e1ee67315f84f59ea11d62015e8ffa0e0530ebcf
[binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 /* The name of the dynamic interpreter. This is put in the .interp
2142 section. */
2143 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2144
2145 static const unsigned long tls_trampoline [] =
2146 {
2147 0xe08e0000, /* add r0, lr, r0 */
2148 0xe5901004, /* ldr r1, [r0,#4] */
2149 0xe12fff11, /* bx r1 */
2150 };
2151
2152 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2153 {
2154 0xe52d2004, /* push {r2} */
2155 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2156 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2157 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2158 0xe081100f, /* 2: add r1, pc */
2159 0xe12fff12, /* bx r2 */
2160 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2161 + dl_tlsdesc_lazy_resolver(GOT) */
2162 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2163 };
2164
2165 #ifdef FOUR_WORD_PLT
2166
2167 /* The first entry in a procedure linkage table looks like
2168 this. It is set up so that any shared library function that is
2169 called before the relocation has been set up calls the dynamic
2170 linker first. */
2171 static const bfd_vma elf32_arm_plt0_entry [] =
2172 {
2173 0xe52de004, /* str lr, [sp, #-4]! */
2174 0xe59fe010, /* ldr lr, [pc, #16] */
2175 0xe08fe00e, /* add lr, pc, lr */
2176 0xe5bef008, /* ldr pc, [lr, #8]! */
2177 };
2178
2179 /* Subsequent entries in a procedure linkage table look like
2180 this. */
2181 static const bfd_vma elf32_arm_plt_entry [] =
2182 {
2183 0xe28fc600, /* add ip, pc, #NN */
2184 0xe28cca00, /* add ip, ip, #NN */
2185 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2186 0x00000000, /* unused */
2187 };
2188
2189 #else /* not FOUR_WORD_PLT */
2190
2191 /* The first entry in a procedure linkage table looks like
2192 this. It is set up so that any shared library function that is
2193 called before the relocation has been set up calls the dynamic
2194 linker first. */
2195 static const bfd_vma elf32_arm_plt0_entry [] =
2196 {
2197 0xe52de004, /* str lr, [sp, #-4]! */
2198 0xe59fe004, /* ldr lr, [pc, #4] */
2199 0xe08fe00e, /* add lr, pc, lr */
2200 0xe5bef008, /* ldr pc, [lr, #8]! */
2201 0x00000000, /* &GOT[0] - . */
2202 };
2203
2204 /* By default subsequent entries in a procedure linkage table look like
2205 this. Offsets that don't fit into 28 bits will cause link error. */
2206 static const bfd_vma elf32_arm_plt_entry_short [] =
2207 {
2208 0xe28fc600, /* add ip, pc, #0xNN00000 */
2209 0xe28cca00, /* add ip, ip, #0xNN000 */
2210 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2211 };
2212
2213 /* When explicitly asked, we'll use this "long" entry format
2214 which can cope with arbitrary displacements. */
2215 static const bfd_vma elf32_arm_plt_entry_long [] =
2216 {
2217 0xe28fc200, /* add ip, pc, #0xN0000000 */
2218 0xe28cc600, /* add ip, ip, #0xNN00000 */
2219 0xe28cca00, /* add ip, ip, #0xNN000 */
2220 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2221 };
2222
2223 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2224
2225 #endif /* not FOUR_WORD_PLT */
2226
2227 /* The first entry in a procedure linkage table looks like this.
2228 It is set up so that any shared library function that is called before the
2229 relocation has been set up calls the dynamic linker first. */
2230 static const bfd_vma elf32_thumb2_plt0_entry [] =
2231 {
2232 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2233 an instruction maybe encoded to one or two array elements. */
2234 0xf8dfb500, /* push {lr} */
2235 0x44fee008, /* ldr.w lr, [pc, #8] */
2236 /* add lr, pc */
2237 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2238 0x00000000, /* &GOT[0] - . */
2239 };
2240
2241 /* Subsequent entries in a procedure linkage table for thumb only target
2242 look like this. */
2243 static const bfd_vma elf32_thumb2_plt_entry [] =
2244 {
2245 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2246 an instruction maybe encoded to one or two array elements. */
2247 0x0c00f240, /* movw ip, #0xNNNN */
2248 0x0c00f2c0, /* movt ip, #0xNNNN */
2249 0xf8dc44fc, /* add ip, pc */
2250 0xbf00f000 /* ldr.w pc, [ip] */
2251 /* nop */
2252 };
2253
2254 /* The format of the first entry in the procedure linkage table
2255 for a VxWorks executable. */
2256 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2257 {
2258 0xe52dc008, /* str ip,[sp,#-8]! */
2259 0xe59fc000, /* ldr ip,[pc] */
2260 0xe59cf008, /* ldr pc,[ip,#8] */
2261 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2262 };
2263
2264 /* The format of subsequent entries in a VxWorks executable. */
2265 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2266 {
2267 0xe59fc000, /* ldr ip,[pc] */
2268 0xe59cf000, /* ldr pc,[ip] */
2269 0x00000000, /* .long @got */
2270 0xe59fc000, /* ldr ip,[pc] */
2271 0xea000000, /* b _PLT */
2272 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2273 };
2274
2275 /* The format of entries in a VxWorks shared library. */
2276 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2277 {
2278 0xe59fc000, /* ldr ip,[pc] */
2279 0xe79cf009, /* ldr pc,[ip,r9] */
2280 0x00000000, /* .long @got */
2281 0xe59fc000, /* ldr ip,[pc] */
2282 0xe599f008, /* ldr pc,[r9,#8] */
2283 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2284 };
2285
2286 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2287 #define PLT_THUMB_STUB_SIZE 4
2288 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2289 {
2290 0x4778, /* bx pc */
2291 0x46c0 /* nop */
2292 };
2293
2294 /* The entries in a PLT when using a DLL-based target with multiple
2295 address spaces. */
2296 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2297 {
2298 0xe51ff004, /* ldr pc, [pc, #-4] */
2299 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2300 };
2301
2302 /* The first entry in a procedure linkage table looks like
2303 this. It is set up so that any shared library function that is
2304 called before the relocation has been set up calls the dynamic
2305 linker first. */
2306 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2307 {
2308 /* First bundle: */
2309 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2310 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2311 0xe08cc00f, /* add ip, ip, pc */
2312 0xe52dc008, /* str ip, [sp, #-8]! */
2313 /* Second bundle: */
2314 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2315 0xe59cc000, /* ldr ip, [ip] */
2316 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2317 0xe12fff1c, /* bx ip */
2318 /* Third bundle: */
2319 0xe320f000, /* nop */
2320 0xe320f000, /* nop */
2321 0xe320f000, /* nop */
2322 /* .Lplt_tail: */
2323 0xe50dc004, /* str ip, [sp, #-4] */
2324 /* Fourth bundle: */
2325 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2326 0xe59cc000, /* ldr ip, [ip] */
2327 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2328 0xe12fff1c, /* bx ip */
2329 };
2330 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2331
2332 /* Subsequent entries in a procedure linkage table look like this. */
2333 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2334 {
2335 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2336 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2337 0xe08cc00f, /* add ip, ip, pc */
2338 0xea000000, /* b .Lplt_tail */
2339 };
2340
2341 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2342 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2343 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2344 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2345 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2346 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2347 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2348 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2349
2350 enum stub_insn_type
2351 {
2352 THUMB16_TYPE = 1,
2353 THUMB32_TYPE,
2354 ARM_TYPE,
2355 DATA_TYPE
2356 };
2357
2358 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2359 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2360 is inserted in arm_build_one_stub(). */
2361 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2362 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2363 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2364 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2365 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2366 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2367
2368 typedef struct
2369 {
2370 bfd_vma data;
2371 enum stub_insn_type type;
2372 unsigned int r_type;
2373 int reloc_addend;
2374 } insn_sequence;
2375
2376 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2377 to reach the stub if necessary. */
2378 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2379 {
2380 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2381 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2382 };
2383
2384 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2385 available. */
2386 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2387 {
2388 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2389 ARM_INSN (0xe12fff1c), /* bx ip */
2390 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2391 };
2392
2393 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2394 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2395 {
2396 THUMB16_INSN (0xb401), /* push {r0} */
2397 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2398 THUMB16_INSN (0x4684), /* mov ip, r0 */
2399 THUMB16_INSN (0xbc01), /* pop {r0} */
2400 THUMB16_INSN (0x4760), /* bx ip */
2401 THUMB16_INSN (0xbf00), /* nop */
2402 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2403 };
2404
2405 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2406 allowed. */
2407 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2408 {
2409 THUMB16_INSN (0x4778), /* bx pc */
2410 THUMB16_INSN (0x46c0), /* nop */
2411 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2412 ARM_INSN (0xe12fff1c), /* bx ip */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2414 };
2415
2416 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2417 available. */
2418 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2419 {
2420 THUMB16_INSN (0x4778), /* bx pc */
2421 THUMB16_INSN (0x46c0), /* nop */
2422 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2423 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2424 };
2425
2426 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2427 one, when the destination is close enough. */
2428 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2429 {
2430 THUMB16_INSN (0x4778), /* bx pc */
2431 THUMB16_INSN (0x46c0), /* nop */
2432 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2433 };
2434
2435 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2436 blx to reach the stub if necessary. */
2437 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2438 {
2439 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2440 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2441 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2442 };
2443
2444 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2445 blx to reach the stub if necessary. We can not add into pc;
2446 it is not guaranteed to mode switch (different in ARMv6 and
2447 ARMv7). */
2448 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2449 {
2450 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2451 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2452 ARM_INSN (0xe12fff1c), /* bx ip */
2453 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2454 };
2455
2456 /* V4T ARM -> ARM long branch stub, PIC. */
2457 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2458 {
2459 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2460 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2461 ARM_INSN (0xe12fff1c), /* bx ip */
2462 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2463 };
2464
2465 /* V4T Thumb -> ARM long branch stub, PIC. */
2466 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2467 {
2468 THUMB16_INSN (0x4778), /* bx pc */
2469 THUMB16_INSN (0x46c0), /* nop */
2470 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2471 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2472 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2473 };
2474
2475 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2476 architectures. */
2477 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2478 {
2479 THUMB16_INSN (0xb401), /* push {r0} */
2480 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2481 THUMB16_INSN (0x46fc), /* mov ip, pc */
2482 THUMB16_INSN (0x4484), /* add ip, r0 */
2483 THUMB16_INSN (0xbc01), /* pop {r0} */
2484 THUMB16_INSN (0x4760), /* bx ip */
2485 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2486 };
2487
2488 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2489 allowed. */
2490 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2491 {
2492 THUMB16_INSN (0x4778), /* bx pc */
2493 THUMB16_INSN (0x46c0), /* nop */
2494 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2495 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2496 ARM_INSN (0xe12fff1c), /* bx ip */
2497 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2498 };
2499
2500 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2501 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2502 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2503 {
2504 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2505 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2506 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2507 };
2508
2509 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2510 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2511 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2512 {
2513 THUMB16_INSN (0x4778), /* bx pc */
2514 THUMB16_INSN (0x46c0), /* nop */
2515 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2516 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2517 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* NaCl ARM -> ARM long branch stub. */
2521 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2522 {
2523 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2524 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2525 ARM_INSN (0xe12fff1c), /* bx ip */
2526 ARM_INSN (0xe320f000), /* nop */
2527 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2528 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2529 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2530 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2531 };
2532
2533 /* NaCl ARM -> ARM long branch stub, PIC. */
2534 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2535 {
2536 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2537 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2538 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2539 ARM_INSN (0xe12fff1c), /* bx ip */
2540 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2541 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2542 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2543 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2544 };
2545
2546
2547 /* Cortex-A8 erratum-workaround stubs. */
2548
2549 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2550 can't use a conditional branch to reach this stub). */
2551
2552 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2553 {
2554 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2555 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2556 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2557 };
2558
2559 /* Stub used for b.w and bl.w instructions. */
2560
2561 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2562 {
2563 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2564 };
2565
2566 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2567 {
2568 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2569 };
2570
2571 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2572 instruction (which switches to ARM mode) to point to this stub. Jump to the
2573 real destination using an ARM-mode branch. */
2574
2575 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2576 {
2577 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2578 };
2579
2580 /* For each section group there can be a specially created linker section
2581 to hold the stubs for that group. The name of the stub section is based
2582 upon the name of another section within that group with the suffix below
2583 applied.
2584
2585 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2586 create what appeared to be a linker stub section when it actually
2587 contained user code/data. For example, consider this fragment:
2588
2589 const char * stubborn_problems[] = { "np" };
2590
2591 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2592 section called:
2593
2594 .data.rel.local.stubborn_problems
2595
2596 This then causes problems in arm32_arm_build_stubs() as it triggers:
2597
2598 // Ignore non-stub sections.
2599 if (!strstr (stub_sec->name, STUB_SUFFIX))
2600 continue;
2601
2602 And so the section would be ignored instead of being processed. Hence
2603 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2604 C identifier. */
2605 #define STUB_SUFFIX ".__stub"
2606
2607 /* One entry per long/short branch stub defined above. */
2608 #define DEF_STUBS \
2609 DEF_STUB(long_branch_any_any) \
2610 DEF_STUB(long_branch_v4t_arm_thumb) \
2611 DEF_STUB(long_branch_thumb_only) \
2612 DEF_STUB(long_branch_v4t_thumb_thumb) \
2613 DEF_STUB(long_branch_v4t_thumb_arm) \
2614 DEF_STUB(short_branch_v4t_thumb_arm) \
2615 DEF_STUB(long_branch_any_arm_pic) \
2616 DEF_STUB(long_branch_any_thumb_pic) \
2617 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2618 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2619 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2620 DEF_STUB(long_branch_thumb_only_pic) \
2621 DEF_STUB(long_branch_any_tls_pic) \
2622 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2623 DEF_STUB(long_branch_arm_nacl) \
2624 DEF_STUB(long_branch_arm_nacl_pic) \
2625 DEF_STUB(a8_veneer_b_cond) \
2626 DEF_STUB(a8_veneer_b) \
2627 DEF_STUB(a8_veneer_bl) \
2628 DEF_STUB(a8_veneer_blx)
2629
2630 #define DEF_STUB(x) arm_stub_##x,
2631 enum elf32_arm_stub_type
2632 {
2633 arm_stub_none,
2634 DEF_STUBS
2635 };
2636 #undef DEF_STUB
2637
2638 /* Note the first a8_veneer type. */
2639 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2640
2641 typedef struct
2642 {
2643 const insn_sequence* template_sequence;
2644 int template_size;
2645 } stub_def;
2646
2647 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2648 static const stub_def stub_definitions[] =
2649 {
2650 {NULL, 0},
2651 DEF_STUBS
2652 };
2653
2654 struct elf32_arm_stub_hash_entry
2655 {
2656 /* Base hash table entry structure. */
2657 struct bfd_hash_entry root;
2658
2659 /* The stub section. */
2660 asection *stub_sec;
2661
2662 /* Offset within stub_sec of the beginning of this stub. */
2663 bfd_vma stub_offset;
2664
2665 /* Given the symbol's value and its section we can determine its final
2666 value when building the stubs (so the stub knows where to jump). */
2667 bfd_vma target_value;
2668 asection *target_section;
2669
2670 /* Same as above but for the source of the branch to the stub. Used for
2671 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2672 such, source section does not need to be recorded since Cortex-A8 erratum
2673 workaround stubs are only generated when both source and target are in the
2674 same section. */
2675 bfd_vma source_value;
2676
2677 /* The instruction which caused this stub to be generated (only valid for
2678 Cortex-A8 erratum workaround stubs at present). */
2679 unsigned long orig_insn;
2680
2681 /* The stub type. */
2682 enum elf32_arm_stub_type stub_type;
2683 /* Its encoding size in bytes. */
2684 int stub_size;
2685 /* Its template. */
2686 const insn_sequence *stub_template;
2687 /* The size of the template (number of entries). */
2688 int stub_template_size;
2689
2690 /* The symbol table entry, if any, that this was derived from. */
2691 struct elf32_arm_link_hash_entry *h;
2692
2693 /* Type of branch. */
2694 enum arm_st_branch_type branch_type;
2695
2696 /* Where this stub is being called from, or, in the case of combined
2697 stub sections, the first input section in the group. */
2698 asection *id_sec;
2699
2700 /* The name for the local symbol at the start of this stub. The
2701 stub name in the hash table has to be unique; this does not, so
2702 it can be friendlier. */
2703 char *output_name;
2704 };
2705
2706 /* Used to build a map of a section. This is required for mixed-endian
2707 code/data. */
2708
2709 typedef struct elf32_elf_section_map
2710 {
2711 bfd_vma vma;
2712 char type;
2713 }
2714 elf32_arm_section_map;
2715
2716 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2717
2718 typedef enum
2719 {
2720 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2721 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2722 VFP11_ERRATUM_ARM_VENEER,
2723 VFP11_ERRATUM_THUMB_VENEER
2724 }
2725 elf32_vfp11_erratum_type;
2726
2727 typedef struct elf32_vfp11_erratum_list
2728 {
2729 struct elf32_vfp11_erratum_list *next;
2730 bfd_vma vma;
2731 union
2732 {
2733 struct
2734 {
2735 struct elf32_vfp11_erratum_list *veneer;
2736 unsigned int vfp_insn;
2737 } b;
2738 struct
2739 {
2740 struct elf32_vfp11_erratum_list *branch;
2741 unsigned int id;
2742 } v;
2743 } u;
2744 elf32_vfp11_erratum_type type;
2745 }
2746 elf32_vfp11_erratum_list;
2747
2748 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2749 veneer. */
2750 typedef enum
2751 {
2752 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2753 STM32L4XX_ERRATUM_VENEER
2754 }
2755 elf32_stm32l4xx_erratum_type;
2756
2757 typedef struct elf32_stm32l4xx_erratum_list
2758 {
2759 struct elf32_stm32l4xx_erratum_list *next;
2760 bfd_vma vma;
2761 union
2762 {
2763 struct
2764 {
2765 struct elf32_stm32l4xx_erratum_list *veneer;
2766 unsigned int insn;
2767 } b;
2768 struct
2769 {
2770 struct elf32_stm32l4xx_erratum_list *branch;
2771 unsigned int id;
2772 } v;
2773 } u;
2774 elf32_stm32l4xx_erratum_type type;
2775 }
2776 elf32_stm32l4xx_erratum_list;
2777
2778 typedef enum
2779 {
2780 DELETE_EXIDX_ENTRY,
2781 INSERT_EXIDX_CANTUNWIND_AT_END
2782 }
2783 arm_unwind_edit_type;
2784
2785 /* A (sorted) list of edits to apply to an unwind table. */
2786 typedef struct arm_unwind_table_edit
2787 {
2788 arm_unwind_edit_type type;
2789 /* Note: we sometimes want to insert an unwind entry corresponding to a
2790 section different from the one we're currently writing out, so record the
2791 (text) section this edit relates to here. */
2792 asection *linked_section;
2793 unsigned int index;
2794 struct arm_unwind_table_edit *next;
2795 }
2796 arm_unwind_table_edit;
2797
2798 typedef struct _arm_elf_section_data
2799 {
2800 /* Information about mapping symbols. */
2801 struct bfd_elf_section_data elf;
2802 unsigned int mapcount;
2803 unsigned int mapsize;
2804 elf32_arm_section_map *map;
2805 /* Information about CPU errata. */
2806 unsigned int erratumcount;
2807 elf32_vfp11_erratum_list *erratumlist;
2808 unsigned int stm32l4xx_erratumcount;
2809 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2810 unsigned int additional_reloc_count;
2811 /* Information about unwind tables. */
2812 union
2813 {
2814 /* Unwind info attached to a text section. */
2815 struct
2816 {
2817 asection *arm_exidx_sec;
2818 } text;
2819
2820 /* Unwind info attached to an .ARM.exidx section. */
2821 struct
2822 {
2823 arm_unwind_table_edit *unwind_edit_list;
2824 arm_unwind_table_edit *unwind_edit_tail;
2825 } exidx;
2826 } u;
2827 }
2828 _arm_elf_section_data;
2829
2830 #define elf32_arm_section_data(sec) \
2831 ((_arm_elf_section_data *) elf_section_data (sec))
2832
2833 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2834 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2835 so may be created multiple times: we use an array of these entries whilst
2836 relaxing which we can refresh easily, then create stubs for each potentially
2837 erratum-triggering instruction once we've settled on a solution. */
2838
2839 struct a8_erratum_fix
2840 {
2841 bfd *input_bfd;
2842 asection *section;
2843 bfd_vma offset;
2844 bfd_vma target_offset;
2845 unsigned long orig_insn;
2846 char *stub_name;
2847 enum elf32_arm_stub_type stub_type;
2848 enum arm_st_branch_type branch_type;
2849 };
2850
2851 /* A table of relocs applied to branches which might trigger Cortex-A8
2852 erratum. */
2853
2854 struct a8_erratum_reloc
2855 {
2856 bfd_vma from;
2857 bfd_vma destination;
2858 struct elf32_arm_link_hash_entry *hash;
2859 const char *sym_name;
2860 unsigned int r_type;
2861 enum arm_st_branch_type branch_type;
2862 bfd_boolean non_a8_stub;
2863 };
2864
2865 /* The size of the thread control block. */
2866 #define TCB_SIZE 8
2867
2868 /* ARM-specific information about a PLT entry, over and above the usual
2869 gotplt_union. */
2870 struct arm_plt_info
2871 {
2872 /* We reference count Thumb references to a PLT entry separately,
2873 so that we can emit the Thumb trampoline only if needed. */
2874 bfd_signed_vma thumb_refcount;
2875
2876 /* Some references from Thumb code may be eliminated by BL->BLX
2877 conversion, so record them separately. */
2878 bfd_signed_vma maybe_thumb_refcount;
2879
2880 /* How many of the recorded PLT accesses were from non-call relocations.
2881 This information is useful when deciding whether anything takes the
2882 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2883 non-call references to the function should resolve directly to the
2884 real runtime target. */
2885 unsigned int noncall_refcount;
2886
2887 /* Since PLT entries have variable size if the Thumb prologue is
2888 used, we need to record the index into .got.plt instead of
2889 recomputing it from the PLT offset. */
2890 bfd_signed_vma got_offset;
2891 };
2892
2893 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2894 struct arm_local_iplt_info
2895 {
2896 /* The information that is usually found in the generic ELF part of
2897 the hash table entry. */
2898 union gotplt_union root;
2899
2900 /* The information that is usually found in the ARM-specific part of
2901 the hash table entry. */
2902 struct arm_plt_info arm;
2903
2904 /* A list of all potential dynamic relocations against this symbol. */
2905 struct elf_dyn_relocs *dyn_relocs;
2906 };
2907
2908 struct elf_arm_obj_tdata
2909 {
2910 struct elf_obj_tdata root;
2911
2912 /* tls_type for each local got entry. */
2913 char *local_got_tls_type;
2914
2915 /* GOTPLT entries for TLS descriptors. */
2916 bfd_vma *local_tlsdesc_gotent;
2917
2918 /* Information for local symbols that need entries in .iplt. */
2919 struct arm_local_iplt_info **local_iplt;
2920
2921 /* Zero to warn when linking objects with incompatible enum sizes. */
2922 int no_enum_size_warning;
2923
2924 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2925 int no_wchar_size_warning;
2926 };
2927
2928 #define elf_arm_tdata(bfd) \
2929 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2930
2931 #define elf32_arm_local_got_tls_type(bfd) \
2932 (elf_arm_tdata (bfd)->local_got_tls_type)
2933
2934 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2935 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2936
2937 #define elf32_arm_local_iplt(bfd) \
2938 (elf_arm_tdata (bfd)->local_iplt)
2939
2940 #define is_arm_elf(bfd) \
2941 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2942 && elf_tdata (bfd) != NULL \
2943 && elf_object_id (bfd) == ARM_ELF_DATA)
2944
2945 static bfd_boolean
2946 elf32_arm_mkobject (bfd *abfd)
2947 {
2948 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2949 ARM_ELF_DATA);
2950 }
2951
2952 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2953
2954 /* Arm ELF linker hash entry. */
2955 struct elf32_arm_link_hash_entry
2956 {
2957 struct elf_link_hash_entry root;
2958
2959 /* Track dynamic relocs copied for this symbol. */
2960 struct elf_dyn_relocs *dyn_relocs;
2961
2962 /* ARM-specific PLT information. */
2963 struct arm_plt_info plt;
2964
2965 #define GOT_UNKNOWN 0
2966 #define GOT_NORMAL 1
2967 #define GOT_TLS_GD 2
2968 #define GOT_TLS_IE 4
2969 #define GOT_TLS_GDESC 8
2970 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2971 unsigned int tls_type : 8;
2972
2973 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2974 unsigned int is_iplt : 1;
2975
2976 unsigned int unused : 23;
2977
2978 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2979 starting at the end of the jump table. */
2980 bfd_vma tlsdesc_got;
2981
2982 /* The symbol marking the real symbol location for exported thumb
2983 symbols with Arm stubs. */
2984 struct elf_link_hash_entry *export_glue;
2985
2986 /* A pointer to the most recently used stub hash entry against this
2987 symbol. */
2988 struct elf32_arm_stub_hash_entry *stub_cache;
2989 };
2990
2991 /* Traverse an arm ELF linker hash table. */
2992 #define elf32_arm_link_hash_traverse(table, func, info) \
2993 (elf_link_hash_traverse \
2994 (&(table)->root, \
2995 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2996 (info)))
2997
2998 /* Get the ARM elf linker hash table from a link_info structure. */
2999 #define elf32_arm_hash_table(info) \
3000 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3001 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3002
3003 #define arm_stub_hash_lookup(table, string, create, copy) \
3004 ((struct elf32_arm_stub_hash_entry *) \
3005 bfd_hash_lookup ((table), (string), (create), (copy)))
3006
3007 /* Array to keep track of which stub sections have been created, and
3008 information on stub grouping. */
3009 struct map_stub
3010 {
3011 /* This is the section to which stubs in the group will be
3012 attached. */
3013 asection *link_sec;
3014 /* The stub section. */
3015 asection *stub_sec;
3016 };
3017
3018 #define elf32_arm_compute_jump_table_size(htab) \
3019 ((htab)->next_tls_desc_index * 4)
3020
3021 /* ARM ELF linker hash table. */
3022 struct elf32_arm_link_hash_table
3023 {
3024 /* The main hash table. */
3025 struct elf_link_hash_table root;
3026
3027 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3028 bfd_size_type thumb_glue_size;
3029
3030 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3031 bfd_size_type arm_glue_size;
3032
3033 /* The size in bytes of section containing the ARMv4 BX veneers. */
3034 bfd_size_type bx_glue_size;
3035
3036 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3037 veneer has been populated. */
3038 bfd_vma bx_glue_offset[15];
3039
3040 /* The size in bytes of the section containing glue for VFP11 erratum
3041 veneers. */
3042 bfd_size_type vfp11_erratum_glue_size;
3043
3044 /* The size in bytes of the section containing glue for STM32L4XX erratum
3045 veneers. */
3046 bfd_size_type stm32l4xx_erratum_glue_size;
3047
3048 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3049 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3050 elf32_arm_write_section(). */
3051 struct a8_erratum_fix *a8_erratum_fixes;
3052 unsigned int num_a8_erratum_fixes;
3053
3054 /* An arbitrary input BFD chosen to hold the glue sections. */
3055 bfd * bfd_of_glue_owner;
3056
3057 /* Nonzero to output a BE8 image. */
3058 int byteswap_code;
3059
3060 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3061 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3062 int target1_is_rel;
3063
3064 /* The relocation to use for R_ARM_TARGET2 relocations. */
3065 int target2_reloc;
3066
3067 /* 0 = Ignore R_ARM_V4BX.
3068 1 = Convert BX to MOV PC.
3069 2 = Generate v4 interworing stubs. */
3070 int fix_v4bx;
3071
3072 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3073 int fix_cortex_a8;
3074
3075 /* Whether we should fix the ARM1176 BLX immediate issue. */
3076 int fix_arm1176;
3077
3078 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3079 int use_blx;
3080
3081 /* What sort of code sequences we should look for which may trigger the
3082 VFP11 denorm erratum. */
3083 bfd_arm_vfp11_fix vfp11_fix;
3084
3085 /* Global counter for the number of fixes we have emitted. */
3086 int num_vfp11_fixes;
3087
3088 /* What sort of code sequences we should look for which may trigger the
3089 STM32L4XX erratum. */
3090 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3091
3092 /* Global counter for the number of fixes we have emitted. */
3093 int num_stm32l4xx_fixes;
3094
3095 /* Nonzero to force PIC branch veneers. */
3096 int pic_veneer;
3097
3098 /* The number of bytes in the initial entry in the PLT. */
3099 bfd_size_type plt_header_size;
3100
3101 /* The number of bytes in the subsequent PLT etries. */
3102 bfd_size_type plt_entry_size;
3103
3104 /* True if the target system is VxWorks. */
3105 int vxworks_p;
3106
3107 /* True if the target system is Symbian OS. */
3108 int symbian_p;
3109
3110 /* True if the target system is Native Client. */
3111 int nacl_p;
3112
3113 /* True if the target uses REL relocations. */
3114 int use_rel;
3115
3116 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3117 bfd_vma next_tls_desc_index;
3118
3119 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3120 bfd_vma num_tls_desc;
3121
3122 /* Short-cuts to get to dynamic linker sections. */
3123 asection *sdynbss;
3124 asection *srelbss;
3125
3126 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3127 asection *srelplt2;
3128
3129 /* The offset into splt of the PLT entry for the TLS descriptor
3130 resolver. Special values are 0, if not necessary (or not found
3131 to be necessary yet), and -1 if needed but not determined
3132 yet. */
3133 bfd_vma dt_tlsdesc_plt;
3134
3135 /* The offset into sgot of the GOT entry used by the PLT entry
3136 above. */
3137 bfd_vma dt_tlsdesc_got;
3138
3139 /* Offset in .plt section of tls_arm_trampoline. */
3140 bfd_vma tls_trampoline;
3141
3142 /* Data for R_ARM_TLS_LDM32 relocations. */
3143 union
3144 {
3145 bfd_signed_vma refcount;
3146 bfd_vma offset;
3147 } tls_ldm_got;
3148
3149 /* Small local sym cache. */
3150 struct sym_cache sym_cache;
3151
3152 /* For convenience in allocate_dynrelocs. */
3153 bfd * obfd;
3154
3155 /* The amount of space used by the reserved portion of the sgotplt
3156 section, plus whatever space is used by the jump slots. */
3157 bfd_vma sgotplt_jump_table_size;
3158
3159 /* The stub hash table. */
3160 struct bfd_hash_table stub_hash_table;
3161
3162 /* Linker stub bfd. */
3163 bfd *stub_bfd;
3164
3165 /* Linker call-backs. */
3166 asection * (*add_stub_section) (const char *, asection *, asection *,
3167 unsigned int);
3168 void (*layout_sections_again) (void);
3169
3170 /* Array to keep track of which stub sections have been created, and
3171 information on stub grouping. */
3172 struct map_stub *stub_group;
3173
3174 /* Number of elements in stub_group. */
3175 unsigned int top_id;
3176
3177 /* Assorted information used by elf32_arm_size_stubs. */
3178 unsigned int bfd_count;
3179 unsigned int top_index;
3180 asection **input_list;
3181 };
3182
3183 static inline int
3184 ctz (unsigned int mask)
3185 {
3186 #if GCC_VERSION >= 3004
3187 return __builtin_ctz (mask);
3188 #else
3189 unsigned int i;
3190
3191 for (i = 0; i < 8 * sizeof (mask); i++)
3192 {
3193 if (mask & 0x1)
3194 break;
3195 mask = (mask >> 1);
3196 }
3197 return i;
3198 #endif
3199 }
3200
3201 static inline int
3202 popcount (unsigned int mask)
3203 {
3204 #if GCC_VERSION >= 3004
3205 return __builtin_popcount (mask);
3206 #else
3207 unsigned int i, sum = 0;
3208
3209 for (i = 0; i < 8 * sizeof (mask); i++)
3210 {
3211 if (mask & 0x1)
3212 sum++;
3213 mask = (mask >> 1);
3214 }
3215 return sum;
3216 #endif
3217 }
3218
3219 /* Create an entry in an ARM ELF linker hash table. */
3220
3221 static struct bfd_hash_entry *
3222 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3223 struct bfd_hash_table * table,
3224 const char * string)
3225 {
3226 struct elf32_arm_link_hash_entry * ret =
3227 (struct elf32_arm_link_hash_entry *) entry;
3228
3229 /* Allocate the structure if it has not already been allocated by a
3230 subclass. */
3231 if (ret == NULL)
3232 ret = (struct elf32_arm_link_hash_entry *)
3233 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3234 if (ret == NULL)
3235 return (struct bfd_hash_entry *) ret;
3236
3237 /* Call the allocation method of the superclass. */
3238 ret = ((struct elf32_arm_link_hash_entry *)
3239 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3240 table, string));
3241 if (ret != NULL)
3242 {
3243 ret->dyn_relocs = NULL;
3244 ret->tls_type = GOT_UNKNOWN;
3245 ret->tlsdesc_got = (bfd_vma) -1;
3246 ret->plt.thumb_refcount = 0;
3247 ret->plt.maybe_thumb_refcount = 0;
3248 ret->plt.noncall_refcount = 0;
3249 ret->plt.got_offset = -1;
3250 ret->is_iplt = FALSE;
3251 ret->export_glue = NULL;
3252
3253 ret->stub_cache = NULL;
3254 }
3255
3256 return (struct bfd_hash_entry *) ret;
3257 }
3258
3259 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3260 symbols. */
3261
3262 static bfd_boolean
3263 elf32_arm_allocate_local_sym_info (bfd *abfd)
3264 {
3265 if (elf_local_got_refcounts (abfd) == NULL)
3266 {
3267 bfd_size_type num_syms;
3268 bfd_size_type size;
3269 char *data;
3270
3271 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3272 size = num_syms * (sizeof (bfd_signed_vma)
3273 + sizeof (struct arm_local_iplt_info *)
3274 + sizeof (bfd_vma)
3275 + sizeof (char));
3276 data = bfd_zalloc (abfd, size);
3277 if (data == NULL)
3278 return FALSE;
3279
3280 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3281 data += num_syms * sizeof (bfd_signed_vma);
3282
3283 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3284 data += num_syms * sizeof (struct arm_local_iplt_info *);
3285
3286 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3287 data += num_syms * sizeof (bfd_vma);
3288
3289 elf32_arm_local_got_tls_type (abfd) = data;
3290 }
3291 return TRUE;
3292 }
3293
3294 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3295 to input bfd ABFD. Create the information if it doesn't already exist.
3296 Return null if an allocation fails. */
3297
3298 static struct arm_local_iplt_info *
3299 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3300 {
3301 struct arm_local_iplt_info **ptr;
3302
3303 if (!elf32_arm_allocate_local_sym_info (abfd))
3304 return NULL;
3305
3306 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3307 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3308 if (*ptr == NULL)
3309 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3310 return *ptr;
3311 }
3312
3313 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3314 in ABFD's symbol table. If the symbol is global, H points to its
3315 hash table entry, otherwise H is null.
3316
3317 Return true if the symbol does have PLT information. When returning
3318 true, point *ROOT_PLT at the target-independent reference count/offset
3319 union and *ARM_PLT at the ARM-specific information. */
3320
3321 static bfd_boolean
3322 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3323 unsigned long r_symndx, union gotplt_union **root_plt,
3324 struct arm_plt_info **arm_plt)
3325 {
3326 struct arm_local_iplt_info *local_iplt;
3327
3328 if (h != NULL)
3329 {
3330 *root_plt = &h->root.plt;
3331 *arm_plt = &h->plt;
3332 return TRUE;
3333 }
3334
3335 if (elf32_arm_local_iplt (abfd) == NULL)
3336 return FALSE;
3337
3338 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3339 if (local_iplt == NULL)
3340 return FALSE;
3341
3342 *root_plt = &local_iplt->root;
3343 *arm_plt = &local_iplt->arm;
3344 return TRUE;
3345 }
3346
3347 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3348 before it. */
3349
3350 static bfd_boolean
3351 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3352 struct arm_plt_info *arm_plt)
3353 {
3354 struct elf32_arm_link_hash_table *htab;
3355
3356 htab = elf32_arm_hash_table (info);
3357 return (arm_plt->thumb_refcount != 0
3358 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3359 }
3360
3361 /* Return a pointer to the head of the dynamic reloc list that should
3362 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3363 ABFD's symbol table. Return null if an error occurs. */
3364
3365 static struct elf_dyn_relocs **
3366 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3367 Elf_Internal_Sym *isym)
3368 {
3369 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3370 {
3371 struct arm_local_iplt_info *local_iplt;
3372
3373 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3374 if (local_iplt == NULL)
3375 return NULL;
3376 return &local_iplt->dyn_relocs;
3377 }
3378 else
3379 {
3380 /* Track dynamic relocs needed for local syms too.
3381 We really need local syms available to do this
3382 easily. Oh well. */
3383 asection *s;
3384 void *vpp;
3385
3386 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3387 if (s == NULL)
3388 abort ();
3389
3390 vpp = &elf_section_data (s)->local_dynrel;
3391 return (struct elf_dyn_relocs **) vpp;
3392 }
3393 }
3394
3395 /* Initialize an entry in the stub hash table. */
3396
3397 static struct bfd_hash_entry *
3398 stub_hash_newfunc (struct bfd_hash_entry *entry,
3399 struct bfd_hash_table *table,
3400 const char *string)
3401 {
3402 /* Allocate the structure if it has not already been allocated by a
3403 subclass. */
3404 if (entry == NULL)
3405 {
3406 entry = (struct bfd_hash_entry *)
3407 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3408 if (entry == NULL)
3409 return entry;
3410 }
3411
3412 /* Call the allocation method of the superclass. */
3413 entry = bfd_hash_newfunc (entry, table, string);
3414 if (entry != NULL)
3415 {
3416 struct elf32_arm_stub_hash_entry *eh;
3417
3418 /* Initialize the local fields. */
3419 eh = (struct elf32_arm_stub_hash_entry *) entry;
3420 eh->stub_sec = NULL;
3421 eh->stub_offset = 0;
3422 eh->source_value = 0;
3423 eh->target_value = 0;
3424 eh->target_section = NULL;
3425 eh->orig_insn = 0;
3426 eh->stub_type = arm_stub_none;
3427 eh->stub_size = 0;
3428 eh->stub_template = NULL;
3429 eh->stub_template_size = 0;
3430 eh->h = NULL;
3431 eh->id_sec = NULL;
3432 eh->output_name = NULL;
3433 }
3434
3435 return entry;
3436 }
3437
3438 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3439 shortcuts to them in our hash table. */
3440
3441 static bfd_boolean
3442 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3443 {
3444 struct elf32_arm_link_hash_table *htab;
3445
3446 htab = elf32_arm_hash_table (info);
3447 if (htab == NULL)
3448 return FALSE;
3449
3450 /* BPABI objects never have a GOT, or associated sections. */
3451 if (htab->symbian_p)
3452 return TRUE;
3453
3454 if (! _bfd_elf_create_got_section (dynobj, info))
3455 return FALSE;
3456
3457 return TRUE;
3458 }
3459
3460 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3461
3462 static bfd_boolean
3463 create_ifunc_sections (struct bfd_link_info *info)
3464 {
3465 struct elf32_arm_link_hash_table *htab;
3466 const struct elf_backend_data *bed;
3467 bfd *dynobj;
3468 asection *s;
3469 flagword flags;
3470
3471 htab = elf32_arm_hash_table (info);
3472 dynobj = htab->root.dynobj;
3473 bed = get_elf_backend_data (dynobj);
3474 flags = bed->dynamic_sec_flags;
3475
3476 if (htab->root.iplt == NULL)
3477 {
3478 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3479 flags | SEC_READONLY | SEC_CODE);
3480 if (s == NULL
3481 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3482 return FALSE;
3483 htab->root.iplt = s;
3484 }
3485
3486 if (htab->root.irelplt == NULL)
3487 {
3488 s = bfd_make_section_anyway_with_flags (dynobj,
3489 RELOC_SECTION (htab, ".iplt"),
3490 flags | SEC_READONLY);
3491 if (s == NULL
3492 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3493 return FALSE;
3494 htab->root.irelplt = s;
3495 }
3496
3497 if (htab->root.igotplt == NULL)
3498 {
3499 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3500 if (s == NULL
3501 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3502 return FALSE;
3503 htab->root.igotplt = s;
3504 }
3505 return TRUE;
3506 }
3507
3508 /* Determine if we're dealing with a Thumb only architecture. */
3509
3510 static bfd_boolean
3511 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3512 {
3513 int arch;
3514 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3515 Tag_CPU_arch_profile);
3516
3517 if (profile)
3518 return profile == 'M';
3519
3520 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3521
3522 if (arch == TAG_CPU_ARCH_V6_M
3523 || arch == TAG_CPU_ARCH_V6S_M
3524 || arch == TAG_CPU_ARCH_V7E_M
3525 || arch == TAG_CPU_ARCH_V8M_BASE
3526 || arch == TAG_CPU_ARCH_V8M_MAIN)
3527 return TRUE;
3528
3529 return FALSE;
3530 }
3531
3532 /* Determine if we're dealing with a Thumb-2 object. */
3533
3534 static bfd_boolean
3535 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3536 {
3537 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3538 Tag_CPU_arch);
3539 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3540 }
3541
3542 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3543 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3544 hash table. */
3545
3546 static bfd_boolean
3547 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3548 {
3549 struct elf32_arm_link_hash_table *htab;
3550
3551 htab = elf32_arm_hash_table (info);
3552 if (htab == NULL)
3553 return FALSE;
3554
3555 if (!htab->root.sgot && !create_got_section (dynobj, info))
3556 return FALSE;
3557
3558 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3559 return FALSE;
3560
3561 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3562 if (!bfd_link_pic (info))
3563 htab->srelbss = bfd_get_linker_section (dynobj,
3564 RELOC_SECTION (htab, ".bss"));
3565
3566 if (htab->vxworks_p)
3567 {
3568 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3569 return FALSE;
3570
3571 if (bfd_link_pic (info))
3572 {
3573 htab->plt_header_size = 0;
3574 htab->plt_entry_size
3575 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3576 }
3577 else
3578 {
3579 htab->plt_header_size
3580 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3581 htab->plt_entry_size
3582 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3583 }
3584
3585 if (elf_elfheader (dynobj))
3586 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3587 }
3588 else
3589 {
3590 /* PR ld/16017
3591 Test for thumb only architectures. Note - we cannot just call
3592 using_thumb_only() as the attributes in the output bfd have not been
3593 initialised at this point, so instead we use the input bfd. */
3594 bfd * saved_obfd = htab->obfd;
3595
3596 htab->obfd = dynobj;
3597 if (using_thumb_only (htab))
3598 {
3599 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3600 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3601 }
3602 htab->obfd = saved_obfd;
3603 }
3604
3605 if (!htab->root.splt
3606 || !htab->root.srelplt
3607 || !htab->sdynbss
3608 || (!bfd_link_pic (info) && !htab->srelbss))
3609 abort ();
3610
3611 return TRUE;
3612 }
3613
3614 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3615
3616 static void
3617 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3618 struct elf_link_hash_entry *dir,
3619 struct elf_link_hash_entry *ind)
3620 {
3621 struct elf32_arm_link_hash_entry *edir, *eind;
3622
3623 edir = (struct elf32_arm_link_hash_entry *) dir;
3624 eind = (struct elf32_arm_link_hash_entry *) ind;
3625
3626 if (eind->dyn_relocs != NULL)
3627 {
3628 if (edir->dyn_relocs != NULL)
3629 {
3630 struct elf_dyn_relocs **pp;
3631 struct elf_dyn_relocs *p;
3632
3633 /* Add reloc counts against the indirect sym to the direct sym
3634 list. Merge any entries against the same section. */
3635 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3636 {
3637 struct elf_dyn_relocs *q;
3638
3639 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3640 if (q->sec == p->sec)
3641 {
3642 q->pc_count += p->pc_count;
3643 q->count += p->count;
3644 *pp = p->next;
3645 break;
3646 }
3647 if (q == NULL)
3648 pp = &p->next;
3649 }
3650 *pp = edir->dyn_relocs;
3651 }
3652
3653 edir->dyn_relocs = eind->dyn_relocs;
3654 eind->dyn_relocs = NULL;
3655 }
3656
3657 if (ind->root.type == bfd_link_hash_indirect)
3658 {
3659 /* Copy over PLT info. */
3660 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3661 eind->plt.thumb_refcount = 0;
3662 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3663 eind->plt.maybe_thumb_refcount = 0;
3664 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3665 eind->plt.noncall_refcount = 0;
3666
3667 /* We should only allocate a function to .iplt once the final
3668 symbol information is known. */
3669 BFD_ASSERT (!eind->is_iplt);
3670
3671 if (dir->got.refcount <= 0)
3672 {
3673 edir->tls_type = eind->tls_type;
3674 eind->tls_type = GOT_UNKNOWN;
3675 }
3676 }
3677
3678 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3679 }
3680
3681 /* Destroy an ARM elf linker hash table. */
3682
3683 static void
3684 elf32_arm_link_hash_table_free (bfd *obfd)
3685 {
3686 struct elf32_arm_link_hash_table *ret
3687 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3688
3689 bfd_hash_table_free (&ret->stub_hash_table);
3690 _bfd_elf_link_hash_table_free (obfd);
3691 }
3692
3693 /* Create an ARM elf linker hash table. */
3694
3695 static struct bfd_link_hash_table *
3696 elf32_arm_link_hash_table_create (bfd *abfd)
3697 {
3698 struct elf32_arm_link_hash_table *ret;
3699 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3700
3701 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3702 if (ret == NULL)
3703 return NULL;
3704
3705 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3706 elf32_arm_link_hash_newfunc,
3707 sizeof (struct elf32_arm_link_hash_entry),
3708 ARM_ELF_DATA))
3709 {
3710 free (ret);
3711 return NULL;
3712 }
3713
3714 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3715 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3716 #ifdef FOUR_WORD_PLT
3717 ret->plt_header_size = 16;
3718 ret->plt_entry_size = 16;
3719 #else
3720 ret->plt_header_size = 20;
3721 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3722 #endif
3723 ret->use_rel = 1;
3724 ret->obfd = abfd;
3725
3726 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3727 sizeof (struct elf32_arm_stub_hash_entry)))
3728 {
3729 _bfd_elf_link_hash_table_free (abfd);
3730 return NULL;
3731 }
3732 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3733
3734 return &ret->root.root;
3735 }
3736
3737 /* Determine what kind of NOPs are available. */
3738
3739 static bfd_boolean
3740 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3741 {
3742 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3743 Tag_CPU_arch);
3744 return arch == TAG_CPU_ARCH_V6T2
3745 || arch == TAG_CPU_ARCH_V6K
3746 || arch == TAG_CPU_ARCH_V7
3747 || arch == TAG_CPU_ARCH_V7E_M;
3748 }
3749
3750 static bfd_boolean
3751 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3752 {
3753 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3754 Tag_CPU_arch);
3755 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3756 || arch == TAG_CPU_ARCH_V7E_M);
3757 }
3758
3759 static bfd_boolean
3760 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3761 {
3762 switch (stub_type)
3763 {
3764 case arm_stub_long_branch_thumb_only:
3765 case arm_stub_long_branch_v4t_thumb_arm:
3766 case arm_stub_short_branch_v4t_thumb_arm:
3767 case arm_stub_long_branch_v4t_thumb_arm_pic:
3768 case arm_stub_long_branch_v4t_thumb_tls_pic:
3769 case arm_stub_long_branch_thumb_only_pic:
3770 return TRUE;
3771 case arm_stub_none:
3772 BFD_FAIL ();
3773 return FALSE;
3774 break;
3775 default:
3776 return FALSE;
3777 }
3778 }
3779
3780 /* Determine the type of stub needed, if any, for a call. */
3781
3782 static enum elf32_arm_stub_type
3783 arm_type_of_stub (struct bfd_link_info *info,
3784 asection *input_sec,
3785 const Elf_Internal_Rela *rel,
3786 unsigned char st_type,
3787 enum arm_st_branch_type *actual_branch_type,
3788 struct elf32_arm_link_hash_entry *hash,
3789 bfd_vma destination,
3790 asection *sym_sec,
3791 bfd *input_bfd,
3792 const char *name)
3793 {
3794 bfd_vma location;
3795 bfd_signed_vma branch_offset;
3796 unsigned int r_type;
3797 struct elf32_arm_link_hash_table * globals;
3798 int thumb2;
3799 int thumb_only;
3800 enum elf32_arm_stub_type stub_type = arm_stub_none;
3801 int use_plt = 0;
3802 enum arm_st_branch_type branch_type = *actual_branch_type;
3803 union gotplt_union *root_plt;
3804 struct arm_plt_info *arm_plt;
3805
3806 if (branch_type == ST_BRANCH_LONG)
3807 return stub_type;
3808
3809 globals = elf32_arm_hash_table (info);
3810 if (globals == NULL)
3811 return stub_type;
3812
3813 thumb_only = using_thumb_only (globals);
3814
3815 thumb2 = using_thumb2 (globals);
3816
3817 /* Determine where the call point is. */
3818 location = (input_sec->output_offset
3819 + input_sec->output_section->vma
3820 + rel->r_offset);
3821
3822 r_type = ELF32_R_TYPE (rel->r_info);
3823
3824 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3825 are considering a function call relocation. */
3826 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3827 || r_type == R_ARM_THM_JUMP19)
3828 && branch_type == ST_BRANCH_TO_ARM)
3829 branch_type = ST_BRANCH_TO_THUMB;
3830
3831 /* For TLS call relocs, it is the caller's responsibility to provide
3832 the address of the appropriate trampoline. */
3833 if (r_type != R_ARM_TLS_CALL
3834 && r_type != R_ARM_THM_TLS_CALL
3835 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3836 &root_plt, &arm_plt)
3837 && root_plt->offset != (bfd_vma) -1)
3838 {
3839 asection *splt;
3840
3841 if (hash == NULL || hash->is_iplt)
3842 splt = globals->root.iplt;
3843 else
3844 splt = globals->root.splt;
3845 if (splt != NULL)
3846 {
3847 use_plt = 1;
3848
3849 /* Note when dealing with PLT entries: the main PLT stub is in
3850 ARM mode, so if the branch is in Thumb mode, another
3851 Thumb->ARM stub will be inserted later just before the ARM
3852 PLT stub. We don't take this extra distance into account
3853 here, because if a long branch stub is needed, we'll add a
3854 Thumb->Arm one and branch directly to the ARM PLT entry
3855 because it avoids spreading offset corrections in several
3856 places. */
3857
3858 destination = (splt->output_section->vma
3859 + splt->output_offset
3860 + root_plt->offset);
3861 st_type = STT_FUNC;
3862 branch_type = ST_BRANCH_TO_ARM;
3863 }
3864 }
3865 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3866 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3867
3868 branch_offset = (bfd_signed_vma)(destination - location);
3869
3870 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3871 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3872 {
3873 /* Handle cases where:
3874 - this call goes too far (different Thumb/Thumb2 max
3875 distance)
3876 - it's a Thumb->Arm call and blx is not available, or it's a
3877 Thumb->Arm branch (not bl). A stub is needed in this case,
3878 but only if this call is not through a PLT entry. Indeed,
3879 PLT stubs handle mode switching already.
3880 */
3881 if ((!thumb2
3882 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3883 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3884 || (thumb2
3885 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3886 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3887 || (thumb2
3888 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3889 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3890 && (r_type == R_ARM_THM_JUMP19))
3891 || (branch_type == ST_BRANCH_TO_ARM
3892 && (((r_type == R_ARM_THM_CALL
3893 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3894 || (r_type == R_ARM_THM_JUMP24)
3895 || (r_type == R_ARM_THM_JUMP19))
3896 && !use_plt))
3897 {
3898 if (branch_type == ST_BRANCH_TO_THUMB)
3899 {
3900 /* Thumb to thumb. */
3901 if (!thumb_only)
3902 {
3903 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3904 /* PIC stubs. */
3905 ? ((globals->use_blx
3906 && (r_type == R_ARM_THM_CALL))
3907 /* V5T and above. Stub starts with ARM code, so
3908 we must be able to switch mode before
3909 reaching it, which is only possible for 'bl'
3910 (ie R_ARM_THM_CALL relocation). */
3911 ? arm_stub_long_branch_any_thumb_pic
3912 /* On V4T, use Thumb code only. */
3913 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3914
3915 /* non-PIC stubs. */
3916 : ((globals->use_blx
3917 && (r_type == R_ARM_THM_CALL))
3918 /* V5T and above. */
3919 ? arm_stub_long_branch_any_any
3920 /* V4T. */
3921 : arm_stub_long_branch_v4t_thumb_thumb);
3922 }
3923 else
3924 {
3925 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3926 /* PIC stub. */
3927 ? arm_stub_long_branch_thumb_only_pic
3928 /* non-PIC stub. */
3929 : arm_stub_long_branch_thumb_only;
3930 }
3931 }
3932 else
3933 {
3934 /* Thumb to arm. */
3935 if (sym_sec != NULL
3936 && sym_sec->owner != NULL
3937 && !INTERWORK_FLAG (sym_sec->owner))
3938 {
3939 (*_bfd_error_handler)
3940 (_("%B(%s): warning: interworking not enabled.\n"
3941 " first occurrence: %B: Thumb call to ARM"),
3942 sym_sec->owner, input_bfd, name);
3943 }
3944
3945 stub_type =
3946 (bfd_link_pic (info) | globals->pic_veneer)
3947 /* PIC stubs. */
3948 ? (r_type == R_ARM_THM_TLS_CALL
3949 /* TLS PIC stubs. */
3950 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3951 : arm_stub_long_branch_v4t_thumb_tls_pic)
3952 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3953 /* V5T PIC and above. */
3954 ? arm_stub_long_branch_any_arm_pic
3955 /* V4T PIC stub. */
3956 : arm_stub_long_branch_v4t_thumb_arm_pic))
3957
3958 /* non-PIC stubs. */
3959 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3960 /* V5T and above. */
3961 ? arm_stub_long_branch_any_any
3962 /* V4T. */
3963 : arm_stub_long_branch_v4t_thumb_arm);
3964
3965 /* Handle v4t short branches. */
3966 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3967 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3968 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3969 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3970 }
3971 }
3972 }
3973 else if (r_type == R_ARM_CALL
3974 || r_type == R_ARM_JUMP24
3975 || r_type == R_ARM_PLT32
3976 || r_type == R_ARM_TLS_CALL)
3977 {
3978 if (branch_type == ST_BRANCH_TO_THUMB)
3979 {
3980 /* Arm to thumb. */
3981
3982 if (sym_sec != NULL
3983 && sym_sec->owner != NULL
3984 && !INTERWORK_FLAG (sym_sec->owner))
3985 {
3986 (*_bfd_error_handler)
3987 (_("%B(%s): warning: interworking not enabled.\n"
3988 " first occurrence: %B: ARM call to Thumb"),
3989 sym_sec->owner, input_bfd, name);
3990 }
3991
3992 /* We have an extra 2-bytes reach because of
3993 the mode change (bit 24 (H) of BLX encoding). */
3994 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3995 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3996 || (r_type == R_ARM_CALL && !globals->use_blx)
3997 || (r_type == R_ARM_JUMP24)
3998 || (r_type == R_ARM_PLT32))
3999 {
4000 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4001 /* PIC stubs. */
4002 ? ((globals->use_blx)
4003 /* V5T and above. */
4004 ? arm_stub_long_branch_any_thumb_pic
4005 /* V4T stub. */
4006 : arm_stub_long_branch_v4t_arm_thumb_pic)
4007
4008 /* non-PIC stubs. */
4009 : ((globals->use_blx)
4010 /* V5T and above. */
4011 ? arm_stub_long_branch_any_any
4012 /* V4T. */
4013 : arm_stub_long_branch_v4t_arm_thumb);
4014 }
4015 }
4016 else
4017 {
4018 /* Arm to arm. */
4019 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4020 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4021 {
4022 stub_type =
4023 (bfd_link_pic (info) | globals->pic_veneer)
4024 /* PIC stubs. */
4025 ? (r_type == R_ARM_TLS_CALL
4026 /* TLS PIC Stub. */
4027 ? arm_stub_long_branch_any_tls_pic
4028 : (globals->nacl_p
4029 ? arm_stub_long_branch_arm_nacl_pic
4030 : arm_stub_long_branch_any_arm_pic))
4031 /* non-PIC stubs. */
4032 : (globals->nacl_p
4033 ? arm_stub_long_branch_arm_nacl
4034 : arm_stub_long_branch_any_any);
4035 }
4036 }
4037 }
4038
4039 /* If a stub is needed, record the actual destination type. */
4040 if (stub_type != arm_stub_none)
4041 *actual_branch_type = branch_type;
4042
4043 return stub_type;
4044 }
4045
4046 /* Build a name for an entry in the stub hash table. */
4047
4048 static char *
4049 elf32_arm_stub_name (const asection *input_section,
4050 const asection *sym_sec,
4051 const struct elf32_arm_link_hash_entry *hash,
4052 const Elf_Internal_Rela *rel,
4053 enum elf32_arm_stub_type stub_type)
4054 {
4055 char *stub_name;
4056 bfd_size_type len;
4057
4058 if (hash)
4059 {
4060 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4061 stub_name = (char *) bfd_malloc (len);
4062 if (stub_name != NULL)
4063 sprintf (stub_name, "%08x_%s+%x_%d",
4064 input_section->id & 0xffffffff,
4065 hash->root.root.root.string,
4066 (int) rel->r_addend & 0xffffffff,
4067 (int) stub_type);
4068 }
4069 else
4070 {
4071 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4072 stub_name = (char *) bfd_malloc (len);
4073 if (stub_name != NULL)
4074 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4075 input_section->id & 0xffffffff,
4076 sym_sec->id & 0xffffffff,
4077 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4078 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4079 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4080 (int) rel->r_addend & 0xffffffff,
4081 (int) stub_type);
4082 }
4083
4084 return stub_name;
4085 }
4086
4087 /* Look up an entry in the stub hash. Stub entries are cached because
4088 creating the stub name takes a bit of time. */
4089
4090 static struct elf32_arm_stub_hash_entry *
4091 elf32_arm_get_stub_entry (const asection *input_section,
4092 const asection *sym_sec,
4093 struct elf_link_hash_entry *hash,
4094 const Elf_Internal_Rela *rel,
4095 struct elf32_arm_link_hash_table *htab,
4096 enum elf32_arm_stub_type stub_type)
4097 {
4098 struct elf32_arm_stub_hash_entry *stub_entry;
4099 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4100 const asection *id_sec;
4101
4102 if ((input_section->flags & SEC_CODE) == 0)
4103 return NULL;
4104
4105 /* If this input section is part of a group of sections sharing one
4106 stub section, then use the id of the first section in the group.
4107 Stub names need to include a section id, as there may well be
4108 more than one stub used to reach say, printf, and we need to
4109 distinguish between them. */
4110 id_sec = htab->stub_group[input_section->id].link_sec;
4111
4112 if (h != NULL && h->stub_cache != NULL
4113 && h->stub_cache->h == h
4114 && h->stub_cache->id_sec == id_sec
4115 && h->stub_cache->stub_type == stub_type)
4116 {
4117 stub_entry = h->stub_cache;
4118 }
4119 else
4120 {
4121 char *stub_name;
4122
4123 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4124 if (stub_name == NULL)
4125 return NULL;
4126
4127 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4128 stub_name, FALSE, FALSE);
4129 if (h != NULL)
4130 h->stub_cache = stub_entry;
4131
4132 free (stub_name);
4133 }
4134
4135 return stub_entry;
4136 }
4137
4138 /* Find or create a stub section. Returns a pointer to the stub section, and
4139 the section to which the stub section will be attached (in *LINK_SEC_P).
