daily update
[binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89 static bfd_boolean elf32_arm_object_p
90 PARAMS ((bfd *));
91
92 #ifndef ELFARM_NABI_C_INCLUDED
93 static void record_arm_to_thumb_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 static void record_thumb_to_arm_glue
96 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
97 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
98 PARAMS ((struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
100 PARAMS ((bfd *, struct bfd_link_info *));
101 bfd_boolean bfd_elf32_arm_process_before_allocation
102 PARAMS ((bfd *, struct bfd_link_info *, int));
103 #endif
104
105
106 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
107
108 /* The linker script knows the section names for placement.
109 The entry_names are used to do simple name mangling on the stubs.
110 Given a function name, and its type, the stub can be found. The
111 name can be changed. The only requirement is the %s be present. */
112 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
113 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
114
115 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
116 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
117
118 /* The name of the dynamic interpreter. This is put in the .interp
119 section. */
120 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
121
122 /* The size in bytes of an entry in the procedure linkage table. */
123 #define PLT_ENTRY_SIZE 16
124
125 /* The first entry in a procedure linkage table looks like
126 this. It is set up so that any shared library function that is
127 called before the relocation has been set up calls the dynamic
128 linker first. */
129 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
130 {
131 0xe52de004, /* str lr, [sp, #-4]! */
132 0xe59fe010, /* ldr lr, [pc, #16] */
133 0xe08fe00e, /* add lr, pc, lr */
134 0xe5bef008 /* ldr pc, [lr, #8]! */
135 };
136
137 /* Subsequent entries in a procedure linkage table look like
138 this. */
139 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
140 {
141 0xe59fc004, /* ldr ip, [pc, #4] */
142 0xe08fc00c, /* add ip, pc, ip */
143 0xe59cf000, /* ldr pc, [ip] */
144 0x00000000 /* offset to symbol in got */
145 };
146
147 /* The ARM linker needs to keep track of the number of relocs that it
148 decides to copy in check_relocs for each symbol. This is so that
149 it can discard PC relative relocs if it doesn't need them when
150 linking with -Bsymbolic. We store the information in a field
151 extending the regular ELF linker hash table. */
152
153 /* This structure keeps track of the number of PC relative relocs we
154 have copied for a given symbol. */
155 struct elf32_arm_pcrel_relocs_copied
156 {
157 /* Next section. */
158 struct elf32_arm_pcrel_relocs_copied * next;
159 /* A section in dynobj. */
160 asection * section;
161 /* Number of relocs copied in this section. */
162 bfd_size_type count;
163 };
164
165 /* Arm ELF linker hash entry. */
166 struct elf32_arm_link_hash_entry
167 {
168 struct elf_link_hash_entry root;
169
170 /* Number of PC relative relocs copied for this symbol. */
171 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
172 };
173
174 /* Declare this now that the above structures are defined. */
175 static bfd_boolean elf32_arm_discard_copies
176 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
177
178 /* Traverse an arm ELF linker hash table. */
179 #define elf32_arm_link_hash_traverse(table, func, info) \
180 (elf_link_hash_traverse \
181 (&(table)->root, \
182 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
183 (info)))
184
185 /* Get the ARM elf linker hash table from a link_info structure. */
186 #define elf32_arm_hash_table(info) \
187 ((struct elf32_arm_link_hash_table *) ((info)->hash))
188
189 /* ARM ELF linker hash table. */
190 struct elf32_arm_link_hash_table
191 {
192 /* The main hash table. */
193 struct elf_link_hash_table root;
194
195 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
196 bfd_size_type thumb_glue_size;
197
198 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
199 bfd_size_type arm_glue_size;
200
201 /* An arbitary input BFD chosen to hold the glue sections. */
202 bfd * bfd_of_glue_owner;
203
204 /* A boolean indicating whether knowledge of the ARM's pipeline
205 length should be applied by the linker. */
206 int no_pipeline_knowledge;
207 };
208
209 /* Create an entry in an ARM ELF linker hash table. */
210
211 static struct bfd_hash_entry *
212 elf32_arm_link_hash_newfunc (entry, table, string)
213 struct bfd_hash_entry * entry;
214 struct bfd_hash_table * table;
215 const char * string;
216 {
217 struct elf32_arm_link_hash_entry * ret =
218 (struct elf32_arm_link_hash_entry *) entry;
219
220 /* Allocate the structure if it has not already been allocated by a
221 subclass. */
222 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
223 ret = ((struct elf32_arm_link_hash_entry *)
224 bfd_hash_allocate (table,
225 sizeof (struct elf32_arm_link_hash_entry)));
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 return (struct bfd_hash_entry *) ret;
228
229 /* Call the allocation method of the superclass. */
230 ret = ((struct elf32_arm_link_hash_entry *)
231 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
232 table, string));
233 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
234 ret->pcrel_relocs_copied = NULL;
235
236 return (struct bfd_hash_entry *) ret;
237 }
238
239 /* Create an ARM elf linker hash table. */
240
241 static struct bfd_link_hash_table *
242 elf32_arm_link_hash_table_create (abfd)
243 bfd *abfd;
244 {
245 struct elf32_arm_link_hash_table *ret;
246 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
247
248 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
249 if (ret == (struct elf32_arm_link_hash_table *) NULL)
250 return NULL;
251
252 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
253 elf32_arm_link_hash_newfunc))
254 {
255 free (ret);
256 return NULL;
257 }
258
259 ret->thumb_glue_size = 0;
260 ret->arm_glue_size = 0;
261 ret->bfd_of_glue_owner = NULL;
262 ret->no_pipeline_knowledge = 0;
263
264 return &ret->root.root;
265 }
266
267 /* Locate the Thumb encoded calling stub for NAME. */
268
269 static struct elf_link_hash_entry *
270 find_thumb_glue (link_info, name, input_bfd)
271 struct bfd_link_info *link_info;
272 const char *name;
273 bfd *input_bfd;
274 {
275 char *tmp_name;
276 struct elf_link_hash_entry *hash;
277 struct elf32_arm_link_hash_table *hash_table;
278
279 /* We need a pointer to the armelf specific hash table. */
280 hash_table = elf32_arm_hash_table (link_info);
281
282 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
283 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
284
285 BFD_ASSERT (tmp_name);
286
287 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
288
289 hash = elf_link_hash_lookup
290 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
291
292 if (hash == NULL)
293 /* xgettext:c-format */
294 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
295 bfd_archive_filename (input_bfd), tmp_name, name);
296
297 free (tmp_name);
298
299 return hash;
300 }
301
302 /* Locate the ARM encoded calling stub for NAME. */
303
304 static struct elf_link_hash_entry *
305 find_arm_glue (link_info, name, input_bfd)
306 struct bfd_link_info *link_info;
307 const char *name;
308 bfd *input_bfd;
309 {
310 char *tmp_name;
311 struct elf_link_hash_entry *myh;
312 struct elf32_arm_link_hash_table *hash_table;
313
314 /* We need a pointer to the elfarm specific hash table. */
315 hash_table = elf32_arm_hash_table (link_info);
316
317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
319
320 BFD_ASSERT (tmp_name);
321
322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
323
324 myh = elf_link_hash_lookup
325 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
326
327 if (myh == NULL)
328 /* xgettext:c-format */
329 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
330 bfd_archive_filename (input_bfd), tmp_name, name);
331
332 free (tmp_name);
333
334 return myh;
335 }
336
337 /* ARM->Thumb glue:
338
339 .arm
340 __func_from_arm:
341 ldr r12, __func_addr
342 bx r12
343 __func_addr:
344 .word func @ behave as if you saw a ARM_32 reloc. */
345
346 #define ARM2THUMB_GLUE_SIZE 12
347 static const insn32 a2t1_ldr_insn = 0xe59fc000;
348 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
349 static const insn32 a2t3_func_addr_insn = 0x00000001;
350
351 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
352
353 .thumb .thumb
354 .align 2 .align 2
355 __func_from_thumb: __func_from_thumb:
356 bx pc push {r6, lr}
357 nop ldr r6, __func_addr
358 .arm mov lr, pc
359 __func_change_to_arm: bx r6
360 b func .arm
361 __func_back_to_thumb:
362 ldmia r13! {r6, lr}
363 bx lr
364 __func_addr:
365 .word func */
366
367 #define THUMB2ARM_GLUE_SIZE 8
368 static const insn16 t2a1_bx_pc_insn = 0x4778;
369 static const insn16 t2a2_noop_insn = 0x46c0;
370 static const insn32 t2a3_b_insn = 0xea000000;
371
372 #ifndef ELFARM_NABI_C_INCLUDED
373 bfd_boolean
374 bfd_elf32_arm_allocate_interworking_sections (info)
375 struct bfd_link_info * info;
376 {
377 asection * s;
378 bfd_byte * foo;
379 struct elf32_arm_link_hash_table * globals;
380
381 globals = elf32_arm_hash_table (info);
382
383 BFD_ASSERT (globals != NULL);
384
385 if (globals->arm_glue_size != 0)
386 {
387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
388
389 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
390 ARM2THUMB_GLUE_SECTION_NAME);
391
392 BFD_ASSERT (s != NULL);
393
394 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
395 globals->arm_glue_size);
396
397 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
398 s->contents = foo;
399 }
400
401 if (globals->thumb_glue_size != 0)
402 {
403 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
404
405 s = bfd_get_section_by_name
406 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
407
408 BFD_ASSERT (s != NULL);
409
410 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
411 globals->thumb_glue_size);
412
413 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
414 s->contents = foo;
415 }
416
417 return TRUE;
418 }
419
420 static void
421 record_arm_to_thumb_glue (link_info, h)
422 struct bfd_link_info * link_info;
423 struct elf_link_hash_entry * h;
424 {
425 const char * name = h->root.root.string;
426 asection * s;
427 char * tmp_name;
428 struct elf_link_hash_entry * myh;
429 struct bfd_link_hash_entry * bh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 bh = NULL;
464 val = globals->arm_glue_size + 1;
465 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
466 tmp_name, BSF_GLOBAL, s, val,
467 NULL, TRUE, FALSE, &bh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct bfd_link_hash_entry *bh;
486 struct elf32_arm_link_hash_table *hash_table;
487 char bind;
488 bfd_vma val;
489
490 hash_table = elf32_arm_hash_table (link_info);
491
492 BFD_ASSERT (hash_table != NULL);
493 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
494
495 s = bfd_get_section_by_name
496 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
497
498 BFD_ASSERT (s != NULL);
499
500 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
501 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
502
503 BFD_ASSERT (tmp_name);
504
505 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
506
507 myh = elf_link_hash_lookup
508 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
509
510 if (myh != NULL)
511 {
512 /* We've already seen this guy. */
513 free (tmp_name);
514 return;
515 }
516
517 bh = NULL;
518 val = hash_table->thumb_glue_size + 1;
519 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
520 tmp_name, BSF_GLOBAL, s, val,
521 NULL, TRUE, FALSE, &bh);
522
523 /* If we mark it 'Thumb', the disassembler will do a better job. */
524 myh = (struct elf_link_hash_entry *) bh;
525 bind = ELF_ST_BIND (myh->type);
526 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
527
528 free (tmp_name);
529
530 #define CHANGE_TO_ARM "__%s_change_to_arm"
531 #define BACK_FROM_ARM "__%s_back_from_arm"
532
533 /* Allocate another symbol to mark where we switch to Arm mode. */
534 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
