Use ui_file_as_string in gdb/printcmd.c
[binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* Short-cuts to get to dynamic linker sections. */
3162 asection *sdynbss;
3163 asection *srelbss;
3164
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3166 asection *srelplt2;
3167
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3171 yet. */
3172 bfd_vma dt_tlsdesc_plt;
3173
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3175 above. */
3176 bfd_vma dt_tlsdesc_got;
3177
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3180
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3182 union
3183 {
3184 bfd_signed_vma refcount;
3185 bfd_vma offset;
3186 } tls_ldm_got;
3187
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
3190
3191 /* For convenience in allocate_dynrelocs. */
3192 bfd * obfd;
3193
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3197
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3200
3201 /* Linker stub bfd. */
3202 bfd *stub_bfd;
3203
3204 /* Linker call-backs. */
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3206 unsigned int);
3207 void (*layout_sections_again) (void);
3208
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
3211 struct map_stub *stub_group;
3212
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3215
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3219
3220 /* Number of elements in stub_group. */
3221 unsigned int top_id;
3222
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
3225 unsigned int top_index;
3226 asection **input_list;
3227 };
3228
3229 static inline int
3230 ctz (unsigned int mask)
3231 {
3232 #if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3234 #else
3235 unsigned int i;
3236
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3238 {
3239 if (mask & 0x1)
3240 break;
3241 mask = (mask >> 1);
3242 }
3243 return i;
3244 #endif
3245 }
3246
3247 static inline int
3248 popcount (unsigned int mask)
3249 {
3250 #if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3252 #else
3253 unsigned int i, sum = 0;
3254
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3256 {
3257 if (mask & 0x1)
3258 sum++;
3259 mask = (mask >> 1);
3260 }
3261 return sum;
3262 #endif
3263 }
3264
3265 /* Create an entry in an ARM ELF linker hash table. */
3266
3267 static struct bfd_hash_entry *
3268 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3269 struct bfd_hash_table * table,
3270 const char * string)
3271 {
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3274
3275 /* Allocate the structure if it has not already been allocated by a
3276 subclass. */
3277 if (ret == NULL)
3278 ret = (struct elf32_arm_link_hash_entry *)
3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3280 if (ret == NULL)
3281 return (struct bfd_hash_entry *) ret;
3282
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3286 table, string));
3287 if (ret != NULL)
3288 {
3289 ret->dyn_relocs = NULL;
3290 ret->tls_type = GOT_UNKNOWN;
3291 ret->tlsdesc_got = (bfd_vma) -1;
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
3297 ret->export_glue = NULL;
3298
3299 ret->stub_cache = NULL;
3300 }
3301
3302 return (struct bfd_hash_entry *) ret;
3303 }
3304
3305 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3306 symbols. */
3307
3308 static bfd_boolean
3309 elf32_arm_allocate_local_sym_info (bfd *abfd)
3310 {
3311 if (elf_local_got_refcounts (abfd) == NULL)
3312 {
3313 bfd_size_type num_syms;
3314 bfd_size_type size;
3315 char *data;
3316
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3320 + sizeof (bfd_vma)
3321 + sizeof (char));
3322 data = bfd_zalloc (abfd, size);
3323 if (data == NULL)
3324 return FALSE;
3325
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3328
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3331
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3334
3335 elf32_arm_local_got_tls_type (abfd) = data;
3336 }
3337 return TRUE;
3338 }
3339
3340 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3343
3344 static struct arm_local_iplt_info *
3345 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3346 {
3347 struct arm_local_iplt_info **ptr;
3348
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3350 return NULL;
3351
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3354 if (*ptr == NULL)
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3356 return *ptr;
3357 }
3358
3359 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3362
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3366
3367 static bfd_boolean
3368 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3372 {
3373 struct arm_local_iplt_info *local_iplt;
3374
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3376 return FALSE;
3377
3378 if (h != NULL)
3379 {
3380 *root_plt = &h->root.plt;
3381 *arm_plt = &h->plt;
3382 return TRUE;
3383 }
3384
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3386 return FALSE;
3387
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3390 return FALSE;
3391
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3394 return TRUE;
3395 }
3396
3397 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3398 before it. */
3399
3400 static bfd_boolean
3401 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3403 {
3404 struct elf32_arm_link_hash_table *htab;
3405
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3409 }
3410
3411 /* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3414
3415 static struct elf_dyn_relocs **
3416 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3418 {
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3420 {
3421 struct arm_local_iplt_info *local_iplt;
3422
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3425 return NULL;
3426 return &local_iplt->dyn_relocs;
3427 }
3428 else
3429 {
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3432 easily. Oh well. */
3433 asection *s;
3434 void *vpp;
3435
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3437 if (s == NULL)
3438 abort ();
3439
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3442 }
3443 }
3444
3445 /* Initialize an entry in the stub hash table. */
3446
3447 static struct bfd_hash_entry *
3448 stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3450 const char *string)
3451 {
3452 /* Allocate the structure if it has not already been allocated by a
3453 subclass. */
3454 if (entry == NULL)
3455 {
3456 entry = (struct bfd_hash_entry *)
3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3458 if (entry == NULL)
3459 return entry;
3460 }
3461
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3464 if (entry != NULL)
3465 {
3466 struct elf32_arm_stub_hash_entry *eh;
3467
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
3471 eh->stub_offset = (bfd_vma) -1;
3472 eh->source_value = 0;
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
3475 eh->orig_insn = 0;
3476 eh->stub_type = arm_stub_none;
3477 eh->stub_size = 0;
3478 eh->stub_template = NULL;
3479 eh->stub_template_size = -1;
3480 eh->h = NULL;
3481 eh->id_sec = NULL;
3482 eh->output_name = NULL;
3483 }
3484
3485 return entry;
3486 }
3487
3488 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3489 shortcuts to them in our hash table. */
3490
3491 static bfd_boolean
3492 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3493 {
3494 struct elf32_arm_link_hash_table *htab;
3495
3496 htab = elf32_arm_hash_table (info);
3497 if (htab == NULL)
3498 return FALSE;
3499
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3502 return TRUE;
3503
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3505 return FALSE;
3506
3507 return TRUE;
3508 }
3509
3510 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3511
3512 static bfd_boolean
3513 create_ifunc_sections (struct bfd_link_info *info)
3514 {
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3517 bfd *dynobj;
3518 asection *s;
3519 flagword flags;
3520
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3525
3526 if (htab->root.iplt == NULL)
3527 {
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
3530 if (s == NULL
3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3532 return FALSE;
3533 htab->root.iplt = s;
3534 }
3535
3536 if (htab->root.irelplt == NULL)
3537 {
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
3541 if (s == NULL
3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3543 return FALSE;
3544 htab->root.irelplt = s;
3545 }
3546
3547 if (htab->root.igotplt == NULL)
3548 {
3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3550 if (s == NULL
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3552 return FALSE;
3553 htab->root.igotplt = s;
3554 }
3555 return TRUE;
3556 }
3557
3558 /* Determine if we're dealing with a Thumb only architecture. */
3559
3560 static bfd_boolean
3561 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3562 {
3563 int arch;
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
3566
3567 if (profile)
3568 return profile == 'M';
3569
3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3571
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3576
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3582 return TRUE;
3583
3584 return FALSE;
3585 }
3586
3587 /* Determine if we're dealing with a Thumb-2 object. */
3588
3589 static bfd_boolean
3590 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3591 {
3592 int arch;
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3594 Tag_THUMB_ISA_use);
3595
3596 if (thumb_isa)
3597 return thumb_isa == 2;
3598
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3600
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3605
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
3611 }
3612
3613 /* Determine whether Thumb-2 BL instruction is available. */
3614
3615 static bfd_boolean
3616 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3617 {
3618 int arch =
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3620
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3625
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3629 }
3630
3631 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3633 hash table. */
3634
3635 static bfd_boolean
3636 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3637 {
3638 struct elf32_arm_link_hash_table *htab;
3639
3640 htab = elf32_arm_hash_table (info);
3641 if (htab == NULL)
3642 return FALSE;
3643
3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
3645 return FALSE;
3646
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3648 return FALSE;
3649
3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3651 if (!bfd_link_pic (info))
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
3654
3655 if (htab->vxworks_p)
3656 {
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3658 return FALSE;
3659
3660 if (bfd_link_pic (info))
3661 {
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3665 }
3666 else
3667 {
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3672 }
3673
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3676 }
3677 else
3678 {
3679 /* PR ld/16017
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3684
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3687 {
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3690 }
3691 htab->obfd = saved_obfd;
3692 }
3693
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
3696 || !htab->sdynbss
3697 || (!bfd_link_pic (info) && !htab->srelbss))
3698 abort ();
3699
3700 return TRUE;
3701 }
3702
3703 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3704
3705 static void
3706 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3709 {
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3711
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3714
3715 if (eind->dyn_relocs != NULL)
3716 {
3717 if (edir->dyn_relocs != NULL)
3718 {
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
3721
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3725 {
3726 struct elf_dyn_relocs *q;
3727
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
3730 {
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3733 *pp = p->next;
3734 break;
3735 }
3736 if (q == NULL)
3737 pp = &p->next;
3738 }
3739 *pp = edir->dyn_relocs;
3740 }
3741
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
3744 }
3745
3746 if (ind->root.type == bfd_link_hash_indirect)
3747 {
3748 /* Copy over PLT info. */
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3755
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
3759
3760 if (dir->got.refcount <= 0)
3761 {
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3764 }
3765 }
3766
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3768 }
3769
3770 /* Destroy an ARM elf linker hash table. */
3771
3772 static void
3773 elf32_arm_link_hash_table_free (bfd *obfd)
3774 {
3775 struct elf32_arm_link_hash_table *ret
3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3777
3778 bfd_hash_table_free (&ret->stub_hash_table);
3779 _bfd_elf_link_hash_table_free (obfd);
3780 }
3781
3782 /* Create an ARM elf linker hash table. */
3783
3784 static struct bfd_link_hash_table *
3785 elf32_arm_link_hash_table_create (bfd *abfd)
3786 {
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3789
3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3791 if (ret == NULL)
3792 return NULL;
3793
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
3796 sizeof (struct elf32_arm_link_hash_entry),
3797 ARM_ELF_DATA))
3798 {
3799 free (ret);
3800 return NULL;
3801 }
3802
3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3805 #ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3808 #else
3809 ret->plt_header_size = 20;
3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3811 #endif
3812 ret->use_rel = 1;
3813 ret->obfd = abfd;
3814
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3817 {
3818 _bfd_elf_link_hash_table_free (abfd);
3819 return NULL;
3820 }
3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3822
3823 return &ret->root.root;
3824 }
3825
3826 /* Determine what kind of NOPs are available. */
3827
3828 static bfd_boolean
3829 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3830 {
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3832 Tag_CPU_arch);
3833
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3838
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
3843 }
3844
3845 static bfd_boolean
3846 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3847 {
3848 switch (stub_type)
3849 {
3850 case arm_stub_long_branch_thumb_only:
3851 case arm_stub_long_branch_thumb2_only:
3852 case arm_stub_long_branch_thumb2_only_pure:
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
3857 case arm_stub_long_branch_thumb_only_pic:
3858 case arm_stub_cmse_branch_thumb_only:
3859 return TRUE;
3860 case arm_stub_none:
3861 BFD_FAIL ();
3862 return FALSE;
3863 break;
3864 default:
3865 return FALSE;
3866 }
3867 }
3868
3869 /* Determine the type of stub needed, if any, for a call. */
3870
3871 static enum elf32_arm_stub_type
3872 arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
3875 unsigned char st_type,
3876 enum arm_st_branch_type *actual_branch_type,
3877 struct elf32_arm_link_hash_entry *hash,
3878 bfd_vma destination,
3879 asection *sym_sec,
3880 bfd *input_bfd,
3881 const char *name)
3882 {
3883 bfd_vma location;
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
3889 int use_plt = 0;
3890 enum arm_st_branch_type branch_type = *actual_branch_type;
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
3893 int arch;
3894 int thumb2_movw;
3895
3896 if (branch_type == ST_BRANCH_LONG)
3897 return stub_type;
3898
3899 globals = elf32_arm_hash_table (info);
3900 if (globals == NULL)
3901 return stub_type;
3902
3903 thumb_only = using_thumb_only (globals);
3904 thumb2 = using_thumb2 (globals);
3905 thumb2_bl = using_thumb2_bl (globals);
3906
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3908
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3911
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3915 + rel->r_offset);
3916
3917 r_type = ELF32_R_TYPE (rel->r_info);
3918
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3925
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3932 &arm_plt)
3933 && root_plt->offset != (bfd_vma) -1)
3934 {
3935 asection *splt;
3936
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3939 else
3940 splt = globals->root.splt;
3941 if (splt != NULL)
3942 {
3943 use_plt = 1;
3944
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
3948 PLT stub. If a long branch stub is needed, we'll add a
3949 Thumb->Arm one and branch directly to the ARM PLT entry.
3950 Here, we have to check if a pre-PLT Thumb->ARM stub
3951 is needed and if it will be close enough. */
3952
3953 destination = (splt->output_section->vma
3954 + splt->output_offset
3955 + root_plt->offset);
3956 st_type = STT_FUNC;
3957
3958 /* Thumb branch/call to PLT: it can become a branch to ARM
3959 or to Thumb. We must perform the same checks and
3960 corrections as in elf32_arm_final_link_relocate. */
3961 if ((r_type == R_ARM_THM_CALL)
3962 || (r_type == R_ARM_THM_JUMP24))
3963 {
3964 if (globals->use_blx
3965 && r_type == R_ARM_THM_CALL
3966 && !thumb_only)
3967 {
3968 /* If the Thumb BLX instruction is available, convert
3969 the BL to a BLX instruction to call the ARM-mode
3970 PLT entry. */
3971 branch_type = ST_BRANCH_TO_ARM;
3972 }
3973 else
3974 {
3975 if (!thumb_only)
3976 /* Target the Thumb stub before the ARM PLT entry. */
3977 destination -= PLT_THUMB_STUB_SIZE;
3978 branch_type = ST_BRANCH_TO_THUMB;
3979 }
3980 }
3981 else
3982 {
3983 branch_type = ST_BRANCH_TO_ARM;
3984 }
3985 }
3986 }
3987 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3988 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3989
3990 branch_offset = (bfd_signed_vma)(destination - location);
3991
3992 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3993 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3994 {
3995 /* Handle cases where:
3996 - this call goes too far (different Thumb/Thumb2 max
3997 distance)
3998 - it's a Thumb->Arm call and blx is not available, or it's a
3999 Thumb->Arm branch (not bl). A stub is needed in this case,
4000 but only if this call is not through a PLT entry. Indeed,
4001 PLT stubs handle mode switching already. */
4002 if ((!thumb2_bl
4003 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4004 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4005 || (thumb2_bl
4006 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4007 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4008 || (thumb2
4009 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4010 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4011 && (r_type == R_ARM_THM_JUMP19))
4012 || (branch_type == ST_BRANCH_TO_ARM
4013 && (((r_type == R_ARM_THM_CALL
4014 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4015 || (r_type == R_ARM_THM_JUMP24)
4016 || (r_type == R_ARM_THM_JUMP19))
4017 && !use_plt))
4018 {
4019 /* If we need to insert a Thumb-Thumb long branch stub to a
4020 PLT, use one that branches directly to the ARM PLT
4021 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4022 stub, undo this now. */
4023 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4024 {
4025 branch_type = ST_BRANCH_TO_ARM;
4026 branch_offset += PLT_THUMB_STUB_SIZE;
4027 }
4028
4029 if (branch_type == ST_BRANCH_TO_THUMB)
4030 {
4031 /* Thumb to thumb. */
4032 if (!thumb_only)
4033 {
4034 if (input_sec->flags & SEC_ELF_PURECODE)
4035 _bfd_error_handler (_("\
4036 %B(%A): warning: long branch veneers used in section with SHF_ARM_PURECODE section \
4037 attribute is only supported for M-profile targets that implement the movw instruction."),
4038 input_sec);
4039
4040 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4041 /* PIC stubs. */
4042 ? ((globals->use_blx
4043 && (r_type == R_ARM_THM_CALL))
4044 /* V5T and above. Stub starts with ARM code, so
4045 we must be able to switch mode before
4046 reaching it, which is only possible for 'bl'
4047 (ie R_ARM_THM_CALL relocation). */
4048 ? arm_stub_long_branch_any_thumb_pic
4049 /* On V4T, use Thumb code only. */
4050 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4051
4052 /* non-PIC stubs. */
4053 : ((globals->use_blx
4054 && (r_type == R_ARM_THM_CALL))
4055 /* V5T and above. */
4056 ? arm_stub_long_branch_any_any
4057 /* V4T. */
4058 : arm_stub_long_branch_v4t_thumb_thumb);
4059 }
4060 else
4061 {
4062 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4063 stub_type = arm_stub_long_branch_thumb2_only_pure;
4064 else
4065 {
4066 if (input_sec->flags & SEC_ELF_PURECODE)
4067 _bfd_error_handler (_("\
4068 %B(%A): warning: long branch veneers used in section with SHF_ARM_PURECODE section \
4069 attribute is only supported for M-profile targets that implement the movw instruction."),
4070 input_sec);
4071
4072 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4073 /* PIC stub. */
4074 ? arm_stub_long_branch_thumb_only_pic
4075 /* non-PIC stub. */
4076 : (thumb2 ? arm_stub_long_branch_thumb2_only
4077 : arm_stub_long_branch_thumb_only);
4078 }
4079 }
4080 }
4081 else
4082 {
4083 if (input_sec->flags & SEC_ELF_PURECODE)
4084 _bfd_error_handler (_("%B(%s): warning: long branch "
4085 " veneers used in section with "
4086 "SHF_ARM_PURECODE section "
4087 "attribute is only supported"
4088 " for M-profile targets that "
4089 "implement the movw "
4090 "instruction."));
4091
4092 /* Thumb to arm. */
4093 if (sym_sec != NULL
4094 && sym_sec->owner != NULL
4095 && !INTERWORK_FLAG (sym_sec->owner))
4096 {
4097 _bfd_error_handler
4098 (_("%B(%s): warning: interworking not enabled.\n"
4099 " first occurrence: %B: Thumb call to ARM"),
4100 sym_sec->owner, input_bfd, name);
4101 }
4102
4103 stub_type =
4104 (bfd_link_pic (info) | globals->pic_veneer)
4105 /* PIC stubs. */
4106 ? (r_type == R_ARM_THM_TLS_CALL
4107 /* TLS PIC stubs. */
4108 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4109 : arm_stub_long_branch_v4t_thumb_tls_pic)
4110 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4111 /* V5T PIC and above. */
4112 ? arm_stub_long_branch_any_arm_pic
4113 /* V4T PIC stub. */
4114 : arm_stub_long_branch_v4t_thumb_arm_pic))
4115
4116 /* non-PIC stubs. */
4117 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4118 /* V5T and above. */
4119 ? arm_stub_long_branch_any_any
4120 /* V4T. */
4121 : arm_stub_long_branch_v4t_thumb_arm);
4122
4123 /* Handle v4t short branches. */
4124 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4125 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4126 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4127 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4128 }
4129 }
4130 }
4131 else if (r_type == R_ARM_CALL
4132 || r_type == R_ARM_JUMP24
4133 || r_type == R_ARM_PLT32
4134 || r_type == R_ARM_TLS_CALL)
4135 {
4136 if (input_sec->flags & SEC_ELF_PURECODE)
4137 _bfd_error_handler (_("%B(%s): warning: long branch "
4138 " veneers used in section with "
4139 "SHF_ARM_PURECODE section "
4140 "attribute is only supported"
4141 " for M-profile targets that "
4142 "implement the movw "
4143 "instruction."));
4144 if (branch_type == ST_BRANCH_TO_THUMB)
4145 {
4146 /* Arm to thumb. */
4147
4148 if (sym_sec != NULL
4149 && sym_sec->owner != NULL
4150 && !INTERWORK_FLAG (sym_sec->owner))
4151 {
4152 _bfd_error_handler
4153 (_("%B(%s): warning: interworking not enabled.\n"
4154 " first occurrence: %B: ARM call to Thumb"),
4155 sym_sec->owner, input_bfd, name);
4156 }
4157
4158 /* We have an extra 2-bytes reach because of
4159 the mode change (bit 24 (H) of BLX encoding). */
4160 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4161 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4162 || (r_type == R_ARM_CALL && !globals->use_blx)
4163 || (r_type == R_ARM_JUMP24)
4164 || (r_type == R_ARM_PLT32))
4165 {
4166 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4167 /* PIC stubs. */
4168 ? ((globals->use_blx)
4169 /* V5T and above. */
4170 ? arm_stub_long_branch_any_thumb_pic
4171 /* V4T stub. */
4172 : arm_stub_long_branch_v4t_arm_thumb_pic)
4173
4174 /* non-PIC stubs. */
4175 : ((globals->use_blx)
4176 /* V5T and above. */
4177 ? arm_stub_long_branch_any_any
4178 /* V4T. */
4179 : arm_stub_long_branch_v4t_arm_thumb);
4180 }
4181 }
4182 else
4183 {
4184 /* Arm to arm. */
4185 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4186 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4187 {
4188 stub_type =
4189 (bfd_link_pic (info) | globals->pic_veneer)
4190 /* PIC stubs. */
4191 ? (r_type == R_ARM_TLS_CALL
4192 /* TLS PIC Stub. */
4193 ? arm_stub_long_branch_any_tls_pic
4194 : (globals->nacl_p
4195 ? arm_stub_long_branch_arm_nacl_pic
4196 : arm_stub_long_branch_any_arm_pic))
4197 /* non-PIC stubs. */
4198 : (globals->nacl_p
4199 ? arm_stub_long_branch_arm_nacl
4200 : arm_stub_long_branch_any_any);
4201 }
4202 }
4203 }
4204
4205 /* If a stub is needed, record the actual destination type. */
4206 if (stub_type != arm_stub_none)
4207 *actual_branch_type = branch_type;
4208
4209 return stub_type;
4210 }
4211
4212 /* Build a name for an entry in the stub hash table. */
4213
4214 static char *
4215 elf32_arm_stub_name (const asection *input_section,
4216 const asection *sym_sec,
4217 const struct elf32_arm_link_hash_entry *hash,
4218 const Elf_Internal_Rela *rel,
4219 enum elf32_arm_stub_type stub_type)
4220 {
4221 char *stub_name;
4222 bfd_size_type len;
4223
4224 if (hash)
4225 {
4226 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4227 stub_name = (char *) bfd_malloc (len);
4228 if (stub_name != NULL)
4229 sprintf (stub_name, "%08x_%s+%x_%d",
4230 input_section->id & 0xffffffff,
4231 hash->root.root.root.string,
4232 (int) rel->r_addend & 0xffffffff,
4233 (int) stub_type);
4234 }
4235 else
4236 {
4237 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4238 stub_name = (char *) bfd_malloc (len);
4239 if (stub_name != NULL)
4240 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4241 input_section->id & 0xffffffff,
4242 sym_sec->id & 0xffffffff,
4243 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4244 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4245 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4246 (int) rel->r_addend & 0xffffffff,
4247 (int) stub_type);
4248 }
4249
4250 return stub_name;
4251 }
4252
4253 /* Look up an entry in the stub hash. Stub entries are cached because
4254 creating the stub name takes a bit of time. */
4255
4256 static struct elf32_arm_stub_hash_entry *
4257 elf32_arm_get_stub_entry (const asection *input_section,
4258 const asection *sym_sec,
4259 struct elf_link_hash_entry *hash,
4260 const Elf_Internal_Rela *rel,
4261 struct elf32_arm_link_hash_table *htab,
4262 enum elf32_arm_stub_type stub_type)
4263 {
4264 struct elf32_arm_stub_hash_entry *stub_entry;
4265 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4266 const asection *id_sec;
4267
4268 if ((input_section->flags & SEC_CODE) == 0)
4269 return NULL;
4270
4271 /* If this input section is part of a group of sections sharing one
4272 stub section, then use the id of the first section in the group.
4273 Stub names need to include a section id, as there may well be
4274 more than one stub used to reach say, printf, and we need to
4275 distinguish between them. */
4276 BFD_ASSERT (input_section->id <= htab->top_id);
4277 id_sec = htab->stub_group[input_section->id].link_sec;
4278
4279 if (h != NULL && h->stub_cache != NULL
4280 && h->stub_cache->h == h
4281 && h->stub_cache->id_sec == id_sec
4282 && h->stub_cache->stub_type == stub_type)
4283 {
4284 stub_entry = h->stub_cache;
4285 }
4286 else
4287 {
4288 char *stub_name;
4289
4290 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4291 if (stub_name == NULL)
4292 return NULL;
4293
4294 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4295 stub_name, FALSE, FALSE);
4296 if (h != NULL)
4297 h->stub_cache = stub_entry;
4298
4299 free (stub_name);
4300 }
4301
4302 return stub_entry;
4303 }
4304
4305 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4306 section. */
4307
4308 static bfd_boolean
4309 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4310 {
4311 if (stub_type >= max_stub_type)
4312 abort (); /* Should be unreachable. */
4313
4314 switch (stub_type)
4315 {
4316 case arm_stub_cmse_branch_thumb_only:
4317 return TRUE;
4318
4319 default:
4320 return FALSE;
4321 }
4322
4323 abort (); /* Should be unreachable. */
4324 }
4325
4326 /* Required alignment (as a power of 2) for the dedicated section holding
4327 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4328 with input sections. */
4329
4330 static int
4331 arm_dedicated_stub_output_section_required_alignment
4332 (enum elf32_arm_stub_type stub_type)
4333 {
4334 if (stub_type >= max_stub_type)
4335 abort (); /* Should be unreachable. */
4336
4337 switch (stub_type)
4338 {
4339 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4340 boundary. */
4341 case arm_stub_cmse_branch_thumb_only:
4342 return 5;
4343
4344 default:
4345 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4346 return 0;
4347 }
4348
4349 abort (); /* Should be unreachable. */
4350 }
4351
4352 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4353 NULL if veneers of this type are interspersed with input sections. */
4354
4355 static const char *
4356 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4357 {
4358 if (stub_type >= max_stub_type)
4359 abort (); /* Should be unreachable. */
4360
4361 switch (stub_type)
4362 {
4363 case arm_stub_cmse_branch_thumb_only:
4364 return ".gnu.sgstubs";
4365
4366 default:
4367 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4368 return NULL;
4369 }
4370
4371 abort (); /* Should be unreachable. */
4372 }
4373
4374 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4375 returns the address of the hash table field in HTAB holding a pointer to the
4376 corresponding input section. Otherwise, returns NULL. */
4377
4378 static asection **
4379 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4380 enum elf32_arm_stub_type stub_type)
4381 {
4382 if (stub_type >= max_stub_type)
4383 abort (); /* Should be unreachable. */
4384
4385 switch (stub_type)
4386 {
4387 case arm_stub_cmse_branch_thumb_only:
4388 return &htab->cmse_stub_sec;
4389
4390 default:
4391 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4392 return NULL;
4393 }
4394
4395 abort (); /* Should be unreachable. */
4396 }
4397
4398 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4399 is the section that branch into veneer and can be NULL if stub should go in
4400 a dedicated output section. Returns a pointer to the stub section, and the
4401 section to which the stub section will be attached (in *LINK_SEC_P).
4402 LINK_SEC_P may be NULL. */
4403
4404 static asection *
4405 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4406 struct elf32_arm_link_hash_table *htab,
4407 enum elf32_arm_stub_type stub_type)
4408 {
4409 asection *link_sec, *out_sec, **stub_sec_p;
4410 const char *stub_sec_prefix;
4411 bfd_boolean dedicated_output_section =
4412 arm_dedicated_stub_output_section_required (stub_type);
4413 int align;
4414
4415 if (dedicated_output_section)
4416 {
4417 bfd *output_bfd = htab->obfd;
4418 const char *out_sec_name =
4419 arm_dedicated_stub_output_section_name (stub_type);
4420 link_sec = NULL;
4421 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4422 stub_sec_prefix = out_sec_name;
4423 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4424 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4425 if (out_sec == NULL)
4426 {
4427 _bfd_error_handler (_("No address assigned to the veneers output "
4428 "section %s"), out_sec_name);
4429 return NULL;
4430 }
4431 }
4432 else
4433 {
4434 BFD_ASSERT (section->id <= htab->top_id);
4435 link_sec = htab->stub_group[section->id].link_sec;
4436 BFD_ASSERT (link_sec != NULL);
4437 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4438 if (*stub_sec_p == NULL)
4439 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4440 stub_sec_prefix = link_sec->name;
4441 out_sec = link_sec->output_section;
4442 align = htab->nacl_p ? 4 : 3;
4443 }
4444
4445 if (*stub_sec_p == NULL)
4446 {
4447 size_t namelen;
4448 bfd_size_type len;
4449 char *s_name;
4450
4451 namelen = strlen (stub_sec_prefix);
4452 len = namelen + sizeof (STUB_SUFFIX);
4453 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4454 if (s_name == NULL)
4455 return NULL;
4456
4457 memcpy (s_name, stub_sec_prefix, namelen);
4458 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4459 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4460 align);
4461 if (*stub_sec_p == NULL)
4462 return NULL;
4463
4464 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4465 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4466 | SEC_KEEP;
4467 }
4468
4469 if (!dedicated_output_section)
4470 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4471
4472 if (link_sec_p)
4473 *link_sec_p = link_sec;
4474
4475 return *stub_sec_p;
4476 }
4477
4478 /* Add a new stub entry to the stub hash. Not all fields of the new
4479 stub entry are initialised. */
4480
4481 static struct elf32_arm_stub_hash_entry *
4482 elf32_arm_add_stub (const char *stub_name, asection *section,
4483 struct elf32_arm_link_hash_table *htab,
4484 enum elf32_arm_stub_type stub_type)
4485 {
4486 asection *link_sec;
4487 asection *stub_sec;
4488 struct elf32_arm_stub_hash_entry *stub_entry;
4489
4490 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4491 stub_type);
4492 if (stub_sec == NULL)
4493 return NULL;
4494
4495 /* Enter this entry into the linker stub hash table. */
4496 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4497 TRUE, FALSE);
4498 if (stub_entry == NULL)
4499 {
4500 if (section == NULL)
4501 section = stub_sec;
4502 _bfd_error_handler (_("%s: cannot create stub entry %s"),
4503 section->owner, stub_name);
4504 return NULL;
4505 }
4506
4507 stub_entry->stub_sec = stub_sec;
4508 stub_entry->stub_offset = (bfd_vma) -1;
4509 stub_entry->id_sec = link_sec;
4510
4511 return stub_entry;
4512 }
4513
4514 /* Store an Arm insn into an output section not processed by
4515 elf32_arm_write_section. */
4516
4517 static void
4518 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4519 bfd * output_bfd, bfd_vma val, void * ptr)
4520 {
4521 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4522 bfd_putl32 (val, ptr);
4523 else
4524 bfd_putb32 (val, ptr);
4525 }
4526
4527 /* Store a 16-bit Thumb insn into an output section not processed by
4528 elf32_arm_write_section. */
4529
4530 static void
4531 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4532 bfd * output_bfd, bfd_vma val, void * ptr)
4533 {
4534 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4535 bfd_putl16 (val, ptr);
4536 else
4537 bfd_putb16 (val, ptr);
4538 }
4539
4540 /* Store a Thumb2 insn into an output section not processed by
4541 elf32_arm_write_section. */
4542
4543 static void
4544 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4545 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4546 {
4547 /* T2 instructions are 16-bit streamed. */
4548 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4549 {
4550 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4551 bfd_putl16 ((val & 0xffff), ptr + 2);
4552 }
4553 else
4554 {
4555 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4556 bfd_putb16 ((val & 0xffff), ptr + 2);
4557 }
4558 }
4559
4560 /* If it's possible to change R_TYPE to a more efficient access
4561 model, return the new reloc type. */
4562
4563 static unsigned
4564 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4565 struct elf_link_hash_entry *h)
4566 {
4567 int is_local = (h == NULL);
4568
4569 if (bfd_link_pic (info)
4570 || (h && h->root.type == bfd_link_hash_undefweak))
4571 return r_type;
4572
4573 /* We do not support relaxations for Old TLS models. */
4574 switch (r_type)
4575 {
4576 case R_ARM_TLS_GOTDESC:
4577 case R_ARM_TLS_CALL:
4578 case R_ARM_THM_TLS_CALL:
4579 case R_ARM_TLS_DESCSEQ:
4580 case R_ARM_THM_TLS_DESCSEQ:
4581 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4582 }
4583
4584 return r_type;
4585 }
4586
4587 static bfd_reloc_status_type elf32_arm_final_link_relocate
4588 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4589 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4590 const char *, unsigned char, enum arm_st_branch_type,
4591 struct elf_link_hash_entry *, bfd_boolean *, char **);
4592
4593 static unsigned int
4594 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4595 {
4596 switch (stub_type)
4597 {
4598 case arm_stub_a8_veneer_b_cond:
4599 case arm_stub_a8_veneer_b:
4600 case arm_stub_a8_veneer_bl:
4601 return 2;
4602
4603 case arm_stub_long_branch_any_any:
4604 case arm_stub_long_branch_v4t_arm_thumb:
4605 case arm_stub_long_branch_thumb_only:
4606 case arm_stub_long_branch_thumb2_only:
4607 case arm_stub_long_branch_thumb2_only_pure:
4608 case arm_stub_long_branch_v4t_thumb_thumb:
4609 case arm_stub_long_branch_v4t_thumb_arm:
4610 case arm_stub_short_branch_v4t_thumb_arm:
4611 case arm_stub_long_branch_any_arm_pic:
4612 case arm_stub_long_branch_any_thumb_pic:
4613 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4614 case arm_stub_long_branch_v4t_arm_thumb_pic:
4615 case arm_stub_long_branch_v4t_thumb_arm_pic:
4616 case arm_stub_long_branch_thumb_only_pic:
4617 case arm_stub_long_branch_any_tls_pic:
4618 case arm_stub_long_branch_v4t_thumb_tls_pic:
4619 case arm_stub_cmse_branch_thumb_only:
4620 case arm_stub_a8_veneer_blx:
4621 return 4;
4622
4623 case arm_stub_long_branch_arm_nacl:
4624 case arm_stub_long_branch_arm_nacl_pic:
4625 return 16;
4626
4627 default:
4628 abort (); /* Should be unreachable. */
4629 }
4630 }
4631
4632 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4633 veneering (TRUE) or have their own symbol (FALSE). */
4634
4635 static bfd_boolean
4636 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4637 {
4638 if (stub_type >= max_stub_type)
4639 abort (); /* Should be unreachable. */
4640
4641 switch (stub_type)
4642 {
4643 case arm_stub_cmse_branch_thumb_only:
4644 return TRUE;
4645
4646 default:
4647 return FALSE;
4648 }
4649
4650 abort (); /* Should be unreachable. */
4651 }
4652
4653 /* Returns the padding needed for the dedicated section used stubs of type
4654 STUB_TYPE. */
4655
4656 static int
4657 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4658 {
4659 if (stub_type >= max_stub_type)
4660 abort (); /* Should be unreachable. */
4661
4662 switch (stub_type)
4663 {
4664 case arm_stub_cmse_branch_thumb_only:
4665 return 32;
4666
4667 default:
4668 return 0;
4669 }
4670
4671 abort (); /* Should be unreachable. */
4672 }
4673
4674 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4675 returns the address of the hash table field in HTAB holding the offset at
4676 which new veneers should be layed out in the stub section. */
4677
4678 static bfd_vma*
4679 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4680 enum elf32_arm_stub_type stub_type)
4681 {
4682 switch (stub_type)
4683 {
4684 case arm_stub_cmse_branch_thumb_only:
4685 return &htab->new_cmse_stub_offset;
4686
4687 default:
4688 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4689 return NULL;
4690 }
4691 }
4692
4693 static bfd_boolean
4694 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4695 void * in_arg)
4696 {
4697 #define MAXRELOCS 3
4698 bfd_boolean removed_sg_veneer;
4699 struct elf32_arm_stub_hash_entry *stub_entry;
4700 struct elf32_arm_link_hash_table *globals;
4701 struct bfd_link_info *info;
4702 asection *stub_sec;
4703 bfd *stub_bfd;
4704 bfd_byte *loc;
4705 bfd_vma sym_value;
4706 int template_size;
4707 int size;
4708 const insn_sequence *template_sequence;
4709 int i;
4710 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4711 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4712 int nrelocs = 0;
4713 int just_allocated = 0;
4714
4715 /* Massage our args to the form they really have. */
4716 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4717 info = (struct bfd_link_info *) in_arg;
4718
4719 globals = elf32_arm_hash_table (info);
4720 if (globals == NULL)
4721 return FALSE;
4722
4723 stub_sec = stub_entry->stub_sec;
4724
4725 if ((globals->fix_cortex_a8 < 0)
4726 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4727 /* We have to do less-strictly-aligned fixes last. */
4728 return TRUE;
4729
4730 /* Assign a slot at the end of section if none assigned yet. */
4731 if (stub_entry->stub_offset == (bfd_vma) -1)
4732 {
4733 stub_entry->stub_offset = stub_sec->size;
4734 just_allocated = 1;
4735 }
4736 loc = stub_sec->contents + stub_entry->stub_offset;
4737
4738 stub_bfd = stub_sec->owner;
4739
4740 /* This is the address of the stub destination. */
4741 sym_value = (stub_entry->target_value
4742 + stub_entry->target_section->output_offset
4743 + stub_entry->target_section->output_section->vma);
4744
4745 template_sequence = stub_entry->stub_template;
4746 template_size = stub_entry->stub_template_size;
4747
4748 size = 0;
4749 for (i = 0; i < template_size; i++)
4750 {
4751 switch (template_sequence[i].type)
4752 {
4753 case THUMB16_TYPE:
4754 {
4755 bfd_vma data = (bfd_vma) template_sequence[i].data;
4756 if (template_sequence[i].reloc_addend != 0)
4757 {
4758 /* We've borrowed the reloc_addend field to mean we should
4759 insert a condition code into this (Thumb-1 branch)
4760 instruction. See THUMB16_BCOND_INSN. */
4761 BFD_ASSERT ((data & 0xff00) == 0xd000);
4762 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4763 }
4764 bfd_put_16 (stub_bfd, data, loc + size);
4765 size += 2;
4766 }
4767 break;
4768
4769 case THUMB32_TYPE:
4770 bfd_put_16 (stub_bfd,
4771 (template_sequence[i].data >> 16) & 0xffff,
4772 loc + size);
4773 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4774 loc + size + 2);
4775 if (template_sequence[i].r_type != R_ARM_NONE)
4776 {
4777 stub_reloc_idx[nrelocs] = i;
4778 stub_reloc_offset[nrelocs++] = size;
4779 }
4780 size += 4;
4781 break;
4782
4783 case ARM_TYPE:
4784 bfd_put_32 (stub_bfd, template_sequence[i].data,
4785 loc + size);
4786 /* Handle cases where the target is encoded within the
4787 instruction. */
4788 if (template_sequence[i].r_type == R_ARM_JUMP24)
4789 {
4790 stub_reloc_idx[nrelocs] = i;
4791 stub_reloc_offset[nrelocs++] = size;
4792 }
4793 size += 4;
4794 break;
4795
4796 case DATA_TYPE:
4797 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4798 stub_reloc_idx[nrelocs] = i;
4799 stub_reloc_offset[nrelocs++] = size;
4800 size += 4;
4801 break;
4802
4803 default:
4804 BFD_FAIL ();
4805 return FALSE;
4806 }
4807 }
4808
4809 if (just_allocated)
4810 stub_sec->size += size;
4811
4812 /* Stub size has already been computed in arm_size_one_stub. Check
4813 consistency. */
4814 BFD_ASSERT (size == stub_entry->stub_size);
4815
4816 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4817 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4818 sym_value |= 1;
4819
4820 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4821 to relocate in each stub. */
4822 removed_sg_veneer =
4823 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4824 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4825
4826 for (i = 0; i < nrelocs; i++)
4827 {
4828 Elf_Internal_Rela rel;
4829 bfd_boolean unresolved_reloc;
4830 char *error_message;
4831 bfd_vma points_to =
4832 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4833
4834 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4835 rel.r_info = ELF32_R_INFO (0,
4836 template_sequence[stub_reloc_idx[i]].r_type);
4837 rel.r_addend = 0;
4838
4839 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4840 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4841 template should refer back to the instruction after the original
4842 branch. We use target_section as Cortex-A8 erratum workaround stubs
4843 are only generated when both source and target are in the same
4844 section. */
4845 points_to = stub_entry->target_section->output_section->vma
4846 + stub_entry->target_section->output_offset
4847 + stub_entry->source_value;
4848
4849 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4850 (template_sequence[stub_reloc_idx[i]].r_type),
4851 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4852 points_to, info, stub_entry->target_section, "", STT_FUNC,
4853 stub_entry->branch_type,
4854 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4855 &error_message);
4856 }
4857
4858 return TRUE;
4859 #undef MAXRELOCS
4860 }
4861
4862 /* Calculate the template, template size and instruction size for a stub.
4863 Return value is the instruction size. */
4864
4865 static unsigned int
4866 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4867 const insn_sequence **stub_template,
4868 int *stub_template_size)
4869 {
4870 const insn_sequence *template_sequence = NULL;
4871 int template_size = 0, i;
4872 unsigned int size;
4873
4874 template_sequence = stub_definitions[stub_type].template_sequence;
4875 if (stub_template)
4876 *stub_template = template_sequence;
4877
4878 template_size = stub_definitions[stub_type].template_size;
4879 if (stub_template_size)
4880 *stub_template_size = template_size;
4881
4882 size = 0;
4883 for (i = 0; i < template_size; i++)
4884 {
4885 switch (template_sequence[i].type)
4886 {
4887 case THUMB16_TYPE:
4888 size += 2;
4889 break;
4890
4891 case ARM_TYPE:
4892 case THUMB32_TYPE:
4893 case DATA_TYPE:
4894 size += 4;
4895 break;
4896
4897 default:
4898 BFD_FAIL ();
4899 return 0;
4900 }
4901 }
4902
4903 return size;
4904 }
4905
4906 /* As above, but don't actually build the stub. Just bump offset so
4907 we know stub section sizes. */
4908
4909 static bfd_boolean
4910 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4911 void *in_arg ATTRIBUTE_UNUSED)
4912 {
4913 struct elf32_arm_stub_hash_entry *stub_entry;
4914 const insn_sequence *template_sequence;
4915 int template_size, size;
4916
4917 /* Massage our args to the form they really have. */
4918 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4919
4920 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4921 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4922
4923 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4924 &template_size);
4925
4926 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4927 if (stub_entry->stub_template_size)
4928 {
4929 stub_entry->stub_size = size;
4930 stub_entry->stub_template = template_sequence;
4931 stub_entry->stub_template_size = template_size;
4932 }
4933
4934 /* Already accounted for. */
4935 if (stub_entry->stub_offset != (bfd_vma) -1)
4936 return TRUE;
4937
4938 size = (size + 7) & ~7;
4939 stub_entry->stub_sec->size += size;
4940
4941 return TRUE;
4942 }
4943
4944 /* External entry points for sizing and building linker stubs. */
4945
4946 /* Set up various things so that we can make a list of input sections
4947 for each output section included in the link. Returns -1 on error,
4948 0 when no stubs will be needed, and 1 on success. */
4949
4950 int
4951 elf32_arm_setup_section_lists (bfd *output_bfd,
4952 struct bfd_link_info *info)
4953 {
4954 bfd *input_bfd;
4955 unsigned int bfd_count;
4956 unsigned int top_id, top_index;
4957 asection *section;
4958 asection **input_list, **list;
4959 bfd_size_type amt;
4960 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4961
4962 if (htab == NULL)
4963 return 0;
4964 if (! is_elf_hash_table (htab))
4965 return 0;
4966
4967 /* Count the number of input BFDs and find the top input section id. */
4968 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4969 input_bfd != NULL;
4970 input_bfd = input_bfd->link.next)
4971 {
4972 bfd_count += 1;
4973 for (section = input_bfd->sections;
4974 section != NULL;
4975 section = section->next)
4976 {
4977 if (top_id < section->id)
4978 top_id = section->id;
4979 }
4980 }
4981 htab->bfd_count = bfd_count;
4982
4983 amt = sizeof (struct map_stub) * (top_id + 1);
4984 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4985 if (htab->stub_group == NULL)
4986 return -1;
4987 htab->top_id = top_id;
4988
4989 /* We can't use output_bfd->section_count here to find the top output
4990 section index as some sections may have been removed, and
4991 _bfd_strip_section_from_output doesn't renumber the indices. */
4992 for (section = output_bfd->sections, top_index = 0;
4993 section != NULL;
4994 section = section->next)
4995 {
4996 if (top_index < section->index)
4997 top_index = section->index;
4998 }
4999
5000 htab->top_index = top_index;
5001 amt = sizeof (asection *) * (top_index + 1);
5002 input_list = (asection **) bfd_malloc (amt);
5003 htab->input_list = input_list;
5004 if (input_list == NULL)
5005 return -1;
5006
5007 /* For sections we aren't interested in, mark their entries with a
5008 value we can check later. */
5009 list = input_list + top_index;
5010 do
5011 *list = bfd_abs_section_ptr;
5012 while (list-- != input_list);
5013
5014 for (section = output_bfd->sections;
5015 section != NULL;
5016 section = section->next)
5017 {
5018 if ((section->flags & SEC_CODE) != 0)
5019 input_list[section->index] = NULL;
5020 }
5021
5022 return 1;
5023 }
5024
5025 /* The linker repeatedly calls this function for each input section,
5026 in the order that input sections are linked into output sections.
5027 Build lists of input sections to determine groupings between which
5028 we may insert linker stubs. */
5029
5030 void
5031 elf32_arm_next_input_section (struct bfd_link_info *info,
5032 asection *isec)
5033 {
5034 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5035
5036 if (htab == NULL)
5037 return;
5038
5039 if (isec->output_section->index <= htab->top_index)
5040 {
5041 asection **list = htab->input_list + isec->output_section->index;
5042
5043 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5044 {
5045 /* Steal the link_sec pointer for our list. */
5046 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5047 /* This happens to make the list in reverse order,
5048 which we reverse later. */
5049 PREV_SEC (isec) = *list;
5050 *list = isec;
5051 }
5052 }
5053 }
5054
5055 /* See whether we can group stub sections together. Grouping stub
5056 sections may result in fewer stubs. More importantly, we need to
5057 put all .init* and .fini* stubs at the end of the .init or
5058 .fini output sections respectively, because glibc splits the
5059 _init and _fini functions into multiple parts. Putting a stub in
5060 the middle of a function is not a good idea. */
5061
5062 static void
5063 group_sections (struct elf32_arm_link_hash_table *htab,
5064 bfd_size_type stub_group_size,
5065 bfd_boolean stubs_always_after_branch)
5066 {
5067 asection **list = htab->input_list;
5068
5069 do
5070 {
5071 asection *tail = *list;
5072 asection *head;
5073
5074 if (tail == bfd_abs_section_ptr)
5075 continue;
5076
5077 /* Reverse the list: we must avoid placing stubs at the
5078 beginning of the section because the beginning of the text
5079 section may be required for an interrupt vector in bare metal
5080 code. */
5081 #define NEXT_SEC PREV_SEC
5082 head = NULL;
5083 while (tail != NULL)
5084 {
5085 /* Pop from tail. */
5086 asection *item = tail;
5087 tail = PREV_SEC (item);
5088
5089 /* Push on head. */
5090 NEXT_SEC (item) = head;
5091 head = item;
5092 }
5093
5094 while (head != NULL)
5095 {
5096 asection *curr;
5097 asection *next;
5098 bfd_vma stub_group_start = head->output_offset;
5099 bfd_vma end_of_next;
5100
5101 curr = head;
5102 while (NEXT_SEC (curr) != NULL)
5103 {
5104 next = NEXT_SEC (curr);
5105 end_of_next = next->output_offset + next->size;
5106 if (end_of_next - stub_group_start >= stub_group_size)
5107 /* End of NEXT is too far from start, so stop. */
5108 break;
5109 /* Add NEXT to the group. */
5110 curr = next;
5111 }
5112
5113 /* OK, the size from the start to the start of CURR is less
5114 than stub_group_size and thus can be handled by one stub
5115 section. (Or the head section is itself larger than
5116 stub_group_size, in which case we may be toast.)
5117 We should really be keeping track of the total size of
5118 stubs added here, as stubs contribute to the final output
5119 section size. */
5120 do
5121 {
5122 next = NEXT_SEC (head);
5123 /* Set up this stub group. */
5124 htab->stub_group[head->id].link_sec = curr;
5125 }
5126 while (head != curr && (head = next) != NULL);
5127
5128 /* But wait, there's more! Input sections up to stub_group_size
5129 bytes after the stub section can be handled by it too. */
5130 if (!stubs_always_after_branch)
5131 {
5132 stub_group_start = curr->output_offset + curr->size;
5133
5134 while (next != NULL)
5135 {
5136 end_of_next = next->output_offset + next->size;
5137 if (end_of_next - stub_group_start >= stub_group_size)
5138 /* End of NEXT is too far from stubs, so stop. */
5139 break;
5140 /* Add NEXT to the stub group. */
5141 head = next;
5142 next = NEXT_SEC (head);
5143 htab->stub_group[head->id].link_sec = curr;
5144 }
5145 }
5146 head = next;
5147 }
5148 }
5149 while (list++ != htab->input_list + htab->top_index);
5150
5151 free (htab->input_list);
5152 #undef PREV_SEC
5153 #undef NEXT_SEC
5154 }
5155
5156 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5157 erratum fix. */
5158
5159 static int
5160 a8_reloc_compare (const void *a, const void *b)
5161 {
5162 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5163 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5164
5165 if (ra->from < rb->from)
5166 return -1;
5167 else if (ra->from > rb->from)
5168 return 1;
5169 else
5170 return 0;
5171 }
5172
5173 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5174 const char *, char **);
5175
5176 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5177 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5178 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5179 otherwise. */
5180
5181 static bfd_boolean
5182 cortex_a8_erratum_scan (bfd *input_bfd,
5183 struct bfd_link_info *info,
5184 struct a8_erratum_fix **a8_fixes_p,
5185 unsigned int *num_a8_fixes_p,
5186 unsigned int *a8_fix_table_size_p,
5187 struct a8_erratum_reloc *a8_relocs,
5188 unsigned int num_a8_relocs,
5189 unsigned prev_num_a8_fixes,
5190 bfd_boolean *stub_changed_p)
5191 {
5192 asection *section;
5193 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5194 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5195 unsigned int num_a8_fixes = *num_a8_fixes_p;
5196 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5197
5198 if (htab == NULL)
5199 return FALSE;
5200
5201 for (section = input_bfd->sections;
5202 section != NULL;
5203 section = section->next)
5204 {
5205 bfd_byte *contents = NULL;
5206 struct _arm_elf_section_data *sec_data;
5207 unsigned int span;
5208 bfd_vma base_vma;
5209
5210 if (elf_section_type (section) != SHT_PROGBITS
5211 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5212 || (section->flags & SEC_EXCLUDE) != 0
5213 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5214 || (section->output_section == bfd_abs_section_ptr))
5215 continue;
5216
5217 base_vma = section->output_section->vma + section->output_offset;
5218
5219 if (elf_section_data (section)->this_hdr.contents != NULL)
5220 contents = elf_section_data (section)->this_hdr.contents;
5221 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5222 return TRUE;
5223
5224 sec_data = elf32_arm_section_data (section);
5225
5226 for (span = 0; span < sec_data->mapcount; span++)
5227 {
5228 unsigned int span_start = sec_data->map[span].vma;
5229 unsigned int span_end = (span == sec_data->mapcount - 1)
5230 ? section->size : sec_data->map[span + 1].vma;
5231 unsigned int i;
5232 char span_type = sec_data->map[span].type;
5233 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5234
5235 if (span_type != 't')
5236 continue;
5237
5238 /* Span is entirely within a single 4KB region: skip scanning. */
5239 if (((base_vma + span_start) & ~0xfff)
5240 == ((base_vma + span_end) & ~0xfff))
5241 continue;
5242
5243 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5244
5245 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5246 * The branch target is in the same 4KB region as the
5247 first half of the branch.
5248 * The instruction before the branch is a 32-bit
5249 length non-branch instruction. */
5250 for (i = span_start; i < span_end;)
5251 {
5252 unsigned int insn = bfd_getl16 (&contents[i]);
5253 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5254 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5255
5256 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5257 insn_32bit = TRUE;
5258
5259 if (insn_32bit)
5260 {
5261 /* Load the rest of the insn (in manual-friendly order). */
5262 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5263
5264 /* Encoding T4: B<c>.W. */
5265 is_b = (insn & 0xf800d000) == 0xf0009000;
5266 /* Encoding T1: BL<c>.W. */
5267 is_bl = (insn & 0xf800d000) == 0xf000d000;
5268 /* Encoding T2: BLX<c>.W. */
5269 is_blx = (insn & 0xf800d000) == 0xf000c000;
5270 /* Encoding T3: B<c>.W (not permitted in IT block). */
5271 is_bcc = (insn & 0xf800d000) == 0xf0008000
5272 && (insn & 0x07f00000) != 0x03800000;
5273 }
5274
5275 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5276
5277 if (((base_vma + i) & 0xfff) == 0xffe
5278 && insn_32bit
5279 && is_32bit_branch
5280 && last_was_32bit
5281 && ! last_was_branch)
5282 {
5283 bfd_signed_vma offset = 0;
5284 bfd_boolean force_target_arm = FALSE;
5285 bfd_boolean force_target_thumb = FALSE;
5286 bfd_vma target;
5287 enum elf32_arm_stub_type stub_type = arm_stub_none;
5288 struct a8_erratum_reloc key, *found;
5289 bfd_boolean use_plt = FALSE;
5290
5291 key.from = base_vma + i;
5292 found = (struct a8_erratum_reloc *)
5293 bsearch (&key, a8_relocs, num_a8_relocs,
5294 sizeof (struct a8_erratum_reloc),
5295 &a8_reloc_compare);
5296
5297 if (found)
5298 {
5299 char *error_message = NULL;
5300 struct elf_link_hash_entry *entry;
5301
5302 /* We don't care about the error returned from this
5303 function, only if there is glue or not. */
5304 entry = find_thumb_glue (info, found->sym_name,
5305 &error_message);
5306
5307 if (entry)
5308 found->non_a8_stub = TRUE;
5309
5310 /* Keep a simpler condition, for the sake of clarity. */
5311 if (htab->root.splt != NULL && found->hash != NULL
5312 && found->hash->root.plt.offset != (bfd_vma) -1)
5313 use_plt = TRUE;
5314
5315 if (found->r_type == R_ARM_THM_CALL)
5316 {
5317 if (found->branch_type == ST_BRANCH_TO_ARM
5318 || use_plt)
5319 force_target_arm = TRUE;
5320 else
5321 force_target_thumb = TRUE;
5322 }
5323 }
5324
5325 /* Check if we have an offending branch instruction. */
5326
5327 if (found && found->non_a8_stub)
5328 /* We've already made a stub for this instruction, e.g.
5329 it's a long branch or a Thumb->ARM stub. Assume that
5330 stub will suffice to work around the A8 erratum (see
5331 setting of always_after_branch above). */
5332 ;
5333 else if (is_bcc)
5334 {
5335 offset = (insn & 0x7ff) << 1;
5336 offset |= (insn & 0x3f0000) >> 4;
5337 offset |= (insn & 0x2000) ? 0x40000 : 0;
5338 offset |= (insn & 0x800) ? 0x80000 : 0;
5339 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5340 if (offset & 0x100000)
5341 offset |= ~ ((bfd_signed_vma) 0xfffff);
5342 stub_type = arm_stub_a8_veneer_b_cond;
5343 }
5344 else if (is_b || is_bl || is_blx)
5345 {
5346 int s = (insn & 0x4000000) != 0;
5347 int j1 = (insn & 0x2000) != 0;
5348 int j2 = (insn & 0x800) != 0;
5349 int i1 = !(j1 ^ s);
5350 int i2 = !(j2 ^ s);
5351
5352 offset = (insn & 0x7ff) << 1;
5353 offset |= (insn & 0x3ff0000) >> 4;
5354 offset |= i2 << 22;
5355 offset |= i1 << 23;
5356 offset |= s << 24;
5357 if (offset & 0x1000000)
5358 offset |= ~ ((bfd_signed_vma) 0xffffff);
5359
5360 if (is_blx)
5361 offset &= ~ ((bfd_signed_vma) 3);
5362
5363 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5364 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5365 }
5366
5367 if (stub_type != arm_stub_none)
5368 {
5369 bfd_vma pc_for_insn = base_vma + i + 4;
5370
5371 /* The original instruction is a BL, but the target is
5372 an ARM instruction. If we were not making a stub,
5373 the BL would have been converted to a BLX. Use the
5374 BLX stub instead in that case. */
5375 if (htab->use_blx && force_target_arm
5376 && stub_type == arm_stub_a8_veneer_bl)
5377 {
5378 stub_type = arm_stub_a8_veneer_blx;
5379 is_blx = TRUE;
5380 is_bl = FALSE;
5381 }
5382 /* Conversely, if the original instruction was
5383 BLX but the target is Thumb mode, use the BL
5384 stub. */
5385 else if (force_target_thumb
5386 && stub_type == arm_stub_a8_veneer_blx)
5387 {
5388 stub_type = arm_stub_a8_veneer_bl;
5389 is_blx = FALSE;
5390 is_bl = TRUE;
5391 }
5392
5393 if (is_blx)
5394 pc_for_insn &= ~ ((bfd_vma) 3);
5395
5396 /* If we found a relocation, use the proper destination,
5397 not the offset in the (unrelocated) instruction.
5398 Note this is always done if we switched the stub type
5399 above. */
5400 if (found)
5401 offset =
5402 (bfd_signed_vma) (found->destination - pc_for_insn);
5403
5404 /* If the stub will use a Thumb-mode branch to a
5405 PLT target, redirect it to the preceding Thumb
5406 entry point. */
5407 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5408 offset -= PLT_THUMB_STUB_SIZE;
5409
5410 target = pc_for_insn + offset;
5411
5412 /* The BLX stub is ARM-mode code. Adjust the offset to
5413 take the different PC value (+8 instead of +4) into
5414 account. */
5415 if (stub_type == arm_stub_a8_veneer_blx)
5416 offset += 4;
5417
5418 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5419 {
5420 char *stub_name = NULL;
5421
5422 if (num_a8_fixes == a8_fix_table_size)
5423 {
5424 a8_fix_table_size *= 2;
5425 a8_fixes = (struct a8_erratum_fix *)
5426 bfd_realloc (a8_fixes,
5427 sizeof (struct a8_erratum_fix)
5428 * a8_fix_table_size);
5429 }
5430
5431 if (num_a8_fixes < prev_num_a8_fixes)
5432 {
5433 /* If we're doing a subsequent scan,
5434 check if we've found the same fix as
5435 before, and try and reuse the stub
5436 name. */
5437 stub_name = a8_fixes[num_a8_fixes].stub_name;
5438 if ((a8_fixes[num_a8_fixes].section != section)
5439 || (a8_fixes[num_a8_fixes].offset != i))
5440 {
5441 free (stub_name);
5442 stub_name = NULL;
5443 *stub_changed_p = TRUE;
5444 }
5445 }
5446
5447 if (!stub_name)
5448 {
5449 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5450 if (stub_name != NULL)
5451 sprintf (stub_name, "%x:%x", section->id, i);
5452 }
5453
5454 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5455 a8_fixes[num_a8_fixes].section = section;
5456 a8_fixes[num_a8_fixes].offset = i;
5457 a8_fixes[num_a8_fixes].target_offset =
5458 target - base_vma;
5459 a8_fixes[num_a8_fixes].orig_insn = insn;
5460 a8_fixes[num_a8_fixes].stub_name = stub_name;
5461 a8_fixes[num_a8_fixes].stub_type = stub_type;
5462 a8_fixes[num_a8_fixes].branch_type =
5463 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5464
5465 num_a8_fixes++;
5466 }
5467 }
5468 }
5469
5470 i += insn_32bit ? 4 : 2;
5471 last_was_32bit = insn_32bit;
5472 last_was_branch = is_32bit_branch;
5473 }
5474 }
5475
5476 if (elf_section_data (section)->this_hdr.contents == NULL)
5477 free (contents);
5478 }
5479
5480 *a8_fixes_p = a8_fixes;
5481 *num_a8_fixes_p = num_a8_fixes;
5482 *a8_fix_table_size_p = a8_fix_table_size;
5483
5484 return FALSE;
5485 }
5486
5487 /* Create or update a stub entry depending on whether the stub can already be
5488 found in HTAB. The stub is identified by:
5489 - its type STUB_TYPE
5490 - its source branch (note that several can share the same stub) whose
5491 section and relocation (if any) are given by SECTION and IRELA
5492 respectively
5493 - its target symbol whose input section, hash, name, value and branch type
5494 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5495 respectively
5496
5497 If found, the value of the stub's target symbol is updated from SYM_VALUE
5498 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5499 TRUE and the stub entry is initialized.
