Fix BLX(1) for Thumb
[binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, unsigned char, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57
58 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
59
60 /* The linker script knows the section names for placement.
61 The entry_names are used to do simple name mangling on the stubs.
62 Given a function name, and its type, the stub can be found. The
63 name can be changed. The only requirement is the %s be present. */
64 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
65 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
66
67 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
68 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
69
70 /* The name of the dynamic interpreter. This is put in the .interp
71 section. */
72 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
73
74 /* The size in bytes of an entry in the procedure linkage table. */
75 #define PLT_ENTRY_SIZE 16
76
77 /* The first entry in a procedure linkage table looks like
78 this. It is set up so that any shared library function that is
79 called before the relocation has been set up calls the dynamic
80 linker first. */
81 static const bfd_byte elf32_arm_plt0_entry [PLT_ENTRY_SIZE] =
82 {
83 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
84 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
85 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
86 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
87 };
88
89 /* Subsequent entries in a procedure linkage table look like
90 this. */
91 static const bfd_byte elf32_arm_plt_entry [PLT_ENTRY_SIZE] =
92 {
93 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
94 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
95 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
96 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
97 };
98
99 /* The ARM linker needs to keep track of the number of relocs that it
100 decides to copy in check_relocs for each symbol. This is so that
101 it can discard PC relative relocs if it doesn't need them when
102 linking with -Bsymbolic. We store the information in a field
103 extending the regular ELF linker hash table. */
104
105 /* This structure keeps track of the number of PC relative relocs we
106 have copied for a given symbol. */
107 struct elf32_arm_pcrel_relocs_copied
108 {
109 /* Next section. */
110 struct elf32_arm_pcrel_relocs_copied * next;
111 /* A section in dynobj. */
112 asection * section;
113 /* Number of relocs copied in this section. */
114 bfd_size_type count;
115 };
116
117 /* Arm ELF linker hash entry. */
118 struct elf32_arm_link_hash_entry
119 {
120 struct elf_link_hash_entry root;
121
122 /* Number of PC relative relocs copied for this symbol. */
123 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
124 };
125
126 /* Declare this now that the above structures are defined. */
127 static boolean elf32_arm_discard_copies
128 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
129
130 /* Traverse an arm ELF linker hash table. */
131 #define elf32_arm_link_hash_traverse(table, func, info) \
132 (elf_link_hash_traverse \
133 (&(table)->root, \
134 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
135 (info)))
136
137 /* Get the ARM elf linker hash table from a link_info structure. */
138 #define elf32_arm_hash_table(info) \
139 ((struct elf32_arm_link_hash_table *) ((info)->hash))
140
141 /* ARM ELF linker hash table. */
142 struct elf32_arm_link_hash_table
143 {
144 /* The main hash table. */
145 struct elf_link_hash_table root;
146
147 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
148 long int thumb_glue_size;
149
150 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
151 long int arm_glue_size;
152
153 /* An arbitary input BFD chosen to hold the glue sections. */
154 bfd * bfd_of_glue_owner;
155
156 /* A boolean indicating whether knowledge of the ARM's pipeline
157 length should be applied by the linker. */
158 int no_pipeline_knowledge;
159 };
160
161 /* Create an entry in an ARM ELF linker hash table. */
162
163 static struct bfd_hash_entry *
164 elf32_arm_link_hash_newfunc (entry, table, string)
165 struct bfd_hash_entry * entry;
166 struct bfd_hash_table * table;
167 const char * string;
168 {
169 struct elf32_arm_link_hash_entry * ret =
170 (struct elf32_arm_link_hash_entry *) entry;
171
172 /* Allocate the structure if it has not already been allocated by a
173 subclass. */
174 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
175 ret = ((struct elf32_arm_link_hash_entry *)
176 bfd_hash_allocate (table,
177 sizeof (struct elf32_arm_link_hash_entry)));
178 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
179 return (struct bfd_hash_entry *) ret;
180
181 /* Call the allocation method of the superclass. */
182 ret = ((struct elf32_arm_link_hash_entry *)
183 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
184 table, string));
185 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
186 ret->pcrel_relocs_copied = NULL;
187
188 return (struct bfd_hash_entry *) ret;
189 }
190
191 /* Create an ARM elf linker hash table. */
192
193 static struct bfd_link_hash_table *
194 elf32_arm_link_hash_table_create (abfd)
195 bfd *abfd;
196 {
197 struct elf32_arm_link_hash_table *ret;
198
199 ret = ((struct elf32_arm_link_hash_table *)
200 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
201 if (ret == (struct elf32_arm_link_hash_table *) NULL)
202 return NULL;
203
204 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
205 elf32_arm_link_hash_newfunc))
206 {
207 bfd_release (abfd, ret);
208 return NULL;
209 }
210
211 ret->thumb_glue_size = 0;
212 ret->arm_glue_size = 0;
213 ret->bfd_of_glue_owner = NULL;
214 ret->no_pipeline_knowledge = 0;
215
216 return &ret->root.root;
217 }
218
219 /* Locate the Thumb encoded calling stub for NAME. */
220
221 static struct elf_link_hash_entry *
222 find_thumb_glue (link_info, name, input_bfd)
223 struct bfd_link_info *link_info;
224 CONST char *name;
225 bfd *input_bfd;
226 {
227 char *tmp_name;
228 struct elf_link_hash_entry *hash;
229 struct elf32_arm_link_hash_table *hash_table;
230
231 /* We need a pointer to the armelf specific hash table. */
232 hash_table = elf32_arm_hash_table (link_info);
233
234 tmp_name = ((char *)
235 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
236
237 BFD_ASSERT (tmp_name);
238
239 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
240
241 hash = elf_link_hash_lookup
242 (&(hash_table)->root, tmp_name, false, false, true);
243
244 if (hash == NULL)
245 /* xgettext:c-format */
246 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
247 bfd_get_filename (input_bfd), tmp_name, name);
248
249 free (tmp_name);
250
251 return hash;
252 }
253
254 /* Locate the ARM encoded calling stub for NAME. */
255
256 static struct elf_link_hash_entry *
257 find_arm_glue (link_info, name, input_bfd)
258 struct bfd_link_info *link_info;
259 CONST char *name;
260 bfd *input_bfd;
261 {
262 char *tmp_name;
263 struct elf_link_hash_entry *myh;
264 struct elf32_arm_link_hash_table *hash_table;
265
266 /* We need a pointer to the elfarm specific hash table. */
267 hash_table = elf32_arm_hash_table (link_info);
268
269 tmp_name = ((char *)
270 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
271
272 BFD_ASSERT (tmp_name);
273
274 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
275
276 myh = elf_link_hash_lookup
277 (&(hash_table)->root, tmp_name, false, false, true);
278
279 if (myh == NULL)
280 /* xgettext:c-format */
281 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
282 bfd_get_filename (input_bfd), tmp_name, name);
283
284 free (tmp_name);
285
286 return myh;
287 }
288
289 /* ARM->Thumb glue:
290
291 .arm
292 __func_from_arm:
293 ldr r12, __func_addr
294 bx r12
295 __func_addr:
296 .word func @ behave as if you saw a ARM_32 reloc. */
297
298 #define ARM2THUMB_GLUE_SIZE 12
299 static const insn32 a2t1_ldr_insn = 0xe59fc000;
300 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
301 static const insn32 a2t3_func_addr_insn = 0x00000001;
302
303 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
304
305 .thumb .thumb
306 .align 2 .align 2
307 __func_from_thumb: __func_from_thumb:
308 bx pc push {r6, lr}
309 nop ldr r6, __func_addr
310 .arm mov lr, pc
311 __func_change_to_arm: bx r6
312 b func .arm
313 __func_back_to_thumb:
314 ldmia r13! {r6, lr}
315 bx lr
316 __func_addr:
317 .word func */
318
319 #define THUMB2ARM_GLUE_SIZE 8
320 static const insn16 t2a1_bx_pc_insn = 0x4778;
321 static const insn16 t2a2_noop_insn = 0x46c0;
322 static const insn32 t2a3_b_insn = 0xea000000;
323
324 static const insn16 t2a1_push_insn = 0xb540;
325 static const insn16 t2a2_ldr_insn = 0x4e03;
326 static const insn16 t2a3_mov_insn = 0x46fe;
327 static const insn16 t2a4_bx_insn = 0x4730;
328 static const insn32 t2a5_pop_insn = 0xe8bd4040;
329 static const insn32 t2a6_bx_insn = 0xe12fff1e;
330
331 boolean
332 bfd_elf32_arm_allocate_interworking_sections (info)
333 struct bfd_link_info * info;
334 {
335 asection * s;
336 bfd_byte * foo;
337 struct elf32_arm_link_hash_table * globals;
338
339 globals = elf32_arm_hash_table (info);
340
341 BFD_ASSERT (globals != NULL);
342
343 if (globals->arm_glue_size != 0)
344 {
345 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
346
347 s = bfd_get_section_by_name
348 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
349
350 BFD_ASSERT (s != NULL);
351
352 foo = (bfd_byte *) bfd_alloc
353 (globals->bfd_of_glue_owner, globals->arm_glue_size);
354
355 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
356 s->contents = foo;
357 }
358
359 if (globals->thumb_glue_size != 0)
360 {
361 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
362
363 s = bfd_get_section_by_name
364 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
365
366 BFD_ASSERT (s != NULL);
367
368 foo = (bfd_byte *) bfd_alloc
369 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
370
371 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
372 s->contents = foo;
373 }
374
375 return true;