4140 LINK_SEC_P may be NULL. */
4141
4142 static asection *
4143 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4144 struct elf32_arm_link_hash_table *htab)
4145 {
4146 asection *link_sec;
4147 asection *stub_sec;
4148 asection *out_sec;
4149
4150 link_sec = htab->stub_group[section->id].link_sec;
4151 BFD_ASSERT (link_sec != NULL);
4152 stub_sec = htab->stub_group[section->id].stub_sec;
4153
4154 if (stub_sec == NULL)
4155 {
4156 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4157 if (stub_sec == NULL)
4158 {
4159 size_t namelen;
4160 bfd_size_type len;
4161 char *s_name;
4162
4163 namelen = strlen (link_sec->name);
4164 len = namelen + sizeof (STUB_SUFFIX);
4165 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4166 if (s_name == NULL)
4167 return NULL;
4168
4169 memcpy (s_name, link_sec->name, namelen);
4170 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4171 out_sec = link_sec->output_section;
4172 stub_sec = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4173 htab->nacl_p ? 4 : 3);
4174 if (stub_sec == NULL)
4175 return NULL;
4176 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4177 }
4178 htab->stub_group[section->id].stub_sec = stub_sec;
4179 }
4180
4181 if (link_sec_p)
4182 *link_sec_p = link_sec;
4183
4184 return stub_sec;
4185 }
4186
4187 /* Add a new stub entry to the stub hash. Not all fields of the new
4188 stub entry are initialised. */
4189
4190 static struct elf32_arm_stub_hash_entry *
4191 elf32_arm_add_stub (const char *stub_name,
4192 asection *section,
4193 struct elf32_arm_link_hash_table *htab)
4194 {
4195 asection *link_sec;
4196 asection *stub_sec;
4197 struct elf32_arm_stub_hash_entry *stub_entry;
4198
4199 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4200 if (stub_sec == NULL)
4201 return NULL;
4202
4203 /* Enter this entry into the linker stub hash table. */
4204 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4205 TRUE, FALSE);
4206 if (stub_entry == NULL)
4207 {
4208 if (section == NULL)
4209 section = stub_sec;
4210 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4211 section->owner,
4212 stub_name);
4213 return NULL;
4214 }
4215
4216 stub_entry->stub_sec = stub_sec;
4217 stub_entry->stub_offset = 0;
4218 stub_entry->id_sec = link_sec;
4219
4220 return stub_entry;
4221 }
4222
4223 /* Store an Arm insn into an output section not processed by
4224 elf32_arm_write_section. */
4225
4226 static void
4227 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4228 bfd * output_bfd, bfd_vma val, void * ptr)
4229 {
4230 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4231 bfd_putl32 (val, ptr);
4232 else
4233 bfd_putb32 (val, ptr);
4234 }
4235
4236 /* Store a 16-bit Thumb insn into an output section not processed by
4237 elf32_arm_write_section. */
4238
4239 static void
4240 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4241 bfd * output_bfd, bfd_vma val, void * ptr)
4242 {
4243 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4244 bfd_putl16 (val, ptr);
4245 else
4246 bfd_putb16 (val, ptr);
4247 }
4248
4249 /* Store a Thumb2 insn into an output section not processed by
4250 elf32_arm_write_section. */
4251
4252 static void
4253 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4254 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4255 {
4256 /* T2 instructions are 16-bit streamed. */
4257 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4258 {
4259 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4260 bfd_putl16 ((val & 0xffff), ptr + 2);
4261 }
4262 else
4263 {
4264 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4265 bfd_putb16 ((val & 0xffff), ptr + 2);
4266 }
4267 }
4268
4269 /* If it's possible to change R_TYPE to a more efficient access
4270 model, return the new reloc type. */
4271
4272 static unsigned
4273 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4274 struct elf_link_hash_entry *h)
4275 {
4276 int is_local = (h == NULL);
4277
4278 if (bfd_link_pic (info)
4279 || (h && h->root.type == bfd_link_hash_undefweak))
4280 return r_type;
4281
4282 /* We do not support relaxations for Old TLS models. */
4283 switch (r_type)
4284 {
4285 case R_ARM_TLS_GOTDESC:
4286 case R_ARM_TLS_CALL:
4287 case R_ARM_THM_TLS_CALL:
4288 case R_ARM_TLS_DESCSEQ:
4289 case R_ARM_THM_TLS_DESCSEQ:
4290 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4291 }
4292
4293 return r_type;
4294 }
4295
4296 static bfd_reloc_status_type elf32_arm_final_link_relocate
4297 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4298 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4299 const char *, unsigned char, enum arm_st_branch_type,
4300 struct elf_link_hash_entry *, bfd_boolean *, char **);
4301
4302 static unsigned int
4303 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4304 {
4305 switch (stub_type)
4306 {
4307 case arm_stub_a8_veneer_b_cond:
4308 case arm_stub_a8_veneer_b:
4309 case arm_stub_a8_veneer_bl:
4310 return 2;
4311
4312 case arm_stub_long_branch_any_any:
4313 case arm_stub_long_branch_v4t_arm_thumb:
4314 case arm_stub_long_branch_thumb_only:
4315 case arm_stub_long_branch_v4t_thumb_thumb:
4316 case arm_stub_long_branch_v4t_thumb_arm:
4317 case arm_stub_short_branch_v4t_thumb_arm:
4318 case arm_stub_long_branch_any_arm_pic:
4319 case arm_stub_long_branch_any_thumb_pic:
4320 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4321 case arm_stub_long_branch_v4t_arm_thumb_pic:
4322 case arm_stub_long_branch_v4t_thumb_arm_pic:
4323 case arm_stub_long_branch_thumb_only_pic:
4324 case arm_stub_long_branch_any_tls_pic:
4325 case arm_stub_long_branch_v4t_thumb_tls_pic:
4326 case arm_stub_a8_veneer_blx:
4327 return 4;
4328
4329 case arm_stub_long_branch_arm_nacl:
4330 case arm_stub_long_branch_arm_nacl_pic:
4331 return 16;
4332
4333 default:
4334 abort (); /* Should be unreachable. */
4335 }
4336 }
4337
4338 static bfd_boolean
4339 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4340 void * in_arg)
4341 {
4342 #define MAXRELOCS 3
4343 struct elf32_arm_stub_hash_entry *stub_entry;
4344 struct elf32_arm_link_hash_table *globals;
4345 struct bfd_link_info *info;
4346 asection *stub_sec;
4347 bfd *stub_bfd;
4348 bfd_byte *loc;
4349 bfd_vma sym_value;
4350 int template_size;
4351 int size;
4352 const insn_sequence *template_sequence;
4353 int i;
4354 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4355 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4356 int nrelocs = 0;
4357
4358 /* Massage our args to the form they really have. */
4359 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4360 info = (struct bfd_link_info *) in_arg;
4361
4362 globals = elf32_arm_hash_table (info);
4363 if (globals == NULL)
4364 return FALSE;
4365
4366 stub_sec = stub_entry->stub_sec;
4367
4368 if ((globals->fix_cortex_a8 < 0)
4369 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4370 /* We have to do less-strictly-aligned fixes last. */
4371 return TRUE;
4372
4373 /* Make a note of the offset within the stubs for this entry. */
4374 stub_entry->stub_offset = stub_sec->size;
4375 loc = stub_sec->contents + stub_entry->stub_offset;
4376
4377 stub_bfd = stub_sec->owner;
4378
4379 /* This is the address of the stub destination. */
4380 sym_value = (stub_entry->target_value
4381 + stub_entry->target_section->output_offset
4382 + stub_entry->target_section->output_section->vma);
4383
4384 template_sequence = stub_entry->stub_template;
4385 template_size = stub_entry->stub_template_size;
4386
4387 size = 0;
4388 for (i = 0; i < template_size; i++)
4389 {
4390 switch (template_sequence[i].type)
4391 {
4392 case THUMB16_TYPE:
4393 {
4394 bfd_vma data = (bfd_vma) template_sequence[i].data;
4395 if (template_sequence[i].reloc_addend != 0)
4396 {
4397 /* We've borrowed the reloc_addend field to mean we should
4398 insert a condition code into this (Thumb-1 branch)
4399 instruction. See THUMB16_BCOND_INSN. */
4400 BFD_ASSERT ((data & 0xff00) == 0xd000);
4401 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4402 }
4403 bfd_put_16 (stub_bfd, data, loc + size);
4404 size += 2;
4405 }
4406 break;
4407
4408 case THUMB32_TYPE:
4409 bfd_put_16 (stub_bfd,
4410 (template_sequence[i].data >> 16) & 0xffff,
4411 loc + size);
4412 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4413 loc + size + 2);
4414 if (template_sequence[i].r_type != R_ARM_NONE)
4415 {
4416 stub_reloc_idx[nrelocs] = i;
4417 stub_reloc_offset[nrelocs++] = size;
4418 }
4419 size += 4;
4420 break;
4421
4422 case ARM_TYPE:
4423 bfd_put_32 (stub_bfd, template_sequence[i].data,
4424 loc + size);
4425 /* Handle cases where the target is encoded within the
4426 instruction. */
4427 if (template_sequence[i].r_type == R_ARM_JUMP24)
4428 {
4429 stub_reloc_idx[nrelocs] = i;
4430 stub_reloc_offset[nrelocs++] = size;
4431 }
4432 size += 4;
4433 break;
4434
4435 case DATA_TYPE:
4436 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4437 stub_reloc_idx[nrelocs] = i;
4438 stub_reloc_offset[nrelocs++] = size;
4439 size += 4;
4440 break;
4441
4442 default:
4443 BFD_FAIL ();
4444 return FALSE;
4445 }
4446 }
4447
4448 stub_sec->size += size;
4449
4450 /* Stub size has already been computed in arm_size_one_stub. Check
4451 consistency. */
4452 BFD_ASSERT (size == stub_entry->stub_size);
4453
4454 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4455 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4456 sym_value |= 1;
4457
4458 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4459 in each stub. */
4460 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4461
4462 for (i = 0; i < nrelocs; i++)
4463 {
4464 Elf_Internal_Rela rel;
4465 bfd_boolean unresolved_reloc;
4466 char *error_message;
4467 bfd_vma points_to =
4468 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4469
4470 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4471 rel.r_info = ELF32_R_INFO (0,
4472 template_sequence[stub_reloc_idx[i]].r_type);
4473 rel.r_addend = 0;
4474
4475 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4476 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4477 template should refer back to the instruction after the original
4478 branch. We use target_section as Cortex-A8 erratum workaround stubs
4479 are only generated when both source and target are in the same
4480 section. */
4481 points_to = stub_entry->target_section->output_section->vma
4482 + stub_entry->target_section->output_offset
4483 + stub_entry->source_value;
4484
4485 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4486 (template_sequence[stub_reloc_idx[i]].r_type),
4487 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4488 points_to, info, stub_entry->target_section, "", STT_FUNC,
4489 stub_entry->branch_type,
4490 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4491 &error_message);
4492 }
4493
4494 return TRUE;
4495 #undef MAXRELOCS
4496 }
4497
4498 /* Calculate the template, template size and instruction size for a stub.
4499 Return value is the instruction size. */
4500
4501 static unsigned int
4502 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4503 const insn_sequence **stub_template,
4504 int *stub_template_size)
4505 {
4506 const insn_sequence *template_sequence = NULL;
4507 int template_size = 0, i;
4508 unsigned int size;
4509
4510 template_sequence = stub_definitions[stub_type].template_sequence;
4511 if (stub_template)
4512 *stub_template = template_sequence;
4513
4514 template_size = stub_definitions[stub_type].template_size;
4515 if (stub_template_size)
4516 *stub_template_size = template_size;
4517
4518 size = 0;
4519 for (i = 0; i < template_size; i++)
4520 {
4521 switch (template_sequence[i].type)
4522 {
4523 case THUMB16_TYPE:
4524 size += 2;
4525 break;
4526
4527 case ARM_TYPE:
4528 case THUMB32_TYPE:
4529 case DATA_TYPE:
4530 size += 4;
4531 break;
4532
4533 default:
4534 BFD_FAIL ();
4535 return 0;
4536 }
4537 }
4538
4539 return size;
4540 }
4541
4542 /* As above, but don't actually build the stub. Just bump offset so
4543 we know stub section sizes. */
4544
4545 static bfd_boolean
4546 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4547 void *in_arg ATTRIBUTE_UNUSED)
4548 {
4549 struct elf32_arm_stub_hash_entry *stub_entry;
4550 const insn_sequence *template_sequence;
4551 int template_size, size;
4552
4553 /* Massage our args to the form they really have. */
4554 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4555
4556 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4557 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4558
4559 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4560 &template_size);
4561
4562 stub_entry->stub_size = size;
4563 stub_entry->stub_template = template_sequence;
4564 stub_entry->stub_template_size = template_size;
4565
4566 size = (size + 7) & ~7;
4567 stub_entry->stub_sec->size += size;
4568
4569 return TRUE;
4570 }
4571
4572 /* External entry points for sizing and building linker stubs. */
4573
4574 /* Set up various things so that we can make a list of input sections
4575 for each output section included in the link. Returns -1 on error,
4576 0 when no stubs will be needed, and 1 on success. */
4577
4578 int
4579 elf32_arm_setup_section_lists (bfd *output_bfd,
4580 struct bfd_link_info *info)
4581 {
4582 bfd *input_bfd;
4583 unsigned int bfd_count;
4584 unsigned int top_id, top_index;
4585 asection *section;
4586 asection **input_list, **list;
4587 bfd_size_type amt;
4588 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4589
4590 if (htab == NULL)
4591 return 0;
4592 if (! is_elf_hash_table (htab))
4593 return 0;
4594
4595 /* Count the number of input BFDs and find the top input section id. */
4596 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4597 input_bfd != NULL;
4598 input_bfd = input_bfd->link.next)
4599 {
4600 bfd_count += 1;
4601 for (section = input_bfd->sections;
4602 section != NULL;
4603 section = section->next)
4604 {
4605 if (top_id < section->id)
4606 top_id = section->id;
4607 }
4608 }
4609 htab->bfd_count = bfd_count;
4610
4611 amt = sizeof (struct map_stub) * (top_id + 1);
4612 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4613 if (htab->stub_group == NULL)
4614 return -1;
4615 htab->top_id = top_id;
4616
4617 /* We can't use output_bfd->section_count here to find the top output
4618 section index as some sections may have been removed, and
4619 _bfd_strip_section_from_output doesn't renumber the indices. */
4620 for (section = output_bfd->sections, top_index = 0;
4621 section != NULL;
4622 section = section->next)
4623 {
4624 if (top_index < section->index)
4625 top_index = section->index;
4626 }
4627
4628 htab->top_index = top_index;
4629 amt = sizeof (asection *) * (top_index + 1);
4630 input_list = (asection **) bfd_malloc (amt);
4631 htab->input_list = input_list;
4632 if (input_list == NULL)
4633 return -1;
4634
4635 /* For sections we aren't interested in, mark their entries with a
4636 value we can check later. */
4637 list = input_list + top_index;
4638 do
4639 *list = bfd_abs_section_ptr;
4640 while (list-- != input_list);
4641
4642 for (section = output_bfd->sections;
4643 section != NULL;
4644 section = section->next)
4645 {
4646 if ((section->flags & SEC_CODE) != 0)
4647 input_list[section->index] = NULL;
4648 }
4649
4650 return 1;
4651 }
4652
4653 /* The linker repeatedly calls this function for each input section,
4654 in the order that input sections are linked into output sections.
4655 Build lists of input sections to determine groupings between which
4656 we may insert linker stubs. */
4657
4658 void
4659 elf32_arm_next_input_section (struct bfd_link_info *info,
4660 asection *isec)
4661 {
4662 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4663
4664 if (htab == NULL)
4665 return;
4666
4667 if (isec->output_section->index <= htab->top_index)
4668 {
4669 asection **list = htab->input_list + isec->output_section->index;
4670
4671 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4672 {
4673 /* Steal the link_sec pointer for our list. */
4674 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4675 /* This happens to make the list in reverse order,
4676 which we reverse later. */
4677 PREV_SEC (isec) = *list;
4678 *list = isec;
4679 }
4680 }
4681 }
4682
4683 /* See whether we can group stub sections together. Grouping stub
4684 sections may result in fewer stubs. More importantly, we need to
4685 put all .init* and .fini* stubs at the end of the .init or
4686 .fini output sections respectively, because glibc splits the
4687 _init and _fini functions into multiple parts. Putting a stub in
4688 the middle of a function is not a good idea. */
4689
4690 static void
4691 group_sections (struct elf32_arm_link_hash_table *htab,
4692 bfd_size_type stub_group_size,
4693 bfd_boolean stubs_always_after_branch)
4694 {
4695 asection **list = htab->input_list;
4696
4697 do
4698 {
4699 asection *tail = *list;
4700 asection *head;
4701
4702 if (tail == bfd_abs_section_ptr)
4703 continue;
4704
4705 /* Reverse the list: we must avoid placing stubs at the
4706 beginning of the section because the beginning of the text
4707 section may be required for an interrupt vector in bare metal
4708 code. */
4709 #define NEXT_SEC PREV_SEC
4710 head = NULL;
4711 while (tail != NULL)
4712 {
4713 /* Pop from tail. */
4714 asection *item = tail;
4715 tail = PREV_SEC (item);
4716
4717 /* Push on head. */
4718 NEXT_SEC (item) = head;
4719 head = item;
4720 }
4721
4722 while (head != NULL)
4723 {
4724 asection *curr;
4725 asection *next;
4726 bfd_vma stub_group_start = head->output_offset;
4727 bfd_vma end_of_next;
4728
4729 curr = head;
4730 while (NEXT_SEC (curr) != NULL)
4731 {
4732 next = NEXT_SEC (curr);
4733 end_of_next = next->output_offset + next->size;
4734 if (end_of_next - stub_group_start >= stub_group_size)
4735 /* End of NEXT is too far from start, so stop. */
4736 break;
4737 /* Add NEXT to the group. */
4738 curr = next;
4739 }
4740
4741 /* OK, the size from the start to the start of CURR is less
4742 than stub_group_size and thus can be handled by one stub
4743 section. (Or the head section is itself larger than
4744 stub_group_size, in which case we may be toast.)
4745 We should really be keeping track of the total size of
4746 stubs added here, as stubs contribute to the final output
4747 section size. */
4748 do
4749 {
4750 next = NEXT_SEC (head);
4751 /* Set up this stub group. */
4752 htab->stub_group[head->id].link_sec = curr;
4753 }
4754 while (head != curr && (head = next) != NULL);
4755
4756 /* But wait, there's more! Input sections up to stub_group_size
4757 bytes after the stub section can be handled by it too. */
4758 if (!stubs_always_after_branch)
4759 {
4760 stub_group_start = curr->output_offset + curr->size;
4761
4762 while (next != NULL)
4763 {
4764 end_of_next = next->output_offset + next->size;
4765 if (end_of_next - stub_group_start >= stub_group_size)
4766 /* End of NEXT is too far from stubs, so stop. */
4767 break;
4768 /* Add NEXT to the stub group. */
4769 head = next;
4770 next = NEXT_SEC (head);
4771 htab->stub_group[head->id].link_sec = curr;
4772 }
4773 }
4774 head = next;
4775 }
4776 }
4777 while (list++ != htab->input_list + htab->top_index);
4778
4779 free (htab->input_list);
4780 #undef PREV_SEC
4781 #undef NEXT_SEC
4782 }
4783
4784 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4785 erratum fix. */
4786
4787 static int
4788 a8_reloc_compare (const void *a, const void *b)
4789 {
4790 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4791 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4792
4793 if (ra->from < rb->from)
4794 return -1;
4795 else if (ra->from > rb->from)
4796 return 1;
4797 else
4798 return 0;
4799 }
4800
4801 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4802 const char *, char **);
4803
4804 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4805 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4806 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4807 otherwise. */
4808
4809 static bfd_boolean
4810 cortex_a8_erratum_scan (bfd *input_bfd,
4811 struct bfd_link_info *info,
4812 struct a8_erratum_fix **a8_fixes_p,
4813 unsigned int *num_a8_fixes_p,
4814 unsigned int *a8_fix_table_size_p,
4815 struct a8_erratum_reloc *a8_relocs,
4816 unsigned int num_a8_relocs,
4817 unsigned prev_num_a8_fixes,
4818 bfd_boolean *stub_changed_p)
4819 {
4820 asection *section;
4821 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4822 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4823 unsigned int num_a8_fixes = *num_a8_fixes_p;
4824 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4825
4826 if (htab == NULL)
4827 return FALSE;
4828
4829 for (section = input_bfd->sections;
4830 section != NULL;
4831 section = section->next)
4832 {
4833 bfd_byte *contents = NULL;
4834 struct _arm_elf_section_data *sec_data;
4835 unsigned int span;
4836 bfd_vma base_vma;
4837
4838 if (elf_section_type (section) != SHT_PROGBITS
4839 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4840 || (section->flags & SEC_EXCLUDE) != 0
4841 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4842 || (section->output_section == bfd_abs_section_ptr))
4843 continue;
4844
4845 base_vma = section->output_section->vma + section->output_offset;
4846
4847 if (elf_section_data (section)->this_hdr.contents != NULL)
4848 contents = elf_section_data (section)->this_hdr.contents;
4849 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4850 return TRUE;
4851
4852 sec_data = elf32_arm_section_data (section);
4853
4854 for (span = 0; span < sec_data->mapcount; span++)
4855 {
4856 unsigned int span_start = sec_data->map[span].vma;
4857 unsigned int span_end = (span == sec_data->mapcount - 1)
4858 ? section->size : sec_data->map[span + 1].vma;
4859 unsigned int i;
4860 char span_type = sec_data->map[span].type;
4861 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4862
4863 if (span_type != 't')
4864 continue;
4865
4866 /* Span is entirely within a single 4KB region: skip scanning. */
4867 if (((base_vma + span_start) & ~0xfff)
4868 == ((base_vma + span_end) & ~0xfff))
4869 continue;
4870
4871 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4872
4873 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4874 * The branch target is in the same 4KB region as the
4875 first half of the branch.
4876 * The instruction before the branch is a 32-bit
4877 length non-branch instruction. */
4878 for (i = span_start; i < span_end;)
4879 {
4880 unsigned int insn = bfd_getl16 (&contents[i]);
4881 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4882 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4883
4884 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4885 insn_32bit = TRUE;
4886
4887 if (insn_32bit)
4888 {
4889 /* Load the rest of the insn (in manual-friendly order). */
4890 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4891
4892 /* Encoding T4: B<c>.W. */
4893 is_b = (insn & 0xf800d000) == 0xf0009000;
4894 /* Encoding T1: BL<c>.W. */
4895 is_bl = (insn & 0xf800d000) == 0xf000d000;
4896 /* Encoding T2: BLX<c>.W. */
4897 is_blx = (insn & 0xf800d000) == 0xf000c000;
4898 /* Encoding T3: B<c>.W (not permitted in IT block). */
4899 is_bcc = (insn & 0xf800d000) == 0xf0008000
4900 && (insn & 0x07f00000) != 0x03800000;
4901 }
4902
4903 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4904
4905 if (((base_vma + i) & 0xfff) == 0xffe
4906 && insn_32bit
4907 && is_32bit_branch
4908 && last_was_32bit
4909 && ! last_was_branch)
4910 {
4911 bfd_signed_vma offset = 0;
4912 bfd_boolean force_target_arm = FALSE;
4913 bfd_boolean force_target_thumb = FALSE;
4914 bfd_vma target;
4915 enum elf32_arm_stub_type stub_type = arm_stub_none;
4916 struct a8_erratum_reloc key, *found;
4917 bfd_boolean use_plt = FALSE;
4918
4919 key.from = base_vma + i;
4920 found = (struct a8_erratum_reloc *)
4921 bsearch (&key, a8_relocs, num_a8_relocs,
4922 sizeof (struct a8_erratum_reloc),
4923 &a8_reloc_compare);
4924
4925 if (found)
4926 {
4927 char *error_message = NULL;
4928 struct elf_link_hash_entry *entry;
4929
4930 /* We don't care about the error returned from this
4931 function, only if there is glue or not. */
4932 entry = find_thumb_glue (info, found->sym_name,
4933 &error_message);
4934
4935 if (entry)
4936 found->non_a8_stub = TRUE;
4937
4938 /* Keep a simpler condition, for the sake of clarity. */
4939 if (htab->root.splt != NULL && found->hash != NULL
4940 && found->hash->root.plt.offset != (bfd_vma) -1)
4941 use_plt = TRUE;
4942
4943 if (found->r_type == R_ARM_THM_CALL)
4944 {
4945 if (found->branch_type == ST_BRANCH_TO_ARM
4946 || use_plt)
4947 force_target_arm = TRUE;
4948 else
4949 force_target_thumb = TRUE;
4950 }
4951 }
4952
4953 /* Check if we have an offending branch instruction. */
4954
4955 if (found && found->non_a8_stub)
4956 /* We've already made a stub for this instruction, e.g.
4957 it's a long branch or a Thumb->ARM stub. Assume that
4958 stub will suffice to work around the A8 erratum (see
4959 setting of always_after_branch above). */
4960 ;
4961 else if (is_bcc)
4962 {
4963 offset = (insn & 0x7ff) << 1;
4964 offset |= (insn & 0x3f0000) >> 4;
4965 offset |= (insn & 0x2000) ? 0x40000 : 0;
4966 offset |= (insn & 0x800) ? 0x80000 : 0;
4967 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4968 if (offset & 0x100000)
4969 offset |= ~ ((bfd_signed_vma) 0xfffff);
4970 stub_type = arm_stub_a8_veneer_b_cond;
4971 }
4972 else if (is_b || is_bl || is_blx)
4973 {
4974 int s = (insn & 0x4000000) != 0;
4975 int j1 = (insn & 0x2000) != 0;
4976 int j2 = (insn & 0x800) != 0;
4977 int i1 = !(j1 ^ s);
4978 int i2 = !(j2 ^ s);
4979
4980 offset = (insn & 0x7ff) << 1;
4981 offset |= (insn & 0x3ff0000) >> 4;
4982 offset |= i2 << 22;
4983 offset |= i1 << 23;
4984 offset |= s << 24;
4985 if (offset & 0x1000000)
4986 offset |= ~ ((bfd_signed_vma) 0xffffff);
4987
4988 if (is_blx)
4989 offset &= ~ ((bfd_signed_vma) 3);
4990
4991 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4992 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4993 }
4994
4995 if (stub_type != arm_stub_none)
4996 {
4997 bfd_vma pc_for_insn = base_vma + i + 4;
4998
4999 /* The original instruction is a BL, but the target is
5000 an ARM instruction. If we were not making a stub,
5001 the BL would have been converted to a BLX. Use the
5002 BLX stub instead in that case. */
5003 if (htab->use_blx && force_target_arm
5004 && stub_type == arm_stub_a8_veneer_bl)
5005 {
5006 stub_type = arm_stub_a8_veneer_blx;
5007 is_blx = TRUE;
5008 is_bl = FALSE;
5009 }
5010 /* Conversely, if the original instruction was
5011 BLX but the target is Thumb mode, use the BL
5012 stub. */
5013 else if (force_target_thumb
5014 && stub_type == arm_stub_a8_veneer_blx)
5015 {
5016 stub_type = arm_stub_a8_veneer_bl;
5017 is_blx = FALSE;
5018 is_bl = TRUE;
5019 }
5020
5021 if (is_blx)
5022 pc_for_insn &= ~ ((bfd_vma) 3);
5023
5024 /* If we found a relocation, use the proper destination,
5025 not the offset in the (unrelocated) instruction.
5026 Note this is always done if we switched the stub type
5027 above. */
5028 if (found)
5029 offset =
5030 (bfd_signed_vma) (found->destination - pc_for_insn);
5031
5032 /* If the stub will use a Thumb-mode branch to a
5033 PLT target, redirect it to the preceding Thumb
5034 entry point. */
5035 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5036 offset -= PLT_THUMB_STUB_SIZE;
5037
5038 target = pc_for_insn + offset;
5039
5040 /* The BLX stub is ARM-mode code. Adjust the offset to
5041 take the different PC value (+8 instead of +4) into
5042 account. */
5043 if (stub_type == arm_stub_a8_veneer_blx)
5044 offset += 4;
5045
5046 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5047 {
5048 char *stub_name = NULL;
5049
5050 if (num_a8_fixes == a8_fix_table_size)
5051 {
5052 a8_fix_table_size *= 2;
5053 a8_fixes = (struct a8_erratum_fix *)
5054 bfd_realloc (a8_fixes,
5055 sizeof (struct a8_erratum_fix)
5056 * a8_fix_table_size);
5057 }
5058
5059 if (num_a8_fixes < prev_num_a8_fixes)
5060 {
5061 /* If we're doing a subsequent scan,
5062 check if we've found the same fix as
5063 before, and try and reuse the stub
5064 name. */
5065 stub_name = a8_fixes[num_a8_fixes].stub_name;
5066 if ((a8_fixes[num_a8_fixes].section != section)
5067 || (a8_fixes[num_a8_fixes].offset != i))
5068 {
5069 free (stub_name);
5070 stub_name = NULL;
5071 *stub_changed_p = TRUE;
5072 }
5073 }
5074
5075 if (!stub_name)
5076 {
5077 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5078 if (stub_name != NULL)
5079 sprintf (stub_name, "%x:%x", section->id, i);
5080 }
5081
5082 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5083 a8_fixes[num_a8_fixes].section = section;
5084 a8_fixes[num_a8_fixes].offset = i;
5085 a8_fixes[num_a8_fixes].target_offset =
5086 target - base_vma;
5087 a8_fixes[num_a8_fixes].orig_insn = insn;
5088 a8_fixes[num_a8_fixes].stub_name = stub_name;
5089 a8_fixes[num_a8_fixes].stub_type = stub_type;
5090 a8_fixes[num_a8_fixes].branch_type =
5091 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5092
5093 num_a8_fixes++;
5094 }
5095 }
5096 }
5097
5098 i += insn_32bit ? 4 : 2;
5099 last_was_32bit = insn_32bit;
5100 last_was_branch = is_32bit_branch;
5101 }
5102 }
5103
5104 if (elf_section_data (section)->this_hdr.contents == NULL)
5105 free (contents);
5106 }
5107
5108 *a8_fixes_p = a8_fixes;
5109 *num_a8_fixes_p = num_a8_fixes;
5110 *a8_fix_table_size_p = a8_fix_table_size;
5111
5112 return FALSE;
5113 }
5114
5115 /* Create or update a stub entry depending on whether the stub can already be
5116 found in HTAB. The stub is identified by:
5117 - its type STUB_TYPE
5118 - its source branch (note that several can share the same stub) whose
5119 section and relocation (if any) are given by SECTION and IRELA
5120 respectively
5121 - its target symbol whose input section, hash, name, value and branch type
5122 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5123 respectively
5124
5125 If found, the value of the stub's target symbol is updated from SYM_VALUE
5126 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5127 TRUE and the stub entry is initialized.
5128
5129 Returns whether the stub could be successfully created or updated, or FALSE
5130 if an error occured. */
5131
5132 static bfd_boolean
5133 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5134 enum elf32_arm_stub_type stub_type, asection *section,
5135 Elf_Internal_Rela *irela, asection *sym_sec,
5136 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5137 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5138 bfd_boolean *new_stub)
5139 {
5140 const asection *id_sec;
5141 char *stub_name;
5142 struct elf32_arm_stub_hash_entry *stub_entry;
5143 unsigned int r_type;
5144
5145 BFD_ASSERT (stub_type != arm_stub_none);
5146 *new_stub = FALSE;
5147
5148 BFD_ASSERT (irela);
5149 BFD_ASSERT (section);
5150
5151 /* Support for grouping stub sections. */
5152 id_sec = htab->stub_group[section->id].link_sec;
5153
5154 /* Get the name of this stub. */
5155 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela, stub_type);
5156 if (!stub_name)
5157 return FALSE;
5158
5159 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5160 FALSE);
5161 /* The proper stub has already been created, just update its value. */
5162 if (stub_entry != NULL)
5163 {
5164 free (stub_name);
5165 stub_entry->target_value = sym_value;
5166 return TRUE;
5167 }
5168
5169 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
5170 if (stub_entry == NULL)
5171 {
5172 free (stub_name);
5173 return FALSE;
5174 }
5175
5176 stub_entry->target_value = sym_value;
5177 stub_entry->target_section = sym_sec;
5178 stub_entry->stub_type = stub_type;
5179 stub_entry->h = hash;
5180 stub_entry->branch_type = branch_type;
5181
5182 if (sym_name == NULL)
5183 sym_name = "unnamed";
5184 stub_entry->output_name = (char *)
5185 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5186 + strlen (sym_name));
5187 if (stub_entry->output_name == NULL)
5188 {
5189 free (stub_name);
5190 return FALSE;
5191 }
5192
5193 /* For historical reasons, use the existing names for ARM-to-Thumb and
5194 Thumb-to-ARM stubs. */
5195 r_type = ELF32_R_TYPE (irela->r_info);
5196 if ((r_type == (unsigned int) R_ARM_THM_CALL
5197 || r_type == (unsigned int) R_ARM_THM_JUMP24
5198 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5199 && branch_type == ST_BRANCH_TO_ARM)
5200 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5201 else if ((r_type == (unsigned int) R_ARM_CALL
5202 || r_type == (unsigned int) R_ARM_JUMP24)
5203 && branch_type == ST_BRANCH_TO_THUMB)
5204 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5205 else
5206 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5207
5208 *new_stub = TRUE;
5209 return TRUE;
5210 }
5211
5212 /* Determine and set the size of the stub section for a final link.
5213
5214 The basic idea here is to examine all the relocations looking for
5215 PC-relative calls to a target that is unreachable with a "bl"
5216 instruction. */
5217
5218 bfd_boolean
5219 elf32_arm_size_stubs (bfd *output_bfd,
5220 bfd *stub_bfd,
5221 struct bfd_link_info *info,
5222 bfd_signed_vma group_size,
5223 asection * (*add_stub_section) (const char *, asection *,
5224 asection *,
5225 unsigned int),
5226 void (*layout_sections_again) (void))
5227 {
5228 bfd_size_type stub_group_size;
5229 bfd_boolean stubs_always_after_branch;
5230 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5231 struct a8_erratum_fix *a8_fixes = NULL;
5232 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
5233 struct a8_erratum_reloc *a8_relocs = NULL;
5234 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
5235
5236 if (htab == NULL)
5237 return FALSE;
5238
5239 if (htab->fix_cortex_a8)
5240 {
5241 a8_fixes = (struct a8_erratum_fix *)
5242 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
5243 a8_relocs = (struct a8_erratum_reloc *)
5244 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
5245 }
5246
5247 /* Propagate mach to stub bfd, because it may not have been
5248 finalized when we created stub_bfd. */
5249 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5250 bfd_get_mach (output_bfd));
5251
5252 /* Stash our params away. */
5253 htab->stub_bfd = stub_bfd;
5254 htab->add_stub_section = add_stub_section;
5255 htab->layout_sections_again = layout_sections_again;
5256 stubs_always_after_branch = group_size < 0;
5257
5258 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5259 as the first half of a 32-bit branch straddling two 4K pages. This is a
5260 crude way of enforcing that. */
5261 if (htab->fix_cortex_a8)
5262 stubs_always_after_branch = 1;
5263
5264 if (group_size < 0)
5265 stub_group_size = -group_size;
5266 else
5267 stub_group_size = group_size;
5268
5269 if (stub_group_size == 1)
5270 {
5271 /* Default values. */
5272 /* Thumb branch range is +-4MB has to be used as the default
5273 maximum size (a given section can contain both ARM and Thumb
5274 code, so the worst case has to be taken into account).
5275
5276 This value is 24K less than that, which allows for 2025
5277 12-byte stubs. If we exceed that, then we will fail to link.
5278 The user will have to relink with an explicit group size
5279 option. */
5280 stub_group_size = 4170000;
5281 }
5282
5283 group_sections (htab, stub_group_size, stubs_always_after_branch);
5284
5285 /* If we're applying the cortex A8 fix, we need to determine the
5286 program header size now, because we cannot change it later --
5287 that could alter section placements. Notice the A8 erratum fix
5288 ends up requiring the section addresses to remain unchanged
5289 modulo the page size. That's something we cannot represent
5290 inside BFD, and we don't want to force the section alignment to
5291 be the page size. */
5292 if (htab->fix_cortex_a8)
5293 (*htab->layout_sections_again) ();
5294
5295 while (1)
5296 {
5297 bfd *input_bfd;
5298 unsigned int bfd_indx;
5299 asection *stub_sec;
5300 bfd_boolean stub_changed = FALSE;
5301 unsigned prev_num_a8_fixes = num_a8_fixes;
5302
5303 num_a8_fixes = 0;
5304 for (input_bfd = info->input_bfds, bfd_indx = 0;
5305 input_bfd != NULL;
5306 input_bfd = input_bfd->link.next, bfd_indx++)
5307 {
5308 Elf_Internal_Shdr *symtab_hdr;
5309 asection *section;
5310 Elf_Internal_Sym *local_syms = NULL;
5311
5312 if (!is_arm_elf (input_bfd))
5313 continue;
5314
5315 num_a8_relocs = 0;
5316
5317 /* We'll need the symbol table in a second. */
5318 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5319 if (symtab_hdr->sh_info == 0)
5320 continue;
5321
5322 /* Walk over each section attached to the input bfd. */
5323 for (section = input_bfd->sections;
5324 section != NULL;
5325 section = section->next)
5326 {
5327 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5328
5329 /* If there aren't any relocs, then there's nothing more
5330 to do. */
5331 if ((section->flags & SEC_RELOC) == 0
5332 || section->reloc_count == 0
5333 || (section->flags & SEC_CODE) == 0)
5334 continue;
5335
5336 /* If this section is a link-once section that will be
5337 discarded, then don't create any stubs. */
5338 if (section->output_section == NULL
5339 || section->output_section->owner != output_bfd)
5340 continue;
5341
5342 /* Get the relocs. */
5343 internal_relocs
5344 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5345 NULL, info->keep_memory);
5346 if (internal_relocs == NULL)
5347 goto error_ret_free_local;
5348
5349 /* Now examine each relocation. */
5350 irela = internal_relocs;
5351 irelaend = irela + section->reloc_count;
5352 for (; irela < irelaend; irela++)
5353 {
5354 unsigned int r_type, r_indx;
5355 enum elf32_arm_stub_type stub_type;
5356 asection *sym_sec;
5357 bfd_vma sym_value;
5358 bfd_vma destination;
5359 struct elf32_arm_link_hash_entry *hash;
5360 const char *sym_name;
5361 unsigned char st_type;
5362 enum arm_st_branch_type branch_type;
5363 bfd_boolean created_stub = FALSE;
5364
5365 r_type = ELF32_R_TYPE (irela->r_info);
5366 r_indx = ELF32_R_SYM (irela->r_info);
5367
5368 if (r_type >= (unsigned int) R_ARM_max)
5369 {
5370 bfd_set_error (bfd_error_bad_value);
5371 error_ret_free_internal:
5372 if (elf_section_data (section)->relocs == NULL)
5373 free (internal_relocs);
5374 /* Fall through. */
5375 error_ret_free_local:
5376 if (local_syms != NULL
5377 && (symtab_hdr->contents
5378 != (unsigned char *) local_syms))
5379 free (local_syms);
5380 return FALSE;
5381 }
5382
5383 hash = NULL;
5384 if (r_indx >= symtab_hdr->sh_info)
5385 hash = elf32_arm_hash_entry
5386 (elf_sym_hashes (input_bfd)
5387 [r_indx - symtab_hdr->sh_info]);
5388
5389 /* Only look for stubs on branch instructions, or
5390 non-relaxed TLSCALL */
5391 if ((r_type != (unsigned int) R_ARM_CALL)
5392 && (r_type != (unsigned int) R_ARM_THM_CALL)
5393 && (r_type != (unsigned int) R_ARM_JUMP24)
5394 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5395 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5396 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5397 && (r_type != (unsigned int) R_ARM_PLT32)
5398 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5399 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5400 && r_type == elf32_arm_tls_transition
5401 (info, r_type, &hash->root)
5402 && ((hash ? hash->tls_type
5403 : (elf32_arm_local_got_tls_type
5404 (input_bfd)[r_indx]))
5405 & GOT_TLS_GDESC) != 0))
5406 continue;
5407
5408 /* Now determine the call target, its name, value,
5409 section. */
5410 sym_sec = NULL;
5411 sym_value = 0;
5412 destination = 0;
5413 sym_name = NULL;
5414
5415 if (r_type == (unsigned int) R_ARM_TLS_CALL
5416 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5417 {
5418 /* A non-relaxed TLS call. The target is the
5419 plt-resident trampoline and nothing to do
5420 with the symbol. */
5421 BFD_ASSERT (htab->tls_trampoline > 0);
5422 sym_sec = htab->root.splt;
5423 sym_value = htab->tls_trampoline;
5424 hash = 0;
5425 st_type = STT_FUNC;
5426 branch_type = ST_BRANCH_TO_ARM;
5427 }
5428 else if (!hash)
5429 {
5430 /* It's a local symbol. */
5431 Elf_Internal_Sym *sym;
5432
5433 if (local_syms == NULL)
5434 {
5435 local_syms
5436 = (Elf_Internal_Sym *) symtab_hdr->contents;
5437 if (local_syms == NULL)
5438 local_syms
5439 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5440 symtab_hdr->sh_info, 0,
5441 NULL, NULL, NULL);
5442 if (local_syms == NULL)
5443 goto error_ret_free_internal;
5444 }
5445
5446 sym = local_syms + r_indx;
5447 if (sym->st_shndx == SHN_UNDEF)
5448 sym_sec = bfd_und_section_ptr;
5449 else if (sym->st_shndx == SHN_ABS)
5450 sym_sec = bfd_abs_section_ptr;
5451 else if (sym->st_shndx == SHN_COMMON)
5452 sym_sec = bfd_com_section_ptr;
5453 else
5454 sym_sec =
5455 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5456
5457 if (!sym_sec)
5458 /* This is an undefined symbol. It can never
5459 be resolved. */
5460 continue;
5461
5462 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5463 sym_value = sym->st_value;
5464 destination = (sym_value + irela->r_addend
5465 + sym_sec->output_offset
5466 + sym_sec->output_section->vma);
5467 st_type = ELF_ST_TYPE (sym->st_info);
5468 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5469 sym_name
5470 = bfd_elf_string_from_elf_section (input_bfd,
5471 symtab_hdr->sh_link,
5472 sym->st_name);
5473 }
5474 else
5475 {
5476 /* It's an external symbol. */
5477 while (hash->root.root.type == bfd_link_hash_indirect
5478 || hash->root.root.type == bfd_link_hash_warning)
5479 hash = ((struct elf32_arm_link_hash_entry *)
5480 hash->root.root.u.i.link);
5481
5482 if (hash->root.root.type == bfd_link_hash_defined
5483 || hash->root.root.type == bfd_link_hash_defweak)
5484 {
5485 sym_sec = hash->root.root.u.def.section;
5486 sym_value = hash->root.root.u.def.value;
5487
5488 struct elf32_arm_link_hash_table *globals =
5489 elf32_arm_hash_table (info);
5490
5491 /* For a destination in a shared library,
5492 use the PLT stub as target address to
5493 decide whether a branch stub is
5494 needed. */
5495 if (globals != NULL
5496 && globals->root.splt != NULL
5497 && hash != NULL
5498 && hash->root.plt.offset != (bfd_vma) -1)
5499 {
5500 sym_sec = globals->root.splt;
5501 sym_value = hash->root.plt.offset;
5502 if (sym_sec->output_section != NULL)
5503 destination = (sym_value
5504 + sym_sec->output_offset
5505 + sym_sec->output_section->vma);
5506 }
5507 else if (sym_sec->output_section != NULL)
5508 destination = (sym_value + irela->r_addend
5509 + sym_sec->output_offset
5510 + sym_sec->output_section->vma);
5511 }
5512 else if ((hash->root.root.type == bfd_link_hash_undefined)
5513 || (hash->root.root.type == bfd_link_hash_undefweak))
5514 {
5515 /* For a shared library, use the PLT stub as
5516 target address to decide whether a long
5517 branch stub is needed.
5518 For absolute code, they cannot be handled. */
5519 struct elf32_arm_link_hash_table *globals =
5520 elf32_arm_hash_table (info);
5521
5522 if (globals != NULL
5523 && globals->root.splt != NULL
5524 && hash != NULL
5525 && hash->root.plt.offset != (bfd_vma) -1)
5526 {
5527 sym_sec = globals->root.splt;
5528 sym_value = hash->root.plt.offset;
5529 if (sym_sec->output_section != NULL)
5530 destination = (sym_value
5531 + sym_sec->output_offset
5532 + sym_sec->output_section->vma);
5533 }
5534 else
5535 continue;
5536 }
5537 else
5538 {
5539 bfd_set_error (bfd_error_bad_value);
5540 goto error_ret_free_internal;
5541 }
5542 st_type = hash->root.type;
5543 branch_type = hash->root.target_internal;
5544 sym_name = hash->root.root.root.string;
5545 }
5546
5547 do
5548 {
5549 bfd_boolean new_stub;
5550
5551 /* Determine what (if any) linker stub is needed. */
5552 stub_type = arm_type_of_stub (info, section, irela,
5553 st_type, &branch_type,
5554 hash, destination, sym_sec,
5555 input_bfd, sym_name);
5556 if (stub_type == arm_stub_none)
5557 break;
5558
5559 /* We've either created a stub for this reloc already,
5560 or we are about to. */
5561 created_stub =
5562 elf32_arm_create_stub (htab, stub_type, section, irela,
5563 sym_sec, hash,
5564 (char *) sym_name, sym_value,
5565 branch_type, &new_stub);
5566
5567 if (!created_stub)
5568 goto error_ret_free_internal;
5569 else if (!new_stub)
5570 break;
5571 else
5572 stub_changed = TRUE;
5573 }
5574 while (0);
5575
5576 /* Look for relocations which might trigger Cortex-A8
5577 erratum. */
5578 if (htab->fix_cortex_a8
5579 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5580 || r_type == (unsigned int) R_ARM_THM_JUMP19
5581 || r_type == (unsigned int) R_ARM_THM_CALL
5582 || r_type == (unsigned int) R_ARM_THM_XPC22))
5583 {
5584 bfd_vma from = section->output_section->vma
5585 + section->output_offset
5586 + irela->r_offset;
5587
5588 if ((from & 0xfff) == 0xffe)
5589 {
5590 /* Found a candidate. Note we haven't checked the
5591 destination is within 4K here: if we do so (and
5592 don't create an entry in a8_relocs) we can't tell
5593 that a branch should have been relocated when
5594 scanning later. */
5595 if (num_a8_relocs == a8_reloc_table_size)
5596 {
5597 a8_reloc_table_size *= 2;
5598 a8_relocs = (struct a8_erratum_reloc *)
5599 bfd_realloc (a8_relocs,
5600 sizeof (struct a8_erratum_reloc)
5601 * a8_reloc_table_size);
5602 }
5603
5604 a8_relocs[num_a8_relocs].from = from;
5605 a8_relocs[num_a8_relocs].destination = destination;
5606 a8_relocs[num_a8_relocs].r_type = r_type;
5607 a8_relocs[num_a8_relocs].branch_type = branch_type;
5608 a8_relocs[num_a8_relocs].sym_name = sym_name;
5609 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5610 a8_relocs[num_a8_relocs].hash = hash;
5611
5612 num_a8_relocs++;
5613 }
5614 }
5615 }
5616
5617 /* We're done with the internal relocs, free them. */
5618 if (elf_section_data (section)->relocs == NULL)
5619 free (internal_relocs);
5620 }
5621
5622 if (htab->fix_cortex_a8)
5623 {
5624 /* Sort relocs which might apply to Cortex-A8 erratum. */
5625 qsort (a8_relocs, num_a8_relocs,
5626 sizeof (struct a8_erratum_reloc),
5627 &a8_reloc_compare);
5628
5629 /* Scan for branches which might trigger Cortex-A8 erratum. */
5630 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5631 &num_a8_fixes, &a8_fix_table_size,
5632 a8_relocs, num_a8_relocs,
5633 prev_num_a8_fixes, &stub_changed)
5634 != 0)
5635 goto error_ret_free_local;
5636 }
5637 }
5638
5639 if (prev_num_a8_fixes != num_a8_fixes)
5640 stub_changed = TRUE;
5641
5642 if (!stub_changed)
5643 break;
5644
5645 /* OK, we've added some stubs. Find out the new size of the
5646 stub sections. */
5647 for (stub_sec = htab->stub_bfd->sections;
5648 stub_sec != NULL;
5649 stub_sec = stub_sec->next)
5650 {
5651 /* Ignore non-stub sections. */
5652 if (!strstr (stub_sec->name, STUB_SUFFIX))
5653 continue;
5654
5655 stub_sec->size = 0;
5656 }
5657
5658 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5659
5660 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5661 if (htab->fix_cortex_a8)
5662 for (i = 0; i < num_a8_fixes; i++)
5663 {
5664 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5665 a8_fixes[i].section, htab);
5666
5667 if (stub_sec == NULL)
5668 goto error_ret_free_local;
5669
5670 stub_sec->size
5671 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5672 NULL);
5673 }
5674
5675
5676 /* Ask the linker to do its stuff. */
5677 (*htab->layout_sections_again) ();
5678 }
5679
5680 /* Add stubs for Cortex-A8 erratum fixes now. */
5681 if (htab->fix_cortex_a8)
5682 {
5683 for (i = 0; i < num_a8_fixes; i++)
5684 {
5685 struct elf32_arm_stub_hash_entry *stub_entry;
5686 char *stub_name = a8_fixes[i].stub_name;
5687 asection *section = a8_fixes[i].section;
5688 unsigned int section_id = a8_fixes[i].section->id;
5689 asection *link_sec = htab->stub_group[section_id].link_sec;
5690 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5691 const insn_sequence *template_sequence;
5692 int template_size, size = 0;
5693
5694 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5695 TRUE, FALSE);
5696 if (stub_entry == NULL)
5697 {
5698 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5699 section->owner,
5700 stub_name);
5701 return FALSE;
5702 }
5703
5704 stub_entry->stub_sec = stub_sec;
5705 stub_entry->stub_offset = 0;
5706 stub_entry->id_sec = link_sec;
5707 stub_entry->stub_type = a8_fixes[i].stub_type;
5708 stub_entry->source_value = a8_fixes[i].offset;
5709 stub_entry->target_section = a8_fixes[i].section;
5710 stub_entry->target_value = a8_fixes[i].target_offset;
5711 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5712 stub_entry->branch_type = a8_fixes[i].branch_type;
5713
5714 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5715 &template_sequence,
5716 &template_size);
5717
5718 stub_entry->stub_size = size;
5719 stub_entry->stub_template = template_sequence;
5720 stub_entry->stub_template_size = template_size;
5721 }
5722
5723 /* Stash the Cortex-A8 erratum fix array for use later in
5724 elf32_arm_write_section(). */
5725 htab->a8_erratum_fixes = a8_fixes;
5726 htab->num_a8_erratum_fixes = num_a8_fixes;
5727 }
5728 else
5729 {
5730 htab->a8_erratum_fixes = NULL;
5731 htab->num_a8_erratum_fixes = 0;
5732 }
5733 return TRUE;
5734 }
5735
5736 /* Build all the stubs associated with the current output file. The
5737 stubs are kept in a hash table attached to the main linker hash
5738 table. We also set up the .plt entries for statically linked PIC
5739 functions here. This function is called via arm_elf_finish in the
5740 linker. */
5741
5742 bfd_boolean
5743 elf32_arm_build_stubs (struct bfd_link_info *info)
5744 {
5745 asection *stub_sec;
5746 struct bfd_hash_table *table;
5747 struct elf32_arm_link_hash_table *htab;
5748
5749 htab = elf32_arm_hash_table (info);
5750 if (htab == NULL)
5751 return FALSE;
5752
5753 for (stub_sec = htab->stub_bfd->sections;
5754 stub_sec != NULL;
5755 stub_sec = stub_sec->next)
5756 {
5757 bfd_size_type size;
5758
5759 /* Ignore non-stub sections. */
5760 if (!strstr (stub_sec->name, STUB_SUFFIX))
5761 continue;
5762
5763 /* Allocate memory to hold the linker stubs. */
5764 size = stub_sec->size;
5765 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5766 if (stub_sec->contents == NULL && size != 0)
5767 return FALSE;
5768 stub_sec->size = 0;
5769 }
5770
5771 /* Build the stubs as directed by the stub hash table. */
5772 table = &htab->stub_hash_table;
5773 bfd_hash_traverse (table, arm_build_one_stub, info);
5774 if (htab->fix_cortex_a8)
5775 {
5776 /* Place the cortex a8 stubs last. */
5777 htab->fix_cortex_a8 = -1;
5778 bfd_hash_traverse (table, arm_build_one_stub, info);
5779 }
5780
5781 return TRUE;
5782 }
5783
5784 /* Locate the Thumb encoded calling stub for NAME. */
5785
5786 static struct elf_link_hash_entry *
5787 find_thumb_glue (struct bfd_link_info *link_info,
5788 const char *name,
5789 char **error_message)
5790 {
5791 char *tmp_name;
5792 struct elf_link_hash_entry *hash;
5793 struct elf32_arm_link_hash_table *hash_table;
5794
5795 /* We need a pointer to the armelf specific hash table. */
5796 hash_table = elf32_arm_hash_table (link_info);
5797 if (hash_table == NULL)
5798 return NULL;
5799
5800 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5801 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5802
5803 BFD_ASSERT (tmp_name);
5804
5805 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5806
5807 hash = elf_link_hash_lookup
5808 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5809
5810 if (hash == NULL
5811 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5812 tmp_name, name) == -1)
5813 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5814
5815 free (tmp_name);
5816
5817 return hash;
5818 }
5819
5820 /* Locate the ARM encoded calling stub for NAME. */
5821
5822 static struct elf_link_hash_entry *
5823 find_arm_glue (struct bfd_link_info *link_info,
5824 const char *name,
5825 char **error_message)
5826 {
5827 char *tmp_name;
5828 struct elf_link_hash_entry *myh;
5829 struct elf32_arm_link_hash_table *hash_table;
5830
5831 /* We need a pointer to the elfarm specific hash table. */
5832 hash_table = elf32_arm_hash_table (link_info);
5833 if (hash_table == NULL)
5834 return NULL;
5835
5836 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5837 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5838
5839 BFD_ASSERT (tmp_name);
5840
5841 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5842
5843 myh = elf_link_hash_lookup
5844 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5845
5846 if (myh == NULL
5847 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5848 tmp_name, name) == -1)
5849 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5850
5851 free (tmp_name);
5852
5853 return myh;
5854 }
5855
5856 /* ARM->Thumb glue (static images):
5857
5858 .arm
5859 __func_from_arm:
5860 ldr r12, __func_addr
5861 bx r12
5862 __func_addr:
5863 .word func @ behave as if you saw a ARM_32 reloc.
5864
5865 (v5t static images)
5866 .arm
5867 __func_from_arm:
5868 ldr pc, __func_addr
5869 __func_addr:
5870 .word func @ behave as if you saw a ARM_32 reloc.
5871
5872 (relocatable images)
5873 .arm
5874 __func_from_arm:
5875 ldr r12, __func_offset
5876 add r12, r12, pc
5877 bx r12
5878 __func_offset:
5879 .word func - . */
5880
5881 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5882 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5883 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5884 static const insn32 a2t3_func_addr_insn = 0x00000001;
5885
5886 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5887 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5888 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5889
5890 #define ARM2THUMB_PIC_GLUE_SIZE 16
5891 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5892 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5893 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5894
5895 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5896
5897 .thumb .thumb
5898 .align 2 .align 2
5899 __func_from_thumb: __func_from_thumb:
5900 bx pc push {r6, lr}
5901 nop ldr r6, __func_addr
5902 .arm mov lr, pc
5903 b func bx r6
5904 .arm
5905 ;; back_to_thumb
5906 ldmia r13! {r6, lr}
5907 bx lr
5908 __func_addr:
5909 .word func */
5910
5911 #define THUMB2ARM_GLUE_SIZE 8
5912 static const insn16 t2a1_bx_pc_insn = 0x4778;
5913 static const insn16 t2a2_noop_insn = 0x46c0;
5914 static const insn32 t2a3_b_insn = 0xea000000;
5915
5916 #define VFP11_ERRATUM_VENEER_SIZE 8
5917 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
5918 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
5919
5920 #define ARM_BX_VENEER_SIZE 12
5921 static const insn32 armbx1_tst_insn = 0xe3100001;
5922 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5923 static const insn32 armbx3_bx_insn = 0xe12fff10;
5924
5925 #ifndef ELFARM_NABI_C_INCLUDED
5926 static void
5927 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5928 {
5929 asection * s;
5930 bfd_byte * contents;
5931
5932 if (size == 0)
5933 {
5934 /* Do not include empty glue sections in the output. */
5935 if (abfd != NULL)
5936 {
5937 s = bfd_get_linker_section (abfd, name);
5938 if (s != NULL)
5939 s->flags |= SEC_EXCLUDE;
5940 }
5941 return;
5942 }
5943
5944 BFD_ASSERT (abfd != NULL);
5945
5946 s = bfd_get_linker_section (abfd, name);
5947 BFD_ASSERT (s != NULL);
5948
5949 contents = (bfd_byte *) bfd_alloc (abfd, size);
5950
5951 BFD_ASSERT (s->size == size);
5952 s->contents = contents;
5953 }
5954
5955 bfd_boolean
5956 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5957 {
5958 struct elf32_arm_link_hash_table * globals;
5959
5960 globals = elf32_arm_hash_table (info);
5961 BFD_ASSERT (globals != NULL);
5962
5963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5964 globals->arm_glue_size,
5965 ARM2THUMB_GLUE_SECTION_NAME);
5966
5967 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5968 globals->thumb_glue_size,
5969 THUMB2ARM_GLUE_SECTION_NAME);
5970
5971 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5972 globals->vfp11_erratum_glue_size,
5973 VFP11_ERRATUM_VENEER_SECTION_NAME);
5974
5975 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5976 globals->stm32l4xx_erratum_glue_size,
5977 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
5978
5979 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5980 globals->bx_glue_size,
5981 ARM_BX_GLUE_SECTION_NAME);
5982
5983 return TRUE;
5984 }
5985
5986 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5987 returns the symbol identifying the stub. */
5988
5989 static struct elf_link_hash_entry *
5990 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5991 struct elf_link_hash_entry * h)
5992 {
5993 const char * name = h->root.root.string;
5994 asection * s;
5995 char * tmp_name;
5996 struct elf_link_hash_entry * myh;
5997 struct bfd_link_hash_entry * bh;
5998 struct elf32_arm_link_hash_table * globals;
5999 bfd_vma val;
6000 bfd_size_type size;
6001
6002 globals = elf32_arm_hash_table (link_info);
6003 BFD_ASSERT (globals != NULL);
6004 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6005
6006 s = bfd_get_linker_section
6007 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6008
6009 BFD_ASSERT (s != NULL);
6010
6011 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6012 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6013
6014 BFD_ASSERT (tmp_name);
6015
6016 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6017
6018 myh = elf_link_hash_lookup
6019 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6020
6021 if (myh != NULL)
6022 {
6023 /* We've already seen this guy. */
6024 free (tmp_name);
6025 return myh;
6026 }
6027
6028 /* The only trick here is using hash_table->arm_glue_size as the value.
6029 Even though the section isn't allocated yet, this is where we will be
6030 putting it. The +1 on the value marks that the stub has not been
6031 output yet - not that it is a Thumb function. */
6032 bh = NULL;
6033 val = globals->arm_glue_size + 1;
6034 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6035 tmp_name, BSF_GLOBAL, s, val,
6036 NULL, TRUE, FALSE, &bh);
6037
6038 myh = (struct elf_link_hash_entry *) bh;
6039 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6040 myh->forced_local = 1;
6041
6042 free (tmp_name);
6043
6044 if (bfd_link_pic (link_info)
6045 || globals->root.is_relocatable_executable
6046 || globals->pic_veneer)
6047 size = ARM2THUMB_PIC_GLUE_SIZE;
6048 else if (globals->use_blx)
6049 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6050 else
6051 size = ARM2THUMB_STATIC_GLUE_SIZE;
6052
6053 s->size += size;
6054 globals->arm_glue_size += size;
6055
6056 return myh;
6057 }
6058
6059 /* Allocate space for ARMv4 BX veneers. */
6060
6061 static void
6062 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6063 {
6064 asection * s;
6065 struct elf32_arm_link_hash_table *globals;
6066 char *tmp_name;
6067 struct elf_link_hash_entry *myh;
6068 struct bfd_link_hash_entry *bh;
6069 bfd_vma val;
6070
6071 /* BX PC does not need a veneer. */
6072 if (reg == 15)
6073 return;
6074
6075 globals = elf32_arm_hash_table (link_info);
6076 BFD_ASSERT (globals != NULL);
6077 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6078
6079 /* Check if this veneer has already been allocated. */
6080 if (globals->bx_glue_offset[reg])
6081 return;
6082
6083 s = bfd_get_linker_section
6084 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
6085
6086 BFD_ASSERT (s != NULL);
6087
6088 /* Add symbol for veneer. */
6089 tmp_name = (char *)
6090 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
6091
6092 BFD_ASSERT (tmp_name);
6093
6094 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
6095
6096 myh = elf_link_hash_lookup
6097 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
6098
6099 BFD_ASSERT (myh == NULL);
6100
6101 bh = NULL;
6102 val = globals->bx_glue_size;
6103 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6104 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6105 NULL, TRUE, FALSE, &bh);
6106
6107 myh = (struct elf_link_hash_entry *) bh;
6108 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6109 myh->forced_local = 1;
6110
6111 s->size += ARM_BX_VENEER_SIZE;
6112 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
6113 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
6114 }
6115
6116
6117 /* Add an entry to the code/data map for section SEC. */
6118
6119 static void
6120 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
6121 {
6122 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6123 unsigned int newidx;
6124
6125 if (sec_data->map == NULL)
6126 {
6127 sec_data->map = (elf32_arm_section_map *)
6128 bfd_malloc (sizeof (elf32_arm_section_map));
6129 sec_data->mapcount = 0;
6130 sec_data->mapsize = 1;
6131 }
6132
6133 newidx = sec_data->mapcount++;
6134
6135 if (sec_data->mapcount > sec_data->mapsize)
6136 {
6137 sec_data->mapsize *= 2;
6138 sec_data->map = (elf32_arm_section_map *)
6139 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
6140 * sizeof (elf32_arm_section_map));
6141 }
6142
6143 if (sec_data->map)
6144 {
6145 sec_data->map[newidx].vma = vma;
6146 sec_data->map[newidx].type = type;
6147 }
6148 }
6149
6150
6151 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
6152 veneers are handled for now. */
6153
6154 static bfd_vma
6155 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
6156 elf32_vfp11_erratum_list *branch,
6157 bfd *branch_bfd,
6158 asection *branch_sec,
6159 unsigned int offset)
6160 {
6161 asection *s;
6162 struct elf32_arm_link_hash_table *hash_table;
6163 char *tmp_name;
6164 struct elf_link_hash_entry *myh;
6165 struct bfd_link_hash_entry *bh;
6166 bfd_vma val;
6167 struct _arm_elf_section_data *sec_data;
6168 elf32_vfp11_erratum_list *newerr;
6169
6170 hash_table = elf32_arm_hash_table (link_info);
6171 BFD_ASSERT (hash_table != NULL);
6172 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6173
6174 s = bfd_get_linker_section
6175 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
6176
6177 sec_data = elf32_arm_section_data (s);
6178
6179 BFD_ASSERT (s != NULL);
6180
6181 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6182 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6183
6184 BFD_ASSERT (tmp_name);
6185
6186 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6187 hash_table->num_vfp11_fixes);
6188
6189 myh = elf_link_hash_lookup
6190 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6191
6192 BFD_ASSERT (myh == NULL);
6193
6194 bh = NULL;
6195 val = hash_table->vfp11_erratum_glue_size;
6196 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6197 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6198 NULL, TRUE, FALSE, &bh);
6199
6200 myh = (struct elf_link_hash_entry *) bh;
6201 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6202 myh->forced_local = 1;
6203
6204 /* Link veneer back to calling location. */
6205 sec_data->erratumcount += 1;
6206 newerr = (elf32_vfp11_erratum_list *)
6207 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6208
6209 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6210 newerr->vma = -1;
6211 newerr->u.v.branch = branch;
6212 newerr->u.v.id = hash_table->num_vfp11_fixes;
6213 branch->u.b.veneer = newerr;
6214
6215 newerr->next = sec_data->erratumlist;
6216 sec_data->erratumlist = newerr;
6217
6218 /* A symbol for the return from the veneer. */
6219 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6220 hash_table->num_vfp11_fixes);
6221
6222 myh = elf_link_hash_lookup
6223 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6224
6225 if (myh != NULL)
6226 abort ();
6227
6228 bh = NULL;
6229 val = offset + 4;
6230 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6231 branch_sec, val, NULL, TRUE, FALSE, &bh);
6232
6233 myh = (struct elf_link_hash_entry *) bh;
6234 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6235 myh->forced_local = 1;
6236
6237 free (tmp_name);
6238
6239 /* Generate a mapping symbol for the veneer section, and explicitly add an
6240 entry for that symbol to the code/data map for the section. */
6241 if (hash_table->vfp11_erratum_glue_size == 0)
6242 {
6243 bh = NULL;
6244 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6245 ever requires this erratum fix. */
6246 _bfd_generic_link_add_one_symbol (link_info,
6247 hash_table->bfd_of_glue_owner, "$a",
6248 BSF_LOCAL, s, 0, NULL,
6249 TRUE, FALSE, &bh);
6250
6251 myh = (struct elf_link_hash_entry *) bh;
6252 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6253 myh->forced_local = 1;
6254
6255 /* The elf32_arm_init_maps function only cares about symbols from input
6256 BFDs. We must make a note of this generated mapping symbol
6257 ourselves so that code byteswapping works properly in
6258 elf32_arm_write_section. */
6259 elf32_arm_section_map_add (s, 'a', 0);
6260 }
6261
6262 s->size += VFP11_ERRATUM_VENEER_SIZE;
6263 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6264 hash_table->num_vfp11_fixes++;
6265
6266 /* The offset of the veneer. */
6267 return val;
6268 }
6269
6270 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
6271 veneers need to be handled because used only in Cortex-M. */
6272
6273 static bfd_vma
6274 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
6275 elf32_stm32l4xx_erratum_list *branch,
6276 bfd *branch_bfd,
6277 asection *branch_sec,
6278 unsigned int offset,
6279 bfd_size_type veneer_size)
6280 {
6281 asection *s;
6282 struct elf32_arm_link_hash_table *hash_table;
6283 char *tmp_name;
6284 struct elf_link_hash_entry *myh;
6285 struct bfd_link_hash_entry *bh;
6286 bfd_vma val;
6287 struct _arm_elf_section_data *sec_data;
6288 elf32_stm32l4xx_erratum_list *newerr;
6289
6290 hash_table = elf32_arm_hash_table (link_info);
6291 BFD_ASSERT (hash_table != NULL);
6292 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6293
6294 s = bfd_get_linker_section
6295 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6296
6297 BFD_ASSERT (s != NULL);
6298
6299 sec_data = elf32_arm_section_data (s);
6300
6301 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6302 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
6303
6304 BFD_ASSERT (tmp_name);
6305
6306 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
6307 hash_table->num_stm32l4xx_fixes);
6308
6309 myh = elf_link_hash_lookup
6310 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6311
6312 BFD_ASSERT (myh == NULL);
6313
6314 bh = NULL;
6315 val = hash_table->stm32l4xx_erratum_glue_size;
6316 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6317 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6318 NULL, TRUE, FALSE, &bh);
6319
6320 myh = (struct elf_link_hash_entry *) bh;
6321 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6322 myh->forced_local = 1;
6323
6324 /* Link veneer back to calling location. */
6325 sec_data->stm32l4xx_erratumcount += 1;
6326 newerr = (elf32_stm32l4xx_erratum_list *)
6327 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
6328
6329 newerr->type = STM32L4XX_ERRATUM_VENEER;
6330 newerr->vma = -1;
6331 newerr->u.v.branch = branch;
6332 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
6333 branch->u.b.veneer = newerr;
6334
6335 newerr->next = sec_data->stm32l4xx_erratumlist;
6336 sec_data->stm32l4xx_erratumlist = newerr;
6337
6338 /* A symbol for the return from the veneer. */
6339 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
6340 hash_table->num_stm32l4xx_fixes);
6341
6342 myh = elf_link_hash_lookup
6343 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6344
6345 if (myh != NULL)
6346 abort ();
6347
6348 bh = NULL;
6349 val = offset + 4;
6350 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6351 branch_sec, val, NULL, TRUE, FALSE, &bh);
6352
6353 myh = (struct elf_link_hash_entry *) bh;
6354 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6355 myh->forced_local = 1;
6356
6357 free (tmp_name);
6358
6359 /* Generate a mapping symbol for the veneer section, and explicitly add an
6360 entry for that symbol to the code/data map for the section. */
6361 if (hash_table->stm32l4xx_erratum_glue_size == 0)
6362 {
6363 bh = NULL;
6364 /* Creates a THUMB symbol since there is no other choice. */
6365 _bfd_generic_link_add_one_symbol (link_info,
6366 hash_table->bfd_of_glue_owner, "$t",
6367 BSF_LOCAL, s, 0, NULL,
6368 TRUE, FALSE, &bh);
6369
6370 myh = (struct elf_link_hash_entry *) bh;
6371 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6372 myh->forced_local = 1;
6373
6374 /* The elf32_arm_init_maps function only cares about symbols from input
6375 BFDs. We must make a note of this generated mapping symbol
6376 ourselves so that code byteswapping works properly in
6377 elf32_arm_write_section. */
6378 elf32_arm_section_map_add (s, 't', 0);
6379 }
6380
6381 s->size += veneer_size;
6382 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
6383 hash_table->num_stm32l4xx_fixes++;
6384
6385 /* The offset of the veneer. */
6386 return val;
6387 }
6388
6389 #define ARM_GLUE_SECTION_FLAGS \
6390 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6391 | SEC_READONLY | SEC_LINKER_CREATED)
6392
6393 /* Create a fake section for use by the ARM backend of the linker. */
6394
6395 static bfd_boolean
6396 arm_make_glue_section (bfd * abfd, const char * name)
6397 {
6398 asection * sec;
6399
6400 sec = bfd_get_linker_section (abfd, name);
6401 if (sec != NULL)
6402 /* Already made. */
6403 return TRUE;
6404
6405 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6406
6407 if (sec == NULL
6408 || !bfd_set_section_alignment (abfd, sec, 2))
6409 return FALSE;
6410
6411 /* Set the gc mark to prevent the section from being removed by garbage
6412 collection, despite the fact that no relocs refer to this section. */
6413 sec->gc_mark = 1;
6414
6415 return TRUE;
6416 }
6417
6418 /* Set size of .plt entries. This function is called from the
6419 linker scripts in ld/emultempl/{armelf}.em. */
6420
6421 void
6422 bfd_elf32_arm_use_long_plt (void)
6423 {
6424 elf32_arm_use_long_plt_entry = TRUE;
6425 }
6426
6427 /* Add the glue sections to ABFD. This function is called from the
6428 linker scripts in ld/emultempl/{armelf}.em. */
6429
6430 bfd_boolean
6431 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6432 struct bfd_link_info *info)
6433 {
6434 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
6435 bfd_boolean dostm32l4xx = globals
6436 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
6437 bfd_boolean addglue;
6438
6439 /* If we are only performing a partial
6440 link do not bother adding the glue. */
6441 if (bfd_link_relocatable (info))
6442 return TRUE;
6443
6444 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6445 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6446 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6447 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6448
6449 if (!dostm32l4xx)
6450 return addglue;
6451
6452 return addglue
6453 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6454 }
6455
6456 /* Select a BFD to be used to hold the sections used by the glue code.