5500
5501 Returns the stub that was created or updated, or NULL if an error
5502 occurred. */
5503
5504 static struct elf32_arm_stub_hash_entry *
5505 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5506 enum elf32_arm_stub_type stub_type, asection *section,
5507 Elf_Internal_Rela *irela, asection *sym_sec,
5508 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5509 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5510 bfd_boolean *new_stub)
5511 {
5512 const asection *id_sec;
5513 char *stub_name;
5514 struct elf32_arm_stub_hash_entry *stub_entry;
5515 unsigned int r_type;
5516 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5517
5518 BFD_ASSERT (stub_type != arm_stub_none);
5519 *new_stub = FALSE;
5520
5521 if (sym_claimed)
5522 stub_name = sym_name;
5523 else
5524 {
5525 BFD_ASSERT (irela);
5526 BFD_ASSERT (section);
5527 BFD_ASSERT (section->id <= htab->top_id);
5528
5529 /* Support for grouping stub sections. */
5530 id_sec = htab->stub_group[section->id].link_sec;
5531
5532 /* Get the name of this stub. */
5533 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5534 stub_type);
5535 if (!stub_name)
5536 return NULL;
5537 }
5538
5539 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5540 FALSE);
5541 /* The proper stub has already been created, just update its value. */
5542 if (stub_entry != NULL)
5543 {
5544 if (!sym_claimed)
5545 free (stub_name);
5546 stub_entry->target_value = sym_value;
5547 return stub_entry;
5548 }
5549
5550 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5551 if (stub_entry == NULL)
5552 {
5553 if (!sym_claimed)
5554 free (stub_name);
5555 return NULL;
5556 }
5557
5558 stub_entry->target_value = sym_value;
5559 stub_entry->target_section = sym_sec;
5560 stub_entry->stub_type = stub_type;
5561 stub_entry->h = hash;
5562 stub_entry->branch_type = branch_type;
5563
5564 if (sym_claimed)
5565 stub_entry->output_name = sym_name;
5566 else
5567 {
5568 if (sym_name == NULL)
5569 sym_name = "unnamed";
5570 stub_entry->output_name = (char *)
5571 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5572 + strlen (sym_name));
5573 if (stub_entry->output_name == NULL)
5574 {
5575 free (stub_name);
5576 return NULL;
5577 }
5578
5579 /* For historical reasons, use the existing names for ARM-to-Thumb and
5580 Thumb-to-ARM stubs. */
5581 r_type = ELF32_R_TYPE (irela->r_info);
5582 if ((r_type == (unsigned int) R_ARM_THM_CALL
5583 || r_type == (unsigned int) R_ARM_THM_JUMP24
5584 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5585 && branch_type == ST_BRANCH_TO_ARM)
5586 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5587 else if ((r_type == (unsigned int) R_ARM_CALL
5588 || r_type == (unsigned int) R_ARM_JUMP24)
5589 && branch_type == ST_BRANCH_TO_THUMB)
5590 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5591 else
5592 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5593 }
5594
5595 *new_stub = TRUE;
5596 return stub_entry;
5597 }
5598
5599 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5600 gateway veneer to transition from non secure to secure state and create them
5601 accordingly.
5602
5603 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5604 defines the conditions that govern Secure Gateway veneer creation for a
5605 given symbol <SYM> as follows:
5606 - it has function type
5607 - it has non local binding
5608 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5609 same type, binding and value as <SYM> (called normal symbol).
5610 An entry function can handle secure state transition itself in which case
5611 its special symbol would have a different value from the normal symbol.
5612
5613 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5614 entry mapping while HTAB gives the name to hash entry mapping.
5615 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5616 created.
5617
5618 The return value gives whether a stub failed to be allocated. */
5619
5620 static bfd_boolean
5621 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5622 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5623 int *cmse_stub_created)
5624 {
5625 const struct elf_backend_data *bed;
5626 Elf_Internal_Shdr *symtab_hdr;
5627 unsigned i, j, sym_count, ext_start;
5628 Elf_Internal_Sym *cmse_sym, *local_syms;
5629 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5630 enum arm_st_branch_type branch_type;
5631 char *sym_name, *lsym_name;
5632 bfd_vma sym_value;
5633 asection *section;
5634 struct elf32_arm_stub_hash_entry *stub_entry;
5635 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5636
5637 bed = get_elf_backend_data (input_bfd);
5638 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5639 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5640 ext_start = symtab_hdr->sh_info;
5641 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5642 && out_attr[Tag_CPU_arch_profile].i == 'M');
5643
5644 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5645 if (local_syms == NULL)
5646 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5647 symtab_hdr->sh_info, 0, NULL, NULL,
5648 NULL);
5649 if (symtab_hdr->sh_info && local_syms == NULL)
5650 return FALSE;
5651
5652 /* Scan symbols. */
5653 for (i = 0; i < sym_count; i++)
5654 {
5655 cmse_invalid = FALSE;
5656
5657 if (i < ext_start)
5658 {
5659 cmse_sym = &local_syms[i];
5660 /* Not a special symbol. */
5661 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5662 continue;
5663 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5664 symtab_hdr->sh_link,
5665 cmse_sym->st_name);
5666 /* Special symbol with local binding. */
5667 cmse_invalid = TRUE;
5668 }
5669 else
5670 {
5671 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5672 sym_name = (char *) cmse_hash->root.root.root.string;
5673
5674 /* Not a special symbol. */
5675 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5676 continue;
5677
5678 /* Special symbol has incorrect binding or type. */
5679 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5680 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5681 || cmse_hash->root.type != STT_FUNC)
5682 cmse_invalid = TRUE;
5683 }
5684
5685 if (!is_v8m)
5686 {
5687 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5688 "ARMv8-M architecture or later."),
5689 input_bfd, sym_name);
5690 is_v8m = TRUE; /* Avoid multiple warning. */
5691 ret = FALSE;
5692 }
5693
5694 if (cmse_invalid)
5695 {
5696 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5697 input_bfd, sym_name);
5698 _bfd_error_handler (_("It must be a global or weak function "
5699 "symbol."));
5700 ret = FALSE;
5701 if (i < ext_start)
5702 continue;
5703 }
5704
5705 sym_name += strlen (CMSE_PREFIX);
5706 hash = (struct elf32_arm_link_hash_entry *)
5707 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5708
5709 /* No associated normal symbol or it is neither global nor weak. */
5710 if (!hash
5711 || (hash->root.root.type != bfd_link_hash_defined
5712 && hash->root.root.type != bfd_link_hash_defweak)
5713 || hash->root.type != STT_FUNC)
5714 {
5715 /* Initialize here to avoid warning about use of possibly
5716 uninitialized variable. */
5717 j = 0;
5718
5719 if (!hash)
5720 {
5721 /* Searching for a normal symbol with local binding. */
5722 for (; j < ext_start; j++)
5723 {
5724 lsym_name =
5725 bfd_elf_string_from_elf_section (input_bfd,
5726 symtab_hdr->sh_link,
5727 local_syms[j].st_name);
5728 if (!strcmp (sym_name, lsym_name))
5729 break;
5730 }
5731 }
5732
5733 if (hash || j < ext_start)
5734 {
5735 _bfd_error_handler
5736 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5737 _bfd_error_handler
5738 (_("It must be a global or weak function symbol."));
5739 }
5740 else
5741 _bfd_error_handler
5742 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5743 ret = FALSE;
5744 if (!hash)
5745 continue;
5746 }
5747
5748 sym_value = hash->root.root.u.def.value;
5749 section = hash->root.root.u.def.section;
5750
5751 if (cmse_hash->root.root.u.def.section != section)
5752 {
5753 _bfd_error_handler
5754 (_("%B: `%s' and its special symbol are in different sections."),
5755 input_bfd, sym_name);
5756 ret = FALSE;
5757 }
5758 if (cmse_hash->root.root.u.def.value != sym_value)
5759 continue; /* Ignore: could be an entry function starting with SG. */
5760
5761 /* If this section is a link-once section that will be discarded, then
5762 don't create any stubs. */
5763 if (section->output_section == NULL)
5764 {
5765 _bfd_error_handler
5766 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5767 continue;
5768 }
5769
5770 if (hash->root.size == 0)
5771 {
5772 _bfd_error_handler
5773 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5774 ret = FALSE;
5775 }
5776
5777 if (!ret)
5778 continue;
5779 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5780 stub_entry
5781 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5782 NULL, NULL, section, hash, sym_name,
5783 sym_value, branch_type, &new_stub);
5784
5785 if (stub_entry == NULL)
5786 ret = FALSE;
5787 else
5788 {
5789 BFD_ASSERT (new_stub);
5790 (*cmse_stub_created)++;
5791 }
5792 }
5793
5794 if (!symtab_hdr->contents)
5795 free (local_syms);
5796 return ret;
5797 }
5798
5799 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5800 code entry function, ie can be called from non secure code without using a
5801 veneer. */
5802
5803 static bfd_boolean
5804 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5805 {
5806 bfd_byte contents[4];
5807 uint32_t first_insn;
5808 asection *section;
5809 file_ptr offset;
5810 bfd *abfd;
5811
5812 /* Defined symbol of function type. */
5813 if (hash->root.root.type != bfd_link_hash_defined
5814 && hash->root.root.type != bfd_link_hash_defweak)
5815 return FALSE;
5816 if (hash->root.type != STT_FUNC)
5817 return FALSE;
5818
5819 /* Read first instruction. */
5820 section = hash->root.root.u.def.section;
5821 abfd = section->owner;
5822 offset = hash->root.root.u.def.value - section->vma;
5823 if (!bfd_get_section_contents (abfd, section, contents, offset,
5824 sizeof (contents)))
5825 return FALSE;
5826
5827 first_insn = bfd_get_32 (abfd, contents);
5828
5829 /* Starts by SG instruction. */
5830 return first_insn == 0xe97fe97f;
5831 }
5832
5833 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5834 secure gateway veneers (ie. the veneers was not in the input import library)
5835 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5836
5837 static bfd_boolean
5838 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5839 {
5840 struct elf32_arm_stub_hash_entry *stub_entry;
5841 struct bfd_link_info *info;
5842
5843 /* Massage our args to the form they really have. */
5844 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5845 info = (struct bfd_link_info *) gen_info;
5846
5847 if (info->out_implib_bfd)
5848 return TRUE;
5849
5850 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5851 return TRUE;
5852
5853 if (stub_entry->stub_offset == (bfd_vma) -1)
5854 _bfd_error_handler (" %s", stub_entry->output_name);
5855
5856 return TRUE;
5857 }
5858
5859 /* Set offset of each secure gateway veneers so that its address remain
5860 identical to the one in the input import library referred by
5861 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5862 (present in input import library but absent from the executable being
5863 linked) or if new veneers appeared and there is no output import library
5864 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5865 number of secure gateway veneers found in the input import library.
5866
5867 The function returns whether an error occurred. If no error occurred,
5868 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5869 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5870 veneer observed set for new veneers to be layed out after. */
5871
5872 static bfd_boolean
5873 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5874 struct elf32_arm_link_hash_table *htab,
5875 int *cmse_stub_created)
5876 {
5877 long symsize;
5878 char *sym_name;
5879 flagword flags;
5880 long i, symcount;
5881 bfd *in_implib_bfd;
5882 asection *stub_out_sec;
5883 bfd_boolean ret = TRUE;
5884 Elf_Internal_Sym *intsym;
5885 const char *out_sec_name;
5886 bfd_size_type cmse_stub_size;
5887 asymbol **sympp = NULL, *sym;
5888 struct elf32_arm_link_hash_entry *hash;
5889 const insn_sequence *cmse_stub_template;
5890 struct elf32_arm_stub_hash_entry *stub_entry;
5891 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5892 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5893 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5894
5895 /* No input secure gateway import library. */
5896 if (!htab->in_implib_bfd)
5897 return TRUE;
5898
5899 in_implib_bfd = htab->in_implib_bfd;
5900 if (!htab->cmse_implib)
5901 {
5902 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5903 "Gateway import libraries."), in_implib_bfd);
5904 return FALSE;
5905 }
5906
5907 /* Get symbol table size. */
5908 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5909 if (symsize < 0)
5910 return FALSE;
5911
5912 /* Read in the input secure gateway import library's symbol table. */
5913 sympp = (asymbol **) xmalloc (symsize);
5914 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5915 if (symcount < 0)
5916 {
5917 ret = FALSE;
5918 goto free_sym_buf;
5919 }
5920
5921 htab->new_cmse_stub_offset = 0;
5922 cmse_stub_size =
5923 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5924 &cmse_stub_template,
5925 &cmse_stub_template_size);
5926 out_sec_name =
5927 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5928 stub_out_sec =
5929 bfd_get_section_by_name (htab->obfd, out_sec_name);
5930 if (stub_out_sec != NULL)
5931 cmse_stub_sec_vma = stub_out_sec->vma;
5932
5933 /* Set addresses of veneers mentionned in input secure gateway import
5934 library's symbol table. */
5935 for (i = 0; i < symcount; i++)
5936 {
5937 sym = sympp[i];
5938 flags = sym->flags;
5939 sym_name = (char *) bfd_asymbol_name (sym);
5940 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5941
5942 if (sym->section != bfd_abs_section_ptr
5943 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5944 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5945 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5946 != ST_BRANCH_TO_THUMB))
5947 {
5948 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5949 in_implib_bfd, sym_name);
5950 _bfd_error_handler (_("Symbol should be absolute, global and "
5951 "refer to Thumb functions."));
5952 ret = FALSE;
5953 continue;
5954 }
5955
5956 veneer_value = bfd_asymbol_value (sym);
5957 stub_offset = veneer_value - cmse_stub_sec_vma;
5958 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5959 FALSE, FALSE);
5960 hash = (struct elf32_arm_link_hash_entry *)
5961 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5962
5963 /* Stub entry should have been created by cmse_scan or the symbol be of
5964 a secure function callable from non secure code. */
5965 if (!stub_entry && !hash)
5966 {
5967 bfd_boolean new_stub;
5968
5969 _bfd_error_handler
5970 (_("Entry function `%s' disappeared from secure code."), sym_name);
5971 hash = (struct elf32_arm_link_hash_entry *)
5972 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5973 stub_entry
5974 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5975 NULL, NULL, bfd_abs_section_ptr, hash,
5976 sym_name, veneer_value,
5977 ST_BRANCH_TO_THUMB, &new_stub);
5978 if (stub_entry == NULL)
5979 ret = FALSE;
5980 else
5981 {
5982 BFD_ASSERT (new_stub);
5983 new_cmse_stubs_created++;
5984 (*cmse_stub_created)++;
5985 }
5986 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5987 stub_entry->stub_offset = stub_offset;
5988 }
5989 /* Symbol found is not callable from non secure code. */
5990 else if (!stub_entry)
5991 {
5992 if (!cmse_entry_fct_p (hash))
5993 {
5994 _bfd_error_handler (_("`%s' refers to a non entry function."),
5995 sym_name);
5996 ret = FALSE;
5997 }
5998 continue;
5999 }
6000 else
6001 {
6002 /* Only stubs for SG veneers should have been created. */
6003 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6004
6005 /* Check visibility hasn't changed. */
6006 if (!!(flags & BSF_GLOBAL)
6007 != (hash->root.root.type == bfd_link_hash_defined))
6008 _bfd_error_handler
6009 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6010 sym_name);
6011
6012 stub_entry->stub_offset = stub_offset;
6013 }
6014
6015 /* Size should match that of a SG veneer. */
6016 if (intsym->st_size != cmse_stub_size)
6017 {
6018 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6019 in_implib_bfd, sym_name);
6020 ret = FALSE;
6021 }
6022
6023 /* Previous veneer address is before current SG veneer section. */
6024 if (veneer_value < cmse_stub_sec_vma)
6025 {
6026 /* Avoid offset underflow. */
6027 if (stub_entry)
6028 stub_entry->stub_offset = 0;
6029 stub_offset = 0;
6030 ret = FALSE;
6031 }
6032
6033 /* Complain if stub offset not a multiple of stub size. */
6034 if (stub_offset % cmse_stub_size)
6035 {
6036 _bfd_error_handler
6037 (_("Offset of veneer for entry function `%s' not a multiple of "
6038 "its size."), sym_name);
6039 ret = FALSE;
6040 }
6041
6042 if (!ret)
6043 continue;
6044
6045 new_cmse_stubs_created--;
6046 if (veneer_value < cmse_stub_array_start)
6047 cmse_stub_array_start = veneer_value;
6048 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6049 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6050 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6051 }
6052
6053 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6054 {
6055 BFD_ASSERT (new_cmse_stubs_created > 0);
6056 _bfd_error_handler
6057 (_("new entry function(s) introduced but no output import library "
6058 "specified:"));
6059 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6060 }
6061
6062 if (cmse_stub_array_start != cmse_stub_sec_vma)
6063 {
6064 _bfd_error_handler
6065 (_("Start address of `%s' is different from previous link."),
6066 out_sec_name);
6067 ret = FALSE;
6068 }
6069
6070 free_sym_buf:
6071 free (sympp);
6072 return ret;
6073 }
6074
6075 /* Determine and set the size of the stub section for a final link.
6076
6077 The basic idea here is to examine all the relocations looking for
6078 PC-relative calls to a target that is unreachable with a "bl"
6079 instruction. */
6080
6081 bfd_boolean
6082 elf32_arm_size_stubs (bfd *output_bfd,
6083 bfd *stub_bfd,
6084 struct bfd_link_info *info,
6085 bfd_signed_vma group_size,
6086 asection * (*add_stub_section) (const char *, asection *,
6087 asection *,
6088 unsigned int),
6089 void (*layout_sections_again) (void))
6090 {
6091 bfd_boolean ret = TRUE;
6092 obj_attribute *out_attr;
6093 int cmse_stub_created = 0;
6094 bfd_size_type stub_group_size;
6095 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6096 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6097 struct a8_erratum_fix *a8_fixes = NULL;
6098 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6099 struct a8_erratum_reloc *a8_relocs = NULL;
6100 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6101
6102 if (htab == NULL)
6103 return FALSE;
6104
6105 if (htab->fix_cortex_a8)
6106 {
6107 a8_fixes = (struct a8_erratum_fix *)
6108 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6109 a8_relocs = (struct a8_erratum_reloc *)
6110 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6111 }
6112
6113 /* Propagate mach to stub bfd, because it may not have been
6114 finalized when we created stub_bfd. */
6115 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6116 bfd_get_mach (output_bfd));
6117
6118 /* Stash our params away. */
6119 htab->stub_bfd = stub_bfd;
6120 htab->add_stub_section = add_stub_section;
6121 htab->layout_sections_again = layout_sections_again;
6122 stubs_always_after_branch = group_size < 0;
6123
6124 out_attr = elf_known_obj_attributes_proc (output_bfd);
6125 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6126
6127 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6128 as the first half of a 32-bit branch straddling two 4K pages. This is a
6129 crude way of enforcing that. */
6130 if (htab->fix_cortex_a8)
6131 stubs_always_after_branch = 1;
6132
6133 if (group_size < 0)
6134 stub_group_size = -group_size;
6135 else
6136 stub_group_size = group_size;
6137
6138 if (stub_group_size == 1)
6139 {
6140 /* Default values. */
6141 /* Thumb branch range is +-4MB has to be used as the default
6142 maximum size (a given section can contain both ARM and Thumb
6143 code, so the worst case has to be taken into account).
6144
6145 This value is 24K less than that, which allows for 2025
6146 12-byte stubs. If we exceed that, then we will fail to link.
6147 The user will have to relink with an explicit group size
6148 option. */
6149 stub_group_size = 4170000;
6150 }
6151
6152 group_sections (htab, stub_group_size, stubs_always_after_branch);
6153
6154 /* If we're applying the cortex A8 fix, we need to determine the
6155 program header size now, because we cannot change it later --
6156 that could alter section placements. Notice the A8 erratum fix
6157 ends up requiring the section addresses to remain unchanged
6158 modulo the page size. That's something we cannot represent
6159 inside BFD, and we don't want to force the section alignment to
6160 be the page size. */
6161 if (htab->fix_cortex_a8)
6162 (*htab->layout_sections_again) ();
6163
6164 while (1)
6165 {
6166 bfd *input_bfd;
6167 unsigned int bfd_indx;
6168 asection *stub_sec;
6169 enum elf32_arm_stub_type stub_type;
6170 bfd_boolean stub_changed = FALSE;
6171 unsigned prev_num_a8_fixes = num_a8_fixes;
6172
6173 num_a8_fixes = 0;
6174 for (input_bfd = info->input_bfds, bfd_indx = 0;
6175 input_bfd != NULL;
6176 input_bfd = input_bfd->link.next, bfd_indx++)
6177 {
6178 Elf_Internal_Shdr *symtab_hdr;
6179 asection *section;
6180 Elf_Internal_Sym *local_syms = NULL;
6181
6182 if (!is_arm_elf (input_bfd))
6183 continue;
6184
6185 num_a8_relocs = 0;
6186
6187 /* We'll need the symbol table in a second. */
6188 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6189 if (symtab_hdr->sh_info == 0)
6190 continue;
6191
6192 /* Limit scan of symbols to object file whose profile is
6193 Microcontroller to not hinder performance in the general case. */
6194 if (m_profile && first_veneer_scan)
6195 {
6196 struct elf_link_hash_entry **sym_hashes;
6197
6198 sym_hashes = elf_sym_hashes (input_bfd);
6199 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6200 &cmse_stub_created))
6201 goto error_ret_free_local;
6202
6203 if (cmse_stub_created != 0)
6204 stub_changed = TRUE;
6205 }
6206
6207 /* Walk over each section attached to the input bfd. */
6208 for (section = input_bfd->sections;
6209 section != NULL;
6210 section = section->next)
6211 {
6212 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6213
6214 /* If there aren't any relocs, then there's nothing more
6215 to do. */
6216 if ((section->flags & SEC_RELOC) == 0
6217 || section->reloc_count == 0
6218 || (section->flags & SEC_CODE) == 0)
6219 continue;
6220
6221 /* If this section is a link-once section that will be
6222 discarded, then don't create any stubs. */
6223 if (section->output_section == NULL
6224 || section->output_section->owner != output_bfd)
6225 continue;
6226
6227 /* Get the relocs. */
6228 internal_relocs
6229 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6230 NULL, info->keep_memory);
6231 if (internal_relocs == NULL)
6232 goto error_ret_free_local;
6233
6234 /* Now examine each relocation. */
6235 irela = internal_relocs;
6236 irelaend = irela + section->reloc_count;
6237 for (; irela < irelaend; irela++)
6238 {
6239 unsigned int r_type, r_indx;
6240 asection *sym_sec;
6241 bfd_vma sym_value;
6242 bfd_vma destination;
6243 struct elf32_arm_link_hash_entry *hash;
6244 const char *sym_name;
6245 unsigned char st_type;
6246 enum arm_st_branch_type branch_type;
6247 bfd_boolean created_stub = FALSE;
6248
6249 r_type = ELF32_R_TYPE (irela->r_info);
6250 r_indx = ELF32_R_SYM (irela->r_info);
6251
6252 if (r_type >= (unsigned int) R_ARM_max)
6253 {
6254 bfd_set_error (bfd_error_bad_value);
6255 error_ret_free_internal:
6256 if (elf_section_data (section)->relocs == NULL)
6257 free (internal_relocs);
6258 /* Fall through. */
6259 error_ret_free_local:
6260 if (local_syms != NULL
6261 && (symtab_hdr->contents
6262 != (unsigned char *) local_syms))
6263 free (local_syms);
6264 return FALSE;
6265 }
6266
6267 hash = NULL;
6268 if (r_indx >= symtab_hdr->sh_info)
6269 hash = elf32_arm_hash_entry
6270 (elf_sym_hashes (input_bfd)
6271 [r_indx - symtab_hdr->sh_info]);
6272
6273 /* Only look for stubs on branch instructions, or
6274 non-relaxed TLSCALL */
6275 if ((r_type != (unsigned int) R_ARM_CALL)
6276 && (r_type != (unsigned int) R_ARM_THM_CALL)
6277 && (r_type != (unsigned int) R_ARM_JUMP24)
6278 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6279 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6280 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6281 && (r_type != (unsigned int) R_ARM_PLT32)
6282 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6283 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6284 && r_type == elf32_arm_tls_transition
6285 (info, r_type, &hash->root)
6286 && ((hash ? hash->tls_type
6287 : (elf32_arm_local_got_tls_type
6288 (input_bfd)[r_indx]))
6289 & GOT_TLS_GDESC) != 0))
6290 continue;
6291
6292 /* Now determine the call target, its name, value,
6293 section. */
6294 sym_sec = NULL;
6295 sym_value = 0;
6296 destination = 0;
6297 sym_name = NULL;
6298
6299 if (r_type == (unsigned int) R_ARM_TLS_CALL
6300 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6301 {
6302 /* A non-relaxed TLS call. The target is the
6303 plt-resident trampoline and nothing to do
6304 with the symbol. */
6305 BFD_ASSERT (htab->tls_trampoline > 0);
6306 sym_sec = htab->root.splt;
6307 sym_value = htab->tls_trampoline;
6308 hash = 0;
6309 st_type = STT_FUNC;
6310 branch_type = ST_BRANCH_TO_ARM;
6311 }
6312 else if (!hash)
6313 {
6314 /* It's a local symbol. */
6315 Elf_Internal_Sym *sym;
6316
6317 if (local_syms == NULL)
6318 {
6319 local_syms
6320 = (Elf_Internal_Sym *) symtab_hdr->contents;
6321 if (local_syms == NULL)
6322 local_syms
6323 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6324 symtab_hdr->sh_info, 0,
6325 NULL, NULL, NULL);
6326 if (local_syms == NULL)
6327 goto error_ret_free_internal;
6328 }
6329
6330 sym = local_syms + r_indx;
6331 if (sym->st_shndx == SHN_UNDEF)
6332 sym_sec = bfd_und_section_ptr;
6333 else if (sym->st_shndx == SHN_ABS)
6334 sym_sec = bfd_abs_section_ptr;
6335 else if (sym->st_shndx == SHN_COMMON)
6336 sym_sec = bfd_com_section_ptr;
6337 else
6338 sym_sec =
6339 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6340
6341 if (!sym_sec)
6342 /* This is an undefined symbol. It can never
6343 be resolved. */
6344 continue;
6345
6346 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6347 sym_value = sym->st_value;
6348 destination = (sym_value + irela->r_addend
6349 + sym_sec->output_offset
6350 + sym_sec->output_section->vma);
6351 st_type = ELF_ST_TYPE (sym->st_info);
6352 branch_type =
6353 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6354 sym_name
6355 = bfd_elf_string_from_elf_section (input_bfd,
6356 symtab_hdr->sh_link,
6357 sym->st_name);
6358 }
6359 else
6360 {
6361 /* It's an external symbol. */
6362 while (hash->root.root.type == bfd_link_hash_indirect
6363 || hash->root.root.type == bfd_link_hash_warning)
6364 hash = ((struct elf32_arm_link_hash_entry *)
6365 hash->root.root.u.i.link);
6366
6367 if (hash->root.root.type == bfd_link_hash_defined
6368 || hash->root.root.type == bfd_link_hash_defweak)
6369 {
6370 sym_sec = hash->root.root.u.def.section;
6371 sym_value = hash->root.root.u.def.value;
6372
6373 struct elf32_arm_link_hash_table *globals =
6374 elf32_arm_hash_table (info);
6375
6376 /* For a destination in a shared library,
6377 use the PLT stub as target address to
6378 decide whether a branch stub is
6379 needed. */
6380 if (globals != NULL
6381 && globals->root.splt != NULL
6382 && hash != NULL
6383 && hash->root.plt.offset != (bfd_vma) -1)
6384 {
6385 sym_sec = globals->root.splt;
6386 sym_value = hash->root.plt.offset;
6387 if (sym_sec->output_section != NULL)
6388 destination = (sym_value
6389 + sym_sec->output_offset
6390 + sym_sec->output_section->vma);
6391 }
6392 else if (sym_sec->output_section != NULL)
6393 destination = (sym_value + irela->r_addend
6394 + sym_sec->output_offset
6395 + sym_sec->output_section->vma);
6396 }
6397 else if ((hash->root.root.type == bfd_link_hash_undefined)
6398 || (hash->root.root.type == bfd_link_hash_undefweak))
6399 {
6400 /* For a shared library, use the PLT stub as
6401 target address to decide whether a long
6402 branch stub is needed.
6403 For absolute code, they cannot be handled. */
6404 struct elf32_arm_link_hash_table *globals =
6405 elf32_arm_hash_table (info);
6406
6407 if (globals != NULL
6408 && globals->root.splt != NULL
6409 && hash != NULL
6410 && hash->root.plt.offset != (bfd_vma) -1)
6411 {
6412 sym_sec = globals->root.splt;
6413 sym_value = hash->root.plt.offset;
6414 if (sym_sec->output_section != NULL)
6415 destination = (sym_value
6416 + sym_sec->output_offset
6417 + sym_sec->output_section->vma);
6418 }
6419 else
6420 continue;
6421 }
6422 else
6423 {
6424 bfd_set_error (bfd_error_bad_value);
6425 goto error_ret_free_internal;
6426 }
6427 st_type = hash->root.type;
6428 branch_type =
6429 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6430 sym_name = hash->root.root.root.string;
6431 }
6432
6433 do
6434 {
6435 bfd_boolean new_stub;
6436 struct elf32_arm_stub_hash_entry *stub_entry;
6437
6438 /* Determine what (if any) linker stub is needed. */
6439 stub_type = arm_type_of_stub (info, section, irela,
6440 st_type, &branch_type,
6441 hash, destination, sym_sec,
6442 input_bfd, sym_name);
6443 if (stub_type == arm_stub_none)
6444 break;
6445
6446 /* We've either created a stub for this reloc already,
6447 or we are about to. */
6448 stub_entry =
6449 elf32_arm_create_stub (htab, stub_type, section, irela,
6450 sym_sec, hash,
6451 (char *) sym_name, sym_value,
6452 branch_type, &new_stub);
6453
6454 created_stub = stub_entry != NULL;
6455 if (!created_stub)
6456 goto error_ret_free_internal;
6457 else if (!new_stub)
6458 break;
6459 else
6460 stub_changed = TRUE;
6461 }
6462 while (0);
6463
6464 /* Look for relocations which might trigger Cortex-A8
6465 erratum. */
6466 if (htab->fix_cortex_a8
6467 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6468 || r_type == (unsigned int) R_ARM_THM_JUMP19
6469 || r_type == (unsigned int) R_ARM_THM_CALL
6470 || r_type == (unsigned int) R_ARM_THM_XPC22))
6471 {
6472 bfd_vma from = section->output_section->vma
6473 + section->output_offset
6474 + irela->r_offset;
6475
6476 if ((from & 0xfff) == 0xffe)
6477 {
6478 /* Found a candidate. Note we haven't checked the
6479 destination is within 4K here: if we do so (and
6480 don't create an entry in a8_relocs) we can't tell
6481 that a branch should have been relocated when
6482 scanning later. */
6483 if (num_a8_relocs == a8_reloc_table_size)
6484 {
6485 a8_reloc_table_size *= 2;
6486 a8_relocs = (struct a8_erratum_reloc *)
6487 bfd_realloc (a8_relocs,
6488 sizeof (struct a8_erratum_reloc)
6489 * a8_reloc_table_size);
6490 }
6491
6492 a8_relocs[num_a8_relocs].from = from;
6493 a8_relocs[num_a8_relocs].destination = destination;
6494 a8_relocs[num_a8_relocs].r_type = r_type;
6495 a8_relocs[num_a8_relocs].branch_type = branch_type;
6496 a8_relocs[num_a8_relocs].sym_name = sym_name;
6497 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6498 a8_relocs[num_a8_relocs].hash = hash;
6499
6500 num_a8_relocs++;
6501 }
6502 }
6503 }
6504
6505 /* We're done with the internal relocs, free them. */
6506 if (elf_section_data (section)->relocs == NULL)
6507 free (internal_relocs);
6508 }
6509
6510 if (htab->fix_cortex_a8)
6511 {
6512 /* Sort relocs which might apply to Cortex-A8 erratum. */
6513 qsort (a8_relocs, num_a8_relocs,
6514 sizeof (struct a8_erratum_reloc),
6515 &a8_reloc_compare);
6516
6517 /* Scan for branches which might trigger Cortex-A8 erratum. */
6518 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6519 &num_a8_fixes, &a8_fix_table_size,
6520 a8_relocs, num_a8_relocs,
6521 prev_num_a8_fixes, &stub_changed)
6522 != 0)
6523 goto error_ret_free_local;
6524 }
6525
6526 if (local_syms != NULL
6527 && symtab_hdr->contents != (unsigned char *) local_syms)
6528 {
6529 if (!info->keep_memory)
6530 free (local_syms);
6531 else
6532 symtab_hdr->contents = (unsigned char *) local_syms;
6533 }
6534 }
6535
6536 if (first_veneer_scan
6537 && !set_cmse_veneer_addr_from_implib (info, htab,
6538 &cmse_stub_created))
6539 ret = FALSE;
6540
6541 if (prev_num_a8_fixes != num_a8_fixes)
6542 stub_changed = TRUE;
6543
6544 if (!stub_changed)
6545 break;
6546
6547 /* OK, we've added some stubs. Find out the new size of the
6548 stub sections. */
6549 for (stub_sec = htab->stub_bfd->sections;
6550 stub_sec != NULL;
6551 stub_sec = stub_sec->next)
6552 {
6553 /* Ignore non-stub sections. */
6554 if (!strstr (stub_sec->name, STUB_SUFFIX))
6555 continue;
6556
6557 stub_sec->size = 0;
6558 }
6559
6560 /* Add new SG veneers after those already in the input import
6561 library. */
6562 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6563 stub_type++)
6564 {
6565 bfd_vma *start_offset_p;
6566 asection **stub_sec_p;
6567
6568 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6569 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6570 if (start_offset_p == NULL)
6571 continue;
6572
6573 BFD_ASSERT (stub_sec_p != NULL);
6574 if (*stub_sec_p != NULL)
6575 (*stub_sec_p)->size = *start_offset_p;
6576 }
6577
6578 /* Compute stub section size, considering padding. */
6579 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6580 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6581 stub_type++)
6582 {
6583 int size, padding;
6584 asection **stub_sec_p;
6585
6586 padding = arm_dedicated_stub_section_padding (stub_type);
6587 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6588 /* Skip if no stub input section or no stub section padding
6589 required. */
6590 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6591 continue;
6592 /* Stub section padding required but no dedicated section. */
6593 BFD_ASSERT (stub_sec_p);
6594
6595 size = (*stub_sec_p)->size;
6596 size = (size + padding - 1) & ~(padding - 1);
6597 (*stub_sec_p)->size = size;
6598 }
6599
6600 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6601 if (htab->fix_cortex_a8)
6602 for (i = 0; i < num_a8_fixes; i++)
6603 {
6604 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6605 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6606
6607 if (stub_sec == NULL)
6608 return FALSE;
6609
6610 stub_sec->size
6611 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6612 NULL);
6613 }
6614
6615
6616 /* Ask the linker to do its stuff. */
6617 (*htab->layout_sections_again) ();
6618 first_veneer_scan = FALSE;
6619 }
6620
6621 /* Add stubs for Cortex-A8 erratum fixes now. */
6622 if (htab->fix_cortex_a8)
6623 {
6624 for (i = 0; i < num_a8_fixes; i++)
6625 {
6626 struct elf32_arm_stub_hash_entry *stub_entry;
6627 char *stub_name = a8_fixes[i].stub_name;
6628 asection *section = a8_fixes[i].section;
6629 unsigned int section_id = a8_fixes[i].section->id;
6630 asection *link_sec = htab->stub_group[section_id].link_sec;
6631 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6632 const insn_sequence *template_sequence;
6633 int template_size, size = 0;
6634
6635 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6636 TRUE, FALSE);
6637 if (stub_entry == NULL)
6638 {
6639 _bfd_error_handler (_("%s: cannot create stub entry %s"),
6640 section->owner, stub_name);
6641 return FALSE;
6642 }
6643
6644 stub_entry->stub_sec = stub_sec;
6645 stub_entry->stub_offset = (bfd_vma) -1;
6646 stub_entry->id_sec = link_sec;
6647 stub_entry->stub_type = a8_fixes[i].stub_type;
6648 stub_entry->source_value = a8_fixes[i].offset;
6649 stub_entry->target_section = a8_fixes[i].section;
6650 stub_entry->target_value = a8_fixes[i].target_offset;
6651 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6652 stub_entry->branch_type = a8_fixes[i].branch_type;
6653
6654 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6655 &template_sequence,
6656 &template_size);
6657
6658 stub_entry->stub_size = size;
6659 stub_entry->stub_template = template_sequence;
6660 stub_entry->stub_template_size = template_size;
6661 }
6662
6663 /* Stash the Cortex-A8 erratum fix array for use later in
6664 elf32_arm_write_section(). */
6665 htab->a8_erratum_fixes = a8_fixes;
6666 htab->num_a8_erratum_fixes = num_a8_fixes;
6667 }
6668 else
6669 {
6670 htab->a8_erratum_fixes = NULL;
6671 htab->num_a8_erratum_fixes = 0;
6672 }
6673 return ret;
6674 }
6675
6676 /* Build all the stubs associated with the current output file. The
6677 stubs are kept in a hash table attached to the main linker hash
6678 table. We also set up the .plt entries for statically linked PIC
6679 functions here. This function is called via arm_elf_finish in the
6680 linker. */
6681
6682 bfd_boolean
6683 elf32_arm_build_stubs (struct bfd_link_info *info)
6684 {
6685 asection *stub_sec;
6686 struct bfd_hash_table *table;
6687 enum elf32_arm_stub_type stub_type;
6688 struct elf32_arm_link_hash_table *htab;
6689
6690 htab = elf32_arm_hash_table (info);
6691 if (htab == NULL)
6692 return FALSE;
6693
6694 for (stub_sec = htab->stub_bfd->sections;
6695 stub_sec != NULL;
6696 stub_sec = stub_sec->next)
6697 {
6698 bfd_size_type size;
6699
6700 /* Ignore non-stub sections. */
6701 if (!strstr (stub_sec->name, STUB_SUFFIX))
6702 continue;
6703
6704 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6705 must at least be done for stub section requiring padding and for SG
6706 veneers to ensure that a non secure code branching to a removed SG
6707 veneer causes an error. */
6708 size = stub_sec->size;
6709 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6710 if (stub_sec->contents == NULL && size != 0)
6711 return FALSE;
6712
6713 stub_sec->size = 0;
6714 }
6715
6716 /* Add new SG veneers after those already in the input import library. */
6717 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6718 {
6719 bfd_vma *start_offset_p;
6720 asection **stub_sec_p;
6721
6722 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6723 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6724 if (start_offset_p == NULL)
6725 continue;
6726
6727 BFD_ASSERT (stub_sec_p != NULL);
6728 if (*stub_sec_p != NULL)
6729 (*stub_sec_p)->size = *start_offset_p;
6730 }
6731
6732 /* Build the stubs as directed by the stub hash table. */
6733 table = &htab->stub_hash_table;
6734 bfd_hash_traverse (table, arm_build_one_stub, info);
6735 if (htab->fix_cortex_a8)
6736 {
6737 /* Place the cortex a8 stubs last. */
6738 htab->fix_cortex_a8 = -1;
6739 bfd_hash_traverse (table, arm_build_one_stub, info);
6740 }
6741
6742 return TRUE;
6743 }
6744
6745 /* Locate the Thumb encoded calling stub for NAME. */
6746
6747 static struct elf_link_hash_entry *
6748 find_thumb_glue (struct bfd_link_info *link_info,
6749 const char *name,
6750 char **error_message)
6751 {
6752 char *tmp_name;
6753 struct elf_link_hash_entry *hash;
6754 struct elf32_arm_link_hash_table *hash_table;
6755
6756 /* We need a pointer to the armelf specific hash table. */
6757 hash_table = elf32_arm_hash_table (link_info);
6758 if (hash_table == NULL)
6759 return NULL;
6760
6761 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6762 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6763
6764 BFD_ASSERT (tmp_name);
6765
6766 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6767
6768 hash = elf_link_hash_lookup
6769 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6770
6771 if (hash == NULL
6772 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6773 tmp_name, name) == -1)
6774 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6775
6776 free (tmp_name);
6777
6778 return hash;
6779 }
6780
6781 /* Locate the ARM encoded calling stub for NAME. */
6782
6783 static struct elf_link_hash_entry *
6784 find_arm_glue (struct bfd_link_info *link_info,
6785 const char *name,
6786 char **error_message)
6787 {
6788 char *tmp_name;
6789 struct elf_link_hash_entry *myh;
6790 struct elf32_arm_link_hash_table *hash_table;
6791
6792 /* We need a pointer to the elfarm specific hash table. */
6793 hash_table = elf32_arm_hash_table (link_info);
6794 if (hash_table == NULL)
6795 return NULL;
6796
6797 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6798 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6799
6800 BFD_ASSERT (tmp_name);
6801
6802 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6803
6804 myh = elf_link_hash_lookup
6805 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6806
6807 if (myh == NULL
6808 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6809 tmp_name, name) == -1)
6810 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6811
6812 free (tmp_name);
6813
6814 return myh;
6815 }
6816
6817 /* ARM->Thumb glue (static images):
6818
6819 .arm
6820 __func_from_arm:
6821 ldr r12, __func_addr
6822 bx r12
6823 __func_addr:
6824 .word func @ behave as if you saw a ARM_32 reloc.
6825
6826 (v5t static images)
6827 .arm
6828 __func_from_arm:
6829 ldr pc, __func_addr
6830 __func_addr:
6831 .word func @ behave as if you saw a ARM_32 reloc.
6832
6833 (relocatable images)
6834 .arm
6835 __func_from_arm:
6836 ldr r12, __func_offset
6837 add r12, r12, pc
6838 bx r12
6839 __func_offset:
6840 .word func - . */
6841
6842 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6843 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6844 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6845 static const insn32 a2t3_func_addr_insn = 0x00000001;
6846
6847 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6848 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6849 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6850
6851 #define ARM2THUMB_PIC_GLUE_SIZE 16
6852 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6853 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6854 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6855
6856 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6857
6858 .thumb .thumb
6859 .align 2 .align 2
6860 __func_from_thumb: __func_from_thumb:
6861 bx pc push {r6, lr}
6862 nop ldr r6, __func_addr
6863 .arm mov lr, pc
6864 b func bx r6
6865 .arm
6866 ;; back_to_thumb
6867 ldmia r13! {r6, lr}
6868 bx lr
6869 __func_addr:
6870 .word func */
6871
6872 #define THUMB2ARM_GLUE_SIZE 8
6873 static const insn16 t2a1_bx_pc_insn = 0x4778;
6874 static const insn16 t2a2_noop_insn = 0x46c0;
6875 static const insn32 t2a3_b_insn = 0xea000000;
6876
6877 #define VFP11_ERRATUM_VENEER_SIZE 8
6878 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6879 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6880
6881 #define ARM_BX_VENEER_SIZE 12
6882 static const insn32 armbx1_tst_insn = 0xe3100001;
6883 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6884 static const insn32 armbx3_bx_insn = 0xe12fff10;
6885
6886 #ifndef ELFARM_NABI_C_INCLUDED
6887 static void
6888 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6889 {
6890 asection * s;
6891 bfd_byte * contents;
6892
6893 if (size == 0)
6894 {
6895 /* Do not include empty glue sections in the output. */
6896 if (abfd != NULL)
6897 {
6898 s = bfd_get_linker_section (abfd, name);
6899 if (s != NULL)
6900 s->flags |= SEC_EXCLUDE;
6901 }
6902 return;
6903 }
6904
6905 BFD_ASSERT (abfd != NULL);
6906
6907 s = bfd_get_linker_section (abfd, name);
6908 BFD_ASSERT (s != NULL);
6909
6910 contents = (bfd_byte *) bfd_alloc (abfd, size);
6911
6912 BFD_ASSERT (s->size == size);
6913 s->contents = contents;
6914 }
6915
6916 bfd_boolean
6917 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6918 {
6919 struct elf32_arm_link_hash_table * globals;
6920
6921 globals = elf32_arm_hash_table (info);
6922 BFD_ASSERT (globals != NULL);
6923
6924 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6925 globals->arm_glue_size,
6926 ARM2THUMB_GLUE_SECTION_NAME);
6927
6928 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6929 globals->thumb_glue_size,
6930 THUMB2ARM_GLUE_SECTION_NAME);
6931
6932 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6933 globals->vfp11_erratum_glue_size,
6934 VFP11_ERRATUM_VENEER_SECTION_NAME);
6935
6936 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6937 globals->stm32l4xx_erratum_glue_size,
6938 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6939
6940 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6941 globals->bx_glue_size,
6942 ARM_BX_GLUE_SECTION_NAME);
6943
6944 return TRUE;
6945 }
6946
6947 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6948 returns the symbol identifying the stub. */
6949
6950 static struct elf_link_hash_entry *
6951 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6952 struct elf_link_hash_entry * h)
6953 {
6954 const char * name = h->root.root.string;
6955 asection * s;
6956 char * tmp_name;
6957 struct elf_link_hash_entry * myh;
6958 struct bfd_link_hash_entry * bh;
6959 struct elf32_arm_link_hash_table * globals;
6960 bfd_vma val;
6961 bfd_size_type size;
6962
6963 globals = elf32_arm_hash_table (link_info);
6964 BFD_ASSERT (globals != NULL);
6965 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6966
6967 s = bfd_get_linker_section
6968 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6969
6970 BFD_ASSERT (s != NULL);
6971
6972 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6973 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6974
6975 BFD_ASSERT (tmp_name);
6976
6977 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6978
6979 myh = elf_link_hash_lookup
6980 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6981
6982 if (myh != NULL)
6983 {
6984 /* We've already seen this guy. */
6985 free (tmp_name);
6986 return myh;
6987 }
6988
6989 /* The only trick here is using hash_table->arm_glue_size as the value.
6990 Even though the section isn't allocated yet, this is where we will be
6991 putting it. The +1 on the value marks that the stub has not been
6992 output yet - not that it is a Thumb function. */
6993 bh = NULL;
6994 val = globals->arm_glue_size + 1;
6995 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6996 tmp_name, BSF_GLOBAL, s, val,
6997 NULL, TRUE, FALSE, &bh);
6998
6999 myh = (struct elf_link_hash_entry *) bh;
7000 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7001 myh->forced_local = 1;
7002
7003 free (tmp_name);
7004
7005 if (bfd_link_pic (link_info)
7006 || globals->root.is_relocatable_executable
7007 || globals->pic_veneer)
7008 size = ARM2THUMB_PIC_GLUE_SIZE;
7009 else if (globals->use_blx)
7010 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7011 else
7012 size = ARM2THUMB_STATIC_GLUE_SIZE;
7013
7014 s->size += size;
7015 globals->arm_glue_size += size;
7016
7017 return myh;
7018 }
7019
7020 /* Allocate space for ARMv4 BX veneers. */
7021
7022 static void
7023 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7024 {
7025 asection * s;
7026 struct elf32_arm_link_hash_table *globals;
7027 char *tmp_name;
7028 struct elf_link_hash_entry *myh;
7029 struct bfd_link_hash_entry *bh;
7030 bfd_vma val;
7031
7032 /* BX PC does not need a veneer. */
7033 if (reg == 15)
7034 return;
7035
7036 globals = elf32_arm_hash_table (link_info);
7037 BFD_ASSERT (globals != NULL);
7038 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7039
7040 /* Check if this veneer has already been allocated. */
7041 if (globals->bx_glue_offset[reg])
7042 return;
7043
7044 s = bfd_get_linker_section
7045 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7046
7047 BFD_ASSERT (s != NULL);
7048
7049 /* Add symbol for veneer. */
7050 tmp_name = (char *)
7051 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7052
7053 BFD_ASSERT (tmp_name);
7054
7055 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7056
7057 myh = elf_link_hash_lookup
7058 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7059
7060 BFD_ASSERT (myh == NULL);
7061
7062 bh = NULL;
7063 val = globals->bx_glue_size;
7064 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7065 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7066 NULL, TRUE, FALSE, &bh);
7067
7068 myh = (struct elf_link_hash_entry *) bh;
7069 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7070 myh->forced_local = 1;
7071
7072 s->size += ARM_BX_VENEER_SIZE;
7073 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7074 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7075 }
7076
7077
7078 /* Add an entry to the code/data map for section SEC. */
7079
7080 static void
7081 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7082 {
7083 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7084 unsigned int newidx;
7085
7086 if (sec_data->map == NULL)
7087 {
7088 sec_data->map = (elf32_arm_section_map *)
7089 bfd_malloc (sizeof (elf32_arm_section_map));
7090 sec_data->mapcount = 0;
7091 sec_data->mapsize = 1;
7092 }
7093
7094 newidx = sec_data->mapcount++;
7095
7096 if (sec_data->mapcount > sec_data->mapsize)
7097 {
7098 sec_data->mapsize *= 2;
7099 sec_data->map = (elf32_arm_section_map *)
7100 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7101 * sizeof (elf32_arm_section_map));
7102 }
7103
7104 if (sec_data->map)
7105 {
7106 sec_data->map[newidx].vma = vma;
7107 sec_data->map[newidx].type = type;
7108 }
7109 }
7110
7111
7112 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7113 veneers are handled for now. */
7114
7115 static bfd_vma
7116 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7117 elf32_vfp11_erratum_list *branch,
7118 bfd *branch_bfd,
7119 asection *branch_sec,
7120 unsigned int offset)
7121 {
7122 asection *s;
7123 struct elf32_arm_link_hash_table *hash_table;
7124 char *tmp_name;
7125 struct elf_link_hash_entry *myh;
7126 struct bfd_link_hash_entry *bh;
7127 bfd_vma val;
7128 struct _arm_elf_section_data *sec_data;
7129 elf32_vfp11_erratum_list *newerr;
7130
7131 hash_table = elf32_arm_hash_table (link_info);
7132 BFD_ASSERT (hash_table != NULL);
7133 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7134
7135 s = bfd_get_linker_section
7136 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7137
7138 sec_data = elf32_arm_section_data (s);
7139
7140 BFD_ASSERT (s != NULL);
7141
7142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7143 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7144
7145 BFD_ASSERT (tmp_name);
7146
7147 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7148 hash_table->num_vfp11_fixes);
7149
7150 myh = elf_link_hash_lookup
7151 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7152
7153 BFD_ASSERT (myh == NULL);
7154
7155 bh = NULL;
7156 val = hash_table->vfp11_erratum_glue_size;
7157 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7158 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7159 NULL, TRUE, FALSE, &bh);
7160
7161 myh = (struct elf_link_hash_entry *) bh;
7162 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7163 myh->forced_local = 1;
7164
7165 /* Link veneer back to calling location. */
7166 sec_data->erratumcount += 1;
7167 newerr = (elf32_vfp11_erratum_list *)
7168 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7169
7170 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7171 newerr->vma = -1;
7172 newerr->u.v.branch = branch;
7173 newerr->u.v.id = hash_table->num_vfp11_fixes;
7174 branch->u.b.veneer = newerr;
7175
7176 newerr->next = sec_data->erratumlist;
7177 sec_data->erratumlist = newerr;
7178
7179 /* A symbol for the return from the veneer. */
7180 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7181 hash_table->num_vfp11_fixes);
7182
7183 myh = elf_link_hash_lookup
7184 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7185
7186 if (myh != NULL)
7187 abort ();
7188
7189 bh = NULL;
7190 val = offset + 4;
7191 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7192 branch_sec, val, NULL, TRUE, FALSE, &bh);
7193
7194 myh = (struct elf_link_hash_entry *) bh;
7195 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7196 myh->forced_local = 1;
7197
7198 free (tmp_name);
7199
7200 /* Generate a mapping symbol for the veneer section, and explicitly add an
7201 entry for that symbol to the code/data map for the section. */
7202 if (hash_table->vfp11_erratum_glue_size == 0)
7203 {
7204 bh = NULL;
7205 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7206 ever requires this erratum fix. */
7207 _bfd_generic_link_add_one_symbol (link_info,
7208 hash_table->bfd_of_glue_owner, "$a",
7209 BSF_LOCAL, s, 0, NULL,
7210 TRUE, FALSE, &bh);
7211
7212 myh = (struct elf_link_hash_entry *) bh;
7213 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7214 myh->forced_local = 1;
7215
7216 /* The elf32_arm_init_maps function only cares about symbols from input
7217 BFDs. We must make a note of this generated mapping symbol
7218 ourselves so that code byteswapping works properly in
7219 elf32_arm_write_section. */
7220 elf32_arm_section_map_add (s, 'a', 0);
7221 }
7222
7223 s->size += VFP11_ERRATUM_VENEER_SIZE;
7224 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7225 hash_table->num_vfp11_fixes++;
7226
7227 /* The offset of the veneer. */
7228 return val;
7229 }
7230
7231 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7232 veneers need to be handled because used only in Cortex-M. */
7233
7234 static bfd_vma
7235 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7236 elf32_stm32l4xx_erratum_list *branch,
7237 bfd *branch_bfd,
7238 asection *branch_sec,
7239 unsigned int offset,
7240 bfd_size_type veneer_size)
7241 {
7242 asection *s;
7243 struct elf32_arm_link_hash_table *hash_table;
7244 char *tmp_name;
7245 struct elf_link_hash_entry *myh;
7246 struct bfd_link_hash_entry *bh;
7247 bfd_vma val;
7248 struct _arm_elf_section_data *sec_data;
7249 elf32_stm32l4xx_erratum_list *newerr;
7250
7251 hash_table = elf32_arm_hash_table (link_info);
7252 BFD_ASSERT (hash_table != NULL);
7253 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7254
7255 s = bfd_get_linker_section
7256 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7257
7258 BFD_ASSERT (s != NULL);
7259
7260 sec_data = elf32_arm_section_data (s);
7261
7262 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7263 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7264
7265 BFD_ASSERT (tmp_name);
7266
7267 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7268 hash_table->num_stm32l4xx_fixes);
7269
7270 myh = elf_link_hash_lookup
7271 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7272
7273 BFD_ASSERT (myh == NULL);
7274
7275 bh = NULL;
7276 val = hash_table->stm32l4xx_erratum_glue_size;
7277 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7278 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7279 NULL, TRUE, FALSE, &bh);
7280
7281 myh = (struct elf_link_hash_entry *) bh;
7282 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7283 myh->forced_local = 1;
7284
7285 /* Link veneer back to calling location. */
7286 sec_data->stm32l4xx_erratumcount += 1;
7287 newerr = (elf32_stm32l4xx_erratum_list *)
7288 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7289
7290 newerr->type = STM32L4XX_ERRATUM_VENEER;
7291 newerr->vma = -1;
7292 newerr->u.v.branch = branch;
7293 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7294 branch->u.b.veneer = newerr;
7295
7296 newerr->next = sec_data->stm32l4xx_erratumlist;
7297 sec_data->stm32l4xx_erratumlist = newerr;
7298
7299 /* A symbol for the return from the veneer. */
7300 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7301 hash_table->num_stm32l4xx_fixes);
7302
7303 myh = elf_link_hash_lookup
7304 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7305
7306 if (myh != NULL)
7307 abort ();
7308
7309 bh = NULL;
7310 val = offset + 4;
7311 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7312 branch_sec, val, NULL, TRUE, FALSE, &bh);
7313
7314 myh = (struct elf_link_hash_entry *) bh;
7315 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7316 myh->forced_local = 1;
7317
7318 free (tmp_name);
7319
7320 /* Generate a mapping symbol for the veneer section, and explicitly add an
7321 entry for that symbol to the code/data map for the section. */
7322 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7323 {
7324 bh = NULL;
7325 /* Creates a THUMB symbol since there is no other choice. */
7326 _bfd_generic_link_add_one_symbol (link_info,
7327 hash_table->bfd_of_glue_owner, "$t",
7328 BSF_LOCAL, s, 0, NULL,
7329 TRUE, FALSE, &bh);
7330
7331 myh = (struct elf_link_hash_entry *) bh;
7332 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7333 myh->forced_local = 1;
7334
7335 /* The elf32_arm_init_maps function only cares about symbols from input
7336 BFDs. We must make a note of this generated mapping symbol
7337 ourselves so that code byteswapping works properly in
7338 elf32_arm_write_section. */
7339 elf32_arm_section_map_add (s, 't', 0);
7340 }
7341
7342 s->size += veneer_size;
7343 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7344 hash_table->num_stm32l4xx_fixes++;
7345
7346 /* The offset of the veneer. */
7347 return val;
7348 }
7349
7350 #define ARM_GLUE_SECTION_FLAGS \
7351 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7352 | SEC_READONLY | SEC_LINKER_CREATED)
7353
7354 /* Create a fake section for use by the ARM backend of the linker. */
7355
7356 static bfd_boolean
7357 arm_make_glue_section (bfd * abfd, const char * name)
7358 {
7359 asection * sec;
7360
7361 sec = bfd_get_linker_section (abfd, name);
7362 if (sec != NULL)
7363 /* Already made. */
7364 return TRUE;
7365
7366 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7367
7368 if (sec == NULL
7369 || !bfd_set_section_alignment (abfd, sec, 2))
7370 return FALSE;
7371
7372 /* Set the gc mark to prevent the section from being removed by garbage
7373 collection, despite the fact that no relocs refer to this section. */
7374 sec->gc_mark = 1;
7375
7376 return TRUE;
7377 }
7378
7379 /* Set size of .plt entries. This function is called from the
7380 linker scripts in ld/emultempl/{armelf}.em. */
7381
7382 void
7383 bfd_elf32_arm_use_long_plt (void)
7384 {
7385 elf32_arm_use_long_plt_entry = TRUE;
7386 }
7387
7388 /* Add the glue sections to ABFD. This function is called from the
7389 linker scripts in ld/emultempl/{armelf}.em. */
7390
7391 bfd_boolean
7392 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7393 struct bfd_link_info *info)
7394 {
7395 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7396 bfd_boolean dostm32l4xx = globals
7397 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7398 bfd_boolean addglue;
7399
7400 /* If we are only performing a partial
7401 link do not bother adding the glue. */
7402 if (bfd_link_relocatable (info))
7403 return TRUE;
7404
7405 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7406 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7407 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7408 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7409
7410 if (!dostm32l4xx)
7411 return addglue;
7412
7413 return addglue
7414 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7415 }
7416
7417 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7418 ensures they are not marked for deletion by
7419 strip_excluded_output_sections () when veneers are going to be created
7420 later. Not doing so would trigger assert on empty section size in
7421 lang_size_sections_1 (). */
7422
7423 void
7424 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7425 {
7426 enum elf32_arm_stub_type stub_type;
7427
7428 /* If we are only performing a partial
7429 link do not bother adding the glue. */
7430 if (bfd_link_relocatable (info))
7431 return;
7432
7433 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7434 {
7435 asection *out_sec;
7436 const char *out_sec_name;
7437
7438 if (!arm_dedicated_stub_output_section_required (stub_type))
7439 continue;
7440
7441 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7442 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7443 if (out_sec != NULL)
7444 out_sec->flags |= SEC_KEEP;
7445 }
7446 }
7447
7448 /* Select a BFD to be used to hold the sections used by the glue code.