376 }
377
378 static void
379 record_arm_to_thumb_glue (link_info, h)
380 struct bfd_link_info * link_info;
381 struct elf_link_hash_entry * h;
382 {
383 const char * name = h->root.root.string;
384 register asection * s;
385 char * tmp_name;
386 struct elf_link_hash_entry * myh;
387 struct elf32_arm_link_hash_table * globals;
388
389 globals = elf32_arm_hash_table (link_info);
390
391 BFD_ASSERT (globals != NULL);
392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
393
394 s = bfd_get_section_by_name
395 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
396
397 BFD_ASSERT (s != NULL);
398
399 tmp_name = ((char *)
400 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
401
402 BFD_ASSERT (tmp_name);
403
404 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
405
406 myh = elf_link_hash_lookup
407 (&(globals)->root, tmp_name, false, false, true);
408
409 if (myh != NULL)
410 {
411 /* We've already seen this guy. */
412 free (tmp_name);
413 return;
414 }
415
416 /* The only trick here is using hash_table->arm_glue_size as the value. Even
417 though the section isn't allocated yet, this is where we will be putting
418 it. */
419 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
420 BSF_GLOBAL,
421 s, globals->arm_glue_size + 1,
422 NULL, true, false,
423 (struct bfd_link_hash_entry **) &myh);
424
425 free (tmp_name);
426
427 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
428
429 return;
430 }
431
432 static void
433 record_thumb_to_arm_glue (link_info, h)
434 struct bfd_link_info *link_info;
435 struct elf_link_hash_entry *h;
436 {
437 const char *name = h->root.root.string;
438 register asection *s;
439 char *tmp_name;
440 struct elf_link_hash_entry *myh;
441 struct elf32_arm_link_hash_table *hash_table;
442 char bind;
443
444 hash_table = elf32_arm_hash_table (link_info);
445
446 BFD_ASSERT (hash_table != NULL);
447 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
448
449 s = bfd_get_section_by_name
450 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
451
452 BFD_ASSERT (s != NULL);
453
454 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
455
456 BFD_ASSERT (tmp_name);
457
458 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
459
460 myh = elf_link_hash_lookup
461 (&(hash_table)->root, tmp_name, false, false, true);
462
463 if (myh != NULL)
464 {
465 /* We've already seen this guy. */
466 free (tmp_name);
467 return;
468 }
469
470 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
471 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
472 NULL, true, false,
473 (struct bfd_link_hash_entry **) &myh);
474
475 /* If we mark it 'Thumb', the disassembler will do a better job. */
476 bind = ELF_ST_BIND (myh->type);
477 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
478
479 free (tmp_name);
480
481 #define CHANGE_TO_ARM "__%s_change_to_arm"
482 #define BACK_FROM_ARM "__%s_back_from_arm"
483
484 /* Allocate another symbol to mark where we switch to Arm mode. */
485 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
486
487 BFD_ASSERT (tmp_name);
488
489 sprintf (tmp_name, CHANGE_TO_ARM, name);
490
491 myh = NULL;
492
493 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
494 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
495 NULL, true, false,
496 (struct bfd_link_hash_entry **) &myh);
497
498 free (tmp_name);
499
500 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
501
502 return;
503 }
504
505 /* Select a BFD to be used to hold the sections used by the glue code.
506 This function is called from the linker scripts in ld/emultempl/
507 {armelf/pe}.em */
508
509 boolean
510 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
511 bfd *abfd;
512 struct bfd_link_info *info;
513 {
514 struct elf32_arm_link_hash_table *globals;
515 flagword flags;
516 asection *sec;
517
518 /* If we are only performing a partial link do not bother
519 getting a bfd to hold the glue. */
520 if (info->relocateable)
521 return true;
522
523 globals = elf32_arm_hash_table (info);
524
525 BFD_ASSERT (globals != NULL);
526
527 if (globals->bfd_of_glue_owner != NULL)
528 return true;
529
530 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
531
532 if (sec == NULL)
533 {
534 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
535 will prevent elf_link_input_bfd() from processing the contents
536 of this section. */
537 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
538
539 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
540
541 if (sec == NULL
542 || !bfd_set_section_flags (abfd, sec, flags)
543 || !bfd_set_section_alignment (abfd, sec, 2))
544 return false;
545
546 /* Set the gc mark to prevent the section from being removed by garbage
547 collection, despite the fact that no relocs refer to this section. */
548 sec->gc_mark = 1;
549 }
550
551 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
552
553 if (sec == NULL)
554 {
555 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
556
557 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
558
559 if (sec == NULL
560 || !bfd_set_section_flags (abfd, sec, flags)
561 || !bfd_set_section_alignment (abfd, sec, 2))
562 return false;
563
564 sec->gc_mark = 1;
565 }
566
567 /* Save the bfd for later use. */
568 globals->bfd_of_glue_owner = abfd;
569
570 return true;
571 }
572
573 boolean
574 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
575 bfd *abfd;
576 struct bfd_link_info *link_info;
577 int no_pipeline_knowledge;
578 {
579 Elf_Internal_Shdr *symtab_hdr;
580 Elf_Internal_Rela *free_relocs = NULL;
581 Elf_Internal_Rela *irel, *irelend;
582 bfd_byte *contents = NULL;
583 bfd_byte *free_contents = NULL;
584 Elf32_External_Sym *extsyms = NULL;
585 Elf32_External_Sym *free_extsyms = NULL;
586
587 asection *sec;
588 struct elf32_arm_link_hash_table *globals;
589
590 /* If we are only performing a partial link do not bother
591 to construct any glue. */
592 if (link_info->relocateable)
593 return true;
594
595 /* Here we have a bfd that is to be included on the link. We have a hook
596 to do reloc rummaging, before section sizes are nailed down. */
597 globals = elf32_arm_hash_table (link_info);
598
599 BFD_ASSERT (globals != NULL);
600 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
601
602 globals->no_pipeline_knowledge = no_pipeline_knowledge;
603
604 /* Rummage around all the relocs and map the glue vectors. */
605 sec = abfd->sections;
606
607 if (sec == NULL)
608 return true;
609
610 for (; sec != NULL; sec = sec->next)
611 {
612 if (sec->reloc_count == 0)
613 continue;
614
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* Load the relocs. */
618 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
619 (Elf_Internal_Rela *) NULL, false));
620
621 BFD_ASSERT (irel != 0);
622
623 irelend = irel + sec->reloc_count;
624 for (; irel < irelend; irel++)
625 {
626 long r_type;
627 unsigned long r_index;
628
629 struct elf_link_hash_entry *h;
630
631 r_type = ELF32_R_TYPE (irel->r_info);
632 r_index = ELF32_R_SYM (irel->r_info);
633
634 /* These are the only relocation types we care about. */
635 if ( r_type != R_ARM_PC24
636 && r_type != R_ARM_THM_PC22)
637 continue;
638
639 /* Get the section contents if we haven't done so already. */
640 if (contents == NULL)
641 {
642 /* Get cached copy if it exists. */
643 if (elf_section_data (sec)->this_hdr.contents != NULL)
644 contents = elf_section_data (sec)->this_hdr.contents;
645 else
646 {
647 /* Go get them off disk. */
648 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
649 if (contents == NULL)
650 goto error_return;
651
652 free_contents = contents;
653
654 if (!bfd_get_section_contents (abfd, sec, contents,
655 (file_ptr) 0, sec->_raw_size))
656 goto error_return;
657 }
658 }
659
660 /* Read this BFD's symbols if we haven't done so already. */
661 if (extsyms == NULL)
662 {
663 /* Get cached copy if it exists. */
664 if (symtab_hdr->contents != NULL)
665 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
666 else
667 {
668 /* Go get them off disk. */
669 extsyms = ((Elf32_External_Sym *)
670 bfd_malloc (symtab_hdr->sh_size));
671 if (extsyms == NULL)
672 goto error_return;
673
674 free_extsyms = extsyms;
675
676 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
677 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
678 != symtab_hdr->sh_size))
679 goto error_return;
680 }
681 }
682
683 /* If the relocation is not against a symbol it cannot concern us. */
684 h = NULL;
685
686 /* We don't care about local symbols. */
687 if (r_index < symtab_hdr->sh_info)
688 continue;
689
690 /* This is an external symbol. */
691 r_index -= symtab_hdr->sh_info;
692 h = (struct elf_link_hash_entry *)
693 elf_sym_hashes (abfd)[r_index];
694
695 /* If the relocation is against a static symbol it must be within
696 the current section and so cannot be a cross ARM/Thumb relocation. */
697 if (h == NULL)
698 continue;
699
700 switch (r_type)
701 {
702 case R_ARM_PC24:
703 /* This one is a call from arm code. We need to look up
704 the target of the call. If it is a thumb target, we
705 insert glue. */
706 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
707 record_arm_to_thumb_glue (link_info, h);
708 break;
709
710 case R_ARM_THM_PC22:
711 /* This one is a call from thumb code. We look
712 up the target of the call. If it is not a thumb
713 target, we insert glue. */
714 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
715 record_thumb_to_arm_glue (link_info, h);
716 break;
717
718 default:
719 break;
720 }
721 }
722 }
723
724 return true;
725
726 error_return:
727 if (free_relocs != NULL)
728 free (free_relocs);
729 if (free_contents != NULL)
730 free (free_contents);
731 if (free_extsyms != NULL)
732 free (free_extsyms);
733
734 return false;
735 }
736
737 /* The thumb form of a long branch is a bit finicky, because the offset
738 encoding is split over two fields, each in it's own instruction. They
739 can occur in any order. So given a thumb form of long branch, and an
740 offset, insert the offset into the thumb branch and return finished
741 instruction.
