daily update
[binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_alloc (abfd, amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 bfd_release (abfd, ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && r_symndx != 0
1120 && (r_type != R_ARM_PC24
1121 || (h != NULL
1122 && h->dynindx != -1
1123 && (! info->symbolic
1124 || (h->elf_link_hash_flags
1125 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1126 {
1127 Elf_Internal_Rel outrel;
1128 boolean skip, relocate;
1129
1130 if (sreloc == NULL)
1131 {
1132 const char * name;
1133
1134 name = (bfd_elf_string_from_elf_section
1135 (input_bfd,
1136 elf_elfheader (input_bfd)->e_shstrndx,
1137 elf_section_data (input_section)->rel_hdr.sh_name));
1138 if (name == NULL)
1139 return bfd_reloc_notsupported;
1140
1141 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1142 && strcmp (bfd_get_section_name (input_bfd,
1143 input_section),
1144 name + 4) == 0);
1145
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 BFD_ASSERT (sreloc != NULL);
1148 }
1149
1150 skip = false;
1151
1152 if (elf_section_data (input_section)->stab_info == NULL)
1153 outrel.r_offset = rel->r_offset;
1154 else
1155 {
1156 bfd_vma off;
1157
1158 off = (_bfd_stab_section_offset
1159 (output_bfd, &elf_hash_table (info)->stab_info,
1160 input_section,
1161 & elf_section_data (input_section)->stab_info,
1162 rel->r_offset));
1163 if (off == (bfd_vma) -1)
1164 skip = true;
1165 outrel.r_offset = off;
1166 }
1167
1168 outrel.r_offset += (input_section->output_section->vma
1169 + input_section->output_offset);
1170
1171 if (skip)
1172 {
1173 memset (&outrel, 0, sizeof outrel);
1174 relocate = false;
1175 }
1176 else if (r_type == R_ARM_PC24)
1177 {
1178 BFD_ASSERT (h != NULL && h->dynindx != -1);
1179 if ((input_section->flags & SEC_ALLOC) != 0)
1180 relocate = false;
1181 else
1182 relocate = true;
1183 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1184 }
1185 else
1186 {
1187 if (h == NULL
1188 || ((info->symbolic || h->dynindx == -1)
1189 && (h->elf_link_hash_flags
1190 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1191 {
1192 relocate = true;
1193 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1194 }
1195 else
1196 {
1197 BFD_ASSERT (h->dynindx != -1);
1198 if ((input_section->flags & SEC_ALLOC) != 0)
1199 relocate = false;
1200 else
1201 relocate = true;
1202 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1203 }
1204 }
1205
1206 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1207 (((Elf32_External_Rel *)
1208 sreloc->contents)
1209 + sreloc->reloc_count));
1210 ++sreloc->reloc_count;
1211
1212 /* If this reloc is against an external symbol, we do not want to
1213 fiddle with the addend. Otherwise, we need to include the symbol
1214 value so that it becomes an addend for the dynamic reloc. */
1215 if (! relocate)
1216 return bfd_reloc_ok;
1217
1218 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1219 contents, rel->r_offset, value,
1220 (bfd_vma) 0);
1221 }
1222 else switch (r_type)
1223 {
1224 #ifndef OLD_ARM_ABI
1225 case R_ARM_XPC25: /* Arm BLX instruction. */
1226 #endif
1227 case R_ARM_PC24: /* Arm B/BL instruction */
1228 #ifndef OLD_ARM_ABI
1229 if (r_type == R_ARM_XPC25)
1230 {
1231 /* Check for Arm calling Arm function. */
1232 /* FIXME: Should we translate the instruction into a BL
1233 instruction instead ? */
1234 if (sym_flags != STT_ARM_TFUNC)
1235 (*_bfd_error_handler) (_("\
1236 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1237 bfd_archive_filename (input_bfd),
1238 h ? h->root.root.string : "(local)");
1239 }
1240 else
1241 #endif
1242 {
1243 /* Check for Arm calling Thumb function. */
1244 if (sym_flags == STT_ARM_TFUNC)
1245 {
1246 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1247 input_section, hit_data, sym_sec, rel->r_offset,
1248 signed_addend, value);
1249 return bfd_reloc_ok;
1250 }
1251 }
1252
1253 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1254 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1255 {
1256 /* The old way of doing things. Trearing the addend as a
1257 byte sized field and adding in the pipeline offset. */
1258 value -= (input_section->output_section->vma
1259 + input_section->output_offset);
1260 value -= rel->r_offset;
1261 value += addend;
1262
1263 if (! globals->no_pipeline_knowledge)
1264 value -= 8;
1265 }
1266 else
1267 {
1268 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1269 where:
1270 S is the address of the symbol in the relocation.
1271 P is address of the instruction being relocated.
1272 A is the addend (extracted from the instruction) in bytes.
1273
1274 S is held in 'value'.
1275 P is the base address of the section containing the instruction
1276 plus the offset of the reloc into that section, ie:
1277 (input_section->output_section->vma +
1278 input_section->output_offset +
1279 rel->r_offset).
1280 A is the addend, converted into bytes, ie:
1281 (signed_addend * 4)
1282
1283 Note: None of these operations have knowledge of the pipeline
1284 size of the processor, thus it is up to the assembler to encode
1285 this information into the addend. */
1286 value -= (input_section->output_section->vma
1287 + input_section->output_offset);
1288 value -= rel->r_offset;
1289 value += (signed_addend << howto->size);
1290
1291 /* Previous versions of this code also used to add in the pipeline
1292 offset here. This is wrong because the linker is not supposed
1293 to know about such things, and one day it might change. In order
1294 to support old binaries that need the old behaviour however, so
1295 we attempt to detect which ABI was used to create the reloc. */
1296 if (! globals->no_pipeline_knowledge)
1297 {
1298 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1299
1300 i_ehdrp = elf_elfheader (input_bfd);
1301
1302 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1303 value -= 8;
1304 }
1305 }
1306
1307 signed_addend = value;
1308 signed_addend >>= howto->rightshift;
1309
1310 /* It is not an error for an undefined weak reference to be
1311 out of range. Any program that branches to such a symbol
1312 is going to crash anyway, so there is no point worrying
1313 about getting the destination exactly right. */
1314 if (! h || h->root.type != bfd_link_hash_undefweak)
1315 {
1316 /* Perform a signed range check. */
1317 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1318 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1319 return bfd_reloc_overflow;
1320 }
1321
1322 #ifndef OLD_ARM_ABI
1323 /* If necessary set the H bit in the BLX instruction. */
1324 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1325 value = (signed_addend & howto->dst_mask)
1326 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1327 | (1 << 24);
1328 else
1329 #endif
1330 value = (signed_addend & howto->dst_mask)
1331 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1332 break;
1333
1334 case R_ARM_ABS32:
1335 value += addend;
1336 if (sym_flags == STT_ARM_TFUNC)
1337 value |= 1;
1338 break;
1339
1340 case R_ARM_REL32:
1341 value -= (input_section->output_section->vma
1342 + input_section->output_offset + rel->r_offset);
1343 value += addend;
1344 break;
1345 }
1346
1347 bfd_put_32 (input_bfd, value, hit_data);
1348 return bfd_reloc_ok;
1349
1350 case R_ARM_ABS8:
1351 value += addend;
1352 if ((long) value > 0x7f || (long) value < -0x80)
1353 return bfd_reloc_overflow;
1354
1355 bfd_put_8 (input_bfd, value, hit_data);
1356 return bfd_reloc_ok;
1357
1358 case R_ARM_ABS16:
1359 value += addend;
1360
1361 if ((long) value > 0x7fff || (long) value < -0x8000)
1362 return bfd_reloc_overflow;
1363
1364 bfd_put_16 (input_bfd, value, hit_data);
1365 return bfd_reloc_ok;
1366
1367 case R_ARM_ABS12:
1368 /* Support ldr and str instruction for the arm */
1369 /* Also thumb b (unconditional branch). ??? Really? */
1370 value += addend;
1371
1372 if ((long) value > 0x7ff || (long) value < -0x800)
1373 return bfd_reloc_overflow;
1374
1375 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1376 bfd_put_32 (input_bfd, value, hit_data);
1377 return bfd_reloc_ok;
1378
1379 case R_ARM_THM_ABS5:
1380 /* Support ldr and str instructions for the thumb. */
1381 #ifdef USE_REL
1382 /* Need to refetch addend. */
1383 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1384 /* ??? Need to determine shift amount from operand size. */
1385 addend >>= howto->rightshift;
1386 #endif
1387 value += addend;
1388
1389 /* ??? Isn't value unsigned? */
1390 if ((long) value > 0x1f || (long) value < -0x10)
1391 return bfd_reloc_overflow;
1392
1393 /* ??? Value needs to be properly shifted into place first. */
1394 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1395 bfd_put_16 (input_bfd, value, hit_data);
1396 return bfd_reloc_ok;
1397
1398 #ifndef OLD_ARM_ABI
1399 case R_ARM_THM_XPC22:
1400 #endif
1401 case R_ARM_THM_PC22:
1402 /* Thumb BL (branch long instruction). */
1403 {
1404 bfd_vma relocation;
1405 boolean overflow = false;
1406 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1407 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1408 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1409 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1410 bfd_vma check;
1411 bfd_signed_vma signed_check;
1412
1413 #ifdef USE_REL
1414 /* Need to refetch the addend and squish the two 11 bit pieces
1415 together. */
1416 {
1417 bfd_vma upper = upper_insn & 0x7ff;
1418 bfd_vma lower = lower_insn & 0x7ff;
1419 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1420 addend = (upper << 12) | (lower << 1);
1421 signed_addend = addend;
1422 }
1423 #endif
1424 #ifndef OLD_ARM_ABI
1425 if (r_type == R_ARM_THM_XPC22)
1426 {
1427 /* Check for Thumb to Thumb call. */
1428 /* FIXME: Should we translate the instruction into a BL
1429 instruction instead ? */
1430 if (sym_flags == STT_ARM_TFUNC)
1431 (*_bfd_error_handler) (_("\
1432 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1433 bfd_archive_filename (input_bfd),
1434 h ? h->root.root.string : "(local)");
1435 }
1436 else
1437 #endif
1438 {
1439 /* If it is not a call to Thumb, assume call to Arm.