535 + strlen (CHANGE_TO_ARM) + 1);
536
537 BFD_ASSERT (tmp_name);
538
539 sprintf (tmp_name, CHANGE_TO_ARM, name);
540
541 bh = NULL;
542 val = hash_table->thumb_glue_size + 4,
543 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
544 tmp_name, BSF_LOCAL, s, val,
545 NULL, TRUE, FALSE, &bh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 bfd_boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocatable)
568 return TRUE;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return FALSE;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return FALSE;
603
604 sec->gc_mark = 1;
605 }
606
607 return TRUE;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 bfd_boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocatable)
624 return TRUE;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return TRUE;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return TRUE;
637 }
638
639 bfd_boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocatable)
656 return TRUE;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return TRUE;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, FALSE);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return TRUE;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return FALSE;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return FALSE;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return FALSE;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point to here. */
933 ret_offset =
934 /* Address of where the stub is located. */
935 (s->output_section->vma + s->output_offset + my_offset)
936 /* Address of where the BL is located. */
937 - (input_section->output_section->vma + input_section->output_offset + offset)
938 /* Addend in the relocation. */
939 - addend
940 /* Biassing for PC-relative addressing. */
941 - 8;
942
943 tmp = bfd_get_32 (input_bfd, hit_data
944 - input_section->vma);
945
946 bfd_put_32 (output_bfd,
947 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
948 hit_data - input_section->vma);
949
950 return TRUE;
951 }
952
953 /* Arm code calling a Thumb function. */
954
955 static int
956 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
957 hit_data, sym_sec, offset, addend, val)
958 struct bfd_link_info * info;
959 const char * name;
960 bfd * input_bfd;
961 bfd * output_bfd;
962 asection * input_section;
963 bfd_byte * hit_data;
964 asection * sym_sec;
965 bfd_vma offset;
966 bfd_signed_vma addend;
967 bfd_vma val;
968 {
969 unsigned long int tmp;
970 bfd_vma my_offset;
971 asection * s;
972 long int ret_offset;
973 struct elf_link_hash_entry * myh;
974 struct elf32_arm_link_hash_table * globals;
975
976 myh = find_arm_glue (info, name, input_bfd);
977 if (myh == NULL)
978 return FALSE;
979
980 globals = elf32_arm_hash_table (info);
981
982 BFD_ASSERT (globals != NULL);
983 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
984
985 my_offset = myh->root.u.def.value;
986 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
987 ARM2THUMB_GLUE_SECTION_NAME);
988 BFD_ASSERT (s != NULL);
989 BFD_ASSERT (s->contents != NULL);
990 BFD_ASSERT (s->output_section != NULL);
991
992 if ((my_offset & 0x01) == 0x01)
993 {
994 if (sym_sec != NULL
995 && sym_sec->owner != NULL
996 && !INTERWORK_FLAG (sym_sec->owner))
997 {
998 (*_bfd_error_handler)
999 (_("%s(%s): warning: interworking not enabled."),
1000 bfd_archive_filename (sym_sec->owner), name);
1001 (*_bfd_error_handler)
1002 (_(" first occurrence: %s: arm call to thumb"),
1003 bfd_archive_filename (input_bfd));
1004 }
1005
1006 --my_offset;
1007 myh->root.u.def.value = my_offset;
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1010 s->contents + my_offset);
1011
1012 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1013 s->contents + my_offset + 4);
1014
1015 /* It's a thumb address. Add the low order bit. */
1016 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1017 s->contents + my_offset + 8);
1018 }
1019
1020 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1021
1022 tmp = bfd_get_32 (input_bfd, hit_data);
1023 tmp = tmp & 0xFF000000;
1024
1025 /* Somehow these are both 4 too far, so subtract 8. */
1026 ret_offset = (s->output_offset
1027 + my_offset
1028 + s->output_section->vma
1029 - (input_section->output_offset
1030 + input_section->output_section->vma
1031 + offset + addend)
1032 - 8);
1033
1034 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1035
1036 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1037
1038 return TRUE;
1039 }
1040
1041 /* This is the condition under which elf32_arm_finish_dynamic_symbol
1042 will be called from elflink.h. If elflink.h doesn't call our
1043 finish_dynamic_symbol routine, we'll need to do something about
1044 initializing any .plt and .got entries in elf32_arm_relocate_section
1045 and elf32_arm_final_link_relocate. */
1046 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \
1047 ((DYN) \
1048 && ((SHARED) \
1049 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1050 && ((H)->dynindx != -1 \
1051 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1052
1053 /* Perform a relocation as part of a final link. */
1054
1055 static bfd_reloc_status_type
1056 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1057 input_section, contents, rel, value,
1058 info, sym_sec, sym_name, sym_flags, h)
1059 reloc_howto_type * howto;
1060 bfd * input_bfd;
1061 bfd * output_bfd;
1062 asection * input_section;
1063 bfd_byte * contents;
1064 Elf_Internal_Rela * rel;
1065 bfd_vma value;
1066 struct bfd_link_info * info;
1067 asection * sym_sec;
1068 const char * sym_name;
1069 int sym_flags;
1070 struct elf_link_hash_entry * h;
1071 {
1072 unsigned long r_type = howto->type;
1073 unsigned long r_symndx;
1074 bfd_byte * hit_data = contents + rel->r_offset;
1075 bfd * dynobj = NULL;
1076 Elf_Internal_Shdr * symtab_hdr;
1077 struct elf_link_hash_entry ** sym_hashes;
1078 bfd_vma * local_got_offsets;
1079 asection * sgot = NULL;
1080 asection * splt = NULL;
1081 asection * sreloc = NULL;
1082 bfd_vma addend;
1083 bfd_signed_vma signed_addend;
1084 struct elf32_arm_link_hash_table * globals;
1085
1086 /* If the start address has been set, then set the EF_ARM_HASENTRY
1087 flag. Setting this more than once is redundant, but the cost is
1088 not too high, and it keeps the code simple.
1089
1090 The test is done here, rather than somewhere else, because the
1091 start address is only set just before the final link commences.
1092
1093 Note - if the user deliberately sets a start address of 0, the
1094 flag will not be set. */
1095 if (bfd_get_start_address (output_bfd) != 0)
1096 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1097
1098 globals = elf32_arm_hash_table (info);
1099
1100 dynobj = elf_hash_table (info)->dynobj;
1101 if (dynobj)
1102 {
1103 sgot = bfd_get_section_by_name (dynobj, ".got");
1104 splt = bfd_get_section_by_name (dynobj, ".plt");
1105 }
1106 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1107 sym_hashes = elf_sym_hashes (input_bfd);
1108 local_got_offsets = elf_local_got_offsets (input_bfd);
1109 r_symndx = ELF32_R_SYM (rel->r_info);
1110
1111 #if USE_REL
1112 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1113
1114 if (addend & ((howto->src_mask + 1) >> 1))
1115 {
1116 signed_addend = -1;
1117 signed_addend &= ~ howto->src_mask;
1118 signed_addend |= addend;
1119 }
1120 else
1121 signed_addend = addend;
1122 #else
1123 addend = signed_addend = rel->r_addend;
1124 #endif
1125
1126 switch (r_type)
1127 {
1128 case R_ARM_NONE:
1129 return bfd_reloc_ok;
1130
1131 case R_ARM_PC24:
1132 case R_ARM_ABS32:
1133 case R_ARM_REL32:
1134 #ifndef OLD_ARM_ABI
1135 case R_ARM_XPC25:
1136 #endif
1137 /* When generating a shared object, these relocations are copied
1138 into the output file to be resolved at run time. */
1139 if (info->shared
1140 && r_symndx != 0
1141 && (r_type != R_ARM_PC24
1142 || (h != NULL
1143 && h->dynindx != -1
1144 && (! info->symbolic
1145 || (h->elf_link_hash_flags
1146 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1147 {
1148 Elf_Internal_Rela outrel;
1149 bfd_byte *loc;
1150 bfd_boolean skip, relocate;
1151
1152 if (sreloc == NULL)
1153 {
1154 const char * name;
1155
1156 name = (bfd_elf_string_from_elf_section
1157 (input_bfd,
1158 elf_elfheader (input_bfd)->e_shstrndx,
1159 elf_section_data (input_section)->rel_hdr.sh_name));
1160 if (name == NULL)
1161 return bfd_reloc_notsupported;
1162
1163 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1164 && strcmp (bfd_get_section_name (input_bfd,
1165 input_section),
1166 name + 4) == 0);
1167
1168 sreloc = bfd_get_section_by_name (dynobj, name);
1169 BFD_ASSERT (sreloc != NULL);
1170 }
1171
1172 skip = FALSE;
1173 relocate = FALSE;
1174
1175 outrel.r_offset =
1176 _bfd_elf_section_offset (output_bfd, info, input_section,
1177 rel->r_offset);
1178 if (outrel.r_offset == (bfd_vma) -1)
1179 skip = TRUE;
1180 else if (outrel.r_offset == (bfd_vma) -2)
1181 skip = TRUE, relocate = TRUE;
1182 outrel.r_offset += (input_section->output_section->vma
1183 + input_section->output_offset);
1184
1185 if (skip)
1186 memset (&outrel, 0, sizeof outrel);
1187 else if (r_type == R_ARM_PC24)
1188 {
1189 BFD_ASSERT (h != NULL && h->dynindx != -1);
1190 if ((input_section->flags & SEC_ALLOC) == 0)
1191 relocate = TRUE;
1192 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1193 }
1194 else
1195 {
1196 if (h == NULL
1197 || ((info->symbolic || h->dynindx == -1)
1198 && (h->elf_link_hash_flags
1199 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1200 {
1201 relocate = TRUE;
1202 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1203 }
1204 else
1205 {
1206 BFD_ASSERT (h->dynindx != -1);
1207 if ((input_section->flags & SEC_ALLOC) == 0)
1208 relocate = TRUE;
1209 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1210 }
1211 }
1212
1213 loc = sreloc->contents;
1214 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1215 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1216
1217 /* If this reloc is against an external symbol, we do not want to
1218 fiddle with the addend. Otherwise, we need to include the symbol
1219 value so that it becomes an addend for the dynamic reloc. */
1220 if (! relocate)
1221 return bfd_reloc_ok;
1222
1223 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1224 contents, rel->r_offset, value,
1225 (bfd_vma) 0);
1226 }
1227 else switch (r_type)
1228 {
1229 #ifndef OLD_ARM_ABI
1230 case R_ARM_XPC25: /* Arm BLX instruction. */
1231 #endif
1232 case R_ARM_PC24: /* Arm B/BL instruction */
1233 #ifndef OLD_ARM_ABI
1234 if (r_type == R_ARM_XPC25)
1235 {
1236 /* Check for Arm calling Arm function. */
1237 /* FIXME: Should we translate the instruction into a BL
1238 instruction instead ? */
1239 if (sym_flags != STT_ARM_TFUNC)
1240 (*_bfd_error_handler) (_("\
1241 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1242 bfd_archive_filename (input_bfd),
1243 h ? h->root.root.string : "(local)");
1244 }
1245 else
1246 #endif
1247 {
1248 /* Check for Arm calling Thumb function. */
1249 if (sym_flags == STT_ARM_TFUNC)
1250 {
1251 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1252 input_section, hit_data, sym_sec, rel->r_offset,
1253 signed_addend, value);
1254 return bfd_reloc_ok;
1255 }
1256 }
1257
1258 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1259 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1260 {
1261 /* The old way of doing things. Trearing the addend as a
1262 byte sized field and adding in the pipeline offset. */
1263 value -= (input_section->output_section->vma
1264 + input_section->output_offset);
1265 value -= rel->r_offset;
1266 value += addend;
1267
1268 if (! globals->no_pipeline_knowledge)
1269 value -= 8;
1270 }
1271 else
1272 {
1273 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1274 where:
1275 S is the address of the symbol in the relocation.
1276 P is address of the instruction being relocated.
1277 A is the addend (extracted from the instruction) in bytes.
1278
1279 S is held in 'value'.
1280 P is the base address of the section containing the instruction
1281 plus the offset of the reloc into that section, ie:
1282 (input_section->output_section->vma +
1283 input_section->output_offset +
1284 rel->r_offset).