6457 This function is called from the linker scripts in ld/emultempl/
6458 {armelf/pe}.em. */
6459
6460 bfd_boolean
6461 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6462 {
6463 struct elf32_arm_link_hash_table *globals;
6464
6465 /* If we are only performing a partial link
6466 do not bother getting a bfd to hold the glue. */
6467 if (bfd_link_relocatable (info))
6468 return TRUE;
6469
6470 /* Make sure we don't attach the glue sections to a dynamic object. */
6471 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6472
6473 globals = elf32_arm_hash_table (info);
6474 BFD_ASSERT (globals != NULL);
6475
6476 if (globals->bfd_of_glue_owner != NULL)
6477 return TRUE;
6478
6479 /* Save the bfd for later use. */
6480 globals->bfd_of_glue_owner = abfd;
6481
6482 return TRUE;
6483 }
6484
6485 static void
6486 check_use_blx (struct elf32_arm_link_hash_table *globals)
6487 {
6488 int cpu_arch;
6489
6490 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6491 Tag_CPU_arch);
6492
6493 if (globals->fix_arm1176)
6494 {
6495 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6496 globals->use_blx = 1;
6497 }
6498 else
6499 {
6500 if (cpu_arch > TAG_CPU_ARCH_V4T)
6501 globals->use_blx = 1;
6502 }
6503 }
6504
6505 bfd_boolean
6506 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6507 struct bfd_link_info *link_info)
6508 {
6509 Elf_Internal_Shdr *symtab_hdr;
6510 Elf_Internal_Rela *internal_relocs = NULL;
6511 Elf_Internal_Rela *irel, *irelend;
6512 bfd_byte *contents = NULL;
6513
6514 asection *sec;
6515 struct elf32_arm_link_hash_table *globals;
6516
6517 /* If we are only performing a partial link do not bother
6518 to construct any glue. */
6519 if (bfd_link_relocatable (link_info))
6520 return TRUE;
6521
6522 /* Here we have a bfd that is to be included on the link. We have a
6523 hook to do reloc rummaging, before section sizes are nailed down. */
6524 globals = elf32_arm_hash_table (link_info);
6525 BFD_ASSERT (globals != NULL);
6526
6527 check_use_blx (globals);
6528
6529 if (globals->byteswap_code && !bfd_big_endian (abfd))
6530 {
6531 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6532 abfd);
6533 return FALSE;
6534 }
6535
6536 /* PR 5398: If we have not decided to include any loadable sections in
6537 the output then we will not have a glue owner bfd. This is OK, it
6538 just means that there is nothing else for us to do here. */
6539 if (globals->bfd_of_glue_owner == NULL)
6540 return TRUE;
6541
6542 /* Rummage around all the relocs and map the glue vectors. */
6543 sec = abfd->sections;
6544
6545 if (sec == NULL)
6546 return TRUE;
6547
6548 for (; sec != NULL; sec = sec->next)
6549 {
6550 if (sec->reloc_count == 0)
6551 continue;
6552
6553 if ((sec->flags & SEC_EXCLUDE) != 0)
6554 continue;
6555
6556 symtab_hdr = & elf_symtab_hdr (abfd);
6557
6558 /* Load the relocs. */
6559 internal_relocs
6560 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6561
6562 if (internal_relocs == NULL)
6563 goto error_return;
6564
6565 irelend = internal_relocs + sec->reloc_count;
6566 for (irel = internal_relocs; irel < irelend; irel++)
6567 {
6568 long r_type;
6569 unsigned long r_index;
6570
6571 struct elf_link_hash_entry *h;
6572
6573 r_type = ELF32_R_TYPE (irel->r_info);
6574 r_index = ELF32_R_SYM (irel->r_info);
6575
6576 /* These are the only relocation types we care about. */
6577 if ( r_type != R_ARM_PC24
6578 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6579 continue;
6580
6581 /* Get the section contents if we haven't done so already. */
6582 if (contents == NULL)
6583 {
6584 /* Get cached copy if it exists. */
6585 if (elf_section_data (sec)->this_hdr.contents != NULL)
6586 contents = elf_section_data (sec)->this_hdr.contents;
6587 else
6588 {
6589 /* Go get them off disk. */
6590 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6591 goto error_return;
6592 }
6593 }
6594
6595 if (r_type == R_ARM_V4BX)
6596 {
6597 int reg;
6598
6599 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6600 record_arm_bx_glue (link_info, reg);
6601 continue;
6602 }
6603
6604 /* If the relocation is not against a symbol it cannot concern us. */
6605 h = NULL;
6606
6607 /* We don't care about local symbols. */
6608 if (r_index < symtab_hdr->sh_info)
6609 continue;
6610
6611 /* This is an external symbol. */
6612 r_index -= symtab_hdr->sh_info;
6613 h = (struct elf_link_hash_entry *)
6614 elf_sym_hashes (abfd)[r_index];
6615
6616 /* If the relocation is against a static symbol it must be within
6617 the current section and so cannot be a cross ARM/Thumb relocation. */
6618 if (h == NULL)
6619 continue;
6620
6621 /* If the call will go through a PLT entry then we do not need
6622 glue. */
6623 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6624 continue;
6625
6626 switch (r_type)
6627 {
6628 case R_ARM_PC24:
6629 /* This one is a call from arm code. We need to look up
6630 the target of the call. If it is a thumb target, we
6631 insert glue. */
6632 if (h->target_internal == ST_BRANCH_TO_THUMB)
6633 record_arm_to_thumb_glue (link_info, h);
6634 break;
6635
6636 default:
6637 abort ();
6638 }
6639 }
6640
6641 if (contents != NULL
6642 && elf_section_data (sec)->this_hdr.contents != contents)
6643 free (contents);
6644 contents = NULL;
6645
6646 if (internal_relocs != NULL
6647 && elf_section_data (sec)->relocs != internal_relocs)
6648 free (internal_relocs);
6649 internal_relocs = NULL;
6650 }
6651
6652 return TRUE;
6653
6654 error_return:
6655 if (contents != NULL
6656 && elf_section_data (sec)->this_hdr.contents != contents)
6657 free (contents);
6658 if (internal_relocs != NULL
6659 && elf_section_data (sec)->relocs != internal_relocs)
6660 free (internal_relocs);
6661
6662 return FALSE;
6663 }
6664 #endif
6665
6666
6667 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6668
6669 void
6670 bfd_elf32_arm_init_maps (bfd *abfd)
6671 {
6672 Elf_Internal_Sym *isymbuf;
6673 Elf_Internal_Shdr *hdr;
6674 unsigned int i, localsyms;
6675
6676 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6677 if (! is_arm_elf (abfd))
6678 return;
6679
6680 if ((abfd->flags & DYNAMIC) != 0)
6681 return;
6682
6683 hdr = & elf_symtab_hdr (abfd);
6684 localsyms = hdr->sh_info;
6685
6686 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6687 should contain the number of local symbols, which should come before any
6688 global symbols. Mapping symbols are always local. */
6689 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6690 NULL);
6691
6692 /* No internal symbols read? Skip this BFD. */
6693 if (isymbuf == NULL)
6694 return;
6695
6696 for (i = 0; i < localsyms; i++)
6697 {
6698 Elf_Internal_Sym *isym = &isymbuf[i];
6699 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6700 const char *name;
6701
6702 if (sec != NULL
6703 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6704 {
6705 name = bfd_elf_string_from_elf_section (abfd,
6706 hdr->sh_link, isym->st_name);
6707
6708 if (bfd_is_arm_special_symbol_name (name,
6709 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6710 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6711 }
6712 }
6713 }
6714
6715
6716 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6717 say what they wanted. */
6718
6719 void
6720 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6721 {
6722 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6723 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6724
6725 if (globals == NULL)
6726 return;
6727
6728 if (globals->fix_cortex_a8 == -1)
6729 {
6730 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6731 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6732 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6733 || out_attr[Tag_CPU_arch_profile].i == 0))
6734 globals->fix_cortex_a8 = 1;
6735 else
6736 globals->fix_cortex_a8 = 0;
6737 }
6738 }
6739
6740
6741 void
6742 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6743 {
6744 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6745 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6746
6747 if (globals == NULL)
6748 return;
6749 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6750 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6751 {
6752 switch (globals->vfp11_fix)
6753 {
6754 case BFD_ARM_VFP11_FIX_DEFAULT:
6755 case BFD_ARM_VFP11_FIX_NONE:
6756 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6757 break;
6758
6759 default:
6760 /* Give a warning, but do as the user requests anyway. */
6761 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6762 "workaround is not necessary for target architecture"), obfd);
6763 }
6764 }
6765 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6766 /* For earlier architectures, we might need the workaround, but do not
6767 enable it by default. If users is running with broken hardware, they
6768 must enable the erratum fix explicitly. */
6769 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6770 }
6771
6772 void
6773 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
6774 {
6775 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6776 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6777
6778 if (globals == NULL)
6779 return;
6780
6781 /* We assume only Cortex-M4 may require the fix. */
6782 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
6783 || out_attr[Tag_CPU_arch_profile].i != 'M')
6784 {
6785 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
6786 /* Give a warning, but do as the user requests anyway. */
6787 (*_bfd_error_handler)
6788 (_("%B: warning: selected STM32L4XX erratum "
6789 "workaround is not necessary for target architecture"), obfd);
6790 }
6791 }
6792
6793 enum bfd_arm_vfp11_pipe
6794 {
6795 VFP11_FMAC,
6796 VFP11_LS,
6797 VFP11_DS,
6798 VFP11_BAD
6799 };
6800
6801 /* Return a VFP register number. This is encoded as RX:X for single-precision
6802 registers, or X:RX for double-precision registers, where RX is the group of
6803 four bits in the instruction encoding and X is the single extension bit.
6804 RX and X fields are specified using their lowest (starting) bit. The return
6805 value is:
6806
6807 0...31: single-precision registers s0...s31
6808 32...63: double-precision registers d0...d31.
6809
6810 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6811 encounter VFP3 instructions, so we allow the full range for DP registers. */
6812
6813 static unsigned int
6814 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6815 unsigned int x)
6816 {
6817 if (is_double)
6818 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6819 else
6820 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6821 }
6822
6823 /* Set bits in *WMASK according to a register number REG as encoded by
6824 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6825
6826 static void
6827 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6828 {
6829 if (reg < 32)
6830 *wmask |= 1 << reg;
6831 else if (reg < 48)
6832 *wmask |= 3 << ((reg - 32) * 2);
6833 }
6834
6835 /* Return TRUE if WMASK overwrites anything in REGS. */
6836
6837 static bfd_boolean
6838 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6839 {
6840 int i;
6841
6842 for (i = 0; i < numregs; i++)
6843 {
6844 unsigned int reg = regs[i];
6845
6846 if (reg < 32 && (wmask & (1 << reg)) != 0)
6847 return TRUE;
6848
6849 reg -= 32;
6850
6851 if (reg >= 16)
6852 continue;
6853
6854 if ((wmask & (3 << (reg * 2))) != 0)
6855 return TRUE;
6856 }
6857
6858 return FALSE;
6859 }
6860
6861 /* In this function, we're interested in two things: finding input registers
6862 for VFP data-processing instructions, and finding the set of registers which
6863 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6864 hold the written set, so FLDM etc. are easy to deal with (we're only
6865 interested in 32 SP registers or 16 dp registers, due to the VFP version
6866 implemented by the chip in question). DP registers are marked by setting
6867 both SP registers in the write mask). */
6868
6869 static enum bfd_arm_vfp11_pipe
6870 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6871 int *numregs)
6872 {
6873 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6874 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6875
6876 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6877 {
6878 unsigned int pqrs;
6879 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6880 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6881
6882 pqrs = ((insn & 0x00800000) >> 20)
6883 | ((insn & 0x00300000) >> 19)
6884 | ((insn & 0x00000040) >> 6);
6885
6886 switch (pqrs)
6887 {
6888 case 0: /* fmac[sd]. */
6889 case 1: /* fnmac[sd]. */
6890 case 2: /* fmsc[sd]. */
6891 case 3: /* fnmsc[sd]. */
6892 vpipe = VFP11_FMAC;
6893 bfd_arm_vfp11_write_mask (destmask, fd);
6894 regs[0] = fd;
6895 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6896 regs[2] = fm;
6897 *numregs = 3;
6898 break;
6899
6900 case 4: /* fmul[sd]. */
6901 case 5: /* fnmul[sd]. */
6902 case 6: /* fadd[sd]. */
6903 case 7: /* fsub[sd]. */
6904 vpipe = VFP11_FMAC;
6905 goto vfp_binop;
6906
6907 case 8: /* fdiv[sd]. */
6908 vpipe = VFP11_DS;
6909 vfp_binop:
6910 bfd_arm_vfp11_write_mask (destmask, fd);
6911 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6912 regs[1] = fm;
6913 *numregs = 2;
6914 break;
6915
6916 case 15: /* extended opcode. */
6917 {
6918 unsigned int extn = ((insn >> 15) & 0x1e)
6919 | ((insn >> 7) & 1);
6920
6921 switch (extn)
6922 {
6923 case 0: /* fcpy[sd]. */
6924 case 1: /* fabs[sd]. */
6925 case 2: /* fneg[sd]. */
6926 case 8: /* fcmp[sd]. */
6927 case 9: /* fcmpe[sd]. */
6928 case 10: /* fcmpz[sd]. */
6929 case 11: /* fcmpez[sd]. */
6930 case 16: /* fuito[sd]. */
6931 case 17: /* fsito[sd]. */
6932 case 24: /* ftoui[sd]. */
6933 case 25: /* ftouiz[sd]. */
6934 case 26: /* ftosi[sd]. */
6935 case 27: /* ftosiz[sd]. */
6936 /* These instructions will not bounce due to underflow. */
6937 *numregs = 0;
6938 vpipe = VFP11_FMAC;
6939 break;
6940
6941 case 3: /* fsqrt[sd]. */
6942 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6943 registers to cause the erratum in previous instructions. */
6944 bfd_arm_vfp11_write_mask (destmask, fd);
6945 vpipe = VFP11_DS;
6946 break;
6947
6948 case 15: /* fcvt{ds,sd}. */
6949 {
6950 int rnum = 0;
6951
6952 bfd_arm_vfp11_write_mask (destmask, fd);
6953
6954 /* Only FCVTSD can underflow. */
6955 if ((insn & 0x100) != 0)
6956 regs[rnum++] = fm;
6957
6958 *numregs = rnum;
6959
6960 vpipe = VFP11_FMAC;
6961 }
6962 break;
6963
6964 default:
6965 return VFP11_BAD;
6966 }
6967 }
6968 break;
6969
6970 default:
6971 return VFP11_BAD;
6972 }
6973 }
6974 /* Two-register transfer. */
6975 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6976 {
6977 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6978
6979 if ((insn & 0x100000) == 0)
6980 {
6981 if (is_double)
6982 bfd_arm_vfp11_write_mask (destmask, fm);
6983 else
6984 {
6985 bfd_arm_vfp11_write_mask (destmask, fm);
6986 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6987 }
6988 }
6989
6990 vpipe = VFP11_LS;
6991 }
6992 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6993 {
6994 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6995 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6996
6997 switch (puw)
6998 {
6999 case 0: /* Two-reg transfer. We should catch these above. */
7000 abort ();
7001
7002 case 2: /* fldm[sdx]. */
7003 case 3:
7004 case 5:
7005 {
7006 unsigned int i, offset = insn & 0xff;
7007
7008 if (is_double)
7009 offset >>= 1;
7010
7011 for (i = fd; i < fd + offset; i++)
7012 bfd_arm_vfp11_write_mask (destmask, i);
7013 }
7014 break;
7015
7016 case 4: /* fld[sd]. */
7017 case 6:
7018 bfd_arm_vfp11_write_mask (destmask, fd);
7019 break;
7020
7021 default:
7022 return VFP11_BAD;
7023 }
7024
7025 vpipe = VFP11_LS;
7026 }
7027 /* Single-register transfer. Note L==0. */
7028 else if ((insn & 0x0f100e10) == 0x0e000a10)
7029 {
7030 unsigned int opcode = (insn >> 21) & 7;
7031 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
7032
7033 switch (opcode)
7034 {
7035 case 0: /* fmsr/fmdlr. */
7036 case 1: /* fmdhr. */
7037 /* Mark fmdhr and fmdlr as writing to the whole of the DP
7038 destination register. I don't know if this is exactly right,
7039 but it is the conservative choice. */
7040 bfd_arm_vfp11_write_mask (destmask, fn);
7041 break;
7042
7043 case 7: /* fmxr. */
7044 break;
7045 }
7046
7047 vpipe = VFP11_LS;
7048 }
7049
7050 return vpipe;
7051 }
7052
7053
7054 static int elf32_arm_compare_mapping (const void * a, const void * b);
7055
7056
7057 /* Look for potentially-troublesome code sequences which might trigger the
7058 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
7059 (available from ARM) for details of the erratum. A short version is
7060 described in ld.texinfo. */
7061
7062 bfd_boolean
7063 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
7064 {
7065 asection *sec;
7066 bfd_byte *contents = NULL;
7067 int state = 0;
7068 int regs[3], numregs = 0;
7069 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7070 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
7071
7072 if (globals == NULL)
7073 return FALSE;
7074
7075 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
7076 The states transition as follows:
7077
7078 0 -> 1 (vector) or 0 -> 2 (scalar)
7079 A VFP FMAC-pipeline instruction has been seen. Fill
7080 regs[0]..regs[numregs-1] with its input operands. Remember this
7081 instruction in 'first_fmac'.
7082
7083 1 -> 2
7084 Any instruction, except for a VFP instruction which overwrites
7085 regs[*].
7086
7087 1 -> 3 [ -> 0 ] or
7088 2 -> 3 [ -> 0 ]
7089 A VFP instruction has been seen which overwrites any of regs[*].
7090 We must make a veneer! Reset state to 0 before examining next
7091 instruction.
7092
7093 2 -> 0
7094 If we fail to match anything in state 2, reset to state 0 and reset
7095 the instruction pointer to the instruction after 'first_fmac'.
7096
7097 If the VFP11 vector mode is in use, there must be at least two unrelated
7098 instructions between anti-dependent VFP11 instructions to properly avoid
7099 triggering the erratum, hence the use of the extra state 1. */
7100
7101 /* If we are only performing a partial link do not bother
7102 to construct any glue. */
7103 if (bfd_link_relocatable (link_info))
7104 return TRUE;
7105
7106 /* Skip if this bfd does not correspond to an ELF image. */
7107 if (! is_arm_elf (abfd))
7108 return TRUE;
7109
7110 /* We should have chosen a fix type by the time we get here. */
7111 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
7112
7113 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
7114 return TRUE;
7115
7116 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7117 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7118 return TRUE;
7119
7120 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7121 {
7122 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
7123 struct _arm_elf_section_data *sec_data;
7124
7125 /* If we don't have executable progbits, we're not interested in this
7126 section. Also skip if section is to be excluded. */
7127 if (elf_section_type (sec) != SHT_PROGBITS
7128 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7129 || (sec->flags & SEC_EXCLUDE) != 0
7130 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7131 || sec->output_section == bfd_abs_section_ptr
7132 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
7133 continue;
7134
7135 sec_data = elf32_arm_section_data (sec);
7136
7137 if (sec_data->mapcount == 0)
7138 continue;
7139
7140 if (elf_section_data (sec)->this_hdr.contents != NULL)
7141 contents = elf_section_data (sec)->this_hdr.contents;
7142 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7143 goto error_return;
7144
7145 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7146 elf32_arm_compare_mapping);
7147
7148 for (span = 0; span < sec_data->mapcount; span++)
7149 {
7150 unsigned int span_start = sec_data->map[span].vma;
7151 unsigned int span_end = (span == sec_data->mapcount - 1)
7152 ? sec->size : sec_data->map[span + 1].vma;
7153 char span_type = sec_data->map[span].type;
7154
7155 /* FIXME: Only ARM mode is supported at present. We may need to
7156 support Thumb-2 mode also at some point. */
7157 if (span_type != 'a')
7158 continue;
7159
7160 for (i = span_start; i < span_end;)
7161 {
7162 unsigned int next_i = i + 4;
7163 unsigned int insn = bfd_big_endian (abfd)
7164 ? (contents[i] << 24)
7165 | (contents[i + 1] << 16)
7166 | (contents[i + 2] << 8)
7167 | contents[i + 3]
7168 : (contents[i + 3] << 24)
7169 | (contents[i + 2] << 16)
7170 | (contents[i + 1] << 8)
7171 | contents[i];
7172 unsigned int writemask = 0;
7173 enum bfd_arm_vfp11_pipe vpipe;
7174
7175 switch (state)
7176 {
7177 case 0:
7178 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
7179 &numregs);
7180 /* I'm assuming the VFP11 erratum can trigger with denorm
7181 operands on either the FMAC or the DS pipeline. This might
7182 lead to slightly overenthusiastic veneer insertion. */
7183 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
7184 {
7185 state = use_vector ? 1 : 2;
7186 first_fmac = i;
7187 veneer_of_insn = insn;
7188 }
7189 break;
7190
7191 case 1:
7192 {
7193 int other_regs[3], other_numregs;
7194 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7195 other_regs,
7196 &other_numregs);
7197 if (vpipe != VFP11_BAD
7198 && bfd_arm_vfp11_antidependency (writemask, regs,
7199 numregs))
7200 state = 3;
7201 else
7202 state = 2;
7203 }
7204 break;
7205
7206 case 2:
7207 {
7208 int other_regs[3], other_numregs;
7209 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7210 other_regs,
7211 &other_numregs);
7212 if (vpipe != VFP11_BAD
7213 && bfd_arm_vfp11_antidependency (writemask, regs,
7214 numregs))
7215 state = 3;
7216 else
7217 {
7218 state = 0;
7219 next_i = first_fmac + 4;
7220 }
7221 }
7222 break;
7223
7224 case 3:
7225 abort (); /* Should be unreachable. */
7226 }
7227
7228 if (state == 3)
7229 {
7230 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
7231 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7232
7233 elf32_arm_section_data (sec)->erratumcount += 1;
7234
7235 newerr->u.b.vfp_insn = veneer_of_insn;
7236
7237 switch (span_type)
7238 {
7239 case 'a':
7240 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
7241 break;
7242
7243 default:
7244 abort ();
7245 }
7246
7247 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
7248 first_fmac);
7249
7250 newerr->vma = -1;
7251
7252 newerr->next = sec_data->erratumlist;
7253 sec_data->erratumlist = newerr;
7254
7255 state = 0;
7256 }
7257
7258 i = next_i;
7259 }
7260 }
7261
7262 if (contents != NULL
7263 && elf_section_data (sec)->this_hdr.contents != contents)
7264 free (contents);
7265 contents = NULL;
7266 }
7267
7268 return TRUE;
7269
7270 error_return:
7271 if (contents != NULL
7272 && elf_section_data (sec)->this_hdr.contents != contents)
7273 free (contents);
7274
7275 return FALSE;
7276 }
7277
7278 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
7279 after sections have been laid out, using specially-named symbols. */
7280
7281 void
7282 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
7283 struct bfd_link_info *link_info)
7284 {
7285 asection *sec;
7286 struct elf32_arm_link_hash_table *globals;
7287 char *tmp_name;
7288
7289 if (bfd_link_relocatable (link_info))
7290 return;
7291
7292 /* Skip if this bfd does not correspond to an ELF image. */
7293 if (! is_arm_elf (abfd))
7294 return;
7295
7296 globals = elf32_arm_hash_table (link_info);
7297 if (globals == NULL)
7298 return;
7299
7300 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7301 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7302
7303 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7304 {
7305 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7306 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
7307
7308 for (; errnode != NULL; errnode = errnode->next)
7309 {
7310 struct elf_link_hash_entry *myh;
7311 bfd_vma vma;
7312
7313 switch (errnode->type)
7314 {
7315 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
7316 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
7317 /* Find veneer symbol. */
7318 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7319 errnode->u.b.veneer->u.v.id);
7320
7321 myh = elf_link_hash_lookup
7322 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7323
7324 if (myh == NULL)
7325 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7326 "`%s'"), abfd, tmp_name);
7327
7328 vma = myh->root.u.def.section->output_section->vma
7329 + myh->root.u.def.section->output_offset
7330 + myh->root.u.def.value;
7331
7332 errnode->u.b.veneer->vma = vma;
7333 break;
7334
7335 case VFP11_ERRATUM_ARM_VENEER:
7336 case VFP11_ERRATUM_THUMB_VENEER:
7337 /* Find return location. */
7338 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7339 errnode->u.v.id);
7340
7341 myh = elf_link_hash_lookup
7342 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7343
7344 if (myh == NULL)
7345 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7346 "`%s'"), abfd, tmp_name);
7347
7348 vma = myh->root.u.def.section->output_section->vma
7349 + myh->root.u.def.section->output_offset
7350 + myh->root.u.def.value;
7351
7352 errnode->u.v.branch->vma = vma;
7353 break;
7354
7355 default:
7356 abort ();
7357 }
7358 }
7359 }
7360
7361 free (tmp_name);
7362 }
7363
7364 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
7365 return locations after sections have been laid out, using
7366 specially-named symbols. */
7367
7368 void
7369 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
7370 struct bfd_link_info *link_info)
7371 {
7372 asection *sec;
7373 struct elf32_arm_link_hash_table *globals;
7374 char *tmp_name;
7375
7376 if (bfd_link_relocatable (link_info))
7377 return;
7378
7379 /* Skip if this bfd does not correspond to an ELF image. */
7380 if (! is_arm_elf (abfd))
7381 return;
7382
7383 globals = elf32_arm_hash_table (link_info);
7384 if (globals == NULL)
7385 return;
7386
7387 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7388 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7389
7390 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7391 {
7392 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7393 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
7394
7395 for (; errnode != NULL; errnode = errnode->next)
7396 {
7397 struct elf_link_hash_entry *myh;
7398 bfd_vma vma;
7399
7400 switch (errnode->type)
7401 {
7402 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
7403 /* Find veneer symbol. */
7404 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7405 errnode->u.b.veneer->u.v.id);
7406
7407 myh = elf_link_hash_lookup
7408 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7409
7410 if (myh == NULL)
7411 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7412 "`%s'"), abfd, tmp_name);
7413
7414 vma = myh->root.u.def.section->output_section->vma
7415 + myh->root.u.def.section->output_offset
7416 + myh->root.u.def.value;
7417
7418 errnode->u.b.veneer->vma = vma;
7419 break;
7420
7421 case STM32L4XX_ERRATUM_VENEER:
7422 /* Find return location. */
7423 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7424 errnode->u.v.id);
7425
7426 myh = elf_link_hash_lookup
7427 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7428
7429 if (myh == NULL)
7430 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7431 "`%s'"), abfd, tmp_name);
7432
7433 vma = myh->root.u.def.section->output_section->vma
7434 + myh->root.u.def.section->output_offset
7435 + myh->root.u.def.value;
7436
7437 errnode->u.v.branch->vma = vma;
7438 break;
7439
7440 default:
7441 abort ();
7442 }
7443 }
7444 }
7445
7446 free (tmp_name);
7447 }
7448
7449 static inline bfd_boolean
7450 is_thumb2_ldmia (const insn32 insn)
7451 {
7452 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
7453 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
7454 return (insn & 0xffd02000) == 0xe8900000;
7455 }
7456
7457 static inline bfd_boolean
7458 is_thumb2_ldmdb (const insn32 insn)
7459 {
7460 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
7461 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
7462 return (insn & 0xffd02000) == 0xe9100000;
7463 }
7464
7465 static inline bfd_boolean
7466 is_thumb2_vldm (const insn32 insn)
7467 {
7468 /* A6.5 Extension register load or store instruction
7469 A7.7.229
7470 We look for SP 32-bit and DP 64-bit registers.
7471 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
7472 <list> is consecutive 64-bit registers
7473 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
7474 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
7475 <list> is consecutive 32-bit registers
7476 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
7477 if P==0 && U==1 && W==1 && Rn=1101 VPOP
7478 if PUW=010 || PUW=011 || PUW=101 VLDM. */
7479 return
7480 (((insn & 0xfe100f00) == 0xec100b00) ||
7481 ((insn & 0xfe100f00) == 0xec100a00))
7482 && /* (IA without !). */
7483 (((((insn << 7) >> 28) & 0xd) == 0x4)
7484 /* (IA with !), includes VPOP (when reg number is SP). */
7485 || ((((insn << 7) >> 28) & 0xd) == 0x5)
7486 /* (DB with !). */
7487 || ((((insn << 7) >> 28) & 0xd) == 0x9));
7488 }
7489
7490 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
7491 VLDM opcode and:
7492 - computes the number and the mode of memory accesses
7493 - decides if the replacement should be done:
7494 . replaces only if > 8-word accesses
7495 . or (testing purposes only) replaces all accesses. */
7496
7497 static bfd_boolean
7498 stm32l4xx_need_create_replacing_stub (const insn32 insn,
7499 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
7500 {
7501 int nb_words = 0;
7502
7503 /* The field encoding the register list is the same for both LDMIA
7504 and LDMDB encodings. */
7505 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
7506 nb_words = popcount (insn & 0x0000ffff);
7507 else if (is_thumb2_vldm (insn))
7508 nb_words = (insn & 0xff);
7509
7510 /* DEFAULT mode accounts for the real bug condition situation,
7511 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
7512 return
7513 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
7514 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
7515 }
7516
7517 /* Look for potentially-troublesome code sequences which might trigger
7518 the STM STM32L4XX erratum. */
7519
7520 bfd_boolean
7521 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
7522 struct bfd_link_info *link_info)
7523 {
7524 asection *sec;
7525 bfd_byte *contents = NULL;
7526 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7527
7528 if (globals == NULL)
7529 return FALSE;
7530
7531 /* If we are only performing a partial link do not bother
7532 to construct any glue. */
7533 if (bfd_link_relocatable (link_info))
7534 return TRUE;
7535
7536 /* Skip if this bfd does not correspond to an ELF image. */
7537 if (! is_arm_elf (abfd))
7538 return TRUE;
7539
7540 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
7541 return TRUE;
7542
7543 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7544 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7545 return TRUE;
7546
7547 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7548 {
7549 unsigned int i, span;
7550 struct _arm_elf_section_data *sec_data;
7551
7552 /* If we don't have executable progbits, we're not interested in this
7553 section. Also skip if section is to be excluded. */
7554 if (elf_section_type (sec) != SHT_PROGBITS
7555 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7556 || (sec->flags & SEC_EXCLUDE) != 0
7557 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7558 || sec->output_section == bfd_abs_section_ptr
7559 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
7560 continue;
7561
7562 sec_data = elf32_arm_section_data (sec);
7563
7564 if (sec_data->mapcount == 0)
7565 continue;
7566
7567 if (elf_section_data (sec)->this_hdr.contents != NULL)
7568 contents = elf_section_data (sec)->this_hdr.contents;
7569 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7570 goto error_return;
7571
7572 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7573 elf32_arm_compare_mapping);
7574
7575 for (span = 0; span < sec_data->mapcount; span++)
7576 {
7577 unsigned int span_start = sec_data->map[span].vma;
7578 unsigned int span_end = (span == sec_data->mapcount - 1)
7579 ? sec->size : sec_data->map[span + 1].vma;
7580 char span_type = sec_data->map[span].type;
7581 int itblock_current_pos = 0;
7582
7583 /* Only Thumb2 mode need be supported with this CM4 specific
7584 code, we should not encounter any arm mode eg span_type
7585 != 'a'. */
7586 if (span_type != 't')
7587 continue;
7588
7589 for (i = span_start; i < span_end;)
7590 {
7591 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
7592 bfd_boolean insn_32bit = FALSE;
7593 bfd_boolean is_ldm = FALSE;
7594 bfd_boolean is_vldm = FALSE;
7595 bfd_boolean is_not_last_in_it_block = FALSE;
7596
7597 /* The first 16-bits of all 32-bit thumb2 instructions start
7598 with opcode[15..13]=0b111 and the encoded op1 can be anything
7599 except opcode[12..11]!=0b00.
7600 See 32-bit Thumb instruction encoding. */
7601 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
7602 insn_32bit = TRUE;
7603
7604 /* Compute the predicate that tells if the instruction
7605 is concerned by the IT block
7606 - Creates an error if there is a ldm that is not
7607 last in the IT block thus cannot be replaced
7608 - Otherwise we can create a branch at the end of the
7609 IT block, it will be controlled naturally by IT
7610 with the proper pseudo-predicate
7611 - So the only interesting predicate is the one that
7612 tells that we are not on the last item of an IT
7613 block. */
7614 if (itblock_current_pos != 0)
7615 is_not_last_in_it_block = !!--itblock_current_pos;
7616
7617 if (insn_32bit)
7618 {
7619 /* Load the rest of the insn (in manual-friendly order). */
7620 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
7621 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
7622 is_vldm = is_thumb2_vldm (insn);
7623
7624 /* Veneers are created for (v)ldm depending on
7625 option flags and memory accesses conditions; but
7626 if the instruction is not the last instruction of
7627 an IT block, we cannot create a jump there, so we
7628 bail out. */
7629 if ((is_ldm || is_vldm) &&
7630 stm32l4xx_need_create_replacing_stub
7631 (insn, globals->stm32l4xx_fix))
7632 {
7633 if (is_not_last_in_it_block)
7634 {
7635 (*_bfd_error_handler)
7636 /* Note - overlong line used here to allow for translation. */
7637 (_("\
7638 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
7639 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
7640 abfd, sec, (long)i);
7641 }
7642 else
7643 {
7644 elf32_stm32l4xx_erratum_list *newerr =
7645 (elf32_stm32l4xx_erratum_list *)
7646 bfd_zmalloc
7647 (sizeof (elf32_stm32l4xx_erratum_list));
7648
7649 elf32_arm_section_data (sec)
7650 ->stm32l4xx_erratumcount += 1;
7651 newerr->u.b.insn = insn;
7652 /* We create only thumb branches. */
7653 newerr->type =
7654 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
7655 record_stm32l4xx_erratum_veneer
7656 (link_info, newerr, abfd, sec,
7657 i,
7658 is_ldm ?
7659 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
7660 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
7661 newerr->vma = -1;
7662 newerr->next = sec_data->stm32l4xx_erratumlist;
7663 sec_data->stm32l4xx_erratumlist = newerr;
7664 }
7665 }
7666 }
7667 else
7668 {
7669 /* A7.7.37 IT p208
7670 IT blocks are only encoded in T1
7671 Encoding T1: IT{x{y{z}}} <firstcond>
7672 1 0 1 1 - 1 1 1 1 - firstcond - mask
7673 if mask = '0000' then see 'related encodings'
7674 We don't deal with UNPREDICTABLE, just ignore these.
7675 There can be no nested IT blocks so an IT block
7676 is naturally a new one for which it is worth
7677 computing its size. */
7678 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) &&
7679 ((insn & 0x000f) != 0x0000);
7680 /* If we have a new IT block we compute its size. */
7681 if (is_newitblock)
7682 {
7683 /* Compute the number of instructions controlled
7684 by the IT block, it will be used to decide
7685 whether we are inside an IT block or not. */
7686 unsigned int mask = insn & 0x000f;
7687 itblock_current_pos = 4 - ctz (mask);
7688 }
7689 }
7690
7691 i += insn_32bit ? 4 : 2;
7692 }
7693 }
7694
7695 if (contents != NULL
7696 && elf_section_data (sec)->this_hdr.contents != contents)
7697 free (contents);
7698 contents = NULL;
7699 }
7700
7701 return TRUE;
7702
7703 error_return:
7704 if (contents != NULL
7705 && elf_section_data (sec)->this_hdr.contents != contents)
7706 free (contents);
7707
7708 return FALSE;
7709 }
7710
7711 /* Set target relocation values needed during linking. */
7712
7713 void
7714 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7715 struct bfd_link_info *link_info,
7716 int target1_is_rel,
7717 char * target2_type,
7718 int fix_v4bx,
7719 int use_blx,
7720 bfd_arm_vfp11_fix vfp11_fix,
7721 bfd_arm_stm32l4xx_fix stm32l4xx_fix,
7722 int no_enum_warn, int no_wchar_warn,
7723 int pic_veneer, int fix_cortex_a8,
7724 int fix_arm1176)
7725 {
7726 struct elf32_arm_link_hash_table *globals;
7727
7728 globals = elf32_arm_hash_table (link_info);
7729 if (globals == NULL)
7730 return;
7731
7732 globals->target1_is_rel = target1_is_rel;
7733 if (strcmp (target2_type, "rel") == 0)
7734 globals->target2_reloc = R_ARM_REL32;
7735 else if (strcmp (target2_type, "abs") == 0)
7736 globals->target2_reloc = R_ARM_ABS32;
7737 else if (strcmp (target2_type, "got-rel") == 0)
7738 globals->target2_reloc = R_ARM_GOT_PREL;
7739 else
7740 {
7741 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7742 target2_type);
7743 }
7744 globals->fix_v4bx = fix_v4bx;
7745 globals->use_blx |= use_blx;
7746 globals->vfp11_fix = vfp11_fix;
7747 globals->stm32l4xx_fix = stm32l4xx_fix;
7748 globals->pic_veneer = pic_veneer;
7749 globals->fix_cortex_a8 = fix_cortex_a8;
7750 globals->fix_arm1176 = fix_arm1176;
7751
7752 BFD_ASSERT (is_arm_elf (output_bfd));
7753 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7754 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7755 }
7756
7757 /* Replace the target offset of a Thumb bl or b.w instruction. */
7758
7759 static void
7760 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7761 {
7762 bfd_vma upper;
7763 bfd_vma lower;
7764 int reloc_sign;
7765
7766 BFD_ASSERT ((offset & 1) == 0);
7767
7768 upper = bfd_get_16 (abfd, insn);
7769 lower = bfd_get_16 (abfd, insn + 2);
7770 reloc_sign = (offset < 0) ? 1 : 0;
7771 upper = (upper & ~(bfd_vma) 0x7ff)
7772 | ((offset >> 12) & 0x3ff)
7773 | (reloc_sign << 10);
7774 lower = (lower & ~(bfd_vma) 0x2fff)
7775 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7776 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7777 | ((offset >> 1) & 0x7ff);
7778 bfd_put_16 (abfd, upper, insn);
7779 bfd_put_16 (abfd, lower, insn + 2);
7780 }
7781
7782 /* Thumb code calling an ARM function. */
7783
7784 static int
7785 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7786 const char * name,
7787 bfd * input_bfd,
7788 bfd * output_bfd,
7789 asection * input_section,
7790 bfd_byte * hit_data,
7791 asection * sym_sec,
7792 bfd_vma offset,
7793 bfd_signed_vma addend,
7794 bfd_vma val,
7795 char **error_message)
7796 {
7797 asection * s = 0;
7798 bfd_vma my_offset;
7799 long int ret_offset;
7800 struct elf_link_hash_entry * myh;
7801 struct elf32_arm_link_hash_table * globals;
7802
7803 myh = find_thumb_glue (info, name, error_message);
7804 if (myh == NULL)
7805 return FALSE;
7806
7807 globals = elf32_arm_hash_table (info);
7808 BFD_ASSERT (globals != NULL);
7809 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7810
7811 my_offset = myh->root.u.def.value;
7812
7813 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7814 THUMB2ARM_GLUE_SECTION_NAME);
7815
7816 BFD_ASSERT (s != NULL);
7817 BFD_ASSERT (s->contents != NULL);
7818 BFD_ASSERT (s->output_section != NULL);
7819
7820 if ((my_offset & 0x01) == 0x01)
7821 {
7822 if (sym_sec != NULL
7823 && sym_sec->owner != NULL
7824 && !INTERWORK_FLAG (sym_sec->owner))
7825 {
7826 (*_bfd_error_handler)
7827 (_("%B(%s): warning: interworking not enabled.\n"
7828 " first occurrence: %B: Thumb call to ARM"),
7829 sym_sec->owner, input_bfd, name);
7830
7831 return FALSE;
7832 }
7833
7834 --my_offset;
7835 myh->root.u.def.value = my_offset;
7836
7837 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7838 s->contents + my_offset);
7839
7840 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7841 s->contents + my_offset + 2);
7842
7843 ret_offset =
7844 /* Address of destination of the stub. */
7845 ((bfd_signed_vma) val)
7846 - ((bfd_signed_vma)
7847 /* Offset from the start of the current section
7848 to the start of the stubs. */
7849 (s->output_offset
7850 /* Offset of the start of this stub from the start of the stubs. */
7851 + my_offset
7852 /* Address of the start of the current section. */
7853 + s->output_section->vma)
7854 /* The branch instruction is 4 bytes into the stub. */
7855 + 4
7856 /* ARM branches work from the pc of the instruction + 8. */
7857 + 8);
7858
7859 put_arm_insn (globals, output_bfd,
7860 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7861 s->contents + my_offset + 4);
7862 }
7863
7864 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7865
7866 /* Now go back and fix up the original BL insn to point to here. */
7867 ret_offset =
7868 /* Address of where the stub is located. */
7869 (s->output_section->vma + s->output_offset + my_offset)
7870 /* Address of where the BL is located. */
7871 - (input_section->output_section->vma + input_section->output_offset
7872 + offset)
7873 /* Addend in the relocation. */
7874 - addend
7875 /* Biassing for PC-relative addressing. */
7876 - 8;
7877
7878 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7879
7880 return TRUE;
7881 }
7882
7883 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7884
7885 static struct elf_link_hash_entry *
7886 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7887 const char * name,
7888 bfd * input_bfd,
7889 bfd * output_bfd,
7890 asection * sym_sec,
7891 bfd_vma val,
7892 asection * s,
7893 char ** error_message)
7894 {
7895 bfd_vma my_offset;
7896 long int ret_offset;
7897 struct elf_link_hash_entry * myh;
7898 struct elf32_arm_link_hash_table * globals;
7899
7900 myh = find_arm_glue (info, name, error_message);
7901 if (myh == NULL)
7902 return NULL;
7903
7904 globals = elf32_arm_hash_table (info);
7905 BFD_ASSERT (globals != NULL);
7906 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7907
7908 my_offset = myh->root.u.def.value;
7909
7910 if ((my_offset & 0x01) == 0x01)
7911 {
7912 if (sym_sec != NULL
7913 && sym_sec->owner != NULL
7914 && !INTERWORK_FLAG (sym_sec->owner))
7915 {
7916 (*_bfd_error_handler)
7917 (_("%B(%s): warning: interworking not enabled.\n"
7918 " first occurrence: %B: arm call to thumb"),
7919 sym_sec->owner, input_bfd, name);
7920 }
7921
7922 --my_offset;
7923 myh->root.u.def.value = my_offset;
7924
7925 if (bfd_link_pic (info)
7926 || globals->root.is_relocatable_executable
7927 || globals->pic_veneer)
7928 {
7929 /* For relocatable objects we can't use absolute addresses,
7930 so construct the address from a relative offset. */
7931 /* TODO: If the offset is small it's probably worth
7932 constructing the address with adds. */
7933 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7934 s->contents + my_offset);
7935 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7936 s->contents + my_offset + 4);
7937 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7938 s->contents + my_offset + 8);
7939 /* Adjust the offset by 4 for the position of the add,
7940 and 8 for the pipeline offset. */
7941 ret_offset = (val - (s->output_offset
7942 + s->output_section->vma
7943 + my_offset + 12))
7944 | 1;
7945 bfd_put_32 (output_bfd, ret_offset,
7946 s->contents + my_offset + 12);
7947 }
7948 else if (globals->use_blx)
7949 {
7950 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7951 s->contents + my_offset);
7952
7953 /* It's a thumb address. Add the low order bit. */
7954 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7955 s->contents + my_offset + 4);
7956 }
7957 else
7958 {
7959 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7960 s->contents + my_offset);
7961
7962 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7963 s->contents + my_offset + 4);
7964
7965 /* It's a thumb address. Add the low order bit. */
7966 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7967 s->contents + my_offset + 8);
7968
7969 my_offset += 12;
7970 }
7971 }
7972
7973 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7974
7975 return myh;
7976 }
7977
7978 /* Arm code calling a Thumb function. */
7979
7980 static int
7981 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7982 const char * name,
7983 bfd * input_bfd,
7984 bfd * output_bfd,
7985 asection * input_section,
7986 bfd_byte * hit_data,
7987 asection * sym_sec,
7988 bfd_vma offset,
7989 bfd_signed_vma addend,
7990 bfd_vma val,
7991 char **error_message)
7992 {
7993 unsigned long int tmp;
7994 bfd_vma my_offset;
7995 asection * s;
7996 long int ret_offset;
7997 struct elf_link_hash_entry * myh;
7998 struct elf32_arm_link_hash_table * globals;
7999
8000 globals = elf32_arm_hash_table (info);
8001 BFD_ASSERT (globals != NULL);
8002 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8003
8004 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8005 ARM2THUMB_GLUE_SECTION_NAME);
8006 BFD_ASSERT (s != NULL);
8007 BFD_ASSERT (s->contents != NULL);
8008 BFD_ASSERT (s->output_section != NULL);
8009
8010 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8011 sym_sec, val, s, error_message);
8012 if (!myh)
8013 return FALSE;
8014
8015 my_offset = myh->root.u.def.value;
8016 tmp = bfd_get_32 (input_bfd, hit_data);
8017 tmp = tmp & 0xFF000000;
8018
8019 /* Somehow these are both 4 too far, so subtract 8. */
8020 ret_offset = (s->output_offset
8021 + my_offset
8022 + s->output_section->vma
8023 - (input_section->output_offset
8024 + input_section->output_section->vma
8025 + offset + addend)
8026 - 8);
8027
8028 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8029
8030 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8031
8032 return TRUE;
8033 }
8034
8035 /* Populate Arm stub for an exported Thumb function. */
8036
8037 static bfd_boolean
8038 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
8039 {
8040 struct bfd_link_info * info = (struct bfd_link_info *) inf;
8041 asection * s;
8042 struct elf_link_hash_entry * myh;
8043 struct elf32_arm_link_hash_entry *eh;
8044 struct elf32_arm_link_hash_table * globals;
8045 asection *sec;
8046 bfd_vma val;
8047 char *error_message;
8048
8049 eh = elf32_arm_hash_entry (h);
8050 /* Allocate stubs for exported Thumb functions on v4t. */
8051 if (eh->export_glue == NULL)
8052 return TRUE;
8053
8054 globals = elf32_arm_hash_table (info);
8055 BFD_ASSERT (globals != NULL);
8056 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8057
8058 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8059 ARM2THUMB_GLUE_SECTION_NAME);
8060 BFD_ASSERT (s != NULL);
8061 BFD_ASSERT (s->contents != NULL);
8062 BFD_ASSERT (s->output_section != NULL);
8063
8064 sec = eh->export_glue->root.u.def.section;
8065
8066 BFD_ASSERT (sec->output_section != NULL);
8067
8068 val = eh->export_glue->root.u.def.value + sec->output_offset
8069 + sec->output_section->vma;
8070
8071 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
8072 h->root.u.def.section->owner,
8073 globals->obfd, sec, val, s,
8074 &error_message);
8075 BFD_ASSERT (myh);
8076 return TRUE;
8077 }
8078
8079 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
8080
8081 static bfd_vma
8082 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
8083 {
8084 bfd_byte *p;
8085 bfd_vma glue_addr;
8086 asection *s;
8087 struct elf32_arm_link_hash_table *globals;
8088
8089 globals = elf32_arm_hash_table (info);
8090 BFD_ASSERT (globals != NULL);
8091 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8092
8093 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8094 ARM_BX_GLUE_SECTION_NAME);
8095 BFD_ASSERT (s != NULL);
8096 BFD_ASSERT (s->contents != NULL);
8097 BFD_ASSERT (s->output_section != NULL);
8098
8099 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
8100
8101 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
8102
8103 if ((globals->bx_glue_offset[reg] & 1) == 0)
8104 {
8105 p = s->contents + glue_addr;
8106 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
8107 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
8108 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
8109 globals->bx_glue_offset[reg] |= 1;
8110 }
8111
8112 return glue_addr + s->output_section->vma + s->output_offset;
8113 }
8114
8115 /* Generate Arm stubs for exported Thumb symbols. */
8116 static void
8117 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
8118 struct bfd_link_info *link_info)
8119 {
8120 struct elf32_arm_link_hash_table * globals;
8121
8122 if (link_info == NULL)
8123 /* Ignore this if we are not called by the ELF backend linker. */
8124 return;
8125
8126 globals = elf32_arm_hash_table (link_info);
8127 if (globals == NULL)
8128 return;
8129
8130 /* If blx is available then exported Thumb symbols are OK and there is
8131 nothing to do. */
8132 if (globals->use_blx)
8133 return;
8134
8135 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
8136 link_info);
8137 }
8138
8139 /* Reserve space for COUNT dynamic relocations in relocation selection
8140 SRELOC. */
8141
8142 static void
8143 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
8144 bfd_size_type count)
8145 {
8146 struct elf32_arm_link_hash_table *htab;
8147
8148 htab = elf32_arm_hash_table (info);
8149 BFD_ASSERT (htab->root.dynamic_sections_created);
8150 if (sreloc == NULL)
8151 abort ();
8152 sreloc->size += RELOC_SIZE (htab) * count;
8153 }
8154
8155 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
8156 dynamic, the relocations should go in SRELOC, otherwise they should
8157 go in the special .rel.iplt section. */
8158
8159 static void
8160 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
8161 bfd_size_type count)
8162 {
8163 struct elf32_arm_link_hash_table *htab;
8164
8165 htab = elf32_arm_hash_table (info);
8166 if (!htab->root.dynamic_sections_created)
8167 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
8168 else
8169 {
8170 BFD_ASSERT (sreloc != NULL);
8171 sreloc->size += RELOC_SIZE (htab) * count;
8172 }
8173 }
8174
8175 /* Add relocation REL to the end of relocation section SRELOC. */
8176
8177 static void
8178 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
8179 asection *sreloc, Elf_Internal_Rela *rel)
8180 {
8181 bfd_byte *loc;
8182 struct elf32_arm_link_hash_table *htab;
8183
8184 htab = elf32_arm_hash_table (info);
8185 if (!htab->root.dynamic_sections_created
8186 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
8187 sreloc = htab->root.irelplt;
8188 if (sreloc == NULL)
8189 abort ();
8190 loc = sreloc->contents;
8191 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
8192 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
8193 abort ();
8194 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
8195 }
8196
8197 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
8198 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
8199 to .plt. */
8200
8201 static void
8202 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
8203 bfd_boolean is_iplt_entry,
8204 union gotplt_union *root_plt,
8205 struct arm_plt_info *arm_plt)
8206 {
8207 struct elf32_arm_link_hash_table *htab;
8208 asection *splt;
8209 asection *sgotplt;
8210
8211 htab = elf32_arm_hash_table (info);
8212
8213 if (is_iplt_entry)
8214 {
8215 splt = htab->root.iplt;
8216 sgotplt = htab->root.igotplt;
8217
8218 /* NaCl uses a special first entry in .iplt too. */
8219 if (htab->nacl_p && splt->size == 0)
8220 splt->size += htab->plt_header_size;
8221
8222 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
8223 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
8224 }
8225 else
8226 {
8227 splt = htab->root.splt;
8228 sgotplt = htab->root.sgotplt;
8229
8230 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
8231 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
8232
8233 /* If this is the first .plt entry, make room for the special
8234 first entry. */
8235 if (splt->size == 0)
8236 splt->size += htab->plt_header_size;
8237
8238 htab->next_tls_desc_index++;
8239 }
8240
8241 /* Allocate the PLT entry itself, including any leading Thumb stub. */
8242 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8243 splt->size += PLT_THUMB_STUB_SIZE;
8244 root_plt->offset = splt->size;
8245 splt->size += htab->plt_entry_size;
8246
8247 if (!htab->symbian_p)
8248 {
8249 /* We also need to make an entry in the .got.plt section, which
8250 will be placed in the .got section by the linker script. */
8251 if (is_iplt_entry)
8252 arm_plt->got_offset = sgotplt->size;
8253 else
8254 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
8255 sgotplt->size += 4;
8256 }
8257 }
8258
8259 static bfd_vma
8260 arm_movw_immediate (bfd_vma value)
8261 {
8262 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
8263 }
8264
8265 static bfd_vma
8266 arm_movt_immediate (bfd_vma value)
8267 {
8268 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
8269 }
8270
8271 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
8272 the entry lives in .iplt and resolves to (*SYM_VALUE)().
8273 Otherwise, DYNINDX is the index of the symbol in the dynamic
8274 symbol table and SYM_VALUE is undefined.
8275
8276 ROOT_PLT points to the offset of the PLT entry from the start of its
8277 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
8278 bookkeeping information.
8279
8280 Returns FALSE if there was a problem. */
8281
8282 static bfd_boolean
8283 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
8284 union gotplt_union *root_plt,
8285 struct arm_plt_info *arm_plt,
8286 int dynindx, bfd_vma sym_value)
8287 {
8288 struct elf32_arm_link_hash_table *htab;
8289 asection *sgot;
8290 asection *splt;
8291 asection *srel;
8292 bfd_byte *loc;
8293 bfd_vma plt_index;
8294 Elf_Internal_Rela rel;
8295 bfd_vma plt_header_size;
8296 bfd_vma got_header_size;
8297
8298 htab = elf32_arm_hash_table (info);
8299
8300 /* Pick the appropriate sections and sizes. */
8301 if (dynindx == -1)
8302 {
8303 splt = htab->root.iplt;
8304 sgot = htab->root.igotplt;
8305 srel = htab->root.irelplt;
8306
8307 /* There are no reserved entries in .igot.plt, and no special
8308 first entry in .iplt. */
8309 got_header_size = 0;
8310 plt_header_size = 0;
8311 }
8312 else
8313 {
8314 splt = htab->root.splt;
8315 sgot = htab->root.sgotplt;
8316 srel = htab->root.srelplt;
8317
8318 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
8319 plt_header_size = htab->plt_header_size;
8320 }
8321 BFD_ASSERT (splt != NULL && srel != NULL);
8322
8323 /* Fill in the entry in the procedure linkage table. */
8324 if (htab->symbian_p)
8325 {
8326 BFD_ASSERT (dynindx >= 0);
8327 put_arm_insn (htab, output_bfd,
8328 elf32_arm_symbian_plt_entry[0],
8329 splt->contents + root_plt->offset);
8330 bfd_put_32 (output_bfd,
8331 elf32_arm_symbian_plt_entry[1],
8332 splt->contents + root_plt->offset + 4);
8333
8334 /* Fill in the entry in the .rel.plt section. */
8335 rel.r_offset = (splt->output_section->vma
8336 + splt->output_offset
8337 + root_plt->offset + 4);
8338 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
8339
8340 /* Get the index in the procedure linkage table which
8341 corresponds to this symbol. This is the index of this symbol
8342 in all the symbols for which we are making plt entries. The
8343 first entry in the procedure linkage table is reserved. */
8344 plt_index = ((root_plt->offset - plt_header_size)
8345 / htab->plt_entry_size);
8346 }
8347 else
8348 {
8349 bfd_vma got_offset, got_address, plt_address;
8350 bfd_vma got_displacement, initial_got_entry;
8351 bfd_byte * ptr;
8352
8353 BFD_ASSERT (sgot != NULL);
8354
8355 /* Get the offset into the .(i)got.plt table of the entry that
8356 corresponds to this function. */
8357 got_offset = (arm_plt->got_offset & -2);
8358
8359 /* Get the index in the procedure linkage table which
8360 corresponds to this symbol. This is the index of this symbol
8361 in all the symbols for which we are making plt entries.