1440 If it is a call relative to a section name, then it is not a
1441 function call at all, but rather a long jump. */
1442 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1443 {
1444 if (elf32_thumb_to_arm_stub
1445 (info, sym_name, input_bfd, output_bfd, input_section,
1446 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1447 return bfd_reloc_ok;
1448 else
1449 return bfd_reloc_dangerous;
1450 }
1451 }
1452
1453 relocation = value + signed_addend;
1454
1455 relocation -= (input_section->output_section->vma
1456 + input_section->output_offset
1457 + rel->r_offset);
1458
1459 if (! globals->no_pipeline_knowledge)
1460 {
1461 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1462
1463 i_ehdrp = elf_elfheader (input_bfd);
1464
1465 /* Previous versions of this code also used to add in the pipline
1466 offset here. This is wrong because the linker is not supposed
1467 to know about such things, and one day it might change. In order
1468 to support old binaries that need the old behaviour however, so
1469 we attempt to detect which ABI was used to create the reloc. */
1470 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1471 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1472 || i_ehdrp->e_ident[EI_OSABI] == 0)
1473 relocation += 4;
1474 }
1475
1476 check = relocation >> howto->rightshift;
1477
1478 /* If this is a signed value, the rightshift just dropped
1479 leading 1 bits (assuming twos complement). */
1480 if ((bfd_signed_vma) relocation >= 0)
1481 signed_check = check;
1482 else
1483 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1484
1485 /* Assumes two's complement. */
1486 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1487 overflow = true;
1488
1489 /* Put RELOCATION back into the insn. */
1490 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1491 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1492
1493 #ifndef OLD_ARM_ABI
1494 if (r_type == R_ARM_THM_XPC22
1495 && ((lower_insn & 0x1800) == 0x0800))
1496 /* Remove bit zero of the adjusted offset. Bit zero can only be
1497 set if the upper insn is at a half-word boundary, since the
1498 destination address, an ARM instruction, must always be on a
1499 word boundary. The semantics of the BLX (1) instruction, however,
1500 are that bit zero in the offset must always be zero, and the
1501 corresponding bit one in the target address will be set from bit
1502 one of the source address. */
1503 lower_insn &= ~1;
1504 #endif
1505 /* Put the relocated value back in the object file: */
1506 bfd_put_16 (input_bfd, upper_insn, hit_data);
1507 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1508
1509 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1510 }
1511 break;
1512
1513 case R_ARM_GNU_VTINHERIT:
1514 case R_ARM_GNU_VTENTRY:
1515 return bfd_reloc_ok;
1516
1517 case R_ARM_COPY:
1518 return bfd_reloc_notsupported;
1519
1520 case R_ARM_GLOB_DAT:
1521 return bfd_reloc_notsupported;
1522
1523 case R_ARM_JUMP_SLOT:
1524 return bfd_reloc_notsupported;
1525
1526 case R_ARM_RELATIVE:
1527 return bfd_reloc_notsupported;
1528
1529 case R_ARM_GOTOFF:
1530 /* Relocation is relative to the start of the
1531 global offset table. */
1532
1533 BFD_ASSERT (sgot != NULL);
1534 if (sgot == NULL)
1535 return bfd_reloc_notsupported;
1536
1537 /* Note that sgot->output_offset is not involved in this
1538 calculation. We always want the start of .got. If we
1539 define _GLOBAL_OFFSET_TABLE in a different way, as is
1540 permitted by the ABI, we might have to change this
1541 calculation. */
1542 value -= sgot->output_section->vma;
1543 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1544 contents, rel->r_offset, value,
1545 (bfd_vma) 0);
1546
1547 case R_ARM_GOTPC:
1548 /* Use global offset table as symbol value. */
1549 BFD_ASSERT (sgot != NULL);
1550
1551 if (sgot == NULL)
1552 return bfd_reloc_notsupported;
1553
1554 value = sgot->output_section->vma;
1555 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1556 contents, rel->r_offset, value,
1557 (bfd_vma) 0);
1558
1559 case R_ARM_GOT32:
1560 /* Relocation is to the entry for this symbol in the
1561 global offset table. */
1562 if (sgot == NULL)
1563 return bfd_reloc_notsupported;
1564
1565 if (h != NULL)
1566 {
1567 bfd_vma off;
1568
1569 off = h->got.offset;
1570 BFD_ASSERT (off != (bfd_vma) -1);
1571
1572 if (!elf_hash_table (info)->dynamic_sections_created ||
1573 (info->shared && (info->symbolic || h->dynindx == -1)
1574 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1575 {
1576 /* This is actually a static link, or it is a -Bsymbolic link
1577 and the symbol is defined locally. We must initialize this
1578 entry in the global offset table. Since the offset must
1579 always be a multiple of 4, we use the least significant bit
1580 to record whether we have initialized it already.
1581
1582 When doing a dynamic link, we create a .rel.got relocation
1583 entry to initialize the value. This is done in the
1584 finish_dynamic_symbol routine. */
1585 if ((off & 1) != 0)
1586 off &= ~1;
1587 else
1588 {
1589 bfd_put_32 (output_bfd, value, sgot->contents + off);
1590 h->got.offset |= 1;
1591 }
1592 }
1593
1594 value = sgot->output_offset + off;
1595 }
1596 else
1597 {
1598 bfd_vma off;
1599
1600 BFD_ASSERT (local_got_offsets != NULL &&
1601 local_got_offsets[r_symndx] != (bfd_vma) -1);
1602
1603 off = local_got_offsets[r_symndx];
1604
1605 /* The offset must always be a multiple of 4. We use the
1606 least significant bit to record whether we have already
1607 generated the necessary reloc. */
1608 if ((off & 1) != 0)
1609 off &= ~1;
1610 else
1611 {
1612 bfd_put_32 (output_bfd, value, sgot->contents + off);
1613
1614 if (info->shared)
1615 {
1616 asection * srelgot;
1617 Elf_Internal_Rel outrel;
1618
1619 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1620 BFD_ASSERT (srelgot != NULL);
1621
1622 outrel.r_offset = (sgot->output_section->vma
1623 + sgot->output_offset
1624 + off);
1625 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1626 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1627 (((Elf32_External_Rel *)
1628 srelgot->contents)
1629 + srelgot->reloc_count));
1630 ++srelgot->reloc_count;
1631 }
1632
1633 local_got_offsets[r_symndx] |= 1;
1634 }
1635
1636 value = sgot->output_offset + off;
1637 }
1638
1639 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1640 contents, rel->r_offset, value,
1641 (bfd_vma) 0);
1642
1643 case R_ARM_PLT32:
1644 /* Relocation is to the entry for this symbol in the
1645 procedure linkage table. */
1646
1647 /* Resolve a PLT32 reloc against a local symbol directly,
1648 without using the procedure linkage table. */
1649 if (h == NULL)
1650 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1651 contents, rel->r_offset, value,
1652 (bfd_vma) 0);
1653
1654 if (h->plt.offset == (bfd_vma) -1)
1655 /* We didn't make a PLT entry for this symbol. This
1656 happens when statically linking PIC code, or when
1657 using -Bsymbolic. */
1658 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1659 contents, rel->r_offset, value,
1660 (bfd_vma) 0);
1661
1662 BFD_ASSERT(splt != NULL);
1663 if (splt == NULL)
1664 return bfd_reloc_notsupported;
1665
1666 value = (splt->output_section->vma
1667 + splt->output_offset
1668 + h->plt.offset);
1669 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1670 contents, rel->r_offset, value,
1671 (bfd_vma) 0);
1672
1673 case R_ARM_SBREL32:
1674 return bfd_reloc_notsupported;
1675
1676 case R_ARM_AMP_VCALL9:
1677 return bfd_reloc_notsupported;
1678
1679 case R_ARM_RSBREL32:
1680 return bfd_reloc_notsupported;
1681
1682 case R_ARM_THM_RPC22:
1683 return bfd_reloc_notsupported;
1684
1685 case R_ARM_RREL32:
1686 return bfd_reloc_notsupported;
1687
1688 case R_ARM_RABS32:
1689 return bfd_reloc_notsupported;
1690
1691 case R_ARM_RPC24:
1692 return bfd_reloc_notsupported;
1693
1694 case R_ARM_RBASE:
1695 return bfd_reloc_notsupported;
1696
1697 default:
1698 return bfd_reloc_notsupported;
1699 }
1700 }
1701
1702 #ifdef USE_REL
1703 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1704 static void
1705 arm_add_to_rel (abfd, address, howto, increment)
1706 bfd * abfd;
1707 bfd_byte * address;
1708 reloc_howto_type * howto;
1709 bfd_signed_vma increment;
1710 {
1711 bfd_signed_vma addend;
1712
1713 if (howto->type == R_ARM_THM_PC22)
1714 {
1715 int upper_insn, lower_insn;
1716 int upper, lower;
1717
1718 upper_insn = bfd_get_16 (abfd, address);
1719 lower_insn = bfd_get_16 (abfd, address + 2);
1720 upper = upper_insn & 0x7ff;
1721 lower = lower_insn & 0x7ff;
1722
1723 addend = (upper << 12) | (lower << 1);
1724 addend += increment;
1725 addend >>= 1;
1726
1727 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1728 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1729
1730 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1731 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1732 }
1733 else
1734 {
1735 bfd_vma contents;
1736
1737 contents = bfd_get_32 (abfd, address);