742
743 It takes two thumb instructions to encode the target address. Each has
744 11 bits to invest. The upper 11 bits are stored in one (identifed by
745 H-0.. see below), the lower 11 bits are stored in the other (identified
746 by H-1).
747
748 Combine together and shifted left by 1 (it's a half word address) and
749 there you have it.
750
751 Op: 1111 = F,
752 H-0, upper address-0 = 000
753 Op: 1111 = F,
754 H-1, lower address-0 = 800
755
756 They can be ordered either way, but the arm tools I've seen always put
757 the lower one first. It probably doesn't matter. krk@cygnus.com
758
759 XXX: Actually the order does matter. The second instruction (H-1)
760 moves the computed address into the PC, so it must be the second one
761 in the sequence. The problem, however is that whilst little endian code
762 stores the instructions in HI then LOW order, big endian code does the
763 reverse. nickc@cygnus.com. */
764
765 #define LOW_HI_ORDER 0xF800F000
766 #define HI_LOW_ORDER 0xF000F800
767
768 static insn32
769 insert_thumb_branch (br_insn, rel_off)
770 insn32 br_insn;
771 int rel_off;
772 {
773 unsigned int low_bits;
774 unsigned int high_bits;
775
776 BFD_ASSERT ((rel_off & 1) != 1);
777
778 rel_off >>= 1; /* Half word aligned address. */
779 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
780 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
781
782 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
783 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
784 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
785 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
786 else
787 /* FIXME: abort is probably not the right call. krk@cygnus.com */
788 abort (); /* error - not a valid branch instruction form. */
789
790 return br_insn;
791 }
792
793 /* Thumb code calling an ARM function. */
794
795 static int
796 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
797 hit_data, sym_sec, offset, addend, val)
798 struct bfd_link_info * info;
799 const char * name;
800 bfd * input_bfd;
801 bfd * output_bfd;
802 asection * input_section;
803 bfd_byte * hit_data;
804 asection * sym_sec;
805 bfd_vma offset;
806 bfd_signed_vma addend;
807 bfd_vma val;
808 {
809 asection * s = 0;
810 long int my_offset;
811 unsigned long int tmp;
812 long int ret_offset;
813 struct elf_link_hash_entry * myh;
814 struct elf32_arm_link_hash_table * globals;
815
816 myh = find_thumb_glue (info, name, input_bfd);
817 if (myh == NULL)
818 return false;
819
820 globals = elf32_arm_hash_table (info);
821
822 BFD_ASSERT (globals != NULL);
823 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
824
825 my_offset = myh->root.u.def.value;
826
827 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
828 THUMB2ARM_GLUE_SECTION_NAME);
829
830 BFD_ASSERT (s != NULL);
831 BFD_ASSERT (s->contents != NULL);
832 BFD_ASSERT (s->output_section != NULL);
833
834 if ((my_offset & 0x01) == 0x01)
835 {
836 if (sym_sec != NULL
837 && sym_sec->owner != NULL
838 && !INTERWORK_FLAG (sym_sec->owner))
839 {
840 _bfd_error_handler
841 (_("%s(%s): warning: interworking not enabled."),
842 bfd_get_filename (sym_sec->owner), name);
843 _bfd_error_handler
844 (_(" first occurrence: %s: thumb call to arm"),
845 bfd_get_filename (input_bfd));
846
847 return false;
848 }
849
850 --my_offset;
851 myh->root.u.def.value = my_offset;
852
853 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
854 s->contents + my_offset);
855
856 bfd_put_16 (output_bfd, t2a2_noop_insn,
857 s->contents + my_offset + 2);
858
859 ret_offset =
860 /* Address of destination of the stub. */
861 ((bfd_signed_vma) val)
862 - ((bfd_signed_vma)
863 /* Offset from the start of the current section to the start of the stubs. */
864 (s->output_offset
865 /* Offset of the start of this stub from the start of the stubs. */
866 + my_offset
867 /* Address of the start of the current section. */
868 + s->output_section->vma)
869 /* The branch instruction is 4 bytes into the stub. */
870 + 4
871 /* ARM branches work from the pc of the instruction + 8. */
872 + 8);
873
874 bfd_put_32 (output_bfd,
875 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
876 s->contents + my_offset + 4);
877 }
878
879 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
880
881 /* Now go back and fix up the original BL insn to point
882 to here. */
883 ret_offset =
884 s->output_offset
885 + my_offset
886 - (input_section->output_offset
887 + offset + addend)
888 - 8;
889
890 tmp = bfd_get_32 (input_bfd, hit_data
891 - input_section->vma);
892
893 bfd_put_32 (output_bfd,
894 insert_thumb_branch (tmp, ret_offset),
895 hit_data - input_section->vma);
896
897 return true;
898 }
899
900 /* Arm code calling a Thumb function. */
901
902 static int
903 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
904 hit_data, sym_sec, offset, addend, val)
905 struct bfd_link_info * info;
906 const char * name;
907 bfd * input_bfd;
908 bfd * output_bfd;
909 asection * input_section;
910 bfd_byte * hit_data;
911 asection * sym_sec;
912 bfd_vma offset;
913 bfd_signed_vma addend;
914 bfd_vma val;
915 {
916 unsigned long int tmp;
917 long int my_offset;
918 asection * s;
919 long int ret_offset;
920 struct elf_link_hash_entry * myh;
921 struct elf32_arm_link_hash_table * globals;
922
923 myh = find_arm_glue (info, name, input_bfd);
924 if (myh == NULL)
925 return false;
926
927 globals = elf32_arm_hash_table (info);
928
929 BFD_ASSERT (globals != NULL);
930 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
931
932 my_offset = myh->root.u.def.value;
933 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
934 ARM2THUMB_GLUE_SECTION_NAME);
935 BFD_ASSERT (s != NULL);
936 BFD_ASSERT (s->contents != NULL);
937 BFD_ASSERT (s->output_section != NULL);
938
939 if ((my_offset & 0x01) == 0x01)
940 {
941 if (sym_sec != NULL
942 && sym_sec->owner != NULL
943 && !INTERWORK_FLAG (sym_sec->owner))
944 {
945 _bfd_error_handler
946 (_("%s(%s): warning: interworking not enabled."),
947 bfd_get_filename (sym_sec->owner), name);
948 _bfd_error_handler
949 (_(" first occurrence: %s: arm call to thumb"),
950 bfd_get_filename (input_bfd));
951 }
952
953 --my_offset;
954 myh->root.u.def.value = my_offset;
955
956 bfd_put_32 (output_bfd, a2t1_ldr_insn,
957 s->contents + my_offset);
958
959 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
960 s->contents + my_offset + 4);
961
962 /* It's a thumb address. Add the low order bit. */
963 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
964 s->contents + my_offset + 8);
965 }
966
967 BFD_ASSERT (my_offset <= globals->arm_glue_size);
968
969 tmp = bfd_get_32 (input_bfd, hit_data);
970 tmp = tmp & 0xFF000000;
971
972 /* Somehow these are both 4 too far, so subtract 8. */
973 ret_offset = s->output_offset
974 + my_offset
975 + s->output_section->vma
976 - (input_section->output_offset
977 + input_section->output_section->vma
978 + offset + addend)
979 - 8;
980
981 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
