547 /* OK, we've added some stubs. Find out the new size of the
6548 stub sections. */
6549 for (stub_sec = htab->stub_bfd->sections;
6550 stub_sec != NULL;
6551 stub_sec = stub_sec->next)
6552 {
6553 /* Ignore non-stub sections. */
6554 if (!strstr (stub_sec->name, STUB_SUFFIX))
6555 continue;
6556
6557 stub_sec->size = 0;
6558 }
6559
6560 /* Add new SG veneers after those already in the input import
6561 library. */
6562 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6563 stub_type++)
6564 {
6565 bfd_vma *start_offset_p;
6566 asection **stub_sec_p;
6567
6568 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6569 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6570 if (start_offset_p == NULL)
6571 continue;
6572
6573 BFD_ASSERT (stub_sec_p != NULL);
6574 if (*stub_sec_p != NULL)
6575 (*stub_sec_p)->size = *start_offset_p;
6576 }
6577
6578 /* Compute stub section size, considering padding. */
6579 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6580 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6581 stub_type++)
6582 {
6583 int size, padding;
6584 asection **stub_sec_p;
6585
6586 padding = arm_dedicated_stub_section_padding (stub_type);
6587 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6588 /* Skip if no stub input section or no stub section padding
6589 required. */
6590 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6591 continue;
6592 /* Stub section padding required but no dedicated section. */
6593 BFD_ASSERT (stub_sec_p);
6594
6595 size = (*stub_sec_p)->size;
6596 size = (size + padding - 1) & ~(padding - 1);
6597 (*stub_sec_p)->size = size;
6598 }
6599
6600 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6601 if (htab->fix_cortex_a8)
6602 for (i = 0; i < num_a8_fixes; i++)
6603 {
6604 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6605 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6606
6607 if (stub_sec == NULL)
6608 return FALSE;
6609
6610 stub_sec->size
6611 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6612 NULL);
6613 }
6614
6615
6616 /* Ask the linker to do its stuff. */
6617 (*htab->layout_sections_again) ();
6618 first_veneer_scan = FALSE;
6619 }
6620
6621 /* Add stubs for Cortex-A8 erratum fixes now. */
6622 if (htab->fix_cortex_a8)
6623 {
6624 for (i = 0; i < num_a8_fixes; i++)
6625 {
6626 struct elf32_arm_stub_hash_entry *stub_entry;
6627 char *stub_name = a8_fixes[i].stub_name;
6628 asection *section = a8_fixes[i].section;
6629 unsigned int section_id = a8_fixes[i].section->id;
6630 asection *link_sec = htab->stub_group[section_id].link_sec;
6631 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6632 const insn_sequence *template_sequence;
6633 int template_size, size = 0;
6634
6635 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6636 TRUE, FALSE);
6637 if (stub_entry == NULL)
6638 {
6639 _bfd_error_handler (_("%s: cannot create stub entry %s"),
6640 section->owner, stub_name);
6641 return FALSE;
6642 }
6643
6644 stub_entry->stub_sec = stub_sec;
6645 stub_entry->stub_offset = (bfd_vma) -1;
6646 stub_entry->id_sec = link_sec;
6647 stub_entry->stub_type = a8_fixes[i].stub_type;
6648 stub_entry->source_value = a8_fixes[i].offset;
6649 stub_entry->target_section = a8_fixes[i].section;
6650 stub_entry->target_value = a8_fixes[i].target_offset;
6651 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6652 stub_entry->branch_type = a8_fixes[i].branch_type;
6653
6654 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6655 &template_sequence,
6656 &template_size);
6657
6658 stub_entry->stub_size = size;
6659 stub_entry->stub_template = template_sequence;
6660 stub_entry->stub_template_size = template_size;
6661 }
6662
6663 /* Stash the Cortex-A8 erratum fix array for use later in
6664 elf32_arm_write_section(). */
6665 htab->a8_erratum_fixes = a8_fixes;
6666 htab->num_a8_erratum_fixes = num_a8_fixes;
6667 }
6668 else
6669 {
6670 htab->a8_erratum_fixes = NULL;
6671 htab->num_a8_erratum_fixes = 0;
6672 }
6673 return ret;
6674 }
6675
6676 /* Build all the stubs associated with the current output file. The
6677 stubs are kept in a hash table attached to the main linker hash
6678 table. We also set up the .plt entries for statically linked PIC
6679 functions here. This function is called via arm_elf_finish in the
6680 linker. */
6681
6682 bfd_boolean
6683 elf32_arm_build_stubs (struct bfd_link_info *info)
6684 {
6685 asection *stub_sec;
6686 struct bfd_hash_table *table;
6687 enum elf32_arm_stub_type stub_type;
6688 struct elf32_arm_link_hash_table *htab;
6689
6690 htab = elf32_arm_hash_table (info);
6691 if (htab == NULL)
6692 return FALSE;
6693
6694 for (stub_sec = htab->stub_bfd->sections;
6695 stub_sec != NULL;
6696 stub_sec = stub_sec->next)
6697 {
6698 bfd_size_type size;
6699
6700 /* Ignore non-stub sections. */
6701 if (!strstr (stub_sec->name, STUB_SUFFIX))
6702 continue;
6703
6704 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6705 must at least be done for stub section requiring padding and for SG
6706 veneers to ensure that a non secure code branching to a removed SG
6707 veneer causes an error. */
6708 size = stub_sec->size;
6709 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6710 if (stub_sec->contents == NULL && size != 0)
6711 return FALSE;
6712
6713 stub_sec->size = 0;
6714 }
6715
6716 /* Add new SG veneers after those already in the input import library. */
6717 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6718 {
6719 bfd_vma *start_offset_p;
6720 asection **stub_sec_p;
6721
6722 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6723 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6724 if (start_offset_p == NULL)
6725 continue;
6726
6727 BFD_ASSERT (stub_sec_p != NULL);
6728 if (*stub_sec_p != NULL)
6729 (*stub_sec_p)->size = *start_offset_p;
6730 }
6731
6732 /* Build the stubs as directed by the stub hash table. */
6733 table = &htab->stub_hash_table;
6734 bfd_hash_traverse (table, arm_build_one_stub, info);
6735 if (htab->fix_cortex_a8)
6736 {
6737 /* Place the cortex a8 stubs last. */
6738 htab->fix_cortex_a8 = -1;
6739 bfd_hash_traverse (table, arm_build_one_stub, info);
6740 }
6741
6742 return TRUE;
6743 }
6744
6745 /* Locate the Thumb encoded calling stub for NAME. */
6746
6747 static struct elf_link_hash_entry *
6748 find_thumb_glue (struct bfd_link_info *link_info,
6749 const char *name,
6750 char **error_message)
6751 {
6752 char *tmp_name;
6753 struct elf_link_hash_entry *hash;
6754 struct elf32_arm_link_hash_table *hash_table;
6755
6756 /* We need a pointer to the armelf specific hash table. */
6757 hash_table = elf32_arm_hash_table (link_info);
6758 if (hash_table == NULL)
6759 return NULL;
6760
6761 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6762 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6763
6764 BFD_ASSERT (tmp_name);
6765
6766 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6767
6768 hash = elf_link_hash_lookup
6769 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6770
6771 if (hash == NULL
6772 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6773 tmp_name, name) == -1)
6774 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6775
6776 free (tmp_name);
6777
6778 return hash;
6779 }
6780
6781 /* Locate the ARM encoded calling stub for NAME. */
6782
6783 static struct elf_link_hash_entry *
6784 find_arm_glue (struct bfd_link_info *link_info,
6785 const char *name,
6786 char **error_message)
6787 {
6788 char *tmp_name;
6789 struct elf_link_hash_entry *myh;
6790 struct elf32_arm_link_hash_table *hash_table;
6791
6792 /* We need a pointer to the elfarm specific hash table. */
6793 hash_table = elf32_arm_hash_table (link_info);
6794 if (hash_table == NULL)
6795 return NULL;
6796
6797 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6798 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6799
6800 BFD_ASSERT (tmp_name);
6801
6802 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6803
6804 myh = elf_link_hash_lookup
6805 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6806
6807 if (myh == NULL
6808 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6809 tmp_name, name) == -1)
6810 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6811
6812 free (tmp_name);
6813
6814 return myh;
6815 }
6816
6817 /* ARM->Thumb glue (static images):
6818
6819 .arm
6820 __func_from_arm:
6821 ldr r12, __func_addr
6822 bx r12
6823 __func_addr:
6824 .word func @ behave as if you saw a ARM_32 reloc.
6825
6826 (v5t static images)
6827 .arm
6828 __func_from_arm:
6829 ldr pc, __func_addr
6830 __func_addr:
6831 .word func @ behave as if you saw a ARM_32 reloc.
6832
6833 (relocatable images)
6834 .arm
6835 __func_from_arm:
6836 ldr r12, __func_offset
6837 add r12, r12, pc
6838 bx r12
6839 __func_offset:
6840 .word func - . */
6841
6842 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6843 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6844 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6845 static const insn32 a2t3_func_addr_insn = 0x00000001;
6846
6847 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6848 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6849 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6850
6851 #define ARM2THUMB_PIC_GLUE_SIZE 16
6852 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6853 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6854 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6855
6856 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6857
6858 .thumb .thumb
6859 .align 2 .align 2
6860 __func_from_thumb: __func_from_thumb:
6861 bx pc push {r6, lr}
6862 nop ldr r6, __func_addr
6863 .arm mov lr, pc
6864 b func bx r6
6865 .arm
6866 ;; back_to_thumb
6867 ldmia r13! {r6, lr}
6868 bx lr
6869 __func_addr:
6870 .word func */
6871
6872 #define THUMB2ARM_GLUE_SIZE 8
6873 static const insn16 t2a1_bx_pc_insn = 0x4778;
6874 static const insn16 t2a2_noop_insn = 0x46c0;
6875 static const insn32 t2a3_b_insn = 0xea000000;
6876
6877 #define VFP11_ERRATUM_VENEER_SIZE 8
6878 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6879 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6880
6881 #define ARM_BX_VENEER_SIZE 12
6882 static const insn32 armbx1_tst_insn = 0xe3100001;
6883 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6884 static const insn32 armbx3_bx_insn = 0xe12fff10;
6885
6886 #ifndef ELFARM_NABI_C_INCLUDED
6887 static void
6888 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6889 {
6890 asection * s;
6891 bfd_byte * contents;
6892
6893 if (size == 0)
6894 {
6895 /* Do not include empty glue sections in the output. */
6896 if (abfd != NULL)
6897 {
6898 s = bfd_get_linker_section (abfd, name);
6899 if (s != NULL)
6900 s->flags |= SEC_EXCLUDE;
6901 }
6902 return;
6903 }
6904
6905 BFD_ASSERT (abfd != NULL);
6906
6907 s = bfd_get_linker_section (abfd, name);
6908 BFD_ASSERT (s != NULL);
6909
6910 contents = (bfd_byte *) bfd_alloc (abfd, size);
6911
6912 BFD_ASSERT (s->size == size);
6913 s->contents = contents;
6914 }
6915
6916 bfd_boolean
6917 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6918 {
6919 struct elf32_arm_link_hash_table * globals;
6920
6921 globals = elf32_arm_hash_table (info);
6922 BFD_ASSERT (globals != NULL);
6923
6924 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6925 globals->arm_glue_size,
6926 ARM2THUMB_GLUE_SECTION_NAME);
6927
6928 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6929 globals->thumb_glue_size,
6930 THUMB2ARM_GLUE_SECTION_NAME);
6931
6932 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6933 globals->vfp11_erratum_glue_size,
6934 VFP11_ERRATUM_VENEER_SECTION_NAME);
6935
6936 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6937 globals->stm32l4xx_erratum_glue_size,
6938 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6939
6940 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6941 globals->bx_glue_size,
6942 ARM_BX_GLUE_SECTION_NAME);
6943
6944 return TRUE;
6945 }
6946
6947 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6948 returns the symbol identifying the stub. */
6949
6950 static struct elf_link_hash_entry *
6951 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6952 struct elf_link_hash_entry * h)
6953 {
6954 const char * name = h->root.root.string;
6955 asection * s;
6956 char * tmp_name;
6957 struct elf_link_hash_entry * myh;
6958 struct bfd_link_hash_entry * bh;
6959 struct elf32_arm_link_hash_table * globals;
6960 bfd_vma val;
6961 bfd_size_type size;
6962
6963 globals = elf32_arm_hash_table (link_info);
6964 BFD_ASSERT (globals != NULL);
6965 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6966
6967 s = bfd_get_linker_section
6968 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6969
6970 BFD_ASSERT (s != NULL);
6971
6972 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6973 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6974
6975 BFD_ASSERT (tmp_name);
6976
6977 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6978
6979 myh = elf_link_hash_lookup
6980 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6981
6982 if (myh != NULL)
6983 {
6984 /* We've already seen this guy. */
6985 free (tmp_name);
6986 return myh;
6987 }
6988
6989 /* The only trick here is using hash_table->arm_glue_size as the value.
6990 Even though the section isn't allocated yet, this is where we will be
6991 putting it. The +1 on the value marks that the stub has not been
6992 output yet - not that it is a Thumb function. */
6993 bh = NULL;
6994 val = globals->arm_glue_size + 1;
6995 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6996 tmp_name, BSF_GLOBAL, s, val,
6997 NULL, TRUE, FALSE, &bh);
6998
6999 myh = (struct elf_link_hash_entry *) bh;
7000 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7001 myh->forced_local = 1;
7002
7003 free (tmp_name);
7004
7005 if (bfd_link_pic (link_info)
7006 || globals->root.is_relocatable_executable
7007 || globals->pic_veneer)
7008 size = ARM2THUMB_PIC_GLUE_SIZE;
7009 else if (globals->use_blx)
7010 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7011 else
7012 size = ARM2THUMB_STATIC_GLUE_SIZE;
7013
7014 s->size += size;
7015 globals->arm_glue_size += size;
7016
7017 return myh;
7018 }
7019
7020 /* Allocate space for ARMv4 BX veneers. */
7021
7022 static void
7023 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7024 {
7025 asection * s;
7026 struct elf32_arm_link_hash_table *globals;
7027 char *tmp_name;
7028 struct elf_link_hash_entry *myh;
7029 struct bfd_link_hash_entry *bh;
7030 bfd_vma val;
7031
7032 /* BX PC does not need a veneer. */
7033 if (reg == 15)
7034 return;
7035
7036 globals = elf32_arm_hash_table (link_info);
7037 BFD_ASSERT (globals != NULL);
7038 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7039
7040 /* Check if this veneer has already been allocated. */
7041 if (globals->bx_glue_offset[reg])
7042 return;
7043
7044 s = bfd_get_linker_section
7045 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7046
7047 BFD_ASSERT (s != NULL);
7048
7049 /* Add symbol for veneer. */
7050 tmp_name = (char *)
7051 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7052
7053 BFD_ASSERT (tmp_name);
7054
7055 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7056
7057 myh = elf_link_hash_lookup
7058 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7059
7060 BFD_ASSERT (myh == NULL);
7061
7062 bh = NULL;
7063 val = globals->bx_glue_size;
7064 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7065 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7066 NULL, TRUE, FALSE, &bh);
7067
7068 myh = (struct elf_link_hash_entry *) bh;
7069 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7070 myh->forced_local = 1;
7071
7072 s->size += ARM_BX_VENEER_SIZE;
7073 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7074 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7075 }
7076
7077
7078 /* Add an entry to the code/data map for section SEC. */
7079
7080 static void
7081 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7082 {
7083 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7084 unsigned int newidx;
7085
7086 if (sec_data->map == NULL)
7087 {
7088 sec_data->map = (elf32_arm_section_map *)
7089 bfd_malloc (sizeof (elf32_arm_section_map));
7090 sec_data->mapcount = 0;
7091 sec_data->mapsize = 1;
7092 }
7093
7094 newidx = sec_data->mapcount++;
7095
7096 if (sec_data->mapcount > sec_data->mapsize)
7097 {
7098 sec_data->mapsize *= 2;
7099 sec_data->map = (elf32_arm_section_map *)
7100 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7101 * sizeof (elf32_arm_section_map));
7102 }
7103
7104 if (sec_data->map)
7105 {
7106 sec_data->map[newidx].vma = vma;
7107 sec_data->map[newidx].type = type;
7108 }
7109 }
7110
7111
7112 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7113 veneers are handled for now. */
7114
7115 static bfd_vma
7116 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7117 elf32_vfp11_erratum_list *branch,
7118 bfd *branch_bfd,
7119 asection *branch_sec,
7120 unsigned int offset)
7121 {
7122 asection *s;
7123 struct elf32_arm_link_hash_table *hash_table;
7124 char *tmp_name;
7125 struct elf_link_hash_entry *myh;
7126 struct bfd_link_hash_entry *bh;
7127 bfd_vma val;
7128 struct _arm_elf_section_data *sec_data;
7129 elf32_vfp11_erratum_list *newerr;
7130
7131 hash_table = elf32_arm_hash_table (link_info);
7132 BFD_ASSERT (hash_table != NULL);
7133 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7134
7135 s = bfd_get_linker_section
7136 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7137
7138 sec_data = elf32_arm_section_data (s);
7139
7140 BFD_ASSERT (s != NULL);
7141
7142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7143 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7144
7145 BFD_ASSERT (tmp_name);
7146
7147 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7148 hash_table->num_vfp11_fixes);
7149
7150 myh = elf_link_hash_lookup
7151 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7152
7153 BFD_ASSERT (myh == NULL);
7154
7155 bh = NULL;
7156 val = hash_table->vfp11_erratum_glue_size;
7157 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7158 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7159 NULL, TRUE, FALSE, &bh);
7160
7161 myh = (struct elf_link_hash_entry *) bh;
7162 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7163 myh->forced_local = 1;
7164
7165 /* Link veneer back to calling location. */
7166 sec_data->erratumcount += 1;
7167 newerr = (elf32_vfp11_erratum_list *)
7168 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7169
7170 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7171 newerr->vma = -1;
7172 newerr->u.v.branch = branch;
7173 newerr->u.v.id = hash_table->num_vfp11_fixes;
7174 branch->u.b.veneer = newerr;
7175
7176 newerr->next = sec_data->erratumlist;
7177 sec_data->erratumlist = newerr;
7178
7179 /* A symbol for the return from the veneer. */
7180 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7181 hash_table->num_vfp11_fixes);
7182
7183 myh = elf_link_hash_lookup
7184 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7185
7186 if (myh != NULL)
7187 abort ();
7188
7189 bh = NULL;
7190 val = offset + 4;
7191 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7192 branch_sec, val, NULL, TRUE, FALSE, &bh);
7193
7194 myh = (struct elf_link_hash_entry *) bh;
7195 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7196 myh->forced_local = 1;
7197
7198 free (tmp_name);
7199
7200 /* Generate a mapping symbol for the veneer section, and explicitly add an
7201 entry for that symbol to the code/data map for the section. */
7202 if (hash_table->vfp11_erratum_glue_size == 0)
7203 {
7204 bh = NULL;
7205 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7206 ever requires this erratum fix. */
7207 _bfd_generic_link_add_one_symbol (link_info,
7208 hash_table->bfd_of_glue_owner, "$a",
7209 BSF_LOCAL, s, 0, NULL,
7210 TRUE, FALSE, &bh);
7211
7212 myh = (struct elf_link_hash_entry *) bh;
7213 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7214 myh->forced_local = 1;
7215
7216 /* The elf32_arm_init_maps function only cares about symbols from input
7217 BFDs. We must make a note of this generated mapping symbol
7218 ourselves so that code byteswapping works properly in
7219 elf32_arm_write_section. */
7220 elf32_arm_section_map_add (s, 'a', 0);
7221 }
7222
7223 s->size += VFP11_ERRATUM_VENEER_SIZE;
7224 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7225 hash_table->num_vfp11_fixes++;
7226
7227 /* The offset of the veneer. */
7228 return val;
7229 }
7230
7231 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7232 veneers need to be handled because used only in Cortex-M. */
7233
7234 static bfd_vma
7235 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7236 elf32_stm32l4xx_erratum_list *branch,
7237 bfd *branch_bfd,
7238 asection *branch_sec,
7239 unsigned int offset,
7240 bfd_size_type veneer_size)
7241 {
7242 asection *s;
7243 struct elf32_arm_link_hash_table *hash_table;
7244 char *tmp_name;
7245 struct elf_link_hash_entry *myh;
7246 struct bfd_link_hash_entry *bh;
7247 bfd_vma val;
7248 struct _arm_elf_section_data *sec_data;
7249 elf32_stm32l4xx_erratum_list *newerr;
7250
7251 hash_table = elf32_arm_hash_table (link_info);
7252 BFD_ASSERT (hash_table != NULL);
7253 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7254
7255 s = bfd_get_linker_section
7256 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7257
7258 BFD_ASSERT (s != NULL);
7259
7260 sec_data = elf32_arm_section_data (s);
7261
7262 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7263 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7264
7265 BFD_ASSERT (tmp_name);
7266
7267 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7268 hash_table->num_stm32l4xx_fixes);
7269
7270 myh = elf_link_hash_lookup
7271 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7272
7273 BFD_ASSERT (myh == NULL);
7274
7275 bh = NULL;
7276 val = hash_table->stm32l4xx_erratum_glue_size;
7277 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7278 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7279 NULL, TRUE, FALSE, &bh);
7280
7281 myh = (struct elf_link_hash_entry *) bh;
7282 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7283 myh->forced_local = 1;
7284
7285 /* Link veneer back to calling location. */
7286 sec_data->stm32l4xx_erratumcount += 1;
7287 newerr = (elf32_stm32l4xx_erratum_list *)
7288 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7289
7290 newerr->type = STM32L4XX_ERRATUM_VENEER;
7291 newerr->vma = -1;
7292 newerr->u.v.branch = branch;
7293 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7294 branch->u.b.veneer = newerr;
7295
7296 newerr->next = sec_data->stm32l4xx_erratumlist;
7297 sec_data->stm32l4xx_erratumlist = newerr;
7298
7299 /* A symbol for the return from the veneer. */
7300 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7301 hash_table->num_stm32l4xx_fixes);
7302
7303 myh = elf_link_hash_lookup
7304 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7305
7306 if (myh != NULL)
7307 abort ();
7308
7309 bh = NULL;
7310 val = offset + 4;
7311 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7312 branch_sec, val, NULL, TRUE, FALSE, &bh);
7313
7314 myh = (struct elf_link_hash_entry *) bh;
7315 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7316 myh->forced_local = 1;
7317
7318 free (tmp_name);
7319
7320 /* Generate a mapping symbol for the veneer section, and explicitly add an
7321 entry for that symbol to the code/data map for the section. */
7322 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7323 {
7324 bh = NULL;
7325 /* Creates a THUMB symbol since there is no other choice. */
7326 _bfd_generic_link_add_one_symbol (link_info,
7327 hash_table->bfd_of_glue_owner, "$t",
7328 BSF_LOCAL, s, 0, NULL,
7329 TRUE, FALSE, &bh);
7330
7331 myh = (struct elf_link_hash_entry *) bh;
7332 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7333 myh->forced_local = 1;
7334
7335 /* The elf32_arm_init_maps function only cares about symbols from input
7336 BFDs. We must make a note of this generated mapping symbol
7337 ourselves so that code byteswapping works properly in
7338 elf32_arm_write_section. */
7339 elf32_arm_section_map_add (s, 't', 0);
7340 }
7341
7342 s->size += veneer_size;
7343 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7344 hash_table->num_stm32l4xx_fixes++;
7345
7346 /* The offset of the veneer. */
7347 return val;
7348 }
7349
7350 #define ARM_GLUE_SECTION_FLAGS \
7351 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7352 | SEC_READONLY | SEC_LINKER_CREATED)
7353
7354 /* Create a fake section for use by the ARM backend of the linker. */
7355
7356 static bfd_boolean
7357 arm_make_glue_section (bfd * abfd, const char * name)
7358 {
7359 asection * sec;
7360
7361 sec = bfd_get_linker_section (abfd, name);
7362 if (sec != NULL)
7363 /* Already made. */
7364 return TRUE;
7365
7366 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7367
7368 if (sec == NULL
7369 || !bfd_set_section_alignment (abfd, sec, 2))
7370 return FALSE;
7371
7372 /* Set the gc mark to prevent the section from being removed by garbage
7373 collection, despite the fact that no relocs refer to this section. */
7374 sec->gc_mark = 1;
7375
7376 return TRUE;
7377 }
7378
7379 /* Set size of .plt entries. This function is called from the
7380 linker scripts in ld/emultempl/{armelf}.em. */
7381
7382 void
7383 bfd_elf32_arm_use_long_plt (void)
7384 {
7385 elf32_arm_use_long_plt_entry = TRUE;
7386 }
7387
7388 /* Add the glue sections to ABFD. This function is called from the
7389 linker scripts in ld/emultempl/{armelf}.em. */
7390
7391 bfd_boolean
7392 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7393 struct bfd_link_info *info)
7394 {
7395 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7396 bfd_boolean dostm32l4xx = globals
7397 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7398 bfd_boolean addglue;
7399
7400 /* If we are only performing a partial
7401 link do not bother adding the glue. */
7402 if (bfd_link_relocatable (info))
7403 return TRUE;
7404
7405 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7406 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7407 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7408 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7409
7410 if (!dostm32l4xx)
7411 return addglue;
7412
7413 return addglue
7414 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7415 }
7416
7417 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7418 ensures they are not marked for deletion by
7419 strip_excluded_output_sections () when veneers are going to be created
7420 later. Not doing so would trigger assert on empty section size in
7421 lang_size_sections_1 (). */
7422
7423 void
7424 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7425 {
7426 enum elf32_arm_stub_type stub_type;
7427
7428 /* If we are only performing a partial
7429 link do not bother adding the glue. */
7430 if (bfd_link_relocatable (info))
7431 return;
7432
7433 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7434 {
7435 asection *out_sec;
7436 const char *out_sec_name;
7437
7438 if (!arm_dedicated_stub_output_section_required (stub_type))
7439 continue;
7440
7441 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7442 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7443 if (out_sec != NULL)
7444 out_sec->flags |= SEC_KEEP;
7445 }
7446 }
7447
7448 /* Select a BFD to be used to hold the sections used by the glue code.
7449 This function is called from the linker scripts in ld/emultempl/
7450 {armelf/pe}.em. */
7451
7452 bfd_boolean
7453 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7454 {
7455 struct elf32_arm_link_hash_table *globals;
7456
7457 /* If we are only performing a partial link
7458 do not bother getting a bfd to hold the glue. */
7459 if (bfd_link_relocatable (info))
7460 return TRUE;
7461
7462 /* Make sure we don't attach the glue sections to a dynamic object. */
7463 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7464
7465 globals = elf32_arm_hash_table (info);
7466 BFD_ASSERT (globals != NULL);
7467
7468 if (globals->bfd_of_glue_owner != NULL)
7469 return TRUE;
7470
7471 /* Save the bfd for later use. */
7472 globals->bfd_of_glue_owner = abfd;
7473
7474 return TRUE;
7475 }
7476
7477 static void
7478 check_use_blx (struct elf32_arm_link_hash_table *globals)
7479 {
7480 int cpu_arch;
7481
7482 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7483 Tag_CPU_arch);
7484
7485 if (globals->fix_arm1176)
7486 {
7487 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7488 globals->use_blx = 1;
7489 }
7490 else
7491 {
7492 if (cpu_arch > TAG_CPU_ARCH_V4T)
7493 globals->use_blx = 1;
7494 }
7495 }
7496
7497 bfd_boolean
7498 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7499 struct bfd_link_info *link_info)
7500 {
7501 Elf_Internal_Shdr *symtab_hdr;
7502 Elf_Internal_Rela *internal_relocs = NULL;
7503 Elf_Internal_Rela *irel, *irelend;
7504 bfd_byte *contents = NULL;
7505
7506 asection *sec;
7507 struct elf32_arm_link_hash_table *globals;
7508
7509 /* If we are only performing a partial link do not bother
7510 to construct any glue. */
7511 if (bfd_link_relocatable (link_info))
7512 return TRUE;
7513
7514 /* Here we have a bfd that is to be included on the link. We have a
7515 hook to do reloc rummaging, before section sizes are nailed down. */
7516 globals = elf32_arm_hash_table (link_info);
7517 BFD_ASSERT (globals != NULL);
7518
7519 check_use_blx (globals);
7520
7521 if (globals->byteswap_code && !bfd_big_endian (abfd))
7522 {
7523 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7524 abfd);
7525 return FALSE;
7526 }
7527
7528 /* PR 5398: If we have not decided to include any loadable sections in
7529 the output then we will not have a glue owner bfd. This is OK, it
7530 just means that there is nothing else for us to do here. */
7531 if (globals->bfd_of_glue_owner == NULL)
7532 return TRUE;
7533
7534 /* Rummage around all the relocs and map the glue vectors. */
7535 sec = abfd->sections;
7536
7537 if (sec == NULL)
7538 return TRUE;
7539
7540 for (; sec != NULL; sec = sec->next)
7541 {
7542 if (sec->reloc_count == 0)
7543 continue;
7544
7545 if ((sec->flags & SEC_EXCLUDE) != 0)
7546 continue;
7547
7548 symtab_hdr = & elf_symtab_hdr (abfd);
7549
7550 /* Load the relocs. */
7551 internal_relocs
7552 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7553
7554 if (internal_relocs == NULL)
7555 goto error_return;
7556
7557 irelend = internal_relocs + sec->reloc_count;
7558 for (irel = internal_relocs; irel < irelend; irel++)
7559 {
7560 long r_type;
7561 unsigned long r_index;
7562
7563 struct elf_link_hash_entry *h;
7564
7565 r_type = ELF32_R_TYPE (irel->r_info);
7566 r_index = ELF32_R_SYM (irel->r_info);
7567
7568 /* These are the only relocation types we care about. */
7569 if ( r_type != R_ARM_PC24
7570 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7571 continue;
7572
7573 /* Get the section contents if we haven't done so already. */
7574 if (contents == NULL)
7575 {
7576 /* Get cached copy if it exists. */
7577 if (elf_section_data (sec)->this_hdr.contents != NULL)
7578 contents = elf_section_data (sec)->this_hdr.contents;
7579 else
7580 {
7581 /* Go get them off disk. */
7582 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7583 goto error_return;
7584 }
7585 }
7586
7587 if (r_type == R_ARM_V4BX)
7588 {
7589 int reg;
7590
7591 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7592 record_arm_bx_glue (link_info, reg);
7593 continue;
7594 }
7595
7596 /* If the relocation is not against a symbol it cannot concern us. */
7597 h = NULL;
7598
7599 /* We don't care about local symbols. */
7600 if (r_index < symtab_hdr->sh_info)
7601 continue;
7602
7603 /* This is an external symbol. */
7604 r_index -= symtab_hdr->sh_info;
7605 h = (struct elf_link_hash_entry *)
7606 elf_sym_hashes (abfd)[r_index];
7607
7608 /* If the relocation is against a static symbol it must be within
7609 the current section and so cannot be a cross ARM/Thumb relocation. */
7610 if (h == NULL)
7611 continue;
7612
7613 /* If the call will go through a PLT entry then we do not need
7614 glue. */
7615 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7616 continue;
7617
7618 switch (r_type)
7619 {
7620 case R_ARM_PC24:
7621 /* This one is a call from arm code. We need to look up
7622 the target of the call. If it is a thumb target, we
7623 insert glue. */
7624 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7625 == ST_BRANCH_TO_THUMB)
7626 record_arm_to_thumb_glue (link_info, h);
7627 break;
7628
7629 default:
7630 abort ();
7631 }
7632 }
7633
7634 if (contents != NULL
7635 && elf_section_data (sec)->this_hdr.contents != contents)
7636 free (contents);
7637 contents = NULL;
7638
7639 if (internal_relocs != NULL
7640 && elf_section_data (sec)->relocs != internal_relocs)
7641 free (internal_relocs);
7642 internal_relocs = NULL;
7643 }
7644
7645 return TRUE;
7646
7647 error_return:
7648 if (contents != NULL
7649 && elf_section_data (sec)->this_hdr.contents != contents)
7650 free (contents);
7651 if (internal_relocs != NULL
7652 && elf_section_data (sec)->relocs != internal_relocs)
7653 free (internal_relocs);
7654
7655 return FALSE;
7656 }
7657 #endif
7658
7659
7660 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7661
7662 void
7663 bfd_elf32_arm_init_maps (bfd *abfd)
7664 {
7665 Elf_Internal_Sym *isymbuf;
7666 Elf_Internal_Shdr *hdr;
7667 unsigned int i, localsyms;
7668
7669 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7670 if (! is_arm_elf (abfd))
7671 return;
7672
7673 if ((abfd->flags & DYNAMIC) != 0)
7674 return;
7675
7676 hdr = & elf_symtab_hdr (abfd);
7677 localsyms = hdr->sh_info;
7678
7679 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7680 should contain the number of local symbols, which should come before any
7681 global symbols. Mapping symbols are always local. */
7682 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7683 NULL);
7684
7685 /* No internal symbols read? Skip this BFD. */
7686 if (isymbuf == NULL)
7687 return;
7688
7689 for (i = 0; i < localsyms; i++)
7690 {
7691 Elf_Internal_Sym *isym = &isymbuf[i];
7692 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7693 const char *name;
7694
7695 if (sec != NULL
7696 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7697 {
7698 name = bfd_elf_string_from_elf_section (abfd,
7699 hdr->sh_link, isym->st_name);
7700
7701 if (bfd_is_arm_special_symbol_name (name,
7702 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7703 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7704 }
7705 }
7706 }
7707
7708
7709 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7710 say what they wanted. */
7711
7712 void
7713 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7714 {
7715 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7716 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7717
7718 if (globals == NULL)
7719 return;
7720
7721 if (globals->fix_cortex_a8 == -1)
7722 {
7723 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7724 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7725 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7726 || out_attr[Tag_CPU_arch_profile].i == 0))
7727 globals->fix_cortex_a8 = 1;
7728 else
7729 globals->fix_cortex_a8 = 0;
7730 }
7731 }
7732
7733
7734 void
7735 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7736 {
7737 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7738 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7739
7740 if (globals == NULL)
7741 return;
7742 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7743 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7744 {
7745 switch (globals->vfp11_fix)
7746 {
7747 case BFD_ARM_VFP11_FIX_DEFAULT:
7748 case BFD_ARM_VFP11_FIX_NONE:
7749 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7750 break;
7751
7752 default:
7753 /* Give a warning, but do as the user requests anyway. */
7754 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7755 "workaround is not necessary for target architecture"), obfd);
7756 }
7757 }
7758 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7759 /* For earlier architectures, we might need the workaround, but do not
7760 enable it by default. If users is running with broken hardware, they
7761 must enable the erratum fix explicitly. */
7762 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7763 }
7764
7765 void
7766 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7767 {
7768 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7769 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7770
7771 if (globals == NULL)
7772 return;
7773
7774 /* We assume only Cortex-M4 may require the fix. */
7775 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7776 || out_attr[Tag_CPU_arch_profile].i != 'M')
7777 {
7778 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7779 /* Give a warning, but do as the user requests anyway. */
7780 _bfd_error_handler
7781 (_("%B: warning: selected STM32L4XX erratum "
7782 "workaround is not necessary for target architecture"), obfd);
7783 }
7784 }
7785
7786 enum bfd_arm_vfp11_pipe
7787 {
7788 VFP11_FMAC,
7789 VFP11_LS,
7790 VFP11_DS,
7791 VFP11_BAD
7792 };
7793
7794 /* Return a VFP register number. This is encoded as RX:X for single-precision
7795 registers, or X:RX for double-precision registers, where RX is the group of
7796 four bits in the instruction encoding and X is the single extension bit.
7797 RX and X fields are specified using their lowest (starting) bit. The return
7798 value is:
7799
7800 0...31: single-precision registers s0...s31
7801 32...63: double-precision registers d0...d31.
7802
7803 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7804 encounter VFP3 instructions, so we allow the full range for DP registers. */
7805
7806 static unsigned int
7807 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7808 unsigned int x)
7809 {
7810 if (is_double)
7811 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7812 else
7813 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7814 }
7815
7816 /* Set bits in *WMASK according to a register number REG as encoded by
7817 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7818
7819 static void
7820 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7821 {
7822 if (reg < 32)
7823 *wmask |= 1 << reg;
7824 else if (reg < 48)
7825 *wmask |= 3 << ((reg - 32) * 2);
7826 }
7827
7828 /* Return TRUE if WMASK overwrites anything in REGS. */
7829
7830 static bfd_boolean
7831 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7832 {
7833 int i;
7834
7835 for (i = 0; i < numregs; i++)
7836 {
7837 unsigned int reg = regs[i];
7838
7839 if (reg < 32 && (wmask & (1 << reg)) != 0)
7840 return TRUE;
7841
7842 reg -= 32;
7843
7844 if (reg >= 16)
7845 continue;
7846
7847 if ((wmask & (3 << (reg * 2))) != 0)
7848 return TRUE;
7849 }
7850
7851 return FALSE;
7852 }
7853
7854 /* In this function, we're interested in two things: finding input registers
7855 for VFP data-processing instructions, and finding the set of registers which
7856 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7857 hold the written set, so FLDM etc. are easy to deal with (we're only
7858 interested in 32 SP registers or 16 dp registers, due to the VFP version
7859 implemented by the chip in question). DP registers are marked by setting
7860 both SP registers in the write mask). */
7861
7862 static enum bfd_arm_vfp11_pipe
7863 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7864 int *numregs)
7865 {
7866 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7867 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7868
7869 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7870 {
7871 unsigned int pqrs;
7872 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7873 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7874
7875 pqrs = ((insn & 0x00800000) >> 20)
7876 | ((insn & 0x00300000) >> 19)
7877 | ((insn & 0x00000040) >> 6);
7878
7879 switch (pqrs)
7880 {
7881 case 0: /* fmac[sd]. */
7882 case 1: /* fnmac[sd]. */
7883 case 2: /* fmsc[sd]. */
7884 case 3: /* fnmsc[sd]. */
7885 vpipe = VFP11_FMAC;
7886 bfd_arm_vfp11_write_mask (destmask, fd);
7887 regs[0] = fd;
7888 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7889 regs[2] = fm;
7890 *numregs = 3;
7891 break;
7892
7893 case 4: /* fmul[sd]. */
7894 case 5: /* fnmul[sd]. */
7895 case 6: /* fadd[sd]. */
7896 case 7: /* fsub[sd]. */
7897 vpipe = VFP11_FMAC;
7898 goto vfp_binop;
7899
7900 case 8: /* fdiv[sd]. */
7901 vpipe = VFP11_DS;
7902 vfp_binop:
7903 bfd_arm_vfp11_write_mask (destmask, fd);
7904 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7905 regs[1] = fm;
7906 *numregs = 2;
7907 break;
7908
7909 case 15: /* extended opcode. */
7910 {
7911 unsigned int extn = ((insn >> 15) & 0x1e)
7912 | ((insn >> 7) & 1);
7913
7914 switch (extn)
7915 {
7916 case 0: /* fcpy[sd]. */
7917 case 1: /* fabs[sd]. */
7918 case 2: /* fneg[sd]. */
7919 case 8: /* fcmp[sd]. */
7920 case 9: /* fcmpe[sd]. */
7921 case 10: /* fcmpz[sd]. */
7922 case 11: /* fcmpez[sd]. */
7923 case 16: /* fuito[sd]. */
7924 case 17: /* fsito[sd]. */
7925 case 24: /* ftoui[sd]. */
7926 case 25: /* ftouiz[sd]. */
7927 case 26: /* ftosi[sd]. */
7928 case 27: /* ftosiz[sd]. */
7929 /* These instructions will not bounce due to underflow. */
7930 *numregs = 0;
7931 vpipe = VFP11_FMAC;
7932 break;
7933
7934 case 3: /* fsqrt[sd]. */
7935 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7936 registers to cause the erratum in previous instructions. */
7937 bfd_arm_vfp11_write_mask (destmask, fd);
7938 vpipe = VFP11_DS;
7939 break;
7940
7941 case 15: /* fcvt{ds,sd}. */
7942 {
7943 int rnum = 0;
7944
7945 bfd_arm_vfp11_write_mask (destmask, fd);
7946
7947 /* Only FCVTSD can underflow. */
7948 if ((insn & 0x100) != 0)
7949 regs[rnum++] = fm;
7950
7951 *numregs = rnum;
7952
7953 vpipe = VFP11_FMAC;
7954 }
7955 break;
7956
7957 default:
7958 return VFP11_BAD;
7959 }
7960 }
7961 break;
7962
7963 default:
7964 return VFP11_BAD;
7965 }
7966 }
7967 /* Two-register transfer. */
7968 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7969 {
7970 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7971
7972 if ((insn & 0x100000) == 0)
7973 {
7974 if (is_double)
7975 bfd_arm_vfp11_write_mask (destmask, fm);
7976 else
7977 {
7978 bfd_arm_vfp11_write_mask (destmask, fm);
7979 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7980 }
7981 }
7982
7983 vpipe = VFP11_LS;
7984 }
7985 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7986 {
7987 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7988 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7989
7990 switch (puw)
7991 {
7992 case 0: /* Two-reg transfer. We should catch these above. */
7993 abort ();
7994
7995 case 2: /* fldm[sdx]. */
7996 case 3:
7997 case 5:
7998 {
7999 unsigned int i, offset = insn & 0xff;
8000
8001 if (is_double)
8002 offset >>= 1;
8003
8004 for (i = fd; i < fd + offset; i++)
8005 bfd_arm_vfp11_write_mask (destmask, i);
8006 }
8007 break;
8008
8009 case 4: /* fld[sd]. */
8010 case 6:
8011 bfd_arm_vfp11_write_mask (destmask, fd);
8012 break;
8013
8014 default:
8015 return VFP11_BAD;
8016 }
8017
8018 vpipe = VFP11_LS;
8019 }
8020 /* Single-register transfer. Note L==0. */
8021 else if ((insn & 0x0f100e10) == 0x0e000a10)
8022 {
8023 unsigned int opcode = (insn >> 21) & 7;
8024 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8025
8026 switch (opcode)
8027 {
8028 case 0: /* fmsr/fmdlr. */
8029 case 1: /* fmdhr. */
8030 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8031 destination register. I don't know if this is exactly right,
8032 but it is the conservative choice. */
8033 bfd_arm_vfp11_write_mask (destmask, fn);
8034 break;
8035
8036 case 7: /* fmxr. */
8037 break;
8038 }
8039
8040 vpipe = VFP11_LS;
8041 }
8042
8043 return vpipe;
8044 }
8045
8046
8047 static int elf32_arm_compare_mapping (const void * a, const void * b);
8048
8049
8050 /* Look for potentially-troublesome code sequences which might trigger the
8051 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8052 (available from ARM) for details of the erratum. A short version is
8053 described in ld.texinfo. */
8054
8055 bfd_boolean
8056 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8057 {
8058 asection *sec;
8059 bfd_byte *contents = NULL;
8060 int state = 0;
8061 int regs[3], numregs = 0;
8062 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8063 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8064
8065 if (globals == NULL)
8066 return FALSE;
8067
8068 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8069 The states transition as follows:
8070
8071 0 -> 1 (vector) or 0 -> 2 (scalar)
8072 A VFP FMAC-pipeline instruction has been seen. Fill
8073 regs[0]..regs[numregs-1] with its input operands. Remember this
8074 instruction in 'first_fmac'.
8075
8076 1 -> 2
8077 Any instruction, except for a VFP instruction which overwrites
8078 regs[*].
8079
8080 1 -> 3 [ -> 0 ] or
8081 2 -> 3 [ -> 0 ]
8082 A VFP instruction has been seen which overwrites any of regs[*].
8083 We must make a veneer! Reset state to 0 before examining next
8084 instruction.
8085
8086 2 -> 0
8087 If we fail to match anything in state 2, reset to state 0 and reset
8088 the instruction pointer to the instruction after 'first_fmac'.