1738
1739 /* Get the (signed) value from the instruction. */
1740 addend = contents & howto->src_mask;
1741 if (addend & ((howto->src_mask + 1) >> 1))
1742 {
1743 bfd_signed_vma mask;
1744
1745 mask = -1;
1746 mask &= ~ howto->src_mask;
1747 addend |= mask;
1748 }
1749
1750 /* Add in the increment, (which is a byte value). */
1751 switch (howto->type)
1752 {
1753 default:
1754 addend += increment;
1755 break;
1756
1757 case R_ARM_PC24:
1758 addend <<= howto->size;
1759 addend += increment;
1760
1761 /* Should we check for overflow here ? */
1762
1763 /* Drop any undesired bits. */
1764 addend >>= howto->rightshift;
1765 break;
1766 }
1767
1768 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1769
1770 bfd_put_32 (abfd, contents, address);
1771 }
1772 }
1773 #endif /* USE_REL */
1774
1775 /* Relocate an ARM ELF section. */
1776 static boolean
1777 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1778 contents, relocs, local_syms, local_sections)
1779 bfd * output_bfd;
1780 struct bfd_link_info * info;
1781 bfd * input_bfd;
1782 asection * input_section;
1783 bfd_byte * contents;
1784 Elf_Internal_Rela * relocs;
1785 Elf_Internal_Sym * local_syms;
1786 asection ** local_sections;
1787 {
1788 Elf_Internal_Shdr * symtab_hdr;
1789 struct elf_link_hash_entry ** sym_hashes;
1790 Elf_Internal_Rela * rel;
1791 Elf_Internal_Rela * relend;
1792 const char * name;
1793
1794 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1795 sym_hashes = elf_sym_hashes (input_bfd);
1796
1797 rel = relocs;
1798 relend = relocs + input_section->reloc_count;
1799 for (; rel < relend; rel++)
1800 {
1801 int r_type;
1802 reloc_howto_type * howto;
1803 unsigned long r_symndx;
1804 Elf_Internal_Sym * sym;
1805 asection * sec;
1806 struct elf_link_hash_entry * h;
1807 bfd_vma relocation;
1808 bfd_reloc_status_type r;
1809 arelent bfd_reloc;
1810
1811 r_symndx = ELF32_R_SYM (rel->r_info);
1812 r_type = ELF32_R_TYPE (rel->r_info);
1813
1814 if ( r_type == R_ARM_GNU_VTENTRY
1815 || r_type == R_ARM_GNU_VTINHERIT)
1816 continue;
1817
1818 #ifdef USE_REL
1819 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1820 (Elf_Internal_Rel *) rel);
1821 #else
1822 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1823 #endif
1824 howto = bfd_reloc.howto;
1825
1826 if (info->relocateable)
1827 {
1828 /* This is a relocateable link. We don't have to change
1829 anything, unless the reloc is against a section symbol,
1830 in which case we have to adjust according to where the
1831 section symbol winds up in the output section. */
1832 if (r_symndx < symtab_hdr->sh_info)
1833 {
1834 sym = local_syms + r_symndx;
1835 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1836 {
1837 sec = local_sections[r_symndx];
1838 #ifdef USE_REL
1839 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1840 howto,
1841 (bfd_signed_vma) (sec->output_offset
1842 + sym->st_value));
1843 #else
1844 rel->r_addend += (sec->output_offset + sym->st_value);
1845 #endif
1846 }
1847 }
1848
1849 continue;
1850 }
1851
1852 /* This is a final link. */
1853 h = NULL;
1854 sym = NULL;
1855 sec = NULL;
1856
1857 if (r_symndx < symtab_hdr->sh_info)
1858 {
1859 sym = local_syms + r_symndx;
1860 sec = local_sections[r_symndx];
1861 #ifdef USE_REL
1862 relocation = (sec->output_section->vma
1863 + sec->output_offset
1864 + sym->st_value);
1865 if ((sec->flags & SEC_MERGE)
1866 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1867 {
1868 asection *msec;
1869 bfd_vma addend, value;
1870
1871 if (howto->rightshift)
1872 {
1873 (*_bfd_error_handler)
1874 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1875 bfd_archive_filename (input_bfd),
1876 bfd_get_section_name (input_bfd, input_section),
1877 (long) rel->r_offset, howto->name);
1878 return false;
1879 }
1880
1881 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1882
1883 /* Get the (signed) value from the instruction. */
1884 addend = value & howto->src_mask;
1885 if (addend & ((howto->src_mask + 1) >> 1))
1886 {
1887 bfd_signed_vma mask;
1888
1889 mask = -1;
1890 mask &= ~ howto->src_mask;
1891 addend |= mask;
1892 }
1893 msec = sec;
1894 addend =
1895 _bfd_merged_section_offset (output_bfd, &msec,
1896 elf_section_data (sec)->merge_info,
1897 sym->st_value + addend, (bfd_vma) 0)
1898 - relocation;
1899 addend += msec->output_section->vma + msec->output_offset;
1900 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1901 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1902 }
1903 #else
1904 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1905 #endif
1906 }
1907 else
1908 {
1909 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1910
1911 while ( h->root.type == bfd_link_hash_indirect
1912 || h->root.type == bfd_link_hash_warning)
1913 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1914
1915 if ( h->root.type == bfd_link_hash_defined
1916 || h->root.type == bfd_link_hash_defweak)
1917 {
1918 int relocation_needed = 1;
1919
1920 sec = h->root.u.def.section;
1921
1922 /* In these cases, we don't need the relocation value.
1923 We check specially because in some obscure cases
1924 sec->output_section will be NULL. */
1925 switch (r_type)
1926 {
1927 case R_ARM_PC24:
1928 case R_ARM_ABS32:
1929 case R_ARM_THM_PC22:
1930 if (info->shared
1931 && (
1932 (!info->symbolic && h->dynindx != -1)
1933 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1934 )
1935 && ((input_section->flags & SEC_ALLOC) != 0
1936 /* DWARF will emit R_ARM_ABS32 relocations in its
1937 sections against symbols defined externally
1938 in shared libraries. We can't do anything
1939 with them here. */
1940 || ((input_section->flags & SEC_DEBUGGING) != 0
1941 && (h->elf_link_hash_flags
1942 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1943 )
1944 relocation_needed = 0;
1945 break;
1946
1947 case R_ARM_GOTPC:
1948 relocation_needed = 0;
1949 break;
1950
1951 case R_ARM_GOT32:
1952 if (elf_hash_table(info)->dynamic_sections_created
1953 && (!info->shared
1954 || (!info->symbolic && h->dynindx != -1)
1955 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1956 )
1957 )
1958 relocation_needed = 0;
1959 break;
1960
1961 case R_ARM_PLT32:
1962 if (h->plt.offset != (bfd_vma)-1)
1963 relocation_needed = 0;
1964 break;
1965
1966 default:
1967 if (sec->output_section == NULL)
1968 {
1969 (*_bfd_error_handler)
1970 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
1971 bfd_archive_filename (input_bfd),
1972 r_type,
1973 h->root.root.string,
1974 bfd_get_section_name (input_bfd, input_section));
1975 relocation_needed = 0;
1976 }
1977 }
1978
1979 if (relocation_needed)
1980 relocation = h->root.u.def.value
1981 + sec->output_section->vma
1982 + sec->output_offset;
1983 else
1984 relocation = 0;
1985 }
1986 else if (h->root.type == bfd_link_hash_undefweak)
1987 relocation = 0;
1988 else if (info->shared && !info->symbolic
1989 && !info->no_undefined
1990 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1991 relocation = 0;
1992 else
1993 {
1994 if (!((*info->callbacks->undefined_symbol)
1995 (info, h->root.root.string, input_bfd,
1996 input_section, rel->r_offset,
1997 (!info->shared || info->no_undefined
1998 || ELF_ST_VISIBILITY (h->other)))))
1999 return false;
2000 relocation = 0;
2001 }
2002 }
2003
2004 if (h != NULL)
2005 name = h->root.root.string;
2006 else
2007 {
2008 name = (bfd_elf_string_from_elf_section
2009 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2010 if (name == NULL || *name == '\0')
2011 name = bfd_section_name (input_bfd, sec);
2012 }
2013
2014 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2015 input_section, contents, rel,
2016 relocation, info, sec, name,
2017 (h ? ELF_ST_TYPE (h->type) :
2018 ELF_ST_TYPE (sym->st_info)), h);
2019
2020 if (r != bfd_reloc_ok)
2021 {
2022 const char * msg = (const char *) 0;
2023
2024 switch (r)
2025 {
2026 case bfd_reloc_overflow:
2027 /* If the overflowing reloc was to an undefined symbol,
2028 we have already printed one error message and there
2029 is no point complaining again. */
2030 if ((! h ||
2031 h->root.type != bfd_link_hash_undefined)
2032 && (!((*info->callbacks->reloc_overflow)
2033 (info, name, howto->name, (bfd_vma) 0,
2034 input_bfd, input_section, rel->r_offset))))
2035 return false;
2036 break;
2037
2038 case bfd_reloc_undefined:
2039 if (!((*info->callbacks->undefined_symbol)
2040 (info, name, input_bfd, input_section,
2041 rel->r_offset, true)))
2042 return false;
2043 break;
2044
2045 case bfd_reloc_outofrange:
2046 msg = _("internal error: out of range error");
2047 goto common_error;
2048
2049 case bfd_reloc_notsupported:
2050 msg = _("internal error: unsupported relocation error");
2051 goto common_error;
2052
2053 case bfd_reloc_dangerous:
2054 msg = _("internal error: dangerous error");
2055 goto common_error;
2056
2057 default:
2058 msg = _("internal error: unknown error");
2059 /* fall through */
2060
2061 common_error:
2062 if (!((*info->callbacks->warning)
2063 (info, msg, name, input_bfd, input_section,