1285 A is the addend, converted into bytes, ie:
1286 (signed_addend * 4)
1287
1288 Note: None of these operations have knowledge of the pipeline
1289 size of the processor, thus it is up to the assembler to encode
1290 this information into the addend. */
1291 value -= (input_section->output_section->vma
1292 + input_section->output_offset);
1293 value -= rel->r_offset;
1294 value += (signed_addend << howto->size);
1295
1296 /* Previous versions of this code also used to add in the pipeline
1297 offset here. This is wrong because the linker is not supposed
1298 to know about such things, and one day it might change. In order
1299 to support old binaries that need the old behaviour however, so
1300 we attempt to detect which ABI was used to create the reloc. */
1301 if (! globals->no_pipeline_knowledge)
1302 {
1303 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1304
1305 i_ehdrp = elf_elfheader (input_bfd);
1306
1307 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1308 value -= 8;
1309 }
1310 }
1311
1312 signed_addend = value;
1313 signed_addend >>= howto->rightshift;
1314
1315 /* It is not an error for an undefined weak reference to be
1316 out of range. Any program that branches to such a symbol
1317 is going to crash anyway, so there is no point worrying
1318 about getting the destination exactly right. */
1319 if (! h || h->root.type != bfd_link_hash_undefweak)
1320 {
1321 /* Perform a signed range check. */
1322 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1323 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1324 return bfd_reloc_overflow;
1325 }
1326
1327 #ifndef OLD_ARM_ABI
1328 /* If necessary set the H bit in the BLX instruction. */
1329 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1330 value = (signed_addend & howto->dst_mask)
1331 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1332 | (1 << 24);
1333 else
1334 #endif
1335 value = (signed_addend & howto->dst_mask)
1336 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1337 break;
1338
1339 case R_ARM_ABS32:
1340 value += addend;
1341 if (sym_flags == STT_ARM_TFUNC)
1342 value |= 1;
1343 break;
1344
1345 case R_ARM_REL32:
1346 value -= (input_section->output_section->vma
1347 + input_section->output_offset + rel->r_offset);
1348 value += addend;
1349 break;
1350 }
1351
1352 bfd_put_32 (input_bfd, value, hit_data);
1353 return bfd_reloc_ok;
1354
1355 case R_ARM_ABS8:
1356 value += addend;
1357 if ((long) value > 0x7f || (long) value < -0x80)
1358 return bfd_reloc_overflow;
1359
1360 bfd_put_8 (input_bfd, value, hit_data);
1361 return bfd_reloc_ok;
1362
1363 case R_ARM_ABS16:
1364 value += addend;
1365
1366 if ((long) value > 0x7fff || (long) value < -0x8000)
1367 return bfd_reloc_overflow;
1368
1369 bfd_put_16 (input_bfd, value, hit_data);
1370 return bfd_reloc_ok;
1371
1372 case R_ARM_ABS12:
1373 /* Support ldr and str instruction for the arm */
1374 /* Also thumb b (unconditional branch). ??? Really? */
1375 value += addend;
1376
1377 if ((long) value > 0x7ff || (long) value < -0x800)
1378 return bfd_reloc_overflow;
1379
1380 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1381 bfd_put_32 (input_bfd, value, hit_data);
1382 return bfd_reloc_ok;
1383
1384 case R_ARM_THM_ABS5:
1385 /* Support ldr and str instructions for the thumb. */
1386 #if USE_REL
1387 /* Need to refetch addend. */
1388 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1389 /* ??? Need to determine shift amount from operand size. */
1390 addend >>= howto->rightshift;
1391 #endif
1392 value += addend;
1393
1394 /* ??? Isn't value unsigned? */
1395 if ((long) value > 0x1f || (long) value < -0x10)
1396 return bfd_reloc_overflow;
1397
1398 /* ??? Value needs to be properly shifted into place first. */
1399 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1400 bfd_put_16 (input_bfd, value, hit_data);
1401 return bfd_reloc_ok;
1402
1403 #ifndef OLD_ARM_ABI
1404 case R_ARM_THM_XPC22:
1405 #endif
1406 case R_ARM_THM_PC22:
1407 /* Thumb BL (branch long instruction). */
1408 {
1409 bfd_vma relocation;
1410 bfd_boolean overflow = FALSE;
1411 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1412 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1413 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1414 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1415 bfd_vma check;
1416 bfd_signed_vma signed_check;
1417
1418 #if USE_REL
1419 /* Need to refetch the addend and squish the two 11 bit pieces
1420 together. */
1421 {
1422 bfd_vma upper = upper_insn & 0x7ff;
1423 bfd_vma lower = lower_insn & 0x7ff;
1424 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1425 addend = (upper << 12) | (lower << 1);
1426 signed_addend = addend;
1427 }
1428 #endif
1429 #ifndef OLD_ARM_ABI
1430 if (r_type == R_ARM_THM_XPC22)
1431 {
1432 /* Check for Thumb to Thumb call. */
1433 /* FIXME: Should we translate the instruction into a BL
1434 instruction instead ? */
1435 if (sym_flags == STT_ARM_TFUNC)
1436 (*_bfd_error_handler) (_("\
1437 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1438 bfd_archive_filename (input_bfd),
1439 h ? h->root.root.string : "(local)");
1440 }
1441 else
1442 #endif
1443 {
1444 /* If it is not a call to Thumb, assume call to Arm.
1445 If it is a call relative to a section name, then it is not a
1446 function call at all, but rather a long jump. */
1447 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1448 {
1449 if (elf32_thumb_to_arm_stub
1450 (info, sym_name, input_bfd, output_bfd, input_section,
1451 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1452 return bfd_reloc_ok;
1453 else
1454 return bfd_reloc_dangerous;
1455 }
1456 }
1457
1458 relocation = value + signed_addend;
1459
1460 relocation -= (input_section->output_section->vma
1461 + input_section->output_offset
1462 + rel->r_offset);
1463
1464 if (! globals->no_pipeline_knowledge)
1465 {
1466 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1467
1468 i_ehdrp = elf_elfheader (input_bfd);
1469
1470 /* Previous versions of this code also used to add in the pipline
1471 offset here. This is wrong because the linker is not supposed
1472 to know about such things, and one day it might change. In order
1473 to support old binaries that need the old behaviour however, so
1474 we attempt to detect which ABI was used to create the reloc. */
1475 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1476 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1477 || i_ehdrp->e_ident[EI_OSABI] == 0)
1478 relocation += 4;
1479 }
1480
1481 check = relocation >> howto->rightshift;
1482
1483 /* If this is a signed value, the rightshift just dropped
1484 leading 1 bits (assuming twos complement). */
1485 if ((bfd_signed_vma) relocation >= 0)
1486 signed_check = check;
1487 else
1488 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1489
1490 /* Assumes two's complement. */
1491 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1492 overflow = TRUE;
1493
1494 #ifndef OLD_ARM_ABI
1495 if (r_type == R_ARM_THM_XPC22
1496 && ((lower_insn & 0x1800) == 0x0800))
1497 /* For a BLX instruction, make sure that the relocation is rounded up
1498 to a word boundary. This follows the semantics of the instruction
1499 which specifies that bit 1 of the target address will come from bit
1500 1 of the base address. */
1501 relocation = (relocation + 2) & ~ 3;
1502 #endif
1503 /* Put RELOCATION back into the insn. */
1504 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1505 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1506
1507 /* Put the relocated value back in the object file: */
1508 bfd_put_16 (input_bfd, upper_insn, hit_data);
1509 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1510
1511 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1512 }
1513 break;
1514
1515 case R_ARM_THM_PC11:
1516 /* Thumb B (branch) instruction). */
1517 {
1518 bfd_signed_vma relocation;
1519 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1520 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1521 bfd_signed_vma signed_check;
1522
1523 #if USE_REL
1524 /* Need to refetch addend. */
1525 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1526 if (addend & ((howto->src_mask + 1) >> 1))
1527 {
1528 signed_addend = -1;
1529 signed_addend &= ~ howto->src_mask;
1530 signed_addend |= addend;
1531 }
1532 else
1533 signed_addend = addend;
1534 /* The value in the insn has been right shifted. We need to
1535 undo this, so that we can perform the address calculation
1536 in terms of bytes. */
1537 signed_addend <<= howto->rightshift;
1538 #endif
1539 relocation = value + signed_addend;
1540
1541 relocation -= (input_section->output_section->vma
1542 + input_section->output_offset
1543 + rel->r_offset);
1544
1545 relocation >>= howto->rightshift;
1546 signed_check = relocation;
1547 relocation &= howto->dst_mask;
1548 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1549
1550 bfd_put_16 (input_bfd, relocation, hit_data);
1551
1552 /* Assumes two's complement. */
1553 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1554 return bfd_reloc_overflow;
1555
1556 return bfd_reloc_ok;
1557 }
1558
1559 case R_ARM_GNU_VTINHERIT:
1560 case R_ARM_GNU_VTENTRY:
1561 return bfd_reloc_ok;
1562
1563 case R_ARM_COPY:
1564 return bfd_reloc_notsupported;
1565
1566 case R_ARM_GLOB_DAT:
1567 return bfd_reloc_notsupported;
1568
1569 case R_ARM_JUMP_SLOT:
1570 return bfd_reloc_notsupported;
1571
1572 case R_ARM_RELATIVE:
1573 return bfd_reloc_notsupported;
1574
1575 case R_ARM_GOTOFF:
1576 /* Relocation is relative to the start of the
1577 global offset table. */
1578
1579 BFD_ASSERT (sgot != NULL);
1580 if (sgot == NULL)
1581 return bfd_reloc_notsupported;
1582
1583 /* If we are addressing a Thumb function, we need to adjust the
1584 address by one, so that attempts to call the function pointer will
1585 correctly interpret it as Thumb code. */
1586 if (sym_flags == STT_ARM_TFUNC)
1587 value += 1;
1588
1589 /* Note that sgot->output_offset is not involved in this
1590 calculation. We always want the start of .got. If we
1591 define _GLOBAL_OFFSET_TABLE in a different way, as is
1592 permitted by the ABI, we might have to change this
1593 calculation. */
1594 value -= sgot->output_section->vma;
1595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1596 contents, rel->r_offset, value,
1597 (bfd_vma) 0);
1598
1599 case R_ARM_GOTPC:
1600 /* Use global offset table as symbol value. */
1601 BFD_ASSERT (sgot != NULL);
1602
1603 if (sgot == NULL)
1604 return bfd_reloc_notsupported;
1605
1606 value = sgot->output_section->vma;
1607 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1608 contents, rel->r_offset, value,
1609 (bfd_vma) 0);
1610
1611 case R_ARM_GOT32:
1612 /* Relocation is to the entry for this symbol in the
1613 global offset table. */
1614 if (sgot == NULL)
1615 return bfd_reloc_notsupported;
1616
1617 if (h != NULL)
1618 {
1619 bfd_vma off;
1620 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1621
1622 off = h->got.offset;
1623 BFD_ASSERT (off != (bfd_vma) -1);
1624
1625 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1626 || (info->shared
1627 && (info->symbolic || h->dynindx == -1
1628 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1629 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1630 {
1631 /* This is actually a static link, or it is a -Bsymbolic link
1632 and the symbol is defined locally. We must initialize this
1633 entry in the global offset table. Since the offset must
1634 always be a multiple of 4, we use the least significant bit
1635 to record whether we have initialized it already.