8089
8090 If the VFP11 vector mode is in use, there must be at least two unrelated
8091 instructions between anti-dependent VFP11 instructions to properly avoid
8092 triggering the erratum, hence the use of the extra state 1. */
8093
8094 /* If we are only performing a partial link do not bother
8095 to construct any glue. */
8096 if (bfd_link_relocatable (link_info))
8097 return TRUE;
8098
8099 /* Skip if this bfd does not correspond to an ELF image. */
8100 if (! is_arm_elf (abfd))
8101 return TRUE;
8102
8103 /* We should have chosen a fix type by the time we get here. */
8104 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8105
8106 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8107 return TRUE;
8108
8109 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8110 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8111 return TRUE;
8112
8113 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8114 {
8115 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8116 struct _arm_elf_section_data *sec_data;
8117
8118 /* If we don't have executable progbits, we're not interested in this
8119 section. Also skip if section is to be excluded. */
8120 if (elf_section_type (sec) != SHT_PROGBITS
8121 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8122 || (sec->flags & SEC_EXCLUDE) != 0
8123 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8124 || sec->output_section == bfd_abs_section_ptr
8125 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8126 continue;
8127
8128 sec_data = elf32_arm_section_data (sec);
8129
8130 if (sec_data->mapcount == 0)
8131 continue;
8132
8133 if (elf_section_data (sec)->this_hdr.contents != NULL)
8134 contents = elf_section_data (sec)->this_hdr.contents;
8135 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8136 goto error_return;
8137
8138 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8139 elf32_arm_compare_mapping);
8140
8141 for (span = 0; span < sec_data->mapcount; span++)
8142 {
8143 unsigned int span_start = sec_data->map[span].vma;
8144 unsigned int span_end = (span == sec_data->mapcount - 1)
8145 ? sec->size : sec_data->map[span + 1].vma;
8146 char span_type = sec_data->map[span].type;
8147
8148 /* FIXME: Only ARM mode is supported at present. We may need to
8149 support Thumb-2 mode also at some point. */
8150 if (span_type != 'a')
8151 continue;
8152
8153 for (i = span_start; i < span_end;)
8154 {
8155 unsigned int next_i = i + 4;
8156 unsigned int insn = bfd_big_endian (abfd)
8157 ? (contents[i] << 24)
8158 | (contents[i + 1] << 16)
8159 | (contents[i + 2] << 8)
8160 | contents[i + 3]
8161 : (contents[i + 3] << 24)
8162 | (contents[i + 2] << 16)
8163 | (contents[i + 1] << 8)
8164 | contents[i];
8165 unsigned int writemask = 0;
8166 enum bfd_arm_vfp11_pipe vpipe;
8167
8168 switch (state)
8169 {
8170 case 0:
8171 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8172 &numregs);
8173 /* I'm assuming the VFP11 erratum can trigger with denorm
8174 operands on either the FMAC or the DS pipeline. This might
8175 lead to slightly overenthusiastic veneer insertion. */
8176 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8177 {
8178 state = use_vector ? 1 : 2;
8179 first_fmac = i;
8180 veneer_of_insn = insn;
8181 }
8182 break;
8183
8184 case 1:
8185 {
8186 int other_regs[3], other_numregs;
8187 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8188 other_regs,
8189 &other_numregs);
8190 if (vpipe != VFP11_BAD
8191 && bfd_arm_vfp11_antidependency (writemask, regs,
8192 numregs))
8193 state = 3;
8194 else
8195 state = 2;
8196 }
8197 break;
8198
8199 case 2:
8200 {
8201 int other_regs[3], other_numregs;
8202 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8203 other_regs,
8204 &other_numregs);
8205 if (vpipe != VFP11_BAD
8206 && bfd_arm_vfp11_antidependency (writemask, regs,
8207 numregs))
8208 state = 3;
8209 else
8210 {
8211 state = 0;
8212 next_i = first_fmac + 4;
8213 }
8214 }
8215 break;
8216
8217 case 3:
8218 abort (); /* Should be unreachable. */
8219 }
8220
8221 if (state == 3)
8222 {
8223 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8224 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8225
8226 elf32_arm_section_data (sec)->erratumcount += 1;
8227
8228 newerr->u.b.vfp_insn = veneer_of_insn;
8229
8230 switch (span_type)
8231 {
8232 case 'a':
8233 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8234 break;
8235
8236 default:
8237 abort ();
8238 }
8239
8240 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8241 first_fmac);
8242
8243 newerr->vma = -1;
8244
8245 newerr->next = sec_data->erratumlist;
8246 sec_data->erratumlist = newerr;
8247
8248 state = 0;
8249 }
8250
8251 i = next_i;
8252 }
8253 }
8254
8255 if (contents != NULL
8256 && elf_section_data (sec)->this_hdr.contents != contents)
8257 free (contents);
8258 contents = NULL;
8259 }
8260
8261 return TRUE;
8262
8263 error_return:
8264 if (contents != NULL
8265 && elf_section_data (sec)->this_hdr.contents != contents)
8266 free (contents);
8267
8268 return FALSE;
8269 }
8270
8271 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8272 after sections have been laid out, using specially-named symbols. */
8273
8274 void
8275 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8276 struct bfd_link_info *link_info)
8277 {
8278 asection *sec;
8279 struct elf32_arm_link_hash_table *globals;
8280 char *tmp_name;
8281
8282 if (bfd_link_relocatable (link_info))
8283 return;
8284
8285 /* Skip if this bfd does not correspond to an ELF image. */
8286 if (! is_arm_elf (abfd))
8287 return;
8288
8289 globals = elf32_arm_hash_table (link_info);
8290 if (globals == NULL)
8291 return;
8292
8293 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8294 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8295
8296 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8297 {
8298 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8299 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8300
8301 for (; errnode != NULL; errnode = errnode->next)
8302 {
8303 struct elf_link_hash_entry *myh;
8304 bfd_vma vma;
8305
8306 switch (errnode->type)
8307 {
8308 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8309 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8310 /* Find veneer symbol. */
8311 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8312 errnode->u.b.veneer->u.v.id);
8313
8314 myh = elf_link_hash_lookup
8315 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8316
8317 if (myh == NULL)
8318 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8319 "`%s'"), abfd, tmp_name);
8320
8321 vma = myh->root.u.def.section->output_section->vma
8322 + myh->root.u.def.section->output_offset
8323 + myh->root.u.def.value;
8324
8325 errnode->u.b.veneer->vma = vma;
8326 break;
8327
8328 case VFP11_ERRATUM_ARM_VENEER:
8329 case VFP11_ERRATUM_THUMB_VENEER:
8330 /* Find return location. */
8331 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8332 errnode->u.v.id);
8333
8334 myh = elf_link_hash_lookup
8335 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8336
8337 if (myh == NULL)
8338 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8339 "`%s'"), abfd, tmp_name);
8340
8341 vma = myh->root.u.def.section->output_section->vma
8342 + myh->root.u.def.section->output_offset
8343 + myh->root.u.def.value;
8344
8345 errnode->u.v.branch->vma = vma;
8346 break;
8347
8348 default:
8349 abort ();
8350 }
8351 }
8352 }
8353
8354 free (tmp_name);
8355 }
8356
8357 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8358 return locations after sections have been laid out, using
8359 specially-named symbols. */
8360
8361 void
8362 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8363 struct bfd_link_info *link_info)
8364 {
8365 asection *sec;
8366 struct elf32_arm_link_hash_table *globals;
8367 char *tmp_name;
8368
8369 if (bfd_link_relocatable (link_info))
8370 return;
8371
8372 /* Skip if this bfd does not correspond to an ELF image. */
8373 if (! is_arm_elf (abfd))
8374 return;
8375
8376 globals = elf32_arm_hash_table (link_info);
8377 if (globals == NULL)
8378 return;
8379
8380 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8381 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8382
8383 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8384 {
8385 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8386 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8387
8388 for (; errnode != NULL; errnode = errnode->next)
8389 {
8390 struct elf_link_hash_entry *myh;
8391 bfd_vma vma;
8392
8393 switch (errnode->type)
8394 {
8395 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8396 /* Find veneer symbol. */
8397 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8398 errnode->u.b.veneer->u.v.id);
8399
8400 myh = elf_link_hash_lookup
8401 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8402
8403 if (myh == NULL)
8404 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8405 "`%s'"), abfd, tmp_name);
8406
8407 vma = myh->root.u.def.section->output_section->vma
8408 + myh->root.u.def.section->output_offset
8409 + myh->root.u.def.value;
8410
8411 errnode->u.b.veneer->vma = vma;
8412 break;
8413
8414 case STM32L4XX_ERRATUM_VENEER:
8415 /* Find return location. */
8416 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8417 errnode->u.v.id);
8418
8419 myh = elf_link_hash_lookup
8420 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8421
8422 if (myh == NULL)
8423 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8424 "`%s'"), abfd, tmp_name);
8425
8426 vma = myh->root.u.def.section->output_section->vma
8427 + myh->root.u.def.section->output_offset
8428 + myh->root.u.def.value;
8429
8430 errnode->u.v.branch->vma = vma;
8431 break;
8432
8433 default:
8434 abort ();
8435 }
8436 }
8437 }
8438
8439 free (tmp_name);
8440 }
8441
8442 static inline bfd_boolean
8443 is_thumb2_ldmia (const insn32 insn)
8444 {
8445 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8446 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8447 return (insn & 0xffd02000) == 0xe8900000;
8448 }
8449
8450 static inline bfd_boolean
8451 is_thumb2_ldmdb (const insn32 insn)
8452 {
8453 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8454 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8455 return (insn & 0xffd02000) == 0xe9100000;
8456 }
8457
8458 static inline bfd_boolean
8459 is_thumb2_vldm (const insn32 insn)
8460 {
8461 /* A6.5 Extension register load or store instruction
8462 A7.7.229
8463 We look for SP 32-bit and DP 64-bit registers.
8464 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8465 <list> is consecutive 64-bit registers
8466 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8467 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8468 <list> is consecutive 32-bit registers
8469 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8470 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8471 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8472 return
8473 (((insn & 0xfe100f00) == 0xec100b00) ||
8474 ((insn & 0xfe100f00) == 0xec100a00))
8475 && /* (IA without !). */
8476 (((((insn << 7) >> 28) & 0xd) == 0x4)
8477 /* (IA with !), includes VPOP (when reg number is SP). */
8478 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8479 /* (DB with !). */
8480 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8481 }
8482
8483 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8484 VLDM opcode and:
8485 - computes the number and the mode of memory accesses
8486 - decides if the replacement should be done:
8487 . replaces only if > 8-word accesses
8488 . or (testing purposes only) replaces all accesses. */
8489
8490 static bfd_boolean
8491 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8492 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8493 {
8494 int nb_words = 0;
8495
8496 /* The field encoding the register list is the same for both LDMIA
8497 and LDMDB encodings. */
8498 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8499 nb_words = popcount (insn & 0x0000ffff);
8500 else if (is_thumb2_vldm (insn))
8501 nb_words = (insn & 0xff);
8502
8503 /* DEFAULT mode accounts for the real bug condition situation,
8504 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8505 return
8506 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8507 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8508 }
8509
8510 /* Look for potentially-troublesome code sequences which might trigger
8511 the STM STM32L4XX erratum. */
8512
8513 bfd_boolean
8514 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8515 struct bfd_link_info *link_info)
8516 {
8517 asection *sec;
8518 bfd_byte *contents = NULL;
8519 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8520
8521 if (globals == NULL)
8522 return FALSE;
8523
8524 /* If we are only performing a partial link do not bother
8525 to construct any glue. */
8526 if (bfd_link_relocatable (link_info))
8527 return TRUE;
8528
8529 /* Skip if this bfd does not correspond to an ELF image. */
8530 if (! is_arm_elf (abfd))
8531 return TRUE;
8532
8533 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8534 return TRUE;
8535
8536 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8537 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8538 return TRUE;
8539
8540 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8541 {
8542 unsigned int i, span;
8543 struct _arm_elf_section_data *sec_data;
8544
8545 /* If we don't have executable progbits, we're not interested in this
8546 section. Also skip if section is to be excluded. */
8547 if (elf_section_type (sec) != SHT_PROGBITS
8548 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8549 || (sec->flags & SEC_EXCLUDE) != 0
8550 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8551 || sec->output_section == bfd_abs_section_ptr
8552 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8553 continue;
8554
8555 sec_data = elf32_arm_section_data (sec);
8556
8557 if (sec_data->mapcount == 0)
8558 continue;
8559
8560 if (elf_section_data (sec)->this_hdr.contents != NULL)
8561 contents = elf_section_data (sec)->this_hdr.contents;
8562 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8563 goto error_return;
8564
8565 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8566 elf32_arm_compare_mapping);
8567
8568 for (span = 0; span < sec_data->mapcount; span++)
8569 {
8570 unsigned int span_start = sec_data->map[span].vma;
8571 unsigned int span_end = (span == sec_data->mapcount - 1)
8572 ? sec->size : sec_data->map[span + 1].vma;
8573 char span_type = sec_data->map[span].type;
8574 int itblock_current_pos = 0;
8575
8576 /* Only Thumb2 mode need be supported with this CM4 specific
8577 code, we should not encounter any arm mode eg span_type
8578 != 'a'. */
8579 if (span_type != 't')
8580 continue;
8581
8582 for (i = span_start; i < span_end;)
8583 {
8584 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8585 bfd_boolean insn_32bit = FALSE;
8586 bfd_boolean is_ldm = FALSE;
8587 bfd_boolean is_vldm = FALSE;
8588 bfd_boolean is_not_last_in_it_block = FALSE;
8589
8590 /* The first 16-bits of all 32-bit thumb2 instructions start
8591 with opcode[15..13]=0b111 and the encoded op1 can be anything
8592 except opcode[12..11]!=0b00.
8593 See 32-bit Thumb instruction encoding. */
8594 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8595 insn_32bit = TRUE;
8596
8597 /* Compute the predicate that tells if the instruction
8598 is concerned by the IT block
8599 - Creates an error if there is a ldm that is not
8600 last in the IT block thus cannot be replaced
8601 - Otherwise we can create a branch at the end of the
8602 IT block, it will be controlled naturally by IT
8603 with the proper pseudo-predicate
8604 - So the only interesting predicate is the one that
8605 tells that we are not on the last item of an IT
8606 block. */
8607 if (itblock_current_pos != 0)
8608 is_not_last_in_it_block = !!--itblock_current_pos;
8609
8610 if (insn_32bit)
8611 {
8612 /* Load the rest of the insn (in manual-friendly order). */
8613 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8614 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8615 is_vldm = is_thumb2_vldm (insn);
8616
8617 /* Veneers are created for (v)ldm depending on
8618 option flags and memory accesses conditions; but
8619 if the instruction is not the last instruction of
8620 an IT block, we cannot create a jump there, so we
8621 bail out. */
8622 if ((is_ldm || is_vldm)
8623 && stm32l4xx_need_create_replacing_stub
8624 (insn, globals->stm32l4xx_fix))
8625 {
8626 if (is_not_last_in_it_block)
8627 {
8628 _bfd_error_handler
8629 /* Note - overlong line used here to allow for translation. */
8630 /* xgettext:c-format */
8631 (_("\
8632 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8633 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8634 abfd, sec, (long) i);
8635 }
8636 else
8637 {
8638 elf32_stm32l4xx_erratum_list *newerr =
8639 (elf32_stm32l4xx_erratum_list *)
8640 bfd_zmalloc
8641 (sizeof (elf32_stm32l4xx_erratum_list));
8642
8643 elf32_arm_section_data (sec)
8644 ->stm32l4xx_erratumcount += 1;
8645 newerr->u.b.insn = insn;
8646 /* We create only thumb branches. */
8647 newerr->type =
8648 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8649 record_stm32l4xx_erratum_veneer
8650 (link_info, newerr, abfd, sec,
8651 i,
8652 is_ldm ?
8653 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8654 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8655 newerr->vma = -1;
8656 newerr->next = sec_data->stm32l4xx_erratumlist;
8657 sec_data->stm32l4xx_erratumlist = newerr;
8658 }
8659 }
8660 }
8661 else
8662 {
8663 /* A7.7.37 IT p208
8664 IT blocks are only encoded in T1
8665 Encoding T1: IT{x{y{z}}} <firstcond>
8666 1 0 1 1 - 1 1 1 1 - firstcond - mask
8667 if mask = '0000' then see 'related encodings'
8668 We don't deal with UNPREDICTABLE, just ignore these.
8669 There can be no nested IT blocks so an IT block
8670 is naturally a new one for which it is worth
8671 computing its size. */
8672 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8673 && ((insn & 0x000f) != 0x0000);
8674 /* If we have a new IT block we compute its size. */
8675 if (is_newitblock)
8676 {
8677 /* Compute the number of instructions controlled
8678 by the IT block, it will be used to decide
8679 whether we are inside an IT block or not. */
8680 unsigned int mask = insn & 0x000f;
8681 itblock_current_pos = 4 - ctz (mask);
8682 }
8683 }
8684
8685 i += insn_32bit ? 4 : 2;
8686 }
8687 }
8688
8689 if (contents != NULL
8690 && elf_section_data (sec)->this_hdr.contents != contents)
8691 free (contents);
8692 contents = NULL;
8693 }
8694
8695 return TRUE;
8696
8697 error_return:
8698 if (contents != NULL
8699 && elf_section_data (sec)->this_hdr.contents != contents)
8700 free (contents);
8701
8702 return FALSE;
8703 }
8704
8705 /* Set target relocation values needed during linking. */
8706
8707 void
8708 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8709 struct bfd_link_info *link_info,
8710 struct elf32_arm_params *params)
8711 {
8712 struct elf32_arm_link_hash_table *globals;
8713
8714 globals = elf32_arm_hash_table (link_info);
8715 if (globals == NULL)
8716 return;
8717
8718 globals->target1_is_rel = params->target1_is_rel;
8719 if (strcmp (params->target2_type, "rel") == 0)
8720 globals->target2_reloc = R_ARM_REL32;
8721 else if (strcmp (params->target2_type, "abs") == 0)
8722 globals->target2_reloc = R_ARM_ABS32;
8723 else if (strcmp (params->target2_type, "got-rel") == 0)
8724 globals->target2_reloc = R_ARM_GOT_PREL;
8725 else
8726 {
8727 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8728 params->target2_type);
8729 }
8730 globals->fix_v4bx = params->fix_v4bx;
8731 globals->use_blx |= params->use_blx;
8732 globals->vfp11_fix = params->vfp11_denorm_fix;
8733 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8734 globals->pic_veneer = params->pic_veneer;
8735 globals->fix_cortex_a8 = params->fix_cortex_a8;
8736 globals->fix_arm1176 = params->fix_arm1176;
8737 globals->cmse_implib = params->cmse_implib;
8738 globals->in_implib_bfd = params->in_implib_bfd;
8739
8740 BFD_ASSERT (is_arm_elf (output_bfd));
8741 elf_arm_tdata (output_bfd)->no_enum_size_warning
8742 = params->no_enum_size_warning;
8743 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8744 = params->no_wchar_size_warning;
8745 }
8746
8747 /* Replace the target offset of a Thumb bl or b.w instruction. */
8748
8749 static void
8750 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8751 {
8752 bfd_vma upper;
8753 bfd_vma lower;
8754 int reloc_sign;
8755
8756 BFD_ASSERT ((offset & 1) == 0);
8757
8758 upper = bfd_get_16 (abfd, insn);
8759 lower = bfd_get_16 (abfd, insn + 2);
8760 reloc_sign = (offset < 0) ? 1 : 0;
8761 upper = (upper & ~(bfd_vma) 0x7ff)
8762 | ((offset >> 12) & 0x3ff)
8763 | (reloc_sign << 10);
8764 lower = (lower & ~(bfd_vma) 0x2fff)
8765 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8766 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8767 | ((offset >> 1) & 0x7ff);
8768 bfd_put_16 (abfd, upper, insn);
8769 bfd_put_16 (abfd, lower, insn + 2);
8770 }
8771
8772 /* Thumb code calling an ARM function. */
8773
8774 static int
8775 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8776 const char * name,
8777 bfd * input_bfd,
8778 bfd * output_bfd,
8779 asection * input_section,
8780 bfd_byte * hit_data,
8781 asection * sym_sec,
8782 bfd_vma offset,
8783 bfd_signed_vma addend,
8784 bfd_vma val,
8785 char **error_message)
8786 {
8787 asection * s = 0;
8788 bfd_vma my_offset;
8789 long int ret_offset;
8790 struct elf_link_hash_entry * myh;
8791 struct elf32_arm_link_hash_table * globals;
8792
8793 myh = find_thumb_glue (info, name, error_message);
8794 if (myh == NULL)
8795 return FALSE;
8796
8797 globals = elf32_arm_hash_table (info);
8798 BFD_ASSERT (globals != NULL);
8799 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8800
8801 my_offset = myh->root.u.def.value;
8802
8803 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8804 THUMB2ARM_GLUE_SECTION_NAME);
8805
8806 BFD_ASSERT (s != NULL);
8807 BFD_ASSERT (s->contents != NULL);
8808 BFD_ASSERT (s->output_section != NULL);
8809
8810 if ((my_offset & 0x01) == 0x01)
8811 {
8812 if (sym_sec != NULL
8813 && sym_sec->owner != NULL
8814 && !INTERWORK_FLAG (sym_sec->owner))
8815 {
8816 _bfd_error_handler
8817 (_("%B(%s): warning: interworking not enabled.\n"
8818 " first occurrence: %B: Thumb call to ARM"),
8819 sym_sec->owner, input_bfd, name);
8820
8821 return FALSE;
8822 }
8823
8824 --my_offset;
8825 myh->root.u.def.value = my_offset;
8826
8827 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8828 s->contents + my_offset);
8829
8830 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8831 s->contents + my_offset + 2);
8832
8833 ret_offset =
8834 /* Address of destination of the stub. */
8835 ((bfd_signed_vma) val)
8836 - ((bfd_signed_vma)
8837 /* Offset from the start of the current section
8838 to the start of the stubs. */
8839 (s->output_offset
8840 /* Offset of the start of this stub from the start of the stubs. */
8841 + my_offset
8842 /* Address of the start of the current section. */
8843 + s->output_section->vma)
8844 /* The branch instruction is 4 bytes into the stub. */
8845 + 4
8846 /* ARM branches work from the pc of the instruction + 8. */
8847 + 8);
8848
8849 put_arm_insn (globals, output_bfd,
8850 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8851 s->contents + my_offset + 4);
8852 }
8853
8854 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8855
8856 /* Now go back and fix up the original BL insn to point to here. */
8857 ret_offset =
8858 /* Address of where the stub is located. */
8859 (s->output_section->vma + s->output_offset + my_offset)
8860 /* Address of where the BL is located. */
8861 - (input_section->output_section->vma + input_section->output_offset
8862 + offset)
8863 /* Addend in the relocation. */
8864 - addend
8865 /* Biassing for PC-relative addressing. */
8866 - 8;
8867
8868 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8869
8870 return TRUE;
8871 }
8872
8873 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8874
8875 static struct elf_link_hash_entry *
8876 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8877 const char * name,
8878 bfd * input_bfd,
8879 bfd * output_bfd,
8880 asection * sym_sec,
8881 bfd_vma val,
8882 asection * s,
8883 char ** error_message)
8884 {
8885 bfd_vma my_offset;
8886 long int ret_offset;
8887 struct elf_link_hash_entry * myh;
8888 struct elf32_arm_link_hash_table * globals;
8889
8890 myh = find_arm_glue (info, name, error_message);
8891 if (myh == NULL)
8892 return NULL;
8893
8894 globals = elf32_arm_hash_table (info);
8895 BFD_ASSERT (globals != NULL);
8896 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8897
8898 my_offset = myh->root.u.def.value;
8899
8900 if ((my_offset & 0x01) == 0x01)
8901 {
8902 if (sym_sec != NULL
8903 && sym_sec->owner != NULL
8904 && !INTERWORK_FLAG (sym_sec->owner))
8905 {
8906 _bfd_error_handler
8907 (_("%B(%s): warning: interworking not enabled.\n"
8908 " first occurrence: %B: arm call to thumb"),
8909 sym_sec->owner, input_bfd, name);
8910 }
8911
8912 --my_offset;
8913 myh->root.u.def.value = my_offset;
8914
8915 if (bfd_link_pic (info)
8916 || globals->root.is_relocatable_executable
8917 || globals->pic_veneer)
8918 {
8919 /* For relocatable objects we can't use absolute addresses,
8920 so construct the address from a relative offset. */
8921 /* TODO: If the offset is small it's probably worth
8922 constructing the address with adds. */
8923 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8924 s->contents + my_offset);
8925 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8926 s->contents + my_offset + 4);
8927 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8928 s->contents + my_offset + 8);
8929 /* Adjust the offset by 4 for the position of the add,
8930 and 8 for the pipeline offset. */
8931 ret_offset = (val - (s->output_offset
8932 + s->output_section->vma
8933 + my_offset + 12))
8934 | 1;
8935 bfd_put_32 (output_bfd, ret_offset,
8936 s->contents + my_offset + 12);
8937 }
8938 else if (globals->use_blx)
8939 {
8940 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8941 s->contents + my_offset);
8942
8943 /* It's a thumb address. Add the low order bit. */
8944 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8945 s->contents + my_offset + 4);
8946 }
8947 else
8948 {
8949 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8950 s->contents + my_offset);
8951
8952 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8953 s->contents + my_offset + 4);
8954
8955 /* It's a thumb address. Add the low order bit. */
8956 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8957 s->contents + my_offset + 8);
8958
8959 my_offset += 12;
8960 }
8961 }
8962
8963 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8964
8965 return myh;
8966 }
8967
8968 /* Arm code calling a Thumb function. */
8969
8970 static int
8971 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8972 const char * name,
8973 bfd * input_bfd,
8974 bfd * output_bfd,
8975 asection * input_section,
8976 bfd_byte * hit_data,
8977 asection * sym_sec,
8978 bfd_vma offset,
8979 bfd_signed_vma addend,
8980 bfd_vma val,
8981 char **error_message)
8982 {
8983 unsigned long int tmp;
8984 bfd_vma my_offset;
8985 asection * s;
8986 long int ret_offset;
8987 struct elf_link_hash_entry * myh;
8988 struct elf32_arm_link_hash_table * globals;
8989
8990 globals = elf32_arm_hash_table (info);
8991 BFD_ASSERT (globals != NULL);
8992 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8993
8994 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8995 ARM2THUMB_GLUE_SECTION_NAME);
8996 BFD_ASSERT (s != NULL);
8997 BFD_ASSERT (s->contents != NULL);
8998 BFD_ASSERT (s->output_section != NULL);
8999
9000 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9001 sym_sec, val, s, error_message);
9002 if (!myh)
9003 return FALSE;
9004
9005 my_offset = myh->root.u.def.value;
9006 tmp = bfd_get_32 (input_bfd, hit_data);
9007 tmp = tmp & 0xFF000000;
9008
9009 /* Somehow these are both 4 too far, so subtract 8. */
9010 ret_offset = (s->output_offset
9011 + my_offset
9012 + s->output_section->vma
9013 - (input_section->output_offset
9014 + input_section->output_section->vma
9015 + offset + addend)
9016 - 8);
9017
9018 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9019
9020 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9021
9022 return TRUE;
9023 }
9024
9025 /* Populate Arm stub for an exported Thumb function. */
9026
9027 static bfd_boolean
9028 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9029 {
9030 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9031 asection * s;
9032 struct elf_link_hash_entry * myh;
9033 struct elf32_arm_link_hash_entry *eh;
9034 struct elf32_arm_link_hash_table * globals;
9035 asection *sec;
9036 bfd_vma val;
9037 char *error_message;
9038
9039 eh = elf32_arm_hash_entry (h);
9040 /* Allocate stubs for exported Thumb functions on v4t. */
9041 if (eh->export_glue == NULL)
9042 return TRUE;
9043
9044 globals = elf32_arm_hash_table (info);
9045 BFD_ASSERT (globals != NULL);
9046 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9047
9048 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9049 ARM2THUMB_GLUE_SECTION_NAME);
9050 BFD_ASSERT (s != NULL);
9051 BFD_ASSERT (s->contents != NULL);
9052 BFD_ASSERT (s->output_section != NULL);
9053
9054 sec = eh->export_glue->root.u.def.section;
9055
9056 BFD_ASSERT (sec->output_section != NULL);
9057
9058 val = eh->export_glue->root.u.def.value + sec->output_offset
9059 + sec->output_section->vma;
9060
9061 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9062 h->root.u.def.section->owner,
9063 globals->obfd, sec, val, s,
9064 &error_message);
9065 BFD_ASSERT (myh);
9066 return TRUE;
9067 }
9068
9069 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9070
9071 static bfd_vma
9072 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9073 {
9074 bfd_byte *p;
9075 bfd_vma glue_addr;
9076 asection *s;
9077 struct elf32_arm_link_hash_table *globals;
9078
9079 globals = elf32_arm_hash_table (info);
9080 BFD_ASSERT (globals != NULL);
9081 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9082
9083 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9084 ARM_BX_GLUE_SECTION_NAME);
9085 BFD_ASSERT (s != NULL);
9086 BFD_ASSERT (s->contents != NULL);
9087 BFD_ASSERT (s->output_section != NULL);
9088
9089 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9090
9091 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9092
9093 if ((globals->bx_glue_offset[reg] & 1) == 0)
9094 {
9095 p = s->contents + glue_addr;
9096 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9097 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9098 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9099 globals->bx_glue_offset[reg] |= 1;
9100 }
9101
9102 return glue_addr + s->output_section->vma + s->output_offset;
9103 }
9104
9105 /* Generate Arm stubs for exported Thumb symbols. */
9106 static void
9107 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9108 struct bfd_link_info *link_info)
9109 {
9110 struct elf32_arm_link_hash_table * globals;
9111
9112 if (link_info == NULL)
9113 /* Ignore this if we are not called by the ELF backend linker. */
9114 return;
9115
9116 globals = elf32_arm_hash_table (link_info);
9117 if (globals == NULL)
9118 return;
9119
9120 /* If blx is available then exported Thumb symbols are OK and there is
9121 nothing to do. */
9122 if (globals->use_blx)
9123 return;
9124
9125 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9126 link_info);
9127 }
9128
9129 /* Reserve space for COUNT dynamic relocations in relocation selection
9130 SRELOC. */
9131
9132 static void
9133 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9134 bfd_size_type count)
9135 {
9136 struct elf32_arm_link_hash_table *htab;
9137
9138 htab = elf32_arm_hash_table (info);
9139 BFD_ASSERT (htab->root.dynamic_sections_created);
9140 if (sreloc == NULL)
9141 abort ();
9142 sreloc->size += RELOC_SIZE (htab) * count;
9143 }
9144
9145 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9146 dynamic, the relocations should go in SRELOC, otherwise they should
9147 go in the special .rel.iplt section. */
9148
9149 static void
9150 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9151 bfd_size_type count)
9152 {
9153 struct elf32_arm_link_hash_table *htab;
9154
9155 htab = elf32_arm_hash_table (info);
9156 if (!htab->root.dynamic_sections_created)
9157 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9158 else
9159 {
9160 BFD_ASSERT (sreloc != NULL);
9161 sreloc->size += RELOC_SIZE (htab) * count;
9162 }
9163 }
9164
9165 /* Add relocation REL to the end of relocation section SRELOC. */
9166
9167 static void
9168 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9169 asection *sreloc, Elf_Internal_Rela *rel)
9170 {
9171 bfd_byte *loc;
9172 struct elf32_arm_link_hash_table *htab;
9173
9174 htab = elf32_arm_hash_table (info);
9175 if (!htab->root.dynamic_sections_created
9176 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9177 sreloc = htab->root.irelplt;
9178 if (sreloc == NULL)
9179 abort ();
9180 loc = sreloc->contents;
9181 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9182 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9183 abort ();
9184 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9185 }
9186
9187 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9188 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9189 to .plt. */
9190
9191 static void
9192 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9193 bfd_boolean is_iplt_entry,
9194 union gotplt_union *root_plt,
9195 struct arm_plt_info *arm_plt)
9196 {
9197 struct elf32_arm_link_hash_table *htab;
9198 asection *splt;
9199 asection *sgotplt;
9200
9201 htab = elf32_arm_hash_table (info);
9202
9203 if (is_iplt_entry)
9204 {
9205 splt = htab->root.iplt;
9206 sgotplt = htab->root.igotplt;
9207
9208 /* NaCl uses a special first entry in .iplt too. */
9209 if (htab->nacl_p && splt->size == 0)
9210 splt->size += htab->plt_header_size;
9211
9212 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9213 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9214 }
9215 else
9216 {
9217 splt = htab->root.splt;
9218 sgotplt = htab->root.sgotplt;
9219
9220 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9221 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9222
9223 /* If this is the first .plt entry, make room for the special
9224 first entry. */
9225 if (splt->size == 0)
9226 splt->size += htab->plt_header_size;
9227
9228 htab->next_tls_desc_index++;
9229 }
9230
9231 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9232 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9233 splt->size += PLT_THUMB_STUB_SIZE;
9234 root_plt->offset = splt->size;
9235 splt->size += htab->plt_entry_size;
9236
9237 if (!htab->symbian_p)
9238 {
9239 /* We also need to make an entry in the .got.plt section, which
9240 will be placed in the .got section by the linker script. */
9241 if (is_iplt_entry)
9242 arm_plt->got_offset = sgotplt->size;
9243 else
9244 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9245 sgotplt->size += 4;
9246 }
9247 }
9248
9249 static bfd_vma
9250 arm_movw_immediate (bfd_vma value)
9251 {
9252 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9253 }
9254
9255 static bfd_vma
9256 arm_movt_immediate (bfd_vma value)
9257 {
9258 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9259 }
9260
9261 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9262 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9263 Otherwise, DYNINDX is the index of the symbol in the dynamic
9264 symbol table and SYM_VALUE is undefined.
9265
9266 ROOT_PLT points to the offset of the PLT entry from the start of its
9267 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9268 bookkeeping information.
9269
9270 Returns FALSE if there was a problem. */
9271
9272 static bfd_boolean
9273 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9274 union gotplt_union *root_plt,
9275 struct arm_plt_info *arm_plt,
9276 int dynindx, bfd_vma sym_value)
9277 {
9278 struct elf32_arm_link_hash_table *htab;
9279 asection *sgot;
9280 asection *splt;
9281 asection *srel;
9282 bfd_byte *loc;
9283 bfd_vma plt_index;
9284 Elf_Internal_Rela rel;
9285 bfd_vma plt_header_size;
9286 bfd_vma got_header_size;
9287
9288 htab = elf32_arm_hash_table (info);
9289
9290 /* Pick the appropriate sections and sizes. */
9291 if (dynindx == -1)
9292 {
9293 splt = htab->root.iplt;
9294 sgot = htab->root.igotplt;
9295 srel = htab->root.irelplt;
9296
9297 /* There are no reserved entries in .igot.plt, and no special
9298 first entry in .iplt. */
9299 got_header_size = 0;
9300 plt_header_size = 0;
9301 }
9302 else
9303 {
9304 splt = htab->root.splt;
9305 sgot = htab->root.sgotplt;
9306 srel = htab->root.srelplt;
9307
9308 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9309 plt_header_size = htab->plt_header_size;
9310 }
9311 BFD_ASSERT (splt != NULL && srel != NULL);
9312
9313 /* Fill in the entry in the procedure linkage table. */
9314 if (htab->symbian_p)
9315 {
9316 BFD_ASSERT (dynindx >= 0);
9317 put_arm_insn (htab, output_bfd,
9318 elf32_arm_symbian_plt_entry[0],
9319 splt->contents + root_plt->offset);
9320 bfd_put_32 (output_bfd,
9321 elf32_arm_symbian_plt_entry[1],
9322 splt->contents + root_plt->offset + 4);
9323
9324 /* Fill in the entry in the .rel.plt section. */
9325 rel.r_offset = (splt->output_section->vma
9326 + splt->output_offset
9327 + root_plt->offset + 4);
9328 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9329
9330 /* Get the index in the procedure linkage table which
9331 corresponds to this symbol. This is the index of this symbol
9332 in all the symbols for which we are making plt entries. The
9333 first entry in the procedure linkage table is reserved. */
9334 plt_index = ((root_plt->offset - plt_header_size)
9335 / htab->plt_entry_size);
9336 }
9337 else
9338 {
9339 bfd_vma got_offset, got_address, plt_address;
9340 bfd_vma got_displacement, initial_got_entry;
9341 bfd_byte * ptr;
9342
9343 BFD_ASSERT (sgot != NULL);
9344
9345 /* Get the offset into the .(i)got.plt table of the entry that
9346 corresponds to this function. */
9347 got_offset = (arm_plt->got_offset & -2);
9348
9349 /* Get the index in the procedure linkage table which
9350 corresponds to this symbol. This is the index of this symbol
9351 in all the symbols for which we are making plt entries.
9352 After the reserved .got.plt entries, all symbols appear in
9353 the same order as in .plt. */
9354 plt_index = (got_offset - got_header_size) / 4;
9355
9356 /* Calculate the address of the GOT entry. */
9357 got_address = (sgot->output_section->vma
9358 + sgot->output_offset
9359 + got_offset);
9360
9361 /* ...and the address of the PLT entry. */
9362 plt_address = (splt->output_section->vma
9363 + splt->output_offset
9364 + root_plt->offset);
9365
9366 ptr = splt->contents + root_plt->offset;
9367 if (htab->vxworks_p && bfd_link_pic (info))
9368 {
9369 unsigned int i;
9370 bfd_vma val;
9371
9372 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9373 {
9374 val = elf32_arm_vxworks_shared_plt_entry[i];
9375 if (i == 2)
9376 val |= got_address - sgot->output_section->vma;
9377 if (i == 5)
9378 val |= plt_index * RELOC_SIZE (htab);
9379 if (i == 2 || i == 5)
9380 bfd_put_32 (output_bfd, val, ptr);
9381 else
9382 put_arm_insn (htab, output_bfd, val, ptr);
9383 }
9384 }
9385 else if (htab->vxworks_p)
9386 {
9387 unsigned int i;
9388 bfd_vma val;
9389
9390 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9391 {
9392 val = elf32_arm_vxworks_exec_plt_entry[i];
9393 if (i == 2)
9394 val |= got_address;
9395 if (i == 4)
9396 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9397 if (i == 5)
9398 val |= plt_index * RELOC_SIZE (htab);
9399 if (i == 2 || i == 5)
9400 bfd_put_32 (output_bfd, val, ptr);
9401 else
9402 put_arm_insn (htab, output_bfd, val, ptr);
9403 }
9404
9405 loc = (htab->srelplt2->contents
9406 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9407
9408 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9409 referencing the GOT for this PLT entry. */
9410 rel.r_offset = plt_address + 8;
9411 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9412 rel.r_addend = got_offset;
9413 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9414 loc += RELOC_SIZE (htab);
9415
9416 /* Create the R_ARM_ABS32 relocation referencing the
9417 beginning of the PLT for this GOT entry. */
9418 rel.r_offset = got_address;
9419 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9420 rel.r_addend = 0;
9421 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9422 }
9423 else if (htab->nacl_p)
9424 {
9425 /* Calculate the displacement between the PLT slot and the
9426 common tail that's part of the special initial PLT slot. */
9427 int32_t tail_displacement
9428 = ((splt->output_section->vma + splt->output_offset
9429 + ARM_NACL_PLT_TAIL_OFFSET)
9430 - (plt_address + htab->plt_entry_size + 4));
9431 BFD_ASSERT ((tail_displacement & 3) == 0);
9432 tail_displacement >>= 2;
9433
9434 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9435 || (-tail_displacement & 0xff000000) == 0);
9436
9437 /* Calculate the displacement between the PLT slot and the entry
9438 in the GOT. The offset accounts for the value produced by
9439 adding to pc in the penultimate instruction of the PLT stub. */
9440 got_displacement = (got_address
9441 - (plt_address + htab->plt_entry_size));
9442
9443 /* NaCl does not support interworking at all. */
9444 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9445
9446 put_arm_insn (htab, output_bfd,
9447 elf32_arm_nacl_plt_entry[0]
9448 | arm_movw_immediate (got_displacement),
9449 ptr + 0);
9450 put_arm_insn (htab, output_bfd,
9451 elf32_arm_nacl_plt_entry[1]
9452 | arm_movt_immediate (got_displacement),
9453 ptr + 4);
9454 put_arm_insn (htab, output_bfd,
9455 elf32_arm_nacl_plt_entry[2],
9456 ptr + 8);
9457 put_arm_insn (htab, output_bfd,
9458 elf32_arm_nacl_plt_entry[3]
9459 | (tail_displacement & 0x00ffffff),
9460 ptr + 12);
9461 }
9462 else if (using_thumb_only (htab))
9463 {
9464 /* PR ld/16017: Generate thumb only PLT entries. */
9465 if (!using_thumb2 (htab))
9466 {
9467 /* FIXME: We ought to be able to generate thumb-1 PLT
9468 instructions... */
9469 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9470 output_bfd);
9471 return FALSE;
9472 }
9473
9474 /* Calculate the displacement between the PLT slot and the entry in
9475 the GOT. The 12-byte offset accounts for the value produced by
9476 adding to pc in the 3rd instruction of the PLT stub. */
9477 got_displacement = got_address - (plt_address + 12);
9478
9479 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9480 instead of 'put_thumb_insn'. */
9481 put_arm_insn (htab, output_bfd,
9482 elf32_thumb2_plt_entry[0]
9483 | ((got_displacement & 0x000000ff) << 16)
9484 | ((got_displacement & 0x00000700) << 20)
9485 | ((got_displacement & 0x00000800) >> 1)
9486 | ((got_displacement & 0x0000f000) >> 12),
9487 ptr + 0);
9488 put_arm_insn (htab, output_bfd,
9489 elf32_thumb2_plt_entry[1]
9490 | ((got_displacement & 0x00ff0000) )
9491 | ((got_displacement & 0x07000000) << 4)
9492 | ((got_displacement & 0x08000000) >> 17)
9493 | ((got_displacement & 0xf0000000) >> 28),
9494 ptr + 4);
9495 put_arm_insn (htab, output_bfd,
9496 elf32_thumb2_plt_entry[2],
9497 ptr + 8);
9498 put_arm_insn (htab, output_bfd,
9499 elf32_thumb2_plt_entry[3],
9500 ptr + 12);
9501 }
9502 else
9503 {
9504 /* Calculate the displacement between the PLT slot and the
9505 entry in the GOT. The eight-byte offset accounts for the
9506 value produced by adding to pc in the first instruction
9507 of the PLT stub. */
9508 got_displacement = got_address - (plt_address + 8);
9509
9510 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9511 {
9512 put_thumb_insn (htab, output_bfd,
9513 elf32_arm_plt_thumb_stub[0], ptr - 4);
9514 put_thumb_insn (htab, output_bfd,
9515 elf32_arm_plt_thumb_stub[1], ptr - 2);
9516 }
9517
9518 if (!elf32_arm_use_long_plt_entry)
9519 {
9520 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9521
9522 put_arm_insn (htab, output_bfd,
9523 elf32_arm_plt_entry_short[0]
9524 | ((got_displacement & 0x0ff00000) >> 20),
9525 ptr + 0);
9526 put_arm_insn (htab, output_bfd,
9527 elf32_arm_plt_entry_short[1]
9528 | ((got_displacement & 0x000ff000) >> 12),
9529 ptr+ 4);
9530 put_arm_insn (htab, output_bfd,
9531 elf32_arm_plt_entry_short[2]
9532 | (got_displacement & 0x00000fff),
9533 ptr + 8);
9534 #ifdef FOUR_WORD_PLT
9535 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9536 #endif
9537 }
9538 else
9539 {
9540 put_arm_insn (htab, output_bfd,
9541 elf32_arm_plt_entry_long[0]
9542 | ((got_displacement & 0xf0000000) >> 28),
9543 ptr + 0);
9544 put_arm_insn (htab, output_bfd,
9545 elf32_arm_plt_entry_long[1]
9546 | ((got_displacement & 0x0ff00000) >> 20),
9547 ptr + 4);
9548 put_arm_insn (htab, output_bfd,
9549 elf32_arm_plt_entry_long[2]
9550 | ((got_displacement & 0x000ff000) >> 12),
9551 ptr+ 8);
9552 put_arm_insn (htab, output_bfd,
9553 elf32_arm_plt_entry_long[3]
9554 | (got_displacement & 0x00000fff),
9555 ptr + 12);
9556 }
9557 }
9558
9559 /* Fill in the entry in the .rel(a).(i)plt section. */
9560 rel.r_offset = got_address;
9561 rel.r_addend = 0;
9562 if (dynindx == -1)
9563 {
9564 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9565 The dynamic linker or static executable then calls SYM_VALUE
9566 to determine the correct run-time value of the .igot.plt entry. */
9567 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9568 initial_got_entry = sym_value;
9569 }
9570 else
9571 {
9572 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9573 initial_got_entry = (splt->output_section->vma
9574 + splt->output_offset);
9575 }
9576
9577 /* Fill in the entry in the global offset table. */
9578 bfd_put_32 (output_bfd, initial_got_entry,
9579 sgot->contents + got_offset);
9580 }
9581
9582 if (dynindx == -1)
9583 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9584 else
9585 {
9586 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9587 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9588 }
9589
9590 return TRUE;
9591 }
9592
9593 /* Some relocations map to different relocations depending on the
9594 target. Return the real relocation. */
9595
9596 static int
9597 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9598 int r_type)
9599 {
9600 switch (r_type)
9601 {
9602 case R_ARM_TARGET1:
9603 if (globals->target1_is_rel)
9604 return R_ARM_REL32;
9605 else
9606 return R_ARM_ABS32;
9607
9608 case R_ARM_TARGET2:
9609 return globals->target2_reloc;
9610
9611 default:
9612 return r_type;
9613 }
9614 }
9615
9616 /* Return the base VMA address which should be subtracted from real addresses
9617 when resolving @dtpoff relocation.
9618 This is PT_TLS segment p_vaddr. */
9619
9620 static bfd_vma
9621 dtpoff_base (struct bfd_link_info *info)
9622 {
9623 /* If tls_sec is NULL, we should have signalled an error already. */
9624 if (elf_hash_table (info)->tls_sec == NULL)
9625 return 0;
9626 return elf_hash_table (info)->tls_sec->vma;
9627 }
9628
9629 /* Return the relocation value for @tpoff relocation
9630 if STT_TLS virtual address is ADDRESS. */
9631
9632 static bfd_vma
9633 tpoff (struct bfd_link_info *info, bfd_vma address)
9634 {
9635 struct elf_link_hash_table *htab = elf_hash_table (info);
9636 bfd_vma base;
9637
9638 /* If tls_sec is NULL, we should have signalled an error already. */
9639 if (htab->tls_sec == NULL)
9640 return 0;
9641 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9642 return address - htab->tls_sec->vma + base;
9643 }
9644
9645 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9646 VALUE is the relocation value. */
9647
9648 static bfd_reloc_status_type
9649 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9650 {
9651 if (value > 0xfff)
9652 return bfd_reloc_overflow;
9653
9654 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9655 bfd_put_32 (abfd, value, data);
9656 return bfd_reloc_ok;
9657 }
9658
9659 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9660 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9661 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9662
9663 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9664 is to then call final_link_relocate. Return other values in the
9665 case of error.
9666
9667 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9668 the pre-relaxed code. It would be nice if the relocs were updated
9669 to match the optimization. */
9670
9671 static bfd_reloc_status_type
9672 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9673 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9674 Elf_Internal_Rela *rel, unsigned long is_local)
9675 {
9676 unsigned long insn;
9677
9678 switch (ELF32_R_TYPE (rel->r_info))
9679 {
9680 default:
9681 return bfd_reloc_notsupported;
9682
9683 case R_ARM_TLS_GOTDESC:
9684 if (is_local)
9685 insn = 0;
9686 else
9687 {
9688 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9689 if (insn & 1)
9690 insn -= 5; /* THUMB */
9691 else
9692 insn -= 8; /* ARM */
9693 }
9694 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9695 return bfd_reloc_continue;
9696
9697 case R_ARM_THM_TLS_DESCSEQ:
9698 /* Thumb insn. */
9699 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9700 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9701 {
9702 if (is_local)
9703 /* nop */
9704 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9705 }
9706 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9707 {
9708 if (is_local)
9709 /* nop */
9710 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9711 else
9712 /* ldr rx,[ry] */
9713 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9714 }
9715 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9716 {
9717 if (is_local)
9718 /* nop */
9719 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9720 else
9721 /* mov r0, rx */
9722 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9723 contents + rel->r_offset);
9724 }
9725 else
9726 {
9727 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9728 /* It's a 32 bit instruction, fetch the rest of it for
9729 error generation. */
9730 insn = (insn << 16)
9731 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9732 _bfd_error_handler
9733 /* xgettext:c-format */
9734 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
9735 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9736 return bfd_reloc_notsupported;
9737 }
9738 break;
9739
9740 case R_ARM_TLS_DESCSEQ:
9741 /* arm insn. */
9742 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9743 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9744 {
9745 if (is_local)
9746 /* mov rx, ry */
9747 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9748 contents + rel->r_offset);
9749 }
9750 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9751 {
9752 if (is_local)
9753 /* nop */
9754 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9755 else
9756 /* ldr rx,[ry] */
9757 bfd_put_32 (input_bfd, insn & 0xfffff000,
9758 contents + rel->r_offset);
9759 }
9760 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9761 {
9762 if (is_local)
9763 /* nop */
9764 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9765 else
9766 /* mov r0, rx */
9767 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9768 contents + rel->r_offset);
9769 }
9770 else
9771 {
9772 _bfd_error_handler
9773 /* xgettext:c-format */
9774 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
9775 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9776 return bfd_reloc_notsupported;
9777 }
9778 break;
9779
9780 case R_ARM_TLS_CALL:
9781 /* GD->IE relaxation, turn the instruction into 'nop' or
9782 'ldr r0, [pc,r0]' */
9783 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9784 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9785 break;
9786
9787 case R_ARM_THM_TLS_CALL:
9788 /* GD->IE relaxation. */
9789 if (!is_local)
9790 /* add r0,pc; ldr r0, [r0] */
9791 insn = 0x44786800;
9792 else if (using_thumb2 (globals))
9793 /* nop.w */
9794 insn = 0xf3af8000;
9795 else
9796 /* nop; nop */
9797 insn = 0xbf00bf00;
9798
9799 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9800 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9801 break;
9802 }
9803 return bfd_reloc_ok;
9804 }
9805
9806 /* For a given value of n, calculate the value of G_n as required to
9807 deal with group relocations. We return it in the form of an
9808 encoded constant-and-rotation, together with the final residual. If n is
9809 specified as less than zero, then final_residual is filled with the
9810 input value and no further action is performed. */
9811
9812 static bfd_vma
9813 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9814 {
9815 int current_n;
9816 bfd_vma g_n;
9817 bfd_vma encoded_g_n = 0;
9818 bfd_vma residual = value; /* Also known as Y_n. */
9819
9820 for (current_n = 0; current_n <= n; current_n++)
9821 {
9822 int shift;
9823
9824 /* Calculate which part of the value to mask. */
9825 if (residual == 0)
9826 shift = 0;
9827 else
9828 {
9829 int msb;
9830
9831 /* Determine the most significant bit in the residual and
9832 align the resulting value to a 2-bit boundary. */
9833 for (msb = 30; msb >= 0; msb -= 2)
9834 if (residual & (3 << msb))
9835 break;
9836
9837 /* The desired shift is now (msb - 6), or zero, whichever
9838 is the greater. */
9839 shift = msb - 6;
9840 if (shift < 0)
9841 shift = 0;
9842 }
9843
9844 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9845 g_n = residual & (0xff << shift);
9846 encoded_g_n = (g_n >> shift)
9847 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9848
9849 /* Calculate the residual for the next time around. */
9850 residual &= ~g_n;
9851 }
9852
9853 *final_residual = residual;
9854
9855 return encoded_g_n;
9856 }
9857
9858 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9859 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9860
9861 static int
9862 identify_add_or_sub (bfd_vma insn)
9863 {
9864 int opcode = insn & 0x1e00000;
9865
9866 if (opcode == 1 << 23) /* ADD */
9867 return 1;
9868
9869 if (opcode == 1 << 22) /* SUB */
9870 return -1;
9871
9872 return 0;
9873 }
9874
9875 /* Perform a relocation as part of a final link. */
9876
9877 static bfd_reloc_status_type
9878 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9879 bfd * input_bfd,
9880 bfd * output_bfd,
9881 asection * input_section,
9882 bfd_byte * contents,
9883 Elf_Internal_Rela * rel,
9884 bfd_vma value,
9885 struct bfd_link_info * info,
9886 asection * sym_sec,
9887 const char * sym_name,
9888 unsigned char st_type,
9889 enum arm_st_branch_type branch_type,
9890 struct elf_link_hash_entry * h,
9891 bfd_boolean * unresolved_reloc_p,
9892 char ** error_message)
9893 {
9894 unsigned long r_type = howto->type;
9895 unsigned long r_symndx;
9896 bfd_byte * hit_data = contents + rel->r_offset;
9897 bfd_vma * local_got_offsets;
9898 bfd_vma * local_tlsdesc_gotents;
9899 asection * sgot;
9900 asection * splt;
9901 asection * sreloc = NULL;
9902 asection * srelgot;
9903 bfd_vma addend;
9904 bfd_signed_vma signed_addend;
9905 unsigned char dynreloc_st_type;
9906 bfd_vma dynreloc_value;
9907 struct elf32_arm_link_hash_table * globals;
9908 struct elf32_arm_link_hash_entry *eh;
9909 union gotplt_union *root_plt;
9910 struct arm_plt_info *arm_plt;
9911 bfd_vma plt_offset;
9912 bfd_vma gotplt_offset;
9913 bfd_boolean has_iplt_entry;
9914
9915 globals = elf32_arm_hash_table (info);
9916 if (globals == NULL)
9917 return bfd_reloc_notsupported;
9918
9919 BFD_ASSERT (is_arm_elf (input_bfd));
9920
9921 /* Some relocation types map to different relocations depending on the
9922 target. We pick the right one here. */
9923 r_type = arm_real_reloc_type (globals, r_type);
9924
9925 /* It is possible to have linker relaxations on some TLS access
9926 models. Update our information here. */
9927 r_type = elf32_arm_tls_transition (info, r_type, h);
9928
9929 if (r_type != howto->type)
9930 howto = elf32_arm_howto_from_type (r_type);
9931
9932 eh = (struct elf32_arm_link_hash_entry *) h;
9933 sgot = globals->root.sgot;
9934 local_got_offsets = elf_local_got_offsets (input_bfd);
9935 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9936
9937 if (globals->root.dynamic_sections_created)
9938 srelgot = globals->root.srelgot;
9939 else
9940 srelgot = NULL;
9941
9942 r_symndx = ELF32_R_SYM (rel->r_info);
9943
9944 if (globals->use_rel)
9945 {
9946 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9947
9948 if (addend & ((howto->src_mask + 1) >> 1))
9949 {
9950 signed_addend = -1;
9951 signed_addend &= ~ howto->src_mask;
9952 signed_addend |= addend;
9953 }
9954 else
9955 signed_addend = addend;
9956 }
9957 else
9958 addend = signed_addend = rel->r_addend;
9959
9960 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9961 are resolving a function call relocation. */
9962 if (using_thumb_only (globals)
9963 && (r_type == R_ARM_THM_CALL
9964 || r_type == R_ARM_THM_JUMP24)
9965 && branch_type == ST_BRANCH_TO_ARM)
9966 branch_type = ST_BRANCH_TO_THUMB;
9967
9968 /* Record the symbol information that should be used in dynamic
9969 relocations. */
9970 dynreloc_st_type = st_type;
9971 dynreloc_value = value;
9972 if (branch_type == ST_BRANCH_TO_THUMB)
9973 dynreloc_value |= 1;
9974
9975 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9976 VALUE appropriately for relocations that we resolve at link time. */
9977 has_iplt_entry = FALSE;
9978 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9979 &arm_plt)
9980 && root_plt->offset != (bfd_vma) -1)
9981 {
9982 plt_offset = root_plt->offset;
9983 gotplt_offset = arm_plt->got_offset;
9984
9985 if (h == NULL || eh->is_iplt)
9986 {
9987 has_iplt_entry = TRUE;
9988 splt = globals->root.iplt;
9989
9990 /* Populate .iplt entries here, because not all of them will
9991 be seen by finish_dynamic_symbol. The lower bit is set if
9992 we have already populated the entry. */
9993 if (plt_offset & 1)
9994 plt_offset--;
9995 else
9996 {
9997 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9998 -1, dynreloc_value))
9999 root_plt->offset |= 1;
10000 else
10001 return bfd_reloc_notsupported;
10002 }
10003
10004 /* Static relocations always resolve to the .iplt entry. */
10005 st_type = STT_FUNC;
10006 value = (splt->output_section->vma
10007 + splt->output_offset
10008 + plt_offset);
10009 branch_type = ST_BRANCH_TO_ARM;
10010
10011 /* If there are non-call relocations that resolve to the .iplt
10012 entry, then all dynamic ones must too. */
10013 if (arm_plt->noncall_refcount != 0)
10014 {
10015 dynreloc_st_type = st_type;
10016 dynreloc_value = value;
10017 }
10018 }
10019 else
10020 /* We populate the .plt entry in finish_dynamic_symbol. */
10021 splt = globals->root.splt;
10022 }
10023 else
10024 {
10025 splt = NULL;
10026 plt_offset = (bfd_vma) -1;
10027 gotplt_offset = (bfd_vma) -1;
10028 }
10029
10030 switch (r_type)
10031 {
10032 case R_ARM_NONE:
10033 /* We don't need to find a value for this symbol. It's just a
10034 marker. */
10035 *unresolved_reloc_p = FALSE;
10036 return bfd_reloc_ok;
10037
10038 case R_ARM_ABS12:
10039 if (!globals->vxworks_p)
10040 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10041 /* Fall through. */
10042
10043 case R_ARM_PC24:
10044 case R_ARM_ABS32:
10045 case R_ARM_ABS32_NOI:
10046 case R_ARM_REL32:
10047 case R_ARM_REL32_NOI:
10048 case R_ARM_CALL:
10049 case R_ARM_JUMP24:
10050 case R_ARM_XPC25:
10051 case R_ARM_PREL31:
10052 case R_ARM_PLT32:
10053 /* Handle relocations which should use the PLT entry. ABS32/REL32
10054 will use the symbol's value, which may point to a PLT entry, but we
10055 don't need to handle that here. If we created a PLT entry, all
10056 branches in this object should go to it, except if the PLT is too
10057 far away, in which case a long branch stub should be inserted. */
10058 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10059 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10060 && r_type != R_ARM_CALL
10061 && r_type != R_ARM_JUMP24
10062 && r_type != R_ARM_PLT32)
10063 && plt_offset != (bfd_vma) -1)
10064 {
10065 /* If we've created a .plt section, and assigned a PLT entry
10066 to this function, it must either be a STT_GNU_IFUNC reference
10067 or not be known to bind locally. In other cases, we should
10068 have cleared the PLT entry by now. */
10069 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10070
10071 value = (splt->output_section->vma
10072 + splt->output_offset
10073 + plt_offset);
10074 *unresolved_reloc_p = FALSE;
10075 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10076 contents, rel->r_offset, value,
10077 rel->r_addend);
10078 }
10079
10080 /* When generating a shared object or relocatable executable, these
10081 relocations are copied into the output file to be resolved at
10082 run time. */
10083 if ((bfd_link_pic (info)
10084 || globals->root.is_relocatable_executable)
10085 && (input_section->flags & SEC_ALLOC)
10086 && !(globals->vxworks_p
10087 && strcmp (input_section->output_section->name,
10088 ".tls_vars") == 0)
10089 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10090 || !SYMBOL_CALLS_LOCAL (info, h))
10091 && !(input_bfd == globals->stub_bfd
10092 && strstr (input_section->name, STUB_SUFFIX))
10093 && (h == NULL
10094 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10095 || h->root.type != bfd_link_hash_undefweak)
10096 && r_type != R_ARM_PC24
10097 && r_type != R_ARM_CALL
10098 && r_type != R_ARM_JUMP24
10099 && r_type != R_ARM_PREL31
10100 && r_type != R_ARM_PLT32)
10101 {
10102 Elf_Internal_Rela outrel;
10103 bfd_boolean skip, relocate;
10104
10105 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10106 && !h->def_regular)
10107 {
10108 char *v = _("shared object");
10109
10110 if (bfd_link_executable (info))
10111 v = _("PIE executable");
10112
10113 _bfd_error_handler
10114 (_("%B: relocation %s against external or undefined symbol `%s'"
10115 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10116 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10117 return bfd_reloc_notsupported;
10118 }
10119
10120 *unresolved_reloc_p = FALSE;
10121
10122 if (sreloc == NULL && globals->root.dynamic_sections_created)
10123 {
10124 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10125 ! globals->use_rel);
10126
10127 if (sreloc == NULL)
10128 return bfd_reloc_notsupported;
10129 }
10130
10131 skip = FALSE;
10132 relocate = FALSE;
10133
10134 outrel.r_addend = addend;
10135 outrel.r_offset =
10136 _bfd_elf_section_offset (output_bfd, info, input_section,
10137 rel->r_offset);
10138 if (outrel.r_offset == (bfd_vma) -1)
10139 skip = TRUE;
10140 else if (outrel.r_offset == (bfd_vma) -2)
10141 skip = TRUE, relocate = TRUE;
10142 outrel.r_offset += (input_section->output_section->vma
10143 + input_section->output_offset);
10144
10145 if (skip)
10146 memset (&outrel, 0, sizeof outrel);
10147 else if (h != NULL
10148 && h->dynindx != -1
10149 && (!bfd_link_pic (info)
10150 || !(bfd_link_pie (info)
10151 || SYMBOLIC_BIND (info, h))
10152 || !h->def_regular))
10153 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10154 else
10155 {
10156 int symbol;
10157
10158 /* This symbol is local, or marked to become local. */
10159 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10160 if (globals->symbian_p)
10161 {
10162 asection *osec;
10163
10164 /* On Symbian OS, the data segment and text segement
10165 can be relocated independently. Therefore, we
10166 must indicate the segment to which this
10167 relocation is relative. The BPABI allows us to
10168 use any symbol in the right segment; we just use
10169 the section symbol as it is convenient. (We
10170 cannot use the symbol given by "h" directly as it
10171 will not appear in the dynamic symbol table.)