7449 This function is called from the linker scripts in ld/emultempl/
7450 {armelf/pe}.em. */
7451
7452 bfd_boolean
7453 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7454 {
7455 struct elf32_arm_link_hash_table *globals;
7456
7457 /* If we are only performing a partial link
7458 do not bother getting a bfd to hold the glue. */
7459 if (bfd_link_relocatable (info))
7460 return TRUE;
7461
7462 /* Make sure we don't attach the glue sections to a dynamic object. */
7463 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7464
7465 globals = elf32_arm_hash_table (info);
7466 BFD_ASSERT (globals != NULL);
7467
7468 if (globals->bfd_of_glue_owner != NULL)
7469 return TRUE;
7470
7471 /* Save the bfd for later use. */
7472 globals->bfd_of_glue_owner = abfd;
7473
7474 return TRUE;
7475 }
7476
7477 static void
7478 check_use_blx (struct elf32_arm_link_hash_table *globals)
7479 {
7480 int cpu_arch;
7481
7482 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7483 Tag_CPU_arch);
7484
7485 if (globals->fix_arm1176)
7486 {
7487 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7488 globals->use_blx = 1;
7489 }
7490 else
7491 {
7492 if (cpu_arch > TAG_CPU_ARCH_V4T)
7493 globals->use_blx = 1;
7494 }
7495 }
7496
7497 bfd_boolean
7498 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7499 struct bfd_link_info *link_info)
7500 {
7501 Elf_Internal_Shdr *symtab_hdr;
7502 Elf_Internal_Rela *internal_relocs = NULL;
7503 Elf_Internal_Rela *irel, *irelend;
7504 bfd_byte *contents = NULL;
7505
7506 asection *sec;
7507 struct elf32_arm_link_hash_table *globals;
7508
7509 /* If we are only performing a partial link do not bother
7510 to construct any glue. */
7511 if (bfd_link_relocatable (link_info))
7512 return TRUE;
7513
7514 /* Here we have a bfd that is to be included on the link. We have a
7515 hook to do reloc rummaging, before section sizes are nailed down. */
7516 globals = elf32_arm_hash_table (link_info);
7517 BFD_ASSERT (globals != NULL);
7518
7519 check_use_blx (globals);
7520
7521 if (globals->byteswap_code && !bfd_big_endian (abfd))
7522 {
7523 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7524 abfd);
7525 return FALSE;
7526 }
7527
7528 /* PR 5398: If we have not decided to include any loadable sections in
7529 the output then we will not have a glue owner bfd. This is OK, it
7530 just means that there is nothing else for us to do here. */
7531 if (globals->bfd_of_glue_owner == NULL)
7532 return TRUE;
7533
7534 /* Rummage around all the relocs and map the glue vectors. */
7535 sec = abfd->sections;
7536
7537 if (sec == NULL)
7538 return TRUE;
7539
7540 for (; sec != NULL; sec = sec->next)
7541 {
7542 if (sec->reloc_count == 0)
7543 continue;
7544
7545 if ((sec->flags & SEC_EXCLUDE) != 0)
7546 continue;
7547
7548 symtab_hdr = & elf_symtab_hdr (abfd);
7549
7550 /* Load the relocs. */
7551 internal_relocs
7552 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7553
7554 if (internal_relocs == NULL)
7555 goto error_return;
7556
7557 irelend = internal_relocs + sec->reloc_count;
7558 for (irel = internal_relocs; irel < irelend; irel++)
7559 {
7560 long r_type;
7561 unsigned long r_index;
7562
7563 struct elf_link_hash_entry *h;
7564
7565 r_type = ELF32_R_TYPE (irel->r_info);
7566 r_index = ELF32_R_SYM (irel->r_info);
7567
7568 /* These are the only relocation types we care about. */
7569 if ( r_type != R_ARM_PC24
7570 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7571 continue;
7572
7573 /* Get the section contents if we haven't done so already. */
7574 if (contents == NULL)
7575 {
7576 /* Get cached copy if it exists. */
7577 if (elf_section_data (sec)->this_hdr.contents != NULL)
7578 contents = elf_section_data (sec)->this_hdr.contents;
7579 else
7580 {
7581 /* Go get them off disk. */
7582 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7583 goto error_return;
7584 }
7585 }
7586
7587 if (r_type == R_ARM_V4BX)
7588 {
7589 int reg;
7590
7591 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7592 record_arm_bx_glue (link_info, reg);
7593 continue;
7594 }
7595
7596 /* If the relocation is not against a symbol it cannot concern us. */
7597 h = NULL;
7598
7599 /* We don't care about local symbols. */
7600 if (r_index < symtab_hdr->sh_info)
7601 continue;
7602
7603 /* This is an external symbol. */
7604 r_index -= symtab_hdr->sh_info;
7605 h = (struct elf_link_hash_entry *)
7606 elf_sym_hashes (abfd)[r_index];
7607
7608 /* If the relocation is against a static symbol it must be within
7609 the current section and so cannot be a cross ARM/Thumb relocation. */
7610 if (h == NULL)
7611 continue;
7612
7613 /* If the call will go through a PLT entry then we do not need
7614 glue. */
7615 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7616 continue;
7617
7618 switch (r_type)
7619 {
7620 case R_ARM_PC24:
7621 /* This one is a call from arm code. We need to look up
7622 the target of the call. If it is a thumb target, we
7623 insert glue. */
7624 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7625 == ST_BRANCH_TO_THUMB)
7626 record_arm_to_thumb_glue (link_info, h);
7627 break;
7628
7629 default:
7630 abort ();
7631 }
7632 }
7633
7634 if (contents != NULL
7635 && elf_section_data (sec)->this_hdr.contents != contents)
7636 free (contents);
7637 contents = NULL;
7638
7639 if (internal_relocs != NULL
7640 && elf_section_data (sec)->relocs != internal_relocs)
7641 free (internal_relocs);
7642 internal_relocs = NULL;
7643 }
7644
7645 return TRUE;
7646
7647 error_return:
7648 if (contents != NULL
7649 && elf_section_data (sec)->this_hdr.contents != contents)
7650 free (contents);
7651 if (internal_relocs != NULL
7652 && elf_section_data (sec)->relocs != internal_relocs)
7653 free (internal_relocs);
7654
7655 return FALSE;
7656 }
7657 #endif
7658
7659
7660 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7661
7662 void
7663 bfd_elf32_arm_init_maps (bfd *abfd)
7664 {
7665 Elf_Internal_Sym *isymbuf;
7666 Elf_Internal_Shdr *hdr;
7667 unsigned int i, localsyms;
7668
7669 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7670 if (! is_arm_elf (abfd))
7671 return;
7672
7673 if ((abfd->flags & DYNAMIC) != 0)
7674 return;
7675
7676 hdr = & elf_symtab_hdr (abfd);
7677 localsyms = hdr->sh_info;
7678
7679 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7680 should contain the number of local symbols, which should come before any
7681 global symbols. Mapping symbols are always local. */
7682 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7683 NULL);
7684
7685 /* No internal symbols read? Skip this BFD. */
7686 if (isymbuf == NULL)
7687 return;
7688
7689 for (i = 0; i < localsyms; i++)
7690 {
7691 Elf_Internal_Sym *isym = &isymbuf[i];
7692 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7693 const char *name;
7694
7695 if (sec != NULL
7696 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7697 {
7698 name = bfd_elf_string_from_elf_section (abfd,
7699 hdr->sh_link, isym->st_name);
7700
7701 if (bfd_is_arm_special_symbol_name (name,
7702 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7703 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7704 }
7705 }
7706 }
7707
7708
7709 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7710 say what they wanted. */
7711
7712 void
7713 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7714 {
7715 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7716 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7717
7718 if (globals == NULL)
7719 return;
7720
7721 if (globals->fix_cortex_a8 == -1)
7722 {
7723 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7724 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7725 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7726 || out_attr[Tag_CPU_arch_profile].i == 0))
7727 globals->fix_cortex_a8 = 1;
7728 else
7729 globals->fix_cortex_a8 = 0;
7730 }
7731 }
7732
7733
7734 void
7735 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7736 {
7737 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7738 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7739
7740 if (globals == NULL)
7741 return;
7742 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7743 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7744 {
7745 switch (globals->vfp11_fix)
7746 {
7747 case BFD_ARM_VFP11_FIX_DEFAULT:
7748 case BFD_ARM_VFP11_FIX_NONE:
7749 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7750 break;
7751
7752 default:
7753 /* Give a warning, but do as the user requests anyway. */
7754 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7755 "workaround is not necessary for target architecture"), obfd);
7756 }
7757 }
7758 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7759 /* For earlier architectures, we might need the workaround, but do not
7760 enable it by default. If users is running with broken hardware, they
7761 must enable the erratum fix explicitly. */
7762 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7763 }
7764
7765 void
7766 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7767 {
7768 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7769 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7770
7771 if (globals == NULL)
7772 return;
7773
7774 /* We assume only Cortex-M4 may require the fix. */
7775 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7776 || out_attr[Tag_CPU_arch_profile].i != 'M')
7777 {
7778 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7779 /* Give a warning, but do as the user requests anyway. */
7780 _bfd_error_handler
7781 (_("%B: warning: selected STM32L4XX erratum "
7782 "workaround is not necessary for target architecture"), obfd);
7783 }
7784 }
7785
7786 enum bfd_arm_vfp11_pipe
7787 {
7788 VFP11_FMAC,
7789 VFP11_LS,
7790 VFP11_DS,
7791 VFP11_BAD
7792 };
7793
7794 /* Return a VFP register number. This is encoded as RX:X for single-precision
7795 registers, or X:RX for double-precision registers, where RX is the group of
7796 four bits in the instruction encoding and X is the single extension bit.
7797 RX and X fields are specified using their lowest (starting) bit. The return
7798 value is:
7799
7800 0...31: single-precision registers s0...s31
7801 32...63: double-precision registers d0...d31.
7802
7803 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7804 encounter VFP3 instructions, so we allow the full range for DP registers. */
7805
7806 static unsigned int
7807 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7808 unsigned int x)
7809 {
7810 if (is_double)
7811 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7812 else
7813 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7814 }
7815
7816 /* Set bits in *WMASK according to a register number REG as encoded by
7817 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7818
7819 static void
7820 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7821 {
7822 if (reg < 32)
7823 *wmask |= 1 << reg;
7824 else if (reg < 48)
7825 *wmask |= 3 << ((reg - 32) * 2);
7826 }
7827
7828 /* Return TRUE if WMASK overwrites anything in REGS. */
7829
7830 static bfd_boolean
7831 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7832 {
7833 int i;
7834
7835 for (i = 0; i < numregs; i++)
7836 {
7837 unsigned int reg = regs[i];
7838
7839 if (reg < 32 && (wmask & (1 << reg)) != 0)
7840 return TRUE;
7841
7842 reg -= 32;
7843
7844 if (reg >= 16)
7845 continue;
7846
7847 if ((wmask & (3 << (reg * 2))) != 0)
7848 return TRUE;
7849 }
7850
7851 return FALSE;
7852 }
7853
7854 /* In this function, we're interested in two things: finding input registers
7855 for VFP data-processing instructions, and finding the set of registers which
7856 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7857 hold the written set, so FLDM etc. are easy to deal with (we're only
7858 interested in 32 SP registers or 16 dp registers, due to the VFP version
7859 implemented by the chip in question). DP registers are marked by setting
7860 both SP registers in the write mask). */
7861
7862 static enum bfd_arm_vfp11_pipe
7863 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7864 int *numregs)
7865 {
7866 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7867 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7868
7869 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7870 {
7871 unsigned int pqrs;
7872 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7873 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7874
7875 pqrs = ((insn & 0x00800000) >> 20)
7876 | ((insn & 0x00300000) >> 19)
7877 | ((insn & 0x00000040) >> 6);
7878
7879 switch (pqrs)
7880 {
7881 case 0: /* fmac[sd]. */
7882 case 1: /* fnmac[sd]. */
7883 case 2: /* fmsc[sd]. */
7884 case 3: /* fnmsc[sd]. */
7885 vpipe = VFP11_FMAC;
7886 bfd_arm_vfp11_write_mask (destmask, fd);
7887 regs[0] = fd;
7888 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7889 regs[2] = fm;
7890 *numregs = 3;
7891 break;
7892
7893 case 4: /* fmul[sd]. */
7894 case 5: /* fnmul[sd]. */
7895 case 6: /* fadd[sd]. */
7896 case 7: /* fsub[sd]. */
7897 vpipe = VFP11_FMAC;
7898 goto vfp_binop;
7899
7900 case 8: /* fdiv[sd]. */
7901 vpipe = VFP11_DS;
7902 vfp_binop:
7903 bfd_arm_vfp11_write_mask (destmask, fd);
7904 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7905 regs[1] = fm;
7906 *numregs = 2;
7907 break;
7908
7909 case 15: /* extended opcode. */
7910 {
7911 unsigned int extn = ((insn >> 15) & 0x1e)
7912 | ((insn >> 7) & 1);
7913
7914 switch (extn)
7915 {
7916 case 0: /* fcpy[sd]. */
7917 case 1: /* fabs[sd]. */
7918 case 2: /* fneg[sd]. */
7919 case 8: /* fcmp[sd]. */
7920 case 9: /* fcmpe[sd]. */
7921 case 10: /* fcmpz[sd]. */
7922 case 11: /* fcmpez[sd]. */
7923 case 16: /* fuito[sd]. */
7924 case 17: /* fsito[sd]. */
7925 case 24: /* ftoui[sd]. */
7926 case 25: /* ftouiz[sd]. */
7927 case 26: /* ftosi[sd]. */
7928 case 27: /* ftosiz[sd]. */
7929 /* These instructions will not bounce due to underflow. */
7930 *numregs = 0;
7931 vpipe = VFP11_FMAC;
7932 break;
7933
7934 case 3: /* fsqrt[sd]. */
7935 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7936 registers to cause the erratum in previous instructions. */
7937 bfd_arm_vfp11_write_mask (destmask, fd);
7938 vpipe = VFP11_DS;
7939 break;
7940
7941 case 15: /* fcvt{ds,sd}. */
7942 {
7943 int rnum = 0;
7944
7945 bfd_arm_vfp11_write_mask (destmask, fd);
7946
7947 /* Only FCVTSD can underflow. */
7948 if ((insn & 0x100) != 0)
7949 regs[rnum++] = fm;
7950
7951 *numregs = rnum;
7952
7953 vpipe = VFP11_FMAC;
7954 }
7955 break;
7956
7957 default:
7958 return VFP11_BAD;
7959 }
7960 }
7961 break;
7962
7963 default:
7964 return VFP11_BAD;
7965 }
7966 }
7967 /* Two-register transfer. */
7968 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7969 {
7970 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7971
7972 if ((insn & 0x100000) == 0)
7973 {
7974 if (is_double)
7975 bfd_arm_vfp11_write_mask (destmask, fm);
7976 else
7977 {
7978 bfd_arm_vfp11_write_mask (destmask, fm);
7979 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7980 }
7981 }
7982
7983 vpipe = VFP11_LS;
7984 }
7985 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7986 {
7987 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7988 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7989
7990 switch (puw)
7991 {
7992 case 0: /* Two-reg transfer. We should catch these above. */
7993 abort ();
7994
7995 case 2: /* fldm[sdx]. */
7996 case 3:
7997 case 5:
7998 {
7999 unsigned int i, offset = insn & 0xff;
8000
8001 if (is_double)
8002 offset >>= 1;
8003
8004 for (i = fd; i < fd + offset; i++)
8005 bfd_arm_vfp11_write_mask (destmask, i);
8006 }
8007 break;
8008
8009 case 4: /* fld[sd]. */
8010 case 6:
8011 bfd_arm_vfp11_write_mask (destmask, fd);
8012 break;
8013
8014 default:
8015 return VFP11_BAD;
8016 }
8017
8018 vpipe = VFP11_LS;
8019 }
8020 /* Single-register transfer. Note L==0. */
8021 else if ((insn & 0x0f100e10) == 0x0e000a10)
8022 {
8023 unsigned int opcode = (insn >> 21) & 7;
8024 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8025
8026 switch (opcode)
8027 {
8028 case 0: /* fmsr/fmdlr. */
8029 case 1: /* fmdhr. */
8030 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8031 destination register. I don't know if this is exactly right,
8032 but it is the conservative choice. */
8033 bfd_arm_vfp11_write_mask (destmask, fn);
8034 break;
8035
8036 case 7: /* fmxr. */
8037 break;
8038 }
8039
8040 vpipe = VFP11_LS;
8041 }
8042
8043 return vpipe;
8044 }
8045
8046
8047 static int elf32_arm_compare_mapping (const void * a, const void * b);
8048
8049
8050 /* Look for potentially-troublesome code sequences which might trigger the
8051 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8052 (available from ARM) for details of the erratum. A short version is
8053 described in ld.texinfo. */
8054
8055 bfd_boolean
8056 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8057 {
8058 asection *sec;
8059 bfd_byte *contents = NULL;
8060 int state = 0;
8061 int regs[3], numregs = 0;
8062 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8063 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8064
8065 if (globals == NULL)
8066 return FALSE;
8067
8068 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8069 The states transition as follows:
8070
8071 0 -> 1 (vector) or 0 -> 2 (scalar)
8072 A VFP FMAC-pipeline instruction has been seen. Fill
8073 regs[0]..regs[numregs-1] with its input operands. Remember this
8074 instruction in 'first_fmac'.
8075
8076 1 -> 2
8077 Any instruction, except for a VFP instruction which overwrites
8078 regs[*].
8079
8080 1 -> 3 [ -> 0 ] or
8081 2 -> 3 [ -> 0 ]
8082 A VFP instruction has been seen which overwrites any of regs[*].
8083 We must make a veneer! Reset state to 0 before examining next
8084 instruction.
8085
8086 2 -> 0
8087 If we fail to match anything in state 2, reset to state 0 and reset
8088 the instruction pointer to the instruction after 'first_fmac'.
8089
8090 If the VFP11 vector mode is in use, there must be at least two unrelated
8091 instructions between anti-dependent VFP11 instructions to properly avoid
8092 triggering the erratum, hence the use of the extra state 1. */
8093
8094 /* If we are only performing a partial link do not bother
8095 to construct any glue. */
8096 if (bfd_link_relocatable (link_info))
8097 return TRUE;
8098
8099 /* Skip if this bfd does not correspond to an ELF image. */
8100 if (! is_arm_elf (abfd))
8101 return TRUE;
8102
8103 /* We should have chosen a fix type by the time we get here. */
8104 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8105
8106 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8107 return TRUE;
8108
8109 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8110 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8111 return TRUE;
8112
8113 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8114 {
8115 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8116 struct _arm_elf_section_data *sec_data;
8117
8118 /* If we don't have executable progbits, we're not interested in this
8119 section. Also skip if section is to be excluded. */
8120 if (elf_section_type (sec) != SHT_PROGBITS
8121 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8122 || (sec->flags & SEC_EXCLUDE) != 0
8123 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8124 || sec->output_section == bfd_abs_section_ptr
8125 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8126 continue;
8127
8128 sec_data = elf32_arm_section_data (sec);
8129
8130 if (sec_data->mapcount == 0)
8131 continue;
8132
8133 if (elf_section_data (sec)->this_hdr.contents != NULL)
8134 contents = elf_section_data (sec)->this_hdr.contents;
8135 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8136 goto error_return;
8137
8138 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8139 elf32_arm_compare_mapping);
8140
8141 for (span = 0; span < sec_data->mapcount; span++)
8142 {
8143 unsigned int span_start = sec_data->map[span].vma;
8144 unsigned int span_end = (span == sec_data->mapcount - 1)
8145 ? sec->size : sec_data->map[span + 1].vma;
8146 char span_type = sec_data->map[span].type;
8147
8148 /* FIXME: Only ARM mode is supported at present. We may need to
8149 support Thumb-2 mode also at some point. */
8150 if (span_type != 'a')
8151 continue;
8152
8153 for (i = span_start; i < span_end;)
8154 {
8155 unsigned int next_i = i + 4;
8156 unsigned int insn = bfd_big_endian (abfd)
8157 ? (contents[i] << 24)
8158 | (contents[i + 1] << 16)
8159 | (contents[i + 2] << 8)
8160 | contents[i + 3]
8161 : (contents[i + 3] << 24)
8162 | (contents[i + 2] << 16)
8163 | (contents[i + 1] << 8)
8164 | contents[i];
8165 unsigned int writemask = 0;
8166 enum bfd_arm_vfp11_pipe vpipe;
8167
8168 switch (state)
8169 {
8170 case 0:
8171 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8172 &numregs);
8173 /* I'm assuming the VFP11 erratum can trigger with denorm
8174 operands on either the FMAC or the DS pipeline. This might
8175 lead to slightly overenthusiastic veneer insertion. */
8176 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8177 {
8178 state = use_vector ? 1 : 2;
8179 first_fmac = i;
8180 veneer_of_insn = insn;
8181 }
8182 break;
8183
8184 case 1:
8185 {
8186 int other_regs[3], other_numregs;
8187 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8188 other_regs,
8189 &other_numregs);
8190 if (vpipe != VFP11_BAD
8191 && bfd_arm_vfp11_antidependency (writemask, regs,
8192 numregs))
8193 state = 3;
8194 else
8195 state = 2;
8196 }
8197 break;
8198
8199 case 2:
8200 {
8201 int other_regs[3], other_numregs;
8202 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8203 other_regs,
8204 &other_numregs);
8205 if (vpipe != VFP11_BAD
8206 && bfd_arm_vfp11_antidependency (writemask, regs,
8207 numregs))
8208 state = 3;
8209 else
8210 {
8211 state = 0;
8212 next_i = first_fmac + 4;
8213 }
8214 }
8215 break;
8216
8217 case 3:
8218 abort (); /* Should be unreachable. */
8219 }
8220
8221 if (state == 3)
8222 {
8223 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8224 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8225
8226 elf32_arm_section_data (sec)->erratumcount += 1;
8227
8228 newerr->u.b.vfp_insn = veneer_of_insn;
8229
8230 switch (span_type)
8231 {
8232 case 'a':
8233 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8234 break;
8235
8236 default:
8237 abort ();
8238 }
8239
8240 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8241 first_fmac);
8242
8243 newerr->vma = -1;
8244
8245 newerr->next = sec_data->erratumlist;
8246 sec_data->erratumlist = newerr;
8247
8248 state = 0;
8249 }
8250
8251 i = next_i;
8252 }
8253 }
8254
8255 if (contents != NULL
8256 && elf_section_data (sec)->this_hdr.contents != contents)
8257 free (contents);
8258 contents = NULL;
8259 }
8260
8261 return TRUE;
8262
8263 error_return:
8264 if (contents != NULL
8265 && elf_section_data (sec)->this_hdr.contents != contents)
8266 free (contents);
8267
8268 return FALSE;
8269 }
8270
8271 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8272 after sections have been laid out, using specially-named symbols. */
8273
8274 void
8275 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8276 struct bfd_link_info *link_info)
8277 {
8278 asection *sec;
8279 struct elf32_arm_link_hash_table *globals;
8280 char *tmp_name;
8281
8282 if (bfd_link_relocatable (link_info))
8283 return;
8284
8285 /* Skip if this bfd does not correspond to an ELF image. */
8286 if (! is_arm_elf (abfd))
8287 return;
8288
8289 globals = elf32_arm_hash_table (link_info);
8290 if (globals == NULL)
8291 return;
8292
8293 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8294 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8295
8296 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8297 {
8298 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8299 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8300
8301 for (; errnode != NULL; errnode = errnode->next)
8302 {
8303 struct elf_link_hash_entry *myh;
8304 bfd_vma vma;
8305
8306 switch (errnode->type)
8307 {
8308 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8309 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8310 /* Find veneer symbol. */
8311 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8312 errnode->u.b.veneer->u.v.id);
8313
8314 myh = elf_link_hash_lookup
8315 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8316
8317 if (myh == NULL)
8318 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8319 "`%s'"), abfd, tmp_name);
8320
8321 vma = myh->root.u.def.section->output_section->vma
8322 + myh->root.u.def.section->output_offset
8323 + myh->root.u.def.value;
8324
8325 errnode->u.b.veneer->vma = vma;
8326 break;
8327
8328 case VFP11_ERRATUM_ARM_VENEER:
8329 case VFP11_ERRATUM_THUMB_VENEER:
8330 /* Find return location. */
8331 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8332 errnode->u.v.id);
8333
8334 myh = elf_link_hash_lookup
8335 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8336
8337 if (myh == NULL)
8338 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8339 "`%s'"), abfd, tmp_name);
8340
8341 vma = myh->root.u.def.section->output_section->vma
8342 + myh->root.u.def.section->output_offset
8343 + myh->root.u.def.value;
8344
8345 errnode->u.v.branch->vma = vma;
8346 break;
8347
8348 default:
8349 abort ();
8350 }
8351 }
8352 }
8353
8354 free (tmp_name);
8355 }
8356
8357 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8358 return locations after sections have been laid out, using
8359 specially-named symbols. */
8360
8361 void
8362 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8363 struct bfd_link_info *link_info)
8364 {
8365 asection *sec;
8366 struct elf32_arm_link_hash_table *globals;
8367 char *tmp_name;
8368
8369 if (bfd_link_relocatable (link_info))
8370 return;
8371
8372 /* Skip if this bfd does not correspond to an ELF image. */
8373 if (! is_arm_elf (abfd))
8374 return;
8375
8376 globals = elf32_arm_hash_table (link_info);
8377 if (globals == NULL)
8378 return;
8379
8380 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8381 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8382
8383 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8384 {
8385 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8386 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8387
8388 for (; errnode != NULL; errnode = errnode->next)
8389 {
8390 struct elf_link_hash_entry *myh;
8391 bfd_vma vma;
8392
8393 switch (errnode->type)
8394 {
8395 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8396 /* Find veneer symbol. */
8397 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8398 errnode->u.b.veneer->u.v.id);
8399
8400 myh = elf_link_hash_lookup
8401 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8402
8403 if (myh == NULL)
8404 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8405 "`%s'"), abfd, tmp_name);
8406
8407 vma = myh->root.u.def.section->output_section->vma
8408 + myh->root.u.def.section->output_offset
8409 + myh->root.u.def.value;
8410
8411 errnode->u.b.veneer->vma = vma;
8412 break;
8413
8414 case STM32L4XX_ERRATUM_VENEER:
8415 /* Find return location. */
8416 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8417 errnode->u.v.id);
8418
8419 myh = elf_link_hash_lookup
8420 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8421
8422 if (myh == NULL)
8423 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8424 "`%s'"), abfd, tmp_name);
8425
8426 vma = myh->root.u.def.section->output_section->vma
8427 + myh->root.u.def.section->output_offset
8428 + myh->root.u.def.value;
8429
8430 errnode->u.v.branch->vma = vma;
8431 break;
8432
8433 default:
8434 abort ();
8435 }
8436 }
8437 }
8438
8439 free (tmp_name);
8440 }
8441
8442 static inline bfd_boolean
8443 is_thumb2_ldmia (const insn32 insn)
8444 {
8445 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8446 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8447 return (insn & 0xffd02000) == 0xe8900000;
8448 }
8449
8450 static inline bfd_boolean
8451 is_thumb2_ldmdb (const insn32 insn)
8452 {
8453 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8454 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8455 return (insn & 0xffd02000) == 0xe9100000;
8456 }
8457
8458 static inline bfd_boolean
8459 is_thumb2_vldm (const insn32 insn)
8460 {
8461 /* A6.5 Extension register load or store instruction
8462 A7.7.229
8463 We look for SP 32-bit and DP 64-bit registers.
8464 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8465 <list> is consecutive 64-bit registers
8466 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8467 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8468 <list> is consecutive 32-bit registers
8469 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8470 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8471 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8472 return
8473 (((insn & 0xfe100f00) == 0xec100b00) ||
8474 ((insn & 0xfe100f00) == 0xec100a00))
8475 && /* (IA without !). */
8476 (((((insn << 7) >> 28) & 0xd) == 0x4)
8477 /* (IA with !), includes VPOP (when reg number is SP). */
8478 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8479 /* (DB with !). */
8480 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8481 }
8482
8483 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8484 VLDM opcode and:
8485 - computes the number and the mode of memory accesses
8486 - decides if the replacement should be done:
8487 . replaces only if > 8-word accesses
8488 . or (testing purposes only) replaces all accesses. */
8489
8490 static bfd_boolean
8491 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8492 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8493 {
8494 int nb_words = 0;
8495
8496 /* The field encoding the register list is the same for both LDMIA
8497 and LDMDB encodings. */
8498 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8499 nb_words = popcount (insn & 0x0000ffff);
8500 else if (is_thumb2_vldm (insn))
8501 nb_words = (insn & 0xff);
8502
8503 /* DEFAULT mode accounts for the real bug condition situation,
8504 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8505 return
8506 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8507 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8508 }
8509
8510 /* Look for potentially-troublesome code sequences which might trigger
8511 the STM STM32L4XX erratum. */
8512
8513 bfd_boolean
8514 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8515 struct bfd_link_info *link_info)
8516 {
8517 asection *sec;
8518 bfd_byte *contents = NULL;
8519 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8520
8521 if (globals == NULL)
8522 return FALSE;
8523
8524 /* If we are only performing a partial link do not bother
8525 to construct any glue. */
8526 if (bfd_link_relocatable (link_info))
8527 return TRUE;
8528
8529 /* Skip if this bfd does not correspond to an ELF image. */
8530 if (! is_arm_elf (abfd))
8531 return TRUE;
8532
8533 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8534 return TRUE;
8535
8536 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8537 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8538 return TRUE;
8539
8540 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8541 {
8542 unsigned int i, span;
8543 struct _arm_elf_section_data *sec_data;
8544
8545 /* If we don't have executable progbits, we're not interested in this
8546 section. Also skip if section is to be excluded. */
8547 if (elf_section_type (sec) != SHT_PROGBITS
8548 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8549 || (sec->flags & SEC_EXCLUDE) != 0
8550 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8551 || sec->output_section == bfd_abs_section_ptr
8552 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8553 continue;
8554
8555 sec_data = elf32_arm_section_data (sec);
8556
8557 if (sec_data->mapcount == 0)
8558 continue;
8559
8560 if (elf_section_data (sec)->this_hdr.contents != NULL)
8561 contents = elf_section_data (sec)->this_hdr.contents;
8562 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8563 goto error_return;
8564
8565 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8566 elf32_arm_compare_mapping);
8567
8568 for (span = 0; span < sec_data->mapcount; span++)
8569 {
8570 unsigned int span_start = sec_data->map[span].vma;
8571 unsigned int span_end = (span == sec_data->mapcount - 1)
8572 ? sec->size : sec_data->map[span + 1].vma;
8573 char span_type = sec_data->map[span].type;
8574 int itblock_current_pos = 0;
8575
8576 /* Only Thumb2 mode need be supported with this CM4 specific
8577 code, we should not encounter any arm mode eg span_type
8578 != 'a'. */
8579 if (span_type != 't')
8580 continue;
8581
8582 for (i = span_start; i < span_end;)
8583 {
8584 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8585 bfd_boolean insn_32bit = FALSE;
8586 bfd_boolean is_ldm = FALSE;
8587 bfd_boolean is_vldm = FALSE;
8588 bfd_boolean is_not_last_in_it_block = FALSE;
8589
8590 /* The first 16-bits of all 32-bit thumb2 instructions start
8591 with opcode[15..13]=0b111 and the encoded op1 can be anything
8592 except opcode[12..11]!=0b00.
8593 See 32-bit Thumb instruction encoding. */
8594 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8595 insn_32bit = TRUE;
8596
8597 /* Compute the predicate that tells if the instruction
8598 is concerned by the IT block
8599 - Creates an error if there is a ldm that is not
8600 last in the IT block thus cannot be replaced
8601 - Otherwise we can create a branch at the end of the
8602 IT block, it will be controlled naturally by IT
8603 with the proper pseudo-predicate
8604 - So the only interesting predicate is the one that
8605 tells that we are not on the last item of an IT
8606 block. */
8607 if (itblock_current_pos != 0)
8608 is_not_last_in_it_block = !!--itblock_current_pos;
8609
8610 if (insn_32bit)
8611 {
8612 /* Load the rest of the insn (in manual-friendly order). */
8613 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8614 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8615 is_vldm = is_thumb2_vldm (insn);
8616
8617 /* Veneers are created for (v)ldm depending on
8618 option flags and memory accesses conditions; but
8619 if the instruction is not the last instruction of
8620 an IT block, we cannot create a jump there, so we
8621 bail out. */
8622 if ((is_ldm || is_vldm)
8623 && stm32l4xx_need_create_replacing_stub
8624 (insn, globals->stm32l4xx_fix))
8625 {
8626 if (is_not_last_in_it_block)
8627 {
8628 _bfd_error_handler
8629 /* Note - overlong line used here to allow for translation. */
8630 /* xgettext:c-format */
8631 (_("\
8632 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8633 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8634 abfd, sec, (long) i);
8635 }
8636 else
8637 {
8638 elf32_stm32l4xx_erratum_list *newerr =
8639 (elf32_stm32l4xx_erratum_list *)
8640 bfd_zmalloc
8641 (sizeof (elf32_stm32l4xx_erratum_list));
8642
8643 elf32_arm_section_data (sec)
8644 ->stm32l4xx_erratumcount += 1;
8645 newerr->u.b.insn = insn;
8646 /* We create only thumb branches. */
8647 newerr->type =
8648 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8649 record_stm32l4xx_erratum_veneer
8650 (link_info, newerr, abfd, sec,
8651 i,
8652 is_ldm ?
8653 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8654 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8655 newerr->vma = -1;
8656 newerr->next = sec_data->stm32l4xx_erratumlist;
8657 sec_data->stm32l4xx_erratumlist = newerr;
8658 }
8659 }
8660 }
8661 else
8662 {
8663 /* A7.7.37 IT p208
8664 IT blocks are only encoded in T1
8665 Encoding T1: IT{x{y{z}}} <firstcond>
8666 1 0 1 1 - 1 1 1 1 - firstcond - mask
8667 if mask = '0000' then see 'related encodings'
8668 We don't deal with UNPREDICTABLE, just ignore these.
8669 There can be no nested IT blocks so an IT block
8670 is naturally a new one for which it is worth
8671 computing its size. */
8672 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8673 && ((insn & 0x000f) != 0x0000);
8674 /* If we have a new IT block we compute its size. */
8675 if (is_newitblock)
8676 {
8677 /* Compute the number of instructions controlled
8678 by the IT block, it will be used to decide
8679 whether we are inside an IT block or not. */
8680 unsigned int mask = insn & 0x000f;
8681 itblock_current_pos = 4 - ctz (mask);
8682 }
8683 }
8684
8685 i += insn_32bit ? 4 : 2;
8686 }
8687 }
8688
8689 if (contents != NULL
8690 && elf_section_data (sec)->this_hdr.contents != contents)
8691 free (contents);
8692 contents = NULL;
8693 }
8694
8695 return TRUE;
8696
8697 error_return:
8698 if (contents != NULL
8699 && elf_section_data (sec)->this_hdr.contents != contents)
8700 free (contents);
8701
8702 return FALSE;
8703 }
8704
8705 /* Set target relocation values needed during linking. */
8706
8707 void
8708 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8709 struct bfd_link_info *link_info,
8710 struct elf32_arm_params *params)
8711 {
8712 struct elf32_arm_link_hash_table *globals;
8713
8714 globals = elf32_arm_hash_table (link_info);
8715 if (globals == NULL)
8716 return;
8717
8718 globals->target1_is_rel = params->target1_is_rel;
8719 if (strcmp (params->target2_type, "rel") == 0)
8720 globals->target2_reloc = R_ARM_REL32;
8721 else if (strcmp (params->target2_type, "abs") == 0)
8722 globals->target2_reloc = R_ARM_ABS32;
8723 else if (strcmp (params->target2_type, "got-rel") == 0)
8724 globals->target2_reloc = R_ARM_GOT_PREL;
8725 else
8726 {
8727 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8728 params->target2_type);
8729 }
8730 globals->fix_v4bx = params->fix_v4bx;
8731 globals->use_blx |= params->use_blx;
8732 globals->vfp11_fix = params->vfp11_denorm_fix;
8733 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8734 globals->pic_veneer = params->pic_veneer;
8735 globals->fix_cortex_a8 = params->fix_cortex_a8;
8736 globals->fix_arm1176 = params->fix_arm1176;
8737 globals->cmse_implib = params->cmse_implib;
8738 globals->in_implib_bfd = params->in_implib_bfd;
8739
8740 BFD_ASSERT (is_arm_elf (output_bfd));
8741 elf_arm_tdata (output_bfd)->no_enum_size_warning
8742 = params->no_enum_size_warning;
8743 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8744 = params->no_wchar_size_warning;
8745 }
8746
8747 /* Replace the target offset of a Thumb bl or b.w instruction. */
8748
8749 static void
8750 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8751 {
8752 bfd_vma upper;
8753 bfd_vma lower;
8754 int reloc_sign;
8755
8756 BFD_ASSERT ((offset & 1) == 0);
8757
8758 upper = bfd_get_16 (abfd, insn);
8759 lower = bfd_get_16 (abfd, insn + 2);
8760 reloc_sign = (offset < 0) ? 1 : 0;
8761 upper = (upper & ~(bfd_vma) 0x7ff)
8762 | ((offset >> 12) & 0x3ff)
8763 | (reloc_sign << 10);
8764 lower = (lower & ~(bfd_vma) 0x2fff)
8765 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8766 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8767 | ((offset >> 1) & 0x7ff);
8768 bfd_put_16 (abfd, upper, insn);
8769 bfd_put_16 (abfd, lower, insn + 2);
8770 }
8771
8772 /* Thumb code calling an ARM function. */
8773
8774 static int
8775 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8776 const char * name,
8777 bfd * input_bfd,
8778 bfd * output_bfd,
8779 asection * input_section,
8780 bfd_byte * hit_data,
8781 asection * sym_sec,
8782 bfd_vma offset,
8783 bfd_signed_vma addend,
8784 bfd_vma val,
8785 char **error_message)
8786 {
8787 asection * s = 0;
8788 bfd_vma my_offset;
8789 long int ret_offset;
8790 struct elf_link_hash_entry * myh;
8791 struct elf32_arm_link_hash_table * globals;
8792
8793 myh = find_thumb_glue (info, name, error_message);
8794 if (myh == NULL)
8795 return FALSE;
8796
8797 globals = elf32_arm_hash_table (info);
8798 BFD_ASSERT (globals != NULL);
8799 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8800
8801 my_offset = myh->root.u.def.value;
8802
8803 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8804 THUMB2ARM_GLUE_SECTION_NAME);
8805
8806 BFD_ASSERT (s != NULL);
8807 BFD_ASSERT (s->contents != NULL);
8808 BFD_ASSERT (s->output_section != NULL);
8809
8810 if ((my_offset & 0x01) == 0x01)
8811 {
8812 if (sym_sec != NULL
8813 && sym_sec->owner != NULL
8814 && !INTERWORK_FLAG (sym_sec->owner))
8815 {
8816 _bfd_error_handler
8817 (_("%B(%s): warning: interworking not enabled.\n"
8818 " first occurrence: %B: Thumb call to ARM"),
8819 sym_sec->owner, input_bfd, name);
8820
8821 return FALSE;
8822 }
8823
8824 --my_offset;
8825 myh->root.u.def.value = my_offset;
8826
8827 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8828 s->contents + my_offset);
8829
8830 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8831 s->contents + my_offset + 2);
8832
8833 ret_offset =
8834 /* Address of destination of the stub. */
8835 ((bfd_signed_vma) val)
8836 - ((bfd_signed_vma)
8837 /* Offset from the start of the current section
8838 to the start of the stubs. */
8839 (s->output_offset
8840 /* Offset of the start of this stub from the start of the stubs. */
8841 + my_offset
8842 /* Address of the start of the current section. */
8843 + s->output_section->vma)
8844 /* The branch instruction is 4 bytes into the stub. */
8845 + 4
8846 /* ARM branches work from the pc of the instruction + 8. */
8847 + 8);
8848
8849 put_arm_insn (globals, output_bfd,
8850 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8851 s->contents + my_offset + 4);
8852 }
8853
8854 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8855
8856 /* Now go back and fix up the original BL insn to point to here. */
8857 ret_offset =
8858 /* Address of where the stub is located. */
8859 (s->output_section->vma + s->output_offset + my_offset)
8860 /* Address of where the BL is located. */
8861 - (input_section->output_section->vma + input_section->output_offset
8862 + offset)
8863 /* Addend in the relocation. */
8864 - addend
8865 /* Biassing for PC-relative addressing. */
8866 - 8;
8867
8868 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8869
8870 return TRUE;
8871 }
8872
8873 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8874
8875 static struct elf_link_hash_entry *
8876 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8877 const char * name,
8878 bfd * input_bfd,
8879 bfd * output_bfd,
8880 asection * sym_sec,
8881 bfd_vma val,
8882 asection * s,
8883 char ** error_message)
8884 {
8885 bfd_vma my_offset;
8886 long int ret_offset;
8887 struct elf_link_hash_entry * myh;
8888 struct elf32_arm_link_hash_table * globals;
8889
8890 myh = find_arm_glue (info, name, error_message);
8891 if (myh == NULL)
8892 return NULL;
8893
8894 globals = elf32_arm_hash_table (info);
8895 BFD_ASSERT (globals != NULL);
8896 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8897
8898 my_offset = myh->root.u.def.value;
8899
8900 if ((my_offset & 0x01) == 0x01)
8901 {
8902 if (sym_sec != NULL
8903 && sym_sec->owner != NULL
8904 && !INTERWORK_FLAG (sym_sec->owner))
8905 {
8906 _bfd_error_handler
8907 (_("%B(%s): warning: interworking not enabled.\n"
8908 " first occurrence: %B: arm call to thumb"),
8909 sym_sec->owner, input_bfd, name);
8910 }
8911
8912 --my_offset;
8913 myh->root.u.def.value = my_offset;
8914
8915 if (bfd_link_pic (info)
8916 || globals->root.is_relocatable_executable
8917 || globals->pic_veneer)
8918 {
8919 /* For relocatable objects we can't use absolute addresses,
8920 so construct the address from a relative offset. */
8921 /* TODO: If the offset is small it's probably worth
8922 constructing the address with adds. */
8923 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8924 s->contents + my_offset);
8925 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8926 s->contents + my_offset + 4);
8927 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8928 s->contents + my_offset + 8);
8929 /* Adjust the offset by 4 for the position of the add,
8930 and 8 for the pipeline offset. */
8931 ret_offset = (val - (s->output_offset
8932 + s->output_section->vma
8933 + my_offset + 12))
8934 | 1;
8935 bfd_put_32 (output_bfd, ret_offset,
8936 s->contents + my_offset + 12);
8937 }
8938 else if (globals->use_blx)
8939 {
8940 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8941 s->contents + my_offset);
8942
8943 /* It's a thumb address. Add the low order bit. */
8944 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8945 s->contents + my_offset + 4);
8946 }
8947 else
8948 {
8949 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8950 s->contents + my_offset);
8951
8952 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8953 s->contents + my_offset + 4);
8954
8955 /* It's a thumb address. Add the low order bit. */
8956 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8957 s->contents + my_offset + 8);
8958
8959 my_offset += 12;
8960 }
8961 }
8962
8963 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8964
8965 return myh;
8966 }
8967
8968 /* Arm code calling a Thumb function. */
8969
8970 static int
8971 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8972 const char * name,
8973 bfd * input_bfd,
8974 bfd * output_bfd,
8975 asection * input_section,
8976 bfd_byte * hit_data,
8977 asection * sym_sec,
8978 bfd_vma offset,
8979 bfd_signed_vma addend,
8980 bfd_vma val,
8981 char **error_message)
8982 {
8983 unsigned long int tmp;
8984 bfd_vma my_offset;
8985 asection * s;
8986 long int ret_offset;
8987 struct elf_link_hash_entry * myh;
8988 struct elf32_arm_link_hash_table * globals;
8989
8990 globals = elf32_arm_hash_table (info);
8991 BFD_ASSERT (globals != NULL);
8992 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8993
8994 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8995 ARM2THUMB_GLUE_SECTION_NAME);
8996 BFD_ASSERT (s != NULL);
8997 BFD_ASSERT (s->contents != NULL);
8998 BFD_ASSERT (s->output_section != NULL);
8999
9000 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9001 sym_sec, val, s, error_message);
9002 if (!myh)
9003 return FALSE;
9004
9005 my_offset = myh->root.u.def.value;
9006 tmp = bfd_get_32 (input_bfd, hit_data);
9007 tmp = tmp & 0xFF000000;
9008
9009 /* Somehow these are both 4 too far, so subtract 8. */
9010 ret_offset = (s->output_offset
9011 + my_offset
9012 + s->output_section->vma
9013 - (input_section->output_offset
9014 + input_section->output_section->vma
9015 + offset + addend)
9016 - 8);
9017
9018 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9019
9020 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9021
9022 return TRUE;
9023 }
9024
9025 /* Populate Arm stub for an exported Thumb function. */
9026
9027 static bfd_boolean
9028 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9029 {
9030 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9031 asection * s;
9032 struct elf_link_hash_entry * myh;
9033 struct elf32_arm_link_hash_entry *eh;
9034 struct elf32_arm_link_hash_table * globals;
9035 asection *sec;
9036 bfd_vma val;
9037 char *error_message;
9038
9039 eh = elf32_arm_hash_entry (h);
9040 /* Allocate stubs for exported Thumb functions on v4t. */
9041 if (eh->export_glue == NULL)
9042 return TRUE;
9043
9044 globals = elf32_arm_hash_table (info);
9045 BFD_ASSERT (globals != NULL);
9046 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9047
9048 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9049 ARM2THUMB_GLUE_SECTION_NAME);
9050 BFD_ASSERT (s != NULL);
9051 BFD_ASSERT (s->contents != NULL);
9052 BFD_ASSERT (s->output_section != NULL);
9053
9054 sec = eh->export_glue->root.u.def.section;
9055
9056 BFD_ASSERT (sec->output_section != NULL);
9057
9058 val = eh->export_glue->root.u.def.value + sec->output_offset
9059 + sec->output_section->vma;
9060
9061 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9062 h->root.u.def.section->owner,
9063 globals->obfd, sec, val, s,
9064 &error_message);
9065 BFD_ASSERT (myh);
9066 return TRUE;
9067 }
9068
9069 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9070
9071 static bfd_vma
9072 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9073 {
9074 bfd_byte *p;
9075 bfd_vma glue_addr;
9076 asection *s;
9077 struct elf32_arm_link_hash_table *globals;
9078
9079 globals = elf32_arm_hash_table (info);
9080 BFD_ASSERT (globals != NULL);
9081 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9082
9083 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9084 ARM_BX_GLUE_SECTION_NAME);
9085 BFD_ASSERT (s != NULL);
9086 BFD_ASSERT (s->contents != NULL);
9087 BFD_ASSERT (s->output_section != NULL);
9088
9089 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9090
9091 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9092
9093 if ((globals->bx_glue_offset[reg] & 1) == 0)
9094 {
9095 p = s->contents + glue_addr;
9096 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9097 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9098 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9099 globals->bx_glue_offset[reg] |= 1;
9100 }
9101
9102 return glue_addr + s->output_section->vma + s->output_offset;
9103 }
9104
9105 /* Generate Arm stubs for exported Thumb symbols. */
9106 static void
9107 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9108 struct bfd_link_info *link_info)
9109 {
9110 struct elf32_arm_link_hash_table * globals;
9111
9112 if (link_info == NULL)
9113 /* Ignore this if we are not called by the ELF backend linker. */
9114 return;
9115
9116 globals = elf32_arm_hash_table (link_info);
9117 if (globals == NULL)
9118 return;
9119
9120 /* If blx is available then exported Thumb symbols are OK and there is
9121 nothing to do. */
9122 if (globals->use_blx)
9123 return;
9124
9125 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9126 link_info);
9127 }
9128
9129 /* Reserve space for COUNT dynamic relocations in relocation selection
9130 SRELOC. */
9131
9132 static void
9133 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9134 bfd_size_type count)
9135 {
9136 struct elf32_arm_link_hash_table *htab;
9137
9138 htab = elf32_arm_hash_table (info);
9139 BFD_ASSERT (htab->root.dynamic_sections_created);
9140 if (sreloc == NULL)
9141 abort ();
9142 sreloc->size += RELOC_SIZE (htab) * count;
9143 }
9144
9145 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9146 dynamic, the relocations should go in SRELOC, otherwise they should
9147 go in the special .rel.iplt section. */
9148
9149 static void
9150 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9151 bfd_size_type count)
9152 {
9153 struct elf32_arm_link_hash_table *htab;
9154
9155 htab = elf32_arm_hash_table (info);
9156 if (!htab->root.dynamic_sections_created)
9157 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9158 else
9159 {
9160 BFD_ASSERT (sreloc != NULL);
9161 sreloc->size += RELOC_SIZE (htab) * count;
9162 }
9163 }
9164
9165 /* Add relocation REL to the end of relocation section SRELOC. */
9166
9167 static void
9168 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9169 asection *sreloc, Elf_Internal_Rela *rel)
9170 {
9171 bfd_byte *loc;
9172 struct elf32_arm_link_hash_table *htab;
9173
9174 htab = elf32_arm_hash_table (info);
9175 if (!htab->root.dynamic_sections_created
9176 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9177 sreloc = htab->root.irelplt;
9178 if (sreloc == NULL)
9179 abort ();
9180 loc = sreloc->contents;
9181 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9182 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9183 abort ();
9184 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9185 }
9186
9187 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9188 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9189 to .plt. */
9190
9191 static void
9192 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9193 bfd_boolean is_iplt_entry,
9194 union gotplt_union *root_plt,
9195 struct arm_plt_info *arm_plt)
9196 {
9197 struct elf32_arm_link_hash_table *htab;
9198 asection *splt;
9199 asection *sgotplt;
9200
9201 htab = elf32_arm_hash_table (info);
9202
9203 if (is_iplt_entry)
9204 {
9205 splt = htab->root.iplt;
9206 sgotplt = htab->root.igotplt;
9207
9208 /* NaCl uses a special first entry in .iplt too. */
9209 if (htab->nacl_p && splt->size == 0)
9210 splt->size += htab->plt_header_size;
9211
9212 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9213 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9214 }
9215 else
9216 {
9217 splt = htab->root.splt;
9218 sgotplt = htab->root.sgotplt;
9219
9220 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9221 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9222
9223 /* If this is the first .plt entry, make room for the special
9224 first entry. */
9225 if (splt->size == 0)
9226 splt->size += htab->plt_header_size;
9227
9228 htab->next_tls_desc_index++;
9229 }
9230
9231 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9232 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9233 splt->size += PLT_THUMB_STUB_SIZE;
9234 root_plt->offset = splt->size;
9235 splt->size += htab->plt_entry_size;
9236
9237 if (!htab->symbian_p)
9238 {
9239 /* We also need to make an entry in the .got.plt section, which
9240 will be placed in the .got section by the linker script. */
9241 if (is_iplt_entry)
9242 arm_plt->got_offset = sgotplt->size;
9243 else
9244 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9245 sgotplt->size += 4;
9246 }
9247 }
9248
9249 static bfd_vma
9250 arm_movw_immediate (bfd_vma value)
9251 {
9252 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9253 }
9254
9255 static bfd_vma
9256 arm_movt_immediate (bfd_vma value)
9257 {
9258 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9259 }
9260
9261 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9262 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9263 Otherwise, DYNINDX is the index of the symbol in the dynamic
9264 symbol table and SYM_VALUE is undefined.
9265
9266 ROOT_PLT points to the offset of the PLT entry from the start of its
9267 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9268 bookkeeping information.
9269
9270 Returns FALSE if there was a problem. */
9271
9272 static bfd_boolean
9273 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9274 union gotplt_union *root_plt,
9275 struct arm_plt_info *arm_plt,
9276 int dynindx, bfd_vma sym_value)
9277 {
9278 struct elf32_arm_link_hash_table *htab;
9279 asection *sgot;
9280 asection *splt;
9281 asection *srel;
9282 bfd_byte *loc;
9283 bfd_vma plt_index;
9284 Elf_Internal_Rela rel;
9285 bfd_vma plt_header_size;
9286 bfd_vma got_header_size;
9287
9288 htab = elf32_arm_hash_table (info);
9289
9290 /* Pick the appropriate sections and sizes. */
9291 if (dynindx == -1)
9292 {
9293 splt = htab->root.iplt;
9294 sgot = htab->root.igotplt;
9295 srel = htab->root.irelplt;
9296
9297 /* There are no reserved entries in .igot.plt, and no special
9298 first entry in .iplt. */
9299 got_header_size = 0;
9300 plt_header_size = 0;
9301 }
9302 else
9303 {
9304 splt = htab->root.splt;
9305 sgot = htab->root.sgotplt;
9306 srel = htab->root.srelplt;
9307
9308 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9309 plt_header_size = htab->plt_header_size;
9310 }
9311 BFD_ASSERT (splt != NULL && srel != NULL);
9312
9313 /* Fill in the entry in the procedure linkage table. */
9314 if (htab->symbian_p)
9315 {
9316 BFD_ASSERT (dynindx >= 0);
9317 put_arm_insn (htab, output_bfd,
9318 elf32_arm_symbian_plt_entry[0],
9319 splt->contents + root_plt->offset);
9320 bfd_put_32 (output_bfd,
9321 elf32_arm_symbian_plt_entry[1],
9322 splt->contents + root_plt->offset + 4);
9323
9324 /* Fill in the entry in the .rel.plt section. */
9325 rel.r_offset = (splt->output_section->vma
9326 + splt->output_offset
9327 + root_plt->offset + 4);
9328 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9329
9330 /* Get the index in the procedure linkage table which
9331 corresponds to this symbol. This is the index of this symbol
9332 in all the symbols for which we are making plt entries. The
9333 first entry in the procedure linkage table is reserved. */
9334 plt_index = ((root_plt->offset - plt_header_size)
9335 / htab->plt_entry_size);
9336 }
9337 else
9338 {
9339 bfd_vma got_offset, got_address, plt_address;
9340 bfd_vma got_displacement, initial_got_entry;
9341 bfd_byte * ptr;
9342
9343 BFD_ASSERT (sgot != NULL);
9344
9345 /* Get the offset into the .(i)got.plt table of the entry that
9346 corresponds to this function. */
9347 got_offset = (arm_plt->got_offset & -2);
9348
9349 /* Get the index in the procedure linkage table which
9350 corresponds to this symbol. This is the index of this symbol
9351 in all the symbols for which we are making plt entries.
9352 After the reserved .got.plt entries, all symbols appear in
9353 the same order as in .plt. */
9354 plt_index = (got_offset - got_header_size) / 4;
9355
9356 /* Calculate the address of the GOT entry. */
9357 got_address = (sgot->output_section->vma
9358 + sgot->output_offset
9359 + got_offset);
9360
9361 /* ...and the address of the PLT entry. */
9362 plt_address = (splt->output_section->vma
9363 + splt->output_offset
9364 + root_plt->offset);
9365
9366 ptr = splt->contents + root_plt->offset;
9367 if (htab->vxworks_p && bfd_link_pic (info))
9368 {
9369 unsigned int i;
9370 bfd_vma val;
9371
9372 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9373 {
9374 val = elf32_arm_vxworks_shared_plt_entry[i];
9375 if (i == 2)
9376 val |= got_address - sgot->output_section->vma;
9377 if (i == 5)
9378 val |= plt_index * RELOC_SIZE (htab);
9379 if (i == 2 || i == 5)
9380 bfd_put_32 (output_bfd, val, ptr);
9381 else
9382 put_arm_insn (htab, output_bfd, val, ptr);
9383 }
9384 }
9385 else if (htab->vxworks_p)
9386 {
9387 unsigned int i;
9388 bfd_vma val;
9389
9390 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9391 {
9392 val = elf32_arm_vxworks_exec_plt_entry[i];
9393 if (i == 2)
9394 val |= got_address;
9395 if (i == 4)
9396 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9397 if (i == 5)
9398 val |= plt_index * RELOC_SIZE (htab);
9399 if (i == 2 || i == 5)
9400 bfd_put_32 (output_bfd, val, ptr);
9401 else
9402 put_arm_insn (htab, output_bfd, val, ptr);
9403 }
9404
9405 loc = (htab->srelplt2->contents
9406 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9407
9408 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9409 referencing the GOT for this PLT entry. */
9410 rel.r_offset = plt_address + 8;
9411 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9412 rel.r_addend = got_offset;
9413 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9414 loc += RELOC_SIZE (htab);
9415
9416 /* Create the R_ARM_ABS32 relocation referencing the
9417 beginning of the PLT for this GOT entry. */
9418 rel.r_offset = got_address;
9419 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9420 rel.r_addend = 0;
9421 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9422 }
9423 else if (htab->nacl_p)
9424 {
9425 /* Calculate the displacement between the PLT slot and the
9426 common tail that's part of the special initial PLT slot. */
9427 int32_t tail_displacement
9428 = ((splt->output_section->vma + splt->output_offset
9429 + ARM_NACL_PLT_TAIL_OFFSET)
9430 - (plt_address + htab->plt_entry_size + 4));
9431 BFD_ASSERT ((tail_displacement & 3) == 0);
9432 tail_displacement >>= 2;
9433
9434 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9435 || (-tail_displacement & 0xff000000) == 0);
9436
9437 /* Calculate the displacement between the PLT slot and the entry
9438 in the GOT. The offset accounts for the value produced by
9439 adding to pc in the penultimate instruction of the PLT stub. */
9440 got_displacement = (got_address
9441 - (plt_address + htab->plt_entry_size));
9442
9443 /* NaCl does not support interworking at all. */
9444 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9445
9446 put_arm_insn (htab, output_bfd,
9447 elf32_arm_nacl_plt_entry[0]
9448 | arm_movw_immediate (got_displacement),
9449 ptr + 0);
9450 put_arm_insn (htab, output_bfd,
9451 elf32_arm_nacl_plt_entry[1]
9452 | arm_movt_immediate (got_displacement),
9453 ptr + 4);
9454 put_arm_insn (htab, output_bfd,
9455 elf32_arm_nacl_plt_entry[2],
9456 ptr + 8);
9457 put_arm_insn (htab, output_bfd,
9458 elf32_arm_nacl_plt_entry[3]
9459 | (tail_displacement & 0x00ffffff),
9460 ptr + 12);
9461 }
9462 else if (using_thumb_only (htab))
9463 {
9464 /* PR ld/16017: Generate thumb only PLT entries. */
9465 if (!using_thumb2 (htab))
9466 {
9467 /* FIXME: We ought to be able to generate thumb-1 PLT
9468 instructions... */
9469 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9470 output_bfd);
9471 return FALSE;
9472 }
9473
9474 /* Calculate the displacement between the PLT slot and the entry in
9475 the GOT. The 12-byte offset accounts for the value produced by
9476 adding to pc in the 3rd instruction of the PLT stub. */
9477 got_displacement = got_address - (plt_address + 12);
9478
9479 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9480 instead of 'put_thumb_insn'. */
9481 put_arm_insn (htab, output_bfd,
9482 elf32_thumb2_plt_entry[0]
9483 | ((got_displacement & 0x000000ff) << 16)
9484 | ((got_displacement & 0x00000700) << 20)
9485 | ((got_displacement & 0x00000800) >> 1)
9486 | ((got_displacement & 0x0000f000) >> 12),
9487 ptr + 0);
9488 put_arm_insn (htab, output_bfd,
9489 elf32_thumb2_plt_entry[1]
9490 | ((got_displacement & 0x00ff0000) )
9491 | ((got_displacement & 0x07000000) << 4)
9492 | ((got_displacement & 0x08000000) >> 17)
9493 | ((got_displacement & 0xf0000000) >> 28),
9494 ptr + 4);
9495 put_arm_insn (htab, output_bfd,
9496 elf32_thumb2_plt_entry[2],
9497 ptr + 8);
9498 put_arm_insn (htab, output_bfd,
9499 elf32_thumb2_plt_entry[3],
9500 ptr + 12);
9501 }
9502 else
9503 {
9504 /* Calculate the displacement between the PLT slot and the
9505 entry in the GOT. The eight-byte offset accounts for the
9506 value produced by adding to pc in the first instruction
9507 of the PLT stub. */
9508 got_displacement = got_address - (plt_address + 8);
9509
9510 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9511 {
9512 put_thumb_insn (htab, output_bfd,
9513 elf32_arm_plt_thumb_stub[0], ptr - 4);
9514 put_thumb_insn (htab, output_bfd,
9515 elf32_arm_plt_thumb_stub[1], ptr - 2);
9516 }
9517
9518 if (!elf32_arm_use_long_plt_entry)
9519 {
9520 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9521
9522 put_arm_insn (htab, output_bfd,
9523 elf32_arm_plt_entry_short[0]
9524 | ((got_displacement & 0x0ff00000) >> 20),
9525 ptr + 0);
9526 put_arm_insn (htab, output_bfd,
9527 elf32_arm_plt_entry_short[1]
9528 | ((got_displacement & 0x000ff000) >> 12),
9529 ptr+ 4);
9530 put_arm_insn (htab, output_bfd,
9531 elf32_arm_plt_entry_short[2]
9532 | (got_displacement & 0x00000fff),
9533 ptr + 8);
9534 #ifdef FOUR_WORD_PLT
9535 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9536 #endif
9537 }
9538 else
9539 {
9540 put_arm_insn (htab, output_bfd,
9541 elf32_arm_plt_entry_long[0]
9542 | ((got_displacement & 0xf0000000) >> 28),
9543 ptr + 0);
9544 put_arm_insn (htab, output_bfd,
9545 elf32_arm_plt_entry_long[1]
9546 | ((got_displacement & 0x0ff00000) >> 20),
9547 ptr + 4);
9548 put_arm_insn (htab, output_bfd,
9549 elf32_arm_plt_entry_long[2]
9550 | ((got_displacement & 0x000ff000) >> 12),
9551 ptr+ 8);
9552 put_arm_insn (htab, output_bfd,
9553 elf32_arm_plt_entry_long[3]
9554 | (got_displacement & 0x00000fff),
9555 ptr + 12);
9556 }
9557 }
9558
9559 /* Fill in the entry in the .rel(a).(i)plt section. */
9560 rel.r_offset = got_address;
9561 rel.r_addend = 0;
9562 if (dynindx == -1)
9563 {
9564 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9565 The dynamic linker or static executable then calls SYM_VALUE
9566 to determine the correct run-time value of the .igot.plt entry. */
9567 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9568 initial_got_entry = sym_value;
9569 }
9570 else
9571 {
9572 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9573 initial_got_entry = (splt->output_section->vma
9574 + splt->output_offset);
9575 }
9576
9577 /* Fill in the entry in the global offset table. */
9578 bfd_put_32 (output_bfd, initial_got_entry,
9579 sgot->contents + got_offset);
9580 }
9581
9582 if (dynindx == -1)
9583 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9584 else
9585 {
9586 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9587 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9588 }
9589
9590 return TRUE;
9591 }
9592
9593 /* Some relocations map to different relocations depending on the
9594 target. Return the real relocation. */
9595
9596 static int
9597 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9598 int r_type)
9599 {
9600 switch (r_type)
9601 {
9602 case R_ARM_TARGET1:
9603 if (globals->target1_is_rel)
9604 return R_ARM_REL32;
9605 else
9606 return R_ARM_ABS32;
9607
9608 case R_ARM_TARGET2:
9609 return globals->target2_reloc;
9610
9611 default:
9612 return r_type;
9613 }
9614 }
9615
9616 /* Return the base VMA address which should be subtracted from real addresses
9617 when resolving @dtpoff relocation.
9618 This is PT_TLS segment p_vaddr. */
9619
9620 static bfd_vma
9621 dtpoff_base (struct bfd_link_info *info)
9622 {
9623 /* If tls_sec is NULL, we should have signalled an error already. */
9624 if (elf_hash_table (info)->tls_sec == NULL)
9625 return 0;
9626 return elf_hash_table (info)->tls_sec->vma;
9627 }
9628
9629 /* Return the relocation value for @tpoff relocation
9630 if STT_TLS virtual address is ADDRESS. */
9631
9632 static bfd_vma
9633 tpoff (struct bfd_link_info *info, bfd_vma address)
9634 {
9635 struct elf_link_hash_table *htab = elf_hash_table (info);
9636 bfd_vma base;
9637
9638 /* If tls_sec is NULL, we should have signalled an error already. */
9639 if (htab->tls_sec == NULL)
9640 return 0;
9641 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9642 return address - htab->tls_sec->vma + base;
9643 }
9644
9645 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9646 VALUE is the relocation value. */
9647
9648 static bfd_reloc_status_type
9649 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9650 {
9651 if (value > 0xfff)
9652 return bfd_reloc_overflow;
9653
9654 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9655 bfd_put_32 (abfd, value, data);
9656 return bfd_reloc_ok;
9657 }
9658
9659 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9660 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9661 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9662
9663 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9664 is to then call final_link_relocate. Return other values in the
9665 case of error.