8362 After the reserved .got.plt entries, all symbols appear in
8363 the same order as in .plt. */
8364 plt_index = (got_offset - got_header_size) / 4;
8365
8366 /* Calculate the address of the GOT entry. */
8367 got_address = (sgot->output_section->vma
8368 + sgot->output_offset
8369 + got_offset);
8370
8371 /* ...and the address of the PLT entry. */
8372 plt_address = (splt->output_section->vma
8373 + splt->output_offset
8374 + root_plt->offset);
8375
8376 ptr = splt->contents + root_plt->offset;
8377 if (htab->vxworks_p && bfd_link_pic (info))
8378 {
8379 unsigned int i;
8380 bfd_vma val;
8381
8382 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8383 {
8384 val = elf32_arm_vxworks_shared_plt_entry[i];
8385 if (i == 2)
8386 val |= got_address - sgot->output_section->vma;
8387 if (i == 5)
8388 val |= plt_index * RELOC_SIZE (htab);
8389 if (i == 2 || i == 5)
8390 bfd_put_32 (output_bfd, val, ptr);
8391 else
8392 put_arm_insn (htab, output_bfd, val, ptr);
8393 }
8394 }
8395 else if (htab->vxworks_p)
8396 {
8397 unsigned int i;
8398 bfd_vma val;
8399
8400 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8401 {
8402 val = elf32_arm_vxworks_exec_plt_entry[i];
8403 if (i == 2)
8404 val |= got_address;
8405 if (i == 4)
8406 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
8407 if (i == 5)
8408 val |= plt_index * RELOC_SIZE (htab);
8409 if (i == 2 || i == 5)
8410 bfd_put_32 (output_bfd, val, ptr);
8411 else
8412 put_arm_insn (htab, output_bfd, val, ptr);
8413 }
8414
8415 loc = (htab->srelplt2->contents
8416 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
8417
8418 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
8419 referencing the GOT for this PLT entry. */
8420 rel.r_offset = plt_address + 8;
8421 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
8422 rel.r_addend = got_offset;
8423 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8424 loc += RELOC_SIZE (htab);
8425
8426 /* Create the R_ARM_ABS32 relocation referencing the
8427 beginning of the PLT for this GOT entry. */
8428 rel.r_offset = got_address;
8429 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
8430 rel.r_addend = 0;
8431 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8432 }
8433 else if (htab->nacl_p)
8434 {
8435 /* Calculate the displacement between the PLT slot and the
8436 common tail that's part of the special initial PLT slot. */
8437 int32_t tail_displacement
8438 = ((splt->output_section->vma + splt->output_offset
8439 + ARM_NACL_PLT_TAIL_OFFSET)
8440 - (plt_address + htab->plt_entry_size + 4));
8441 BFD_ASSERT ((tail_displacement & 3) == 0);
8442 tail_displacement >>= 2;
8443
8444 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
8445 || (-tail_displacement & 0xff000000) == 0);
8446
8447 /* Calculate the displacement between the PLT slot and the entry
8448 in the GOT. The offset accounts for the value produced by
8449 adding to pc in the penultimate instruction of the PLT stub. */
8450 got_displacement = (got_address
8451 - (plt_address + htab->plt_entry_size));
8452
8453 /* NaCl does not support interworking at all. */
8454 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
8455
8456 put_arm_insn (htab, output_bfd,
8457 elf32_arm_nacl_plt_entry[0]
8458 | arm_movw_immediate (got_displacement),
8459 ptr + 0);
8460 put_arm_insn (htab, output_bfd,
8461 elf32_arm_nacl_plt_entry[1]
8462 | arm_movt_immediate (got_displacement),
8463 ptr + 4);
8464 put_arm_insn (htab, output_bfd,
8465 elf32_arm_nacl_plt_entry[2],
8466 ptr + 8);
8467 put_arm_insn (htab, output_bfd,
8468 elf32_arm_nacl_plt_entry[3]
8469 | (tail_displacement & 0x00ffffff),
8470 ptr + 12);
8471 }
8472 else if (using_thumb_only (htab))
8473 {
8474 /* PR ld/16017: Generate thumb only PLT entries. */
8475 if (!using_thumb2 (htab))
8476 {
8477 /* FIXME: We ought to be able to generate thumb-1 PLT
8478 instructions... */
8479 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
8480 output_bfd);
8481 return FALSE;
8482 }
8483
8484 /* Calculate the displacement between the PLT slot and the entry in
8485 the GOT. The 12-byte offset accounts for the value produced by
8486 adding to pc in the 3rd instruction of the PLT stub. */
8487 got_displacement = got_address - (plt_address + 12);
8488
8489 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
8490 instead of 'put_thumb_insn'. */
8491 put_arm_insn (htab, output_bfd,
8492 elf32_thumb2_plt_entry[0]
8493 | ((got_displacement & 0x000000ff) << 16)
8494 | ((got_displacement & 0x00000700) << 20)
8495 | ((got_displacement & 0x00000800) >> 1)
8496 | ((got_displacement & 0x0000f000) >> 12),
8497 ptr + 0);
8498 put_arm_insn (htab, output_bfd,
8499 elf32_thumb2_plt_entry[1]
8500 | ((got_displacement & 0x00ff0000) )
8501 | ((got_displacement & 0x07000000) << 4)
8502 | ((got_displacement & 0x08000000) >> 17)
8503 | ((got_displacement & 0xf0000000) >> 28),
8504 ptr + 4);
8505 put_arm_insn (htab, output_bfd,
8506 elf32_thumb2_plt_entry[2],
8507 ptr + 8);
8508 put_arm_insn (htab, output_bfd,
8509 elf32_thumb2_plt_entry[3],
8510 ptr + 12);
8511 }
8512 else
8513 {
8514 /* Calculate the displacement between the PLT slot and the
8515 entry in the GOT. The eight-byte offset accounts for the
8516 value produced by adding to pc in the first instruction
8517 of the PLT stub. */
8518 got_displacement = got_address - (plt_address + 8);
8519
8520 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8521 {
8522 put_thumb_insn (htab, output_bfd,
8523 elf32_arm_plt_thumb_stub[0], ptr - 4);
8524 put_thumb_insn (htab, output_bfd,
8525 elf32_arm_plt_thumb_stub[1], ptr - 2);
8526 }
8527
8528 if (!elf32_arm_use_long_plt_entry)
8529 {
8530 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
8531
8532 put_arm_insn (htab, output_bfd,
8533 elf32_arm_plt_entry_short[0]
8534 | ((got_displacement & 0x0ff00000) >> 20),
8535 ptr + 0);
8536 put_arm_insn (htab, output_bfd,
8537 elf32_arm_plt_entry_short[1]
8538 | ((got_displacement & 0x000ff000) >> 12),
8539 ptr+ 4);
8540 put_arm_insn (htab, output_bfd,
8541 elf32_arm_plt_entry_short[2]
8542 | (got_displacement & 0x00000fff),
8543 ptr + 8);
8544 #ifdef FOUR_WORD_PLT
8545 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
8546 #endif
8547 }
8548 else
8549 {
8550 put_arm_insn (htab, output_bfd,
8551 elf32_arm_plt_entry_long[0]
8552 | ((got_displacement & 0xf0000000) >> 28),
8553 ptr + 0);
8554 put_arm_insn (htab, output_bfd,
8555 elf32_arm_plt_entry_long[1]
8556 | ((got_displacement & 0x0ff00000) >> 20),
8557 ptr + 4);
8558 put_arm_insn (htab, output_bfd,
8559 elf32_arm_plt_entry_long[2]
8560 | ((got_displacement & 0x000ff000) >> 12),
8561 ptr+ 8);
8562 put_arm_insn (htab, output_bfd,
8563 elf32_arm_plt_entry_long[3]
8564 | (got_displacement & 0x00000fff),
8565 ptr + 12);
8566 }
8567 }
8568
8569 /* Fill in the entry in the .rel(a).(i)plt section. */
8570 rel.r_offset = got_address;
8571 rel.r_addend = 0;
8572 if (dynindx == -1)
8573 {
8574 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
8575 The dynamic linker or static executable then calls SYM_VALUE
8576 to determine the correct run-time value of the .igot.plt entry. */
8577 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
8578 initial_got_entry = sym_value;
8579 }
8580 else
8581 {
8582 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
8583 initial_got_entry = (splt->output_section->vma
8584 + splt->output_offset);
8585 }
8586
8587 /* Fill in the entry in the global offset table. */
8588 bfd_put_32 (output_bfd, initial_got_entry,
8589 sgot->contents + got_offset);
8590 }
8591
8592 if (dynindx == -1)
8593 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
8594 else
8595 {
8596 loc = srel->contents + plt_index * RELOC_SIZE (htab);
8597 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8598 }
8599
8600 return TRUE;
8601 }
8602
8603 /* Some relocations map to different relocations depending on the
8604 target. Return the real relocation. */
8605
8606 static int
8607 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
8608 int r_type)
8609 {
8610 switch (r_type)
8611 {
8612 case R_ARM_TARGET1:
8613 if (globals->target1_is_rel)
8614 return R_ARM_REL32;
8615 else
8616 return R_ARM_ABS32;
8617
8618 case R_ARM_TARGET2:
8619 return globals->target2_reloc;
8620
8621 default:
8622 return r_type;
8623 }
8624 }
8625
8626 /* Return the base VMA address which should be subtracted from real addresses
8627 when resolving @dtpoff relocation.
8628 This is PT_TLS segment p_vaddr. */
8629
8630 static bfd_vma
8631 dtpoff_base (struct bfd_link_info *info)
8632 {
8633 /* If tls_sec is NULL, we should have signalled an error already. */
8634 if (elf_hash_table (info)->tls_sec == NULL)
8635 return 0;
8636 return elf_hash_table (info)->tls_sec->vma;
8637 }
8638
8639 /* Return the relocation value for @tpoff relocation
8640 if STT_TLS virtual address is ADDRESS. */
8641
8642 static bfd_vma
8643 tpoff (struct bfd_link_info *info, bfd_vma address)
8644 {
8645 struct elf_link_hash_table *htab = elf_hash_table (info);
8646 bfd_vma base;
8647
8648 /* If tls_sec is NULL, we should have signalled an error already. */
8649 if (htab->tls_sec == NULL)
8650 return 0;
8651 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
8652 return address - htab->tls_sec->vma + base;
8653 }
8654
8655 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
8656 VALUE is the relocation value. */
8657
8658 static bfd_reloc_status_type
8659 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
8660 {
8661 if (value > 0xfff)
8662 return bfd_reloc_overflow;
8663
8664 value |= bfd_get_32 (abfd, data) & 0xfffff000;
8665 bfd_put_32 (abfd, value, data);
8666 return bfd_reloc_ok;
8667 }
8668
8669 /* Handle TLS relaxations. Relaxing is possible for symbols that use
8670 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
8671 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
8672
8673 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
8674 is to then call final_link_relocate. Return other values in the
8675 case of error.
8676
8677 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
8678 the pre-relaxed code. It would be nice if the relocs were updated
8679 to match the optimization. */
8680
8681 static bfd_reloc_status_type
8682 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
8683 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
8684 Elf_Internal_Rela *rel, unsigned long is_local)
8685 {
8686 unsigned long insn;
8687
8688 switch (ELF32_R_TYPE (rel->r_info))
8689 {
8690 default:
8691 return bfd_reloc_notsupported;
8692
8693 case R_ARM_TLS_GOTDESC:
8694 if (is_local)
8695 insn = 0;
8696 else
8697 {
8698 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8699 if (insn & 1)
8700 insn -= 5; /* THUMB */
8701 else
8702 insn -= 8; /* ARM */
8703 }
8704 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8705 return bfd_reloc_continue;
8706
8707 case R_ARM_THM_TLS_DESCSEQ:
8708 /* Thumb insn. */
8709 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8710 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8711 {
8712 if (is_local)
8713 /* nop */
8714 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8715 }
8716 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8717 {
8718 if (is_local)
8719 /* nop */
8720 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8721 else
8722 /* ldr rx,[ry] */
8723 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8724 }
8725 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8726 {
8727 if (is_local)
8728 /* nop */
8729 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8730 else
8731 /* mov r0, rx */
8732 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8733 contents + rel->r_offset);
8734 }
8735 else
8736 {
8737 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8738 /* It's a 32 bit instruction, fetch the rest of it for
8739 error generation. */
8740 insn = (insn << 16)
8741 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8742 (*_bfd_error_handler)
8743 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8744 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8745 return bfd_reloc_notsupported;
8746 }
8747 break;
8748
8749 case R_ARM_TLS_DESCSEQ:
8750 /* arm insn. */
8751 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8752 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8753 {
8754 if (is_local)
8755 /* mov rx, ry */
8756 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8757 contents + rel->r_offset);
8758 }
8759 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8760 {
8761 if (is_local)
8762 /* nop */
8763 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8764 else
8765 /* ldr rx,[ry] */
8766 bfd_put_32 (input_bfd, insn & 0xfffff000,
8767 contents + rel->r_offset);
8768 }
8769 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8770 {
8771 if (is_local)
8772 /* nop */
8773 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8774 else
8775 /* mov r0, rx */
8776 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8777 contents + rel->r_offset);
8778 }
8779 else
8780 {
8781 (*_bfd_error_handler)
8782 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8783 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8784 return bfd_reloc_notsupported;
8785 }
8786 break;
8787
8788 case R_ARM_TLS_CALL:
8789 /* GD->IE relaxation, turn the instruction into 'nop' or
8790 'ldr r0, [pc,r0]' */
8791 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8792 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8793 break;
8794
8795 case R_ARM_THM_TLS_CALL:
8796 /* GD->IE relaxation. */
8797 if (!is_local)
8798 /* add r0,pc; ldr r0, [r0] */
8799 insn = 0x44786800;
8800 else if (arch_has_thumb2_nop (globals))
8801 /* nop.w */
8802 insn = 0xf3af8000;
8803 else
8804 /* nop; nop */
8805 insn = 0xbf00bf00;
8806
8807 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8808 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8809 break;
8810 }
8811 return bfd_reloc_ok;
8812 }
8813
8814 /* For a given value of n, calculate the value of G_n as required to
8815 deal with group relocations. We return it in the form of an
8816 encoded constant-and-rotation, together with the final residual. If n is
8817 specified as less than zero, then final_residual is filled with the
8818 input value and no further action is performed. */
8819
8820 static bfd_vma
8821 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8822 {
8823 int current_n;
8824 bfd_vma g_n;
8825 bfd_vma encoded_g_n = 0;
8826 bfd_vma residual = value; /* Also known as Y_n. */
8827
8828 for (current_n = 0; current_n <= n; current_n++)
8829 {
8830 int shift;
8831
8832 /* Calculate which part of the value to mask. */
8833 if (residual == 0)
8834 shift = 0;
8835 else
8836 {
8837 int msb;
8838
8839 /* Determine the most significant bit in the residual and
8840 align the resulting value to a 2-bit boundary. */
8841 for (msb = 30; msb >= 0; msb -= 2)
8842 if (residual & (3 << msb))
8843 break;
8844
8845 /* The desired shift is now (msb - 6), or zero, whichever
8846 is the greater. */
8847 shift = msb - 6;
8848 if (shift < 0)
8849 shift = 0;
8850 }
8851
8852 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8853 g_n = residual & (0xff << shift);
8854 encoded_g_n = (g_n >> shift)
8855 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8856
8857 /* Calculate the residual for the next time around. */
8858 residual &= ~g_n;
8859 }
8860
8861 *final_residual = residual;
8862
8863 return encoded_g_n;
8864 }
8865
8866 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8867 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8868
8869 static int
8870 identify_add_or_sub (bfd_vma insn)
8871 {
8872 int opcode = insn & 0x1e00000;
8873
8874 if (opcode == 1 << 23) /* ADD */
8875 return 1;
8876
8877 if (opcode == 1 << 22) /* SUB */
8878 return -1;
8879
8880 return 0;
8881 }
8882
8883 /* Perform a relocation as part of a final link. */
8884
8885 static bfd_reloc_status_type
8886 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8887 bfd * input_bfd,
8888 bfd * output_bfd,
8889 asection * input_section,
8890 bfd_byte * contents,
8891 Elf_Internal_Rela * rel,
8892 bfd_vma value,
8893 struct bfd_link_info * info,
8894 asection * sym_sec,
8895 const char * sym_name,
8896 unsigned char st_type,
8897 enum arm_st_branch_type branch_type,
8898 struct elf_link_hash_entry * h,
8899 bfd_boolean * unresolved_reloc_p,
8900 char ** error_message)
8901 {
8902 unsigned long r_type = howto->type;
8903 unsigned long r_symndx;
8904 bfd_byte * hit_data = contents + rel->r_offset;
8905 bfd_vma * local_got_offsets;
8906 bfd_vma * local_tlsdesc_gotents;
8907 asection * sgot;
8908 asection * splt;
8909 asection * sreloc = NULL;
8910 asection * srelgot;
8911 bfd_vma addend;
8912 bfd_signed_vma signed_addend;
8913 unsigned char dynreloc_st_type;
8914 bfd_vma dynreloc_value;
8915 struct elf32_arm_link_hash_table * globals;
8916 struct elf32_arm_link_hash_entry *eh;
8917 union gotplt_union *root_plt;
8918 struct arm_plt_info *arm_plt;
8919 bfd_vma plt_offset;
8920 bfd_vma gotplt_offset;
8921 bfd_boolean has_iplt_entry;
8922
8923 globals = elf32_arm_hash_table (info);
8924 if (globals == NULL)
8925 return bfd_reloc_notsupported;
8926
8927 BFD_ASSERT (is_arm_elf (input_bfd));
8928
8929 /* Some relocation types map to different relocations depending on the
8930 target. We pick the right one here. */
8931 r_type = arm_real_reloc_type (globals, r_type);
8932
8933 /* It is possible to have linker relaxations on some TLS access
8934 models. Update our information here. */
8935 r_type = elf32_arm_tls_transition (info, r_type, h);
8936
8937 if (r_type != howto->type)
8938 howto = elf32_arm_howto_from_type (r_type);
8939
8940 eh = (struct elf32_arm_link_hash_entry *) h;
8941 sgot = globals->root.sgot;
8942 local_got_offsets = elf_local_got_offsets (input_bfd);
8943 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8944
8945 if (globals->root.dynamic_sections_created)
8946 srelgot = globals->root.srelgot;
8947 else
8948 srelgot = NULL;
8949
8950 r_symndx = ELF32_R_SYM (rel->r_info);
8951
8952 if (globals->use_rel)
8953 {
8954 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8955
8956 if (addend & ((howto->src_mask + 1) >> 1))
8957 {
8958 signed_addend = -1;
8959 signed_addend &= ~ howto->src_mask;
8960 signed_addend |= addend;
8961 }
8962 else
8963 signed_addend = addend;
8964 }
8965 else
8966 addend = signed_addend = rel->r_addend;
8967
8968 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8969 are resolving a function call relocation. */
8970 if (using_thumb_only (globals)
8971 && (r_type == R_ARM_THM_CALL
8972 || r_type == R_ARM_THM_JUMP24)
8973 && branch_type == ST_BRANCH_TO_ARM)
8974 branch_type = ST_BRANCH_TO_THUMB;
8975
8976 /* Record the symbol information that should be used in dynamic
8977 relocations. */
8978 dynreloc_st_type = st_type;
8979 dynreloc_value = value;
8980 if (branch_type == ST_BRANCH_TO_THUMB)
8981 dynreloc_value |= 1;
8982
8983 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8984 VALUE appropriately for relocations that we resolve at link time. */
8985 has_iplt_entry = FALSE;
8986 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8987 && root_plt->offset != (bfd_vma) -1)
8988 {
8989 plt_offset = root_plt->offset;
8990 gotplt_offset = arm_plt->got_offset;
8991
8992 if (h == NULL || eh->is_iplt)
8993 {
8994 has_iplt_entry = TRUE;
8995 splt = globals->root.iplt;
8996
8997 /* Populate .iplt entries here, because not all of them will
8998 be seen by finish_dynamic_symbol. The lower bit is set if
8999 we have already populated the entry. */
9000 if (plt_offset & 1)
9001 plt_offset--;
9002 else
9003 {
9004 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9005 -1, dynreloc_value))
9006 root_plt->offset |= 1;
9007 else
9008 return bfd_reloc_notsupported;
9009 }
9010
9011 /* Static relocations always resolve to the .iplt entry. */
9012 st_type = STT_FUNC;
9013 value = (splt->output_section->vma
9014 + splt->output_offset
9015 + plt_offset);
9016 branch_type = ST_BRANCH_TO_ARM;
9017
9018 /* If there are non-call relocations that resolve to the .iplt
9019 entry, then all dynamic ones must too. */
9020 if (arm_plt->noncall_refcount != 0)
9021 {
9022 dynreloc_st_type = st_type;
9023 dynreloc_value = value;
9024 }
9025 }
9026 else
9027 /* We populate the .plt entry in finish_dynamic_symbol. */
9028 splt = globals->root.splt;
9029 }
9030 else
9031 {
9032 splt = NULL;
9033 plt_offset = (bfd_vma) -1;
9034 gotplt_offset = (bfd_vma) -1;
9035 }
9036
9037 switch (r_type)
9038 {
9039 case R_ARM_NONE:
9040 /* We don't need to find a value for this symbol. It's just a
9041 marker. */
9042 *unresolved_reloc_p = FALSE;
9043 return bfd_reloc_ok;
9044
9045 case R_ARM_ABS12:
9046 if (!globals->vxworks_p)
9047 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9048
9049 case R_ARM_PC24:
9050 case R_ARM_ABS32:
9051 case R_ARM_ABS32_NOI:
9052 case R_ARM_REL32:
9053 case R_ARM_REL32_NOI:
9054 case R_ARM_CALL:
9055 case R_ARM_JUMP24:
9056 case R_ARM_XPC25:
9057 case R_ARM_PREL31:
9058 case R_ARM_PLT32:
9059 /* Handle relocations which should use the PLT entry. ABS32/REL32
9060 will use the symbol's value, which may point to a PLT entry, but we
9061 don't need to handle that here. If we created a PLT entry, all
9062 branches in this object should go to it, except if the PLT is too
9063 far away, in which case a long branch stub should be inserted. */
9064 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
9065 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
9066 && r_type != R_ARM_CALL
9067 && r_type != R_ARM_JUMP24
9068 && r_type != R_ARM_PLT32)
9069 && plt_offset != (bfd_vma) -1)
9070 {
9071 /* If we've created a .plt section, and assigned a PLT entry
9072 to this function, it must either be a STT_GNU_IFUNC reference
9073 or not be known to bind locally. In other cases, we should
9074 have cleared the PLT entry by now. */
9075 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
9076
9077 value = (splt->output_section->vma
9078 + splt->output_offset
9079 + plt_offset);
9080 *unresolved_reloc_p = FALSE;
9081 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9082 contents, rel->r_offset, value,
9083 rel->r_addend);
9084 }
9085
9086 /* When generating a shared object or relocatable executable, these
9087 relocations are copied into the output file to be resolved at
9088 run time. */
9089 if ((bfd_link_pic (info)
9090 || globals->root.is_relocatable_executable)
9091 && (input_section->flags & SEC_ALLOC)
9092 && !(globals->vxworks_p
9093 && strcmp (input_section->output_section->name,
9094 ".tls_vars") == 0)
9095 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
9096 || !SYMBOL_CALLS_LOCAL (info, h))
9097 && !(input_bfd == globals->stub_bfd
9098 && strstr (input_section->name, STUB_SUFFIX))
9099 && (h == NULL
9100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9101 || h->root.type != bfd_link_hash_undefweak)
9102 && r_type != R_ARM_PC24
9103 && r_type != R_ARM_CALL
9104 && r_type != R_ARM_JUMP24
9105 && r_type != R_ARM_PREL31
9106 && r_type != R_ARM_PLT32)
9107 {
9108 Elf_Internal_Rela outrel;
9109 bfd_boolean skip, relocate;
9110
9111 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9112 && !h->def_regular)
9113 {
9114 char *v = _("shared object");
9115
9116 if (bfd_link_executable (info))
9117 v = _("PIE executable");
9118
9119 (*_bfd_error_handler)
9120 (_("%B: relocation %s against external or undefined symbol `%s'"
9121 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
9122 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
9123 return bfd_reloc_notsupported;
9124 }
9125
9126 *unresolved_reloc_p = FALSE;
9127
9128 if (sreloc == NULL && globals->root.dynamic_sections_created)
9129 {
9130 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
9131 ! globals->use_rel);
9132
9133 if (sreloc == NULL)
9134 return bfd_reloc_notsupported;
9135 }
9136
9137 skip = FALSE;
9138 relocate = FALSE;
9139
9140 outrel.r_addend = addend;
9141 outrel.r_offset =
9142 _bfd_elf_section_offset (output_bfd, info, input_section,
9143 rel->r_offset);
9144 if (outrel.r_offset == (bfd_vma) -1)
9145 skip = TRUE;
9146 else if (outrel.r_offset == (bfd_vma) -2)
9147 skip = TRUE, relocate = TRUE;
9148 outrel.r_offset += (input_section->output_section->vma
9149 + input_section->output_offset);
9150
9151 if (skip)
9152 memset (&outrel, 0, sizeof outrel);
9153 else if (h != NULL
9154 && h->dynindx != -1
9155 && (!bfd_link_pic (info)
9156 || !SYMBOLIC_BIND (info, h)
9157 || !h->def_regular))
9158 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
9159 else
9160 {
9161 int symbol;
9162
9163 /* This symbol is local, or marked to become local. */
9164 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
9165 if (globals->symbian_p)
9166 {
9167 asection *osec;
9168
9169 /* On Symbian OS, the data segment and text segement
9170 can be relocated independently. Therefore, we
9171 must indicate the segment to which this
9172 relocation is relative. The BPABI allows us to
9173 use any symbol in the right segment; we just use
9174 the section symbol as it is convenient. (We
9175 cannot use the symbol given by "h" directly as it
9176 will not appear in the dynamic symbol table.)
9177
9178 Note that the dynamic linker ignores the section
9179 symbol value, so we don't subtract osec->vma
9180 from the emitted reloc addend. */
9181 if (sym_sec)
9182 osec = sym_sec->output_section;
9183 else
9184 osec = input_section->output_section;
9185 symbol = elf_section_data (osec)->dynindx;
9186 if (symbol == 0)
9187 {
9188 struct elf_link_hash_table *htab = elf_hash_table (info);
9189
9190 if ((osec->flags & SEC_READONLY) == 0
9191 && htab->data_index_section != NULL)
9192 osec = htab->data_index_section;
9193 else
9194 osec = htab->text_index_section;
9195 symbol = elf_section_data (osec)->dynindx;
9196 }
9197 BFD_ASSERT (symbol != 0);
9198 }
9199 else
9200 /* On SVR4-ish systems, the dynamic loader cannot
9201 relocate the text and data segments independently,
9202 so the symbol does not matter. */
9203 symbol = 0;
9204 if (dynreloc_st_type == STT_GNU_IFUNC)
9205 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
9206 to the .iplt entry. Instead, every non-call reference
9207 must use an R_ARM_IRELATIVE relocation to obtain the
9208 correct run-time address. */
9209 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
9210 else
9211 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
9212 if (globals->use_rel)
9213 relocate = TRUE;
9214 else
9215 outrel.r_addend += dynreloc_value;
9216 }
9217
9218 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9219
9220 /* If this reloc is against an external symbol, we do not want to
9221 fiddle with the addend. Otherwise, we need to include the symbol
9222 value so that it becomes an addend for the dynamic reloc. */
9223 if (! relocate)
9224 return bfd_reloc_ok;
9225
9226 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9227 contents, rel->r_offset,
9228 dynreloc_value, (bfd_vma) 0);
9229 }
9230 else switch (r_type)
9231 {
9232 case R_ARM_ABS12:
9233 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9234
9235 case R_ARM_XPC25: /* Arm BLX instruction. */
9236 case R_ARM_CALL:
9237 case R_ARM_JUMP24:
9238 case R_ARM_PC24: /* Arm B/BL instruction. */
9239 case R_ARM_PLT32:
9240 {
9241 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
9242
9243 if (r_type == R_ARM_XPC25)
9244 {
9245 /* Check for Arm calling Arm function. */
9246 /* FIXME: Should we translate the instruction into a BL
9247 instruction instead ? */
9248 if (branch_type != ST_BRANCH_TO_THUMB)
9249 (*_bfd_error_handler)
9250 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
9251 input_bfd,
9252 h ? h->root.root.string : "(local)");
9253 }
9254 else if (r_type == R_ARM_PC24)
9255 {
9256 /* Check for Arm calling Thumb function. */
9257 if (branch_type == ST_BRANCH_TO_THUMB)
9258 {
9259 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
9260 output_bfd, input_section,
9261 hit_data, sym_sec, rel->r_offset,
9262 signed_addend, value,
9263 error_message))
9264 return bfd_reloc_ok;
9265 else
9266 return bfd_reloc_dangerous;
9267 }
9268 }
9269
9270 /* Check if a stub has to be inserted because the
9271 destination is too far or we are changing mode. */
9272 if ( r_type == R_ARM_CALL
9273 || r_type == R_ARM_JUMP24
9274 || r_type == R_ARM_PLT32)
9275 {
9276 enum elf32_arm_stub_type stub_type = arm_stub_none;
9277 struct elf32_arm_link_hash_entry *hash;
9278
9279 hash = (struct elf32_arm_link_hash_entry *) h;
9280 stub_type = arm_type_of_stub (info, input_section, rel,
9281 st_type, &branch_type,
9282 hash, value, sym_sec,
9283 input_bfd, sym_name);
9284
9285 if (stub_type != arm_stub_none)
9286 {
9287 /* The target is out of reach, so redirect the
9288 branch to the local stub for this function. */
9289 stub_entry = elf32_arm_get_stub_entry (input_section,
9290 sym_sec, h,
9291 rel, globals,
9292 stub_type);
9293 {
9294 if (stub_entry != NULL)
9295 value = (stub_entry->stub_offset
9296 + stub_entry->stub_sec->output_offset
9297 + stub_entry->stub_sec->output_section->vma);
9298
9299 if (plt_offset != (bfd_vma) -1)
9300 *unresolved_reloc_p = FALSE;
9301 }
9302 }
9303 else
9304 {
9305 /* If the call goes through a PLT entry, make sure to
9306 check distance to the right destination address. */
9307 if (plt_offset != (bfd_vma) -1)
9308 {
9309 value = (splt->output_section->vma
9310 + splt->output_offset
9311 + plt_offset);
9312 *unresolved_reloc_p = FALSE;
9313 /* The PLT entry is in ARM mode, regardless of the
9314 target function. */
9315 branch_type = ST_BRANCH_TO_ARM;
9316 }
9317 }
9318 }
9319
9320 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
9321 where:
9322 S is the address of the symbol in the relocation.
9323 P is address of the instruction being relocated.
9324 A is the addend (extracted from the instruction) in bytes.
9325
9326 S is held in 'value'.
9327 P is the base address of the section containing the
9328 instruction plus the offset of the reloc into that
9329 section, ie:
9330 (input_section->output_section->vma +
9331 input_section->output_offset +
9332 rel->r_offset).
9333 A is the addend, converted into bytes, ie:
9334 (signed_addend * 4)
9335
9336 Note: None of these operations have knowledge of the pipeline
9337 size of the processor, thus it is up to the assembler to
9338 encode this information into the addend. */
9339 value -= (input_section->output_section->vma
9340 + input_section->output_offset);
9341 value -= rel->r_offset;
9342 if (globals->use_rel)
9343 value += (signed_addend << howto->size);
9344 else
9345 /* RELA addends do not have to be adjusted by howto->size. */
9346 value += signed_addend;
9347
9348 signed_addend = value;
9349 signed_addend >>= howto->rightshift;
9350
9351 /* A branch to an undefined weak symbol is turned into a jump to
9352 the next instruction unless a PLT entry will be created.
9353 Do the same for local undefined symbols (but not for STN_UNDEF).
9354 The jump to the next instruction is optimized as a NOP depending
9355 on the architecture. */
9356 if (h ? (h->root.type == bfd_link_hash_undefweak
9357 && plt_offset == (bfd_vma) -1)
9358 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
9359 {
9360 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
9361
9362 if (arch_has_arm_nop (globals))
9363 value |= 0x0320f000;
9364 else
9365 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
9366 }
9367 else
9368 {
9369 /* Perform a signed range check. */
9370 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
9371 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
9372 return bfd_reloc_overflow;
9373
9374 addend = (value & 2);
9375
9376 value = (signed_addend & howto->dst_mask)
9377 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
9378
9379 if (r_type == R_ARM_CALL)
9380 {
9381 /* Set the H bit in the BLX instruction. */
9382 if (branch_type == ST_BRANCH_TO_THUMB)
9383 {
9384 if (addend)
9385 value |= (1 << 24);
9386 else
9387 value &= ~(bfd_vma)(1 << 24);
9388 }
9389
9390 /* Select the correct instruction (BL or BLX). */
9391 /* Only if we are not handling a BL to a stub. In this
9392 case, mode switching is performed by the stub. */
9393 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
9394 value |= (1 << 28);
9395 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
9396 {
9397 value &= ~(bfd_vma)(1 << 28);
9398 value |= (1 << 24);
9399 }
9400 }
9401 }
9402 }
9403 break;
9404
9405 case R_ARM_ABS32:
9406 value += addend;
9407 if (branch_type == ST_BRANCH_TO_THUMB)
9408 value |= 1;
9409 break;
9410
9411 case R_ARM_ABS32_NOI:
9412 value += addend;
9413 break;
9414
9415 case R_ARM_REL32:
9416 value += addend;
9417 if (branch_type == ST_BRANCH_TO_THUMB)
9418 value |= 1;
9419 value -= (input_section->output_section->vma
9420 + input_section->output_offset + rel->r_offset);
9421 break;
9422
9423 case R_ARM_REL32_NOI:
9424 value += addend;
9425 value -= (input_section->output_section->vma
9426 + input_section->output_offset + rel->r_offset);
9427 break;
9428
9429 case R_ARM_PREL31:
9430 value -= (input_section->output_section->vma
9431 + input_section->output_offset + rel->r_offset);
9432 value += signed_addend;
9433 if (! h || h->root.type != bfd_link_hash_undefweak)
9434 {
9435 /* Check for overflow. */
9436 if ((value ^ (value >> 1)) & (1 << 30))
9437 return bfd_reloc_overflow;
9438 }
9439 value &= 0x7fffffff;
9440 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
9441 if (branch_type == ST_BRANCH_TO_THUMB)
9442 value |= 1;
9443 break;
9444 }
9445
9446 bfd_put_32 (input_bfd, value, hit_data);
9447 return bfd_reloc_ok;
9448
9449 case R_ARM_ABS8:
9450 /* PR 16202: Refectch the addend using the correct size. */
9451 if (globals->use_rel)
9452 addend = bfd_get_8 (input_bfd, hit_data);
9453 value += addend;
9454
9455 /* There is no way to tell whether the user intended to use a signed or
9456 unsigned addend. When checking for overflow we accept either,
9457 as specified by the AAELF. */
9458 if ((long) value > 0xff || (long) value < -0x80)
9459 return bfd_reloc_overflow;
9460
9461 bfd_put_8 (input_bfd, value, hit_data);
9462 return bfd_reloc_ok;
9463
9464 case R_ARM_ABS16:
9465 /* PR 16202: Refectch the addend using the correct size. */
9466 if (globals->use_rel)
9467 addend = bfd_get_16 (input_bfd, hit_data);
9468 value += addend;
9469
9470 /* See comment for R_ARM_ABS8. */
9471 if ((long) value > 0xffff || (long) value < -0x8000)
9472 return bfd_reloc_overflow;
9473
9474 bfd_put_16 (input_bfd, value, hit_data);
9475 return bfd_reloc_ok;
9476
9477 case R_ARM_THM_ABS5:
9478 /* Support ldr and str instructions for the thumb. */
9479 if (globals->use_rel)
9480 {
9481 /* Need to refetch addend. */
9482 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9483 /* ??? Need to determine shift amount from operand size. */
9484 addend >>= howto->rightshift;
9485 }
9486 value += addend;
9487
9488 /* ??? Isn't value unsigned? */
9489 if ((long) value > 0x1f || (long) value < -0x10)
9490 return bfd_reloc_overflow;
9491
9492 /* ??? Value needs to be properly shifted into place first. */
9493 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
9494 bfd_put_16 (input_bfd, value, hit_data);
9495 return bfd_reloc_ok;
9496
9497 case R_ARM_THM_ALU_PREL_11_0:
9498 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
9499 {
9500 bfd_vma insn;
9501 bfd_signed_vma relocation;
9502
9503 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9504 | bfd_get_16 (input_bfd, hit_data + 2);
9505
9506 if (globals->use_rel)
9507 {
9508 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
9509 | ((insn & (1 << 26)) >> 15);
9510 if (insn & 0xf00000)
9511 signed_addend = -signed_addend;
9512 }
9513
9514 relocation = value + signed_addend;
9515 relocation -= Pa (input_section->output_section->vma
9516 + input_section->output_offset
9517 + rel->r_offset);
9518
9519 value = relocation;
9520
9521 if (value >= 0x1000)
9522 return bfd_reloc_overflow;
9523
9524 insn = (insn & 0xfb0f8f00) | (value & 0xff)
9525 | ((value & 0x700) << 4)
9526 | ((value & 0x800) << 15);
9527 if (relocation < 0)
9528 insn |= 0xa00000;
9529
9530 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9531 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9532
9533 return bfd_reloc_ok;
9534 }
9535
9536 case R_ARM_THM_PC8:
9537 /* PR 10073: This reloc is not generated by the GNU toolchain,
9538 but it is supported for compatibility with third party libraries
9539 generated by other compilers, specifically the ARM/IAR. */
9540 {
9541 bfd_vma insn;
9542 bfd_signed_vma relocation;
9543
9544 insn = bfd_get_16 (input_bfd, hit_data);
9545
9546 if (globals->use_rel)
9547 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
9548
9549 relocation = value + addend;
9550 relocation -= Pa (input_section->output_section->vma
9551 + input_section->output_offset
9552 + rel->r_offset);
9553
9554 value = relocation;
9555
9556 /* We do not check for overflow of this reloc. Although strictly
9557 speaking this is incorrect, it appears to be necessary in order
9558 to work with IAR generated relocs. Since GCC and GAS do not
9559 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
9560 a problem for them. */
9561 value &= 0x3fc;
9562
9563 insn = (insn & 0xff00) | (value >> 2);
9564
9565 bfd_put_16 (input_bfd, insn, hit_data);
9566
9567 return bfd_reloc_ok;
9568 }
9569
9570 case R_ARM_THM_PC12:
9571 /* Corresponds to: ldr.w reg, [pc, #offset]. */
9572 {
9573 bfd_vma insn;
9574 bfd_signed_vma relocation;
9575
9576 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9577 | bfd_get_16 (input_bfd, hit_data + 2);
9578
9579 if (globals->use_rel)
9580 {
9581 signed_addend = insn & 0xfff;
9582 if (!(insn & (1 << 23)))
9583 signed_addend = -signed_addend;
9584 }
9585
9586 relocation = value + signed_addend;
9587 relocation -= Pa (input_section->output_section->vma
9588 + input_section->output_offset
9589 + rel->r_offset);
9590
9591 value = relocation;
9592
9593 if (value >= 0x1000)
9594 return bfd_reloc_overflow;
9595
9596 insn = (insn & 0xff7ff000) | value;
9597 if (relocation >= 0)
9598 insn |= (1 << 23);
9599
9600 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9601 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9602
9603 return bfd_reloc_ok;
9604 }
9605
9606 case R_ARM_THM_XPC22:
9607 case R_ARM_THM_CALL:
9608 case R_ARM_THM_JUMP24:
9609 /* Thumb BL (branch long instruction). */
9610 {
9611 bfd_vma relocation;
9612 bfd_vma reloc_sign;
9613 bfd_boolean overflow = FALSE;
9614 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9615 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9616 bfd_signed_vma reloc_signed_max;
9617 bfd_signed_vma reloc_signed_min;
9618 bfd_vma check;
9619 bfd_signed_vma signed_check;
9620 int bitsize;
9621 const int thumb2 = using_thumb2 (globals);
9622
9623 /* A branch to an undefined weak symbol is turned into a jump to
9624 the next instruction unless a PLT entry will be created.
9625 The jump to the next instruction is optimized as a NOP.W for
9626 Thumb-2 enabled architectures. */
9627 if (h && h->root.type == bfd_link_hash_undefweak
9628 && plt_offset == (bfd_vma) -1)
9629 {
9630 if (arch_has_thumb2_nop (globals))
9631 {
9632 bfd_put_16 (input_bfd, 0xf3af, hit_data);
9633 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
9634 }
9635 else
9636 {
9637 bfd_put_16 (input_bfd, 0xe000, hit_data);
9638 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
9639 }
9640 return bfd_reloc_ok;
9641 }
9642
9643 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
9644 with Thumb-1) involving the J1 and J2 bits. */
9645 if (globals->use_rel)
9646 {
9647 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
9648 bfd_vma upper = upper_insn & 0x3ff;
9649 bfd_vma lower = lower_insn & 0x7ff;
9650 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
9651 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
9652 bfd_vma i1 = j1 ^ s ? 0 : 1;
9653 bfd_vma i2 = j2 ^ s ? 0 : 1;
9654
9655 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
9656 /* Sign extend. */
9657 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
9658
9659 signed_addend = addend;
9660 }
9661
9662 if (r_type == R_ARM_THM_XPC22)
9663 {
9664 /* Check for Thumb to Thumb call. */
9665 /* FIXME: Should we translate the instruction into a BL
9666 instruction instead ? */
9667 if (branch_type == ST_BRANCH_TO_THUMB)
9668 (*_bfd_error_handler)
9669 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
9670 input_bfd,
9671 h ? h->root.root.string : "(local)");
9672 }
9673 else
9674 {
9675 /* If it is not a call to Thumb, assume call to Arm.
9676 If it is a call relative to a section name, then it is not a
9677 function call at all, but rather a long jump. Calls through
9678 the PLT do not require stubs. */
9679 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
9680 {
9681 if (globals->use_blx && r_type == R_ARM_THM_CALL)
9682 {
9683 /* Convert BL to BLX. */
9684 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9685 }
9686 else if (( r_type != R_ARM_THM_CALL)
9687 && (r_type != R_ARM_THM_JUMP24))
9688 {
9689 if (elf32_thumb_to_arm_stub
9690 (info, sym_name, input_bfd, output_bfd, input_section,
9691 hit_data, sym_sec, rel->r_offset, signed_addend, value,
9692 error_message))
9693 return bfd_reloc_ok;
9694 else
9695 return bfd_reloc_dangerous;
9696 }
9697 }
9698 else if (branch_type == ST_BRANCH_TO_THUMB
9699 && globals->use_blx
9700 && r_type == R_ARM_THM_CALL)
9701 {
9702 /* Make sure this is a BL. */
9703 lower_insn |= 0x1800;
9704 }
9705 }
9706
9707 enum elf32_arm_stub_type stub_type = arm_stub_none;
9708 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
9709 {
9710 /* Check if a stub has to be inserted because the destination
9711 is too far. */
9712 struct elf32_arm_stub_hash_entry *stub_entry;
9713 struct elf32_arm_link_hash_entry *hash;
9714
9715 hash = (struct elf32_arm_link_hash_entry *) h;
9716
9717 stub_type = arm_type_of_stub (info, input_section, rel,
9718 st_type, &branch_type,
9719 hash, value, sym_sec,
9720 input_bfd, sym_name);
9721
9722 if (stub_type != arm_stub_none)
9723 {
9724 /* The target is out of reach or we are changing modes, so
9725 redirect the branch to the local stub for this
9726 function. */
9727 stub_entry = elf32_arm_get_stub_entry (input_section,
9728 sym_sec, h,
9729 rel, globals,
9730 stub_type);
9731 if (stub_entry != NULL)
9732 {
9733 value = (stub_entry->stub_offset
9734 + stub_entry->stub_sec->output_offset
9735 + stub_entry->stub_sec->output_section->vma);
9736
9737 if (plt_offset != (bfd_vma) -1)
9738 *unresolved_reloc_p = FALSE;
9739 }
9740
9741 /* If this call becomes a call to Arm, force BLX. */
9742 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9743 {
9744 if ((stub_entry
9745 && !arm_stub_is_thumb (stub_entry->stub_type))
9746 || branch_type != ST_BRANCH_TO_THUMB)
9747 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9748 }
9749 }
9750 }
9751
9752 /* Handle calls via the PLT. */
9753 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9754 {
9755 value = (splt->output_section->vma
9756 + splt->output_offset
9757 + plt_offset);
9758
9759 if (globals->use_blx
9760 && r_type == R_ARM_THM_CALL
9761 && ! using_thumb_only (globals))
9762 {
9763 /* If the Thumb BLX instruction is available, convert
9764 the BL to a BLX instruction to call the ARM-mode
9765 PLT entry. */
9766 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9767 branch_type = ST_BRANCH_TO_ARM;
9768 }
9769 else
9770 {
9771 if (! using_thumb_only (globals))
9772 /* Target the Thumb stub before the ARM PLT entry. */
9773 value -= PLT_THUMB_STUB_SIZE;
9774 branch_type = ST_BRANCH_TO_THUMB;
9775 }
9776 *unresolved_reloc_p = FALSE;
9777 }
9778
9779 relocation = value + signed_addend;
9780
9781 relocation -= (input_section->output_section->vma
9782 + input_section->output_offset
9783 + rel->r_offset);
9784
9785 check = relocation >> howto->rightshift;
9786
9787 /* If this is a signed value, the rightshift just dropped
9788 leading 1 bits (assuming twos complement). */
9789 if ((bfd_signed_vma) relocation >= 0)
9790 signed_check = check;
9791 else
9792 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9793
9794 /* Calculate the permissable maximum and minimum values for
9795 this relocation according to whether we're relocating for
9796 Thumb-2 or not. */
9797 bitsize = howto->bitsize;
9798 if (!thumb2)
9799 bitsize -= 2;
9800 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9801 reloc_signed_min = ~reloc_signed_max;
9802
9803 /* Assumes two's complement. */
9804 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9805 overflow = TRUE;
9806
9807 if ((lower_insn & 0x5000) == 0x4000)
9808 /* For a BLX instruction, make sure that the relocation is rounded up
9809 to a word boundary. This follows the semantics of the instruction
9810 which specifies that bit 1 of the target address will come from bit
9811 1 of the base address. */
9812 relocation = (relocation + 2) & ~ 3;
9813
9814 /* Put RELOCATION back into the insn. Assumes two's complement.
9815 We use the Thumb-2 encoding, which is safe even if dealing with
9816 a Thumb-1 instruction by virtue of our overflow check above. */
9817 reloc_sign = (signed_check < 0) ? 1 : 0;
9818 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9819 | ((relocation >> 12) & 0x3ff)
9820 | (reloc_sign << 10);
9821 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9822 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9823 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9824 | ((relocation >> 1) & 0x7ff);
9825
9826 /* Put the relocated value back in the object file: */
9827 bfd_put_16 (input_bfd, upper_insn, hit_data);
9828 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9829
9830 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9831 }
9832 break;
9833
9834 case R_ARM_THM_JUMP19:
9835 /* Thumb32 conditional branch instruction. */
9836 {
9837 bfd_vma relocation;
9838 bfd_boolean overflow = FALSE;
9839 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9840 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9841 bfd_signed_vma reloc_signed_max = 0xffffe;
9842 bfd_signed_vma reloc_signed_min = -0x100000;
9843 bfd_signed_vma signed_check;
9844 enum elf32_arm_stub_type stub_type = arm_stub_none;
9845 struct elf32_arm_stub_hash_entry *stub_entry;
9846 struct elf32_arm_link_hash_entry *hash;
9847
9848 /* Need to refetch the addend, reconstruct the top three bits,
9849 and squish the two 11 bit pieces together. */
9850 if (globals->use_rel)
9851 {
9852 bfd_vma S = (upper_insn & 0x0400) >> 10;
9853 bfd_vma upper = (upper_insn & 0x003f);
9854 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9855 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9856 bfd_vma lower = (lower_insn & 0x07ff);
9857
9858 upper |= J1 << 6;
9859 upper |= J2 << 7;
9860 upper |= (!S) << 8;
9861 upper -= 0x0100; /* Sign extend. */
9862
9863 addend = (upper << 12) | (lower << 1);
9864 signed_addend = addend;
9865 }
9866
9867 /* Handle calls via the PLT. */
9868 if (plt_offset != (bfd_vma) -1)
9869 {
9870 value = (splt->output_section->vma
9871 + splt->output_offset
9872 + plt_offset);
9873 /* Target the Thumb stub before the ARM PLT entry. */
9874 value -= PLT_THUMB_STUB_SIZE;
9875 *unresolved_reloc_p = FALSE;
9876 }
9877
9878 hash = (struct elf32_arm_link_hash_entry *)h;
9879
9880 stub_type = arm_type_of_stub (info, input_section, rel,
9881 st_type, &branch_type,
9882 hash, value, sym_sec,
9883 input_bfd, sym_name);
9884 if (stub_type != arm_stub_none)
9885 {
9886 stub_entry = elf32_arm_get_stub_entry (input_section,
9887 sym_sec, h,
9888 rel, globals,
9889 stub_type);
9890 if (stub_entry != NULL)
9891 {
9892 value = (stub_entry->stub_offset
9893 + stub_entry->stub_sec->output_offset
9894 + stub_entry->stub_sec->output_section->vma);
9895 }
9896 }
9897
9898 relocation = value + signed_addend;
9899 relocation -= (input_section->output_section->vma
9900 + input_section->output_offset
9901 + rel->r_offset);
9902 signed_check = (bfd_signed_vma) relocation;
9903
9904 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9905 overflow = TRUE;
9906
9907 /* Put RELOCATION back into the insn. */
9908 {
9909 bfd_vma S = (relocation & 0x00100000) >> 20;
9910 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9911 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9912 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9913 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9914
9915 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9916 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9917 }
9918
9919 /* Put the relocated value back in the object file: */
9920 bfd_put_16 (input_bfd, upper_insn, hit_data);
9921 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9922
9923 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9924 }
9925
9926 case R_ARM_THM_JUMP11:
9927 case R_ARM_THM_JUMP8:
9928 case R_ARM_THM_JUMP6:
9929 /* Thumb B (branch) instruction). */
9930 {
9931 bfd_signed_vma relocation;
9932 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9933 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9934 bfd_signed_vma signed_check;
9935
9936 /* CZB cannot jump backward. */
9937 if (r_type == R_ARM_THM_JUMP6)
9938 reloc_signed_min = 0;
9939
9940 if (globals->use_rel)
9941 {
9942 /* Need to refetch addend. */
9943 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9944 if (addend & ((howto->src_mask + 1) >> 1))
9945 {
9946 signed_addend = -1;
9947 signed_addend &= ~ howto->src_mask;
9948 signed_addend |= addend;
9949 }
9950 else
9951 signed_addend = addend;
9952 /* The value in the insn has been right shifted. We need to
9953 undo this, so that we can perform the address calculation
9954 in terms of bytes. */
9955 signed_addend <<= howto->rightshift;
9956 }
9957 relocation = value + signed_addend;
9958
9959 relocation -= (input_section->output_section->vma
9960 + input_section->output_offset
9961 + rel->r_offset);
9962
9963 relocation >>= howto->rightshift;
9964 signed_check = relocation;
9965
9966 if (r_type == R_ARM_THM_JUMP6)
9967 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9968 else
9969 relocation &= howto->dst_mask;
9970 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9971
9972 bfd_put_16 (input_bfd, relocation, hit_data);
9973
9974 /* Assumes two's complement. */
9975 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9976 return bfd_reloc_overflow;
9977
9978 return bfd_reloc_ok;
9979 }
9980
9981 case R_ARM_ALU_PCREL7_0:
9982 case R_ARM_ALU_PCREL15_8:
9983 case R_ARM_ALU_PCREL23_15:
9984 {
9985 bfd_vma insn;
9986 bfd_vma relocation;
9987
9988 insn = bfd_get_32 (input_bfd, hit_data);
9989 if (globals->use_rel)
9990 {
9991 /* Extract the addend. */
9992 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9993 signed_addend = addend;
9994 }
9995 relocation = value + signed_addend;
9996
9997 relocation -= (input_section->output_section->vma
9998 + input_section->output_offset
9999 + rel->r_offset);
10000 insn = (insn & ~0xfff)
10001 | ((howto->bitpos << 7) & 0xf00)
10002 | ((relocation >> howto->bitpos) & 0xff);
10003 bfd_put_32 (input_bfd, value, hit_data);
10004 }
10005 return bfd_reloc_ok;
10006
10007 case R_ARM_GNU_VTINHERIT:
10008 case R_ARM_GNU_VTENTRY:
10009 return bfd_reloc_ok;
10010
10011 case R_ARM_GOTOFF32:
10012 /* Relocation is relative to the start of the
10013 global offset table. */
10014
10015 BFD_ASSERT (sgot != NULL);
10016 if (sgot == NULL)
10017 return bfd_reloc_notsupported;
10018
10019 /* If we are addressing a Thumb function, we need to adjust the
10020 address by one, so that attempts to call the function pointer will
10021 correctly interpret it as Thumb code. */
10022 if (branch_type == ST_BRANCH_TO_THUMB)
10023 value += 1;
10024
10025 /* Note that sgot->output_offset is not involved in this
10026 calculation. We always want the start of .got. If we
10027 define _GLOBAL_OFFSET_TABLE in a different way, as is
10028 permitted by the ABI, we might have to change this
10029 calculation. */
10030 value -= sgot->output_section->vma;
10031 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10032 contents, rel->r_offset, value,
10033 rel->r_addend);
10034
10035 case R_ARM_GOTPC:
10036 /* Use global offset table as symbol value. */
10037 BFD_ASSERT (sgot != NULL);
10038
10039 if (sgot == NULL)
10040 return bfd_reloc_notsupported;
10041
10042 *unresolved_reloc_p = FALSE;
10043 value = sgot->output_section->vma;
10044 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10045 contents, rel->r_offset, value,
10046 rel->r_addend);
10047
10048 case R_ARM_GOT32:
10049 case R_ARM_GOT_PREL:
10050 /* Relocation is to the entry for this symbol in the
10051 global offset table. */
10052 if (sgot == NULL)
10053 return bfd_reloc_notsupported;
10054
10055 if (dynreloc_st_type == STT_GNU_IFUNC
10056 && plt_offset != (bfd_vma) -1
10057 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
10058 {
10059 /* We have a relocation against a locally-binding STT_GNU_IFUNC
10060 symbol, and the relocation resolves directly to the runtime
10061 target rather than to the .iplt entry. This means that any
10062 .got entry would be the same value as the .igot.plt entry,
10063 so there's no point creating both. */
10064 sgot = globals->root.igotplt;
10065 value = sgot->output_offset + gotplt_offset;
10066 }
10067 else if (h != NULL)
10068 {
10069 bfd_vma off;
10070
10071 off = h->got.offset;
10072 BFD_ASSERT (off != (bfd_vma) -1);
10073 if ((off & 1) != 0)
10074 {
10075 /* We have already processsed one GOT relocation against
10076 this symbol. */
10077 off &= ~1;
10078 if (globals->root.dynamic_sections_created
10079 && !SYMBOL_REFERENCES_LOCAL (info, h))
10080 *unresolved_reloc_p = FALSE;
10081 }
10082 else
10083 {
10084 Elf_Internal_Rela outrel;
10085
10086 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
10087 {
10088 /* If the symbol doesn't resolve locally in a static
10089 object, we have an undefined reference. If the
10090 symbol doesn't resolve locally in a dynamic object,
10091 it should be resolved by the dynamic linker. */
10092 if (globals->root.dynamic_sections_created)
10093 {
10094 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10095 *unresolved_reloc_p = FALSE;
10096 }
10097 else
10098 outrel.r_info = 0;
10099 outrel.r_addend = 0;
10100 }
10101 else
10102 {
10103 if (dynreloc_st_type == STT_GNU_IFUNC)
10104 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10105 else if (bfd_link_pic (info) &&
10106 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10107 || h->root.type != bfd_link_hash_undefweak))
10108 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10109 else
10110 outrel.r_info = 0;
10111 outrel.r_addend = dynreloc_value;
10112 }
10113
10114 /* The GOT entry is initialized to zero by default.
10115 See if we should install a different value. */
10116 if (outrel.r_addend != 0
10117 && (outrel.r_info == 0 || globals->use_rel))
10118 {
10119 bfd_put_32 (output_bfd, outrel.r_addend,
10120 sgot->contents + off);
10121 outrel.r_addend = 0;
10122 }
10123
10124 if (outrel.r_info != 0)
10125 {
10126 outrel.r_offset = (sgot->output_section->vma
10127 + sgot->output_offset
10128 + off);
10129 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10130 }
10131 h->got.offset |= 1;
10132 }
10133 value = sgot->output_offset + off;
10134 }
10135 else
10136 {
10137 bfd_vma off;
10138
10139 BFD_ASSERT (local_got_offsets != NULL &&
10140 local_got_offsets[r_symndx] != (bfd_vma) -1);
10141
10142 off = local_got_offsets[r_symndx];
10143
10144 /* The offset must always be a multiple of 4. We use the
10145 least significant bit to record whether we have already
10146 generated the necessary reloc. */
10147 if ((off & 1) != 0)
10148 off &= ~1;
10149 else
10150 {
10151 if (globals->use_rel)
10152 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
10153
10154 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
10155 {
10156 Elf_Internal_Rela outrel;
10157
10158 outrel.r_addend = addend + dynreloc_value;
10159 outrel.r_offset = (sgot->output_section->vma
10160 + sgot->output_offset
10161 + off);
10162 if (dynreloc_st_type == STT_GNU_IFUNC)
10163 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10164 else
10165 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10166 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10167 }
10168
10169 local_got_offsets[r_symndx] |= 1;
10170 }
10171
10172 value = sgot->output_offset + off;
10173 }
10174 if (r_type != R_ARM_GOT32)
10175 value += sgot->output_section->vma;
10176
10177 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10178 contents, rel->r_offset, value,
10179 rel->r_addend);
10180
10181 case R_ARM_TLS_LDO32:
10182 value = value - dtpoff_base (info);
10183
10184 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10185 contents, rel->r_offset, value,
10186 rel->r_addend);
10187
10188 case R_ARM_TLS_LDM32:
10189 {
10190 bfd_vma off;
10191
10192 if (sgot == NULL)
10193 abort ();
10194
10195 off = globals->tls_ldm_got.offset;
10196
10197 if ((off & 1) != 0)
10198 off &= ~1;
10199 else
10200 {
10201 /* If we don't know the module number, create a relocation
10202 for it. */
10203 if (bfd_link_pic (info))
10204 {
10205 Elf_Internal_Rela outrel;
10206
10207 if (srelgot == NULL)
10208 abort ();
10209
10210 outrel.r_addend = 0;
10211 outrel.r_offset = (sgot->output_section->vma
10212 + sgot->output_offset + off);
10213 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
10214
10215 if (globals->use_rel)
10216 bfd_put_32 (output_bfd, outrel.r_addend,
10217 sgot->contents + off);
10218
10219 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10220 }
10221 else
10222 bfd_put_32 (output_bfd, 1, sgot->contents + off);
10223
10224 globals->tls_ldm_got.offset |= 1;
10225 }
10226
10227 value = sgot->output_section->vma + sgot->output_offset + off
10228 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
10229
10230 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10231 contents, rel->r_offset, value,
10232 rel->r_addend);
10233 }
10234
10235 case R_ARM_TLS_CALL:
10236 case R_ARM_THM_TLS_CALL:
10237 case R_ARM_TLS_GD32:
10238 case R_ARM_TLS_IE32:
10239 case R_ARM_TLS_GOTDESC:
10240 case R_ARM_TLS_DESCSEQ:
10241 case R_ARM_THM_TLS_DESCSEQ:
10242 {
10243 bfd_vma off, offplt;
10244 int indx = 0;
10245 char tls_type;
10246
10247 BFD_ASSERT (sgot != NULL);
10248
10249 if (h != NULL)
10250 {
10251 bfd_boolean dyn;
10252 dyn = globals->root.dynamic_sections_created;
10253 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
10254 bfd_link_pic (info),
10255 h)
10256 && (!bfd_link_pic (info)
10257 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10258 {
10259 *unresolved_reloc_p = FALSE;
10260 indx = h->dynindx;
10261 }
10262 off = h->got.offset;
10263 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
10264 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
10265 }
10266 else
10267 {
10268 BFD_ASSERT (local_got_offsets != NULL);
10269 off = local_got_offsets[r_symndx];
10270 offplt = local_tlsdesc_gotents[r_symndx];
10271 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
10272 }
10273
10274 /* Linker relaxations happens from one of the
10275 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
10276 if (ELF32_R_TYPE(rel->r_info) != r_type)
10277 tls_type = GOT_TLS_IE;
10278
10279 BFD_ASSERT (tls_type != GOT_UNKNOWN);
10280
10281 if ((off & 1) != 0)
10282 off &= ~1;
10283 else
10284 {
10285 bfd_boolean need_relocs = FALSE;
10286 Elf_Internal_Rela outrel;
10287 int cur_off = off;
10288
10289 /* The GOT entries have not been initialized yet. Do it
10290 now, and emit any relocations. If both an IE GOT and a
10291 GD GOT are necessary, we emit the GD first. */
10292
10293 if ((bfd_link_pic (info) || indx != 0)
10294 && (h == NULL
10295 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10296 || h->root.type != bfd_link_hash_undefweak))
10297 {
10298 need_relocs = TRUE;
10299 BFD_ASSERT (srelgot != NULL);
10300 }
10301
10302 if (tls_type & GOT_TLS_GDESC)
10303 {
10304 bfd_byte *loc;
10305
10306 /* We should have relaxed, unless this is an undefined
10307 weak symbol. */
10308 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
10309 || bfd_link_pic (info));
10310 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
10311 <= globals->root.sgotplt->size);
10312
10313 outrel.r_addend = 0;
10314 outrel.r_offset = (globals->root.sgotplt->output_section->vma
10315 + globals->root.sgotplt->output_offset
10316 + offplt
10317 + globals->sgotplt_jump_table_size);
10318
10319 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
10320 sreloc = globals->root.srelplt;
10321 loc = sreloc->contents;
10322 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
10323 BFD_ASSERT (loc + RELOC_SIZE (globals)
10324 <= sreloc->contents + sreloc->size);
10325
10326 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
10327
10328 /* For globals, the first word in the relocation gets
10329 the relocation index and the top bit set, or zero,
10330 if we're binding now. For locals, it gets the
10331 symbol's offset in the tls section. */
10332 bfd_put_32 (output_bfd,
10333 !h ? value - elf_hash_table (info)->tls_sec->vma
10334 : info->flags & DF_BIND_NOW ? 0
10335 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
10336 globals->root.sgotplt->contents + offplt
10337 + globals->sgotplt_jump_table_size);
10338
10339 /* Second word in the relocation is always zero. */
10340 bfd_put_32 (output_bfd, 0,
10341 globals->root.sgotplt->contents + offplt
10342 + globals->sgotplt_jump_table_size + 4);
10343 }
10344 if (tls_type & GOT_TLS_GD)
10345 {
10346 if (need_relocs)
10347 {
10348 outrel.r_addend = 0;
10349 outrel.r_offset = (sgot->output_section->vma
10350 + sgot->output_offset
10351 + cur_off);
10352 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
10353
10354 if (globals->use_rel)
10355 bfd_put_32 (output_bfd, outrel.r_addend,
10356 sgot->contents + cur_off);
10357
10358 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10359
10360 if (indx == 0)
10361 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10362 sgot->contents + cur_off + 4);
10363 else
10364 {
10365 outrel.r_addend = 0;
10366 outrel.r_info = ELF32_R_INFO (indx,
10367 R_ARM_TLS_DTPOFF32);
10368 outrel.r_offset += 4;
10369
10370 if (globals->use_rel)
10371 bfd_put_32 (output_bfd, outrel.r_addend,
10372 sgot->contents + cur_off + 4);
10373
10374 elf32_arm_add_dynreloc (output_bfd, info,
10375 srelgot, &outrel);
10376 }
10377 }
10378 else
10379 {
10380 /* If we are not emitting relocations for a
10381 general dynamic reference, then we must be in a
10382 static link or an executable link with the
10383 symbol binding locally. Mark it as belonging
10384 to module 1, the executable. */
10385 bfd_put_32 (output_bfd, 1,
10386 sgot->contents + cur_off);
10387 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10388 sgot->contents + cur_off + 4);
10389 }
10390
10391 cur_off += 8;
10392 }
10393
10394 if (tls_type & GOT_TLS_IE)
10395 {
10396 if (need_relocs)
10397 {
10398 if (indx == 0)
10399 outrel.r_addend = value - dtpoff_base (info);
10400 else
10401 outrel.r_addend = 0;
10402 outrel.r_offset = (sgot->output_section->vma
10403 + sgot->output_offset
10404 + cur_off);
10405 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
10406
10407 if (globals->use_rel)
10408 bfd_put_32 (output_bfd, outrel.r_addend,
10409 sgot->contents + cur_off);
10410
10411 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10412 }
10413 else
10414 bfd_put_32 (output_bfd, tpoff (info, value),
10415 sgot->contents + cur_off);
10416 cur_off += 4;
10417 }
10418
10419 if (h != NULL)
10420 h->got.offset |= 1;
10421 else
10422 local_got_offsets[r_symndx] |= 1;
10423 }
10424
10425 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
10426 off += 8;
10427 else if (tls_type & GOT_TLS_GDESC)
10428 off = offplt;
10429
10430 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
10431 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
10432 {
10433 bfd_signed_vma offset;
10434 /* TLS stubs are arm mode. The original symbol is a
10435 data object, so branch_type is bogus. */
10436 branch_type = ST_BRANCH_TO_ARM;
10437 enum elf32_arm_stub_type stub_type
10438 = arm_type_of_stub (info, input_section, rel,
10439 st_type, &branch_type,
10440 (struct elf32_arm_link_hash_entry *)h,
10441 globals->tls_trampoline, globals->root.splt,
10442 input_bfd, sym_name);
10443
10444 if (stub_type != arm_stub_none)
10445 {
10446 struct elf32_arm_stub_hash_entry *stub_entry
10447 = elf32_arm_get_stub_entry
10448 (input_section, globals->root.splt, 0, rel,
10449 globals, stub_type);
10450 offset = (stub_entry->stub_offset
10451 + stub_entry->stub_sec->output_offset
10452 + stub_entry->stub_sec->output_section->vma);
10453 }
10454 else
10455 offset = (globals->root.splt->output_section->vma
10456 + globals->root.splt->output_offset
10457 + globals->tls_trampoline);
10458
10459 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
10460 {
10461 unsigned long inst;
10462
10463 offset -= (input_section->output_section->vma
10464 + input_section->output_offset
10465 + rel->r_offset + 8);
10466
10467 inst = offset >> 2;
10468 inst &= 0x00ffffff;
10469 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
10470 }
10471 else
10472 {
10473 /* Thumb blx encodes the offset in a complicated
10474 fashion. */
10475 unsigned upper_insn, lower_insn;
10476 unsigned neg;
10477
10478 offset -= (input_section->output_section->vma
10479 + input_section->output_offset
10480 + rel->r_offset + 4);
10481
10482 if (stub_type != arm_stub_none
10483 && arm_stub_is_thumb (stub_type))
10484 {
10485 lower_insn = 0xd000;
10486 }
10487 else
10488 {
10489 lower_insn = 0xc000;
10490 /* Round up the offset to a word boundary. */
10491 offset = (offset + 2) & ~2;
10492 }
10493
10494 neg = offset < 0;
10495 upper_insn = (0xf000
10496 | ((offset >> 12) & 0x3ff)
10497 | (neg << 10));
10498 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
10499 | (((!((offset >> 22) & 1)) ^ neg) << 11)
10500 | ((offset >> 1) & 0x7ff);
10501 bfd_put_16 (input_bfd, upper_insn, hit_data);
10502 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10503 return bfd_reloc_ok;
10504 }
10505 }
10506 /* These relocations needs special care, as besides the fact
10507 they point somewhere in .gotplt, the addend must be
10508 adjusted accordingly depending on the type of instruction
10509 we refer to. */
10510 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
10511 {
10512 unsigned long data, insn;
10513 unsigned thumb;
10514
10515 data = bfd_get_32 (input_bfd, hit_data);
10516 thumb = data & 1;
10517 data &= ~1u;
10518
10519 if (thumb)
10520 {
10521 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
10522 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10523 insn = (insn << 16)
10524 | bfd_get_16 (input_bfd,
10525 contents + rel->r_offset - data + 2);
10526 if ((insn & 0xf800c000) == 0xf000c000)
10527 /* bl/blx */
10528 value = -6;
10529 else if ((insn & 0xffffff00) == 0x4400)
10530 /* add */
10531 value = -5;
10532 else
10533 {
10534 (*_bfd_error_handler)
10535 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
10536 input_bfd, input_section,
10537 (unsigned long)rel->r_offset, insn);
10538 return bfd_reloc_notsupported;
10539 }
10540 }
10541 else
10542 {
10543 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
10544
10545 switch (insn >> 24)
10546 {
10547 case 0xeb: /* bl */
10548 case 0xfa: /* blx */
10549 value = -4;
10550 break;
10551
10552 case 0xe0: /* add */
10553 value = -8;
10554 break;
10555
10556 default:
10557 (*_bfd_error_handler)
10558 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
10559 input_bfd, input_section,
10560 (unsigned long)rel->r_offset, insn);
10561 return bfd_reloc_notsupported;
10562 }
10563 }
10564
10565 value += ((globals->root.sgotplt->output_section->vma
10566 + globals->root.sgotplt->output_offset + off)
10567 - (input_section->output_section->vma
10568 + input_section->output_offset
10569 + rel->r_offset)
10570 + globals->sgotplt_jump_table_size);
10571 }
10572 else
10573 value = ((globals->root.sgot->output_section->vma
10574 + globals->root.sgot->output_offset + off)
10575 - (input_section->output_section->vma
10576 + input_section->output_offset + rel->r_offset));
10577
10578 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10579 contents, rel->r_offset, value,
10580 rel->r_addend);
10581 }
10582
10583 case R_ARM_TLS_LE32:
10584 if (bfd_link_dll (info))
10585 {
10586 (*_bfd_error_handler)
10587 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
10588 input_bfd, input_section,
10589 (long) rel->r_offset, howto->name);
10590 return bfd_reloc_notsupported;
10591 }
10592 else
10593 value = tpoff (info, value);
10594
10595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10596 contents, rel->r_offset, value,
10597 rel->r_addend);
10598
10599 case R_ARM_V4BX:
10600 if (globals->fix_v4bx)
10601 {
10602 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10603
10604 /* Ensure that we have a BX instruction. */
10605 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
10606
10607 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
10608 {
10609 /* Branch to veneer. */
10610 bfd_vma glue_addr;
10611 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
10612 glue_addr -= input_section->output_section->vma
10613 + input_section->output_offset
10614 + rel->r_offset + 8;
10615 insn = (insn & 0xf0000000) | 0x0a000000
10616 | ((glue_addr >> 2) & 0x00ffffff);
10617 }
10618 else
10619 {
10620 /* Preserve Rm (lowest four bits) and the condition code
10621 (highest four bits). Other bits encode MOV PC,Rm. */
10622 insn = (insn & 0xf000000f) | 0x01a0f000;
10623 }
10624
10625 bfd_put_32 (input_bfd, insn, hit_data);
10626 }
10627 return bfd_reloc_ok;
10628
10629 case R_ARM_MOVW_ABS_NC:
10630 case R_ARM_MOVT_ABS:
10631 case R_ARM_MOVW_PREL_NC:
10632 case R_ARM_MOVT_PREL:
10633 /* Until we properly support segment-base-relative addressing then
10634 we assume the segment base to be zero, as for the group relocations.