982
983 bfd_put_32 (output_bfd, tmp, hit_data
984 - input_section->vma);
985
986 return true;
987 }
988
989 /* Perform a relocation as part of a final link. */
990
991 static bfd_reloc_status_type
992 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
993 input_section, contents, rel, value,
994 info, sym_sec, sym_name, sym_flags, h)
995 reloc_howto_type * howto;
996 bfd * input_bfd;
997 bfd * output_bfd;
998 asection * input_section;
999 bfd_byte * contents;
1000 Elf_Internal_Rela * rel;
1001 bfd_vma value;
1002 struct bfd_link_info * info;
1003 asection * sym_sec;
1004 const char * sym_name;
1005 unsigned char sym_flags;
1006 struct elf_link_hash_entry * h;
1007 {
1008 unsigned long r_type = howto->type;
1009 unsigned long r_symndx;
1010 bfd_byte * hit_data = contents + rel->r_offset;
1011 bfd * dynobj = NULL;
1012 Elf_Internal_Shdr * symtab_hdr;
1013 struct elf_link_hash_entry ** sym_hashes;
1014 bfd_vma * local_got_offsets;
1015 asection * sgot = NULL;
1016 asection * splt = NULL;
1017 asection * sreloc = NULL;
1018 bfd_vma addend;
1019 bfd_signed_vma signed_addend;
1020 struct elf32_arm_link_hash_table * globals;
1021
1022 globals = elf32_arm_hash_table (info);
1023
1024 dynobj = elf_hash_table (info)->dynobj;
1025 if (dynobj)
1026 {
1027 sgot = bfd_get_section_by_name (dynobj, ".got");
1028 splt = bfd_get_section_by_name (dynobj, ".plt");
1029 }
1030 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1031 sym_hashes = elf_sym_hashes (input_bfd);
1032 local_got_offsets = elf_local_got_offsets (input_bfd);
1033 r_symndx = ELF32_R_SYM (rel->r_info);
1034
1035 #ifdef USE_REL
1036 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1037
1038 if (addend & ((howto->src_mask + 1) >> 1))
1039 {
1040 signed_addend = -1;
1041 signed_addend &= ~ howto->src_mask;
1042 signed_addend |= addend;
1043 }
1044 else
1045 signed_addend = addend;
1046 #else
1047 addend = signed_addend = rel->r_addend;
1048 #endif
1049
1050 switch (r_type)
1051 {
1052 case R_ARM_NONE:
1053 return bfd_reloc_ok;
1054
1055 case R_ARM_PC24:
1056 case R_ARM_ABS32:
1057 case R_ARM_REL32:
1058 #ifndef OLD_ARM_ABI
1059 case R_ARM_XPC25:
1060 #endif
1061 /* When generating a shared object, these relocations are copied
1062 into the output file to be resolved at run time. */
1063 if (info->shared
1064 && (r_type != R_ARM_PC24
1065 || (h != NULL
1066 && h->dynindx != -1
1067 && (! info->symbolic
1068 || (h->elf_link_hash_flags
1069 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1070 {
1071 Elf_Internal_Rel outrel;
1072 boolean skip, relocate;
1073
1074 if (sreloc == NULL)
1075 {
1076 const char * name;
1077
1078 name = (bfd_elf_string_from_elf_section
1079 (input_bfd,
1080 elf_elfheader (input_bfd)->e_shstrndx,
1081 elf_section_data (input_section)->rel_hdr.sh_name));
1082 if (name == NULL)
1083 return bfd_reloc_notsupported;
1084
1085 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1086 && strcmp (bfd_get_section_name (input_bfd,
1087 input_section),
1088 name + 4) == 0);
1089
1090 sreloc = bfd_get_section_by_name (dynobj, name);
1091 BFD_ASSERT (sreloc != NULL);
1092 }
1093
1094 skip = false;
1095
1096 if (elf_section_data (input_section)->stab_info == NULL)
1097 outrel.r_offset = rel->r_offset;
1098 else
1099 {
1100 bfd_vma off;
1101
1102 off = (_bfd_stab_section_offset
1103 (output_bfd, &elf_hash_table (info)->stab_info,
1104 input_section,
1105 & elf_section_data (input_section)->stab_info,
1106 rel->r_offset));
1107 if (off == (bfd_vma) -1)
1108 skip = true;
1109 outrel.r_offset = off;
1110 }
1111
1112 outrel.r_offset += (input_section->output_section->vma
1113 + input_section->output_offset);
1114
1115 if (skip)
1116 {
1117 memset (&outrel, 0, sizeof outrel);
1118 relocate = false;
1119 }
1120 else if (r_type == R_ARM_PC24)
1121 {
1122 BFD_ASSERT (h != NULL && h->dynindx != -1);
1123 if ((input_section->flags & SEC_ALLOC) != 0)
1124 relocate = false;
1125 else
1126 relocate = true;
1127 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1128 }
1129 else
1130 {
1131 if (h == NULL
1132 || ((info->symbolic || h->dynindx == -1)
1133 && (h->elf_link_hash_flags
1134 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1135 {
1136 relocate = true;
1137 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1138 }
1139 else
1140 {
1141 BFD_ASSERT (h->dynindx != -1);
1142 if ((input_section->flags & SEC_ALLOC) != 0)
1143 relocate = false;
1144 else
1145 relocate = true;
1146 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1147 }
1148 }
1149
1150 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1151 (((Elf32_External_Rel *)
1152 sreloc->contents)
1153 + sreloc->reloc_count));
1154 ++sreloc->reloc_count;
1155
1156 /* If this reloc is against an external symbol, we do not want to
1157 fiddle with the addend. Otherwise, we need to include the symbol
1158 value so that it becomes an addend for the dynamic reloc. */
1159 if (! relocate)
1160 return bfd_reloc_ok;
1161
1162 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1163 contents, rel->r_offset, value,
1164 (bfd_vma) 0);
1165 }
1166 else switch (r_type)
1167 {
1168 #ifndef OLD_ARM_ABI
1169 case R_ARM_XPC25: /* Arm BLX instruction. */
1170 #endif
1171 case R_ARM_PC24: /* Arm B/BL instruction */
1172 #ifndef OLD_ARM_ABI
1173 if (r_type == R_ARM_XPC25)
1174 {
1175 /* Check for Arm calling Arm function. */
1176 /* FIXME: Should we translate the instruction into a BL
1177 instruction instead ? */
1178 if (sym_flags != STT_ARM_TFUNC)
1179 _bfd_error_handler (_("\
1180 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1181 bfd_get_filename (input_bfd),
1182 h ? h->root.root.string : "(local)");
1183 }
1184 else
1185 #endif
1186 {
1187 /* Check for Arm calling Thumb function. */
1188 if (sym_flags == STT_ARM_TFUNC)
1189 {
1190 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1191 input_section, hit_data, sym_sec, rel->r_offset,
1192 signed_addend, value);
1193 return bfd_reloc_ok;
1194 }
1195 }
1196
1197 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1198 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1199 {
1200 /* The old way of doing things. Trearing the addend as a
1201 byte sized field and adding in the pipeline offset. */
1202 value -= (input_section->output_section->vma
1203 + input_section->output_offset);
1204 value -= rel->r_offset;
1205 value += addend;
1206
1207 if (! globals->no_pipeline_knowledge)
1208 value -= 8;
1209 }
1210 else
1211 {
1212 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1213 where:
1214 S is the address of the symbol in the relocation.
1215 P is address of the instruction being relocated.
1216 A is the addend (extracted from the instruction) in bytes.
1217
1218 S is held in 'value'.
1219 P is the base address of the section containing the instruction
1220 plus the offset of the reloc into that section, ie:
1221 (input_section->output_section->vma +
1222 input_section->output_offset +
1223 rel->r_offset).