9666
9667 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9668 the pre-relaxed code. It would be nice if the relocs were updated
9669 to match the optimization. */
9670
9671 static bfd_reloc_status_type
9672 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9673 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9674 Elf_Internal_Rela *rel, unsigned long is_local)
9675 {
9676 unsigned long insn;
9677
9678 switch (ELF32_R_TYPE (rel->r_info))
9679 {
9680 default:
9681 return bfd_reloc_notsupported;
9682
9683 case R_ARM_TLS_GOTDESC:
9684 if (is_local)
9685 insn = 0;
9686 else
9687 {
9688 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9689 if (insn & 1)
9690 insn -= 5; /* THUMB */
9691 else
9692 insn -= 8; /* ARM */
9693 }
9694 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9695 return bfd_reloc_continue;
9696
9697 case R_ARM_THM_TLS_DESCSEQ:
9698 /* Thumb insn. */
9699 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9700 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9701 {
9702 if (is_local)
9703 /* nop */
9704 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9705 }
9706 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9707 {
9708 if (is_local)
9709 /* nop */
9710 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9711 else
9712 /* ldr rx,[ry] */
9713 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9714 }
9715 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9716 {
9717 if (is_local)
9718 /* nop */
9719 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9720 else
9721 /* mov r0, rx */
9722 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9723 contents + rel->r_offset);
9724 }
9725 else
9726 {
9727 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9728 /* It's a 32 bit instruction, fetch the rest of it for
9729 error generation. */
9730 insn = (insn << 16)
9731 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9732 _bfd_error_handler
9733 /* xgettext:c-format */
9734 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
9735 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9736 return bfd_reloc_notsupported;
9737 }
9738 break;
9739
9740 case R_ARM_TLS_DESCSEQ:
9741 /* arm insn. */
9742 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9743 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9744 {
9745 if (is_local)
9746 /* mov rx, ry */
9747 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9748 contents + rel->r_offset);
9749 }
9750 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9751 {
9752 if (is_local)
9753 /* nop */
9754 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9755 else
9756 /* ldr rx,[ry] */
9757 bfd_put_32 (input_bfd, insn & 0xfffff000,
9758 contents + rel->r_offset);
9759 }
9760 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9761 {
9762 if (is_local)
9763 /* nop */
9764 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9765 else
9766 /* mov r0, rx */
9767 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9768 contents + rel->r_offset);
9769 }
9770 else
9771 {
9772 _bfd_error_handler
9773 /* xgettext:c-format */
9774 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
9775 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9776 return bfd_reloc_notsupported;
9777 }
9778 break;
9779
9780 case R_ARM_TLS_CALL:
9781 /* GD->IE relaxation, turn the instruction into 'nop' or
9782 'ldr r0, [pc,r0]' */
9783 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9784 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9785 break;
9786
9787 case R_ARM_THM_TLS_CALL:
9788 /* GD->IE relaxation. */
9789 if (!is_local)
9790 /* add r0,pc; ldr r0, [r0] */
9791 insn = 0x44786800;
9792 else if (using_thumb2 (globals))
9793 /* nop.w */
9794 insn = 0xf3af8000;
9795 else
9796 /* nop; nop */
9797 insn = 0xbf00bf00;
9798
9799 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9800 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9801 break;
9802 }
9803 return bfd_reloc_ok;
9804 }
9805
9806 /* For a given value of n, calculate the value of G_n as required to
9807 deal with group relocations. We return it in the form of an
9808 encoded constant-and-rotation, together with the final residual. If n is
9809 specified as less than zero, then final_residual is filled with the
9810 input value and no further action is performed. */
9811
9812 static bfd_vma
9813 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9814 {
9815 int current_n;
9816 bfd_vma g_n;
9817 bfd_vma encoded_g_n = 0;
9818 bfd_vma residual = value; /* Also known as Y_n. */
9819
9820 for (current_n = 0; current_n <= n; current_n++)
9821 {
9822 int shift;
9823
9824 /* Calculate which part of the value to mask. */
9825 if (residual == 0)
9826 shift = 0;
9827 else
9828 {
9829 int msb;
9830
9831 /* Determine the most significant bit in the residual and
9832 align the resulting value to a 2-bit boundary. */
9833 for (msb = 30; msb >= 0; msb -= 2)
9834 if (residual & (3 << msb))
9835 break;
9836
9837 /* The desired shift is now (msb - 6), or zero, whichever
9838 is the greater. */
9839 shift = msb - 6;
9840 if (shift < 0)
9841 shift = 0;
9842 }
9843
9844 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9845 g_n = residual & (0xff << shift);
9846 encoded_g_n = (g_n >> shift)
9847 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9848
9849 /* Calculate the residual for the next time around. */
9850 residual &= ~g_n;
9851 }
9852
9853 *final_residual = residual;
9854
9855 return encoded_g_n;
9856 }
9857
9858 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9859 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9860
9861 static int
9862 identify_add_or_sub (bfd_vma insn)
9863 {
9864 int opcode = insn & 0x1e00000;
9865
9866 if (opcode == 1 << 23) /* ADD */
9867 return 1;
9868
9869 if (opcode == 1 << 22) /* SUB */
9870 return -1;
9871
9872 return 0;
9873 }
9874
9875 /* Perform a relocation as part of a final link. */
9876
9877 static bfd_reloc_status_type
9878 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9879 bfd * input_bfd,
9880 bfd * output_bfd,
9881 asection * input_section,
9882 bfd_byte * contents,
9883 Elf_Internal_Rela * rel,
9884 bfd_vma value,
9885 struct bfd_link_info * info,
9886 asection * sym_sec,
9887 const char * sym_name,
9888 unsigned char st_type,
9889 enum arm_st_branch_type branch_type,
9890 struct elf_link_hash_entry * h,
9891 bfd_boolean * unresolved_reloc_p,
9892 char ** error_message)
9893 {
9894 unsigned long r_type = howto->type;
9895 unsigned long r_symndx;
9896 bfd_byte * hit_data = contents + rel->r_offset;
9897 bfd_vma * local_got_offsets;
9898 bfd_vma * local_tlsdesc_gotents;
9899 asection * sgot;
9900 asection * splt;
9901 asection * sreloc = NULL;
9902 asection * srelgot;
9903 bfd_vma addend;
9904 bfd_signed_vma signed_addend;
9905 unsigned char dynreloc_st_type;
9906 bfd_vma dynreloc_value;
9907 struct elf32_arm_link_hash_table * globals;
9908 struct elf32_arm_link_hash_entry *eh;
9909 union gotplt_union *root_plt;
9910 struct arm_plt_info *arm_plt;
9911 bfd_vma plt_offset;
9912 bfd_vma gotplt_offset;
9913 bfd_boolean has_iplt_entry;
9914
9915 globals = elf32_arm_hash_table (info);
9916 if (globals == NULL)
9917 return bfd_reloc_notsupported;
9918
9919 BFD_ASSERT (is_arm_elf (input_bfd));
9920
9921 /* Some relocation types map to different relocations depending on the
9922 target. We pick the right one here. */
9923 r_type = arm_real_reloc_type (globals, r_type);
9924
9925 /* It is possible to have linker relaxations on some TLS access
9926 models. Update our information here. */
9927 r_type = elf32_arm_tls_transition (info, r_type, h);
9928
9929 if (r_type != howto->type)
9930 howto = elf32_arm_howto_from_type (r_type);
9931
9932 eh = (struct elf32_arm_link_hash_entry *) h;
9933 sgot = globals->root.sgot;
9934 local_got_offsets = elf_local_got_offsets (input_bfd);
9935 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9936
9937 if (globals->root.dynamic_sections_created)
9938 srelgot = globals->root.srelgot;
9939 else
9940 srelgot = NULL;
9941
9942 r_symndx = ELF32_R_SYM (rel->r_info);
9943
9944 if (globals->use_rel)
9945 {
9946 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9947
9948 if (addend & ((howto->src_mask + 1) >> 1))
9949 {
9950 signed_addend = -1;
9951 signed_addend &= ~ howto->src_mask;
9952 signed_addend |= addend;
9953 }
9954 else
9955 signed_addend = addend;
9956 }
9957 else
9958 addend = signed_addend = rel->r_addend;
9959
9960 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9961 are resolving a function call relocation. */
9962 if (using_thumb_only (globals)
9963 && (r_type == R_ARM_THM_CALL
9964 || r_type == R_ARM_THM_JUMP24)
9965 && branch_type == ST_BRANCH_TO_ARM)
9966 branch_type = ST_BRANCH_TO_THUMB;
9967
9968 /* Record the symbol information that should be used in dynamic
9969 relocations. */
9970 dynreloc_st_type = st_type;
9971 dynreloc_value = value;
9972 if (branch_type == ST_BRANCH_TO_THUMB)
9973 dynreloc_value |= 1;
9974
9975 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9976 VALUE appropriately for relocations that we resolve at link time. */
9977 has_iplt_entry = FALSE;
9978 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9979 &arm_plt)
9980 && root_plt->offset != (bfd_vma) -1)
9981 {
9982 plt_offset = root_plt->offset;
9983 gotplt_offset = arm_plt->got_offset;
9984
9985 if (h == NULL || eh->is_iplt)
9986 {
9987 has_iplt_entry = TRUE;
9988 splt = globals->root.iplt;
9989
9990 /* Populate .iplt entries here, because not all of them will
9991 be seen by finish_dynamic_symbol. The lower bit is set if
9992 we have already populated the entry. */
9993 if (plt_offset & 1)
9994 plt_offset--;
9995 else
9996 {
9997 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9998 -1, dynreloc_value))
9999 root_plt->offset |= 1;
10000 else
10001 return bfd_reloc_notsupported;
10002 }
10003
10004 /* Static relocations always resolve to the .iplt entry. */
10005 st_type = STT_FUNC;
10006 value = (splt->output_section->vma
10007 + splt->output_offset
10008 + plt_offset);
10009 branch_type = ST_BRANCH_TO_ARM;
10010
10011 /* If there are non-call relocations that resolve to the .iplt
10012 entry, then all dynamic ones must too. */
10013 if (arm_plt->noncall_refcount != 0)
10014 {
10015 dynreloc_st_type = st_type;
10016 dynreloc_value = value;
10017 }
10018 }
10019 else
10020 /* We populate the .plt entry in finish_dynamic_symbol. */
10021 splt = globals->root.splt;
10022 }
10023 else
10024 {
10025 splt = NULL;
10026 plt_offset = (bfd_vma) -1;
10027 gotplt_offset = (bfd_vma) -1;
10028 }
10029
10030 switch (r_type)
10031 {
10032 case R_ARM_NONE:
10033 /* We don't need to find a value for this symbol. It's just a
10034 marker. */
10035 *unresolved_reloc_p = FALSE;
10036 return bfd_reloc_ok;
10037
10038 case R_ARM_ABS12:
10039 if (!globals->vxworks_p)
10040 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10041 /* Fall through. */
10042
10043 case R_ARM_PC24:
10044 case R_ARM_ABS32:
10045 case R_ARM_ABS32_NOI:
10046 case R_ARM_REL32:
10047 case R_ARM_REL32_NOI:
10048 case R_ARM_CALL:
10049 case R_ARM_JUMP24:
10050 case R_ARM_XPC25:
10051 case R_ARM_PREL31:
10052 case R_ARM_PLT32:
10053 /* Handle relocations which should use the PLT entry. ABS32/REL32
10054 will use the symbol's value, which may point to a PLT entry, but we
10055 don't need to handle that here. If we created a PLT entry, all
10056 branches in this object should go to it, except if the PLT is too
10057 far away, in which case a long branch stub should be inserted. */
10058 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10059 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10060 && r_type != R_ARM_CALL
10061 && r_type != R_ARM_JUMP24
10062 && r_type != R_ARM_PLT32)
10063 && plt_offset != (bfd_vma) -1)
10064 {
10065 /* If we've created a .plt section, and assigned a PLT entry
10066 to this function, it must either be a STT_GNU_IFUNC reference
10067 or not be known to bind locally. In other cases, we should
10068 have cleared the PLT entry by now. */
10069 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10070
10071 value = (splt->output_section->vma
10072 + splt->output_offset
10073 + plt_offset);
10074 *unresolved_reloc_p = FALSE;
10075 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10076 contents, rel->r_offset, value,
10077 rel->r_addend);
10078 }
10079
10080 /* When generating a shared object or relocatable executable, these
10081 relocations are copied into the output file to be resolved at
10082 run time. */
10083 if ((bfd_link_pic (info)
10084 || globals->root.is_relocatable_executable)
10085 && (input_section->flags & SEC_ALLOC)
10086 && !(globals->vxworks_p
10087 && strcmp (input_section->output_section->name,
10088 ".tls_vars") == 0)
10089 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10090 || !SYMBOL_CALLS_LOCAL (info, h))
10091 && !(input_bfd == globals->stub_bfd
10092 && strstr (input_section->name, STUB_SUFFIX))
10093 && (h == NULL
10094 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10095 || h->root.type != bfd_link_hash_undefweak)
10096 && r_type != R_ARM_PC24
10097 && r_type != R_ARM_CALL
10098 && r_type != R_ARM_JUMP24
10099 && r_type != R_ARM_PREL31
10100 && r_type != R_ARM_PLT32)
10101 {
10102 Elf_Internal_Rela outrel;
10103 bfd_boolean skip, relocate;
10104
10105 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10106 && !h->def_regular)
10107 {
10108 char *v = _("shared object");
10109
10110 if (bfd_link_executable (info))
10111 v = _("PIE executable");
10112
10113 _bfd_error_handler
10114 (_("%B: relocation %s against external or undefined symbol `%s'"
10115 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10116 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10117 return bfd_reloc_notsupported;
10118 }
10119
10120 *unresolved_reloc_p = FALSE;
10121
10122 if (sreloc == NULL && globals->root.dynamic_sections_created)
10123 {
10124 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10125 ! globals->use_rel);
10126
10127 if (sreloc == NULL)
10128 return bfd_reloc_notsupported;
10129 }
10130
10131 skip = FALSE;
10132 relocate = FALSE;
10133
10134 outrel.r_addend = addend;
10135 outrel.r_offset =
10136 _bfd_elf_section_offset (output_bfd, info, input_section,
10137 rel->r_offset);
10138 if (outrel.r_offset == (bfd_vma) -1)
10139 skip = TRUE;
10140 else if (outrel.r_offset == (bfd_vma) -2)
10141 skip = TRUE, relocate = TRUE;
10142 outrel.r_offset += (input_section->output_section->vma
10143 + input_section->output_offset);
10144
10145 if (skip)
10146 memset (&outrel, 0, sizeof outrel);
10147 else if (h != NULL
10148 && h->dynindx != -1
10149 && (!bfd_link_pic (info)
10150 || !SYMBOLIC_BIND (info, h)
10151 || !h->def_regular))
10152 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10153 else
10154 {
10155 int symbol;
10156
10157 /* This symbol is local, or marked to become local. */
10158 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10159 if (globals->symbian_p)
10160 {
10161 asection *osec;
10162
10163 /* On Symbian OS, the data segment and text segement
10164 can be relocated independently. Therefore, we
10165 must indicate the segment to which this
10166 relocation is relative. The BPABI allows us to
10167 use any symbol in the right segment; we just use
10168 the section symbol as it is convenient. (We
10169 cannot use the symbol given by "h" directly as it
10170 will not appear in the dynamic symbol table.)
10171
10172 Note that the dynamic linker ignores the section
10173 symbol value, so we don't subtract osec->vma
10174 from the emitted reloc addend. */
10175 if (sym_sec)
10176 osec = sym_sec->output_section;
10177 else
10178 osec = input_section->output_section;
10179 symbol = elf_section_data (osec)->dynindx;
10180 if (symbol == 0)
10181 {
10182 struct elf_link_hash_table *htab = elf_hash_table (info);
10183
10184 if ((osec->flags & SEC_READONLY) == 0
10185 && htab->data_index_section != NULL)
10186 osec = htab->data_index_section;
10187 else
10188 osec = htab->text_index_section;
10189 symbol = elf_section_data (osec)->dynindx;
10190 }
10191 BFD_ASSERT (symbol != 0);
10192 }
10193 else
10194 /* On SVR4-ish systems, the dynamic loader cannot
10195 relocate the text and data segments independently,
10196 so the symbol does not matter. */
10197 symbol = 0;
10198 if (dynreloc_st_type == STT_GNU_IFUNC)
10199 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10200 to the .iplt entry. Instead, every non-call reference
10201 must use an R_ARM_IRELATIVE relocation to obtain the
10202 correct run-time address. */
10203 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10204 else
10205 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10206 if (globals->use_rel)
10207 relocate = TRUE;
10208 else
10209 outrel.r_addend += dynreloc_value;
10210 }
10211
10212 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10213
10214 /* If this reloc is against an external symbol, we do not want to
10215 fiddle with the addend. Otherwise, we need to include the symbol
10216 value so that it becomes an addend for the dynamic reloc. */
10217 if (! relocate)
10218 return bfd_reloc_ok;
10219
10220 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10221 contents, rel->r_offset,
10222 dynreloc_value, (bfd_vma) 0);
10223 }
10224 else switch (r_type)
10225 {
10226 case R_ARM_ABS12:
10227 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10228
10229 case R_ARM_XPC25: /* Arm BLX instruction. */
10230 case R_ARM_CALL:
10231 case R_ARM_JUMP24:
10232 case R_ARM_PC24: /* Arm B/BL instruction. */
10233 case R_ARM_PLT32:
10234 {
10235 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10236
10237 if (r_type == R_ARM_XPC25)
10238 {
10239 /* Check for Arm calling Arm function. */
10240 /* FIXME: Should we translate the instruction into a BL
10241 instruction instead ? */
10242 if (branch_type != ST_BRANCH_TO_THUMB)
10243 _bfd_error_handler
10244 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10245 input_bfd,
10246 h ? h->root.root.string : "(local)");
10247 }
10248 else if (r_type == R_ARM_PC24)
10249 {
10250 /* Check for Arm calling Thumb function. */
10251 if (branch_type == ST_BRANCH_TO_THUMB)
10252 {
10253 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10254 output_bfd, input_section,
10255 hit_data, sym_sec, rel->r_offset,
10256 signed_addend, value,
10257 error_message))
10258 return bfd_reloc_ok;
10259 else
10260 return bfd_reloc_dangerous;
10261 }
10262 }
10263
10264 /* Check if a stub has to be inserted because the
10265 destination is too far or we are changing mode. */
10266 if ( r_type == R_ARM_CALL
10267 || r_type == R_ARM_JUMP24
10268 || r_type == R_ARM_PLT32)
10269 {
10270 enum elf32_arm_stub_type stub_type = arm_stub_none;
10271 struct elf32_arm_link_hash_entry *hash;
10272
10273 hash = (struct elf32_arm_link_hash_entry *) h;
10274 stub_type = arm_type_of_stub (info, input_section, rel,
10275 st_type, &branch_type,
10276 hash, value, sym_sec,
10277 input_bfd, sym_name);
10278
10279 if (stub_type != arm_stub_none)
10280 {
10281 /* The target is out of reach, so redirect the
10282 branch to the local stub for this function. */
10283 stub_entry = elf32_arm_get_stub_entry (input_section,
10284 sym_sec, h,
10285 rel, globals,
10286 stub_type);
10287 {
10288 if (stub_entry != NULL)
10289 value = (stub_entry->stub_offset
10290 + stub_entry->stub_sec->output_offset
10291 + stub_entry->stub_sec->output_section->vma);
10292
10293 if (plt_offset != (bfd_vma) -1)
10294 *unresolved_reloc_p = FALSE;
10295 }
10296 }
10297 else
10298 {
10299 /* If the call goes through a PLT entry, make sure to
10300 check distance to the right destination address. */
10301 if (plt_offset != (bfd_vma) -1)
10302 {
10303 value = (splt->output_section->vma
10304 + splt->output_offset
10305 + plt_offset);
10306 *unresolved_reloc_p = FALSE;
10307 /* The PLT entry is in ARM mode, regardless of the
10308 target function. */
10309 branch_type = ST_BRANCH_TO_ARM;
10310 }
10311 }
10312 }
10313
10314 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10315 where:
10316 S is the address of the symbol in the relocation.
10317 P is address of the instruction being relocated.
10318 A is the addend (extracted from the instruction) in bytes.
10319
10320 S is held in 'value'.
10321 P is the base address of the section containing the
10322 instruction plus the offset of the reloc into that
10323 section, ie:
10324 (input_section->output_section->vma +
10325 input_section->output_offset +
10326 rel->r_offset).
10327 A is the addend, converted into bytes, ie:
10328 (signed_addend * 4)
10329
10330 Note: None of these operations have knowledge of the pipeline
10331 size of the processor, thus it is up to the assembler to
10332 encode this information into the addend. */
10333 value -= (input_section->output_section->vma
10334 + input_section->output_offset);
10335 value -= rel->r_offset;
10336 if (globals->use_rel)
10337 value += (signed_addend << howto->size);
10338 else
10339 /* RELA addends do not have to be adjusted by howto->size. */
10340 value += signed_addend;
10341
10342 signed_addend = value;
10343 signed_addend >>= howto->rightshift;
10344
10345 /* A branch to an undefined weak symbol is turned into a jump to
10346 the next instruction unless a PLT entry will be created.
10347 Do the same for local undefined symbols (but not for STN_UNDEF).
10348 The jump to the next instruction is optimized as a NOP depending
10349 on the architecture. */
10350 if (h ? (h->root.type == bfd_link_hash_undefweak
10351 && plt_offset == (bfd_vma) -1)
10352 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10353 {
10354 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10355
10356 if (arch_has_arm_nop (globals))
10357 value |= 0x0320f000;
10358 else
10359 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10360 }
10361 else
10362 {
10363 /* Perform a signed range check. */
10364 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10365 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10366 return bfd_reloc_overflow;
10367
10368 addend = (value & 2);
10369
10370 value = (signed_addend & howto->dst_mask)
10371 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10372
10373 if (r_type == R_ARM_CALL)
10374 {
10375 /* Set the H bit in the BLX instruction. */
10376 if (branch_type == ST_BRANCH_TO_THUMB)
10377 {
10378 if (addend)
10379 value |= (1 << 24);
10380 else
10381 value &= ~(bfd_vma)(1 << 24);
10382 }
10383
10384 /* Select the correct instruction (BL or BLX). */
10385 /* Only if we are not handling a BL to a stub. In this
10386 case, mode switching is performed by the stub. */
10387 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10388 value |= (1 << 28);
10389 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10390 {
10391 value &= ~(bfd_vma)(1 << 28);
10392 value |= (1 << 24);
10393 }
10394 }
10395 }
10396 }
10397 break;
10398
10399 case R_ARM_ABS32:
10400 value += addend;
10401 if (branch_type == ST_BRANCH_TO_THUMB)
10402 value |= 1;
10403 break;
10404
10405 case R_ARM_ABS32_NOI:
10406 value += addend;
10407 break;
10408
10409 case R_ARM_REL32:
10410 value += addend;
10411 if (branch_type == ST_BRANCH_TO_THUMB)
10412 value |= 1;
10413 value -= (input_section->output_section->vma
10414 + input_section->output_offset + rel->r_offset);
10415 break;
10416
10417 case R_ARM_REL32_NOI:
10418 value += addend;
10419 value -= (input_section->output_section->vma
10420 + input_section->output_offset + rel->r_offset);
10421 break;
10422
10423 case R_ARM_PREL31:
10424 value -= (input_section->output_section->vma
10425 + input_section->output_offset + rel->r_offset);
10426 value += signed_addend;
10427 if (! h || h->root.type != bfd_link_hash_undefweak)
10428 {
10429 /* Check for overflow. */
10430 if ((value ^ (value >> 1)) & (1 << 30))
10431 return bfd_reloc_overflow;
10432 }
10433 value &= 0x7fffffff;
10434 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10435 if (branch_type == ST_BRANCH_TO_THUMB)
10436 value |= 1;
10437 break;
10438 }
10439
10440 bfd_put_32 (input_bfd, value, hit_data);
10441 return bfd_reloc_ok;
10442
10443 case R_ARM_ABS8:
10444 /* PR 16202: Refectch the addend using the correct size. */
10445 if (globals->use_rel)
10446 addend = bfd_get_8 (input_bfd, hit_data);
10447 value += addend;
10448
10449 /* There is no way to tell whether the user intended to use a signed or
10450 unsigned addend. When checking for overflow we accept either,
10451 as specified by the AAELF. */
10452 if ((long) value > 0xff || (long) value < -0x80)
10453 return bfd_reloc_overflow;
10454
10455 bfd_put_8 (input_bfd, value, hit_data);
10456 return bfd_reloc_ok;
10457
10458 case R_ARM_ABS16:
10459 /* PR 16202: Refectch the addend using the correct size. */
10460 if (globals->use_rel)
10461 addend = bfd_get_16 (input_bfd, hit_data);
10462 value += addend;
10463
10464 /* See comment for R_ARM_ABS8. */
10465 if ((long) value > 0xffff || (long) value < -0x8000)
10466 return bfd_reloc_overflow;
10467
10468 bfd_put_16 (input_bfd, value, hit_data);
10469 return bfd_reloc_ok;
10470
10471 case R_ARM_THM_ABS5:
10472 /* Support ldr and str instructions for the thumb. */
10473 if (globals->use_rel)
10474 {
10475 /* Need to refetch addend. */
10476 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10477 /* ??? Need to determine shift amount from operand size. */
10478 addend >>= howto->rightshift;
10479 }
10480 value += addend;
10481
10482 /* ??? Isn't value unsigned? */
10483 if ((long) value > 0x1f || (long) value < -0x10)
10484 return bfd_reloc_overflow;
10485
10486 /* ??? Value needs to be properly shifted into place first. */
10487 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10488 bfd_put_16 (input_bfd, value, hit_data);
10489 return bfd_reloc_ok;
10490
10491 case R_ARM_THM_ALU_PREL_11_0:
10492 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10493 {
10494 bfd_vma insn;
10495 bfd_signed_vma relocation;
10496
10497 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10498 | bfd_get_16 (input_bfd, hit_data + 2);
10499
10500 if (globals->use_rel)
10501 {
10502 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10503 | ((insn & (1 << 26)) >> 15);
10504 if (insn & 0xf00000)
10505 signed_addend = -signed_addend;
10506 }
10507
10508 relocation = value + signed_addend;
10509 relocation -= Pa (input_section->output_section->vma
10510 + input_section->output_offset
10511 + rel->r_offset);
10512
10513 value = relocation;
10514
10515 if (value >= 0x1000)
10516 return bfd_reloc_overflow;
10517
10518 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10519 | ((value & 0x700) << 4)
10520 | ((value & 0x800) << 15);
10521 if (relocation < 0)
10522 insn |= 0xa00000;
10523
10524 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10525 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10526
10527 return bfd_reloc_ok;
10528 }
10529
10530 case R_ARM_THM_PC8:
10531 /* PR 10073: This reloc is not generated by the GNU toolchain,
10532 but it is supported for compatibility with third party libraries
10533 generated by other compilers, specifically the ARM/IAR. */
10534 {
10535 bfd_vma insn;
10536 bfd_signed_vma relocation;
10537
10538 insn = bfd_get_16 (input_bfd, hit_data);
10539
10540 if (globals->use_rel)
10541 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10542
10543 relocation = value + addend;
10544 relocation -= Pa (input_section->output_section->vma
10545 + input_section->output_offset
10546 + rel->r_offset);
10547
10548 value = relocation;
10549
10550 /* We do not check for overflow of this reloc. Although strictly
10551 speaking this is incorrect, it appears to be necessary in order
10552 to work with IAR generated relocs. Since GCC and GAS do not
10553 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10554 a problem for them. */
10555 value &= 0x3fc;
10556
10557 insn = (insn & 0xff00) | (value >> 2);
10558
10559 bfd_put_16 (input_bfd, insn, hit_data);
10560
10561 return bfd_reloc_ok;
10562 }
10563
10564 case R_ARM_THM_PC12:
10565 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10566 {
10567 bfd_vma insn;
10568 bfd_signed_vma relocation;
10569
10570 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10571 | bfd_get_16 (input_bfd, hit_data + 2);
10572
10573 if (globals->use_rel)
10574 {
10575 signed_addend = insn & 0xfff;
10576 if (!(insn & (1 << 23)))
10577 signed_addend = -signed_addend;
10578 }
10579
10580 relocation = value + signed_addend;
10581 relocation -= Pa (input_section->output_section->vma
10582 + input_section->output_offset
10583 + rel->r_offset);
10584
10585 value = relocation;
10586
10587 if (value >= 0x1000)
10588 return bfd_reloc_overflow;
10589
10590 insn = (insn & 0xff7ff000) | value;
10591 if (relocation >= 0)
10592 insn |= (1 << 23);
10593
10594 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10595 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10596
10597 return bfd_reloc_ok;
10598 }
10599
10600 case R_ARM_THM_XPC22:
10601 case R_ARM_THM_CALL:
10602 case R_ARM_THM_JUMP24:
10603 /* Thumb BL (branch long instruction). */
10604 {
10605 bfd_vma relocation;
10606 bfd_vma reloc_sign;
10607 bfd_boolean overflow = FALSE;
10608 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10609 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10610 bfd_signed_vma reloc_signed_max;
10611 bfd_signed_vma reloc_signed_min;
10612 bfd_vma check;
10613 bfd_signed_vma signed_check;
10614 int bitsize;
10615 const int thumb2 = using_thumb2 (globals);
10616 const int thumb2_bl = using_thumb2_bl (globals);
10617
10618 /* A branch to an undefined weak symbol is turned into a jump to
10619 the next instruction unless a PLT entry will be created.
10620 The jump to the next instruction is optimized as a NOP.W for
10621 Thumb-2 enabled architectures. */
10622 if (h && h->root.type == bfd_link_hash_undefweak
10623 && plt_offset == (bfd_vma) -1)
10624 {
10625 if (thumb2)
10626 {
10627 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10628 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10629 }
10630 else
10631 {
10632 bfd_put_16 (input_bfd, 0xe000, hit_data);
10633 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10634 }
10635 return bfd_reloc_ok;
10636 }
10637
10638 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10639 with Thumb-1) involving the J1 and J2 bits. */
10640 if (globals->use_rel)
10641 {
10642 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10643 bfd_vma upper = upper_insn & 0x3ff;
10644 bfd_vma lower = lower_insn & 0x7ff;
10645 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10646 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10647 bfd_vma i1 = j1 ^ s ? 0 : 1;
10648 bfd_vma i2 = j2 ^ s ? 0 : 1;
10649
10650 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10651 /* Sign extend. */
10652 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10653
10654 signed_addend = addend;
10655 }
10656
10657 if (r_type == R_ARM_THM_XPC22)
10658 {
10659 /* Check for Thumb to Thumb call. */
10660 /* FIXME: Should we translate the instruction into a BL
10661 instruction instead ? */
10662 if (branch_type == ST_BRANCH_TO_THUMB)
10663 _bfd_error_handler
10664 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10665 input_bfd,
10666 h ? h->root.root.string : "(local)");
10667 }
10668 else
10669 {
10670 /* If it is not a call to Thumb, assume call to Arm.
10671 If it is a call relative to a section name, then it is not a
10672 function call at all, but rather a long jump. Calls through
10673 the PLT do not require stubs. */
10674 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10675 {
10676 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10677 {
10678 /* Convert BL to BLX. */
10679 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10680 }
10681 else if (( r_type != R_ARM_THM_CALL)
10682 && (r_type != R_ARM_THM_JUMP24))
10683 {
10684 if (elf32_thumb_to_arm_stub
10685 (info, sym_name, input_bfd, output_bfd, input_section,
10686 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10687 error_message))
10688 return bfd_reloc_ok;
10689 else
10690 return bfd_reloc_dangerous;
10691 }
10692 }
10693 else if (branch_type == ST_BRANCH_TO_THUMB
10694 && globals->use_blx
10695 && r_type == R_ARM_THM_CALL)
10696 {
10697 /* Make sure this is a BL. */
10698 lower_insn |= 0x1800;
10699 }
10700 }
10701
10702 enum elf32_arm_stub_type stub_type = arm_stub_none;
10703 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10704 {
10705 /* Check if a stub has to be inserted because the destination
10706 is too far. */
10707 struct elf32_arm_stub_hash_entry *stub_entry;
10708 struct elf32_arm_link_hash_entry *hash;
10709
10710 hash = (struct elf32_arm_link_hash_entry *) h;
10711
10712 stub_type = arm_type_of_stub (info, input_section, rel,
10713 st_type, &branch_type,
10714 hash, value, sym_sec,
10715 input_bfd, sym_name);
10716
10717 if (stub_type != arm_stub_none)
10718 {
10719 /* The target is out of reach or we are changing modes, so
10720 redirect the branch to the local stub for this
10721 function. */
10722 stub_entry = elf32_arm_get_stub_entry (input_section,
10723 sym_sec, h,
10724 rel, globals,
10725 stub_type);
10726 if (stub_entry != NULL)
10727 {
10728 value = (stub_entry->stub_offset
10729 + stub_entry->stub_sec->output_offset
10730 + stub_entry->stub_sec->output_section->vma);
10731
10732 if (plt_offset != (bfd_vma) -1)
10733 *unresolved_reloc_p = FALSE;
10734 }
10735
10736 /* If this call becomes a call to Arm, force BLX. */
10737 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10738 {
10739 if ((stub_entry
10740 && !arm_stub_is_thumb (stub_entry->stub_type))
10741 || branch_type != ST_BRANCH_TO_THUMB)
10742 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10743 }
10744 }
10745 }
10746
10747 /* Handle calls via the PLT. */
10748 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10749 {
10750 value = (splt->output_section->vma
10751 + splt->output_offset
10752 + plt_offset);
10753
10754 if (globals->use_blx
10755 && r_type == R_ARM_THM_CALL
10756 && ! using_thumb_only (globals))
10757 {
10758 /* If the Thumb BLX instruction is available, convert
10759 the BL to a BLX instruction to call the ARM-mode
10760 PLT entry. */
10761 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10762 branch_type = ST_BRANCH_TO_ARM;
10763 }
10764 else
10765 {
10766 if (! using_thumb_only (globals))
10767 /* Target the Thumb stub before the ARM PLT entry. */
10768 value -= PLT_THUMB_STUB_SIZE;
10769 branch_type = ST_BRANCH_TO_THUMB;
10770 }
10771 *unresolved_reloc_p = FALSE;
10772 }
10773
10774 relocation = value + signed_addend;
10775
10776 relocation -= (input_section->output_section->vma
10777 + input_section->output_offset
10778 + rel->r_offset);
10779
10780 check = relocation >> howto->rightshift;
10781
10782 /* If this is a signed value, the rightshift just dropped
10783 leading 1 bits (assuming twos complement). */
10784 if ((bfd_signed_vma) relocation >= 0)
10785 signed_check = check;
10786 else
10787 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10788
10789 /* Calculate the permissable maximum and minimum values for
10790 this relocation according to whether we're relocating for
10791 Thumb-2 or not. */
10792 bitsize = howto->bitsize;
10793 if (!thumb2_bl)
10794 bitsize -= 2;
10795 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10796 reloc_signed_min = ~reloc_signed_max;
10797
10798 /* Assumes two's complement. */
10799 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10800 overflow = TRUE;
10801
10802 if ((lower_insn & 0x5000) == 0x4000)
10803 /* For a BLX instruction, make sure that the relocation is rounded up
10804 to a word boundary. This follows the semantics of the instruction
10805 which specifies that bit 1 of the target address will come from bit
10806 1 of the base address. */
10807 relocation = (relocation + 2) & ~ 3;
10808
10809 /* Put RELOCATION back into the insn. Assumes two's complement.
10810 We use the Thumb-2 encoding, which is safe even if dealing with
10811 a Thumb-1 instruction by virtue of our overflow check above. */
10812 reloc_sign = (signed_check < 0) ? 1 : 0;
10813 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10814 | ((relocation >> 12) & 0x3ff)
10815 | (reloc_sign << 10);
10816 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10817 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10818 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10819 | ((relocation >> 1) & 0x7ff);
10820
10821 /* Put the relocated value back in the object file: */
10822 bfd_put_16 (input_bfd, upper_insn, hit_data);
10823 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10824
10825 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10826 }
10827 break;
10828
10829 case R_ARM_THM_JUMP19:
10830 /* Thumb32 conditional branch instruction. */
10831 {
10832 bfd_vma relocation;
10833 bfd_boolean overflow = FALSE;
10834 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10835 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10836 bfd_signed_vma reloc_signed_max = 0xffffe;
10837 bfd_signed_vma reloc_signed_min = -0x100000;
10838 bfd_signed_vma signed_check;
10839 enum elf32_arm_stub_type stub_type = arm_stub_none;
10840 struct elf32_arm_stub_hash_entry *stub_entry;
10841 struct elf32_arm_link_hash_entry *hash;
10842
10843 /* Need to refetch the addend, reconstruct the top three bits,
10844 and squish the two 11 bit pieces together. */
10845 if (globals->use_rel)
10846 {
10847 bfd_vma S = (upper_insn & 0x0400) >> 10;
10848 bfd_vma upper = (upper_insn & 0x003f);
10849 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10850 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10851 bfd_vma lower = (lower_insn & 0x07ff);
10852
10853 upper |= J1 << 6;
10854 upper |= J2 << 7;
10855 upper |= (!S) << 8;
10856 upper -= 0x0100; /* Sign extend. */
10857
10858 addend = (upper << 12) | (lower << 1);
10859 signed_addend = addend;
10860 }
10861
10862 /* Handle calls via the PLT. */
10863 if (plt_offset != (bfd_vma) -1)
10864 {
10865 value = (splt->output_section->vma
10866 + splt->output_offset
10867 + plt_offset);
10868 /* Target the Thumb stub before the ARM PLT entry. */
10869 value -= PLT_THUMB_STUB_SIZE;
10870 *unresolved_reloc_p = FALSE;
10871 }
10872
10873 hash = (struct elf32_arm_link_hash_entry *)h;
10874
10875 stub_type = arm_type_of_stub (info, input_section, rel,
10876 st_type, &branch_type,
10877 hash, value, sym_sec,
10878 input_bfd, sym_name);
10879 if (stub_type != arm_stub_none)
10880 {
10881 stub_entry = elf32_arm_get_stub_entry (input_section,
10882 sym_sec, h,
10883 rel, globals,
10884 stub_type);
10885 if (stub_entry != NULL)
10886 {
10887 value = (stub_entry->stub_offset
10888 + stub_entry->stub_sec->output_offset
10889 + stub_entry->stub_sec->output_section->vma);
10890 }
10891 }
10892
10893 relocation = value + signed_addend;
10894 relocation -= (input_section->output_section->vma
10895 + input_section->output_offset
10896 + rel->r_offset);
10897 signed_check = (bfd_signed_vma) relocation;
10898
10899 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10900 overflow = TRUE;
10901
10902 /* Put RELOCATION back into the insn. */
10903 {
10904 bfd_vma S = (relocation & 0x00100000) >> 20;
10905 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10906 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10907 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10908 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10909
10910 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10911 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10912 }
10913
10914 /* Put the relocated value back in the object file: */
10915 bfd_put_16 (input_bfd, upper_insn, hit_data);
10916 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10917
10918 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10919 }
10920
10921 case R_ARM_THM_JUMP11:
10922 case R_ARM_THM_JUMP8:
10923 case R_ARM_THM_JUMP6:
10924 /* Thumb B (branch) instruction). */
10925 {
10926 bfd_signed_vma relocation;
10927 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10928 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10929 bfd_signed_vma signed_check;
10930
10931 /* CZB cannot jump backward. */
10932 if (r_type == R_ARM_THM_JUMP6)
10933 reloc_signed_min = 0;
10934
10935 if (globals->use_rel)
10936 {
10937 /* Need to refetch addend. */
10938 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10939 if (addend & ((howto->src_mask + 1) >> 1))
10940 {
10941 signed_addend = -1;
10942 signed_addend &= ~ howto->src_mask;
10943 signed_addend |= addend;
10944 }
10945 else
10946 signed_addend = addend;
10947 /* The value in the insn has been right shifted. We need to
10948 undo this, so that we can perform the address calculation
10949 in terms of bytes. */
10950 signed_addend <<= howto->rightshift;
10951 }
10952 relocation = value + signed_addend;
10953
10954 relocation -= (input_section->output_section->vma
10955 + input_section->output_offset
10956 + rel->r_offset);
10957
10958 relocation >>= howto->rightshift;
10959 signed_check = relocation;
10960
10961 if (r_type == R_ARM_THM_JUMP6)
10962 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10963 else
10964 relocation &= howto->dst_mask;
10965 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10966
10967 bfd_put_16 (input_bfd, relocation, hit_data);
10968
10969 /* Assumes two's complement. */
10970 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10971 return bfd_reloc_overflow;
10972
10973 return bfd_reloc_ok;
10974 }
10975
10976 case R_ARM_ALU_PCREL7_0:
10977 case R_ARM_ALU_PCREL15_8:
10978 case R_ARM_ALU_PCREL23_15:
10979 {
10980 bfd_vma insn;
10981 bfd_vma relocation;
10982
10983 insn = bfd_get_32 (input_bfd, hit_data);
10984 if (globals->use_rel)
10985 {
10986 /* Extract the addend. */
10987 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10988 signed_addend = addend;
10989 }
10990 relocation = value + signed_addend;
10991
10992 relocation -= (input_section->output_section->vma
10993 + input_section->output_offset
10994 + rel->r_offset);
10995 insn = (insn & ~0xfff)
10996 | ((howto->bitpos << 7) & 0xf00)
10997 | ((relocation >> howto->bitpos) & 0xff);
10998 bfd_put_32 (input_bfd, value, hit_data);
10999 }
11000 return bfd_reloc_ok;
11001
11002 case R_ARM_GNU_VTINHERIT:
11003 case R_ARM_GNU_VTENTRY:
11004 return bfd_reloc_ok;
11005
11006 case R_ARM_GOTOFF32:
11007 /* Relocation is relative to the start of the
11008 global offset table. */
11009
11010 BFD_ASSERT (sgot != NULL);
11011 if (sgot == NULL)
11012 return bfd_reloc_notsupported;
11013
11014 /* If we are addressing a Thumb function, we need to adjust the
11015 address by one, so that attempts to call the function pointer will
11016 correctly interpret it as Thumb code. */
11017 if (branch_type == ST_BRANCH_TO_THUMB)
11018 value += 1;
11019
11020 /* Note that sgot->output_offset is not involved in this
11021 calculation. We always want the start of .got. If we
11022 define _GLOBAL_OFFSET_TABLE in a different way, as is
11023 permitted by the ABI, we might have to change this
11024 calculation. */
11025 value -= sgot->output_section->vma;
11026 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11027 contents, rel->r_offset, value,
11028 rel->r_addend);
11029
11030 case R_ARM_GOTPC:
11031 /* Use global offset table as symbol value. */
11032 BFD_ASSERT (sgot != NULL);
11033
11034 if (sgot == NULL)
11035 return bfd_reloc_notsupported;
11036
11037 *unresolved_reloc_p = FALSE;
11038 value = sgot->output_section->vma;
11039 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11040 contents, rel->r_offset, value,
11041 rel->r_addend);
11042
11043 case R_ARM_GOT32:
11044 case R_ARM_GOT_PREL:
11045 /* Relocation is to the entry for this symbol in the
11046 global offset table. */
11047 if (sgot == NULL)
11048 return bfd_reloc_notsupported;
11049
11050 if (dynreloc_st_type == STT_GNU_IFUNC
11051 && plt_offset != (bfd_vma) -1
11052 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11053 {
11054 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11055 symbol, and the relocation resolves directly to the runtime
11056 target rather than to the .iplt entry. This means that any
11057 .got entry would be the same value as the .igot.plt entry,
11058 so there's no point creating both. */
11059 sgot = globals->root.igotplt;
11060 value = sgot->output_offset + gotplt_offset;
11061 }
11062 else if (h != NULL)
11063 {
11064 bfd_vma off;
11065
11066 off = h->got.offset;
11067 BFD_ASSERT (off != (bfd_vma) -1);
11068 if ((off & 1) != 0)
11069 {
11070 /* We have already processsed one GOT relocation against
11071 this symbol. */
11072 off &= ~1;
11073 if (globals->root.dynamic_sections_created
11074 && !SYMBOL_REFERENCES_LOCAL (info, h))
11075 *unresolved_reloc_p = FALSE;
11076 }
11077 else
11078 {
11079 Elf_Internal_Rela outrel;
11080
11081 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11082 {
11083 /* If the symbol doesn't resolve locally in a static
11084 object, we have an undefined reference. If the
11085 symbol doesn't resolve locally in a dynamic object,
11086 it should be resolved by the dynamic linker. */
11087 if (globals->root.dynamic_sections_created)
11088 {
11089 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11090 *unresolved_reloc_p = FALSE;
11091 }
11092 else
11093 outrel.r_info = 0;
11094 outrel.r_addend = 0;
11095 }
11096 else
11097 {
11098 if (dynreloc_st_type == STT_GNU_IFUNC)
11099 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11100 else if (bfd_link_pic (info)
11101 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11102 || h->root.type != bfd_link_hash_undefweak))
11103 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11104 else
11105 outrel.r_info = 0;
11106 outrel.r_addend = dynreloc_value;
11107 }
11108
11109 /* The GOT entry is initialized to zero by default.
11110 See if we should install a different value. */
11111 if (outrel.r_addend != 0
11112 && (outrel.r_info == 0 || globals->use_rel))
11113 {
11114 bfd_put_32 (output_bfd, outrel.r_addend,
11115 sgot->contents + off);
11116 outrel.r_addend = 0;
11117 }
11118
11119 if (outrel.r_info != 0)
11120 {
11121 outrel.r_offset = (sgot->output_section->vma
11122 + sgot->output_offset
11123 + off);
11124 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11125 }
11126 h->got.offset |= 1;
11127 }
11128 value = sgot->output_offset + off;
11129 }
11130 else
11131 {
11132 bfd_vma off;
11133
11134 BFD_ASSERT (local_got_offsets != NULL
11135 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11136
11137 off = local_got_offsets[r_symndx];
11138
11139 /* The offset must always be a multiple of 4. We use the
11140 least significant bit to record whether we have already
11141 generated the necessary reloc. */
11142 if ((off & 1) != 0)
11143 off &= ~1;
11144 else
11145 {
11146 if (globals->use_rel)
11147 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11148
11149 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11150 {
11151 Elf_Internal_Rela outrel;
11152
11153 outrel.r_addend = addend + dynreloc_value;
11154 outrel.r_offset = (sgot->output_section->vma
11155 + sgot->output_offset
11156 + off);
11157 if (dynreloc_st_type == STT_GNU_IFUNC)
11158 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11159 else
11160 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11161 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11162 }
11163
11164 local_got_offsets[r_symndx] |= 1;
11165 }
11166
11167 value = sgot->output_offset + off;
11168 }
11169 if (r_type != R_ARM_GOT32)
11170 value += sgot->output_section->vma;
11171
11172 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11173 contents, rel->r_offset, value,
11174 rel->r_addend);
11175
11176 case R_ARM_TLS_LDO32:
11177 value = value - dtpoff_base (info);
11178
11179 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11180 contents, rel->r_offset, value,
11181 rel->r_addend);
11182
11183 case R_ARM_TLS_LDM32:
11184 {
11185 bfd_vma off;
11186
11187 if (sgot == NULL)
11188 abort ();
11189
11190 off = globals->tls_ldm_got.offset;
11191
11192 if ((off & 1) != 0)
11193 off &= ~1;
11194 else
11195 {
11196 /* If we don't know the module number, create a relocation
11197 for it. */
11198 if (bfd_link_pic (info))
11199 {
11200 Elf_Internal_Rela outrel;
11201
11202 if (srelgot == NULL)
11203 abort ();
11204
11205 outrel.r_addend = 0;
11206 outrel.r_offset = (sgot->output_section->vma
11207 + sgot->output_offset + off);
11208 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11209
11210 if (globals->use_rel)
11211 bfd_put_32 (output_bfd, outrel.r_addend,
11212 sgot->contents + off);
11213
11214 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11215 }
11216 else
11217 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11218
11219 globals->tls_ldm_got.offset |= 1;
11220 }
11221
11222 value = sgot->output_section->vma + sgot->output_offset + off
11223 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11224
11225 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11226 contents, rel->r_offset, value,
11227 rel->r_addend);
11228 }
11229
11230 case R_ARM_TLS_CALL:
11231 case R_ARM_THM_TLS_CALL:
11232 case R_ARM_TLS_GD32:
11233 case R_ARM_TLS_IE32:
11234 case R_ARM_TLS_GOTDESC:
11235 case R_ARM_TLS_DESCSEQ:
11236 case R_ARM_THM_TLS_DESCSEQ:
11237 {
11238 bfd_vma off, offplt;
11239 int indx = 0;
11240 char tls_type;
11241
11242 BFD_ASSERT (sgot != NULL);
11243
11244 if (h != NULL)
11245 {
11246 bfd_boolean dyn;
11247 dyn = globals->root.dynamic_sections_created;
11248 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11249 bfd_link_pic (info),
11250 h)
11251 && (!bfd_link_pic (info)
11252 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11253 {
11254 *unresolved_reloc_p = FALSE;
11255 indx = h->dynindx;
11256 }
11257 off = h->got.offset;
11258 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11259 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11260 }
11261 else
11262 {
11263 BFD_ASSERT (local_got_offsets != NULL);
11264 off = local_got_offsets[r_symndx];
11265 offplt = local_tlsdesc_gotents[r_symndx];
11266 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11267 }
11268
11269 /* Linker relaxations happens from one of the
11270 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11271 if (ELF32_R_TYPE(rel->r_info) != r_type)
11272 tls_type = GOT_TLS_IE;
11273
11274 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11275
11276 if ((off & 1) != 0)
11277 off &= ~1;
11278 else
11279 {
11280 bfd_boolean need_relocs = FALSE;
11281 Elf_Internal_Rela outrel;
11282 int cur_off = off;
11283
11284 /* The GOT entries have not been initialized yet. Do it
11285 now, and emit any relocations. If both an IE GOT and a
11286 GD GOT are necessary, we emit the GD first. */
11287
11288 if ((bfd_link_pic (info) || indx != 0)
11289 && (h == NULL
11290 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11291 || h->root.type != bfd_link_hash_undefweak))
11292 {
11293 need_relocs = TRUE;
11294 BFD_ASSERT (srelgot != NULL);
11295 }
11296
11297 if (tls_type & GOT_TLS_GDESC)
11298 {
11299 bfd_byte *loc;
11300
11301 /* We should have relaxed, unless this is an undefined
11302 weak symbol. */
11303 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11304 || bfd_link_pic (info));
11305 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11306 <= globals->root.sgotplt->size);
11307
11308 outrel.r_addend = 0;
11309 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11310 + globals->root.sgotplt->output_offset
11311 + offplt
11312 + globals->sgotplt_jump_table_size);
11313
11314 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11315 sreloc = globals->root.srelplt;
11316 loc = sreloc->contents;
11317 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11318 BFD_ASSERT (loc + RELOC_SIZE (globals)
11319 <= sreloc->contents + sreloc->size);
11320
11321 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11322
11323 /* For globals, the first word in the relocation gets
11324 the relocation index and the top bit set, or zero,
11325 if we're binding now. For locals, it gets the
11326 symbol's offset in the tls section. */
11327 bfd_put_32 (output_bfd,
11328 !h ? value - elf_hash_table (info)->tls_sec->vma
11329 : info->flags & DF_BIND_NOW ? 0
11330 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11331 globals->root.sgotplt->contents + offplt
11332 + globals->sgotplt_jump_table_size);
11333
11334 /* Second word in the relocation is always zero. */
11335 bfd_put_32 (output_bfd, 0,
11336 globals->root.sgotplt->contents + offplt
11337 + globals->sgotplt_jump_table_size + 4);
11338 }
11339 if (tls_type & GOT_TLS_GD)
11340 {
11341 if (need_relocs)
11342 {
11343 outrel.r_addend = 0;
11344 outrel.r_offset = (sgot->output_section->vma
11345 + sgot->output_offset
11346 + cur_off);
11347 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11348
11349 if (globals->use_rel)
11350 bfd_put_32 (output_bfd, outrel.r_addend,
11351 sgot->contents + cur_off);
11352
11353 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11354
11355 if (indx == 0)
11356 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11357 sgot->contents + cur_off + 4);
11358 else
11359 {
11360 outrel.r_addend = 0;
11361 outrel.r_info = ELF32_R_INFO (indx,
11362 R_ARM_TLS_DTPOFF32);
11363 outrel.r_offset += 4;
11364
11365 if (globals->use_rel)
11366 bfd_put_32 (output_bfd, outrel.r_addend,
11367 sgot->contents + cur_off + 4);
11368
11369 elf32_arm_add_dynreloc (output_bfd, info,
11370 srelgot, &outrel);
11371 }
11372 }
11373 else
11374 {
11375 /* If we are not emitting relocations for a
11376 general dynamic reference, then we must be in a
11377 static link or an executable link with the
11378 symbol binding locally. Mark it as belonging
11379 to module 1, the executable. */
11380 bfd_put_32 (output_bfd, 1,
11381 sgot->contents + cur_off);
11382 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11383 sgot->contents + cur_off + 4);
11384 }
11385
11386 cur_off += 8;
11387 }
11388
11389 if (tls_type & GOT_TLS_IE)
11390 {
11391 if (need_relocs)
11392 {
11393 if (indx == 0)
11394 outrel.r_addend = value - dtpoff_base (info);
11395 else
11396 outrel.r_addend = 0;
11397 outrel.r_offset = (sgot->output_section->vma
11398 + sgot->output_offset
11399 + cur_off);
11400 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11401
11402 if (globals->use_rel)
11403 bfd_put_32 (output_bfd, outrel.r_addend,
11404 sgot->contents + cur_off);
11405
11406 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11407 }
11408 else
11409 bfd_put_32 (output_bfd, tpoff (info, value),
11410 sgot->contents + cur_off);
11411 cur_off += 4;
11412 }
11413
11414 if (h != NULL)
11415 h->got.offset |= 1;
11416 else
11417 local_got_offsets[r_symndx] |= 1;
11418 }
11419
11420 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11421 off += 8;
11422 else if (tls_type & GOT_TLS_GDESC)
11423 off = offplt;
11424
11425 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11426 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11427 {
11428 bfd_signed_vma offset;
11429 /* TLS stubs are arm mode. The original symbol is a
11430 data object, so branch_type is bogus. */
11431 branch_type = ST_BRANCH_TO_ARM;
11432 enum elf32_arm_stub_type stub_type
11433 = arm_type_of_stub (info, input_section, rel,
11434 st_type, &branch_type,
11435 (struct elf32_arm_link_hash_entry *)h,
11436 globals->tls_trampoline, globals->root.splt,
11437 input_bfd, sym_name);
11438
11439 if (stub_type != arm_stub_none)
11440 {
11441 struct elf32_arm_stub_hash_entry *stub_entry
11442 = elf32_arm_get_stub_entry
11443 (input_section, globals->root.splt, 0, rel,
11444 globals, stub_type);
11445 offset = (stub_entry->stub_offset
11446 + stub_entry->stub_sec->output_offset
11447 + stub_entry->stub_sec->output_section->vma);
11448 }
11449 else
11450 offset = (globals->root.splt->output_section->vma
11451 + globals->root.splt->output_offset
11452 + globals->tls_trampoline);
11453
11454 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11455 {
11456 unsigned long inst;
11457
11458 offset -= (input_section->output_section->vma
11459 + input_section->output_offset
11460 + rel->r_offset + 8);
11461
11462 inst = offset >> 2;
11463 inst &= 0x00ffffff;
11464 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11465 }
11466 else
11467 {
11468 /* Thumb blx encodes the offset in a complicated
11469 fashion. */
11470 unsigned upper_insn, lower_insn;
11471 unsigned neg;
11472
11473 offset -= (input_section->output_section->vma
11474 + input_section->output_offset
11475 + rel->r_offset + 4);
11476
11477 if (stub_type != arm_stub_none
11478 && arm_stub_is_thumb (stub_type))
11479 {
11480 lower_insn = 0xd000;
11481 }
11482 else
11483 {
11484 lower_insn = 0xc000;
11485 /* Round up the offset to a word boundary. */
11486 offset = (offset + 2) & ~2;
11487 }
11488
11489 neg = offset < 0;
11490 upper_insn = (0xf000
11491 | ((offset >> 12) & 0x3ff)
11492 | (neg << 10));
11493 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11494 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11495 | ((offset >> 1) & 0x7ff);
11496 bfd_put_16 (input_bfd, upper_insn, hit_data);
11497 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11498 return bfd_reloc_ok;
11499 }
11500 }
11501 /* These relocations needs special care, as besides the fact
11502 they point somewhere in .gotplt, the addend must be
11503 adjusted accordingly depending on the type of instruction
11504 we refer to. */
11505 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11506 {
11507 unsigned long data, insn;
11508 unsigned thumb;
11509
11510 data = bfd_get_32 (input_bfd, hit_data);
11511 thumb = data & 1;
11512 data &= ~1u;
11513
11514 if (thumb)
11515 {
11516 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11517 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11518 insn = (insn << 16)
11519 | bfd_get_16 (input_bfd,
11520 contents + rel->r_offset - data + 2);
11521 if ((insn & 0xf800c000) == 0xf000c000)
11522 /* bl/blx */
11523 value = -6;
11524 else if ((insn & 0xffffff00) == 0x4400)
11525 /* add */
11526 value = -5;
11527 else
11528 {
11529 _bfd_error_handler
11530 /* xgettext:c-format */
11531 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11532 input_bfd, input_section,
11533 (unsigned long)rel->r_offset, insn);
11534 return bfd_reloc_notsupported;
11535 }
11536 }
11537 else
11538 {
11539 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11540
11541 switch (insn >> 24)
11542 {
11543 case 0xeb: /* bl */
11544 case 0xfa: /* blx */
11545 value = -4;
11546 break;
11547
11548 case 0xe0: /* add */
11549 value = -8;
11550 break;
11551
11552 default:
11553 _bfd_error_handler
11554 /* xgettext:c-format */
11555 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11556 input_bfd, input_section,
11557 (unsigned long)rel->r_offset, insn);
11558 return bfd_reloc_notsupported;
11559 }
11560 }
11561
11562 value += ((globals->root.sgotplt->output_section->vma
11563 + globals->root.sgotplt->output_offset + off)
11564 - (input_section->output_section->vma
11565 + input_section->output_offset
11566 + rel->r_offset)
11567 + globals->sgotplt_jump_table_size);
11568 }
11569 else
11570 value = ((globals->root.sgot->output_section->vma
11571 + globals->root.sgot->output_offset + off)
11572 - (input_section->output_section->vma
11573 + input_section->output_offset + rel->r_offset));
11574
11575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11576 contents, rel->r_offset, value,
11577 rel->r_addend);
11578 }
11579
11580 case R_ARM_TLS_LE32:
11581 if (bfd_link_dll (info))
11582 {
11583 _bfd_error_handler
11584 /* xgettext:c-format */
11585 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11586 input_bfd, input_section,
11587 (long) rel->r_offset, howto->name);
11588 return bfd_reloc_notsupported;
11589 }
11590 else
11591 value = tpoff (info, value);
11592
11593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11594 contents, rel->r_offset, value,
11595 rel->r_addend);
11596
11597 case R_ARM_V4BX:
11598 if (globals->fix_v4bx)
11599 {
11600 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11601
11602 /* Ensure that we have a BX instruction. */
11603 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11604
11605 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11606 {
11607 /* Branch to veneer. */
11608 bfd_vma glue_addr;
11609 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11610 glue_addr -= input_section->output_section->vma
11611 + input_section->output_offset
11612 + rel->r_offset + 8;
11613 insn = (insn & 0xf0000000) | 0x0a000000
11614 | ((glue_addr >> 2) & 0x00ffffff);
11615 }
11616 else
11617 {
11618 /* Preserve Rm (lowest four bits) and the condition code
11619 (highest four bits). Other bits encode MOV PC,Rm. */
11620 insn = (insn & 0xf000000f) | 0x01a0f000;
11621 }
11622
11623 bfd_put_32 (input_bfd, insn, hit_data);
11624 }
11625 return bfd_reloc_ok;
11626
11627 case R_ARM_MOVW_ABS_NC:
11628 case R_ARM_MOVT_ABS:
11629 case R_ARM_MOVW_PREL_NC:
11630 case R_ARM_MOVT_PREL:
11631 /* Until we properly support segment-base-relative addressing then
11632 we assume the segment base to be zero, as for the group relocations.
11633 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11634 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11635 case R_ARM_MOVW_BREL_NC:
11636 case R_ARM_MOVW_BREL:
11637 case R_ARM_MOVT_BREL:
11638 {
11639 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11640
11641 if (globals->use_rel)
11642 {
11643 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11644 signed_addend = (addend ^ 0x8000) - 0x8000;
11645 }
11646
11647 value += signed_addend;
11648
11649 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11650 value -= (input_section->output_section->vma
11651 + input_section->output_offset + rel->r_offset);
11652
11653 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11654 return bfd_reloc_overflow;
11655
11656 if (branch_type == ST_BRANCH_TO_THUMB)
11657 value |= 1;
11658
11659 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11660 || r_type == R_ARM_MOVT_BREL)
11661 value >>= 16;
11662
11663 insn &= 0xfff0f000;
11664 insn |= value & 0xfff;
11665 insn |= (value & 0xf000) << 4;
11666 bfd_put_32 (input_bfd, insn, hit_data);
11667 }
11668 return bfd_reloc_ok;
11669
11670 case R_ARM_THM_MOVW_ABS_NC:
11671 case R_ARM_THM_MOVT_ABS:
11672 case R_ARM_THM_MOVW_PREL_NC:
11673 case R_ARM_THM_MOVT_PREL:
11674 /* Until we properly support segment-base-relative addressing then
11675 we assume the segment base to be zero, as for the above relocations.