2064 rel->r_offset)))
2065 return false;
2066 break;
2067 }
2068 }
2069 }
2070
2071 return true;
2072 }
2073
2074 /* Function to keep ARM specific flags in the ELF header. */
2075 static boolean
2076 elf32_arm_set_private_flags (abfd, flags)
2077 bfd *abfd;
2078 flagword flags;
2079 {
2080 if (elf_flags_init (abfd)
2081 && elf_elfheader (abfd)->e_flags != flags)
2082 {
2083 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2084 {
2085 if (flags & EF_ARM_INTERWORK)
2086 (*_bfd_error_handler) (_("\
2087 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2088 bfd_archive_filename (abfd));
2089 else
2090 _bfd_error_handler (_("\
2091 Warning: Clearing the interwork flag of %s due to outside request"),
2092 bfd_archive_filename (abfd));
2093 }
2094 }
2095 else
2096 {
2097 elf_elfheader (abfd)->e_flags = flags;
2098 elf_flags_init (abfd) = true;
2099 }
2100
2101 return true;
2102 }
2103
2104 /* Copy backend specific data from one object module to another. */
2105
2106 static boolean
2107 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2108 bfd *ibfd;
2109 bfd *obfd;
2110 {
2111 flagword in_flags;
2112 flagword out_flags;
2113
2114 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2115 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2116 return true;
2117
2118 in_flags = elf_elfheader (ibfd)->e_flags;
2119 out_flags = elf_elfheader (obfd)->e_flags;
2120
2121 if (elf_flags_init (obfd)
2122 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2123 && in_flags != out_flags)
2124 {
2125 /* Cannot mix APCS26 and APCS32 code. */
2126 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2127 return false;
2128
2129 /* Cannot mix float APCS and non-float APCS code. */
2130 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2131 return false;
2132
2133 /* If the src and dest have different interworking flags
2134 then turn off the interworking bit. */
2135 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2136 {
2137 if (out_flags & EF_ARM_INTERWORK)
2138 _bfd_error_handler (_("\
2139 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2140 bfd_get_filename (obfd),
2141 bfd_archive_filename (ibfd));
2142
2143 in_flags &= ~EF_ARM_INTERWORK;
2144 }
2145
2146 /* Likewise for PIC, though don't warn for this case. */
2147 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2148 in_flags &= ~EF_ARM_PIC;
2149 }
2150
2151 elf_elfheader (obfd)->e_flags = in_flags;
2152 elf_flags_init (obfd) = true;
2153
2154 return true;
2155 }
2156
2157 /* Merge backend specific data from an object file to the output
2158 object file when linking. */
2159
2160 static boolean
2161 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2162 bfd * ibfd;
2163 bfd * obfd;
2164 {
2165 flagword out_flags;
2166 flagword in_flags;
2167 boolean flags_compatible = true;
2168 boolean null_input_bfd = true;
2169 asection *sec;
2170
2171 /* Check if we have the same endianess. */
2172 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2173 return false;
2174
2175 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2176 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2177 return true;
2178
2179 /* The input BFD must have had its flags initialised. */
2180 /* The following seems bogus to me -- The flags are initialized in
2181 the assembler but I don't think an elf_flags_init field is
2182 written into the object. */
2183 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2184
2185 in_flags = elf_elfheader (ibfd)->e_flags;
2186 out_flags = elf_elfheader (obfd)->e_flags;
2187
2188 if (!elf_flags_init (obfd))
2189 {
2190 /* If the input is the default architecture and had the default
2191 flags then do not bother setting the flags for the output
2192 architecture, instead allow future merges to do this. If no
2193 future merges ever set these flags then they will retain their
2194 uninitialised values, which surprise surprise, correspond
2195 to the default values. */
2196 if (bfd_get_arch_info (ibfd)->the_default
2197 && elf_elfheader (ibfd)->e_flags == 0)
2198 return true;
2199
2200 elf_flags_init (obfd) = true;
2201 elf_elfheader (obfd)->e_flags = in_flags;
2202
2203 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2204 && bfd_get_arch_info (obfd)->the_default)
2205 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2206
2207 return true;
2208 }
2209
2210 /* Identical flags must be compatible. */
2211 if (in_flags == out_flags)
2212 return true;
2213
2214 /* Check to see if the input BFD actually contains any sections.
2215 If not, its flags may not have been initialised either, but it cannot
2216 actually cause any incompatibility. */
2217 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2218 {
2219 /* Ignore synthetic glue sections. */
2220 if (strcmp (sec->name, ".glue_7")
2221 && strcmp (sec->name, ".glue_7t"))
2222 {
2223 null_input_bfd = false;
2224 break;
2225 }
2226 }
2227 if (null_input_bfd)
2228 return true;
2229
2230 /* Complain about various flag mismatches. */
2231 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2232 {
2233 _bfd_error_handler (_("\
2234 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2235 bfd_archive_filename (ibfd),
2236 (in_flags & EF_ARM_EABIMASK) >> 24,
2237 bfd_get_filename (obfd),
2238 (out_flags & EF_ARM_EABIMASK) >> 24);
2239 return false;
2240 }
2241
2242 /* Not sure what needs to be checked for EABI versions >= 1. */
2243 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2244 {
2245 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2246 {
2247 _bfd_error_handler (_("\
2248 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2249 bfd_archive_filename (ibfd),
2250 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2251 bfd_get_filename (obfd),
2252 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2253 flags_compatible = false;
2254 }
2255
2256 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2257 {
2258 char *s1 = in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2259 char *s2 = out_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2260
2261 _bfd_error_handler (_("\
2262 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2263 bfd_archive_filename (ibfd), s1,
2264 bfd_get_filename (obfd), s2);
2265 flags_compatible = false;
2266 }
2267
2268 #ifdef EF_ARM_SOFT_FLOAT
2269 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2270 {
2271 char *s1 = in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2272 char *s2 = out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2273
2274 _bfd_error_handler (_ ("\
2275 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2276 bfd_archive_filename (ibfd), s1,
2277 bfd_get_filename (obfd), s2);
2278 flags_compatible = false;
2279 }
2280 #endif
2281
2282 /* Interworking mismatch is only a warning. */
2283 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2284 {
2285 char *s1 = (in_flags & EF_ARM_INTERWORK
2286 ? _("supports") : _("does not support"));
2287 char *s2 = out_flags & EF_ARM_INTERWORK ? _("does") : _("does not");
2288
2289 _bfd_error_handler (_("\
2290 Warning: %s %s interworking, whereas %s %s"),
2291 bfd_archive_filename (ibfd), s1,
2292 bfd_get_filename (obfd), s2);
2293 }
2294 }
2295
2296 return flags_compatible;
2297 }
2298
2299 /* Display the flags field. */
2300
2301 static boolean
2302 elf32_arm_print_private_bfd_data (abfd, ptr)
2303 bfd *abfd;
2304 PTR ptr;
2305 {
2306 FILE * file = (FILE *) ptr;
2307 unsigned long flags;
2308
2309 BFD_ASSERT (abfd != NULL && ptr != NULL);
2310
2311 /* Print normal ELF private data. */
2312 _bfd_elf_print_private_bfd_data (abfd, ptr);
2313
2314 flags = elf_elfheader (abfd)->e_flags;
2315 /* Ignore init flag - it may not be set, despite the flags field
2316 containing valid data. */
2317
2318 /* xgettext:c-format */
2319 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2320
2321 switch (EF_ARM_EABI_VERSION (flags))
2322 {
2323 case EF_ARM_EABI_UNKNOWN:
2324 /* The following flag bits are GNU extenstions and not part of the
2325 official ARM ELF extended ABI. Hence they are only decoded if
2326 the EABI version is not set. */
2327 if (flags & EF_ARM_INTERWORK)
2328 fprintf (file, _(" [interworking enabled]"));
2329
2330 if (flags & EF_ARM_APCS_26)
2331 fprintf (file, _(" [APCS-26]"));
2332 else
2333 fprintf (file, _(" [APCS-32]"));
2334
2335 if (flags & EF_ARM_APCS_FLOAT)
2336 fprintf (file, _(" [floats passed in float registers]"));
2337
2338 if (flags & EF_ARM_PIC)
2339 fprintf (file, _(" [position independent]"));
2340
2341 if (flags & EF_ARM_NEW_ABI)
2342 fprintf (file, _(" [new ABI]"));
2343
2344 if (flags & EF_ARM_OLD_ABI)
2345 fprintf (file, _(" [old ABI]"));
2346
2347 if (flags & EF_ARM_SOFT_FLOAT)
2348 fprintf (file, _(" [software FP]"));
2349
2350 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2351 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2352 break;
2353
2354 case EF_ARM_EABI_VER1:
2355 fprintf (file, _(" [Version1 EABI]"));
2356
2357 if (flags & EF_ARM_SYMSARESORTED)