10635 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
10636 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
10637 case R_ARM_MOVW_BREL_NC:
10638 case R_ARM_MOVW_BREL:
10639 case R_ARM_MOVT_BREL:
10640 {
10641 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10642
10643 if (globals->use_rel)
10644 {
10645 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
10646 signed_addend = (addend ^ 0x8000) - 0x8000;
10647 }
10648
10649 value += signed_addend;
10650
10651 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
10652 value -= (input_section->output_section->vma
10653 + input_section->output_offset + rel->r_offset);
10654
10655 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
10656 return bfd_reloc_overflow;
10657
10658 if (branch_type == ST_BRANCH_TO_THUMB)
10659 value |= 1;
10660
10661 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
10662 || r_type == R_ARM_MOVT_BREL)
10663 value >>= 16;
10664
10665 insn &= 0xfff0f000;
10666 insn |= value & 0xfff;
10667 insn |= (value & 0xf000) << 4;
10668 bfd_put_32 (input_bfd, insn, hit_data);
10669 }
10670 return bfd_reloc_ok;
10671
10672 case R_ARM_THM_MOVW_ABS_NC:
10673 case R_ARM_THM_MOVT_ABS:
10674 case R_ARM_THM_MOVW_PREL_NC:
10675 case R_ARM_THM_MOVT_PREL:
10676 /* Until we properly support segment-base-relative addressing then
10677 we assume the segment base to be zero, as for the above relocations.
10678 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
10679 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
10680 as R_ARM_THM_MOVT_ABS. */
10681 case R_ARM_THM_MOVW_BREL_NC:
10682 case R_ARM_THM_MOVW_BREL:
10683 case R_ARM_THM_MOVT_BREL:
10684 {
10685 bfd_vma insn;
10686
10687 insn = bfd_get_16 (input_bfd, hit_data) << 16;
10688 insn |= bfd_get_16 (input_bfd, hit_data + 2);
10689
10690 if (globals->use_rel)
10691 {
10692 addend = ((insn >> 4) & 0xf000)
10693 | ((insn >> 15) & 0x0800)
10694 | ((insn >> 4) & 0x0700)
10695 | (insn & 0x00ff);
10696 signed_addend = (addend ^ 0x8000) - 0x8000;
10697 }
10698
10699 value += signed_addend;
10700
10701 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
10702 value -= (input_section->output_section->vma
10703 + input_section->output_offset + rel->r_offset);
10704
10705 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
10706 return bfd_reloc_overflow;
10707
10708 if (branch_type == ST_BRANCH_TO_THUMB)
10709 value |= 1;
10710
10711 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
10712 || r_type == R_ARM_THM_MOVT_BREL)
10713 value >>= 16;
10714
10715 insn &= 0xfbf08f00;
10716 insn |= (value & 0xf000) << 4;
10717 insn |= (value & 0x0800) << 15;
10718 insn |= (value & 0x0700) << 4;
10719 insn |= (value & 0x00ff);
10720
10721 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10722 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10723 }
10724 return bfd_reloc_ok;
10725
10726 case R_ARM_ALU_PC_G0_NC:
10727 case R_ARM_ALU_PC_G1_NC:
10728 case R_ARM_ALU_PC_G0:
10729 case R_ARM_ALU_PC_G1:
10730 case R_ARM_ALU_PC_G2:
10731 case R_ARM_ALU_SB_G0_NC:
10732 case R_ARM_ALU_SB_G1_NC:
10733 case R_ARM_ALU_SB_G0:
10734 case R_ARM_ALU_SB_G1:
10735 case R_ARM_ALU_SB_G2:
10736 {
10737 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10738 bfd_vma pc = input_section->output_section->vma
10739 + input_section->output_offset + rel->r_offset;
10740 /* sb is the origin of the *segment* containing the symbol. */
10741 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10742 bfd_vma residual;
10743 bfd_vma g_n;
10744 bfd_signed_vma signed_value;
10745 int group = 0;
10746
10747 /* Determine which group of bits to select. */
10748 switch (r_type)
10749 {
10750 case R_ARM_ALU_PC_G0_NC:
10751 case R_ARM_ALU_PC_G0:
10752 case R_ARM_ALU_SB_G0_NC:
10753 case R_ARM_ALU_SB_G0:
10754 group = 0;
10755 break;
10756
10757 case R_ARM_ALU_PC_G1_NC:
10758 case R_ARM_ALU_PC_G1:
10759 case R_ARM_ALU_SB_G1_NC:
10760 case R_ARM_ALU_SB_G1:
10761 group = 1;
10762 break;
10763
10764 case R_ARM_ALU_PC_G2:
10765 case R_ARM_ALU_SB_G2:
10766 group = 2;
10767 break;
10768
10769 default:
10770 abort ();
10771 }
10772
10773 /* If REL, extract the addend from the insn. If RELA, it will
10774 have already been fetched for us. */
10775 if (globals->use_rel)
10776 {
10777 int negative;
10778 bfd_vma constant = insn & 0xff;
10779 bfd_vma rotation = (insn & 0xf00) >> 8;
10780
10781 if (rotation == 0)
10782 signed_addend = constant;
10783 else
10784 {
10785 /* Compensate for the fact that in the instruction, the
10786 rotation is stored in multiples of 2 bits. */
10787 rotation *= 2;
10788
10789 /* Rotate "constant" right by "rotation" bits. */
10790 signed_addend = (constant >> rotation) |
10791 (constant << (8 * sizeof (bfd_vma) - rotation));
10792 }
10793
10794 /* Determine if the instruction is an ADD or a SUB.
10795 (For REL, this determines the sign of the addend.) */
10796 negative = identify_add_or_sub (insn);
10797 if (negative == 0)
10798 {
10799 (*_bfd_error_handler)
10800 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10801 input_bfd, input_section,
10802 (long) rel->r_offset, howto->name);
10803 return bfd_reloc_overflow;
10804 }
10805
10806 signed_addend *= negative;
10807 }
10808
10809 /* Compute the value (X) to go in the place. */
10810 if (r_type == R_ARM_ALU_PC_G0_NC
10811 || r_type == R_ARM_ALU_PC_G1_NC
10812 || r_type == R_ARM_ALU_PC_G0
10813 || r_type == R_ARM_ALU_PC_G1
10814 || r_type == R_ARM_ALU_PC_G2)
10815 /* PC relative. */
10816 signed_value = value - pc + signed_addend;
10817 else
10818 /* Section base relative. */
10819 signed_value = value - sb + signed_addend;
10820
10821 /* If the target symbol is a Thumb function, then set the
10822 Thumb bit in the address. */
10823 if (branch_type == ST_BRANCH_TO_THUMB)
10824 signed_value |= 1;
10825
10826 /* Calculate the value of the relevant G_n, in encoded
10827 constant-with-rotation format. */
10828 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10829 group, &residual);
10830
10831 /* Check for overflow if required. */
10832 if ((r_type == R_ARM_ALU_PC_G0
10833 || r_type == R_ARM_ALU_PC_G1
10834 || r_type == R_ARM_ALU_PC_G2
10835 || r_type == R_ARM_ALU_SB_G0
10836 || r_type == R_ARM_ALU_SB_G1
10837 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10838 {
10839 (*_bfd_error_handler)
10840 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10841 input_bfd, input_section,
10842 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
10843 howto->name);
10844 return bfd_reloc_overflow;
10845 }
10846
10847 /* Mask out the value and the ADD/SUB part of the opcode; take care
10848 not to destroy the S bit. */
10849 insn &= 0xff1ff000;
10850
10851 /* Set the opcode according to whether the value to go in the
10852 place is negative. */
10853 if (signed_value < 0)
10854 insn |= 1 << 22;
10855 else
10856 insn |= 1 << 23;
10857
10858 /* Encode the offset. */
10859 insn |= g_n;
10860
10861 bfd_put_32 (input_bfd, insn, hit_data);
10862 }
10863 return bfd_reloc_ok;
10864
10865 case R_ARM_LDR_PC_G0:
10866 case R_ARM_LDR_PC_G1:
10867 case R_ARM_LDR_PC_G2:
10868 case R_ARM_LDR_SB_G0:
10869 case R_ARM_LDR_SB_G1:
10870 case R_ARM_LDR_SB_G2:
10871 {
10872 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10873 bfd_vma pc = input_section->output_section->vma
10874 + input_section->output_offset + rel->r_offset;
10875 /* sb is the origin of the *segment* containing the symbol. */
10876 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10877 bfd_vma residual;
10878 bfd_signed_vma signed_value;
10879 int group = 0;
10880
10881 /* Determine which groups of bits to calculate. */
10882 switch (r_type)
10883 {
10884 case R_ARM_LDR_PC_G0:
10885 case R_ARM_LDR_SB_G0:
10886 group = 0;
10887 break;
10888
10889 case R_ARM_LDR_PC_G1:
10890 case R_ARM_LDR_SB_G1:
10891 group = 1;
10892 break;
10893
10894 case R_ARM_LDR_PC_G2:
10895 case R_ARM_LDR_SB_G2:
10896 group = 2;
10897 break;
10898
10899 default:
10900 abort ();
10901 }
10902
10903 /* If REL, extract the addend from the insn. If RELA, it will
10904 have already been fetched for us. */
10905 if (globals->use_rel)
10906 {
10907 int negative = (insn & (1 << 23)) ? 1 : -1;
10908 signed_addend = negative * (insn & 0xfff);
10909 }
10910
10911 /* Compute the value (X) to go in the place. */
10912 if (r_type == R_ARM_LDR_PC_G0
10913 || r_type == R_ARM_LDR_PC_G1
10914 || r_type == R_ARM_LDR_PC_G2)
10915 /* PC relative. */
10916 signed_value = value - pc + signed_addend;
10917 else
10918 /* Section base relative. */
10919 signed_value = value - sb + signed_addend;
10920
10921 /* Calculate the value of the relevant G_{n-1} to obtain
10922 the residual at that stage. */
10923 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10924 group - 1, &residual);
10925
10926 /* Check for overflow. */
10927 if (residual >= 0x1000)
10928 {
10929 (*_bfd_error_handler)
10930 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10931 input_bfd, input_section,
10932 (long) rel->r_offset, labs (signed_value), howto->name);
10933 return bfd_reloc_overflow;
10934 }
10935
10936 /* Mask out the value and U bit. */
10937 insn &= 0xff7ff000;
10938
10939 /* Set the U bit if the value to go in the place is non-negative. */
10940 if (signed_value >= 0)
10941 insn |= 1 << 23;
10942
10943 /* Encode the offset. */
10944 insn |= residual;
10945
10946 bfd_put_32 (input_bfd, insn, hit_data);
10947 }
10948 return bfd_reloc_ok;
10949
10950 case R_ARM_LDRS_PC_G0:
10951 case R_ARM_LDRS_PC_G1:
10952 case R_ARM_LDRS_PC_G2:
10953 case R_ARM_LDRS_SB_G0:
10954 case R_ARM_LDRS_SB_G1:
10955 case R_ARM_LDRS_SB_G2:
10956 {
10957 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10958 bfd_vma pc = input_section->output_section->vma
10959 + input_section->output_offset + rel->r_offset;
10960 /* sb is the origin of the *segment* containing the symbol. */
10961 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10962 bfd_vma residual;
10963 bfd_signed_vma signed_value;
10964 int group = 0;
10965
10966 /* Determine which groups of bits to calculate. */
10967 switch (r_type)
10968 {
10969 case R_ARM_LDRS_PC_G0:
10970 case R_ARM_LDRS_SB_G0:
10971 group = 0;
10972 break;
10973
10974 case R_ARM_LDRS_PC_G1:
10975 case R_ARM_LDRS_SB_G1:
10976 group = 1;
10977 break;
10978
10979 case R_ARM_LDRS_PC_G2:
10980 case R_ARM_LDRS_SB_G2:
10981 group = 2;
10982 break;
10983
10984 default:
10985 abort ();
10986 }
10987
10988 /* If REL, extract the addend from the insn. If RELA, it will
10989 have already been fetched for us. */
10990 if (globals->use_rel)
10991 {
10992 int negative = (insn & (1 << 23)) ? 1 : -1;
10993 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10994 }
10995
10996 /* Compute the value (X) to go in the place. */
10997 if (r_type == R_ARM_LDRS_PC_G0
10998 || r_type == R_ARM_LDRS_PC_G1
10999 || r_type == R_ARM_LDRS_PC_G2)
11000 /* PC relative. */
11001 signed_value = value - pc + signed_addend;
11002 else
11003 /* Section base relative. */
11004 signed_value = value - sb + signed_addend;
11005
11006 /* Calculate the value of the relevant G_{n-1} to obtain
11007 the residual at that stage. */
11008 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11009 group - 1, &residual);
11010
11011 /* Check for overflow. */
11012 if (residual >= 0x100)
11013 {
11014 (*_bfd_error_handler)
11015 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11016 input_bfd, input_section,
11017 (long) rel->r_offset, labs (signed_value), howto->name);
11018 return bfd_reloc_overflow;
11019 }
11020
11021 /* Mask out the value and U bit. */
11022 insn &= 0xff7ff0f0;
11023
11024 /* Set the U bit if the value to go in the place is non-negative. */
11025 if (signed_value >= 0)
11026 insn |= 1 << 23;
11027
11028 /* Encode the offset. */
11029 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11030
11031 bfd_put_32 (input_bfd, insn, hit_data);
11032 }
11033 return bfd_reloc_ok;
11034
11035 case R_ARM_LDC_PC_G0:
11036 case R_ARM_LDC_PC_G1:
11037 case R_ARM_LDC_PC_G2:
11038 case R_ARM_LDC_SB_G0:
11039 case R_ARM_LDC_SB_G1:
11040 case R_ARM_LDC_SB_G2:
11041 {
11042 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11043 bfd_vma pc = input_section->output_section->vma
11044 + input_section->output_offset + rel->r_offset;
11045 /* sb is the origin of the *segment* containing the symbol. */
11046 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11047 bfd_vma residual;
11048 bfd_signed_vma signed_value;
11049 int group = 0;
11050
11051 /* Determine which groups of bits to calculate. */
11052 switch (r_type)
11053 {
11054 case R_ARM_LDC_PC_G0:
11055 case R_ARM_LDC_SB_G0:
11056 group = 0;
11057 break;
11058
11059 case R_ARM_LDC_PC_G1:
11060 case R_ARM_LDC_SB_G1:
11061 group = 1;
11062 break;
11063
11064 case R_ARM_LDC_PC_G2:
11065 case R_ARM_LDC_SB_G2:
11066 group = 2;
11067 break;
11068
11069 default:
11070 abort ();
11071 }
11072
11073 /* If REL, extract the addend from the insn. If RELA, it will
11074 have already been fetched for us. */
11075 if (globals->use_rel)
11076 {
11077 int negative = (insn & (1 << 23)) ? 1 : -1;
11078 signed_addend = negative * ((insn & 0xff) << 2);
11079 }
11080
11081 /* Compute the value (X) to go in the place. */
11082 if (r_type == R_ARM_LDC_PC_G0
11083 || r_type == R_ARM_LDC_PC_G1
11084 || r_type == R_ARM_LDC_PC_G2)
11085 /* PC relative. */
11086 signed_value = value - pc + signed_addend;
11087 else
11088 /* Section base relative. */
11089 signed_value = value - sb + signed_addend;
11090
11091 /* Calculate the value of the relevant G_{n-1} to obtain
11092 the residual at that stage. */
11093 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11094 group - 1, &residual);
11095
11096 /* Check for overflow. (The absolute value to go in the place must be
11097 divisible by four and, after having been divided by four, must
11098 fit in eight bits.) */
11099 if ((residual & 0x3) != 0 || residual >= 0x400)
11100 {
11101 (*_bfd_error_handler)
11102 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11103 input_bfd, input_section,
11104 (long) rel->r_offset, labs (signed_value), howto->name);
11105 return bfd_reloc_overflow;
11106 }
11107
11108 /* Mask out the value and U bit. */
11109 insn &= 0xff7fff00;
11110
11111 /* Set the U bit if the value to go in the place is non-negative. */
11112 if (signed_value >= 0)
11113 insn |= 1 << 23;
11114
11115 /* Encode the offset. */
11116 insn |= residual >> 2;
11117
11118 bfd_put_32 (input_bfd, insn, hit_data);
11119 }
11120 return bfd_reloc_ok;
11121
11122 case R_ARM_THM_ALU_ABS_G0_NC:
11123 case R_ARM_THM_ALU_ABS_G1_NC:
11124 case R_ARM_THM_ALU_ABS_G2_NC:
11125 case R_ARM_THM_ALU_ABS_G3_NC:
11126 {
11127 const int shift_array[4] = {0, 8, 16, 24};
11128 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
11129 bfd_vma addr = value;
11130 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
11131
11132 /* Compute address. */
11133 if (globals->use_rel)
11134 signed_addend = insn & 0xff;
11135 addr += signed_addend;
11136 if (branch_type == ST_BRANCH_TO_THUMB)
11137 addr |= 1;
11138 /* Clean imm8 insn. */
11139 insn &= 0xff00;
11140 /* And update with correct part of address. */
11141 insn |= (addr >> shift) & 0xff;
11142 /* Update insn. */
11143 bfd_put_16 (input_bfd, insn, hit_data);
11144 }
11145
11146 *unresolved_reloc_p = FALSE;
11147 return bfd_reloc_ok;
11148
11149 default:
11150 return bfd_reloc_notsupported;
11151 }
11152 }
11153
11154 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
11155 static void
11156 arm_add_to_rel (bfd * abfd,
11157 bfd_byte * address,
11158 reloc_howto_type * howto,
11159 bfd_signed_vma increment)
11160 {
11161 bfd_signed_vma addend;
11162
11163 if (howto->type == R_ARM_THM_CALL
11164 || howto->type == R_ARM_THM_JUMP24)
11165 {
11166 int upper_insn, lower_insn;
11167 int upper, lower;
11168
11169 upper_insn = bfd_get_16 (abfd, address);
11170 lower_insn = bfd_get_16 (abfd, address + 2);
11171 upper = upper_insn & 0x7ff;
11172 lower = lower_insn & 0x7ff;
11173
11174 addend = (upper << 12) | (lower << 1);
11175 addend += increment;
11176 addend >>= 1;
11177
11178 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
11179 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
11180
11181 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
11182 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
11183 }
11184 else
11185 {
11186 bfd_vma contents;
11187
11188 contents = bfd_get_32 (abfd, address);
11189
11190 /* Get the (signed) value from the instruction. */
11191 addend = contents & howto->src_mask;
11192 if (addend & ((howto->src_mask + 1) >> 1))
11193 {
11194 bfd_signed_vma mask;
11195
11196 mask = -1;
11197 mask &= ~ howto->src_mask;
11198 addend |= mask;
11199 }
11200
11201 /* Add in the increment, (which is a byte value). */
11202 switch (howto->type)
11203 {
11204 default:
11205 addend += increment;
11206 break;
11207
11208 case R_ARM_PC24:
11209 case R_ARM_PLT32:
11210 case R_ARM_CALL:
11211 case R_ARM_JUMP24:
11212 addend <<= howto->size;
11213 addend += increment;
11214
11215 /* Should we check for overflow here ? */
11216
11217 /* Drop any undesired bits. */
11218 addend >>= howto->rightshift;
11219 break;
11220 }
11221
11222 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
11223
11224 bfd_put_32 (abfd, contents, address);
11225 }
11226 }
11227
11228 #define IS_ARM_TLS_RELOC(R_TYPE) \
11229 ((R_TYPE) == R_ARM_TLS_GD32 \
11230 || (R_TYPE) == R_ARM_TLS_LDO32 \
11231 || (R_TYPE) == R_ARM_TLS_LDM32 \
11232 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
11233 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
11234 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
11235 || (R_TYPE) == R_ARM_TLS_LE32 \
11236 || (R_TYPE) == R_ARM_TLS_IE32 \
11237 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
11238
11239 /* Specific set of relocations for the gnu tls dialect. */
11240 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
11241 ((R_TYPE) == R_ARM_TLS_GOTDESC \
11242 || (R_TYPE) == R_ARM_TLS_CALL \
11243 || (R_TYPE) == R_ARM_THM_TLS_CALL \
11244 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
11245 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
11246
11247 /* Relocate an ARM ELF section. */
11248
11249 static bfd_boolean
11250 elf32_arm_relocate_section (bfd * output_bfd,
11251 struct bfd_link_info * info,
11252 bfd * input_bfd,
11253 asection * input_section,
11254 bfd_byte * contents,
11255 Elf_Internal_Rela * relocs,
11256 Elf_Internal_Sym * local_syms,
11257 asection ** local_sections)
11258 {
11259 Elf_Internal_Shdr *symtab_hdr;
11260 struct elf_link_hash_entry **sym_hashes;
11261 Elf_Internal_Rela *rel;
11262 Elf_Internal_Rela *relend;
11263 const char *name;
11264 struct elf32_arm_link_hash_table * globals;
11265
11266 globals = elf32_arm_hash_table (info);
11267 if (globals == NULL)
11268 return FALSE;
11269
11270 symtab_hdr = & elf_symtab_hdr (input_bfd);
11271 sym_hashes = elf_sym_hashes (input_bfd);
11272
11273 rel = relocs;
11274 relend = relocs + input_section->reloc_count;
11275 for (; rel < relend; rel++)
11276 {
11277 int r_type;
11278 reloc_howto_type * howto;
11279 unsigned long r_symndx;
11280 Elf_Internal_Sym * sym;
11281 asection * sec;
11282 struct elf_link_hash_entry * h;
11283 bfd_vma relocation;
11284 bfd_reloc_status_type r;
11285 arelent bfd_reloc;
11286 char sym_type;
11287 bfd_boolean unresolved_reloc = FALSE;
11288 char *error_message = NULL;
11289
11290 r_symndx = ELF32_R_SYM (rel->r_info);
11291 r_type = ELF32_R_TYPE (rel->r_info);
11292 r_type = arm_real_reloc_type (globals, r_type);
11293
11294 if ( r_type == R_ARM_GNU_VTENTRY
11295 || r_type == R_ARM_GNU_VTINHERIT)
11296 continue;
11297
11298 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
11299 howto = bfd_reloc.howto;
11300
11301 h = NULL;
11302 sym = NULL;
11303 sec = NULL;
11304
11305 if (r_symndx < symtab_hdr->sh_info)
11306 {
11307 sym = local_syms + r_symndx;
11308 sym_type = ELF32_ST_TYPE (sym->st_info);
11309 sec = local_sections[r_symndx];
11310
11311 /* An object file might have a reference to a local
11312 undefined symbol. This is a daft object file, but we
11313 should at least do something about it. V4BX & NONE
11314 relocations do not use the symbol and are explicitly
11315 allowed to use the undefined symbol, so allow those.
11316 Likewise for relocations against STN_UNDEF. */
11317 if (r_type != R_ARM_V4BX
11318 && r_type != R_ARM_NONE
11319 && r_symndx != STN_UNDEF
11320 && bfd_is_und_section (sec)
11321 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
11322 {
11323 if (!info->callbacks->undefined_symbol
11324 (info, bfd_elf_string_from_elf_section
11325 (input_bfd, symtab_hdr->sh_link, sym->st_name),
11326 input_bfd, input_section,
11327 rel->r_offset, TRUE))
11328 return FALSE;
11329 }
11330
11331 if (globals->use_rel)
11332 {
11333 relocation = (sec->output_section->vma
11334 + sec->output_offset
11335 + sym->st_value);
11336 if (!bfd_link_relocatable (info)
11337 && (sec->flags & SEC_MERGE)
11338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11339 {
11340 asection *msec;
11341 bfd_vma addend, value;
11342
11343 switch (r_type)
11344 {
11345 case R_ARM_MOVW_ABS_NC:
11346 case R_ARM_MOVT_ABS:
11347 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11348 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
11349 addend = (addend ^ 0x8000) - 0x8000;
11350 break;
11351
11352 case R_ARM_THM_MOVW_ABS_NC:
11353 case R_ARM_THM_MOVT_ABS:
11354 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
11355 << 16;
11356 value |= bfd_get_16 (input_bfd,
11357 contents + rel->r_offset + 2);
11358 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
11359 | ((value & 0x04000000) >> 15);
11360 addend = (addend ^ 0x8000) - 0x8000;
11361 break;
11362
11363 default:
11364 if (howto->rightshift
11365 || (howto->src_mask & (howto->src_mask + 1)))
11366 {
11367 (*_bfd_error_handler)
11368 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
11369 input_bfd, input_section,
11370 (long) rel->r_offset, howto->name);
11371 return FALSE;
11372 }
11373
11374 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11375
11376 /* Get the (signed) value from the instruction. */
11377 addend = value & howto->src_mask;
11378 if (addend & ((howto->src_mask + 1) >> 1))
11379 {
11380 bfd_signed_vma mask;
11381
11382 mask = -1;
11383 mask &= ~ howto->src_mask;
11384 addend |= mask;
11385 }
11386 break;
11387 }
11388
11389 msec = sec;
11390 addend =
11391 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
11392 - relocation;
11393 addend += msec->output_section->vma + msec->output_offset;
11394
11395 /* Cases here must match those in the preceding
11396 switch statement. */
11397 switch (r_type)
11398 {
11399 case R_ARM_MOVW_ABS_NC:
11400 case R_ARM_MOVT_ABS:
11401 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
11402 | (addend & 0xfff);
11403 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11404 break;
11405
11406 case R_ARM_THM_MOVW_ABS_NC:
11407 case R_ARM_THM_MOVT_ABS:
11408 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
11409 | (addend & 0xff) | ((addend & 0x0800) << 15);
11410 bfd_put_16 (input_bfd, value >> 16,
11411 contents + rel->r_offset);
11412 bfd_put_16 (input_bfd, value,
11413 contents + rel->r_offset + 2);
11414 break;
11415
11416 default:
11417 value = (value & ~ howto->dst_mask)
11418 | (addend & howto->dst_mask);
11419 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11420 break;
11421 }
11422 }
11423 }
11424 else
11425 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
11426 }
11427 else
11428 {
11429 bfd_boolean warned, ignored;
11430
11431 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
11432 r_symndx, symtab_hdr, sym_hashes,
11433 h, sec, relocation,
11434 unresolved_reloc, warned, ignored);
11435
11436 sym_type = h->type;
11437 }
11438
11439 if (sec != NULL && discarded_section (sec))
11440 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
11441 rel, 1, relend, howto, 0, contents);
11442
11443 if (bfd_link_relocatable (info))
11444 {
11445 /* This is a relocatable link. We don't have to change
11446 anything, unless the reloc is against a section symbol,
11447 in which case we have to adjust according to where the
11448 section symbol winds up in the output section. */
11449 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11450 {
11451 if (globals->use_rel)
11452 arm_add_to_rel (input_bfd, contents + rel->r_offset,
11453 howto, (bfd_signed_vma) sec->output_offset);
11454 else
11455 rel->r_addend += sec->output_offset;
11456 }
11457 continue;
11458 }
11459
11460 if (h != NULL)
11461 name = h->root.root.string;
11462 else
11463 {
11464 name = (bfd_elf_string_from_elf_section
11465 (input_bfd, symtab_hdr->sh_link, sym->st_name));
11466 if (name == NULL || *name == '\0')
11467 name = bfd_section_name (input_bfd, sec);
11468 }
11469
11470 if (r_symndx != STN_UNDEF
11471 && r_type != R_ARM_NONE
11472 && (h == NULL
11473 || h->root.type == bfd_link_hash_defined
11474 || h->root.type == bfd_link_hash_defweak)
11475 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
11476 {
11477 (*_bfd_error_handler)
11478 ((sym_type == STT_TLS
11479 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
11480 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
11481 input_bfd,
11482 input_section,
11483 (long) rel->r_offset,
11484 howto->name,
11485 name);
11486 }
11487
11488 /* We call elf32_arm_final_link_relocate unless we're completely
11489 done, i.e., the relaxation produced the final output we want,
11490 and we won't let anybody mess with it. Also, we have to do
11491 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
11492 both in relaxed and non-relaxed cases. */
11493 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
11494 || (IS_ARM_TLS_GNU_RELOC (r_type)
11495 && !((h ? elf32_arm_hash_entry (h)->tls_type :
11496 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
11497 & GOT_TLS_GDESC)))
11498 {
11499 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
11500 contents, rel, h == NULL);
11501 /* This may have been marked unresolved because it came from
11502 a shared library. But we've just dealt with that. */
11503 unresolved_reloc = 0;
11504 }
11505 else
11506 r = bfd_reloc_continue;
11507
11508 if (r == bfd_reloc_continue)
11509 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
11510 input_section, contents, rel,
11511 relocation, info, sec, name, sym_type,
11512 (h ? h->target_internal
11513 : ARM_SYM_BRANCH_TYPE (sym)), h,
11514 &unresolved_reloc, &error_message);
11515
11516 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11517 because such sections are not SEC_ALLOC and thus ld.so will
11518 not process them. */
11519 if (unresolved_reloc
11520 && !((input_section->flags & SEC_DEBUGGING) != 0
11521 && h->def_dynamic)
11522 && _bfd_elf_section_offset (output_bfd, info, input_section,
11523 rel->r_offset) != (bfd_vma) -1)
11524 {
11525 (*_bfd_error_handler)
11526 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11527 input_bfd,
11528 input_section,
11529 (long) rel->r_offset,
11530 howto->name,
11531 h->root.root.string);
11532 return FALSE;
11533 }
11534
11535 if (r != bfd_reloc_ok)
11536 {
11537 switch (r)
11538 {
11539 case bfd_reloc_overflow:
11540 /* If the overflowing reloc was to an undefined symbol,
11541 we have already printed one error message and there
11542 is no point complaining again. */
11543 if ((! h ||
11544 h->root.type != bfd_link_hash_undefined)
11545 && (!((*info->callbacks->reloc_overflow)
11546 (info, (h ? &h->root : NULL), name, howto->name,
11547 (bfd_vma) 0, input_bfd, input_section,
11548 rel->r_offset))))
11549 return FALSE;
11550 break;
11551
11552 case bfd_reloc_undefined:
11553 if (!((*info->callbacks->undefined_symbol)
11554 (info, name, input_bfd, input_section,
11555 rel->r_offset, TRUE)))
11556 return FALSE;
11557 break;
11558
11559 case bfd_reloc_outofrange:
11560 error_message = _("out of range");
11561 goto common_error;
11562
11563 case bfd_reloc_notsupported:
11564 error_message = _("unsupported relocation");
11565 goto common_error;
11566
11567 case bfd_reloc_dangerous:
11568 /* error_message should already be set. */
11569 goto common_error;
11570
11571 default:
11572 error_message = _("unknown error");
11573 /* Fall through. */
11574
11575 common_error:
11576 BFD_ASSERT (error_message != NULL);
11577 if (!((*info->callbacks->reloc_dangerous)
11578 (info, error_message, input_bfd, input_section,
11579 rel->r_offset)))
11580 return FALSE;
11581 break;
11582 }
11583 }
11584 }
11585
11586 return TRUE;
11587 }
11588
11589 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
11590 adds the edit to the start of the list. (The list must be built in order of
11591 ascending TINDEX: the function's callers are primarily responsible for
11592 maintaining that condition). */
11593
11594 static void
11595 add_unwind_table_edit (arm_unwind_table_edit **head,
11596 arm_unwind_table_edit **tail,
11597 arm_unwind_edit_type type,
11598 asection *linked_section,
11599 unsigned int tindex)
11600 {
11601 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
11602 xmalloc (sizeof (arm_unwind_table_edit));
11603
11604 new_edit->type = type;
11605 new_edit->linked_section = linked_section;
11606 new_edit->index = tindex;
11607
11608 if (tindex > 0)
11609 {
11610 new_edit->next = NULL;
11611
11612 if (*tail)
11613 (*tail)->next = new_edit;
11614
11615 (*tail) = new_edit;
11616
11617 if (!*head)
11618 (*head) = new_edit;
11619 }
11620 else
11621 {
11622 new_edit->next = *head;
11623
11624 if (!*tail)
11625 *tail = new_edit;
11626
11627 *head = new_edit;
11628 }
11629 }
11630
11631 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
11632
11633 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
11634 static void
11635 adjust_exidx_size(asection *exidx_sec, int adjust)
11636 {
11637 asection *out_sec;
11638
11639 if (!exidx_sec->rawsize)
11640 exidx_sec->rawsize = exidx_sec->size;
11641
11642 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
11643 out_sec = exidx_sec->output_section;
11644 /* Adjust size of output section. */
11645 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
11646 }
11647
11648 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
11649 static void
11650 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
11651 {
11652 struct _arm_elf_section_data *exidx_arm_data;
11653
11654 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11655 add_unwind_table_edit (
11656 &exidx_arm_data->u.exidx.unwind_edit_list,
11657 &exidx_arm_data->u.exidx.unwind_edit_tail,
11658 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
11659
11660 exidx_arm_data->additional_reloc_count++;
11661
11662 adjust_exidx_size(exidx_sec, 8);
11663 }
11664
11665 /* Scan .ARM.exidx tables, and create a list describing edits which should be
11666 made to those tables, such that:
11667
11668 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
11669 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
11670 codes which have been inlined into the index).
11671
11672 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
11673
11674 The edits are applied when the tables are written
11675 (in elf32_arm_write_section). */
11676
11677 bfd_boolean
11678 elf32_arm_fix_exidx_coverage (asection **text_section_order,
11679 unsigned int num_text_sections,
11680 struct bfd_link_info *info,
11681 bfd_boolean merge_exidx_entries)
11682 {
11683 bfd *inp;
11684 unsigned int last_second_word = 0, i;
11685 asection *last_exidx_sec = NULL;
11686 asection *last_text_sec = NULL;
11687 int last_unwind_type = -1;
11688
11689 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
11690 text sections. */
11691 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
11692 {
11693 asection *sec;
11694
11695 for (sec = inp->sections; sec != NULL; sec = sec->next)
11696 {
11697 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
11698 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
11699
11700 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
11701 continue;
11702
11703 if (elf_sec->linked_to)
11704 {
11705 Elf_Internal_Shdr *linked_hdr
11706 = &elf_section_data (elf_sec->linked_to)->this_hdr;
11707 struct _arm_elf_section_data *linked_sec_arm_data
11708 = get_arm_elf_section_data (linked_hdr->bfd_section);
11709
11710 if (linked_sec_arm_data == NULL)
11711 continue;
11712
11713 /* Link this .ARM.exidx section back from the text section it
11714 describes. */
11715 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
11716 }
11717 }
11718 }
11719
11720 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
11721 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
11722 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
11723
11724 for (i = 0; i < num_text_sections; i++)
11725 {
11726 asection *sec = text_section_order[i];
11727 asection *exidx_sec;
11728 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
11729 struct _arm_elf_section_data *exidx_arm_data;
11730 bfd_byte *contents = NULL;
11731 int deleted_exidx_bytes = 0;
11732 bfd_vma j;
11733 arm_unwind_table_edit *unwind_edit_head = NULL;
11734 arm_unwind_table_edit *unwind_edit_tail = NULL;
11735 Elf_Internal_Shdr *hdr;
11736 bfd *ibfd;
11737
11738 if (arm_data == NULL)
11739 continue;
11740
11741 exidx_sec = arm_data->u.text.arm_exidx_sec;
11742 if (exidx_sec == NULL)
11743 {
11744 /* Section has no unwind data. */
11745 if (last_unwind_type == 0 || !last_exidx_sec)
11746 continue;
11747
11748 /* Ignore zero sized sections. */
11749 if (sec->size == 0)
11750 continue;
11751
11752 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11753 last_unwind_type = 0;
11754 continue;
11755 }
11756
11757 /* Skip /DISCARD/ sections. */
11758 if (bfd_is_abs_section (exidx_sec->output_section))
11759 continue;
11760
11761 hdr = &elf_section_data (exidx_sec)->this_hdr;
11762 if (hdr->sh_type != SHT_ARM_EXIDX)
11763 continue;
11764
11765 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11766 if (exidx_arm_data == NULL)
11767 continue;
11768
11769 ibfd = exidx_sec->owner;
11770
11771 if (hdr->contents != NULL)
11772 contents = hdr->contents;
11773 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11774 /* An error? */
11775 continue;
11776
11777 if (last_unwind_type > 0)
11778 {
11779 unsigned int first_word = bfd_get_32 (ibfd, contents);
11780 /* Add cantunwind if first unwind item does not match section
11781 start. */
11782 if (first_word != sec->vma)
11783 {
11784 insert_cantunwind_after (last_text_sec, last_exidx_sec);
11785 last_unwind_type = 0;
11786 }
11787 }
11788
11789 for (j = 0; j < hdr->sh_size; j += 8)
11790 {
11791 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11792 int unwind_type;
11793 int elide = 0;
11794
11795 /* An EXIDX_CANTUNWIND entry. */
11796 if (second_word == 1)
11797 {
11798 if (last_unwind_type == 0)
11799 elide = 1;
11800 unwind_type = 0;
11801 }
11802 /* Inlined unwinding data. Merge if equal to previous. */
11803 else if ((second_word & 0x80000000) != 0)
11804 {
11805 if (merge_exidx_entries
11806 && last_second_word == second_word && last_unwind_type == 1)
11807 elide = 1;
11808 unwind_type = 1;
11809 last_second_word = second_word;
11810 }
11811 /* Normal table entry. In theory we could merge these too,
11812 but duplicate entries are likely to be much less common. */
11813 else
11814 unwind_type = 2;
11815
11816 if (elide && !bfd_link_relocatable (info))
11817 {
11818 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11819 DELETE_EXIDX_ENTRY, NULL, j / 8);
11820
11821 deleted_exidx_bytes += 8;
11822 }
11823
11824 last_unwind_type = unwind_type;
11825 }
11826
11827 /* Free contents if we allocated it ourselves. */
11828 if (contents != hdr->contents)
11829 free (contents);
11830
11831 /* Record edits to be applied later (in elf32_arm_write_section). */
11832 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11833 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11834
11835 if (deleted_exidx_bytes > 0)
11836 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11837
11838 last_exidx_sec = exidx_sec;
11839 last_text_sec = sec;
11840 }
11841
11842 /* Add terminating CANTUNWIND entry. */
11843 if (!bfd_link_relocatable (info) && last_exidx_sec
11844 && last_unwind_type != 0)
11845 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11846
11847 return TRUE;
11848 }
11849
11850 static bfd_boolean
11851 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11852 bfd *ibfd, const char *name)
11853 {
11854 asection *sec, *osec;
11855
11856 sec = bfd_get_linker_section (ibfd, name);
11857 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11858 return TRUE;
11859
11860 osec = sec->output_section;
11861 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11862 return TRUE;
11863
11864 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11865 sec->output_offset, sec->size))
11866 return FALSE;
11867
11868 return TRUE;
11869 }
11870
11871 static bfd_boolean
11872 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11873 {
11874 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11875 asection *sec, *osec;
11876
11877 if (globals == NULL)
11878 return FALSE;
11879
11880 /* Invoke the regular ELF backend linker to do all the work. */
11881 if (!bfd_elf_final_link (abfd, info))
11882 return FALSE;
11883
11884 /* Process stub sections (eg BE8 encoding, ...). */
11885 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11886 unsigned int i;
11887 for (i=0; i<htab->top_id; i++)
11888 {
11889 sec = htab->stub_group[i].stub_sec;
11890 /* Only process it once, in its link_sec slot. */
11891 if (sec && i == htab->stub_group[i].link_sec->id)
11892 {
11893 osec = sec->output_section;
11894 elf32_arm_write_section (abfd, info, sec, sec->contents);
11895 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11896 sec->output_offset, sec->size))
11897 return FALSE;
11898 }
11899 }
11900
11901 /* Write out any glue sections now that we have created all the
11902 stubs. */
11903 if (globals->bfd_of_glue_owner != NULL)
11904 {
11905 if (! elf32_arm_output_glue_section (info, abfd,
11906 globals->bfd_of_glue_owner,
11907 ARM2THUMB_GLUE_SECTION_NAME))
11908 return FALSE;
11909
11910 if (! elf32_arm_output_glue_section (info, abfd,
11911 globals->bfd_of_glue_owner,
11912 THUMB2ARM_GLUE_SECTION_NAME))
11913 return FALSE;
11914
11915 if (! elf32_arm_output_glue_section (info, abfd,
11916 globals->bfd_of_glue_owner,
11917 VFP11_ERRATUM_VENEER_SECTION_NAME))
11918 return FALSE;
11919
11920 if (! elf32_arm_output_glue_section (info, abfd,
11921 globals->bfd_of_glue_owner,
11922 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
11923 return FALSE;
11924
11925 if (! elf32_arm_output_glue_section (info, abfd,
11926 globals->bfd_of_glue_owner,
11927 ARM_BX_GLUE_SECTION_NAME))
11928 return FALSE;
11929 }
11930
11931 return TRUE;
11932 }
11933
11934 /* Return a best guess for the machine number based on the attributes. */
11935
11936 static unsigned int
11937 bfd_arm_get_mach_from_attributes (bfd * abfd)
11938 {
11939 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11940
11941 switch (arch)
11942 {
11943 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11944 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11945 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11946
11947 case TAG_CPU_ARCH_V5TE:
11948 {
11949 char * name;
11950
11951 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11952 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11953
11954 if (name)
11955 {
11956 if (strcmp (name, "IWMMXT2") == 0)
11957 return bfd_mach_arm_iWMMXt2;
11958
11959 if (strcmp (name, "IWMMXT") == 0)
11960 return bfd_mach_arm_iWMMXt;
11961
11962 if (strcmp (name, "XSCALE") == 0)
11963 {
11964 int wmmx;
11965
11966 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11967 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11968 switch (wmmx)
11969 {
11970 case 1: return bfd_mach_arm_iWMMXt;
11971 case 2: return bfd_mach_arm_iWMMXt2;
11972 default: return bfd_mach_arm_XScale;
11973 }
11974 }
11975 }
11976
11977 return bfd_mach_arm_5TE;
11978 }
11979
11980 default:
11981 return bfd_mach_arm_unknown;
11982 }
11983 }
11984
11985 /* Set the right machine number. */
11986
11987 static bfd_boolean
11988 elf32_arm_object_p (bfd *abfd)
11989 {
11990 unsigned int mach;
11991
11992 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11993
11994 if (mach == bfd_mach_arm_unknown)
11995 {
11996 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11997 mach = bfd_mach_arm_ep9312;
11998 else
11999 mach = bfd_arm_get_mach_from_attributes (abfd);
12000 }
12001
12002 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
12003 return TRUE;
12004 }
12005
12006 /* Function to keep ARM specific flags in the ELF header. */
12007
12008 static bfd_boolean
12009 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
12010 {
12011 if (elf_flags_init (abfd)
12012 && elf_elfheader (abfd)->e_flags != flags)
12013 {
12014 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
12015 {
12016 if (flags & EF_ARM_INTERWORK)
12017 (*_bfd_error_handler)
12018 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
12019 abfd);
12020 else
12021 _bfd_error_handler
12022 (_("Warning: Clearing the interworking flag of %B due to outside request"),
12023 abfd);
12024 }
12025 }
12026 else
12027 {
12028 elf_elfheader (abfd)->e_flags = flags;
12029 elf_flags_init (abfd) = TRUE;
12030 }
12031
12032 return TRUE;
12033 }
12034
12035 /* Copy backend specific data from one object module to another. */
12036
12037 static bfd_boolean
12038 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
12039 {
12040 flagword in_flags;
12041 flagword out_flags;
12042
12043 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
12044 return TRUE;
12045
12046 in_flags = elf_elfheader (ibfd)->e_flags;
12047 out_flags = elf_elfheader (obfd)->e_flags;
12048
12049 if (elf_flags_init (obfd)
12050 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
12051 && in_flags != out_flags)
12052 {
12053 /* Cannot mix APCS26 and APCS32 code. */
12054 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
12055 return FALSE;
12056
12057 /* Cannot mix float APCS and non-float APCS code. */
12058 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
12059 return FALSE;
12060
12061 /* If the src and dest have different interworking flags
12062 then turn off the interworking bit. */
12063 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
12064 {
12065 if (out_flags & EF_ARM_INTERWORK)
12066 _bfd_error_handler
12067 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
12068 obfd, ibfd);
12069
12070 in_flags &= ~EF_ARM_INTERWORK;
12071 }
12072
12073 /* Likewise for PIC, though don't warn for this case. */
12074 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
12075 in_flags &= ~EF_ARM_PIC;
12076 }
12077
12078 elf_elfheader (obfd)->e_flags = in_flags;
12079 elf_flags_init (obfd) = TRUE;
12080
12081 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
12082 }
12083
12084 /* Values for Tag_ABI_PCS_R9_use. */
12085 enum
12086 {
12087 AEABI_R9_V6,
12088 AEABI_R9_SB,
12089 AEABI_R9_TLS,
12090 AEABI_R9_unused
12091 };
12092
12093 /* Values for Tag_ABI_PCS_RW_data. */
12094 enum
12095 {
12096 AEABI_PCS_RW_data_absolute,
12097 AEABI_PCS_RW_data_PCrel,
12098 AEABI_PCS_RW_data_SBrel,
12099 AEABI_PCS_RW_data_unused
12100 };
12101
12102 /* Values for Tag_ABI_enum_size. */
12103 enum
12104 {
12105 AEABI_enum_unused,
12106 AEABI_enum_short,
12107 AEABI_enum_wide,
12108 AEABI_enum_forced_wide
12109 };
12110
12111 /* Determine whether an object attribute tag takes an integer, a
12112 string or both. */
12113
12114 static int
12115 elf32_arm_obj_attrs_arg_type (int tag)
12116 {
12117 if (tag == Tag_compatibility)
12118 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
12119 else if (tag == Tag_nodefaults)
12120 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
12121 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
12122 return ATTR_TYPE_FLAG_STR_VAL;
12123 else if (tag < 32)
12124 return ATTR_TYPE_FLAG_INT_VAL;
12125 else
12126 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
12127 }
12128
12129 /* The ABI defines that Tag_conformance should be emitted first, and that
12130 Tag_nodefaults should be second (if either is defined). This sets those
12131 two positions, and bumps up the position of all the remaining tags to
12132 compensate. */
12133 static int
12134 elf32_arm_obj_attrs_order (int num)
12135 {
12136 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
12137 return Tag_conformance;
12138 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
12139 return Tag_nodefaults;
12140 if ((num - 2) < Tag_nodefaults)
12141 return num - 2;
12142 if ((num - 1) < Tag_conformance)
12143 return num - 1;
12144 return num;
12145 }
12146
12147 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
12148 static bfd_boolean
12149 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
12150 {
12151 if ((tag & 127) < 64)
12152 {
12153 _bfd_error_handler
12154 (_("%B: Unknown mandatory EABI object attribute %d"),
12155 abfd, tag);
12156 bfd_set_error (bfd_error_bad_value);
12157 return FALSE;
12158 }
12159 else
12160 {
12161 _bfd_error_handler
12162 (_("Warning: %B: Unknown EABI object attribute %d"),
12163 abfd, tag);
12164 return TRUE;
12165 }
12166 }
12167
12168 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
12169 Returns -1 if no architecture could be read. */
12170
12171 static int
12172 get_secondary_compatible_arch (bfd *abfd)
12173 {
12174 obj_attribute *attr =
12175 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12176
12177 /* Note: the tag and its argument below are uleb128 values, though
12178 currently-defined values fit in one byte for each. */
12179 if (attr->s
12180 && attr->s[0] == Tag_CPU_arch
12181 && (attr->s[1] & 128) != 128
12182 && attr->s[2] == 0)
12183 return attr->s[1];
12184
12185 /* This tag is "safely ignorable", so don't complain if it looks funny. */
12186 return -1;
12187 }
12188
12189 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
12190 The tag is removed if ARCH is -1. */
12191
12192 static void
12193 set_secondary_compatible_arch (bfd *abfd, int arch)
12194 {
12195 obj_attribute *attr =
12196 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12197
12198 if (arch == -1)
12199 {
12200 attr->s = NULL;
12201 return;
12202 }
12203
12204 /* Note: the tag and its argument below are uleb128 values, though
12205 currently-defined values fit in one byte for each. */
12206 if (!attr->s)
12207 attr->s = (char *) bfd_alloc (abfd, 3);
12208 attr->s[0] = Tag_CPU_arch;
12209 attr->s[1] = arch;
12210 attr->s[2] = '\0';
12211 }
12212
12213 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
12214 into account. */
12215
12216 static int
12217 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
12218 int newtag, int secondary_compat)
12219 {
12220 #define T(X) TAG_CPU_ARCH_##X
12221 int tagl, tagh, result;
12222 const int v6t2[] =
12223 {
12224 T(V6T2), /* PRE_V4. */
12225 T(V6T2), /* V4. */
12226 T(V6T2), /* V4T. */
12227 T(V6T2), /* V5T. */
12228 T(V6T2), /* V5TE. */
12229 T(V6T2), /* V5TEJ. */
12230 T(V6T2), /* V6. */
12231 T(V7), /* V6KZ. */
12232 T(V6T2) /* V6T2. */
12233 };
12234 const int v6k[] =
12235 {
12236 T(V6K), /* PRE_V4. */
12237 T(V6K), /* V4. */
12238 T(V6K), /* V4T. */
12239 T(V6K), /* V5T. */
12240 T(V6K), /* V5TE. */
12241 T(V6K), /* V5TEJ. */
12242 T(V6K), /* V6. */
12243 T(V6KZ), /* V6KZ. */
12244 T(V7), /* V6T2. */
12245 T(V6K) /* V6K. */
12246 };
12247 const int v7[] =
12248 {
12249 T(V7), /* PRE_V4. */
12250 T(V7), /* V4. */
12251 T(V7), /* V4T. */
12252 T(V7), /* V5T. */
12253 T(V7), /* V5TE. */
12254 T(V7), /* V5TEJ. */
12255 T(V7), /* V6. */
12256 T(V7), /* V6KZ. */
12257 T(V7), /* V6T2. */
12258 T(V7), /* V6K. */
12259 T(V7) /* V7. */
12260 };
12261 const int v6_m[] =
12262 {
12263 -1, /* PRE_V4. */
12264 -1, /* V4. */
12265 T(V6K), /* V4T. */
12266 T(V6K), /* V5T. */
12267 T(V6K), /* V5TE. */
12268 T(V6K), /* V5TEJ. */
12269 T(V6K), /* V6. */
12270 T(V6KZ), /* V6KZ. */
12271 T(V7), /* V6T2. */
12272 T(V6K), /* V6K. */
12273 T(V7), /* V7. */
12274 T(V6_M) /* V6_M. */
12275 };
12276 const int v6s_m[] =
12277 {
12278 -1, /* PRE_V4. */
12279 -1, /* V4. */
12280 T(V6K), /* V4T. */
12281 T(V6K), /* V5T. */
12282 T(V6K), /* V5TE. */
12283 T(V6K), /* V5TEJ. */
12284 T(V6K), /* V6. */
12285 T(V6KZ), /* V6KZ. */
12286 T(V7), /* V6T2. */
12287 T(V6K), /* V6K. */
12288 T(V7), /* V7. */
12289 T(V6S_M), /* V6_M. */
12290 T(V6S_M) /* V6S_M. */
12291 };
12292 const int v7e_m[] =
12293 {
12294 -1, /* PRE_V4. */
12295 -1, /* V4. */
12296 T(V7E_M), /* V4T. */
12297 T(V7E_M), /* V5T. */
12298 T(V7E_M), /* V5TE. */
12299 T(V7E_M), /* V5TEJ. */
12300 T(V7E_M), /* V6. */
12301 T(V7E_M), /* V6KZ. */
12302 T(V7E_M), /* V6T2. */
12303 T(V7E_M), /* V6K. */
12304 T(V7E_M), /* V7. */
12305 T(V7E_M), /* V6_M. */
12306 T(V7E_M), /* V6S_M. */
12307 T(V7E_M) /* V7E_M. */
12308 };
12309 const int v8[] =
12310 {
12311 T(V8), /* PRE_V4. */
12312 T(V8), /* V4. */
12313 T(V8), /* V4T. */
12314 T(V8), /* V5T. */
12315 T(V8), /* V5TE. */
12316 T(V8), /* V5TEJ. */
12317 T(V8), /* V6. */
12318 T(V8), /* V6KZ. */
12319 T(V8), /* V6T2. */
12320 T(V8), /* V6K. */
12321 T(V8), /* V7. */
12322 T(V8), /* V6_M. */
12323 T(V8), /* V6S_M. */
12324 T(V8), /* V7E_M. */
12325 T(V8) /* V8. */
12326 };
12327 const int v8m_baseline[] =
12328 {
12329 -1, /* PRE_V4. */
12330 -1, /* V4. */
12331 -1, /* V4T. */
12332 -1, /* V5T. */
12333 -1, /* V5TE. */
12334 -1, /* V5TEJ. */
12335 -1, /* V6. */
12336 -1, /* V6KZ. */
12337 -1, /* V6T2. */
12338 -1, /* V6K. */
12339 -1, /* V7. */
12340 T(V8M_BASE), /* V6_M. */
12341 T(V8M_BASE), /* V6S_M. */
12342 -1, /* V7E_M. */
12343 -1, /* V8. */
12344 -1,
12345 T(V8M_BASE) /* V8-M BASELINE. */
12346 };
12347 const int v8m_mainline[] =
12348 {
12349 -1, /* PRE_V4. */
12350 -1, /* V4. */
12351 -1, /* V4T. */
12352 -1, /* V5T. */
12353 -1, /* V5TE. */
12354 -1, /* V5TEJ. */
12355 -1, /* V6. */
12356 -1, /* V6KZ. */
12357 -1, /* V6T2. */
12358 -1, /* V6K. */
12359 T(V8M_MAIN), /* V7. */
12360 T(V8M_MAIN), /* V6_M. */
12361 T(V8M_MAIN), /* V6S_M. */
12362 T(V8M_MAIN), /* V7E_M. */
12363 -1, /* V8. */
12364 -1,
12365 T(V8M_MAIN), /* V8-M BASELINE. */
12366 T(V8M_MAIN) /* V8-M MAINLINE. */
12367 };
12368 const int v4t_plus_v6_m[] =
12369 {
12370 -1, /* PRE_V4. */
12371 -1, /* V4. */
12372 T(V4T), /* V4T. */
12373 T(V5T), /* V5T. */
12374 T(V5TE), /* V5TE. */
12375 T(V5TEJ), /* V5TEJ. */
12376 T(V6), /* V6. */
12377 T(V6KZ), /* V6KZ. */
12378 T(V6T2), /* V6T2. */
12379 T(V6K), /* V6K. */
12380 T(V7), /* V7. */
12381 T(V6_M), /* V6_M. */
12382 T(V6S_M), /* V6S_M. */
12383 T(V7E_M), /* V7E_M. */
12384 T(V8), /* V8. */
12385 -1, /* Unused. */
12386 T(V8M_BASE), /* V8-M BASELINE. */
12387 T(V8M_MAIN), /* V8-M MAINLINE. */
12388 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
12389 };
12390 const int *comb[] =
12391 {
12392 v6t2,
12393 v6k,
12394 v7,
12395 v6_m,
12396 v6s_m,
12397 v7e_m,
12398 v8,
12399 NULL,
12400 v8m_baseline,
12401 v8m_mainline,
12402 /* Pseudo-architecture. */
12403 v4t_plus_v6_m
12404 };
12405
12406 /* Check we've not got a higher architecture than we know about. */
12407
12408 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
12409 {
12410 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
12411 return -1;
12412 }
12413
12414 /* Override old tag if we have a Tag_also_compatible_with on the output. */
12415
12416 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
12417 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
12418 oldtag = T(V4T_PLUS_V6_M);
12419
12420 /* And override the new tag if we have a Tag_also_compatible_with on the
12421 input. */
12422
12423 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
12424 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
12425 newtag = T(V4T_PLUS_V6_M);
12426
12427 tagl = (oldtag < newtag) ? oldtag : newtag;
12428 result = tagh = (oldtag > newtag) ? oldtag : newtag;
12429
12430 /* Architectures before V6KZ add features monotonically. */
12431 if (tagh <= TAG_CPU_ARCH_V6KZ)
12432 return result;
12433
12434 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
12435
12436 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
12437 as the canonical version. */
12438 if (result == T(V4T_PLUS_V6_M))
12439 {
12440 result = T(V4T);
12441 *secondary_compat_out = T(V6_M);
12442 }
12443 else
12444 *secondary_compat_out = -1;
12445
12446 if (result == -1)
12447 {
12448 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
12449 ibfd, oldtag, newtag);
12450 return -1;
12451 }
12452
12453 return result;
12454 #undef T
12455 }
12456
12457 /* Query attributes object to see if integer divide instructions may be
12458 present in an object. */
12459 static bfd_boolean
12460 elf32_arm_attributes_accept_div (const obj_attribute *attr)
12461 {
12462 int arch = attr[Tag_CPU_arch].i;
12463 int profile = attr[Tag_CPU_arch_profile].i;
12464
12465 switch (attr[Tag_DIV_use].i)
12466 {
12467 case 0:
12468 /* Integer divide allowed if instruction contained in archetecture. */
12469 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
12470 return TRUE;
12471 else if (arch >= TAG_CPU_ARCH_V7E_M)
12472 return TRUE;
12473 else
12474 return FALSE;
12475
12476 case 1:
12477 /* Integer divide explicitly prohibited. */
12478 return FALSE;
12479
12480 default:
12481 /* Unrecognised case - treat as allowing divide everywhere. */
12482 case 2:
12483 /* Integer divide allowed in ARM state. */
12484 return TRUE;
12485 }
12486 }
12487
12488 /* Query attributes object to see if integer divide instructions are
12489 forbidden to be in the object. This is not the inverse of
12490 elf32_arm_attributes_accept_div. */
12491 static bfd_boolean
12492 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
12493 {
12494 return attr[Tag_DIV_use].i == 1;
12495 }
12496
12497 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
12498 are conflicting attributes. */
12499
12500 static bfd_boolean
12501 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
12502 {
12503 obj_attribute *in_attr;
12504 obj_attribute *out_attr;
12505 /* Some tags have 0 = don't care, 1 = strong requirement,
12506 2 = weak requirement. */
12507 static const int order_021[3] = {0, 2, 1};
12508 int i;
12509 bfd_boolean result = TRUE;
12510 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
12511
12512 /* Skip the linker stubs file. This preserves previous behavior
12513 of accepting unknown attributes in the first input file - but
12514 is that a bug? */
12515 if (ibfd->flags & BFD_LINKER_CREATED)
12516 return TRUE;
12517
12518 /* Skip any input that hasn't attribute section.