10172
10173 Note that the dynamic linker ignores the section
10174 symbol value, so we don't subtract osec->vma
10175 from the emitted reloc addend. */
10176 if (sym_sec)
10177 osec = sym_sec->output_section;
10178 else
10179 osec = input_section->output_section;
10180 symbol = elf_section_data (osec)->dynindx;
10181 if (symbol == 0)
10182 {
10183 struct elf_link_hash_table *htab = elf_hash_table (info);
10184
10185 if ((osec->flags & SEC_READONLY) == 0
10186 && htab->data_index_section != NULL)
10187 osec = htab->data_index_section;
10188 else
10189 osec = htab->text_index_section;
10190 symbol = elf_section_data (osec)->dynindx;
10191 }
10192 BFD_ASSERT (symbol != 0);
10193 }
10194 else
10195 /* On SVR4-ish systems, the dynamic loader cannot
10196 relocate the text and data segments independently,
10197 so the symbol does not matter. */
10198 symbol = 0;
10199 if (dynreloc_st_type == STT_GNU_IFUNC)
10200 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10201 to the .iplt entry. Instead, every non-call reference
10202 must use an R_ARM_IRELATIVE relocation to obtain the
10203 correct run-time address. */
10204 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10205 else
10206 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10207 if (globals->use_rel)
10208 relocate = TRUE;
10209 else
10210 outrel.r_addend += dynreloc_value;
10211 }
10212
10213 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10214
10215 /* If this reloc is against an external symbol, we do not want to
10216 fiddle with the addend. Otherwise, we need to include the symbol
10217 value so that it becomes an addend for the dynamic reloc. */
10218 if (! relocate)
10219 return bfd_reloc_ok;
10220
10221 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10222 contents, rel->r_offset,
10223 dynreloc_value, (bfd_vma) 0);
10224 }
10225 else switch (r_type)
10226 {
10227 case R_ARM_ABS12:
10228 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10229
10230 case R_ARM_XPC25: /* Arm BLX instruction. */
10231 case R_ARM_CALL:
10232 case R_ARM_JUMP24:
10233 case R_ARM_PC24: /* Arm B/BL instruction. */
10234 case R_ARM_PLT32:
10235 {
10236 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10237
10238 if (r_type == R_ARM_XPC25)
10239 {
10240 /* Check for Arm calling Arm function. */
10241 /* FIXME: Should we translate the instruction into a BL
10242 instruction instead ? */
10243 if (branch_type != ST_BRANCH_TO_THUMB)
10244 _bfd_error_handler
10245 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10246 input_bfd,
10247 h ? h->root.root.string : "(local)");
10248 }
10249 else if (r_type == R_ARM_PC24)
10250 {
10251 /* Check for Arm calling Thumb function. */
10252 if (branch_type == ST_BRANCH_TO_THUMB)
10253 {
10254 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10255 output_bfd, input_section,
10256 hit_data, sym_sec, rel->r_offset,
10257 signed_addend, value,
10258 error_message))
10259 return bfd_reloc_ok;
10260 else
10261 return bfd_reloc_dangerous;
10262 }
10263 }
10264
10265 /* Check if a stub has to be inserted because the
10266 destination is too far or we are changing mode. */
10267 if ( r_type == R_ARM_CALL
10268 || r_type == R_ARM_JUMP24
10269 || r_type == R_ARM_PLT32)
10270 {
10271 enum elf32_arm_stub_type stub_type = arm_stub_none;
10272 struct elf32_arm_link_hash_entry *hash;
10273
10274 hash = (struct elf32_arm_link_hash_entry *) h;
10275 stub_type = arm_type_of_stub (info, input_section, rel,
10276 st_type, &branch_type,
10277 hash, value, sym_sec,
10278 input_bfd, sym_name);
10279
10280 if (stub_type != arm_stub_none)
10281 {
10282 /* The target is out of reach, so redirect the
10283 branch to the local stub for this function. */
10284 stub_entry = elf32_arm_get_stub_entry (input_section,
10285 sym_sec, h,
10286 rel, globals,
10287 stub_type);
10288 {
10289 if (stub_entry != NULL)
10290 value = (stub_entry->stub_offset
10291 + stub_entry->stub_sec->output_offset
10292 + stub_entry->stub_sec->output_section->vma);
10293
10294 if (plt_offset != (bfd_vma) -1)
10295 *unresolved_reloc_p = FALSE;
10296 }
10297 }
10298 else
10299 {
10300 /* If the call goes through a PLT entry, make sure to
10301 check distance to the right destination address. */
10302 if (plt_offset != (bfd_vma) -1)
10303 {
10304 value = (splt->output_section->vma
10305 + splt->output_offset
10306 + plt_offset);
10307 *unresolved_reloc_p = FALSE;
10308 /* The PLT entry is in ARM mode, regardless of the
10309 target function. */
10310 branch_type = ST_BRANCH_TO_ARM;
10311 }
10312 }
10313 }
10314
10315 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10316 where:
10317 S is the address of the symbol in the relocation.
10318 P is address of the instruction being relocated.
10319 A is the addend (extracted from the instruction) in bytes.
10320
10321 S is held in 'value'.
10322 P is the base address of the section containing the
10323 instruction plus the offset of the reloc into that
10324 section, ie:
10325 (input_section->output_section->vma +
10326 input_section->output_offset +
10327 rel->r_offset).
10328 A is the addend, converted into bytes, ie:
10329 (signed_addend * 4)
10330
10331 Note: None of these operations have knowledge of the pipeline
10332 size of the processor, thus it is up to the assembler to
10333 encode this information into the addend. */
10334 value -= (input_section->output_section->vma
10335 + input_section->output_offset);
10336 value -= rel->r_offset;
10337 if (globals->use_rel)
10338 value += (signed_addend << howto->size);
10339 else
10340 /* RELA addends do not have to be adjusted by howto->size. */
10341 value += signed_addend;
10342
10343 signed_addend = value;
10344 signed_addend >>= howto->rightshift;
10345
10346 /* A branch to an undefined weak symbol is turned into a jump to
10347 the next instruction unless a PLT entry will be created.
10348 Do the same for local undefined symbols (but not for STN_UNDEF).
10349 The jump to the next instruction is optimized as a NOP depending
10350 on the architecture. */
10351 if (h ? (h->root.type == bfd_link_hash_undefweak
10352 && plt_offset == (bfd_vma) -1)
10353 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10354 {
10355 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10356
10357 if (arch_has_arm_nop (globals))
10358 value |= 0x0320f000;
10359 else
10360 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10361 }
10362 else
10363 {
10364 /* Perform a signed range check. */
10365 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10366 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10367 return bfd_reloc_overflow;
10368
10369 addend = (value & 2);
10370
10371 value = (signed_addend & howto->dst_mask)
10372 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10373
10374 if (r_type == R_ARM_CALL)
10375 {
10376 /* Set the H bit in the BLX instruction. */
10377 if (branch_type == ST_BRANCH_TO_THUMB)
10378 {
10379 if (addend)
10380 value |= (1 << 24);
10381 else
10382 value &= ~(bfd_vma)(1 << 24);
10383 }
10384
10385 /* Select the correct instruction (BL or BLX). */
10386 /* Only if we are not handling a BL to a stub. In this
10387 case, mode switching is performed by the stub. */
10388 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10389 value |= (1 << 28);
10390 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10391 {
10392 value &= ~(bfd_vma)(1 << 28);
10393 value |= (1 << 24);
10394 }
10395 }
10396 }
10397 }
10398 break;
10399
10400 case R_ARM_ABS32:
10401 value += addend;
10402 if (branch_type == ST_BRANCH_TO_THUMB)
10403 value |= 1;
10404 break;
10405
10406 case R_ARM_ABS32_NOI:
10407 value += addend;
10408 break;
10409
10410 case R_ARM_REL32:
10411 value += addend;
10412 if (branch_type == ST_BRANCH_TO_THUMB)
10413 value |= 1;
10414 value -= (input_section->output_section->vma
10415 + input_section->output_offset + rel->r_offset);
10416 break;
10417
10418 case R_ARM_REL32_NOI:
10419 value += addend;
10420 value -= (input_section->output_section->vma
10421 + input_section->output_offset + rel->r_offset);
10422 break;
10423
10424 case R_ARM_PREL31:
10425 value -= (input_section->output_section->vma
10426 + input_section->output_offset + rel->r_offset);
10427 value += signed_addend;
10428 if (! h || h->root.type != bfd_link_hash_undefweak)
10429 {
10430 /* Check for overflow. */
10431 if ((value ^ (value >> 1)) & (1 << 30))
10432 return bfd_reloc_overflow;
10433 }
10434 value &= 0x7fffffff;
10435 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10436 if (branch_type == ST_BRANCH_TO_THUMB)
10437 value |= 1;
10438 break;
10439 }
10440
10441 bfd_put_32 (input_bfd, value, hit_data);
10442 return bfd_reloc_ok;
10443
10444 case R_ARM_ABS8:
10445 /* PR 16202: Refectch the addend using the correct size. */
10446 if (globals->use_rel)
10447 addend = bfd_get_8 (input_bfd, hit_data);
10448 value += addend;
10449
10450 /* There is no way to tell whether the user intended to use a signed or
10451 unsigned addend. When checking for overflow we accept either,
10452 as specified by the AAELF. */
10453 if ((long) value > 0xff || (long) value < -0x80)
10454 return bfd_reloc_overflow;
10455
10456 bfd_put_8 (input_bfd, value, hit_data);
10457 return bfd_reloc_ok;
10458
10459 case R_ARM_ABS16:
10460 /* PR 16202: Refectch the addend using the correct size. */
10461 if (globals->use_rel)
10462 addend = bfd_get_16 (input_bfd, hit_data);
10463 value += addend;
10464
10465 /* See comment for R_ARM_ABS8. */
10466 if ((long) value > 0xffff || (long) value < -0x8000)
10467 return bfd_reloc_overflow;
10468
10469 bfd_put_16 (input_bfd, value, hit_data);
10470 return bfd_reloc_ok;
10471
10472 case R_ARM_THM_ABS5:
10473 /* Support ldr and str instructions for the thumb. */
10474 if (globals->use_rel)
10475 {
10476 /* Need to refetch addend. */
10477 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10478 /* ??? Need to determine shift amount from operand size. */
10479 addend >>= howto->rightshift;
10480 }
10481 value += addend;
10482
10483 /* ??? Isn't value unsigned? */
10484 if ((long) value > 0x1f || (long) value < -0x10)
10485 return bfd_reloc_overflow;
10486
10487 /* ??? Value needs to be properly shifted into place first. */
10488 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10489 bfd_put_16 (input_bfd, value, hit_data);
10490 return bfd_reloc_ok;
10491
10492 case R_ARM_THM_ALU_PREL_11_0:
10493 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10494 {
10495 bfd_vma insn;
10496 bfd_signed_vma relocation;
10497
10498 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10499 | bfd_get_16 (input_bfd, hit_data + 2);
10500
10501 if (globals->use_rel)
10502 {
10503 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10504 | ((insn & (1 << 26)) >> 15);
10505 if (insn & 0xf00000)
10506 signed_addend = -signed_addend;
10507 }
10508
10509 relocation = value + signed_addend;
10510 relocation -= Pa (input_section->output_section->vma
10511 + input_section->output_offset
10512 + rel->r_offset);
10513
10514 value = relocation;
10515
10516 if (value >= 0x1000)
10517 return bfd_reloc_overflow;
10518
10519 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10520 | ((value & 0x700) << 4)
10521 | ((value & 0x800) << 15);
10522 if (relocation < 0)
10523 insn |= 0xa00000;
10524
10525 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10526 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10527
10528 return bfd_reloc_ok;
10529 }
10530
10531 case R_ARM_THM_PC8:
10532 /* PR 10073: This reloc is not generated by the GNU toolchain,
10533 but it is supported for compatibility with third party libraries
10534 generated by other compilers, specifically the ARM/IAR. */
10535 {
10536 bfd_vma insn;
10537 bfd_signed_vma relocation;
10538
10539 insn = bfd_get_16 (input_bfd, hit_data);
10540
10541 if (globals->use_rel)
10542 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10543
10544 relocation = value + addend;
10545 relocation -= Pa (input_section->output_section->vma
10546 + input_section->output_offset
10547 + rel->r_offset);
10548
10549 value = relocation;
10550
10551 /* We do not check for overflow of this reloc. Although strictly
10552 speaking this is incorrect, it appears to be necessary in order
10553 to work with IAR generated relocs. Since GCC and GAS do not
10554 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10555 a problem for them. */
10556 value &= 0x3fc;
10557
10558 insn = (insn & 0xff00) | (value >> 2);
10559
10560 bfd_put_16 (input_bfd, insn, hit_data);
10561
10562 return bfd_reloc_ok;
10563 }
10564
10565 case R_ARM_THM_PC12:
10566 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10567 {
10568 bfd_vma insn;
10569 bfd_signed_vma relocation;
10570
10571 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10572 | bfd_get_16 (input_bfd, hit_data + 2);
10573
10574 if (globals->use_rel)
10575 {
10576 signed_addend = insn & 0xfff;
10577 if (!(insn & (1 << 23)))
10578 signed_addend = -signed_addend;
10579 }
10580
10581 relocation = value + signed_addend;
10582 relocation -= Pa (input_section->output_section->vma
10583 + input_section->output_offset
10584 + rel->r_offset);
10585
10586 value = relocation;
10587
10588 if (value >= 0x1000)
10589 return bfd_reloc_overflow;
10590
10591 insn = (insn & 0xff7ff000) | value;
10592 if (relocation >= 0)
10593 insn |= (1 << 23);
10594
10595 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10596 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10597
10598 return bfd_reloc_ok;
10599 }
10600
10601 case R_ARM_THM_XPC22:
10602 case R_ARM_THM_CALL:
10603 case R_ARM_THM_JUMP24:
10604 /* Thumb BL (branch long instruction). */
10605 {
10606 bfd_vma relocation;
10607 bfd_vma reloc_sign;
10608 bfd_boolean overflow = FALSE;
10609 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10610 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10611 bfd_signed_vma reloc_signed_max;
10612 bfd_signed_vma reloc_signed_min;
10613 bfd_vma check;
10614 bfd_signed_vma signed_check;
10615 int bitsize;
10616 const int thumb2 = using_thumb2 (globals);
10617 const int thumb2_bl = using_thumb2_bl (globals);
10618
10619 /* A branch to an undefined weak symbol is turned into a jump to
10620 the next instruction unless a PLT entry will be created.
10621 The jump to the next instruction is optimized as a NOP.W for
10622 Thumb-2 enabled architectures. */
10623 if (h && h->root.type == bfd_link_hash_undefweak
10624 && plt_offset == (bfd_vma) -1)
10625 {
10626 if (thumb2)
10627 {
10628 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10629 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10630 }
10631 else
10632 {
10633 bfd_put_16 (input_bfd, 0xe000, hit_data);
10634 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10635 }
10636 return bfd_reloc_ok;
10637 }
10638
10639 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10640 with Thumb-1) involving the J1 and J2 bits. */
10641 if (globals->use_rel)
10642 {
10643 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10644 bfd_vma upper = upper_insn & 0x3ff;
10645 bfd_vma lower = lower_insn & 0x7ff;
10646 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10647 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10648 bfd_vma i1 = j1 ^ s ? 0 : 1;
10649 bfd_vma i2 = j2 ^ s ? 0 : 1;
10650
10651 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10652 /* Sign extend. */
10653 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10654
10655 signed_addend = addend;
10656 }
10657
10658 if (r_type == R_ARM_THM_XPC22)
10659 {
10660 /* Check for Thumb to Thumb call. */
10661 /* FIXME: Should we translate the instruction into a BL
10662 instruction instead ? */
10663 if (branch_type == ST_BRANCH_TO_THUMB)
10664 _bfd_error_handler
10665 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10666 input_bfd,
10667 h ? h->root.root.string : "(local)");
10668 }
10669 else
10670 {
10671 /* If it is not a call to Thumb, assume call to Arm.
10672 If it is a call relative to a section name, then it is not a
10673 function call at all, but rather a long jump. Calls through
10674 the PLT do not require stubs. */
10675 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10676 {
10677 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10678 {
10679 /* Convert BL to BLX. */
10680 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10681 }
10682 else if (( r_type != R_ARM_THM_CALL)
10683 && (r_type != R_ARM_THM_JUMP24))
10684 {
10685 if (elf32_thumb_to_arm_stub
10686 (info, sym_name, input_bfd, output_bfd, input_section,
10687 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10688 error_message))
10689 return bfd_reloc_ok;
10690 else
10691 return bfd_reloc_dangerous;
10692 }
10693 }
10694 else if (branch_type == ST_BRANCH_TO_THUMB
10695 && globals->use_blx
10696 && r_type == R_ARM_THM_CALL)
10697 {
10698 /* Make sure this is a BL. */
10699 lower_insn |= 0x1800;
10700 }
10701 }
10702
10703 enum elf32_arm_stub_type stub_type = arm_stub_none;
10704 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10705 {
10706 /* Check if a stub has to be inserted because the destination
10707 is too far. */
10708 struct elf32_arm_stub_hash_entry *stub_entry;
10709 struct elf32_arm_link_hash_entry *hash;
10710
10711 hash = (struct elf32_arm_link_hash_entry *) h;
10712
10713 stub_type = arm_type_of_stub (info, input_section, rel,
10714 st_type, &branch_type,
10715 hash, value, sym_sec,
10716 input_bfd, sym_name);
10717
10718 if (stub_type != arm_stub_none)
10719 {
10720 /* The target is out of reach or we are changing modes, so
10721 redirect the branch to the local stub for this
10722 function. */
10723 stub_entry = elf32_arm_get_stub_entry (input_section,
10724 sym_sec, h,
10725 rel, globals,
10726 stub_type);
10727 if (stub_entry != NULL)
10728 {
10729 value = (stub_entry->stub_offset
10730 + stub_entry->stub_sec->output_offset
10731 + stub_entry->stub_sec->output_section->vma);
10732
10733 if (plt_offset != (bfd_vma) -1)
10734 *unresolved_reloc_p = FALSE;
10735 }
10736
10737 /* If this call becomes a call to Arm, force BLX. */
10738 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10739 {
10740 if ((stub_entry
10741 && !arm_stub_is_thumb (stub_entry->stub_type))
10742 || branch_type != ST_BRANCH_TO_THUMB)
10743 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10744 }
10745 }
10746 }
10747
10748 /* Handle calls via the PLT. */
10749 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10750 {
10751 value = (splt->output_section->vma
10752 + splt->output_offset
10753 + plt_offset);
10754
10755 if (globals->use_blx
10756 && r_type == R_ARM_THM_CALL
10757 && ! using_thumb_only (globals))
10758 {
10759 /* If the Thumb BLX instruction is available, convert
10760 the BL to a BLX instruction to call the ARM-mode
10761 PLT entry. */
10762 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10763 branch_type = ST_BRANCH_TO_ARM;
10764 }
10765 else
10766 {
10767 if (! using_thumb_only (globals))
10768 /* Target the Thumb stub before the ARM PLT entry. */
10769 value -= PLT_THUMB_STUB_SIZE;
10770 branch_type = ST_BRANCH_TO_THUMB;
10771 }
10772 *unresolved_reloc_p = FALSE;
10773 }
10774
10775 relocation = value + signed_addend;
10776
10777 relocation -= (input_section->output_section->vma
10778 + input_section->output_offset
10779 + rel->r_offset);
10780
10781 check = relocation >> howto->rightshift;
10782
10783 /* If this is a signed value, the rightshift just dropped
10784 leading 1 bits (assuming twos complement). */
10785 if ((bfd_signed_vma) relocation >= 0)
10786 signed_check = check;
10787 else
10788 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10789
10790 /* Calculate the permissable maximum and minimum values for
10791 this relocation according to whether we're relocating for
10792 Thumb-2 or not. */
10793 bitsize = howto->bitsize;
10794 if (!thumb2_bl)
10795 bitsize -= 2;
10796 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10797 reloc_signed_min = ~reloc_signed_max;
10798
10799 /* Assumes two's complement. */
10800 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10801 overflow = TRUE;
10802
10803 if ((lower_insn & 0x5000) == 0x4000)
10804 /* For a BLX instruction, make sure that the relocation is rounded up
10805 to a word boundary. This follows the semantics of the instruction
10806 which specifies that bit 1 of the target address will come from bit
10807 1 of the base address. */
10808 relocation = (relocation + 2) & ~ 3;
10809
10810 /* Put RELOCATION back into the insn. Assumes two's complement.
10811 We use the Thumb-2 encoding, which is safe even if dealing with
10812 a Thumb-1 instruction by virtue of our overflow check above. */
10813 reloc_sign = (signed_check < 0) ? 1 : 0;
10814 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10815 | ((relocation >> 12) & 0x3ff)
10816 | (reloc_sign << 10);
10817 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10818 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10819 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10820 | ((relocation >> 1) & 0x7ff);
10821
10822 /* Put the relocated value back in the object file: */
10823 bfd_put_16 (input_bfd, upper_insn, hit_data);
10824 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10825
10826 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10827 }
10828 break;
10829
10830 case R_ARM_THM_JUMP19:
10831 /* Thumb32 conditional branch instruction. */
10832 {
10833 bfd_vma relocation;
10834 bfd_boolean overflow = FALSE;
10835 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10836 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10837 bfd_signed_vma reloc_signed_max = 0xffffe;
10838 bfd_signed_vma reloc_signed_min = -0x100000;
10839 bfd_signed_vma signed_check;
10840 enum elf32_arm_stub_type stub_type = arm_stub_none;
10841 struct elf32_arm_stub_hash_entry *stub_entry;
10842 struct elf32_arm_link_hash_entry *hash;
10843
10844 /* Need to refetch the addend, reconstruct the top three bits,
10845 and squish the two 11 bit pieces together. */
10846 if (globals->use_rel)
10847 {
10848 bfd_vma S = (upper_insn & 0x0400) >> 10;
10849 bfd_vma upper = (upper_insn & 0x003f);
10850 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10851 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10852 bfd_vma lower = (lower_insn & 0x07ff);
10853
10854 upper |= J1 << 6;
10855 upper |= J2 << 7;
10856 upper |= (!S) << 8;
10857 upper -= 0x0100; /* Sign extend. */
10858
10859 addend = (upper << 12) | (lower << 1);
10860 signed_addend = addend;
10861 }
10862
10863 /* Handle calls via the PLT. */
10864 if (plt_offset != (bfd_vma) -1)
10865 {
10866 value = (splt->output_section->vma
10867 + splt->output_offset
10868 + plt_offset);
10869 /* Target the Thumb stub before the ARM PLT entry. */
10870 value -= PLT_THUMB_STUB_SIZE;
10871 *unresolved_reloc_p = FALSE;
10872 }
10873
10874 hash = (struct elf32_arm_link_hash_entry *)h;
10875
10876 stub_type = arm_type_of_stub (info, input_section, rel,
10877 st_type, &branch_type,
10878 hash, value, sym_sec,
10879 input_bfd, sym_name);
10880 if (stub_type != arm_stub_none)
10881 {
10882 stub_entry = elf32_arm_get_stub_entry (input_section,
10883 sym_sec, h,
10884 rel, globals,
10885 stub_type);
10886 if (stub_entry != NULL)
10887 {
10888 value = (stub_entry->stub_offset
10889 + stub_entry->stub_sec->output_offset
10890 + stub_entry->stub_sec->output_section->vma);
10891 }
10892 }
10893
10894 relocation = value + signed_addend;
10895 relocation -= (input_section->output_section->vma
10896 + input_section->output_offset
10897 + rel->r_offset);
10898 signed_check = (bfd_signed_vma) relocation;
10899
10900 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10901 overflow = TRUE;
10902
10903 /* Put RELOCATION back into the insn. */
10904 {
10905 bfd_vma S = (relocation & 0x00100000) >> 20;
10906 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10907 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10908 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10909 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10910
10911 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10912 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10913 }
10914
10915 /* Put the relocated value back in the object file: */
10916 bfd_put_16 (input_bfd, upper_insn, hit_data);
10917 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10918
10919 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10920 }
10921
10922 case R_ARM_THM_JUMP11:
10923 case R_ARM_THM_JUMP8:
10924 case R_ARM_THM_JUMP6:
10925 /* Thumb B (branch) instruction). */
10926 {
10927 bfd_signed_vma relocation;
10928 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10929 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10930 bfd_signed_vma signed_check;
10931
10932 /* CZB cannot jump backward. */
10933 if (r_type == R_ARM_THM_JUMP6)
10934 reloc_signed_min = 0;
10935
10936 if (globals->use_rel)
10937 {
10938 /* Need to refetch addend. */
10939 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10940 if (addend & ((howto->src_mask + 1) >> 1))
10941 {
10942 signed_addend = -1;
10943 signed_addend &= ~ howto->src_mask;
10944 signed_addend |= addend;
10945 }
10946 else
10947 signed_addend = addend;
10948 /* The value in the insn has been right shifted. We need to
10949 undo this, so that we can perform the address calculation
10950 in terms of bytes. */
10951 signed_addend <<= howto->rightshift;
10952 }
10953 relocation = value + signed_addend;
10954
10955 relocation -= (input_section->output_section->vma
10956 + input_section->output_offset
10957 + rel->r_offset);
10958
10959 relocation >>= howto->rightshift;
10960 signed_check = relocation;
10961
10962 if (r_type == R_ARM_THM_JUMP6)
10963 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10964 else
10965 relocation &= howto->dst_mask;
10966 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10967
10968 bfd_put_16 (input_bfd, relocation, hit_data);
10969
10970 /* Assumes two's complement. */
10971 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10972 return bfd_reloc_overflow;
10973
10974 return bfd_reloc_ok;
10975 }
10976
10977 case R_ARM_ALU_PCREL7_0:
10978 case R_ARM_ALU_PCREL15_8:
10979 case R_ARM_ALU_PCREL23_15:
10980 {
10981 bfd_vma insn;
10982 bfd_vma relocation;
10983
10984 insn = bfd_get_32 (input_bfd, hit_data);
10985 if (globals->use_rel)
10986 {
10987 /* Extract the addend. */
10988 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10989 signed_addend = addend;
10990 }
10991 relocation = value + signed_addend;
10992
10993 relocation -= (input_section->output_section->vma
10994 + input_section->output_offset
10995 + rel->r_offset);
10996 insn = (insn & ~0xfff)
10997 | ((howto->bitpos << 7) & 0xf00)
10998 | ((relocation >> howto->bitpos) & 0xff);
10999 bfd_put_32 (input_bfd, value, hit_data);
11000 }
11001 return bfd_reloc_ok;
11002
11003 case R_ARM_GNU_VTINHERIT:
11004 case R_ARM_GNU_VTENTRY:
11005 return bfd_reloc_ok;
11006
11007 case R_ARM_GOTOFF32:
11008 /* Relocation is relative to the start of the
11009 global offset table. */
11010
11011 BFD_ASSERT (sgot != NULL);
11012 if (sgot == NULL)
11013 return bfd_reloc_notsupported;
11014
11015 /* If we are addressing a Thumb function, we need to adjust the
11016 address by one, so that attempts to call the function pointer will
11017 correctly interpret it as Thumb code. */
11018 if (branch_type == ST_BRANCH_TO_THUMB)
11019 value += 1;
11020
11021 /* Note that sgot->output_offset is not involved in this
11022 calculation. We always want the start of .got. If we
11023 define _GLOBAL_OFFSET_TABLE in a different way, as is
11024 permitted by the ABI, we might have to change this
11025 calculation. */
11026 value -= sgot->output_section->vma;
11027 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11028 contents, rel->r_offset, value,
11029 rel->r_addend);
11030
11031 case R_ARM_GOTPC:
11032 /* Use global offset table as symbol value. */
11033 BFD_ASSERT (sgot != NULL);
11034
11035 if (sgot == NULL)
11036 return bfd_reloc_notsupported;
11037
11038 *unresolved_reloc_p = FALSE;
11039 value = sgot->output_section->vma;
11040 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11041 contents, rel->r_offset, value,
11042 rel->r_addend);
11043
11044 case R_ARM_GOT32:
11045 case R_ARM_GOT_PREL:
11046 /* Relocation is to the entry for this symbol in the
11047 global offset table. */
11048 if (sgot == NULL)
11049 return bfd_reloc_notsupported;
11050
11051 if (dynreloc_st_type == STT_GNU_IFUNC
11052 && plt_offset != (bfd_vma) -1
11053 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11054 {
11055 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11056 symbol, and the relocation resolves directly to the runtime
11057 target rather than to the .iplt entry. This means that any
11058 .got entry would be the same value as the .igot.plt entry,
11059 so there's no point creating both. */
11060 sgot = globals->root.igotplt;
11061 value = sgot->output_offset + gotplt_offset;
11062 }
11063 else if (h != NULL)
11064 {
11065 bfd_vma off;
11066
11067 off = h->got.offset;
11068 BFD_ASSERT (off != (bfd_vma) -1);
11069 if ((off & 1) != 0)
11070 {
11071 /* We have already processsed one GOT relocation against
11072 this symbol. */
11073 off &= ~1;
11074 if (globals->root.dynamic_sections_created
11075 && !SYMBOL_REFERENCES_LOCAL (info, h))
11076 *unresolved_reloc_p = FALSE;
11077 }
11078 else
11079 {
11080 Elf_Internal_Rela outrel;
11081
11082 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11083 {
11084 /* If the symbol doesn't resolve locally in a static
11085 object, we have an undefined reference. If the
11086 symbol doesn't resolve locally in a dynamic object,
11087 it should be resolved by the dynamic linker. */
11088 if (globals->root.dynamic_sections_created)
11089 {
11090 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11091 *unresolved_reloc_p = FALSE;
11092 }
11093 else
11094 outrel.r_info = 0;
11095 outrel.r_addend = 0;
11096 }
11097 else
11098 {
11099 if (dynreloc_st_type == STT_GNU_IFUNC)
11100 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11101 else if (bfd_link_pic (info)
11102 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11103 || h->root.type != bfd_link_hash_undefweak))
11104 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11105 else
11106 outrel.r_info = 0;
11107 outrel.r_addend = dynreloc_value;
11108 }
11109
11110 /* The GOT entry is initialized to zero by default.
11111 See if we should install a different value. */
11112 if (outrel.r_addend != 0
11113 && (outrel.r_info == 0 || globals->use_rel))
11114 {
11115 bfd_put_32 (output_bfd, outrel.r_addend,
11116 sgot->contents + off);
11117 outrel.r_addend = 0;
11118 }
11119
11120 if (outrel.r_info != 0)
11121 {
11122 outrel.r_offset = (sgot->output_section->vma
11123 + sgot->output_offset
11124 + off);
11125 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11126 }
11127 h->got.offset |= 1;
11128 }
11129 value = sgot->output_offset + off;
11130 }
11131 else
11132 {
11133 bfd_vma off;
11134
11135 BFD_ASSERT (local_got_offsets != NULL
11136 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11137
11138 off = local_got_offsets[r_symndx];
11139
11140 /* The offset must always be a multiple of 4. We use the
11141 least significant bit to record whether we have already
11142 generated the necessary reloc. */
11143 if ((off & 1) != 0)
11144 off &= ~1;
11145 else
11146 {
11147 if (globals->use_rel)
11148 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11149
11150 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11151 {
11152 Elf_Internal_Rela outrel;
11153
11154 outrel.r_addend = addend + dynreloc_value;
11155 outrel.r_offset = (sgot->output_section->vma
11156 + sgot->output_offset
11157 + off);
11158 if (dynreloc_st_type == STT_GNU_IFUNC)
11159 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11160 else
11161 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11162 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11163 }
11164
11165 local_got_offsets[r_symndx] |= 1;
11166 }
11167
11168 value = sgot->output_offset + off;
11169 }
11170 if (r_type != R_ARM_GOT32)
11171 value += sgot->output_section->vma;
11172
11173 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11174 contents, rel->r_offset, value,
11175 rel->r_addend);
11176
11177 case R_ARM_TLS_LDO32:
11178 value = value - dtpoff_base (info);
11179
11180 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11181 contents, rel->r_offset, value,
11182 rel->r_addend);
11183
11184 case R_ARM_TLS_LDM32:
11185 {
11186 bfd_vma off;
11187
11188 if (sgot == NULL)
11189 abort ();
11190
11191 off = globals->tls_ldm_got.offset;
11192
11193 if ((off & 1) != 0)
11194 off &= ~1;
11195 else
11196 {
11197 /* If we don't know the module number, create a relocation
11198 for it. */
11199 if (bfd_link_pic (info))
11200 {
11201 Elf_Internal_Rela outrel;
11202
11203 if (srelgot == NULL)
11204 abort ();
11205
11206 outrel.r_addend = 0;
11207 outrel.r_offset = (sgot->output_section->vma
11208 + sgot->output_offset + off);
11209 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11210
11211 if (globals->use_rel)
11212 bfd_put_32 (output_bfd, outrel.r_addend,
11213 sgot->contents + off);
11214
11215 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11216 }
11217 else
11218 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11219
11220 globals->tls_ldm_got.offset |= 1;
11221 }
11222
11223 value = sgot->output_section->vma + sgot->output_offset + off
11224 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11225
11226 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11227 contents, rel->r_offset, value,
11228 rel->r_addend);
11229 }
11230
11231 case R_ARM_TLS_CALL:
11232 case R_ARM_THM_TLS_CALL:
11233 case R_ARM_TLS_GD32:
11234 case R_ARM_TLS_IE32:
11235 case R_ARM_TLS_GOTDESC:
11236 case R_ARM_TLS_DESCSEQ:
11237 case R_ARM_THM_TLS_DESCSEQ:
11238 {
11239 bfd_vma off, offplt;
11240 int indx = 0;
11241 char tls_type;
11242
11243 BFD_ASSERT (sgot != NULL);
11244
11245 if (h != NULL)
11246 {
11247 bfd_boolean dyn;
11248 dyn = globals->root.dynamic_sections_created;
11249 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11250 bfd_link_pic (info),
11251 h)
11252 && (!bfd_link_pic (info)
11253 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11254 {
11255 *unresolved_reloc_p = FALSE;
11256 indx = h->dynindx;
11257 }
11258 off = h->got.offset;
11259 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11260 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11261 }
11262 else
11263 {
11264 BFD_ASSERT (local_got_offsets != NULL);
11265 off = local_got_offsets[r_symndx];
11266 offplt = local_tlsdesc_gotents[r_symndx];
11267 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11268 }
11269
11270 /* Linker relaxations happens from one of the
11271 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11272 if (ELF32_R_TYPE(rel->r_info) != r_type)
11273 tls_type = GOT_TLS_IE;
11274
11275 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11276
11277 if ((off & 1) != 0)
11278 off &= ~1;
11279 else
11280 {
11281 bfd_boolean need_relocs = FALSE;
11282 Elf_Internal_Rela outrel;
11283 int cur_off = off;
11284
11285 /* The GOT entries have not been initialized yet. Do it
11286 now, and emit any relocations. If both an IE GOT and a
11287 GD GOT are necessary, we emit the GD first. */
11288
11289 if ((bfd_link_pic (info) || indx != 0)
11290 && (h == NULL
11291 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11292 || h->root.type != bfd_link_hash_undefweak))
11293 {
11294 need_relocs = TRUE;
11295 BFD_ASSERT (srelgot != NULL);
11296 }
11297
11298 if (tls_type & GOT_TLS_GDESC)
11299 {
11300 bfd_byte *loc;
11301
11302 /* We should have relaxed, unless this is an undefined
11303 weak symbol. */
11304 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11305 || bfd_link_pic (info));
11306 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11307 <= globals->root.sgotplt->size);
11308
11309 outrel.r_addend = 0;
11310 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11311 + globals->root.sgotplt->output_offset
11312 + offplt
11313 + globals->sgotplt_jump_table_size);
11314
11315 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11316 sreloc = globals->root.srelplt;
11317 loc = sreloc->contents;
11318 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11319 BFD_ASSERT (loc + RELOC_SIZE (globals)
11320 <= sreloc->contents + sreloc->size);
11321
11322 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11323
11324 /* For globals, the first word in the relocation gets
11325 the relocation index and the top bit set, or zero,
11326 if we're binding now. For locals, it gets the
11327 symbol's offset in the tls section. */
11328 bfd_put_32 (output_bfd,
11329 !h ? value - elf_hash_table (info)->tls_sec->vma
11330 : info->flags & DF_BIND_NOW ? 0
11331 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11332 globals->root.sgotplt->contents + offplt
11333 + globals->sgotplt_jump_table_size);
11334
11335 /* Second word in the relocation is always zero. */
11336 bfd_put_32 (output_bfd, 0,
11337 globals->root.sgotplt->contents + offplt
11338 + globals->sgotplt_jump_table_size + 4);
11339 }
11340 if (tls_type & GOT_TLS_GD)
11341 {
11342 if (need_relocs)
11343 {
11344 outrel.r_addend = 0;
11345 outrel.r_offset = (sgot->output_section->vma
11346 + sgot->output_offset
11347 + cur_off);
11348 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11349
11350 if (globals->use_rel)
11351 bfd_put_32 (output_bfd, outrel.r_addend,
11352 sgot->contents + cur_off);
11353
11354 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11355
11356 if (indx == 0)
11357 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11358 sgot->contents + cur_off + 4);
11359 else
11360 {
11361 outrel.r_addend = 0;
11362 outrel.r_info = ELF32_R_INFO (indx,
11363 R_ARM_TLS_DTPOFF32);
11364 outrel.r_offset += 4;
11365
11366 if (globals->use_rel)
11367 bfd_put_32 (output_bfd, outrel.r_addend,
11368 sgot->contents + cur_off + 4);
11369
11370 elf32_arm_add_dynreloc (output_bfd, info,
11371 srelgot, &outrel);
11372 }
11373 }
11374 else
11375 {
11376 /* If we are not emitting relocations for a
11377 general dynamic reference, then we must be in a
11378 static link or an executable link with the
11379 symbol binding locally. Mark it as belonging
11380 to module 1, the executable. */
11381 bfd_put_32 (output_bfd, 1,
11382 sgot->contents + cur_off);
11383 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11384 sgot->contents + cur_off + 4);
11385 }
11386
11387 cur_off += 8;
11388 }
11389
11390 if (tls_type & GOT_TLS_IE)
11391 {
11392 if (need_relocs)
11393 {
11394 if (indx == 0)
11395 outrel.r_addend = value - dtpoff_base (info);
11396 else
11397 outrel.r_addend = 0;
11398 outrel.r_offset = (sgot->output_section->vma
11399 + sgot->output_offset
11400 + cur_off);
11401 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11402
11403 if (globals->use_rel)
11404 bfd_put_32 (output_bfd, outrel.r_addend,
11405 sgot->contents + cur_off);
11406
11407 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11408 }
11409 else
11410 bfd_put_32 (output_bfd, tpoff (info, value),
11411 sgot->contents + cur_off);
11412 cur_off += 4;
11413 }
11414
11415 if (h != NULL)
11416 h->got.offset |= 1;
11417 else
11418 local_got_offsets[r_symndx] |= 1;
11419 }
11420
11421 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11422 off += 8;
11423 else if (tls_type & GOT_TLS_GDESC)
11424 off = offplt;
11425
11426 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11427 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11428 {
11429 bfd_signed_vma offset;
11430 /* TLS stubs are arm mode. The original symbol is a
11431 data object, so branch_type is bogus. */
11432 branch_type = ST_BRANCH_TO_ARM;
11433 enum elf32_arm_stub_type stub_type
11434 = arm_type_of_stub (info, input_section, rel,
11435 st_type, &branch_type,
11436 (struct elf32_arm_link_hash_entry *)h,
11437 globals->tls_trampoline, globals->root.splt,
11438 input_bfd, sym_name);
11439
11440 if (stub_type != arm_stub_none)
11441 {
11442 struct elf32_arm_stub_hash_entry *stub_entry
11443 = elf32_arm_get_stub_entry
11444 (input_section, globals->root.splt, 0, rel,
11445 globals, stub_type);
11446 offset = (stub_entry->stub_offset
11447 + stub_entry->stub_sec->output_offset
11448 + stub_entry->stub_sec->output_section->vma);
11449 }
11450 else
11451 offset = (globals->root.splt->output_section->vma
11452 + globals->root.splt->output_offset
11453 + globals->tls_trampoline);
11454
11455 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11456 {
11457 unsigned long inst;
11458
11459 offset -= (input_section->output_section->vma
11460 + input_section->output_offset
11461 + rel->r_offset + 8);
11462
11463 inst = offset >> 2;
11464 inst &= 0x00ffffff;
11465 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11466 }
11467 else
11468 {
11469 /* Thumb blx encodes the offset in a complicated
11470 fashion. */
11471 unsigned upper_insn, lower_insn;
11472 unsigned neg;
11473
11474 offset -= (input_section->output_section->vma
11475 + input_section->output_offset
11476 + rel->r_offset + 4);
11477
11478 if (stub_type != arm_stub_none
11479 && arm_stub_is_thumb (stub_type))
11480 {
11481 lower_insn = 0xd000;
11482 }
11483 else
11484 {
11485 lower_insn = 0xc000;
11486 /* Round up the offset to a word boundary. */
11487 offset = (offset + 2) & ~2;
11488 }
11489
11490 neg = offset < 0;
11491 upper_insn = (0xf000
11492 | ((offset >> 12) & 0x3ff)
11493 | (neg << 10));
11494 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11495 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11496 | ((offset >> 1) & 0x7ff);
11497 bfd_put_16 (input_bfd, upper_insn, hit_data);
11498 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11499 return bfd_reloc_ok;
11500 }
11501 }
11502 /* These relocations needs special care, as besides the fact
11503 they point somewhere in .gotplt, the addend must be
11504 adjusted accordingly depending on the type of instruction
11505 we refer to. */
11506 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11507 {
11508 unsigned long data, insn;
11509 unsigned thumb;
11510
11511 data = bfd_get_32 (input_bfd, hit_data);
11512 thumb = data & 1;
11513 data &= ~1u;
11514
11515 if (thumb)
11516 {
11517 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11518 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11519 insn = (insn << 16)
11520 | bfd_get_16 (input_bfd,
11521 contents + rel->r_offset - data + 2);
11522 if ((insn & 0xf800c000) == 0xf000c000)
11523 /* bl/blx */
11524 value = -6;
11525 else if ((insn & 0xffffff00) == 0x4400)
11526 /* add */
11527 value = -5;
11528 else
11529 {
11530 _bfd_error_handler
11531 /* xgettext:c-format */
11532 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11533 input_bfd, input_section,
11534 (unsigned long)rel->r_offset, insn);
11535 return bfd_reloc_notsupported;
11536 }
11537 }
11538 else
11539 {
11540 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11541
11542 switch (insn >> 24)
11543 {
11544 case 0xeb: /* bl */
11545 case 0xfa: /* blx */
11546 value = -4;
11547 break;
11548
11549 case 0xe0: /* add */
11550 value = -8;
11551 break;
11552
11553 default:
11554 _bfd_error_handler
11555 /* xgettext:c-format */
11556 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11557 input_bfd, input_section,
11558 (unsigned long)rel->r_offset, insn);
11559 return bfd_reloc_notsupported;
11560 }
11561 }
11562
11563 value += ((globals->root.sgotplt->output_section->vma
11564 + globals->root.sgotplt->output_offset + off)
11565 - (input_section->output_section->vma
11566 + input_section->output_offset
11567 + rel->r_offset)
11568 + globals->sgotplt_jump_table_size);
11569 }
11570 else
11571 value = ((globals->root.sgot->output_section->vma
11572 + globals->root.sgot->output_offset + off)
11573 - (input_section->output_section->vma
11574 + input_section->output_offset + rel->r_offset));
11575
11576 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11577 contents, rel->r_offset, value,
11578 rel->r_addend);
11579 }
11580
11581 case R_ARM_TLS_LE32:
11582 if (bfd_link_dll (info))
11583 {
11584 _bfd_error_handler
11585 /* xgettext:c-format */
11586 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11587 input_bfd, input_section,
11588 (long) rel->r_offset, howto->name);
11589 return bfd_reloc_notsupported;
11590 }
11591 else
11592 value = tpoff (info, value);
11593
11594 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11595 contents, rel->r_offset, value,
11596 rel->r_addend);
11597
11598 case R_ARM_V4BX:
11599 if (globals->fix_v4bx)
11600 {
11601 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11602
11603 /* Ensure that we have a BX instruction. */
11604 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11605
11606 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11607 {
11608 /* Branch to veneer. */
11609 bfd_vma glue_addr;
11610 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11611 glue_addr -= input_section->output_section->vma
11612 + input_section->output_offset
11613 + rel->r_offset + 8;
11614 insn = (insn & 0xf0000000) | 0x0a000000
11615 | ((glue_addr >> 2) & 0x00ffffff);
11616 }
11617 else
11618 {
11619 /* Preserve Rm (lowest four bits) and the condition code
11620 (highest four bits). Other bits encode MOV PC,Rm. */
11621 insn = (insn & 0xf000000f) | 0x01a0f000;
11622 }
11623
11624 bfd_put_32 (input_bfd, insn, hit_data);
11625 }
11626 return bfd_reloc_ok;
11627
11628 case R_ARM_MOVW_ABS_NC:
11629 case R_ARM_MOVT_ABS:
11630 case R_ARM_MOVW_PREL_NC:
11631 case R_ARM_MOVT_PREL:
11632 /* Until we properly support segment-base-relative addressing then
11633 we assume the segment base to be zero, as for the group relocations.