2358 fprintf (file, _(" [sorted symbol table]"));
2359 else
2360 fprintf (file, _(" [unsorted symbol table]"));
2361
2362 flags &= ~ EF_ARM_SYMSARESORTED;
2363 break;
2364
2365 case EF_ARM_EABI_VER2:
2366 fprintf (file, _(" [Version2 EABI]"));
2367
2368 if (flags & EF_ARM_SYMSARESORTED)
2369 fprintf (file, _(" [sorted symbol table]"));
2370 else
2371 fprintf (file, _(" [unsorted symbol table]"));
2372
2373 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2374 fprintf (file, _(" [dynamic symbols use segment index]"));
2375
2376 if (flags & EF_ARM_MAPSYMSFIRST)
2377 fprintf (file, _(" [mapping symbols precede others]"));
2378
2379 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2380 | EF_ARM_MAPSYMSFIRST);
2381 break;
2382
2383 default:
2384 fprintf (file, _(" <EABI version unrecognised>"));
2385 break;
2386 }
2387
2388 flags &= ~ EF_ARM_EABIMASK;
2389
2390 if (flags & EF_ARM_RELEXEC)
2391 fprintf (file, _(" [relocatable executable]"));
2392
2393 if (flags & EF_ARM_HASENTRY)
2394 fprintf (file, _(" [has entry point]"));
2395
2396 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2397
2398 if (flags)
2399 fprintf (file, _("<Unrecognised flag bits set>"));
2400
2401 fputc ('\n', file);
2402
2403 return true;
2404 }
2405
2406 static int
2407 elf32_arm_get_symbol_type (elf_sym, type)
2408 Elf_Internal_Sym * elf_sym;
2409 int type;
2410 {
2411 switch (ELF_ST_TYPE (elf_sym->st_info))
2412 {
2413 case STT_ARM_TFUNC:
2414 return ELF_ST_TYPE (elf_sym->st_info);
2415
2416 case STT_ARM_16BIT:
2417 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2418 This allows us to distinguish between data used by Thumb instructions
2419 and non-data (which is probably code) inside Thumb regions of an
2420 executable. */
2421 if (type != STT_OBJECT)
2422 return ELF_ST_TYPE (elf_sym->st_info);
2423 break;
2424
2425 default:
2426 break;
2427 }
2428
2429 return type;
2430 }
2431
2432 static asection *
2433 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2434 bfd *abfd;
2435 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2436 Elf_Internal_Rela *rel;
2437 struct elf_link_hash_entry *h;
2438 Elf_Internal_Sym *sym;
2439 {
2440 if (h != NULL)
2441 {
2442 switch (ELF32_R_TYPE (rel->r_info))
2443 {
2444 case R_ARM_GNU_VTINHERIT:
2445 case R_ARM_GNU_VTENTRY:
2446 break;
2447
2448 default:
2449 switch (h->root.type)
2450 {
2451 case bfd_link_hash_defined:
2452 case bfd_link_hash_defweak:
2453 return h->root.u.def.section;
2454
2455 case bfd_link_hash_common:
2456 return h->root.u.c.p->section;
2457
2458 default:
2459 break;
2460 }
2461 }
2462 }
2463 else
2464 {
2465 if (!(elf_bad_symtab (abfd)
2466 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2467 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2468 && sym->st_shndx != SHN_COMMON))
2469 {
2470 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2471 }
2472 }
2473 return NULL;
2474 }
2475
2476 /* Update the got entry reference counts for the section being removed. */
2477
2478 static boolean
2479 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2480 bfd *abfd ATTRIBUTE_UNUSED;
2481 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2482 asection *sec ATTRIBUTE_UNUSED;
2483 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2484 {
2485 /* We don't support garbage collection of GOT and PLT relocs yet. */
2486 return true;
2487 }
2488
2489 /* Look through the relocs for a section during the first phase. */
2490
2491 static boolean
2492 elf32_arm_check_relocs (abfd, info, sec, relocs)
2493 bfd * abfd;
2494 struct bfd_link_info * info;
2495 asection * sec;
2496 const Elf_Internal_Rela * relocs;
2497 {
2498 Elf_Internal_Shdr * symtab_hdr;
2499 struct elf_link_hash_entry ** sym_hashes;
2500 struct elf_link_hash_entry ** sym_hashes_end;
2501 const Elf_Internal_Rela * rel;
2502 const Elf_Internal_Rela * rel_end;
2503 bfd * dynobj;
2504 asection * sgot, *srelgot, *sreloc;
2505 bfd_vma * local_got_offsets;
2506
2507 if (info->relocateable)
2508 return true;
2509
2510 sgot = srelgot = sreloc = NULL;
2511
2512 dynobj = elf_hash_table (info)->dynobj;
2513 local_got_offsets = elf_local_got_offsets (abfd);
2514
2515 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2516 sym_hashes = elf_sym_hashes (abfd);
2517 sym_hashes_end = sym_hashes
2518 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2519
2520 if (!elf_bad_symtab (abfd))
2521 sym_hashes_end -= symtab_hdr->sh_info;
2522
2523 rel_end = relocs + sec->reloc_count;
2524 for (rel = relocs; rel < rel_end; rel++)
2525 {
2526 struct elf_link_hash_entry *h;
2527 unsigned long r_symndx;
2528
2529 r_symndx = ELF32_R_SYM (rel->r_info);
2530 if (r_symndx < symtab_hdr->sh_info)
2531 h = NULL;
2532 else
2533 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2534
2535 /* Some relocs require a global offset table. */
2536 if (dynobj == NULL)
2537 {
2538 switch (ELF32_R_TYPE (rel->r_info))
2539 {
2540 case R_ARM_GOT32:
2541 case R_ARM_GOTOFF:
2542 case R_ARM_GOTPC:
2543 elf_hash_table (info)->dynobj = dynobj = abfd;
2544 if (! _bfd_elf_create_got_section (dynobj, info))
2545 return false;
2546 break;
2547
2548 default:
2549 break;
2550 }
2551 }
2552
2553 switch (ELF32_R_TYPE (rel->r_info))
2554 {
2555 case R_ARM_GOT32:
2556 /* This symbol requires a global offset table entry. */
2557 if (sgot == NULL)
2558 {
2559 sgot = bfd_get_section_by_name (dynobj, ".got");
2560 BFD_ASSERT (sgot != NULL);
2561 }
2562
2563 /* Get the got relocation section if necessary. */
2564 if (srelgot == NULL
2565 && (h != NULL || info->shared))
2566 {
2567 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2568
2569 /* If no got relocation section, make one and initialize. */
2570 if (srelgot == NULL)
2571 {
2572 srelgot = bfd_make_section (dynobj, ".rel.got");
2573 if (srelgot == NULL
2574 || ! bfd_set_section_flags (dynobj, srelgot,
2575 (SEC_ALLOC
2576 | SEC_LOAD
2577 | SEC_HAS_CONTENTS
2578 | SEC_IN_MEMORY
2579 | SEC_LINKER_CREATED
2580 | SEC_READONLY))
2581 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2582 return false;
2583 }
2584 }
2585
2586 if (h != NULL)
2587 {
2588 if (h->got.offset != (bfd_vma) -1)
2589 /* We have already allocated space in the .got. */
2590 break;
2591
2592 h->got.offset = sgot->_raw_size;
2593
2594 /* Make sure this symbol is output as a dynamic symbol. */
2595 if (h->dynindx == -1)
2596 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2597 return false;
2598
2599 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2600 }
2601 else
2602 {
2603 /* This is a global offset table entry for a local
2604 symbol. */
2605 if (local_got_offsets == NULL)
2606 {
2607 bfd_size_type size;
2608 unsigned int i;
2609
2610 size = symtab_hdr->sh_info;
2611 size *= sizeof (bfd_vma);
2612 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2613 if (local_got_offsets == NULL)
2614 return false;
2615 elf_local_got_offsets (abfd) = local_got_offsets;
2616 for (i = 0; i < symtab_hdr->sh_info; i++)
2617 local_got_offsets[i] = (bfd_vma) -1;
2618 }
2619
2620 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2621 /* We have already allocated space in the .got. */
2622 break;
2623
2624 local_got_offsets[r_symndx] = sgot->_raw_size;
2625
2626 if (info->shared)
2627 /* If we are generating a shared object, we need to
2628 output a R_ARM_RELATIVE reloc so that the dynamic
2629 linker can adjust this GOT entry. */
2630 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2631 }
2632
2633 sgot->_raw_size += 4;
2634 break;
2635
2636 case R_ARM_PLT32:
2637 /* This symbol requires a procedure linkage table entry. We
2638 actually build the entry in adjust_dynamic_symbol,
2639 because this might be a case of linking PIC code which is
2640 never referenced by a dynamic object, in which case we
2641 don't need to generate a procedure linkage table entry
2642 after all. */
2643
2644 /* If this is a local symbol, we resolve it directly without
2645 creating a procedure linkage table entry. */
2646 if (h == NULL)
2647 continue;
2648
2649 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2650 break;
2651
2652 case R_ARM_ABS32:
2653 case R_ARM_REL32:
2654 case R_ARM_PC24:
2655 /* If we are creating a shared library, and this is a reloc
2656 against a global symbol, or a non PC relative reloc
2657 against a local symbol, then we need to copy the reloc
2658 into the shared library. However, if we are linking with
2659 -Bsymbolic, we do not need to copy a reloc against a
2660 global symbol which is defined in an object we are
2661 including in the link (i.e., DEF_REGULAR is set). At
2662 this point we have not seen all the input files, so it is
2663 possible that DEF_REGULAR is not set now but will be set
2664 later (it is never cleared). We account for that
2665 possibility below by storing information in the
2666 pcrel_relocs_copied field of the hash table entry. */
2667 if (info->shared
2668 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2669 || (h != NULL
2670 && (! info->symbolic
2671 || (h->elf_link_hash_flags