12519 This enables to link object files without attribute section with
12520 any others. */
12521 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
12522 return TRUE;
12523
12524 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12525 {
12526 /* This is the first object. Copy the attributes. */
12527 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12528
12529 out_attr = elf_known_obj_attributes_proc (obfd);
12530
12531 /* Use the Tag_null value to indicate the attributes have been
12532 initialized. */
12533 out_attr[0].i = 1;
12534
12535 /* We do not output objects with Tag_MPextension_use_legacy - we move
12536 the attribute's value to Tag_MPextension_use. */
12537 if (out_attr[Tag_MPextension_use_legacy].i != 0)
12538 {
12539 if (out_attr[Tag_MPextension_use].i != 0
12540 && out_attr[Tag_MPextension_use_legacy].i
12541 != out_attr[Tag_MPextension_use].i)
12542 {
12543 _bfd_error_handler
12544 (_("Error: %B has both the current and legacy "
12545 "Tag_MPextension_use attributes"), ibfd);
12546 result = FALSE;
12547 }
12548
12549 out_attr[Tag_MPextension_use] =
12550 out_attr[Tag_MPextension_use_legacy];
12551 out_attr[Tag_MPextension_use_legacy].type = 0;
12552 out_attr[Tag_MPextension_use_legacy].i = 0;
12553 }
12554
12555 return result;
12556 }
12557
12558 in_attr = elf_known_obj_attributes_proc (ibfd);
12559 out_attr = elf_known_obj_attributes_proc (obfd);
12560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
12561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
12562 {
12563 /* Ignore mismatches if the object doesn't use floating point or is
12564 floating point ABI independent. */
12565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
12566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
12568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
12569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
12571 {
12572 _bfd_error_handler
12573 (_("error: %B uses VFP register arguments, %B does not"),
12574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
12575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
12576 result = FALSE;
12577 }
12578 }
12579
12580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
12581 {
12582 /* Merge this attribute with existing attributes. */
12583 switch (i)
12584 {
12585 case Tag_CPU_raw_name:
12586 case Tag_CPU_name:
12587 /* These are merged after Tag_CPU_arch. */
12588 break;
12589
12590 case Tag_ABI_optimization_goals:
12591 case Tag_ABI_FP_optimization_goals:
12592 /* Use the first value seen. */
12593 break;
12594
12595 case Tag_CPU_arch:
12596 {
12597 int secondary_compat = -1, secondary_compat_out = -1;
12598 unsigned int saved_out_attr = out_attr[i].i;
12599 int arch_attr;
12600 static const char *name_table[] =
12601 {
12602 /* These aren't real CPU names, but we can't guess
12603 that from the architecture version alone. */
12604 "Pre v4",
12605 "ARM v4",
12606 "ARM v4T",
12607 "ARM v5T",
12608 "ARM v5TE",
12609 "ARM v5TEJ",
12610 "ARM v6",
12611 "ARM v6KZ",
12612 "ARM v6T2",
12613 "ARM v6K",
12614 "ARM v7",
12615 "ARM v6-M",
12616 "ARM v6S-M",
12617 "ARM v8",
12618 "",
12619 "ARM v8-M.baseline",
12620 "ARM v8-M.mainline",
12621 };
12622
12623 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
12624 secondary_compat = get_secondary_compatible_arch (ibfd);
12625 secondary_compat_out = get_secondary_compatible_arch (obfd);
12626 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
12627 &secondary_compat_out,
12628 in_attr[i].i,
12629 secondary_compat);
12630
12631 /* Return with error if failed to merge. */
12632 if (arch_attr == -1)
12633 return FALSE;
12634
12635 out_attr[i].i = arch_attr;
12636
12637 set_secondary_compatible_arch (obfd, secondary_compat_out);
12638
12639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
12640 if (out_attr[i].i == saved_out_attr)
12641 ; /* Leave the names alone. */
12642 else if (out_attr[i].i == in_attr[i].i)
12643 {
12644 /* The output architecture has been changed to match the
12645 input architecture. Use the input names. */
12646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
12647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
12648 : NULL;
12649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
12650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
12651 : NULL;
12652 }
12653 else
12654 {
12655 out_attr[Tag_CPU_name].s = NULL;
12656 out_attr[Tag_CPU_raw_name].s = NULL;
12657 }
12658
12659 /* If we still don't have a value for Tag_CPU_name,
12660 make one up now. Tag_CPU_raw_name remains blank. */
12661 if (out_attr[Tag_CPU_name].s == NULL
12662 && out_attr[i].i < ARRAY_SIZE (name_table))
12663 out_attr[Tag_CPU_name].s =
12664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
12665 }
12666 break;
12667
12668 case Tag_ARM_ISA_use:
12669 case Tag_THUMB_ISA_use:
12670 case Tag_WMMX_arch:
12671 case Tag_Advanced_SIMD_arch:
12672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
12673 case Tag_ABI_FP_rounding:
12674 case Tag_ABI_FP_exceptions:
12675 case Tag_ABI_FP_user_exceptions:
12676 case Tag_ABI_FP_number_model:
12677 case Tag_FP_HP_extension:
12678 case Tag_CPU_unaligned_access:
12679 case Tag_T2EE_use:
12680 case Tag_MPextension_use:
12681 /* Use the largest value specified. */
12682 if (in_attr[i].i > out_attr[i].i)
12683 out_attr[i].i = in_attr[i].i;
12684 break;
12685
12686 case Tag_ABI_align_preserved:
12687 case Tag_ABI_PCS_RO_data:
12688 /* Use the smallest value specified. */
12689 if (in_attr[i].i < out_attr[i].i)
12690 out_attr[i].i = in_attr[i].i;
12691 break;
12692
12693 case Tag_ABI_align_needed:
12694 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
12695 && (in_attr[Tag_ABI_align_preserved].i == 0
12696 || out_attr[Tag_ABI_align_preserved].i == 0))
12697 {
12698 /* This error message should be enabled once all non-conformant
12699 binaries in the toolchain have had the attributes set
12700 properly.
12701 _bfd_error_handler
12702 (_("error: %B: 8-byte data alignment conflicts with %B"),
12703 obfd, ibfd);
12704 result = FALSE; */
12705 }
12706 /* Fall through. */
12707 case Tag_ABI_FP_denormal:
12708 case Tag_ABI_PCS_GOT_use:
12709 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
12710 value if greater than 2 (for future-proofing). */
12711 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
12712 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
12713 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
12714 out_attr[i].i = in_attr[i].i;
12715 break;
12716
12717 case Tag_Virtualization_use:
12718 /* The virtualization tag effectively stores two bits of
12719 information: the intended use of TrustZone (in bit 0), and the
12720 intended use of Virtualization (in bit 1). */
12721 if (out_attr[i].i == 0)
12722 out_attr[i].i = in_attr[i].i;
12723 else if (in_attr[i].i != 0
12724 && in_attr[i].i != out_attr[i].i)
12725 {
12726 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
12727 out_attr[i].i = 3;
12728 else
12729 {
12730 _bfd_error_handler
12731 (_("error: %B: unable to merge virtualization attributes "
12732 "with %B"),
12733 obfd, ibfd);
12734 result = FALSE;
12735 }
12736 }
12737 break;
12738
12739 case Tag_CPU_arch_profile:
12740 if (out_attr[i].i != in_attr[i].i)
12741 {
12742 /* 0 will merge with anything.
12743 'A' and 'S' merge to 'A'.
12744 'R' and 'S' merge to 'R'.
12745 'M' and 'A|R|S' is an error. */
12746 if (out_attr[i].i == 0
12747 || (out_attr[i].i == 'S'
12748 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
12749 out_attr[i].i = in_attr[i].i;
12750 else if (in_attr[i].i == 0
12751 || (in_attr[i].i == 'S'
12752 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
12753 ; /* Do nothing. */
12754 else
12755 {
12756 _bfd_error_handler
12757 (_("error: %B: Conflicting architecture profiles %c/%c"),
12758 ibfd,
12759 in_attr[i].i ? in_attr[i].i : '0',
12760 out_attr[i].i ? out_attr[i].i : '0');
12761 result = FALSE;
12762 }
12763 }
12764 break;
12765
12766 case Tag_DSP_extension:
12767 /* No need to change output value if any of:
12768 - pre (<=) ARMv5T input architecture (do not have DSP)
12769 - M input profile not ARMv7E-M and do not have DSP. */
12770 if (in_attr[Tag_CPU_arch].i <= 3
12771 || (in_attr[Tag_CPU_arch_profile].i == 'M'
12772 && in_attr[Tag_CPU_arch].i != 13
12773 && in_attr[i].i == 0))
12774 ; /* Do nothing. */
12775 /* Output value should be 0 if DSP part of architecture, ie.
12776 - post (>=) ARMv5te architecture output
12777 - A, R or S profile output or ARMv7E-M output architecture. */
12778 else if (out_attr[Tag_CPU_arch].i >= 4
12779 && (out_attr[Tag_CPU_arch_profile].i == 'A'
12780 || out_attr[Tag_CPU_arch_profile].i == 'R'
12781 || out_attr[Tag_CPU_arch_profile].i == 'S'
12782 || out_attr[Tag_CPU_arch].i == 13))
12783 out_attr[i].i = 0;
12784 /* Otherwise, DSP instructions are added and not part of output
12785 architecture. */
12786 else
12787 out_attr[i].i = 1;
12788 break;
12789
12790 case Tag_FP_arch:
12791 {
12792 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
12793 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
12794 when it's 0. It might mean absence of FP hardware if
12795 Tag_FP_arch is zero. */
12796
12797 #define VFP_VERSION_COUNT 9
12798 static const struct
12799 {
12800 int ver;
12801 int regs;
12802 } vfp_versions[VFP_VERSION_COUNT] =
12803 {
12804 {0, 0},
12805 {1, 16},
12806 {2, 16},
12807 {3, 32},
12808 {3, 16},
12809 {4, 32},
12810 {4, 16},
12811 {8, 32},
12812 {8, 16}
12813 };
12814 int ver;
12815 int regs;
12816 int newval;
12817
12818 /* If the output has no requirement about FP hardware,
12819 follow the requirement of the input. */
12820 if (out_attr[i].i == 0)
12821 {
12822 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
12823 out_attr[i].i = in_attr[i].i;
12824 out_attr[Tag_ABI_HardFP_use].i
12825 = in_attr[Tag_ABI_HardFP_use].i;
12826 break;
12827 }
12828 /* If the input has no requirement about FP hardware, do
12829 nothing. */
12830 else if (in_attr[i].i == 0)
12831 {
12832 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
12833 break;
12834 }
12835
12836 /* Both the input and the output have nonzero Tag_FP_arch.
12837 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
12838
12839 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12840 do nothing. */
12841 if (in_attr[Tag_ABI_HardFP_use].i == 0
12842 && out_attr[Tag_ABI_HardFP_use].i == 0)
12843 ;
12844 /* If the input and the output have different Tag_ABI_HardFP_use,
12845 the combination of them is 0 (implied by Tag_FP_arch). */
12846 else if (in_attr[Tag_ABI_HardFP_use].i
12847 != out_attr[Tag_ABI_HardFP_use].i)
12848 out_attr[Tag_ABI_HardFP_use].i = 0;
12849
12850 /* Now we can handle Tag_FP_arch. */
12851
12852 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12853 pick the biggest. */
12854 if (in_attr[i].i >= VFP_VERSION_COUNT
12855 && in_attr[i].i > out_attr[i].i)
12856 {
12857 out_attr[i] = in_attr[i];
12858 break;
12859 }
12860 /* The output uses the superset of input features
12861 (ISA version) and registers. */
12862 ver = vfp_versions[in_attr[i].i].ver;
12863 if (ver < vfp_versions[out_attr[i].i].ver)
12864 ver = vfp_versions[out_attr[i].i].ver;
12865 regs = vfp_versions[in_attr[i].i].regs;
12866 if (regs < vfp_versions[out_attr[i].i].regs)
12867 regs = vfp_versions[out_attr[i].i].regs;
12868 /* This assumes all possible supersets are also a valid
12869 options. */
12870 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
12871 {
12872 if (regs == vfp_versions[newval].regs
12873 && ver == vfp_versions[newval].ver)
12874 break;
12875 }
12876 out_attr[i].i = newval;
12877 }
12878 break;
12879 case Tag_PCS_config:
12880 if (out_attr[i].i == 0)
12881 out_attr[i].i = in_attr[i].i;
12882 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
12883 {
12884 /* It's sometimes ok to mix different configs, so this is only
12885 a warning. */
12886 _bfd_error_handler
12887 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12888 }
12889 break;
12890 case Tag_ABI_PCS_R9_use:
12891 if (in_attr[i].i != out_attr[i].i
12892 && out_attr[i].i != AEABI_R9_unused
12893 && in_attr[i].i != AEABI_R9_unused)
12894 {
12895 _bfd_error_handler
12896 (_("error: %B: Conflicting use of R9"), ibfd);
12897 result = FALSE;
12898 }
12899 if (out_attr[i].i == AEABI_R9_unused)
12900 out_attr[i].i = in_attr[i].i;
12901 break;
12902 case Tag_ABI_PCS_RW_data:
12903 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12904 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12905 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12906 {
12907 _bfd_error_handler
12908 (_("error: %B: SB relative addressing conflicts with use of R9"),
12909 ibfd);
12910 result = FALSE;
12911 }
12912 /* Use the smallest value specified. */
12913 if (in_attr[i].i < out_attr[i].i)
12914 out_attr[i].i = in_attr[i].i;
12915 break;
12916 case Tag_ABI_PCS_wchar_t:
12917 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12918 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12919 {
12920 _bfd_error_handler
12921 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12922 ibfd, in_attr[i].i, out_attr[i].i);
12923 }
12924 else if (in_attr[i].i && !out_attr[i].i)
12925 out_attr[i].i = in_attr[i].i;
12926 break;
12927 case Tag_ABI_enum_size:
12928 if (in_attr[i].i != AEABI_enum_unused)
12929 {
12930 if (out_attr[i].i == AEABI_enum_unused
12931 || out_attr[i].i == AEABI_enum_forced_wide)
12932 {
12933 /* The existing object is compatible with anything.
12934 Use whatever requirements the new object has. */
12935 out_attr[i].i = in_attr[i].i;
12936 }
12937 else if (in_attr[i].i != AEABI_enum_forced_wide
12938 && out_attr[i].i != in_attr[i].i
12939 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12940 {
12941 static const char *aeabi_enum_names[] =
12942 { "", "variable-size", "32-bit", "" };
12943 const char *in_name =
12944 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12945 ? aeabi_enum_names[in_attr[i].i]
12946 : "<unknown>";
12947 const char *out_name =
12948 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12949 ? aeabi_enum_names[out_attr[i].i]
12950 : "<unknown>";
12951 _bfd_error_handler
12952 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12953 ibfd, in_name, out_name);
12954 }
12955 }
12956 break;
12957 case Tag_ABI_VFP_args:
12958 /* Aready done. */
12959 break;
12960 case Tag_ABI_WMMX_args:
12961 if (in_attr[i].i != out_attr[i].i)
12962 {
12963 _bfd_error_handler
12964 (_("error: %B uses iWMMXt register arguments, %B does not"),
12965 ibfd, obfd);
12966 result = FALSE;
12967 }
12968 break;
12969 case Tag_compatibility:
12970 /* Merged in target-independent code. */
12971 break;
12972 case Tag_ABI_HardFP_use:
12973 /* This is handled along with Tag_FP_arch. */
12974 break;
12975 case Tag_ABI_FP_16bit_format:
12976 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12977 {
12978 if (in_attr[i].i != out_attr[i].i)
12979 {
12980 _bfd_error_handler
12981 (_("error: fp16 format mismatch between %B and %B"),
12982 ibfd, obfd);
12983 result = FALSE;
12984 }
12985 }
12986 if (in_attr[i].i != 0)
12987 out_attr[i].i = in_attr[i].i;
12988 break;
12989
12990 case Tag_DIV_use:
12991 /* A value of zero on input means that the divide instruction may
12992 be used if available in the base architecture as specified via
12993 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12994 the user did not want divide instructions. A value of 2
12995 explicitly means that divide instructions were allowed in ARM
12996 and Thumb state. */
12997 if (in_attr[i].i == out_attr[i].i)
12998 /* Do nothing. */ ;
12999 else if (elf32_arm_attributes_forbid_div (in_attr)
13000 && !elf32_arm_attributes_accept_div (out_attr))
13001 out_attr[i].i = 1;
13002 else if (elf32_arm_attributes_forbid_div (out_attr)
13003 && elf32_arm_attributes_accept_div (in_attr))
13004 out_attr[i].i = in_attr[i].i;
13005 else if (in_attr[i].i == 2)
13006 out_attr[i].i = in_attr[i].i;
13007 break;
13008
13009 case Tag_MPextension_use_legacy:
13010 /* We don't output objects with Tag_MPextension_use_legacy - we
13011 move the value to Tag_MPextension_use. */
13012 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
13013 {
13014 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
13015 {
13016 _bfd_error_handler
13017 (_("%B has has both the current and legacy "
13018 "Tag_MPextension_use attributes"),
13019 ibfd);
13020 result = FALSE;
13021 }
13022 }
13023
13024 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
13025 out_attr[Tag_MPextension_use] = in_attr[i];
13026
13027 break;
13028
13029 case Tag_nodefaults:
13030 /* This tag is set if it exists, but the value is unused (and is
13031 typically zero). We don't actually need to do anything here -
13032 the merge happens automatically when the type flags are merged
13033 below. */
13034 break;
13035 case Tag_also_compatible_with:
13036 /* Already done in Tag_CPU_arch. */
13037 break;
13038 case Tag_conformance:
13039 /* Keep the attribute if it matches. Throw it away otherwise.
13040 No attribute means no claim to conform. */
13041 if (!in_attr[i].s || !out_attr[i].s
13042 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
13043 out_attr[i].s = NULL;
13044 break;
13045
13046 default:
13047 result
13048 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
13049 }
13050
13051 /* If out_attr was copied from in_attr then it won't have a type yet. */
13052 if (in_attr[i].type && !out_attr[i].type)
13053 out_attr[i].type = in_attr[i].type;
13054 }
13055
13056 /* Merge Tag_compatibility attributes and any common GNU ones. */
13057 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
13058 return FALSE;
13059
13060 /* Check for any attributes not known on ARM. */
13061 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
13062
13063 return result;
13064 }
13065
13066
13067 /* Return TRUE if the two EABI versions are incompatible. */
13068
13069 static bfd_boolean
13070 elf32_arm_versions_compatible (unsigned iver, unsigned over)
13071 {
13072 /* v4 and v5 are the same spec before and after it was released,
13073 so allow mixing them. */
13074 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
13075 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
13076 return TRUE;
13077
13078 return (iver == over);
13079 }
13080
13081 /* Merge backend specific data from an object file to the output
13082 object file when linking. */
13083
13084 static bfd_boolean
13085 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
13086
13087 /* Display the flags field. */
13088
13089 static bfd_boolean
13090 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
13091 {
13092 FILE * file = (FILE *) ptr;
13093 unsigned long flags;
13094
13095 BFD_ASSERT (abfd != NULL && ptr != NULL);
13096
13097 /* Print normal ELF private data. */
13098 _bfd_elf_print_private_bfd_data (abfd, ptr);
13099
13100 flags = elf_elfheader (abfd)->e_flags;
13101 /* Ignore init flag - it may not be set, despite the flags field
13102 containing valid data. */
13103
13104 /* xgettext:c-format */
13105 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
13106
13107 switch (EF_ARM_EABI_VERSION (flags))
13108 {
13109 case EF_ARM_EABI_UNKNOWN:
13110 /* The following flag bits are GNU extensions and not part of the
13111 official ARM ELF extended ABI. Hence they are only decoded if
13112 the EABI version is not set. */
13113 if (flags & EF_ARM_INTERWORK)
13114 fprintf (file, _(" [interworking enabled]"));
13115
13116 if (flags & EF_ARM_APCS_26)
13117 fprintf (file, " [APCS-26]");
13118 else
13119 fprintf (file, " [APCS-32]");
13120
13121 if (flags & EF_ARM_VFP_FLOAT)
13122 fprintf (file, _(" [VFP float format]"));
13123 else if (flags & EF_ARM_MAVERICK_FLOAT)
13124 fprintf (file, _(" [Maverick float format]"));
13125 else
13126 fprintf (file, _(" [FPA float format]"));
13127
13128 if (flags & EF_ARM_APCS_FLOAT)
13129 fprintf (file, _(" [floats passed in float registers]"));
13130
13131 if (flags & EF_ARM_PIC)
13132 fprintf (file, _(" [position independent]"));
13133
13134 if (flags & EF_ARM_NEW_ABI)
13135 fprintf (file, _(" [new ABI]"));
13136
13137 if (flags & EF_ARM_OLD_ABI)
13138 fprintf (file, _(" [old ABI]"));
13139
13140 if (flags & EF_ARM_SOFT_FLOAT)
13141 fprintf (file, _(" [software FP]"));
13142
13143 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
13144 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
13145 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
13146 | EF_ARM_MAVERICK_FLOAT);
13147 break;
13148
13149 case EF_ARM_EABI_VER1:
13150 fprintf (file, _(" [Version1 EABI]"));
13151
13152 if (flags & EF_ARM_SYMSARESORTED)
13153 fprintf (file, _(" [sorted symbol table]"));
13154 else
13155 fprintf (file, _(" [unsorted symbol table]"));
13156
13157 flags &= ~ EF_ARM_SYMSARESORTED;
13158 break;
13159
13160 case EF_ARM_EABI_VER2:
13161 fprintf (file, _(" [Version2 EABI]"));
13162
13163 if (flags & EF_ARM_SYMSARESORTED)
13164 fprintf (file, _(" [sorted symbol table]"));
13165 else
13166 fprintf (file, _(" [unsorted symbol table]"));
13167
13168 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
13169 fprintf (file, _(" [dynamic symbols use segment index]"));
13170
13171 if (flags & EF_ARM_MAPSYMSFIRST)
13172 fprintf (file, _(" [mapping symbols precede others]"));
13173
13174 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
13175 | EF_ARM_MAPSYMSFIRST);
13176 break;
13177
13178 case EF_ARM_EABI_VER3:
13179 fprintf (file, _(" [Version3 EABI]"));
13180 break;
13181
13182 case EF_ARM_EABI_VER4:
13183 fprintf (file, _(" [Version4 EABI]"));
13184 goto eabi;
13185
13186 case EF_ARM_EABI_VER5:
13187 fprintf (file, _(" [Version5 EABI]"));
13188
13189 if (flags & EF_ARM_ABI_FLOAT_SOFT)
13190 fprintf (file, _(" [soft-float ABI]"));
13191
13192 if (flags & EF_ARM_ABI_FLOAT_HARD)
13193 fprintf (file, _(" [hard-float ABI]"));
13194
13195 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
13196
13197 eabi:
13198 if (flags & EF_ARM_BE8)
13199 fprintf (file, _(" [BE8]"));
13200
13201 if (flags & EF_ARM_LE8)
13202 fprintf (file, _(" [LE8]"));
13203
13204 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
13205 break;
13206
13207 default:
13208 fprintf (file, _(" <EABI version unrecognised>"));
13209 break;
13210 }
13211
13212 flags &= ~ EF_ARM_EABIMASK;
13213
13214 if (flags & EF_ARM_RELEXEC)
13215 fprintf (file, _(" [relocatable executable]"));
13216
13217 flags &= ~EF_ARM_RELEXEC;
13218
13219 if (flags)
13220 fprintf (file, _("<Unrecognised flag bits set>"));
13221
13222 fputc ('\n', file);
13223
13224 return TRUE;
13225 }
13226
13227 static int
13228 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
13229 {
13230 switch (ELF_ST_TYPE (elf_sym->st_info))
13231 {
13232 case STT_ARM_TFUNC:
13233 return ELF_ST_TYPE (elf_sym->st_info);
13234
13235 case STT_ARM_16BIT:
13236 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
13237 This allows us to distinguish between data used by Thumb instructions
13238 and non-data (which is probably code) inside Thumb regions of an
13239 executable. */
13240 if (type != STT_OBJECT && type != STT_TLS)
13241 return ELF_ST_TYPE (elf_sym->st_info);
13242 break;
13243
13244 default:
13245 break;
13246 }
13247
13248 return type;
13249 }
13250
13251 static asection *
13252 elf32_arm_gc_mark_hook (asection *sec,
13253 struct bfd_link_info *info,
13254 Elf_Internal_Rela *rel,
13255 struct elf_link_hash_entry *h,
13256 Elf_Internal_Sym *sym)
13257 {
13258 if (h != NULL)
13259 switch (ELF32_R_TYPE (rel->r_info))
13260 {
13261 case R_ARM_GNU_VTINHERIT:
13262 case R_ARM_GNU_VTENTRY:
13263 return NULL;
13264 }
13265
13266 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
13267 }
13268
13269 /* Update the got entry reference counts for the section being removed. */
13270
13271 static bfd_boolean
13272 elf32_arm_gc_sweep_hook (bfd * abfd,
13273 struct bfd_link_info * info,
13274 asection * sec,
13275 const Elf_Internal_Rela * relocs)
13276 {
13277 Elf_Internal_Shdr *symtab_hdr;
13278 struct elf_link_hash_entry **sym_hashes;
13279 bfd_signed_vma *local_got_refcounts;
13280 const Elf_Internal_Rela *rel, *relend;
13281 struct elf32_arm_link_hash_table * globals;
13282
13283 if (bfd_link_relocatable (info))
13284 return TRUE;
13285
13286 globals = elf32_arm_hash_table (info);
13287 if (globals == NULL)
13288 return FALSE;
13289
13290 elf_section_data (sec)->local_dynrel = NULL;
13291
13292 symtab_hdr = & elf_symtab_hdr (abfd);
13293 sym_hashes = elf_sym_hashes (abfd);
13294 local_got_refcounts = elf_local_got_refcounts (abfd);
13295
13296 check_use_blx (globals);
13297
13298 relend = relocs + sec->reloc_count;
13299 for (rel = relocs; rel < relend; rel++)
13300 {
13301 unsigned long r_symndx;
13302 struct elf_link_hash_entry *h = NULL;
13303 struct elf32_arm_link_hash_entry *eh;
13304 int r_type;
13305 bfd_boolean call_reloc_p;
13306 bfd_boolean may_become_dynamic_p;
13307 bfd_boolean may_need_local_target_p;
13308 union gotplt_union *root_plt;
13309 struct arm_plt_info *arm_plt;
13310
13311 r_symndx = ELF32_R_SYM (rel->r_info);
13312 if (r_symndx >= symtab_hdr->sh_info)
13313 {
13314 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13315 while (h->root.type == bfd_link_hash_indirect
13316 || h->root.type == bfd_link_hash_warning)
13317 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13318 }
13319 eh = (struct elf32_arm_link_hash_entry *) h;
13320
13321 call_reloc_p = FALSE;
13322 may_become_dynamic_p = FALSE;
13323 may_need_local_target_p = FALSE;
13324
13325 r_type = ELF32_R_TYPE (rel->r_info);
13326 r_type = arm_real_reloc_type (globals, r_type);
13327 switch (r_type)
13328 {
13329 case R_ARM_GOT32:
13330 case R_ARM_GOT_PREL:
13331 case R_ARM_TLS_GD32:
13332 case R_ARM_TLS_IE32:
13333 if (h != NULL)
13334 {
13335 if (h->got.refcount > 0)
13336 h->got.refcount -= 1;
13337 }
13338 else if (local_got_refcounts != NULL)
13339 {
13340 if (local_got_refcounts[r_symndx] > 0)
13341 local_got_refcounts[r_symndx] -= 1;
13342 }
13343 break;
13344
13345 case R_ARM_TLS_LDM32:
13346 globals->tls_ldm_got.refcount -= 1;
13347 break;
13348
13349 case R_ARM_PC24:
13350 case R_ARM_PLT32:
13351 case R_ARM_CALL:
13352 case R_ARM_JUMP24:
13353 case R_ARM_PREL31:
13354 case R_ARM_THM_CALL:
13355 case R_ARM_THM_JUMP24:
13356 case R_ARM_THM_JUMP19:
13357 call_reloc_p = TRUE;
13358 may_need_local_target_p = TRUE;
13359 break;
13360
13361 case R_ARM_ABS12:
13362 if (!globals->vxworks_p)
13363 {
13364 may_need_local_target_p = TRUE;
13365 break;
13366 }
13367 /* Fall through. */
13368 case R_ARM_ABS32:
13369 case R_ARM_ABS32_NOI:
13370 case R_ARM_REL32:
13371 case R_ARM_REL32_NOI:
13372 case R_ARM_MOVW_ABS_NC:
13373 case R_ARM_MOVT_ABS:
13374 case R_ARM_MOVW_PREL_NC:
13375 case R_ARM_MOVT_PREL:
13376 case R_ARM_THM_MOVW_ABS_NC:
13377 case R_ARM_THM_MOVT_ABS:
13378 case R_ARM_THM_MOVW_PREL_NC:
13379 case R_ARM_THM_MOVT_PREL:
13380 /* Should the interworking branches be here also? */
13381 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
13382 && (sec->flags & SEC_ALLOC) != 0)
13383 {
13384 if (h == NULL
13385 && elf32_arm_howto_from_type (r_type)->pc_relative)
13386 {
13387 call_reloc_p = TRUE;
13388 may_need_local_target_p = TRUE;
13389 }
13390 else
13391 may_become_dynamic_p = TRUE;
13392 }
13393 else
13394 may_need_local_target_p = TRUE;
13395 break;
13396
13397 default:
13398 break;
13399 }
13400
13401 if (may_need_local_target_p
13402 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
13403 {
13404 /* If PLT refcount book-keeping is wrong and too low, we'll
13405 see a zero value (going to -1) for the root PLT reference
13406 count. */
13407 if (root_plt->refcount >= 0)
13408 {
13409 BFD_ASSERT (root_plt->refcount != 0);
13410 root_plt->refcount -= 1;
13411 }
13412 else
13413 /* A value of -1 means the symbol has become local, forced
13414 or seeing a hidden definition. Any other negative value
13415 is an error. */
13416 BFD_ASSERT (root_plt->refcount == -1);
13417
13418 if (!call_reloc_p)
13419 arm_plt->noncall_refcount--;
13420
13421 if (r_type == R_ARM_THM_CALL)
13422 arm_plt->maybe_thumb_refcount--;
13423
13424 if (r_type == R_ARM_THM_JUMP24
13425 || r_type == R_ARM_THM_JUMP19)
13426 arm_plt->thumb_refcount--;
13427 }
13428
13429 if (may_become_dynamic_p)
13430 {
13431 struct elf_dyn_relocs **pp;
13432 struct elf_dyn_relocs *p;
13433
13434 if (h != NULL)
13435 pp = &(eh->dyn_relocs);
13436 else
13437 {
13438 Elf_Internal_Sym *isym;
13439
13440 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
13441 abfd, r_symndx);
13442 if (isym == NULL)
13443 return FALSE;
13444 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13445 if (pp == NULL)
13446 return FALSE;
13447 }
13448 for (; (p = *pp) != NULL; pp = &p->next)
13449 if (p->sec == sec)
13450 {
13451 /* Everything must go for SEC. */
13452 *pp = p->next;
13453 break;
13454 }
13455 }
13456 }
13457
13458 return TRUE;
13459 }
13460
13461 /* Look through the relocs for a section during the first phase. */
13462
13463 static bfd_boolean
13464 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
13465 asection *sec, const Elf_Internal_Rela *relocs)
13466 {
13467 Elf_Internal_Shdr *symtab_hdr;
13468 struct elf_link_hash_entry **sym_hashes;
13469 const Elf_Internal_Rela *rel;
13470 const Elf_Internal_Rela *rel_end;
13471 bfd *dynobj;
13472 asection *sreloc;
13473 struct elf32_arm_link_hash_table *htab;
13474 bfd_boolean call_reloc_p;
13475 bfd_boolean may_become_dynamic_p;
13476 bfd_boolean may_need_local_target_p;
13477 unsigned long nsyms;
13478
13479 if (bfd_link_relocatable (info))
13480 return TRUE;
13481
13482 BFD_ASSERT (is_arm_elf (abfd));
13483
13484 htab = elf32_arm_hash_table (info);
13485 if (htab == NULL)
13486 return FALSE;
13487
13488 sreloc = NULL;
13489
13490 /* Create dynamic sections for relocatable executables so that we can
13491 copy relocations. */
13492 if (htab->root.is_relocatable_executable
13493 && ! htab->root.dynamic_sections_created)
13494 {
13495 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
13496 return FALSE;
13497 }
13498
13499 if (htab->root.dynobj == NULL)
13500 htab->root.dynobj = abfd;
13501 if (!create_ifunc_sections (info))
13502 return FALSE;
13503
13504 dynobj = htab->root.dynobj;
13505
13506 symtab_hdr = & elf_symtab_hdr (abfd);
13507 sym_hashes = elf_sym_hashes (abfd);
13508 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
13509
13510 rel_end = relocs + sec->reloc_count;
13511 for (rel = relocs; rel < rel_end; rel++)
13512 {
13513 Elf_Internal_Sym *isym;
13514 struct elf_link_hash_entry *h;
13515 struct elf32_arm_link_hash_entry *eh;
13516 unsigned long r_symndx;
13517 int r_type;
13518
13519 r_symndx = ELF32_R_SYM (rel->r_info);
13520 r_type = ELF32_R_TYPE (rel->r_info);
13521 r_type = arm_real_reloc_type (htab, r_type);
13522
13523 if (r_symndx >= nsyms
13524 /* PR 9934: It is possible to have relocations that do not
13525 refer to symbols, thus it is also possible to have an
13526 object file containing relocations but no symbol table. */
13527 && (r_symndx > STN_UNDEF || nsyms > 0))
13528 {
13529 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
13530 r_symndx);
13531 return FALSE;
13532 }
13533
13534 h = NULL;
13535 isym = NULL;
13536 if (nsyms > 0)
13537 {
13538 if (r_symndx < symtab_hdr->sh_info)
13539 {
13540 /* A local symbol. */
13541 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
13542 abfd, r_symndx);
13543 if (isym == NULL)
13544 return FALSE;
13545 }
13546 else
13547 {
13548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13549 while (h->root.type == bfd_link_hash_indirect
13550 || h->root.type == bfd_link_hash_warning)
13551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13552
13553 /* PR15323, ref flags aren't set for references in the
13554 same object. */
13555 h->root.non_ir_ref = 1;
13556 }
13557 }
13558
13559 eh = (struct elf32_arm_link_hash_entry *) h;
13560
13561 call_reloc_p = FALSE;
13562 may_become_dynamic_p = FALSE;
13563 may_need_local_target_p = FALSE;
13564
13565 /* Could be done earlier, if h were already available. */
13566 r_type = elf32_arm_tls_transition (info, r_type, h);
13567 switch (r_type)
13568 {
13569 case R_ARM_GOT32:
13570 case R_ARM_GOT_PREL:
13571 case R_ARM_TLS_GD32:
13572 case R_ARM_TLS_IE32:
13573 case R_ARM_TLS_GOTDESC:
13574 case R_ARM_TLS_DESCSEQ:
13575 case R_ARM_THM_TLS_DESCSEQ:
13576 case R_ARM_TLS_CALL:
13577 case R_ARM_THM_TLS_CALL:
13578 /* This symbol requires a global offset table entry. */
13579 {
13580 int tls_type, old_tls_type;
13581
13582 switch (r_type)
13583 {
13584 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
13585
13586 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
13587
13588 case R_ARM_TLS_GOTDESC:
13589 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
13590 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
13591 tls_type = GOT_TLS_GDESC; break;
13592
13593 default: tls_type = GOT_NORMAL; break;
13594 }
13595
13596 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
13597 info->flags |= DF_STATIC_TLS;
13598
13599 if (h != NULL)
13600 {
13601 h->got.refcount++;
13602 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
13603 }
13604 else
13605 {
13606 /* This is a global offset table entry for a local symbol. */
13607 if (!elf32_arm_allocate_local_sym_info (abfd))
13608 return FALSE;
13609 elf_local_got_refcounts (abfd)[r_symndx] += 1;
13610 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
13611 }
13612
13613 /* If a variable is accessed with both tls methods, two
13614 slots may be created. */
13615 if (GOT_TLS_GD_ANY_P (old_tls_type)
13616 && GOT_TLS_GD_ANY_P (tls_type))
13617 tls_type |= old_tls_type;
13618
13619 /* We will already have issued an error message if there
13620 is a TLS/non-TLS mismatch, based on the symbol
13621 type. So just combine any TLS types needed. */
13622 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
13623 && tls_type != GOT_NORMAL)
13624 tls_type |= old_tls_type;
13625
13626 /* If the symbol is accessed in both IE and GDESC
13627 method, we're able to relax. Turn off the GDESC flag,
13628 without messing up with any other kind of tls types
13629 that may be involved. */
13630 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
13631 tls_type &= ~GOT_TLS_GDESC;
13632
13633 if (old_tls_type != tls_type)
13634 {
13635 if (h != NULL)
13636 elf32_arm_hash_entry (h)->tls_type = tls_type;
13637 else
13638 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
13639 }
13640 }
13641 /* Fall through. */
13642
13643 case R_ARM_TLS_LDM32:
13644 if (r_type == R_ARM_TLS_LDM32)
13645 htab->tls_ldm_got.refcount++;
13646 /* Fall through. */
13647
13648 case R_ARM_GOTOFF32:
13649 case R_ARM_GOTPC:
13650 if (htab->root.sgot == NULL
13651 && !create_got_section (htab->root.dynobj, info))
13652 return FALSE;
13653 break;
13654
13655 case R_ARM_PC24:
13656 case R_ARM_PLT32:
13657 case R_ARM_CALL:
13658 case R_ARM_JUMP24:
13659 case R_ARM_PREL31:
13660 case R_ARM_THM_CALL:
13661 case R_ARM_THM_JUMP24:
13662 case R_ARM_THM_JUMP19:
13663 call_reloc_p = TRUE;
13664 may_need_local_target_p = TRUE;
13665 break;
13666
13667 case R_ARM_ABS12:
13668 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
13669 ldr __GOTT_INDEX__ offsets. */
13670 if (!htab->vxworks_p)
13671 {
13672 may_need_local_target_p = TRUE;
13673 break;
13674 }
13675 else goto jump_over;
13676
13677 /* Fall through. */
13678
13679 case R_ARM_MOVW_ABS_NC:
13680 case R_ARM_MOVT_ABS:
13681 case R_ARM_THM_MOVW_ABS_NC:
13682 case R_ARM_THM_MOVT_ABS:
13683 if (bfd_link_pic (info))
13684 {
13685 (*_bfd_error_handler)
13686 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
13687 abfd, elf32_arm_howto_table_1[r_type].name,
13688 (h) ? h->root.root.string : "a local symbol");
13689 bfd_set_error (bfd_error_bad_value);
13690 return FALSE;
13691 }
13692
13693 /* Fall through. */
13694 case R_ARM_ABS32:
13695 case R_ARM_ABS32_NOI:
13696 jump_over:
13697 if (h != NULL && bfd_link_executable (info))
13698 {
13699 h->pointer_equality_needed = 1;
13700 }
13701 /* Fall through. */
13702 case R_ARM_REL32:
13703 case R_ARM_REL32_NOI:
13704 case R_ARM_MOVW_PREL_NC:
13705 case R_ARM_MOVT_PREL:
13706 case R_ARM_THM_MOVW_PREL_NC:
13707 case R_ARM_THM_MOVT_PREL:
13708
13709 /* Should the interworking branches be listed here? */
13710 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
13711 && (sec->flags & SEC_ALLOC) != 0)
13712 {
13713 if (h == NULL
13714 && elf32_arm_howto_from_type (r_type)->pc_relative)
13715 {
13716 /* In shared libraries and relocatable executables,
13717 we treat local relative references as calls;
13718 see the related SYMBOL_CALLS_LOCAL code in
13719 allocate_dynrelocs. */
13720 call_reloc_p = TRUE;
13721 may_need_local_target_p = TRUE;
13722 }
13723 else
13724 /* We are creating a shared library or relocatable
13725 executable, and this is a reloc against a global symbol,
13726 or a non-PC-relative reloc against a local symbol.
13727 We may need to copy the reloc into the output. */
13728 may_become_dynamic_p = TRUE;
13729 }
13730 else
13731 may_need_local_target_p = TRUE;
13732 break;
13733
13734 /* This relocation describes the C++ object vtable hierarchy.
13735 Reconstruct it for later use during GC. */
13736 case R_ARM_GNU_VTINHERIT:
13737 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
13738 return FALSE;
13739 break;
13740
13741 /* This relocation describes which C++ vtable entries are actually
13742 used. Record for later use during GC. */
13743 case R_ARM_GNU_VTENTRY:
13744 BFD_ASSERT (h != NULL);
13745 if (h != NULL
13746 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
13747 return FALSE;
13748 break;
13749 }
13750
13751 if (h != NULL)
13752 {
13753 if (call_reloc_p)
13754 /* We may need a .plt entry if the function this reloc
13755 refers to is in a different object, regardless of the
13756 symbol's type. We can't tell for sure yet, because
13757 something later might force the symbol local. */
13758 h->needs_plt = 1;
13759 else if (may_need_local_target_p)
13760 /* If this reloc is in a read-only section, we might
13761 need a copy reloc. We can't check reliably at this
13762 stage whether the section is read-only, as input
13763 sections have not yet been mapped to output sections.
13764 Tentatively set the flag for now, and correct in
13765 adjust_dynamic_symbol. */
13766 h->non_got_ref = 1;
13767 }
13768
13769 if (may_need_local_target_p
13770 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
13771 {
13772 union gotplt_union *root_plt;
13773 struct arm_plt_info *arm_plt;
13774 struct arm_local_iplt_info *local_iplt;
13775
13776 if (h != NULL)
13777 {
13778 root_plt = &h->plt;
13779 arm_plt = &eh->plt;
13780 }
13781 else
13782 {
13783 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
13784 if (local_iplt == NULL)
13785 return FALSE;
13786 root_plt = &local_iplt->root;
13787 arm_plt = &local_iplt->arm;
13788 }
13789
13790 /* If the symbol is a function that doesn't bind locally,
13791 this relocation will need a PLT entry. */
13792 if (root_plt->refcount != -1)
13793 root_plt->refcount += 1;
13794
13795 if (!call_reloc_p)
13796 arm_plt->noncall_refcount++;
13797
13798 /* It's too early to use htab->use_blx here, so we have to
13799 record possible blx references separately from
13800 relocs that definitely need a thumb stub. */
13801
13802 if (r_type == R_ARM_THM_CALL)
13803 arm_plt->maybe_thumb_refcount += 1;
13804
13805 if (r_type == R_ARM_THM_JUMP24
13806 || r_type == R_ARM_THM_JUMP19)
13807 arm_plt->thumb_refcount += 1;
13808 }
13809
13810 if (may_become_dynamic_p)
13811 {
13812 struct elf_dyn_relocs *p, **head;
13813
13814 /* Create a reloc section in dynobj. */
13815 if (sreloc == NULL)
13816 {
13817 sreloc = _bfd_elf_make_dynamic_reloc_section
13818 (sec, dynobj, 2, abfd, ! htab->use_rel);
13819
13820 if (sreloc == NULL)
13821 return FALSE;
13822
13823 /* BPABI objects never have dynamic relocations mapped. */
13824 if (htab->symbian_p)
13825 {
13826 flagword flags;
13827
13828 flags = bfd_get_section_flags (dynobj, sreloc);
13829 flags &= ~(SEC_LOAD | SEC_ALLOC);
13830 bfd_set_section_flags (dynobj, sreloc, flags);
13831 }
13832 }
13833
13834 /* If this is a global symbol, count the number of
13835 relocations we need for this symbol. */
13836 if (h != NULL)
13837 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
13838 else
13839 {
13840 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13841 if (head == NULL)
13842 return FALSE;
13843 }
13844
13845 p = *head;
13846 if (p == NULL || p->sec != sec)
13847 {
13848 bfd_size_type amt = sizeof *p;
13849
13850 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13851 if (p == NULL)
13852 return FALSE;
13853 p->next = *head;
13854 *head = p;
13855 p->sec = sec;
13856 p->count = 0;
13857 p->pc_count = 0;
13858 }
13859
13860 if (elf32_arm_howto_from_type (r_type)->pc_relative)
13861 p->pc_count += 1;
13862 p->count += 1;
13863 }
13864 }
13865
13866 return TRUE;
13867 }
13868
13869 /* Unwinding tables are not referenced directly. This pass marks them as
13870 required if the corresponding code section is marked. */
13871
13872 static bfd_boolean
13873 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13874 elf_gc_mark_hook_fn gc_mark_hook)
13875 {
13876 bfd *sub;
13877 Elf_Internal_Shdr **elf_shdrp;
13878 bfd_boolean again;
13879
13880 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13881
13882 /* Marking EH data may cause additional code sections to be marked,
13883 requiring multiple passes. */
13884 again = TRUE;
13885 while (again)
13886 {
13887 again = FALSE;
13888 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13889 {
13890 asection *o;
13891
13892 if (! is_arm_elf (sub))
13893 continue;
13894
13895 elf_shdrp = elf_elfsections (sub);
13896 for (o = sub->sections; o != NULL; o = o->next)
13897 {
13898 Elf_Internal_Shdr *hdr;
13899
13900 hdr = &elf_section_data (o)->this_hdr;
13901 if (hdr->sh_type == SHT_ARM_EXIDX
13902 && hdr->sh_link
13903 && hdr->sh_link < elf_numsections (sub)
13904 && !o->gc_mark
13905 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13906 {
13907 again = TRUE;
13908 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13909 return FALSE;
13910 }
13911 }
13912 }
13913 }
13914
13915 return TRUE;
13916 }
13917
13918 /* Treat mapping symbols as special target symbols. */
13919
13920 static bfd_boolean
13921 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13922 {
13923 return bfd_is_arm_special_symbol_name (sym->name,
13924 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13925 }
13926
13927 /* This is a copy of elf_find_function() from elf.c except that
13928 ARM mapping symbols are ignored when looking for function names
13929 and STT_ARM_TFUNC is considered to a function type. */
13930
13931 static bfd_boolean
13932 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13933 asymbol ** symbols,
13934 asection * section,
13935 bfd_vma offset,
13936 const char ** filename_ptr,
13937 const char ** functionname_ptr)
13938 {
13939 const char * filename = NULL;
13940 asymbol * func = NULL;
13941 bfd_vma low_func = 0;
13942 asymbol ** p;
13943
13944 for (p = symbols; *p != NULL; p++)
13945 {
13946 elf_symbol_type *q;
13947
13948 q = (elf_symbol_type *) *p;
13949
13950 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13951 {
13952 default:
13953 break;
13954 case STT_FILE:
13955 filename = bfd_asymbol_name (&q->symbol);
13956 break;
13957 case STT_FUNC:
13958 case STT_ARM_TFUNC:
13959 case STT_NOTYPE:
13960 /* Skip mapping symbols. */
13961 if ((q->symbol.flags & BSF_LOCAL)
13962 && bfd_is_arm_special_symbol_name (q->symbol.name,
13963 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13964 continue;
13965 /* Fall through. */
13966 if (bfd_get_section (&q->symbol) == section
13967 && q->symbol.value >= low_func
13968 && q->symbol.value <= offset)
13969 {
13970 func = (asymbol *) q;
13971 low_func = q->symbol.value;
13972 }
13973 break;
13974 }
13975 }
13976
13977 if (func == NULL)
13978 return FALSE;
13979
13980 if (filename_ptr)
13981 *filename_ptr = filename;
13982 if (functionname_ptr)
13983 *functionname_ptr = bfd_asymbol_name (func);
13984
13985 return TRUE;
13986 }
13987
13988
13989 /* Find the nearest line to a particular section and offset, for error
13990 reporting. This code is a duplicate of the code in elf.c, except
13991 that it uses arm_elf_find_function. */
13992
13993 static bfd_boolean
13994 elf32_arm_find_nearest_line (bfd * abfd,
13995 asymbol ** symbols,
13996 asection * section,
13997 bfd_vma offset,
13998 const char ** filename_ptr,
13999 const char ** functionname_ptr,
14000 unsigned int * line_ptr,
14001 unsigned int * discriminator_ptr)
14002 {
14003 bfd_boolean found = FALSE;
14004
14005 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
14006 filename_ptr, functionname_ptr,
14007 line_ptr, discriminator_ptr,
14008 dwarf_debug_sections, 0,
14009 & elf_tdata (abfd)->dwarf2_find_line_info))
14010 {
14011 if (!*functionname_ptr)
14012 arm_elf_find_function (abfd, symbols, section, offset,
14013 *filename_ptr ? NULL : filename_ptr,
14014 functionname_ptr);
14015
14016 return TRUE;
14017 }
14018
14019 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
14020 uses DWARF1. */
14021
14022 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
14023 & found, filename_ptr,
14024 functionname_ptr, line_ptr,
14025 & elf_tdata (abfd)->line_info))
14026 return FALSE;
14027
14028 if (found && (*functionname_ptr || *line_ptr))
14029 return TRUE;
14030
14031 if (symbols == NULL)
14032 return FALSE;
14033
14034 if (! arm_elf_find_function (abfd, symbols, section, offset,
14035 filename_ptr, functionname_ptr))
14036 return FALSE;
14037
14038 *line_ptr = 0;
14039 return TRUE;
14040 }
14041
14042 static bfd_boolean
14043 elf32_arm_find_inliner_info (bfd * abfd,
14044 const char ** filename_ptr,
14045 const char ** functionname_ptr,
14046 unsigned int * line_ptr)
14047 {
14048 bfd_boolean found;
14049 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
14050 functionname_ptr, line_ptr,
14051 & elf_tdata (abfd)->dwarf2_find_line_info);
14052 return found;
14053 }
14054
14055 /* Adjust a symbol defined by a dynamic object and referenced by a
14056 regular object. The current definition is in some section of the
14057 dynamic object, but we're not including those sections. We have to
14058 change the definition to something the rest of the link can
14059 understand. */
14060
14061 static bfd_boolean
14062 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
14063 struct elf_link_hash_entry * h)
14064 {
14065 bfd * dynobj;
14066 asection * s;
14067 struct elf32_arm_link_hash_entry * eh;
14068 struct elf32_arm_link_hash_table *globals;
14069
14070 globals = elf32_arm_hash_table (info);
14071 if (globals == NULL)
14072 return FALSE;
14073
14074 dynobj = elf_hash_table (info)->dynobj;
14075
14076 /* Make sure we know what is going on here. */
14077 BFD_ASSERT (dynobj != NULL
14078 && (h->needs_plt
14079 || h->type == STT_GNU_IFUNC
14080 || h->u.weakdef != NULL
14081 || (h->def_dynamic
14082 && h->ref_regular
14083 && !h->def_regular)));
14084
14085 eh = (struct elf32_arm_link_hash_entry *) h;
14086
14087 /* If this is a function, put it in the procedure linkage table. We
14088 will fill in the contents of the procedure linkage table later,
14089 when we know the address of the .got section. */
14090 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
14091 {
14092 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
14093 symbol binds locally. */
14094 if (h->plt.refcount <= 0
14095 || (h->type != STT_GNU_IFUNC
14096 && (SYMBOL_CALLS_LOCAL (info, h)
14097 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
14098 && h->root.type == bfd_link_hash_undefweak))))
14099 {
14100 /* This case can occur if we saw a PLT32 reloc in an input
14101 file, but the symbol was never referred to by a dynamic
14102 object, or if all references were garbage collected. In
14103 such a case, we don't actually need to build a procedure
14104 linkage table, and we can just do a PC24 reloc instead. */
14105 h->plt.offset = (bfd_vma) -1;
14106 eh->plt.thumb_refcount = 0;
14107 eh->plt.maybe_thumb_refcount = 0;
14108 eh->plt.noncall_refcount = 0;
14109 h->needs_plt = 0;
14110 }
14111
14112 return TRUE;
14113 }
14114 else
14115 {
14116 /* It's possible that we incorrectly decided a .plt reloc was
14117 needed for an R_ARM_PC24 or similar reloc to a non-function sym
14118 in check_relocs. We can't decide accurately between function
14119 and non-function syms in check-relocs; Objects loaded later in
14120 the link may change h->type. So fix it now. */
14121 h->plt.offset = (bfd_vma) -1;
14122 eh->plt.thumb_refcount = 0;
14123 eh->plt.maybe_thumb_refcount = 0;
14124 eh->plt.noncall_refcount = 0;
14125 }
14126
14127 /* If this is a weak symbol, and there is a real definition, the
14128 processor independent code will have arranged for us to see the
14129 real definition first, and we can just use the same value. */
14130 if (h->u.weakdef != NULL)
14131 {
14132 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
14133 || h->u.weakdef->root.type == bfd_link_hash_defweak);
14134 h->root.u.def.section = h->u.weakdef->root.u.def.section;
14135 h->root.u.def.value = h->u.weakdef->root.u.def.value;
14136 return TRUE;
14137 }
14138
14139 /* If there are no non-GOT references, we do not need a copy
14140 relocation. */
14141 if (!h->non_got_ref)
14142 return TRUE;
14143
14144 /* This is a reference to a symbol defined by a dynamic object which
14145 is not a function. */
14146
14147 /* If we are creating a shared library, we must presume that the
14148 only references to the symbol are via the global offset table.
14149 For such cases we need not do anything here; the relocations will
14150 be handled correctly by relocate_section. Relocatable executables
14151 can reference data in shared objects directly, so we don't need to
14152 do anything here. */
14153 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
14154 return TRUE;
14155
14156 /* We must allocate the symbol in our .dynbss section, which will
14157 become part of the .bss section of the executable. There will be
14158 an entry for this symbol in the .dynsym section. The dynamic
14159 object will contain position independent code, so all references
14160 from the dynamic object to this symbol will go through the global
14161 offset table. The dynamic linker will use the .dynsym entry to
14162 determine the address it must put in the global offset table, so
14163 both the dynamic object and the regular object will refer to the
14164 same memory location for the variable. */
14165 s = bfd_get_linker_section (dynobj, ".dynbss");
14166 BFD_ASSERT (s != NULL);
14167
14168 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
14169 linker to copy the initial value out of the dynamic object and into
14170 the runtime process image. We need to remember the offset into the
14171 .rel(a).bss section we are going to use. */
14172 if (info->nocopyreloc == 0
14173 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
14174 && h->size != 0)
14175 {
14176 asection *srel;
14177
14178 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
14179 elf32_arm_allocate_dynrelocs (info, srel, 1);
14180 h->needs_copy = 1;
14181 }
14182
14183 return _bfd_elf_adjust_dynamic_copy (info, h, s);
14184 }
14185
14186 /* Allocate space in .plt, .got and associated reloc sections for
14187 dynamic relocs. */
14188
14189 static bfd_boolean
14190 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
14191 {
14192 struct bfd_link_info *info;
14193 struct elf32_arm_link_hash_table *htab;
14194 struct elf32_arm_link_hash_entry *eh;
14195 struct elf_dyn_relocs *p;
14196
14197 if (h->root.type == bfd_link_hash_indirect)
14198 return TRUE;
14199
14200 eh = (struct elf32_arm_link_hash_entry *) h;
14201
14202 info = (struct bfd_link_info *) inf;
14203 htab = elf32_arm_hash_table (info);
14204 if (htab == NULL)
14205 return FALSE;
14206
14207 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
14208 && h->plt.refcount > 0)
14209 {
14210 /* Make sure this symbol is output as a dynamic symbol.
14211 Undefined weak syms won't yet be marked as dynamic. */
14212 if (h->dynindx == -1
14213 && !h->forced_local)
14214 {
14215 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14216 return FALSE;
14217 }
14218
14219 /* If the call in the PLT entry binds locally, the associated
14220 GOT entry should use an R_ARM_IRELATIVE relocation instead of
14221 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
14222 than the .plt section. */
14223 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
14224 {
14225 eh->is_iplt = 1;
14226 if (eh->plt.noncall_refcount == 0
14227 && SYMBOL_REFERENCES_LOCAL (info, h))
14228 /* All non-call references can be resolved directly.
14229 This means that they can (and in some cases, must)
14230 resolve directly to the run-time target, rather than
14231 to the PLT. That in turns means that any .got entry
14232 would be equal to the .igot.plt entry, so there's
14233 no point having both. */
14234 h->got.refcount = 0;
14235 }
14236
14237 if (bfd_link_pic (info)
14238 || eh->is_iplt
14239 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
14240 {
14241 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
14242
14243 /* If this symbol is not defined in a regular file, and we are
14244 not generating a shared library, then set the symbol to this
14245 location in the .plt. This is required to make function
14246 pointers compare as equal between the normal executable and
14247 the shared library. */
14248 if (! bfd_link_pic (info)
14249 && !h->def_regular)
14250 {
14251 h->root.u.def.section = htab->root.splt;
14252 h->root.u.def.value = h->plt.offset;
14253
14254 /* Make sure the function is not marked as Thumb, in case
14255 it is the target of an ABS32 relocation, which will
14256 point to the PLT entry. */
14257 h->target_internal = ST_BRANCH_TO_ARM;
14258 }
14259
14260 /* VxWorks executables have a second set of relocations for
14261 each PLT entry. They go in a separate relocation section,
14262 which is processed by the kernel loader. */
14263 if (htab->vxworks_p && !bfd_link_pic (info))
14264 {
14265 /* There is a relocation for the initial PLT entry:
14266 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
14267 if (h->plt.offset == htab->plt_header_size)
14268 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
14269
14270 /* There are two extra relocations for each subsequent
14271 PLT entry: an R_ARM_32 relocation for the GOT entry,
14272 and an R_ARM_32 relocation for the PLT entry. */
14273 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
14274 }
14275 }
14276 else
14277 {
14278 h->plt.offset = (bfd_vma) -1;
14279 h->needs_plt = 0;
14280 }
14281 }
14282 else
14283 {
14284 h->plt.offset = (bfd_vma) -1;
14285 h->needs_plt = 0;
14286 }
14287
14288 eh = (struct elf32_arm_link_hash_entry *) h;
14289 eh->tlsdesc_got = (bfd_vma) -1;
14290
14291 if (h->got.refcount > 0)
14292 {
14293 asection *s;
14294 bfd_boolean dyn;
14295 int tls_type = elf32_arm_hash_entry (h)->tls_type;
14296 int indx;
14297
14298 /* Make sure this symbol is output as a dynamic symbol.
14299 Undefined weak syms won't yet be marked as dynamic. */
14300 if (h->dynindx == -1
14301 && !h->forced_local)
14302 {
14303 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14304 return FALSE;
14305 }
14306
14307 if (!htab->symbian_p)
14308 {
14309 s = htab->root.sgot;
14310 h->got.offset = s->size;
14311
14312 if (tls_type == GOT_UNKNOWN)
14313 abort ();
14314
14315 if (tls_type == GOT_NORMAL)
14316 /* Non-TLS symbols need one GOT slot. */
14317 s->size += 4;
14318 else
14319 {
14320 if (tls_type & GOT_TLS_GDESC)
14321 {
14322 /* R_ARM_TLS_DESC needs 2 GOT slots. */
14323 eh->tlsdesc_got
14324 = (htab->root.sgotplt->size
14325 - elf32_arm_compute_jump_table_size (htab));
14326 htab->root.sgotplt->size += 8;
14327 h->got.offset = (bfd_vma) -2;
14328 /* plt.got_offset needs to know there's a TLS_DESC
14329 reloc in the middle of .got.plt. */
14330 htab->num_tls_desc++;
14331 }
14332
14333 if (tls_type & GOT_TLS_GD)
14334 {
14335 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
14336 the symbol is both GD and GDESC, got.offset may
14337 have been overwritten. */
14338 h->got.offset = s->size;
14339 s->size += 8;
14340 }
14341
14342 if (tls_type & GOT_TLS_IE)
14343 /* R_ARM_TLS_IE32 needs one GOT slot. */
14344 s->size += 4;
14345 }
14346
14347 dyn = htab->root.dynamic_sections_created;
14348
14349 indx = 0;
14350 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
14351 bfd_link_pic (info),
14352 h)
14353 && (!bfd_link_pic (info)
14354 || !SYMBOL_REFERENCES_LOCAL (info, h)))
14355 indx = h->dynindx;
14356
14357 if (tls_type != GOT_NORMAL
14358 && (bfd_link_pic (info) || indx != 0)
14359 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14360 || h->root.type != bfd_link_hash_undefweak))
14361 {
14362 if (tls_type & GOT_TLS_IE)
14363 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14364
14365 if (tls_type & GOT_TLS_GD)
14366 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14367
14368 if (tls_type & GOT_TLS_GDESC)
14369 {
14370 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
14371 /* GDESC needs a trampoline to jump to. */
14372 htab->tls_trampoline = -1;
14373 }
14374
14375 /* Only GD needs it. GDESC just emits one relocation per
14376 2 entries. */
14377 if ((tls_type & GOT_TLS_GD) && indx != 0)
14378 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14379 }
14380 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
14381 {
14382 if (htab->root.dynamic_sections_created)
14383 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
14384 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14385 }
14386 else if (h->type == STT_GNU_IFUNC
14387 && eh->plt.noncall_refcount == 0)
14388 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
14389 they all resolve dynamically instead. Reserve room for the
14390 GOT entry's R_ARM_IRELATIVE relocation. */
14391 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
14392 else if (bfd_link_pic (info)
14393 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14394 || h->root.type != bfd_link_hash_undefweak))
14395 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
14396 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14397 }
14398 }
14399 else
14400 h->got.offset = (bfd_vma) -1;
14401
14402 /* Allocate stubs for exported Thumb functions on v4t. */
14403 if (!htab->use_blx && h->dynindx != -1
14404 && h->def_regular
14405 && h->target_internal == ST_BRANCH_TO_THUMB
14406 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14407 {
14408 struct elf_link_hash_entry * th;
14409 struct bfd_link_hash_entry * bh;
14410 struct elf_link_hash_entry * myh;
14411 char name[1024];
14412 asection *s;
14413 bh = NULL;
14414 /* Create a new symbol to regist the real location of the function. */
14415 s = h->root.u.def.section;
14416 sprintf (name, "__real_%s", h->root.root.string);
14417 _bfd_generic_link_add_one_symbol (info, s->owner,
14418 name, BSF_GLOBAL, s,
14419 h->root.u.def.value,
14420 NULL, TRUE, FALSE, &bh);
14421
14422 myh = (struct elf_link_hash_entry *) bh;
14423 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14424 myh->forced_local = 1;
14425 myh->target_internal = ST_BRANCH_TO_THUMB;
14426 eh->export_glue = myh;
14427 th = record_arm_to_thumb_glue (info, h);
14428 /* Point the symbol at the stub. */
14429 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
14430 h->target_internal = ST_BRANCH_TO_ARM;
14431 h->root.u.def.section = th->root.u.def.section;
14432 h->root.u.def.value = th->root.u.def.value & ~1;
14433 }
14434
14435 if (eh->dyn_relocs == NULL)
14436 return TRUE;
14437
14438 /* In the shared -Bsymbolic case, discard space allocated for
14439 dynamic pc-relative relocs against symbols which turn out to be
14440 defined in regular objects. For the normal shared case, discard
14441 space for pc-relative relocs that have become local due to symbol
14442 visibility changes. */
14443
14444 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
14445 {
14446 /* Relocs that use pc_count are PC-relative forms, which will appear
14447 on something like ".long foo - ." or "movw REG, foo - .". We want
14448 calls to protected symbols to resolve directly to the function
14449 rather than going via the plt. If people want function pointer
14450 comparisons to work as expected then they should avoid writing
14451 assembly like ".long foo - .". */
14452 if (SYMBOL_CALLS_LOCAL (info, h))
14453 {
14454 struct elf_dyn_relocs **pp;
14455
14456 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14457 {
14458 p->count -= p->pc_count;
14459 p->pc_count = 0;
14460 if (p->count == 0)
14461 *pp = p->next;
14462 else
14463 pp = &p->next;
14464 }
14465 }
14466
14467 if (htab->vxworks_p)
14468 {
14469 struct elf_dyn_relocs **pp;
14470
14471 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14472 {
14473 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
14474 *pp = p->next;
14475 else
14476 pp = &p->next;
14477 }
14478 }
14479
14480 /* Also discard relocs on undefined weak syms with non-default
14481 visibility. */
14482 if (eh->dyn_relocs != NULL
14483 && h->root.type == bfd_link_hash_undefweak)
14484 {
14485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
14486 eh->dyn_relocs = NULL;
14487
14488 /* Make sure undefined weak symbols are output as a dynamic
14489 symbol in PIEs. */
14490 else if (h->dynindx == -1
14491 && !h->forced_local)
14492 {
14493 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14494 return FALSE;
14495 }
14496 }
14497
14498 else if (htab->root.is_relocatable_executable && h->dynindx == -1
14499 && h->root.type == bfd_link_hash_new)
14500 {
14501 /* Output absolute symbols so that we can create relocations
14502 against them. For normal symbols we output a relocation
14503 against the section that contains them. */
14504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14505 return FALSE;
14506 }
14507
14508 }
14509 else
14510 {
14511 /* For the non-shared case, discard space for relocs against
14512 symbols which turn out to need copy relocs or are not
14513 dynamic. */
14514
14515 if (!h->non_got_ref
14516 && ((h->def_dynamic
14517 && !h->def_regular)
14518 || (htab->root.dynamic_sections_created
14519 && (h->root.type == bfd_link_hash_undefweak
14520 || h->root.type == bfd_link_hash_undefined))))
14521 {
14522 /* Make sure this symbol is output as a dynamic symbol.