11634 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11635 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11636 case R_ARM_MOVW_BREL_NC:
11637 case R_ARM_MOVW_BREL:
11638 case R_ARM_MOVT_BREL:
11639 {
11640 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11641
11642 if (globals->use_rel)
11643 {
11644 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11645 signed_addend = (addend ^ 0x8000) - 0x8000;
11646 }
11647
11648 value += signed_addend;
11649
11650 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11651 value -= (input_section->output_section->vma
11652 + input_section->output_offset + rel->r_offset);
11653
11654 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11655 return bfd_reloc_overflow;
11656
11657 if (branch_type == ST_BRANCH_TO_THUMB)
11658 value |= 1;
11659
11660 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11661 || r_type == R_ARM_MOVT_BREL)
11662 value >>= 16;
11663
11664 insn &= 0xfff0f000;
11665 insn |= value & 0xfff;
11666 insn |= (value & 0xf000) << 4;
11667 bfd_put_32 (input_bfd, insn, hit_data);
11668 }
11669 return bfd_reloc_ok;
11670
11671 case R_ARM_THM_MOVW_ABS_NC:
11672 case R_ARM_THM_MOVT_ABS:
11673 case R_ARM_THM_MOVW_PREL_NC:
11674 case R_ARM_THM_MOVT_PREL:
11675 /* Until we properly support segment-base-relative addressing then
11676 we assume the segment base to be zero, as for the above relocations.
11677 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11678 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11679 as R_ARM_THM_MOVT_ABS. */
11680 case R_ARM_THM_MOVW_BREL_NC:
11681 case R_ARM_THM_MOVW_BREL:
11682 case R_ARM_THM_MOVT_BREL:
11683 {
11684 bfd_vma insn;
11685
11686 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11687 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11688
11689 if (globals->use_rel)
11690 {
11691 addend = ((insn >> 4) & 0xf000)
11692 | ((insn >> 15) & 0x0800)
11693 | ((insn >> 4) & 0x0700)
11694 | (insn & 0x00ff);
11695 signed_addend = (addend ^ 0x8000) - 0x8000;
11696 }
11697
11698 value += signed_addend;
11699
11700 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11701 value -= (input_section->output_section->vma
11702 + input_section->output_offset + rel->r_offset);
11703
11704 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11705 return bfd_reloc_overflow;
11706
11707 if (branch_type == ST_BRANCH_TO_THUMB)
11708 value |= 1;
11709
11710 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11711 || r_type == R_ARM_THM_MOVT_BREL)
11712 value >>= 16;
11713
11714 insn &= 0xfbf08f00;
11715 insn |= (value & 0xf000) << 4;
11716 insn |= (value & 0x0800) << 15;
11717 insn |= (value & 0x0700) << 4;
11718 insn |= (value & 0x00ff);
11719
11720 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11721 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11722 }
11723 return bfd_reloc_ok;
11724
11725 case R_ARM_ALU_PC_G0_NC:
11726 case R_ARM_ALU_PC_G1_NC:
11727 case R_ARM_ALU_PC_G0:
11728 case R_ARM_ALU_PC_G1:
11729 case R_ARM_ALU_PC_G2:
11730 case R_ARM_ALU_SB_G0_NC:
11731 case R_ARM_ALU_SB_G1_NC:
11732 case R_ARM_ALU_SB_G0:
11733 case R_ARM_ALU_SB_G1:
11734 case R_ARM_ALU_SB_G2:
11735 {
11736 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11737 bfd_vma pc = input_section->output_section->vma
11738 + input_section->output_offset + rel->r_offset;
11739 /* sb is the origin of the *segment* containing the symbol. */
11740 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11741 bfd_vma residual;
11742 bfd_vma g_n;
11743 bfd_signed_vma signed_value;
11744 int group = 0;
11745
11746 /* Determine which group of bits to select. */
11747 switch (r_type)
11748 {
11749 case R_ARM_ALU_PC_G0_NC:
11750 case R_ARM_ALU_PC_G0:
11751 case R_ARM_ALU_SB_G0_NC:
11752 case R_ARM_ALU_SB_G0:
11753 group = 0;
11754 break;
11755
11756 case R_ARM_ALU_PC_G1_NC:
11757 case R_ARM_ALU_PC_G1:
11758 case R_ARM_ALU_SB_G1_NC:
11759 case R_ARM_ALU_SB_G1:
11760 group = 1;
11761 break;
11762
11763 case R_ARM_ALU_PC_G2:
11764 case R_ARM_ALU_SB_G2:
11765 group = 2;
11766 break;
11767
11768 default:
11769 abort ();
11770 }
11771
11772 /* If REL, extract the addend from the insn. If RELA, it will
11773 have already been fetched for us. */
11774 if (globals->use_rel)
11775 {
11776 int negative;
11777 bfd_vma constant = insn & 0xff;
11778 bfd_vma rotation = (insn & 0xf00) >> 8;
11779
11780 if (rotation == 0)
11781 signed_addend = constant;
11782 else
11783 {
11784 /* Compensate for the fact that in the instruction, the
11785 rotation is stored in multiples of 2 bits. */
11786 rotation *= 2;
11787
11788 /* Rotate "constant" right by "rotation" bits. */
11789 signed_addend = (constant >> rotation) |
11790 (constant << (8 * sizeof (bfd_vma) - rotation));
11791 }
11792
11793 /* Determine if the instruction is an ADD or a SUB.
11794 (For REL, this determines the sign of the addend.) */
11795 negative = identify_add_or_sub (insn);
11796 if (negative == 0)
11797 {
11798 _bfd_error_handler
11799 /* xgettext:c-format */
11800 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11801 input_bfd, input_section,
11802 (long) rel->r_offset, howto->name);
11803 return bfd_reloc_overflow;
11804 }
11805
11806 signed_addend *= negative;
11807 }
11808
11809 /* Compute the value (X) to go in the place. */
11810 if (r_type == R_ARM_ALU_PC_G0_NC
11811 || r_type == R_ARM_ALU_PC_G1_NC
11812 || r_type == R_ARM_ALU_PC_G0
11813 || r_type == R_ARM_ALU_PC_G1
11814 || r_type == R_ARM_ALU_PC_G2)
11815 /* PC relative. */
11816 signed_value = value - pc + signed_addend;
11817 else
11818 /* Section base relative. */
11819 signed_value = value - sb + signed_addend;
11820
11821 /* If the target symbol is a Thumb function, then set the
11822 Thumb bit in the address. */
11823 if (branch_type == ST_BRANCH_TO_THUMB)
11824 signed_value |= 1;
11825
11826 /* Calculate the value of the relevant G_n, in encoded
11827 constant-with-rotation format. */
11828 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11829 group, &residual);
11830
11831 /* Check for overflow if required. */
11832 if ((r_type == R_ARM_ALU_PC_G0
11833 || r_type == R_ARM_ALU_PC_G1
11834 || r_type == R_ARM_ALU_PC_G2
11835 || r_type == R_ARM_ALU_SB_G0
11836 || r_type == R_ARM_ALU_SB_G1
11837 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11838 {
11839 _bfd_error_handler
11840 /* xgettext:c-format */
11841 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11842 input_bfd, input_section,
11843 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11844 howto->name);
11845 return bfd_reloc_overflow;
11846 }
11847
11848 /* Mask out the value and the ADD/SUB part of the opcode; take care
11849 not to destroy the S bit. */
11850 insn &= 0xff1ff000;
11851
11852 /* Set the opcode according to whether the value to go in the
11853 place is negative. */
11854 if (signed_value < 0)
11855 insn |= 1 << 22;
11856 else
11857 insn |= 1 << 23;
11858
11859 /* Encode the offset. */
11860 insn |= g_n;
11861
11862 bfd_put_32 (input_bfd, insn, hit_data);
11863 }
11864 return bfd_reloc_ok;
11865
11866 case R_ARM_LDR_PC_G0:
11867 case R_ARM_LDR_PC_G1:
11868 case R_ARM_LDR_PC_G2:
11869 case R_ARM_LDR_SB_G0:
11870 case R_ARM_LDR_SB_G1:
11871 case R_ARM_LDR_SB_G2:
11872 {
11873 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11874 bfd_vma pc = input_section->output_section->vma
11875 + input_section->output_offset + rel->r_offset;
11876 /* sb is the origin of the *segment* containing the symbol. */
11877 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11878 bfd_vma residual;
11879 bfd_signed_vma signed_value;
11880 int group = 0;
11881
11882 /* Determine which groups of bits to calculate. */
11883 switch (r_type)
11884 {
11885 case R_ARM_LDR_PC_G0:
11886 case R_ARM_LDR_SB_G0:
11887 group = 0;
11888 break;
11889
11890 case R_ARM_LDR_PC_G1:
11891 case R_ARM_LDR_SB_G1:
11892 group = 1;
11893 break;
11894
11895 case R_ARM_LDR_PC_G2:
11896 case R_ARM_LDR_SB_G2:
11897 group = 2;
11898 break;
11899
11900 default:
11901 abort ();
11902 }
11903
11904 /* If REL, extract the addend from the insn. If RELA, it will
11905 have already been fetched for us. */
11906 if (globals->use_rel)
11907 {
11908 int negative = (insn & (1 << 23)) ? 1 : -1;
11909 signed_addend = negative * (insn & 0xfff);
11910 }
11911
11912 /* Compute the value (X) to go in the place. */
11913 if (r_type == R_ARM_LDR_PC_G0
11914 || r_type == R_ARM_LDR_PC_G1
11915 || r_type == R_ARM_LDR_PC_G2)
11916 /* PC relative. */
11917 signed_value = value - pc + signed_addend;
11918 else
11919 /* Section base relative. */
11920 signed_value = value - sb + signed_addend;
11921
11922 /* Calculate the value of the relevant G_{n-1} to obtain
11923 the residual at that stage. */
11924 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11925 group - 1, &residual);
11926
11927 /* Check for overflow. */
11928 if (residual >= 0x1000)
11929 {
11930 _bfd_error_handler
11931 /* xgettext:c-format */
11932 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11933 input_bfd, input_section,
11934 (long) rel->r_offset, labs (signed_value), howto->name);
11935 return bfd_reloc_overflow;
11936 }
11937
11938 /* Mask out the value and U bit. */
11939 insn &= 0xff7ff000;
11940
11941 /* Set the U bit if the value to go in the place is non-negative. */
11942 if (signed_value >= 0)
11943 insn |= 1 << 23;
11944
11945 /* Encode the offset. */
11946 insn |= residual;
11947
11948 bfd_put_32 (input_bfd, insn, hit_data);
11949 }
11950 return bfd_reloc_ok;
11951
11952 case R_ARM_LDRS_PC_G0:
11953 case R_ARM_LDRS_PC_G1:
11954 case R_ARM_LDRS_PC_G2:
11955 case R_ARM_LDRS_SB_G0:
11956 case R_ARM_LDRS_SB_G1:
11957 case R_ARM_LDRS_SB_G2:
11958 {
11959 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11960 bfd_vma pc = input_section->output_section->vma
11961 + input_section->output_offset + rel->r_offset;
11962 /* sb is the origin of the *segment* containing the symbol. */
11963 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11964 bfd_vma residual;
11965 bfd_signed_vma signed_value;
11966 int group = 0;
11967
11968 /* Determine which groups of bits to calculate. */
11969 switch (r_type)
11970 {
11971 case R_ARM_LDRS_PC_G0:
11972 case R_ARM_LDRS_SB_G0:
11973 group = 0;
11974 break;
11975
11976 case R_ARM_LDRS_PC_G1:
11977 case R_ARM_LDRS_SB_G1:
11978 group = 1;
11979 break;
11980
11981 case R_ARM_LDRS_PC_G2:
11982 case R_ARM_LDRS_SB_G2:
11983 group = 2;
11984 break;
11985
11986 default:
11987 abort ();
11988 }
11989
11990 /* If REL, extract the addend from the insn. If RELA, it will
11991 have already been fetched for us. */
11992 if (globals->use_rel)
11993 {
11994 int negative = (insn & (1 << 23)) ? 1 : -1;
11995 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11996 }
11997
11998 /* Compute the value (X) to go in the place. */
11999 if (r_type == R_ARM_LDRS_PC_G0
12000 || r_type == R_ARM_LDRS_PC_G1
12001 || r_type == R_ARM_LDRS_PC_G2)
12002 /* PC relative. */
12003 signed_value = value - pc + signed_addend;
12004 else
12005 /* Section base relative. */
12006 signed_value = value - sb + signed_addend;
12007
12008 /* Calculate the value of the relevant G_{n-1} to obtain
12009 the residual at that stage. */
12010 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12011 group - 1, &residual);
12012
12013 /* Check for overflow. */
12014 if (residual >= 0x100)
12015 {
12016 _bfd_error_handler
12017 /* xgettext:c-format */
12018 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12019 input_bfd, input_section,
12020 (long) rel->r_offset, labs (signed_value), howto->name);
12021 return bfd_reloc_overflow;
12022 }
12023
12024 /* Mask out the value and U bit. */
12025 insn &= 0xff7ff0f0;
12026
12027 /* Set the U bit if the value to go in the place is non-negative. */
12028 if (signed_value >= 0)
12029 insn |= 1 << 23;
12030
12031 /* Encode the offset. */
12032 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12033
12034 bfd_put_32 (input_bfd, insn, hit_data);
12035 }
12036 return bfd_reloc_ok;
12037
12038 case R_ARM_LDC_PC_G0:
12039 case R_ARM_LDC_PC_G1:
12040 case R_ARM_LDC_PC_G2:
12041 case R_ARM_LDC_SB_G0:
12042 case R_ARM_LDC_SB_G1:
12043 case R_ARM_LDC_SB_G2:
12044 {
12045 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12046 bfd_vma pc = input_section->output_section->vma
12047 + input_section->output_offset + rel->r_offset;
12048 /* sb is the origin of the *segment* containing the symbol. */
12049 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12050 bfd_vma residual;
12051 bfd_signed_vma signed_value;
12052 int group = 0;
12053
12054 /* Determine which groups of bits to calculate. */
12055 switch (r_type)
12056 {
12057 case R_ARM_LDC_PC_G0:
12058 case R_ARM_LDC_SB_G0:
12059 group = 0;
12060 break;
12061
12062 case R_ARM_LDC_PC_G1:
12063 case R_ARM_LDC_SB_G1:
12064 group = 1;
12065 break;
12066
12067 case R_ARM_LDC_PC_G2:
12068 case R_ARM_LDC_SB_G2:
12069 group = 2;
12070 break;
12071
12072 default:
12073 abort ();
12074 }
12075
12076 /* If REL, extract the addend from the insn. If RELA, it will
12077 have already been fetched for us. */
12078 if (globals->use_rel)
12079 {
12080 int negative = (insn & (1 << 23)) ? 1 : -1;
12081 signed_addend = negative * ((insn & 0xff) << 2);
12082 }
12083
12084 /* Compute the value (X) to go in the place. */
12085 if (r_type == R_ARM_LDC_PC_G0
12086 || r_type == R_ARM_LDC_PC_G1
12087 || r_type == R_ARM_LDC_PC_G2)
12088 /* PC relative. */
12089 signed_value = value - pc + signed_addend;
12090 else
12091 /* Section base relative. */
12092 signed_value = value - sb + signed_addend;
12093
12094 /* Calculate the value of the relevant G_{n-1} to obtain
12095 the residual at that stage. */
12096 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12097 group - 1, &residual);
12098
12099 /* Check for overflow. (The absolute value to go in the place must be
12100 divisible by four and, after having been divided by four, must
12101 fit in eight bits.) */
12102 if ((residual & 0x3) != 0 || residual >= 0x400)
12103 {
12104 _bfd_error_handler
12105 /* xgettext:c-format */
12106 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12107 input_bfd, input_section,
12108 (long) rel->r_offset, labs (signed_value), howto->name);
12109 return bfd_reloc_overflow;
12110 }
12111
12112 /* Mask out the value and U bit. */
12113 insn &= 0xff7fff00;
12114
12115 /* Set the U bit if the value to go in the place is non-negative. */
12116 if (signed_value >= 0)
12117 insn |= 1 << 23;
12118
12119 /* Encode the offset. */
12120 insn |= residual >> 2;
12121
12122 bfd_put_32 (input_bfd, insn, hit_data);
12123 }
12124 return bfd_reloc_ok;
12125
12126 case R_ARM_THM_ALU_ABS_G0_NC:
12127 case R_ARM_THM_ALU_ABS_G1_NC:
12128 case R_ARM_THM_ALU_ABS_G2_NC:
12129 case R_ARM_THM_ALU_ABS_G3_NC:
12130 {
12131 const int shift_array[4] = {0, 8, 16, 24};
12132 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12133 bfd_vma addr = value;
12134 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12135
12136 /* Compute address. */
12137 if (globals->use_rel)
12138 signed_addend = insn & 0xff;
12139 addr += signed_addend;
12140 if (branch_type == ST_BRANCH_TO_THUMB)
12141 addr |= 1;
12142 /* Clean imm8 insn. */
12143 insn &= 0xff00;
12144 /* And update with correct part of address. */
12145 insn |= (addr >> shift) & 0xff;
12146 /* Update insn. */
12147 bfd_put_16 (input_bfd, insn, hit_data);
12148 }
12149
12150 *unresolved_reloc_p = FALSE;
12151 return bfd_reloc_ok;
12152
12153 default:
12154 return bfd_reloc_notsupported;
12155 }
12156 }
12157
12158 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12159 static void
12160 arm_add_to_rel (bfd * abfd,
12161 bfd_byte * address,
12162 reloc_howto_type * howto,
12163 bfd_signed_vma increment)
12164 {
12165 bfd_signed_vma addend;
12166
12167 if (howto->type == R_ARM_THM_CALL
12168 || howto->type == R_ARM_THM_JUMP24)
12169 {
12170 int upper_insn, lower_insn;
12171 int upper, lower;
12172
12173 upper_insn = bfd_get_16 (abfd, address);
12174 lower_insn = bfd_get_16 (abfd, address + 2);
12175 upper = upper_insn & 0x7ff;
12176 lower = lower_insn & 0x7ff;
12177
12178 addend = (upper << 12) | (lower << 1);
12179 addend += increment;
12180 addend >>= 1;
12181
12182 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12183 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12184
12185 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12186 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12187 }
12188 else
12189 {
12190 bfd_vma contents;
12191
12192 contents = bfd_get_32 (abfd, address);
12193
12194 /* Get the (signed) value from the instruction. */
12195 addend = contents & howto->src_mask;
12196 if (addend & ((howto->src_mask + 1) >> 1))
12197 {
12198 bfd_signed_vma mask;
12199
12200 mask = -1;
12201 mask &= ~ howto->src_mask;
12202 addend |= mask;
12203 }
12204
12205 /* Add in the increment, (which is a byte value). */
12206 switch (howto->type)
12207 {
12208 default:
12209 addend += increment;
12210 break;
12211
12212 case R_ARM_PC24:
12213 case R_ARM_PLT32:
12214 case R_ARM_CALL:
12215 case R_ARM_JUMP24:
12216 addend <<= howto->size;
12217 addend += increment;
12218
12219 /* Should we check for overflow here ? */
12220
12221 /* Drop any undesired bits. */
12222 addend >>= howto->rightshift;
12223 break;
12224 }
12225
12226 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12227
12228 bfd_put_32 (abfd, contents, address);
12229 }
12230 }
12231
12232 #define IS_ARM_TLS_RELOC(R_TYPE) \
12233 ((R_TYPE) == R_ARM_TLS_GD32 \
12234 || (R_TYPE) == R_ARM_TLS_LDO32 \
12235 || (R_TYPE) == R_ARM_TLS_LDM32 \
12236 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12237 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12238 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12239 || (R_TYPE) == R_ARM_TLS_LE32 \
12240 || (R_TYPE) == R_ARM_TLS_IE32 \
12241 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12242
12243 /* Specific set of relocations for the gnu tls dialect. */
12244 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12245 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12246 || (R_TYPE) == R_ARM_TLS_CALL \
12247 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12248 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12249 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12250
12251 /* Relocate an ARM ELF section. */
12252
12253 static bfd_boolean
12254 elf32_arm_relocate_section (bfd * output_bfd,
12255 struct bfd_link_info * info,
12256 bfd * input_bfd,
12257 asection * input_section,
12258 bfd_byte * contents,
12259 Elf_Internal_Rela * relocs,
12260 Elf_Internal_Sym * local_syms,
12261 asection ** local_sections)
12262 {
12263 Elf_Internal_Shdr *symtab_hdr;
12264 struct elf_link_hash_entry **sym_hashes;
12265 Elf_Internal_Rela *rel;
12266 Elf_Internal_Rela *relend;
12267 const char *name;
12268 struct elf32_arm_link_hash_table * globals;
12269
12270 globals = elf32_arm_hash_table (info);
12271 if (globals == NULL)
12272 return FALSE;
12273
12274 symtab_hdr = & elf_symtab_hdr (input_bfd);
12275 sym_hashes = elf_sym_hashes (input_bfd);
12276
12277 rel = relocs;
12278 relend = relocs + input_section->reloc_count;
12279 for (; rel < relend; rel++)
12280 {
12281 int r_type;
12282 reloc_howto_type * howto;
12283 unsigned long r_symndx;
12284 Elf_Internal_Sym * sym;
12285 asection * sec;
12286 struct elf_link_hash_entry * h;
12287 bfd_vma relocation;
12288 bfd_reloc_status_type r;
12289 arelent bfd_reloc;
12290 char sym_type;
12291 bfd_boolean unresolved_reloc = FALSE;
12292 char *error_message = NULL;
12293
12294 r_symndx = ELF32_R_SYM (rel->r_info);
12295 r_type = ELF32_R_TYPE (rel->r_info);
12296 r_type = arm_real_reloc_type (globals, r_type);
12297
12298 if ( r_type == R_ARM_GNU_VTENTRY
12299 || r_type == R_ARM_GNU_VTINHERIT)
12300 continue;
12301
12302 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12303 howto = bfd_reloc.howto;
12304
12305 h = NULL;
12306 sym = NULL;
12307 sec = NULL;
12308
12309 if (r_symndx < symtab_hdr->sh_info)
12310 {
12311 sym = local_syms + r_symndx;
12312 sym_type = ELF32_ST_TYPE (sym->st_info);
12313 sec = local_sections[r_symndx];
12314
12315 /* An object file might have a reference to a local
12316 undefined symbol. This is a daft object file, but we
12317 should at least do something about it. V4BX & NONE
12318 relocations do not use the symbol and are explicitly
12319 allowed to use the undefined symbol, so allow those.
12320 Likewise for relocations against STN_UNDEF. */
12321 if (r_type != R_ARM_V4BX
12322 && r_type != R_ARM_NONE
12323 && r_symndx != STN_UNDEF
12324 && bfd_is_und_section (sec)
12325 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12326 (*info->callbacks->undefined_symbol)
12327 (info, bfd_elf_string_from_elf_section
12328 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12329 input_bfd, input_section,
12330 rel->r_offset, TRUE);
12331
12332 if (globals->use_rel)
12333 {
12334 relocation = (sec->output_section->vma
12335 + sec->output_offset
12336 + sym->st_value);
12337 if (!bfd_link_relocatable (info)
12338 && (sec->flags & SEC_MERGE)
12339 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12340 {
12341 asection *msec;
12342 bfd_vma addend, value;
12343
12344 switch (r_type)
12345 {
12346 case R_ARM_MOVW_ABS_NC:
12347 case R_ARM_MOVT_ABS:
12348 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12349 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12350 addend = (addend ^ 0x8000) - 0x8000;
12351 break;
12352
12353 case R_ARM_THM_MOVW_ABS_NC:
12354 case R_ARM_THM_MOVT_ABS:
12355 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12356 << 16;
12357 value |= bfd_get_16 (input_bfd,
12358 contents + rel->r_offset + 2);
12359 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12360 | ((value & 0x04000000) >> 15);
12361 addend = (addend ^ 0x8000) - 0x8000;
12362 break;
12363
12364 default:
12365 if (howto->rightshift
12366 || (howto->src_mask & (howto->src_mask + 1)))
12367 {
12368 _bfd_error_handler
12369 /* xgettext:c-format */
12370 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12371 input_bfd, input_section,
12372 (long) rel->r_offset, howto->name);
12373 return FALSE;
12374 }
12375
12376 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12377
12378 /* Get the (signed) value from the instruction. */
12379 addend = value & howto->src_mask;
12380 if (addend & ((howto->src_mask + 1) >> 1))
12381 {
12382 bfd_signed_vma mask;
12383
12384 mask = -1;
12385 mask &= ~ howto->src_mask;
12386 addend |= mask;
12387 }
12388 break;
12389 }
12390
12391 msec = sec;
12392 addend =
12393 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12394 - relocation;
12395 addend += msec->output_section->vma + msec->output_offset;
12396
12397 /* Cases here must match those in the preceding
12398 switch statement. */
12399 switch (r_type)
12400 {
12401 case R_ARM_MOVW_ABS_NC:
12402 case R_ARM_MOVT_ABS:
12403 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12404 | (addend & 0xfff);
12405 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12406 break;
12407
12408 case R_ARM_THM_MOVW_ABS_NC:
12409 case R_ARM_THM_MOVT_ABS:
12410 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12411 | (addend & 0xff) | ((addend & 0x0800) << 15);
12412 bfd_put_16 (input_bfd, value >> 16,
12413 contents + rel->r_offset);
12414 bfd_put_16 (input_bfd, value,
12415 contents + rel->r_offset + 2);
12416 break;
12417
12418 default:
12419 value = (value & ~ howto->dst_mask)
12420 | (addend & howto->dst_mask);
12421 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12422 break;
12423 }
12424 }
12425 }
12426 else
12427 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12428 }
12429 else
12430 {
12431 bfd_boolean warned, ignored;
12432
12433 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12434 r_symndx, symtab_hdr, sym_hashes,
12435 h, sec, relocation,
12436 unresolved_reloc, warned, ignored);
12437
12438 sym_type = h->type;
12439 }
12440
12441 if (sec != NULL && discarded_section (sec))
12442 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12443 rel, 1, relend, howto, 0, contents);
12444
12445 if (bfd_link_relocatable (info))
12446 {
12447 /* This is a relocatable link. We don't have to change
12448 anything, unless the reloc is against a section symbol,
12449 in which case we have to adjust according to where the
12450 section symbol winds up in the output section. */
12451 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12452 {
12453 if (globals->use_rel)
12454 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12455 howto, (bfd_signed_vma) sec->output_offset);
12456 else
12457 rel->r_addend += sec->output_offset;
12458 }
12459 continue;
12460 }
12461
12462 if (h != NULL)
12463 name = h->root.root.string;
12464 else
12465 {
12466 name = (bfd_elf_string_from_elf_section
12467 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12468 if (name == NULL || *name == '\0')
12469 name = bfd_section_name (input_bfd, sec);
12470 }
12471
12472 if (r_symndx != STN_UNDEF
12473 && r_type != R_ARM_NONE
12474 && (h == NULL
12475 || h->root.type == bfd_link_hash_defined
12476 || h->root.type == bfd_link_hash_defweak)
12477 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12478 {
12479 _bfd_error_handler
12480 ((sym_type == STT_TLS
12481 /* xgettext:c-format */
12482 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12483 /* xgettext:c-format */
12484 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12485 input_bfd,
12486 input_section,
12487 (long) rel->r_offset,
12488 howto->name,
12489 name);
12490 }
12491
12492 /* We call elf32_arm_final_link_relocate unless we're completely
12493 done, i.e., the relaxation produced the final output we want,
12494 and we won't let anybody mess with it. Also, we have to do
12495 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12496 both in relaxed and non-relaxed cases. */
12497 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12498 || (IS_ARM_TLS_GNU_RELOC (r_type)
12499 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12500 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12501 & GOT_TLS_GDESC)))
12502 {
12503 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12504 contents, rel, h == NULL);
12505 /* This may have been marked unresolved because it came from
12506 a shared library. But we've just dealt with that. */
12507 unresolved_reloc = 0;
12508 }
12509 else
12510 r = bfd_reloc_continue;
12511
12512 if (r == bfd_reloc_continue)
12513 {
12514 unsigned char branch_type =
12515 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12516 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12517
12518 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12519 input_section, contents, rel,
12520 relocation, info, sec, name,
12521 sym_type, branch_type, h,
12522 &unresolved_reloc,
12523 &error_message);
12524 }
12525
12526 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12527 because such sections are not SEC_ALLOC and thus ld.so will
12528 not process them. */
12529 if (unresolved_reloc
12530 && !((input_section->flags & SEC_DEBUGGING) != 0
12531 && h->def_dynamic)
12532 && _bfd_elf_section_offset (output_bfd, info, input_section,
12533 rel->r_offset) != (bfd_vma) -1)
12534 {
12535 _bfd_error_handler
12536 /* xgettext:c-format */
12537 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12538 input_bfd,
12539 input_section,
12540 (long) rel->r_offset,
12541 howto->name,
12542 h->root.root.string);
12543 return FALSE;
12544 }
12545
12546 if (r != bfd_reloc_ok)
12547 {
12548 switch (r)
12549 {
12550 case bfd_reloc_overflow:
12551 /* If the overflowing reloc was to an undefined symbol,
12552 we have already printed one error message and there
12553 is no point complaining again. */
12554 if (!h || h->root.type != bfd_link_hash_undefined)
12555 (*info->callbacks->reloc_overflow)
12556 (info, (h ? &h->root : NULL), name, howto->name,
12557 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12558 break;
12559
12560 case bfd_reloc_undefined:
12561 (*info->callbacks->undefined_symbol)
12562 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12563 break;
12564
12565 case bfd_reloc_outofrange:
12566 error_message = _("out of range");
12567 goto common_error;
12568
12569 case bfd_reloc_notsupported:
12570 error_message = _("unsupported relocation");
12571 goto common_error;
12572
12573 case bfd_reloc_dangerous:
12574 /* error_message should already be set. */
12575 goto common_error;
12576
12577 default:
12578 error_message = _("unknown error");
12579 /* Fall through. */
12580
12581 common_error:
12582 BFD_ASSERT (error_message != NULL);
12583 (*info->callbacks->reloc_dangerous)
12584 (info, error_message, input_bfd, input_section, rel->r_offset);
12585 break;
12586 }
12587 }
12588 }
12589
12590 return TRUE;
12591 }
12592
12593 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12594 adds the edit to the start of the list. (The list must be built in order of
12595 ascending TINDEX: the function's callers are primarily responsible for
12596 maintaining that condition). */
12597
12598 static void
12599 add_unwind_table_edit (arm_unwind_table_edit **head,
12600 arm_unwind_table_edit **tail,
12601 arm_unwind_edit_type type,
12602 asection *linked_section,
12603 unsigned int tindex)
12604 {
12605 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12606 xmalloc (sizeof (arm_unwind_table_edit));
12607
12608 new_edit->type = type;
12609 new_edit->linked_section = linked_section;
12610 new_edit->index = tindex;
12611
12612 if (tindex > 0)
12613 {
12614 new_edit->next = NULL;
12615
12616 if (*tail)
12617 (*tail)->next = new_edit;
12618
12619 (*tail) = new_edit;
12620
12621 if (!*head)
12622 (*head) = new_edit;
12623 }
12624 else
12625 {
12626 new_edit->next = *head;
12627
12628 if (!*tail)
12629 *tail = new_edit;
12630
12631 *head = new_edit;
12632 }
12633 }
12634
12635 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12636
12637 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12638 static void
12639 adjust_exidx_size(asection *exidx_sec, int adjust)
12640 {
12641 asection *out_sec;
12642
12643 if (!exidx_sec->rawsize)
12644 exidx_sec->rawsize = exidx_sec->size;
12645
12646 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12647 out_sec = exidx_sec->output_section;
12648 /* Adjust size of output section. */
12649 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12650 }
12651
12652 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12653 static void
12654 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12655 {
12656 struct _arm_elf_section_data *exidx_arm_data;
12657
12658 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12659 add_unwind_table_edit (
12660 &exidx_arm_data->u.exidx.unwind_edit_list,
12661 &exidx_arm_data->u.exidx.unwind_edit_tail,
12662 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12663
12664 exidx_arm_data->additional_reloc_count++;
12665
12666 adjust_exidx_size(exidx_sec, 8);
12667 }
12668
12669 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12670 made to those tables, such that:
12671
12672 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12673 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12674 codes which have been inlined into the index).
12675
12676 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12677
12678 The edits are applied when the tables are written
12679 (in elf32_arm_write_section). */
12680
12681 bfd_boolean
12682 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12683 unsigned int num_text_sections,
12684 struct bfd_link_info *info,
12685 bfd_boolean merge_exidx_entries)
12686 {
12687 bfd *inp;
12688 unsigned int last_second_word = 0, i;
12689 asection *last_exidx_sec = NULL;
12690 asection *last_text_sec = NULL;
12691 int last_unwind_type = -1;
12692
12693 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12694 text sections. */
12695 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12696 {
12697 asection *sec;
12698
12699 for (sec = inp->sections; sec != NULL; sec = sec->next)
12700 {
12701 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12702 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12703
12704 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12705 continue;
12706
12707 if (elf_sec->linked_to)
12708 {
12709 Elf_Internal_Shdr *linked_hdr
12710 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12711 struct _arm_elf_section_data *linked_sec_arm_data
12712 = get_arm_elf_section_data (linked_hdr->bfd_section);
12713
12714 if (linked_sec_arm_data == NULL)
12715 continue;
12716
12717 /* Link this .ARM.exidx section back from the text section it
12718 describes. */
12719 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12720 }
12721 }
12722 }
12723
12724 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12725 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12726 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12727
12728 for (i = 0; i < num_text_sections; i++)
12729 {
12730 asection *sec = text_section_order[i];
12731 asection *exidx_sec;
12732 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12733 struct _arm_elf_section_data *exidx_arm_data;
12734 bfd_byte *contents = NULL;
12735 int deleted_exidx_bytes = 0;
12736 bfd_vma j;
12737 arm_unwind_table_edit *unwind_edit_head = NULL;
12738 arm_unwind_table_edit *unwind_edit_tail = NULL;
12739 Elf_Internal_Shdr *hdr;
12740 bfd *ibfd;
12741
12742 if (arm_data == NULL)
12743 continue;
12744
12745 exidx_sec = arm_data->u.text.arm_exidx_sec;
12746 if (exidx_sec == NULL)
12747 {
12748 /* Section has no unwind data. */
12749 if (last_unwind_type == 0 || !last_exidx_sec)
12750 continue;
12751
12752 /* Ignore zero sized sections. */
12753 if (sec->size == 0)
12754 continue;
12755
12756 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12757 last_unwind_type = 0;
12758 continue;
12759 }
12760
12761 /* Skip /DISCARD/ sections. */
12762 if (bfd_is_abs_section (exidx_sec->output_section))
12763 continue;
12764
12765 hdr = &elf_section_data (exidx_sec)->this_hdr;
12766 if (hdr->sh_type != SHT_ARM_EXIDX)
12767 continue;
12768
12769 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12770 if (exidx_arm_data == NULL)
12771 continue;
12772
12773 ibfd = exidx_sec->owner;
12774
12775 if (hdr->contents != NULL)
12776 contents = hdr->contents;
12777 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12778 /* An error? */
12779 continue;
12780
12781 if (last_unwind_type > 0)
12782 {
12783 unsigned int first_word = bfd_get_32 (ibfd, contents);
12784 /* Add cantunwind if first unwind item does not match section
12785 start. */
12786 if (first_word != sec->vma)
12787 {
12788 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12789 last_unwind_type = 0;
12790 }
12791 }
12792
12793 for (j = 0; j < hdr->sh_size; j += 8)
12794 {
12795 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12796 int unwind_type;
12797 int elide = 0;
12798
12799 /* An EXIDX_CANTUNWIND entry. */
12800 if (second_word == 1)
12801 {
12802 if (last_unwind_type == 0)
12803 elide = 1;
12804 unwind_type = 0;
12805 }
12806 /* Inlined unwinding data. Merge if equal to previous. */
12807 else if ((second_word & 0x80000000) != 0)
12808 {
12809 if (merge_exidx_entries
12810 && last_second_word == second_word && last_unwind_type == 1)
12811 elide = 1;
12812 unwind_type = 1;
12813 last_second_word = second_word;
12814 }
12815 /* Normal table entry. In theory we could merge these too,
12816 but duplicate entries are likely to be much less common. */
12817 else
12818 unwind_type = 2;
12819
12820 if (elide && !bfd_link_relocatable (info))
12821 {
12822 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12823 DELETE_EXIDX_ENTRY, NULL, j / 8);
12824
12825 deleted_exidx_bytes += 8;
12826 }
12827
12828 last_unwind_type = unwind_type;
12829 }
12830
12831 /* Free contents if we allocated it ourselves. */
12832 if (contents != hdr->contents)
12833 free (contents);
12834
12835 /* Record edits to be applied later (in elf32_arm_write_section). */
12836 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12837 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12838
12839 if (deleted_exidx_bytes > 0)
12840 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12841
12842 last_exidx_sec = exidx_sec;
12843 last_text_sec = sec;
12844 }
12845
12846 /* Add terminating CANTUNWIND entry. */
12847 if (!bfd_link_relocatable (info) && last_exidx_sec
12848 && last_unwind_type != 0)
12849 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12850
12851 return TRUE;
12852 }
12853
12854 static bfd_boolean
12855 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12856 bfd *ibfd, const char *name)
12857 {
12858 asection *sec, *osec;
12859
12860 sec = bfd_get_linker_section (ibfd, name);
12861 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12862 return TRUE;
12863
12864 osec = sec->output_section;
12865 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12866 return TRUE;
12867
12868 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12869 sec->output_offset, sec->size))
12870 return FALSE;
12871
12872 return TRUE;
12873 }
12874
12875 static bfd_boolean
12876 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12877 {
12878 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12879 asection *sec, *osec;
12880
12881 if (globals == NULL)
12882 return FALSE;
12883
12884 /* Invoke the regular ELF backend linker to do all the work. */
12885 if (!bfd_elf_final_link (abfd, info))
12886 return FALSE;
12887
12888 /* Process stub sections (eg BE8 encoding, ...). */
12889 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12890 unsigned int i;
12891 for (i=0; i<htab->top_id; i++)
12892 {
12893 sec = htab->stub_group[i].stub_sec;
12894 /* Only process it once, in its link_sec slot. */
12895 if (sec && i == htab->stub_group[i].link_sec->id)
12896 {
12897 osec = sec->output_section;
12898 elf32_arm_write_section (abfd, info, sec, sec->contents);
12899 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12900 sec->output_offset, sec->size))
12901 return FALSE;
12902 }
12903 }
12904
12905 /* Write out any glue sections now that we have created all the
12906 stubs. */
12907 if (globals->bfd_of_glue_owner != NULL)
12908 {
12909 if (! elf32_arm_output_glue_section (info, abfd,
12910 globals->bfd_of_glue_owner,
12911 ARM2THUMB_GLUE_SECTION_NAME))
12912 return FALSE;
12913
12914 if (! elf32_arm_output_glue_section (info, abfd,
12915 globals->bfd_of_glue_owner,
12916 THUMB2ARM_GLUE_SECTION_NAME))
12917 return FALSE;
12918
12919 if (! elf32_arm_output_glue_section (info, abfd,
12920 globals->bfd_of_glue_owner,
12921 VFP11_ERRATUM_VENEER_SECTION_NAME))
12922 return FALSE;
12923
12924 if (! elf32_arm_output_glue_section (info, abfd,
12925 globals->bfd_of_glue_owner,
12926 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12927 return FALSE;
12928
12929 if (! elf32_arm_output_glue_section (info, abfd,
12930 globals->bfd_of_glue_owner,
12931 ARM_BX_GLUE_SECTION_NAME))
12932 return FALSE;
12933 }
12934
12935 return TRUE;
12936 }
12937
12938 /* Return a best guess for the machine number based on the attributes. */
12939
12940 static unsigned int
12941 bfd_arm_get_mach_from_attributes (bfd * abfd)
12942 {
12943 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12944
12945 switch (arch)
12946 {
12947 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12948 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12949 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12950
12951 case TAG_CPU_ARCH_V5TE:
12952 {
12953 char * name;
12954
12955 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12956 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12957
12958 if (name)
12959 {
12960 if (strcmp (name, "IWMMXT2") == 0)
12961 return bfd_mach_arm_iWMMXt2;
12962
12963 if (strcmp (name, "IWMMXT") == 0)
12964 return bfd_mach_arm_iWMMXt;
12965
12966 if (strcmp (name, "XSCALE") == 0)
12967 {
12968 int wmmx;
12969
12970 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12971 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12972 switch (wmmx)
12973 {
12974 case 1: return bfd_mach_arm_iWMMXt;
12975 case 2: return bfd_mach_arm_iWMMXt2;
12976 default: return bfd_mach_arm_XScale;
12977 }
12978 }
12979 }
12980
12981 return bfd_mach_arm_5TE;
12982 }
12983
12984 default:
12985 return bfd_mach_arm_unknown;
12986 }
12987 }
12988
12989 /* Set the right machine number. */
12990
12991 static bfd_boolean
12992 elf32_arm_object_p (bfd *abfd)
12993 {
12994 unsigned int mach;
12995
12996 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12997
12998 if (mach == bfd_mach_arm_unknown)
12999 {
13000 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13001 mach = bfd_mach_arm_ep9312;
13002 else
13003 mach = bfd_arm_get_mach_from_attributes (abfd);
13004 }
13005
13006 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13007 return TRUE;
13008 }
13009
13010 /* Function to keep ARM specific flags in the ELF header. */
13011
13012 static bfd_boolean
13013 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13014 {
13015 if (elf_flags_init (abfd)
13016 && elf_elfheader (abfd)->e_flags != flags)
13017 {
13018 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13019 {
13020 if (flags & EF_ARM_INTERWORK)
13021 _bfd_error_handler
13022 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13023 abfd);
13024 else
13025 _bfd_error_handler
13026 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13027 abfd);
13028 }
13029 }
13030 else
13031 {
13032 elf_elfheader (abfd)->e_flags = flags;
13033 elf_flags_init (abfd) = TRUE;
13034 }
13035
13036 return TRUE;
13037 }
13038
13039 /* Copy backend specific data from one object module to another. */
13040
13041 static bfd_boolean
13042 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13043 {
13044 flagword in_flags;
13045 flagword out_flags;
13046
13047 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13048 return TRUE;
13049
13050 in_flags = elf_elfheader (ibfd)->e_flags;
13051 out_flags = elf_elfheader (obfd)->e_flags;
13052
13053 if (elf_flags_init (obfd)
13054 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13055 && in_flags != out_flags)
13056 {
13057 /* Cannot mix APCS26 and APCS32 code. */
13058 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13059 return FALSE;
13060
13061 /* Cannot mix float APCS and non-float APCS code. */
13062 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13063 return FALSE;
13064
13065 /* If the src and dest have different interworking flags
13066 then turn off the interworking bit. */
13067 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13068 {
13069 if (out_flags & EF_ARM_INTERWORK)
13070 _bfd_error_handler
13071 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13072 obfd, ibfd);
13073
13074 in_flags &= ~EF_ARM_INTERWORK;
13075 }
13076
13077 /* Likewise for PIC, though don't warn for this case. */
13078 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13079 in_flags &= ~EF_ARM_PIC;
13080 }
13081
13082 elf_elfheader (obfd)->e_flags = in_flags;
13083 elf_flags_init (obfd) = TRUE;
13084
13085 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13086 }
13087
13088 /* Values for Tag_ABI_PCS_R9_use. */
13089 enum
13090 {
13091 AEABI_R9_V6,
13092 AEABI_R9_SB,
13093 AEABI_R9_TLS,
13094 AEABI_R9_unused
13095 };
13096
13097 /* Values for Tag_ABI_PCS_RW_data. */
13098 enum
13099 {
13100 AEABI_PCS_RW_data_absolute,
13101 AEABI_PCS_RW_data_PCrel,
13102 AEABI_PCS_RW_data_SBrel,
13103 AEABI_PCS_RW_data_unused
13104 };
13105
13106 /* Values for Tag_ABI_enum_size. */
13107 enum
13108 {
13109 AEABI_enum_unused,
13110 AEABI_enum_short,
13111 AEABI_enum_wide,
13112 AEABI_enum_forced_wide
13113 };
13114
13115 /* Determine whether an object attribute tag takes an integer, a
13116 string or both. */
13117
13118 static int
13119 elf32_arm_obj_attrs_arg_type (int tag)
13120 {
13121 if (tag == Tag_compatibility)
13122 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13123 else if (tag == Tag_nodefaults)
13124 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13125 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13126 return ATTR_TYPE_FLAG_STR_VAL;
13127 else if (tag < 32)
13128 return ATTR_TYPE_FLAG_INT_VAL;
13129 else
13130 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13131 }
13132
13133 /* The ABI defines that Tag_conformance should be emitted first, and that
13134 Tag_nodefaults should be second (if either is defined). This sets those
13135 two positions, and bumps up the position of all the remaining tags to
13136 compensate. */
13137 static int
13138 elf32_arm_obj_attrs_order (int num)
13139 {
13140 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13141 return Tag_conformance;
13142 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13143 return Tag_nodefaults;
13144 if ((num - 2) < Tag_nodefaults)
13145 return num - 2;
13146 if ((num - 1) < Tag_conformance)
13147 return num - 1;
13148 return num;
13149 }
13150
13151 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13152 static bfd_boolean
13153 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13154 {
13155 if ((tag & 127) < 64)
13156 {
13157 _bfd_error_handler
13158 (_("%B: Unknown mandatory EABI object attribute %d"),
13159 abfd, tag);
13160 bfd_set_error (bfd_error_bad_value);
13161 return FALSE;
13162 }
13163 else
13164 {
13165 _bfd_error_handler
13166 (_("Warning: %B: Unknown EABI object attribute %d"),
13167 abfd, tag);
13168 return TRUE;
13169 }
13170 }
13171
13172 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13173 Returns -1 if no architecture could be read. */
13174
13175 static int
13176 get_secondary_compatible_arch (bfd *abfd)
13177 {
13178 obj_attribute *attr =
13179 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13180
13181 /* Note: the tag and its argument below are uleb128 values, though
13182 currently-defined values fit in one byte for each. */
13183 if (attr->s
13184 && attr->s[0] == Tag_CPU_arch
13185 && (attr->s[1] & 128) != 128
13186 && attr->s[2] == 0)
13187 return attr->s[1];
13188
13189 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13190 return -1;
13191 }
13192
13193 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13194 The tag is removed if ARCH is -1. */
13195
13196 static void
13197 set_secondary_compatible_arch (bfd *abfd, int arch)
13198 {
13199 obj_attribute *attr =
13200 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13201
13202 if (arch == -1)
13203 {
13204 attr->s = NULL;
13205 return;
13206 }
13207
13208 /* Note: the tag and its argument below are uleb128 values, though
13209 currently-defined values fit in one byte for each. */
13210 if (!attr->s)
13211 attr->s = (char *) bfd_alloc (abfd, 3);
13212 attr->s[0] = Tag_CPU_arch;
13213 attr->s[1] = arch;
13214 attr->s[2] = '\0';
13215 }
13216
13217 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13218 into account. */
13219
13220 static int
13221 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13222 int newtag, int secondary_compat)
13223 {
13224 #define T(X) TAG_CPU_ARCH_##X
13225 int tagl, tagh, result;
13226 const int v6t2[] =
13227 {
13228 T(V6T2), /* PRE_V4. */
13229 T(V6T2), /* V4. */
13230 T(V6T2), /* V4T. */
13231 T(V6T2), /* V5T. */
13232 T(V6T2), /* V5TE. */
13233 T(V6T2), /* V5TEJ. */
13234 T(V6T2), /* V6. */
13235 T(V7), /* V6KZ. */
13236 T(V6T2) /* V6T2. */
13237 };
13238 const int v6k[] =
13239 {
13240 T(V6K), /* PRE_V4. */
13241 T(V6K), /* V4. */
13242 T(V6K), /* V4T. */
13243 T(V6K), /* V5T. */
13244 T(V6K), /* V5TE. */
13245 T(V6K), /* V5TEJ. */
13246 T(V6K), /* V6. */
13247 T(V6KZ), /* V6KZ. */
13248 T(V7), /* V6T2. */
13249 T(V6K) /* V6K. */
13250 };
13251 const int v7[] =
13252 {
13253 T(V7), /* PRE_V4. */
13254 T(V7), /* V4. */
13255 T(V7), /* V4T. */
13256 T(V7), /* V5T. */
13257 T(V7), /* V5TE. */
13258 T(V7), /* V5TEJ. */
13259 T(V7), /* V6. */
13260 T(V7), /* V6KZ. */
13261 T(V7), /* V6T2. */
13262 T(V7), /* V6K. */
13263 T(V7) /* V7. */
13264 };
13265 const int v6_m[] =
13266 {
13267 -1, /* PRE_V4. */
13268 -1, /* V4. */
13269 T(V6K), /* V4T. */
13270 T(V6K), /* V5T. */
13271 T(V6K), /* V5TE. */
13272 T(V6K), /* V5TEJ. */
13273 T(V6K), /* V6. */
13274 T(V6KZ), /* V6KZ. */
13275 T(V7), /* V6T2. */
13276 T(V6K), /* V6K. */
13277 T(V7), /* V7. */
13278 T(V6_M) /* V6_M. */
13279 };
13280 const int v6s_m[] =
13281 {
13282 -1, /* PRE_V4. */
13283 -1, /* V4. */
13284 T(V6K), /* V4T. */
13285 T(V6K), /* V5T. */
13286 T(V6K), /* V5TE. */
13287 T(V6K), /* V5TEJ. */
13288 T(V6K), /* V6. */
13289 T(V6KZ), /* V6KZ. */
13290 T(V7), /* V6T2. */
13291 T(V6K), /* V6K. */
13292 T(V7), /* V7. */
13293 T(V6S_M), /* V6_M. */
13294 T(V6S_M) /* V6S_M. */
13295 };
13296 const int v7e_m[] =
13297 {
13298 -1, /* PRE_V4. */
13299 -1, /* V4. */
13300 T(V7E_M), /* V4T. */
13301 T(V7E_M), /* V5T. */
13302 T(V7E_M), /* V5TE. */
13303 T(V7E_M), /* V5TEJ. */
13304 T(V7E_M), /* V6. */
13305 T(V7E_M), /* V6KZ. */
13306 T(V7E_M), /* V6T2. */
13307 T(V7E_M), /* V6K. */
13308 T(V7E_M), /* V7. */
13309 T(V7E_M), /* V6_M. */
13310 T(V7E_M), /* V6S_M. */
13311 T(V7E_M) /* V7E_M. */
13312 };
13313 const int v8[] =
13314 {
13315 T(V8), /* PRE_V4. */
13316 T(V8), /* V4. */
13317 T(V8), /* V4T. */
13318 T(V8), /* V5T. */
13319 T(V8), /* V5TE. */
13320 T(V8), /* V5TEJ. */
13321 T(V8), /* V6. */
13322 T(V8), /* V6KZ. */
13323 T(V8), /* V6T2. */
13324 T(V8), /* V6K. */
13325 T(V8), /* V7. */
13326 T(V8), /* V6_M. */
13327 T(V8), /* V6S_M. */
13328 T(V8), /* V7E_M. */
13329 T(V8) /* V8. */
13330 };
13331 const int v8m_baseline[] =
13332 {
13333 -1, /* PRE_V4. */
13334 -1, /* V4. */
13335 -1, /* V4T. */
13336 -1, /* V5T. */
13337 -1, /* V5TE. */
13338 -1, /* V5TEJ. */
13339 -1, /* V6. */
13340 -1, /* V6KZ. */
13341 -1, /* V6T2. */
13342 -1, /* V6K. */
13343 -1, /* V7. */
13344 T(V8M_BASE), /* V6_M. */
13345 T(V8M_BASE), /* V6S_M. */
13346 -1, /* V7E_M. */
13347 -1, /* V8. */
13348 -1,
13349 T(V8M_BASE) /* V8-M BASELINE. */
13350 };
13351 const int v8m_mainline[] =
13352 {
13353 -1, /* PRE_V4. */
13354 -1, /* V4. */
13355 -1, /* V4T. */
13356 -1, /* V5T. */
13357 -1, /* V5TE. */
13358 -1, /* V5TEJ. */
13359 -1, /* V6. */
13360 -1, /* V6KZ. */
13361 -1, /* V6T2. */
13362 -1, /* V6K. */
13363 T(V8M_MAIN), /* V7. */
13364 T(V8M_MAIN), /* V6_M. */
13365 T(V8M_MAIN), /* V6S_M. */
13366 T(V8M_MAIN), /* V7E_M. */
13367 -1, /* V8. */
13368 -1,
13369 T(V8M_MAIN), /* V8-M BASELINE. */
13370 T(V8M_MAIN) /* V8-M MAINLINE. */
13371 };
13372 const int v4t_plus_v6_m[] =
13373 {
13374 -1, /* PRE_V4. */
13375 -1, /* V4. */
13376 T(V4T), /* V4T. */
13377 T(V5T), /* V5T. */
13378 T(V5TE), /* V5TE. */
13379 T(V5TEJ), /* V5TEJ. */
13380 T(V6), /* V6. */
13381 T(V6KZ), /* V6KZ. */
13382 T(V6T2), /* V6T2. */
13383 T(V6K), /* V6K. */
13384 T(V7), /* V7. */
13385 T(V6_M), /* V6_M. */
13386 T(V6S_M), /* V6S_M. */
13387 T(V7E_M), /* V7E_M. */
13388 T(V8), /* V8. */
13389 -1, /* Unused. */
13390 T(V8M_BASE), /* V8-M BASELINE. */
13391 T(V8M_MAIN), /* V8-M MAINLINE. */
13392 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13393 };
13394 const int *comb[] =
13395 {
13396 v6t2,
13397 v6k,
13398 v7,
13399 v6_m,
13400 v6s_m,
13401 v7e_m,
13402 v8,
13403 NULL,
13404 v8m_baseline,
13405 v8m_mainline,
13406 /* Pseudo-architecture. */
13407 v4t_plus_v6_m
13408 };
13409
13410 /* Check we've not got a higher architecture than we know about. */
13411
13412 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13413 {
13414 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13415 return -1;
13416 }
13417
13418 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13419
13420 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13421 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13422 oldtag = T(V4T_PLUS_V6_M);
13423
13424 /* And override the new tag if we have a Tag_also_compatible_with on the
13425 input. */
13426
13427 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13428 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13429 newtag = T(V4T_PLUS_V6_M);
13430
13431 tagl = (oldtag < newtag) ? oldtag : newtag;
13432 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13433
13434 /* Architectures before V6KZ add features monotonically. */
13435 if (tagh <= TAG_CPU_ARCH_V6KZ)
13436 return result;
13437
13438 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13439
13440 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13441 as the canonical version. */
13442 if (result == T(V4T_PLUS_V6_M))
13443 {
13444 result = T(V4T);
13445 *secondary_compat_out = T(V6_M);
13446 }
13447 else
13448 *secondary_compat_out = -1;
13449
13450 if (result == -1)
13451 {
13452 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13453 ibfd, oldtag, newtag);
13454 return -1;
13455 }
13456
13457 return result;
13458 #undef T
13459 }
13460
13461 /* Query attributes object to see if integer divide instructions may be
13462 present in an object. */
13463 static bfd_boolean
13464 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13465 {
13466 int arch = attr[Tag_CPU_arch].i;
13467 int profile = attr[Tag_CPU_arch_profile].i;
13468
13469 switch (attr[Tag_DIV_use].i)
13470 {
13471 case 0:
13472 /* Integer divide allowed if instruction contained in archetecture. */
13473 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13474 return TRUE;
13475 else if (arch >= TAG_CPU_ARCH_V7E_M)
13476 return TRUE;
13477 else
13478 return FALSE;
13479
13480 case 1:
13481 /* Integer divide explicitly prohibited. */
13482 return FALSE;
13483
13484 default:
13485 /* Unrecognised case - treat as allowing divide everywhere. */
13486 case 2:
13487 /* Integer divide allowed in ARM state. */
13488 return TRUE;
13489 }
13490 }
13491
13492 /* Query attributes object to see if integer divide instructions are
13493 forbidden to be in the object. This is not the inverse of
13494 elf32_arm_attributes_accept_div. */
13495 static bfd_boolean
13496 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13497 {
13498 return attr[Tag_DIV_use].i == 1;
13499 }
13500
13501 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13502 are conflicting attributes. */
13503
13504 static bfd_boolean
13505 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13506 {
13507 bfd *obfd = info->output_bfd;
13508 obj_attribute *in_attr;
13509 obj_attribute *out_attr;
13510 /* Some tags have 0 = don't care, 1 = strong requirement,
13511 2 = weak requirement. */
13512 static const int order_021[3] = {0, 2, 1};
13513 int i;
13514 bfd_boolean result = TRUE;
13515 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13516
13517 /* Skip the linker stubs file. This preserves previous behavior
13518 of accepting unknown attributes in the first input file - but
13519 is that a bug? */
13520 if (ibfd->flags & BFD_LINKER_CREATED)
13521 return TRUE;
13522
13523 /* Skip any input that hasn't attribute section.