1636
1637 When doing a dynamic link, we create a .rel.got relocation
1638 entry to initialize the value. This is done in the
1639 finish_dynamic_symbol routine. */
1640 if ((off & 1) != 0)
1641 off &= ~1;
1642 else
1643 {
1644 /* If we are addressing a Thumb function, we need to
1645 adjust the address by one, so that attempts to
1646 call the function pointer will correctly
1647 interpret it as Thumb code. */
1648 if (sym_flags == STT_ARM_TFUNC)
1649 value |= 1;
1650
1651 bfd_put_32 (output_bfd, value, sgot->contents + off);
1652 h->got.offset |= 1;
1653 }
1654 }
1655
1656 value = sgot->output_offset + off;
1657 }
1658 else
1659 {
1660 bfd_vma off;
1661
1662 BFD_ASSERT (local_got_offsets != NULL &&
1663 local_got_offsets[r_symndx] != (bfd_vma) -1);
1664
1665 off = local_got_offsets[r_symndx];
1666
1667 /* The offset must always be a multiple of 4. We use the
1668 least significant bit to record whether we have already
1669 generated the necessary reloc. */
1670 if ((off & 1) != 0)
1671 off &= ~1;
1672 else
1673 {
1674 bfd_put_32 (output_bfd, value, sgot->contents + off);
1675
1676 if (info->shared)
1677 {
1678 asection * srelgot;
1679 Elf_Internal_Rela outrel;
1680 bfd_byte *loc;
1681
1682 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1683 BFD_ASSERT (srelgot != NULL);
1684
1685 outrel.r_offset = (sgot->output_section->vma
1686 + sgot->output_offset
1687 + off);
1688 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1689 loc = srelgot->contents;
1690 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1691 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1692 }
1693
1694 local_got_offsets[r_symndx] |= 1;
1695 }
1696
1697 value = sgot->output_offset + off;
1698 }
1699
1700 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1701 contents, rel->r_offset, value,
1702 (bfd_vma) 0);
1703
1704 case R_ARM_PLT32:
1705 /* Relocation is to the entry for this symbol in the
1706 procedure linkage table. */
1707
1708 /* Resolve a PLT32 reloc against a local symbol directly,
1709 without using the procedure linkage table. */
1710 if (h == NULL)
1711 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1712 contents, rel->r_offset, value,
1713 (bfd_vma) 0);
1714
1715 if (h->plt.offset == (bfd_vma) -1)
1716 /* We didn't make a PLT entry for this symbol. This
1717 happens when statically linking PIC code, or when
1718 using -Bsymbolic. */
1719 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1720 contents, rel->r_offset, value,
1721 (bfd_vma) 0);
1722
1723 BFD_ASSERT(splt != NULL);
1724 if (splt == NULL)
1725 return bfd_reloc_notsupported;
1726
1727 value = (splt->output_section->vma
1728 + splt->output_offset
1729 + h->plt.offset);
1730 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1731 contents, rel->r_offset, value,
1732 (bfd_vma) 0);
1733
1734 case R_ARM_SBREL32:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_AMP_VCALL9:
1738 return bfd_reloc_notsupported;
1739
1740 case R_ARM_RSBREL32:
1741 return bfd_reloc_notsupported;
1742
1743 case R_ARM_THM_RPC22:
1744 return bfd_reloc_notsupported;
1745
1746 case R_ARM_RREL32:
1747 return bfd_reloc_notsupported;
1748
1749 case R_ARM_RABS32:
1750 return bfd_reloc_notsupported;
1751
1752 case R_ARM_RPC24:
1753 return bfd_reloc_notsupported;
1754
1755 case R_ARM_RBASE:
1756 return bfd_reloc_notsupported;
1757
1758 default:
1759 return bfd_reloc_notsupported;
1760 }
1761 }
1762
1763 #if USE_REL
1764 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1765 static void
1766 arm_add_to_rel (abfd, address, howto, increment)
1767 bfd * abfd;
1768 bfd_byte * address;
1769 reloc_howto_type * howto;
1770 bfd_signed_vma increment;
1771 {
1772 bfd_signed_vma addend;
1773
1774 if (howto->type == R_ARM_THM_PC22)
1775 {
1776 int upper_insn, lower_insn;
1777 int upper, lower;
1778
1779 upper_insn = bfd_get_16 (abfd, address);
1780 lower_insn = bfd_get_16 (abfd, address + 2);
1781 upper = upper_insn & 0x7ff;
1782 lower = lower_insn & 0x7ff;
1783
1784 addend = (upper << 12) | (lower << 1);
1785 addend += increment;
1786 addend >>= 1;
1787
1788 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1789 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1790
1791 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1792 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1793 }
1794 else
1795 {
1796 bfd_vma contents;
1797
1798 contents = bfd_get_32 (abfd, address);
1799
1800 /* Get the (signed) value from the instruction. */
1801 addend = contents & howto->src_mask;
1802 if (addend & ((howto->src_mask + 1) >> 1))
1803 {
1804 bfd_signed_vma mask;
1805
1806 mask = -1;
1807 mask &= ~ howto->src_mask;
1808 addend |= mask;
1809 }
1810
1811 /* Add in the increment, (which is a byte value). */
1812 switch (howto->type)
1813 {
1814 default:
1815 addend += increment;
1816 break;
1817
1818 case R_ARM_PC24:
1819 addend <<= howto->size;
1820 addend += increment;
1821
1822 /* Should we check for overflow here ? */
1823
1824 /* Drop any undesired bits. */
1825 addend >>= howto->rightshift;
1826 break;
1827 }
1828
1829 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1830
1831 bfd_put_32 (abfd, contents, address);
1832 }
1833 }
1834 #endif /* USE_REL */
1835
1836 /* Relocate an ARM ELF section. */
1837 static bfd_boolean
1838 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1839 contents, relocs, local_syms, local_sections)
1840 bfd *output_bfd;
1841 struct bfd_link_info *info;
1842 bfd *input_bfd;
1843 asection *input_section;
1844 bfd_byte *contents;
1845 Elf_Internal_Rela *relocs;
1846 Elf_Internal_Sym *local_syms;
1847 asection **local_sections;
1848 {
1849 Elf_Internal_Shdr *symtab_hdr;
1850 struct elf_link_hash_entry **sym_hashes;
1851 Elf_Internal_Rela *rel;
1852 Elf_Internal_Rela *relend;
1853 const char *name;
1854
1855 #if !USE_REL
1856 if (info->relocatable)
1857 return TRUE;
1858 #endif
1859
1860 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1861 sym_hashes = elf_sym_hashes (input_bfd);
1862
1863 rel = relocs;
1864 relend = relocs + input_section->reloc_count;
1865 for (; rel < relend; rel++)
1866 {
1867 int r_type;
1868 reloc_howto_type * howto;
1869 unsigned long r_symndx;
1870 Elf_Internal_Sym * sym;
1871 asection * sec;
1872 struct elf_link_hash_entry * h;
1873 bfd_vma relocation;
1874 bfd_reloc_status_type r;
1875 arelent bfd_reloc;
1876
1877 r_symndx = ELF32_R_SYM (rel->r_info);
1878 r_type = ELF32_R_TYPE (rel->r_info);
1879
1880 if ( r_type == R_ARM_GNU_VTENTRY
1881 || r_type == R_ARM_GNU_VTINHERIT)
1882 continue;
1883
1884 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1885 howto = bfd_reloc.howto;
1886
1887 #if USE_REL
1888 if (info->relocatable)
1889 {
1890 /* This is a relocatable link. We don't have to change
1891 anything, unless the reloc is against a section symbol,
1892 in which case we have to adjust according to where the
1893 section symbol winds up in the output section. */
1894 if (r_symndx < symtab_hdr->sh_info)
1895 {
1896 sym = local_syms + r_symndx;
1897 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1898 {
1899 sec = local_sections[r_symndx];
1900 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1901 howto,
1902 (bfd_signed_vma) (sec->output_offset
1903 + sym->st_value));
1904 }
1905 }
1906
1907 continue;
1908 }
1909 #endif
1910
1911 /* This is a final link. */
1912 h = NULL;
1913 sym = NULL;
1914 sec = NULL;
1915
1916 if (r_symndx < symtab_hdr->sh_info)
1917 {
1918 sym = local_syms + r_symndx;
1919 sec = local_sections[r_symndx];
1920 #if USE_REL
1921 relocation = (sec->output_section->vma
1922 + sec->output_offset
1923 + sym->st_value);
1924 if ((sec->flags & SEC_MERGE)
1925 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1926 {
1927 asection *msec;
1928 bfd_vma addend, value;
1929
1930 if (howto->rightshift)
1931 {
1932 (*_bfd_error_handler)
1933 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1934 bfd_archive_filename (input_bfd),
1935 bfd_get_section_name (input_bfd, input_section),
1936 (long) rel->r_offset, howto->name);
1937 return FALSE;
1938 }
1939
1940 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1941
1942 /* Get the (signed) value from the instruction. */
1943 addend = value & howto->src_mask;
1944 if (addend & ((howto->src_mask + 1) >> 1))
1945 {
1946 bfd_signed_vma mask;
1947
1948 mask = -1;
1949 mask &= ~ howto->src_mask;
1950 addend |= mask;
1951 }
1952 msec = sec;
1953 addend =
1954 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1955 - relocation;
1956 addend += msec->output_section->vma + msec->output_offset;
1957 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1958 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1959 }
1960 #else
1961 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1962 #endif
1963 }
1964 else
1965 {
1966 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1967
1968 while ( h->root.type == bfd_link_hash_indirect
1969 || h->root.type == bfd_link_hash_warning)
1970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1971
1972 if ( h->root.type == bfd_link_hash_defined
1973 || h->root.type == bfd_link_hash_defweak)
1974 {
1975 int relocation_needed = 1;
1976
1977 sec = h->root.u.def.section;
1978
1979 /* In these cases, we don't need the relocation value.
1980 We check specially because in some obscure cases
1981 sec->output_section will be NULL. */
1982 switch (r_type)
1983 {
1984 case R_ARM_PC24:
1985 case R_ARM_ABS32:
1986 case R_ARM_THM_PC22:
1987 if (info->shared
1988 && (
1989 (!info->symbolic && h->dynindx != -1)
1990 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1991 )
1992 && ((input_section->flags & SEC_ALLOC) != 0
1993 /* DWARF will emit R_ARM_ABS32 relocations in its
1994 sections against symbols defined externally
1995 in shared libraries. We can't do anything
1996 with them here. */
1997 || ((input_section->flags & SEC_DEBUGGING) != 0
1998 && (h->elf_link_hash_flags
1999 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2000 )
2001 relocation_needed = 0;
2002 break;
2003
2004 case R_ARM_GOTPC:
2005 relocation_needed = 0;
2006 break;
2007
2008 case R_ARM_GOT32:
2009 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2010 (elf_hash_table(info)->dynamic_sections_created,
2011 info->shared, h))
2012 && (!info->shared
2013 || (!info->symbolic && h->dynindx != -1)
2014 || (h->elf_link_hash_flags
2015 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2016 relocation_needed = 0;
2017 break;
2018
2019 case R_ARM_PLT32:
2020 if (h->plt.offset != (bfd_vma)-1)
2021 relocation_needed = 0;
2022 break;
2023
2024 default:
2025 if (sec->output_section == NULL)
2026 {
2027 (*_bfd_error_handler)
2028 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2029 bfd_archive_filename (input_bfd),
2030 r_type,
2031 h->root.root.string,
2032 bfd_get_section_name (input_bfd, input_section));
2033 relocation_needed = 0;
2034 }
2035 }
2036
2037 if (relocation_needed)
2038 relocation = h->root.u.def.value
2039 + sec->output_section->vma
2040 + sec->output_offset;
2041 else
2042 relocation = 0;
2043 }
2044 else if (h->root.type == bfd_link_hash_undefweak)
2045 relocation = 0;
2046 else if (info->shared && !info->symbolic
2047 && !info->no_undefined
2048 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2049 relocation = 0;
2050 else
2051 {
2052 if (!((*info->callbacks->undefined_symbol)
2053 (info, h->root.root.string, input_bfd,
2054 input_section, rel->r_offset,
2055 (!info->shared || info->no_undefined
2056 || ELF_ST_VISIBILITY (h->other)))))
2057 return FALSE;
2058 relocation = 0;
2059 }
2060 }
2061
2062 if (h != NULL)
2063 name = h->root.root.string;
2064 else
2065 {
2066 name = (bfd_elf_string_from_elf_section
2067 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2068 if (name == NULL || *name == '\0')
2069 name = bfd_section_name (input_bfd, sec);
2070 }
2071
2072 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2073 input_section, contents, rel,
2074 relocation, info, sec, name,
2075 (h ? ELF_ST_TYPE (h->type) :
2076 ELF_ST_TYPE (sym->st_info)), h);
2077
2078 if (r != bfd_reloc_ok)
2079 {