2672 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2673 {
2674 /* When creating a shared object, we must copy these
2675 reloc types into the output file. We create a reloc
2676 section in dynobj and make room for this reloc. */
2677 if (sreloc == NULL)
2678 {
2679 const char * name;
2680
2681 name = (bfd_elf_string_from_elf_section
2682 (abfd,
2683 elf_elfheader (abfd)->e_shstrndx,
2684 elf_section_data (sec)->rel_hdr.sh_name));
2685 if (name == NULL)
2686 return false;
2687
2688 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2689 && strcmp (bfd_get_section_name (abfd, sec),
2690 name + 4) == 0);
2691
2692 sreloc = bfd_get_section_by_name (dynobj, name);
2693 if (sreloc == NULL)
2694 {
2695 flagword flags;
2696
2697 sreloc = bfd_make_section (dynobj, name);
2698 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2699 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2700 if ((sec->flags & SEC_ALLOC) != 0)
2701 flags |= SEC_ALLOC | SEC_LOAD;
2702 if (sreloc == NULL
2703 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2704 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2705 return false;
2706 }
2707 if (sec->flags & SEC_READONLY)
2708 info->flags |= DF_TEXTREL;
2709 }
2710
2711 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2712 /* If we are linking with -Bsymbolic, and this is a
2713 global symbol, we count the number of PC relative
2714 relocations we have entered for this symbol, so that
2715 we can discard them again if the symbol is later
2716 defined by a regular object. Note that this function
2717 is only called if we are using an elf_i386 linker
2718 hash table, which means that h is really a pointer to
2719 an elf_i386_link_hash_entry. */
2720 if (h != NULL && info->symbolic
2721 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2722 {
2723 struct elf32_arm_link_hash_entry * eh;
2724 struct elf32_arm_pcrel_relocs_copied * p;
2725
2726 eh = (struct elf32_arm_link_hash_entry *) h;
2727
2728 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2729 if (p->section == sreloc)
2730 break;
2731
2732 if (p == NULL)
2733 {
2734 p = ((struct elf32_arm_pcrel_relocs_copied *)
2735 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2736 if (p == NULL)
2737 return false;
2738 p->next = eh->pcrel_relocs_copied;
2739 eh->pcrel_relocs_copied = p;
2740 p->section = sreloc;
2741 p->count = 0;
2742 }
2743
2744 ++p->count;
2745 }
2746 }
2747 break;
2748
2749 /* This relocation describes the C++ object vtable hierarchy.
2750 Reconstruct it for later use during GC. */
2751 case R_ARM_GNU_VTINHERIT:
2752 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2753 return false;
2754 break;
2755
2756 /* This relocation describes which C++ vtable entries are actually
2757 used. Record for later use during GC. */
2758 case R_ARM_GNU_VTENTRY:
2759 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2760 return false;
2761 break;
2762 }
2763 }
2764
2765 return true;
2766 }
2767
2768 /* Find the nearest line to a particular section and offset, for error
2769 reporting. This code is a duplicate of the code in elf.c, except
2770 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2771
2772 static boolean
2773 elf32_arm_find_nearest_line
2774 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2775 bfd * abfd;
2776 asection * section;
2777 asymbol ** symbols;
2778 bfd_vma offset;
2779 const char ** filename_ptr;
2780 const char ** functionname_ptr;
2781 unsigned int * line_ptr;
2782 {
2783 boolean found;
2784 const char * filename;
2785 asymbol * func;
2786 bfd_vma low_func;
2787 asymbol ** p;
2788
2789 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2790 filename_ptr, functionname_ptr,
2791 line_ptr, 0,
2792 &elf_tdata (abfd)->dwarf2_find_line_info))
2793 return true;
2794
2795 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2796 &found, filename_ptr,
2797 functionname_ptr, line_ptr,
2798 &elf_tdata (abfd)->line_info))
2799 return false;
2800
2801 if (found)
2802 return true;
2803
2804 if (symbols == NULL)
2805 return false;
2806
2807 filename = NULL;
2808 func = NULL;
2809 low_func = 0;
2810
2811 for (p = symbols; *p != NULL; p++)
2812 {
2813 elf_symbol_type *q;
2814
2815 q = (elf_symbol_type *) *p;
2816
2817 if (bfd_get_section (&q->symbol) != section)
2818 continue;
2819
2820 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2821 {
2822 default:
2823 break;
2824 case STT_FILE:
2825 filename = bfd_asymbol_name (&q->symbol);
2826 break;
2827 case STT_NOTYPE:
2828 case STT_FUNC:
2829 case STT_ARM_TFUNC:
2830 if (q->symbol.section == section
2831 && q->symbol.value >= low_func
2832 && q->symbol.value <= offset)
2833 {
2834 func = (asymbol *) q;
2835 low_func = q->symbol.value;
2836 }
2837 break;
2838 }
2839 }
2840
2841 if (func == NULL)
2842 return false;
2843
2844 *filename_ptr = filename;
2845 *functionname_ptr = bfd_asymbol_name (func);
2846 *line_ptr = 0;
2847
2848 return true;
2849 }
2850
2851 /* Adjust a symbol defined by a dynamic object and referenced by a
2852 regular object. The current definition is in some section of the
2853 dynamic object, but we're not including those sections. We have to
2854 change the definition to something the rest of the link can
2855 understand. */
2856
2857 static boolean
2858 elf32_arm_adjust_dynamic_symbol (info, h)
2859 struct bfd_link_info * info;
2860 struct elf_link_hash_entry * h;
2861 {
2862 bfd * dynobj;
2863 asection * s;
2864 unsigned int power_of_two;
2865
2866 dynobj = elf_hash_table (info)->dynobj;
2867
2868 /* Make sure we know what is going on here. */
2869 BFD_ASSERT (dynobj != NULL
2870 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2871 || h->weakdef != NULL
2872 || ((h->elf_link_hash_flags
2873 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2874 && (h->elf_link_hash_flags
2875 & ELF_LINK_HASH_REF_REGULAR) != 0
2876 && (h->elf_link_hash_flags
2877 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2878
2879 /* If this is a function, put it in the procedure linkage table. We
2880 will fill in the contents of the procedure linkage table later,
2881 when we know the address of the .got section. */
2882 if (h->type == STT_FUNC
2883 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2884 {
2885 if (! info->shared
2886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2887 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2888 {
2889 /* This case can occur if we saw a PLT32 reloc in an input
2890 file, but the symbol was never referred to by a dynamic
2891 object. In such a case, we don't actually need to build
2892 a procedure linkage table, and we can just do a PC32
2893 reloc instead. */
2894 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2895 return true;
2896 }
2897
2898 /* Make sure this symbol is output as a dynamic symbol. */
2899 if (h->dynindx == -1)
2900 {
2901 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2902 return false;
2903 }
2904
2905 s = bfd_get_section_by_name (dynobj, ".plt");
2906 BFD_ASSERT (s != NULL);
2907
2908 /* If this is the first .plt entry, make room for the special
2909 first entry. */
2910 if (s->_raw_size == 0)
2911 s->_raw_size += PLT_ENTRY_SIZE;
2912
2913 /* If this symbol is not defined in a regular file, and we are
2914 not generating a shared library, then set the symbol to this
2915 location in the .plt. This is required to make function
2916 pointers compare as equal between the normal executable and
2917 the shared library. */
2918 if (! info->shared
2919 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2920 {
2921 h->root.u.def.section = s;
2922 h->root.u.def.value = s->_raw_size;
2923 }
2924
2925 h->plt.offset = s->_raw_size;
2926
2927 /* Make room for this entry. */
2928 s->_raw_size += PLT_ENTRY_SIZE;
2929
2930 /* We also need to make an entry in the .got.plt section, which
2931 will be placed in the .got section by the linker script. */
2932 s = bfd_get_section_by_name (dynobj, ".got.plt");
2933 BFD_ASSERT (s != NULL);
2934 s->_raw_size += 4;
2935
2936 /* We also need to make an entry in the .rel.plt section. */
2937
2938 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2939 BFD_ASSERT (s != NULL);
2940 s->_raw_size += sizeof (Elf32_External_Rel);
2941
2942 return true;
2943 }
2944
2945 /* If this is a weak symbol, and there is a real definition, the
2946 processor independent code will have arranged for us to see the
2947 real definition first, and we can just use the same value. */
2948 if (h->weakdef != NULL)
2949 {
2950 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2951 || h->weakdef->root.type == bfd_link_hash_defweak);
2952 h->root.u.def.section = h->weakdef->root.u.def.section;
2953 h->root.u.def.value = h->weakdef->root.u.def.value;
2954 return true;
2955 }
2956
2957 /* This is a reference to a symbol defined by a dynamic object which
2958 is not a function. */
2959
2960 /* If we are creating a shared library, we must presume that the
2961 only references to the symbol are via the global offset table.