11676 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11677 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11678 as R_ARM_THM_MOVT_ABS. */
11679 case R_ARM_THM_MOVW_BREL_NC:
11680 case R_ARM_THM_MOVW_BREL:
11681 case R_ARM_THM_MOVT_BREL:
11682 {
11683 bfd_vma insn;
11684
11685 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11686 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11687
11688 if (globals->use_rel)
11689 {
11690 addend = ((insn >> 4) & 0xf000)
11691 | ((insn >> 15) & 0x0800)
11692 | ((insn >> 4) & 0x0700)
11693 | (insn & 0x00ff);
11694 signed_addend = (addend ^ 0x8000) - 0x8000;
11695 }
11696
11697 value += signed_addend;
11698
11699 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11700 value -= (input_section->output_section->vma
11701 + input_section->output_offset + rel->r_offset);
11702
11703 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11704 return bfd_reloc_overflow;
11705
11706 if (branch_type == ST_BRANCH_TO_THUMB)
11707 value |= 1;
11708
11709 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11710 || r_type == R_ARM_THM_MOVT_BREL)
11711 value >>= 16;
11712
11713 insn &= 0xfbf08f00;
11714 insn |= (value & 0xf000) << 4;
11715 insn |= (value & 0x0800) << 15;
11716 insn |= (value & 0x0700) << 4;
11717 insn |= (value & 0x00ff);
11718
11719 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11720 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11721 }
11722 return bfd_reloc_ok;
11723
11724 case R_ARM_ALU_PC_G0_NC:
11725 case R_ARM_ALU_PC_G1_NC:
11726 case R_ARM_ALU_PC_G0:
11727 case R_ARM_ALU_PC_G1:
11728 case R_ARM_ALU_PC_G2:
11729 case R_ARM_ALU_SB_G0_NC:
11730 case R_ARM_ALU_SB_G1_NC:
11731 case R_ARM_ALU_SB_G0:
11732 case R_ARM_ALU_SB_G1:
11733 case R_ARM_ALU_SB_G2:
11734 {
11735 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11736 bfd_vma pc = input_section->output_section->vma
11737 + input_section->output_offset + rel->r_offset;
11738 /* sb is the origin of the *segment* containing the symbol. */
11739 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11740 bfd_vma residual;
11741 bfd_vma g_n;
11742 bfd_signed_vma signed_value;
11743 int group = 0;
11744
11745 /* Determine which group of bits to select. */
11746 switch (r_type)
11747 {
11748 case R_ARM_ALU_PC_G0_NC:
11749 case R_ARM_ALU_PC_G0:
11750 case R_ARM_ALU_SB_G0_NC:
11751 case R_ARM_ALU_SB_G0:
11752 group = 0;
11753 break;
11754
11755 case R_ARM_ALU_PC_G1_NC:
11756 case R_ARM_ALU_PC_G1:
11757 case R_ARM_ALU_SB_G1_NC:
11758 case R_ARM_ALU_SB_G1:
11759 group = 1;
11760 break;
11761
11762 case R_ARM_ALU_PC_G2:
11763 case R_ARM_ALU_SB_G2:
11764 group = 2;
11765 break;
11766
11767 default:
11768 abort ();
11769 }
11770
11771 /* If REL, extract the addend from the insn. If RELA, it will
11772 have already been fetched for us. */
11773 if (globals->use_rel)
11774 {
11775 int negative;
11776 bfd_vma constant = insn & 0xff;
11777 bfd_vma rotation = (insn & 0xf00) >> 8;
11778
11779 if (rotation == 0)
11780 signed_addend = constant;
11781 else
11782 {
11783 /* Compensate for the fact that in the instruction, the
11784 rotation is stored in multiples of 2 bits. */
11785 rotation *= 2;
11786
11787 /* Rotate "constant" right by "rotation" bits. */
11788 signed_addend = (constant >> rotation) |
11789 (constant << (8 * sizeof (bfd_vma) - rotation));
11790 }
11791
11792 /* Determine if the instruction is an ADD or a SUB.
11793 (For REL, this determines the sign of the addend.) */
11794 negative = identify_add_or_sub (insn);
11795 if (negative == 0)
11796 {
11797 _bfd_error_handler
11798 /* xgettext:c-format */
11799 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11800 input_bfd, input_section,
11801 (long) rel->r_offset, howto->name);
11802 return bfd_reloc_overflow;
11803 }
11804
11805 signed_addend *= negative;
11806 }
11807
11808 /* Compute the value (X) to go in the place. */
11809 if (r_type == R_ARM_ALU_PC_G0_NC
11810 || r_type == R_ARM_ALU_PC_G1_NC
11811 || r_type == R_ARM_ALU_PC_G0
11812 || r_type == R_ARM_ALU_PC_G1
11813 || r_type == R_ARM_ALU_PC_G2)
11814 /* PC relative. */
11815 signed_value = value - pc + signed_addend;
11816 else
11817 /* Section base relative. */
11818 signed_value = value - sb + signed_addend;
11819
11820 /* If the target symbol is a Thumb function, then set the
11821 Thumb bit in the address. */
11822 if (branch_type == ST_BRANCH_TO_THUMB)
11823 signed_value |= 1;
11824
11825 /* Calculate the value of the relevant G_n, in encoded
11826 constant-with-rotation format. */
11827 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11828 group, &residual);
11829
11830 /* Check for overflow if required. */
11831 if ((r_type == R_ARM_ALU_PC_G0
11832 || r_type == R_ARM_ALU_PC_G1
11833 || r_type == R_ARM_ALU_PC_G2
11834 || r_type == R_ARM_ALU_SB_G0
11835 || r_type == R_ARM_ALU_SB_G1
11836 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11837 {
11838 _bfd_error_handler
11839 /* xgettext:c-format */
11840 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11841 input_bfd, input_section,
11842 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11843 howto->name);
11844 return bfd_reloc_overflow;
11845 }
11846
11847 /* Mask out the value and the ADD/SUB part of the opcode; take care
11848 not to destroy the S bit. */
11849 insn &= 0xff1ff000;
11850
11851 /* Set the opcode according to whether the value to go in the
11852 place is negative. */
11853 if (signed_value < 0)
11854 insn |= 1 << 22;
11855 else
11856 insn |= 1 << 23;
11857
11858 /* Encode the offset. */
11859 insn |= g_n;
11860
11861 bfd_put_32 (input_bfd, insn, hit_data);
11862 }
11863 return bfd_reloc_ok;
11864
11865 case R_ARM_LDR_PC_G0:
11866 case R_ARM_LDR_PC_G1:
11867 case R_ARM_LDR_PC_G2:
11868 case R_ARM_LDR_SB_G0:
11869 case R_ARM_LDR_SB_G1:
11870 case R_ARM_LDR_SB_G2:
11871 {
11872 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11873 bfd_vma pc = input_section->output_section->vma
11874 + input_section->output_offset + rel->r_offset;
11875 /* sb is the origin of the *segment* containing the symbol. */
11876 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11877 bfd_vma residual;
11878 bfd_signed_vma signed_value;
11879 int group = 0;
11880
11881 /* Determine which groups of bits to calculate. */
11882 switch (r_type)
11883 {
11884 case R_ARM_LDR_PC_G0:
11885 case R_ARM_LDR_SB_G0:
11886 group = 0;
11887 break;
11888
11889 case R_ARM_LDR_PC_G1:
11890 case R_ARM_LDR_SB_G1:
11891 group = 1;
11892 break;
11893
11894 case R_ARM_LDR_PC_G2:
11895 case R_ARM_LDR_SB_G2:
11896 group = 2;
11897 break;
11898
11899 default:
11900 abort ();
11901 }
11902
11903 /* If REL, extract the addend from the insn. If RELA, it will
11904 have already been fetched for us. */
11905 if (globals->use_rel)
11906 {
11907 int negative = (insn & (1 << 23)) ? 1 : -1;
11908 signed_addend = negative * (insn & 0xfff);
11909 }
11910
11911 /* Compute the value (X) to go in the place. */
11912 if (r_type == R_ARM_LDR_PC_G0
11913 || r_type == R_ARM_LDR_PC_G1
11914 || r_type == R_ARM_LDR_PC_G2)
11915 /* PC relative. */
11916 signed_value = value - pc + signed_addend;
11917 else
11918 /* Section base relative. */
11919 signed_value = value - sb + signed_addend;
11920
11921 /* Calculate the value of the relevant G_{n-1} to obtain
11922 the residual at that stage. */
11923 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11924 group - 1, &residual);
11925
11926 /* Check for overflow. */
11927 if (residual >= 0x1000)
11928 {
11929 _bfd_error_handler
11930 /* xgettext:c-format */
11931 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11932 input_bfd, input_section,
11933 (long) rel->r_offset, labs (signed_value), howto->name);
11934 return bfd_reloc_overflow;
11935 }
11936
11937 /* Mask out the value and U bit. */
11938 insn &= 0xff7ff000;
11939
11940 /* Set the U bit if the value to go in the place is non-negative. */
11941 if (signed_value >= 0)
11942 insn |= 1 << 23;
11943
11944 /* Encode the offset. */
11945 insn |= residual;
11946
11947 bfd_put_32 (input_bfd, insn, hit_data);
11948 }
11949 return bfd_reloc_ok;
11950
11951 case R_ARM_LDRS_PC_G0:
11952 case R_ARM_LDRS_PC_G1:
11953 case R_ARM_LDRS_PC_G2:
11954 case R_ARM_LDRS_SB_G0:
11955 case R_ARM_LDRS_SB_G1:
11956 case R_ARM_LDRS_SB_G2:
11957 {
11958 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11959 bfd_vma pc = input_section->output_section->vma
11960 + input_section->output_offset + rel->r_offset;
11961 /* sb is the origin of the *segment* containing the symbol. */
11962 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11963 bfd_vma residual;
11964 bfd_signed_vma signed_value;
11965 int group = 0;
11966
11967 /* Determine which groups of bits to calculate. */
11968 switch (r_type)
11969 {
11970 case R_ARM_LDRS_PC_G0:
11971 case R_ARM_LDRS_SB_G0:
11972 group = 0;
11973 break;
11974
11975 case R_ARM_LDRS_PC_G1:
11976 case R_ARM_LDRS_SB_G1:
11977 group = 1;
11978 break;
11979
11980 case R_ARM_LDRS_PC_G2:
11981 case R_ARM_LDRS_SB_G2:
11982 group = 2;
11983 break;
11984
11985 default:
11986 abort ();
11987 }
11988
11989 /* If REL, extract the addend from the insn. If RELA, it will
11990 have already been fetched for us. */
11991 if (globals->use_rel)
11992 {
11993 int negative = (insn & (1 << 23)) ? 1 : -1;
11994 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11995 }
11996
11997 /* Compute the value (X) to go in the place. */
11998 if (r_type == R_ARM_LDRS_PC_G0
11999 || r_type == R_ARM_LDRS_PC_G1
12000 || r_type == R_ARM_LDRS_PC_G2)
12001 /* PC relative. */
12002 signed_value = value - pc + signed_addend;
12003 else
12004 /* Section base relative. */
12005 signed_value = value - sb + signed_addend;
12006
12007 /* Calculate the value of the relevant G_{n-1} to obtain
12008 the residual at that stage. */
12009 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12010 group - 1, &residual);
12011
12012 /* Check for overflow. */
12013 if (residual >= 0x100)
12014 {
12015 _bfd_error_handler
12016 /* xgettext:c-format */
12017 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12018 input_bfd, input_section,
12019 (long) rel->r_offset, labs (signed_value), howto->name);
12020 return bfd_reloc_overflow;
12021 }
12022
12023 /* Mask out the value and U bit. */
12024 insn &= 0xff7ff0f0;
12025
12026 /* Set the U bit if the value to go in the place is non-negative. */
12027 if (signed_value >= 0)
12028 insn |= 1 << 23;
12029
12030 /* Encode the offset. */
12031 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12032
12033 bfd_put_32 (input_bfd, insn, hit_data);
12034 }
12035 return bfd_reloc_ok;
12036
12037 case R_ARM_LDC_PC_G0:
12038 case R_ARM_LDC_PC_G1:
12039 case R_ARM_LDC_PC_G2:
12040 case R_ARM_LDC_SB_G0:
12041 case R_ARM_LDC_SB_G1:
12042 case R_ARM_LDC_SB_G2:
12043 {
12044 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12045 bfd_vma pc = input_section->output_section->vma
12046 + input_section->output_offset + rel->r_offset;
12047 /* sb is the origin of the *segment* containing the symbol. */
12048 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12049 bfd_vma residual;
12050 bfd_signed_vma signed_value;
12051 int group = 0;
12052
12053 /* Determine which groups of bits to calculate. */
12054 switch (r_type)
12055 {
12056 case R_ARM_LDC_PC_G0:
12057 case R_ARM_LDC_SB_G0:
12058 group = 0;
12059 break;
12060
12061 case R_ARM_LDC_PC_G1:
12062 case R_ARM_LDC_SB_G1:
12063 group = 1;
12064 break;
12065
12066 case R_ARM_LDC_PC_G2:
12067 case R_ARM_LDC_SB_G2:
12068 group = 2;
12069 break;
12070
12071 default:
12072 abort ();
12073 }
12074
12075 /* If REL, extract the addend from the insn. If RELA, it will
12076 have already been fetched for us. */
12077 if (globals->use_rel)
12078 {
12079 int negative = (insn & (1 << 23)) ? 1 : -1;
12080 signed_addend = negative * ((insn & 0xff) << 2);
12081 }
12082
12083 /* Compute the value (X) to go in the place. */
12084 if (r_type == R_ARM_LDC_PC_G0
12085 || r_type == R_ARM_LDC_PC_G1
12086 || r_type == R_ARM_LDC_PC_G2)
12087 /* PC relative. */
12088 signed_value = value - pc + signed_addend;
12089 else
12090 /* Section base relative. */
12091 signed_value = value - sb + signed_addend;
12092
12093 /* Calculate the value of the relevant G_{n-1} to obtain
12094 the residual at that stage. */
12095 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12096 group - 1, &residual);
12097
12098 /* Check for overflow. (The absolute value to go in the place must be
12099 divisible by four and, after having been divided by four, must
12100 fit in eight bits.) */
12101 if ((residual & 0x3) != 0 || residual >= 0x400)
12102 {
12103 _bfd_error_handler
12104 /* xgettext:c-format */
12105 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12106 input_bfd, input_section,
12107 (long) rel->r_offset, labs (signed_value), howto->name);
12108 return bfd_reloc_overflow;
12109 }
12110
12111 /* Mask out the value and U bit. */
12112 insn &= 0xff7fff00;
12113
12114 /* Set the U bit if the value to go in the place is non-negative. */
12115 if (signed_value >= 0)
12116 insn |= 1 << 23;
12117
12118 /* Encode the offset. */
12119 insn |= residual >> 2;
12120
12121 bfd_put_32 (input_bfd, insn, hit_data);
12122 }
12123 return bfd_reloc_ok;
12124
12125 case R_ARM_THM_ALU_ABS_G0_NC:
12126 case R_ARM_THM_ALU_ABS_G1_NC:
12127 case R_ARM_THM_ALU_ABS_G2_NC:
12128 case R_ARM_THM_ALU_ABS_G3_NC:
12129 {
12130 const int shift_array[4] = {0, 8, 16, 24};
12131 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12132 bfd_vma addr = value;
12133 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12134
12135 /* Compute address. */
12136 if (globals->use_rel)
12137 signed_addend = insn & 0xff;
12138 addr += signed_addend;
12139 if (branch_type == ST_BRANCH_TO_THUMB)
12140 addr |= 1;
12141 /* Clean imm8 insn. */
12142 insn &= 0xff00;
12143 /* And update with correct part of address. */
12144 insn |= (addr >> shift) & 0xff;
12145 /* Update insn. */
12146 bfd_put_16 (input_bfd, insn, hit_data);
12147 }
12148
12149 *unresolved_reloc_p = FALSE;
12150 return bfd_reloc_ok;
12151
12152 default:
12153 return bfd_reloc_notsupported;
12154 }
12155 }
12156
12157 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12158 static void
12159 arm_add_to_rel (bfd * abfd,
12160 bfd_byte * address,
12161 reloc_howto_type * howto,
12162 bfd_signed_vma increment)
12163 {
12164 bfd_signed_vma addend;
12165
12166 if (howto->type == R_ARM_THM_CALL
12167 || howto->type == R_ARM_THM_JUMP24)
12168 {
12169 int upper_insn, lower_insn;
12170 int upper, lower;
12171
12172 upper_insn = bfd_get_16 (abfd, address);
12173 lower_insn = bfd_get_16 (abfd, address + 2);
12174 upper = upper_insn & 0x7ff;
12175 lower = lower_insn & 0x7ff;
12176
12177 addend = (upper << 12) | (lower << 1);
12178 addend += increment;
12179 addend >>= 1;
12180
12181 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12182 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12183
12184 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12185 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12186 }
12187 else
12188 {
12189 bfd_vma contents;
12190
12191 contents = bfd_get_32 (abfd, address);
12192
12193 /* Get the (signed) value from the instruction. */
12194 addend = contents & howto->src_mask;
12195 if (addend & ((howto->src_mask + 1) >> 1))
12196 {
12197 bfd_signed_vma mask;
12198
12199 mask = -1;
12200 mask &= ~ howto->src_mask;
12201 addend |= mask;
12202 }
12203
12204 /* Add in the increment, (which is a byte value). */
12205 switch (howto->type)
12206 {
12207 default:
12208 addend += increment;
12209 break;
12210
12211 case R_ARM_PC24:
12212 case R_ARM_PLT32:
12213 case R_ARM_CALL:
12214 case R_ARM_JUMP24:
12215 addend <<= howto->size;
12216 addend += increment;
12217
12218 /* Should we check for overflow here ? */
12219
12220 /* Drop any undesired bits. */
12221 addend >>= howto->rightshift;
12222 break;
12223 }
12224
12225 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12226
12227 bfd_put_32 (abfd, contents, address);
12228 }
12229 }
12230
12231 #define IS_ARM_TLS_RELOC(R_TYPE) \
12232 ((R_TYPE) == R_ARM_TLS_GD32 \
12233 || (R_TYPE) == R_ARM_TLS_LDO32 \
12234 || (R_TYPE) == R_ARM_TLS_LDM32 \
12235 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12236 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12237 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12238 || (R_TYPE) == R_ARM_TLS_LE32 \
12239 || (R_TYPE) == R_ARM_TLS_IE32 \
12240 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12241
12242 /* Specific set of relocations for the gnu tls dialect. */
12243 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12244 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12245 || (R_TYPE) == R_ARM_TLS_CALL \
12246 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12247 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12248 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12249
12250 /* Relocate an ARM ELF section. */
12251
12252 static bfd_boolean
12253 elf32_arm_relocate_section (bfd * output_bfd,
12254 struct bfd_link_info * info,
12255 bfd * input_bfd,
12256 asection * input_section,
12257 bfd_byte * contents,
12258 Elf_Internal_Rela * relocs,
12259 Elf_Internal_Sym * local_syms,
12260 asection ** local_sections)
12261 {
12262 Elf_Internal_Shdr *symtab_hdr;
12263 struct elf_link_hash_entry **sym_hashes;
12264 Elf_Internal_Rela *rel;
12265 Elf_Internal_Rela *relend;
12266 const char *name;
12267 struct elf32_arm_link_hash_table * globals;
12268
12269 globals = elf32_arm_hash_table (info);
12270 if (globals == NULL)
12271 return FALSE;
12272
12273 symtab_hdr = & elf_symtab_hdr (input_bfd);
12274 sym_hashes = elf_sym_hashes (input_bfd);
12275
12276 rel = relocs;
12277 relend = relocs + input_section->reloc_count;
12278 for (; rel < relend; rel++)
12279 {
12280 int r_type;
12281 reloc_howto_type * howto;
12282 unsigned long r_symndx;
12283 Elf_Internal_Sym * sym;
12284 asection * sec;
12285 struct elf_link_hash_entry * h;
12286 bfd_vma relocation;
12287 bfd_reloc_status_type r;
12288 arelent bfd_reloc;
12289 char sym_type;
12290 bfd_boolean unresolved_reloc = FALSE;
12291 char *error_message = NULL;
12292
12293 r_symndx = ELF32_R_SYM (rel->r_info);
12294 r_type = ELF32_R_TYPE (rel->r_info);
12295 r_type = arm_real_reloc_type (globals, r_type);
12296
12297 if ( r_type == R_ARM_GNU_VTENTRY
12298 || r_type == R_ARM_GNU_VTINHERIT)
12299 continue;
12300
12301 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12302 howto = bfd_reloc.howto;
12303
12304 h = NULL;
12305 sym = NULL;
12306 sec = NULL;
12307
12308 if (r_symndx < symtab_hdr->sh_info)
12309 {
12310 sym = local_syms + r_symndx;
12311 sym_type = ELF32_ST_TYPE (sym->st_info);
12312 sec = local_sections[r_symndx];
12313
12314 /* An object file might have a reference to a local
12315 undefined symbol. This is a daft object file, but we
12316 should at least do something about it. V4BX & NONE
12317 relocations do not use the symbol and are explicitly
12318 allowed to use the undefined symbol, so allow those.
12319 Likewise for relocations against STN_UNDEF. */
12320 if (r_type != R_ARM_V4BX
12321 && r_type != R_ARM_NONE
12322 && r_symndx != STN_UNDEF
12323 && bfd_is_und_section (sec)
12324 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12325 (*info->callbacks->undefined_symbol)
12326 (info, bfd_elf_string_from_elf_section
12327 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12328 input_bfd, input_section,
12329 rel->r_offset, TRUE);
12330
12331 if (globals->use_rel)
12332 {
12333 relocation = (sec->output_section->vma
12334 + sec->output_offset
12335 + sym->st_value);
12336 if (!bfd_link_relocatable (info)
12337 && (sec->flags & SEC_MERGE)
12338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12339 {
12340 asection *msec;
12341 bfd_vma addend, value;
12342
12343 switch (r_type)
12344 {
12345 case R_ARM_MOVW_ABS_NC:
12346 case R_ARM_MOVT_ABS:
12347 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12348 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12349 addend = (addend ^ 0x8000) - 0x8000;
12350 break;
12351
12352 case R_ARM_THM_MOVW_ABS_NC:
12353 case R_ARM_THM_MOVT_ABS:
12354 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12355 << 16;
12356 value |= bfd_get_16 (input_bfd,
12357 contents + rel->r_offset + 2);
12358 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12359 | ((value & 0x04000000) >> 15);
12360 addend = (addend ^ 0x8000) - 0x8000;
12361 break;
12362
12363 default:
12364 if (howto->rightshift
12365 || (howto->src_mask & (howto->src_mask + 1)))
12366 {
12367 _bfd_error_handler
12368 /* xgettext:c-format */
12369 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12370 input_bfd, input_section,
12371 (long) rel->r_offset, howto->name);
12372 return FALSE;
12373 }
12374
12375 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12376
12377 /* Get the (signed) value from the instruction. */
12378 addend = value & howto->src_mask;
12379 if (addend & ((howto->src_mask + 1) >> 1))
12380 {
12381 bfd_signed_vma mask;
12382
12383 mask = -1;
12384 mask &= ~ howto->src_mask;
12385 addend |= mask;
12386 }
12387 break;
12388 }
12389
12390 msec = sec;
12391 addend =
12392 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12393 - relocation;
12394 addend += msec->output_section->vma + msec->output_offset;
12395
12396 /* Cases here must match those in the preceding
12397 switch statement. */
12398 switch (r_type)
12399 {
12400 case R_ARM_MOVW_ABS_NC:
12401 case R_ARM_MOVT_ABS:
12402 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12403 | (addend & 0xfff);
12404 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12405 break;
12406
12407 case R_ARM_THM_MOVW_ABS_NC:
12408 case R_ARM_THM_MOVT_ABS:
12409 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12410 | (addend & 0xff) | ((addend & 0x0800) << 15);
12411 bfd_put_16 (input_bfd, value >> 16,
12412 contents + rel->r_offset);
12413 bfd_put_16 (input_bfd, value,
12414 contents + rel->r_offset + 2);
12415 break;
12416
12417 default:
12418 value = (value & ~ howto->dst_mask)
12419 | (addend & howto->dst_mask);
12420 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12421 break;
12422 }
12423 }
12424 }
12425 else
12426 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12427 }
12428 else
12429 {
12430 bfd_boolean warned, ignored;
12431
12432 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12433 r_symndx, symtab_hdr, sym_hashes,
12434 h, sec, relocation,
12435 unresolved_reloc, warned, ignored);
12436
12437 sym_type = h->type;
12438 }
12439
12440 if (sec != NULL && discarded_section (sec))
12441 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12442 rel, 1, relend, howto, 0, contents);
12443
12444 if (bfd_link_relocatable (info))
12445 {
12446 /* This is a relocatable link. We don't have to change
12447 anything, unless the reloc is against a section symbol,
12448 in which case we have to adjust according to where the
12449 section symbol winds up in the output section. */
12450 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12451 {
12452 if (globals->use_rel)
12453 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12454 howto, (bfd_signed_vma) sec->output_offset);
12455 else
12456 rel->r_addend += sec->output_offset;
12457 }
12458 continue;
12459 }
12460
12461 if (h != NULL)
12462 name = h->root.root.string;
12463 else
12464 {
12465 name = (bfd_elf_string_from_elf_section
12466 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12467 if (name == NULL || *name == '\0')
12468 name = bfd_section_name (input_bfd, sec);
12469 }
12470
12471 if (r_symndx != STN_UNDEF
12472 && r_type != R_ARM_NONE
12473 && (h == NULL
12474 || h->root.type == bfd_link_hash_defined
12475 || h->root.type == bfd_link_hash_defweak)
12476 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12477 {
12478 _bfd_error_handler
12479 ((sym_type == STT_TLS
12480 /* xgettext:c-format */
12481 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12482 /* xgettext:c-format */
12483 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12484 input_bfd,
12485 input_section,
12486 (long) rel->r_offset,
12487 howto->name,
12488 name);
12489 }
12490
12491 /* We call elf32_arm_final_link_relocate unless we're completely
12492 done, i.e., the relaxation produced the final output we want,
12493 and we won't let anybody mess with it. Also, we have to do
12494 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12495 both in relaxed and non-relaxed cases. */
12496 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12497 || (IS_ARM_TLS_GNU_RELOC (r_type)
12498 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12499 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12500 & GOT_TLS_GDESC)))
12501 {
12502 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12503 contents, rel, h == NULL);
12504 /* This may have been marked unresolved because it came from
12505 a shared library. But we've just dealt with that. */
12506 unresolved_reloc = 0;
12507 }
12508 else
12509 r = bfd_reloc_continue;
12510
12511 if (r == bfd_reloc_continue)
12512 {
12513 unsigned char branch_type =
12514 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12515 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12516
12517 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12518 input_section, contents, rel,
12519 relocation, info, sec, name,
12520 sym_type, branch_type, h,
12521 &unresolved_reloc,
12522 &error_message);
12523 }
12524
12525 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12526 because such sections are not SEC_ALLOC and thus ld.so will
12527 not process them. */
12528 if (unresolved_reloc
12529 && !((input_section->flags & SEC_DEBUGGING) != 0
12530 && h->def_dynamic)
12531 && _bfd_elf_section_offset (output_bfd, info, input_section,
12532 rel->r_offset) != (bfd_vma) -1)
12533 {
12534 _bfd_error_handler
12535 /* xgettext:c-format */
12536 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12537 input_bfd,
12538 input_section,
12539 (long) rel->r_offset,
12540 howto->name,
12541 h->root.root.string);
12542 return FALSE;
12543 }
12544
12545 if (r != bfd_reloc_ok)
12546 {
12547 switch (r)
12548 {
12549 case bfd_reloc_overflow:
12550 /* If the overflowing reloc was to an undefined symbol,
12551 we have already printed one error message and there
12552 is no point complaining again. */
12553 if (!h || h->root.type != bfd_link_hash_undefined)
12554 (*info->callbacks->reloc_overflow)
12555 (info, (h ? &h->root : NULL), name, howto->name,
12556 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12557 break;
12558
12559 case bfd_reloc_undefined:
12560 (*info->callbacks->undefined_symbol)
12561 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12562 break;
12563
12564 case bfd_reloc_outofrange:
12565 error_message = _("out of range");
12566 goto common_error;
12567
12568 case bfd_reloc_notsupported:
12569 error_message = _("unsupported relocation");
12570 goto common_error;
12571
12572 case bfd_reloc_dangerous:
12573 /* error_message should already be set. */
12574 goto common_error;
12575
12576 default:
12577 error_message = _("unknown error");
12578 /* Fall through. */
12579
12580 common_error:
12581 BFD_ASSERT (error_message != NULL);
12582 (*info->callbacks->reloc_dangerous)
12583 (info, error_message, input_bfd, input_section, rel->r_offset);
12584 break;
12585 }
12586 }
12587 }
12588
12589 return TRUE;
12590 }
12591
12592 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12593 adds the edit to the start of the list. (The list must be built in order of
12594 ascending TINDEX: the function's callers are primarily responsible for
12595 maintaining that condition). */
12596
12597 static void
12598 add_unwind_table_edit (arm_unwind_table_edit **head,
12599 arm_unwind_table_edit **tail,
12600 arm_unwind_edit_type type,
12601 asection *linked_section,
12602 unsigned int tindex)
12603 {
12604 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12605 xmalloc (sizeof (arm_unwind_table_edit));
12606
12607 new_edit->type = type;
12608 new_edit->linked_section = linked_section;
12609 new_edit->index = tindex;
12610
12611 if (tindex > 0)
12612 {
12613 new_edit->next = NULL;
12614
12615 if (*tail)
12616 (*tail)->next = new_edit;
12617
12618 (*tail) = new_edit;
12619
12620 if (!*head)
12621 (*head) = new_edit;
12622 }
12623 else
12624 {
12625 new_edit->next = *head;
12626
12627 if (!*tail)
12628 *tail = new_edit;
12629
12630 *head = new_edit;
12631 }
12632 }
12633
12634 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12635
12636 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12637 static void
12638 adjust_exidx_size(asection *exidx_sec, int adjust)
12639 {
12640 asection *out_sec;
12641
12642 if (!exidx_sec->rawsize)
12643 exidx_sec->rawsize = exidx_sec->size;
12644
12645 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12646 out_sec = exidx_sec->output_section;
12647 /* Adjust size of output section. */
12648 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12649 }
12650
12651 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12652 static void
12653 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12654 {
12655 struct _arm_elf_section_data *exidx_arm_data;
12656
12657 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12658 add_unwind_table_edit (
12659 &exidx_arm_data->u.exidx.unwind_edit_list,
12660 &exidx_arm_data->u.exidx.unwind_edit_tail,
12661 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12662
12663 exidx_arm_data->additional_reloc_count++;
12664
12665 adjust_exidx_size(exidx_sec, 8);
12666 }
12667
12668 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12669 made to those tables, such that:
12670
12671 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12672 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12673 codes which have been inlined into the index).
12674
12675 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12676
12677 The edits are applied when the tables are written
12678 (in elf32_arm_write_section). */
12679
12680 bfd_boolean
12681 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12682 unsigned int num_text_sections,
12683 struct bfd_link_info *info,
12684 bfd_boolean merge_exidx_entries)
12685 {
12686 bfd *inp;
12687 unsigned int last_second_word = 0, i;
12688 asection *last_exidx_sec = NULL;
12689 asection *last_text_sec = NULL;
12690 int last_unwind_type = -1;
12691
12692 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12693 text sections. */
12694 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12695 {
12696 asection *sec;
12697
12698 for (sec = inp->sections; sec != NULL; sec = sec->next)
12699 {
12700 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12701 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12702
12703 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12704 continue;
12705
12706 if (elf_sec->linked_to)
12707 {
12708 Elf_Internal_Shdr *linked_hdr
12709 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12710 struct _arm_elf_section_data *linked_sec_arm_data
12711 = get_arm_elf_section_data (linked_hdr->bfd_section);
12712
12713 if (linked_sec_arm_data == NULL)
12714 continue;
12715
12716 /* Link this .ARM.exidx section back from the text section it
12717 describes. */
12718 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12719 }
12720 }
12721 }
12722
12723 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12724 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12725 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12726
12727 for (i = 0; i < num_text_sections; i++)
12728 {
12729 asection *sec = text_section_order[i];
12730 asection *exidx_sec;
12731 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12732 struct _arm_elf_section_data *exidx_arm_data;
12733 bfd_byte *contents = NULL;
12734 int deleted_exidx_bytes = 0;
12735 bfd_vma j;
12736 arm_unwind_table_edit *unwind_edit_head = NULL;
12737 arm_unwind_table_edit *unwind_edit_tail = NULL;
12738 Elf_Internal_Shdr *hdr;
12739 bfd *ibfd;
12740
12741 if (arm_data == NULL)
12742 continue;
12743
12744 exidx_sec = arm_data->u.text.arm_exidx_sec;
12745 if (exidx_sec == NULL)
12746 {
12747 /* Section has no unwind data. */
12748 if (last_unwind_type == 0 || !last_exidx_sec)
12749 continue;
12750
12751 /* Ignore zero sized sections. */
12752 if (sec->size == 0)
12753 continue;
12754
12755 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12756 last_unwind_type = 0;
12757 continue;
12758 }
12759
12760 /* Skip /DISCARD/ sections. */
12761 if (bfd_is_abs_section (exidx_sec->output_section))
12762 continue;
12763
12764 hdr = &elf_section_data (exidx_sec)->this_hdr;
12765 if (hdr->sh_type != SHT_ARM_EXIDX)
12766 continue;
12767
12768 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12769 if (exidx_arm_data == NULL)
12770 continue;
12771
12772 ibfd = exidx_sec->owner;
12773
12774 if (hdr->contents != NULL)
12775 contents = hdr->contents;
12776 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12777 /* An error? */
12778 continue;
12779
12780 if (last_unwind_type > 0)
12781 {
12782 unsigned int first_word = bfd_get_32 (ibfd, contents);
12783 /* Add cantunwind if first unwind item does not match section
12784 start. */
12785 if (first_word != sec->vma)
12786 {
12787 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12788 last_unwind_type = 0;
12789 }
12790 }
12791
12792 for (j = 0; j < hdr->sh_size; j += 8)
12793 {
12794 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12795 int unwind_type;
12796 int elide = 0;
12797
12798 /* An EXIDX_CANTUNWIND entry. */
12799 if (second_word == 1)
12800 {
12801 if (last_unwind_type == 0)
12802 elide = 1;
12803 unwind_type = 0;
12804 }
12805 /* Inlined unwinding data. Merge if equal to previous. */
12806 else if ((second_word & 0x80000000) != 0)
12807 {
12808 if (merge_exidx_entries
12809 && last_second_word == second_word && last_unwind_type == 1)
12810 elide = 1;
12811 unwind_type = 1;
12812 last_second_word = second_word;
12813 }
12814 /* Normal table entry. In theory we could merge these too,
12815 but duplicate entries are likely to be much less common. */
12816 else
12817 unwind_type = 2;
12818
12819 if (elide && !bfd_link_relocatable (info))
12820 {
12821 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12822 DELETE_EXIDX_ENTRY, NULL, j / 8);
12823
12824 deleted_exidx_bytes += 8;
12825 }
12826
12827 last_unwind_type = unwind_type;
12828 }
12829
12830 /* Free contents if we allocated it ourselves. */
12831 if (contents != hdr->contents)
12832 free (contents);
12833
12834 /* Record edits to be applied later (in elf32_arm_write_section). */
12835 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12836 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12837
12838 if (deleted_exidx_bytes > 0)
12839 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12840
12841 last_exidx_sec = exidx_sec;
12842 last_text_sec = sec;
12843 }
12844
12845 /* Add terminating CANTUNWIND entry. */
12846 if (!bfd_link_relocatable (info) && last_exidx_sec
12847 && last_unwind_type != 0)
12848 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12849
12850 return TRUE;
12851 }
12852
12853 static bfd_boolean
12854 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12855 bfd *ibfd, const char *name)
12856 {
12857 asection *sec, *osec;
12858
12859 sec = bfd_get_linker_section (ibfd, name);
12860 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12861 return TRUE;
12862
12863 osec = sec->output_section;
12864 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12865 return TRUE;
12866
12867 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12868 sec->output_offset, sec->size))
12869 return FALSE;
12870
12871 return TRUE;
12872 }
12873
12874 static bfd_boolean
12875 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12876 {
12877 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12878 asection *sec, *osec;
12879
12880 if (globals == NULL)
12881 return FALSE;
12882
12883 /* Invoke the regular ELF backend linker to do all the work. */
12884 if (!bfd_elf_final_link (abfd, info))
12885 return FALSE;
12886
12887 /* Process stub sections (eg BE8 encoding, ...). */
12888 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12889 unsigned int i;
12890 for (i=0; i<htab->top_id; i++)
12891 {
12892 sec = htab->stub_group[i].stub_sec;
12893 /* Only process it once, in its link_sec slot. */
12894 if (sec && i == htab->stub_group[i].link_sec->id)
12895 {
12896 osec = sec->output_section;
12897 elf32_arm_write_section (abfd, info, sec, sec->contents);
12898 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12899 sec->output_offset, sec->size))
12900 return FALSE;
12901 }
12902 }
12903
12904 /* Write out any glue sections now that we have created all the
12905 stubs. */
12906 if (globals->bfd_of_glue_owner != NULL)
12907 {
12908 if (! elf32_arm_output_glue_section (info, abfd,
12909 globals->bfd_of_glue_owner,
12910 ARM2THUMB_GLUE_SECTION_NAME))
12911 return FALSE;
12912
12913 if (! elf32_arm_output_glue_section (info, abfd,
12914 globals->bfd_of_glue_owner,
12915 THUMB2ARM_GLUE_SECTION_NAME))
12916 return FALSE;
12917
12918 if (! elf32_arm_output_glue_section (info, abfd,
12919 globals->bfd_of_glue_owner,
12920 VFP11_ERRATUM_VENEER_SECTION_NAME))
12921 return FALSE;
12922
12923 if (! elf32_arm_output_glue_section (info, abfd,
12924 globals->bfd_of_glue_owner,
12925 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12926 return FALSE;
12927
12928 if (! elf32_arm_output_glue_section (info, abfd,
12929 globals->bfd_of_glue_owner,
12930 ARM_BX_GLUE_SECTION_NAME))
12931 return FALSE;
12932 }
12933
12934 return TRUE;
12935 }
12936
12937 /* Return a best guess for the machine number based on the attributes. */
12938
12939 static unsigned int
12940 bfd_arm_get_mach_from_attributes (bfd * abfd)
12941 {
12942 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12943
12944 switch (arch)
12945 {
12946 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12947 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12948 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12949
12950 case TAG_CPU_ARCH_V5TE:
12951 {
12952 char * name;
12953
12954 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12955 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12956
12957 if (name)
12958 {
12959 if (strcmp (name, "IWMMXT2") == 0)
12960 return bfd_mach_arm_iWMMXt2;
12961
12962 if (strcmp (name, "IWMMXT") == 0)
12963 return bfd_mach_arm_iWMMXt;
12964
12965 if (strcmp (name, "XSCALE") == 0)
12966 {
12967 int wmmx;
12968
12969 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12970 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12971 switch (wmmx)
12972 {
12973 case 1: return bfd_mach_arm_iWMMXt;
12974 case 2: return bfd_mach_arm_iWMMXt2;
12975 default: return bfd_mach_arm_XScale;
12976 }
12977 }
12978 }
12979
12980 return bfd_mach_arm_5TE;
12981 }
12982
12983 default:
12984 return bfd_mach_arm_unknown;
12985 }
12986 }
12987
12988 /* Set the right machine number. */
12989
12990 static bfd_boolean
12991 elf32_arm_object_p (bfd *abfd)
12992 {
12993 unsigned int mach;
12994
12995 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12996
12997 if (mach == bfd_mach_arm_unknown)
12998 {
12999 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13000 mach = bfd_mach_arm_ep9312;
13001 else
13002 mach = bfd_arm_get_mach_from_attributes (abfd);
13003 }
13004
13005 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13006 return TRUE;
13007 }
13008
13009 /* Function to keep ARM specific flags in the ELF header. */
13010
13011 static bfd_boolean
13012 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13013 {
13014 if (elf_flags_init (abfd)
13015 && elf_elfheader (abfd)->e_flags != flags)
13016 {
13017 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13018 {
13019 if (flags & EF_ARM_INTERWORK)
13020 _bfd_error_handler
13021 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13022 abfd);
13023 else
13024 _bfd_error_handler
13025 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13026 abfd);
13027 }
13028 }
13029 else
13030 {
13031 elf_elfheader (abfd)->e_flags = flags;
13032 elf_flags_init (abfd) = TRUE;
13033 }
13034
13035 return TRUE;
13036 }
13037
13038 /* Copy backend specific data from one object module to another. */
13039
13040 static bfd_boolean
13041 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13042 {
13043 flagword in_flags;
13044 flagword out_flags;
13045
13046 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13047 return TRUE;
13048
13049 in_flags = elf_elfheader (ibfd)->e_flags;
13050 out_flags = elf_elfheader (obfd)->e_flags;
13051
13052 if (elf_flags_init (obfd)
13053 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13054 && in_flags != out_flags)
13055 {
13056 /* Cannot mix APCS26 and APCS32 code. */
13057 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13058 return FALSE;
13059
13060 /* Cannot mix float APCS and non-float APCS code. */
13061 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13062 return FALSE;
13063
13064 /* If the src and dest have different interworking flags
13065 then turn off the interworking bit. */
13066 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13067 {
13068 if (out_flags & EF_ARM_INTERWORK)
13069 _bfd_error_handler
13070 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13071 obfd, ibfd);
13072
13073 in_flags &= ~EF_ARM_INTERWORK;
13074 }
13075
13076 /* Likewise for PIC, though don't warn for this case. */
13077 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13078 in_flags &= ~EF_ARM_PIC;
13079 }
13080
13081 elf_elfheader (obfd)->e_flags = in_flags;
13082 elf_flags_init (obfd) = TRUE;
13083
13084 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13085 }
13086
13087 /* Values for Tag_ABI_PCS_R9_use. */
13088 enum
13089 {
13090 AEABI_R9_V6,
13091 AEABI_R9_SB,
13092 AEABI_R9_TLS,
13093 AEABI_R9_unused
13094 };
13095
13096 /* Values for Tag_ABI_PCS_RW_data. */
13097 enum
13098 {
13099 AEABI_PCS_RW_data_absolute,
13100 AEABI_PCS_RW_data_PCrel,
13101 AEABI_PCS_RW_data_SBrel,
13102 AEABI_PCS_RW_data_unused
13103 };
13104
13105 /* Values for Tag_ABI_enum_size. */
13106 enum
13107 {
13108 AEABI_enum_unused,
13109 AEABI_enum_short,
13110 AEABI_enum_wide,
13111 AEABI_enum_forced_wide
13112 };
13113
13114 /* Determine whether an object attribute tag takes an integer, a
13115 string or both. */
13116
13117 static int
13118 elf32_arm_obj_attrs_arg_type (int tag)
13119 {
13120 if (tag == Tag_compatibility)
13121 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13122 else if (tag == Tag_nodefaults)
13123 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13124 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13125 return ATTR_TYPE_FLAG_STR_VAL;
13126 else if (tag < 32)
13127 return ATTR_TYPE_FLAG_INT_VAL;
13128 else
13129 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13130 }
13131
13132 /* The ABI defines that Tag_conformance should be emitted first, and that
13133 Tag_nodefaults should be second (if either is defined). This sets those
13134 two positions, and bumps up the position of all the remaining tags to
13135 compensate. */
13136 static int
13137 elf32_arm_obj_attrs_order (int num)
13138 {
13139 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13140 return Tag_conformance;
13141 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13142 return Tag_nodefaults;
13143 if ((num - 2) < Tag_nodefaults)
13144 return num - 2;
13145 if ((num - 1) < Tag_conformance)
13146 return num - 1;
13147 return num;
13148 }
13149
13150 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13151 static bfd_boolean
13152 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13153 {
13154 if ((tag & 127) < 64)
13155 {
13156 _bfd_error_handler
13157 (_("%B: Unknown mandatory EABI object attribute %d"),
13158 abfd, tag);
13159 bfd_set_error (bfd_error_bad_value);
13160 return FALSE;
13161 }
13162 else
13163 {
13164 _bfd_error_handler
13165 (_("Warning: %B: Unknown EABI object attribute %d"),
13166 abfd, tag);
13167 return TRUE;
13168 }
13169 }
13170
13171 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13172 Returns -1 if no architecture could be read. */
13173
13174 static int
13175 get_secondary_compatible_arch (bfd *abfd)
13176 {
13177 obj_attribute *attr =
13178 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13179
13180 /* Note: the tag and its argument below are uleb128 values, though
13181 currently-defined values fit in one byte for each. */
13182 if (attr->s
13183 && attr->s[0] == Tag_CPU_arch
13184 && (attr->s[1] & 128) != 128
13185 && attr->s[2] == 0)
13186 return attr->s[1];
13187
13188 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13189 return -1;
13190 }
13191
13192 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13193 The tag is removed if ARCH is -1. */
13194
13195 static void
13196 set_secondary_compatible_arch (bfd *abfd, int arch)
13197 {
13198 obj_attribute *attr =
13199 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13200
13201 if (arch == -1)
13202 {
13203 attr->s = NULL;
13204 return;
13205 }
13206
13207 /* Note: the tag and its argument below are uleb128 values, though
13208 currently-defined values fit in one byte for each. */
13209 if (!attr->s)
13210 attr->s = (char *) bfd_alloc (abfd, 3);
13211 attr->s[0] = Tag_CPU_arch;
13212 attr->s[1] = arch;
13213 attr->s[2] = '\0';
13214 }
13215
13216 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13217 into account. */
13218
13219 static int
13220 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13221 int newtag, int secondary_compat)
13222 {
13223 #define T(X) TAG_CPU_ARCH_##X
13224 int tagl, tagh, result;
13225 const int v6t2[] =
13226 {
13227 T(V6T2), /* PRE_V4. */
13228 T(V6T2), /* V4. */
13229 T(V6T2), /* V4T. */
13230 T(V6T2), /* V5T. */
13231 T(V6T2), /* V5TE. */
13232 T(V6T2), /* V5TEJ. */
13233 T(V6T2), /* V6. */
13234 T(V7), /* V6KZ. */
13235 T(V6T2) /* V6T2. */
13236 };
13237 const int v6k[] =
13238 {
13239 T(V6K), /* PRE_V4. */
13240 T(V6K), /* V4. */
13241 T(V6K), /* V4T. */
13242 T(V6K), /* V5T. */
13243 T(V6K), /* V5TE. */
13244 T(V6K), /* V5TEJ. */
13245 T(V6K), /* V6. */
13246 T(V6KZ), /* V6KZ. */
13247 T(V7), /* V6T2. */
13248 T(V6K) /* V6K. */
13249 };
13250 const int v7[] =
13251 {
13252 T(V7), /* PRE_V4. */
13253 T(V7), /* V4. */
13254 T(V7), /* V4T. */
13255 T(V7), /* V5T. */
13256 T(V7), /* V5TE. */
13257 T(V7), /* V5TEJ. */
13258 T(V7), /* V6. */
13259 T(V7), /* V6KZ. */
13260 T(V7), /* V6T2. */
13261 T(V7), /* V6K. */
13262 T(V7) /* V7. */
13263 };
13264 const int v6_m[] =
13265 {
13266 -1, /* PRE_V4. */
13267 -1, /* V4. */
13268 T(V6K), /* V4T. */
13269 T(V6K), /* V5T. */
13270 T(V6K), /* V5TE. */
13271 T(V6K), /* V5TEJ. */
13272 T(V6K), /* V6. */
13273 T(V6KZ), /* V6KZ. */
13274 T(V7), /* V6T2. */
13275 T(V6K), /* V6K. */
13276 T(V7), /* V7. */
13277 T(V6_M) /* V6_M. */
13278 };
13279 const int v6s_m[] =
13280 {
13281 -1, /* PRE_V4. */
13282 -1, /* V4. */
13283 T(V6K), /* V4T. */
13284 T(V6K), /* V5T. */
13285 T(V6K), /* V5TE. */
13286 T(V6K), /* V5TEJ. */
13287 T(V6K), /* V6. */
13288 T(V6KZ), /* V6KZ. */
13289 T(V7), /* V6T2. */
13290 T(V6K), /* V6K. */
13291 T(V7), /* V7. */
13292 T(V6S_M), /* V6_M. */
13293 T(V6S_M) /* V6S_M. */
13294 };
13295 const int v7e_m[] =
13296 {
13297 -1, /* PRE_V4. */
13298 -1, /* V4. */
13299 T(V7E_M), /* V4T. */
13300 T(V7E_M), /* V5T. */
13301 T(V7E_M), /* V5TE. */
13302 T(V7E_M), /* V5TEJ. */
13303 T(V7E_M), /* V6. */
13304 T(V7E_M), /* V6KZ. */
13305 T(V7E_M), /* V6T2. */
13306 T(V7E_M), /* V6K. */
13307 T(V7E_M), /* V7. */
13308 T(V7E_M), /* V6_M. */
13309 T(V7E_M), /* V6S_M. */
13310 T(V7E_M) /* V7E_M. */
13311 };
13312 const int v8[] =
13313 {
13314 T(V8), /* PRE_V4. */
13315 T(V8), /* V4. */
13316 T(V8), /* V4T. */
13317 T(V8), /* V5T. */
13318 T(V8), /* V5TE. */
13319 T(V8), /* V5TEJ. */
13320 T(V8), /* V6. */
13321 T(V8), /* V6KZ. */
13322 T(V8), /* V6T2. */
13323 T(V8), /* V6K. */
13324 T(V8), /* V7. */
13325 T(V8), /* V6_M. */
13326 T(V8), /* V6S_M. */
13327 T(V8), /* V7E_M. */
13328 T(V8) /* V8. */
13329 };
13330 const int v8m_baseline[] =
13331 {
13332 -1, /* PRE_V4. */
13333 -1, /* V4. */
13334 -1, /* V4T. */
13335 -1, /* V5T. */
13336 -1, /* V5TE. */
13337 -1, /* V5TEJ. */
13338 -1, /* V6. */
13339 -1, /* V6KZ. */
13340 -1, /* V6T2. */
13341 -1, /* V6K. */
13342 -1, /* V7. */
13343 T(V8M_BASE), /* V6_M. */
13344 T(V8M_BASE), /* V6S_M. */
13345 -1, /* V7E_M. */
13346 -1, /* V8. */
13347 -1,
13348 T(V8M_BASE) /* V8-M BASELINE. */
13349 };
13350 const int v8m_mainline[] =
13351 {
13352 -1, /* PRE_V4. */
13353 -1, /* V4. */
13354 -1, /* V4T. */
13355 -1, /* V5T. */
13356 -1, /* V5TE. */
13357 -1, /* V5TEJ. */
13358 -1, /* V6. */
13359 -1, /* V6KZ. */
13360 -1, /* V6T2. */
13361 -1, /* V6K. */
13362 T(V8M_MAIN), /* V7. */
13363 T(V8M_MAIN), /* V6_M. */
13364 T(V8M_MAIN), /* V6S_M. */
13365 T(V8M_MAIN), /* V7E_M. */
13366 -1, /* V8. */
13367 -1,
13368 T(V8M_MAIN), /* V8-M BASELINE. */
13369 T(V8M_MAIN) /* V8-M MAINLINE. */
13370 };
13371 const int v4t_plus_v6_m[] =
13372 {
13373 -1, /* PRE_V4. */
13374 -1, /* V4. */
13375 T(V4T), /* V4T. */
13376 T(V5T), /* V5T. */
13377 T(V5TE), /* V5TE. */
13378 T(V5TEJ), /* V5TEJ. */
13379 T(V6), /* V6. */
13380 T(V6KZ), /* V6KZ. */
13381 T(V6T2), /* V6T2. */
13382 T(V6K), /* V6K. */
13383 T(V7), /* V7. */
13384 T(V6_M), /* V6_M. */
13385 T(V6S_M), /* V6S_M. */
13386 T(V7E_M), /* V7E_M. */
13387 T(V8), /* V8. */
13388 -1, /* Unused. */
13389 T(V8M_BASE), /* V8-M BASELINE. */
13390 T(V8M_MAIN), /* V8-M MAINLINE. */
13391 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13392 };
13393 const int *comb[] =
13394 {
13395 v6t2,
13396 v6k,
13397 v7,
13398 v6_m,
13399 v6s_m,
13400 v7e_m,
13401 v8,
13402 NULL,
13403 v8m_baseline,
13404 v8m_mainline,
13405 /* Pseudo-architecture. */
13406 v4t_plus_v6_m
13407 };
13408
13409 /* Check we've not got a higher architecture than we know about. */
13410
13411 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13412 {
13413 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13414 return -1;
13415 }
13416
13417 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13418
13419 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13420 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13421 oldtag = T(V4T_PLUS_V6_M);
13422
13423 /* And override the new tag if we have a Tag_also_compatible_with on the
13424 input. */
13425
13426 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13427 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13428 newtag = T(V4T_PLUS_V6_M);
13429
13430 tagl = (oldtag < newtag) ? oldtag : newtag;
13431 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13432
13433 /* Architectures before V6KZ add features monotonically. */
13434 if (tagh <= TAG_CPU_ARCH_V6KZ)
13435 return result;
13436
13437 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13438
13439 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13440 as the canonical version. */
13441 if (result == T(V4T_PLUS_V6_M))
13442 {
13443 result = T(V4T);
13444 *secondary_compat_out = T(V6_M);
13445 }
13446 else
13447 *secondary_compat_out = -1;
13448
13449 if (result == -1)
13450 {
13451 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13452 ibfd, oldtag, newtag);
13453 return -1;
13454 }
13455
13456 return result;
13457 #undef T
13458 }
13459
13460 /* Query attributes object to see if integer divide instructions may be
13461 present in an object. */
13462 static bfd_boolean
13463 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13464 {
13465 int arch = attr[Tag_CPU_arch].i;
13466 int profile = attr[Tag_CPU_arch_profile].i;
13467
13468 switch (attr[Tag_DIV_use].i)
13469 {
13470 case 0:
13471 /* Integer divide allowed if instruction contained in archetecture. */
13472 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13473 return TRUE;
13474 else if (arch >= TAG_CPU_ARCH_V7E_M)
13475 return TRUE;
13476 else
13477 return FALSE;
13478
13479 case 1:
13480 /* Integer divide explicitly prohibited. */
13481 return FALSE;
13482
13483 default:
13484 /* Unrecognised case - treat as allowing divide everywhere. */
13485 case 2:
13486 /* Integer divide allowed in ARM state. */
13487 return TRUE;
13488 }
13489 }
13490
13491 /* Query attributes object to see if integer divide instructions are
13492 forbidden to be in the object. This is not the inverse of
13493 elf32_arm_attributes_accept_div. */
13494 static bfd_boolean
13495 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13496 {
13497 return attr[Tag_DIV_use].i == 1;
13498 }
13499
13500 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13501 are conflicting attributes. */
13502
13503 static bfd_boolean
13504 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13505 {
13506 bfd *obfd = info->output_bfd;
13507 obj_attribute *in_attr;
13508 obj_attribute *out_attr;
13509 /* Some tags have 0 = don't care, 1 = strong requirement,
13510 2 = weak requirement. */
13511 static const int order_021[3] = {0, 2, 1};
13512 int i;
13513 bfd_boolean result = TRUE;
13514 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13515
13516 /* Skip the linker stubs file. This preserves previous behavior
13517 of accepting unknown attributes in the first input file - but
13518 is that a bug? */
13519 if (ibfd->flags & BFD_LINKER_CREATED)
13520 return TRUE;
13521
13522 /* Skip any input that hasn't attribute section.
13523 This enables to link object files without attribute section with
13524 any others. */
13525 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13526 return TRUE;
13527
13528 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13529 {
13530 /* This is the first object. Copy the attributes. */
13531 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13532
13533 out_attr = elf_known_obj_attributes_proc (obfd);
13534
13535 /* Use the Tag_null value to indicate the attributes have been
13536 initialized. */
13537 out_attr[0].i = 1;
13538
13539 /* We do not output objects with Tag_MPextension_use_legacy - we move
13540 the attribute's value to Tag_MPextension_use. */
13541 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13542 {
13543 if (out_attr[Tag_MPextension_use].i != 0
13544 && out_attr[Tag_MPextension_use_legacy].i
13545 != out_attr[Tag_MPextension_use].i)
13546 {
13547 _bfd_error_handler
13548 (_("Error: %B has both the current and legacy "
13549 "Tag_MPextension_use attributes"), ibfd);
13550 result = FALSE;
13551 }
13552
13553 out_attr[Tag_MPextension_use] =
13554 out_attr[Tag_MPextension_use_legacy];
13555 out_attr[Tag_MPextension_use_legacy].type = 0;
13556 out_attr[Tag_MPextension_use_legacy].i = 0;
13557 }
13558
13559 return result;
13560 }
13561
13562 in_attr = elf_known_obj_attributes_proc (ibfd);
13563 out_attr = elf_known_obj_attributes_proc (obfd);
13564 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13565 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13566 {
13567 /* Ignore mismatches if the object doesn't use floating point or is
13568 floating point ABI independent. */
13569 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13570 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13571 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13572 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13573 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13574 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13575 {
13576 _bfd_error_handler
13577 (_("error: %B uses VFP register arguments, %B does not"),
13578 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13579 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13580 result = FALSE;
13581 }
13582 }
13583
13584 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13585 {
13586 /* Merge this attribute with existing attributes. */
13587 switch (i)
13588 {
13589 case Tag_CPU_raw_name:
13590 case Tag_CPU_name:
13591 /* These are merged after Tag_CPU_arch. */
13592 break;
13593
13594 case Tag_ABI_optimization_goals:
13595 case Tag_ABI_FP_optimization_goals:
13596 /* Use the first value seen. */
13597 break;
13598
13599 case Tag_CPU_arch:
13600 {
13601 int secondary_compat = -1, secondary_compat_out = -1;
13602 unsigned int saved_out_attr = out_attr[i].i;
13603 int arch_attr;
13604 static const char *name_table[] =
13605 {
13606 /* These aren't real CPU names, but we can't guess
13607 that from the architecture version alone. */
13608 "Pre v4",
13609 "ARM v4",
13610 "ARM v4T",
13611 "ARM v5T",
13612 "ARM v5TE",
13613 "ARM v5TEJ",
13614 "ARM v6",
13615 "ARM v6KZ",
13616 "ARM v6T2",
13617 "ARM v6K",
13618 "ARM v7",
13619 "ARM v6-M",
13620 "ARM v6S-M",
13621 "ARM v8",
13622 "",
13623 "ARM v8-M.baseline",
13624 "ARM v8-M.mainline",
13625 };
13626
13627 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13628 secondary_compat = get_secondary_compatible_arch (ibfd);
13629 secondary_compat_out = get_secondary_compatible_arch (obfd);
13630 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13631 &secondary_compat_out,
13632 in_attr[i].i,
13633 secondary_compat);
13634
13635 /* Return with error if failed to merge. */
13636 if (arch_attr == -1)
13637 return FALSE;
13638
13639 out_attr[i].i = arch_attr;
13640
13641 set_secondary_compatible_arch (obfd, secondary_compat_out);
13642
13643 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13644 if (out_attr[i].i == saved_out_attr)
13645 ; /* Leave the names alone. */
13646 else if (out_attr[i].i == in_attr[i].i)
13647 {
13648 /* The output architecture has been changed to match the
13649 input architecture. Use the input names. */
13650 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13651 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13652 : NULL;
13653 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13654 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13655 : NULL;
13656 }
13657 else
13658 {
13659 out_attr[Tag_CPU_name].s = NULL;
13660 out_attr[Tag_CPU_raw_name].s = NULL;
13661 }
13662
13663 /* If we still don't have a value for Tag_CPU_name,
13664 make one up now. Tag_CPU_raw_name remains blank. */
13665 if (out_attr[Tag_CPU_name].s == NULL
13666 && out_attr[i].i < ARRAY_SIZE (name_table))
13667 out_attr[Tag_CPU_name].s =
13668 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13669 }
13670 break;
13671
13672 case Tag_ARM_ISA_use:
13673 case Tag_THUMB_ISA_use:
13674 case Tag_WMMX_arch:
13675 case Tag_Advanced_SIMD_arch:
13676 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13677 case Tag_ABI_FP_rounding:
13678 case Tag_ABI_FP_exceptions:
13679 case Tag_ABI_FP_user_exceptions:
13680 case Tag_ABI_FP_number_model:
13681 case Tag_FP_HP_extension:
13682 case Tag_CPU_unaligned_access:
13683 case Tag_T2EE_use:
13684 case Tag_MPextension_use:
13685 /* Use the largest value specified. */
13686 if (in_attr[i].i > out_attr[i].i)
13687 out_attr[i].i = in_attr[i].i;
13688 break;
13689
13690 case Tag_ABI_align_preserved:
13691 case Tag_ABI_PCS_RO_data:
13692 /* Use the smallest value specified. */
13693 if (in_attr[i].i < out_attr[i].i)
13694 out_attr[i].i = in_attr[i].i;
13695 break;
13696
13697 case Tag_ABI_align_needed:
13698 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13699 && (in_attr[Tag_ABI_align_preserved].i == 0
13700 || out_attr[Tag_ABI_align_preserved].i == 0))
13701 {
13702 /* This error message should be enabled once all non-conformant
13703 binaries in the toolchain have had the attributes set
13704 properly.
13705 _bfd_error_handler
13706 (_("error: %B: 8-byte data alignment conflicts with %B"),
13707 obfd, ibfd);
13708 result = FALSE; */
13709 }
13710 /* Fall through. */
13711 case Tag_ABI_FP_denormal:
13712 case Tag_ABI_PCS_GOT_use:
13713 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13714 value if greater than 2 (for future-proofing). */
13715 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13716 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13717 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13718 out_attr[i].i = in_attr[i].i;
13719 break;
13720
13721 case Tag_Virtualization_use:
13722 /* The virtualization tag effectively stores two bits of
13723 information: the intended use of TrustZone (in bit 0), and the
13724 intended use of Virtualization (in bit 1). */
13725 if (out_attr[i].i == 0)
13726 out_attr[i].i = in_attr[i].i;
13727 else if (in_attr[i].i != 0
13728 && in_attr[i].i != out_attr[i].i)
13729 {
13730 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13731 out_attr[i].i = 3;
13732 else
13733 {
13734 _bfd_error_handler
13735 (_("error: %B: unable to merge virtualization attributes "
13736 "with %B"),
13737 obfd, ibfd);
13738 result = FALSE;
13739 }
13740 }
13741 break;
13742
13743 case Tag_CPU_arch_profile:
13744 if (out_attr[i].i != in_attr[i].i)
13745 {
13746 /* 0 will merge with anything.
13747 'A' and 'S' merge to 'A'.
13748 'R' and 'S' merge to 'R'.
13749 'M' and 'A|R|S' is an error. */
13750 if (out_attr[i].i == 0
13751 || (out_attr[i].i == 'S'
13752 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13753 out_attr[i].i = in_attr[i].i;
13754 else if (in_attr[i].i == 0
13755 || (in_attr[i].i == 'S'
13756 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13757 ; /* Do nothing. */
13758 else
13759 {
13760 _bfd_error_handler
13761 (_("error: %B: Conflicting architecture profiles %c/%c"),
13762 ibfd,
13763 in_attr[i].i ? in_attr[i].i : '0',
13764 out_attr[i].i ? out_attr[i].i : '0');
13765 result = FALSE;
13766 }
13767 }
13768 break;
13769
13770 case Tag_DSP_extension:
13771 /* No need to change output value if any of:
13772 - pre (<=) ARMv5T input architecture (do not have DSP)
13773 - M input profile not ARMv7E-M and do not have DSP. */
13774 if (in_attr[Tag_CPU_arch].i <= 3
13775 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13776 && in_attr[Tag_CPU_arch].i != 13
13777 && in_attr[i].i == 0))
13778 ; /* Do nothing. */
13779 /* Output value should be 0 if DSP part of architecture, ie.