1224 A is the addend, converted into bytes, ie:
1225 (signed_addend * 4)
1226
1227 Note: None of these operations have knowledge of the pipeline
1228 size of the processor, thus it is up to the assembler to encode
1229 this information into the addend. */
1230 value -= (input_section->output_section->vma
1231 + input_section->output_offset);
1232 value -= rel->r_offset;
1233 value += (signed_addend << howto->size);
1234
1235 /* Previous versions of this code also used to add in the pipeline
1236 offset here. This is wrong because the linker is not supposed
1237 to know about such things, and one day it might change. In order
1238 to support old binaries that need the old behaviour however, so
1239 we attempt to detect which ABI was used to create the reloc. */
1240 if (! globals->no_pipeline_knowledge)
1241 {
1242 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1243
1244 i_ehdrp = elf_elfheader (input_bfd);
1245
1246 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1247 value -= 8;
1248 }
1249 }
1250
1251 signed_addend = value;
1252 signed_addend >>= howto->rightshift;
1253
1254 /* It is not an error for an undefined weak reference to be
1255 out of range. Any program that branches to such a symbol
1256 is going to crash anyway, so there is no point worrying
1257 about getting the destination exactly right. */
1258 if (! h || h->root.type != bfd_link_hash_undefweak)
1259 {
1260 /* Perform a signed range check. */
1261 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1262 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1263 return bfd_reloc_overflow;
1264 }
1265
1266 #ifndef OLD_ARM_ABI
1267 /* If necessary set the H bit in the BLX instruction. */
1268 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1269 value = (signed_addend & howto->dst_mask)
1270 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1271 | (1 << 24);
1272 else
1273 #endif
1274 value = (signed_addend & howto->dst_mask)
1275 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1276 break;
1277
1278 case R_ARM_ABS32:
1279 value += addend;
1280 if (sym_flags == STT_ARM_TFUNC)
1281 value |= 1;
1282 break;
1283
1284 case R_ARM_REL32:
1285 value -= (input_section->output_section->vma
1286 + input_section->output_offset);
1287 value += addend;
1288 break;
1289 }
1290
1291 bfd_put_32 (input_bfd, value, hit_data);
1292 return bfd_reloc_ok;
1293
1294 case R_ARM_ABS8:
1295 value += addend;
1296 if ((long) value > 0x7f || (long) value < -0x80)
1297 return bfd_reloc_overflow;
1298
1299 bfd_put_8 (input_bfd, value, hit_data);
1300 return bfd_reloc_ok;
1301
1302 case R_ARM_ABS16:
1303 value += addend;
1304
1305 if ((long) value > 0x7fff || (long) value < -0x8000)
1306 return bfd_reloc_overflow;
1307
1308 bfd_put_16 (input_bfd, value, hit_data);
1309 return bfd_reloc_ok;
1310
1311 case R_ARM_ABS12:
1312 /* Support ldr and str instruction for the arm */
1313 /* Also thumb b (unconditional branch). ??? Really? */
1314 value += addend;
1315
1316 if ((long) value > 0x7ff || (long) value < -0x800)
1317 return bfd_reloc_overflow;
1318
1319 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1320 bfd_put_32 (input_bfd, value, hit_data);
1321 return bfd_reloc_ok;
1322
1323 case R_ARM_THM_ABS5:
1324 /* Support ldr and str instructions for the thumb. */
1325 #ifdef USE_REL
1326 /* Need to refetch addend. */
1327 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1328 /* ??? Need to determine shift amount from operand size. */
1329 addend >>= howto->rightshift;
1330 #endif
1331 value += addend;
1332
1333 /* ??? Isn't value unsigned? */
1334 if ((long) value > 0x1f || (long) value < -0x10)
1335 return bfd_reloc_overflow;
1336
1337 /* ??? Value needs to be properly shifted into place first. */
1338 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1339 bfd_put_16 (input_bfd, value, hit_data);
1340 return bfd_reloc_ok;
1341
1342 #ifndef OLD_ARM_ABI
1343 case R_ARM_THM_XPC22:
1344 #endif
1345 case R_ARM_THM_PC22:
1346 /* Thumb BL (branch long instruction). */
1347 {
1348 bfd_vma relocation;
1349 boolean overflow = false;
1350 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1351 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1352 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1353 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1354 bfd_vma check;
1355 bfd_signed_vma signed_check;
1356
1357 #ifdef USE_REL
1358 /* Need to refetch the addend and squish the two 11 bit pieces
1359 together. */
1360 {
1361 bfd_vma upper = upper_insn & 0x7ff;
1362 bfd_vma lower = lower_insn & 0x7ff;
1363 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1364 addend = (upper << 12) | (lower << 1);
1365 signed_addend = addend;
1366 }
1367 #endif
1368 #ifndef OLD_ARM_ABI
1369 if (r_type == R_ARM_THM_XPC22)
1370 {
1371 /* Check for Thumb to Thumb call. */
1372 /* FIXME: Should we translate the instruction into a BL
1373 instruction instead ? */
1374 if (sym_flags == STT_ARM_TFUNC)
1375 _bfd_error_handler (_("\
1376 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1377 bfd_get_filename (input_bfd),
1378 h ? h->root.root.string : "(local)");
1379 }
1380 else
1381 #endif
1382 {
1383 /* If it is not a call to Thumb, assume call to Arm.
1384 If it is a call relative to a section name, then it is not a
1385 function call at all, but rather a long jump. */
1386 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1387 {
1388 if (elf32_thumb_to_arm_stub
1389 (info, sym_name, input_bfd, output_bfd, input_section,
1390 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1391 return bfd_reloc_ok;
1392 else
1393 return bfd_reloc_dangerous;
1394 }
1395 }
1396
1397 relocation = value + signed_addend;
1398
1399 relocation -= (input_section->output_section->vma
1400 + input_section->output_offset
1401 + rel->r_offset);
1402
1403 if (! globals->no_pipeline_knowledge)
1404 {
1405 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1406
1407 i_ehdrp = elf_elfheader (input_bfd);
1408
1409 /* Previous versions of this code also used to add in the pipline
1410 offset here. This is wrong because the linker is not supposed
1411 to know about such things, and one day it might change. In order
1412 to support old binaries that need the old behaviour however, so
1413 we attempt to detect which ABI was used to create the reloc. */
1414 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1415 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1416 || i_ehdrp->e_ident[EI_OSABI] == 0)
1417 relocation += 4;
1418 }
1419
1420 check = relocation >> howto->rightshift;
1421
1422 /* If this is a signed value, the rightshift just dropped
1423 leading 1 bits (assuming twos complement). */
1424 if ((bfd_signed_vma) relocation >= 0)
1425 signed_check = check;
1426 else
1427 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1428
1429 /* Assumes two's complement. */
1430 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1431 overflow = true;
1432
1433 /* Put RELOCATION back into the insn. */
1434 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1435 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1436
1437 if (r_type == R_ARM_THM_XPC22
1438 && ((lower_insn & 0x1800) == 0x0800))
1439 /* Remove bit zero of the adjusted offset. Bit zero can only be
1440 set if the upper insn is at a half-word boundary, since the
1441 destination address, an ARM instruction, must always be on a
1442 word boundary. The semantics of the BLX (1) instruction, however,
1443 are that bit zero in the offset must always be zero, and the
1444 corresponding bit one in the target address will be set from bit
1445 one of the source address. */
1446 lower_insn &= ~1;
1447
1448 /* Put the relocated value back in the object file: */
1449 bfd_put_16 (input_bfd, upper_insn, hit_data);
1450 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1451
1452 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1453 }
1454 break;
1455
1456 case R_ARM_GNU_VTINHERIT:
1457 case R_ARM_GNU_VTENTRY:
1458 return bfd_reloc_ok;
1459
1460 case R_ARM_COPY:
1461 return bfd_reloc_notsupported;
1462
1463 case R_ARM_GLOB_DAT:
1464 return bfd_reloc_notsupported;
1465
1466 case R_ARM_JUMP_SLOT:
1467 return bfd_reloc_notsupported;
1468
1469 case R_ARM_RELATIVE:
1470 return bfd_reloc_notsupported;
1471
1472 case R_ARM_GOTOFF:
1473 /* Relocation is relative to the start of the
1474 global offset table. */
1475
1476 BFD_ASSERT (sgot != NULL);
1477 if (sgot == NULL)
1478 return bfd_reloc_notsupported;
1479
1480 /* Note that sgot->output_offset is not involved in this
1481 calculation. We always want the start of .got. If we
1482 define _GLOBAL_OFFSET_TABLE in a different way, as is
1483 permitted by the ABI, we might have to change this
1484 calculation. */
1485 value -= sgot->output_section->vma;
1486 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1487 contents, rel->r_offset, value,
1488 (bfd_vma) 0);
1489
1490 case R_ARM_GOTPC:
1491 /* Use global offset table as symbol value. */
1492 BFD_ASSERT (sgot != NULL);
1493
1494 if (sgot == NULL)
1495 return bfd_reloc_notsupported;
1496
1497 value = sgot->output_section->vma;
1498 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1499 contents, rel->r_offset, value,
1500 (bfd_vma) 0);
1501
1502 case R_ARM_GOT32:
1503 /* Relocation is to the entry for this symbol in the
1504 global offset table. */
1505 if (sgot == NULL)
1506 return bfd_reloc_notsupported;
1507
1508 if (h != NULL)
1509 {
1510 bfd_vma off;
1511
1512 off = h->got.offset;
1513 BFD_ASSERT (off != (bfd_vma) -1);
1514
1515 if (!elf_hash_table (info)->dynamic_sections_created ||
1516 (info->shared && (info->symbolic || h->dynindx == -1)
1517 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1518 {
1519 /* This is actually a static link, or it is a -Bsymbolic link
1520 and the symbol is defined locally. We must initialize this
1521 entry in the global offset table. Since the offset must
1522 always be a multiple of 4, we use the least significant bit
1523 to record whether we have initialized it already.