2080 const char * msg = (const char *) 0;
2081
2082 switch (r)
2083 {
2084 case bfd_reloc_overflow:
2085 /* If the overflowing reloc was to an undefined symbol,
2086 we have already printed one error message and there
2087 is no point complaining again. */
2088 if ((! h ||
2089 h->root.type != bfd_link_hash_undefined)
2090 && (!((*info->callbacks->reloc_overflow)
2091 (info, name, howto->name, (bfd_vma) 0,
2092 input_bfd, input_section, rel->r_offset))))
2093 return FALSE;
2094 break;
2095
2096 case bfd_reloc_undefined:
2097 if (!((*info->callbacks->undefined_symbol)
2098 (info, name, input_bfd, input_section,
2099 rel->r_offset, TRUE)))
2100 return FALSE;
2101 break;
2102
2103 case bfd_reloc_outofrange:
2104 msg = _("internal error: out of range error");
2105 goto common_error;
2106
2107 case bfd_reloc_notsupported:
2108 msg = _("internal error: unsupported relocation error");
2109 goto common_error;
2110
2111 case bfd_reloc_dangerous:
2112 msg = _("internal error: dangerous error");
2113 goto common_error;
2114
2115 default:
2116 msg = _("internal error: unknown error");
2117 /* fall through */
2118
2119 common_error:
2120 if (!((*info->callbacks->warning)
2121 (info, msg, name, input_bfd, input_section,
2122 rel->r_offset)))
2123 return FALSE;
2124 break;
2125 }
2126 }
2127 }
2128
2129 return TRUE;
2130 }
2131
2132 /* Set the right machine number. */
2133
2134 static bfd_boolean
2135 elf32_arm_object_p (abfd)
2136 bfd *abfd;
2137 {
2138 unsigned int mach;
2139
2140 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2141
2142 if (mach != bfd_mach_arm_unknown)
2143 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2144
2145 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2146 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2147
2148 else
2149 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2150
2151 return TRUE;
2152 }
2153
2154 /* Function to keep ARM specific flags in the ELF header. */
2155 static bfd_boolean
2156 elf32_arm_set_private_flags (abfd, flags)
2157 bfd *abfd;
2158 flagword flags;
2159 {
2160 if (elf_flags_init (abfd)
2161 && elf_elfheader (abfd)->e_flags != flags)
2162 {
2163 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2164 {
2165 if (flags & EF_ARM_INTERWORK)
2166 (*_bfd_error_handler) (_("\
2167 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2168 bfd_archive_filename (abfd));
2169 else
2170 _bfd_error_handler (_("\
2171 Warning: Clearing the interworking flag of %s due to outside request"),
2172 bfd_archive_filename (abfd));
2173 }
2174 }
2175 else
2176 {
2177 elf_elfheader (abfd)->e_flags = flags;
2178 elf_flags_init (abfd) = TRUE;
2179 }
2180
2181 return TRUE;
2182 }
2183
2184 /* Copy backend specific data from one object module to another. */
2185
2186 static bfd_boolean
2187 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2188 bfd *ibfd;
2189 bfd *obfd;
2190 {
2191 flagword in_flags;
2192 flagword out_flags;
2193
2194 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2195 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2196 return TRUE;
2197
2198 in_flags = elf_elfheader (ibfd)->e_flags;
2199 out_flags = elf_elfheader (obfd)->e_flags;
2200
2201 if (elf_flags_init (obfd)
2202 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2203 && in_flags != out_flags)
2204 {
2205 /* Cannot mix APCS26 and APCS32 code. */
2206 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2207 return FALSE;
2208
2209 /* Cannot mix float APCS and non-float APCS code. */
2210 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2211 return FALSE;
2212
2213 /* If the src and dest have different interworking flags
2214 then turn off the interworking bit. */
2215 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2216 {
2217 if (out_flags & EF_ARM_INTERWORK)
2218 _bfd_error_handler (_("\
2219 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2220 bfd_get_filename (obfd),
2221 bfd_archive_filename (ibfd));
2222
2223 in_flags &= ~EF_ARM_INTERWORK;
2224 }
2225
2226 /* Likewise for PIC, though don't warn for this case. */
2227 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2228 in_flags &= ~EF_ARM_PIC;
2229 }
2230
2231 elf_elfheader (obfd)->e_flags = in_flags;
2232 elf_flags_init (obfd) = TRUE;
2233
2234 return TRUE;
2235 }
2236
2237 /* Merge backend specific data from an object file to the output
2238 object file when linking. */
2239
2240 static bfd_boolean
2241 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2242 bfd * ibfd;
2243 bfd * obfd;
2244 {
2245 flagword out_flags;
2246 flagword in_flags;
2247 bfd_boolean flags_compatible = TRUE;
2248 bfd_boolean null_input_bfd = TRUE;
2249 asection *sec;
2250
2251 /* Check if we have the same endianess. */
2252 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2253 return FALSE;
2254
2255 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2256 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2257 return TRUE;
2258
2259 /* The input BFD must have had its flags initialised. */
2260 /* The following seems bogus to me -- The flags are initialized in
2261 the assembler but I don't think an elf_flags_init field is
2262 written into the object. */
2263 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2264
2265 in_flags = elf_elfheader (ibfd)->e_flags;
2266 out_flags = elf_elfheader (obfd)->e_flags;
2267
2268 if (!elf_flags_init (obfd))
2269 {
2270 /* If the input is the default architecture and had the default
2271 flags then do not bother setting the flags for the output
2272 architecture, instead allow future merges to do this. If no
2273 future merges ever set these flags then they will retain their
2274 uninitialised values, which surprise surprise, correspond
2275 to the default values. */
2276 if (bfd_get_arch_info (ibfd)->the_default
2277 && elf_elfheader (ibfd)->e_flags == 0)
2278 return TRUE;
2279
2280 elf_flags_init (obfd) = TRUE;
2281 elf_elfheader (obfd)->e_flags = in_flags;
2282
2283 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2284 && bfd_get_arch_info (obfd)->the_default)
2285 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2286
2287 return TRUE;
2288 }
2289
2290 /* Determine what should happen if the input ARM architecture
2291 does not match the output ARM architecture. */
2292 if (! bfd_arm_merge_machines (ibfd, obfd))
2293 return FALSE;
2294
2295 /* Identical flags must be compatible. */
2296 if (in_flags == out_flags)
2297 return TRUE;
2298
2299 /* Check to see if the input BFD actually contains any sections.
2300 If not, its flags may not have been initialised either, but it cannot
2301 actually cause any incompatibility. */
2302 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2303 {
2304 /* Ignore synthetic glue sections. */
2305 if (strcmp (sec->name, ".glue_7")
2306 && strcmp (sec->name, ".glue_7t"))
2307 {
2308 null_input_bfd = FALSE;
2309 break;
2310 }
2311 }
2312 if (null_input_bfd)
2313 return TRUE;
2314
2315 /* Complain about various flag mismatches. */
2316 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2317 {
2318 _bfd_error_handler (_("\
2319 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2320 bfd_archive_filename (ibfd),
2321 (in_flags & EF_ARM_EABIMASK) >> 24,
2322 bfd_get_filename (obfd),
2323 (out_flags & EF_ARM_EABIMASK) >> 24);
2324 return FALSE;
2325 }
2326
2327 /* Not sure what needs to be checked for EABI versions >= 1. */
2328 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2329 {
2330 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2331 {
2332 _bfd_error_handler (_("\
2333 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2334 bfd_archive_filename (ibfd),
2335 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2336 bfd_get_filename (obfd),
2337 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2338 flags_compatible = FALSE;
2339 }
2340
2341 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2342 {
2343 if (in_flags & EF_ARM_APCS_FLOAT)
2344 _bfd_error_handler (_("\
2345 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2346 bfd_archive_filename (ibfd),
2347 bfd_get_filename (obfd));
2348 else
2349 _bfd_error_handler (_("\
2350 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2351 bfd_archive_filename (ibfd),
2352 bfd_get_filename (obfd));
2353
2354 flags_compatible = FALSE;
2355 }
2356
2357 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2358 {
2359 if (in_flags & EF_ARM_VFP_FLOAT)
2360 _bfd_error_handler (_("\
2361 ERROR: %s uses VFP instructions, whereas %s does not"),
2362 bfd_archive_filename (ibfd),
2363 bfd_get_filename (obfd));
2364 else
2365 _bfd_error_handler (_("\
2366 ERROR: %s uses FPA instructions, whereas %s does not"),
2367 bfd_archive_filename (ibfd),
2368 bfd_get_filename (obfd));
2369
2370 flags_compatible = FALSE;
2371 }
2372
2373 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2374 {
2375 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2376 _bfd_error_handler (_("\
2377 ERROR: %s uses Maverick instructions, whereas %s does not"),
2378 bfd_archive_filename (ibfd),
2379 bfd_get_filename (obfd));
2380 else
2381 _bfd_error_handler (_("\
2382 ERROR: %s uses Maverick instructions, whereas %s does not"),
2383 bfd_archive_filename (ibfd),
2384 bfd_get_filename (obfd));
2385
2386 flags_compatible = FALSE;
2387 }
2388
2389 #ifdef EF_ARM_SOFT_FLOAT
2390 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2391 {
2392 /* We can allow interworking between code that is VFP format
2393 layout, and uses either soft float or integer regs for
2394 passing floating point arguments and results. We already
2395 know that the APCS_FLOAT flags match; similarly for VFP
2396 flags. */
2397 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2398 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2399 {
2400 if (in_flags & EF_ARM_SOFT_FLOAT)
2401 _bfd_error_handler (_("\
2402 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2403 bfd_archive_filename (ibfd),
2404 bfd_get_filename (obfd));
2405 else
2406 _bfd_error_handler (_("\
2407 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2408 bfd_archive_filename (ibfd),
2409 bfd_get_filename (obfd));
2410
2411 flags_compatible = FALSE;
2412 }
2413 }
2414 #endif
2415
2416 /* Interworking mismatch is only a warning. */
2417 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2418 {
2419 if (in_flags & EF_ARM_INTERWORK)
2420 {
2421 _bfd_error_handler (_("\
2422 Warning: %s supports interworking, whereas %s does not"),
2423 bfd_archive_filename (ibfd),
2424 bfd_get_filename (obfd));
2425 }
2426 else
2427 {
2428 _bfd_error_handler (_("\
2429 Warning: %s does not support interworking, whereas %s does"),
2430 bfd_archive_filename (ibfd),
2431 bfd_get_filename (obfd));
2432 }
2433 }
2434 }
2435
2436 return flags_compatible;
2437 }
2438
2439 /* Display the flags field. */
2440
2441 static bfd_boolean
2442 elf32_arm_print_private_bfd_data (abfd, ptr)
2443 bfd *abfd;
2444 PTR ptr;
2445 {
2446 FILE * file = (FILE *) ptr;
2447 unsigned long flags;
2448
2449 BFD_ASSERT (abfd != NULL && ptr != NULL);
2450
2451 /* Print normal ELF private data. */
2452 _bfd_elf_print_private_bfd_data (abfd, ptr);
2453
2454 flags = elf_elfheader (abfd)->e_flags;
2455 /* Ignore init flag - it may not be set, despite the flags field
2456 containing valid data. */
2457
2458 /* xgettext:c-format */
2459 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2460
2461 switch (EF_ARM_EABI_VERSION (flags))
2462 {
2463 case EF_ARM_EABI_UNKNOWN:
2464 /* The following flag bits are GNU extenstions and not part of the
2465 official ARM ELF extended ABI. Hence they are only decoded if
2466 the EABI version is not set. */
2467 if (flags & EF_ARM_INTERWORK)
2468 fprintf (file, _(" [interworking enabled]"));
2469
2470 if (flags & EF_ARM_APCS_26)
2471 fprintf (file, " [APCS-26]");
2472 else
2473 fprintf (file, " [APCS-32]");
2474
2475 if (flags & EF_ARM_VFP_FLOAT)
2476 fprintf (file, _(" [VFP float format]"));
2477 else if (flags & EF_ARM_MAVERICK_FLOAT)
2478 fprintf (file, _(" [Maverick float format]"));
2479 else
2480 fprintf (file, _(" [FPA float format]"));
2481