13780 - post (>=) ARMv5te architecture output
13781 - A, R or S profile output or ARMv7E-M output architecture. */
13782 else if (out_attr[Tag_CPU_arch].i >= 4
13783 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13784 || out_attr[Tag_CPU_arch_profile].i == 'R'
13785 || out_attr[Tag_CPU_arch_profile].i == 'S'
13786 || out_attr[Tag_CPU_arch].i == 13))
13787 out_attr[i].i = 0;
13788 /* Otherwise, DSP instructions are added and not part of output
13789 architecture. */
13790 else
13791 out_attr[i].i = 1;
13792 break;
13793
13794 case Tag_FP_arch:
13795 {
13796 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13797 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13798 when it's 0. It might mean absence of FP hardware if
13799 Tag_FP_arch is zero. */
13800
13801 #define VFP_VERSION_COUNT 9
13802 static const struct
13803 {
13804 int ver;
13805 int regs;
13806 } vfp_versions[VFP_VERSION_COUNT] =
13807 {
13808 {0, 0},
13809 {1, 16},
13810 {2, 16},
13811 {3, 32},
13812 {3, 16},
13813 {4, 32},
13814 {4, 16},
13815 {8, 32},
13816 {8, 16}
13817 };
13818 int ver;
13819 int regs;
13820 int newval;
13821
13822 /* If the output has no requirement about FP hardware,
13823 follow the requirement of the input. */
13824 if (out_attr[i].i == 0)
13825 {
13826 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13827 out_attr[i].i = in_attr[i].i;
13828 out_attr[Tag_ABI_HardFP_use].i
13829 = in_attr[Tag_ABI_HardFP_use].i;
13830 break;
13831 }
13832 /* If the input has no requirement about FP hardware, do
13833 nothing. */
13834 else if (in_attr[i].i == 0)
13835 {
13836 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13837 break;
13838 }
13839
13840 /* Both the input and the output have nonzero Tag_FP_arch.
13841 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13842
13843 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13844 do nothing. */
13845 if (in_attr[Tag_ABI_HardFP_use].i == 0
13846 && out_attr[Tag_ABI_HardFP_use].i == 0)
13847 ;
13848 /* If the input and the output have different Tag_ABI_HardFP_use,
13849 the combination of them is 0 (implied by Tag_FP_arch). */
13850 else if (in_attr[Tag_ABI_HardFP_use].i
13851 != out_attr[Tag_ABI_HardFP_use].i)
13852 out_attr[Tag_ABI_HardFP_use].i = 0;
13853
13854 /* Now we can handle Tag_FP_arch. */
13855
13856 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13857 pick the biggest. */
13858 if (in_attr[i].i >= VFP_VERSION_COUNT
13859 && in_attr[i].i > out_attr[i].i)
13860 {
13861 out_attr[i] = in_attr[i];
13862 break;
13863 }
13864 /* The output uses the superset of input features
13865 (ISA version) and registers. */
13866 ver = vfp_versions[in_attr[i].i].ver;
13867 if (ver < vfp_versions[out_attr[i].i].ver)
13868 ver = vfp_versions[out_attr[i].i].ver;
13869 regs = vfp_versions[in_attr[i].i].regs;
13870 if (regs < vfp_versions[out_attr[i].i].regs)
13871 regs = vfp_versions[out_attr[i].i].regs;
13872 /* This assumes all possible supersets are also a valid
13873 options. */
13874 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13875 {
13876 if (regs == vfp_versions[newval].regs
13877 && ver == vfp_versions[newval].ver)
13878 break;
13879 }
13880 out_attr[i].i = newval;
13881 }
13882 break;
13883 case Tag_PCS_config:
13884 if (out_attr[i].i == 0)
13885 out_attr[i].i = in_attr[i].i;
13886 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13887 {
13888 /* It's sometimes ok to mix different configs, so this is only
13889 a warning. */
13890 _bfd_error_handler
13891 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13892 }
13893 break;
13894 case Tag_ABI_PCS_R9_use:
13895 if (in_attr[i].i != out_attr[i].i
13896 && out_attr[i].i != AEABI_R9_unused
13897 && in_attr[i].i != AEABI_R9_unused)
13898 {
13899 _bfd_error_handler
13900 (_("error: %B: Conflicting use of R9"), ibfd);
13901 result = FALSE;
13902 }
13903 if (out_attr[i].i == AEABI_R9_unused)
13904 out_attr[i].i = in_attr[i].i;
13905 break;
13906 case Tag_ABI_PCS_RW_data:
13907 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13908 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13909 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13910 {
13911 _bfd_error_handler
13912 (_("error: %B: SB relative addressing conflicts with use of R9"),
13913 ibfd);
13914 result = FALSE;
13915 }
13916 /* Use the smallest value specified. */
13917 if (in_attr[i].i < out_attr[i].i)
13918 out_attr[i].i = in_attr[i].i;
13919 break;
13920 case Tag_ABI_PCS_wchar_t:
13921 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13922 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13923 {
13924 _bfd_error_handler
13925 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13926 ibfd, in_attr[i].i, out_attr[i].i);
13927 }
13928 else if (in_attr[i].i && !out_attr[i].i)
13929 out_attr[i].i = in_attr[i].i;
13930 break;
13931 case Tag_ABI_enum_size:
13932 if (in_attr[i].i != AEABI_enum_unused)
13933 {
13934 if (out_attr[i].i == AEABI_enum_unused
13935 || out_attr[i].i == AEABI_enum_forced_wide)
13936 {
13937 /* The existing object is compatible with anything.
13938 Use whatever requirements the new object has. */
13939 out_attr[i].i = in_attr[i].i;
13940 }
13941 else if (in_attr[i].i != AEABI_enum_forced_wide
13942 && out_attr[i].i != in_attr[i].i
13943 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13944 {
13945 static const char *aeabi_enum_names[] =
13946 { "", "variable-size", "32-bit", "" };
13947 const char *in_name =
13948 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13949 ? aeabi_enum_names[in_attr[i].i]
13950 : "<unknown>";
13951 const char *out_name =
13952 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13953 ? aeabi_enum_names[out_attr[i].i]
13954 : "<unknown>";
13955 _bfd_error_handler
13956 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13957 ibfd, in_name, out_name);
13958 }
13959 }
13960 break;
13961 case Tag_ABI_VFP_args:
13962 /* Aready done. */
13963 break;
13964 case Tag_ABI_WMMX_args:
13965 if (in_attr[i].i != out_attr[i].i)
13966 {
13967 _bfd_error_handler
13968 (_("error: %B uses iWMMXt register arguments, %B does not"),
13969 ibfd, obfd);
13970 result = FALSE;
13971 }
13972 break;
13973 case Tag_compatibility:
13974 /* Merged in target-independent code. */
13975 break;
13976 case Tag_ABI_HardFP_use:
13977 /* This is handled along with Tag_FP_arch. */
13978 break;
13979 case Tag_ABI_FP_16bit_format:
13980 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13981 {
13982 if (in_attr[i].i != out_attr[i].i)
13983 {
13984 _bfd_error_handler
13985 (_("error: fp16 format mismatch between %B and %B"),
13986 ibfd, obfd);
13987 result = FALSE;
13988 }
13989 }
13990 if (in_attr[i].i != 0)
13991 out_attr[i].i = in_attr[i].i;
13992 break;
13993
13994 case Tag_DIV_use:
13995 /* A value of zero on input means that the divide instruction may
13996 be used if available in the base architecture as specified via
13997 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13998 the user did not want divide instructions. A value of 2
13999 explicitly means that divide instructions were allowed in ARM
14000 and Thumb state. */
14001 if (in_attr[i].i == out_attr[i].i)
14002 /* Do nothing. */ ;
14003 else if (elf32_arm_attributes_forbid_div (in_attr)
14004 && !elf32_arm_attributes_accept_div (out_attr))
14005 out_attr[i].i = 1;
14006 else if (elf32_arm_attributes_forbid_div (out_attr)
14007 && elf32_arm_attributes_accept_div (in_attr))
14008 out_attr[i].i = in_attr[i].i;
14009 else if (in_attr[i].i == 2)
14010 out_attr[i].i = in_attr[i].i;
14011 break;
14012
14013 case Tag_MPextension_use_legacy:
14014 /* We don't output objects with Tag_MPextension_use_legacy - we
14015 move the value to Tag_MPextension_use. */
14016 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14017 {
14018 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14019 {
14020 _bfd_error_handler
14021 (_("%B has has both the current and legacy "
14022 "Tag_MPextension_use attributes"),
14023 ibfd);
14024 result = FALSE;
14025 }
14026 }
14027
14028 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14029 out_attr[Tag_MPextension_use] = in_attr[i];
14030
14031 break;
14032
14033 case Tag_nodefaults:
14034 /* This tag is set if it exists, but the value is unused (and is
14035 typically zero). We don't actually need to do anything here -
14036 the merge happens automatically when the type flags are merged
14037 below. */
14038 break;
14039 case Tag_also_compatible_with:
14040 /* Already done in Tag_CPU_arch. */
14041 break;
14042 case Tag_conformance:
14043 /* Keep the attribute if it matches. Throw it away otherwise.
14044 No attribute means no claim to conform. */
14045 if (!in_attr[i].s || !out_attr[i].s
14046 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14047 out_attr[i].s = NULL;
14048 break;
14049
14050 default:
14051 result
14052 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14053 }
14054
14055 /* If out_attr was copied from in_attr then it won't have a type yet. */
14056 if (in_attr[i].type && !out_attr[i].type)
14057 out_attr[i].type = in_attr[i].type;
14058 }
14059
14060 /* Merge Tag_compatibility attributes and any common GNU ones. */
14061 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14062 return FALSE;
14063
14064 /* Check for any attributes not known on ARM. */
14065 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14066
14067 return result;
14068 }
14069
14070
14071 /* Return TRUE if the two EABI versions are incompatible. */
14072
14073 static bfd_boolean
14074 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14075 {
14076 /* v4 and v5 are the same spec before and after it was released,
14077 so allow mixing them. */
14078 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14079 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14080 return TRUE;
14081
14082 return (iver == over);
14083 }
14084
14085 /* Merge backend specific data from an object file to the output
14086 object file when linking. */
14087
14088 static bfd_boolean
14089 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14090
14091 /* Display the flags field. */
14092
14093 static bfd_boolean
14094 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14095 {
14096 FILE * file = (FILE *) ptr;
14097 unsigned long flags;
14098
14099 BFD_ASSERT (abfd != NULL && ptr != NULL);
14100
14101 /* Print normal ELF private data. */
14102 _bfd_elf_print_private_bfd_data (abfd, ptr);
14103
14104 flags = elf_elfheader (abfd)->e_flags;
14105 /* Ignore init flag - it may not be set, despite the flags field
14106 containing valid data. */
14107
14108 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14109
14110 switch (EF_ARM_EABI_VERSION (flags))
14111 {
14112 case EF_ARM_EABI_UNKNOWN:
14113 /* The following flag bits are GNU extensions and not part of the
14114 official ARM ELF extended ABI. Hence they are only decoded if
14115 the EABI version is not set. */
14116 if (flags & EF_ARM_INTERWORK)
14117 fprintf (file, _(" [interworking enabled]"));
14118
14119 if (flags & EF_ARM_APCS_26)
14120 fprintf (file, " [APCS-26]");
14121 else
14122 fprintf (file, " [APCS-32]");
14123
14124 if (flags & EF_ARM_VFP_FLOAT)
14125 fprintf (file, _(" [VFP float format]"));
14126 else if (flags & EF_ARM_MAVERICK_FLOAT)
14127 fprintf (file, _(" [Maverick float format]"));
14128 else
14129 fprintf (file, _(" [FPA float format]"));
14130
14131 if (flags & EF_ARM_APCS_FLOAT)
14132 fprintf (file, _(" [floats passed in float registers]"));
14133
14134 if (flags & EF_ARM_PIC)
14135 fprintf (file, _(" [position independent]"));
14136
14137 if (flags & EF_ARM_NEW_ABI)
14138 fprintf (file, _(" [new ABI]"));
14139
14140 if (flags & EF_ARM_OLD_ABI)
14141 fprintf (file, _(" [old ABI]"));
14142
14143 if (flags & EF_ARM_SOFT_FLOAT)
14144 fprintf (file, _(" [software FP]"));
14145
14146 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14147 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14148 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14149 | EF_ARM_MAVERICK_FLOAT);
14150 break;
14151
14152 case EF_ARM_EABI_VER1:
14153 fprintf (file, _(" [Version1 EABI]"));
14154
14155 if (flags & EF_ARM_SYMSARESORTED)
14156 fprintf (file, _(" [sorted symbol table]"));
14157 else
14158 fprintf (file, _(" [unsorted symbol table]"));
14159
14160 flags &= ~ EF_ARM_SYMSARESORTED;
14161 break;
14162
14163 case EF_ARM_EABI_VER2:
14164 fprintf (file, _(" [Version2 EABI]"));
14165
14166 if (flags & EF_ARM_SYMSARESORTED)
14167 fprintf (file, _(" [sorted symbol table]"));
14168 else
14169 fprintf (file, _(" [unsorted symbol table]"));
14170
14171 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14172 fprintf (file, _(" [dynamic symbols use segment index]"));
14173
14174 if (flags & EF_ARM_MAPSYMSFIRST)
14175 fprintf (file, _(" [mapping symbols precede others]"));
14176
14177 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14178 | EF_ARM_MAPSYMSFIRST);
14179 break;
14180
14181 case EF_ARM_EABI_VER3:
14182 fprintf (file, _(" [Version3 EABI]"));
14183 break;
14184
14185 case EF_ARM_EABI_VER4:
14186 fprintf (file, _(" [Version4 EABI]"));
14187 goto eabi;
14188
14189 case EF_ARM_EABI_VER5:
14190 fprintf (file, _(" [Version5 EABI]"));
14191
14192 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14193 fprintf (file, _(" [soft-float ABI]"));
14194
14195 if (flags & EF_ARM_ABI_FLOAT_HARD)
14196 fprintf (file, _(" [hard-float ABI]"));
14197
14198 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14199
14200 eabi:
14201 if (flags & EF_ARM_BE8)
14202 fprintf (file, _(" [BE8]"));
14203
14204 if (flags & EF_ARM_LE8)
14205 fprintf (file, _(" [LE8]"));
14206
14207 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14208 break;
14209
14210 default:
14211 fprintf (file, _(" <EABI version unrecognised>"));
14212 break;
14213 }
14214
14215 flags &= ~ EF_ARM_EABIMASK;
14216
14217 if (flags & EF_ARM_RELEXEC)
14218 fprintf (file, _(" [relocatable executable]"));
14219
14220 flags &= ~EF_ARM_RELEXEC;
14221
14222 if (flags)
14223 fprintf (file, _("<Unrecognised flag bits set>"));
14224
14225 fputc ('\n', file);
14226
14227 return TRUE;
14228 }
14229
14230 static int
14231 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14232 {
14233 switch (ELF_ST_TYPE (elf_sym->st_info))
14234 {
14235 case STT_ARM_TFUNC:
14236 return ELF_ST_TYPE (elf_sym->st_info);
14237
14238 case STT_ARM_16BIT:
14239 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14240 This allows us to distinguish between data used by Thumb instructions
14241 and non-data (which is probably code) inside Thumb regions of an
14242 executable. */
14243 if (type != STT_OBJECT && type != STT_TLS)
14244 return ELF_ST_TYPE (elf_sym->st_info);
14245 break;
14246
14247 default:
14248 break;
14249 }
14250
14251 return type;
14252 }
14253
14254 static asection *
14255 elf32_arm_gc_mark_hook (asection *sec,
14256 struct bfd_link_info *info,
14257 Elf_Internal_Rela *rel,
14258 struct elf_link_hash_entry *h,
14259 Elf_Internal_Sym *sym)
14260 {
14261 if (h != NULL)
14262 switch (ELF32_R_TYPE (rel->r_info))
14263 {
14264 case R_ARM_GNU_VTINHERIT:
14265 case R_ARM_GNU_VTENTRY:
14266 return NULL;
14267 }
14268
14269 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14270 }
14271
14272 /* Update the got entry reference counts for the section being removed. */
14273
14274 static bfd_boolean
14275 elf32_arm_gc_sweep_hook (bfd * abfd,
14276 struct bfd_link_info * info,
14277 asection * sec,
14278 const Elf_Internal_Rela * relocs)
14279 {
14280 Elf_Internal_Shdr *symtab_hdr;
14281 struct elf_link_hash_entry **sym_hashes;
14282 bfd_signed_vma *local_got_refcounts;
14283 const Elf_Internal_Rela *rel, *relend;
14284 struct elf32_arm_link_hash_table * globals;
14285
14286 if (bfd_link_relocatable (info))
14287 return TRUE;
14288
14289 globals = elf32_arm_hash_table (info);
14290 if (globals == NULL)
14291 return FALSE;
14292
14293 elf_section_data (sec)->local_dynrel = NULL;
14294
14295 symtab_hdr = & elf_symtab_hdr (abfd);
14296 sym_hashes = elf_sym_hashes (abfd);
14297 local_got_refcounts = elf_local_got_refcounts (abfd);
14298
14299 check_use_blx (globals);
14300
14301 relend = relocs + sec->reloc_count;
14302 for (rel = relocs; rel < relend; rel++)
14303 {
14304 unsigned long r_symndx;
14305 struct elf_link_hash_entry *h = NULL;
14306 struct elf32_arm_link_hash_entry *eh;
14307 int r_type;
14308 bfd_boolean call_reloc_p;
14309 bfd_boolean may_become_dynamic_p;
14310 bfd_boolean may_need_local_target_p;
14311 union gotplt_union *root_plt;
14312 struct arm_plt_info *arm_plt;
14313
14314 r_symndx = ELF32_R_SYM (rel->r_info);
14315 if (r_symndx >= symtab_hdr->sh_info)
14316 {
14317 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14318 while (h->root.type == bfd_link_hash_indirect
14319 || h->root.type == bfd_link_hash_warning)
14320 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14321 }
14322 eh = (struct elf32_arm_link_hash_entry *) h;
14323
14324 call_reloc_p = FALSE;
14325 may_become_dynamic_p = FALSE;
14326 may_need_local_target_p = FALSE;
14327
14328 r_type = ELF32_R_TYPE (rel->r_info);
14329 r_type = arm_real_reloc_type (globals, r_type);
14330 switch (r_type)
14331 {
14332 case R_ARM_GOT32:
14333 case R_ARM_GOT_PREL:
14334 case R_ARM_TLS_GD32:
14335 case R_ARM_TLS_IE32:
14336 if (h != NULL)
14337 {
14338 if (h->got.refcount > 0)
14339 h->got.refcount -= 1;
14340 }
14341 else if (local_got_refcounts != NULL)
14342 {
14343 if (local_got_refcounts[r_symndx] > 0)
14344 local_got_refcounts[r_symndx] -= 1;
14345 }
14346 break;
14347
14348 case R_ARM_TLS_LDM32:
14349 globals->tls_ldm_got.refcount -= 1;
14350 break;
14351
14352 case R_ARM_PC24:
14353 case R_ARM_PLT32:
14354 case R_ARM_CALL:
14355 case R_ARM_JUMP24:
14356 case R_ARM_PREL31:
14357 case R_ARM_THM_CALL:
14358 case R_ARM_THM_JUMP24:
14359 case R_ARM_THM_JUMP19:
14360 call_reloc_p = TRUE;
14361 may_need_local_target_p = TRUE;
14362 break;
14363
14364 case R_ARM_ABS12:
14365 if (!globals->vxworks_p)
14366 {
14367 may_need_local_target_p = TRUE;
14368 break;
14369 }
14370 /* Fall through. */
14371 case R_ARM_ABS32:
14372 case R_ARM_ABS32_NOI:
14373 case R_ARM_REL32:
14374 case R_ARM_REL32_NOI:
14375 case R_ARM_MOVW_ABS_NC:
14376 case R_ARM_MOVT_ABS:
14377 case R_ARM_MOVW_PREL_NC:
14378 case R_ARM_MOVT_PREL:
14379 case R_ARM_THM_MOVW_ABS_NC:
14380 case R_ARM_THM_MOVT_ABS:
14381 case R_ARM_THM_MOVW_PREL_NC:
14382 case R_ARM_THM_MOVT_PREL:
14383 /* Should the interworking branches be here also? */
14384 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14385 && (sec->flags & SEC_ALLOC) != 0)
14386 {
14387 if (h == NULL
14388 && elf32_arm_howto_from_type (r_type)->pc_relative)
14389 {
14390 call_reloc_p = TRUE;
14391 may_need_local_target_p = TRUE;
14392 }
14393 else
14394 may_become_dynamic_p = TRUE;
14395 }
14396 else
14397 may_need_local_target_p = TRUE;
14398 break;
14399
14400 default:
14401 break;
14402 }
14403
14404 if (may_need_local_target_p
14405 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14406 &arm_plt))
14407 {
14408 /* If PLT refcount book-keeping is wrong and too low, we'll
14409 see a zero value (going to -1) for the root PLT reference
14410 count. */
14411 if (root_plt->refcount >= 0)
14412 {
14413 BFD_ASSERT (root_plt->refcount != 0);
14414 root_plt->refcount -= 1;
14415 }
14416 else
14417 /* A value of -1 means the symbol has become local, forced
14418 or seeing a hidden definition. Any other negative value
14419 is an error. */
14420 BFD_ASSERT (root_plt->refcount == -1);
14421
14422 if (!call_reloc_p)
14423 arm_plt->noncall_refcount--;
14424
14425 if (r_type == R_ARM_THM_CALL)
14426 arm_plt->maybe_thumb_refcount--;
14427
14428 if (r_type == R_ARM_THM_JUMP24
14429 || r_type == R_ARM_THM_JUMP19)
14430 arm_plt->thumb_refcount--;
14431 }
14432
14433 if (may_become_dynamic_p)
14434 {
14435 struct elf_dyn_relocs **pp;
14436 struct elf_dyn_relocs *p;
14437
14438 if (h != NULL)
14439 pp = &(eh->dyn_relocs);
14440 else
14441 {
14442 Elf_Internal_Sym *isym;
14443
14444 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14445 abfd, r_symndx);
14446 if (isym == NULL)
14447 return FALSE;
14448 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14449 if (pp == NULL)
14450 return FALSE;
14451 }
14452 for (; (p = *pp) != NULL; pp = &p->next)
14453 if (p->sec == sec)
14454 {
14455 /* Everything must go for SEC. */
14456 *pp = p->next;
14457 break;
14458 }
14459 }
14460 }
14461
14462 return TRUE;
14463 }
14464
14465 /* Look through the relocs for a section during the first phase. */
14466
14467 static bfd_boolean
14468 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14469 asection *sec, const Elf_Internal_Rela *relocs)
14470 {
14471 Elf_Internal_Shdr *symtab_hdr;
14472 struct elf_link_hash_entry **sym_hashes;
14473 const Elf_Internal_Rela *rel;
14474 const Elf_Internal_Rela *rel_end;
14475 bfd *dynobj;
14476 asection *sreloc;
14477 struct elf32_arm_link_hash_table *htab;
14478 bfd_boolean call_reloc_p;
14479 bfd_boolean may_become_dynamic_p;
14480 bfd_boolean may_need_local_target_p;
14481 unsigned long nsyms;
14482
14483 if (bfd_link_relocatable (info))
14484 return TRUE;
14485
14486 BFD_ASSERT (is_arm_elf (abfd));
14487
14488 htab = elf32_arm_hash_table (info);
14489 if (htab == NULL)
14490 return FALSE;
14491
14492 sreloc = NULL;
14493
14494 /* Create dynamic sections for relocatable executables so that we can
14495 copy relocations. */
14496 if (htab->root.is_relocatable_executable
14497 && ! htab->root.dynamic_sections_created)
14498 {
14499 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14500 return FALSE;
14501 }
14502
14503 if (htab->root.dynobj == NULL)
14504 htab->root.dynobj = abfd;
14505 if (!create_ifunc_sections (info))
14506 return FALSE;
14507
14508 dynobj = htab->root.dynobj;
14509
14510 symtab_hdr = & elf_symtab_hdr (abfd);
14511 sym_hashes = elf_sym_hashes (abfd);
14512 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14513
14514 rel_end = relocs + sec->reloc_count;
14515 for (rel = relocs; rel < rel_end; rel++)
14516 {
14517 Elf_Internal_Sym *isym;
14518 struct elf_link_hash_entry *h;
14519 struct elf32_arm_link_hash_entry *eh;
14520 unsigned long r_symndx;
14521 int r_type;
14522
14523 r_symndx = ELF32_R_SYM (rel->r_info);
14524 r_type = ELF32_R_TYPE (rel->r_info);
14525 r_type = arm_real_reloc_type (htab, r_type);
14526
14527 if (r_symndx >= nsyms
14528 /* PR 9934: It is possible to have relocations that do not
14529 refer to symbols, thus it is also possible to have an
14530 object file containing relocations but no symbol table. */
14531 && (r_symndx > STN_UNDEF || nsyms > 0))
14532 {
14533 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14534 r_symndx);
14535 return FALSE;
14536 }
14537
14538 h = NULL;
14539 isym = NULL;
14540 if (nsyms > 0)
14541 {
14542 if (r_symndx < symtab_hdr->sh_info)
14543 {
14544 /* A local symbol. */
14545 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14546 abfd, r_symndx);
14547 if (isym == NULL)
14548 return FALSE;
14549 }
14550 else
14551 {
14552 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14553 while (h->root.type == bfd_link_hash_indirect
14554 || h->root.type == bfd_link_hash_warning)
14555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14556
14557 /* PR15323, ref flags aren't set for references in the
14558 same object. */
14559 h->root.non_ir_ref = 1;
14560 }
14561 }
14562
14563 eh = (struct elf32_arm_link_hash_entry *) h;
14564
14565 call_reloc_p = FALSE;
14566 may_become_dynamic_p = FALSE;
14567 may_need_local_target_p = FALSE;
14568
14569 /* Could be done earlier, if h were already available. */
14570 r_type = elf32_arm_tls_transition (info, r_type, h);
14571 switch (r_type)
14572 {
14573 case R_ARM_GOT32:
14574 case R_ARM_GOT_PREL:
14575 case R_ARM_TLS_GD32:
14576 case R_ARM_TLS_IE32:
14577 case R_ARM_TLS_GOTDESC:
14578 case R_ARM_TLS_DESCSEQ:
14579 case R_ARM_THM_TLS_DESCSEQ:
14580 case R_ARM_TLS_CALL:
14581 case R_ARM_THM_TLS_CALL:
14582 /* This symbol requires a global offset table entry. */
14583 {
14584 int tls_type, old_tls_type;
14585
14586 switch (r_type)
14587 {
14588 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14589
14590 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14591
14592 case R_ARM_TLS_GOTDESC:
14593 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14594 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14595 tls_type = GOT_TLS_GDESC; break;
14596
14597 default: tls_type = GOT_NORMAL; break;
14598 }
14599
14600 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14601 info->flags |= DF_STATIC_TLS;
14602
14603 if (h != NULL)
14604 {
14605 h->got.refcount++;
14606 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14607 }
14608 else
14609 {
14610 /* This is a global offset table entry for a local symbol. */
14611 if (!elf32_arm_allocate_local_sym_info (abfd))
14612 return FALSE;
14613 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14614 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14615 }
14616
14617 /* If a variable is accessed with both tls methods, two
14618 slots may be created. */
14619 if (GOT_TLS_GD_ANY_P (old_tls_type)
14620 && GOT_TLS_GD_ANY_P (tls_type))
14621 tls_type |= old_tls_type;
14622
14623 /* We will already have issued an error message if there
14624 is a TLS/non-TLS mismatch, based on the symbol
14625 type. So just combine any TLS types needed. */
14626 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14627 && tls_type != GOT_NORMAL)
14628 tls_type |= old_tls_type;
14629
14630 /* If the symbol is accessed in both IE and GDESC
14631 method, we're able to relax. Turn off the GDESC flag,
14632 without messing up with any other kind of tls types
14633 that may be involved. */
14634 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14635 tls_type &= ~GOT_TLS_GDESC;
14636
14637 if (old_tls_type != tls_type)
14638 {
14639 if (h != NULL)
14640 elf32_arm_hash_entry (h)->tls_type = tls_type;
14641 else
14642 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14643 }
14644 }
14645 /* Fall through. */
14646
14647 case R_ARM_TLS_LDM32:
14648 if (r_type == R_ARM_TLS_LDM32)
14649 htab->tls_ldm_got.refcount++;
14650 /* Fall through. */
14651
14652 case R_ARM_GOTOFF32:
14653 case R_ARM_GOTPC:
14654 if (htab->root.sgot == NULL
14655 && !create_got_section (htab->root.dynobj, info))
14656 return FALSE;
14657 break;
14658
14659 case R_ARM_PC24:
14660 case R_ARM_PLT32:
14661 case R_ARM_CALL:
14662 case R_ARM_JUMP24:
14663 case R_ARM_PREL31:
14664 case R_ARM_THM_CALL:
14665 case R_ARM_THM_JUMP24:
14666 case R_ARM_THM_JUMP19:
14667 call_reloc_p = TRUE;
14668 may_need_local_target_p = TRUE;
14669 break;
14670
14671 case R_ARM_ABS12:
14672 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14673 ldr __GOTT_INDEX__ offsets. */
14674 if (!htab->vxworks_p)
14675 {
14676 may_need_local_target_p = TRUE;
14677 break;
14678 }
14679 else goto jump_over;
14680
14681 /* Fall through. */
14682
14683 case R_ARM_MOVW_ABS_NC:
14684 case R_ARM_MOVT_ABS:
14685 case R_ARM_THM_MOVW_ABS_NC:
14686 case R_ARM_THM_MOVT_ABS:
14687 if (bfd_link_pic (info))
14688 {
14689 _bfd_error_handler
14690 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14691 abfd, elf32_arm_howto_table_1[r_type].name,
14692 (h) ? h->root.root.string : "a local symbol");
14693 bfd_set_error (bfd_error_bad_value);
14694 return FALSE;
14695 }
14696
14697 /* Fall through. */
14698 case R_ARM_ABS32:
14699 case R_ARM_ABS32_NOI:
14700 jump_over:
14701 if (h != NULL && bfd_link_executable (info))
14702 {
14703 h->pointer_equality_needed = 1;
14704 }
14705 /* Fall through. */
14706 case R_ARM_REL32:
14707 case R_ARM_REL32_NOI:
14708 case R_ARM_MOVW_PREL_NC:
14709 case R_ARM_MOVT_PREL:
14710 case R_ARM_THM_MOVW_PREL_NC:
14711 case R_ARM_THM_MOVT_PREL:
14712
14713 /* Should the interworking branches be listed here? */
14714 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14715 && (sec->flags & SEC_ALLOC) != 0)
14716 {
14717 if (h == NULL
14718 && elf32_arm_howto_from_type (r_type)->pc_relative)
14719 {
14720 /* In shared libraries and relocatable executables,
14721 we treat local relative references as calls;
14722 see the related SYMBOL_CALLS_LOCAL code in
14723 allocate_dynrelocs. */
14724 call_reloc_p = TRUE;
14725 may_need_local_target_p = TRUE;
14726 }
14727 else
14728 /* We are creating a shared library or relocatable
14729 executable, and this is a reloc against a global symbol,
14730 or a non-PC-relative reloc against a local symbol.
14731 We may need to copy the reloc into the output. */
14732 may_become_dynamic_p = TRUE;
14733 }
14734 else
14735 may_need_local_target_p = TRUE;
14736 break;
14737
14738 /* This relocation describes the C++ object vtable hierarchy.
14739 Reconstruct it for later use during GC. */
14740 case R_ARM_GNU_VTINHERIT:
14741 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14742 return FALSE;
14743 break;
14744
14745 /* This relocation describes which C++ vtable entries are actually
14746 used. Record for later use during GC. */
14747 case R_ARM_GNU_VTENTRY:
14748 BFD_ASSERT (h != NULL);
14749 if (h != NULL
14750 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14751 return FALSE;
14752 break;
14753 }
14754
14755 if (h != NULL)
14756 {
14757 if (call_reloc_p)
14758 /* We may need a .plt entry if the function this reloc
14759 refers to is in a different object, regardless of the
14760 symbol's type. We can't tell for sure yet, because
14761 something later might force the symbol local. */
14762 h->needs_plt = 1;
14763 else if (may_need_local_target_p)
14764 /* If this reloc is in a read-only section, we might
14765 need a copy reloc. We can't check reliably at this
14766 stage whether the section is read-only, as input
14767 sections have not yet been mapped to output sections.
14768 Tentatively set the flag for now, and correct in
14769 adjust_dynamic_symbol. */
14770 h->non_got_ref = 1;
14771 }
14772
14773 if (may_need_local_target_p
14774 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14775 {
14776 union gotplt_union *root_plt;
14777 struct arm_plt_info *arm_plt;
14778 struct arm_local_iplt_info *local_iplt;
14779
14780 if (h != NULL)
14781 {
14782 root_plt = &h->plt;
14783 arm_plt = &eh->plt;
14784 }
14785 else
14786 {
14787 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14788 if (local_iplt == NULL)
14789 return FALSE;
14790 root_plt = &local_iplt->root;
14791 arm_plt = &local_iplt->arm;
14792 }
14793
14794 /* If the symbol is a function that doesn't bind locally,
14795 this relocation will need a PLT entry. */
14796 if (root_plt->refcount != -1)
14797 root_plt->refcount += 1;
14798
14799 if (!call_reloc_p)
14800 arm_plt->noncall_refcount++;
14801
14802 /* It's too early to use htab->use_blx here, so we have to
14803 record possible blx references separately from
14804 relocs that definitely need a thumb stub. */
14805
14806 if (r_type == R_ARM_THM_CALL)
14807 arm_plt->maybe_thumb_refcount += 1;
14808
14809 if (r_type == R_ARM_THM_JUMP24
14810 || r_type == R_ARM_THM_JUMP19)
14811 arm_plt->thumb_refcount += 1;
14812 }
14813
14814 if (may_become_dynamic_p)
14815 {
14816 struct elf_dyn_relocs *p, **head;
14817
14818 /* Create a reloc section in dynobj. */
14819 if (sreloc == NULL)
14820 {
14821 sreloc = _bfd_elf_make_dynamic_reloc_section
14822 (sec, dynobj, 2, abfd, ! htab->use_rel);
14823
14824 if (sreloc == NULL)
14825 return FALSE;
14826
14827 /* BPABI objects never have dynamic relocations mapped. */
14828 if (htab->symbian_p)
14829 {
14830 flagword flags;
14831
14832 flags = bfd_get_section_flags (dynobj, sreloc);
14833 flags &= ~(SEC_LOAD | SEC_ALLOC);
14834 bfd_set_section_flags (dynobj, sreloc, flags);
14835 }
14836 }
14837
14838 /* If this is a global symbol, count the number of
14839 relocations we need for this symbol. */
14840 if (h != NULL)
14841 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14842 else
14843 {
14844 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14845 if (head == NULL)
14846 return FALSE;
14847 }
14848
14849 p = *head;
14850 if (p == NULL || p->sec != sec)
14851 {
14852 bfd_size_type amt = sizeof *p;
14853
14854 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14855 if (p == NULL)
14856 return FALSE;
14857 p->next = *head;
14858 *head = p;
14859 p->sec = sec;
14860 p->count = 0;
14861 p->pc_count = 0;
14862 }
14863
14864 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14865 p->pc_count += 1;
14866 p->count += 1;
14867 }
14868 }
14869
14870 return TRUE;
14871 }
14872
14873 static void
14874 elf32_arm_update_relocs (asection *o,
14875 struct bfd_elf_section_reloc_data *reldata)
14876 {
14877 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14878 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14879 const struct elf_backend_data *bed;
14880 _arm_elf_section_data *eado;
14881 struct bfd_link_order *p;
14882 bfd_byte *erela_head, *erela;
14883 Elf_Internal_Rela *irela_head, *irela;
14884 Elf_Internal_Shdr *rel_hdr;
14885 bfd *abfd;
14886 unsigned int count;
14887
14888 eado = get_arm_elf_section_data (o);
14889
14890 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14891 return;
14892
14893 abfd = o->owner;
14894 bed = get_elf_backend_data (abfd);
14895 rel_hdr = reldata->hdr;
14896
14897 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14898 {
14899 swap_in = bed->s->swap_reloc_in;
14900 swap_out = bed->s->swap_reloc_out;
14901 }
14902 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14903 {
14904 swap_in = bed->s->swap_reloca_in;
14905 swap_out = bed->s->swap_reloca_out;
14906 }
14907 else
14908 abort ();
14909
14910 erela_head = rel_hdr->contents;
14911 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14912 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14913
14914 erela = erela_head;
14915 irela = irela_head;
14916 count = 0;
14917
14918 for (p = o->map_head.link_order; p; p = p->next)
14919 {
14920 if (p->type == bfd_section_reloc_link_order
14921 || p->type == bfd_symbol_reloc_link_order)
14922 {
14923 (*swap_in) (abfd, erela, irela);
14924 erela += rel_hdr->sh_entsize;
14925 irela++;
14926 count++;
14927 }
14928 else if (p->type == bfd_indirect_link_order)
14929 {
14930 struct bfd_elf_section_reloc_data *input_reldata;
14931 arm_unwind_table_edit *edit_list, *edit_tail;
14932 _arm_elf_section_data *eadi;
14933 bfd_size_type j;
14934 bfd_vma offset;
14935 asection *i;
14936
14937 i = p->u.indirect.section;
14938
14939 eadi = get_arm_elf_section_data (i);
14940 edit_list = eadi->u.exidx.unwind_edit_list;
14941 edit_tail = eadi->u.exidx.unwind_edit_tail;
14942 offset = o->vma + i->output_offset;
14943
14944 if (eadi->elf.rel.hdr &&
14945 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14946 input_reldata = &eadi->elf.rel;
14947 else if (eadi->elf.rela.hdr &&
14948 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14949 input_reldata = &eadi->elf.rela;
14950 else
14951 abort ();
14952
14953 if (edit_list)
14954 {
14955 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14956 {
14957 arm_unwind_table_edit *edit_node, *edit_next;
14958 bfd_vma bias;
14959 bfd_vma reloc_index;
14960
14961 (*swap_in) (abfd, erela, irela);
14962 reloc_index = (irela->r_offset - offset) / 8;
14963
14964 bias = 0;
14965 edit_node = edit_list;
14966 for (edit_next = edit_list;
14967 edit_next && edit_next->index <= reloc_index;
14968 edit_next = edit_node->next)
14969 {
14970 bias++;
14971 edit_node = edit_next;
14972 }
14973
14974 if (edit_node->type != DELETE_EXIDX_ENTRY
14975 || edit_node->index != reloc_index)
14976 {
14977 irela->r_offset -= bias * 8;
14978 irela++;
14979 count++;
14980 }
14981
14982 erela += rel_hdr->sh_entsize;
14983 }
14984
14985 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14986 {
14987 /* New relocation entity. */
14988 asection *text_sec = edit_tail->linked_section;
14989 asection *text_out = text_sec->output_section;
14990 bfd_vma exidx_offset = offset + i->size - 8;
14991
14992 irela->r_addend = 0;
14993 irela->r_offset = exidx_offset;
14994 irela->r_info = ELF32_R_INFO
14995 (text_out->target_index, R_ARM_PREL31);
14996 irela++;
14997 count++;
14998 }
14999 }
15000 else
15001 {
15002 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15003 {
15004 (*swap_in) (abfd, erela, irela);
15005 erela += rel_hdr->sh_entsize;
15006 irela++;
15007 }
15008
15009 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15010 }
15011 }
15012 }
15013
15014 reldata->count = count;
15015 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15016
15017 erela = erela_head;
15018 irela = irela_head;
15019 while (count > 0)
15020 {
15021 (*swap_out) (abfd, irela, erela);
15022 erela += rel_hdr->sh_entsize;
15023 irela++;
15024 count--;
15025 }
15026
15027 free (irela_head);
15028
15029 /* Hashes are no longer valid. */
15030 free (reldata->hashes);
15031 reldata->hashes = NULL;
15032 }
15033
15034 /* Unwinding tables are not referenced directly. This pass marks them as
15035 required if the corresponding code section is marked. Similarly, ARMv8-M
15036 secure entry functions can only be referenced by SG veneers which are
15037 created after the GC process. They need to be marked in case they reside in
15038 their own section (as would be the case if code was compiled with
15039 -ffunction-sections). */
15040
15041 static bfd_boolean
15042 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15043 elf_gc_mark_hook_fn gc_mark_hook)
15044 {
15045 bfd *sub;
15046 Elf_Internal_Shdr **elf_shdrp;
15047 asection *cmse_sec;
15048 obj_attribute *out_attr;
15049 Elf_Internal_Shdr *symtab_hdr;
15050 unsigned i, sym_count, ext_start;
15051 const struct elf_backend_data *bed;
15052 struct elf_link_hash_entry **sym_hashes;
15053 struct elf32_arm_link_hash_entry *cmse_hash;
15054 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15055
15056 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15057
15058 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15059 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15060 && out_attr[Tag_CPU_arch_profile].i == 'M';
15061
15062 /* Marking EH data may cause additional code sections to be marked,
15063 requiring multiple passes. */
15064 again = TRUE;
15065 while (again)
15066 {
15067 again = FALSE;
15068 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15069 {
15070 asection *o;
15071
15072 if (! is_arm_elf (sub))
15073 continue;
15074
15075 elf_shdrp = elf_elfsections (sub);
15076 for (o = sub->sections; o != NULL; o = o->next)
15077 {
15078 Elf_Internal_Shdr *hdr;
15079
15080 hdr = &elf_section_data (o)->this_hdr;
15081 if (hdr->sh_type == SHT_ARM_EXIDX
15082 && hdr->sh_link
15083 && hdr->sh_link < elf_numsections (sub)
15084 && !o->gc_mark
15085 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15086 {
15087 again = TRUE;
15088 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15089 return FALSE;
15090 }
15091 }
15092
15093 /* Mark section holding ARMv8-M secure entry functions. We mark all
15094 of them so no need for a second browsing. */
15095 if (is_v8m && first_bfd_browse)
15096 {
15097 sym_hashes = elf_sym_hashes (sub);
15098 bed = get_elf_backend_data (sub);
15099 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15100 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15101 ext_start = symtab_hdr->sh_info;
15102
15103 /* Scan symbols. */
15104 for (i = ext_start; i < sym_count; i++)
15105 {
15106 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15107
15108 /* Assume it is a special symbol. If not, cmse_scan will
15109 warn about it and user can do something about it. */
15110 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15111 {
15112 cmse_sec = cmse_hash->root.root.u.def.section;
15113 if (!cmse_sec->gc_mark
15114 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15115 return FALSE;
15116 }
15117 }
15118 }
15119 }
15120 first_bfd_browse = FALSE;
15121 }
15122
15123 return TRUE;
15124 }
15125
15126 /* Treat mapping symbols as special target symbols. */
15127
15128 static bfd_boolean
15129 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15130 {
15131 return bfd_is_arm_special_symbol_name (sym->name,
15132 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15133 }
15134
15135 /* This is a copy of elf_find_function() from elf.c except that
15136 ARM mapping symbols are ignored when looking for function names
15137 and STT_ARM_TFUNC is considered to a function type. */
15138
15139 static bfd_boolean
15140 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15141 asymbol ** symbols,
15142 asection * section,
15143 bfd_vma offset,
15144 const char ** filename_ptr,
15145 const char ** functionname_ptr)
15146 {
15147 const char * filename = NULL;
15148 asymbol * func = NULL;
15149 bfd_vma low_func = 0;
15150 asymbol ** p;
15151
15152 for (p = symbols; *p != NULL; p++)
15153 {
15154 elf_symbol_type *q;
15155
15156 q = (elf_symbol_type *) *p;
15157
15158 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15159 {
15160 default:
15161 break;
15162 case STT_FILE:
15163 filename = bfd_asymbol_name (&q->symbol);
15164 break;
15165 case STT_FUNC:
15166 case STT_ARM_TFUNC:
15167 case STT_NOTYPE:
15168 /* Skip mapping symbols. */
15169 if ((q->symbol.flags & BSF_LOCAL)
15170 && bfd_is_arm_special_symbol_name (q->symbol.name,
15171 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15172 continue;
15173 /* Fall through. */
15174 if (bfd_get_section (&q->symbol) == section
15175 && q->symbol.value >= low_func
15176 && q->symbol.value <= offset)
15177 {
15178 func = (asymbol *) q;
15179 low_func = q->symbol.value;
15180 }
15181 break;
15182 }
15183 }
15184
15185 if (func == NULL)
15186 return FALSE;
15187
15188 if (filename_ptr)
15189 *filename_ptr = filename;
15190 if (functionname_ptr)
15191 *functionname_ptr = bfd_asymbol_name (func);
15192
15193 return TRUE;
15194 }
15195
15196
15197 /* Find the nearest line to a particular section and offset, for error
15198 reporting. This code is a duplicate of the code in elf.c, except
15199 that it uses arm_elf_find_function. */
15200
15201 static bfd_boolean
15202 elf32_arm_find_nearest_line (bfd * abfd,
15203 asymbol ** symbols,
15204 asection * section,
15205 bfd_vma offset,
15206 const char ** filename_ptr,
15207 const char ** functionname_ptr,
15208 unsigned int * line_ptr,
15209 unsigned int * discriminator_ptr)
15210 {
15211 bfd_boolean found = FALSE;
15212
15213 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15214 filename_ptr, functionname_ptr,
15215 line_ptr, discriminator_ptr,
15216 dwarf_debug_sections, 0,
15217 & elf_tdata (abfd)->dwarf2_find_line_info))
15218 {
15219 if (!*functionname_ptr)
15220 arm_elf_find_function (abfd, symbols, section, offset,
15221 *filename_ptr ? NULL : filename_ptr,
15222 functionname_ptr);
15223
15224 return TRUE;
15225 }
15226
15227 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15228 uses DWARF1. */
15229
15230 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15231 & found, filename_ptr,
15232 functionname_ptr, line_ptr,
15233 & elf_tdata (abfd)->line_info))
15234 return FALSE;
15235
15236 if (found && (*functionname_ptr || *line_ptr))
15237 return TRUE;
15238
15239 if (symbols == NULL)
15240 return FALSE;
15241
15242 if (! arm_elf_find_function (abfd, symbols, section, offset,
15243 filename_ptr, functionname_ptr))
15244 return FALSE;
15245
15246 *line_ptr = 0;
15247 return TRUE;
15248 }
15249
15250 static bfd_boolean
15251 elf32_arm_find_inliner_info (bfd * abfd,
15252 const char ** filename_ptr,
15253 const char ** functionname_ptr,
15254 unsigned int * line_ptr)
15255 {
15256 bfd_boolean found;
15257 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15258 functionname_ptr, line_ptr,
15259 & elf_tdata (abfd)->dwarf2_find_line_info);
15260 return found;
15261 }
15262
15263 /* Adjust a symbol defined by a dynamic object and referenced by a
15264 regular object. The current definition is in some section of the
15265 dynamic object, but we're not including those sections. We have to
15266 change the definition to something the rest of the link can
15267 understand. */
15268
15269 static bfd_boolean
15270 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15271 struct elf_link_hash_entry * h)
15272 {
15273 bfd * dynobj;
15274 asection * s;
15275 struct elf32_arm_link_hash_entry * eh;
15276 struct elf32_arm_link_hash_table *globals;
15277
15278 globals = elf32_arm_hash_table (info);
15279 if (globals == NULL)
15280 return FALSE;
15281
15282 dynobj = elf_hash_table (info)->dynobj;
15283
15284 /* Make sure we know what is going on here. */
15285 BFD_ASSERT (dynobj != NULL
15286 && (h->needs_plt
15287 || h->type == STT_GNU_IFUNC
15288 || h->u.weakdef != NULL
15289 || (h->def_dynamic
15290 && h->ref_regular
15291 && !h->def_regular)));
15292
15293 eh = (struct elf32_arm_link_hash_entry *) h;
15294
15295 /* If this is a function, put it in the procedure linkage table. We
15296 will fill in the contents of the procedure linkage table later,
15297 when we know the address of the .got section. */
15298 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15299 {
15300 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15301 symbol binds locally. */
15302 if (h->plt.refcount <= 0
15303 || (h->type != STT_GNU_IFUNC
15304 && (SYMBOL_CALLS_LOCAL (info, h)
15305 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15306 && h->root.type == bfd_link_hash_undefweak))))
15307 {
15308 /* This case can occur if we saw a PLT32 reloc in an input
15309 file, but the symbol was never referred to by a dynamic
15310 object, or if all references were garbage collected. In
15311 such a case, we don't actually need to build a procedure
15312 linkage table, and we can just do a PC24 reloc instead. */
15313 h->plt.offset = (bfd_vma) -1;
15314 eh->plt.thumb_refcount = 0;
15315 eh->plt.maybe_thumb_refcount = 0;
15316 eh->plt.noncall_refcount = 0;
15317 h->needs_plt = 0;
15318 }
15319
15320 return TRUE;
15321 }
15322 else
15323 {
15324 /* It's possible that we incorrectly decided a .plt reloc was
15325 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15326 in check_relocs. We can't decide accurately between function
15327 and non-function syms in check-relocs; Objects loaded later in
15328 the link may change h->type. So fix it now. */
15329 h->plt.offset = (bfd_vma) -1;
15330 eh->plt.thumb_refcount = 0;
15331 eh->plt.maybe_thumb_refcount = 0;
15332 eh->plt.noncall_refcount = 0;
15333 }
15334
15335 /* If this is a weak symbol, and there is a real definition, the
15336 processor independent code will have arranged for us to see the
15337 real definition first, and we can just use the same value. */
15338 if (h->u.weakdef != NULL)
15339 {
15340 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15341 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15342 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15343 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15344 return TRUE;
15345 }
15346
15347 /* If there are no non-GOT references, we do not need a copy
15348 relocation. */
15349 if (!h->non_got_ref)
15350 return TRUE;
15351
15352 /* This is a reference to a symbol defined by a dynamic object which
15353 is not a function. */
15354
15355 /* If we are creating a shared library, we must presume that the
15356 only references to the symbol are via the global offset table.
15357 For such cases we need not do anything here; the relocations will
15358 be handled correctly by relocate_section. Relocatable executables
15359 can reference data in shared objects directly, so we don't need to
15360 do anything here. */
15361 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15362 return TRUE;
15363
15364 /* We must allocate the symbol in our .dynbss section, which will
15365 become part of the .bss section of the executable. There will be
15366 an entry for this symbol in the .dynsym section. The dynamic
15367 object will contain position independent code, so all references
15368 from the dynamic object to this symbol will go through the global
15369 offset table. The dynamic linker will use the .dynsym entry to
15370 determine the address it must put in the global offset table, so
15371 both the dynamic object and the regular object will refer to the
15372 same memory location for the variable. */
15373 s = bfd_get_linker_section (dynobj, ".dynbss");
15374 BFD_ASSERT (s != NULL);
15375
15376 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15377 linker to copy the initial value out of the dynamic object and into
15378 the runtime process image. We need to remember the offset into the
15379 .rel(a).bss section we are going to use. */
15380 if (info->nocopyreloc == 0
15381 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15382 && h->size != 0)
15383 {
15384 asection *srel;
15385
15386 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
15387 elf32_arm_allocate_dynrelocs (info, srel, 1);
15388 h->needs_copy = 1;
15389 }
15390
15391 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15392 }
15393
15394 /* Allocate space in .plt, .got and associated reloc sections for
15395 dynamic relocs. */
15396
15397 static bfd_boolean
15398 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15399 {
15400 struct bfd_link_info *info;
15401 struct elf32_arm_link_hash_table *htab;
15402 struct elf32_arm_link_hash_entry *eh;
15403 struct elf_dyn_relocs *p;
15404
15405 if (h->root.type == bfd_link_hash_indirect)
15406 return TRUE;
15407
15408 eh = (struct elf32_arm_link_hash_entry *) h;
15409
15410 info = (struct bfd_link_info *) inf;
15411 htab = elf32_arm_hash_table (info);
15412 if (htab == NULL)
15413 return FALSE;
15414
15415 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15416 && h->plt.refcount > 0)
15417 {
15418 /* Make sure this symbol is output as a dynamic symbol.
15419 Undefined weak syms won't yet be marked as dynamic. */
15420 if (h->dynindx == -1
15421 && !h->forced_local)
15422 {
15423 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15424 return FALSE;
15425 }
15426
15427 /* If the call in the PLT entry binds locally, the associated
15428 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15429 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15430 than the .plt section. */
15431 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15432 {
15433 eh->is_iplt = 1;
15434 if (eh->plt.noncall_refcount == 0
15435 && SYMBOL_REFERENCES_LOCAL (info, h))
15436 /* All non-call references can be resolved directly.
15437 This means that they can (and in some cases, must)
15438 resolve directly to the run-time target, rather than
15439 to the PLT. That in turns means that any .got entry
15440 would be equal to the .igot.plt entry, so there's
15441 no point having both. */
15442 h->got.refcount = 0;
15443 }
15444
15445 if (bfd_link_pic (info)
15446 || eh->is_iplt
15447 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15448 {
15449 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15450
15451 /* If this symbol is not defined in a regular file, and we are
15452 not generating a shared library, then set the symbol to this
15453 location in the .plt. This is required to make function
15454 pointers compare as equal between the normal executable and
15455 the shared library. */
15456 if (! bfd_link_pic (info)
15457 && !h->def_regular)
15458 {
15459 h->root.u.def.section = htab->root.splt;
15460 h->root.u.def.value = h->plt.offset;
15461
15462 /* Make sure the function is not marked as Thumb, in case
15463 it is the target of an ABS32 relocation, which will
15464 point to the PLT entry. */
15465 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15466 }
15467
15468 /* VxWorks executables have a second set of relocations for
15469 each PLT entry. They go in a separate relocation section,
15470 which is processed by the kernel loader. */
15471 if (htab->vxworks_p && !bfd_link_pic (info))
15472 {
15473 /* There is a relocation for the initial PLT entry:
15474 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15475 if (h->plt.offset == htab->plt_header_size)
15476 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15477
15478 /* There are two extra relocations for each subsequent
15479 PLT entry: an R_ARM_32 relocation for the GOT entry,
15480 and an R_ARM_32 relocation for the PLT entry. */
15481 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15482 }
15483 }
15484 else
15485 {
15486 h->plt.offset = (bfd_vma) -1;
15487 h->needs_plt = 0;
15488 }
15489 }
15490 else
15491 {
15492 h->plt.offset = (bfd_vma) -1;
15493 h->needs_plt = 0;
15494 }
15495
15496 eh = (struct elf32_arm_link_hash_entry *) h;
15497 eh->tlsdesc_got = (bfd_vma) -1;
15498
15499 if (h->got.refcount > 0)
15500 {
15501 asection *s;
15502 bfd_boolean dyn;
15503 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15504 int indx;
15505
15506 /* Make sure this symbol is output as a dynamic symbol.
15507 Undefined weak syms won't yet be marked as dynamic. */
15508 if (h->dynindx == -1
15509 && !h->forced_local)
15510 {
15511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15512 return FALSE;
15513 }
15514
15515 if (!htab->symbian_p)
15516 {
15517 s = htab->root.sgot;
15518 h->got.offset = s->size;
15519
15520 if (tls_type == GOT_UNKNOWN)
15521 abort ();
15522
15523 if (tls_type == GOT_NORMAL)
15524 /* Non-TLS symbols need one GOT slot. */
15525 s->size += 4;
15526 else
15527 {
15528 if (tls_type & GOT_TLS_GDESC)
15529 {
15530 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15531 eh->tlsdesc_got
15532 = (htab->root.sgotplt->size
15533 - elf32_arm_compute_jump_table_size (htab));
15534 htab->root.sgotplt->size += 8;
15535 h->got.offset = (bfd_vma) -2;
15536 /* plt.got_offset needs to know there's a TLS_DESC
15537 reloc in the middle of .got.plt. */
15538 htab->num_tls_desc++;
15539 }
15540
15541 if (tls_type & GOT_TLS_GD)
15542 {
15543 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15544 the symbol is both GD and GDESC, got.offset may
15545 have been overwritten. */
15546 h->got.offset = s->size;
15547 s->size += 8;
15548 }
15549
15550 if (tls_type & GOT_TLS_IE)
15551 /* R_ARM_TLS_IE32 needs one GOT slot. */
15552 s->size += 4;
15553 }
15554
15555 dyn = htab->root.dynamic_sections_created;
15556
15557 indx = 0;
15558 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15559 bfd_link_pic (info),
15560 h)
15561 && (!bfd_link_pic (info)
15562 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15563 indx = h->dynindx;
15564
15565 if (tls_type != GOT_NORMAL
15566 && (bfd_link_pic (info) || indx != 0)
15567 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15568 || h->root.type != bfd_link_hash_undefweak))
15569 {
15570 if (tls_type & GOT_TLS_IE)
15571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15572
15573 if (tls_type & GOT_TLS_GD)
15574 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15575
15576 if (tls_type & GOT_TLS_GDESC)
15577 {
15578 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15579 /* GDESC needs a trampoline to jump to. */
15580 htab->tls_trampoline = -1;
15581 }
15582
15583 /* Only GD needs it. GDESC just emits one relocation per
15584 2 entries. */
15585 if ((tls_type & GOT_TLS_GD) && indx != 0)
15586 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15587 }
15588 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15589 {
15590 if (htab->root.dynamic_sections_created)
15591 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15592 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15593 }
15594 else if (h->type == STT_GNU_IFUNC
15595 && eh->plt.noncall_refcount == 0)
15596 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15597 they all resolve dynamically instead. Reserve room for the
15598 GOT entry's R_ARM_IRELATIVE relocation. */
15599 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15600 else if (bfd_link_pic (info)
15601 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15602 || h->root.type != bfd_link_hash_undefweak))
15603 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15604 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15605 }
15606 }
15607 else
15608 h->got.offset = (bfd_vma) -1;
15609
15610 /* Allocate stubs for exported Thumb functions on v4t. */
15611 if (!htab->use_blx && h->dynindx != -1
15612 && h->def_regular
15613 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15614 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15615 {
15616 struct elf_link_hash_entry * th;
15617 struct bfd_link_hash_entry * bh;
15618 struct elf_link_hash_entry * myh;
15619 char name[1024];
15620 asection *s;
15621 bh = NULL;
15622 /* Create a new symbol to regist the real location of the function. */
15623 s = h->root.u.def.section;
15624 sprintf (name, "__real_%s", h->root.root.string);
15625 _bfd_generic_link_add_one_symbol (info, s->owner,
15626 name, BSF_GLOBAL, s,
15627 h->root.u.def.value,
15628 NULL, TRUE, FALSE, &bh);
15629
15630 myh = (struct elf_link_hash_entry *) bh;
15631 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15632 myh->forced_local = 1;
15633 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15634 eh->export_glue = myh;
15635 th = record_arm_to_thumb_glue (info, h);
15636 /* Point the symbol at the stub. */
15637 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15638 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15639 h->root.u.def.section = th->root.u.def.section;
15640 h->root.u.def.value = th->root.u.def.value & ~1;
15641 }
15642
15643 if (eh->dyn_relocs == NULL)
15644 return TRUE;
15645
15646 /* In the shared -Bsymbolic case, discard space allocated for
15647 dynamic pc-relative relocs against symbols which turn out to be
15648 defined in regular objects. For the normal shared case, discard
15649 space for pc-relative relocs that have become local due to symbol
15650 visibility changes. */
15651
15652 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15653 {
15654 /* Relocs that use pc_count are PC-relative forms, which will appear
15655 on something like ".long foo - ." or "movw REG, foo - .". We want
15656 calls to protected symbols to resolve directly to the function
15657 rather than going via the plt. If people want function pointer
15658 comparisons to work as expected then they should avoid writing
15659 assembly like ".long foo - .". */
15660 if (SYMBOL_CALLS_LOCAL (info, h))
15661 {
15662 struct elf_dyn_relocs **pp;
15663
15664 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15665 {
15666 p->count -= p->pc_count;
15667 p->pc_count = 0;
15668 if (p->count == 0)
15669 *pp = p->next;
15670 else
15671 pp = &p->next;
15672 }
15673 }
15674
15675 if (htab->vxworks_p)
15676 {
15677 struct elf_dyn_relocs **pp;
15678
15679 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15680 {
15681 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15682 *pp = p->next;
15683 else
15684 pp = &p->next;
15685 }
15686 }
15687
15688 /* Also discard relocs on undefined weak syms with non-default
15689 visibility. */
15690 if (eh->dyn_relocs != NULL
15691 && h->root.type == bfd_link_hash_undefweak)
15692 {
15693 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15694 eh->dyn_relocs = NULL;
15695
15696 /* Make sure undefined weak symbols are output as a dynamic
15697 symbol in PIEs. */
15698 else if (h->dynindx == -1
15699 && !h->forced_local)
15700 {
15701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15702 return FALSE;
15703 }
15704 }
15705
15706 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15707 && h->root.type == bfd_link_hash_new)
15708 {
15709 /* Output absolute symbols so that we can create relocations
15710 against them. For normal symbols we output a relocation
15711 against the section that contains them. */
15712 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15713 return FALSE;
15714 }
15715
15716 }
15717 else
15718 {
15719 /* For the non-shared case, discard space for relocs against
15720 symbols which turn out to need copy relocs or are not
15721 dynamic. */
15722
15723 if (!h->non_got_ref
15724 && ((h->def_dynamic
15725 && !h->def_regular)
15726 || (htab->root.dynamic_sections_created
15727 && (h->root.type == bfd_link_hash_undefweak
15728 || h->root.type == bfd_link_hash_undefined))))
15729 {
15730 /* Make sure this symbol is output as a dynamic symbol.