14523 Undefined weak syms won't yet be marked as dynamic. */
14524 if (h->dynindx == -1
14525 && !h->forced_local)
14526 {
14527 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14528 return FALSE;
14529 }
14530
14531 /* If that succeeded, we know we'll be keeping all the
14532 relocs. */
14533 if (h->dynindx != -1)
14534 goto keep;
14535 }
14536
14537 eh->dyn_relocs = NULL;
14538
14539 keep: ;
14540 }
14541
14542 /* Finally, allocate space. */
14543 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14544 {
14545 asection *sreloc = elf_section_data (p->sec)->sreloc;
14546 if (h->type == STT_GNU_IFUNC
14547 && eh->plt.noncall_refcount == 0
14548 && SYMBOL_REFERENCES_LOCAL (info, h))
14549 elf32_arm_allocate_irelocs (info, sreloc, p->count);
14550 else
14551 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
14552 }
14553
14554 return TRUE;
14555 }
14556
14557 /* Find any dynamic relocs that apply to read-only sections. */
14558
14559 static bfd_boolean
14560 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
14561 {
14562 struct elf32_arm_link_hash_entry * eh;
14563 struct elf_dyn_relocs * p;
14564
14565 eh = (struct elf32_arm_link_hash_entry *) h;
14566 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14567 {
14568 asection *s = p->sec;
14569
14570 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14571 {
14572 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14573
14574 info->flags |= DF_TEXTREL;
14575
14576 /* Not an error, just cut short the traversal. */
14577 return FALSE;
14578 }
14579 }
14580 return TRUE;
14581 }
14582
14583 void
14584 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
14585 int byteswap_code)
14586 {
14587 struct elf32_arm_link_hash_table *globals;
14588
14589 globals = elf32_arm_hash_table (info);
14590 if (globals == NULL)
14591 return;
14592
14593 globals->byteswap_code = byteswap_code;
14594 }
14595
14596 /* Set the sizes of the dynamic sections. */
14597
14598 static bfd_boolean
14599 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
14600 struct bfd_link_info * info)
14601 {
14602 bfd * dynobj;
14603 asection * s;
14604 bfd_boolean plt;
14605 bfd_boolean relocs;
14606 bfd *ibfd;
14607 struct elf32_arm_link_hash_table *htab;
14608
14609 htab = elf32_arm_hash_table (info);
14610 if (htab == NULL)
14611 return FALSE;
14612
14613 dynobj = elf_hash_table (info)->dynobj;
14614 BFD_ASSERT (dynobj != NULL);
14615 check_use_blx (htab);
14616
14617 if (elf_hash_table (info)->dynamic_sections_created)
14618 {
14619 /* Set the contents of the .interp section to the interpreter. */
14620 if (bfd_link_executable (info) && !info->nointerp)
14621 {
14622 s = bfd_get_linker_section (dynobj, ".interp");
14623 BFD_ASSERT (s != NULL);
14624 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
14625 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
14626 }
14627 }
14628
14629 /* Set up .got offsets for local syms, and space for local dynamic
14630 relocs. */
14631 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14632 {
14633 bfd_signed_vma *local_got;
14634 bfd_signed_vma *end_local_got;
14635 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
14636 char *local_tls_type;
14637 bfd_vma *local_tlsdesc_gotent;
14638 bfd_size_type locsymcount;
14639 Elf_Internal_Shdr *symtab_hdr;
14640 asection *srel;
14641 bfd_boolean is_vxworks = htab->vxworks_p;
14642 unsigned int symndx;
14643
14644 if (! is_arm_elf (ibfd))
14645 continue;
14646
14647 for (s = ibfd->sections; s != NULL; s = s->next)
14648 {
14649 struct elf_dyn_relocs *p;
14650
14651 for (p = (struct elf_dyn_relocs *)
14652 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
14653 {
14654 if (!bfd_is_abs_section (p->sec)
14655 && bfd_is_abs_section (p->sec->output_section))
14656 {
14657 /* Input section has been discarded, either because
14658 it is a copy of a linkonce section or due to
14659 linker script /DISCARD/, so we'll be discarding
14660 the relocs too. */
14661 }
14662 else if (is_vxworks
14663 && strcmp (p->sec->output_section->name,
14664 ".tls_vars") == 0)
14665 {
14666 /* Relocations in vxworks .tls_vars sections are
14667 handled specially by the loader. */
14668 }
14669 else if (p->count != 0)
14670 {
14671 srel = elf_section_data (p->sec)->sreloc;
14672 elf32_arm_allocate_dynrelocs (info, srel, p->count);
14673 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
14674 info->flags |= DF_TEXTREL;
14675 }
14676 }
14677 }
14678
14679 local_got = elf_local_got_refcounts (ibfd);
14680 if (!local_got)
14681 continue;
14682
14683 symtab_hdr = & elf_symtab_hdr (ibfd);
14684 locsymcount = symtab_hdr->sh_info;
14685 end_local_got = local_got + locsymcount;
14686 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
14687 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
14688 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
14689 symndx = 0;
14690 s = htab->root.sgot;
14691 srel = htab->root.srelgot;
14692 for (; local_got < end_local_got;
14693 ++local_got, ++local_iplt_ptr, ++local_tls_type,
14694 ++local_tlsdesc_gotent, ++symndx)
14695 {
14696 *local_tlsdesc_gotent = (bfd_vma) -1;
14697 local_iplt = *local_iplt_ptr;
14698 if (local_iplt != NULL)
14699 {
14700 struct elf_dyn_relocs *p;
14701
14702 if (local_iplt->root.refcount > 0)
14703 {
14704 elf32_arm_allocate_plt_entry (info, TRUE,
14705 &local_iplt->root,
14706 &local_iplt->arm);
14707 if (local_iplt->arm.noncall_refcount == 0)
14708 /* All references to the PLT are calls, so all
14709 non-call references can resolve directly to the
14710 run-time target. This means that the .got entry
14711 would be the same as the .igot.plt entry, so there's
14712 no point creating both. */
14713 *local_got = 0;
14714 }
14715 else
14716 {
14717 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
14718 local_iplt->root.offset = (bfd_vma) -1;
14719 }
14720
14721 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
14722 {
14723 asection *psrel;
14724
14725 psrel = elf_section_data (p->sec)->sreloc;
14726 if (local_iplt->arm.noncall_refcount == 0)
14727 elf32_arm_allocate_irelocs (info, psrel, p->count);
14728 else
14729 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
14730 }
14731 }
14732 if (*local_got > 0)
14733 {
14734 Elf_Internal_Sym *isym;
14735
14736 *local_got = s->size;
14737 if (*local_tls_type & GOT_TLS_GD)
14738 /* TLS_GD relocs need an 8-byte structure in the GOT. */
14739 s->size += 8;
14740 if (*local_tls_type & GOT_TLS_GDESC)
14741 {
14742 *local_tlsdesc_gotent = htab->root.sgotplt->size
14743 - elf32_arm_compute_jump_table_size (htab);
14744 htab->root.sgotplt->size += 8;
14745 *local_got = (bfd_vma) -2;
14746 /* plt.got_offset needs to know there's a TLS_DESC
14747 reloc in the middle of .got.plt. */
14748 htab->num_tls_desc++;
14749 }
14750 if (*local_tls_type & GOT_TLS_IE)
14751 s->size += 4;
14752
14753 if (*local_tls_type & GOT_NORMAL)
14754 {
14755 /* If the symbol is both GD and GDESC, *local_got
14756 may have been overwritten. */
14757 *local_got = s->size;
14758 s->size += 4;
14759 }
14760
14761 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
14762 if (isym == NULL)
14763 return FALSE;
14764
14765 /* If all references to an STT_GNU_IFUNC PLT are calls,
14766 then all non-call references, including this GOT entry,
14767 resolve directly to the run-time target. */
14768 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
14769 && (local_iplt == NULL
14770 || local_iplt->arm.noncall_refcount == 0))
14771 elf32_arm_allocate_irelocs (info, srel, 1);
14772 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
14773 {
14774 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
14775 || *local_tls_type & GOT_TLS_GD)
14776 elf32_arm_allocate_dynrelocs (info, srel, 1);
14777
14778 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
14779 {
14780 elf32_arm_allocate_dynrelocs (info,
14781 htab->root.srelplt, 1);
14782 htab->tls_trampoline = -1;
14783 }
14784 }
14785 }
14786 else
14787 *local_got = (bfd_vma) -1;
14788 }
14789 }
14790
14791 if (htab->tls_ldm_got.refcount > 0)
14792 {
14793 /* Allocate two GOT entries and one dynamic relocation (if necessary)
14794 for R_ARM_TLS_LDM32 relocations. */
14795 htab->tls_ldm_got.offset = htab->root.sgot->size;
14796 htab->root.sgot->size += 8;
14797 if (bfd_link_pic (info))
14798 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14799 }
14800 else
14801 htab->tls_ldm_got.offset = -1;
14802
14803 /* Allocate global sym .plt and .got entries, and space for global
14804 sym dynamic relocs. */
14805 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
14806
14807 /* Here we rummage through the found bfds to collect glue information. */
14808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14809 {
14810 if (! is_arm_elf (ibfd))
14811 continue;
14812
14813 /* Initialise mapping tables for code/data. */
14814 bfd_elf32_arm_init_maps (ibfd);
14815
14816 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
14817 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
14818 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
14819 /* xgettext:c-format */
14820 _bfd_error_handler (_("Errors encountered processing file %s"),
14821 ibfd->filename);
14822 }
14823
14824 /* Allocate space for the glue sections now that we've sized them. */
14825 bfd_elf32_arm_allocate_interworking_sections (info);
14826
14827 /* For every jump slot reserved in the sgotplt, reloc_count is
14828 incremented. However, when we reserve space for TLS descriptors,
14829 it's not incremented, so in order to compute the space reserved
14830 for them, it suffices to multiply the reloc count by the jump
14831 slot size. */
14832 if (htab->root.srelplt)
14833 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
14834
14835 if (htab->tls_trampoline)
14836 {
14837 if (htab->root.splt->size == 0)
14838 htab->root.splt->size += htab->plt_header_size;
14839
14840 htab->tls_trampoline = htab->root.splt->size;
14841 htab->root.splt->size += htab->plt_entry_size;
14842
14843 /* If we're not using lazy TLS relocations, don't generate the
14844 PLT and GOT entries they require. */
14845 if (!(info->flags & DF_BIND_NOW))
14846 {
14847 htab->dt_tlsdesc_got = htab->root.sgot->size;
14848 htab->root.sgot->size += 4;
14849
14850 htab->dt_tlsdesc_plt = htab->root.splt->size;
14851 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
14852 }
14853 }
14854
14855 /* The check_relocs and adjust_dynamic_symbol entry points have
14856 determined the sizes of the various dynamic sections. Allocate
14857 memory for them. */
14858 plt = FALSE;
14859 relocs = FALSE;
14860 for (s = dynobj->sections; s != NULL; s = s->next)
14861 {
14862 const char * name;
14863
14864 if ((s->flags & SEC_LINKER_CREATED) == 0)
14865 continue;
14866
14867 /* It's OK to base decisions on the section name, because none
14868 of the dynobj section names depend upon the input files. */
14869 name = bfd_get_section_name (dynobj, s);
14870
14871 if (s == htab->root.splt)
14872 {
14873 /* Remember whether there is a PLT. */
14874 plt = s->size != 0;
14875 }
14876 else if (CONST_STRNEQ (name, ".rel"))
14877 {
14878 if (s->size != 0)
14879 {
14880 /* Remember whether there are any reloc sections other
14881 than .rel(a).plt and .rela.plt.unloaded. */
14882 if (s != htab->root.srelplt && s != htab->srelplt2)
14883 relocs = TRUE;
14884
14885 /* We use the reloc_count field as a counter if we need
14886 to copy relocs into the output file. */
14887 s->reloc_count = 0;
14888 }
14889 }
14890 else if (s != htab->root.sgot
14891 && s != htab->root.sgotplt
14892 && s != htab->root.iplt
14893 && s != htab->root.igotplt
14894 && s != htab->sdynbss)
14895 {
14896 /* It's not one of our sections, so don't allocate space. */
14897 continue;
14898 }
14899
14900 if (s->size == 0)
14901 {
14902 /* If we don't need this section, strip it from the
14903 output file. This is mostly to handle .rel(a).bss and
14904 .rel(a).plt. We must create both sections in
14905 create_dynamic_sections, because they must be created
14906 before the linker maps input sections to output
14907 sections. The linker does that before
14908 adjust_dynamic_symbol is called, and it is that
14909 function which decides whether anything needs to go
14910 into these sections. */
14911 s->flags |= SEC_EXCLUDE;
14912 continue;
14913 }
14914
14915 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14916 continue;
14917
14918 /* Allocate memory for the section contents. */
14919 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14920 if (s->contents == NULL)
14921 return FALSE;
14922 }
14923
14924 if (elf_hash_table (info)->dynamic_sections_created)
14925 {
14926 /* Add some entries to the .dynamic section. We fill in the
14927 values later, in elf32_arm_finish_dynamic_sections, but we
14928 must add the entries now so that we get the correct size for
14929 the .dynamic section. The DT_DEBUG entry is filled in by the
14930 dynamic linker and used by the debugger. */
14931 #define add_dynamic_entry(TAG, VAL) \
14932 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14933
14934 if (bfd_link_executable (info))
14935 {
14936 if (!add_dynamic_entry (DT_DEBUG, 0))
14937 return FALSE;
14938 }
14939
14940 if (plt)
14941 {
14942 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14943 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14944 || !add_dynamic_entry (DT_PLTREL,
14945 htab->use_rel ? DT_REL : DT_RELA)
14946 || !add_dynamic_entry (DT_JMPREL, 0))
14947 return FALSE;
14948
14949 if (htab->dt_tlsdesc_plt &&
14950 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14951 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14952 return FALSE;
14953 }
14954
14955 if (relocs)
14956 {
14957 if (htab->use_rel)
14958 {
14959 if (!add_dynamic_entry (DT_REL, 0)
14960 || !add_dynamic_entry (DT_RELSZ, 0)
14961 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14962 return FALSE;
14963 }
14964 else
14965 {
14966 if (!add_dynamic_entry (DT_RELA, 0)
14967 || !add_dynamic_entry (DT_RELASZ, 0)
14968 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14969 return FALSE;
14970 }
14971 }
14972
14973 /* If any dynamic relocs apply to a read-only section,
14974 then we need a DT_TEXTREL entry. */
14975 if ((info->flags & DF_TEXTREL) == 0)
14976 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14977 info);
14978
14979 if ((info->flags & DF_TEXTREL) != 0)
14980 {
14981 if (!add_dynamic_entry (DT_TEXTREL, 0))
14982 return FALSE;
14983 }
14984 if (htab->vxworks_p
14985 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14986 return FALSE;
14987 }
14988 #undef add_dynamic_entry
14989
14990 return TRUE;
14991 }
14992
14993 /* Size sections even though they're not dynamic. We use it to setup
14994 _TLS_MODULE_BASE_, if needed. */
14995
14996 static bfd_boolean
14997 elf32_arm_always_size_sections (bfd *output_bfd,
14998 struct bfd_link_info *info)
14999 {
15000 asection *tls_sec;
15001
15002 if (bfd_link_relocatable (info))
15003 return TRUE;
15004
15005 tls_sec = elf_hash_table (info)->tls_sec;
15006
15007 if (tls_sec)
15008 {
15009 struct elf_link_hash_entry *tlsbase;
15010
15011 tlsbase = elf_link_hash_lookup
15012 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
15013
15014 if (tlsbase)
15015 {
15016 struct bfd_link_hash_entry *bh = NULL;
15017 const struct elf_backend_data *bed
15018 = get_elf_backend_data (output_bfd);
15019
15020 if (!(_bfd_generic_link_add_one_symbol
15021 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
15022 tls_sec, 0, NULL, FALSE,
15023 bed->collect, &bh)))
15024 return FALSE;
15025
15026 tlsbase->type = STT_TLS;
15027 tlsbase = (struct elf_link_hash_entry *)bh;
15028 tlsbase->def_regular = 1;
15029 tlsbase->other = STV_HIDDEN;
15030 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
15031 }
15032 }
15033 return TRUE;
15034 }
15035
15036 /* Finish up dynamic symbol handling. We set the contents of various
15037 dynamic sections here. */
15038
15039 static bfd_boolean
15040 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
15041 struct bfd_link_info * info,
15042 struct elf_link_hash_entry * h,
15043 Elf_Internal_Sym * sym)
15044 {
15045 struct elf32_arm_link_hash_table *htab;
15046 struct elf32_arm_link_hash_entry *eh;
15047
15048 htab = elf32_arm_hash_table (info);
15049 if (htab == NULL)
15050 return FALSE;
15051
15052 eh = (struct elf32_arm_link_hash_entry *) h;
15053
15054 if (h->plt.offset != (bfd_vma) -1)
15055 {
15056 if (!eh->is_iplt)
15057 {
15058 BFD_ASSERT (h->dynindx != -1);
15059 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
15060 h->dynindx, 0))
15061 return FALSE;
15062 }
15063
15064 if (!h->def_regular)
15065 {
15066 /* Mark the symbol as undefined, rather than as defined in
15067 the .plt section. */
15068 sym->st_shndx = SHN_UNDEF;
15069 /* If the symbol is weak we need to clear the value.
15070 Otherwise, the PLT entry would provide a definition for
15071 the symbol even if the symbol wasn't defined anywhere,
15072 and so the symbol would never be NULL. Leave the value if
15073 there were any relocations where pointer equality matters
15074 (this is a clue for the dynamic linker, to make function
15075 pointer comparisons work between an application and shared
15076 library). */
15077 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
15078 sym->st_value = 0;
15079 }
15080 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
15081 {
15082 /* At least one non-call relocation references this .iplt entry,
15083 so the .iplt entry is the function's canonical address. */
15084 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
15085 sym->st_target_internal = ST_BRANCH_TO_ARM;
15086 sym->st_shndx = (_bfd_elf_section_from_bfd_section
15087 (output_bfd, htab->root.iplt->output_section));
15088 sym->st_value = (h->plt.offset
15089 + htab->root.iplt->output_section->vma
15090 + htab->root.iplt->output_offset);
15091 }
15092 }
15093
15094 if (h->needs_copy)
15095 {
15096 asection * s;
15097 Elf_Internal_Rela rel;
15098
15099 /* This symbol needs a copy reloc. Set it up. */
15100 BFD_ASSERT (h->dynindx != -1
15101 && (h->root.type == bfd_link_hash_defined
15102 || h->root.type == bfd_link_hash_defweak));
15103
15104 s = htab->srelbss;
15105 BFD_ASSERT (s != NULL);
15106
15107 rel.r_addend = 0;
15108 rel.r_offset = (h->root.u.def.value
15109 + h->root.u.def.section->output_section->vma
15110 + h->root.u.def.section->output_offset);
15111 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
15112 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
15113 }
15114
15115 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
15116 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
15117 to the ".got" section. */
15118 if (h == htab->root.hdynamic
15119 || (!htab->vxworks_p && h == htab->root.hgot))
15120 sym->st_shndx = SHN_ABS;
15121
15122 return TRUE;
15123 }
15124
15125 static void
15126 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15127 void *contents,
15128 const unsigned long *template, unsigned count)
15129 {
15130 unsigned ix;
15131
15132 for (ix = 0; ix != count; ix++)
15133 {
15134 unsigned long insn = template[ix];
15135
15136 /* Emit mov pc,rx if bx is not permitted. */
15137 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
15138 insn = (insn & 0xf000000f) | 0x01a0f000;
15139 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
15140 }
15141 }
15142
15143 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
15144 other variants, NaCl needs this entry in a static executable's
15145 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
15146 zero. For .iplt really only the last bundle is useful, and .iplt
15147 could have a shorter first entry, with each individual PLT entry's
15148 relative branch calculated differently so it targets the last
15149 bundle instead of the instruction before it (labelled .Lplt_tail
15150 above). But it's simpler to keep the size and layout of PLT0
15151 consistent with the dynamic case, at the cost of some dead code at
15152 the start of .iplt and the one dead store to the stack at the start
15153 of .Lplt_tail. */
15154 static void
15155 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15156 asection *plt, bfd_vma got_displacement)
15157 {
15158 unsigned int i;
15159
15160 put_arm_insn (htab, output_bfd,
15161 elf32_arm_nacl_plt0_entry[0]
15162 | arm_movw_immediate (got_displacement),
15163 plt->contents + 0);
15164 put_arm_insn (htab, output_bfd,
15165 elf32_arm_nacl_plt0_entry[1]
15166 | arm_movt_immediate (got_displacement),
15167 plt->contents + 4);
15168
15169 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
15170 put_arm_insn (htab, output_bfd,
15171 elf32_arm_nacl_plt0_entry[i],
15172 plt->contents + (i * 4));
15173 }
15174
15175 /* Finish up the dynamic sections. */
15176
15177 static bfd_boolean
15178 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
15179 {
15180 bfd * dynobj;
15181 asection * sgot;
15182 asection * sdyn;
15183 struct elf32_arm_link_hash_table *htab;
15184
15185 htab = elf32_arm_hash_table (info);
15186 if (htab == NULL)
15187 return FALSE;
15188
15189 dynobj = elf_hash_table (info)->dynobj;
15190
15191 sgot = htab->root.sgotplt;
15192 /* A broken linker script might have discarded the dynamic sections.
15193 Catch this here so that we do not seg-fault later on. */
15194 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
15195 return FALSE;
15196 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15197
15198 if (elf_hash_table (info)->dynamic_sections_created)
15199 {
15200 asection *splt;
15201 Elf32_External_Dyn *dyncon, *dynconend;
15202
15203 splt = htab->root.splt;
15204 BFD_ASSERT (splt != NULL && sdyn != NULL);
15205 BFD_ASSERT (htab->symbian_p || sgot != NULL);
15206
15207 dyncon = (Elf32_External_Dyn *) sdyn->contents;
15208 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
15209
15210 for (; dyncon < dynconend; dyncon++)
15211 {
15212 Elf_Internal_Dyn dyn;
15213 const char * name;
15214 asection * s;
15215
15216 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
15217
15218 switch (dyn.d_tag)
15219 {
15220 unsigned int type;
15221
15222 default:
15223 if (htab->vxworks_p
15224 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
15225 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15226 break;
15227
15228 case DT_HASH:
15229 name = ".hash";
15230 goto get_vma_if_bpabi;
15231 case DT_STRTAB:
15232 name = ".dynstr";
15233 goto get_vma_if_bpabi;
15234 case DT_SYMTAB:
15235 name = ".dynsym";
15236 goto get_vma_if_bpabi;
15237 case DT_VERSYM:
15238 name = ".gnu.version";
15239 goto get_vma_if_bpabi;
15240 case DT_VERDEF:
15241 name = ".gnu.version_d";
15242 goto get_vma_if_bpabi;
15243 case DT_VERNEED:
15244 name = ".gnu.version_r";
15245 goto get_vma_if_bpabi;
15246
15247 case DT_PLTGOT:
15248 name = ".got";
15249 goto get_vma;
15250 case DT_JMPREL:
15251 name = RELOC_SECTION (htab, ".plt");
15252 get_vma:
15253 s = bfd_get_section_by_name (output_bfd, name);
15254 if (s == NULL)
15255 {
15256 /* PR ld/14397: Issue an error message if a required section is missing. */
15257 (*_bfd_error_handler)
15258 (_("error: required section '%s' not found in the linker script"), name);
15259 bfd_set_error (bfd_error_invalid_operation);
15260 return FALSE;
15261 }
15262 if (!htab->symbian_p)
15263 dyn.d_un.d_ptr = s->vma;
15264 else
15265 /* In the BPABI, tags in the PT_DYNAMIC section point
15266 at the file offset, not the memory address, for the
15267 convenience of the post linker. */
15268 dyn.d_un.d_ptr = s->filepos;
15269 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15270 break;
15271
15272 get_vma_if_bpabi:
15273 if (htab->symbian_p)
15274 goto get_vma;
15275 break;
15276
15277 case DT_PLTRELSZ:
15278 s = htab->root.srelplt;
15279 BFD_ASSERT (s != NULL);
15280 dyn.d_un.d_val = s->size;
15281 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15282 break;
15283
15284 case DT_RELSZ:
15285 case DT_RELASZ:
15286 if (!htab->symbian_p)
15287 {
15288 /* My reading of the SVR4 ABI indicates that the
15289 procedure linkage table relocs (DT_JMPREL) should be
15290 included in the overall relocs (DT_REL). This is
15291 what Solaris does. However, UnixWare can not handle
15292 that case. Therefore, we override the DT_RELSZ entry
15293 here to make it not include the JMPREL relocs. Since
15294 the linker script arranges for .rel(a).plt to follow all
15295 other relocation sections, we don't have to worry
15296 about changing the DT_REL entry. */
15297 s = htab->root.srelplt;
15298 if (s != NULL)
15299 dyn.d_un.d_val -= s->size;
15300 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15301 break;
15302 }
15303 /* Fall through. */
15304
15305 case DT_REL:
15306 case DT_RELA:
15307 /* In the BPABI, the DT_REL tag must point at the file
15308 offset, not the VMA, of the first relocation
15309 section. So, we use code similar to that in
15310 elflink.c, but do not check for SHF_ALLOC on the
15311 relcoation section, since relocations sections are
15312 never allocated under the BPABI. The comments above
15313 about Unixware notwithstanding, we include all of the
15314 relocations here. */
15315 if (htab->symbian_p)
15316 {
15317 unsigned int i;
15318 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
15319 ? SHT_REL : SHT_RELA);
15320 dyn.d_un.d_val = 0;
15321 for (i = 1; i < elf_numsections (output_bfd); i++)
15322 {
15323 Elf_Internal_Shdr *hdr
15324 = elf_elfsections (output_bfd)[i];
15325 if (hdr->sh_type == type)
15326 {
15327 if (dyn.d_tag == DT_RELSZ
15328 || dyn.d_tag == DT_RELASZ)
15329 dyn.d_un.d_val += hdr->sh_size;
15330 else if ((ufile_ptr) hdr->sh_offset
15331 <= dyn.d_un.d_val - 1)
15332 dyn.d_un.d_val = hdr->sh_offset;
15333 }
15334 }
15335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15336 }
15337 break;
15338
15339 case DT_TLSDESC_PLT:
15340 s = htab->root.splt;
15341 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15342 + htab->dt_tlsdesc_plt);
15343 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15344 break;
15345
15346 case DT_TLSDESC_GOT:
15347 s = htab->root.sgot;
15348 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15349 + htab->dt_tlsdesc_got);
15350 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15351 break;
15352
15353 /* Set the bottom bit of DT_INIT/FINI if the
15354 corresponding function is Thumb. */
15355 case DT_INIT:
15356 name = info->init_function;
15357 goto get_sym;
15358 case DT_FINI:
15359 name = info->fini_function;
15360 get_sym:
15361 /* If it wasn't set by elf_bfd_final_link
15362 then there is nothing to adjust. */
15363 if (dyn.d_un.d_val != 0)
15364 {
15365 struct elf_link_hash_entry * eh;
15366
15367 eh = elf_link_hash_lookup (elf_hash_table (info), name,
15368 FALSE, FALSE, TRUE);
15369 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
15370 {
15371 dyn.d_un.d_val |= 1;
15372 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15373 }
15374 }
15375 break;
15376 }
15377 }
15378
15379 /* Fill in the first entry in the procedure linkage table. */
15380 if (splt->size > 0 && htab->plt_header_size)
15381 {
15382 const bfd_vma *plt0_entry;
15383 bfd_vma got_address, plt_address, got_displacement;
15384
15385 /* Calculate the addresses of the GOT and PLT. */
15386 got_address = sgot->output_section->vma + sgot->output_offset;
15387 plt_address = splt->output_section->vma + splt->output_offset;
15388
15389 if (htab->vxworks_p)
15390 {
15391 /* The VxWorks GOT is relocated by the dynamic linker.
15392 Therefore, we must emit relocations rather than simply
15393 computing the values now. */
15394 Elf_Internal_Rela rel;
15395
15396 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
15397 put_arm_insn (htab, output_bfd, plt0_entry[0],
15398 splt->contents + 0);
15399 put_arm_insn (htab, output_bfd, plt0_entry[1],
15400 splt->contents + 4);
15401 put_arm_insn (htab, output_bfd, plt0_entry[2],
15402 splt->contents + 8);
15403 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
15404
15405 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
15406 rel.r_offset = plt_address + 12;
15407 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15408 rel.r_addend = 0;
15409 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
15410 htab->srelplt2->contents);
15411 }
15412 else if (htab->nacl_p)
15413 arm_nacl_put_plt0 (htab, output_bfd, splt,
15414 got_address + 8 - (plt_address + 16));
15415 else if (using_thumb_only (htab))
15416 {
15417 got_displacement = got_address - (plt_address + 12);
15418
15419 plt0_entry = elf32_thumb2_plt0_entry;
15420 put_arm_insn (htab, output_bfd, plt0_entry[0],
15421 splt->contents + 0);
15422 put_arm_insn (htab, output_bfd, plt0_entry[1],
15423 splt->contents + 4);
15424 put_arm_insn (htab, output_bfd, plt0_entry[2],
15425 splt->contents + 8);
15426
15427 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
15428 }
15429 else
15430 {
15431 got_displacement = got_address - (plt_address + 16);
15432
15433 plt0_entry = elf32_arm_plt0_entry;
15434 put_arm_insn (htab, output_bfd, plt0_entry[0],
15435 splt->contents + 0);
15436 put_arm_insn (htab, output_bfd, plt0_entry[1],
15437 splt->contents + 4);
15438 put_arm_insn (htab, output_bfd, plt0_entry[2],
15439 splt->contents + 8);
15440 put_arm_insn (htab, output_bfd, plt0_entry[3],
15441 splt->contents + 12);
15442
15443 #ifdef FOUR_WORD_PLT
15444 /* The displacement value goes in the otherwise-unused
15445 last word of the second entry. */
15446 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
15447 #else
15448 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
15449 #endif
15450 }
15451 }
15452
15453 /* UnixWare sets the entsize of .plt to 4, although that doesn't
15454 really seem like the right value. */
15455 if (splt->output_section->owner == output_bfd)
15456 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
15457
15458 if (htab->dt_tlsdesc_plt)
15459 {
15460 bfd_vma got_address
15461 = sgot->output_section->vma + sgot->output_offset;
15462 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
15463 + htab->root.sgot->output_offset);
15464 bfd_vma plt_address
15465 = splt->output_section->vma + splt->output_offset;
15466
15467 arm_put_trampoline (htab, output_bfd,
15468 splt->contents + htab->dt_tlsdesc_plt,
15469 dl_tlsdesc_lazy_trampoline, 6);
15470
15471 bfd_put_32 (output_bfd,
15472 gotplt_address + htab->dt_tlsdesc_got
15473 - (plt_address + htab->dt_tlsdesc_plt)
15474 - dl_tlsdesc_lazy_trampoline[6],
15475 splt->contents + htab->dt_tlsdesc_plt + 24);
15476 bfd_put_32 (output_bfd,
15477 got_address - (plt_address + htab->dt_tlsdesc_plt)
15478 - dl_tlsdesc_lazy_trampoline[7],
15479 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
15480 }
15481
15482 if (htab->tls_trampoline)
15483 {
15484 arm_put_trampoline (htab, output_bfd,
15485 splt->contents + htab->tls_trampoline,
15486 tls_trampoline, 3);
15487 #ifdef FOUR_WORD_PLT
15488 bfd_put_32 (output_bfd, 0x00000000,
15489 splt->contents + htab->tls_trampoline + 12);
15490 #endif
15491 }
15492
15493 if (htab->vxworks_p
15494 && !bfd_link_pic (info)
15495 && htab->root.splt->size > 0)
15496 {
15497 /* Correct the .rel(a).plt.unloaded relocations. They will have
15498 incorrect symbol indexes. */
15499 int num_plts;
15500 unsigned char *p;
15501
15502 num_plts = ((htab->root.splt->size - htab->plt_header_size)
15503 / htab->plt_entry_size);
15504 p = htab->srelplt2->contents + RELOC_SIZE (htab);
15505
15506 for (; num_plts; num_plts--)
15507 {
15508 Elf_Internal_Rela rel;
15509
15510 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15512 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15513 p += RELOC_SIZE (htab);
15514
15515 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15516 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
15517 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15518 p += RELOC_SIZE (htab);
15519 }
15520 }
15521 }
15522
15523 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
15524 /* NaCl uses a special first entry in .iplt too. */
15525 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
15526
15527 /* Fill in the first three entries in the global offset table. */
15528 if (sgot)
15529 {
15530 if (sgot->size > 0)
15531 {
15532 if (sdyn == NULL)
15533 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
15534 else
15535 bfd_put_32 (output_bfd,
15536 sdyn->output_section->vma + sdyn->output_offset,
15537 sgot->contents);
15538 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
15539 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
15540 }
15541
15542 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
15543 }
15544
15545 return TRUE;
15546 }
15547
15548 static void
15549 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
15550 {
15551 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
15552 struct elf32_arm_link_hash_table *globals;
15553 struct elf_segment_map *m;
15554
15555 i_ehdrp = elf_elfheader (abfd);
15556
15557 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
15558 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
15559 else
15560 _bfd_elf_post_process_headers (abfd, link_info);
15561 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
15562
15563 if (link_info)
15564 {
15565 globals = elf32_arm_hash_table (link_info);
15566 if (globals != NULL && globals->byteswap_code)
15567 i_ehdrp->e_flags |= EF_ARM_BE8;
15568 }
15569
15570 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
15571 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
15572 {
15573 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
15574 if (abi == AEABI_VFP_args_vfp)
15575 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
15576 else
15577 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
15578 }
15579
15580 /* Scan segment to set p_flags attribute if it contains only sections with
15581 SHF_ARM_NOREAD flag. */
15582 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
15583 {
15584 unsigned int j;
15585
15586 if (m->count == 0)
15587 continue;
15588 for (j = 0; j < m->count; j++)
15589 {
15590 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_NOREAD))
15591 break;
15592 }
15593 if (j == m->count)
15594 {
15595 m->p_flags = PF_X;
15596 m->p_flags_valid = 1;
15597 }
15598 }
15599 }
15600
15601 static enum elf_reloc_type_class
15602 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
15603 const asection *rel_sec ATTRIBUTE_UNUSED,
15604 const Elf_Internal_Rela *rela)
15605 {
15606 switch ((int) ELF32_R_TYPE (rela->r_info))
15607 {
15608 case R_ARM_RELATIVE:
15609 return reloc_class_relative;
15610 case R_ARM_JUMP_SLOT:
15611 return reloc_class_plt;
15612 case R_ARM_COPY:
15613 return reloc_class_copy;
15614 case R_ARM_IRELATIVE:
15615 return reloc_class_ifunc;
15616 default:
15617 return reloc_class_normal;
15618 }
15619 }
15620
15621 static void
15622 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
15623 {
15624 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
15625 }
15626
15627 /* Return TRUE if this is an unwinding table entry. */
15628
15629 static bfd_boolean
15630 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
15631 {
15632 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
15633 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
15634 }
15635
15636
15637 /* Set the type and flags for an ARM section. We do this by
15638 the section name, which is a hack, but ought to work. */
15639
15640 static bfd_boolean
15641 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
15642 {
15643 const char * name;
15644
15645 name = bfd_get_section_name (abfd, sec);
15646
15647 if (is_arm_elf_unwind_section_name (abfd, name))
15648 {
15649 hdr->sh_type = SHT_ARM_EXIDX;
15650 hdr->sh_flags |= SHF_LINK_ORDER;
15651 }
15652
15653 if (sec->flags & SEC_ELF_NOREAD)
15654 hdr->sh_flags |= SHF_ARM_NOREAD;
15655
15656 return TRUE;
15657 }
15658
15659 /* Handle an ARM specific section when reading an object file. This is
15660 called when bfd_section_from_shdr finds a section with an unknown
15661 type. */
15662
15663 static bfd_boolean
15664 elf32_arm_section_from_shdr (bfd *abfd,
15665 Elf_Internal_Shdr * hdr,
15666 const char *name,
15667 int shindex)
15668 {
15669 /* There ought to be a place to keep ELF backend specific flags, but
15670 at the moment there isn't one. We just keep track of the
15671 sections by their name, instead. Fortunately, the ABI gives
15672 names for all the ARM specific sections, so we will probably get
15673 away with this. */
15674 switch (hdr->sh_type)
15675 {
15676 case SHT_ARM_EXIDX:
15677 case SHT_ARM_PREEMPTMAP:
15678 case SHT_ARM_ATTRIBUTES:
15679 break;
15680
15681 default:
15682 return FALSE;
15683 }
15684
15685 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
15686 return FALSE;
15687
15688 return TRUE;
15689 }
15690
15691 static _arm_elf_section_data *
15692 get_arm_elf_section_data (asection * sec)
15693 {
15694 if (sec && sec->owner && is_arm_elf (sec->owner))
15695 return elf32_arm_section_data (sec);
15696 else
15697 return NULL;
15698 }
15699
15700 typedef struct
15701 {
15702 void *flaginfo;
15703 struct bfd_link_info *info;
15704 asection *sec;
15705 int sec_shndx;
15706 int (*func) (void *, const char *, Elf_Internal_Sym *,
15707 asection *, struct elf_link_hash_entry *);
15708 } output_arch_syminfo;
15709
15710 enum map_symbol_type
15711 {
15712 ARM_MAP_ARM,
15713 ARM_MAP_THUMB,
15714 ARM_MAP_DATA
15715 };
15716
15717
15718 /* Output a single mapping symbol. */
15719
15720 static bfd_boolean
15721 elf32_arm_output_map_sym (output_arch_syminfo *osi,
15722 enum map_symbol_type type,
15723 bfd_vma offset)
15724 {
15725 static const char *names[3] = {"$a", "$t", "$d"};
15726 Elf_Internal_Sym sym;
15727
15728 sym.st_value = osi->sec->output_section->vma
15729 + osi->sec->output_offset
15730 + offset;
15731 sym.st_size = 0;
15732 sym.st_other = 0;
15733 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
15734 sym.st_shndx = osi->sec_shndx;
15735 sym.st_target_internal = 0;
15736 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
15737 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
15738 }
15739
15740 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
15741 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
15742
15743 static bfd_boolean
15744 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
15745 bfd_boolean is_iplt_entry_p,
15746 union gotplt_union *root_plt,
15747 struct arm_plt_info *arm_plt)
15748 {
15749 struct elf32_arm_link_hash_table *htab;
15750 bfd_vma addr, plt_header_size;
15751
15752 if (root_plt->offset == (bfd_vma) -1)
15753 return TRUE;
15754
15755 htab = elf32_arm_hash_table (osi->info);
15756 if (htab == NULL)
15757 return FALSE;
15758
15759 if (is_iplt_entry_p)
15760 {
15761 osi->sec = htab->root.iplt;
15762 plt_header_size = 0;
15763 }
15764 else
15765 {
15766 osi->sec = htab->root.splt;
15767 plt_header_size = htab->plt_header_size;
15768 }
15769 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
15770 (osi->info->output_bfd, osi->sec->output_section));
15771
15772 addr = root_plt->offset & -2;
15773 if (htab->symbian_p)
15774 {
15775 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15776 return FALSE;
15777 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
15778 return FALSE;
15779 }
15780 else if (htab->vxworks_p)
15781 {
15782 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15783 return FALSE;
15784 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
15785 return FALSE;
15786 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
15787 return FALSE;
15788 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
15789 return FALSE;
15790 }
15791 else if (htab->nacl_p)
15792 {
15793 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15794 return FALSE;
15795 }
15796 else if (using_thumb_only (htab))
15797 {
15798 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
15799 return FALSE;
15800 }
15801 else
15802 {
15803 bfd_boolean thumb_stub_p;
15804
15805 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
15806 if (thumb_stub_p)
15807 {
15808 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
15809 return FALSE;
15810 }
15811 #ifdef FOUR_WORD_PLT
15812 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15813 return FALSE;
15814 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
15815 return FALSE;
15816 #else
15817 /* A three-word PLT with no Thumb thunk contains only Arm code,
15818 so only need to output a mapping symbol for the first PLT entry and
15819 entries with thumb thunks. */
15820 if (thumb_stub_p || addr == plt_header_size)
15821 {
15822 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15823 return FALSE;
15824 }
15825 #endif
15826 }
15827
15828 return TRUE;
15829 }
15830
15831 /* Output mapping symbols for PLT entries associated with H. */
15832
15833 static bfd_boolean
15834 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
15835 {
15836 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
15837 struct elf32_arm_link_hash_entry *eh;
15838
15839 if (h->root.type == bfd_link_hash_indirect)
15840 return TRUE;
15841
15842 if (h->root.type == bfd_link_hash_warning)
15843 /* When warning symbols are created, they **replace** the "real"
15844 entry in the hash table, thus we never get to see the real
15845 symbol in a hash traversal. So look at it now. */
15846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15847
15848 eh = (struct elf32_arm_link_hash_entry *) h;
15849 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
15850 &h->plt, &eh->plt);
15851 }
15852
15853 /* Output a single local symbol for a generated stub. */
15854
15855 static bfd_boolean
15856 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
15857 bfd_vma offset, bfd_vma size)
15858 {
15859 Elf_Internal_Sym sym;
15860
15861 sym.st_value = osi->sec->output_section->vma
15862 + osi->sec->output_offset
15863 + offset;
15864 sym.st_size = size;
15865 sym.st_other = 0;
15866 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15867 sym.st_shndx = osi->sec_shndx;
15868 sym.st_target_internal = 0;
15869 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
15870 }
15871
15872 static bfd_boolean
15873 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
15874 void * in_arg)
15875 {
15876 struct elf32_arm_stub_hash_entry *stub_entry;
15877 asection *stub_sec;
15878 bfd_vma addr;
15879 char *stub_name;
15880 output_arch_syminfo *osi;
15881 const insn_sequence *template_sequence;
15882 enum stub_insn_type prev_type;
15883 int size;
15884 int i;
15885 enum map_symbol_type sym_type;
15886
15887 /* Massage our args to the form they really have. */
15888 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15889 osi = (output_arch_syminfo *) in_arg;
15890
15891 stub_sec = stub_entry->stub_sec;
15892
15893 /* Ensure this stub is attached to the current section being
15894 processed. */
15895 if (stub_sec != osi->sec)
15896 return TRUE;
15897
15898 addr = (bfd_vma) stub_entry->stub_offset;
15899 stub_name = stub_entry->output_name;
15900
15901 template_sequence = stub_entry->stub_template;
15902 switch (template_sequence[0].type)
15903 {
15904 case ARM_TYPE:
15905 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
15906 return FALSE;
15907 break;
15908 case THUMB16_TYPE:
15909 case THUMB32_TYPE:
15910 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15911 stub_entry->stub_size))
15912 return FALSE;
15913 break;
15914 default:
15915 BFD_FAIL ();
15916 return 0;
15917 }
15918
15919 prev_type = DATA_TYPE;
15920 size = 0;
15921 for (i = 0; i < stub_entry->stub_template_size; i++)
15922 {
15923 switch (template_sequence[i].type)
15924 {
15925 case ARM_TYPE:
15926 sym_type = ARM_MAP_ARM;
15927 break;
15928
15929 case THUMB16_TYPE:
15930 case THUMB32_TYPE:
15931 sym_type = ARM_MAP_THUMB;
15932 break;
15933
15934 case DATA_TYPE:
15935 sym_type = ARM_MAP_DATA;
15936 break;
15937
15938 default:
15939 BFD_FAIL ();
15940 return FALSE;
15941 }
15942
15943 if (template_sequence[i].type != prev_type)
15944 {
15945 prev_type = template_sequence[i].type;
15946 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15947 return FALSE;
15948 }
15949
15950 switch (template_sequence[i].type)
15951 {
15952 case ARM_TYPE:
15953 case THUMB32_TYPE:
15954 size += 4;
15955 break;
15956
15957 case THUMB16_TYPE:
15958 size += 2;
15959 break;
15960
15961 case DATA_TYPE:
15962 size += 4;
15963 break;
15964
15965 default:
15966 BFD_FAIL ();
15967 return FALSE;
15968 }
15969 }
15970
15971 return TRUE;
15972 }
15973
15974 /* Output mapping symbols for linker generated sections,
15975 and for those data-only sections that do not have a
15976 $d. */
15977
15978 static bfd_boolean
15979 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15980 struct bfd_link_info *info,
15981 void *flaginfo,
15982 int (*func) (void *, const char *,
15983 Elf_Internal_Sym *,
15984 asection *,
15985 struct elf_link_hash_entry *))
15986 {
15987 output_arch_syminfo osi;
15988 struct elf32_arm_link_hash_table *htab;
15989 bfd_vma offset;
15990 bfd_size_type size;
15991 bfd *input_bfd;
15992
15993 htab = elf32_arm_hash_table (info);
15994 if (htab == NULL)
15995 return FALSE;
15996
15997 check_use_blx (htab);
15998
15999 osi.flaginfo = flaginfo;
16000 osi.info = info;
16001 osi.func = func;
16002
16003 /* Add a $d mapping symbol to data-only sections that
16004 don't have any mapping symbol. This may result in (harmless) redundant
16005 mapping symbols. */
16006 for (input_bfd = info->input_bfds;
16007 input_bfd != NULL;
16008 input_bfd = input_bfd->link.next)
16009 {
16010 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
16011 for (osi.sec = input_bfd->sections;
16012 osi.sec != NULL;
16013 osi.sec = osi.sec->next)
16014 {
16015 if (osi.sec->output_section != NULL
16016 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
16017 != 0)
16018 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
16019 == SEC_HAS_CONTENTS
16020 && get_arm_elf_section_data (osi.sec) != NULL
16021 && get_arm_elf_section_data (osi.sec)->mapcount == 0
16022 && osi.sec->size > 0
16023 && (osi.sec->flags & SEC_EXCLUDE) == 0)
16024 {
16025 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16026 (output_bfd, osi.sec->output_section);
16027 if (osi.sec_shndx != (int)SHN_BAD)
16028 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
16029 }
16030 }
16031 }
16032
16033 /* ARM->Thumb glue. */
16034 if (htab->arm_glue_size > 0)
16035 {
16036 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16037 ARM2THUMB_GLUE_SECTION_NAME);
16038
16039 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16040 (output_bfd, osi.sec->output_section);
16041 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
16042 || htab->pic_veneer)
16043 size = ARM2THUMB_PIC_GLUE_SIZE;
16044 else if (htab->use_blx)
16045 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
16046 else
16047 size = ARM2THUMB_STATIC_GLUE_SIZE;
16048
16049 for (offset = 0; offset < htab->arm_glue_size; offset += size)
16050 {
16051 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
16052 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
16053 }
16054 }
16055
16056 /* Thumb->ARM glue. */
16057 if (htab->thumb_glue_size > 0)
16058 {
16059 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16060 THUMB2ARM_GLUE_SECTION_NAME);
16061
16062 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16063 (output_bfd, osi.sec->output_section);
16064 size = THUMB2ARM_GLUE_SIZE;
16065
16066 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
16067 {
16068 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
16069 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
16070 }
16071 }
16072
16073 /* ARMv4 BX veneers. */
16074 if (htab->bx_glue_size > 0)
16075 {
16076 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16077 ARM_BX_GLUE_SECTION_NAME);
16078
16079 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16080 (output_bfd, osi.sec->output_section);
16081
16082 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
16083 }
16084
16085 /* Long calls stubs. */
16086 if (htab->stub_bfd && htab->stub_bfd->sections)
16087 {
16088 asection* stub_sec;
16089
16090 for (stub_sec = htab->stub_bfd->sections;
16091 stub_sec != NULL;
16092 stub_sec = stub_sec->next)
16093 {
16094 /* Ignore non-stub sections. */
16095 if (!strstr (stub_sec->name, STUB_SUFFIX))
16096 continue;
16097
16098 osi.sec = stub_sec;
16099
16100 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16101 (output_bfd, osi.sec->output_section);
16102
16103 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
16104 }
16105 }
16106
16107 /* Finally, output mapping symbols for the PLT. */
16108 if (htab->root.splt && htab->root.splt->size > 0)
16109 {
16110 osi.sec = htab->root.splt;
16111 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16112 (output_bfd, osi.sec->output_section));
16113
16114 /* Output mapping symbols for the plt header. SymbianOS does not have a
16115 plt header. */
16116 if (htab->vxworks_p)
16117 {
16118 /* VxWorks shared libraries have no PLT header. */
16119 if (!bfd_link_pic (info))
16120 {
16121 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16122 return FALSE;
16123 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16124 return FALSE;
16125 }
16126 }
16127 else if (htab->nacl_p)
16128 {
16129 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16130 return FALSE;
16131 }
16132 else if (using_thumb_only (htab))
16133 {
16134 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
16135 return FALSE;
16136 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16137 return FALSE;
16138 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
16139 return FALSE;
16140 }
16141 else if (!htab->symbian_p)
16142 {
16143 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16144 return FALSE;
16145 #ifndef FOUR_WORD_PLT
16146 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
16147 return FALSE;
16148 #endif
16149 }
16150 }
16151 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
16152 {
16153 /* NaCl uses a special first entry in .iplt too. */
16154 osi.sec = htab->root.iplt;
16155 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16156 (output_bfd, osi.sec->output_section));
16157 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16158 return FALSE;
16159 }
16160 if ((htab->root.splt && htab->root.splt->size > 0)
16161 || (htab->root.iplt && htab->root.iplt->size > 0))
16162 {
16163 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
16164 for (input_bfd = info->input_bfds;
16165 input_bfd != NULL;
16166 input_bfd = input_bfd->link.next)
16167 {
16168 struct arm_local_iplt_info **local_iplt;
16169 unsigned int i, num_syms;
16170
16171 local_iplt = elf32_arm_local_iplt (input_bfd);
16172 if (local_iplt != NULL)
16173 {
16174 num_syms = elf_symtab_hdr (input_bfd).sh_info;
16175 for (i = 0; i < num_syms; i++)
16176 if (local_iplt[i] != NULL
16177 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
16178 &local_iplt[i]->root,
16179 &local_iplt[i]->arm))
16180 return FALSE;
16181 }
16182 }
16183 }
16184 if (htab->dt_tlsdesc_plt != 0)
16185 {
16186 /* Mapping symbols for the lazy tls trampoline. */
16187 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
16188 return FALSE;
16189
16190 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16191 htab->dt_tlsdesc_plt + 24))
16192 return FALSE;
16193 }
16194 if (htab->tls_trampoline != 0)
16195 {
16196 /* Mapping symbols for the tls trampoline. */
16197 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
16198 return FALSE;
16199 #ifdef FOUR_WORD_PLT
16200 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16201 htab->tls_trampoline + 12))
16202 return FALSE;
16203 #endif
16204 }
16205
16206 return TRUE;
16207 }
16208
16209 /* Allocate target specific section data. */
16210
16211 static bfd_boolean
16212 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
16213 {
16214 if (!sec->used_by_bfd)
16215 {
16216 _arm_elf_section_data *sdata;
16217 bfd_size_type amt = sizeof (*sdata);
16218
16219 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
16220 if (sdata == NULL)
16221 return FALSE;
16222 sec->used_by_bfd = sdata;
16223 }
16224
16225 return _bfd_elf_new_section_hook (abfd, sec);
16226 }
16227
16228
16229 /* Used to order a list of mapping symbols by address. */
16230
16231 static int
16232 elf32_arm_compare_mapping (const void * a, const void * b)
16233 {
16234 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
16235 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
16236
16237 if (amap->vma > bmap->vma)
16238 return 1;
16239 else if (amap->vma < bmap->vma)
16240 return -1;
16241 else if (amap->type > bmap->type)
16242 /* Ensure results do not depend on the host qsort for objects with
16243 multiple mapping symbols at the same address by sorting on type
16244 after vma. */
16245 return 1;
16246 else if (amap->type < bmap->type)
16247 return -1;
16248 else
16249 return 0;
16250 }
16251
16252 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
16253
16254 static unsigned long
16255 offset_prel31 (unsigned long addr, bfd_vma offset)
16256 {
16257 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
16258 }
16259
16260 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
16261 relocations. */
16262
16263 static void
16264 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
16265 {
16266 unsigned long first_word = bfd_get_32 (output_bfd, from);
16267 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
16268
16269 /* High bit of first word is supposed to be zero. */
16270 if ((first_word & 0x80000000ul) == 0)
16271 first_word = offset_prel31 (first_word, offset);
16272
16273 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
16274 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
16275 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
16276 second_word = offset_prel31 (second_word, offset);
16277
16278 bfd_put_32 (output_bfd, first_word, to);
16279 bfd_put_32 (output_bfd, second_word, to + 4);
16280 }
16281
16282 /* Data for make_branch_to_a8_stub(). */
16283
16284 struct a8_branch_to_stub_data
16285 {
16286 asection *writing_section;
16287 bfd_byte *contents;
16288 };
16289
16290
16291 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
16292 places for a particular section. */
16293
16294 static bfd_boolean
16295 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
16296 void *in_arg)
16297 {
16298 struct elf32_arm_stub_hash_entry *stub_entry;
16299 struct a8_branch_to_stub_data *data;
16300 bfd_byte *contents;
16301 unsigned long branch_insn;
16302 bfd_vma veneered_insn_loc, veneer_entry_loc;
16303 bfd_signed_vma branch_offset;
16304 bfd *abfd;
16305 unsigned int loc;
16306
16307 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16308 data = (struct a8_branch_to_stub_data *) in_arg;
16309
16310 if (stub_entry->target_section != data->writing_section
16311 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
16312 return TRUE;
16313
16314 contents = data->contents;
16315
16316 /* We use target_section as Cortex-A8 erratum workaround stubs are only
16317 generated when both source and target are in the same section. */
16318 veneered_insn_loc = stub_entry->target_section->output_section->vma
16319 + stub_entry->target_section->output_offset
16320 + stub_entry->source_value;
16321
16322 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
16323 + stub_entry->stub_sec->output_offset
16324 + stub_entry->stub_offset;
16325
16326 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
16327 veneered_insn_loc &= ~3u;
16328
16329 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
16330
16331 abfd = stub_entry->target_section->owner;
16332 loc = stub_entry->source_value;
16333
16334 /* We attempt to avoid this condition by setting stubs_always_after_branch
16335 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
16336 This check is just to be on the safe side... */
16337 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
16338 {
16339 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
16340 "allocated in unsafe location"), abfd);
16341 return FALSE;
16342 }
16343
16344 switch (stub_entry->stub_type)
16345 {
16346 case arm_stub_a8_veneer_b:
16347 case arm_stub_a8_veneer_b_cond:
16348 branch_insn = 0xf0009000;
16349 goto jump24;
16350
16351 case arm_stub_a8_veneer_blx:
16352 branch_insn = 0xf000e800;
16353 goto jump24;
16354
16355 case arm_stub_a8_veneer_bl:
16356 {
16357 unsigned int i1, j1, i2, j2, s;
16358
16359 branch_insn = 0xf000d000;
16360
16361 jump24:
16362 if (branch_offset < -16777216 || branch_offset > 16777214)
16363 {
16364 /* There's not much we can do apart from complain if this
16365 happens. */
16366 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
16367 "of range (input file too large)"), abfd);
16368 return FALSE;
16369 }
16370
16371 /* i1 = not(j1 eor s), so:
16372 not i1 = j1 eor s
16373 j1 = (not i1) eor s. */
16374
16375 branch_insn |= (branch_offset >> 1) & 0x7ff;
16376 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
16377 i2 = (branch_offset >> 22) & 1;
16378 i1 = (branch_offset >> 23) & 1;
16379 s = (branch_offset >> 24) & 1;
16380 j1 = (!i1) ^ s;
16381 j2 = (!i2) ^ s;
16382 branch_insn |= j2 << 11;
16383 branch_insn |= j1 << 13;
16384 branch_insn |= s << 26;
16385 }
16386 break;
16387
16388 default:
16389 BFD_FAIL ();
16390 return FALSE;
16391 }
16392
16393 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
16394 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
16395
16396 return TRUE;
16397 }
16398
16399 /* Beginning of stm32l4xx work-around. */
16400
16401 /* Functions encoding instructions necessary for the emission of the
16402 fix-stm32l4xx-629360.
16403 Encoding is extracted from the
16404 ARM (C) Architecture Reference Manual
16405 ARMv7-A and ARMv7-R edition
16406 ARM DDI 0406C.b (ID072512). */
16407
16408 static inline bfd_vma
16409 create_instruction_branch_absolute (int branch_offset)
16410 {
16411 /* A8.8.18 B (A8-334)
16412 B target_address (Encoding T4). */
16413 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
16414 /* jump offset is: S:I1:I2:imm10:imm11:0. */
16415 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
16416
16417 int s = ((branch_offset & 0x1000000) >> 24);
16418 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
16419 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
16420
16421 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
16422 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
16423
16424 bfd_vma patched_inst = 0xf0009000
16425 | s << 26 /* S. */
16426 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
16427 | j1 << 13 /* J1. */
16428 | j2 << 11 /* J2. */
16429 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
16430
16431 return patched_inst;
16432 }
16433
16434 static inline bfd_vma
16435 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
16436 {
16437 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
16438 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
16439 bfd_vma patched_inst = 0xe8900000
16440 | (/*W=*/wback << 21)
16441 | (base_reg << 16)
16442 | (reg_mask & 0x0000ffff);
16443
16444 return patched_inst;
16445 }
16446
16447 static inline bfd_vma
16448 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
16449 {
16450 /* A8.8.60 LDMDB/LDMEA (A8-402)
16451 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
16452 bfd_vma patched_inst = 0xe9100000
16453 | (/*W=*/wback << 21)
16454 | (base_reg << 16)
16455 | (reg_mask & 0x0000ffff);
16456
16457 return patched_inst;
16458 }
16459
16460 static inline bfd_vma
16461 create_instruction_mov (int target_reg, int source_reg)
16462 {
16463 /* A8.8.103 MOV (register) (A8-486)
16464 MOV Rd, Rm (Encoding T1). */
16465 bfd_vma patched_inst = 0x4600
16466 | (target_reg & 0x7)
16467 | ((target_reg & 0x8) >> 3) << 7
16468 | (source_reg << 3);
16469
16470 return patched_inst;
16471 }
16472
16473 static inline bfd_vma
16474 create_instruction_sub (int target_reg, int source_reg, int value)
16475 {
16476 /* A8.8.221 SUB (immediate) (A8-708)
16477 SUB Rd, Rn, #value (Encoding T3). */
16478 bfd_vma patched_inst = 0xf1a00000
16479 | (target_reg << 8)
16480 | (source_reg << 16)
16481 | (/*S=*/0 << 20)
16482 | ((value & 0x800) >> 11) << 26
16483 | ((value & 0x700) >> 8) << 12
16484 | (value & 0x0ff);
16485
16486 return patched_inst;
16487 }
16488
16489 static inline bfd_vma
16490 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
16491 int first_reg)
16492 {
16493 /* A8.8.332 VLDM (A8-922)
16494 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
16495 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
16496 | (/*W=*/wback << 21)
16497 | (base_reg << 16)
16498 | (num_words & 0x000000ff)
16499 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
16500 | (first_reg & 0x00000001) << 22;
16501
16502 return patched_inst;
16503 }
16504
16505 static inline bfd_vma
16506 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
16507 int first_reg)
16508 {
16509 /* A8.8.332 VLDM (A8-922)
16510 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
16511 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
16512 | (base_reg << 16)
16513 | (num_words & 0x000000ff)
16514 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
16515 | (first_reg & 0x00000001) << 22;
16516
16517 return patched_inst;
16518 }
16519
16520 static inline bfd_vma
16521 create_instruction_udf_w (int value)
16522 {
16523 /* A8.8.247 UDF (A8-758)
16524 Undefined (Encoding T2). */
16525 bfd_vma patched_inst = 0xf7f0a000
16526 | (value & 0x00000fff)
16527 | (value & 0x000f0000) << 16;
16528
16529 return patched_inst;
16530 }
16531
16532 static inline bfd_vma
16533 create_instruction_udf (int value)
16534 {
16535 /* A8.8.247 UDF (A8-758)
16536 Undefined (Encoding T1). */
16537 bfd_vma patched_inst = 0xde00
16538 | (value & 0xff);
16539
16540 return patched_inst;
16541 }
16542
16543 /* Functions writing an instruction in memory, returning the next
16544 memory position to write to. */
16545
16546 static inline bfd_byte *
16547 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
16548 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16549 {
16550 put_thumb2_insn (htab, output_bfd, insn, pt);
16551 return pt + 4;
16552 }
16553
16554 static inline bfd_byte *
16555 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
16556 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16557 {
16558 put_thumb_insn (htab, output_bfd, insn, pt);
16559 return pt + 2;
16560 }
16561
16562 /* Function filling up a region in memory with T1 and T2 UDFs taking
16563 care of alignment. */
16564
16565 static bfd_byte *
16566 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
16567 bfd * output_bfd,
16568 const bfd_byte * const base_stub_contents,
16569 bfd_byte * const from_stub_contents,
16570 const bfd_byte * const end_stub_contents)
16571 {
16572 bfd_byte *current_stub_contents = from_stub_contents;
16573
16574 /* Fill the remaining of the stub with deterministic contents : UDF
16575 instructions.