1524
1525 When doing a dynamic link, we create a .rel.got relocation
1526 entry to initialize the value. This is done in the
1527 finish_dynamic_symbol routine. */
1528 if ((off & 1) != 0)
1529 off &= ~1;
1530 else
1531 {
1532 bfd_put_32 (output_bfd, value, sgot->contents + off);
1533 h->got.offset |= 1;
1534 }
1535 }
1536
1537 value = sgot->output_offset + off;
1538 }
1539 else
1540 {
1541 bfd_vma off;
1542
1543 BFD_ASSERT (local_got_offsets != NULL &&
1544 local_got_offsets[r_symndx] != (bfd_vma) -1);
1545
1546 off = local_got_offsets[r_symndx];
1547
1548 /* The offset must always be a multiple of 4. We use the
1549 least significant bit to record whether we have already
1550 generated the necessary reloc. */
1551 if ((off & 1) != 0)
1552 off &= ~1;
1553 else
1554 {
1555 bfd_put_32 (output_bfd, value, sgot->contents + off);
1556
1557 if (info->shared)
1558 {
1559 asection * srelgot;
1560 Elf_Internal_Rel outrel;
1561
1562 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1563 BFD_ASSERT (srelgot != NULL);
1564
1565 outrel.r_offset = (sgot->output_section->vma
1566 + sgot->output_offset
1567 + off);
1568 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1569 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1570 (((Elf32_External_Rel *)
1571 srelgot->contents)
1572 + srelgot->reloc_count));
1573 ++srelgot->reloc_count;
1574 }
1575
1576 local_got_offsets[r_symndx] |= 1;
1577 }
1578
1579 value = sgot->output_offset + off;
1580 }
1581
1582 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1583 contents, rel->r_offset, value,
1584 (bfd_vma) 0);
1585
1586 case R_ARM_PLT32:
1587 /* Relocation is to the entry for this symbol in the
1588 procedure linkage table. */
1589
1590 /* Resolve a PLT32 reloc against a local symbol directly,
1591 without using the procedure linkage table. */
1592 if (h == NULL)
1593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1594 contents, rel->r_offset, value,
1595 (bfd_vma) 0);
1596
1597 if (h->plt.offset == (bfd_vma) -1)
1598 /* We didn't make a PLT entry for this symbol. This
1599 happens when statically linking PIC code, or when
1600 using -Bsymbolic. */
1601 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1602 contents, rel->r_offset, value,
1603 (bfd_vma) 0);
1604
1605 BFD_ASSERT(splt != NULL);
1606 if (splt == NULL)
1607 return bfd_reloc_notsupported;
1608
1609 value = (splt->output_section->vma
1610 + splt->output_offset
1611 + h->plt.offset);
1612 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1613 contents, rel->r_offset, value,
1614 (bfd_vma) 0);
1615
1616 case R_ARM_SBREL32:
1617 return bfd_reloc_notsupported;
1618
1619 case R_ARM_AMP_VCALL9:
1620 return bfd_reloc_notsupported;
1621
1622 case R_ARM_RSBREL32:
1623 return bfd_reloc_notsupported;
1624
1625 case R_ARM_THM_RPC22:
1626 return bfd_reloc_notsupported;
1627
1628 case R_ARM_RREL32:
1629 return bfd_reloc_notsupported;
1630
1631 case R_ARM_RABS32:
1632 return bfd_reloc_notsupported;
1633
1634 case R_ARM_RPC24:
1635 return bfd_reloc_notsupported;
1636
1637 case R_ARM_RBASE:
1638 return bfd_reloc_notsupported;
1639
1640 default:
1641 return bfd_reloc_notsupported;
1642 }
1643 }
1644
1645 #ifdef USE_REL
1646 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1647 static void
1648 arm_add_to_rel (abfd, address, howto, increment)
1649 bfd * abfd;
1650 bfd_byte * address;
1651 reloc_howto_type * howto;
1652 bfd_signed_vma increment;
1653 {
1654 bfd_signed_vma addend;
1655
1656 if (howto->type == R_ARM_THM_PC22)
1657 {
1658 int upper_insn, lower_insn;
1659 int upper, lower;
1660
1661 upper_insn = bfd_get_16 (abfd, address);
1662 lower_insn = bfd_get_16 (abfd, address + 2);
1663 upper = upper_insn & 0x7ff;
1664 lower = lower_insn & 0x7ff;
1665
1666 addend = (upper << 12) | (lower << 1);
1667 addend += increment;
1668 addend >>= 1;
1669
1670 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1671 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1672
1673 bfd_put_16 (abfd, upper_insn, address);
1674 bfd_put_16 (abfd, lower_insn, address + 2);
1675 }
1676 else
1677 {
1678 bfd_vma contents;
1679
1680 contents = bfd_get_32 (abfd, address);
1681
1682 /* Get the (signed) value from the instruction. */
1683 addend = contents & howto->src_mask;
1684 if (addend & ((howto->src_mask + 1) >> 1))
1685 {
1686 bfd_signed_vma mask;
1687
1688 mask = -1;
1689 mask &= ~ howto->src_mask;
1690 addend |= mask;
1691 }
1692
1693 /* Add in the increment, (which is a byte value). */
1694 switch (howto->type)
1695 {
1696 default:
1697 addend += increment;
1698 break;
1699
1700 case R_ARM_PC24:
1701 addend <<= howto->size;
1702 addend += increment;
1703
1704 /* Should we check for overflow here ? */
1705
1706 /* Drop any undesired bits. */
1707 addend >>= howto->rightshift;
1708 break;
1709 }
1710
1711 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1712
1713 bfd_put_32 (abfd, contents, address);
1714 }
1715 }
1716 #endif /* USE_REL */
1717
1718 /* Relocate an ARM ELF section. */
1719 static boolean
1720 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1721 contents, relocs, local_syms, local_sections)
1722 bfd * output_bfd;
1723 struct bfd_link_info * info;
1724 bfd * input_bfd;
1725 asection * input_section;
1726 bfd_byte * contents;
1727 Elf_Internal_Rela * relocs;
1728 Elf_Internal_Sym * local_syms;
1729 asection ** local_sections;
1730 {
1731 Elf_Internal_Shdr * symtab_hdr;
1732 struct elf_link_hash_entry ** sym_hashes;
1733 Elf_Internal_Rela * rel;
1734 Elf_Internal_Rela * relend;
1735 const char * name;
1736
1737 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1738 sym_hashes = elf_sym_hashes (input_bfd);
1739
1740 rel = relocs;
1741 relend = relocs + input_section->reloc_count;
1742 for (; rel < relend; rel++)
1743 {
1744 int r_type;
1745 reloc_howto_type * howto;
1746 unsigned long r_symndx;
1747 Elf_Internal_Sym * sym;
1748 asection * sec;
1749 struct elf_link_hash_entry * h;
1750 bfd_vma relocation;
1751 bfd_reloc_status_type r;
1752 arelent bfd_reloc;
1753
1754 r_symndx = ELF32_R_SYM (rel->r_info);
1755 r_type = ELF32_R_TYPE (rel->r_info);
1756
1757 if ( r_type == R_ARM_GNU_VTENTRY
1758 || r_type == R_ARM_GNU_VTINHERIT)
1759 continue;
1760
1761 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1762 howto = bfd_reloc.howto;
1763
1764 if (info->relocateable)
1765 {
1766 /* This is a relocateable link. We don't have to change
1767 anything, unless the reloc is against a section symbol,
1768 in which case we have to adjust according to where the
1769 section symbol winds up in the output section. */
1770 if (r_symndx < symtab_hdr->sh_info)
1771 {
1772 sym = local_syms + r_symndx;
1773 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1774 {
1775 sec = local_sections[r_symndx];
1776 #ifdef USE_REL
1777 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1778 howto, sec->output_offset + sym->st_value);
1779 #else
1780 rel->r_addend += (sec->output_offset + sym->st_value)
1781 >> howto->rightshift;
1782 #endif
1783 }
1784 }
1785
1786 continue;
1787 }
1788
1789 /* This is a final link. */
1790 h = NULL;
1791 sym = NULL;
1792 sec = NULL;
1793
1794 if (r_symndx < symtab_hdr->sh_info)
1795 {
1796 sym = local_syms + r_symndx;
1797 sec = local_sections[r_symndx];
1798 relocation = (sec->output_section->vma
1799 + sec->output_offset
1800 + sym->st_value);
1801 }
1802 else
1803 {
1804 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1805
1806 while ( h->root.type == bfd_link_hash_indirect
1807 || h->root.type == bfd_link_hash_warning)
1808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1809
1810 if ( h->root.type == bfd_link_hash_defined
1811 || h->root.type == bfd_link_hash_defweak)
1812 {
1813 int relocation_needed = 1;
1814
1815 sec = h->root.u.def.section;
1816
1817 /* In these cases, we don't need the relocation value.