15731 Undefined weak syms won't yet be marked as dynamic. */
15732 if (h->dynindx == -1
15733 && !h->forced_local)
15734 {
15735 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15736 return FALSE;
15737 }
15738
15739 /* If that succeeded, we know we'll be keeping all the
15740 relocs. */
15741 if (h->dynindx != -1)
15742 goto keep;
15743 }
15744
15745 eh->dyn_relocs = NULL;
15746
15747 keep: ;
15748 }
15749
15750 /* Finally, allocate space. */
15751 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15752 {
15753 asection *sreloc = elf_section_data (p->sec)->sreloc;
15754 if (h->type == STT_GNU_IFUNC
15755 && eh->plt.noncall_refcount == 0
15756 && SYMBOL_REFERENCES_LOCAL (info, h))
15757 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15758 else
15759 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15760 }
15761
15762 return TRUE;
15763 }
15764
15765 /* Find any dynamic relocs that apply to read-only sections. */
15766
15767 static bfd_boolean
15768 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15769 {
15770 struct elf32_arm_link_hash_entry * eh;
15771 struct elf_dyn_relocs * p;
15772
15773 eh = (struct elf32_arm_link_hash_entry *) h;
15774 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15775 {
15776 asection *s = p->sec;
15777
15778 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15779 {
15780 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15781
15782 info->flags |= DF_TEXTREL;
15783
15784 /* Not an error, just cut short the traversal. */
15785 return FALSE;
15786 }
15787 }
15788 return TRUE;
15789 }
15790
15791 void
15792 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15793 int byteswap_code)
15794 {
15795 struct elf32_arm_link_hash_table *globals;
15796
15797 globals = elf32_arm_hash_table (info);
15798 if (globals == NULL)
15799 return;
15800
15801 globals->byteswap_code = byteswap_code;
15802 }
15803
15804 /* Set the sizes of the dynamic sections. */
15805
15806 static bfd_boolean
15807 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15808 struct bfd_link_info * info)
15809 {
15810 bfd * dynobj;
15811 asection * s;
15812 bfd_boolean plt;
15813 bfd_boolean relocs;
15814 bfd *ibfd;
15815 struct elf32_arm_link_hash_table *htab;
15816
15817 htab = elf32_arm_hash_table (info);
15818 if (htab == NULL)
15819 return FALSE;
15820
15821 dynobj = elf_hash_table (info)->dynobj;
15822 BFD_ASSERT (dynobj != NULL);
15823 check_use_blx (htab);
15824
15825 if (elf_hash_table (info)->dynamic_sections_created)
15826 {
15827 /* Set the contents of the .interp section to the interpreter. */
15828 if (bfd_link_executable (info) && !info->nointerp)
15829 {
15830 s = bfd_get_linker_section (dynobj, ".interp");
15831 BFD_ASSERT (s != NULL);
15832 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15833 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15834 }
15835 }
15836
15837 /* Set up .got offsets for local syms, and space for local dynamic
15838 relocs. */
15839 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15840 {
15841 bfd_signed_vma *local_got;
15842 bfd_signed_vma *end_local_got;
15843 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15844 char *local_tls_type;
15845 bfd_vma *local_tlsdesc_gotent;
15846 bfd_size_type locsymcount;
15847 Elf_Internal_Shdr *symtab_hdr;
15848 asection *srel;
15849 bfd_boolean is_vxworks = htab->vxworks_p;
15850 unsigned int symndx;
15851
15852 if (! is_arm_elf (ibfd))
15853 continue;
15854
15855 for (s = ibfd->sections; s != NULL; s = s->next)
15856 {
15857 struct elf_dyn_relocs *p;
15858
15859 for (p = (struct elf_dyn_relocs *)
15860 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15861 {
15862 if (!bfd_is_abs_section (p->sec)
15863 && bfd_is_abs_section (p->sec->output_section))
15864 {
15865 /* Input section has been discarded, either because
15866 it is a copy of a linkonce section or due to
15867 linker script /DISCARD/, so we'll be discarding
15868 the relocs too. */
15869 }
15870 else if (is_vxworks
15871 && strcmp (p->sec->output_section->name,
15872 ".tls_vars") == 0)
15873 {
15874 /* Relocations in vxworks .tls_vars sections are
15875 handled specially by the loader. */
15876 }
15877 else if (p->count != 0)
15878 {
15879 srel = elf_section_data (p->sec)->sreloc;
15880 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15881 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15882 info->flags |= DF_TEXTREL;
15883 }
15884 }
15885 }
15886
15887 local_got = elf_local_got_refcounts (ibfd);
15888 if (!local_got)
15889 continue;
15890
15891 symtab_hdr = & elf_symtab_hdr (ibfd);
15892 locsymcount = symtab_hdr->sh_info;
15893 end_local_got = local_got + locsymcount;
15894 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15895 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15896 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15897 symndx = 0;
15898 s = htab->root.sgot;
15899 srel = htab->root.srelgot;
15900 for (; local_got < end_local_got;
15901 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15902 ++local_tlsdesc_gotent, ++symndx)
15903 {
15904 *local_tlsdesc_gotent = (bfd_vma) -1;
15905 local_iplt = *local_iplt_ptr;
15906 if (local_iplt != NULL)
15907 {
15908 struct elf_dyn_relocs *p;
15909
15910 if (local_iplt->root.refcount > 0)
15911 {
15912 elf32_arm_allocate_plt_entry (info, TRUE,
15913 &local_iplt->root,
15914 &local_iplt->arm);
15915 if (local_iplt->arm.noncall_refcount == 0)
15916 /* All references to the PLT are calls, so all
15917 non-call references can resolve directly to the
15918 run-time target. This means that the .got entry
15919 would be the same as the .igot.plt entry, so there's
15920 no point creating both. */
15921 *local_got = 0;
15922 }
15923 else
15924 {
15925 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15926 local_iplt->root.offset = (bfd_vma) -1;
15927 }
15928
15929 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15930 {
15931 asection *psrel;
15932
15933 psrel = elf_section_data (p->sec)->sreloc;
15934 if (local_iplt->arm.noncall_refcount == 0)
15935 elf32_arm_allocate_irelocs (info, psrel, p->count);
15936 else
15937 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15938 }
15939 }
15940 if (*local_got > 0)
15941 {
15942 Elf_Internal_Sym *isym;
15943
15944 *local_got = s->size;
15945 if (*local_tls_type & GOT_TLS_GD)
15946 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15947 s->size += 8;
15948 if (*local_tls_type & GOT_TLS_GDESC)
15949 {
15950 *local_tlsdesc_gotent = htab->root.sgotplt->size
15951 - elf32_arm_compute_jump_table_size (htab);
15952 htab->root.sgotplt->size += 8;
15953 *local_got = (bfd_vma) -2;
15954 /* plt.got_offset needs to know there's a TLS_DESC
15955 reloc in the middle of .got.plt. */
15956 htab->num_tls_desc++;
15957 }
15958 if (*local_tls_type & GOT_TLS_IE)
15959 s->size += 4;
15960
15961 if (*local_tls_type & GOT_NORMAL)
15962 {
15963 /* If the symbol is both GD and GDESC, *local_got
15964 may have been overwritten. */
15965 *local_got = s->size;
15966 s->size += 4;
15967 }
15968
15969 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15970 if (isym == NULL)
15971 return FALSE;
15972
15973 /* If all references to an STT_GNU_IFUNC PLT are calls,
15974 then all non-call references, including this GOT entry,
15975 resolve directly to the run-time target. */
15976 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15977 && (local_iplt == NULL
15978 || local_iplt->arm.noncall_refcount == 0))
15979 elf32_arm_allocate_irelocs (info, srel, 1);
15980 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15981 {
15982 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15983 || *local_tls_type & GOT_TLS_GD)
15984 elf32_arm_allocate_dynrelocs (info, srel, 1);
15985
15986 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15987 {
15988 elf32_arm_allocate_dynrelocs (info,
15989 htab->root.srelplt, 1);
15990 htab->tls_trampoline = -1;
15991 }
15992 }
15993 }
15994 else
15995 *local_got = (bfd_vma) -1;
15996 }
15997 }
15998
15999 if (htab->tls_ldm_got.refcount > 0)
16000 {
16001 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16002 for R_ARM_TLS_LDM32 relocations. */
16003 htab->tls_ldm_got.offset = htab->root.sgot->size;
16004 htab->root.sgot->size += 8;
16005 if (bfd_link_pic (info))
16006 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16007 }
16008 else
16009 htab->tls_ldm_got.offset = -1;
16010
16011 /* Allocate global sym .plt and .got entries, and space for global
16012 sym dynamic relocs. */
16013 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16014
16015 /* Here we rummage through the found bfds to collect glue information. */
16016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16017 {
16018 if (! is_arm_elf (ibfd))
16019 continue;
16020
16021 /* Initialise mapping tables for code/data. */
16022 bfd_elf32_arm_init_maps (ibfd);
16023
16024 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16025 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16026 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16027 _bfd_error_handler (_("Errors encountered processing file %s"),
16028 ibfd->filename);
16029 }
16030
16031 /* Allocate space for the glue sections now that we've sized them. */
16032 bfd_elf32_arm_allocate_interworking_sections (info);
16033
16034 /* For every jump slot reserved in the sgotplt, reloc_count is
16035 incremented. However, when we reserve space for TLS descriptors,
16036 it's not incremented, so in order to compute the space reserved
16037 for them, it suffices to multiply the reloc count by the jump
16038 slot size. */
16039 if (htab->root.srelplt)
16040 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16041
16042 if (htab->tls_trampoline)
16043 {
16044 if (htab->root.splt->size == 0)
16045 htab->root.splt->size += htab->plt_header_size;
16046
16047 htab->tls_trampoline = htab->root.splt->size;
16048 htab->root.splt->size += htab->plt_entry_size;
16049
16050 /* If we're not using lazy TLS relocations, don't generate the
16051 PLT and GOT entries they require. */
16052 if (!(info->flags & DF_BIND_NOW))
16053 {
16054 htab->dt_tlsdesc_got = htab->root.sgot->size;
16055 htab->root.sgot->size += 4;
16056
16057 htab->dt_tlsdesc_plt = htab->root.splt->size;
16058 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16059 }
16060 }
16061
16062 /* The check_relocs and adjust_dynamic_symbol entry points have
16063 determined the sizes of the various dynamic sections. Allocate
16064 memory for them. */
16065 plt = FALSE;
16066 relocs = FALSE;
16067 for (s = dynobj->sections; s != NULL; s = s->next)
16068 {
16069 const char * name;
16070
16071 if ((s->flags & SEC_LINKER_CREATED) == 0)
16072 continue;
16073
16074 /* It's OK to base decisions on the section name, because none
16075 of the dynobj section names depend upon the input files. */
16076 name = bfd_get_section_name (dynobj, s);
16077
16078 if (s == htab->root.splt)
16079 {
16080 /* Remember whether there is a PLT. */
16081 plt = s->size != 0;
16082 }
16083 else if (CONST_STRNEQ (name, ".rel"))
16084 {
16085 if (s->size != 0)
16086 {
16087 /* Remember whether there are any reloc sections other
16088 than .rel(a).plt and .rela.plt.unloaded. */
16089 if (s != htab->root.srelplt && s != htab->srelplt2)
16090 relocs = TRUE;
16091
16092 /* We use the reloc_count field as a counter if we need
16093 to copy relocs into the output file. */
16094 s->reloc_count = 0;
16095 }
16096 }
16097 else if (s != htab->root.sgot
16098 && s != htab->root.sgotplt
16099 && s != htab->root.iplt
16100 && s != htab->root.igotplt
16101 && s != htab->sdynbss)
16102 {
16103 /* It's not one of our sections, so don't allocate space. */
16104 continue;
16105 }
16106
16107 if (s->size == 0)
16108 {
16109 /* If we don't need this section, strip it from the
16110 output file. This is mostly to handle .rel(a).bss and
16111 .rel(a).plt. We must create both sections in
16112 create_dynamic_sections, because they must be created
16113 before the linker maps input sections to output
16114 sections. The linker does that before
16115 adjust_dynamic_symbol is called, and it is that
16116 function which decides whether anything needs to go
16117 into these sections. */
16118 s->flags |= SEC_EXCLUDE;
16119 continue;
16120 }
16121
16122 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16123 continue;
16124
16125 /* Allocate memory for the section contents. */
16126 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16127 if (s->contents == NULL)
16128 return FALSE;
16129 }
16130
16131 if (elf_hash_table (info)->dynamic_sections_created)
16132 {
16133 /* Add some entries to the .dynamic section. We fill in the
16134 values later, in elf32_arm_finish_dynamic_sections, but we
16135 must add the entries now so that we get the correct size for
16136 the .dynamic section. The DT_DEBUG entry is filled in by the
16137 dynamic linker and used by the debugger. */
16138 #define add_dynamic_entry(TAG, VAL) \
16139 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16140
16141 if (bfd_link_executable (info))
16142 {
16143 if (!add_dynamic_entry (DT_DEBUG, 0))
16144 return FALSE;
16145 }
16146
16147 if (plt)
16148 {
16149 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16150 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16151 || !add_dynamic_entry (DT_PLTREL,
16152 htab->use_rel ? DT_REL : DT_RELA)
16153 || !add_dynamic_entry (DT_JMPREL, 0))
16154 return FALSE;
16155
16156 if (htab->dt_tlsdesc_plt
16157 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16158 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16159 return FALSE;
16160 }
16161
16162 if (relocs)
16163 {
16164 if (htab->use_rel)
16165 {
16166 if (!add_dynamic_entry (DT_REL, 0)
16167 || !add_dynamic_entry (DT_RELSZ, 0)
16168 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16169 return FALSE;
16170 }
16171 else
16172 {
16173 if (!add_dynamic_entry (DT_RELA, 0)
16174 || !add_dynamic_entry (DT_RELASZ, 0)
16175 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16176 return FALSE;
16177 }
16178 }
16179
16180 /* If any dynamic relocs apply to a read-only section,
16181 then we need a DT_TEXTREL entry. */
16182 if ((info->flags & DF_TEXTREL) == 0)
16183 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16184 info);
16185
16186 if ((info->flags & DF_TEXTREL) != 0)
16187 {
16188 if (!add_dynamic_entry (DT_TEXTREL, 0))
16189 return FALSE;
16190 }
16191 if (htab->vxworks_p
16192 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16193 return FALSE;
16194 }
16195 #undef add_dynamic_entry
16196
16197 return TRUE;
16198 }
16199
16200 /* Size sections even though they're not dynamic. We use it to setup
16201 _TLS_MODULE_BASE_, if needed. */
16202
16203 static bfd_boolean
16204 elf32_arm_always_size_sections (bfd *output_bfd,
16205 struct bfd_link_info *info)
16206 {
16207 asection *tls_sec;
16208
16209 if (bfd_link_relocatable (info))
16210 return TRUE;
16211
16212 tls_sec = elf_hash_table (info)->tls_sec;
16213
16214 if (tls_sec)
16215 {
16216 struct elf_link_hash_entry *tlsbase;
16217
16218 tlsbase = elf_link_hash_lookup
16219 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16220
16221 if (tlsbase)
16222 {
16223 struct bfd_link_hash_entry *bh = NULL;
16224 const struct elf_backend_data *bed
16225 = get_elf_backend_data (output_bfd);
16226
16227 if (!(_bfd_generic_link_add_one_symbol
16228 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16229 tls_sec, 0, NULL, FALSE,
16230 bed->collect, &bh)))
16231 return FALSE;
16232
16233 tlsbase->type = STT_TLS;
16234 tlsbase = (struct elf_link_hash_entry *)bh;
16235 tlsbase->def_regular = 1;
16236 tlsbase->other = STV_HIDDEN;
16237 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16238 }
16239 }
16240 return TRUE;
16241 }
16242
16243 /* Finish up dynamic symbol handling. We set the contents of various
16244 dynamic sections here. */
16245
16246 static bfd_boolean
16247 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16248 struct bfd_link_info * info,
16249 struct elf_link_hash_entry * h,
16250 Elf_Internal_Sym * sym)
16251 {
16252 struct elf32_arm_link_hash_table *htab;
16253 struct elf32_arm_link_hash_entry *eh;
16254
16255 htab = elf32_arm_hash_table (info);
16256 if (htab == NULL)
16257 return FALSE;
16258
16259 eh = (struct elf32_arm_link_hash_entry *) h;
16260
16261 if (h->plt.offset != (bfd_vma) -1)
16262 {
16263 if (!eh->is_iplt)
16264 {
16265 BFD_ASSERT (h->dynindx != -1);
16266 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16267 h->dynindx, 0))
16268 return FALSE;
16269 }
16270
16271 if (!h->def_regular)
16272 {
16273 /* Mark the symbol as undefined, rather than as defined in
16274 the .plt section. */
16275 sym->st_shndx = SHN_UNDEF;
16276 /* If the symbol is weak we need to clear the value.
16277 Otherwise, the PLT entry would provide a definition for
16278 the symbol even if the symbol wasn't defined anywhere,
16279 and so the symbol would never be NULL. Leave the value if
16280 there were any relocations where pointer equality matters
16281 (this is a clue for the dynamic linker, to make function
16282 pointer comparisons work between an application and shared
16283 library). */
16284 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16285 sym->st_value = 0;
16286 }
16287 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16288 {
16289 /* At least one non-call relocation references this .iplt entry,
16290 so the .iplt entry is the function's canonical address. */
16291 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16292 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16293 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16294 (output_bfd, htab->root.iplt->output_section));
16295 sym->st_value = (h->plt.offset
16296 + htab->root.iplt->output_section->vma
16297 + htab->root.iplt->output_offset);
16298 }
16299 }
16300
16301 if (h->needs_copy)
16302 {
16303 asection * s;
16304 Elf_Internal_Rela rel;
16305
16306 /* This symbol needs a copy reloc. Set it up. */
16307 BFD_ASSERT (h->dynindx != -1
16308 && (h->root.type == bfd_link_hash_defined
16309 || h->root.type == bfd_link_hash_defweak));
16310
16311 s = htab->srelbss;
16312 BFD_ASSERT (s != NULL);
16313
16314 rel.r_addend = 0;
16315 rel.r_offset = (h->root.u.def.value
16316 + h->root.u.def.section->output_section->vma
16317 + h->root.u.def.section->output_offset);
16318 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16319 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16320 }
16321
16322 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16323 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16324 to the ".got" section. */
16325 if (h == htab->root.hdynamic
16326 || (!htab->vxworks_p && h == htab->root.hgot))
16327 sym->st_shndx = SHN_ABS;
16328
16329 return TRUE;
16330 }
16331
16332 static void
16333 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16334 void *contents,
16335 const unsigned long *template, unsigned count)
16336 {
16337 unsigned ix;
16338
16339 for (ix = 0; ix != count; ix++)
16340 {
16341 unsigned long insn = template[ix];
16342
16343 /* Emit mov pc,rx if bx is not permitted. */
16344 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16345 insn = (insn & 0xf000000f) | 0x01a0f000;
16346 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16347 }
16348 }
16349
16350 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16351 other variants, NaCl needs this entry in a static executable's
16352 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16353 zero. For .iplt really only the last bundle is useful, and .iplt
16354 could have a shorter first entry, with each individual PLT entry's
16355 relative branch calculated differently so it targets the last
16356 bundle instead of the instruction before it (labelled .Lplt_tail
16357 above). But it's simpler to keep the size and layout of PLT0
16358 consistent with the dynamic case, at the cost of some dead code at
16359 the start of .iplt and the one dead store to the stack at the start
16360 of .Lplt_tail. */
16361 static void
16362 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16363 asection *plt, bfd_vma got_displacement)
16364 {
16365 unsigned int i;
16366
16367 put_arm_insn (htab, output_bfd,
16368 elf32_arm_nacl_plt0_entry[0]
16369 | arm_movw_immediate (got_displacement),
16370 plt->contents + 0);
16371 put_arm_insn (htab, output_bfd,
16372 elf32_arm_nacl_plt0_entry[1]
16373 | arm_movt_immediate (got_displacement),
16374 plt->contents + 4);
16375
16376 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16377 put_arm_insn (htab, output_bfd,
16378 elf32_arm_nacl_plt0_entry[i],
16379 plt->contents + (i * 4));
16380 }
16381
16382 /* Finish up the dynamic sections. */
16383
16384 static bfd_boolean
16385 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16386 {
16387 bfd * dynobj;
16388 asection * sgot;
16389 asection * sdyn;
16390 struct elf32_arm_link_hash_table *htab;
16391
16392 htab = elf32_arm_hash_table (info);
16393 if (htab == NULL)
16394 return FALSE;
16395
16396 dynobj = elf_hash_table (info)->dynobj;
16397
16398 sgot = htab->root.sgotplt;
16399 /* A broken linker script might have discarded the dynamic sections.
16400 Catch this here so that we do not seg-fault later on. */
16401 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16402 return FALSE;
16403 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16404
16405 if (elf_hash_table (info)->dynamic_sections_created)
16406 {
16407 asection *splt;
16408 Elf32_External_Dyn *dyncon, *dynconend;
16409
16410 splt = htab->root.splt;
16411 BFD_ASSERT (splt != NULL && sdyn != NULL);
16412 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16413
16414 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16415 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16416
16417 for (; dyncon < dynconend; dyncon++)
16418 {
16419 Elf_Internal_Dyn dyn;
16420 const char * name;
16421 asection * s;
16422
16423 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16424
16425 switch (dyn.d_tag)
16426 {
16427 unsigned int type;
16428
16429 default:
16430 if (htab->vxworks_p
16431 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16432 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16433 break;
16434
16435 case DT_HASH:
16436 name = ".hash";
16437 goto get_vma_if_bpabi;
16438 case DT_STRTAB:
16439 name = ".dynstr";
16440 goto get_vma_if_bpabi;
16441 case DT_SYMTAB:
16442 name = ".dynsym";
16443 goto get_vma_if_bpabi;
16444 case DT_VERSYM:
16445 name = ".gnu.version";
16446 goto get_vma_if_bpabi;
16447 case DT_VERDEF:
16448 name = ".gnu.version_d";
16449 goto get_vma_if_bpabi;
16450 case DT_VERNEED:
16451 name = ".gnu.version_r";
16452 goto get_vma_if_bpabi;
16453
16454 case DT_PLTGOT:
16455 name = htab->symbian_p ? ".got" : ".got.plt";
16456 goto get_vma;
16457 case DT_JMPREL:
16458 name = RELOC_SECTION (htab, ".plt");
16459 get_vma:
16460 s = bfd_get_linker_section (dynobj, name);
16461 if (s == NULL)
16462 {
16463 _bfd_error_handler
16464 (_("could not find section %s"), name);
16465 bfd_set_error (bfd_error_invalid_operation);
16466 return FALSE;
16467 }
16468 if (!htab->symbian_p)
16469 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16470 else
16471 /* In the BPABI, tags in the PT_DYNAMIC section point
16472 at the file offset, not the memory address, for the
16473 convenience of the post linker. */
16474 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16475 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16476 break;
16477
16478 get_vma_if_bpabi:
16479 if (htab->symbian_p)
16480 goto get_vma;
16481 break;
16482
16483 case DT_PLTRELSZ:
16484 s = htab->root.srelplt;
16485 BFD_ASSERT (s != NULL);
16486 dyn.d_un.d_val = s->size;
16487 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16488 break;
16489
16490 case DT_RELSZ:
16491 case DT_RELASZ:
16492 if (!htab->symbian_p)
16493 {
16494 /* My reading of the SVR4 ABI indicates that the
16495 procedure linkage table relocs (DT_JMPREL) should be
16496 included in the overall relocs (DT_REL). This is
16497 what Solaris does. However, UnixWare can not handle
16498 that case. Therefore, we override the DT_RELSZ entry
16499 here to make it not include the JMPREL relocs. Since
16500 the linker script arranges for .rel(a).plt to follow all
16501 other relocation sections, we don't have to worry
16502 about changing the DT_REL entry. */
16503 s = htab->root.srelplt;
16504 if (s != NULL)
16505 dyn.d_un.d_val -= s->size;
16506 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16507 break;
16508 }
16509 /* Fall through. */
16510
16511 case DT_REL:
16512 case DT_RELA:
16513 /* In the BPABI, the DT_REL tag must point at the file
16514 offset, not the VMA, of the first relocation
16515 section. So, we use code similar to that in
16516 elflink.c, but do not check for SHF_ALLOC on the
16517 relcoation section, since relocations sections are
16518 never allocated under the BPABI. The comments above
16519 about Unixware notwithstanding, we include all of the
16520 relocations here. */
16521 if (htab->symbian_p)
16522 {
16523 unsigned int i;
16524 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16525 ? SHT_REL : SHT_RELA);
16526 dyn.d_un.d_val = 0;
16527 for (i = 1; i < elf_numsections (output_bfd); i++)
16528 {
16529 Elf_Internal_Shdr *hdr
16530 = elf_elfsections (output_bfd)[i];
16531 if (hdr->sh_type == type)
16532 {
16533 if (dyn.d_tag == DT_RELSZ
16534 || dyn.d_tag == DT_RELASZ)
16535 dyn.d_un.d_val += hdr->sh_size;
16536 else if ((ufile_ptr) hdr->sh_offset
16537 <= dyn.d_un.d_val - 1)
16538 dyn.d_un.d_val = hdr->sh_offset;
16539 }
16540 }
16541 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16542 }
16543 break;
16544
16545 case DT_TLSDESC_PLT:
16546 s = htab->root.splt;
16547 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16548 + htab->dt_tlsdesc_plt);
16549 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16550 break;
16551
16552 case DT_TLSDESC_GOT:
16553 s = htab->root.sgot;
16554 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16555 + htab->dt_tlsdesc_got);
16556 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16557 break;
16558
16559 /* Set the bottom bit of DT_INIT/FINI if the
16560 corresponding function is Thumb. */
16561 case DT_INIT:
16562 name = info->init_function;
16563 goto get_sym;
16564 case DT_FINI:
16565 name = info->fini_function;
16566 get_sym:
16567 /* If it wasn't set by elf_bfd_final_link
16568 then there is nothing to adjust. */
16569 if (dyn.d_un.d_val != 0)
16570 {
16571 struct elf_link_hash_entry * eh;
16572
16573 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16574 FALSE, FALSE, TRUE);
16575 if (eh != NULL
16576 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16577 == ST_BRANCH_TO_THUMB)
16578 {
16579 dyn.d_un.d_val |= 1;
16580 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16581 }
16582 }
16583 break;
16584 }
16585 }
16586
16587 /* Fill in the first entry in the procedure linkage table. */
16588 if (splt->size > 0 && htab->plt_header_size)
16589 {
16590 const bfd_vma *plt0_entry;
16591 bfd_vma got_address, plt_address, got_displacement;
16592
16593 /* Calculate the addresses of the GOT and PLT. */
16594 got_address = sgot->output_section->vma + sgot->output_offset;
16595 plt_address = splt->output_section->vma + splt->output_offset;
16596
16597 if (htab->vxworks_p)
16598 {
16599 /* The VxWorks GOT is relocated by the dynamic linker.
16600 Therefore, we must emit relocations rather than simply
16601 computing the values now. */
16602 Elf_Internal_Rela rel;
16603
16604 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16605 put_arm_insn (htab, output_bfd, plt0_entry[0],
16606 splt->contents + 0);
16607 put_arm_insn (htab, output_bfd, plt0_entry[1],
16608 splt->contents + 4);
16609 put_arm_insn (htab, output_bfd, plt0_entry[2],
16610 splt->contents + 8);
16611 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16612
16613 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16614 rel.r_offset = plt_address + 12;
16615 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16616 rel.r_addend = 0;
16617 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16618 htab->srelplt2->contents);
16619 }
16620 else if (htab->nacl_p)
16621 arm_nacl_put_plt0 (htab, output_bfd, splt,
16622 got_address + 8 - (plt_address + 16));
16623 else if (using_thumb_only (htab))
16624 {
16625 got_displacement = got_address - (plt_address + 12);
16626
16627 plt0_entry = elf32_thumb2_plt0_entry;
16628 put_arm_insn (htab, output_bfd, plt0_entry[0],
16629 splt->contents + 0);
16630 put_arm_insn (htab, output_bfd, plt0_entry[1],
16631 splt->contents + 4);
16632 put_arm_insn (htab, output_bfd, plt0_entry[2],
16633 splt->contents + 8);
16634
16635 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16636 }
16637 else
16638 {
16639 got_displacement = got_address - (plt_address + 16);
16640
16641 plt0_entry = elf32_arm_plt0_entry;
16642 put_arm_insn (htab, output_bfd, plt0_entry[0],
16643 splt->contents + 0);
16644 put_arm_insn (htab, output_bfd, plt0_entry[1],
16645 splt->contents + 4);
16646 put_arm_insn (htab, output_bfd, plt0_entry[2],
16647 splt->contents + 8);
16648 put_arm_insn (htab, output_bfd, plt0_entry[3],
16649 splt->contents + 12);
16650
16651 #ifdef FOUR_WORD_PLT
16652 /* The displacement value goes in the otherwise-unused
16653 last word of the second entry. */
16654 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16655 #else
16656 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16657 #endif
16658 }
16659 }
16660
16661 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16662 really seem like the right value. */
16663 if (splt->output_section->owner == output_bfd)
16664 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16665
16666 if (htab->dt_tlsdesc_plt)
16667 {
16668 bfd_vma got_address
16669 = sgot->output_section->vma + sgot->output_offset;
16670 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16671 + htab->root.sgot->output_offset);
16672 bfd_vma plt_address
16673 = splt->output_section->vma + splt->output_offset;
16674
16675 arm_put_trampoline (htab, output_bfd,
16676 splt->contents + htab->dt_tlsdesc_plt,
16677 dl_tlsdesc_lazy_trampoline, 6);
16678
16679 bfd_put_32 (output_bfd,
16680 gotplt_address + htab->dt_tlsdesc_got
16681 - (plt_address + htab->dt_tlsdesc_plt)
16682 - dl_tlsdesc_lazy_trampoline[6],
16683 splt->contents + htab->dt_tlsdesc_plt + 24);
16684 bfd_put_32 (output_bfd,
16685 got_address - (plt_address + htab->dt_tlsdesc_plt)
16686 - dl_tlsdesc_lazy_trampoline[7],
16687 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16688 }
16689
16690 if (htab->tls_trampoline)
16691 {
16692 arm_put_trampoline (htab, output_bfd,
16693 splt->contents + htab->tls_trampoline,
16694 tls_trampoline, 3);
16695 #ifdef FOUR_WORD_PLT
16696 bfd_put_32 (output_bfd, 0x00000000,
16697 splt->contents + htab->tls_trampoline + 12);
16698 #endif
16699 }
16700
16701 if (htab->vxworks_p
16702 && !bfd_link_pic (info)
16703 && htab->root.splt->size > 0)
16704 {
16705 /* Correct the .rel(a).plt.unloaded relocations. They will have
16706 incorrect symbol indexes. */
16707 int num_plts;
16708 unsigned char *p;
16709
16710 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16711 / htab->plt_entry_size);
16712 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16713
16714 for (; num_plts; num_plts--)
16715 {
16716 Elf_Internal_Rela rel;
16717
16718 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16719 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16720 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16721 p += RELOC_SIZE (htab);
16722
16723 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16724 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16725 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16726 p += RELOC_SIZE (htab);
16727 }
16728 }
16729 }
16730
16731 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16732 /* NaCl uses a special first entry in .iplt too. */
16733 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16734
16735 /* Fill in the first three entries in the global offset table. */
16736 if (sgot)
16737 {
16738 if (sgot->size > 0)
16739 {
16740 if (sdyn == NULL)
16741 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16742 else
16743 bfd_put_32 (output_bfd,
16744 sdyn->output_section->vma + sdyn->output_offset,
16745 sgot->contents);
16746 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16747 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16748 }
16749
16750 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16751 }
16752
16753 return TRUE;
16754 }
16755
16756 static void
16757 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16758 {
16759 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16760 struct elf32_arm_link_hash_table *globals;
16761 struct elf_segment_map *m;
16762
16763 i_ehdrp = elf_elfheader (abfd);
16764
16765 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16766 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16767 else
16768 _bfd_elf_post_process_headers (abfd, link_info);
16769 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16770
16771 if (link_info)
16772 {
16773 globals = elf32_arm_hash_table (link_info);
16774 if (globals != NULL && globals->byteswap_code)
16775 i_ehdrp->e_flags |= EF_ARM_BE8;
16776 }
16777
16778 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16779 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16780 {
16781 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16782 if (abi == AEABI_VFP_args_vfp)
16783 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16784 else
16785 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16786 }
16787
16788 /* Scan segment to set p_flags attribute if it contains only sections with
16789 SHF_ARM_PURECODE flag. */
16790 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16791 {
16792 unsigned int j;
16793
16794 if (m->count == 0)
16795 continue;
16796 for (j = 0; j < m->count; j++)
16797 {
16798 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16799 break;
16800 }
16801 if (j == m->count)
16802 {
16803 m->p_flags = PF_X;
16804 m->p_flags_valid = 1;
16805 }
16806 }
16807 }
16808
16809 static enum elf_reloc_type_class
16810 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16811 const asection *rel_sec ATTRIBUTE_UNUSED,
16812 const Elf_Internal_Rela *rela)
16813 {
16814 switch ((int) ELF32_R_TYPE (rela->r_info))
16815 {
16816 case R_ARM_RELATIVE:
16817 return reloc_class_relative;
16818 case R_ARM_JUMP_SLOT:
16819 return reloc_class_plt;
16820 case R_ARM_COPY:
16821 return reloc_class_copy;
16822 case R_ARM_IRELATIVE:
16823 return reloc_class_ifunc;
16824 default:
16825 return reloc_class_normal;
16826 }
16827 }
16828
16829 static void
16830 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16831 {
16832 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16833 }
16834
16835 /* Return TRUE if this is an unwinding table entry. */
16836
16837 static bfd_boolean
16838 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16839 {
16840 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16841 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16842 }
16843
16844
16845 /* Set the type and flags for an ARM section. We do this by
16846 the section name, which is a hack, but ought to work. */
16847
16848 static bfd_boolean
16849 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16850 {
16851 const char * name;
16852
16853 name = bfd_get_section_name (abfd, sec);
16854
16855 if (is_arm_elf_unwind_section_name (abfd, name))
16856 {
16857 hdr->sh_type = SHT_ARM_EXIDX;
16858 hdr->sh_flags |= SHF_LINK_ORDER;
16859 }
16860
16861 if (sec->flags & SEC_ELF_PURECODE)
16862 hdr->sh_flags |= SHF_ARM_PURECODE;
16863
16864 return TRUE;
16865 }
16866
16867 /* Handle an ARM specific section when reading an object file. This is
16868 called when bfd_section_from_shdr finds a section with an unknown
16869 type. */
16870
16871 static bfd_boolean
16872 elf32_arm_section_from_shdr (bfd *abfd,
16873 Elf_Internal_Shdr * hdr,
16874 const char *name,
16875 int shindex)
16876 {
16877 /* There ought to be a place to keep ELF backend specific flags, but
16878 at the moment there isn't one. We just keep track of the
16879 sections by their name, instead. Fortunately, the ABI gives
16880 names for all the ARM specific sections, so we will probably get
16881 away with this. */
16882 switch (hdr->sh_type)
16883 {
16884 case SHT_ARM_EXIDX:
16885 case SHT_ARM_PREEMPTMAP:
16886 case SHT_ARM_ATTRIBUTES:
16887 break;
16888
16889 default:
16890 return FALSE;
16891 }
16892
16893 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16894 return FALSE;
16895
16896 return TRUE;
16897 }
16898
16899 static _arm_elf_section_data *
16900 get_arm_elf_section_data (asection * sec)
16901 {
16902 if (sec && sec->owner && is_arm_elf (sec->owner))
16903 return elf32_arm_section_data (sec);
16904 else
16905 return NULL;
16906 }
16907
16908 typedef struct
16909 {
16910 void *flaginfo;
16911 struct bfd_link_info *info;
16912 asection *sec;
16913 int sec_shndx;
16914 int (*func) (void *, const char *, Elf_Internal_Sym *,
16915 asection *, struct elf_link_hash_entry *);
16916 } output_arch_syminfo;
16917
16918 enum map_symbol_type
16919 {
16920 ARM_MAP_ARM,
16921 ARM_MAP_THUMB,
16922 ARM_MAP_DATA
16923 };
16924
16925
16926 /* Output a single mapping symbol. */
16927
16928 static bfd_boolean
16929 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16930 enum map_symbol_type type,
16931 bfd_vma offset)
16932 {
16933 static const char *names[3] = {"$a", "$t", "$d"};
16934 Elf_Internal_Sym sym;
16935
16936 sym.st_value = osi->sec->output_section->vma
16937 + osi->sec->output_offset
16938 + offset;
16939 sym.st_size = 0;
16940 sym.st_other = 0;
16941 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16942 sym.st_shndx = osi->sec_shndx;
16943 sym.st_target_internal = 0;
16944 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16945 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16946 }
16947
16948 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16949 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16950
16951 static bfd_boolean
16952 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16953 bfd_boolean is_iplt_entry_p,
16954 union gotplt_union *root_plt,
16955 struct arm_plt_info *arm_plt)
16956 {
16957 struct elf32_arm_link_hash_table *htab;
16958 bfd_vma addr, plt_header_size;
16959
16960 if (root_plt->offset == (bfd_vma) -1)
16961 return TRUE;
16962
16963 htab = elf32_arm_hash_table (osi->info);
16964 if (htab == NULL)
16965 return FALSE;
16966
16967 if (is_iplt_entry_p)
16968 {
16969 osi->sec = htab->root.iplt;
16970 plt_header_size = 0;
16971 }
16972 else
16973 {
16974 osi->sec = htab->root.splt;
16975 plt_header_size = htab->plt_header_size;
16976 }
16977 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16978 (osi->info->output_bfd, osi->sec->output_section));
16979
16980 addr = root_plt->offset & -2;
16981 if (htab->symbian_p)
16982 {
16983 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16984 return FALSE;
16985 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16986 return FALSE;
16987 }
16988 else if (htab->vxworks_p)
16989 {
16990 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16991 return FALSE;
16992 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16993 return FALSE;
16994 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16995 return FALSE;
16996 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16997 return FALSE;
16998 }
16999 else if (htab->nacl_p)
17000 {
17001 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17002 return FALSE;
17003 }
17004 else if (using_thumb_only (htab))
17005 {
17006 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17007 return FALSE;
17008 }
17009 else
17010 {
17011 bfd_boolean thumb_stub_p;
17012
17013 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17014 if (thumb_stub_p)
17015 {
17016 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17017 return FALSE;
17018 }
17019 #ifdef FOUR_WORD_PLT
17020 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17021 return FALSE;
17022 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17023 return FALSE;
17024 #else
17025 /* A three-word PLT with no Thumb thunk contains only Arm code,
17026 so only need to output a mapping symbol for the first PLT entry and
17027 entries with thumb thunks. */
17028 if (thumb_stub_p || addr == plt_header_size)
17029 {
17030 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17031 return FALSE;
17032 }
17033 #endif
17034 }
17035
17036 return TRUE;
17037 }
17038
17039 /* Output mapping symbols for PLT entries associated with H. */
17040
17041 static bfd_boolean
17042 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17043 {
17044 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17045 struct elf32_arm_link_hash_entry *eh;
17046
17047 if (h->root.type == bfd_link_hash_indirect)
17048 return TRUE;
17049
17050 if (h->root.type == bfd_link_hash_warning)
17051 /* When warning symbols are created, they **replace** the "real"
17052 entry in the hash table, thus we never get to see the real
17053 symbol in a hash traversal. So look at it now. */
17054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17055
17056 eh = (struct elf32_arm_link_hash_entry *) h;
17057 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17058 &h->plt, &eh->plt);
17059 }
17060
17061 /* Bind a veneered symbol to its veneer identified by its hash entry
17062 STUB_ENTRY. The veneered location thus loose its symbol. */
17063
17064 static void
17065 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17066 {
17067 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17068
17069 BFD_ASSERT (hash);
17070 hash->root.root.u.def.section = stub_entry->stub_sec;
17071 hash->root.root.u.def.value = stub_entry->stub_offset;
17072 hash->root.size = stub_entry->stub_size;
17073 }
17074
17075 /* Output a single local symbol for a generated stub. */
17076
17077 static bfd_boolean
17078 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17079 bfd_vma offset, bfd_vma size)
17080 {
17081 Elf_Internal_Sym sym;
17082
17083 sym.st_value = osi->sec->output_section->vma
17084 + osi->sec->output_offset
17085 + offset;
17086 sym.st_size = size;
17087 sym.st_other = 0;
17088 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17089 sym.st_shndx = osi->sec_shndx;
17090 sym.st_target_internal = 0;
17091 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17092 }
17093
17094 static bfd_boolean
17095 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17096 void * in_arg)
17097 {
17098 struct elf32_arm_stub_hash_entry *stub_entry;
17099 asection *stub_sec;
17100 bfd_vma addr;
17101 char *stub_name;
17102 output_arch_syminfo *osi;
17103 const insn_sequence *template_sequence;
17104 enum stub_insn_type prev_type;
17105 int size;
17106 int i;
17107 enum map_symbol_type sym_type;
17108
17109 /* Massage our args to the form they really have. */
17110 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17111 osi = (output_arch_syminfo *) in_arg;
17112
17113 stub_sec = stub_entry->stub_sec;
17114
17115 /* Ensure this stub is attached to the current section being
17116 processed. */
17117 if (stub_sec != osi->sec)
17118 return TRUE;
17119
17120 addr = (bfd_vma) stub_entry->stub_offset;
17121 template_sequence = stub_entry->stub_template;
17122
17123 if (arm_stub_sym_claimed (stub_entry->stub_type))
17124 arm_stub_claim_sym (stub_entry);
17125 else
17126 {
17127 stub_name = stub_entry->output_name;
17128 switch (template_sequence[0].type)
17129 {
17130 case ARM_TYPE:
17131 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17132 stub_entry->stub_size))
17133 return FALSE;
17134 break;
17135 case THUMB16_TYPE:
17136 case THUMB32_TYPE:
17137 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17138 stub_entry->stub_size))
17139 return FALSE;
17140 break;
17141 default:
17142 BFD_FAIL ();
17143 return 0;
17144 }
17145 }
17146
17147 prev_type = DATA_TYPE;
17148 size = 0;
17149 for (i = 0; i < stub_entry->stub_template_size; i++)
17150 {
17151 switch (template_sequence[i].type)
17152 {
17153 case ARM_TYPE:
17154 sym_type = ARM_MAP_ARM;
17155 break;
17156
17157 case THUMB16_TYPE:
17158 case THUMB32_TYPE:
17159 sym_type = ARM_MAP_THUMB;
17160 break;
17161
17162 case DATA_TYPE:
17163 sym_type = ARM_MAP_DATA;
17164 break;
17165
17166 default:
17167 BFD_FAIL ();
17168 return FALSE;
17169 }
17170
17171 if (template_sequence[i].type != prev_type)
17172 {
17173 prev_type = template_sequence[i].type;
17174 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17175 return FALSE;
17176 }
17177
17178 switch (template_sequence[i].type)
17179 {
17180 case ARM_TYPE:
17181 case THUMB32_TYPE:
17182 size += 4;
17183 break;
17184
17185 case THUMB16_TYPE:
17186 size += 2;
17187 break;
17188
17189 case DATA_TYPE:
17190 size += 4;
17191 break;
17192
17193 default:
17194 BFD_FAIL ();
17195 return FALSE;
17196 }
17197 }
17198
17199 return TRUE;
17200 }
17201
17202 /* Output mapping symbols for linker generated sections,
17203 and for those data-only sections that do not have a
17204 $d. */
17205
17206 static bfd_boolean
17207 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17208 struct bfd_link_info *info,
17209 void *flaginfo,
17210 int (*func) (void *, const char *,
17211 Elf_Internal_Sym *,
17212 asection *,
17213 struct elf_link_hash_entry *))
17214 {
17215 output_arch_syminfo osi;
17216 struct elf32_arm_link_hash_table *htab;
17217 bfd_vma offset;
17218 bfd_size_type size;
17219 bfd *input_bfd;
17220
17221 htab = elf32_arm_hash_table (info);
17222 if (htab == NULL)
17223 return FALSE;
17224
17225 check_use_blx (htab);
17226
17227 osi.flaginfo = flaginfo;
17228 osi.info = info;
17229 osi.func = func;
17230
17231 /* Add a $d mapping symbol to data-only sections that
17232 don't have any mapping symbol. This may result in (harmless) redundant
17233 mapping symbols. */
17234 for (input_bfd = info->input_bfds;
17235 input_bfd != NULL;
17236 input_bfd = input_bfd->link.next)
17237 {
17238 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17239 for (osi.sec = input_bfd->sections;
17240 osi.sec != NULL;
17241 osi.sec = osi.sec->next)
17242 {
17243 if (osi.sec->output_section != NULL
17244 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17245 != 0)
17246 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17247 == SEC_HAS_CONTENTS
17248 && get_arm_elf_section_data (osi.sec) != NULL
17249 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17250 && osi.sec->size > 0
17251 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17252 {
17253 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17254 (output_bfd, osi.sec->output_section);
17255 if (osi.sec_shndx != (int)SHN_BAD)
17256 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17257 }
17258 }
17259 }
17260
17261 /* ARM->Thumb glue. */
17262 if (htab->arm_glue_size > 0)
17263 {
17264 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17265 ARM2THUMB_GLUE_SECTION_NAME);
17266
17267 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17268 (output_bfd, osi.sec->output_section);
17269 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17270 || htab->pic_veneer)
17271 size = ARM2THUMB_PIC_GLUE_SIZE;
17272 else if (htab->use_blx)
17273 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17274 else
17275 size = ARM2THUMB_STATIC_GLUE_SIZE;
17276
17277 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17278 {
17279 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17280 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17281 }
17282 }
17283
17284 /* Thumb->ARM glue. */
17285 if (htab->thumb_glue_size > 0)
17286 {
17287 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17288 THUMB2ARM_GLUE_SECTION_NAME);
17289
17290 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17291 (output_bfd, osi.sec->output_section);
17292 size = THUMB2ARM_GLUE_SIZE;
17293
17294 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17295 {
17296 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17297 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17298 }
17299 }
17300
17301 /* ARMv4 BX veneers. */
17302 if (htab->bx_glue_size > 0)
17303 {
17304 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17305 ARM_BX_GLUE_SECTION_NAME);
17306
17307 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17308 (output_bfd, osi.sec->output_section);
17309
17310 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17311 }
17312
17313 /* Long calls stubs. */
17314 if (htab->stub_bfd && htab->stub_bfd->sections)
17315 {
17316 asection* stub_sec;
17317
17318 for (stub_sec = htab->stub_bfd->sections;
17319 stub_sec != NULL;
17320 stub_sec = stub_sec->next)
17321 {
17322 /* Ignore non-stub sections. */
17323 if (!strstr (stub_sec->name, STUB_SUFFIX))
17324 continue;
17325
17326 osi.sec = stub_sec;
17327
17328 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17329 (output_bfd, osi.sec->output_section);
17330
17331 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17332 }
17333 }
17334
17335 /* Finally, output mapping symbols for the PLT. */
17336 if (htab->root.splt && htab->root.splt->size > 0)
17337 {
17338 osi.sec = htab->root.splt;
17339 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17340 (output_bfd, osi.sec->output_section));
17341
17342 /* Output mapping symbols for the plt header. SymbianOS does not have a
17343 plt header. */
17344 if (htab->vxworks_p)
17345 {
17346 /* VxWorks shared libraries have no PLT header. */
17347 if (!bfd_link_pic (info))
17348 {
17349 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17350 return FALSE;
17351 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17352 return FALSE;
17353 }
17354 }
17355 else if (htab->nacl_p)
17356 {
17357 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17358 return FALSE;
17359 }
17360 else if (using_thumb_only (htab))
17361 {
17362 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17363 return FALSE;
17364 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17365 return FALSE;
17366 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17367 return FALSE;
17368 }
17369 else if (!htab->symbian_p)
17370 {
17371 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17372 return FALSE;
17373 #ifndef FOUR_WORD_PLT
17374 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17375 return FALSE;
17376 #endif
17377 }
17378 }
17379 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17380 {
17381 /* NaCl uses a special first entry in .iplt too. */
17382 osi.sec = htab->root.iplt;
17383 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17384 (output_bfd, osi.sec->output_section));
17385 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17386 return FALSE;
17387 }
17388 if ((htab->root.splt && htab->root.splt->size > 0)
17389 || (htab->root.iplt && htab->root.iplt->size > 0))
17390 {
17391 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17392 for (input_bfd = info->input_bfds;
17393 input_bfd != NULL;
17394 input_bfd = input_bfd->link.next)
17395 {
17396 struct arm_local_iplt_info **local_iplt;
17397 unsigned int i, num_syms;
17398
17399 local_iplt = elf32_arm_local_iplt (input_bfd);
17400 if (local_iplt != NULL)
17401 {
17402 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17403 for (i = 0; i < num_syms; i++)
17404 if (local_iplt[i] != NULL
17405 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17406 &local_iplt[i]->root,
17407 &local_iplt[i]->arm))
17408 return FALSE;
17409 }
17410 }
17411 }
17412 if (htab->dt_tlsdesc_plt != 0)
17413 {
17414 /* Mapping symbols for the lazy tls trampoline. */
17415 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17416 return FALSE;
17417
17418 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17419 htab->dt_tlsdesc_plt + 24))
17420 return FALSE;
17421 }
17422 if (htab->tls_trampoline != 0)
17423 {
17424 /* Mapping symbols for the tls trampoline. */
17425 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17426 return FALSE;
17427 #ifdef FOUR_WORD_PLT
17428 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17429 htab->tls_trampoline + 12))
17430 return FALSE;
17431 #endif
17432 }
17433
17434 return TRUE;
17435 }
17436
17437 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17438 the import library. All SYMCOUNT symbols of ABFD can be examined
17439 from their pointers in SYMS. Pointers of symbols to keep should be
17440 stored continuously at the beginning of that array.
17441
17442 Returns the number of symbols to keep. */
17443
17444 static unsigned int
17445 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17446 struct bfd_link_info *info,
17447 asymbol **syms, long symcount)
17448 {
17449 size_t maxnamelen;
17450 char *cmse_name;
17451 long src_count, dst_count = 0;
17452 struct elf32_arm_link_hash_table *htab;
17453
17454 htab = elf32_arm_hash_table (info);
17455 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17456 symcount = 0;
17457
17458 maxnamelen = 128;
17459 cmse_name = (char *) bfd_malloc (maxnamelen);
17460 for (src_count = 0; src_count < symcount; src_count++)
17461 {
17462 struct elf32_arm_link_hash_entry *cmse_hash;
17463 asymbol *sym;
17464 flagword flags;
17465 char *name;
17466 size_t namelen;
17467
17468 sym = syms[src_count];
17469 flags = sym->flags;
17470 name = (char *) bfd_asymbol_name (sym);
17471
17472 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17473 continue;
17474 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17475 continue;
17476
17477 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17478 if (namelen > maxnamelen)
17479 {
17480 cmse_name = (char *)
17481 bfd_realloc (cmse_name, namelen);
17482 maxnamelen = namelen;
17483 }
17484 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17485 cmse_hash = (struct elf32_arm_link_hash_entry *)
17486 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17487
17488 if (!cmse_hash
17489 || (cmse_hash->root.root.type != bfd_link_hash_defined
17490 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17491 || cmse_hash->root.type != STT_FUNC)
17492 continue;
17493
17494 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17495 continue;
17496
17497 syms[dst_count++] = sym;
17498 }
17499 free (cmse_name);
17500
17501 syms[dst_count] = NULL;
17502
17503 return dst_count;
17504 }
17505
17506 /* Filter symbols of ABFD to include in the import library. All
17507 SYMCOUNT symbols of ABFD can be examined from their pointers in
17508 SYMS. Pointers of symbols to keep should be stored continuously at
17509 the beginning of that array.
17510
17511 Returns the number of symbols to keep. */
17512
17513 static unsigned int
17514 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17515 struct bfd_link_info *info,
17516 asymbol **syms, long symcount)
17517 {
17518 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17519
17520 if (globals->cmse_implib)
17521 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17522 else
17523 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17524 }
17525
17526 /* Allocate target specific section data. */
17527
17528 static bfd_boolean
17529 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17530 {
17531 if (!sec->used_by_bfd)
17532 {
17533 _arm_elf_section_data *sdata;
17534 bfd_size_type amt = sizeof (*sdata);
17535
17536 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17537 if (sdata == NULL)
17538 return FALSE;
17539 sec->used_by_bfd = sdata;
17540 }
17541
17542 return _bfd_elf_new_section_hook (abfd, sec);
17543 }
17544
17545
17546 /* Used to order a list of mapping symbols by address. */
17547
17548 static int
17549 elf32_arm_compare_mapping (const void * a, const void * b)
17550 {
17551 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17552 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17553
17554 if (amap->vma > bmap->vma)
17555 return 1;
17556 else if (amap->vma < bmap->vma)
17557 return -1;
17558 else if (amap->type > bmap->type)
17559 /* Ensure results do not depend on the host qsort for objects with
17560 multiple mapping symbols at the same address by sorting on type
17561 after vma. */
17562 return 1;
17563 else if (amap->type < bmap->type)
17564 return -1;
17565 else
17566 return 0;
17567 }
17568
17569 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17570
17571 static unsigned long
17572 offset_prel31 (unsigned long addr, bfd_vma offset)
17573 {
17574 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17575 }
17576
17577 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17578 relocations. */
17579
17580 static void
17581 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17582 {
17583 unsigned long first_word = bfd_get_32 (output_bfd, from);
17584 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17585
17586 /* High bit of first word is supposed to be zero. */
17587 if ((first_word & 0x80000000ul) == 0)
17588 first_word = offset_prel31 (first_word, offset);
17589
17590 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17591 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17592 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17593 second_word = offset_prel31 (second_word, offset);
17594
17595 bfd_put_32 (output_bfd, first_word, to);
17596 bfd_put_32 (output_bfd, second_word, to + 4);
17597 }
17598
17599 /* Data for make_branch_to_a8_stub(). */
17600
17601 struct a8_branch_to_stub_data
17602 {
17603 asection *writing_section;
17604 bfd_byte *contents;
17605 };
17606
17607
17608 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17609 places for a particular section. */
17610
17611 static bfd_boolean
17612 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17613 void *in_arg)
17614 {
17615 struct elf32_arm_stub_hash_entry *stub_entry;
17616 struct a8_branch_to_stub_data *data;
17617 bfd_byte *contents;
17618 unsigned long branch_insn;
17619 bfd_vma veneered_insn_loc, veneer_entry_loc;
17620 bfd_signed_vma branch_offset;
17621 bfd *abfd;
17622 unsigned int loc;
17623
17624 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17625 data = (struct a8_branch_to_stub_data *) in_arg;
17626
17627 if (stub_entry->target_section != data->writing_section
17628 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17629 return TRUE;
17630
17631 contents = data->contents;
17632
17633 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17634 generated when both source and target are in the same section. */
17635 veneered_insn_loc = stub_entry->target_section->output_section->vma
17636 + stub_entry->target_section->output_offset
17637 + stub_entry->source_value;
17638
17639 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17640 + stub_entry->stub_sec->output_offset
17641 + stub_entry->stub_offset;
17642
17643 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17644 veneered_insn_loc &= ~3u;
17645
17646 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17647
17648 abfd = stub_entry->target_section->owner;
17649 loc = stub_entry->source_value;
17650
17651 /* We attempt to avoid this condition by setting stubs_always_after_branch
17652 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17653 This check is just to be on the safe side... */
17654 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17655 {
17656 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17657 "allocated in unsafe location"), abfd);
17658 return FALSE;
17659 }
17660
17661 switch (stub_entry->stub_type)
17662 {
17663 case arm_stub_a8_veneer_b:
17664 case arm_stub_a8_veneer_b_cond:
17665 branch_insn = 0xf0009000;
17666 goto jump24;
17667
17668 case arm_stub_a8_veneer_blx:
17669 branch_insn = 0xf000e800;
17670 goto jump24;
17671
17672 case arm_stub_a8_veneer_bl:
17673 {
17674 unsigned int i1, j1, i2, j2, s;
17675
17676 branch_insn = 0xf000d000;
17677
17678 jump24:
17679 if (branch_offset < -16777216 || branch_offset > 16777214)
17680 {
17681 /* There's not much we can do apart from complain if this
17682 happens. */
17683 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17684 "of range (input file too large)"), abfd);
17685 return FALSE;
17686 }
17687
17688 /* i1 = not(j1 eor s), so:
17689 not i1 = j1 eor s
17690 j1 = (not i1) eor s. */
17691
17692 branch_insn |= (branch_offset >> 1) & 0x7ff;
17693 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17694 i2 = (branch_offset >> 22) & 1;
17695 i1 = (branch_offset >> 23) & 1;
17696 s = (branch_offset >> 24) & 1;
17697 j1 = (!i1) ^ s;
17698 j2 = (!i2) ^ s;
17699 branch_insn |= j2 << 11;
17700 branch_insn |= j1 << 13;
17701 branch_insn |= s << 26;
17702 }
17703 break;
17704
17705 default:
17706 BFD_FAIL ();
17707 return FALSE;
17708 }
17709
17710 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17711 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17712
17713 return TRUE;
17714 }
17715
17716 /* Beginning of stm32l4xx work-around. */
17717
17718 /* Functions encoding instructions necessary for the emission of the
17719 fix-stm32l4xx-629360.
17720 Encoding is extracted from the
17721 ARM (C) Architecture Reference Manual
17722 ARMv7-A and ARMv7-R edition
17723 ARM DDI 0406C.b (ID072512). */
17724
17725 static inline bfd_vma
17726 create_instruction_branch_absolute (int branch_offset)
17727 {
17728 /* A8.8.18 B (A8-334)
17729 B target_address (Encoding T4). */
17730 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17731 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17732 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17733
17734 int s = ((branch_offset & 0x1000000) >> 24);
17735 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17736 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17737
17738 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17739 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17740
17741 bfd_vma patched_inst = 0xf0009000
17742 | s << 26 /* S. */
17743 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17744 | j1 << 13 /* J1. */
17745 | j2 << 11 /* J2. */
17746 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17747
17748 return patched_inst;
17749 }
17750
17751 static inline bfd_vma
17752 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17753 {
17754 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17755 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17756 bfd_vma patched_inst = 0xe8900000
17757 | (/*W=*/wback << 21)
17758 | (base_reg << 16)
17759 | (reg_mask & 0x0000ffff);
17760
17761 return patched_inst;
17762 }
17763
17764 static inline bfd_vma
17765 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17766 {
17767 /* A8.8.60 LDMDB/LDMEA (A8-402)
17768 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17769 bfd_vma patched_inst = 0xe9100000
17770 | (/*W=*/wback << 21)
17771 | (base_reg << 16)
17772 | (reg_mask & 0x0000ffff);
17773
17774 return patched_inst;
17775 }
17776
17777 static inline bfd_vma
17778 create_instruction_mov (int target_reg, int source_reg)
17779 {
17780 /* A8.8.103 MOV (register) (A8-486)
17781 MOV Rd, Rm (Encoding T1). */
17782 bfd_vma patched_inst = 0x4600
17783 | (target_reg & 0x7)
17784 | ((target_reg & 0x8) >> 3) << 7
17785 | (source_reg << 3);
17786
17787 return patched_inst;
17788 }
17789
17790 static inline bfd_vma
17791 create_instruction_sub (int target_reg, int source_reg, int value)
17792 {
17793 /* A8.8.221 SUB (immediate) (A8-708)
17794 SUB Rd, Rn, #value (Encoding T3). */
17795 bfd_vma patched_inst = 0xf1a00000
17796 | (target_reg << 8)
17797 | (source_reg << 16)
17798 | (/*S=*/0 << 20)
17799 | ((value & 0x800) >> 11) << 26
17800 | ((value & 0x700) >> 8) << 12
17801 | (value & 0x0ff);
17802
17803 return patched_inst;
17804 }
17805
17806 static inline bfd_vma
17807 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17808 int first_reg)
17809 {
17810 /* A8.8.332 VLDM (A8-922)
17811 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17812 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17813 | (/*W=*/wback << 21)
17814 | (base_reg << 16)
17815 | (num_words & 0x000000ff)
17816 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17817 | (first_reg & 0x00000001) << 22;
17818
17819 return patched_inst;
17820 }
17821
17822 static inline bfd_vma
17823 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17824 int first_reg)
17825 {
17826 /* A8.8.332 VLDM (A8-922)
17827 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17828 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17829 | (base_reg << 16)
17830 | (num_words & 0x000000ff)
17831 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17832 | (first_reg & 0x00000001) << 22;
17833
17834 return patched_inst;
17835 }
17836
17837 static inline bfd_vma
17838 create_instruction_udf_w (int value)
17839 {
17840 /* A8.8.247 UDF (A8-758)
17841 Undefined (Encoding T2). */
17842 bfd_vma patched_inst = 0xf7f0a000
17843 | (value & 0x00000fff)
17844 | (value & 0x000f0000) << 16;
17845
17846 return patched_inst;
17847 }
17848
17849 static inline bfd_vma
17850 create_instruction_udf (int value)
17851 {
17852 /* A8.8.247 UDF (A8-758)
17853 Undefined (Encoding T1). */
17854 bfd_vma patched_inst = 0xde00
17855 | (value & 0xff);
17856
17857 return patched_inst;
17858 }
17859
17860 /* Functions writing an instruction in memory, returning the next
17861 memory position to write to. */
17862
17863 static inline bfd_byte *
17864 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17865 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17866 {
17867 put_thumb2_insn (htab, output_bfd, insn, pt);
17868 return pt + 4;
17869 }
17870
17871 static inline bfd_byte *
17872 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17873 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17874 {
17875 put_thumb_insn (htab, output_bfd, insn, pt);
17876 return pt + 2;
17877 }
17878
17879 /* Function filling up a region in memory with T1 and T2 UDFs taking
17880 care of alignment. */
17881
17882 static bfd_byte *
17883 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17884 bfd * output_bfd,
17885 const bfd_byte * const base_stub_contents,
17886 bfd_byte * const from_stub_contents,
17887 const bfd_byte * const end_stub_contents)
17888 {
17889 bfd_byte *current_stub_contents = from_stub_contents;
17890
17891 /* Fill the remaining of the stub with deterministic contents : UDF
17892 instructions.