13524 This enables to link object files without attribute section with
13525 any others. */
13526 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13527 return TRUE;
13528
13529 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13530 {
13531 /* This is the first object. Copy the attributes. */
13532 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13533
13534 out_attr = elf_known_obj_attributes_proc (obfd);
13535
13536 /* Use the Tag_null value to indicate the attributes have been
13537 initialized. */
13538 out_attr[0].i = 1;
13539
13540 /* We do not output objects with Tag_MPextension_use_legacy - we move
13541 the attribute's value to Tag_MPextension_use. */
13542 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13543 {
13544 if (out_attr[Tag_MPextension_use].i != 0
13545 && out_attr[Tag_MPextension_use_legacy].i
13546 != out_attr[Tag_MPextension_use].i)
13547 {
13548 _bfd_error_handler
13549 (_("Error: %B has both the current and legacy "
13550 "Tag_MPextension_use attributes"), ibfd);
13551 result = FALSE;
13552 }
13553
13554 out_attr[Tag_MPextension_use] =
13555 out_attr[Tag_MPextension_use_legacy];
13556 out_attr[Tag_MPextension_use_legacy].type = 0;
13557 out_attr[Tag_MPextension_use_legacy].i = 0;
13558 }
13559
13560 return result;
13561 }
13562
13563 in_attr = elf_known_obj_attributes_proc (ibfd);
13564 out_attr = elf_known_obj_attributes_proc (obfd);
13565 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13566 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13567 {
13568 /* Ignore mismatches if the object doesn't use floating point or is
13569 floating point ABI independent. */
13570 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13571 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13572 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13573 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13574 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13575 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13576 {
13577 _bfd_error_handler
13578 (_("error: %B uses VFP register arguments, %B does not"),
13579 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13580 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13581 result = FALSE;
13582 }
13583 }
13584
13585 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13586 {
13587 /* Merge this attribute with existing attributes. */
13588 switch (i)
13589 {
13590 case Tag_CPU_raw_name:
13591 case Tag_CPU_name:
13592 /* These are merged after Tag_CPU_arch. */
13593 break;
13594
13595 case Tag_ABI_optimization_goals:
13596 case Tag_ABI_FP_optimization_goals:
13597 /* Use the first value seen. */
13598 break;
13599
13600 case Tag_CPU_arch:
13601 {
13602 int secondary_compat = -1, secondary_compat_out = -1;
13603 unsigned int saved_out_attr = out_attr[i].i;
13604 int arch_attr;
13605 static const char *name_table[] =
13606 {
13607 /* These aren't real CPU names, but we can't guess
13608 that from the architecture version alone. */
13609 "Pre v4",
13610 "ARM v4",
13611 "ARM v4T",
13612 "ARM v5T",
13613 "ARM v5TE",
13614 "ARM v5TEJ",
13615 "ARM v6",
13616 "ARM v6KZ",
13617 "ARM v6T2",
13618 "ARM v6K",
13619 "ARM v7",
13620 "ARM v6-M",
13621 "ARM v6S-M",
13622 "ARM v8",
13623 "",
13624 "ARM v8-M.baseline",
13625 "ARM v8-M.mainline",
13626 };
13627
13628 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13629 secondary_compat = get_secondary_compatible_arch (ibfd);
13630 secondary_compat_out = get_secondary_compatible_arch (obfd);
13631 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13632 &secondary_compat_out,
13633 in_attr[i].i,
13634 secondary_compat);
13635
13636 /* Return with error if failed to merge. */
13637 if (arch_attr == -1)
13638 return FALSE;
13639
13640 out_attr[i].i = arch_attr;
13641
13642 set_secondary_compatible_arch (obfd, secondary_compat_out);
13643
13644 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13645 if (out_attr[i].i == saved_out_attr)
13646 ; /* Leave the names alone. */
13647 else if (out_attr[i].i == in_attr[i].i)
13648 {
13649 /* The output architecture has been changed to match the
13650 input architecture. Use the input names. */
13651 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13652 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13653 : NULL;
13654 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13655 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13656 : NULL;
13657 }
13658 else
13659 {
13660 out_attr[Tag_CPU_name].s = NULL;
13661 out_attr[Tag_CPU_raw_name].s = NULL;
13662 }
13663
13664 /* If we still don't have a value for Tag_CPU_name,
13665 make one up now. Tag_CPU_raw_name remains blank. */
13666 if (out_attr[Tag_CPU_name].s == NULL
13667 && out_attr[i].i < ARRAY_SIZE (name_table))
13668 out_attr[Tag_CPU_name].s =
13669 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13670 }
13671 break;
13672
13673 case Tag_ARM_ISA_use:
13674 case Tag_THUMB_ISA_use:
13675 case Tag_WMMX_arch:
13676 case Tag_Advanced_SIMD_arch:
13677 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13678 case Tag_ABI_FP_rounding:
13679 case Tag_ABI_FP_exceptions:
13680 case Tag_ABI_FP_user_exceptions:
13681 case Tag_ABI_FP_number_model:
13682 case Tag_FP_HP_extension:
13683 case Tag_CPU_unaligned_access:
13684 case Tag_T2EE_use:
13685 case Tag_MPextension_use:
13686 /* Use the largest value specified. */
13687 if (in_attr[i].i > out_attr[i].i)
13688 out_attr[i].i = in_attr[i].i;
13689 break;
13690
13691 case Tag_ABI_align_preserved:
13692 case Tag_ABI_PCS_RO_data:
13693 /* Use the smallest value specified. */
13694 if (in_attr[i].i < out_attr[i].i)
13695 out_attr[i].i = in_attr[i].i;
13696 break;
13697
13698 case Tag_ABI_align_needed:
13699 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13700 && (in_attr[Tag_ABI_align_preserved].i == 0
13701 || out_attr[Tag_ABI_align_preserved].i == 0))
13702 {
13703 /* This error message should be enabled once all non-conformant
13704 binaries in the toolchain have had the attributes set
13705 properly.
13706 _bfd_error_handler
13707 (_("error: %B: 8-byte data alignment conflicts with %B"),
13708 obfd, ibfd);
13709 result = FALSE; */
13710 }
13711 /* Fall through. */
13712 case Tag_ABI_FP_denormal:
13713 case Tag_ABI_PCS_GOT_use:
13714 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13715 value if greater than 2 (for future-proofing). */
13716 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13717 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13718 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13719 out_attr[i].i = in_attr[i].i;
13720 break;
13721
13722 case Tag_Virtualization_use:
13723 /* The virtualization tag effectively stores two bits of
13724 information: the intended use of TrustZone (in bit 0), and the
13725 intended use of Virtualization (in bit 1). */
13726 if (out_attr[i].i == 0)
13727 out_attr[i].i = in_attr[i].i;
13728 else if (in_attr[i].i != 0
13729 && in_attr[i].i != out_attr[i].i)
13730 {
13731 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13732 out_attr[i].i = 3;
13733 else
13734 {
13735 _bfd_error_handler
13736 (_("error: %B: unable to merge virtualization attributes "
13737 "with %B"),
13738 obfd, ibfd);
13739 result = FALSE;
13740 }
13741 }
13742 break;
13743
13744 case Tag_CPU_arch_profile:
13745 if (out_attr[i].i != in_attr[i].i)
13746 {
13747 /* 0 will merge with anything.
13748 'A' and 'S' merge to 'A'.
13749 'R' and 'S' merge to 'R'.
13750 'M' and 'A|R|S' is an error. */
13751 if (out_attr[i].i == 0
13752 || (out_attr[i].i == 'S'
13753 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13754 out_attr[i].i = in_attr[i].i;
13755 else if (in_attr[i].i == 0
13756 || (in_attr[i].i == 'S'
13757 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13758 ; /* Do nothing. */
13759 else
13760 {
13761 _bfd_error_handler
13762 (_("error: %B: Conflicting architecture profiles %c/%c"),
13763 ibfd,
13764 in_attr[i].i ? in_attr[i].i : '0',
13765 out_attr[i].i ? out_attr[i].i : '0');
13766 result = FALSE;
13767 }
13768 }
13769 break;
13770
13771 case Tag_DSP_extension:
13772 /* No need to change output value if any of:
13773 - pre (<=) ARMv5T input architecture (do not have DSP)
13774 - M input profile not ARMv7E-M and do not have DSP. */
13775 if (in_attr[Tag_CPU_arch].i <= 3
13776 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13777 && in_attr[Tag_CPU_arch].i != 13
13778 && in_attr[i].i == 0))
13779 ; /* Do nothing. */
13780 /* Output value should be 0 if DSP part of architecture, ie.
13781 - post (>=) ARMv5te architecture output
13782 - A, R or S profile output or ARMv7E-M output architecture. */
13783 else if (out_attr[Tag_CPU_arch].i >= 4
13784 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13785 || out_attr[Tag_CPU_arch_profile].i == 'R'
13786 || out_attr[Tag_CPU_arch_profile].i == 'S'
13787 || out_attr[Tag_CPU_arch].i == 13))
13788 out_attr[i].i = 0;
13789 /* Otherwise, DSP instructions are added and not part of output
13790 architecture. */
13791 else
13792 out_attr[i].i = 1;
13793 break;
13794
13795 case Tag_FP_arch:
13796 {
13797 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13798 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13799 when it's 0. It might mean absence of FP hardware if
13800 Tag_FP_arch is zero. */
13801
13802 #define VFP_VERSION_COUNT 9
13803 static const struct
13804 {
13805 int ver;
13806 int regs;
13807 } vfp_versions[VFP_VERSION_COUNT] =
13808 {
13809 {0, 0},
13810 {1, 16},
13811 {2, 16},
13812 {3, 32},
13813 {3, 16},
13814 {4, 32},
13815 {4, 16},
13816 {8, 32},
13817 {8, 16}
13818 };
13819 int ver;
13820 int regs;
13821 int newval;
13822
13823 /* If the output has no requirement about FP hardware,
13824 follow the requirement of the input. */
13825 if (out_attr[i].i == 0)
13826 {
13827 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13828 out_attr[i].i = in_attr[i].i;
13829 out_attr[Tag_ABI_HardFP_use].i
13830 = in_attr[Tag_ABI_HardFP_use].i;
13831 break;
13832 }
13833 /* If the input has no requirement about FP hardware, do
13834 nothing. */
13835 else if (in_attr[i].i == 0)
13836 {
13837 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13838 break;
13839 }
13840
13841 /* Both the input and the output have nonzero Tag_FP_arch.
13842 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13843
13844 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13845 do nothing. */
13846 if (in_attr[Tag_ABI_HardFP_use].i == 0
13847 && out_attr[Tag_ABI_HardFP_use].i == 0)
13848 ;
13849 /* If the input and the output have different Tag_ABI_HardFP_use,
13850 the combination of them is 0 (implied by Tag_FP_arch). */
13851 else if (in_attr[Tag_ABI_HardFP_use].i
13852 != out_attr[Tag_ABI_HardFP_use].i)
13853 out_attr[Tag_ABI_HardFP_use].i = 0;
13854
13855 /* Now we can handle Tag_FP_arch. */
13856
13857 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13858 pick the biggest. */
13859 if (in_attr[i].i >= VFP_VERSION_COUNT
13860 && in_attr[i].i > out_attr[i].i)
13861 {
13862 out_attr[i] = in_attr[i];
13863 break;
13864 }
13865 /* The output uses the superset of input features
13866 (ISA version) and registers. */
13867 ver = vfp_versions[in_attr[i].i].ver;
13868 if (ver < vfp_versions[out_attr[i].i].ver)
13869 ver = vfp_versions[out_attr[i].i].ver;
13870 regs = vfp_versions[in_attr[i].i].regs;
13871 if (regs < vfp_versions[out_attr[i].i].regs)
13872 regs = vfp_versions[out_attr[i].i].regs;
13873 /* This assumes all possible supersets are also a valid
13874 options. */
13875 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13876 {
13877 if (regs == vfp_versions[newval].regs
13878 && ver == vfp_versions[newval].ver)
13879 break;
13880 }
13881 out_attr[i].i = newval;
13882 }
13883 break;
13884 case Tag_PCS_config:
13885 if (out_attr[i].i == 0)
13886 out_attr[i].i = in_attr[i].i;
13887 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13888 {
13889 /* It's sometimes ok to mix different configs, so this is only
13890 a warning. */
13891 _bfd_error_handler
13892 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13893 }
13894 break;
13895 case Tag_ABI_PCS_R9_use:
13896 if (in_attr[i].i != out_attr[i].i
13897 && out_attr[i].i != AEABI_R9_unused
13898 && in_attr[i].i != AEABI_R9_unused)
13899 {
13900 _bfd_error_handler
13901 (_("error: %B: Conflicting use of R9"), ibfd);
13902 result = FALSE;
13903 }
13904 if (out_attr[i].i == AEABI_R9_unused)
13905 out_attr[i].i = in_attr[i].i;
13906 break;
13907 case Tag_ABI_PCS_RW_data:
13908 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13909 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13910 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13911 {
13912 _bfd_error_handler
13913 (_("error: %B: SB relative addressing conflicts with use of R9"),
13914 ibfd);
13915 result = FALSE;
13916 }
13917 /* Use the smallest value specified. */
13918 if (in_attr[i].i < out_attr[i].i)
13919 out_attr[i].i = in_attr[i].i;
13920 break;
13921 case Tag_ABI_PCS_wchar_t:
13922 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13923 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13924 {
13925 _bfd_error_handler
13926 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13927 ibfd, in_attr[i].i, out_attr[i].i);
13928 }
13929 else if (in_attr[i].i && !out_attr[i].i)
13930 out_attr[i].i = in_attr[i].i;
13931 break;
13932 case Tag_ABI_enum_size:
13933 if (in_attr[i].i != AEABI_enum_unused)
13934 {
13935 if (out_attr[i].i == AEABI_enum_unused
13936 || out_attr[i].i == AEABI_enum_forced_wide)
13937 {
13938 /* The existing object is compatible with anything.
13939 Use whatever requirements the new object has. */
13940 out_attr[i].i = in_attr[i].i;
13941 }
13942 else if (in_attr[i].i != AEABI_enum_forced_wide
13943 && out_attr[i].i != in_attr[i].i
13944 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13945 {
13946 static const char *aeabi_enum_names[] =
13947 { "", "variable-size", "32-bit", "" };
13948 const char *in_name =
13949 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13950 ? aeabi_enum_names[in_attr[i].i]
13951 : "<unknown>";
13952 const char *out_name =
13953 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13954 ? aeabi_enum_names[out_attr[i].i]
13955 : "<unknown>";
13956 _bfd_error_handler
13957 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13958 ibfd, in_name, out_name);
13959 }
13960 }
13961 break;
13962 case Tag_ABI_VFP_args:
13963 /* Aready done. */
13964 break;
13965 case Tag_ABI_WMMX_args:
13966 if (in_attr[i].i != out_attr[i].i)
13967 {
13968 _bfd_error_handler
13969 (_("error: %B uses iWMMXt register arguments, %B does not"),
13970 ibfd, obfd);
13971 result = FALSE;
13972 }
13973 break;
13974 case Tag_compatibility:
13975 /* Merged in target-independent code. */
13976 break;
13977 case Tag_ABI_HardFP_use:
13978 /* This is handled along with Tag_FP_arch. */
13979 break;
13980 case Tag_ABI_FP_16bit_format:
13981 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13982 {
13983 if (in_attr[i].i != out_attr[i].i)
13984 {
13985 _bfd_error_handler
13986 (_("error: fp16 format mismatch between %B and %B"),
13987 ibfd, obfd);
13988 result = FALSE;
13989 }
13990 }
13991 if (in_attr[i].i != 0)
13992 out_attr[i].i = in_attr[i].i;
13993 break;
13994
13995 case Tag_DIV_use:
13996 /* A value of zero on input means that the divide instruction may
13997 be used if available in the base architecture as specified via
13998 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13999 the user did not want divide instructions. A value of 2
14000 explicitly means that divide instructions were allowed in ARM
14001 and Thumb state. */
14002 if (in_attr[i].i == out_attr[i].i)
14003 /* Do nothing. */ ;
14004 else if (elf32_arm_attributes_forbid_div (in_attr)
14005 && !elf32_arm_attributes_accept_div (out_attr))
14006 out_attr[i].i = 1;
14007 else if (elf32_arm_attributes_forbid_div (out_attr)
14008 && elf32_arm_attributes_accept_div (in_attr))
14009 out_attr[i].i = in_attr[i].i;
14010 else if (in_attr[i].i == 2)
14011 out_attr[i].i = in_attr[i].i;
14012 break;
14013
14014 case Tag_MPextension_use_legacy:
14015 /* We don't output objects with Tag_MPextension_use_legacy - we
14016 move the value to Tag_MPextension_use. */
14017 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14018 {
14019 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14020 {
14021 _bfd_error_handler
14022 (_("%B has has both the current and legacy "
14023 "Tag_MPextension_use attributes"),
14024 ibfd);
14025 result = FALSE;
14026 }
14027 }
14028
14029 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14030 out_attr[Tag_MPextension_use] = in_attr[i];
14031
14032 break;
14033
14034 case Tag_nodefaults:
14035 /* This tag is set if it exists, but the value is unused (and is
14036 typically zero). We don't actually need to do anything here -
14037 the merge happens automatically when the type flags are merged
14038 below. */
14039 break;
14040 case Tag_also_compatible_with:
14041 /* Already done in Tag_CPU_arch. */
14042 break;
14043 case Tag_conformance:
14044 /* Keep the attribute if it matches. Throw it away otherwise.
14045 No attribute means no claim to conform. */
14046 if (!in_attr[i].s || !out_attr[i].s
14047 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14048 out_attr[i].s = NULL;
14049 break;
14050
14051 default:
14052 result
14053 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14054 }
14055
14056 /* If out_attr was copied from in_attr then it won't have a type yet. */
14057 if (in_attr[i].type && !out_attr[i].type)
14058 out_attr[i].type = in_attr[i].type;
14059 }
14060
14061 /* Merge Tag_compatibility attributes and any common GNU ones. */
14062 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14063 return FALSE;
14064
14065 /* Check for any attributes not known on ARM. */
14066 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14067
14068 return result;
14069 }
14070
14071
14072 /* Return TRUE if the two EABI versions are incompatible. */
14073
14074 static bfd_boolean
14075 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14076 {
14077 /* v4 and v5 are the same spec before and after it was released,
14078 so allow mixing them. */
14079 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14080 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14081 return TRUE;
14082
14083 return (iver == over);
14084 }
14085
14086 /* Merge backend specific data from an object file to the output
14087 object file when linking. */
14088
14089 static bfd_boolean
14090 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14091
14092 /* Display the flags field. */
14093
14094 static bfd_boolean
14095 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14096 {
14097 FILE * file = (FILE *) ptr;
14098 unsigned long flags;
14099
14100 BFD_ASSERT (abfd != NULL && ptr != NULL);
14101
14102 /* Print normal ELF private data. */
14103 _bfd_elf_print_private_bfd_data (abfd, ptr);
14104
14105 flags = elf_elfheader (abfd)->e_flags;
14106 /* Ignore init flag - it may not be set, despite the flags field
14107 containing valid data. */
14108
14109 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14110
14111 switch (EF_ARM_EABI_VERSION (flags))
14112 {
14113 case EF_ARM_EABI_UNKNOWN:
14114 /* The following flag bits are GNU extensions and not part of the
14115 official ARM ELF extended ABI. Hence they are only decoded if
14116 the EABI version is not set. */
14117 if (flags & EF_ARM_INTERWORK)
14118 fprintf (file, _(" [interworking enabled]"));
14119
14120 if (flags & EF_ARM_APCS_26)
14121 fprintf (file, " [APCS-26]");
14122 else
14123 fprintf (file, " [APCS-32]");
14124
14125 if (flags & EF_ARM_VFP_FLOAT)
14126 fprintf (file, _(" [VFP float format]"));
14127 else if (flags & EF_ARM_MAVERICK_FLOAT)
14128 fprintf (file, _(" [Maverick float format]"));
14129 else
14130 fprintf (file, _(" [FPA float format]"));
14131
14132 if (flags & EF_ARM_APCS_FLOAT)
14133 fprintf (file, _(" [floats passed in float registers]"));
14134
14135 if (flags & EF_ARM_PIC)
14136 fprintf (file, _(" [position independent]"));
14137
14138 if (flags & EF_ARM_NEW_ABI)
14139 fprintf (file, _(" [new ABI]"));
14140
14141 if (flags & EF_ARM_OLD_ABI)
14142 fprintf (file, _(" [old ABI]"));
14143
14144 if (flags & EF_ARM_SOFT_FLOAT)
14145 fprintf (file, _(" [software FP]"));
14146
14147 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14148 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14149 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14150 | EF_ARM_MAVERICK_FLOAT);
14151 break;
14152
14153 case EF_ARM_EABI_VER1:
14154 fprintf (file, _(" [Version1 EABI]"));
14155
14156 if (flags & EF_ARM_SYMSARESORTED)
14157 fprintf (file, _(" [sorted symbol table]"));
14158 else
14159 fprintf (file, _(" [unsorted symbol table]"));
14160
14161 flags &= ~ EF_ARM_SYMSARESORTED;
14162 break;
14163
14164 case EF_ARM_EABI_VER2:
14165 fprintf (file, _(" [Version2 EABI]"));
14166
14167 if (flags & EF_ARM_SYMSARESORTED)
14168 fprintf (file, _(" [sorted symbol table]"));
14169 else
14170 fprintf (file, _(" [unsorted symbol table]"));
14171
14172 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14173 fprintf (file, _(" [dynamic symbols use segment index]"));
14174
14175 if (flags & EF_ARM_MAPSYMSFIRST)
14176 fprintf (file, _(" [mapping symbols precede others]"));
14177
14178 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14179 | EF_ARM_MAPSYMSFIRST);
14180 break;
14181
14182 case EF_ARM_EABI_VER3:
14183 fprintf (file, _(" [Version3 EABI]"));
14184 break;
14185
14186 case EF_ARM_EABI_VER4:
14187 fprintf (file, _(" [Version4 EABI]"));
14188 goto eabi;
14189
14190 case EF_ARM_EABI_VER5:
14191 fprintf (file, _(" [Version5 EABI]"));
14192
14193 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14194 fprintf (file, _(" [soft-float ABI]"));
14195
14196 if (flags & EF_ARM_ABI_FLOAT_HARD)
14197 fprintf (file, _(" [hard-float ABI]"));
14198
14199 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14200
14201 eabi:
14202 if (flags & EF_ARM_BE8)
14203 fprintf (file, _(" [BE8]"));
14204
14205 if (flags & EF_ARM_LE8)
14206 fprintf (file, _(" [LE8]"));
14207
14208 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14209 break;
14210
14211 default:
14212 fprintf (file, _(" <EABI version unrecognised>"));
14213 break;
14214 }
14215
14216 flags &= ~ EF_ARM_EABIMASK;
14217
14218 if (flags & EF_ARM_RELEXEC)
14219 fprintf (file, _(" [relocatable executable]"));
14220
14221 flags &= ~EF_ARM_RELEXEC;
14222
14223 if (flags)
14224 fprintf (file, _("<Unrecognised flag bits set>"));
14225
14226 fputc ('\n', file);
14227
14228 return TRUE;
14229 }
14230
14231 static int
14232 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14233 {
14234 switch (ELF_ST_TYPE (elf_sym->st_info))
14235 {
14236 case STT_ARM_TFUNC:
14237 return ELF_ST_TYPE (elf_sym->st_info);
14238
14239 case STT_ARM_16BIT:
14240 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14241 This allows us to distinguish between data used by Thumb instructions
14242 and non-data (which is probably code) inside Thumb regions of an
14243 executable. */
14244 if (type != STT_OBJECT && type != STT_TLS)
14245 return ELF_ST_TYPE (elf_sym->st_info);
14246 break;
14247
14248 default:
14249 break;
14250 }
14251
14252 return type;
14253 }
14254
14255 static asection *
14256 elf32_arm_gc_mark_hook (asection *sec,
14257 struct bfd_link_info *info,
14258 Elf_Internal_Rela *rel,
14259 struct elf_link_hash_entry *h,
14260 Elf_Internal_Sym *sym)
14261 {
14262 if (h != NULL)
14263 switch (ELF32_R_TYPE (rel->r_info))
14264 {
14265 case R_ARM_GNU_VTINHERIT:
14266 case R_ARM_GNU_VTENTRY:
14267 return NULL;
14268 }
14269
14270 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14271 }
14272
14273 /* Update the got entry reference counts for the section being removed. */
14274
14275 static bfd_boolean
14276 elf32_arm_gc_sweep_hook (bfd * abfd,
14277 struct bfd_link_info * info,
14278 asection * sec,
14279 const Elf_Internal_Rela * relocs)
14280 {
14281 Elf_Internal_Shdr *symtab_hdr;
14282 struct elf_link_hash_entry **sym_hashes;
14283 bfd_signed_vma *local_got_refcounts;
14284 const Elf_Internal_Rela *rel, *relend;
14285 struct elf32_arm_link_hash_table * globals;
14286
14287 if (bfd_link_relocatable (info))
14288 return TRUE;
14289
14290 globals = elf32_arm_hash_table (info);
14291 if (globals == NULL)
14292 return FALSE;
14293
14294 elf_section_data (sec)->local_dynrel = NULL;
14295
14296 symtab_hdr = & elf_symtab_hdr (abfd);
14297 sym_hashes = elf_sym_hashes (abfd);
14298 local_got_refcounts = elf_local_got_refcounts (abfd);
14299
14300 check_use_blx (globals);
14301
14302 relend = relocs + sec->reloc_count;
14303 for (rel = relocs; rel < relend; rel++)
14304 {
14305 unsigned long r_symndx;
14306 struct elf_link_hash_entry *h = NULL;
14307 struct elf32_arm_link_hash_entry *eh;
14308 int r_type;
14309 bfd_boolean call_reloc_p;
14310 bfd_boolean may_become_dynamic_p;
14311 bfd_boolean may_need_local_target_p;
14312 union gotplt_union *root_plt;
14313 struct arm_plt_info *arm_plt;
14314
14315 r_symndx = ELF32_R_SYM (rel->r_info);
14316 if (r_symndx >= symtab_hdr->sh_info)
14317 {
14318 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14319 while (h->root.type == bfd_link_hash_indirect
14320 || h->root.type == bfd_link_hash_warning)
14321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14322 }
14323 eh = (struct elf32_arm_link_hash_entry *) h;
14324
14325 call_reloc_p = FALSE;
14326 may_become_dynamic_p = FALSE;
14327 may_need_local_target_p = FALSE;
14328
14329 r_type = ELF32_R_TYPE (rel->r_info);
14330 r_type = arm_real_reloc_type (globals, r_type);
14331 switch (r_type)
14332 {
14333 case R_ARM_GOT32:
14334 case R_ARM_GOT_PREL:
14335 case R_ARM_TLS_GD32:
14336 case R_ARM_TLS_IE32:
14337 if (h != NULL)
14338 {
14339 if (h->got.refcount > 0)
14340 h->got.refcount -= 1;
14341 }
14342 else if (local_got_refcounts != NULL)
14343 {
14344 if (local_got_refcounts[r_symndx] > 0)
14345 local_got_refcounts[r_symndx] -= 1;
14346 }
14347 break;
14348
14349 case R_ARM_TLS_LDM32:
14350 globals->tls_ldm_got.refcount -= 1;
14351 break;
14352
14353 case R_ARM_PC24:
14354 case R_ARM_PLT32:
14355 case R_ARM_CALL:
14356 case R_ARM_JUMP24:
14357 case R_ARM_PREL31:
14358 case R_ARM_THM_CALL:
14359 case R_ARM_THM_JUMP24:
14360 case R_ARM_THM_JUMP19:
14361 call_reloc_p = TRUE;
14362 may_need_local_target_p = TRUE;
14363 break;
14364
14365 case R_ARM_ABS12:
14366 if (!globals->vxworks_p)
14367 {
14368 may_need_local_target_p = TRUE;
14369 break;
14370 }
14371 /* Fall through. */
14372 case R_ARM_ABS32:
14373 case R_ARM_ABS32_NOI:
14374 case R_ARM_REL32:
14375 case R_ARM_REL32_NOI:
14376 case R_ARM_MOVW_ABS_NC:
14377 case R_ARM_MOVT_ABS:
14378 case R_ARM_MOVW_PREL_NC:
14379 case R_ARM_MOVT_PREL:
14380 case R_ARM_THM_MOVW_ABS_NC:
14381 case R_ARM_THM_MOVT_ABS:
14382 case R_ARM_THM_MOVW_PREL_NC:
14383 case R_ARM_THM_MOVT_PREL:
14384 /* Should the interworking branches be here also? */
14385 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14386 && (sec->flags & SEC_ALLOC) != 0)
14387 {
14388 if (h == NULL
14389 && elf32_arm_howto_from_type (r_type)->pc_relative)
14390 {
14391 call_reloc_p = TRUE;
14392 may_need_local_target_p = TRUE;
14393 }
14394 else
14395 may_become_dynamic_p = TRUE;
14396 }
14397 else
14398 may_need_local_target_p = TRUE;
14399 break;
14400
14401 default:
14402 break;
14403 }
14404
14405 if (may_need_local_target_p
14406 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14407 &arm_plt))
14408 {
14409 /* If PLT refcount book-keeping is wrong and too low, we'll
14410 see a zero value (going to -1) for the root PLT reference
14411 count. */
14412 if (root_plt->refcount >= 0)
14413 {
14414 BFD_ASSERT (root_plt->refcount != 0);
14415 root_plt->refcount -= 1;
14416 }
14417 else
14418 /* A value of -1 means the symbol has become local, forced
14419 or seeing a hidden definition. Any other negative value
14420 is an error. */
14421 BFD_ASSERT (root_plt->refcount == -1);
14422
14423 if (!call_reloc_p)
14424 arm_plt->noncall_refcount--;
14425
14426 if (r_type == R_ARM_THM_CALL)
14427 arm_plt->maybe_thumb_refcount--;
14428
14429 if (r_type == R_ARM_THM_JUMP24
14430 || r_type == R_ARM_THM_JUMP19)
14431 arm_plt->thumb_refcount--;
14432 }
14433
14434 if (may_become_dynamic_p)
14435 {
14436 struct elf_dyn_relocs **pp;
14437 struct elf_dyn_relocs *p;
14438
14439 if (h != NULL)
14440 pp = &(eh->dyn_relocs);
14441 else
14442 {
14443 Elf_Internal_Sym *isym;
14444
14445 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14446 abfd, r_symndx);
14447 if (isym == NULL)
14448 return FALSE;
14449 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14450 if (pp == NULL)
14451 return FALSE;
14452 }
14453 for (; (p = *pp) != NULL; pp = &p->next)
14454 if (p->sec == sec)
14455 {
14456 /* Everything must go for SEC. */
14457 *pp = p->next;
14458 break;
14459 }
14460 }
14461 }
14462
14463 return TRUE;
14464 }
14465
14466 /* Look through the relocs for a section during the first phase. */
14467
14468 static bfd_boolean
14469 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14470 asection *sec, const Elf_Internal_Rela *relocs)
14471 {
14472 Elf_Internal_Shdr *symtab_hdr;
14473 struct elf_link_hash_entry **sym_hashes;
14474 const Elf_Internal_Rela *rel;
14475 const Elf_Internal_Rela *rel_end;
14476 bfd *dynobj;
14477 asection *sreloc;
14478 struct elf32_arm_link_hash_table *htab;
14479 bfd_boolean call_reloc_p;
14480 bfd_boolean may_become_dynamic_p;
14481 bfd_boolean may_need_local_target_p;
14482 unsigned long nsyms;
14483
14484 if (bfd_link_relocatable (info))
14485 return TRUE;
14486
14487 BFD_ASSERT (is_arm_elf (abfd));
14488
14489 htab = elf32_arm_hash_table (info);
14490 if (htab == NULL)
14491 return FALSE;
14492
14493 sreloc = NULL;
14494
14495 /* Create dynamic sections for relocatable executables so that we can
14496 copy relocations. */
14497 if (htab->root.is_relocatable_executable
14498 && ! htab->root.dynamic_sections_created)
14499 {
14500 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14501 return FALSE;
14502 }
14503
14504 if (htab->root.dynobj == NULL)
14505 htab->root.dynobj = abfd;
14506 if (!create_ifunc_sections (info))
14507 return FALSE;
14508
14509 dynobj = htab->root.dynobj;
14510
14511 symtab_hdr = & elf_symtab_hdr (abfd);
14512 sym_hashes = elf_sym_hashes (abfd);
14513 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14514
14515 rel_end = relocs + sec->reloc_count;
14516 for (rel = relocs; rel < rel_end; rel++)
14517 {
14518 Elf_Internal_Sym *isym;
14519 struct elf_link_hash_entry *h;
14520 struct elf32_arm_link_hash_entry *eh;
14521 unsigned long r_symndx;
14522 int r_type;
14523
14524 r_symndx = ELF32_R_SYM (rel->r_info);
14525 r_type = ELF32_R_TYPE (rel->r_info);
14526 r_type = arm_real_reloc_type (htab, r_type);
14527
14528 if (r_symndx >= nsyms
14529 /* PR 9934: It is possible to have relocations that do not
14530 refer to symbols, thus it is also possible to have an
14531 object file containing relocations but no symbol table. */
14532 && (r_symndx > STN_UNDEF || nsyms > 0))
14533 {
14534 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14535 r_symndx);
14536 return FALSE;
14537 }
14538
14539 h = NULL;
14540 isym = NULL;
14541 if (nsyms > 0)
14542 {
14543 if (r_symndx < symtab_hdr->sh_info)
14544 {
14545 /* A local symbol. */
14546 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14547 abfd, r_symndx);
14548 if (isym == NULL)
14549 return FALSE;
14550 }
14551 else
14552 {
14553 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14554 while (h->root.type == bfd_link_hash_indirect
14555 || h->root.type == bfd_link_hash_warning)
14556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14557
14558 /* PR15323, ref flags aren't set for references in the
14559 same object. */
14560 h->root.non_ir_ref = 1;
14561 }
14562 }
14563
14564 eh = (struct elf32_arm_link_hash_entry *) h;
14565
14566 call_reloc_p = FALSE;
14567 may_become_dynamic_p = FALSE;
14568 may_need_local_target_p = FALSE;
14569
14570 /* Could be done earlier, if h were already available. */
14571 r_type = elf32_arm_tls_transition (info, r_type, h);
14572 switch (r_type)
14573 {
14574 case R_ARM_GOT32:
14575 case R_ARM_GOT_PREL:
14576 case R_ARM_TLS_GD32:
14577 case R_ARM_TLS_IE32:
14578 case R_ARM_TLS_GOTDESC:
14579 case R_ARM_TLS_DESCSEQ:
14580 case R_ARM_THM_TLS_DESCSEQ:
14581 case R_ARM_TLS_CALL:
14582 case R_ARM_THM_TLS_CALL:
14583 /* This symbol requires a global offset table entry. */
14584 {
14585 int tls_type, old_tls_type;
14586
14587 switch (r_type)
14588 {
14589 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14590
14591 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14592
14593 case R_ARM_TLS_GOTDESC:
14594 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14595 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14596 tls_type = GOT_TLS_GDESC; break;
14597
14598 default: tls_type = GOT_NORMAL; break;
14599 }
14600
14601 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14602 info->flags |= DF_STATIC_TLS;
14603
14604 if (h != NULL)
14605 {
14606 h->got.refcount++;
14607 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14608 }
14609 else
14610 {
14611 /* This is a global offset table entry for a local symbol. */
14612 if (!elf32_arm_allocate_local_sym_info (abfd))
14613 return FALSE;
14614 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14615 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14616 }
14617
14618 /* If a variable is accessed with both tls methods, two
14619 slots may be created. */
14620 if (GOT_TLS_GD_ANY_P (old_tls_type)
14621 && GOT_TLS_GD_ANY_P (tls_type))
14622 tls_type |= old_tls_type;
14623
14624 /* We will already have issued an error message if there
14625 is a TLS/non-TLS mismatch, based on the symbol
14626 type. So just combine any TLS types needed. */
14627 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14628 && tls_type != GOT_NORMAL)
14629 tls_type |= old_tls_type;
14630
14631 /* If the symbol is accessed in both IE and GDESC
14632 method, we're able to relax. Turn off the GDESC flag,
14633 without messing up with any other kind of tls types
14634 that may be involved. */
14635 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14636 tls_type &= ~GOT_TLS_GDESC;
14637
14638 if (old_tls_type != tls_type)
14639 {
14640 if (h != NULL)
14641 elf32_arm_hash_entry (h)->tls_type = tls_type;
14642 else
14643 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14644 }
14645 }
14646 /* Fall through. */
14647
14648 case R_ARM_TLS_LDM32:
14649 if (r_type == R_ARM_TLS_LDM32)
14650 htab->tls_ldm_got.refcount++;
14651 /* Fall through. */
14652
14653 case R_ARM_GOTOFF32:
14654 case R_ARM_GOTPC:
14655 if (htab->root.sgot == NULL
14656 && !create_got_section (htab->root.dynobj, info))
14657 return FALSE;
14658 break;
14659
14660 case R_ARM_PC24:
14661 case R_ARM_PLT32:
14662 case R_ARM_CALL:
14663 case R_ARM_JUMP24:
14664 case R_ARM_PREL31:
14665 case R_ARM_THM_CALL:
14666 case R_ARM_THM_JUMP24:
14667 case R_ARM_THM_JUMP19:
14668 call_reloc_p = TRUE;
14669 may_need_local_target_p = TRUE;
14670 break;
14671
14672 case R_ARM_ABS12:
14673 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14674 ldr __GOTT_INDEX__ offsets. */
14675 if (!htab->vxworks_p)
14676 {
14677 may_need_local_target_p = TRUE;
14678 break;
14679 }
14680 else goto jump_over;
14681
14682 /* Fall through. */
14683
14684 case R_ARM_MOVW_ABS_NC:
14685 case R_ARM_MOVT_ABS:
14686 case R_ARM_THM_MOVW_ABS_NC:
14687 case R_ARM_THM_MOVT_ABS:
14688 if (bfd_link_pic (info))
14689 {
14690 _bfd_error_handler
14691 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14692 abfd, elf32_arm_howto_table_1[r_type].name,
14693 (h) ? h->root.root.string : "a local symbol");
14694 bfd_set_error (bfd_error_bad_value);
14695 return FALSE;
14696 }
14697
14698 /* Fall through. */
14699 case R_ARM_ABS32:
14700 case R_ARM_ABS32_NOI:
14701 jump_over:
14702 if (h != NULL && bfd_link_executable (info))
14703 {
14704 h->pointer_equality_needed = 1;
14705 }
14706 /* Fall through. */
14707 case R_ARM_REL32:
14708 case R_ARM_REL32_NOI:
14709 case R_ARM_MOVW_PREL_NC:
14710 case R_ARM_MOVT_PREL:
14711 case R_ARM_THM_MOVW_PREL_NC:
14712 case R_ARM_THM_MOVT_PREL:
14713
14714 /* Should the interworking branches be listed here? */
14715 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14716 && (sec->flags & SEC_ALLOC) != 0)
14717 {
14718 if (h == NULL
14719 && elf32_arm_howto_from_type (r_type)->pc_relative)
14720 {
14721 /* In shared libraries and relocatable executables,
14722 we treat local relative references as calls;
14723 see the related SYMBOL_CALLS_LOCAL code in
14724 allocate_dynrelocs. */
14725 call_reloc_p = TRUE;
14726 may_need_local_target_p = TRUE;
14727 }
14728 else
14729 /* We are creating a shared library or relocatable
14730 executable, and this is a reloc against a global symbol,
14731 or a non-PC-relative reloc against a local symbol.
14732 We may need to copy the reloc into the output. */
14733 may_become_dynamic_p = TRUE;
14734 }
14735 else
14736 may_need_local_target_p = TRUE;
14737 break;
14738
14739 /* This relocation describes the C++ object vtable hierarchy.
14740 Reconstruct it for later use during GC. */
14741 case R_ARM_GNU_VTINHERIT:
14742 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14743 return FALSE;
14744 break;
14745
14746 /* This relocation describes which C++ vtable entries are actually
14747 used. Record for later use during GC. */
14748 case R_ARM_GNU_VTENTRY:
14749 BFD_ASSERT (h != NULL);
14750 if (h != NULL
14751 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14752 return FALSE;
14753 break;
14754 }
14755
14756 if (h != NULL)
14757 {
14758 if (call_reloc_p)
14759 /* We may need a .plt entry if the function this reloc
14760 refers to is in a different object, regardless of the
14761 symbol's type. We can't tell for sure yet, because
14762 something later might force the symbol local. */
14763 h->needs_plt = 1;
14764 else if (may_need_local_target_p)
14765 /* If this reloc is in a read-only section, we might
14766 need a copy reloc. We can't check reliably at this
14767 stage whether the section is read-only, as input
14768 sections have not yet been mapped to output sections.