1818 We check specially because in some obscure cases
1819 sec->output_section will be NULL. */
1820 switch (r_type)
1821 {
1822 case R_ARM_PC24:
1823 case R_ARM_ABS32:
1824 if (info->shared
1825 && (
1826 (!info->symbolic && h->dynindx != -1)
1827 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1828 )
1829 && ((input_section->flags & SEC_ALLOC) != 0
1830 /* DWARF will emit R_ARM_ABS32 relocations in its
1831 sections against symbols defined externally
1832 in shared libraries. We can't do anything
1833 with them here. */
1834 || ((input_section->flags & SEC_DEBUGGING) != 0
1835 && (h->elf_link_hash_flags
1836 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1837 )
1838 relocation_needed = 0;
1839 break;
1840
1841 case R_ARM_GOTPC:
1842 relocation_needed = 0;
1843 break;
1844
1845 case R_ARM_GOT32:
1846 if (elf_hash_table(info)->dynamic_sections_created
1847 && (!info->shared
1848 || (!info->symbolic && h->dynindx != -1)
1849 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1850 )
1851 )
1852 relocation_needed = 0;
1853 break;
1854
1855 case R_ARM_PLT32:
1856 if (h->plt.offset != (bfd_vma)-1)
1857 relocation_needed = 0;
1858 break;
1859
1860 default:
1861 if (sec->output_section == NULL)
1862 {
1863 (*_bfd_error_handler)
1864 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1865 bfd_get_filename (input_bfd), h->root.root.string,
1866 bfd_get_section_name (input_bfd, input_section));
1867 relocation_needed = 0;
1868 }
1869 }
1870
1871 if (relocation_needed)
1872 relocation = h->root.u.def.value
1873 + sec->output_section->vma
1874 + sec->output_offset;
1875 else
1876 relocation = 0;
1877 }
1878 else if (h->root.type == bfd_link_hash_undefweak)
1879 relocation = 0;
1880 else if (info->shared && !info->symbolic
1881 && !info->no_undefined
1882 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1883 relocation = 0;
1884 else
1885 {
1886 if (!((*info->callbacks->undefined_symbol)
1887 (info, h->root.root.string, input_bfd,
1888 input_section, rel->r_offset,
1889 (!info->shared || info->no_undefined
1890 || ELF_ST_VISIBILITY (h->other)))))
1891 return false;
1892 relocation = 0;
1893 }
1894 }
1895
1896 if (h != NULL)
1897 name = h->root.root.string;
1898 else
1899 {
1900 name = (bfd_elf_string_from_elf_section
1901 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1902 if (name == NULL || *name == '\0')
1903 name = bfd_section_name (input_bfd, sec);
1904 }
1905
1906 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1907 input_section, contents, rel,
1908 relocation, info, sec, name,
1909 (h ? ELF_ST_TYPE (h->type) :
1910 ELF_ST_TYPE (sym->st_info)), h);
1911
1912 if (r != bfd_reloc_ok)
1913 {
1914 const char * msg = (const char *) 0;
1915
1916 switch (r)
1917 {
1918 case bfd_reloc_overflow:
1919 /* If the overflowing reloc was to an undefined symbol,
1920 we have already printed one error message and there
1921 is no point complaining again. */
1922 if ((! h ||
1923 h->root.type != bfd_link_hash_undefined)
1924 && (!((*info->callbacks->reloc_overflow)
1925 (info, name, howto->name, (bfd_vma) 0,
1926 input_bfd, input_section, rel->r_offset))))
1927 return false;
1928 break;
1929
1930 case bfd_reloc_undefined:
1931 if (!((*info->callbacks->undefined_symbol)
1932 (info, name, input_bfd, input_section,
1933 rel->r_offset, true)))
1934 return false;
1935 break;
1936
1937 case bfd_reloc_outofrange:
1938 msg = _("internal error: out of range error");
1939 goto common_error;
1940
1941 case bfd_reloc_notsupported:
1942 msg = _("internal error: unsupported relocation error");
1943 goto common_error;
1944
1945 case bfd_reloc_dangerous:
1946 msg = _("internal error: dangerous error");
1947 goto common_error;
1948
1949 default:
1950 msg = _("internal error: unknown error");
1951 /* fall through */
1952
1953 common_error:
1954 if (!((*info->callbacks->warning)
1955 (info, msg, name, input_bfd, input_section,
1956 rel->r_offset)))
1957 return false;
1958 break;
1959 }
1960 }
1961 }
1962
1963 return true;
1964 }
1965
1966 /* Function to keep ARM specific flags in the ELF header. */
1967 static boolean
1968 elf32_arm_set_private_flags (abfd, flags)
1969 bfd *abfd;
1970 flagword flags;
1971 {
1972 if (elf_flags_init (abfd)
1973 && elf_elfheader (abfd)->e_flags != flags)
1974 {
1975 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1976 {
1977 if (flags & EF_ARM_INTERWORK)
1978 _bfd_error_handler (_("\
1979 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1980 bfd_get_filename (abfd));
1981 else
1982 _bfd_error_handler (_("\
1983 Warning: Clearing the interwork flag of %s due to outside request"),
1984 bfd_get_filename (abfd));
1985 }
1986 }
1987 else
1988 {
1989 elf_elfheader (abfd)->e_flags = flags;
1990 elf_flags_init (abfd) = true;
1991 }
1992
1993 return true;
1994 }
1995
1996 /* Copy backend specific data from one object module to another. */
1997
1998 static boolean
1999 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2000 bfd *ibfd;
2001 bfd *obfd;
2002 {
2003 flagword in_flags;
2004 flagword out_flags;
2005
2006 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2007 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2008 return true;
2009
2010 in_flags = elf_elfheader (ibfd)->e_flags;
2011 out_flags = elf_elfheader (obfd)->e_flags;
2012
2013 if (elf_flags_init (obfd)
2014 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2015 && in_flags != out_flags)
2016 {
2017 /* Cannot mix APCS26 and APCS32 code. */
2018 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2019 return false;
2020
2021 /* Cannot mix float APCS and non-float APCS code. */
2022 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2023 return false;
2024
2025 /* If the src and dest have different interworking flags
2026 then turn off the interworking bit. */
2027 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2028 {
2029 if (out_flags & EF_ARM_INTERWORK)
2030 _bfd_error_handler (_("\
2031 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2032 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2033
2034 in_flags &= ~EF_ARM_INTERWORK;
2035 }
2036
2037 /* Likewise for PIC, though don't warn for this case. */
2038 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2039 in_flags &= ~EF_ARM_PIC;
2040 }
2041
2042 elf_elfheader (obfd)->e_flags = in_flags;
2043 elf_flags_init (obfd) = true;
2044
2045 return true;
2046 }
2047
2048 /* Merge backend specific data from an object file to the output
2049 object file when linking. */
2050
2051 static boolean
2052 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2053 bfd * ibfd;
2054 bfd * obfd;
2055 {
2056 flagword out_flags;
2057 flagword in_flags;
2058 boolean flags_compatible = true;
2059 boolean null_input_bfd = true;
2060 asection *sec;
2061
2062 /* Check if we have the same endianess. */
2063 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2064 return false;
2065
2066 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2067 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2068 return true;
2069
2070 /* The input BFD must have had its flags initialised. */
2071 /* The following seems bogus to me -- The flags are initialized in
2072 the assembler but I don't think an elf_flags_init field is
2073 written into the object. */
2074 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2075
2076 in_flags = elf_elfheader (ibfd)->e_flags;
2077 out_flags = elf_elfheader (obfd)->e_flags;
2078
2079 if (!elf_flags_init (obfd))
2080 {
2081 /* If the input is the default architecture and had the default
2082 flags then do not bother setting the flags for the output
2083 architecture, instead allow future merges to do this. If no
2084 future merges ever set these flags then they will retain their
2085 uninitialised values, which surprise surprise, correspond
2086 to the default values. */
2087 if (bfd_get_arch_info (ibfd)->the_default
2088 && elf_elfheader (ibfd)->e_flags == 0)
2089 return true;
2090
2091 elf_flags_init (obfd) = true;
2092 elf_elfheader (obfd)->e_flags = in_flags;
2093
2094 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2095 && bfd_get_arch_info (obfd)->the_default)
2096 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2097
2098 return true;
2099 }
2100
2101 /* Identical flags must be compatible. */
2102 if (in_flags == out_flags)
2103 return true;
2104
2105 /* Check to see if the input BFD actually contains any sections.