2962 For such cases we need not do anything here; the relocations will
2963 be handled correctly by relocate_section. */
2964 if (info->shared)
2965 return true;
2966
2967 /* We must allocate the symbol in our .dynbss section, which will
2968 become part of the .bss section of the executable. There will be
2969 an entry for this symbol in the .dynsym section. The dynamic
2970 object will contain position independent code, so all references
2971 from the dynamic object to this symbol will go through the global
2972 offset table. The dynamic linker will use the .dynsym entry to
2973 determine the address it must put in the global offset table, so
2974 both the dynamic object and the regular object will refer to the
2975 same memory location for the variable. */
2976 s = bfd_get_section_by_name (dynobj, ".dynbss");
2977 BFD_ASSERT (s != NULL);
2978
2979 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2980 copy the initial value out of the dynamic object and into the
2981 runtime process image. We need to remember the offset into the
2982 .rel.bss section we are going to use. */
2983 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2984 {
2985 asection *srel;
2986
2987 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2988 BFD_ASSERT (srel != NULL);
2989 srel->_raw_size += sizeof (Elf32_External_Rel);
2990 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2991 }
2992
2993 /* We need to figure out the alignment required for this symbol. I
2994 have no idea how ELF linkers handle this. */
2995 power_of_two = bfd_log2 (h->size);
2996 if (power_of_two > 3)
2997 power_of_two = 3;
2998
2999 /* Apply the required alignment. */
3000 s->_raw_size = BFD_ALIGN (s->_raw_size,
3001 (bfd_size_type) (1 << power_of_two));
3002 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3003 {
3004 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3005 return false;
3006 }
3007
3008 /* Define the symbol as being at this point in the section. */
3009 h->root.u.def.section = s;
3010 h->root.u.def.value = s->_raw_size;
3011
3012 /* Increment the section size to make room for the symbol. */
3013 s->_raw_size += h->size;
3014
3015 return true;
3016 }
3017
3018 /* Set the sizes of the dynamic sections. */
3019
3020 static boolean
3021 elf32_arm_size_dynamic_sections (output_bfd, info)
3022 bfd * output_bfd ATTRIBUTE_UNUSED;
3023 struct bfd_link_info * info;
3024 {
3025 bfd * dynobj;
3026 asection * s;
3027 boolean plt;
3028 boolean relocs;
3029
3030 dynobj = elf_hash_table (info)->dynobj;
3031 BFD_ASSERT (dynobj != NULL);
3032
3033 if (elf_hash_table (info)->dynamic_sections_created)
3034 {
3035 /* Set the contents of the .interp section to the interpreter. */
3036 if (! info->shared)
3037 {
3038 s = bfd_get_section_by_name (dynobj, ".interp");
3039 BFD_ASSERT (s != NULL);
3040 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3041 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3042 }
3043 }
3044 else
3045 {
3046 /* We may have created entries in the .rel.got section.
3047 However, if we are not creating the dynamic sections, we will
3048 not actually use these entries. Reset the size of .rel.got,
3049 which will cause it to get stripped from the output file
3050 below. */
3051 s = bfd_get_section_by_name (dynobj, ".rel.got");
3052 if (s != NULL)
3053 s->_raw_size = 0;
3054 }
3055
3056 /* If this is a -Bsymbolic shared link, then we need to discard all
3057 PC relative relocs against symbols defined in a regular object.
3058 We allocated space for them in the check_relocs routine, but we
3059 will not fill them in in the relocate_section routine. */
3060 if (info->shared && info->symbolic)
3061 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3062 elf32_arm_discard_copies,
3063 (PTR) NULL);
3064
3065 /* The check_relocs and adjust_dynamic_symbol entry points have
3066 determined the sizes of the various dynamic sections. Allocate
3067 memory for them. */
3068 plt = false;
3069 relocs = false;
3070 for (s = dynobj->sections; s != NULL; s = s->next)
3071 {
3072 const char * name;
3073 boolean strip;
3074
3075 if ((s->flags & SEC_LINKER_CREATED) == 0)
3076 continue;
3077
3078 /* It's OK to base decisions on the section name, because none
3079 of the dynobj section names depend upon the input files. */
3080 name = bfd_get_section_name (dynobj, s);
3081
3082 strip = false;
3083
3084 if (strcmp (name, ".plt") == 0)
3085 {
3086 if (s->_raw_size == 0)
3087 {
3088 /* Strip this section if we don't need it; see the
3089 comment below. */
3090 strip = true;
3091 }
3092 else
3093 {
3094 /* Remember whether there is a PLT. */
3095 plt = true;
3096 }
3097 }
3098 else if (strncmp (name, ".rel", 4) == 0)
3099 {
3100 if (s->_raw_size == 0)
3101 {
3102 /* If we don't need this section, strip it from the
3103 output file. This is mostly to handle .rel.bss and
3104 .rel.plt. We must create both sections in
3105 create_dynamic_sections, because they must be created
3106 before the linker maps input sections to output
3107 sections. The linker does that before
3108 adjust_dynamic_symbol is called, and it is that
3109 function which decides whether anything needs to go
3110 into these sections. */
3111 strip = true;
3112 }
3113 else
3114 {
3115 /* Remember whether there are any reloc sections other
3116 than .rel.plt. */
3117 if (strcmp (name, ".rel.plt") != 0)
3118 relocs = true;
3119
3120 /* We use the reloc_count field as a counter if we need
3121 to copy relocs into the output file. */
3122 s->reloc_count = 0;
3123 }
3124 }
3125 else if (strncmp (name, ".got", 4) != 0)
3126 {
3127 /* It's not one of our sections, so don't allocate space. */
3128 continue;
3129 }
3130
3131 if (strip)
3132 {
3133 asection ** spp;
3134
3135 for (spp = &s->output_section->owner->sections;
3136 *spp != s->output_section;
3137 spp = &(*spp)->next)
3138 ;
3139 *spp = s->output_section->next;
3140 --s->output_section->owner->section_count;
3141
3142 continue;
3143 }
3144
3145 /* Allocate memory for the section contents. */
3146 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3147 if (s->contents == NULL && s->_raw_size != 0)
3148 return false;
3149 }
3150
3151 if (elf_hash_table (info)->dynamic_sections_created)
3152 {
3153 /* Add some entries to the .dynamic section. We fill in the
3154 values later, in elf32_arm_finish_dynamic_sections, but we
3155 must add the entries now so that we get the correct size for
3156 the .dynamic section. The DT_DEBUG entry is filled in by the
3157 dynamic linker and used by the debugger. */
3158 #define add_dynamic_entry(TAG, VAL) \
3159 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3160
3161 if (!info->shared)
3162 {
3163 if (!add_dynamic_entry (DT_DEBUG, 0))
3164 return false;
3165 }
3166
3167 if (plt)
3168 {
3169 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3170 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3171 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3172 || !add_dynamic_entry (DT_JMPREL, 0))
3173 return false;
3174 }
3175
3176 if (relocs)
3177 {
3178 if ( !add_dynamic_entry (DT_REL, 0)
3179 || !add_dynamic_entry (DT_RELSZ, 0)
3180 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3181 return false;
3182 }
3183
3184 if ((info->flags & DF_TEXTREL) != 0)
3185 {
3186 if (!add_dynamic_entry (DT_TEXTREL, 0))
3187 return false;
3188 info->flags |= DF_TEXTREL;
3189 }
3190 }
3191 #undef add_synamic_entry
3192
3193 return true;
3194 }
3195
3196 /* This function is called via elf32_arm_link_hash_traverse if we are
3197 creating a shared object with -Bsymbolic. It discards the space
3198 allocated to copy PC relative relocs against symbols which are
3199 defined in regular objects. We allocated space for them in the
3200 check_relocs routine, but we won't fill them in in the
3201 relocate_section routine. */
3202
3203 static boolean
3204 elf32_arm_discard_copies (h, ignore)
3205 struct elf32_arm_link_hash_entry * h;
3206 PTR ignore ATTRIBUTE_UNUSED;
3207 {
3208 struct elf32_arm_pcrel_relocs_copied * s;
3209
3210 /* We only discard relocs for symbols defined in a regular object. */
3211 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3212 return true;
3213
3214 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3215 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3216
3217 return true;
3218 }
3219
3220 /* Finish up dynamic symbol handling. We set the contents of various
3221 dynamic sections here. */
3222
3223 static boolean
3224 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3225 bfd * output_bfd;
3226 struct bfd_link_info * info;
3227 struct elf_link_hash_entry * h;
3228 Elf_Internal_Sym * sym;
3229 {
3230 bfd * dynobj;
3231
3232 dynobj = elf_hash_table (info)->dynobj;
3233
3234 if (h->plt.offset != (bfd_vma) -1)
3235 {
3236 asection * splt;
3237 asection * sgot;
3238 asection * srel;
3239 bfd_vma plt_index;
3240 bfd_vma got_offset;
3241 Elf_Internal_Rel rel;
3242
3243 /* This symbol has an entry in the procedure linkage table. Set
3244 it up. */
3245
3246 BFD_ASSERT (h->dynindx != -1);
3247
3248 splt = bfd_get_section_by_name (dynobj, ".plt");
3249 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3250 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3251 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3252
3253 /* Get the index in the procedure linkage table which
3254 corresponds to this symbol. This is the index of this symbol
3255 in all the symbols for which we are making plt entries. The
3256 first entry in the procedure linkage table is reserved. */
3257 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3258
3259 /* Get the offset into the .got table of the entry that
3260 corresponds to this function. Each .got entry is 4 bytes.