17893 Check if realignment is needed on modulo 4 frontier using T1, to
17894 further use T2. */
17895 if ((current_stub_contents < end_stub_contents)
17896 && !((current_stub_contents - base_stub_contents) % 2)
17897 && ((current_stub_contents - base_stub_contents) % 4))
17898 current_stub_contents =
17899 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17900 create_instruction_udf (0));
17901
17902 for (; current_stub_contents < end_stub_contents;)
17903 current_stub_contents =
17904 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17905 create_instruction_udf_w (0));
17906
17907 return current_stub_contents;
17908 }
17909
17910 /* Functions writing the stream of instructions equivalent to the
17911 derived sequence for ldmia, ldmdb, vldm respectively. */
17912
17913 static void
17914 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17915 bfd * output_bfd,
17916 const insn32 initial_insn,
17917 const bfd_byte *const initial_insn_addr,
17918 bfd_byte *const base_stub_contents)
17919 {
17920 int wback = (initial_insn & 0x00200000) >> 21;
17921 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17922 int insn_all_registers = initial_insn & 0x0000ffff;
17923 int insn_low_registers, insn_high_registers;
17924 int usable_register_mask;
17925 int nb_registers = popcount (insn_all_registers);
17926 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17927 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17928 bfd_byte *current_stub_contents = base_stub_contents;
17929
17930 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17931
17932 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17933 smaller than 8 registers load sequences that do not cause the
17934 hardware issue. */
17935 if (nb_registers <= 8)
17936 {
17937 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17938 current_stub_contents =
17939 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17940 initial_insn);
17941
17942 /* B initial_insn_addr+4. */
17943 if (!restore_pc)
17944 current_stub_contents =
17945 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17946 create_instruction_branch_absolute
17947 (initial_insn_addr - current_stub_contents));
17948
17949 /* Fill the remaining of the stub with deterministic contents. */
17950 current_stub_contents =
17951 stm32l4xx_fill_stub_udf (htab, output_bfd,
17952 base_stub_contents, current_stub_contents,
17953 base_stub_contents +
17954 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17955
17956 return;
17957 }
17958
17959 /* - reg_list[13] == 0. */
17960 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17961
17962 /* - reg_list[14] & reg_list[15] != 1. */
17963 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17964
17965 /* - if (wback==1) reg_list[rn] == 0. */
17966 BFD_ASSERT (!wback || !restore_rn);
17967
17968 /* - nb_registers > 8. */
17969 BFD_ASSERT (popcount (insn_all_registers) > 8);
17970
17971 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17972
17973 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17974 - One with the 7 lowest registers (register mask 0x007F)
17975 This LDM will finally contain between 2 and 7 registers
17976 - One with the 7 highest registers (register mask 0xDF80)
17977 This ldm will finally contain between 2 and 7 registers. */
17978 insn_low_registers = insn_all_registers & 0x007F;
17979 insn_high_registers = insn_all_registers & 0xDF80;
17980
17981 /* A spare register may be needed during this veneer to temporarily
17982 handle the base register. This register will be restored with the
17983 last LDM operation.
17984 The usable register may be any general purpose register (that
17985 excludes PC, SP, LR : register mask is 0x1FFF). */
17986 usable_register_mask = 0x1FFF;
17987
17988 /* Generate the stub function. */
17989 if (wback)
17990 {
17991 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17992 current_stub_contents =
17993 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17994 create_instruction_ldmia
17995 (rn, /*wback=*/1, insn_low_registers));
17996
17997 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17998 current_stub_contents =
17999 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18000 create_instruction_ldmia
18001 (rn, /*wback=*/1, insn_high_registers));
18002 if (!restore_pc)
18003 {
18004 /* B initial_insn_addr+4. */
18005 current_stub_contents =
18006 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18007 create_instruction_branch_absolute
18008 (initial_insn_addr - current_stub_contents));
18009 }
18010 }
18011 else /* if (!wback). */
18012 {
18013 ri = rn;
18014
18015 /* If Rn is not part of the high-register-list, move it there. */
18016 if (!(insn_high_registers & (1 << rn)))
18017 {
18018 /* Choose a Ri in the high-register-list that will be restored. */
18019 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18020
18021 /* MOV Ri, Rn. */
18022 current_stub_contents =
18023 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18024 create_instruction_mov (ri, rn));
18025 }
18026
18027 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18028 current_stub_contents =
18029 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18030 create_instruction_ldmia
18031 (ri, /*wback=*/1, insn_low_registers));
18032
18033 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18034 current_stub_contents =
18035 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18036 create_instruction_ldmia
18037 (ri, /*wback=*/0, insn_high_registers));
18038
18039 if (!restore_pc)
18040 {
18041 /* B initial_insn_addr+4. */
18042 current_stub_contents =
18043 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18044 create_instruction_branch_absolute
18045 (initial_insn_addr - current_stub_contents));
18046 }
18047 }
18048
18049 /* Fill the remaining of the stub with deterministic contents. */
18050 current_stub_contents =
18051 stm32l4xx_fill_stub_udf (htab, output_bfd,
18052 base_stub_contents, current_stub_contents,
18053 base_stub_contents +
18054 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18055 }
18056
18057 static void
18058 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18059 bfd * output_bfd,
18060 const insn32 initial_insn,
18061 const bfd_byte *const initial_insn_addr,
18062 bfd_byte *const base_stub_contents)
18063 {
18064 int wback = (initial_insn & 0x00200000) >> 21;
18065 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18066 int insn_all_registers = initial_insn & 0x0000ffff;
18067 int insn_low_registers, insn_high_registers;
18068 int usable_register_mask;
18069 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18070 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18071 int nb_registers = popcount (insn_all_registers);
18072 bfd_byte *current_stub_contents = base_stub_contents;
18073
18074 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18075
18076 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18077 smaller than 8 registers load sequences that do not cause the
18078 hardware issue. */
18079 if (nb_registers <= 8)
18080 {
18081 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18082 current_stub_contents =
18083 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18084 initial_insn);
18085
18086 /* B initial_insn_addr+4. */
18087 current_stub_contents =
18088 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18089 create_instruction_branch_absolute
18090 (initial_insn_addr - current_stub_contents));
18091
18092 /* Fill the remaining of the stub with deterministic contents. */
18093 current_stub_contents =
18094 stm32l4xx_fill_stub_udf (htab, output_bfd,
18095 base_stub_contents, current_stub_contents,
18096 base_stub_contents +
18097 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18098
18099 return;
18100 }
18101
18102 /* - reg_list[13] == 0. */
18103 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18104
18105 /* - reg_list[14] & reg_list[15] != 1. */
18106 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18107
18108 /* - if (wback==1) reg_list[rn] == 0. */
18109 BFD_ASSERT (!wback || !restore_rn);
18110
18111 /* - nb_registers > 8. */
18112 BFD_ASSERT (popcount (insn_all_registers) > 8);
18113
18114 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18115
18116 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18117 - One with the 7 lowest registers (register mask 0x007F)
18118 This LDM will finally contain between 2 and 7 registers
18119 - One with the 7 highest registers (register mask 0xDF80)
18120 This ldm will finally contain between 2 and 7 registers. */
18121 insn_low_registers = insn_all_registers & 0x007F;
18122 insn_high_registers = insn_all_registers & 0xDF80;
18123
18124 /* A spare register may be needed during this veneer to temporarily
18125 handle the base register. This register will be restored with
18126 the last LDM operation.
18127 The usable register may be any general purpose register (that excludes
18128 PC, SP, LR : register mask is 0x1FFF). */
18129 usable_register_mask = 0x1FFF;
18130
18131 /* Generate the stub function. */
18132 if (!wback && !restore_pc && !restore_rn)
18133 {
18134 /* Choose a Ri in the low-register-list that will be restored. */
18135 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18136
18137 /* MOV Ri, Rn. */
18138 current_stub_contents =
18139 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18140 create_instruction_mov (ri, rn));
18141
18142 /* LDMDB Ri!, {R-high-register-list}. */
18143 current_stub_contents =
18144 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18145 create_instruction_ldmdb
18146 (ri, /*wback=*/1, insn_high_registers));
18147
18148 /* LDMDB Ri, {R-low-register-list}. */
18149 current_stub_contents =
18150 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18151 create_instruction_ldmdb
18152 (ri, /*wback=*/0, insn_low_registers));
18153
18154 /* B initial_insn_addr+4. */
18155 current_stub_contents =
18156 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18157 create_instruction_branch_absolute
18158 (initial_insn_addr - current_stub_contents));
18159 }
18160 else if (wback && !restore_pc && !restore_rn)
18161 {
18162 /* LDMDB Rn!, {R-high-register-list}. */
18163 current_stub_contents =
18164 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18165 create_instruction_ldmdb
18166 (rn, /*wback=*/1, insn_high_registers));
18167
18168 /* LDMDB Rn!, {R-low-register-list}. */
18169 current_stub_contents =
18170 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18171 create_instruction_ldmdb
18172 (rn, /*wback=*/1, insn_low_registers));
18173
18174 /* B initial_insn_addr+4. */
18175 current_stub_contents =
18176 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18177 create_instruction_branch_absolute
18178 (initial_insn_addr - current_stub_contents));
18179 }
18180 else if (!wback && restore_pc && !restore_rn)
18181 {
18182 /* Choose a Ri in the high-register-list that will be restored. */
18183 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18184
18185 /* SUB Ri, Rn, #(4*nb_registers). */
18186 current_stub_contents =
18187 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18188 create_instruction_sub (ri, rn, (4 * nb_registers)));
18189
18190 /* LDMIA Ri!, {R-low-register-list}. */
18191 current_stub_contents =
18192 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18193 create_instruction_ldmia
18194 (ri, /*wback=*/1, insn_low_registers));
18195
18196 /* LDMIA Ri, {R-high-register-list}. */
18197 current_stub_contents =
18198 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18199 create_instruction_ldmia
18200 (ri, /*wback=*/0, insn_high_registers));
18201 }
18202 else if (wback && restore_pc && !restore_rn)
18203 {
18204 /* Choose a Ri in the high-register-list that will be restored. */
18205 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18206
18207 /* SUB Rn, Rn, #(4*nb_registers) */
18208 current_stub_contents =
18209 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18210 create_instruction_sub (rn, rn, (4 * nb_registers)));
18211
18212 /* MOV Ri, Rn. */
18213 current_stub_contents =
18214 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18215 create_instruction_mov (ri, rn));
18216
18217 /* LDMIA Ri!, {R-low-register-list}. */
18218 current_stub_contents =
18219 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18220 create_instruction_ldmia
18221 (ri, /*wback=*/1, insn_low_registers));
18222
18223 /* LDMIA Ri, {R-high-register-list}. */
18224 current_stub_contents =
18225 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18226 create_instruction_ldmia
18227 (ri, /*wback=*/0, insn_high_registers));
18228 }
18229 else if (!wback && !restore_pc && restore_rn)
18230 {
18231 ri = rn;
18232 if (!(insn_low_registers & (1 << rn)))
18233 {
18234 /* Choose a Ri in the low-register-list that will be restored. */
18235 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18236
18237 /* MOV Ri, Rn. */
18238 current_stub_contents =
18239 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18240 create_instruction_mov (ri, rn));
18241 }
18242
18243 /* LDMDB Ri!, {R-high-register-list}. */
18244 current_stub_contents =
18245 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18246 create_instruction_ldmdb
18247 (ri, /*wback=*/1, insn_high_registers));
18248
18249 /* LDMDB Ri, {R-low-register-list}. */
18250 current_stub_contents =
18251 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18252 create_instruction_ldmdb
18253 (ri, /*wback=*/0, insn_low_registers));
18254
18255 /* B initial_insn_addr+4. */
18256 current_stub_contents =
18257 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18258 create_instruction_branch_absolute
18259 (initial_insn_addr - current_stub_contents));
18260 }
18261 else if (!wback && restore_pc && restore_rn)
18262 {
18263 ri = rn;
18264 if (!(insn_high_registers & (1 << rn)))
18265 {
18266 /* Choose a Ri in the high-register-list that will be restored. */
18267 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18268 }
18269
18270 /* SUB Ri, Rn, #(4*nb_registers). */
18271 current_stub_contents =
18272 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18273 create_instruction_sub (ri, rn, (4 * nb_registers)));
18274
18275 /* LDMIA Ri!, {R-low-register-list}. */
18276 current_stub_contents =
18277 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18278 create_instruction_ldmia
18279 (ri, /*wback=*/1, insn_low_registers));
18280
18281 /* LDMIA Ri, {R-high-register-list}. */
18282 current_stub_contents =
18283 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18284 create_instruction_ldmia
18285 (ri, /*wback=*/0, insn_high_registers));
18286 }
18287 else if (wback && restore_rn)
18288 {
18289 /* The assembler should not have accepted to encode this. */
18290 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18291 "undefined behavior.\n");
18292 }
18293
18294 /* Fill the remaining of the stub with deterministic contents. */
18295 current_stub_contents =
18296 stm32l4xx_fill_stub_udf (htab, output_bfd,
18297 base_stub_contents, current_stub_contents,
18298 base_stub_contents +
18299 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18300
18301 }
18302
18303 static void
18304 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18305 bfd * output_bfd,
18306 const insn32 initial_insn,
18307 const bfd_byte *const initial_insn_addr,
18308 bfd_byte *const base_stub_contents)
18309 {
18310 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18311 bfd_byte *current_stub_contents = base_stub_contents;
18312
18313 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18314
18315 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18316 smaller than 8 words load sequences that do not cause the
18317 hardware issue. */
18318 if (num_words <= 8)
18319 {
18320 /* Untouched instruction. */
18321 current_stub_contents =
18322 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18323 initial_insn);
18324
18325 /* B initial_insn_addr+4. */
18326 current_stub_contents =
18327 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18328 create_instruction_branch_absolute
18329 (initial_insn_addr - current_stub_contents));
18330 }
18331 else
18332 {
18333 bfd_boolean is_dp = /* DP encoding. */
18334 (initial_insn & 0xfe100f00) == 0xec100b00;
18335 bfd_boolean is_ia_nobang = /* (IA without !). */
18336 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18337 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18338 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18339 bfd_boolean is_db_bang = /* (DB with !). */
18340 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18341 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18342 /* d = UInt (Vd:D);. */
18343 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18344 | (((unsigned int)initial_insn << 9) >> 31);
18345
18346 /* Compute the number of 8-words chunks needed to split. */
18347 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18348 int chunk;
18349
18350 /* The test coverage has been done assuming the following
18351 hypothesis that exactly one of the previous is_ predicates is
18352 true. */
18353 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18354 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18355
18356 /* We treat the cutting of the words in one pass for all
18357 cases, then we emit the adjustments:
18358
18359 vldm rx, {...}
18360 -> vldm rx!, {8_words_or_less} for each needed 8_word
18361 -> sub rx, rx, #size (list)
18362
18363 vldm rx!, {...}
18364 -> vldm rx!, {8_words_or_less} for each needed 8_word
18365 This also handles vpop instruction (when rx is sp)
18366
18367 vldmd rx!, {...}
18368 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18369 for (chunk = 0; chunk < chunks; ++chunk)
18370 {
18371 bfd_vma new_insn = 0;
18372
18373 if (is_ia_nobang || is_ia_bang)
18374 {
18375 new_insn = create_instruction_vldmia
18376 (base_reg,
18377 is_dp,
18378 /*wback= . */1,
18379 chunks - (chunk + 1) ?
18380 8 : num_words - chunk * 8,
18381 first_reg + chunk * 8);
18382 }
18383 else if (is_db_bang)
18384 {
18385 new_insn = create_instruction_vldmdb
18386 (base_reg,
18387 is_dp,
18388 chunks - (chunk + 1) ?
18389 8 : num_words - chunk * 8,
18390 first_reg + chunk * 8);
18391 }
18392
18393 if (new_insn)
18394 current_stub_contents =
18395 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18396 new_insn);
18397 }
18398
18399 /* Only this case requires the base register compensation
18400 subtract. */
18401 if (is_ia_nobang)
18402 {
18403 current_stub_contents =
18404 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18405 create_instruction_sub
18406 (base_reg, base_reg, 4*num_words));
18407 }
18408
18409 /* B initial_insn_addr+4. */
18410 current_stub_contents =
18411 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18412 create_instruction_branch_absolute
18413 (initial_insn_addr - current_stub_contents));
18414 }
18415
18416 /* Fill the remaining of the stub with deterministic contents. */
18417 current_stub_contents =
18418 stm32l4xx_fill_stub_udf (htab, output_bfd,
18419 base_stub_contents, current_stub_contents,
18420 base_stub_contents +
18421 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18422 }
18423
18424 static void
18425 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18426 bfd * output_bfd,
18427 const insn32 wrong_insn,
18428 const bfd_byte *const wrong_insn_addr,
18429 bfd_byte *const stub_contents)
18430 {
18431 if (is_thumb2_ldmia (wrong_insn))
18432 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18433 wrong_insn, wrong_insn_addr,
18434 stub_contents);
18435 else if (is_thumb2_ldmdb (wrong_insn))
18436 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18437 wrong_insn, wrong_insn_addr,
18438 stub_contents);
18439 else if (is_thumb2_vldm (wrong_insn))
18440 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18441 wrong_insn, wrong_insn_addr,
18442 stub_contents);
18443 }
18444
18445 /* End of stm32l4xx work-around. */
18446
18447
18448 /* Do code byteswapping. Return FALSE afterwards so that the section is
18449 written out as normal. */
18450
18451 static bfd_boolean
18452 elf32_arm_write_section (bfd *output_bfd,
18453 struct bfd_link_info *link_info,
18454 asection *sec,
18455 bfd_byte *contents)
18456 {
18457 unsigned int mapcount, errcount;
18458 _arm_elf_section_data *arm_data;
18459 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18460 elf32_arm_section_map *map;
18461 elf32_vfp11_erratum_list *errnode;
18462 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18463 bfd_vma ptr;
18464 bfd_vma end;
18465 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18466 bfd_byte tmp;
18467 unsigned int i;
18468
18469 if (globals == NULL)
18470 return FALSE;
18471
18472 /* If this section has not been allocated an _arm_elf_section_data
18473 structure then we cannot record anything. */
18474 arm_data = get_arm_elf_section_data (sec);
18475 if (arm_data == NULL)
18476 return FALSE;
18477
18478 mapcount = arm_data->mapcount;
18479 map = arm_data->map;
18480 errcount = arm_data->erratumcount;
18481
18482 if (errcount != 0)
18483 {
18484 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18485
18486 for (errnode = arm_data->erratumlist; errnode != 0;
18487 errnode = errnode->next)
18488 {
18489 bfd_vma target = errnode->vma - offset;
18490
18491 switch (errnode->type)
18492 {
18493 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18494 {
18495 bfd_vma branch_to_veneer;
18496 /* Original condition code of instruction, plus bit mask for
18497 ARM B instruction. */
18498 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18499 | 0x0a000000;
18500
18501 /* The instruction is before the label. */
18502 target -= 4;
18503
18504 /* Above offset included in -4 below. */
18505 branch_to_veneer = errnode->u.b.veneer->vma
18506 - errnode->vma - 4;
18507
18508 if ((signed) branch_to_veneer < -(1 << 25)
18509 || (signed) branch_to_veneer >= (1 << 25))
18510 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18511 "range"), output_bfd);
18512
18513 insn |= (branch_to_veneer >> 2) & 0xffffff;
18514 contents[endianflip ^ target] = insn & 0xff;
18515 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18516 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18517 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18518 }
18519 break;
18520
18521 case VFP11_ERRATUM_ARM_VENEER:
18522 {
18523 bfd_vma branch_from_veneer;
18524 unsigned int insn;
18525
18526 /* Take size of veneer into account. */
18527 branch_from_veneer = errnode->u.v.branch->vma
18528 - errnode->vma - 12;
18529
18530 if ((signed) branch_from_veneer < -(1 << 25)
18531 || (signed) branch_from_veneer >= (1 << 25))
18532 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18533 "range"), output_bfd);
18534
18535 /* Original instruction. */
18536 insn = errnode->u.v.branch->u.b.vfp_insn;
18537 contents[endianflip ^ target] = insn & 0xff;
18538 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18539 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18540 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18541
18542 /* Branch back to insn after original insn. */
18543 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18544 contents[endianflip ^ (target + 4)] = insn & 0xff;
18545 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18546 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18547 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18548 }
18549 break;
18550
18551 default:
18552 abort ();
18553 }
18554 }
18555 }
18556
18557 if (arm_data->stm32l4xx_erratumcount != 0)
18558 {
18559 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18560 stm32l4xx_errnode != 0;
18561 stm32l4xx_errnode = stm32l4xx_errnode->next)
18562 {
18563 bfd_vma target = stm32l4xx_errnode->vma - offset;
18564
18565 switch (stm32l4xx_errnode->type)
18566 {
18567 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18568 {
18569 unsigned int insn;
18570 bfd_vma branch_to_veneer =
18571 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18572
18573 if ((signed) branch_to_veneer < -(1 << 24)
18574 || (signed) branch_to_veneer >= (1 << 24))
18575 {
18576 bfd_vma out_of_range =
18577 ((signed) branch_to_veneer < -(1 << 24)) ?
18578 - branch_to_veneer - (1 << 24) :
18579 ((signed) branch_to_veneer >= (1 << 24)) ?
18580 branch_to_veneer - (1 << 24) : 0;
18581
18582 _bfd_error_handler
18583 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18584 "Jump out of range by %ld bytes. "
18585 "Cannot encode branch instruction. "),
18586 output_bfd,
18587 (long) (stm32l4xx_errnode->vma - 4),
18588 out_of_range);
18589 continue;
18590 }
18591
18592 insn = create_instruction_branch_absolute
18593 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18594
18595 /* The instruction is before the label. */
18596 target -= 4;
18597
18598 put_thumb2_insn (globals, output_bfd,
18599 (bfd_vma) insn, contents + target);
18600 }
18601 break;
18602
18603 case STM32L4XX_ERRATUM_VENEER:
18604 {
18605 bfd_byte * veneer;
18606 bfd_byte * veneer_r;
18607 unsigned int insn;
18608
18609 veneer = contents + target;
18610 veneer_r = veneer
18611 + stm32l4xx_errnode->u.b.veneer->vma
18612 - stm32l4xx_errnode->vma - 4;
18613
18614 if ((signed) (veneer_r - veneer -
18615 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18616 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18617 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18618 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18619 || (signed) (veneer_r - veneer) >= (1 << 24))
18620 {
18621 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18622 "veneer."), output_bfd);
18623 continue;
18624 }
18625
18626 /* Original instruction. */
18627 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18628
18629 stm32l4xx_create_replacing_stub
18630 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18631 }
18632 break;
18633
18634 default:
18635 abort ();
18636 }
18637 }
18638 }
18639
18640 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18641 {
18642 arm_unwind_table_edit *edit_node
18643 = arm_data->u.exidx.unwind_edit_list;
18644 /* Now, sec->size is the size of the section we will write. The original
18645 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18646 markers) was sec->rawsize. (This isn't the case if we perform no
18647 edits, then rawsize will be zero and we should use size). */
18648 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18649 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18650 unsigned int in_index, out_index;
18651 bfd_vma add_to_offsets = 0;
18652
18653 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18654 {
18655 if (edit_node)
18656 {
18657 unsigned int edit_index = edit_node->index;
18658
18659 if (in_index < edit_index && in_index * 8 < input_size)
18660 {
18661 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18662 contents + in_index * 8, add_to_offsets);
18663 out_index++;
18664 in_index++;
18665 }
18666 else if (in_index == edit_index
18667 || (in_index * 8 >= input_size
18668 && edit_index == UINT_MAX))
18669 {
18670 switch (edit_node->type)
18671 {
18672 case DELETE_EXIDX_ENTRY:
18673 in_index++;
18674 add_to_offsets += 8;
18675 break;
18676
18677 case INSERT_EXIDX_CANTUNWIND_AT_END:
18678 {
18679 asection *text_sec = edit_node->linked_section;
18680 bfd_vma text_offset = text_sec->output_section->vma
18681 + text_sec->output_offset
18682 + text_sec->size;
18683 bfd_vma exidx_offset = offset + out_index * 8;
18684 unsigned long prel31_offset;
18685
18686 /* Note: this is meant to be equivalent to an
18687 R_ARM_PREL31 relocation. These synthetic
18688 EXIDX_CANTUNWIND markers are not relocated by the
18689 usual BFD method. */
18690 prel31_offset = (text_offset - exidx_offset)
18691 & 0x7ffffffful;
18692 if (bfd_link_relocatable (link_info))
18693 {
18694 /* Here relocation for new EXIDX_CANTUNWIND is
18695 created, so there is no need to
18696 adjust offset by hand. */
18697 prel31_offset = text_sec->output_offset
18698 + text_sec->size;
18699 }
18700
18701 /* First address we can't unwind. */
18702 bfd_put_32 (output_bfd, prel31_offset,
18703 &edited_contents[out_index * 8]);
18704
18705 /* Code for EXIDX_CANTUNWIND. */
18706 bfd_put_32 (output_bfd, 0x1,
18707 &edited_contents[out_index * 8 + 4]);
18708
18709 out_index++;
18710 add_to_offsets -= 8;
18711 }
18712 break;
18713 }
18714
18715 edit_node = edit_node->next;
18716 }
18717 }
18718 else
18719 {
18720 /* No more edits, copy remaining entries verbatim. */
18721 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18722 contents + in_index * 8, add_to_offsets);
18723 out_index++;
18724 in_index++;
18725 }
18726 }
18727
18728 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18729 bfd_set_section_contents (output_bfd, sec->output_section,
18730 edited_contents,
18731 (file_ptr) sec->output_offset, sec->size);
18732
18733 return TRUE;
18734 }
18735
18736 /* Fix code to point to Cortex-A8 erratum stubs. */
18737 if (globals->fix_cortex_a8)
18738 {
18739 struct a8_branch_to_stub_data data;
18740
18741 data.writing_section = sec;
18742 data.contents = contents;
18743
18744 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18745 & data);
18746 }
18747
18748 if (mapcount == 0)
18749 return FALSE;
18750
18751 if (globals->byteswap_code)
18752 {
18753 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18754
18755 ptr = map[0].vma;
18756 for (i = 0; i < mapcount; i++)
18757 {
18758 if (i == mapcount - 1)
18759 end = sec->size;
18760 else
18761 end = map[i + 1].vma;
18762
18763 switch (map[i].type)
18764 {
18765 case 'a':
18766 /* Byte swap code words. */
18767 while (ptr + 3 < end)
18768 {
18769 tmp = contents[ptr];
18770 contents[ptr] = contents[ptr + 3];
18771 contents[ptr + 3] = tmp;
18772 tmp = contents[ptr + 1];
18773 contents[ptr + 1] = contents[ptr + 2];
18774 contents[ptr + 2] = tmp;
18775 ptr += 4;
18776 }
18777 break;
18778
18779 case 't':
18780 /* Byte swap code halfwords. */
18781 while (ptr + 1 < end)
18782 {
18783 tmp = contents[ptr];
18784 contents[ptr] = contents[ptr + 1];
18785 contents[ptr + 1] = tmp;
18786 ptr += 2;
18787 }
18788 break;
18789
18790 case 'd':
18791 /* Leave data alone. */
18792 break;
18793 }
18794 ptr = end;
18795 }
18796 }
18797
18798 free (map);
18799 arm_data->mapcount = -1;
18800 arm_data->mapsize = 0;
18801 arm_data->map = NULL;
18802
18803 return FALSE;
18804 }
18805
18806 /* Mangle thumb function symbols as we read them in. */
18807
18808 static bfd_boolean
18809 elf32_arm_swap_symbol_in (bfd * abfd,
18810 const void *psrc,
18811 const void *pshn,
18812 Elf_Internal_Sym *dst)
18813 {
18814 Elf_Internal_Shdr *symtab_hdr;
18815 const char *name = NULL;
18816
18817 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18818 return FALSE;
18819 dst->st_target_internal = 0;
18820
18821 /* New EABI objects mark thumb function symbols by setting the low bit of
18822 the address. */
18823 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18824 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18825 {
18826 if (dst->st_value & 1)
18827 {
18828 dst->st_value &= ~(bfd_vma) 1;
18829 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18830 ST_BRANCH_TO_THUMB);
18831 }
18832 else
18833 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18834 }
18835 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18836 {
18837 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18838 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18839 }
18840 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18841 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18842 else
18843 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18844
18845 /* Mark CMSE special symbols. */
18846 symtab_hdr = & elf_symtab_hdr (abfd);
18847 if (symtab_hdr->sh_size)
18848 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18849 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18850 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18851
18852 return TRUE;
18853 }
18854
18855
18856 /* Mangle thumb function symbols as we write them out. */
18857
18858 static void
18859 elf32_arm_swap_symbol_out (bfd *abfd,
18860 const Elf_Internal_Sym *src,
18861 void *cdst,
18862 void *shndx)
18863 {
18864 Elf_Internal_Sym newsym;
18865
18866 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18867 of the address set, as per the new EABI. We do this unconditionally
18868 because objcopy does not set the elf header flags until after
18869 it writes out the symbol table. */
18870 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18871 {
18872 newsym = *src;
18873 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18874 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18875 if (newsym.st_shndx != SHN_UNDEF)
18876 {
18877 /* Do this only for defined symbols. At link type, the static
18878 linker will simulate the work of dynamic linker of resolving
18879 symbols and will carry over the thumbness of found symbols to
18880 the output symbol table. It's not clear how it happens, but
18881 the thumbness of undefined symbols can well be different at
18882 runtime, and writing '1' for them will be confusing for users
18883 and possibly for dynamic linker itself.
18884 */
18885 newsym.st_value |= 1;
18886 }
18887
18888 src = &newsym;
18889 }
18890 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18891 }
18892
18893 /* Add the PT_ARM_EXIDX program header. */
18894
18895 static bfd_boolean
18896 elf32_arm_modify_segment_map (bfd *abfd,
18897 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18898 {
18899 struct elf_segment_map *m;
18900 asection *sec;
18901
18902 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18903 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18904 {
18905 /* If there is already a PT_ARM_EXIDX header, then we do not
18906 want to add another one. This situation arises when running
18907 "strip"; the input binary already has the header. */
18908 m = elf_seg_map (abfd);
18909 while (m && m->p_type != PT_ARM_EXIDX)
18910 m = m->next;
18911 if (!m)
18912 {
18913 m = (struct elf_segment_map *)
18914 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18915 if (m == NULL)
18916 return FALSE;
18917 m->p_type = PT_ARM_EXIDX;
18918 m->count = 1;
18919 m->sections[0] = sec;
18920
18921 m->next = elf_seg_map (abfd);
18922 elf_seg_map (abfd) = m;
18923 }
18924 }
18925
18926 return TRUE;
18927 }
18928
18929 /* We may add a PT_ARM_EXIDX program header. */
18930
18931 static int
18932 elf32_arm_additional_program_headers (bfd *abfd,
18933 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18934 {
18935 asection *sec;
18936
18937 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18938 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18939 return 1;
18940 else
18941 return 0;
18942 }
18943
18944 /* Hook called by the linker routine which adds symbols from an object
18945 file. */
18946
18947 static bfd_boolean
18948 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18949 Elf_Internal_Sym *sym, const char **namep,
18950 flagword *flagsp, asection **secp, bfd_vma *valp)
18951 {
18952 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18953 && (abfd->flags & DYNAMIC) == 0
18954 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18955 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18956
18957 if (elf32_arm_hash_table (info) == NULL)
18958 return FALSE;
18959
18960 if (elf32_arm_hash_table (info)->vxworks_p
18961 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18962 flagsp, secp, valp))
18963 return FALSE;
18964
18965 return TRUE;
18966 }
18967
18968 /* We use this to override swap_symbol_in and swap_symbol_out. */
18969 const struct elf_size_info elf32_arm_size_info =
18970 {
18971 sizeof (Elf32_External_Ehdr),
18972 sizeof (Elf32_External_Phdr),
18973 sizeof (Elf32_External_Shdr),
18974 sizeof (Elf32_External_Rel),
18975 sizeof (Elf32_External_Rela),
18976 sizeof (Elf32_External_Sym),
18977 sizeof (Elf32_External_Dyn),
18978 sizeof (Elf_External_Note),
18979 4,
18980 1,
18981 32, 2,
18982 ELFCLASS32, EV_CURRENT,
18983 bfd_elf32_write_out_phdrs,
18984 bfd_elf32_write_shdrs_and_ehdr,
18985 bfd_elf32_checksum_contents,
18986 bfd_elf32_write_relocs,
18987 elf32_arm_swap_symbol_in,
18988 elf32_arm_swap_symbol_out,
18989 bfd_elf32_slurp_reloc_table,
18990 bfd_elf32_slurp_symbol_table,
18991 bfd_elf32_swap_dyn_in,
18992 bfd_elf32_swap_dyn_out,
18993 bfd_elf32_swap_reloc_in,
18994 bfd_elf32_swap_reloc_out,
18995 bfd_elf32_swap_reloca_in,
18996 bfd_elf32_swap_reloca_out
18997 };
18998
18999 static bfd_vma
19000 read_code32 (const bfd *abfd, const bfd_byte *addr)
19001 {
19002 /* V7 BE8 code is always little endian. */
19003 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19004 return bfd_getl32 (addr);
19005
19006 return bfd_get_32 (abfd, addr);
19007 }
19008
19009 static bfd_vma
19010 read_code16 (const bfd *abfd, const bfd_byte *addr)
19011 {
19012 /* V7 BE8 code is always little endian. */
19013 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19014 return bfd_getl16 (addr);
19015
19016 return bfd_get_16 (abfd, addr);
19017 }
19018
19019 /* Return size of plt0 entry starting at ADDR
19020 or (bfd_vma) -1 if size can not be determined. */
19021
19022 static bfd_vma
19023 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19024 {
19025 bfd_vma first_word;
19026 bfd_vma plt0_size;
19027
19028 first_word = read_code32 (abfd, addr);
19029
19030 if (first_word == elf32_arm_plt0_entry[0])
19031 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19032 else if (first_word == elf32_thumb2_plt0_entry[0])
19033 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19034 else
19035 /* We don't yet handle this PLT format. */
19036 return (bfd_vma) -1;
19037
19038 return plt0_size;
19039 }
19040
19041 /* Return size of plt entry starting at offset OFFSET
19042 of plt section located at address START
19043 or (bfd_vma) -1 if size can not be determined. */
19044
19045 static bfd_vma
19046 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19047 {
19048 bfd_vma first_insn;
19049 bfd_vma plt_size = 0;
19050 const bfd_byte *addr = start + offset;
19051
19052 /* PLT entry size if fixed on Thumb-only platforms. */
19053 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19054 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19055
19056 /* Respect Thumb stub if necessary. */
19057 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19058 {
19059 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19060 }
19061
19062 /* Strip immediate from first add. */
19063 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19064
19065 #ifdef FOUR_WORD_PLT
19066 if (first_insn == elf32_arm_plt_entry[0])
19067 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19068 #else
19069 if (first_insn == elf32_arm_plt_entry_long[0])
19070 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19071 else if (first_insn == elf32_arm_plt_entry_short[0])
19072 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19073 #endif
19074 else
19075 /* We don't yet handle this PLT format. */
19076 return (bfd_vma) -1;
19077
19078 return plt_size;
19079 }
19080
19081 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19082
19083 static long
19084 elf32_arm_get_synthetic_symtab (bfd *abfd,
19085 long symcount ATTRIBUTE_UNUSED,
19086 asymbol **syms ATTRIBUTE_UNUSED,
19087 long dynsymcount,
19088 asymbol **dynsyms,
19089 asymbol **ret)
19090 {
19091 asection *relplt;
19092 asymbol *s;
19093 arelent *p;
19094 long count, i, n;
19095 size_t size;
19096 Elf_Internal_Shdr *hdr;
19097 char *names;
19098 asection *plt;
19099 bfd_vma offset;
19100 bfd_byte *data;
19101
19102 *ret = NULL;
19103
19104 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19105 return 0;
19106
19107 if (dynsymcount <= 0)
19108 return 0;
19109
19110 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19111 if (relplt == NULL)
19112 return 0;
19113
19114 hdr = &elf_section_data (relplt)->this_hdr;
19115 if (hdr->sh_link != elf_dynsymtab (abfd)
19116 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19117 return 0;
19118
19119 plt = bfd_get_section_by_name (abfd, ".plt");
19120 if (plt == NULL)
19121 return 0;
19122
19123 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19124 return -1;
19125
19126 data = plt->contents;
19127 if (data == NULL)
19128 {
19129 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19130 return -1;
19131 bfd_cache_section_contents((asection *) plt, data);
19132 }
19133
19134 count = relplt->size / hdr->sh_entsize;
19135 size = count * sizeof (asymbol);
19136 p = relplt->relocation;
19137 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19138 {
19139 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19140 if (p->addend != 0)
19141 size += sizeof ("+0x") - 1 + 8;
19142 }
19143
19144 s = *ret = (asymbol *) bfd_malloc (size);
19145 if (s == NULL)
19146 return -1;
19147
19148 offset = elf32_arm_plt0_size (abfd, data);
19149 if (offset == (bfd_vma) -1)
19150 return -1;
19151
19152 names = (char *) (s + count);
19153 p = relplt->relocation;
19154 n = 0;
19155 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19156 {
19157 size_t len;
19158
19159 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19160 if (plt_size == (bfd_vma) -1)
19161 break;
19162
19163 *s = **p->sym_ptr_ptr;
19164 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19165 we are defining a symbol, ensure one of them is set. */
19166 if ((s->flags & BSF_LOCAL) == 0)
19167 s->flags |= BSF_GLOBAL;
19168 s->flags |= BSF_SYNTHETIC;
19169 s->section = plt;
19170 s->value = offset;
19171 s->name = names;
19172 s->udata.p = NULL;
19173 len = strlen ((*p->sym_ptr_ptr)->name);
19174 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19175 names += len;
19176 if (p->addend != 0)
19177 {
19178 char buf[30], *a;
19179
19180 memcpy (names, "+0x", sizeof ("+0x") - 1);
19181 names += sizeof ("+0x") - 1;
19182 bfd_sprintf_vma (abfd, buf, p->addend);
19183 for (a = buf; *a == '0'; ++a)
19184 ;
19185 len = strlen (a);
19186 memcpy (names, a, len);
19187 names += len;
19188 }
19189 memcpy (names, "@plt", sizeof ("@plt"));
19190 names += sizeof ("@plt");
19191 ++s, ++n;
19192 offset += plt_size;
19193 }
19194
19195 return n;
19196 }
19197
19198 static bfd_boolean
19199 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19200 {
19201 if (hdr->sh_flags & SHF_ARM_PURECODE)
19202 *flags |= SEC_ELF_PURECODE;
19203 return TRUE;
19204 }
19205
19206 static flagword
19207 elf32_arm_lookup_section_flags (char *flag_name)
19208 {
19209 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19210 return SHF_ARM_PURECODE;
19211
19212 return SEC_NO_FLAGS;
19213 }
19214
19215 static unsigned int
19216 elf32_arm_count_additional_relocs (asection *sec)
19217 {
19218 struct _arm_elf_section_data *arm_data;
19219 arm_data = get_arm_elf_section_data (sec);
19220
19221 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19222 }
19223
19224 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19225 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19226 FALSE otherwise. ISECTION is the best guess matching section from the
19227 input bfd IBFD, but it might be NULL. */
19228
19229 static bfd_boolean
19230 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19231 bfd *obfd ATTRIBUTE_UNUSED,
19232 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19233 Elf_Internal_Shdr *osection)
19234 {
19235 switch (osection->sh_type)
19236 {
19237 case SHT_ARM_EXIDX:
19238 {
19239 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19240 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19241 unsigned i = 0;
19242
19243 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19244 osection->sh_info = 0;
19245
19246 /* The sh_link field must be set to the text section associated with
19247 this index section. Unfortunately the ARM EHABI does not specify
19248 exactly how to determine this association. Our caller does try
19249 to match up OSECTION with its corresponding input section however
19250 so that is a good first guess. */
19251 if (isection != NULL
19252 && osection->bfd_section != NULL
19253 && isection->bfd_section != NULL
19254 && isection->bfd_section->output_section != NULL
19255 && isection->bfd_section->output_section == osection->bfd_section
19256 && iheaders != NULL
19257 && isection->sh_link > 0
19258 && isection->sh_link < elf_numsections (ibfd)
19259 && iheaders[isection->sh_link]->bfd_section != NULL
19260 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19261 )
19262 {
19263 for (i = elf_numsections (obfd); i-- > 0;)
19264 if (oheaders[i]->bfd_section
19265 == iheaders[isection->sh_link]->bfd_section->output_section)
19266 break;
19267 }
19268
19269 if (i == 0)
19270 {
19271 /* Failing that we have to find a matching section ourselves. If
19272 we had the output section name available we could compare that
19273 with input section names. Unfortunately we don't. So instead
19274 we use a simple heuristic and look for the nearest executable
19275 section before this one. */
19276 for (i = elf_numsections (obfd); i-- > 0;)
19277 if (oheaders[i] == osection)
19278 break;
19279 if (i == 0)
19280 break;
19281
19282 while (i-- > 0)
19283 if (oheaders[i]->sh_type == SHT_PROGBITS
19284 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19285 == (SHF_ALLOC | SHF_EXECINSTR))
19286 break;
19287 }
19288
19289 if (i)
19290 {
19291 osection->sh_link = i;
19292 /* If the text section was part of a group
19293 then the index section should be too. */
19294 if (oheaders[i]->sh_flags & SHF_GROUP)
19295 osection->sh_flags |= SHF_GROUP;
19296 return TRUE;
19297 }
19298 }
19299 break;
19300
19301 case SHT_ARM_PREEMPTMAP:
19302 osection->sh_flags = SHF_ALLOC;
19303 break;
19304
19305 case SHT_ARM_ATTRIBUTES:
19306 case SHT_ARM_DEBUGOVERLAY:
19307 case SHT_ARM_OVERLAYSECTION:
19308 default:
19309 break;
19310 }
19311
19312 return FALSE;
19313 }
19314
19315 /* Returns TRUE if NAME is an ARM mapping symbol.
19316 Traditionally the symbols $a, $d and $t have been used.
19317 The ARM ELF standard also defines $x (for A64 code). It also allows a
19318 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19319 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19320 not support them here. $t.x indicates the start of ThumbEE instructions. */
19321
19322 static bfd_boolean
19323 is_arm_mapping_symbol (const char * name)
19324 {
19325 return name != NULL /* Paranoia. */
19326 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19327 the mapping symbols could have acquired a prefix.
19328 We do not support this here, since such symbols no
19329 longer conform to the ARM ELF ABI. */
19330 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19331 && (name[2] == 0 || name[2] == '.');
19332 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19333 any characters that follow the period are legal characters for the body
19334 of a symbol's name. For now we just assume that this is the case. */
19335 }
19336
19337 /* Make sure that mapping symbols in object files are not removed via the
19338 "strip --strip-unneeded" tool. These symbols are needed in order to
19339 correctly generate interworking veneers, and for byte swapping code
19340 regions. Once an object file has been linked, it is safe to remove the
19341 symbols as they will no longer be needed. */
19342
19343 static void
19344 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19345 {
19346 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19347 && sym->section != bfd_abs_section_ptr
19348 && is_arm_mapping_symbol (sym->name))
19349 sym->flags |= BSF_KEEP;
19350 }
19351
19352 #undef elf_backend_copy_special_section_fields
19353 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19354
19355 #define ELF_ARCH bfd_arch_arm
19356 #define ELF_TARGET_ID ARM_ELF_DATA
19357 #define ELF_MACHINE_CODE EM_ARM
19358 #ifdef __QNXTARGET__
19359 #define ELF_MAXPAGESIZE 0x1000
19360 #else
19361 #define ELF_MAXPAGESIZE 0x10000
19362 #endif
19363 #define ELF_MINPAGESIZE 0x1000
19364 #define ELF_COMMONPAGESIZE 0x1000
19365
19366 #define bfd_elf32_mkobject elf32_arm_mkobject
19367
19368 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19369 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19370 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19371 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19372 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19373 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19374 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19375 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19376 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19377 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19378 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19379 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19380 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19381
19382 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19383 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19384 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19385 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19386 #define elf_backend_check_relocs elf32_arm_check_relocs
19387 #define elf_backend_update_relocs elf32_arm_update_relocs
19388 #define elf_backend_relocate_section elf32_arm_relocate_section
19389 #define elf_backend_write_section elf32_arm_write_section
19390 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19391 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19392 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19393 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19394 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19395 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19396 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19397 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19398 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19399 #define elf_backend_object_p elf32_arm_object_p
19400 #define elf_backend_fake_sections elf32_arm_fake_sections
19401 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19402 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19403 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19404 #define elf_backend_size_info elf32_arm_size_info
19405 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19406 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19407 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19408 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19409 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19410 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19411 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19412 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19413
19414 #define elf_backend_can_refcount 1
19415 #define elf_backend_can_gc_sections 1
19416 #define elf_backend_plt_readonly 1
19417 #define elf_backend_want_got_plt 1
19418 #define elf_backend_want_plt_sym 0
19419 #define elf_backend_may_use_rel_p 1
19420 #define elf_backend_may_use_rela_p 0
19421 #define elf_backend_default_use_rela_p 0
19422
19423 #define elf_backend_got_header_size 12
19424 #define elf_backend_extern_protected_data 1
19425
19426 #undef elf_backend_obj_attrs_vendor
19427 #define elf_backend_obj_attrs_vendor "aeabi"
19428 #undef elf_backend_obj_attrs_section
19429 #define elf_backend_obj_attrs_section ".ARM.attributes"
19430 #undef elf_backend_obj_attrs_arg_type
19431 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19432 #undef elf_backend_obj_attrs_section_type
19433 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19434 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19435 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19436
19437 #undef elf_backend_section_flags
19438 #define elf_backend_section_flags elf32_arm_section_flags
19439 #undef elf_backend_lookup_section_flags_hook
19440 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19441
19442 #include "elf32-target.h"
19443
19444 /* Native Client targets. */
19445
19446 #undef TARGET_LITTLE_SYM
19447 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19448 #undef TARGET_LITTLE_NAME
19449 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19450 #undef TARGET_BIG_SYM
19451 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19452 #undef TARGET_BIG_NAME
19453 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19454
19455 /* Like elf32_arm_link_hash_table_create -- but overrides
19456 appropriately for NaCl. */
19457
19458 static struct bfd_link_hash_table *
19459 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19460 {
19461 struct bfd_link_hash_table *ret;
19462
19463 ret = elf32_arm_link_hash_table_create (abfd);
19464 if (ret)
19465 {
19466 struct elf32_arm_link_hash_table *htab
19467 = (struct elf32_arm_link_hash_table *) ret;
19468
19469 htab->nacl_p = 1;
19470
19471 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19472 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19473 }
19474 return ret;
19475 }
19476
19477 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19478 really need to use elf32_arm_modify_segment_map. But we do it
19479 anyway just to reduce gratuitous differences with the stock ARM backend. */
19480
19481 static bfd_boolean
19482 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19483 {
19484 return (elf32_arm_modify_segment_map (abfd, info)
19485 && nacl_modify_segment_map (abfd, info));
19486 }
19487
19488 static void
19489 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19490 {
19491 elf32_arm_final_write_processing (abfd, linker);
19492 nacl_final_write_processing (abfd, linker);
19493 }
19494
19495 static bfd_vma
19496 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19497 const arelent *rel ATTRIBUTE_UNUSED)
19498 {
19499 return plt->vma
19500 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19501 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19502 }
19503
19504 #undef elf32_bed
19505 #define elf32_bed elf32_arm_nacl_bed
19506 #undef bfd_elf32_bfd_link_hash_table_create
19507 #define bfd_elf32_bfd_link_hash_table_create \
19508 elf32_arm_nacl_link_hash_table_create
19509 #undef elf_backend_plt_alignment
19510 #define elf_backend_plt_alignment 4
19511 #undef elf_backend_modify_segment_map
19512 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19513 #undef elf_backend_modify_program_headers
19514 #define elf_backend_modify_program_headers nacl_modify_program_headers
19515 #undef elf_backend_final_write_processing
19516 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19517 #undef bfd_elf32_get_synthetic_symtab
19518 #undef elf_backend_plt_sym_val
19519 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19520 #undef elf_backend_copy_special_section_fields
19521
19522 #undef ELF_MINPAGESIZE
19523 #undef ELF_COMMONPAGESIZE
19524
19525
19526 #include "elf32-target.h"
19527
19528 /* Reset to defaults. */
19529 #undef elf_backend_plt_alignment
19530 #undef elf_backend_modify_segment_map
19531 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19532 #undef elf_backend_modify_program_headers
19533 #undef elf_backend_final_write_processing
19534 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19535 #undef ELF_MINPAGESIZE
19536 #define ELF_MINPAGESIZE 0x1000
19537 #undef ELF_COMMONPAGESIZE
19538 #define ELF_COMMONPAGESIZE 0x1000
19539
19540
19541 /* VxWorks Targets. */
19542
19543 #undef TARGET_LITTLE_SYM
19544 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19545 #undef TARGET_LITTLE_NAME
19546 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19547 #undef TARGET_BIG_SYM
19548 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19549 #undef TARGET_BIG_NAME
19550 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19551
19552 /* Like elf32_arm_link_hash_table_create -- but overrides
19553 appropriately for VxWorks. */
19554
19555 static struct bfd_link_hash_table *
19556 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19557 {
19558 struct bfd_link_hash_table *ret;
19559
19560 ret = elf32_arm_link_hash_table_create (abfd);
19561 if (ret)
19562 {
19563 struct elf32_arm_link_hash_table *htab
19564 = (struct elf32_arm_link_hash_table *) ret;
19565 htab->use_rel = 0;
19566 htab->vxworks_p = 1;
19567 }
19568 return ret;
19569 }
19570
19571 static void
19572 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19573 {
19574 elf32_arm_final_write_processing (abfd, linker);
19575 elf_vxworks_final_write_processing (abfd, linker);
19576 }
19577
19578 #undef elf32_bed
19579 #define elf32_bed elf32_arm_vxworks_bed
19580
19581 #undef bfd_elf32_bfd_link_hash_table_create
19582 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19583 #undef elf_backend_final_write_processing
19584 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19585 #undef elf_backend_emit_relocs
19586 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19587
19588 #undef elf_backend_may_use_rel_p
19589 #define elf_backend_may_use_rel_p 0
19590 #undef elf_backend_may_use_rela_p
19591 #define elf_backend_may_use_rela_p 1
19592 #undef elf_backend_default_use_rela_p
19593 #define elf_backend_default_use_rela_p 1
19594 #undef elf_backend_want_plt_sym
19595 #define elf_backend_want_plt_sym 1
19596 #undef ELF_MAXPAGESIZE
19597 #define ELF_MAXPAGESIZE 0x1000
19598
19599 #include "elf32-target.h"
19600
19601
19602 /* Merge backend specific data from an object file to the output
19603 object file when linking. */
19604
19605 static bfd_boolean
19606 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19607 {
19608 bfd *obfd = info->output_bfd;
19609 flagword out_flags;
19610 flagword in_flags;
19611 bfd_boolean flags_compatible = TRUE;
19612 asection *sec;
19613
19614 /* Check if we have the same endianness. */
19615 if (! _bfd_generic_verify_endian_match (ibfd, info))
19616 return FALSE;
19617
19618 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19619 return TRUE;
19620
19621 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19622 return FALSE;
19623
19624 /* The input BFD must have had its flags initialised. */
19625 /* The following seems bogus to me -- The flags are initialized in
19626 the assembler but I don't think an elf_flags_init field is
19627 written into the object. */
19628 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19629
19630 in_flags = elf_elfheader (ibfd)->e_flags;
19631 out_flags = elf_elfheader (obfd)->e_flags;
19632
19633 /* In theory there is no reason why we couldn't handle this. However
19634 in practice it isn't even close to working and there is no real
19635 reason to want it. */
19636 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19637 && !(ibfd->flags & DYNAMIC)
19638 && (in_flags & EF_ARM_BE8))
19639 {
19640 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19641 ibfd);
19642 return FALSE;
19643 }
19644
19645 if (!elf_flags_init (obfd))
19646 {
19647 /* If the input is the default architecture and had the default
19648 flags then do not bother setting the flags for the output
19649 architecture, instead allow future merges to do this. If no
19650 future merges ever set these flags then they will retain their
19651 uninitialised values, which surprise surprise, correspond
19652 to the default values. */
19653 if (bfd_get_arch_info (ibfd)->the_default
19654 && elf_elfheader (ibfd)->e_flags == 0)
19655 return TRUE;
19656
19657 elf_flags_init (obfd) = TRUE;
19658 elf_elfheader (obfd)->e_flags = in_flags;
19659
19660 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19661 && bfd_get_arch_info (obfd)->the_default)
19662 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19663
19664 return TRUE;
19665 }
19666
19667 /* Determine what should happen if the input ARM architecture
19668 does not match the output ARM architecture. */
19669 if (! bfd_arm_merge_machines (ibfd, obfd))
19670 return FALSE;
19671
19672 /* Identical flags must be compatible. */
19673 if (in_flags == out_flags)
19674 return TRUE;
19675
19676 /* Check to see if the input BFD actually contains any sections. If
19677 not, its flags may not have been initialised either, but it
19678 cannot actually cause any incompatiblity. Do not short-circuit
19679 dynamic objects; their section list may be emptied by
19680 elf_link_add_object_symbols.
19681
19682 Also check to see if there are no code sections in the input.
19683 In this case there is no need to check for code specific flags.
19684 XXX - do we need to worry about floating-point format compatability
19685 in data sections ? */
19686 if (!(ibfd->flags & DYNAMIC))
19687 {
19688 bfd_boolean null_input_bfd = TRUE;
19689 bfd_boolean only_data_sections = TRUE;
19690
19691 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19692 {
19693 /* Ignore synthetic glue sections. */
19694 if (strcmp (sec->name, ".glue_7")
19695 && strcmp (sec->name, ".glue_7t"))
19696 {
19697 if ((bfd_get_section_flags (ibfd, sec)
19698 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19699 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19700 only_data_sections = FALSE;
19701
19702 null_input_bfd = FALSE;
19703 break;
19704 }
19705 }
19706
19707 if (null_input_bfd || only_data_sections)
19708 return TRUE;
19709 }
19710
19711 /* Complain about various flag mismatches. */
19712 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19713 EF_ARM_EABI_VERSION (out_flags)))
19714 {
19715 _bfd_error_handler
19716 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19717 ibfd, obfd,
19718 (in_flags & EF_ARM_EABIMASK) >> 24,
19719 (out_flags & EF_ARM_EABIMASK) >> 24);
19720 return FALSE;
19721 }
19722
19723 /* Not sure what needs to be checked for EABI versions >= 1. */
19724 /* VxWorks libraries do not use these flags. */
19725 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19726 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19727 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19728 {
19729 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19730 {
19731 _bfd_error_handler
19732 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19733 ibfd, obfd,
19734 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19735 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19736 flags_compatible = FALSE;
19737 }
19738
19739 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19740 {
19741 if (in_flags & EF_ARM_APCS_FLOAT)
19742 _bfd_error_handler
19743 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19744 ibfd, obfd);
19745 else
19746 _bfd_error_handler
19747 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19748 ibfd, obfd);
19749
19750 flags_compatible = FALSE;
19751 }
19752
19753 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19754 {
19755 if (in_flags & EF_ARM_VFP_FLOAT)
19756 _bfd_error_handler
19757 (_("error: %B uses VFP instructions, whereas %B does not"),
19758 ibfd, obfd);
19759 else
19760 _bfd_error_handler
19761 (_("error: %B uses FPA instructions, whereas %B does not"),
19762 ibfd, obfd);
19763
19764 flags_compatible = FALSE;
19765 }
19766
19767 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19768 {
19769 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19770 _bfd_error_handler
19771 (_("error: %B uses Maverick instructions, whereas %B does not"),
19772 ibfd, obfd);
19773 else
19774 _bfd_error_handler
19775 (_("error: %B does not use Maverick instructions, whereas %B does"),
19776 ibfd, obfd);
19777
19778 flags_compatible = FALSE;
19779 }
19780
19781 #ifdef EF_ARM_SOFT_FLOAT
19782 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19783 {
19784 /* We can allow interworking between code that is VFP format
19785 layout, and uses either soft float or integer regs for
19786 passing floating point arguments and results. We already
19787 know that the APCS_FLOAT flags match; similarly for VFP
19788 flags. */
19789 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19790 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19791 {
19792 if (in_flags & EF_ARM_SOFT_FLOAT)
19793 _bfd_error_handler
19794 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19795 ibfd, obfd);
19796 else
19797 _bfd_error_handler
19798 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19799 ibfd, obfd);
19800
19801 flags_compatible = FALSE;
19802 }
19803 }
19804 #endif
19805
19806 /* Interworking mismatch is only a warning. */
19807 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19808 {
19809 if (in_flags & EF_ARM_INTERWORK)
19810 {
19811 _bfd_error_handler
19812 (_("Warning: %B supports interworking, whereas %B does not"),
19813 ibfd, obfd);
19814 }
19815 else
19816 {
19817 _bfd_error_handler
19818 (_("Warning: %B does not support interworking, whereas %B does"),
19819 ibfd, obfd);
19820 }
19821 }
19822 }
19823
19824 return flags_compatible;
19825 }
19826
19827
19828 /* Symbian OS Targets. */
19829
19830 #undef TARGET_LITTLE_SYM
19831 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19832 #undef TARGET_LITTLE_NAME
19833 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19834 #undef TARGET_BIG_SYM
19835 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19836 #undef TARGET_BIG_NAME
19837 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19838
19839 /* Like elf32_arm_link_hash_table_create -- but overrides
19840 appropriately for Symbian OS. */
19841
19842 static struct bfd_link_hash_table *
19843 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19844 {
19845 struct bfd_link_hash_table *ret;
19846
19847 ret = elf32_arm_link_hash_table_create (abfd);
19848 if (ret)
19849 {
19850 struct elf32_arm_link_hash_table *htab
19851 = (struct elf32_arm_link_hash_table *)ret;
19852 /* There is no PLT header for Symbian OS. */
19853 htab->plt_header_size = 0;
19854 /* The PLT entries are each one instruction and one word. */
19855 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19856 htab->symbian_p = 1;
19857 /* Symbian uses armv5t or above, so use_blx is always true. */
19858 htab->use_blx = 1;
19859 htab->root.is_relocatable_executable = 1;
19860 }
19861 return ret;
19862 }
19863
19864 static const struct bfd_elf_special_section
19865 elf32_arm_symbian_special_sections[] =
19866 {
19867 /* In a BPABI executable, the dynamic linking sections do not go in
19868 the loadable read-only segment. The post-linker may wish to
19869 refer to these sections, but they are not part of the final
19870 program image. */
19871 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19872 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19873 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19874 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19875 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19876 /* These sections do not need to be writable as the SymbianOS
19877 postlinker will arrange things so that no dynamic relocation is
19878 required. */
19879 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19880 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19881 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19882 { NULL, 0, 0, 0, 0 }
19883 };
19884
19885 static void
19886 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19887 struct bfd_link_info *link_info)
19888 {
19889 /* BPABI objects are never loaded directly by an OS kernel; they are
19890 processed by a postlinker first, into an OS-specific format. If
19891 the D_PAGED bit is set on the file, BFD will align segments on
19892 page boundaries, so that an OS can directly map the file. With
19893 BPABI objects, that just results in wasted space. In addition,
19894 because we clear the D_PAGED bit, map_sections_to_segments will
19895 recognize that the program headers should not be mapped into any
19896 loadable segment. */
19897 abfd->flags &= ~D_PAGED;
19898 elf32_arm_begin_write_processing (abfd, link_info);
19899 }
19900
19901 static bfd_boolean
19902 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19903 struct bfd_link_info *info)
19904 {
19905 struct elf_segment_map *m;
19906 asection *dynsec;
19907
19908 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19909 segment. However, because the .dynamic section is not marked
19910 with SEC_LOAD, the generic ELF code will not create such a
19911 segment. */
19912 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19913 if (dynsec)
19914 {
19915 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19916 if (m->p_type == PT_DYNAMIC)
19917 break;
19918
19919 if (m == NULL)
19920 {
19921 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19922 m->next = elf_seg_map (abfd);
19923 elf_seg_map (abfd) = m;
19924 }
19925 }
19926
19927 /* Also call the generic arm routine. */
19928 return elf32_arm_modify_segment_map (abfd, info);
19929 }
19930
19931 /* Return address for Ith PLT stub in section PLT, for relocation REL
19932 or (bfd_vma) -1 if it should not be included. */
19933
19934 static bfd_vma
19935 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19936 const arelent *rel ATTRIBUTE_UNUSED)
19937 {
19938 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19939 }
19940
19941 #undef elf32_bed
19942 #define elf32_bed elf32_arm_symbian_bed
19943
19944 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19945 will process them and then discard them. */
19946 #undef ELF_DYNAMIC_SEC_FLAGS
19947 #define ELF_DYNAMIC_SEC_FLAGS \
19948 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19949
19950 #undef elf_backend_emit_relocs
19951
19952 #undef bfd_elf32_bfd_link_hash_table_create
19953 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19954 #undef elf_backend_special_sections
19955 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19956 #undef elf_backend_begin_write_processing
19957 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19958 #undef elf_backend_final_write_processing
19959 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19960
19961 #undef elf_backend_modify_segment_map
19962 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19963
19964 /* There is no .got section for BPABI objects, and hence no header. */
19965 #undef elf_backend_got_header_size
19966 #define elf_backend_got_header_size 0
19967
19968 /* Similarly, there is no .got.plt section. */
19969 #undef elf_backend_want_got_plt
19970 #define elf_backend_want_got_plt 0
19971
19972 #undef elf_backend_plt_sym_val
19973 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19974
19975 #undef elf_backend_may_use_rel_p
19976 #define elf_backend_may_use_rel_p 1
19977 #undef elf_backend_may_use_rela_p
19978 #define elf_backend_may_use_rela_p 0
19979 #undef elf_backend_default_use_rela_p
19980 #define elf_backend_default_use_rela_p 0
19981 #undef elf_backend_want_plt_sym
19982 #define elf_backend_want_plt_sym 0
19983 #undef ELF_MAXPAGESIZE
19984 #define ELF_MAXPAGESIZE 0x8000
19985
19986 #include "elf32-target.h"