16576 Check if realignment is needed on modulo 4 frontier using T1, to
16577 further use T2. */
16578 if ((current_stub_contents < end_stub_contents)
16579 && !((current_stub_contents - base_stub_contents) % 2)
16580 && ((current_stub_contents - base_stub_contents) % 4))
16581 current_stub_contents =
16582 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16583 create_instruction_udf (0));
16584
16585 for (; current_stub_contents < end_stub_contents;)
16586 current_stub_contents =
16587 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16588 create_instruction_udf_w (0));
16589
16590 return current_stub_contents;
16591 }
16592
16593 /* Functions writing the stream of instructions equivalent to the
16594 derived sequence for ldmia, ldmdb, vldm respectively. */
16595
16596 static void
16597 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
16598 bfd * output_bfd,
16599 const insn32 initial_insn,
16600 const bfd_byte *const initial_insn_addr,
16601 bfd_byte *const base_stub_contents)
16602 {
16603 int wback = (initial_insn & 0x00200000) >> 21;
16604 int ri, rn = (initial_insn & 0x000F0000) >> 16;
16605 int insn_all_registers = initial_insn & 0x0000ffff;
16606 int insn_low_registers, insn_high_registers;
16607 int usable_register_mask;
16608 int nb_registers = popcount (insn_all_registers);
16609 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16610 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16611 bfd_byte *current_stub_contents = base_stub_contents;
16612
16613 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
16614
16615 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16616 smaller than 8 registers load sequences that do not cause the
16617 hardware issue. */
16618 if (nb_registers <= 8)
16619 {
16620 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16621 current_stub_contents =
16622 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16623 initial_insn);
16624
16625 /* B initial_insn_addr+4. */
16626 if (!restore_pc)
16627 current_stub_contents =
16628 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16629 create_instruction_branch_absolute
16630 (initial_insn_addr - current_stub_contents));
16631
16632
16633 /* Fill the remaining of the stub with deterministic contents. */
16634 current_stub_contents =
16635 stm32l4xx_fill_stub_udf (htab, output_bfd,
16636 base_stub_contents, current_stub_contents,
16637 base_stub_contents +
16638 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16639
16640 return;
16641 }
16642
16643 /* - reg_list[13] == 0. */
16644 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
16645
16646 /* - reg_list[14] & reg_list[15] != 1. */
16647 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16648
16649 /* - if (wback==1) reg_list[rn] == 0. */
16650 BFD_ASSERT (!wback || !restore_rn);
16651
16652 /* - nb_registers > 8. */
16653 BFD_ASSERT (popcount (insn_all_registers) > 8);
16654
16655 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16656
16657 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
16658 - One with the 7 lowest registers (register mask 0x007F)
16659 This LDM will finally contain between 2 and 7 registers
16660 - One with the 7 highest registers (register mask 0xDF80)
16661 This ldm will finally contain between 2 and 7 registers. */
16662 insn_low_registers = insn_all_registers & 0x007F;
16663 insn_high_registers = insn_all_registers & 0xDF80;
16664
16665 /* A spare register may be needed during this veneer to temporarily
16666 handle the base register. This register will be restored with the
16667 last LDM operation.
16668 The usable register may be any general purpose register (that
16669 excludes PC, SP, LR : register mask is 0x1FFF). */
16670 usable_register_mask = 0x1FFF;
16671
16672 /* Generate the stub function. */
16673 if (wback)
16674 {
16675 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
16676 current_stub_contents =
16677 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16678 create_instruction_ldmia
16679 (rn, /*wback=*/1, insn_low_registers));
16680
16681 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
16682 current_stub_contents =
16683 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16684 create_instruction_ldmia
16685 (rn, /*wback=*/1, insn_high_registers));
16686 if (!restore_pc)
16687 {
16688 /* B initial_insn_addr+4. */
16689 current_stub_contents =
16690 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16691 create_instruction_branch_absolute
16692 (initial_insn_addr - current_stub_contents));
16693 }
16694 }
16695 else /* if (!wback). */
16696 {
16697 ri = rn;
16698
16699 /* If Rn is not part of the high-register-list, move it there. */
16700 if (!(insn_high_registers & (1 << rn)))
16701 {
16702 /* Choose a Ri in the high-register-list that will be restored. */
16703 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16704
16705 /* MOV Ri, Rn. */
16706 current_stub_contents =
16707 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16708 create_instruction_mov (ri, rn));
16709 }
16710
16711 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
16712 current_stub_contents =
16713 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16714 create_instruction_ldmia
16715 (ri, /*wback=*/1, insn_low_registers));
16716
16717 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
16718 current_stub_contents =
16719 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16720 create_instruction_ldmia
16721 (ri, /*wback=*/0, insn_high_registers));
16722
16723 if (!restore_pc)
16724 {
16725 /* B initial_insn_addr+4. */
16726 current_stub_contents =
16727 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16728 create_instruction_branch_absolute
16729 (initial_insn_addr - current_stub_contents));
16730 }
16731 }
16732
16733 /* Fill the remaining of the stub with deterministic contents. */
16734 current_stub_contents =
16735 stm32l4xx_fill_stub_udf (htab, output_bfd,
16736 base_stub_contents, current_stub_contents,
16737 base_stub_contents +
16738 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16739 }
16740
16741 static void
16742 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
16743 bfd * output_bfd,
16744 const insn32 initial_insn,
16745 const bfd_byte *const initial_insn_addr,
16746 bfd_byte *const base_stub_contents)
16747 {
16748 int wback = (initial_insn & 0x00200000) >> 21;
16749 int ri, rn = (initial_insn & 0x000f0000) >> 16;
16750 int insn_all_registers = initial_insn & 0x0000ffff;
16751 int insn_low_registers, insn_high_registers;
16752 int usable_register_mask;
16753 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16754 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16755 int nb_registers = popcount (insn_all_registers);
16756 bfd_byte *current_stub_contents = base_stub_contents;
16757
16758 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
16759
16760 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16761 smaller than 8 registers load sequences that do not cause the
16762 hardware issue. */
16763 if (nb_registers <= 8)
16764 {
16765 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16766 current_stub_contents =
16767 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16768 initial_insn);
16769
16770 /* B initial_insn_addr+4. */
16771 current_stub_contents =
16772 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16773 create_instruction_branch_absolute
16774 (initial_insn_addr - current_stub_contents));
16775
16776 /* Fill the remaining of the stub with deterministic contents. */
16777 current_stub_contents =
16778 stm32l4xx_fill_stub_udf (htab, output_bfd,
16779 base_stub_contents, current_stub_contents,
16780 base_stub_contents +
16781 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16782
16783 return;
16784 }
16785
16786 /* - reg_list[13] == 0. */
16787 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
16788
16789 /* - reg_list[14] & reg_list[15] != 1. */
16790 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16791
16792 /* - if (wback==1) reg_list[rn] == 0. */
16793 BFD_ASSERT (!wback || !restore_rn);
16794
16795 /* - nb_registers > 8. */
16796 BFD_ASSERT (popcount (insn_all_registers) > 8);
16797
16798 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16799
16800 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
16801 - One with the 7 lowest registers (register mask 0x007F)
16802 This LDM will finally contain between 2 and 7 registers
16803 - One with the 7 highest registers (register mask 0xDF80)
16804 This ldm will finally contain between 2 and 7 registers. */
16805 insn_low_registers = insn_all_registers & 0x007F;
16806 insn_high_registers = insn_all_registers & 0xDF80;
16807
16808 /* A spare register may be needed during this veneer to temporarily
16809 handle the base register. This register will be restored with
16810 the last LDM operation.
16811 The usable register may be any general purpose register (that excludes
16812 PC, SP, LR : register mask is 0x1FFF). */
16813 usable_register_mask = 0x1FFF;
16814
16815 /* Generate the stub function. */
16816 if (!wback && !restore_pc && !restore_rn)
16817 {
16818 /* Choose a Ri in the low-register-list that will be restored. */
16819 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16820
16821 /* MOV Ri, Rn. */
16822 current_stub_contents =
16823 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16824 create_instruction_mov (ri, rn));
16825
16826 /* LDMDB Ri!, {R-high-register-list}. */
16827 current_stub_contents =
16828 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16829 create_instruction_ldmdb
16830 (ri, /*wback=*/1, insn_high_registers));
16831
16832 /* LDMDB Ri, {R-low-register-list}. */
16833 current_stub_contents =
16834 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16835 create_instruction_ldmdb
16836 (ri, /*wback=*/0, insn_low_registers));
16837
16838 /* B initial_insn_addr+4. */
16839 current_stub_contents =
16840 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16841 create_instruction_branch_absolute
16842 (initial_insn_addr - current_stub_contents));
16843 }
16844 else if (wback && !restore_pc && !restore_rn)
16845 {
16846 /* LDMDB Rn!, {R-high-register-list}. */
16847 current_stub_contents =
16848 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16849 create_instruction_ldmdb
16850 (rn, /*wback=*/1, insn_high_registers));
16851
16852 /* LDMDB Rn!, {R-low-register-list}. */
16853 current_stub_contents =
16854 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16855 create_instruction_ldmdb
16856 (rn, /*wback=*/1, insn_low_registers));
16857
16858 /* B initial_insn_addr+4. */
16859 current_stub_contents =
16860 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16861 create_instruction_branch_absolute
16862 (initial_insn_addr - current_stub_contents));
16863 }
16864 else if (!wback && restore_pc && !restore_rn)
16865 {
16866 /* Choose a Ri in the high-register-list that will be restored. */
16867 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16868
16869 /* SUB Ri, Rn, #(4*nb_registers). */
16870 current_stub_contents =
16871 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16872 create_instruction_sub (ri, rn, (4 * nb_registers)));
16873
16874 /* LDMIA Ri!, {R-low-register-list}. */
16875 current_stub_contents =
16876 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16877 create_instruction_ldmia
16878 (ri, /*wback=*/1, insn_low_registers));
16879
16880 /* LDMIA Ri, {R-high-register-list}. */
16881 current_stub_contents =
16882 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16883 create_instruction_ldmia
16884 (ri, /*wback=*/0, insn_high_registers));
16885 }
16886 else if (wback && restore_pc && !restore_rn)
16887 {
16888 /* Choose a Ri in the high-register-list that will be restored. */
16889 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16890
16891 /* SUB Rn, Rn, #(4*nb_registers) */
16892 current_stub_contents =
16893 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16894 create_instruction_sub (rn, rn, (4 * nb_registers)));
16895
16896 /* MOV Ri, Rn. */
16897 current_stub_contents =
16898 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16899 create_instruction_mov (ri, rn));
16900
16901 /* LDMIA Ri!, {R-low-register-list}. */
16902 current_stub_contents =
16903 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16904 create_instruction_ldmia
16905 (ri, /*wback=*/1, insn_low_registers));
16906
16907 /* LDMIA Ri, {R-high-register-list}. */
16908 current_stub_contents =
16909 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16910 create_instruction_ldmia
16911 (ri, /*wback=*/0, insn_high_registers));
16912 }
16913 else if (!wback && !restore_pc && restore_rn)
16914 {
16915 ri = rn;
16916 if (!(insn_low_registers & (1 << rn)))
16917 {
16918 /* Choose a Ri in the low-register-list that will be restored. */
16919 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16920
16921 /* MOV Ri, Rn. */
16922 current_stub_contents =
16923 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16924 create_instruction_mov (ri, rn));
16925 }
16926
16927 /* LDMDB Ri!, {R-high-register-list}. */
16928 current_stub_contents =
16929 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16930 create_instruction_ldmdb
16931 (ri, /*wback=*/1, insn_high_registers));
16932
16933 /* LDMDB Ri, {R-low-register-list}. */
16934 current_stub_contents =
16935 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16936 create_instruction_ldmdb
16937 (ri, /*wback=*/0, insn_low_registers));
16938
16939 /* B initial_insn_addr+4. */
16940 current_stub_contents =
16941 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16942 create_instruction_branch_absolute
16943 (initial_insn_addr - current_stub_contents));
16944 }
16945 else if (!wback && restore_pc && restore_rn)
16946 {
16947 ri = rn;
16948 if (!(insn_high_registers & (1 << rn)))
16949 {
16950 /* Choose a Ri in the high-register-list that will be restored. */
16951 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16952 }
16953
16954 /* SUB Ri, Rn, #(4*nb_registers). */
16955 current_stub_contents =
16956 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16957 create_instruction_sub (ri, rn, (4 * nb_registers)));
16958
16959 /* LDMIA Ri!, {R-low-register-list}. */
16960 current_stub_contents =
16961 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16962 create_instruction_ldmia
16963 (ri, /*wback=*/1, insn_low_registers));
16964
16965 /* LDMIA Ri, {R-high-register-list}. */
16966 current_stub_contents =
16967 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16968 create_instruction_ldmia
16969 (ri, /*wback=*/0, insn_high_registers));
16970 }
16971 else if (wback && restore_rn)
16972 {
16973 /* The assembler should not have accepted to encode this. */
16974 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
16975 "undefined behavior.\n");
16976 }
16977
16978 /* Fill the remaining of the stub with deterministic contents. */
16979 current_stub_contents =
16980 stm32l4xx_fill_stub_udf (htab, output_bfd,
16981 base_stub_contents, current_stub_contents,
16982 base_stub_contents +
16983 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16984
16985 }
16986
16987 static void
16988 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
16989 bfd * output_bfd,
16990 const insn32 initial_insn,
16991 const bfd_byte *const initial_insn_addr,
16992 bfd_byte *const base_stub_contents)
16993 {
16994 int num_words = ((unsigned int) initial_insn << 24) >> 24;
16995 bfd_byte *current_stub_contents = base_stub_contents;
16996
16997 BFD_ASSERT (is_thumb2_vldm (initial_insn));
16998
16999 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17000 smaller than 8 words load sequences that do not cause the
17001 hardware issue. */
17002 if (num_words <= 8)
17003 {
17004 /* Untouched instruction. */
17005 current_stub_contents =
17006 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17007 initial_insn);
17008
17009 /* B initial_insn_addr+4. */
17010 current_stub_contents =
17011 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17012 create_instruction_branch_absolute
17013 (initial_insn_addr - current_stub_contents));
17014 }
17015 else
17016 {
17017 bfd_boolean is_dp = /* DP encoding. */
17018 (initial_insn & 0xfe100f00) == 0xec100b00;
17019 bfd_boolean is_ia_nobang = /* (IA without !). */
17020 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
17021 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
17022 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
17023 bfd_boolean is_db_bang = /* (DB with !). */
17024 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
17025 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
17026 /* d = UInt (Vd:D);. */
17027 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
17028 | (((unsigned int)initial_insn << 9) >> 31);
17029
17030 /* Compute the number of 8-words chunks needed to split. */
17031 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
17032 int chunk;
17033
17034 /* The test coverage has been done assuming the following
17035 hypothesis that exactly one of the previous is_ predicates is
17036 true. */
17037 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
17038 && !(is_ia_nobang & is_ia_bang & is_db_bang));
17039
17040 /* We treat the cutting of the words in one pass for all
17041 cases, then we emit the adjustments:
17042
17043 vldm rx, {...}
17044 -> vldm rx!, {8_words_or_less} for each needed 8_word
17045 -> sub rx, rx, #size (list)
17046
17047 vldm rx!, {...}
17048 -> vldm rx!, {8_words_or_less} for each needed 8_word
17049 This also handles vpop instruction (when rx is sp)
17050
17051 vldmd rx!, {...}
17052 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
17053 for (chunk = 0; chunk < chunks; ++chunk)
17054 {
17055 bfd_vma new_insn = 0;
17056
17057 if (is_ia_nobang || is_ia_bang)
17058 {
17059 new_insn = create_instruction_vldmia
17060 (base_reg,
17061 is_dp,
17062 /*wback= . */1,
17063 chunks - (chunk + 1) ?
17064 8 : num_words - chunk * 8,
17065 first_reg + chunk * 8);
17066 }
17067 else if (is_db_bang)
17068 {
17069 new_insn = create_instruction_vldmdb
17070 (base_reg,
17071 is_dp,
17072 chunks - (chunk + 1) ?
17073 8 : num_words - chunk * 8,
17074 first_reg + chunk * 8);
17075 }
17076
17077 if (new_insn)
17078 current_stub_contents =
17079 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17080 new_insn);
17081 }
17082
17083 /* Only this case requires the base register compensation
17084 subtract. */
17085 if (is_ia_nobang)
17086 {
17087 current_stub_contents =
17088 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17089 create_instruction_sub
17090 (base_reg, base_reg, 4*num_words));
17091 }
17092
17093 /* B initial_insn_addr+4. */
17094 current_stub_contents =
17095 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17096 create_instruction_branch_absolute
17097 (initial_insn_addr - current_stub_contents));
17098 }
17099
17100 /* Fill the remaining of the stub with deterministic contents. */
17101 current_stub_contents =
17102 stm32l4xx_fill_stub_udf (htab, output_bfd,
17103 base_stub_contents, current_stub_contents,
17104 base_stub_contents +
17105 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
17106 }
17107
17108 static void
17109 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
17110 bfd * output_bfd,
17111 const insn32 wrong_insn,
17112 const bfd_byte *const wrong_insn_addr,
17113 bfd_byte *const stub_contents)
17114 {
17115 if (is_thumb2_ldmia (wrong_insn))
17116 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
17117 wrong_insn, wrong_insn_addr,
17118 stub_contents);
17119 else if (is_thumb2_ldmdb (wrong_insn))
17120 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
17121 wrong_insn, wrong_insn_addr,
17122 stub_contents);
17123 else if (is_thumb2_vldm (wrong_insn))
17124 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
17125 wrong_insn, wrong_insn_addr,
17126 stub_contents);
17127 }
17128
17129 /* End of stm32l4xx work-around. */
17130
17131
17132 static void
17133 elf32_arm_add_relocation (bfd *output_bfd, struct bfd_link_info *info,
17134 asection *output_sec, Elf_Internal_Rela *rel)
17135 {
17136 BFD_ASSERT (output_sec && rel);
17137 struct bfd_elf_section_reloc_data *output_reldata;
17138 struct elf32_arm_link_hash_table *htab;
17139 struct bfd_elf_section_data *oesd = elf_section_data (output_sec);
17140 Elf_Internal_Shdr *rel_hdr;
17141
17142
17143 if (oesd->rel.hdr)
17144 {
17145 rel_hdr = oesd->rel.hdr;
17146 output_reldata = &(oesd->rel);
17147 }
17148 else if (oesd->rela.hdr)
17149 {
17150 rel_hdr = oesd->rela.hdr;
17151 output_reldata = &(oesd->rela);
17152 }
17153 else
17154 {
17155 abort ();
17156 }
17157
17158 bfd_byte *erel = rel_hdr->contents;
17159 erel += output_reldata->count * rel_hdr->sh_entsize;
17160 htab = elf32_arm_hash_table (info);
17161 SWAP_RELOC_OUT (htab) (output_bfd, rel, erel);
17162 output_reldata->count++;
17163 }
17164
17165 /* Do code byteswapping. Return FALSE afterwards so that the section is
17166 written out as normal. */
17167
17168 static bfd_boolean
17169 elf32_arm_write_section (bfd *output_bfd,
17170 struct bfd_link_info *link_info,
17171 asection *sec,
17172 bfd_byte *contents)
17173 {
17174 unsigned int mapcount, errcount;
17175 _arm_elf_section_data *arm_data;
17176 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
17177 elf32_arm_section_map *map;
17178 elf32_vfp11_erratum_list *errnode;
17179 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
17180 bfd_vma ptr;
17181 bfd_vma end;
17182 bfd_vma offset = sec->output_section->vma + sec->output_offset;
17183 bfd_byte tmp;
17184 unsigned int i;
17185
17186 if (globals == NULL)
17187 return FALSE;
17188
17189 /* If this section has not been allocated an _arm_elf_section_data
17190 structure then we cannot record anything. */
17191 arm_data = get_arm_elf_section_data (sec);
17192 if (arm_data == NULL)
17193 return FALSE;
17194
17195 mapcount = arm_data->mapcount;
17196 map = arm_data->map;
17197 errcount = arm_data->erratumcount;
17198
17199 if (errcount != 0)
17200 {
17201 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
17202
17203 for (errnode = arm_data->erratumlist; errnode != 0;
17204 errnode = errnode->next)
17205 {
17206 bfd_vma target = errnode->vma - offset;
17207
17208 switch (errnode->type)
17209 {
17210 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
17211 {
17212 bfd_vma branch_to_veneer;
17213 /* Original condition code of instruction, plus bit mask for
17214 ARM B instruction. */
17215 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
17216 | 0x0a000000;
17217
17218 /* The instruction is before the label. */
17219 target -= 4;
17220
17221 /* Above offset included in -4 below. */
17222 branch_to_veneer = errnode->u.b.veneer->vma
17223 - errnode->vma - 4;
17224
17225 if ((signed) branch_to_veneer < -(1 << 25)
17226 || (signed) branch_to_veneer >= (1 << 25))
17227 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17228 "range"), output_bfd);
17229
17230 insn |= (branch_to_veneer >> 2) & 0xffffff;
17231 contents[endianflip ^ target] = insn & 0xff;
17232 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17233 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17234 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17235 }
17236 break;
17237
17238 case VFP11_ERRATUM_ARM_VENEER:
17239 {
17240 bfd_vma branch_from_veneer;
17241 unsigned int insn;
17242
17243 /* Take size of veneer into account. */
17244 branch_from_veneer = errnode->u.v.branch->vma
17245 - errnode->vma - 12;
17246
17247 if ((signed) branch_from_veneer < -(1 << 25)
17248 || (signed) branch_from_veneer >= (1 << 25))
17249 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17250 "range"), output_bfd);
17251
17252 /* Original instruction. */
17253 insn = errnode->u.v.branch->u.b.vfp_insn;
17254 contents[endianflip ^ target] = insn & 0xff;
17255 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17256 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17257 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17258
17259 /* Branch back to insn after original insn. */
17260 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
17261 contents[endianflip ^ (target + 4)] = insn & 0xff;
17262 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
17263 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
17264 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
17265 }
17266 break;
17267
17268 default:
17269 abort ();
17270 }
17271 }
17272 }
17273
17274 if (arm_data->stm32l4xx_erratumcount != 0)
17275 {
17276 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
17277 stm32l4xx_errnode != 0;
17278 stm32l4xx_errnode = stm32l4xx_errnode->next)
17279 {
17280 bfd_vma target = stm32l4xx_errnode->vma - offset;
17281
17282 switch (stm32l4xx_errnode->type)
17283 {
17284 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
17285 {
17286 unsigned int insn;
17287 bfd_vma branch_to_veneer =
17288 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
17289
17290 if ((signed) branch_to_veneer < -(1 << 24)
17291 || (signed) branch_to_veneer >= (1 << 24))
17292 {
17293 bfd_vma out_of_range =
17294 ((signed) branch_to_veneer < -(1 << 24)) ?
17295 - branch_to_veneer - (1 << 24) :
17296 ((signed) branch_to_veneer >= (1 << 24)) ?
17297 branch_to_veneer - (1 << 24) : 0;
17298
17299 (*_bfd_error_handler)
17300 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
17301 "Jump out of range by %ld bytes. "
17302 "Cannot encode branch instruction. "),
17303 output_bfd,
17304 (long) (stm32l4xx_errnode->vma - 4),
17305 out_of_range);
17306 continue;
17307 }
17308
17309 insn = create_instruction_branch_absolute
17310 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
17311
17312 /* The instruction is before the label. */
17313 target -= 4;
17314
17315 put_thumb2_insn (globals, output_bfd,
17316 (bfd_vma) insn, contents + target);
17317 }
17318 break;
17319
17320 case STM32L4XX_ERRATUM_VENEER:
17321 {
17322 bfd_byte * veneer;
17323 bfd_byte * veneer_r;
17324 unsigned int insn;
17325
17326 veneer = contents + target;
17327 veneer_r = veneer
17328 + stm32l4xx_errnode->u.b.veneer->vma
17329 - stm32l4xx_errnode->vma - 4;
17330
17331 if ((signed) (veneer_r - veneer -
17332 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
17333 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
17334 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
17335 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
17336 || (signed) (veneer_r - veneer) >= (1 << 24))
17337 {
17338 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
17339 "veneer."), output_bfd);
17340 continue;
17341 }
17342
17343 /* Original instruction. */
17344 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
17345
17346 stm32l4xx_create_replacing_stub
17347 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
17348 }
17349 break;
17350
17351 default:
17352 abort ();
17353 }
17354 }
17355 }
17356
17357 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
17358 {
17359 arm_unwind_table_edit *edit_node
17360 = arm_data->u.exidx.unwind_edit_list;
17361 /* Now, sec->size is the size of the section we will write. The original
17362 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
17363 markers) was sec->rawsize. (This isn't the case if we perform no
17364 edits, then rawsize will be zero and we should use size). */
17365 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
17366 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
17367 unsigned int in_index, out_index;
17368 bfd_vma add_to_offsets = 0;
17369
17370 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
17371 {
17372 if (edit_node)
17373 {
17374 unsigned int edit_index = edit_node->index;
17375
17376 if (in_index < edit_index && in_index * 8 < input_size)
17377 {
17378 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17379 contents + in_index * 8, add_to_offsets);
17380 out_index++;
17381 in_index++;
17382 }
17383 else if (in_index == edit_index
17384 || (in_index * 8 >= input_size
17385 && edit_index == UINT_MAX))
17386 {
17387 switch (edit_node->type)
17388 {
17389 case DELETE_EXIDX_ENTRY:
17390 in_index++;
17391 add_to_offsets += 8;
17392 break;
17393
17394 case INSERT_EXIDX_CANTUNWIND_AT_END:
17395 {
17396 asection *text_sec = edit_node->linked_section;
17397 bfd_vma text_offset = text_sec->output_section->vma
17398 + text_sec->output_offset
17399 + text_sec->size;
17400 bfd_vma exidx_offset = offset + out_index * 8;
17401 unsigned long prel31_offset;
17402
17403 /* Note: this is meant to be equivalent to an
17404 R_ARM_PREL31 relocation. These synthetic
17405 EXIDX_CANTUNWIND markers are not relocated by the
17406 usual BFD method. */
17407 prel31_offset = (text_offset - exidx_offset)
17408 & 0x7ffffffful;
17409 if (bfd_link_relocatable (link_info))
17410 {
17411 /* Here relocation for new EXIDX_CANTUNWIND is
17412 created, so there is no need to
17413 adjust offset by hand. */
17414 prel31_offset = text_sec->output_offset
17415 + text_sec->size;
17416
17417 /* New relocation entity. */
17418 asection *text_out = text_sec->output_section;
17419 Elf_Internal_Rela rel;
17420 rel.r_addend = 0;
17421 rel.r_offset = exidx_offset;
17422 rel.r_info = ELF32_R_INFO (text_out->target_index,
17423 R_ARM_PREL31);
17424
17425 elf32_arm_add_relocation (output_bfd, link_info,
17426 sec->output_section,
17427 &rel);
17428 }
17429
17430 /* First address we can't unwind. */
17431 bfd_put_32 (output_bfd, prel31_offset,
17432 &edited_contents[out_index * 8]);
17433
17434 /* Code for EXIDX_CANTUNWIND. */
17435 bfd_put_32 (output_bfd, 0x1,
17436 &edited_contents[out_index * 8 + 4]);
17437
17438 out_index++;
17439 add_to_offsets -= 8;
17440 }
17441 break;
17442 }
17443
17444 edit_node = edit_node->next;
17445 }
17446 }
17447 else
17448 {
17449 /* No more edits, copy remaining entries verbatim. */
17450 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17451 contents + in_index * 8, add_to_offsets);
17452 out_index++;
17453 in_index++;
17454 }
17455 }
17456
17457 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
17458 bfd_set_section_contents (output_bfd, sec->output_section,
17459 edited_contents,
17460 (file_ptr) sec->output_offset, sec->size);
17461
17462 return TRUE;
17463 }
17464
17465 /* Fix code to point to Cortex-A8 erratum stubs. */
17466 if (globals->fix_cortex_a8)
17467 {
17468 struct a8_branch_to_stub_data data;
17469
17470 data.writing_section = sec;
17471 data.contents = contents;
17472
17473 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
17474 & data);
17475 }
17476
17477 if (mapcount == 0)
17478 return FALSE;
17479
17480 if (globals->byteswap_code)
17481 {
17482 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
17483
17484 ptr = map[0].vma;
17485 for (i = 0; i < mapcount; i++)
17486 {
17487 if (i == mapcount - 1)
17488 end = sec->size;
17489 else
17490 end = map[i + 1].vma;
17491
17492 switch (map[i].type)
17493 {
17494 case 'a':
17495 /* Byte swap code words. */
17496 while (ptr + 3 < end)
17497 {
17498 tmp = contents[ptr];
17499 contents[ptr] = contents[ptr + 3];
17500 contents[ptr + 3] = tmp;
17501 tmp = contents[ptr + 1];
17502 contents[ptr + 1] = contents[ptr + 2];
17503 contents[ptr + 2] = tmp;
17504 ptr += 4;
17505 }
17506 break;
17507
17508 case 't':
17509 /* Byte swap code halfwords. */
17510 while (ptr + 1 < end)
17511 {
17512 tmp = contents[ptr];
17513 contents[ptr] = contents[ptr + 1];
17514 contents[ptr + 1] = tmp;
17515 ptr += 2;
17516 }
17517 break;
17518
17519 case 'd':
17520 /* Leave data alone. */
17521 break;
17522 }
17523 ptr = end;
17524 }
17525 }
17526
17527 free (map);
17528 arm_data->mapcount = -1;
17529 arm_data->mapsize = 0;
17530 arm_data->map = NULL;
17531
17532 return FALSE;
17533 }
17534
17535 /* Mangle thumb function symbols as we read them in. */
17536
17537 static bfd_boolean
17538 elf32_arm_swap_symbol_in (bfd * abfd,
17539 const void *psrc,
17540 const void *pshn,
17541 Elf_Internal_Sym *dst)
17542 {
17543 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
17544 return FALSE;
17545
17546 /* New EABI objects mark thumb function symbols by setting the low bit of
17547 the address. */
17548 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
17549 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
17550 {
17551 if (dst->st_value & 1)
17552 {
17553 dst->st_value &= ~(bfd_vma) 1;
17554 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17555 }
17556 else
17557 dst->st_target_internal = ST_BRANCH_TO_ARM;
17558 }
17559 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
17560 {
17561 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
17562 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17563 }
17564 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
17565 dst->st_target_internal = ST_BRANCH_LONG;
17566 else
17567 dst->st_target_internal = ST_BRANCH_UNKNOWN;
17568
17569 return TRUE;
17570 }
17571
17572
17573 /* Mangle thumb function symbols as we write them out. */
17574
17575 static void
17576 elf32_arm_swap_symbol_out (bfd *abfd,
17577 const Elf_Internal_Sym *src,
17578 void *cdst,
17579 void *shndx)
17580 {
17581 Elf_Internal_Sym newsym;
17582
17583 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
17584 of the address set, as per the new EABI. We do this unconditionally
17585 because objcopy does not set the elf header flags until after
17586 it writes out the symbol table. */
17587 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
17588 {
17589 newsym = *src;
17590 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
17591 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
17592 if (newsym.st_shndx != SHN_UNDEF)
17593 {
17594 /* Do this only for defined symbols. At link type, the static
17595 linker will simulate the work of dynamic linker of resolving
17596 symbols and will carry over the thumbness of found symbols to
17597 the output symbol table. It's not clear how it happens, but
17598 the thumbness of undefined symbols can well be different at
17599 runtime, and writing '1' for them will be confusing for users
17600 and possibly for dynamic linker itself.
17601 */
17602 newsym.st_value |= 1;
17603 }
17604
17605 src = &newsym;
17606 }
17607 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
17608 }
17609
17610 /* Add the PT_ARM_EXIDX program header. */
17611
17612 static bfd_boolean
17613 elf32_arm_modify_segment_map (bfd *abfd,
17614 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17615 {
17616 struct elf_segment_map *m;
17617 asection *sec;
17618
17619 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17620 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17621 {
17622 /* If there is already a PT_ARM_EXIDX header, then we do not
17623 want to add another one. This situation arises when running
17624 "strip"; the input binary already has the header. */
17625 m = elf_seg_map (abfd);
17626 while (m && m->p_type != PT_ARM_EXIDX)
17627 m = m->next;
17628 if (!m)
17629 {
17630 m = (struct elf_segment_map *)
17631 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
17632 if (m == NULL)
17633 return FALSE;
17634 m->p_type = PT_ARM_EXIDX;
17635 m->count = 1;
17636 m->sections[0] = sec;
17637
17638 m->next = elf_seg_map (abfd);
17639 elf_seg_map (abfd) = m;
17640 }
17641 }
17642
17643 return TRUE;
17644 }
17645
17646 /* We may add a PT_ARM_EXIDX program header. */
17647
17648 static int
17649 elf32_arm_additional_program_headers (bfd *abfd,
17650 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17651 {
17652 asection *sec;
17653
17654 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17655 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17656 return 1;
17657 else
17658 return 0;
17659 }
17660
17661 /* Hook called by the linker routine which adds symbols from an object
17662 file. */
17663
17664 static bfd_boolean
17665 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
17666 Elf_Internal_Sym *sym, const char **namep,
17667 flagword *flagsp, asection **secp, bfd_vma *valp)
17668 {
17669 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
17670 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
17671 && (abfd->flags & DYNAMIC) == 0
17672 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
17673 elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
17674
17675 if (elf32_arm_hash_table (info) == NULL)
17676 return FALSE;
17677
17678 if (elf32_arm_hash_table (info)->vxworks_p
17679 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
17680 flagsp, secp, valp))
17681 return FALSE;
17682
17683 return TRUE;
17684 }
17685
17686 /* We use this to override swap_symbol_in and swap_symbol_out. */
17687 const struct elf_size_info elf32_arm_size_info =
17688 {
17689 sizeof (Elf32_External_Ehdr),
17690 sizeof (Elf32_External_Phdr),
17691 sizeof (Elf32_External_Shdr),
17692 sizeof (Elf32_External_Rel),
17693 sizeof (Elf32_External_Rela),
17694 sizeof (Elf32_External_Sym),
17695 sizeof (Elf32_External_Dyn),
17696 sizeof (Elf_External_Note),
17697 4,
17698 1,
17699 32, 2,
17700 ELFCLASS32, EV_CURRENT,
17701 bfd_elf32_write_out_phdrs,
17702 bfd_elf32_write_shdrs_and_ehdr,
17703 bfd_elf32_checksum_contents,
17704 bfd_elf32_write_relocs,
17705 elf32_arm_swap_symbol_in,
17706 elf32_arm_swap_symbol_out,
17707 bfd_elf32_slurp_reloc_table,
17708 bfd_elf32_slurp_symbol_table,
17709 bfd_elf32_swap_dyn_in,
17710 bfd_elf32_swap_dyn_out,
17711 bfd_elf32_swap_reloc_in,
17712 bfd_elf32_swap_reloc_out,
17713 bfd_elf32_swap_reloca_in,
17714 bfd_elf32_swap_reloca_out
17715 };
17716
17717 static bfd_vma
17718 read_code32 (const bfd *abfd, const bfd_byte *addr)
17719 {
17720 /* V7 BE8 code is always little endian. */
17721 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17722 return bfd_getl32 (addr);
17723
17724 return bfd_get_32 (abfd, addr);
17725 }
17726
17727 static bfd_vma
17728 read_code16 (const bfd *abfd, const bfd_byte *addr)
17729 {
17730 /* V7 BE8 code is always little endian. */
17731 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17732 return bfd_getl16 (addr);
17733
17734 return bfd_get_16 (abfd, addr);
17735 }
17736
17737 /* Return size of plt0 entry starting at ADDR
17738 or (bfd_vma) -1 if size can not be determined. */
17739
17740 static bfd_vma
17741 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
17742 {
17743 bfd_vma first_word;
17744 bfd_vma plt0_size;
17745
17746 first_word = read_code32 (abfd, addr);
17747
17748 if (first_word == elf32_arm_plt0_entry[0])
17749 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
17750 else if (first_word == elf32_thumb2_plt0_entry[0])
17751 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
17752 else
17753 /* We don't yet handle this PLT format. */
17754 return (bfd_vma) -1;
17755
17756 return plt0_size;
17757 }
17758
17759 /* Return size of plt entry starting at offset OFFSET
17760 of plt section located at address START
17761 or (bfd_vma) -1 if size can not be determined. */
17762
17763 static bfd_vma
17764 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
17765 {
17766 bfd_vma first_insn;
17767 bfd_vma plt_size = 0;
17768 const bfd_byte *addr = start + offset;
17769
17770 /* PLT entry size if fixed on Thumb-only platforms. */
17771 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
17772 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
17773
17774 /* Respect Thumb stub if necessary. */
17775 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
17776 {
17777 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
17778 }
17779
17780 /* Strip immediate from first add. */
17781 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
17782
17783 #ifdef FOUR_WORD_PLT
17784 if (first_insn == elf32_arm_plt_entry[0])
17785 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
17786 #else
17787 if (first_insn == elf32_arm_plt_entry_long[0])
17788 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
17789 else if (first_insn == elf32_arm_plt_entry_short[0])
17790 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
17791 #endif
17792 else
17793 /* We don't yet handle this PLT format. */
17794 return (bfd_vma) -1;
17795
17796 return plt_size;
17797 }
17798
17799 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
17800
17801 static long
17802 elf32_arm_get_synthetic_symtab (bfd *abfd,
17803 long symcount ATTRIBUTE_UNUSED,
17804 asymbol **syms ATTRIBUTE_UNUSED,
17805 long dynsymcount,
17806 asymbol **dynsyms,
17807 asymbol **ret)
17808 {
17809 asection *relplt;
17810 asymbol *s;
17811 arelent *p;
17812 long count, i, n;
17813 size_t size;
17814 Elf_Internal_Shdr *hdr;
17815 char *names;
17816 asection *plt;
17817 bfd_vma offset;
17818 bfd_byte *data;
17819
17820 *ret = NULL;
17821
17822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
17823 return 0;
17824
17825 if (dynsymcount <= 0)
17826 return 0;
17827
17828 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
17829 if (relplt == NULL)
17830 return 0;
17831
17832 hdr = &elf_section_data (relplt)->this_hdr;
17833 if (hdr->sh_link != elf_dynsymtab (abfd)
17834 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
17835 return 0;
17836
17837 plt = bfd_get_section_by_name (abfd, ".plt");
17838 if (plt == NULL)
17839 return 0;
17840
17841 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
17842 return -1;
17843
17844 data = plt->contents;
17845 if (data == NULL)
17846 {
17847 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
17848 return -1;
17849 bfd_cache_section_contents((asection *) plt, data);
17850 }
17851
17852 count = relplt->size / hdr->sh_entsize;
17853 size = count * sizeof (asymbol);
17854 p = relplt->relocation;
17855 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17856 {
17857 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
17858 if (p->addend != 0)
17859 size += sizeof ("+0x") - 1 + 8;
17860 }
17861
17862 s = *ret = (asymbol *) bfd_malloc (size);
17863 if (s == NULL)
17864 return -1;
17865
17866 offset = elf32_arm_plt0_size (abfd, data);
17867 if (offset == (bfd_vma) -1)
17868 return -1;
17869
17870 names = (char *) (s + count);
17871 p = relplt->relocation;
17872 n = 0;
17873 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17874 {
17875 size_t len;
17876
17877 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
17878 if (plt_size == (bfd_vma) -1)
17879 break;
17880
17881 *s = **p->sym_ptr_ptr;
17882 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
17883 we are defining a symbol, ensure one of them is set. */
17884 if ((s->flags & BSF_LOCAL) == 0)
17885 s->flags |= BSF_GLOBAL;
17886 s->flags |= BSF_SYNTHETIC;
17887 s->section = plt;
17888 s->value = offset;
17889 s->name = names;
17890 s->udata.p = NULL;
17891 len = strlen ((*p->sym_ptr_ptr)->name);
17892 memcpy (names, (*p->sym_ptr_ptr)->name, len);
17893 names += len;
17894 if (p->addend != 0)
17895 {
17896 char buf[30], *a;
17897
17898 memcpy (names, "+0x", sizeof ("+0x") - 1);
17899 names += sizeof ("+0x") - 1;
17900 bfd_sprintf_vma (abfd, buf, p->addend);
17901 for (a = buf; *a == '0'; ++a)
17902 ;
17903 len = strlen (a);
17904 memcpy (names, a, len);
17905 names += len;
17906 }
17907 memcpy (names, "@plt", sizeof ("@plt"));
17908 names += sizeof ("@plt");
17909 ++s, ++n;
17910 offset += plt_size;
17911 }
17912
17913 return n;
17914 }
17915
17916 static bfd_boolean
17917 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
17918 {
17919 if (hdr->sh_flags & SHF_ARM_NOREAD)
17920 *flags |= SEC_ELF_NOREAD;
17921 return TRUE;
17922 }
17923
17924 static flagword
17925 elf32_arm_lookup_section_flags (char *flag_name)
17926 {
17927 if (!strcmp (flag_name, "SHF_ARM_NOREAD"))
17928 return SHF_ARM_NOREAD;
17929
17930 return SEC_NO_FLAGS;
17931 }
17932
17933 static unsigned int
17934 elf32_arm_count_additional_relocs (asection *sec)
17935 {
17936 struct _arm_elf_section_data *arm_data;
17937 arm_data = get_arm_elf_section_data (sec);
17938 return arm_data->additional_reloc_count;
17939 }
17940
17941 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
17942 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
17943 FALSE otherwise. ISECTION is the best guess matching section from the
17944 input bfd IBFD, but it might be NULL. */
17945
17946 static bfd_boolean
17947 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
17948 bfd *obfd ATTRIBUTE_UNUSED,
17949 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
17950 Elf_Internal_Shdr *osection)
17951 {
17952 switch (osection->sh_type)
17953 {
17954 case SHT_ARM_EXIDX:
17955 {
17956 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
17957 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
17958 unsigned i = 0;
17959
17960 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
17961 osection->sh_info = 0;
17962
17963 /* The sh_link field must be set to the text section associated with
17964 this index section. Unfortunately the ARM EHABI does not specify
17965 exactly how to determine this association. Our caller does try
17966 to match up OSECTION with its corresponding input section however
17967 so that is a good first guess. */
17968 if (isection != NULL
17969 && osection->bfd_section != NULL
17970 && isection->bfd_section != NULL
17971 && isection->bfd_section->output_section != NULL
17972 && isection->bfd_section->output_section == osection->bfd_section
17973 && iheaders != NULL
17974 && isection->sh_link > 0
17975 && isection->sh_link < elf_numsections (ibfd)
17976 && iheaders[isection->sh_link]->bfd_section != NULL
17977 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
17978 )
17979 {
17980 for (i = elf_numsections (obfd); i-- > 0;)
17981 if (oheaders[i]->bfd_section
17982 == iheaders[isection->sh_link]->bfd_section->output_section)
17983 break;
17984 }
17985
17986 if (i == 0)
17987 {
17988 /* Failing that we have to find a matching section ourselves. If
17989 we had the output section name available we could compare that
17990 with input section names. Unfortunately we don't. So instead
17991 we use a simple heuristic and look for the nearest executable
17992 section before this one. */
17993 for (i = elf_numsections (obfd); i-- > 0;)
17994 if (oheaders[i] == osection)
17995 break;
17996 if (i == 0)
17997 break;
17998
17999 while (i-- > 0)
18000 if (oheaders[i]->sh_type == SHT_PROGBITS
18001 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
18002 == (SHF_ALLOC | SHF_EXECINSTR))
18003 break;
18004 }
18005
18006 if (i)
18007 {
18008 osection->sh_link = i;
18009 /* If the text section was part of a group
18010 then the index section should be too. */
18011 if (oheaders[i]->sh_flags & SHF_GROUP)
18012 osection->sh_flags |= SHF_GROUP;
18013 return TRUE;
18014 }
18015 }
18016 break;
18017
18018 case SHT_ARM_PREEMPTMAP:
18019 osection->sh_flags = SHF_ALLOC;
18020 break;
18021
18022 case SHT_ARM_ATTRIBUTES:
18023 case SHT_ARM_DEBUGOVERLAY:
18024 case SHT_ARM_OVERLAYSECTION:
18025 default:
18026 break;
18027 }
18028
18029 return FALSE;
18030 }
18031
18032 #undef elf_backend_copy_special_section_fields
18033 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
18034
18035 #define ELF_ARCH bfd_arch_arm
18036 #define ELF_TARGET_ID ARM_ELF_DATA
18037 #define ELF_MACHINE_CODE EM_ARM
18038 #ifdef __QNXTARGET__
18039 #define ELF_MAXPAGESIZE 0x1000
18040 #else
18041 #define ELF_MAXPAGESIZE 0x10000
18042 #endif
18043 #define ELF_MINPAGESIZE 0x1000
18044 #define ELF_COMMONPAGESIZE 0x1000
18045
18046 #define bfd_elf32_mkobject elf32_arm_mkobject
18047
18048 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
18049 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
18050 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
18051 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
18052 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
18053 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
18054 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
18055 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
18056 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
18057 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
18058 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
18059 #define bfd_elf32_bfd_final_link elf32_arm_final_link
18060 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
18061
18062 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
18063 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
18064 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
18065 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
18066 #define elf_backend_check_relocs elf32_arm_check_relocs
18067 #define elf_backend_relocate_section elf32_arm_relocate_section
18068 #define elf_backend_write_section elf32_arm_write_section
18069 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
18070 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
18071 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
18072 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
18073 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
18074 #define elf_backend_always_size_sections elf32_arm_always_size_sections
18075 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
18076 #define elf_backend_post_process_headers elf32_arm_post_process_headers
18077 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
18078 #define elf_backend_object_p elf32_arm_object_p
18079 #define elf_backend_fake_sections elf32_arm_fake_sections
18080 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
18081 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18082 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
18083 #define elf_backend_size_info elf32_arm_size_info
18084 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18085 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
18086 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
18087 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
18088 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
18089 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
18090
18091 #define elf_backend_can_refcount 1
18092 #define elf_backend_can_gc_sections 1
18093 #define elf_backend_plt_readonly 1
18094 #define elf_backend_want_got_plt 1
18095 #define elf_backend_want_plt_sym 0
18096 #define elf_backend_may_use_rel_p 1
18097 #define elf_backend_may_use_rela_p 0
18098 #define elf_backend_default_use_rela_p 0
18099
18100 #define elf_backend_got_header_size 12
18101 #define elf_backend_extern_protected_data 1
18102
18103 #undef elf_backend_obj_attrs_vendor
18104 #define elf_backend_obj_attrs_vendor "aeabi"
18105 #undef elf_backend_obj_attrs_section
18106 #define elf_backend_obj_attrs_section ".ARM.attributes"
18107 #undef elf_backend_obj_attrs_arg_type
18108 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
18109 #undef elf_backend_obj_attrs_section_type
18110 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
18111 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
18112 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
18113
18114 #undef elf_backend_section_flags
18115 #define elf_backend_section_flags elf32_arm_section_flags
18116 #undef elf_backend_lookup_section_flags_hook
18117 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
18118
18119 #include "elf32-target.h"
18120
18121 /* Native Client targets. */
18122
18123 #undef TARGET_LITTLE_SYM
18124 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
18125 #undef TARGET_LITTLE_NAME
18126 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
18127 #undef TARGET_BIG_SYM
18128 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
18129 #undef TARGET_BIG_NAME
18130 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
18131
18132 /* Like elf32_arm_link_hash_table_create -- but overrides
18133 appropriately for NaCl. */
18134
18135 static struct bfd_link_hash_table *
18136 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
18137 {
18138 struct bfd_link_hash_table *ret;
18139
18140 ret = elf32_arm_link_hash_table_create (abfd);
18141 if (ret)
18142 {
18143 struct elf32_arm_link_hash_table *htab
18144 = (struct elf32_arm_link_hash_table *) ret;
18145
18146 htab->nacl_p = 1;
18147
18148 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
18149 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
18150 }
18151 return ret;
18152 }
18153
18154 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
18155 really need to use elf32_arm_modify_segment_map. But we do it
18156 anyway just to reduce gratuitous differences with the stock ARM backend. */
18157
18158 static bfd_boolean
18159 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
18160 {
18161 return (elf32_arm_modify_segment_map (abfd, info)
18162 && nacl_modify_segment_map (abfd, info));
18163 }
18164
18165 static void
18166 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
18167 {
18168 elf32_arm_final_write_processing (abfd, linker);
18169 nacl_final_write_processing (abfd, linker);
18170 }
18171
18172 static bfd_vma
18173 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
18174 const arelent *rel ATTRIBUTE_UNUSED)
18175 {
18176 return plt->vma
18177 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
18178 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
18179 }
18180
18181 #undef elf32_bed
18182 #define elf32_bed elf32_arm_nacl_bed
18183 #undef bfd_elf32_bfd_link_hash_table_create
18184 #define bfd_elf32_bfd_link_hash_table_create \
18185 elf32_arm_nacl_link_hash_table_create
18186 #undef elf_backend_plt_alignment
18187 #define elf_backend_plt_alignment 4
18188 #undef elf_backend_modify_segment_map
18189 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
18190 #undef elf_backend_modify_program_headers
18191 #define elf_backend_modify_program_headers nacl_modify_program_headers
18192 #undef elf_backend_final_write_processing
18193 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
18194 #undef bfd_elf32_get_synthetic_symtab
18195 #undef elf_backend_plt_sym_val
18196 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
18197 #undef elf_backend_copy_special_section_fields
18198
18199 #undef ELF_MINPAGESIZE
18200 #undef ELF_COMMONPAGESIZE
18201
18202
18203 #include "elf32-target.h"
18204
18205 /* Reset to defaults. */
18206 #undef elf_backend_plt_alignment
18207 #undef elf_backend_modify_segment_map
18208 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18209 #undef elf_backend_modify_program_headers
18210 #undef elf_backend_final_write_processing
18211 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18212 #undef ELF_MINPAGESIZE
18213 #define ELF_MINPAGESIZE 0x1000
18214 #undef ELF_COMMONPAGESIZE
18215 #define ELF_COMMONPAGESIZE 0x1000
18216
18217
18218 /* VxWorks Targets. */
18219
18220 #undef TARGET_LITTLE_SYM
18221 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
18222 #undef TARGET_LITTLE_NAME
18223 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
18224 #undef TARGET_BIG_SYM
18225 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
18226 #undef TARGET_BIG_NAME
18227 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
18228
18229 /* Like elf32_arm_link_hash_table_create -- but overrides
18230 appropriately for VxWorks. */
18231
18232 static struct bfd_link_hash_table *
18233 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
18234 {
18235 struct bfd_link_hash_table *ret;
18236
18237 ret = elf32_arm_link_hash_table_create (abfd);
18238 if (ret)
18239 {
18240 struct elf32_arm_link_hash_table *htab
18241 = (struct elf32_arm_link_hash_table *) ret;
18242 htab->use_rel = 0;
18243 htab->vxworks_p = 1;
18244 }
18245 return ret;
18246 }
18247
18248 static void
18249 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
18250 {
18251 elf32_arm_final_write_processing (abfd, linker);
18252 elf_vxworks_final_write_processing (abfd, linker);
18253 }
18254
18255 #undef elf32_bed
18256 #define elf32_bed elf32_arm_vxworks_bed
18257
18258 #undef bfd_elf32_bfd_link_hash_table_create
18259 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
18260 #undef elf_backend_final_write_processing
18261 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
18262 #undef elf_backend_emit_relocs
18263 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
18264
18265 #undef elf_backend_may_use_rel_p
18266 #define elf_backend_may_use_rel_p 0
18267 #undef elf_backend_may_use_rela_p
18268 #define elf_backend_may_use_rela_p 1
18269 #undef elf_backend_default_use_rela_p
18270 #define elf_backend_default_use_rela_p 1
18271 #undef elf_backend_want_plt_sym
18272 #define elf_backend_want_plt_sym 1
18273 #undef ELF_MAXPAGESIZE
18274 #define ELF_MAXPAGESIZE 0x1000
18275
18276 #include "elf32-target.h"
18277
18278
18279 /* Merge backend specific data from an object file to the output
18280 object file when linking. */
18281
18282 static bfd_boolean
18283 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
18284 {
18285 flagword out_flags;
18286 flagword in_flags;
18287 bfd_boolean flags_compatible = TRUE;
18288 asection *sec;
18289
18290 /* Check if we have the same endianness. */
18291 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
18292 return FALSE;
18293
18294 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
18295 return TRUE;
18296
18297 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
18298 return FALSE;
18299
18300 /* The input BFD must have had its flags initialised. */
18301 /* The following seems bogus to me -- The flags are initialized in
18302 the assembler but I don't think an elf_flags_init field is
18303 written into the object. */
18304 /* BFD_ASSERT (elf_flags_init (ibfd)); */
18305
18306 in_flags = elf_elfheader (ibfd)->e_flags;
18307 out_flags = elf_elfheader (obfd)->e_flags;
18308
18309 /* In theory there is no reason why we couldn't handle this. However
18310 in practice it isn't even close to working and there is no real
18311 reason to want it. */
18312 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
18313 && !(ibfd->flags & DYNAMIC)
18314 && (in_flags & EF_ARM_BE8))
18315 {
18316 _bfd_error_handler (_("error: %B is already in final BE8 format"),
18317 ibfd);
18318 return FALSE;
18319 }
18320
18321 if (!elf_flags_init (obfd))
18322 {
18323 /* If the input is the default architecture and had the default
18324 flags then do not bother setting the flags for the output
18325 architecture, instead allow future merges to do this. If no
18326 future merges ever set these flags then they will retain their
18327 uninitialised values, which surprise surprise, correspond
18328 to the default values. */
18329 if (bfd_get_arch_info (ibfd)->the_default
18330 && elf_elfheader (ibfd)->e_flags == 0)
18331 return TRUE;
18332
18333 elf_flags_init (obfd) = TRUE;
18334 elf_elfheader (obfd)->e_flags = in_flags;
18335
18336 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
18337 && bfd_get_arch_info (obfd)->the_default)
18338 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
18339
18340 return TRUE;
18341 }
18342
18343 /* Determine what should happen if the input ARM architecture
18344 does not match the output ARM architecture. */
18345 if (! bfd_arm_merge_machines (ibfd, obfd))
18346 return FALSE;
18347
18348 /* Identical flags must be compatible. */
18349 if (in_flags == out_flags)
18350 return TRUE;
18351
18352 /* Check to see if the input BFD actually contains any sections. If
18353 not, its flags may not have been initialised either, but it
18354 cannot actually cause any incompatiblity. Do not short-circuit
18355 dynamic objects; their section list may be emptied by
18356 elf_link_add_object_symbols.
18357
18358 Also check to see if there are no code sections in the input.
18359 In this case there is no need to check for code specific flags.
18360 XXX - do we need to worry about floating-point format compatability
18361 in data sections ? */
18362 if (!(ibfd->flags & DYNAMIC))
18363 {
18364 bfd_boolean null_input_bfd = TRUE;
18365 bfd_boolean only_data_sections = TRUE;
18366
18367 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
18368 {
18369 /* Ignore synthetic glue sections. */
18370 if (strcmp (sec->name, ".glue_7")
18371 && strcmp (sec->name, ".glue_7t"))
18372 {
18373 if ((bfd_get_section_flags (ibfd, sec)
18374 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18375 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18376 only_data_sections = FALSE;
18377
18378 null_input_bfd = FALSE;
18379 break;
18380 }
18381 }
18382
18383 if (null_input_bfd || only_data_sections)
18384 return TRUE;
18385 }
18386
18387 /* Complain about various flag mismatches. */
18388 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
18389 EF_ARM_EABI_VERSION (out_flags)))
18390 {
18391 _bfd_error_handler
18392 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
18393 ibfd, obfd,
18394 (in_flags & EF_ARM_EABIMASK) >> 24,
18395 (out_flags & EF_ARM_EABIMASK) >> 24);
18396 return FALSE;
18397 }
18398
18399 /* Not sure what needs to be checked for EABI versions >= 1. */
18400 /* VxWorks libraries do not use these flags. */
18401 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
18402 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
18403 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
18404 {
18405 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
18406 {
18407 _bfd_error_handler
18408 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
18409 ibfd, obfd,
18410 in_flags & EF_ARM_APCS_26 ? 26 : 32,
18411 out_flags & EF_ARM_APCS_26 ? 26 : 32);
18412 flags_compatible = FALSE;
18413 }
18414
18415 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
18416 {
18417 if (in_flags & EF_ARM_APCS_FLOAT)
18418 _bfd_error_handler
18419 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
18420 ibfd, obfd);
18421 else
18422 _bfd_error_handler
18423 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
18424 ibfd, obfd);
18425
18426 flags_compatible = FALSE;
18427 }
18428
18429 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
18430 {
18431 if (in_flags & EF_ARM_VFP_FLOAT)
18432 _bfd_error_handler
18433 (_("error: %B uses VFP instructions, whereas %B does not"),
18434 ibfd, obfd);
18435 else
18436 _bfd_error_handler
18437 (_("error: %B uses FPA instructions, whereas %B does not"),
18438 ibfd, obfd);
18439
18440 flags_compatible = FALSE;
18441 }
18442
18443 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
18444 {
18445 if (in_flags & EF_ARM_MAVERICK_FLOAT)
18446 _bfd_error_handler
18447 (_("error: %B uses Maverick instructions, whereas %B does not"),
18448 ibfd, obfd);
18449 else
18450 _bfd_error_handler
18451 (_("error: %B does not use Maverick instructions, whereas %B does"),
18452 ibfd, obfd);
18453
18454 flags_compatible = FALSE;
18455 }
18456
18457 #ifdef EF_ARM_SOFT_FLOAT
18458 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
18459 {
18460 /* We can allow interworking between code that is VFP format
18461 layout, and uses either soft float or integer regs for
18462 passing floating point arguments and results. We already
18463 know that the APCS_FLOAT flags match; similarly for VFP
18464 flags. */
18465 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
18466 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
18467 {
18468 if (in_flags & EF_ARM_SOFT_FLOAT)
18469 _bfd_error_handler
18470 (_("error: %B uses software FP, whereas %B uses hardware FP"),
18471 ibfd, obfd);
18472 else
18473 _bfd_error_handler
18474 (_("error: %B uses hardware FP, whereas %B uses software FP"),
18475 ibfd, obfd);
18476
18477 flags_compatible = FALSE;
18478 }
18479 }
18480 #endif
18481
18482 /* Interworking mismatch is only a warning. */
18483 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
18484 {
18485 if (in_flags & EF_ARM_INTERWORK)
18486 {
18487 _bfd_error_handler
18488 (_("Warning: %B supports interworking, whereas %B does not"),
18489 ibfd, obfd);
18490 }
18491 else
18492 {
18493 _bfd_error_handler
18494 (_("Warning: %B does not support interworking, whereas %B does"),
18495 ibfd, obfd);
18496 }
18497 }
18498 }
18499
18500 return flags_compatible;
18501 }
18502
18503
18504 /* Symbian OS Targets. */
18505
18506 #undef TARGET_LITTLE_SYM
18507 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
18508 #undef TARGET_LITTLE_NAME
18509 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
18510 #undef TARGET_BIG_SYM
18511 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
18512 #undef TARGET_BIG_NAME
18513 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
18514
18515 /* Like elf32_arm_link_hash_table_create -- but overrides
18516 appropriately for Symbian OS. */
18517
18518 static struct bfd_link_hash_table *
18519 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
18520 {
18521 struct bfd_link_hash_table *ret;
18522
18523 ret = elf32_arm_link_hash_table_create (abfd);
18524 if (ret)
18525 {
18526 struct elf32_arm_link_hash_table *htab
18527 = (struct elf32_arm_link_hash_table *)ret;
18528 /* There is no PLT header for Symbian OS. */
18529 htab->plt_header_size = 0;
18530 /* The PLT entries are each one instruction and one word. */
18531 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
18532 htab->symbian_p = 1;
18533 /* Symbian uses armv5t or above, so use_blx is always true. */
18534 htab->use_blx = 1;
18535 htab->root.is_relocatable_executable = 1;
18536 }
18537 return ret;
18538 }
18539
18540 static const struct bfd_elf_special_section
18541 elf32_arm_symbian_special_sections[] =
18542 {
18543 /* In a BPABI executable, the dynamic linking sections do not go in
18544 the loadable read-only segment. The post-linker may wish to
18545 refer to these sections, but they are not part of the final
18546 program image. */
18547 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
18548 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
18549 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
18550 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
18551 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
18552 /* These sections do not need to be writable as the SymbianOS
18553 postlinker will arrange things so that no dynamic relocation is
18554 required. */
18555 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
18556 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
18557 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
18558 { NULL, 0, 0, 0, 0 }
18559 };
18560
18561 static void
18562 elf32_arm_symbian_begin_write_processing (bfd *abfd,
18563 struct bfd_link_info *link_info)
18564 {
18565 /* BPABI objects are never loaded directly by an OS kernel; they are
18566 processed by a postlinker first, into an OS-specific format. If
18567 the D_PAGED bit is set on the file, BFD will align segments on
18568 page boundaries, so that an OS can directly map the file. With
18569 BPABI objects, that just results in wasted space. In addition,
18570 because we clear the D_PAGED bit, map_sections_to_segments will
18571 recognize that the program headers should not be mapped into any
18572 loadable segment. */
18573 abfd->flags &= ~D_PAGED;
18574 elf32_arm_begin_write_processing (abfd, link_info);
18575 }
18576
18577 static bfd_boolean
18578 elf32_arm_symbian_modify_segment_map (bfd *abfd,
18579 struct bfd_link_info *info)
18580 {
18581 struct elf_segment_map *m;
18582 asection *dynsec;
18583
18584 /* BPABI shared libraries and executables should have a PT_DYNAMIC
18585 segment. However, because the .dynamic section is not marked
18586 with SEC_LOAD, the generic ELF code will not create such a
18587 segment. */
18588 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
18589 if (dynsec)
18590 {
18591 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
18592 if (m->p_type == PT_DYNAMIC)
18593 break;
18594
18595 if (m == NULL)
18596 {
18597 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
18598 m->next = elf_seg_map (abfd);
18599 elf_seg_map (abfd) = m;
18600 }
18601 }
18602
18603 /* Also call the generic arm routine. */
18604 return elf32_arm_modify_segment_map (abfd, info);
18605 }
18606
18607 /* Return address for Ith PLT stub in section PLT, for relocation REL
18608 or (bfd_vma) -1 if it should not be included. */
18609
18610 static bfd_vma
18611 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
18612 const arelent *rel ATTRIBUTE_UNUSED)
18613 {
18614 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
18615 }
18616
18617 #undef elf32_bed
18618 #define elf32_bed elf32_arm_symbian_bed
18619
18620 /* The dynamic sections are not allocated on SymbianOS; the postlinker
18621 will process them and then discard them. */
18622 #undef ELF_DYNAMIC_SEC_FLAGS
18623 #define ELF_DYNAMIC_SEC_FLAGS \
18624 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
18625
18626 #undef elf_backend_emit_relocs
18627
18628 #undef bfd_elf32_bfd_link_hash_table_create
18629 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
18630 #undef elf_backend_special_sections
18631 #define elf_backend_special_sections elf32_arm_symbian_special_sections
18632 #undef elf_backend_begin_write_processing
18633 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
18634 #undef elf_backend_final_write_processing
18635 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18636
18637 #undef elf_backend_modify_segment_map
18638 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
18639
18640 /* There is no .got section for BPABI objects, and hence no header. */
18641 #undef elf_backend_got_header_size
18642 #define elf_backend_got_header_size 0
18643
18644 /* Similarly, there is no .got.plt section. */
18645 #undef elf_backend_want_got_plt
18646 #define elf_backend_want_got_plt 0
18647
18648 #undef elf_backend_plt_sym_val
18649 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
18650
18651 #undef elf_backend_may_use_rel_p
18652 #define elf_backend_may_use_rel_p 1
18653 #undef elf_backend_may_use_rela_p
18654 #define elf_backend_may_use_rela_p 0
18655 #undef elf_backend_default_use_rela_p
18656 #define elf_backend_default_use_rela_p 0
18657 #undef elf_backend_want_plt_sym
18658 #define elf_backend_want_plt_sym 0
18659 #undef ELF_MAXPAGESIZE
18660 #define ELF_MAXPAGESIZE 0x8000
18661
18662 #include "elf32-target.h"