14769 Tentatively set the flag for now, and correct in
14770 adjust_dynamic_symbol. */
14771 h->non_got_ref = 1;
14772 }
14773
14774 if (may_need_local_target_p
14775 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14776 {
14777 union gotplt_union *root_plt;
14778 struct arm_plt_info *arm_plt;
14779 struct arm_local_iplt_info *local_iplt;
14780
14781 if (h != NULL)
14782 {
14783 root_plt = &h->plt;
14784 arm_plt = &eh->plt;
14785 }
14786 else
14787 {
14788 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14789 if (local_iplt == NULL)
14790 return FALSE;
14791 root_plt = &local_iplt->root;
14792 arm_plt = &local_iplt->arm;
14793 }
14794
14795 /* If the symbol is a function that doesn't bind locally,
14796 this relocation will need a PLT entry. */
14797 if (root_plt->refcount != -1)
14798 root_plt->refcount += 1;
14799
14800 if (!call_reloc_p)
14801 arm_plt->noncall_refcount++;
14802
14803 /* It's too early to use htab->use_blx here, so we have to
14804 record possible blx references separately from
14805 relocs that definitely need a thumb stub. */
14806
14807 if (r_type == R_ARM_THM_CALL)
14808 arm_plt->maybe_thumb_refcount += 1;
14809
14810 if (r_type == R_ARM_THM_JUMP24
14811 || r_type == R_ARM_THM_JUMP19)
14812 arm_plt->thumb_refcount += 1;
14813 }
14814
14815 if (may_become_dynamic_p)
14816 {
14817 struct elf_dyn_relocs *p, **head;
14818
14819 /* Create a reloc section in dynobj. */
14820 if (sreloc == NULL)
14821 {
14822 sreloc = _bfd_elf_make_dynamic_reloc_section
14823 (sec, dynobj, 2, abfd, ! htab->use_rel);
14824
14825 if (sreloc == NULL)
14826 return FALSE;
14827
14828 /* BPABI objects never have dynamic relocations mapped. */
14829 if (htab->symbian_p)
14830 {
14831 flagword flags;
14832
14833 flags = bfd_get_section_flags (dynobj, sreloc);
14834 flags &= ~(SEC_LOAD | SEC_ALLOC);
14835 bfd_set_section_flags (dynobj, sreloc, flags);
14836 }
14837 }
14838
14839 /* If this is a global symbol, count the number of
14840 relocations we need for this symbol. */
14841 if (h != NULL)
14842 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14843 else
14844 {
14845 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14846 if (head == NULL)
14847 return FALSE;
14848 }
14849
14850 p = *head;
14851 if (p == NULL || p->sec != sec)
14852 {
14853 bfd_size_type amt = sizeof *p;
14854
14855 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14856 if (p == NULL)
14857 return FALSE;
14858 p->next = *head;
14859 *head = p;
14860 p->sec = sec;
14861 p->count = 0;
14862 p->pc_count = 0;
14863 }
14864
14865 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14866 p->pc_count += 1;
14867 p->count += 1;
14868 }
14869 }
14870
14871 return TRUE;
14872 }
14873
14874 static void
14875 elf32_arm_update_relocs (asection *o,
14876 struct bfd_elf_section_reloc_data *reldata)
14877 {
14878 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14879 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14880 const struct elf_backend_data *bed;
14881 _arm_elf_section_data *eado;
14882 struct bfd_link_order *p;
14883 bfd_byte *erela_head, *erela;
14884 Elf_Internal_Rela *irela_head, *irela;
14885 Elf_Internal_Shdr *rel_hdr;
14886 bfd *abfd;
14887 unsigned int count;
14888
14889 eado = get_arm_elf_section_data (o);
14890
14891 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14892 return;
14893
14894 abfd = o->owner;
14895 bed = get_elf_backend_data (abfd);
14896 rel_hdr = reldata->hdr;
14897
14898 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14899 {
14900 swap_in = bed->s->swap_reloc_in;
14901 swap_out = bed->s->swap_reloc_out;
14902 }
14903 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14904 {
14905 swap_in = bed->s->swap_reloca_in;
14906 swap_out = bed->s->swap_reloca_out;
14907 }
14908 else
14909 abort ();
14910
14911 erela_head = rel_hdr->contents;
14912 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14913 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14914
14915 erela = erela_head;
14916 irela = irela_head;
14917 count = 0;
14918
14919 for (p = o->map_head.link_order; p; p = p->next)
14920 {
14921 if (p->type == bfd_section_reloc_link_order
14922 || p->type == bfd_symbol_reloc_link_order)
14923 {
14924 (*swap_in) (abfd, erela, irela);
14925 erela += rel_hdr->sh_entsize;
14926 irela++;
14927 count++;
14928 }
14929 else if (p->type == bfd_indirect_link_order)
14930 {
14931 struct bfd_elf_section_reloc_data *input_reldata;
14932 arm_unwind_table_edit *edit_list, *edit_tail;
14933 _arm_elf_section_data *eadi;
14934 bfd_size_type j;
14935 bfd_vma offset;
14936 asection *i;
14937
14938 i = p->u.indirect.section;
14939
14940 eadi = get_arm_elf_section_data (i);
14941 edit_list = eadi->u.exidx.unwind_edit_list;
14942 edit_tail = eadi->u.exidx.unwind_edit_tail;
14943 offset = o->vma + i->output_offset;
14944
14945 if (eadi->elf.rel.hdr &&
14946 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14947 input_reldata = &eadi->elf.rel;
14948 else if (eadi->elf.rela.hdr &&
14949 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14950 input_reldata = &eadi->elf.rela;
14951 else
14952 abort ();
14953
14954 if (edit_list)
14955 {
14956 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14957 {
14958 arm_unwind_table_edit *edit_node, *edit_next;
14959 bfd_vma bias;
14960 bfd_vma reloc_index;
14961
14962 (*swap_in) (abfd, erela, irela);
14963 reloc_index = (irela->r_offset - offset) / 8;
14964
14965 bias = 0;
14966 edit_node = edit_list;
14967 for (edit_next = edit_list;
14968 edit_next && edit_next->index <= reloc_index;
14969 edit_next = edit_node->next)
14970 {
14971 bias++;
14972 edit_node = edit_next;
14973 }
14974
14975 if (edit_node->type != DELETE_EXIDX_ENTRY
14976 || edit_node->index != reloc_index)
14977 {
14978 irela->r_offset -= bias * 8;
14979 irela++;
14980 count++;
14981 }
14982
14983 erela += rel_hdr->sh_entsize;
14984 }
14985
14986 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14987 {
14988 /* New relocation entity. */
14989 asection *text_sec = edit_tail->linked_section;
14990 asection *text_out = text_sec->output_section;
14991 bfd_vma exidx_offset = offset + i->size - 8;
14992
14993 irela->r_addend = 0;
14994 irela->r_offset = exidx_offset;
14995 irela->r_info = ELF32_R_INFO
14996 (text_out->target_index, R_ARM_PREL31);
14997 irela++;
14998 count++;
14999 }
15000 }
15001 else
15002 {
15003 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15004 {
15005 (*swap_in) (abfd, erela, irela);
15006 erela += rel_hdr->sh_entsize;
15007 irela++;
15008 }
15009
15010 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15011 }
15012 }
15013 }
15014
15015 reldata->count = count;
15016 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15017
15018 erela = erela_head;
15019 irela = irela_head;
15020 while (count > 0)
15021 {
15022 (*swap_out) (abfd, irela, erela);
15023 erela += rel_hdr->sh_entsize;
15024 irela++;
15025 count--;
15026 }
15027
15028 free (irela_head);
15029
15030 /* Hashes are no longer valid. */
15031 free (reldata->hashes);
15032 reldata->hashes = NULL;
15033 }
15034
15035 /* Unwinding tables are not referenced directly. This pass marks them as
15036 required if the corresponding code section is marked. Similarly, ARMv8-M
15037 secure entry functions can only be referenced by SG veneers which are
15038 created after the GC process. They need to be marked in case they reside in
15039 their own section (as would be the case if code was compiled with
15040 -ffunction-sections). */
15041
15042 static bfd_boolean
15043 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15044 elf_gc_mark_hook_fn gc_mark_hook)
15045 {
15046 bfd *sub;
15047 Elf_Internal_Shdr **elf_shdrp;
15048 asection *cmse_sec;
15049 obj_attribute *out_attr;
15050 Elf_Internal_Shdr *symtab_hdr;
15051 unsigned i, sym_count, ext_start;
15052 const struct elf_backend_data *bed;
15053 struct elf_link_hash_entry **sym_hashes;
15054 struct elf32_arm_link_hash_entry *cmse_hash;
15055 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15056
15057 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15058
15059 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15060 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15061 && out_attr[Tag_CPU_arch_profile].i == 'M';
15062
15063 /* Marking EH data may cause additional code sections to be marked,
15064 requiring multiple passes. */
15065 again = TRUE;
15066 while (again)
15067 {
15068 again = FALSE;
15069 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15070 {
15071 asection *o;
15072
15073 if (! is_arm_elf (sub))
15074 continue;
15075
15076 elf_shdrp = elf_elfsections (sub);
15077 for (o = sub->sections; o != NULL; o = o->next)
15078 {
15079 Elf_Internal_Shdr *hdr;
15080
15081 hdr = &elf_section_data (o)->this_hdr;
15082 if (hdr->sh_type == SHT_ARM_EXIDX
15083 && hdr->sh_link
15084 && hdr->sh_link < elf_numsections (sub)
15085 && !o->gc_mark
15086 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15087 {
15088 again = TRUE;
15089 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15090 return FALSE;
15091 }
15092 }
15093
15094 /* Mark section holding ARMv8-M secure entry functions. We mark all
15095 of them so no need for a second browsing. */
15096 if (is_v8m && first_bfd_browse)
15097 {
15098 sym_hashes = elf_sym_hashes (sub);
15099 bed = get_elf_backend_data (sub);
15100 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15101 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15102 ext_start = symtab_hdr->sh_info;
15103
15104 /* Scan symbols. */
15105 for (i = ext_start; i < sym_count; i++)
15106 {
15107 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15108
15109 /* Assume it is a special symbol. If not, cmse_scan will
15110 warn about it and user can do something about it. */
15111 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15112 {
15113 cmse_sec = cmse_hash->root.root.u.def.section;
15114 if (!cmse_sec->gc_mark
15115 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15116 return FALSE;
15117 }
15118 }
15119 }
15120 }
15121 first_bfd_browse = FALSE;
15122 }
15123
15124 return TRUE;
15125 }
15126
15127 /* Treat mapping symbols as special target symbols. */
15128
15129 static bfd_boolean
15130 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15131 {
15132 return bfd_is_arm_special_symbol_name (sym->name,
15133 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15134 }
15135
15136 /* This is a copy of elf_find_function() from elf.c except that
15137 ARM mapping symbols are ignored when looking for function names
15138 and STT_ARM_TFUNC is considered to a function type. */
15139
15140 static bfd_boolean
15141 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15142 asymbol ** symbols,
15143 asection * section,
15144 bfd_vma offset,
15145 const char ** filename_ptr,
15146 const char ** functionname_ptr)
15147 {
15148 const char * filename = NULL;
15149 asymbol * func = NULL;
15150 bfd_vma low_func = 0;
15151 asymbol ** p;
15152
15153 for (p = symbols; *p != NULL; p++)
15154 {
15155 elf_symbol_type *q;
15156
15157 q = (elf_symbol_type *) *p;
15158
15159 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15160 {
15161 default:
15162 break;
15163 case STT_FILE:
15164 filename = bfd_asymbol_name (&q->symbol);
15165 break;
15166 case STT_FUNC:
15167 case STT_ARM_TFUNC:
15168 case STT_NOTYPE:
15169 /* Skip mapping symbols. */
15170 if ((q->symbol.flags & BSF_LOCAL)
15171 && bfd_is_arm_special_symbol_name (q->symbol.name,
15172 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15173 continue;
15174 /* Fall through. */
15175 if (bfd_get_section (&q->symbol) == section
15176 && q->symbol.value >= low_func
15177 && q->symbol.value <= offset)
15178 {
15179 func = (asymbol *) q;
15180 low_func = q->symbol.value;
15181 }
15182 break;
15183 }
15184 }
15185
15186 if (func == NULL)
15187 return FALSE;
15188
15189 if (filename_ptr)
15190 *filename_ptr = filename;
15191 if (functionname_ptr)
15192 *functionname_ptr = bfd_asymbol_name (func);
15193
15194 return TRUE;
15195 }
15196
15197
15198 /* Find the nearest line to a particular section and offset, for error
15199 reporting. This code is a duplicate of the code in elf.c, except
15200 that it uses arm_elf_find_function. */
15201
15202 static bfd_boolean
15203 elf32_arm_find_nearest_line (bfd * abfd,
15204 asymbol ** symbols,
15205 asection * section,
15206 bfd_vma offset,
15207 const char ** filename_ptr,
15208 const char ** functionname_ptr,
15209 unsigned int * line_ptr,
15210 unsigned int * discriminator_ptr)
15211 {
15212 bfd_boolean found = FALSE;
15213
15214 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15215 filename_ptr, functionname_ptr,
15216 line_ptr, discriminator_ptr,
15217 dwarf_debug_sections, 0,
15218 & elf_tdata (abfd)->dwarf2_find_line_info))
15219 {
15220 if (!*functionname_ptr)
15221 arm_elf_find_function (abfd, symbols, section, offset,
15222 *filename_ptr ? NULL : filename_ptr,
15223 functionname_ptr);
15224
15225 return TRUE;
15226 }
15227
15228 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15229 uses DWARF1. */
15230
15231 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15232 & found, filename_ptr,
15233 functionname_ptr, line_ptr,
15234 & elf_tdata (abfd)->line_info))
15235 return FALSE;
15236
15237 if (found && (*functionname_ptr || *line_ptr))
15238 return TRUE;
15239
15240 if (symbols == NULL)
15241 return FALSE;
15242
15243 if (! arm_elf_find_function (abfd, symbols, section, offset,
15244 filename_ptr, functionname_ptr))
15245 return FALSE;
15246
15247 *line_ptr = 0;
15248 return TRUE;
15249 }
15250
15251 static bfd_boolean
15252 elf32_arm_find_inliner_info (bfd * abfd,
15253 const char ** filename_ptr,
15254 const char ** functionname_ptr,
15255 unsigned int * line_ptr)
15256 {
15257 bfd_boolean found;
15258 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15259 functionname_ptr, line_ptr,
15260 & elf_tdata (abfd)->dwarf2_find_line_info);
15261 return found;
15262 }
15263
15264 /* Adjust a symbol defined by a dynamic object and referenced by a
15265 regular object. The current definition is in some section of the
15266 dynamic object, but we're not including those sections. We have to
15267 change the definition to something the rest of the link can
15268 understand. */
15269
15270 static bfd_boolean
15271 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15272 struct elf_link_hash_entry * h)
15273 {
15274 bfd * dynobj;
15275 asection * s;
15276 struct elf32_arm_link_hash_entry * eh;
15277 struct elf32_arm_link_hash_table *globals;
15278
15279 globals = elf32_arm_hash_table (info);
15280 if (globals == NULL)
15281 return FALSE;
15282
15283 dynobj = elf_hash_table (info)->dynobj;
15284
15285 /* Make sure we know what is going on here. */
15286 BFD_ASSERT (dynobj != NULL
15287 && (h->needs_plt
15288 || h->type == STT_GNU_IFUNC
15289 || h->u.weakdef != NULL
15290 || (h->def_dynamic
15291 && h->ref_regular
15292 && !h->def_regular)));
15293
15294 eh = (struct elf32_arm_link_hash_entry *) h;
15295
15296 /* If this is a function, put it in the procedure linkage table. We
15297 will fill in the contents of the procedure linkage table later,
15298 when we know the address of the .got section. */
15299 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15300 {
15301 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15302 symbol binds locally. */
15303 if (h->plt.refcount <= 0
15304 || (h->type != STT_GNU_IFUNC
15305 && (SYMBOL_CALLS_LOCAL (info, h)
15306 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15307 && h->root.type == bfd_link_hash_undefweak))))
15308 {
15309 /* This case can occur if we saw a PLT32 reloc in an input
15310 file, but the symbol was never referred to by a dynamic
15311 object, or if all references were garbage collected. In
15312 such a case, we don't actually need to build a procedure
15313 linkage table, and we can just do a PC24 reloc instead. */
15314 h->plt.offset = (bfd_vma) -1;
15315 eh->plt.thumb_refcount = 0;
15316 eh->plt.maybe_thumb_refcount = 0;
15317 eh->plt.noncall_refcount = 0;
15318 h->needs_plt = 0;
15319 }
15320
15321 return TRUE;
15322 }
15323 else
15324 {
15325 /* It's possible that we incorrectly decided a .plt reloc was
15326 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15327 in check_relocs. We can't decide accurately between function
15328 and non-function syms in check-relocs; Objects loaded later in
15329 the link may change h->type. So fix it now. */
15330 h->plt.offset = (bfd_vma) -1;
15331 eh->plt.thumb_refcount = 0;
15332 eh->plt.maybe_thumb_refcount = 0;
15333 eh->plt.noncall_refcount = 0;
15334 }
15335
15336 /* If this is a weak symbol, and there is a real definition, the
15337 processor independent code will have arranged for us to see the
15338 real definition first, and we can just use the same value. */
15339 if (h->u.weakdef != NULL)
15340 {
15341 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15342 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15343 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15344 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15345 return TRUE;
15346 }
15347
15348 /* If there are no non-GOT references, we do not need a copy
15349 relocation. */
15350 if (!h->non_got_ref)
15351 return TRUE;
15352
15353 /* This is a reference to a symbol defined by a dynamic object which
15354 is not a function. */
15355
15356 /* If we are creating a shared library, we must presume that the
15357 only references to the symbol are via the global offset table.
15358 For such cases we need not do anything here; the relocations will
15359 be handled correctly by relocate_section. Relocatable executables
15360 can reference data in shared objects directly, so we don't need to
15361 do anything here. */
15362 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15363 return TRUE;
15364
15365 /* We must allocate the symbol in our .dynbss section, which will
15366 become part of the .bss section of the executable. There will be
15367 an entry for this symbol in the .dynsym section. The dynamic
15368 object will contain position independent code, so all references
15369 from the dynamic object to this symbol will go through the global
15370 offset table. The dynamic linker will use the .dynsym entry to
15371 determine the address it must put in the global offset table, so
15372 both the dynamic object and the regular object will refer to the
15373 same memory location for the variable. */
15374 s = bfd_get_linker_section (dynobj, ".dynbss");
15375 BFD_ASSERT (s != NULL);
15376
15377 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15378 linker to copy the initial value out of the dynamic object and into
15379 the runtime process image. We need to remember the offset into the
15380 .rel(a).bss section we are going to use. */
15381 if (info->nocopyreloc == 0
15382 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15383 && h->size != 0)
15384 {
15385 asection *srel;
15386
15387 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
15388 elf32_arm_allocate_dynrelocs (info, srel, 1);
15389 h->needs_copy = 1;
15390 }
15391
15392 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15393 }
15394
15395 /* Allocate space in .plt, .got and associated reloc sections for
15396 dynamic relocs. */
15397
15398 static bfd_boolean
15399 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15400 {
15401 struct bfd_link_info *info;
15402 struct elf32_arm_link_hash_table *htab;
15403 struct elf32_arm_link_hash_entry *eh;
15404 struct elf_dyn_relocs *p;
15405
15406 if (h->root.type == bfd_link_hash_indirect)
15407 return TRUE;
15408
15409 eh = (struct elf32_arm_link_hash_entry *) h;
15410
15411 info = (struct bfd_link_info *) inf;
15412 htab = elf32_arm_hash_table (info);
15413 if (htab == NULL)
15414 return FALSE;
15415
15416 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15417 && h->plt.refcount > 0)
15418 {
15419 /* Make sure this symbol is output as a dynamic symbol.
15420 Undefined weak syms won't yet be marked as dynamic. */
15421 if (h->dynindx == -1
15422 && !h->forced_local)
15423 {
15424 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15425 return FALSE;
15426 }
15427
15428 /* If the call in the PLT entry binds locally, the associated
15429 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15430 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15431 than the .plt section. */
15432 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15433 {
15434 eh->is_iplt = 1;
15435 if (eh->plt.noncall_refcount == 0
15436 && SYMBOL_REFERENCES_LOCAL (info, h))
15437 /* All non-call references can be resolved directly.
15438 This means that they can (and in some cases, must)
15439 resolve directly to the run-time target, rather than
15440 to the PLT. That in turns means that any .got entry
15441 would be equal to the .igot.plt entry, so there's
15442 no point having both. */
15443 h->got.refcount = 0;
15444 }
15445
15446 if (bfd_link_pic (info)
15447 || eh->is_iplt
15448 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15449 {
15450 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15451
15452 /* If this symbol is not defined in a regular file, and we are
15453 not generating a shared library, then set the symbol to this
15454 location in the .plt. This is required to make function
15455 pointers compare as equal between the normal executable and
15456 the shared library. */
15457 if (! bfd_link_pic (info)
15458 && !h->def_regular)
15459 {
15460 h->root.u.def.section = htab->root.splt;
15461 h->root.u.def.value = h->plt.offset;
15462
15463 /* Make sure the function is not marked as Thumb, in case
15464 it is the target of an ABS32 relocation, which will
15465 point to the PLT entry. */
15466 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15467 }
15468
15469 /* VxWorks executables have a second set of relocations for
15470 each PLT entry. They go in a separate relocation section,
15471 which is processed by the kernel loader. */
15472 if (htab->vxworks_p && !bfd_link_pic (info))
15473 {
15474 /* There is a relocation for the initial PLT entry:
15475 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15476 if (h->plt.offset == htab->plt_header_size)
15477 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15478
15479 /* There are two extra relocations for each subsequent
15480 PLT entry: an R_ARM_32 relocation for the GOT entry,
15481 and an R_ARM_32 relocation for the PLT entry. */
15482 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15483 }
15484 }
15485 else
15486 {
15487 h->plt.offset = (bfd_vma) -1;
15488 h->needs_plt = 0;
15489 }
15490 }
15491 else
15492 {
15493 h->plt.offset = (bfd_vma) -1;
15494 h->needs_plt = 0;
15495 }
15496
15497 eh = (struct elf32_arm_link_hash_entry *) h;
15498 eh->tlsdesc_got = (bfd_vma) -1;
15499
15500 if (h->got.refcount > 0)
15501 {
15502 asection *s;
15503 bfd_boolean dyn;
15504 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15505 int indx;
15506
15507 /* Make sure this symbol is output as a dynamic symbol.
15508 Undefined weak syms won't yet be marked as dynamic. */
15509 if (h->dynindx == -1
15510 && !h->forced_local)
15511 {
15512 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15513 return FALSE;
15514 }
15515
15516 if (!htab->symbian_p)
15517 {
15518 s = htab->root.sgot;
15519 h->got.offset = s->size;
15520
15521 if (tls_type == GOT_UNKNOWN)
15522 abort ();
15523
15524 if (tls_type == GOT_NORMAL)
15525 /* Non-TLS symbols need one GOT slot. */
15526 s->size += 4;
15527 else
15528 {
15529 if (tls_type & GOT_TLS_GDESC)
15530 {
15531 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15532 eh->tlsdesc_got
15533 = (htab->root.sgotplt->size
15534 - elf32_arm_compute_jump_table_size (htab));
15535 htab->root.sgotplt->size += 8;
15536 h->got.offset = (bfd_vma) -2;
15537 /* plt.got_offset needs to know there's a TLS_DESC
15538 reloc in the middle of .got.plt. */
15539 htab->num_tls_desc++;
15540 }
15541
15542 if (tls_type & GOT_TLS_GD)
15543 {
15544 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15545 the symbol is both GD and GDESC, got.offset may
15546 have been overwritten. */
15547 h->got.offset = s->size;
15548 s->size += 8;
15549 }
15550
15551 if (tls_type & GOT_TLS_IE)
15552 /* R_ARM_TLS_IE32 needs one GOT slot. */
15553 s->size += 4;
15554 }
15555
15556 dyn = htab->root.dynamic_sections_created;
15557
15558 indx = 0;
15559 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15560 bfd_link_pic (info),
15561 h)
15562 && (!bfd_link_pic (info)
15563 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15564 indx = h->dynindx;
15565
15566 if (tls_type != GOT_NORMAL
15567 && (bfd_link_pic (info) || indx != 0)
15568 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15569 || h->root.type != bfd_link_hash_undefweak))
15570 {
15571 if (tls_type & GOT_TLS_IE)
15572 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15573
15574 if (tls_type & GOT_TLS_GD)
15575 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15576
15577 if (tls_type & GOT_TLS_GDESC)
15578 {
15579 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15580 /* GDESC needs a trampoline to jump to. */
15581 htab->tls_trampoline = -1;
15582 }
15583
15584 /* Only GD needs it. GDESC just emits one relocation per
15585 2 entries. */
15586 if ((tls_type & GOT_TLS_GD) && indx != 0)
15587 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15588 }
15589 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15590 {
15591 if (htab->root.dynamic_sections_created)
15592 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15593 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15594 }
15595 else if (h->type == STT_GNU_IFUNC
15596 && eh->plt.noncall_refcount == 0)
15597 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15598 they all resolve dynamically instead. Reserve room for the
15599 GOT entry's R_ARM_IRELATIVE relocation. */
15600 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15601 else if (bfd_link_pic (info)
15602 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15603 || h->root.type != bfd_link_hash_undefweak))
15604 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15605 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15606 }
15607 }
15608 else
15609 h->got.offset = (bfd_vma) -1;
15610
15611 /* Allocate stubs for exported Thumb functions on v4t. */
15612 if (!htab->use_blx && h->dynindx != -1
15613 && h->def_regular
15614 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15615 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15616 {
15617 struct elf_link_hash_entry * th;
15618 struct bfd_link_hash_entry * bh;
15619 struct elf_link_hash_entry * myh;
15620 char name[1024];
15621 asection *s;
15622 bh = NULL;
15623 /* Create a new symbol to regist the real location of the function. */
15624 s = h->root.u.def.section;
15625 sprintf (name, "__real_%s", h->root.root.string);
15626 _bfd_generic_link_add_one_symbol (info, s->owner,
15627 name, BSF_GLOBAL, s,
15628 h->root.u.def.value,
15629 NULL, TRUE, FALSE, &bh);
15630
15631 myh = (struct elf_link_hash_entry *) bh;
15632 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15633 myh->forced_local = 1;
15634 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15635 eh->export_glue = myh;
15636 th = record_arm_to_thumb_glue (info, h);
15637 /* Point the symbol at the stub. */
15638 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15639 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15640 h->root.u.def.section = th->root.u.def.section;
15641 h->root.u.def.value = th->root.u.def.value & ~1;
15642 }
15643
15644 if (eh->dyn_relocs == NULL)
15645 return TRUE;
15646
15647 /* In the shared -Bsymbolic case, discard space allocated for
15648 dynamic pc-relative relocs against symbols which turn out to be
15649 defined in regular objects. For the normal shared case, discard
15650 space for pc-relative relocs that have become local due to symbol
15651 visibility changes. */
15652
15653 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15654 {
15655 /* Relocs that use pc_count are PC-relative forms, which will appear
15656 on something like ".long foo - ." or "movw REG, foo - .". We want
15657 calls to protected symbols to resolve directly to the function
15658 rather than going via the plt. If people want function pointer
15659 comparisons to work as expected then they should avoid writing
15660 assembly like ".long foo - .". */
15661 if (SYMBOL_CALLS_LOCAL (info, h))
15662 {
15663 struct elf_dyn_relocs **pp;
15664
15665 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15666 {
15667 p->count -= p->pc_count;
15668 p->pc_count = 0;
15669 if (p->count == 0)
15670 *pp = p->next;
15671 else
15672 pp = &p->next;
15673 }
15674 }
15675
15676 if (htab->vxworks_p)
15677 {
15678 struct elf_dyn_relocs **pp;
15679
15680 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15681 {
15682 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15683 *pp = p->next;
15684 else
15685 pp = &p->next;
15686 }
15687 }
15688
15689 /* Also discard relocs on undefined weak syms with non-default
15690 visibility. */
15691 if (eh->dyn_relocs != NULL
15692 && h->root.type == bfd_link_hash_undefweak)
15693 {
15694 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15695 eh->dyn_relocs = NULL;
15696
15697 /* Make sure undefined weak symbols are output as a dynamic
15698 symbol in PIEs. */
15699 else if (h->dynindx == -1
15700 && !h->forced_local)
15701 {
15702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15703 return FALSE;
15704 }
15705 }
15706
15707 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15708 && h->root.type == bfd_link_hash_new)
15709 {
15710 /* Output absolute symbols so that we can create relocations
15711 against them. For normal symbols we output a relocation
15712 against the section that contains them. */
15713 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15714 return FALSE;
15715 }
15716
15717 }
15718 else
15719 {
15720 /* For the non-shared case, discard space for relocs against
15721 symbols which turn out to need copy relocs or are not
15722 dynamic. */
15723
15724 if (!h->non_got_ref
15725 && ((h->def_dynamic
15726 && !h->def_regular)
15727 || (htab->root.dynamic_sections_created
15728 && (h->root.type == bfd_link_hash_undefweak
15729 || h->root.type == bfd_link_hash_undefined))))
15730 {
15731 /* Make sure this symbol is output as a dynamic symbol.
15732 Undefined weak syms won't yet be marked as dynamic. */
15733 if (h->dynindx == -1
15734 && !h->forced_local)
15735 {
15736 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15737 return FALSE;
15738 }
15739
15740 /* If that succeeded, we know we'll be keeping all the
15741 relocs. */
15742 if (h->dynindx != -1)
15743 goto keep;
15744 }
15745
15746 eh->dyn_relocs = NULL;
15747
15748 keep: ;
15749 }
15750
15751 /* Finally, allocate space. */
15752 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15753 {
15754 asection *sreloc = elf_section_data (p->sec)->sreloc;
15755 if (h->type == STT_GNU_IFUNC
15756 && eh->plt.noncall_refcount == 0
15757 && SYMBOL_REFERENCES_LOCAL (info, h))
15758 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15759 else
15760 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15761 }
15762
15763 return TRUE;
15764 }
15765
15766 /* Find any dynamic relocs that apply to read-only sections. */
15767
15768 static bfd_boolean
15769 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15770 {
15771 struct elf32_arm_link_hash_entry * eh;
15772 struct elf_dyn_relocs * p;
15773
15774 eh = (struct elf32_arm_link_hash_entry *) h;
15775 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15776 {
15777 asection *s = p->sec;
15778
15779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15780 {
15781 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15782
15783 info->flags |= DF_TEXTREL;
15784
15785 /* Not an error, just cut short the traversal. */
15786 return FALSE;
15787 }
15788 }
15789 return TRUE;
15790 }
15791
15792 void
15793 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15794 int byteswap_code)
15795 {
15796 struct elf32_arm_link_hash_table *globals;
15797
15798 globals = elf32_arm_hash_table (info);
15799 if (globals == NULL)
15800 return;
15801
15802 globals->byteswap_code = byteswap_code;
15803 }
15804
15805 /* Set the sizes of the dynamic sections. */
15806
15807 static bfd_boolean
15808 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15809 struct bfd_link_info * info)
15810 {
15811 bfd * dynobj;
15812 asection * s;
15813 bfd_boolean plt;
15814 bfd_boolean relocs;
15815 bfd *ibfd;
15816 struct elf32_arm_link_hash_table *htab;
15817
15818 htab = elf32_arm_hash_table (info);
15819 if (htab == NULL)
15820 return FALSE;
15821
15822 dynobj = elf_hash_table (info)->dynobj;
15823 BFD_ASSERT (dynobj != NULL);
15824 check_use_blx (htab);
15825
15826 if (elf_hash_table (info)->dynamic_sections_created)
15827 {
15828 /* Set the contents of the .interp section to the interpreter. */
15829 if (bfd_link_executable (info) && !info->nointerp)
15830 {
15831 s = bfd_get_linker_section (dynobj, ".interp");
15832 BFD_ASSERT (s != NULL);
15833 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15834 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15835 }
15836 }
15837
15838 /* Set up .got offsets for local syms, and space for local dynamic
15839 relocs. */
15840 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15841 {
15842 bfd_signed_vma *local_got;
15843 bfd_signed_vma *end_local_got;
15844 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15845 char *local_tls_type;
15846 bfd_vma *local_tlsdesc_gotent;
15847 bfd_size_type locsymcount;
15848 Elf_Internal_Shdr *symtab_hdr;
15849 asection *srel;
15850 bfd_boolean is_vxworks = htab->vxworks_p;
15851 unsigned int symndx;
15852
15853 if (! is_arm_elf (ibfd))
15854 continue;
15855
15856 for (s = ibfd->sections; s != NULL; s = s->next)
15857 {
15858 struct elf_dyn_relocs *p;
15859
15860 for (p = (struct elf_dyn_relocs *)
15861 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15862 {
15863 if (!bfd_is_abs_section (p->sec)
15864 && bfd_is_abs_section (p->sec->output_section))
15865 {
15866 /* Input section has been discarded, either because
15867 it is a copy of a linkonce section or due to
15868 linker script /DISCARD/, so we'll be discarding
15869 the relocs too. */
15870 }
15871 else if (is_vxworks
15872 && strcmp (p->sec->output_section->name,
15873 ".tls_vars") == 0)
15874 {
15875 /* Relocations in vxworks .tls_vars sections are
15876 handled specially by the loader. */
15877 }
15878 else if (p->count != 0)
15879 {
15880 srel = elf_section_data (p->sec)->sreloc;
15881 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15882 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15883 info->flags |= DF_TEXTREL;
15884 }
15885 }
15886 }
15887
15888 local_got = elf_local_got_refcounts (ibfd);
15889 if (!local_got)
15890 continue;
15891
15892 symtab_hdr = & elf_symtab_hdr (ibfd);
15893 locsymcount = symtab_hdr->sh_info;
15894 end_local_got = local_got + locsymcount;
15895 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15896 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15897 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15898 symndx = 0;
15899 s = htab->root.sgot;
15900 srel = htab->root.srelgot;
15901 for (; local_got < end_local_got;
15902 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15903 ++local_tlsdesc_gotent, ++symndx)
15904 {
15905 *local_tlsdesc_gotent = (bfd_vma) -1;
15906 local_iplt = *local_iplt_ptr;
15907 if (local_iplt != NULL)
15908 {
15909 struct elf_dyn_relocs *p;
15910
15911 if (local_iplt->root.refcount > 0)
15912 {
15913 elf32_arm_allocate_plt_entry (info, TRUE,
15914 &local_iplt->root,
15915 &local_iplt->arm);
15916 if (local_iplt->arm.noncall_refcount == 0)
15917 /* All references to the PLT are calls, so all
15918 non-call references can resolve directly to the
15919 run-time target. This means that the .got entry
15920 would be the same as the .igot.plt entry, so there's
15921 no point creating both. */
15922 *local_got = 0;
15923 }
15924 else
15925 {
15926 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15927 local_iplt->root.offset = (bfd_vma) -1;
15928 }
15929
15930 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15931 {
15932 asection *psrel;
15933
15934 psrel = elf_section_data (p->sec)->sreloc;
15935 if (local_iplt->arm.noncall_refcount == 0)
15936 elf32_arm_allocate_irelocs (info, psrel, p->count);
15937 else
15938 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15939 }
15940 }
15941 if (*local_got > 0)
15942 {
15943 Elf_Internal_Sym *isym;
15944
15945 *local_got = s->size;
15946 if (*local_tls_type & GOT_TLS_GD)
15947 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15948 s->size += 8;
15949 if (*local_tls_type & GOT_TLS_GDESC)
15950 {
15951 *local_tlsdesc_gotent = htab->root.sgotplt->size
15952 - elf32_arm_compute_jump_table_size (htab);
15953 htab->root.sgotplt->size += 8;
15954 *local_got = (bfd_vma) -2;
15955 /* plt.got_offset needs to know there's a TLS_DESC
15956 reloc in the middle of .got.plt. */
15957 htab->num_tls_desc++;
15958 }
15959 if (*local_tls_type & GOT_TLS_IE)
15960 s->size += 4;
15961
15962 if (*local_tls_type & GOT_NORMAL)
15963 {
15964 /* If the symbol is both GD and GDESC, *local_got
15965 may have been overwritten. */
15966 *local_got = s->size;
15967 s->size += 4;
15968 }
15969
15970 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15971 if (isym == NULL)
15972 return FALSE;
15973
15974 /* If all references to an STT_GNU_IFUNC PLT are calls,
15975 then all non-call references, including this GOT entry,
15976 resolve directly to the run-time target. */
15977 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15978 && (local_iplt == NULL
15979 || local_iplt->arm.noncall_refcount == 0))
15980 elf32_arm_allocate_irelocs (info, srel, 1);
15981 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15982 {
15983 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15984 || *local_tls_type & GOT_TLS_GD)
15985 elf32_arm_allocate_dynrelocs (info, srel, 1);
15986
15987 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15988 {
15989 elf32_arm_allocate_dynrelocs (info,
15990 htab->root.srelplt, 1);
15991 htab->tls_trampoline = -1;
15992 }
15993 }
15994 }
15995 else
15996 *local_got = (bfd_vma) -1;
15997 }
15998 }
15999
16000 if (htab->tls_ldm_got.refcount > 0)
16001 {
16002 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16003 for R_ARM_TLS_LDM32 relocations. */
16004 htab->tls_ldm_got.offset = htab->root.sgot->size;
16005 htab->root.sgot->size += 8;
16006 if (bfd_link_pic (info))
16007 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16008 }
16009 else
16010 htab->tls_ldm_got.offset = -1;
16011
16012 /* Allocate global sym .plt and .got entries, and space for global
16013 sym dynamic relocs. */
16014 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16015
16016 /* Here we rummage through the found bfds to collect glue information. */
16017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16018 {
16019 if (! is_arm_elf (ibfd))
16020 continue;
16021
16022 /* Initialise mapping tables for code/data. */
16023 bfd_elf32_arm_init_maps (ibfd);
16024
16025 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16026 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16027 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16028 _bfd_error_handler (_("Errors encountered processing file %s"),
16029 ibfd->filename);
16030 }
16031
16032 /* Allocate space for the glue sections now that we've sized them. */
16033 bfd_elf32_arm_allocate_interworking_sections (info);
16034
16035 /* For every jump slot reserved in the sgotplt, reloc_count is
16036 incremented. However, when we reserve space for TLS descriptors,
16037 it's not incremented, so in order to compute the space reserved
16038 for them, it suffices to multiply the reloc count by the jump
16039 slot size. */
16040 if (htab->root.srelplt)
16041 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16042
16043 if (htab->tls_trampoline)
16044 {
16045 if (htab->root.splt->size == 0)
16046 htab->root.splt->size += htab->plt_header_size;
16047
16048 htab->tls_trampoline = htab->root.splt->size;
16049 htab->root.splt->size += htab->plt_entry_size;
16050
16051 /* If we're not using lazy TLS relocations, don't generate the
16052 PLT and GOT entries they require. */
16053 if (!(info->flags & DF_BIND_NOW))
16054 {
16055 htab->dt_tlsdesc_got = htab->root.sgot->size;
16056 htab->root.sgot->size += 4;
16057
16058 htab->dt_tlsdesc_plt = htab->root.splt->size;
16059 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16060 }
16061 }
16062
16063 /* The check_relocs and adjust_dynamic_symbol entry points have
16064 determined the sizes of the various dynamic sections. Allocate
16065 memory for them. */
16066 plt = FALSE;
16067 relocs = FALSE;
16068 for (s = dynobj->sections; s != NULL; s = s->next)
16069 {
16070 const char * name;
16071
16072 if ((s->flags & SEC_LINKER_CREATED) == 0)
16073 continue;
16074
16075 /* It's OK to base decisions on the section name, because none
16076 of the dynobj section names depend upon the input files. */
16077 name = bfd_get_section_name (dynobj, s);
16078
16079 if (s == htab->root.splt)
16080 {
16081 /* Remember whether there is a PLT. */
16082 plt = s->size != 0;
16083 }
16084 else if (CONST_STRNEQ (name, ".rel"))
16085 {
16086 if (s->size != 0)
16087 {
16088 /* Remember whether there are any reloc sections other
16089 than .rel(a).plt and .rela.plt.unloaded. */
16090 if (s != htab->root.srelplt && s != htab->srelplt2)
16091 relocs = TRUE;
16092
16093 /* We use the reloc_count field as a counter if we need
16094 to copy relocs into the output file. */
16095 s->reloc_count = 0;
16096 }
16097 }
16098 else if (s != htab->root.sgot
16099 && s != htab->root.sgotplt
16100 && s != htab->root.iplt
16101 && s != htab->root.igotplt
16102 && s != htab->sdynbss)
16103 {
16104 /* It's not one of our sections, so don't allocate space. */
16105 continue;
16106 }
16107
16108 if (s->size == 0)
16109 {
16110 /* If we don't need this section, strip it from the
16111 output file. This is mostly to handle .rel(a).bss and
16112 .rel(a).plt. We must create both sections in
16113 create_dynamic_sections, because they must be created
16114 before the linker maps input sections to output
16115 sections. The linker does that before
16116 adjust_dynamic_symbol is called, and it is that
16117 function which decides whether anything needs to go
16118 into these sections. */
16119 s->flags |= SEC_EXCLUDE;
16120 continue;
16121 }
16122
16123 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16124 continue;
16125
16126 /* Allocate memory for the section contents. */
16127 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16128 if (s->contents == NULL)
16129 return FALSE;
16130 }
16131
16132 if (elf_hash_table (info)->dynamic_sections_created)
16133 {
16134 /* Add some entries to the .dynamic section. We fill in the
16135 values later, in elf32_arm_finish_dynamic_sections, but we
16136 must add the entries now so that we get the correct size for
16137 the .dynamic section. The DT_DEBUG entry is filled in by the
16138 dynamic linker and used by the debugger. */
16139 #define add_dynamic_entry(TAG, VAL) \
16140 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16141
16142 if (bfd_link_executable (info))
16143 {
16144 if (!add_dynamic_entry (DT_DEBUG, 0))
16145 return FALSE;
16146 }
16147
16148 if (plt)
16149 {
16150 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16151 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16152 || !add_dynamic_entry (DT_PLTREL,
16153 htab->use_rel ? DT_REL : DT_RELA)
16154 || !add_dynamic_entry (DT_JMPREL, 0))
16155 return FALSE;
16156
16157 if (htab->dt_tlsdesc_plt
16158 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16159 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16160 return FALSE;
16161 }
16162
16163 if (relocs)
16164 {
16165 if (htab->use_rel)
16166 {
16167 if (!add_dynamic_entry (DT_REL, 0)
16168 || !add_dynamic_entry (DT_RELSZ, 0)
16169 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16170 return FALSE;
16171 }
16172 else
16173 {
16174 if (!add_dynamic_entry (DT_RELA, 0)
16175 || !add_dynamic_entry (DT_RELASZ, 0)
16176 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16177 return FALSE;
16178 }
16179 }
16180
16181 /* If any dynamic relocs apply to a read-only section,
16182 then we need a DT_TEXTREL entry. */
16183 if ((info->flags & DF_TEXTREL) == 0)
16184 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16185 info);
16186
16187 if ((info->flags & DF_TEXTREL) != 0)
16188 {
16189 if (!add_dynamic_entry (DT_TEXTREL, 0))
16190 return FALSE;
16191 }
16192 if (htab->vxworks_p
16193 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16194 return FALSE;
16195 }
16196 #undef add_dynamic_entry
16197
16198 return TRUE;
16199 }
16200
16201 /* Size sections even though they're not dynamic. We use it to setup
16202 _TLS_MODULE_BASE_, if needed. */
16203
16204 static bfd_boolean
16205 elf32_arm_always_size_sections (bfd *output_bfd,
16206 struct bfd_link_info *info)
16207 {
16208 asection *tls_sec;
16209
16210 if (bfd_link_relocatable (info))
16211 return TRUE;
16212
16213 tls_sec = elf_hash_table (info)->tls_sec;
16214
16215 if (tls_sec)
16216 {
16217 struct elf_link_hash_entry *tlsbase;
16218
16219 tlsbase = elf_link_hash_lookup
16220 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16221
16222 if (tlsbase)
16223 {
16224 struct bfd_link_hash_entry *bh = NULL;
16225 const struct elf_backend_data *bed
16226 = get_elf_backend_data (output_bfd);
16227
16228 if (!(_bfd_generic_link_add_one_symbol
16229 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16230 tls_sec, 0, NULL, FALSE,
16231 bed->collect, &bh)))
16232 return FALSE;
16233
16234 tlsbase->type = STT_TLS;
16235 tlsbase = (struct elf_link_hash_entry *)bh;
16236 tlsbase->def_regular = 1;
16237 tlsbase->other = STV_HIDDEN;
16238 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16239 }
16240 }
16241 return TRUE;
16242 }
16243
16244 /* Finish up dynamic symbol handling. We set the contents of various
16245 dynamic sections here. */
16246
16247 static bfd_boolean
16248 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16249 struct bfd_link_info * info,
16250 struct elf_link_hash_entry * h,
16251 Elf_Internal_Sym * sym)
16252 {
16253 struct elf32_arm_link_hash_table *htab;
16254 struct elf32_arm_link_hash_entry *eh;
16255
16256 htab = elf32_arm_hash_table (info);
16257 if (htab == NULL)
16258 return FALSE;
16259
16260 eh = (struct elf32_arm_link_hash_entry *) h;
16261
16262 if (h->plt.offset != (bfd_vma) -1)
16263 {
16264 if (!eh->is_iplt)
16265 {
16266 BFD_ASSERT (h->dynindx != -1);
16267 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16268 h->dynindx, 0))
16269 return FALSE;
16270 }
16271
16272 if (!h->def_regular)
16273 {
16274 /* Mark the symbol as undefined, rather than as defined in
16275 the .plt section. */
16276 sym->st_shndx = SHN_UNDEF;
16277 /* If the symbol is weak we need to clear the value.
16278 Otherwise, the PLT entry would provide a definition for
16279 the symbol even if the symbol wasn't defined anywhere,
16280 and so the symbol would never be NULL. Leave the value if
16281 there were any relocations where pointer equality matters
16282 (this is a clue for the dynamic linker, to make function
16283 pointer comparisons work between an application and shared
16284 library). */
16285 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16286 sym->st_value = 0;
16287 }
16288 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16289 {
16290 /* At least one non-call relocation references this .iplt entry,
16291 so the .iplt entry is the function's canonical address. */
16292 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16293 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16294 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16295 (output_bfd, htab->root.iplt->output_section));
16296 sym->st_value = (h->plt.offset
16297 + htab->root.iplt->output_section->vma
16298 + htab->root.iplt->output_offset);
16299 }
16300 }
16301
16302 if (h->needs_copy)
16303 {
16304 asection * s;
16305 Elf_Internal_Rela rel;
16306
16307 /* This symbol needs a copy reloc. Set it up. */
16308 BFD_ASSERT (h->dynindx != -1
16309 && (h->root.type == bfd_link_hash_defined
16310 || h->root.type == bfd_link_hash_defweak));
16311
16312 s = htab->srelbss;
16313 BFD_ASSERT (s != NULL);
16314
16315 rel.r_addend = 0;
16316 rel.r_offset = (h->root.u.def.value
16317 + h->root.u.def.section->output_section->vma
16318 + h->root.u.def.section->output_offset);
16319 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16320 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16321 }
16322
16323 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16324 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16325 to the ".got" section. */
16326 if (h == htab->root.hdynamic
16327 || (!htab->vxworks_p && h == htab->root.hgot))
16328 sym->st_shndx = SHN_ABS;
16329
16330 return TRUE;
16331 }
16332
16333 static void
16334 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16335 void *contents,
16336 const unsigned long *template, unsigned count)
16337 {
16338 unsigned ix;
16339
16340 for (ix = 0; ix != count; ix++)
16341 {
16342 unsigned long insn = template[ix];
16343
16344 /* Emit mov pc,rx if bx is not permitted. */
16345 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16346 insn = (insn & 0xf000000f) | 0x01a0f000;
16347 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16348 }
16349 }
16350
16351 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16352 other variants, NaCl needs this entry in a static executable's
16353 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16354 zero. For .iplt really only the last bundle is useful, and .iplt
16355 could have a shorter first entry, with each individual PLT entry's
16356 relative branch calculated differently so it targets the last
16357 bundle instead of the instruction before it (labelled .Lplt_tail
16358 above). But it's simpler to keep the size and layout of PLT0
16359 consistent with the dynamic case, at the cost of some dead code at
16360 the start of .iplt and the one dead store to the stack at the start
16361 of .Lplt_tail. */
16362 static void
16363 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16364 asection *plt, bfd_vma got_displacement)
16365 {
16366 unsigned int i;
16367
16368 put_arm_insn (htab, output_bfd,
16369 elf32_arm_nacl_plt0_entry[0]
16370 | arm_movw_immediate (got_displacement),
16371 plt->contents + 0);
16372 put_arm_insn (htab, output_bfd,
16373 elf32_arm_nacl_plt0_entry[1]
16374 | arm_movt_immediate (got_displacement),
16375 plt->contents + 4);
16376
16377 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16378 put_arm_insn (htab, output_bfd,
16379 elf32_arm_nacl_plt0_entry[i],
16380 plt->contents + (i * 4));
16381 }
16382
16383 /* Finish up the dynamic sections. */
16384
16385 static bfd_boolean
16386 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16387 {
16388 bfd * dynobj;
16389 asection * sgot;
16390 asection * sdyn;
16391 struct elf32_arm_link_hash_table *htab;
16392
16393 htab = elf32_arm_hash_table (info);
16394 if (htab == NULL)
16395 return FALSE;
16396
16397 dynobj = elf_hash_table (info)->dynobj;
16398
16399 sgot = htab->root.sgotplt;
16400 /* A broken linker script might have discarded the dynamic sections.
16401 Catch this here so that we do not seg-fault later on. */
16402 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16403 return FALSE;
16404 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16405
16406 if (elf_hash_table (info)->dynamic_sections_created)
16407 {
16408 asection *splt;
16409 Elf32_External_Dyn *dyncon, *dynconend;
16410
16411 splt = htab->root.splt;
16412 BFD_ASSERT (splt != NULL && sdyn != NULL);
16413 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16414
16415 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16416 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16417
16418 for (; dyncon < dynconend; dyncon++)
16419 {
16420 Elf_Internal_Dyn dyn;
16421 const char * name;
16422 asection * s;
16423
16424 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16425
16426 switch (dyn.d_tag)
16427 {
16428 unsigned int type;
16429
16430 default:
16431 if (htab->vxworks_p
16432 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16433 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16434 break;
16435
16436 case DT_HASH:
16437 name = ".hash";
16438 goto get_vma_if_bpabi;
16439 case DT_STRTAB:
16440 name = ".dynstr";
16441 goto get_vma_if_bpabi;
16442 case DT_SYMTAB:
16443 name = ".dynsym";
16444 goto get_vma_if_bpabi;
16445 case DT_VERSYM:
16446 name = ".gnu.version";
16447 goto get_vma_if_bpabi;
16448 case DT_VERDEF:
16449 name = ".gnu.version_d";
16450 goto get_vma_if_bpabi;
16451 case DT_VERNEED:
16452 name = ".gnu.version_r";
16453 goto get_vma_if_bpabi;
16454
16455 case DT_PLTGOT:
16456 name = htab->symbian_p ? ".got" : ".got.plt";
16457 goto get_vma;
16458 case DT_JMPREL:
16459 name = RELOC_SECTION (htab, ".plt");
16460 get_vma:
16461 s = bfd_get_linker_section (dynobj, name);
16462 if (s == NULL)
16463 {
16464 _bfd_error_handler
16465 (_("could not find section %s"), name);
16466 bfd_set_error (bfd_error_invalid_operation);
16467 return FALSE;
16468 }
16469 if (!htab->symbian_p)
16470 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16471 else
16472 /* In the BPABI, tags in the PT_DYNAMIC section point
16473 at the file offset, not the memory address, for the
16474 convenience of the post linker. */
16475 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16476 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16477 break;
16478
16479 get_vma_if_bpabi:
16480 if (htab->symbian_p)
16481 goto get_vma;
16482 break;
16483
16484 case DT_PLTRELSZ:
16485 s = htab->root.srelplt;
16486 BFD_ASSERT (s != NULL);
16487 dyn.d_un.d_val = s->size;
16488 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16489 break;
16490
16491 case DT_RELSZ:
16492 case DT_RELASZ:
16493 case DT_REL:
16494 case DT_RELA:
16495 /* In the BPABI, the DT_REL tag must point at the file
16496 offset, not the VMA, of the first relocation
16497 section. So, we use code similar to that in
16498 elflink.c, but do not check for SHF_ALLOC on the
16499 relocation section, since relocation sections are
16500 never allocated under the BPABI. PLT relocs are also
16501 included. */
16502 if (htab->symbian_p)
16503 {
16504 unsigned int i;
16505 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16506 ? SHT_REL : SHT_RELA);
16507 dyn.d_un.d_val = 0;
16508 for (i = 1; i < elf_numsections (output_bfd); i++)
16509 {
16510 Elf_Internal_Shdr *hdr
16511 = elf_elfsections (output_bfd)[i];
16512 if (hdr->sh_type == type)
16513 {
16514 if (dyn.d_tag == DT_RELSZ
16515 || dyn.d_tag == DT_RELASZ)
16516 dyn.d_un.d_val += hdr->sh_size;
16517 else if ((ufile_ptr) hdr->sh_offset
16518 <= dyn.d_un.d_val - 1)
16519 dyn.d_un.d_val = hdr->sh_offset;
16520 }
16521 }
16522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16523 }
16524 break;
16525
16526 case DT_TLSDESC_PLT:
16527 s = htab->root.splt;
16528 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16529 + htab->dt_tlsdesc_plt);
16530 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16531 break;
16532
16533 case DT_TLSDESC_GOT:
16534 s = htab->root.sgot;
16535 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16536 + htab->dt_tlsdesc_got);
16537 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16538 break;
16539
16540 /* Set the bottom bit of DT_INIT/FINI if the
16541 corresponding function is Thumb. */
16542 case DT_INIT:
16543 name = info->init_function;
16544 goto get_sym;
16545 case DT_FINI:
16546 name = info->fini_function;
16547 get_sym:
16548 /* If it wasn't set by elf_bfd_final_link
16549 then there is nothing to adjust. */
16550 if (dyn.d_un.d_val != 0)
16551 {
16552 struct elf_link_hash_entry * eh;
16553
16554 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16555 FALSE, FALSE, TRUE);
16556 if (eh != NULL
16557 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16558 == ST_BRANCH_TO_THUMB)
16559 {
16560 dyn.d_un.d_val |= 1;
16561 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16562 }
16563 }
16564 break;
16565 }
16566 }
16567
16568 /* Fill in the first entry in the procedure linkage table. */
16569 if (splt->size > 0 && htab->plt_header_size)
16570 {
16571 const bfd_vma *plt0_entry;
16572 bfd_vma got_address, plt_address, got_displacement;
16573
16574 /* Calculate the addresses of the GOT and PLT. */
16575 got_address = sgot->output_section->vma + sgot->output_offset;
16576 plt_address = splt->output_section->vma + splt->output_offset;
16577
16578 if (htab->vxworks_p)
16579 {
16580 /* The VxWorks GOT is relocated by the dynamic linker.