2482 if (flags & EF_ARM_APCS_FLOAT)
2483 fprintf (file, _(" [floats passed in float registers]"));
2484
2485 if (flags & EF_ARM_PIC)
2486 fprintf (file, _(" [position independent]"));
2487
2488 if (flags & EF_ARM_NEW_ABI)
2489 fprintf (file, _(" [new ABI]"));
2490
2491 if (flags & EF_ARM_OLD_ABI)
2492 fprintf (file, _(" [old ABI]"));
2493
2494 if (flags & EF_ARM_SOFT_FLOAT)
2495 fprintf (file, _(" [software FP]"));
2496
2497 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2498 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2499 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2500 | EF_ARM_MAVERICK_FLOAT);
2501 break;
2502
2503 case EF_ARM_EABI_VER1:
2504 fprintf (file, _(" [Version1 EABI]"));
2505
2506 if (flags & EF_ARM_SYMSARESORTED)
2507 fprintf (file, _(" [sorted symbol table]"));
2508 else
2509 fprintf (file, _(" [unsorted symbol table]"));
2510
2511 flags &= ~ EF_ARM_SYMSARESORTED;
2512 break;
2513
2514 case EF_ARM_EABI_VER2:
2515 fprintf (file, _(" [Version2 EABI]"));
2516
2517 if (flags & EF_ARM_SYMSARESORTED)
2518 fprintf (file, _(" [sorted symbol table]"));
2519 else
2520 fprintf (file, _(" [unsorted symbol table]"));
2521
2522 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2523 fprintf (file, _(" [dynamic symbols use segment index]"));
2524
2525 if (flags & EF_ARM_MAPSYMSFIRST)
2526 fprintf (file, _(" [mapping symbols precede others]"));
2527
2528 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2529 | EF_ARM_MAPSYMSFIRST);
2530 break;
2531
2532 default:
2533 fprintf (file, _(" <EABI version unrecognised>"));
2534 break;
2535 }
2536
2537 flags &= ~ EF_ARM_EABIMASK;
2538
2539 if (flags & EF_ARM_RELEXEC)
2540 fprintf (file, _(" [relocatable executable]"));
2541
2542 if (flags & EF_ARM_HASENTRY)
2543 fprintf (file, _(" [has entry point]"));
2544
2545 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2546
2547 if (flags)
2548 fprintf (file, _("<Unrecognised flag bits set>"));
2549
2550 fputc ('\n', file);
2551
2552 return TRUE;
2553 }
2554
2555 static int
2556 elf32_arm_get_symbol_type (elf_sym, type)
2557 Elf_Internal_Sym * elf_sym;
2558 int type;
2559 {
2560 switch (ELF_ST_TYPE (elf_sym->st_info))
2561 {
2562 case STT_ARM_TFUNC:
2563 return ELF_ST_TYPE (elf_sym->st_info);
2564
2565 case STT_ARM_16BIT:
2566 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2567 This allows us to distinguish between data used by Thumb instructions
2568 and non-data (which is probably code) inside Thumb regions of an
2569 executable. */
2570 if (type != STT_OBJECT)
2571 return ELF_ST_TYPE (elf_sym->st_info);
2572 break;
2573
2574 default:
2575 break;
2576 }
2577
2578 return type;
2579 }
2580
2581 static asection *
2582 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2583 asection *sec;
2584 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2585 Elf_Internal_Rela *rel;
2586 struct elf_link_hash_entry *h;
2587 Elf_Internal_Sym *sym;
2588 {
2589 if (h != NULL)
2590 {
2591 switch (ELF32_R_TYPE (rel->r_info))
2592 {
2593 case R_ARM_GNU_VTINHERIT:
2594 case R_ARM_GNU_VTENTRY:
2595 break;
2596
2597 default:
2598 switch (h->root.type)
2599 {
2600 case bfd_link_hash_defined:
2601 case bfd_link_hash_defweak:
2602 return h->root.u.def.section;
2603
2604 case bfd_link_hash_common:
2605 return h->root.u.c.p->section;
2606
2607 default:
2608 break;
2609 }
2610 }
2611 }
2612 else
2613 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2614
2615 return NULL;
2616 }
2617
2618 /* Update the got entry reference counts for the section being removed. */
2619
2620 static bfd_boolean
2621 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2622 bfd *abfd ATTRIBUTE_UNUSED;
2623 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2624 asection *sec ATTRIBUTE_UNUSED;
2625 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2626 {
2627 /* We don't support garbage collection of GOT and PLT relocs yet. */
2628 return TRUE;
2629 }
2630
2631 /* Look through the relocs for a section during the first phase. */
2632
2633 static bfd_boolean
2634 elf32_arm_check_relocs (abfd, info, sec, relocs)
2635 bfd *abfd;
2636 struct bfd_link_info *info;
2637 asection *sec;
2638 const Elf_Internal_Rela *relocs;
2639 {
2640 Elf_Internal_Shdr *symtab_hdr;
2641 struct elf_link_hash_entry **sym_hashes;
2642 struct elf_link_hash_entry **sym_hashes_end;
2643 const Elf_Internal_Rela *rel;
2644 const Elf_Internal_Rela *rel_end;
2645 bfd *dynobj;
2646 asection *sgot, *srelgot, *sreloc;
2647 bfd_vma *local_got_offsets;
2648
2649 if (info->relocatable)
2650 return TRUE;
2651
2652 sgot = srelgot = sreloc = NULL;
2653
2654 dynobj = elf_hash_table (info)->dynobj;
2655 local_got_offsets = elf_local_got_offsets (abfd);
2656
2657 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2658 sym_hashes = elf_sym_hashes (abfd);
2659 sym_hashes_end = sym_hashes
2660 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2661
2662 if (!elf_bad_symtab (abfd))
2663 sym_hashes_end -= symtab_hdr->sh_info;
2664
2665 rel_end = relocs + sec->reloc_count;
2666 for (rel = relocs; rel < rel_end; rel++)
2667 {
2668 struct elf_link_hash_entry *h;
2669 unsigned long r_symndx;
2670
2671 r_symndx = ELF32_R_SYM (rel->r_info);
2672 if (r_symndx < symtab_hdr->sh_info)
2673 h = NULL;
2674 else
2675 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2676
2677 /* Some relocs require a global offset table. */
2678 if (dynobj == NULL)
2679 {
2680 switch (ELF32_R_TYPE (rel->r_info))
2681 {
2682 case R_ARM_GOT32:
2683 case R_ARM_GOTOFF:
2684 case R_ARM_GOTPC:
2685 elf_hash_table (info)->dynobj = dynobj = abfd;
2686 if (! _bfd_elf_create_got_section (dynobj, info))
2687 return FALSE;
2688 break;
2689
2690 default:
2691 break;
2692 }
2693 }
2694
2695 switch (ELF32_R_TYPE (rel->r_info))
2696 {
2697 case R_ARM_GOT32:
2698 /* This symbol requires a global offset table entry. */
2699 if (sgot == NULL)
2700 {
2701 sgot = bfd_get_section_by_name (dynobj, ".got");
2702 BFD_ASSERT (sgot != NULL);
2703 }
2704
2705 /* Get the got relocation section if necessary. */
2706 if (srelgot == NULL
2707 && (h != NULL || info->shared))
2708 {
2709 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2710
2711 /* If no got relocation section, make one and initialize. */
2712 if (srelgot == NULL)
2713 {
2714 srelgot = bfd_make_section (dynobj, ".rel.got");
2715 if (srelgot == NULL
2716 || ! bfd_set_section_flags (dynobj, srelgot,
2717 (SEC_ALLOC
2718 | SEC_LOAD
2719 | SEC_HAS_CONTENTS
2720 | SEC_IN_MEMORY
2721 | SEC_LINKER_CREATED
2722 | SEC_READONLY))
2723 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2724 return FALSE;
2725 }
2726 }
2727
2728 if (h != NULL)
2729 {
2730 if (h->got.offset != (bfd_vma) -1)
2731 /* We have already allocated space in the .got. */
2732 break;
2733
2734 h->got.offset = sgot->_raw_size;
2735
2736 /* Make sure this symbol is output as a dynamic symbol. */
2737 if (h->dynindx == -1)
2738 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2739 return FALSE;
2740
2741 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2742 }
2743 else
2744 {
2745 /* This is a global offset table entry for a local
2746 symbol. */
2747 if (local_got_offsets == NULL)
2748 {
2749 bfd_size_type size;
2750 unsigned int i;
2751
2752 size = symtab_hdr->sh_info;
2753 size *= sizeof (bfd_vma);
2754 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2755 if (local_got_offsets == NULL)
2756 return FALSE;
2757 elf_local_got_offsets (abfd) = local_got_offsets;
2758 for (i = 0; i < symtab_hdr->sh_info; i++)
2759 local_got_offsets[i] = (bfd_vma) -1;
2760 }
2761
2762 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2763 /* We have already allocated space in the .got. */
2764 break;
2765
2766 local_got_offsets[r_symndx] = sgot->_raw_size;
2767
2768 if (info->shared)
2769 /* If we are generating a shared object, we need to
2770 output a R_ARM_RELATIVE reloc so that the dynamic
2771 linker can adjust this GOT entry. */
2772 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2773 }
2774
2775 sgot->_raw_size += 4;
2776 break;
2777
2778 case R_ARM_PLT32:
2779 /* This symbol requires a procedure linkage table entry. We
2780 actually build the entry in adjust_dynamic_symbol,
2781 because this might be a case of linking PIC code which is
2782 never referenced by a dynamic object, in which case we
2783 don't need to generate a procedure linkage table entry
2784 after all. */
2785
2786 /* If this is a local symbol, we resolve it directly without
2787 creating a procedure linkage table entry. */
2788 if (h == NULL)
2789 continue;
2790
2791 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2792 break;
2793
2794 case R_ARM_ABS32:
2795 case R_ARM_REL32:
2796 case R_ARM_PC24:
2797 /* If we are creating a shared library, and this is a reloc
2798 against a global symbol, or a non PC relative reloc
2799 against a local symbol, then we need to copy the reloc
2800 into the shared library. However, if we are linking with
2801 -Bsymbolic, we do not need to copy a reloc against a
2802 global symbol which is defined in an object we are
2803 including in the link (i.e., DEF_REGULAR is set). At
2804 this point we have not seen all the input files, so it is
2805 possible that DEF_REGULAR is not set now but will be set
2806 later (it is never cleared). We account for that
2807 possibility below by storing information in the
2808 pcrel_relocs_copied field of the hash table entry. */
2809 if (info->shared
2810 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2811 || (h != NULL
2812 && (! info->symbolic
2813 || (h->elf_link_hash_flags
2814 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2815 {
2816 /* When creating a shared object, we must copy these
2817 reloc types into the output file. We create a reloc
2818 section in dynobj and make room for this reloc. */
2819 if (sreloc == NULL)
2820 {
2821 const char * name;
2822
2823 name = (bfd_elf_string_from_elf_section
2824 (abfd,
2825 elf_elfheader (abfd)->e_shstrndx,
2826 elf_section_data (sec)->rel_hdr.sh_name));
2827 if (name == NULL)
2828 return FALSE;
2829
2830 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2831 && strcmp (bfd_get_section_name (abfd, sec),
2832 name + 4) == 0);
2833
2834 sreloc = bfd_get_section_by_name (dynobj, name);
2835 if (sreloc == NULL)
2836 {
2837 flagword flags;
2838
2839 sreloc = bfd_make_section (dynobj, name);
2840 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2841 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2842 if ((sec->flags & SEC_ALLOC) != 0)
2843 flags |= SEC_ALLOC | SEC_LOAD;
2844 if (sreloc == NULL
2845 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2846 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2847 return FALSE;
2848 }
2849 if (sec->flags & SEC_READONLY)
2850 info->flags |= DF_TEXTREL;
2851 }
2852
2853 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2854 /* If we are linking with -Bsymbolic, and this is a
2855 global symbol, we count the number of PC relative
2856 relocations we have entered for this symbol, so that
2857 we can discard them again if the symbol is later
2858 defined by a regular object. Note that this function
2859 is only called if we are using an elf_i386 linker
2860 hash table, which means that h is really a pointer to
2861 an elf_i386_link_hash_entry. */
2862 if (h != NULL && info->symbolic
2863 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2864 {
2865 struct elf32_arm_link_hash_entry * eh;
2866 struct elf32_arm_pcrel_relocs_copied * p;
2867
2868 eh = (struct elf32_arm_link_hash_entry *) h;
2869
2870 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2871 if (p->section == sreloc)
2872 break;
2873
2874 if (p == NULL)
2875 {
2876 p = ((struct elf32_arm_pcrel_relocs_copied *)
2877 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2878 if (p == NULL)
2879 return FALSE;
2880 p->next = eh->pcrel_relocs_copied;
2881 eh->pcrel_relocs_copied = p;
2882 p->section = sreloc;
2883 p->count = 0;
2884 }
2885
2886 ++p->count;
2887 }
2888 }
2889 break;
2890
2891 /* This relocation describes the C++ object vtable hierarchy.