3261 The first three are reserved. */
3262 got_offset = (plt_index + 3) * 4;
3263
3264 /* Fill in the entry in the procedure linkage table. */
3265 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3266 splt->contents + h->plt.offset + 0);
3267 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3268 splt->contents + h->plt.offset + 4);
3269 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3270 splt->contents + h->plt.offset + 8);
3271 bfd_put_32 (output_bfd,
3272 (sgot->output_section->vma
3273 + sgot->output_offset
3274 + got_offset
3275 - splt->output_section->vma
3276 - splt->output_offset
3277 - h->plt.offset - 12),
3278 splt->contents + h->plt.offset + 12);
3279
3280 /* Fill in the entry in the global offset table. */
3281 bfd_put_32 (output_bfd,
3282 (splt->output_section->vma
3283 + splt->output_offset),
3284 sgot->contents + got_offset);
3285
3286 /* Fill in the entry in the .rel.plt section. */
3287 rel.r_offset = (sgot->output_section->vma
3288 + sgot->output_offset
3289 + got_offset);
3290 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3291 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3292 ((Elf32_External_Rel *) srel->contents
3293 + plt_index));
3294
3295 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3296 {
3297 /* Mark the symbol as undefined, rather than as defined in
3298 the .plt section. Leave the value alone. */
3299 sym->st_shndx = SHN_UNDEF;
3300 /* If the symbol is weak, we do need to clear the value.
3301 Otherwise, the PLT entry would provide a definition for
3302 the symbol even if the symbol wasn't defined anywhere,
3303 and so the symbol would never be NULL. */
3304 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3305 == 0)
3306 sym->st_value = 0;
3307 }
3308 }
3309
3310 if (h->got.offset != (bfd_vma) -1)
3311 {
3312 asection * sgot;
3313 asection * srel;
3314 Elf_Internal_Rel rel;
3315
3316 /* This symbol has an entry in the global offset table. Set it
3317 up. */
3318 sgot = bfd_get_section_by_name (dynobj, ".got");
3319 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3320 BFD_ASSERT (sgot != NULL && srel != NULL);
3321
3322 rel.r_offset = (sgot->output_section->vma
3323 + sgot->output_offset
3324 + (h->got.offset &~ (bfd_vma) 1));
3325
3326 /* If this is a -Bsymbolic link, and the symbol is defined
3327 locally, we just want to emit a RELATIVE reloc. The entry in
3328 the global offset table will already have been initialized in
3329 the relocate_section function. */
3330 if (info->shared
3331 && (info->symbolic || h->dynindx == -1)
3332 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3333 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3334 else
3335 {
3336 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3337 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3338 }
3339
3340 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3341 ((Elf32_External_Rel *) srel->contents
3342 + srel->reloc_count));
3343 ++srel->reloc_count;
3344 }
3345
3346 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3347 {
3348 asection * s;
3349 Elf_Internal_Rel rel;
3350
3351 /* This symbol needs a copy reloc. Set it up. */
3352 BFD_ASSERT (h->dynindx != -1
3353 && (h->root.type == bfd_link_hash_defined
3354 || h->root.type == bfd_link_hash_defweak));
3355
3356 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3357 ".rel.bss");
3358 BFD_ASSERT (s != NULL);
3359
3360 rel.r_offset = (h->root.u.def.value
3361 + h->root.u.def.section->output_section->vma
3362 + h->root.u.def.section->output_offset);
3363 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3364 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3365 ((Elf32_External_Rel *) s->contents
3366 + s->reloc_count));
3367 ++s->reloc_count;
3368 }
3369
3370 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3371 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3372 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3373 sym->st_shndx = SHN_ABS;
3374
3375 return true;
3376 }
3377
3378 /* Finish up the dynamic sections. */
3379
3380 static boolean
3381 elf32_arm_finish_dynamic_sections (output_bfd, info)
3382 bfd * output_bfd;
3383 struct bfd_link_info * info;
3384 {
3385 bfd * dynobj;
3386 asection * sgot;
3387 asection * sdyn;
3388
3389 dynobj = elf_hash_table (info)->dynobj;
3390
3391 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3392 BFD_ASSERT (sgot != NULL);
3393 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3394
3395 if (elf_hash_table (info)->dynamic_sections_created)
3396 {
3397 asection *splt;
3398 Elf32_External_Dyn *dyncon, *dynconend;
3399
3400 splt = bfd_get_section_by_name (dynobj, ".plt");
3401 BFD_ASSERT (splt != NULL && sdyn != NULL);
3402
3403 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3404 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3405
3406 for (; dyncon < dynconend; dyncon++)
3407 {
3408 Elf_Internal_Dyn dyn;
3409 const char * name;
3410 asection * s;
3411
3412 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3413
3414 switch (dyn.d_tag)
3415 {
3416 default:
3417 break;
3418
3419 case DT_PLTGOT:
3420 name = ".got";
3421 goto get_vma;
3422 case DT_JMPREL:
3423 name = ".rel.plt";
3424 get_vma:
3425 s = bfd_get_section_by_name (output_bfd, name);
3426 BFD_ASSERT (s != NULL);
3427 dyn.d_un.d_ptr = s->vma;
3428 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3429 break;
3430
3431 case DT_PLTRELSZ:
3432 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3433 BFD_ASSERT (s != NULL);
3434 if (s->_cooked_size != 0)
3435 dyn.d_un.d_val = s->_cooked_size;
3436 else
3437 dyn.d_un.d_val = s->_raw_size;
3438 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3439 break;
3440
3441 case DT_RELSZ:
3442 /* My reading of the SVR4 ABI indicates that the
3443 procedure linkage table relocs (DT_JMPREL) should be
3444 included in the overall relocs (DT_REL). This is
3445 what Solaris does. However, UnixWare can not handle
3446 that case. Therefore, we override the DT_RELSZ entry
3447 here to make it not include the JMPREL relocs. Since
3448 the linker script arranges for .rel.plt to follow all
3449 other relocation sections, we don't have to worry
3450 about changing the DT_REL entry. */
3451 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3452 if (s != NULL)
3453 {
3454 if (s->_cooked_size != 0)
3455 dyn.d_un.d_val -= s->_cooked_size;
3456 else
3457 dyn.d_un.d_val -= s->_raw_size;
3458 }
3459 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3460 break;
3461 }
3462 }
3463
3464 /* Fill in the first entry in the procedure linkage table. */
3465 if (splt->_raw_size > 0)
3466 {
3467 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3468 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3469 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3470 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3471 }
3472
3473 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3474 really seem like the right value. */
3475 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3476 }
3477
3478 /* Fill in the first three entries in the global offset table. */
3479 if (sgot->_raw_size > 0)
3480 {
3481 if (sdyn == NULL)
3482 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3483 else
3484 bfd_put_32 (output_bfd,
3485 sdyn->output_section->vma + sdyn->output_offset,
3486 sgot->contents);
3487 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3489 }
3490
3491 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3492
3493 return true;
3494 }
3495
3496 static void
3497 elf32_arm_post_process_headers (abfd, link_info)
3498 bfd * abfd;
3499 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3500 {
3501 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3502
3503 i_ehdrp = elf_elfheader (abfd);
3504
3505 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3506 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3507 }
3508
3509 static enum elf_reloc_type_class
3510 elf32_arm_reloc_type_class (rela)
3511 const Elf_Internal_Rela *rela;
3512 {
3513 switch ((int) ELF32_R_TYPE (rela->r_info))
3514 {
3515 case R_ARM_RELATIVE:
3516 return reloc_class_relative;
3517 case R_ARM_JUMP_SLOT:
3518 return reloc_class_plt;
3519 case R_ARM_COPY:
3520 return reloc_class_copy;
3521 default:
3522 return reloc_class_normal;
3523 }
3524 }
3525
3526
3527 #define ELF_ARCH bfd_arch_arm
3528 #define ELF_MACHINE_CODE EM_ARM
3529 #define ELF_MAXPAGESIZE 0x8000
3530
3531 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3532 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3533 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3534 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3535 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3536 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3537 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3538
3539 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3540 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3541 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3542 #define elf_backend_check_relocs elf32_arm_check_relocs
3543 #define elf_backend_relocate_section elf32_arm_relocate_section
3544 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3545 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3546 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3547 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3548 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3549 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3550 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3551
3552 #define elf_backend_can_gc_sections 1
3553 #define elf_backend_plt_readonly 1
3554 #define elf_backend_want_got_plt 1
3555 #define elf_backend_want_plt_sym 0
3556
3557 #define elf_backend_got_header_size 12
3558 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3559
3560 #include "elf32-target.h"