16581 Therefore, we must emit relocations rather than simply
16582 computing the values now. */
16583 Elf_Internal_Rela rel;
16584
16585 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16586 put_arm_insn (htab, output_bfd, plt0_entry[0],
16587 splt->contents + 0);
16588 put_arm_insn (htab, output_bfd, plt0_entry[1],
16589 splt->contents + 4);
16590 put_arm_insn (htab, output_bfd, plt0_entry[2],
16591 splt->contents + 8);
16592 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16593
16594 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16595 rel.r_offset = plt_address + 12;
16596 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16597 rel.r_addend = 0;
16598 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16599 htab->srelplt2->contents);
16600 }
16601 else if (htab->nacl_p)
16602 arm_nacl_put_plt0 (htab, output_bfd, splt,
16603 got_address + 8 - (plt_address + 16));
16604 else if (using_thumb_only (htab))
16605 {
16606 got_displacement = got_address - (plt_address + 12);
16607
16608 plt0_entry = elf32_thumb2_plt0_entry;
16609 put_arm_insn (htab, output_bfd, plt0_entry[0],
16610 splt->contents + 0);
16611 put_arm_insn (htab, output_bfd, plt0_entry[1],
16612 splt->contents + 4);
16613 put_arm_insn (htab, output_bfd, plt0_entry[2],
16614 splt->contents + 8);
16615
16616 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16617 }
16618 else
16619 {
16620 got_displacement = got_address - (plt_address + 16);
16621
16622 plt0_entry = elf32_arm_plt0_entry;
16623 put_arm_insn (htab, output_bfd, plt0_entry[0],
16624 splt->contents + 0);
16625 put_arm_insn (htab, output_bfd, plt0_entry[1],
16626 splt->contents + 4);
16627 put_arm_insn (htab, output_bfd, plt0_entry[2],
16628 splt->contents + 8);
16629 put_arm_insn (htab, output_bfd, plt0_entry[3],
16630 splt->contents + 12);
16631
16632 #ifdef FOUR_WORD_PLT
16633 /* The displacement value goes in the otherwise-unused
16634 last word of the second entry. */
16635 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16636 #else
16637 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16638 #endif
16639 }
16640 }
16641
16642 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16643 really seem like the right value. */
16644 if (splt->output_section->owner == output_bfd)
16645 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16646
16647 if (htab->dt_tlsdesc_plt)
16648 {
16649 bfd_vma got_address
16650 = sgot->output_section->vma + sgot->output_offset;
16651 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16652 + htab->root.sgot->output_offset);
16653 bfd_vma plt_address
16654 = splt->output_section->vma + splt->output_offset;
16655
16656 arm_put_trampoline (htab, output_bfd,
16657 splt->contents + htab->dt_tlsdesc_plt,
16658 dl_tlsdesc_lazy_trampoline, 6);
16659
16660 bfd_put_32 (output_bfd,
16661 gotplt_address + htab->dt_tlsdesc_got
16662 - (plt_address + htab->dt_tlsdesc_plt)
16663 - dl_tlsdesc_lazy_trampoline[6],
16664 splt->contents + htab->dt_tlsdesc_plt + 24);
16665 bfd_put_32 (output_bfd,
16666 got_address - (plt_address + htab->dt_tlsdesc_plt)
16667 - dl_tlsdesc_lazy_trampoline[7],
16668 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16669 }
16670
16671 if (htab->tls_trampoline)
16672 {
16673 arm_put_trampoline (htab, output_bfd,
16674 splt->contents + htab->tls_trampoline,
16675 tls_trampoline, 3);
16676 #ifdef FOUR_WORD_PLT
16677 bfd_put_32 (output_bfd, 0x00000000,
16678 splt->contents + htab->tls_trampoline + 12);
16679 #endif
16680 }
16681
16682 if (htab->vxworks_p
16683 && !bfd_link_pic (info)
16684 && htab->root.splt->size > 0)
16685 {
16686 /* Correct the .rel(a).plt.unloaded relocations. They will have
16687 incorrect symbol indexes. */
16688 int num_plts;
16689 unsigned char *p;
16690
16691 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16692 / htab->plt_entry_size);
16693 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16694
16695 for (; num_plts; num_plts--)
16696 {
16697 Elf_Internal_Rela rel;
16698
16699 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16700 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16701 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16702 p += RELOC_SIZE (htab);
16703
16704 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16705 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16706 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16707 p += RELOC_SIZE (htab);
16708 }
16709 }
16710 }
16711
16712 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16713 /* NaCl uses a special first entry in .iplt too. */
16714 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16715
16716 /* Fill in the first three entries in the global offset table. */
16717 if (sgot)
16718 {
16719 if (sgot->size > 0)
16720 {
16721 if (sdyn == NULL)
16722 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16723 else
16724 bfd_put_32 (output_bfd,
16725 sdyn->output_section->vma + sdyn->output_offset,
16726 sgot->contents);
16727 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16728 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16729 }
16730
16731 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16732 }
16733
16734 return TRUE;
16735 }
16736
16737 static void
16738 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16739 {
16740 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16741 struct elf32_arm_link_hash_table *globals;
16742 struct elf_segment_map *m;
16743
16744 i_ehdrp = elf_elfheader (abfd);
16745
16746 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16747 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16748 else
16749 _bfd_elf_post_process_headers (abfd, link_info);
16750 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16751
16752 if (link_info)
16753 {
16754 globals = elf32_arm_hash_table (link_info);
16755 if (globals != NULL && globals->byteswap_code)
16756 i_ehdrp->e_flags |= EF_ARM_BE8;
16757 }
16758
16759 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16760 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16761 {
16762 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16763 if (abi == AEABI_VFP_args_vfp)
16764 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16765 else
16766 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16767 }
16768
16769 /* Scan segment to set p_flags attribute if it contains only sections with
16770 SHF_ARM_PURECODE flag. */
16771 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16772 {
16773 unsigned int j;
16774
16775 if (m->count == 0)
16776 continue;
16777 for (j = 0; j < m->count; j++)
16778 {
16779 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16780 break;
16781 }
16782 if (j == m->count)
16783 {
16784 m->p_flags = PF_X;
16785 m->p_flags_valid = 1;
16786 }
16787 }
16788 }
16789
16790 static enum elf_reloc_type_class
16791 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16792 const asection *rel_sec ATTRIBUTE_UNUSED,
16793 const Elf_Internal_Rela *rela)
16794 {
16795 switch ((int) ELF32_R_TYPE (rela->r_info))
16796 {
16797 case R_ARM_RELATIVE:
16798 return reloc_class_relative;
16799 case R_ARM_JUMP_SLOT:
16800 return reloc_class_plt;
16801 case R_ARM_COPY:
16802 return reloc_class_copy;
16803 case R_ARM_IRELATIVE:
16804 return reloc_class_ifunc;
16805 default:
16806 return reloc_class_normal;
16807 }
16808 }
16809
16810 static void
16811 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16812 {
16813 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16814 }
16815
16816 /* Return TRUE if this is an unwinding table entry. */
16817
16818 static bfd_boolean
16819 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16820 {
16821 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16822 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16823 }
16824
16825
16826 /* Set the type and flags for an ARM section. We do this by
16827 the section name, which is a hack, but ought to work. */
16828
16829 static bfd_boolean
16830 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16831 {
16832 const char * name;
16833
16834 name = bfd_get_section_name (abfd, sec);
16835
16836 if (is_arm_elf_unwind_section_name (abfd, name))
16837 {
16838 hdr->sh_type = SHT_ARM_EXIDX;
16839 hdr->sh_flags |= SHF_LINK_ORDER;
16840 }
16841
16842 if (sec->flags & SEC_ELF_PURECODE)
16843 hdr->sh_flags |= SHF_ARM_PURECODE;
16844
16845 return TRUE;
16846 }
16847
16848 /* Handle an ARM specific section when reading an object file. This is
16849 called when bfd_section_from_shdr finds a section with an unknown
16850 type. */
16851
16852 static bfd_boolean
16853 elf32_arm_section_from_shdr (bfd *abfd,
16854 Elf_Internal_Shdr * hdr,
16855 const char *name,
16856 int shindex)
16857 {
16858 /* There ought to be a place to keep ELF backend specific flags, but
16859 at the moment there isn't one. We just keep track of the
16860 sections by their name, instead. Fortunately, the ABI gives
16861 names for all the ARM specific sections, so we will probably get
16862 away with this. */
16863 switch (hdr->sh_type)
16864 {
16865 case SHT_ARM_EXIDX:
16866 case SHT_ARM_PREEMPTMAP:
16867 case SHT_ARM_ATTRIBUTES:
16868 break;
16869
16870 default:
16871 return FALSE;
16872 }
16873
16874 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16875 return FALSE;
16876
16877 return TRUE;
16878 }
16879
16880 static _arm_elf_section_data *
16881 get_arm_elf_section_data (asection * sec)
16882 {
16883 if (sec && sec->owner && is_arm_elf (sec->owner))
16884 return elf32_arm_section_data (sec);
16885 else
16886 return NULL;
16887 }
16888
16889 typedef struct
16890 {
16891 void *flaginfo;
16892 struct bfd_link_info *info;
16893 asection *sec;
16894 int sec_shndx;
16895 int (*func) (void *, const char *, Elf_Internal_Sym *,
16896 asection *, struct elf_link_hash_entry *);
16897 } output_arch_syminfo;
16898
16899 enum map_symbol_type
16900 {
16901 ARM_MAP_ARM,
16902 ARM_MAP_THUMB,
16903 ARM_MAP_DATA
16904 };
16905
16906
16907 /* Output a single mapping symbol. */
16908
16909 static bfd_boolean
16910 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16911 enum map_symbol_type type,
16912 bfd_vma offset)
16913 {
16914 static const char *names[3] = {"$a", "$t", "$d"};
16915 Elf_Internal_Sym sym;
16916
16917 sym.st_value = osi->sec->output_section->vma
16918 + osi->sec->output_offset
16919 + offset;
16920 sym.st_size = 0;
16921 sym.st_other = 0;
16922 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16923 sym.st_shndx = osi->sec_shndx;
16924 sym.st_target_internal = 0;
16925 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16926 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16927 }
16928
16929 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16930 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16931
16932 static bfd_boolean
16933 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16934 bfd_boolean is_iplt_entry_p,
16935 union gotplt_union *root_plt,
16936 struct arm_plt_info *arm_plt)
16937 {
16938 struct elf32_arm_link_hash_table *htab;
16939 bfd_vma addr, plt_header_size;
16940
16941 if (root_plt->offset == (bfd_vma) -1)
16942 return TRUE;
16943
16944 htab = elf32_arm_hash_table (osi->info);
16945 if (htab == NULL)
16946 return FALSE;
16947
16948 if (is_iplt_entry_p)
16949 {
16950 osi->sec = htab->root.iplt;
16951 plt_header_size = 0;
16952 }
16953 else
16954 {
16955 osi->sec = htab->root.splt;
16956 plt_header_size = htab->plt_header_size;
16957 }
16958 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16959 (osi->info->output_bfd, osi->sec->output_section));
16960
16961 addr = root_plt->offset & -2;
16962 if (htab->symbian_p)
16963 {
16964 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16965 return FALSE;
16966 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16967 return FALSE;
16968 }
16969 else if (htab->vxworks_p)
16970 {
16971 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16972 return FALSE;
16973 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16974 return FALSE;
16975 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16976 return FALSE;
16977 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16978 return FALSE;
16979 }
16980 else if (htab->nacl_p)
16981 {
16982 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16983 return FALSE;
16984 }
16985 else if (using_thumb_only (htab))
16986 {
16987 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16988 return FALSE;
16989 }
16990 else
16991 {
16992 bfd_boolean thumb_stub_p;
16993
16994 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16995 if (thumb_stub_p)
16996 {
16997 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16998 return FALSE;
16999 }
17000 #ifdef FOUR_WORD_PLT
17001 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17002 return FALSE;
17003 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17004 return FALSE;
17005 #else
17006 /* A three-word PLT with no Thumb thunk contains only Arm code,
17007 so only need to output a mapping symbol for the first PLT entry and
17008 entries with thumb thunks. */
17009 if (thumb_stub_p || addr == plt_header_size)
17010 {
17011 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17012 return FALSE;
17013 }
17014 #endif
17015 }
17016
17017 return TRUE;
17018 }
17019
17020 /* Output mapping symbols for PLT entries associated with H. */
17021
17022 static bfd_boolean
17023 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17024 {
17025 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17026 struct elf32_arm_link_hash_entry *eh;
17027
17028 if (h->root.type == bfd_link_hash_indirect)
17029 return TRUE;
17030
17031 if (h->root.type == bfd_link_hash_warning)
17032 /* When warning symbols are created, they **replace** the "real"
17033 entry in the hash table, thus we never get to see the real
17034 symbol in a hash traversal. So look at it now. */
17035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17036
17037 eh = (struct elf32_arm_link_hash_entry *) h;
17038 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17039 &h->plt, &eh->plt);
17040 }
17041
17042 /* Bind a veneered symbol to its veneer identified by its hash entry
17043 STUB_ENTRY. The veneered location thus loose its symbol. */
17044
17045 static void
17046 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17047 {
17048 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17049
17050 BFD_ASSERT (hash);
17051 hash->root.root.u.def.section = stub_entry->stub_sec;
17052 hash->root.root.u.def.value = stub_entry->stub_offset;
17053 hash->root.size = stub_entry->stub_size;
17054 }
17055
17056 /* Output a single local symbol for a generated stub. */
17057
17058 static bfd_boolean
17059 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17060 bfd_vma offset, bfd_vma size)
17061 {
17062 Elf_Internal_Sym sym;
17063
17064 sym.st_value = osi->sec->output_section->vma
17065 + osi->sec->output_offset
17066 + offset;
17067 sym.st_size = size;
17068 sym.st_other = 0;
17069 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17070 sym.st_shndx = osi->sec_shndx;
17071 sym.st_target_internal = 0;
17072 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17073 }
17074
17075 static bfd_boolean
17076 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17077 void * in_arg)
17078 {
17079 struct elf32_arm_stub_hash_entry *stub_entry;
17080 asection *stub_sec;
17081 bfd_vma addr;
17082 char *stub_name;
17083 output_arch_syminfo *osi;
17084 const insn_sequence *template_sequence;
17085 enum stub_insn_type prev_type;
17086 int size;
17087 int i;
17088 enum map_symbol_type sym_type;
17089
17090 /* Massage our args to the form they really have. */
17091 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17092 osi = (output_arch_syminfo *) in_arg;
17093
17094 stub_sec = stub_entry->stub_sec;
17095
17096 /* Ensure this stub is attached to the current section being
17097 processed. */
17098 if (stub_sec != osi->sec)
17099 return TRUE;
17100
17101 addr = (bfd_vma) stub_entry->stub_offset;
17102 template_sequence = stub_entry->stub_template;
17103
17104 if (arm_stub_sym_claimed (stub_entry->stub_type))
17105 arm_stub_claim_sym (stub_entry);
17106 else
17107 {
17108 stub_name = stub_entry->output_name;
17109 switch (template_sequence[0].type)
17110 {
17111 case ARM_TYPE:
17112 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17113 stub_entry->stub_size))
17114 return FALSE;
17115 break;
17116 case THUMB16_TYPE:
17117 case THUMB32_TYPE:
17118 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17119 stub_entry->stub_size))
17120 return FALSE;
17121 break;
17122 default:
17123 BFD_FAIL ();
17124 return 0;
17125 }
17126 }
17127
17128 prev_type = DATA_TYPE;
17129 size = 0;
17130 for (i = 0; i < stub_entry->stub_template_size; i++)
17131 {
17132 switch (template_sequence[i].type)
17133 {
17134 case ARM_TYPE:
17135 sym_type = ARM_MAP_ARM;
17136 break;
17137
17138 case THUMB16_TYPE:
17139 case THUMB32_TYPE:
17140 sym_type = ARM_MAP_THUMB;
17141 break;
17142
17143 case DATA_TYPE:
17144 sym_type = ARM_MAP_DATA;
17145 break;
17146
17147 default:
17148 BFD_FAIL ();
17149 return FALSE;
17150 }
17151
17152 if (template_sequence[i].type != prev_type)
17153 {
17154 prev_type = template_sequence[i].type;
17155 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17156 return FALSE;
17157 }
17158
17159 switch (template_sequence[i].type)
17160 {
17161 case ARM_TYPE:
17162 case THUMB32_TYPE:
17163 size += 4;
17164 break;
17165
17166 case THUMB16_TYPE:
17167 size += 2;
17168 break;
17169
17170 case DATA_TYPE:
17171 size += 4;
17172 break;
17173
17174 default:
17175 BFD_FAIL ();
17176 return FALSE;
17177 }
17178 }
17179
17180 return TRUE;
17181 }
17182
17183 /* Output mapping symbols for linker generated sections,
17184 and for those data-only sections that do not have a
17185 $d. */
17186
17187 static bfd_boolean
17188 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17189 struct bfd_link_info *info,
17190 void *flaginfo,
17191 int (*func) (void *, const char *,
17192 Elf_Internal_Sym *,
17193 asection *,
17194 struct elf_link_hash_entry *))
17195 {
17196 output_arch_syminfo osi;
17197 struct elf32_arm_link_hash_table *htab;
17198 bfd_vma offset;
17199 bfd_size_type size;
17200 bfd *input_bfd;
17201
17202 htab = elf32_arm_hash_table (info);
17203 if (htab == NULL)
17204 return FALSE;
17205
17206 check_use_blx (htab);
17207
17208 osi.flaginfo = flaginfo;
17209 osi.info = info;
17210 osi.func = func;
17211
17212 /* Add a $d mapping symbol to data-only sections that
17213 don't have any mapping symbol. This may result in (harmless) redundant
17214 mapping symbols. */
17215 for (input_bfd = info->input_bfds;
17216 input_bfd != NULL;
17217 input_bfd = input_bfd->link.next)
17218 {
17219 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17220 for (osi.sec = input_bfd->sections;
17221 osi.sec != NULL;
17222 osi.sec = osi.sec->next)
17223 {
17224 if (osi.sec->output_section != NULL
17225 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17226 != 0)
17227 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17228 == SEC_HAS_CONTENTS
17229 && get_arm_elf_section_data (osi.sec) != NULL
17230 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17231 && osi.sec->size > 0
17232 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17233 {
17234 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17235 (output_bfd, osi.sec->output_section);
17236 if (osi.sec_shndx != (int)SHN_BAD)
17237 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17238 }
17239 }
17240 }
17241
17242 /* ARM->Thumb glue. */
17243 if (htab->arm_glue_size > 0)
17244 {
17245 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17246 ARM2THUMB_GLUE_SECTION_NAME);
17247
17248 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17249 (output_bfd, osi.sec->output_section);
17250 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17251 || htab->pic_veneer)
17252 size = ARM2THUMB_PIC_GLUE_SIZE;
17253 else if (htab->use_blx)
17254 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17255 else
17256 size = ARM2THUMB_STATIC_GLUE_SIZE;
17257
17258 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17259 {
17260 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17261 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17262 }
17263 }
17264
17265 /* Thumb->ARM glue. */
17266 if (htab->thumb_glue_size > 0)
17267 {
17268 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17269 THUMB2ARM_GLUE_SECTION_NAME);
17270
17271 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17272 (output_bfd, osi.sec->output_section);
17273 size = THUMB2ARM_GLUE_SIZE;
17274
17275 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17276 {
17277 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17278 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17279 }
17280 }
17281
17282 /* ARMv4 BX veneers. */
17283 if (htab->bx_glue_size > 0)
17284 {
17285 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17286 ARM_BX_GLUE_SECTION_NAME);
17287
17288 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17289 (output_bfd, osi.sec->output_section);
17290
17291 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17292 }
17293
17294 /* Long calls stubs. */
17295 if (htab->stub_bfd && htab->stub_bfd->sections)
17296 {
17297 asection* stub_sec;
17298
17299 for (stub_sec = htab->stub_bfd->sections;
17300 stub_sec != NULL;
17301 stub_sec = stub_sec->next)
17302 {
17303 /* Ignore non-stub sections. */
17304 if (!strstr (stub_sec->name, STUB_SUFFIX))
17305 continue;
17306
17307 osi.sec = stub_sec;
17308
17309 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17310 (output_bfd, osi.sec->output_section);
17311
17312 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17313 }
17314 }
17315
17316 /* Finally, output mapping symbols for the PLT. */
17317 if (htab->root.splt && htab->root.splt->size > 0)
17318 {
17319 osi.sec = htab->root.splt;
17320 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17321 (output_bfd, osi.sec->output_section));
17322
17323 /* Output mapping symbols for the plt header. SymbianOS does not have a
17324 plt header. */
17325 if (htab->vxworks_p)
17326 {
17327 /* VxWorks shared libraries have no PLT header. */
17328 if (!bfd_link_pic (info))
17329 {
17330 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17331 return FALSE;
17332 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17333 return FALSE;
17334 }
17335 }
17336 else if (htab->nacl_p)
17337 {
17338 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17339 return FALSE;
17340 }
17341 else if (using_thumb_only (htab))
17342 {
17343 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17344 return FALSE;
17345 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17346 return FALSE;
17347 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17348 return FALSE;
17349 }
17350 else if (!htab->symbian_p)
17351 {
17352 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17353 return FALSE;
17354 #ifndef FOUR_WORD_PLT
17355 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17356 return FALSE;
17357 #endif
17358 }
17359 }
17360 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17361 {
17362 /* NaCl uses a special first entry in .iplt too. */
17363 osi.sec = htab->root.iplt;
17364 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17365 (output_bfd, osi.sec->output_section));
17366 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17367 return FALSE;
17368 }
17369 if ((htab->root.splt && htab->root.splt->size > 0)
17370 || (htab->root.iplt && htab->root.iplt->size > 0))
17371 {
17372 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17373 for (input_bfd = info->input_bfds;
17374 input_bfd != NULL;
17375 input_bfd = input_bfd->link.next)
17376 {
17377 struct arm_local_iplt_info **local_iplt;
17378 unsigned int i, num_syms;
17379
17380 local_iplt = elf32_arm_local_iplt (input_bfd);
17381 if (local_iplt != NULL)
17382 {
17383 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17384 for (i = 0; i < num_syms; i++)
17385 if (local_iplt[i] != NULL
17386 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17387 &local_iplt[i]->root,
17388 &local_iplt[i]->arm))
17389 return FALSE;
17390 }
17391 }
17392 }
17393 if (htab->dt_tlsdesc_plt != 0)
17394 {
17395 /* Mapping symbols for the lazy tls trampoline. */
17396 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17397 return FALSE;
17398
17399 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17400 htab->dt_tlsdesc_plt + 24))
17401 return FALSE;
17402 }
17403 if (htab->tls_trampoline != 0)
17404 {
17405 /* Mapping symbols for the tls trampoline. */
17406 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17407 return FALSE;
17408 #ifdef FOUR_WORD_PLT
17409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17410 htab->tls_trampoline + 12))
17411 return FALSE;
17412 #endif
17413 }
17414
17415 return TRUE;
17416 }
17417
17418 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17419 the import library. All SYMCOUNT symbols of ABFD can be examined
17420 from their pointers in SYMS. Pointers of symbols to keep should be
17421 stored continuously at the beginning of that array.
17422
17423 Returns the number of symbols to keep. */
17424
17425 static unsigned int
17426 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17427 struct bfd_link_info *info,
17428 asymbol **syms, long symcount)
17429 {
17430 size_t maxnamelen;
17431 char *cmse_name;
17432 long src_count, dst_count = 0;
17433 struct elf32_arm_link_hash_table *htab;
17434
17435 htab = elf32_arm_hash_table (info);
17436 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17437 symcount = 0;
17438
17439 maxnamelen = 128;
17440 cmse_name = (char *) bfd_malloc (maxnamelen);
17441 for (src_count = 0; src_count < symcount; src_count++)
17442 {
17443 struct elf32_arm_link_hash_entry *cmse_hash;
17444 asymbol *sym;
17445 flagword flags;
17446 char *name;
17447 size_t namelen;
17448
17449 sym = syms[src_count];
17450 flags = sym->flags;
17451 name = (char *) bfd_asymbol_name (sym);
17452
17453 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17454 continue;
17455 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17456 continue;
17457
17458 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17459 if (namelen > maxnamelen)
17460 {
17461 cmse_name = (char *)
17462 bfd_realloc (cmse_name, namelen);
17463 maxnamelen = namelen;
17464 }
17465 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17466 cmse_hash = (struct elf32_arm_link_hash_entry *)
17467 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17468
17469 if (!cmse_hash
17470 || (cmse_hash->root.root.type != bfd_link_hash_defined
17471 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17472 || cmse_hash->root.type != STT_FUNC)
17473 continue;
17474
17475 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17476 continue;
17477
17478 syms[dst_count++] = sym;
17479 }
17480 free (cmse_name);
17481
17482 syms[dst_count] = NULL;
17483
17484 return dst_count;
17485 }
17486
17487 /* Filter symbols of ABFD to include in the import library. All
17488 SYMCOUNT symbols of ABFD can be examined from their pointers in
17489 SYMS. Pointers of symbols to keep should be stored continuously at
17490 the beginning of that array.
17491
17492 Returns the number of symbols to keep. */
17493
17494 static unsigned int
17495 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17496 struct bfd_link_info *info,
17497 asymbol **syms, long symcount)
17498 {
17499 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17500
17501 if (globals->cmse_implib)
17502 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17503 else
17504 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17505 }
17506
17507 /* Allocate target specific section data. */
17508
17509 static bfd_boolean
17510 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17511 {
17512 if (!sec->used_by_bfd)
17513 {
17514 _arm_elf_section_data *sdata;
17515 bfd_size_type amt = sizeof (*sdata);
17516
17517 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17518 if (sdata == NULL)
17519 return FALSE;
17520 sec->used_by_bfd = sdata;
17521 }
17522
17523 return _bfd_elf_new_section_hook (abfd, sec);
17524 }
17525
17526
17527 /* Used to order a list of mapping symbols by address. */
17528
17529 static int
17530 elf32_arm_compare_mapping (const void * a, const void * b)
17531 {
17532 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17533 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17534
17535 if (amap->vma > bmap->vma)
17536 return 1;
17537 else if (amap->vma < bmap->vma)
17538 return -1;
17539 else if (amap->type > bmap->type)
17540 /* Ensure results do not depend on the host qsort for objects with
17541 multiple mapping symbols at the same address by sorting on type
17542 after vma. */
17543 return 1;
17544 else if (amap->type < bmap->type)
17545 return -1;
17546 else
17547 return 0;
17548 }
17549
17550 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17551
17552 static unsigned long
17553 offset_prel31 (unsigned long addr, bfd_vma offset)
17554 {
17555 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17556 }
17557
17558 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17559 relocations. */
17560
17561 static void
17562 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17563 {
17564 unsigned long first_word = bfd_get_32 (output_bfd, from);
17565 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17566
17567 /* High bit of first word is supposed to be zero. */
17568 if ((first_word & 0x80000000ul) == 0)
17569 first_word = offset_prel31 (first_word, offset);
17570
17571 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17572 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17573 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17574 second_word = offset_prel31 (second_word, offset);
17575
17576 bfd_put_32 (output_bfd, first_word, to);
17577 bfd_put_32 (output_bfd, second_word, to + 4);
17578 }
17579
17580 /* Data for make_branch_to_a8_stub(). */
17581
17582 struct a8_branch_to_stub_data
17583 {
17584 asection *writing_section;
17585 bfd_byte *contents;
17586 };
17587
17588
17589 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17590 places for a particular section. */
17591
17592 static bfd_boolean
17593 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17594 void *in_arg)
17595 {
17596 struct elf32_arm_stub_hash_entry *stub_entry;
17597 struct a8_branch_to_stub_data *data;
17598 bfd_byte *contents;
17599 unsigned long branch_insn;
17600 bfd_vma veneered_insn_loc, veneer_entry_loc;
17601 bfd_signed_vma branch_offset;
17602 bfd *abfd;
17603 unsigned int loc;
17604
17605 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17606 data = (struct a8_branch_to_stub_data *) in_arg;
17607
17608 if (stub_entry->target_section != data->writing_section
17609 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17610 return TRUE;
17611
17612 contents = data->contents;
17613
17614 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17615 generated when both source and target are in the same section. */
17616 veneered_insn_loc = stub_entry->target_section->output_section->vma
17617 + stub_entry->target_section->output_offset
17618 + stub_entry->source_value;
17619
17620 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17621 + stub_entry->stub_sec->output_offset
17622 + stub_entry->stub_offset;
17623
17624 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17625 veneered_insn_loc &= ~3u;
17626
17627 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17628
17629 abfd = stub_entry->target_section->owner;
17630 loc = stub_entry->source_value;
17631
17632 /* We attempt to avoid this condition by setting stubs_always_after_branch
17633 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17634 This check is just to be on the safe side... */
17635 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17636 {
17637 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17638 "allocated in unsafe location"), abfd);
17639 return FALSE;
17640 }
17641
17642 switch (stub_entry->stub_type)
17643 {
17644 case arm_stub_a8_veneer_b:
17645 case arm_stub_a8_veneer_b_cond:
17646 branch_insn = 0xf0009000;
17647 goto jump24;
17648
17649 case arm_stub_a8_veneer_blx:
17650 branch_insn = 0xf000e800;
17651 goto jump24;
17652
17653 case arm_stub_a8_veneer_bl:
17654 {
17655 unsigned int i1, j1, i2, j2, s;
17656
17657 branch_insn = 0xf000d000;
17658
17659 jump24:
17660 if (branch_offset < -16777216 || branch_offset > 16777214)
17661 {
17662 /* There's not much we can do apart from complain if this
17663 happens. */
17664 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17665 "of range (input file too large)"), abfd);
17666 return FALSE;
17667 }
17668
17669 /* i1 = not(j1 eor s), so:
17670 not i1 = j1 eor s
17671 j1 = (not i1) eor s. */
17672
17673 branch_insn |= (branch_offset >> 1) & 0x7ff;
17674 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17675 i2 = (branch_offset >> 22) & 1;
17676 i1 = (branch_offset >> 23) & 1;
17677 s = (branch_offset >> 24) & 1;
17678 j1 = (!i1) ^ s;
17679 j2 = (!i2) ^ s;
17680 branch_insn |= j2 << 11;
17681 branch_insn |= j1 << 13;
17682 branch_insn |= s << 26;
17683 }
17684 break;
17685
17686 default:
17687 BFD_FAIL ();
17688 return FALSE;
17689 }
17690
17691 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17692 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17693
17694 return TRUE;
17695 }
17696
17697 /* Beginning of stm32l4xx work-around. */
17698
17699 /* Functions encoding instructions necessary for the emission of the
17700 fix-stm32l4xx-629360.
17701 Encoding is extracted from the
17702 ARM (C) Architecture Reference Manual
17703 ARMv7-A and ARMv7-R edition
17704 ARM DDI 0406C.b (ID072512). */
17705
17706 static inline bfd_vma
17707 create_instruction_branch_absolute (int branch_offset)
17708 {
17709 /* A8.8.18 B (A8-334)
17710 B target_address (Encoding T4). */
17711 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17712 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17713 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17714
17715 int s = ((branch_offset & 0x1000000) >> 24);
17716 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17717 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17718
17719 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17720 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17721
17722 bfd_vma patched_inst = 0xf0009000
17723 | s << 26 /* S. */
17724 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17725 | j1 << 13 /* J1. */
17726 | j2 << 11 /* J2. */
17727 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17728
17729 return patched_inst;
17730 }
17731
17732 static inline bfd_vma
17733 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17734 {
17735 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17736 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17737 bfd_vma patched_inst = 0xe8900000
17738 | (/*W=*/wback << 21)
17739 | (base_reg << 16)
17740 | (reg_mask & 0x0000ffff);
17741
17742 return patched_inst;
17743 }
17744
17745 static inline bfd_vma
17746 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17747 {
17748 /* A8.8.60 LDMDB/LDMEA (A8-402)
17749 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17750 bfd_vma patched_inst = 0xe9100000
17751 | (/*W=*/wback << 21)
17752 | (base_reg << 16)
17753 | (reg_mask & 0x0000ffff);
17754
17755 return patched_inst;
17756 }
17757
17758 static inline bfd_vma
17759 create_instruction_mov (int target_reg, int source_reg)
17760 {
17761 /* A8.8.103 MOV (register) (A8-486)
17762 MOV Rd, Rm (Encoding T1). */
17763 bfd_vma patched_inst = 0x4600
17764 | (target_reg & 0x7)
17765 | ((target_reg & 0x8) >> 3) << 7
17766 | (source_reg << 3);
17767
17768 return patched_inst;
17769 }
17770
17771 static inline bfd_vma
17772 create_instruction_sub (int target_reg, int source_reg, int value)
17773 {
17774 /* A8.8.221 SUB (immediate) (A8-708)
17775 SUB Rd, Rn, #value (Encoding T3). */
17776 bfd_vma patched_inst = 0xf1a00000
17777 | (target_reg << 8)
17778 | (source_reg << 16)
17779 | (/*S=*/0 << 20)
17780 | ((value & 0x800) >> 11) << 26
17781 | ((value & 0x700) >> 8) << 12
17782 | (value & 0x0ff);
17783
17784 return patched_inst;
17785 }
17786
17787 static inline bfd_vma
17788 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17789 int first_reg)
17790 {
17791 /* A8.8.332 VLDM (A8-922)
17792 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17793 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17794 | (/*W=*/wback << 21)
17795 | (base_reg << 16)
17796 | (num_words & 0x000000ff)
17797 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17798 | (first_reg & 0x00000001) << 22;
17799
17800 return patched_inst;
17801 }
17802
17803 static inline bfd_vma
17804 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17805 int first_reg)
17806 {
17807 /* A8.8.332 VLDM (A8-922)
17808 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17809 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17810 | (base_reg << 16)
17811 | (num_words & 0x000000ff)
17812 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17813 | (first_reg & 0x00000001) << 22;
17814
17815 return patched_inst;
17816 }
17817
17818 static inline bfd_vma
17819 create_instruction_udf_w (int value)
17820 {
17821 /* A8.8.247 UDF (A8-758)
17822 Undefined (Encoding T2). */
17823 bfd_vma patched_inst = 0xf7f0a000
17824 | (value & 0x00000fff)
17825 | (value & 0x000f0000) << 16;
17826
17827 return patched_inst;
17828 }
17829
17830 static inline bfd_vma
17831 create_instruction_udf (int value)
17832 {
17833 /* A8.8.247 UDF (A8-758)
17834 Undefined (Encoding T1). */
17835 bfd_vma patched_inst = 0xde00
17836 | (value & 0xff);
17837
17838 return patched_inst;
17839 }
17840
17841 /* Functions writing an instruction in memory, returning the next
17842 memory position to write to. */
17843
17844 static inline bfd_byte *
17845 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17846 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17847 {
17848 put_thumb2_insn (htab, output_bfd, insn, pt);
17849 return pt + 4;
17850 }
17851
17852 static inline bfd_byte *
17853 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17854 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17855 {
17856 put_thumb_insn (htab, output_bfd, insn, pt);
17857 return pt + 2;
17858 }
17859
17860 /* Function filling up a region in memory with T1 and T2 UDFs taking
17861 care of alignment. */
17862
17863 static bfd_byte *
17864 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17865 bfd * output_bfd,
17866 const bfd_byte * const base_stub_contents,
17867 bfd_byte * const from_stub_contents,
17868 const bfd_byte * const end_stub_contents)
17869 {
17870 bfd_byte *current_stub_contents = from_stub_contents;
17871
17872 /* Fill the remaining of the stub with deterministic contents : UDF
17873 instructions.
17874 Check if realignment is needed on modulo 4 frontier using T1, to
17875 further use T2. */
17876 if ((current_stub_contents < end_stub_contents)
17877 && !((current_stub_contents - base_stub_contents) % 2)
17878 && ((current_stub_contents - base_stub_contents) % 4))
17879 current_stub_contents =
17880 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17881 create_instruction_udf (0));
17882
17883 for (; current_stub_contents < end_stub_contents;)
17884 current_stub_contents =
17885 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17886 create_instruction_udf_w (0));
17887
17888 return current_stub_contents;
17889 }
17890
17891 /* Functions writing the stream of instructions equivalent to the
17892 derived sequence for ldmia, ldmdb, vldm respectively. */
17893
17894 static void
17895 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17896 bfd * output_bfd,
17897 const insn32 initial_insn,
17898 const bfd_byte *const initial_insn_addr,
17899 bfd_byte *const base_stub_contents)
17900 {
17901 int wback = (initial_insn & 0x00200000) >> 21;
17902 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17903 int insn_all_registers = initial_insn & 0x0000ffff;
17904 int insn_low_registers, insn_high_registers;
17905 int usable_register_mask;
17906 int nb_registers = popcount (insn_all_registers);
17907 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17908 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17909 bfd_byte *current_stub_contents = base_stub_contents;
17910
17911 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17912
17913 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17914 smaller than 8 registers load sequences that do not cause the
17915 hardware issue. */
17916 if (nb_registers <= 8)
17917 {
17918 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17919 current_stub_contents =
17920 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17921 initial_insn);
17922
17923 /* B initial_insn_addr+4. */
17924 if (!restore_pc)
17925 current_stub_contents =
17926 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17927 create_instruction_branch_absolute
17928 (initial_insn_addr - current_stub_contents));
17929
17930 /* Fill the remaining of the stub with deterministic contents. */
17931 current_stub_contents =
17932 stm32l4xx_fill_stub_udf (htab, output_bfd,
17933 base_stub_contents, current_stub_contents,
17934 base_stub_contents +
17935 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17936
17937 return;
17938 }
17939
17940 /* - reg_list[13] == 0. */
17941 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17942
17943 /* - reg_list[14] & reg_list[15] != 1. */
17944 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17945
17946 /* - if (wback==1) reg_list[rn] == 0. */
17947 BFD_ASSERT (!wback || !restore_rn);
17948
17949 /* - nb_registers > 8. */
17950 BFD_ASSERT (popcount (insn_all_registers) > 8);
17951
17952 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17953
17954 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17955 - One with the 7 lowest registers (register mask 0x007F)
17956 This LDM will finally contain between 2 and 7 registers
17957 - One with the 7 highest registers (register mask 0xDF80)
17958 This ldm will finally contain between 2 and 7 registers. */
17959 insn_low_registers = insn_all_registers & 0x007F;
17960 insn_high_registers = insn_all_registers & 0xDF80;
17961
17962 /* A spare register may be needed during this veneer to temporarily
17963 handle the base register. This register will be restored with the
17964 last LDM operation.
17965 The usable register may be any general purpose register (that
17966 excludes PC, SP, LR : register mask is 0x1FFF). */
17967 usable_register_mask = 0x1FFF;
17968
17969 /* Generate the stub function. */
17970 if (wback)
17971 {
17972 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17973 current_stub_contents =
17974 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17975 create_instruction_ldmia
17976 (rn, /*wback=*/1, insn_low_registers));
17977
17978 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17979 current_stub_contents =
17980 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17981 create_instruction_ldmia
17982 (rn, /*wback=*/1, insn_high_registers));
17983 if (!restore_pc)
17984 {
17985 /* B initial_insn_addr+4. */
17986 current_stub_contents =
17987 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17988 create_instruction_branch_absolute
17989 (initial_insn_addr - current_stub_contents));
17990 }
17991 }
17992 else /* if (!wback). */
17993 {
17994 ri = rn;
17995
17996 /* If Rn is not part of the high-register-list, move it there. */
17997 if (!(insn_high_registers & (1 << rn)))
17998 {
17999 /* Choose a Ri in the high-register-list that will be restored. */
18000 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18001
18002 /* MOV Ri, Rn. */
18003 current_stub_contents =
18004 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18005 create_instruction_mov (ri, rn));
18006 }
18007
18008 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18009 current_stub_contents =
18010 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18011 create_instruction_ldmia
18012 (ri, /*wback=*/1, insn_low_registers));
18013
18014 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18015 current_stub_contents =
18016 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18017 create_instruction_ldmia
18018 (ri, /*wback=*/0, insn_high_registers));
18019
18020 if (!restore_pc)
18021 {
18022 /* B initial_insn_addr+4. */
18023 current_stub_contents =
18024 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18025 create_instruction_branch_absolute
18026 (initial_insn_addr - current_stub_contents));
18027 }
18028 }
18029
18030 /* Fill the remaining of the stub with deterministic contents. */
18031 current_stub_contents =
18032 stm32l4xx_fill_stub_udf (htab, output_bfd,
18033 base_stub_contents, current_stub_contents,
18034 base_stub_contents +
18035 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18036 }
18037
18038 static void
18039 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18040 bfd * output_bfd,
18041 const insn32 initial_insn,
18042 const bfd_byte *const initial_insn_addr,
18043 bfd_byte *const base_stub_contents)
18044 {
18045 int wback = (initial_insn & 0x00200000) >> 21;
18046 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18047 int insn_all_registers = initial_insn & 0x0000ffff;
18048 int insn_low_registers, insn_high_registers;
18049 int usable_register_mask;
18050 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18051 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18052 int nb_registers = popcount (insn_all_registers);
18053 bfd_byte *current_stub_contents = base_stub_contents;
18054
18055 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18056
18057 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18058 smaller than 8 registers load sequences that do not cause the
18059 hardware issue. */
18060 if (nb_registers <= 8)
18061 {
18062 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18063 current_stub_contents =
18064 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18065 initial_insn);
18066
18067 /* B initial_insn_addr+4. */
18068 current_stub_contents =
18069 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18070 create_instruction_branch_absolute
18071 (initial_insn_addr - current_stub_contents));
18072
18073 /* Fill the remaining of the stub with deterministic contents. */
18074 current_stub_contents =
18075 stm32l4xx_fill_stub_udf (htab, output_bfd,
18076 base_stub_contents, current_stub_contents,
18077 base_stub_contents +
18078 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18079
18080 return;
18081 }
18082
18083 /* - reg_list[13] == 0. */
18084 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18085
18086 /* - reg_list[14] & reg_list[15] != 1. */
18087 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18088
18089 /* - if (wback==1) reg_list[rn] == 0. */
18090 BFD_ASSERT (!wback || !restore_rn);
18091
18092 /* - nb_registers > 8. */
18093 BFD_ASSERT (popcount (insn_all_registers) > 8);
18094
18095 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18096
18097 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18098 - One with the 7 lowest registers (register mask 0x007F)
18099 This LDM will finally contain between 2 and 7 registers
18100 - One with the 7 highest registers (register mask 0xDF80)
18101 This ldm will finally contain between 2 and 7 registers. */
18102 insn_low_registers = insn_all_registers & 0x007F;
18103 insn_high_registers = insn_all_registers & 0xDF80;
18104
18105 /* A spare register may be needed during this veneer to temporarily
18106 handle the base register. This register will be restored with
18107 the last LDM operation.
18108 The usable register may be any general purpose register (that excludes
18109 PC, SP, LR : register mask is 0x1FFF). */
18110 usable_register_mask = 0x1FFF;
18111
18112 /* Generate the stub function. */
18113 if (!wback && !restore_pc && !restore_rn)
18114 {
18115 /* Choose a Ri in the low-register-list that will be restored. */
18116 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18117
18118 /* MOV Ri, Rn. */
18119 current_stub_contents =
18120 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18121 create_instruction_mov (ri, rn));
18122
18123 /* LDMDB Ri!, {R-high-register-list}. */
18124 current_stub_contents =
18125 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18126 create_instruction_ldmdb
18127 (ri, /*wback=*/1, insn_high_registers));
18128
18129 /* LDMDB Ri, {R-low-register-list}. */
18130 current_stub_contents =
18131 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18132 create_instruction_ldmdb
18133 (ri, /*wback=*/0, insn_low_registers));
18134
18135 /* B initial_insn_addr+4. */
18136 current_stub_contents =
18137 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18138 create_instruction_branch_absolute
18139 (initial_insn_addr - current_stub_contents));
18140 }
18141 else if (wback && !restore_pc && !restore_rn)
18142 {
18143 /* LDMDB Rn!, {R-high-register-list}. */
18144 current_stub_contents =
18145 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18146 create_instruction_ldmdb
18147 (rn, /*wback=*/1, insn_high_registers));
18148
18149 /* LDMDB Rn!, {R-low-register-list}. */
18150 current_stub_contents =
18151 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18152 create_instruction_ldmdb
18153 (rn, /*wback=*/1, insn_low_registers));
18154
18155 /* B initial_insn_addr+4. */
18156 current_stub_contents =
18157 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18158 create_instruction_branch_absolute
18159 (initial_insn_addr - current_stub_contents));
18160 }
18161 else if (!wback && restore_pc && !restore_rn)
18162 {
18163 /* Choose a Ri in the high-register-list that will be restored. */
18164 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18165
18166 /* SUB Ri, Rn, #(4*nb_registers). */
18167 current_stub_contents =
18168 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18169 create_instruction_sub (ri, rn, (4 * nb_registers)));
18170
18171 /* LDMIA Ri!, {R-low-register-list}. */
18172 current_stub_contents =
18173 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18174 create_instruction_ldmia
18175 (ri, /*wback=*/1, insn_low_registers));
18176
18177 /* LDMIA Ri, {R-high-register-list}. */
18178 current_stub_contents =
18179 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18180 create_instruction_ldmia
18181 (ri, /*wback=*/0, insn_high_registers));
18182 }
18183 else if (wback && restore_pc && !restore_rn)
18184 {
18185 /* Choose a Ri in the high-register-list that will be restored. */
18186 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18187
18188 /* SUB Rn, Rn, #(4*nb_registers) */
18189 current_stub_contents =
18190 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18191 create_instruction_sub (rn, rn, (4 * nb_registers)));
18192
18193 /* MOV Ri, Rn. */
18194 current_stub_contents =
18195 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18196 create_instruction_mov (ri, rn));
18197
18198 /* LDMIA Ri!, {R-low-register-list}. */
18199 current_stub_contents =
18200 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18201 create_instruction_ldmia
18202 (ri, /*wback=*/1, insn_low_registers));
18203
18204 /* LDMIA Ri, {R-high-register-list}. */
18205 current_stub_contents =
18206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18207 create_instruction_ldmia
18208 (ri, /*wback=*/0, insn_high_registers));
18209 }
18210 else if (!wback && !restore_pc && restore_rn)
18211 {
18212 ri = rn;
18213 if (!(insn_low_registers & (1 << rn)))
18214 {
18215 /* Choose a Ri in the low-register-list that will be restored. */
18216 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18217
18218 /* MOV Ri, Rn. */
18219 current_stub_contents =
18220 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18221 create_instruction_mov (ri, rn));
18222 }
18223
18224 /* LDMDB Ri!, {R-high-register-list}. */
18225 current_stub_contents =
18226 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18227 create_instruction_ldmdb
18228 (ri, /*wback=*/1, insn_high_registers));
18229
18230 /* LDMDB Ri, {R-low-register-list}. */
18231 current_stub_contents =
18232 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18233 create_instruction_ldmdb
18234 (ri, /*wback=*/0, insn_low_registers));
18235
18236 /* B initial_insn_addr+4. */
18237 current_stub_contents =
18238 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18239 create_instruction_branch_absolute
18240 (initial_insn_addr - current_stub_contents));
18241 }
18242 else if (!wback && restore_pc && restore_rn)
18243 {
18244 ri = rn;
18245 if (!(insn_high_registers & (1 << rn)))
18246 {
18247 /* Choose a Ri in the high-register-list that will be restored. */
18248 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18249 }
18250
18251 /* SUB Ri, Rn, #(4*nb_registers). */
18252 current_stub_contents =
18253 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18254 create_instruction_sub (ri, rn, (4 * nb_registers)));
18255
18256 /* LDMIA Ri!, {R-low-register-list}. */
18257 current_stub_contents =
18258 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18259 create_instruction_ldmia
18260 (ri, /*wback=*/1, insn_low_registers));
18261
18262 /* LDMIA Ri, {R-high-register-list}. */
18263 current_stub_contents =
18264 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18265 create_instruction_ldmia
18266 (ri, /*wback=*/0, insn_high_registers));
18267 }
18268 else if (wback && restore_rn)
18269 {
18270 /* The assembler should not have accepted to encode this. */
18271 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18272 "undefined behavior.\n");
18273 }
18274
18275 /* Fill the remaining of the stub with deterministic contents. */
18276 current_stub_contents =
18277 stm32l4xx_fill_stub_udf (htab, output_bfd,
18278 base_stub_contents, current_stub_contents,
18279 base_stub_contents +
18280 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18281
18282 }
18283
18284 static void
18285 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18286 bfd * output_bfd,
18287 const insn32 initial_insn,
18288 const bfd_byte *const initial_insn_addr,
18289 bfd_byte *const base_stub_contents)
18290 {
18291 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18292 bfd_byte *current_stub_contents = base_stub_contents;
18293
18294 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18295
18296 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18297 smaller than 8 words load sequences that do not cause the
18298 hardware issue. */
18299 if (num_words <= 8)
18300 {
18301 /* Untouched instruction. */
18302 current_stub_contents =
18303 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18304 initial_insn);
18305
18306 /* B initial_insn_addr+4. */
18307 current_stub_contents =
18308 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18309 create_instruction_branch_absolute
18310 (initial_insn_addr - current_stub_contents));
18311 }
18312 else
18313 {
18314 bfd_boolean is_dp = /* DP encoding. */
18315 (initial_insn & 0xfe100f00) == 0xec100b00;
18316 bfd_boolean is_ia_nobang = /* (IA without !). */
18317 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18318 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18319 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18320 bfd_boolean is_db_bang = /* (DB with !). */
18321 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18322 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18323 /* d = UInt (Vd:D);. */
18324 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18325 | (((unsigned int)initial_insn << 9) >> 31);
18326
18327 /* Compute the number of 8-words chunks needed to split. */
18328 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18329 int chunk;
18330
18331 /* The test coverage has been done assuming the following
18332 hypothesis that exactly one of the previous is_ predicates is
18333 true. */
18334 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18335 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18336
18337 /* We treat the cutting of the words in one pass for all
18338 cases, then we emit the adjustments:
18339
18340 vldm rx, {...}
18341 -> vldm rx!, {8_words_or_less} for each needed 8_word
18342 -> sub rx, rx, #size (list)
18343
18344 vldm rx!, {...}
18345 -> vldm rx!, {8_words_or_less} for each needed 8_word
18346 This also handles vpop instruction (when rx is sp)
18347
18348 vldmd rx!, {...}
18349 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18350 for (chunk = 0; chunk < chunks; ++chunk)
18351 {
18352 bfd_vma new_insn = 0;
18353
18354 if (is_ia_nobang || is_ia_bang)
18355 {
18356 new_insn = create_instruction_vldmia
18357 (base_reg,
18358 is_dp,
18359 /*wback= . */1,
18360 chunks - (chunk + 1) ?