2892 Reconstruct it for later use during GC. */
2893 case R_ARM_GNU_VTINHERIT:
2894 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2895 return FALSE;
2896 break;
2897
2898 /* This relocation describes which C++ vtable entries are actually
2899 used. Record for later use during GC. */
2900 case R_ARM_GNU_VTENTRY:
2901 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2902 return FALSE;
2903 break;
2904 }
2905 }
2906
2907 return TRUE;
2908 }
2909
2910 /* Find the nearest line to a particular section and offset, for error
2911 reporting. This code is a duplicate of the code in elf.c, except
2912 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2913
2914 static bfd_boolean
2915 elf32_arm_find_nearest_line
2916 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2917 bfd *abfd;
2918 asection *section;
2919 asymbol **symbols;
2920 bfd_vma offset;
2921 const char **filename_ptr;
2922 const char **functionname_ptr;
2923 unsigned int *line_ptr;
2924 {
2925 bfd_boolean found;
2926 const char *filename;
2927 asymbol *func;
2928 bfd_vma low_func;
2929 asymbol **p;
2930
2931 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2932 filename_ptr, functionname_ptr,
2933 line_ptr, 0,
2934 &elf_tdata (abfd)->dwarf2_find_line_info))
2935 return TRUE;
2936
2937 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2938 &found, filename_ptr,
2939 functionname_ptr, line_ptr,
2940 &elf_tdata (abfd)->line_info))
2941 return FALSE;
2942
2943 if (found)
2944 return TRUE;
2945
2946 if (symbols == NULL)
2947 return FALSE;
2948
2949 filename = NULL;
2950 func = NULL;
2951 low_func = 0;
2952
2953 for (p = symbols; *p != NULL; p++)
2954 {
2955 elf_symbol_type *q;
2956
2957 q = (elf_symbol_type *) *p;
2958
2959 if (bfd_get_section (&q->symbol) != section)
2960 continue;
2961
2962 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2963 {
2964 default:
2965 break;
2966 case STT_FILE:
2967 filename = bfd_asymbol_name (&q->symbol);
2968 break;
2969 case STT_NOTYPE:
2970 case STT_FUNC:
2971 case STT_ARM_TFUNC:
2972 if (q->symbol.section == section
2973 && q->symbol.value >= low_func
2974 && q->symbol.value <= offset)
2975 {
2976 func = (asymbol *) q;
2977 low_func = q->symbol.value;
2978 }
2979 break;
2980 }
2981 }
2982
2983 if (func == NULL)
2984 return FALSE;
2985
2986 *filename_ptr = filename;
2987 *functionname_ptr = bfd_asymbol_name (func);
2988 *line_ptr = 0;
2989
2990 return TRUE;
2991 }
2992
2993 /* Adjust a symbol defined by a dynamic object and referenced by a
2994 regular object. The current definition is in some section of the
2995 dynamic object, but we're not including those sections. We have to
2996 change the definition to something the rest of the link can
2997 understand. */
2998
2999 static bfd_boolean
3000 elf32_arm_adjust_dynamic_symbol (info, h)
3001 struct bfd_link_info * info;
3002 struct elf_link_hash_entry * h;
3003 {
3004 bfd * dynobj;
3005 asection * s;
3006 unsigned int power_of_two;
3007
3008 dynobj = elf_hash_table (info)->dynobj;
3009
3010 /* Make sure we know what is going on here. */
3011 BFD_ASSERT (dynobj != NULL
3012 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
3013 || h->weakdef != NULL
3014 || ((h->elf_link_hash_flags
3015 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3016 && (h->elf_link_hash_flags
3017 & ELF_LINK_HASH_REF_REGULAR) != 0
3018 && (h->elf_link_hash_flags
3019 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3020
3021 /* If this is a function, put it in the procedure linkage table. We
3022 will fill in the contents of the procedure linkage table later,
3023 when we know the address of the .got section. */
3024 if (h->type == STT_FUNC
3025 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3026 {
3027 /* If we link a program (not a DSO), we'll get rid of unnecessary
3028 PLT entries; we point to the actual symbols -- even for pic
3029 relocs, because a program built with -fpic should have the same
3030 result as one built without -fpic, specifically considering weak
3031 symbols.
3032 FIXME: m68k and i386 differ here, for unclear reasons. */
3033 if (! info->shared
3034 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3035 {
3036 /* This case can occur if we saw a PLT32 reloc in an input
3037 file, but the symbol was not defined by a dynamic object.
3038 In such a case, we don't actually need to build a
3039 procedure linkage table, and we can just do a PC32 reloc
3040 instead. */
3041 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
3042 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3043 return TRUE;
3044 }
3045
3046 /* Make sure this symbol is output as a dynamic symbol. */
3047 if (h->dynindx == -1)
3048 {
3049 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3050 return FALSE;
3051 }
3052
3053 s = bfd_get_section_by_name (dynobj, ".plt");
3054 BFD_ASSERT (s != NULL);
3055
3056 /* If this is the first .plt entry, make room for the special
3057 first entry. */
3058 if (s->_raw_size == 0)
3059 s->_raw_size += PLT_ENTRY_SIZE;
3060
3061 /* If this symbol is not defined in a regular file, and we are
3062 not generating a shared library, then set the symbol to this
3063 location in the .plt. This is required to make function
3064 pointers compare as equal between the normal executable and
3065 the shared library. */
3066 if (! info->shared
3067 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3068 {
3069 h->root.u.def.section = s;
3070 h->root.u.def.value = s->_raw_size;
3071 }
3072
3073 h->plt.offset = s->_raw_size;
3074
3075 /* Make room for this entry. */
3076 s->_raw_size += PLT_ENTRY_SIZE;
3077
3078 /* We also need to make an entry in the .got.plt section, which
3079 will be placed in the .got section by the linker script. */
3080 s = bfd_get_section_by_name (dynobj, ".got.plt");
3081 BFD_ASSERT (s != NULL);
3082 s->_raw_size += 4;
3083
3084 /* We also need to make an entry in the .rel.plt section. */
3085
3086 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3087 BFD_ASSERT (s != NULL);
3088 s->_raw_size += sizeof (Elf32_External_Rel);
3089
3090 return TRUE;
3091 }
3092
3093 /* If this is a weak symbol, and there is a real definition, the
3094 processor independent code will have arranged for us to see the
3095 real definition first, and we can just use the same value. */
3096 if (h->weakdef != NULL)
3097 {
3098 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3099 || h->weakdef->root.type == bfd_link_hash_defweak);
3100 h->root.u.def.section = h->weakdef->root.u.def.section;
3101 h->root.u.def.value = h->weakdef->root.u.def.value;
3102 return TRUE;
3103 }
3104
3105 /* This is a reference to a symbol defined by a dynamic object which
3106 is not a function. */
3107
3108 /* If we are creating a shared library, we must presume that the
3109 only references to the symbol are via the global offset table.
3110 For such cases we need not do anything here; the relocations will
3111 be handled correctly by relocate_section. */
3112 if (info->shared)
3113 return TRUE;
3114
3115 /* We must allocate the symbol in our .dynbss section, which will
3116 become part of the .bss section of the executable. There will be
3117 an entry for this symbol in the .dynsym section. The dynamic
3118 object will contain position independent code, so all references
3119 from the dynamic object to this symbol will go through the global
3120 offset table. The dynamic linker will use the .dynsym entry to
3121 determine the address it must put in the global offset table, so
3122 both the dynamic object and the regular object will refer to the
3123 same memory location for the variable. */
3124 s = bfd_get_section_by_name (dynobj, ".dynbss");
3125 BFD_ASSERT (s != NULL);
3126
3127 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3128 copy the initial value out of the dynamic object and into the
3129 runtime process image. We need to remember the offset into the
3130 .rel.bss section we are going to use. */
3131 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3132 {
3133 asection *srel;
3134
3135 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3136 BFD_ASSERT (srel != NULL);
3137 srel->_raw_size += sizeof (Elf32_External_Rel);
3138 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3139 }
3140
3141 /* We need to figure out the alignment required for this symbol. I
3142 have no idea how ELF linkers handle this. */
3143 power_of_two = bfd_log2 (h->size);
3144 if (power_of_two > 3)
3145 power_of_two = 3;
3146
3147 /* Apply the required alignment. */
3148 s->_raw_size = BFD_ALIGN (s->_raw_size,
3149 (bfd_size_type) (1 << power_of_two));
3150 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3151 {
3152 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3153 return FALSE;
3154 }
3155
3156 /* Define the symbol as being at this point in the section. */
3157 h->root.u.def.section = s;
3158 h->root.u.def.value = s->_raw_size;
3159
3160 /* Increment the section size to make room for the symbol. */
3161 s->_raw_size += h->size;
3162
3163 return TRUE;
3164 }
3165
3166 /* Set the sizes of the dynamic sections. */
3167
3168 static bfd_boolean
3169 elf32_arm_size_dynamic_sections (output_bfd, info)
3170 bfd * output_bfd ATTRIBUTE_UNUSED;
3171 struct bfd_link_info * info;
3172 {
3173 bfd * dynobj;
3174 asection * s;
3175 bfd_boolean plt;
3176 bfd_boolean relocs;
3177
3178 dynobj = elf_hash_table (info)->dynobj;
3179 BFD_ASSERT (dynobj != NULL);
3180
3181 if (elf_hash_table (info)->dynamic_sections_created)
3182 {
3183 /* Set the contents of the .interp section to the interpreter. */
3184 if (! info->shared)
3185 {
3186 s = bfd_get_section_by_name (dynobj, ".interp");
3187 BFD_ASSERT (s != NULL);
3188 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3189 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3190 }
3191 }
3192 else
3193 {
3194 /* We may have created entries in the .rel.got section.
3195 However, if we are not creating the dynamic sections, we will
3196 not actually use these entries. Reset the size of .rel.got,
3197 which will cause it to get stripped from the output file
3198 below. */
3199 s = bfd_get_section_by_name (dynobj, ".rel.got");
3200 if (s != NULL)
3201 s->_raw_size = 0;
3202 }
3203
3204 /* If this is a -Bsymbolic shared link, then we need to discard all
3205 PC relative relocs against symbols defined in a regular object.
3206 We allocated space for them in the check_relocs routine, but we
3207 will not fill them in in the relocate_section routine. */
3208 if (info->shared && info->symbolic)
3209 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3210 elf32_arm_discard_copies,
3211 (PTR) NULL);
3212
3213 /* The check_relocs and adjust_dynamic_symbol entry points have
3214 determined the sizes of the various dynamic sections. Allocate
3215 memory for them. */
3216 plt = FALSE;
3217 relocs = FALSE;
3218 for (s = dynobj->sections; s != NULL; s = s->next)
3219 {
3220 const char * name;
3221 bfd_boolean strip;
3222
3223 if ((s->flags & SEC_LINKER_CREATED) == 0)
3224 continue;
3225
3226 /* It's OK to base decisions on the section name, because none
3227 of the dynobj section names depend upon the input files. */
3228 name = bfd_get_section_name (dynobj, s);
3229
3230 strip = FALSE;
3231
3232 if (strcmp (name, ".plt") == 0)
3233 {
3234 if (s->_raw_size == 0)
3235 {
3236 /* Strip this section if we don't need it; see the
3237 comment below. */
3238 strip = TRUE;
3239 }
3240 else
3241 {
3242 /* Remember whether there is a PLT. */
3243 plt = TRUE;
3244 }
3245 }
3246 else if (strncmp (name, ".rel", 4) == 0)
3247 {
3248 if (s->_raw_size == 0)
3249 {
3250 /* If we don't need this section, strip it from the
3251 output file. This is mostly to handle .rel.bss and
3252 .rel.plt. We must create both sections in
3253 create_dynamic_sections, because they must be created
3254 before the linker maps input sections to output
3255 sections. The linker does that before
3256 adjust_dynamic_symbol is called, and it is that
3257 function which decides whether anything needs to go
3258 into these sections. */
3259 strip = TRUE;
3260 }
3261 else
3262 {
3263 /* Remember whether there are any reloc sections other
3264 than .rel.plt. */
3265 if (strcmp (name, ".rel.plt") != 0)
3266 relocs = TRUE;
3267
3268 /* We use the reloc_count field as a counter if we need
3269 to copy relocs into the output file. */
3270 s->reloc_count = 0;
3271 }
3272 }
3273 else if (strncmp (name, ".got", 4) != 0)
3274 {
3275 /* It's not one of our sections, so don't allocate space. */
3276 continue;
3277 }
3278
3279 if (strip)
3280 {
3281 _bfd_strip_section_from_output (info, s);
3282 continue;
3283 }
3284
3285 /* Allocate memory for the section contents. */
3286 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3287 if (s->contents == NULL && s->_raw_size != 0)
3288 return FALSE;
3289 }
3290
3291 if (elf_hash_table (info)->dynamic_sections_created)
3292 {
3293 /* Add some entries to the .dynamic section. We fill in the
3294 values later, in elf32_arm_finish_dynamic_sections, but we
3295 must add the entries now so that we get the correct size for
3296 the .dynamic section. The DT_DEBUG entry is filled in by the
3297 dynamic linker and used by the debugger. */
3298 #define add_dynamic_entry(TAG, VAL) \
3299 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3300
3301 if (!info->shared)
3302 {
3303 if (!add_dynamic_entry (DT_DEBUG, 0))
3304 return FALSE;
3305 }
3306
3307 if (plt)
3308 {
3309 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3310 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3311 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3312 || !add_dynamic_entry (DT_JMPREL, 0))
3313 return FALSE;
3314 }
3315
3316 if (relocs)
3317 {
3318 if ( !add_dynamic_entry (DT_REL, 0)
3319 || !add_dynamic_entry (DT_RELSZ, 0)
3320 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3321 return FALSE;
3322 }
3323
3324 if ((info->flags & DF_TEXTREL) != 0)
3325 {
3326 if (!add_dynamic_entry (DT_TEXTREL, 0))
3327 return FALSE;
3328 info->flags |= DF_TEXTREL;
3329 }
3330 }
3331 #undef add_synamic_entry
3332
3333 return TRUE;
3334 }
3335
3336 /* This function is called via elf32_arm_link_hash_traverse if we are
3337 creating a shared object with -Bsymbolic. It discards the space
3338 allocated to copy PC relative relocs against symbols which are
3339 defined in regular objects. We allocated space for them in the
3340 check_relocs routine, but we won't fill them in in the
3341 relocate_section routine. */
3342
3343 static bfd_boolean
3344 elf32_arm_discard_copies (h, ignore)
3345 struct elf32_arm_link_hash_entry * h;
3346 PTR ignore ATTRIBUTE_UNUSED;
3347 {
3348 struct elf32_arm_pcrel_relocs_copied * s;
3349
3350 if (h->root.root.type == bfd_link_hash_warning)
3351 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3352
3353 /* We only discard relocs for symbols defined in a regular object. */
3354 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3355 return TRUE;
3356
3357 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3358 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3359
3360 return TRUE;
3361 }
3362
3363 /* Finish up dynamic symbol handling. We set the contents of various
3364 dynamic sections here. */
3365
3366 static bfd_boolean
3367 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3368 bfd * output_bfd;
3369 struct bfd_link_info * info;
3370 struct elf_link_hash_entry * h;
3371 Elf_Internal_Sym * sym;
3372 {
3373 bfd * dynobj;
3374
3375 dynobj = elf_hash_table (info)->dynobj;
3376
3377 if (h->plt.offset != (bfd_vma) -1)
3378 {
3379 asection * splt;
3380 asection * sgot;
3381 asection * srel;
3382 bfd_vma plt_index;
3383 bfd_vma got_offset;
3384 Elf_Internal_Rela rel;
3385 bfd_byte *loc;
3386
3387 /* This symbol has an entry in the procedure linkage table. Set
3388 it up. */
3389
3390 BFD_ASSERT (h->dynindx != -1);
3391
3392 splt = bfd_get_section_by_name (dynobj, ".plt");
3393 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3394 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3395 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3396
3397 /* Get the index in the procedure linkage table which
3398 corresponds to this symbol. This is the index of this symbol
3399 in all the symbols for which we are making plt entries. The
3400 first entry in the procedure linkage table is reserved. */
3401 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3402
3403 /* Get the offset into the .got table of the entry that
3404 corresponds to this function. Each .got entry is 4 bytes.
3405 The first three are reserved. */
3406 got_offset = (plt_index + 3) * 4;
3407
3408 /* Fill in the entry in the procedure linkage table. */
3409 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3410 splt->contents + h->plt.offset + 0);
3411 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3412 splt->contents + h->plt.offset + 4);
3413 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3414 splt->contents + h->plt.offset + 8);
3415 bfd_put_32 (output_bfd,
3416 (sgot->output_section->vma
3417 + sgot->output_offset
3418 + got_offset
3419 - splt->output_section->vma
3420 - splt->output_offset
3421 - h->plt.offset - 12),
3422 splt->contents + h->plt.offset + 12);
3423
3424 /* Fill in the entry in the global offset table. */
3425 bfd_put_32 (output_bfd,
3426 (splt->output_section->vma
3427 + splt->output_offset),
3428 sgot->contents + got_offset);
3429
3430 /* Fill in the entry in the .rel.plt section. */
3431 rel.r_offset = (sgot->output_section->vma
3432 + sgot->output_offset
3433 + got_offset);
3434 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3435 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3436 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3437
3438 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3439 {
3440 /* Mark the symbol as undefined, rather than as defined in
3441 the .plt section. Leave the value alone. */
3442 sym->st_shndx = SHN_UNDEF;
3443 /* If the symbol is weak, we do need to clear the value.
3444 Otherwise, the PLT entry would provide a definition for
3445 the symbol even if the symbol wasn't defined anywhere,
3446 and so the symbol would never be NULL. */
3447 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3448 == 0)
3449 sym->st_value = 0;
3450 }
3451 }
3452
3453 if (h->got.offset != (bfd_vma) -1)
3454 {
3455 asection * sgot;
3456 asection * srel;
3457 Elf_Internal_Rela rel;
3458 bfd_byte *loc;
3459
3460 /* This symbol has an entry in the global offset table. Set it
3461 up. */
3462 sgot = bfd_get_section_by_name (dynobj, ".got");
3463 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3464 BFD_ASSERT (sgot != NULL && srel != NULL);
3465
3466 rel.r_offset = (sgot->output_section->vma
3467 + sgot->output_offset
3468 + (h->got.offset &~ (bfd_vma) 1));
3469
3470 /* If this is a -Bsymbolic link, and the symbol is defined
3471 locally, we just want to emit a RELATIVE reloc. The entry in
3472 the global offset table will already have been initialized in
3473 the relocate_section function. */
3474 if (info->shared
3475 && (info->symbolic || h->dynindx == -1)
3476 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3477 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3478 else
3479 {
3480 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3481 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3482 }
3483
3484 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3485 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3486 }
3487
3488 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3489 {
3490 asection * s;
3491 Elf_Internal_Rela rel;
3492 bfd_byte *loc;
3493
3494 /* This symbol needs a copy reloc. Set it up. */
3495 BFD_ASSERT (h->dynindx != -1
3496 && (h->root.type == bfd_link_hash_defined
3497 || h->root.type == bfd_link_hash_defweak));
3498
3499 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3500 ".rel.bss");
3501 BFD_ASSERT (s != NULL);
3502
3503 rel.r_offset = (h->root.u.def.value
3504 + h->root.u.def.section->output_section->vma
3505 + h->root.u.def.section->output_offset);
3506 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3507 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3508 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3509 }
3510
3511 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3512 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3513 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3514 sym->st_shndx = SHN_ABS;
3515
3516 return TRUE;
3517 }
3518
3519 /* Finish up the dynamic sections. */
3520
3521 static bfd_boolean
3522 elf32_arm_finish_dynamic_sections (output_bfd, info)
3523 bfd * output_bfd;
3524 struct bfd_link_info * info;
3525 {
3526 bfd * dynobj;
3527 asection * sgot;
3528 asection * sdyn;
3529
3530 dynobj = elf_hash_table (info)->dynobj;
3531
3532 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3533 BFD_ASSERT (sgot != NULL);
3534 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3535
3536 if (elf_hash_table (info)->dynamic_sections_created)
3537 {
3538 asection *splt;
3539 Elf32_External_Dyn *dyncon, *dynconend;
3540
3541 splt = bfd_get_section_by_name (dynobj, ".plt");
3542 BFD_ASSERT (splt != NULL && sdyn != NULL);
3543
3544 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3545 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3546
3547 for (; dyncon < dynconend; dyncon++)
3548 {
3549 Elf_Internal_Dyn dyn;
3550 const char * name;
3551 asection * s;
3552
3553 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3554
3555 switch (dyn.d_tag)
3556 {
3557 default:
3558 break;
3559
3560 case DT_PLTGOT:
3561 name = ".got";
3562 goto get_vma;
3563 case DT_JMPREL:
3564 name = ".rel.plt";
3565 get_vma:
3566 s = bfd_get_section_by_name (output_bfd, name);
3567 BFD_ASSERT (s != NULL);
3568 dyn.d_un.d_ptr = s->vma;
3569 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3570 break;
3571
3572 case DT_PLTRELSZ:
3573 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3574 BFD_ASSERT (s != NULL);
3575 if (s->_cooked_size != 0)
3576 dyn.d_un.d_val = s->_cooked_size;
3577 else
3578 dyn.d_un.d_val = s->_raw_size;
3579 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3580 break;
3581
3582 case DT_RELSZ:
3583 /* My reading of the SVR4 ABI indicates that the
3584 procedure linkage table relocs (DT_JMPREL) should be
3585 included in the overall relocs (DT_REL). This is
3586 what Solaris does. However, UnixWare can not handle
3587 that case. Therefore, we override the DT_RELSZ entry
3588 here to make it not include the JMPREL relocs. Since
3589 the linker script arranges for .rel.plt to follow all
3590 other relocation sections, we don't have to worry
3591 about changing the DT_REL entry. */
3592 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3593 if (s != NULL)
3594 {
3595 if (s->_cooked_size != 0)
3596 dyn.d_un.d_val -= s->_cooked_size;
3597 else
3598 dyn.d_un.d_val -= s->_raw_size;
3599 }
3600 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3601 break;
3602
3603 /* Set the bottom bit of DT_INIT/FINI if the
3604 corresponding function is Thumb. */
3605 case DT_INIT:
3606 name = info->init_function;
3607 goto get_sym;
3608 case DT_FINI:
3609 name = info->fini_function;
3610 get_sym:
3611 /* If it wasn't set by elf_bfd_final_link
3612 then there is nothing to ajdust. */
3613 if (dyn.d_un.d_val != 0)
3614 {
3615 struct elf_link_hash_entry * eh;
3616
3617 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3618 FALSE, FALSE, TRUE);
3619 if (eh != (struct elf_link_hash_entry *) NULL
3620 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3621 {
3622 dyn.d_un.d_val |= 1;
3623 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3624 }
3625 }
3626 break;
3627 }
3628 }
3629
3630 /* Fill in the first entry in the procedure linkage table. */
3631 if (splt->_raw_size > 0)
3632 {
3633 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3634 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3635 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3636 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3637 }
3638
3639 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3640 really seem like the right value. */
3641 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3642 }
3643
3644 /* Fill in the first three entries in the global offset table. */
3645 if (sgot->_raw_size > 0)
3646 {
3647 if (sdyn == NULL)
3648 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3649 else
3650 bfd_put_32 (output_bfd,
3651 sdyn->output_section->vma + sdyn->output_offset,
3652 sgot->contents);
3653 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3654 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3655 }
3656
3657 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3658
3659 return TRUE;
3660 }
3661
3662 static void
3663 elf32_arm_post_process_headers (abfd, link_info)
3664 bfd * abfd;
3665 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3666 {
3667 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3668
3669 i_ehdrp = elf_elfheader (abfd);
3670
3671 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3672 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3673 }
3674
3675 static enum elf_reloc_type_class
3676 elf32_arm_reloc_type_class (rela)
3677 const Elf_Internal_Rela *rela;
3678 {
3679 switch ((int) ELF32_R_TYPE (rela->r_info))
3680 {
3681 case R_ARM_RELATIVE:
3682 return reloc_class_relative;
3683 case R_ARM_JUMP_SLOT:
3684 return reloc_class_plt;
3685 case R_ARM_COPY:
3686 return reloc_class_copy;
3687 default:
3688 return reloc_class_normal;
3689 }
3690 }
3691
3692 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, Elf_Internal_Shdr *));
3693 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
3694
3695 /* Set the right machine number for an Arm ELF file. */
3696
3697 static bfd_boolean
3698 elf32_arm_section_flags (flags, hdr)
3699 flagword *flags;
3700 Elf_Internal_Shdr *hdr;
3701 {
3702 if (hdr->sh_type == SHT_NOTE)
3703 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
3704
3705 return TRUE;
3706 }
3707
3708 void
3709 elf32_arm_final_write_processing (abfd, linker)
3710 bfd *abfd;
3711 bfd_boolean linker ATTRIBUTE_UNUSED;
3712 {
3713 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
3714 }
3715
3716 #define ELF_ARCH bfd_arch_arm
3717 #define ELF_MACHINE_CODE EM_ARM
3718 #ifdef __QNXTARGET__
3719 #define ELF_MAXPAGESIZE 0x1000
3720 #else
3721 #define ELF_MAXPAGESIZE 0x8000
3722 #endif
3723
3724 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3725 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3726 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3727 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3728 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3729 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3730 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3731
3732 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3733 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3734 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3735 #define elf_backend_check_relocs elf32_arm_check_relocs
3736 #define elf_backend_relocate_section elf32_arm_relocate_section
3737 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3738 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3739 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3740 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3741 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3742 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3743 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3744 #define elf_backend_object_p elf32_arm_object_p
3745 #define elf_backend_section_flags elf32_arm_section_flags
3746 #define elf_backend_final_write_processing elf32_arm_final_write_processing
3747
3748 #define elf_backend_can_gc_sections 1
3749 #define elf_backend_plt_readonly 1
3750 #define elf_backend_want_got_plt 1
3751 #define elf_backend_want_plt_sym 0
3752 #if !USE_REL
3753 #define elf_backend_rela_normal 1
3754 #endif
3755
3756 #define elf_backend_got_header_size 12
3757 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3758
3759 #include "elf32-target.h"
3760