18361 8 : num_words - chunk * 8,
18362 first_reg + chunk * 8);
18363 }
18364 else if (is_db_bang)
18365 {
18366 new_insn = create_instruction_vldmdb
18367 (base_reg,
18368 is_dp,
18369 chunks - (chunk + 1) ?
18370 8 : num_words - chunk * 8,
18371 first_reg + chunk * 8);
18372 }
18373
18374 if (new_insn)
18375 current_stub_contents =
18376 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18377 new_insn);
18378 }
18379
18380 /* Only this case requires the base register compensation
18381 subtract. */
18382 if (is_ia_nobang)
18383 {
18384 current_stub_contents =
18385 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18386 create_instruction_sub
18387 (base_reg, base_reg, 4*num_words));
18388 }
18389
18390 /* B initial_insn_addr+4. */
18391 current_stub_contents =
18392 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18393 create_instruction_branch_absolute
18394 (initial_insn_addr - current_stub_contents));
18395 }
18396
18397 /* Fill the remaining of the stub with deterministic contents. */
18398 current_stub_contents =
18399 stm32l4xx_fill_stub_udf (htab, output_bfd,
18400 base_stub_contents, current_stub_contents,
18401 base_stub_contents +
18402 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18403 }
18404
18405 static void
18406 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18407 bfd * output_bfd,
18408 const insn32 wrong_insn,
18409 const bfd_byte *const wrong_insn_addr,
18410 bfd_byte *const stub_contents)
18411 {
18412 if (is_thumb2_ldmia (wrong_insn))
18413 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18414 wrong_insn, wrong_insn_addr,
18415 stub_contents);
18416 else if (is_thumb2_ldmdb (wrong_insn))
18417 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18418 wrong_insn, wrong_insn_addr,
18419 stub_contents);
18420 else if (is_thumb2_vldm (wrong_insn))
18421 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18422 wrong_insn, wrong_insn_addr,
18423 stub_contents);
18424 }
18425
18426 /* End of stm32l4xx work-around. */
18427
18428
18429 /* Do code byteswapping. Return FALSE afterwards so that the section is
18430 written out as normal. */
18431
18432 static bfd_boolean
18433 elf32_arm_write_section (bfd *output_bfd,
18434 struct bfd_link_info *link_info,
18435 asection *sec,
18436 bfd_byte *contents)
18437 {
18438 unsigned int mapcount, errcount;
18439 _arm_elf_section_data *arm_data;
18440 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18441 elf32_arm_section_map *map;
18442 elf32_vfp11_erratum_list *errnode;
18443 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18444 bfd_vma ptr;
18445 bfd_vma end;
18446 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18447 bfd_byte tmp;
18448 unsigned int i;
18449
18450 if (globals == NULL)
18451 return FALSE;
18452
18453 /* If this section has not been allocated an _arm_elf_section_data
18454 structure then we cannot record anything. */
18455 arm_data = get_arm_elf_section_data (sec);
18456 if (arm_data == NULL)
18457 return FALSE;
18458
18459 mapcount = arm_data->mapcount;
18460 map = arm_data->map;
18461 errcount = arm_data->erratumcount;
18462
18463 if (errcount != 0)
18464 {
18465 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18466
18467 for (errnode = arm_data->erratumlist; errnode != 0;
18468 errnode = errnode->next)
18469 {
18470 bfd_vma target = errnode->vma - offset;
18471
18472 switch (errnode->type)
18473 {
18474 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18475 {
18476 bfd_vma branch_to_veneer;
18477 /* Original condition code of instruction, plus bit mask for
18478 ARM B instruction. */
18479 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18480 | 0x0a000000;
18481
18482 /* The instruction is before the label. */
18483 target -= 4;
18484
18485 /* Above offset included in -4 below. */
18486 branch_to_veneer = errnode->u.b.veneer->vma
18487 - errnode->vma - 4;
18488
18489 if ((signed) branch_to_veneer < -(1 << 25)
18490 || (signed) branch_to_veneer >= (1 << 25))
18491 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18492 "range"), output_bfd);
18493
18494 insn |= (branch_to_veneer >> 2) & 0xffffff;
18495 contents[endianflip ^ target] = insn & 0xff;
18496 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18497 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18498 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18499 }
18500 break;
18501
18502 case VFP11_ERRATUM_ARM_VENEER:
18503 {
18504 bfd_vma branch_from_veneer;
18505 unsigned int insn;
18506
18507 /* Take size of veneer into account. */
18508 branch_from_veneer = errnode->u.v.branch->vma
18509 - errnode->vma - 12;
18510
18511 if ((signed) branch_from_veneer < -(1 << 25)
18512 || (signed) branch_from_veneer >= (1 << 25))
18513 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18514 "range"), output_bfd);
18515
18516 /* Original instruction. */
18517 insn = errnode->u.v.branch->u.b.vfp_insn;
18518 contents[endianflip ^ target] = insn & 0xff;
18519 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18520 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18521 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18522
18523 /* Branch back to insn after original insn. */
18524 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18525 contents[endianflip ^ (target + 4)] = insn & 0xff;
18526 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18527 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18528 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18529 }
18530 break;
18531
18532 default:
18533 abort ();
18534 }
18535 }
18536 }
18537
18538 if (arm_data->stm32l4xx_erratumcount != 0)
18539 {
18540 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18541 stm32l4xx_errnode != 0;
18542 stm32l4xx_errnode = stm32l4xx_errnode->next)
18543 {
18544 bfd_vma target = stm32l4xx_errnode->vma - offset;
18545
18546 switch (stm32l4xx_errnode->type)
18547 {
18548 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18549 {
18550 unsigned int insn;
18551 bfd_vma branch_to_veneer =
18552 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18553
18554 if ((signed) branch_to_veneer < -(1 << 24)
18555 || (signed) branch_to_veneer >= (1 << 24))
18556 {
18557 bfd_vma out_of_range =
18558 ((signed) branch_to_veneer < -(1 << 24)) ?
18559 - branch_to_veneer - (1 << 24) :
18560 ((signed) branch_to_veneer >= (1 << 24)) ?
18561 branch_to_veneer - (1 << 24) : 0;
18562
18563 _bfd_error_handler
18564 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18565 "Jump out of range by %ld bytes. "
18566 "Cannot encode branch instruction. "),
18567 output_bfd,
18568 (long) (stm32l4xx_errnode->vma - 4),
18569 out_of_range);
18570 continue;
18571 }
18572
18573 insn = create_instruction_branch_absolute
18574 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18575
18576 /* The instruction is before the label. */
18577 target -= 4;
18578
18579 put_thumb2_insn (globals, output_bfd,
18580 (bfd_vma) insn, contents + target);
18581 }
18582 break;
18583
18584 case STM32L4XX_ERRATUM_VENEER:
18585 {
18586 bfd_byte * veneer;
18587 bfd_byte * veneer_r;
18588 unsigned int insn;
18589
18590 veneer = contents + target;
18591 veneer_r = veneer
18592 + stm32l4xx_errnode->u.b.veneer->vma
18593 - stm32l4xx_errnode->vma - 4;
18594
18595 if ((signed) (veneer_r - veneer -
18596 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18597 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18598 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18599 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18600 || (signed) (veneer_r - veneer) >= (1 << 24))
18601 {
18602 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18603 "veneer."), output_bfd);
18604 continue;
18605 }
18606
18607 /* Original instruction. */
18608 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18609
18610 stm32l4xx_create_replacing_stub
18611 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18612 }
18613 break;
18614
18615 default:
18616 abort ();
18617 }
18618 }
18619 }
18620
18621 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18622 {
18623 arm_unwind_table_edit *edit_node
18624 = arm_data->u.exidx.unwind_edit_list;
18625 /* Now, sec->size is the size of the section we will write. The original
18626 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18627 markers) was sec->rawsize. (This isn't the case if we perform no
18628 edits, then rawsize will be zero and we should use size). */
18629 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18630 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18631 unsigned int in_index, out_index;
18632 bfd_vma add_to_offsets = 0;
18633
18634 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18635 {
18636 if (edit_node)
18637 {
18638 unsigned int edit_index = edit_node->index;
18639
18640 if (in_index < edit_index && in_index * 8 < input_size)
18641 {
18642 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18643 contents + in_index * 8, add_to_offsets);
18644 out_index++;
18645 in_index++;
18646 }
18647 else if (in_index == edit_index
18648 || (in_index * 8 >= input_size
18649 && edit_index == UINT_MAX))
18650 {
18651 switch (edit_node->type)
18652 {
18653 case DELETE_EXIDX_ENTRY:
18654 in_index++;
18655 add_to_offsets += 8;
18656 break;
18657
18658 case INSERT_EXIDX_CANTUNWIND_AT_END:
18659 {
18660 asection *text_sec = edit_node->linked_section;
18661 bfd_vma text_offset = text_sec->output_section->vma
18662 + text_sec->output_offset
18663 + text_sec->size;
18664 bfd_vma exidx_offset = offset + out_index * 8;
18665 unsigned long prel31_offset;
18666
18667 /* Note: this is meant to be equivalent to an
18668 R_ARM_PREL31 relocation. These synthetic
18669 EXIDX_CANTUNWIND markers are not relocated by the
18670 usual BFD method. */
18671 prel31_offset = (text_offset - exidx_offset)
18672 & 0x7ffffffful;
18673 if (bfd_link_relocatable (link_info))
18674 {
18675 /* Here relocation for new EXIDX_CANTUNWIND is
18676 created, so there is no need to
18677 adjust offset by hand. */
18678 prel31_offset = text_sec->output_offset
18679 + text_sec->size;
18680 }
18681
18682 /* First address we can't unwind. */
18683 bfd_put_32 (output_bfd, prel31_offset,
18684 &edited_contents[out_index * 8]);
18685
18686 /* Code for EXIDX_CANTUNWIND. */
18687 bfd_put_32 (output_bfd, 0x1,
18688 &edited_contents[out_index * 8 + 4]);
18689
18690 out_index++;
18691 add_to_offsets -= 8;
18692 }
18693 break;
18694 }
18695
18696 edit_node = edit_node->next;
18697 }
18698 }
18699 else
18700 {
18701 /* No more edits, copy remaining entries verbatim. */
18702 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18703 contents + in_index * 8, add_to_offsets);
18704 out_index++;
18705 in_index++;
18706 }
18707 }
18708
18709 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18710 bfd_set_section_contents (output_bfd, sec->output_section,
18711 edited_contents,
18712 (file_ptr) sec->output_offset, sec->size);
18713
18714 return TRUE;
18715 }
18716
18717 /* Fix code to point to Cortex-A8 erratum stubs. */
18718 if (globals->fix_cortex_a8)
18719 {
18720 struct a8_branch_to_stub_data data;
18721
18722 data.writing_section = sec;
18723 data.contents = contents;
18724
18725 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18726 & data);
18727 }
18728
18729 if (mapcount == 0)
18730 return FALSE;
18731
18732 if (globals->byteswap_code)
18733 {
18734 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18735
18736 ptr = map[0].vma;
18737 for (i = 0; i < mapcount; i++)
18738 {
18739 if (i == mapcount - 1)
18740 end = sec->size;
18741 else
18742 end = map[i + 1].vma;
18743
18744 switch (map[i].type)
18745 {
18746 case 'a':
18747 /* Byte swap code words. */
18748 while (ptr + 3 < end)
18749 {
18750 tmp = contents[ptr];
18751 contents[ptr] = contents[ptr + 3];
18752 contents[ptr + 3] = tmp;
18753 tmp = contents[ptr + 1];
18754 contents[ptr + 1] = contents[ptr + 2];
18755 contents[ptr + 2] = tmp;
18756 ptr += 4;
18757 }
18758 break;
18759
18760 case 't':
18761 /* Byte swap code halfwords. */
18762 while (ptr + 1 < end)
18763 {
18764 tmp = contents[ptr];
18765 contents[ptr] = contents[ptr + 1];
18766 contents[ptr + 1] = tmp;
18767 ptr += 2;
18768 }
18769 break;
18770
18771 case 'd':
18772 /* Leave data alone. */
18773 break;
18774 }
18775 ptr = end;
18776 }
18777 }
18778
18779 free (map);
18780 arm_data->mapcount = -1;
18781 arm_data->mapsize = 0;
18782 arm_data->map = NULL;
18783
18784 return FALSE;
18785 }
18786
18787 /* Mangle thumb function symbols as we read them in. */
18788
18789 static bfd_boolean
18790 elf32_arm_swap_symbol_in (bfd * abfd,
18791 const void *psrc,
18792 const void *pshn,
18793 Elf_Internal_Sym *dst)
18794 {
18795 Elf_Internal_Shdr *symtab_hdr;
18796 const char *name = NULL;
18797
18798 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18799 return FALSE;
18800 dst->st_target_internal = 0;
18801
18802 /* New EABI objects mark thumb function symbols by setting the low bit of
18803 the address. */
18804 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18805 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18806 {
18807 if (dst->st_value & 1)
18808 {
18809 dst->st_value &= ~(bfd_vma) 1;
18810 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18811 ST_BRANCH_TO_THUMB);
18812 }
18813 else
18814 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18815 }
18816 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18817 {
18818 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18819 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18820 }
18821 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18822 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18823 else
18824 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18825
18826 /* Mark CMSE special symbols. */
18827 symtab_hdr = & elf_symtab_hdr (abfd);
18828 if (symtab_hdr->sh_size)
18829 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18830 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18831 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18832
18833 return TRUE;
18834 }
18835
18836
18837 /* Mangle thumb function symbols as we write them out. */
18838
18839 static void
18840 elf32_arm_swap_symbol_out (bfd *abfd,
18841 const Elf_Internal_Sym *src,
18842 void *cdst,
18843 void *shndx)
18844 {
18845 Elf_Internal_Sym newsym;
18846
18847 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18848 of the address set, as per the new EABI. We do this unconditionally
18849 because objcopy does not set the elf header flags until after
18850 it writes out the symbol table. */
18851 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18852 {
18853 newsym = *src;
18854 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18855 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18856 if (newsym.st_shndx != SHN_UNDEF)
18857 {
18858 /* Do this only for defined symbols. At link type, the static
18859 linker will simulate the work of dynamic linker of resolving
18860 symbols and will carry over the thumbness of found symbols to
18861 the output symbol table. It's not clear how it happens, but
18862 the thumbness of undefined symbols can well be different at
18863 runtime, and writing '1' for them will be confusing for users
18864 and possibly for dynamic linker itself.
18865 */
18866 newsym.st_value |= 1;
18867 }
18868
18869 src = &newsym;
18870 }
18871 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18872 }
18873
18874 /* Add the PT_ARM_EXIDX program header. */
18875
18876 static bfd_boolean
18877 elf32_arm_modify_segment_map (bfd *abfd,
18878 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18879 {
18880 struct elf_segment_map *m;
18881 asection *sec;
18882
18883 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18884 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18885 {
18886 /* If there is already a PT_ARM_EXIDX header, then we do not
18887 want to add another one. This situation arises when running
18888 "strip"; the input binary already has the header. */
18889 m = elf_seg_map (abfd);
18890 while (m && m->p_type != PT_ARM_EXIDX)
18891 m = m->next;
18892 if (!m)
18893 {
18894 m = (struct elf_segment_map *)
18895 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18896 if (m == NULL)
18897 return FALSE;
18898 m->p_type = PT_ARM_EXIDX;
18899 m->count = 1;
18900 m->sections[0] = sec;
18901
18902 m->next = elf_seg_map (abfd);
18903 elf_seg_map (abfd) = m;
18904 }
18905 }
18906
18907 return TRUE;
18908 }
18909
18910 /* We may add a PT_ARM_EXIDX program header. */
18911
18912 static int
18913 elf32_arm_additional_program_headers (bfd *abfd,
18914 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18915 {
18916 asection *sec;
18917
18918 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18919 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18920 return 1;
18921 else
18922 return 0;
18923 }
18924
18925 /* Hook called by the linker routine which adds symbols from an object
18926 file. */
18927
18928 static bfd_boolean
18929 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18930 Elf_Internal_Sym *sym, const char **namep,
18931 flagword *flagsp, asection **secp, bfd_vma *valp)
18932 {
18933 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18934 && (abfd->flags & DYNAMIC) == 0
18935 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18936 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18937
18938 if (elf32_arm_hash_table (info) == NULL)
18939 return FALSE;
18940
18941 if (elf32_arm_hash_table (info)->vxworks_p
18942 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18943 flagsp, secp, valp))
18944 return FALSE;
18945
18946 return TRUE;
18947 }
18948
18949 /* We use this to override swap_symbol_in and swap_symbol_out. */
18950 const struct elf_size_info elf32_arm_size_info =
18951 {
18952 sizeof (Elf32_External_Ehdr),
18953 sizeof (Elf32_External_Phdr),
18954 sizeof (Elf32_External_Shdr),
18955 sizeof (Elf32_External_Rel),
18956 sizeof (Elf32_External_Rela),
18957 sizeof (Elf32_External_Sym),
18958 sizeof (Elf32_External_Dyn),
18959 sizeof (Elf_External_Note),
18960 4,
18961 1,
18962 32, 2,
18963 ELFCLASS32, EV_CURRENT,
18964 bfd_elf32_write_out_phdrs,
18965 bfd_elf32_write_shdrs_and_ehdr,
18966 bfd_elf32_checksum_contents,
18967 bfd_elf32_write_relocs,
18968 elf32_arm_swap_symbol_in,
18969 elf32_arm_swap_symbol_out,
18970 bfd_elf32_slurp_reloc_table,
18971 bfd_elf32_slurp_symbol_table,
18972 bfd_elf32_swap_dyn_in,
18973 bfd_elf32_swap_dyn_out,
18974 bfd_elf32_swap_reloc_in,
18975 bfd_elf32_swap_reloc_out,
18976 bfd_elf32_swap_reloca_in,
18977 bfd_elf32_swap_reloca_out
18978 };
18979
18980 static bfd_vma
18981 read_code32 (const bfd *abfd, const bfd_byte *addr)
18982 {
18983 /* V7 BE8 code is always little endian. */
18984 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18985 return bfd_getl32 (addr);
18986
18987 return bfd_get_32 (abfd, addr);
18988 }
18989
18990 static bfd_vma
18991 read_code16 (const bfd *abfd, const bfd_byte *addr)
18992 {
18993 /* V7 BE8 code is always little endian. */
18994 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18995 return bfd_getl16 (addr);
18996
18997 return bfd_get_16 (abfd, addr);
18998 }
18999
19000 /* Return size of plt0 entry starting at ADDR
19001 or (bfd_vma) -1 if size can not be determined. */
19002
19003 static bfd_vma
19004 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19005 {
19006 bfd_vma first_word;
19007 bfd_vma plt0_size;
19008
19009 first_word = read_code32 (abfd, addr);
19010
19011 if (first_word == elf32_arm_plt0_entry[0])
19012 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19013 else if (first_word == elf32_thumb2_plt0_entry[0])
19014 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19015 else
19016 /* We don't yet handle this PLT format. */
19017 return (bfd_vma) -1;
19018
19019 return plt0_size;
19020 }
19021
19022 /* Return size of plt entry starting at offset OFFSET
19023 of plt section located at address START
19024 or (bfd_vma) -1 if size can not be determined. */
19025
19026 static bfd_vma
19027 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19028 {
19029 bfd_vma first_insn;
19030 bfd_vma plt_size = 0;
19031 const bfd_byte *addr = start + offset;
19032
19033 /* PLT entry size if fixed on Thumb-only platforms. */
19034 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19035 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19036
19037 /* Respect Thumb stub if necessary. */
19038 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19039 {
19040 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19041 }
19042
19043 /* Strip immediate from first add. */
19044 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19045
19046 #ifdef FOUR_WORD_PLT
19047 if (first_insn == elf32_arm_plt_entry[0])
19048 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19049 #else
19050 if (first_insn == elf32_arm_plt_entry_long[0])
19051 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19052 else if (first_insn == elf32_arm_plt_entry_short[0])
19053 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19054 #endif
19055 else
19056 /* We don't yet handle this PLT format. */
19057 return (bfd_vma) -1;
19058
19059 return plt_size;
19060 }
19061
19062 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19063
19064 static long
19065 elf32_arm_get_synthetic_symtab (bfd *abfd,
19066 long symcount ATTRIBUTE_UNUSED,
19067 asymbol **syms ATTRIBUTE_UNUSED,
19068 long dynsymcount,
19069 asymbol **dynsyms,
19070 asymbol **ret)
19071 {
19072 asection *relplt;
19073 asymbol *s;
19074 arelent *p;
19075 long count, i, n;
19076 size_t size;
19077 Elf_Internal_Shdr *hdr;
19078 char *names;
19079 asection *plt;
19080 bfd_vma offset;
19081 bfd_byte *data;
19082
19083 *ret = NULL;
19084
19085 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19086 return 0;
19087
19088 if (dynsymcount <= 0)
19089 return 0;
19090
19091 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19092 if (relplt == NULL)
19093 return 0;
19094
19095 hdr = &elf_section_data (relplt)->this_hdr;
19096 if (hdr->sh_link != elf_dynsymtab (abfd)
19097 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19098 return 0;
19099
19100 plt = bfd_get_section_by_name (abfd, ".plt");
19101 if (plt == NULL)
19102 return 0;
19103
19104 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19105 return -1;
19106
19107 data = plt->contents;
19108 if (data == NULL)
19109 {
19110 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19111 return -1;
19112 bfd_cache_section_contents((asection *) plt, data);
19113 }
19114
19115 count = relplt->size / hdr->sh_entsize;
19116 size = count * sizeof (asymbol);
19117 p = relplt->relocation;
19118 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19119 {
19120 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19121 if (p->addend != 0)
19122 size += sizeof ("+0x") - 1 + 8;
19123 }
19124
19125 s = *ret = (asymbol *) bfd_malloc (size);
19126 if (s == NULL)
19127 return -1;
19128
19129 offset = elf32_arm_plt0_size (abfd, data);
19130 if (offset == (bfd_vma) -1)
19131 return -1;
19132
19133 names = (char *) (s + count);
19134 p = relplt->relocation;
19135 n = 0;
19136 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19137 {
19138 size_t len;
19139
19140 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19141 if (plt_size == (bfd_vma) -1)
19142 break;
19143
19144 *s = **p->sym_ptr_ptr;
19145 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19146 we are defining a symbol, ensure one of them is set. */
19147 if ((s->flags & BSF_LOCAL) == 0)
19148 s->flags |= BSF_GLOBAL;
19149 s->flags |= BSF_SYNTHETIC;
19150 s->section = plt;
19151 s->value = offset;
19152 s->name = names;
19153 s->udata.p = NULL;
19154 len = strlen ((*p->sym_ptr_ptr)->name);
19155 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19156 names += len;
19157 if (p->addend != 0)
19158 {
19159 char buf[30], *a;
19160
19161 memcpy (names, "+0x", sizeof ("+0x") - 1);
19162 names += sizeof ("+0x") - 1;
19163 bfd_sprintf_vma (abfd, buf, p->addend);
19164 for (a = buf; *a == '0'; ++a)
19165 ;
19166 len = strlen (a);
19167 memcpy (names, a, len);
19168 names += len;
19169 }
19170 memcpy (names, "@plt", sizeof ("@plt"));
19171 names += sizeof ("@plt");
19172 ++s, ++n;
19173 offset += plt_size;
19174 }
19175
19176 return n;
19177 }
19178
19179 static bfd_boolean
19180 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19181 {
19182 if (hdr->sh_flags & SHF_ARM_PURECODE)
19183 *flags |= SEC_ELF_PURECODE;
19184 return TRUE;
19185 }
19186
19187 static flagword
19188 elf32_arm_lookup_section_flags (char *flag_name)
19189 {
19190 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19191 return SHF_ARM_PURECODE;
19192
19193 return SEC_NO_FLAGS;
19194 }
19195
19196 static unsigned int
19197 elf32_arm_count_additional_relocs (asection *sec)
19198 {
19199 struct _arm_elf_section_data *arm_data;
19200 arm_data = get_arm_elf_section_data (sec);
19201
19202 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19203 }
19204
19205 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19206 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19207 FALSE otherwise. ISECTION is the best guess matching section from the
19208 input bfd IBFD, but it might be NULL. */
19209
19210 static bfd_boolean
19211 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19212 bfd *obfd ATTRIBUTE_UNUSED,
19213 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19214 Elf_Internal_Shdr *osection)
19215 {
19216 switch (osection->sh_type)
19217 {
19218 case SHT_ARM_EXIDX:
19219 {
19220 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19221 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19222 unsigned i = 0;
19223
19224 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19225 osection->sh_info = 0;
19226
19227 /* The sh_link field must be set to the text section associated with
19228 this index section. Unfortunately the ARM EHABI does not specify
19229 exactly how to determine this association. Our caller does try
19230 to match up OSECTION with its corresponding input section however
19231 so that is a good first guess. */
19232 if (isection != NULL
19233 && osection->bfd_section != NULL
19234 && isection->bfd_section != NULL
19235 && isection->bfd_section->output_section != NULL
19236 && isection->bfd_section->output_section == osection->bfd_section
19237 && iheaders != NULL
19238 && isection->sh_link > 0
19239 && isection->sh_link < elf_numsections (ibfd)
19240 && iheaders[isection->sh_link]->bfd_section != NULL
19241 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19242 )
19243 {
19244 for (i = elf_numsections (obfd); i-- > 0;)
19245 if (oheaders[i]->bfd_section
19246 == iheaders[isection->sh_link]->bfd_section->output_section)
19247 break;
19248 }
19249
19250 if (i == 0)
19251 {
19252 /* Failing that we have to find a matching section ourselves. If
19253 we had the output section name available we could compare that
19254 with input section names. Unfortunately we don't. So instead
19255 we use a simple heuristic and look for the nearest executable
19256 section before this one. */
19257 for (i = elf_numsections (obfd); i-- > 0;)
19258 if (oheaders[i] == osection)
19259 break;
19260 if (i == 0)
19261 break;
19262
19263 while (i-- > 0)
19264 if (oheaders[i]->sh_type == SHT_PROGBITS
19265 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19266 == (SHF_ALLOC | SHF_EXECINSTR))
19267 break;
19268 }
19269
19270 if (i)
19271 {
19272 osection->sh_link = i;
19273 /* If the text section was part of a group
19274 then the index section should be too. */
19275 if (oheaders[i]->sh_flags & SHF_GROUP)
19276 osection->sh_flags |= SHF_GROUP;
19277 return TRUE;
19278 }
19279 }
19280 break;
19281
19282 case SHT_ARM_PREEMPTMAP:
19283 osection->sh_flags = SHF_ALLOC;
19284 break;
19285
19286 case SHT_ARM_ATTRIBUTES:
19287 case SHT_ARM_DEBUGOVERLAY:
19288 case SHT_ARM_OVERLAYSECTION:
19289 default:
19290 break;
19291 }
19292
19293 return FALSE;
19294 }
19295
19296 /* Returns TRUE if NAME is an ARM mapping symbol.
19297 Traditionally the symbols $a, $d and $t have been used.
19298 The ARM ELF standard also defines $x (for A64 code). It also allows a
19299 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19300 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19301 not support them here. $t.x indicates the start of ThumbEE instructions. */
19302
19303 static bfd_boolean
19304 is_arm_mapping_symbol (const char * name)
19305 {
19306 return name != NULL /* Paranoia. */
19307 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19308 the mapping symbols could have acquired a prefix.
19309 We do not support this here, since such symbols no
19310 longer conform to the ARM ELF ABI. */
19311 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19312 && (name[2] == 0 || name[2] == '.');
19313 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19314 any characters that follow the period are legal characters for the body
19315 of a symbol's name. For now we just assume that this is the case. */
19316 }
19317
19318 /* Make sure that mapping symbols in object files are not removed via the
19319 "strip --strip-unneeded" tool. These symbols are needed in order to
19320 correctly generate interworking veneers, and for byte swapping code
19321 regions. Once an object file has been linked, it is safe to remove the
19322 symbols as they will no longer be needed. */
19323
19324 static void
19325 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19326 {
19327 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19328 && sym->section != bfd_abs_section_ptr
19329 && is_arm_mapping_symbol (sym->name))
19330 sym->flags |= BSF_KEEP;
19331 }
19332
19333 #undef elf_backend_copy_special_section_fields
19334 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19335
19336 #define ELF_ARCH bfd_arch_arm
19337 #define ELF_TARGET_ID ARM_ELF_DATA
19338 #define ELF_MACHINE_CODE EM_ARM
19339 #ifdef __QNXTARGET__
19340 #define ELF_MAXPAGESIZE 0x1000
19341 #else
19342 #define ELF_MAXPAGESIZE 0x10000
19343 #endif
19344 #define ELF_MINPAGESIZE 0x1000
19345 #define ELF_COMMONPAGESIZE 0x1000
19346
19347 #define bfd_elf32_mkobject elf32_arm_mkobject
19348
19349 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19350 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19351 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19352 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19353 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19354 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19355 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19356 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19357 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19358 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19359 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19360 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19361 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19362
19363 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19364 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19365 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19366 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19367 #define elf_backend_check_relocs elf32_arm_check_relocs
19368 #define elf_backend_update_relocs elf32_arm_update_relocs
19369 #define elf_backend_relocate_section elf32_arm_relocate_section
19370 #define elf_backend_write_section elf32_arm_write_section
19371 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19372 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19373 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19374 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19375 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19376 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19377 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19378 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19379 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19380 #define elf_backend_object_p elf32_arm_object_p
19381 #define elf_backend_fake_sections elf32_arm_fake_sections
19382 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19383 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19384 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19385 #define elf_backend_size_info elf32_arm_size_info
19386 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19387 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19388 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19389 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19390 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19391 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19392 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19393 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19394
19395 #define elf_backend_can_refcount 1
19396 #define elf_backend_can_gc_sections 1
19397 #define elf_backend_plt_readonly 1
19398 #define elf_backend_want_got_plt 1
19399 #define elf_backend_want_plt_sym 0
19400 #define elf_backend_may_use_rel_p 1
19401 #define elf_backend_may_use_rela_p 0
19402 #define elf_backend_default_use_rela_p 0
19403 #define elf_backend_dtrel_excludes_plt 1
19404
19405 #define elf_backend_got_header_size 12
19406 #define elf_backend_extern_protected_data 1
19407
19408 #undef elf_backend_obj_attrs_vendor
19409 #define elf_backend_obj_attrs_vendor "aeabi"
19410 #undef elf_backend_obj_attrs_section
19411 #define elf_backend_obj_attrs_section ".ARM.attributes"
19412 #undef elf_backend_obj_attrs_arg_type
19413 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19414 #undef elf_backend_obj_attrs_section_type
19415 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19416 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19417 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19418
19419 #undef elf_backend_section_flags
19420 #define elf_backend_section_flags elf32_arm_section_flags
19421 #undef elf_backend_lookup_section_flags_hook
19422 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19423
19424 #include "elf32-target.h"
19425
19426 /* Native Client targets. */
19427
19428 #undef TARGET_LITTLE_SYM
19429 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19430 #undef TARGET_LITTLE_NAME
19431 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19432 #undef TARGET_BIG_SYM
19433 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19434 #undef TARGET_BIG_NAME
19435 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19436
19437 /* Like elf32_arm_link_hash_table_create -- but overrides
19438 appropriately for NaCl. */
19439
19440 static struct bfd_link_hash_table *
19441 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19442 {
19443 struct bfd_link_hash_table *ret;
19444
19445 ret = elf32_arm_link_hash_table_create (abfd);
19446 if (ret)
19447 {
19448 struct elf32_arm_link_hash_table *htab
19449 = (struct elf32_arm_link_hash_table *) ret;
19450
19451 htab->nacl_p = 1;
19452
19453 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19454 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19455 }
19456 return ret;
19457 }
19458
19459 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19460 really need to use elf32_arm_modify_segment_map. But we do it
19461 anyway just to reduce gratuitous differences with the stock ARM backend. */
19462
19463 static bfd_boolean
19464 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19465 {
19466 return (elf32_arm_modify_segment_map (abfd, info)
19467 && nacl_modify_segment_map (abfd, info));
19468 }
19469
19470 static void
19471 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19472 {
19473 elf32_arm_final_write_processing (abfd, linker);
19474 nacl_final_write_processing (abfd, linker);
19475 }
19476
19477 static bfd_vma
19478 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19479 const arelent *rel ATTRIBUTE_UNUSED)
19480 {
19481 return plt->vma
19482 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19483 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19484 }
19485
19486 #undef elf32_bed
19487 #define elf32_bed elf32_arm_nacl_bed
19488 #undef bfd_elf32_bfd_link_hash_table_create
19489 #define bfd_elf32_bfd_link_hash_table_create \
19490 elf32_arm_nacl_link_hash_table_create
19491 #undef elf_backend_plt_alignment
19492 #define elf_backend_plt_alignment 4
19493 #undef elf_backend_modify_segment_map
19494 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19495 #undef elf_backend_modify_program_headers
19496 #define elf_backend_modify_program_headers nacl_modify_program_headers
19497 #undef elf_backend_final_write_processing
19498 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19499 #undef bfd_elf32_get_synthetic_symtab
19500 #undef elf_backend_plt_sym_val
19501 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19502 #undef elf_backend_copy_special_section_fields
19503
19504 #undef ELF_MINPAGESIZE
19505 #undef ELF_COMMONPAGESIZE
19506
19507
19508 #include "elf32-target.h"
19509
19510 /* Reset to defaults. */
19511 #undef elf_backend_plt_alignment
19512 #undef elf_backend_modify_segment_map
19513 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19514 #undef elf_backend_modify_program_headers
19515 #undef elf_backend_final_write_processing
19516 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19517 #undef ELF_MINPAGESIZE
19518 #define ELF_MINPAGESIZE 0x1000
19519 #undef ELF_COMMONPAGESIZE
19520 #define ELF_COMMONPAGESIZE 0x1000
19521
19522
19523 /* VxWorks Targets. */
19524
19525 #undef TARGET_LITTLE_SYM
19526 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19527 #undef TARGET_LITTLE_NAME
19528 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19529 #undef TARGET_BIG_SYM
19530 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19531 #undef TARGET_BIG_NAME
19532 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19533
19534 /* Like elf32_arm_link_hash_table_create -- but overrides
19535 appropriately for VxWorks. */
19536
19537 static struct bfd_link_hash_table *
19538 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19539 {
19540 struct bfd_link_hash_table *ret;
19541
19542 ret = elf32_arm_link_hash_table_create (abfd);
19543 if (ret)
19544 {
19545 struct elf32_arm_link_hash_table *htab
19546 = (struct elf32_arm_link_hash_table *) ret;
19547 htab->use_rel = 0;
19548 htab->vxworks_p = 1;
19549 }
19550 return ret;
19551 }
19552
19553 static void
19554 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19555 {
19556 elf32_arm_final_write_processing (abfd, linker);
19557 elf_vxworks_final_write_processing (abfd, linker);
19558 }
19559
19560 #undef elf32_bed
19561 #define elf32_bed elf32_arm_vxworks_bed
19562
19563 #undef bfd_elf32_bfd_link_hash_table_create
19564 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19565 #undef elf_backend_final_write_processing
19566 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19567 #undef elf_backend_emit_relocs
19568 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19569
19570 #undef elf_backend_may_use_rel_p
19571 #define elf_backend_may_use_rel_p 0
19572 #undef elf_backend_may_use_rela_p
19573 #define elf_backend_may_use_rela_p 1
19574 #undef elf_backend_default_use_rela_p
19575 #define elf_backend_default_use_rela_p 1
19576 #undef elf_backend_want_plt_sym
19577 #define elf_backend_want_plt_sym 1
19578 #undef ELF_MAXPAGESIZE
19579 #define ELF_MAXPAGESIZE 0x1000
19580
19581 #include "elf32-target.h"
19582
19583
19584 /* Merge backend specific data from an object file to the output
19585 object file when linking. */
19586
19587 static bfd_boolean
19588 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19589 {
19590 bfd *obfd = info->output_bfd;
19591 flagword out_flags;
19592 flagword in_flags;
19593 bfd_boolean flags_compatible = TRUE;
19594 asection *sec;
19595
19596 /* Check if we have the same endianness. */
19597 if (! _bfd_generic_verify_endian_match (ibfd, info))
19598 return FALSE;
19599
19600 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19601 return TRUE;
19602
19603 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19604 return FALSE;
19605
19606 /* The input BFD must have had its flags initialised. */
19607 /* The following seems bogus to me -- The flags are initialized in
19608 the assembler but I don't think an elf_flags_init field is
19609 written into the object. */
19610 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19611
19612 in_flags = elf_elfheader (ibfd)->e_flags;
19613 out_flags = elf_elfheader (obfd)->e_flags;
19614
19615 /* In theory there is no reason why we couldn't handle this. However
19616 in practice it isn't even close to working and there is no real
19617 reason to want it. */
19618 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19619 && !(ibfd->flags & DYNAMIC)
19620 && (in_flags & EF_ARM_BE8))
19621 {
19622 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19623 ibfd);
19624 return FALSE;
19625 }
19626
19627 if (!elf_flags_init (obfd))
19628 {
19629 /* If the input is the default architecture and had the default
19630 flags then do not bother setting the flags for the output
19631 architecture, instead allow future merges to do this. If no
19632 future merges ever set these flags then they will retain their
19633 uninitialised values, which surprise surprise, correspond
19634 to the default values. */
19635 if (bfd_get_arch_info (ibfd)->the_default
19636 && elf_elfheader (ibfd)->e_flags == 0)
19637 return TRUE;
19638
19639 elf_flags_init (obfd) = TRUE;
19640 elf_elfheader (obfd)->e_flags = in_flags;
19641
19642 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19643 && bfd_get_arch_info (obfd)->the_default)
19644 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19645
19646 return TRUE;
19647 }
19648
19649 /* Determine what should happen if the input ARM architecture
19650 does not match the output ARM architecture. */
19651 if (! bfd_arm_merge_machines (ibfd, obfd))
19652 return FALSE;
19653
19654 /* Identical flags must be compatible. */
19655 if (in_flags == out_flags)
19656 return TRUE;
19657
19658 /* Check to see if the input BFD actually contains any sections. If
19659 not, its flags may not have been initialised either, but it
19660 cannot actually cause any incompatiblity. Do not short-circuit
19661 dynamic objects; their section list may be emptied by
19662 elf_link_add_object_symbols.
19663
19664 Also check to see if there are no code sections in the input.
19665 In this case there is no need to check for code specific flags.
19666 XXX - do we need to worry about floating-point format compatability
19667 in data sections ? */
19668 if (!(ibfd->flags & DYNAMIC))
19669 {
19670 bfd_boolean null_input_bfd = TRUE;
19671 bfd_boolean only_data_sections = TRUE;
19672
19673 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19674 {
19675 /* Ignore synthetic glue sections. */
19676 if (strcmp (sec->name, ".glue_7")
19677 && strcmp (sec->name, ".glue_7t"))
19678 {
19679 if ((bfd_get_section_flags (ibfd, sec)
19680 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19681 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19682 only_data_sections = FALSE;
19683
19684 null_input_bfd = FALSE;
19685 break;
19686 }
19687 }
19688
19689 if (null_input_bfd || only_data_sections)
19690 return TRUE;
19691 }
19692
19693 /* Complain about various flag mismatches. */
19694 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19695 EF_ARM_EABI_VERSION (out_flags)))
19696 {
19697 _bfd_error_handler
19698 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19699 ibfd, obfd,
19700 (in_flags & EF_ARM_EABIMASK) >> 24,
19701 (out_flags & EF_ARM_EABIMASK) >> 24);
19702 return FALSE;
19703 }
19704
19705 /* Not sure what needs to be checked for EABI versions >= 1. */
19706 /* VxWorks libraries do not use these flags. */
19707 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19708 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19709 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19710 {
19711 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19712 {
19713 _bfd_error_handler
19714 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19715 ibfd, obfd,
19716 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19717 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19718 flags_compatible = FALSE;
19719 }
19720
19721 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19722 {
19723 if (in_flags & EF_ARM_APCS_FLOAT)
19724 _bfd_error_handler
19725 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19726 ibfd, obfd);
19727 else
19728 _bfd_error_handler
19729 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19730 ibfd, obfd);
19731
19732 flags_compatible = FALSE;
19733 }
19734
19735 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19736 {
19737 if (in_flags & EF_ARM_VFP_FLOAT)
19738 _bfd_error_handler
19739 (_("error: %B uses VFP instructions, whereas %B does not"),
19740 ibfd, obfd);
19741 else
19742 _bfd_error_handler
19743 (_("error: %B uses FPA instructions, whereas %B does not"),
19744 ibfd, obfd);
19745
19746 flags_compatible = FALSE;
19747 }
19748
19749 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19750 {
19751 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19752 _bfd_error_handler
19753 (_("error: %B uses Maverick instructions, whereas %B does not"),
19754 ibfd, obfd);
19755 else
19756 _bfd_error_handler
19757 (_("error: %B does not use Maverick instructions, whereas %B does"),
19758 ibfd, obfd);
19759
19760 flags_compatible = FALSE;
19761 }
19762
19763 #ifdef EF_ARM_SOFT_FLOAT
19764 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19765 {
19766 /* We can allow interworking between code that is VFP format
19767 layout, and uses either soft float or integer regs for
19768 passing floating point arguments and results. We already
19769 know that the APCS_FLOAT flags match; similarly for VFP
19770 flags. */
19771 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19772 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19773 {
19774 if (in_flags & EF_ARM_SOFT_FLOAT)
19775 _bfd_error_handler
19776 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19777 ibfd, obfd);
19778 else
19779 _bfd_error_handler
19780 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19781 ibfd, obfd);
19782
19783 flags_compatible = FALSE;
19784 }
19785 }
19786 #endif
19787
19788 /* Interworking mismatch is only a warning. */
19789 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19790 {
19791 if (in_flags & EF_ARM_INTERWORK)
19792 {
19793 _bfd_error_handler
19794 (_("Warning: %B supports interworking, whereas %B does not"),
19795 ibfd, obfd);
19796 }
19797 else
19798 {
19799 _bfd_error_handler
19800 (_("Warning: %B does not support interworking, whereas %B does"),
19801 ibfd, obfd);
19802 }
19803 }
19804 }
19805
19806 return flags_compatible;
19807 }
19808
19809
19810 /* Symbian OS Targets. */
19811
19812 #undef TARGET_LITTLE_SYM
19813 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19814 #undef TARGET_LITTLE_NAME
19815 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19816 #undef TARGET_BIG_SYM
19817 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19818 #undef TARGET_BIG_NAME
19819 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19820
19821 /* Like elf32_arm_link_hash_table_create -- but overrides
19822 appropriately for Symbian OS. */
19823
19824 static struct bfd_link_hash_table *
19825 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19826 {
19827 struct bfd_link_hash_table *ret;
19828
19829 ret = elf32_arm_link_hash_table_create (abfd);
19830 if (ret)
19831 {
19832 struct elf32_arm_link_hash_table *htab
19833 = (struct elf32_arm_link_hash_table *)ret;
19834 /* There is no PLT header for Symbian OS. */
19835 htab->plt_header_size = 0;
19836 /* The PLT entries are each one instruction and one word. */
19837 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19838 htab->symbian_p = 1;
19839 /* Symbian uses armv5t or above, so use_blx is always true. */
19840 htab->use_blx = 1;
19841 htab->root.is_relocatable_executable = 1;
19842 }
19843 return ret;
19844 }
19845
19846 static const struct bfd_elf_special_section
19847 elf32_arm_symbian_special_sections[] =
19848 {
19849 /* In a BPABI executable, the dynamic linking sections do not go in
19850 the loadable read-only segment. The post-linker may wish to
19851 refer to these sections, but they are not part of the final
19852 program image. */
19853 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19854 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19855 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19856 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19857 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19858 /* These sections do not need to be writable as the SymbianOS
19859 postlinker will arrange things so that no dynamic relocation is
19860 required. */
19861 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19862 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19863 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19864 { NULL, 0, 0, 0, 0 }
19865 };
19866
19867 static void
19868 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19869 struct bfd_link_info *link_info)
19870 {
19871 /* BPABI objects are never loaded directly by an OS kernel; they are
19872 processed by a postlinker first, into an OS-specific format. If
19873 the D_PAGED bit is set on the file, BFD will align segments on
19874 page boundaries, so that an OS can directly map the file. With
19875 BPABI objects, that just results in wasted space. In addition,
19876 because we clear the D_PAGED bit, map_sections_to_segments will
19877 recognize that the program headers should not be mapped into any
19878 loadable segment. */
19879 abfd->flags &= ~D_PAGED;
19880 elf32_arm_begin_write_processing (abfd, link_info);
19881 }
19882
19883 static bfd_boolean
19884 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19885 struct bfd_link_info *info)
19886 {
19887 struct elf_segment_map *m;
19888 asection *dynsec;
19889
19890 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19891 segment. However, because the .dynamic section is not marked
19892 with SEC_LOAD, the generic ELF code will not create such a
19893 segment. */
19894 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19895 if (dynsec)
19896 {
19897 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19898 if (m->p_type == PT_DYNAMIC)
19899 break;
19900
19901 if (m == NULL)
19902 {
19903 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19904 m->next = elf_seg_map (abfd);
19905 elf_seg_map (abfd) = m;
19906 }
19907 }
19908
19909 /* Also call the generic arm routine. */
19910 return elf32_arm_modify_segment_map (abfd, info);
19911 }
19912
19913 /* Return address for Ith PLT stub in section PLT, for relocation REL
19914 or (bfd_vma) -1 if it should not be included. */
19915
19916 static bfd_vma
19917 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19918 const arelent *rel ATTRIBUTE_UNUSED)
19919 {
19920 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19921 }
19922
19923 #undef elf32_bed
19924 #define elf32_bed elf32_arm_symbian_bed
19925
19926 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19927 will process them and then discard them. */
19928 #undef ELF_DYNAMIC_SEC_FLAGS
19929 #define ELF_DYNAMIC_SEC_FLAGS \
19930 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19931
19932 #undef elf_backend_emit_relocs
19933
19934 #undef bfd_elf32_bfd_link_hash_table_create
19935 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19936 #undef elf_backend_special_sections
19937 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19938 #undef elf_backend_begin_write_processing
19939 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19940 #undef elf_backend_final_write_processing
19941 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19942
19943 #undef elf_backend_modify_segment_map
19944 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19945
19946 /* There is no .got section for BPABI objects, and hence no header. */
19947 #undef elf_backend_got_header_size
19948 #define elf_backend_got_header_size 0
19949
19950 /* Similarly, there is no .got.plt section. */
19951 #undef elf_backend_want_got_plt
19952 #define elf_backend_want_got_plt 0
19953
19954 #undef elf_backend_plt_sym_val
19955 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19956
19957 #undef elf_backend_may_use_rel_p
19958 #define elf_backend_may_use_rel_p 1
19959 #undef elf_backend_may_use_rela_p
19960 #define elf_backend_may_use_rela_p 0
19961 #undef elf_backend_default_use_rela_p
19962 #define elf_backend_default_use_rela_p 0
19963 #undef elf_backend_want_plt_sym
19964 #define elf_backend_want_plt_sym 0
19965 #undef elf_backend_dtrel_excludes_plt
19966 #define elf_backend_dtrel_excludes_plt 0
19967 #undef ELF_MAXPAGESIZE
19968 #define ELF_MAXPAGESIZE 0x8000
19969
19970 #include "elf32-target.h"