2106 If not, its flags may not have been initialised either, but it cannot
2107 actually cause any incompatibility. */
2108 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2109 {
2110 /* Ignore synthetic glue sections. */
2111 if (strcmp (sec->name, ".glue_7")
2112 && strcmp (sec->name, ".glue_7t"))
2113 {
2114 null_input_bfd = false;
2115 break;
2116 }
2117 }
2118 if (null_input_bfd)
2119 return true;
2120
2121 /* Complain about various flag mismatches. */
2122 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2123 {
2124 _bfd_error_handler (_("\
2125 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2126 bfd_get_filename (ibfd),
2127 (in_flags & EF_ARM_EABIMASK) >> 24,
2128 bfd_get_filename (obfd),
2129 (out_flags & EF_ARM_EABIMASK) >> 24);
2130 return false;
2131 }
2132
2133 /* Not sure what needs to be checked for EABI versions >= 1. */
2134 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2135 {
2136 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2137 {
2138 _bfd_error_handler (_("\
2139 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2140 bfd_get_filename (ibfd),
2141 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2142 bfd_get_filename (obfd),
2143 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2144 flags_compatible = false;
2145 }
2146
2147 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2148 {
2149 _bfd_error_handler (_("\
2150 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2151 bfd_get_filename (ibfd),
2152 in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer"),
2153 bfd_get_filename (obfd),
2154 out_flags & EF_ARM_APCS_26 ? _("float") : _("integer"));
2155 flags_compatible = false;
2156 }
2157
2158 #ifdef EF_ARM_SOFT_FLOAT
2159 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2160 {
2161 _bfd_error_handler (_ ("\
2162 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2163 bfd_get_filename (ibfd),
2164 in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"),
2165 bfd_get_filename (obfd),
2166 out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"));
2167 flags_compatible = false;
2168 }
2169 #endif
2170
2171 /* Interworking mismatch is only a warning. */
2172 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2173 _bfd_error_handler (_("\
2174 Warning: %s %s interworking, whereas %s %s"),
2175 bfd_get_filename (ibfd),
2176 in_flags & EF_ARM_INTERWORK ? _("supports") : _("does not support"),
2177 bfd_get_filename (obfd),
2178 out_flags & EF_ARM_INTERWORK ? _("does not") : _("does"));
2179 }
2180
2181 return flags_compatible;
2182 }
2183
2184 /* Display the flags field. */
2185
2186 static boolean
2187 elf32_arm_print_private_bfd_data (abfd, ptr)
2188 bfd *abfd;
2189 PTR ptr;
2190 {
2191 FILE * file = (FILE *) ptr;
2192 unsigned long flags;
2193
2194 BFD_ASSERT (abfd != NULL && ptr != NULL);
2195
2196 /* Print normal ELF private data. */
2197 _bfd_elf_print_private_bfd_data (abfd, ptr);
2198
2199 flags = elf_elfheader (abfd)->e_flags;
2200 /* Ignore init flag - it may not be set, despite the flags field
2201 containing valid data. */
2202
2203 /* xgettext:c-format */
2204 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2205
2206 switch (EF_ARM_EABI_VERSION (flags))
2207 {
2208 case EF_ARM_EABI_UNKNOWN:
2209 /* The following flag bits are GNU extenstions and not part of the
2210 official ARM ELF extended ABI. Hence they are only decoded if
2211 the EABI version is not set. */
2212 if (flags & EF_ARM_INTERWORK)
2213 fprintf (file, _(" [interworking enabled]"));
2214
2215 if (flags & EF_ARM_APCS_26)
2216 fprintf (file, _(" [APCS-26]"));
2217 else
2218 fprintf (file, _(" [APCS-32]"));
2219
2220 if (flags & EF_ARM_APCS_FLOAT)
2221 fprintf (file, _(" [floats passed in float registers]"));
2222
2223 if (flags & EF_ARM_PIC)
2224 fprintf (file, _(" [position independent]"));
2225
2226 if (flags & EF_ARM_NEW_ABI)
2227 fprintf (file, _(" [new ABI]"));
2228
2229 if (flags & EF_ARM_OLD_ABI)
2230 fprintf (file, _(" [old ABI]"));
2231
2232 if (flags & EF_ARM_SOFT_FLOAT)
2233 fprintf (file, _(" [software FP]"));
2234
2235 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2236 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2237 break;
2238
2239 case EF_ARM_EABI_VER1:
2240 fprintf (file, _(" [Version1 EABI]"));
2241
2242 if (flags & EF_ARM_SYMSARESORTED)
2243 fprintf (file, _(" [sorted symbol table]"));
2244 else
2245 fprintf (file, _(" [unsorted symbol table]"));
2246
2247 flags &= ~ EF_ARM_SYMSARESORTED;
2248 break;
2249
2250 case EF_ARM_EABI_VER2:
2251 fprintf (file, _(" [Version2 EABI]"));
2252
2253 if (flags & EF_ARM_SYMSARESORTED)
2254 fprintf (file, _(" [sorted symbol table]"));
2255 else
2256 fprintf (file, _(" [unsorted symbol table]"));
2257
2258 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2259 fprintf (file, _(" [dynamic symbols use segment index]"));
2260
2261 if (flags & EF_ARM_MAPSYMSFIRST)
2262 fprintf (file, _(" [mapping symbols precede others]"));
2263
2264 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2265 | EF_ARM_MAPSYMSFIRST);
2266 break;
2267
2268 default:
2269 fprintf (file, _(" <EABI version unrecognised>"));
2270 break;
2271 }
2272
2273 flags &= ~ EF_ARM_EABIMASK;
2274
2275 if (flags & EF_ARM_RELEXEC)
2276 fprintf (file, _(" [relocatable executable]"));
2277
2278 if (flags & EF_ARM_HASENTRY)
2279 fprintf (file, _(" [has entry point]"));
2280
2281 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2282
2283 if (flags)
2284 fprintf (file, _("<Unrecognised flag bits set>"));
2285
2286 fputc ('\n', file);
2287
2288 return true;
2289 }
2290
2291 static int
2292 elf32_arm_get_symbol_type (elf_sym, type)
2293 Elf_Internal_Sym * elf_sym;
2294 int type;
2295 {
2296 switch (ELF_ST_TYPE (elf_sym->st_info))
2297 {
2298 case STT_ARM_TFUNC:
2299 return ELF_ST_TYPE (elf_sym->st_info);
2300
2301 case STT_ARM_16BIT:
2302 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2303 This allows us to distinguish between data used by Thumb instructions
2304 and non-data (which is probably code) inside Thumb regions of an
2305 executable. */
2306 if (type != STT_OBJECT)
2307 return ELF_ST_TYPE (elf_sym->st_info);
2308 break;
2309
2310 default:
2311 break;
2312 }
2313
2314 return type;
2315 }
2316
2317 static asection *
2318 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2319 bfd *abfd;
2320 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2321 Elf_Internal_Rela *rel;
2322 struct elf_link_hash_entry *h;
2323 Elf_Internal_Sym *sym;
2324 {
2325 if (h != NULL)
2326 {
2327 switch (ELF32_R_TYPE (rel->r_info))
2328 {
2329 case R_ARM_GNU_VTINHERIT:
2330 case R_ARM_GNU_VTENTRY:
2331 break;
2332
2333 default:
2334 switch (h->root.type)
2335 {
2336 case bfd_link_hash_defined:
2337 case bfd_link_hash_defweak:
2338 return h->root.u.def.section;
2339
2340 case bfd_link_hash_common:
2341 return h->root.u.c.p->section;
2342
2343 default:
2344 break;
2345 }
2346 }
2347 }
2348 else
2349 {
2350 if (!(elf_bad_symtab (abfd)
2351 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2352 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2353 && sym->st_shndx != SHN_COMMON))
2354 {
2355 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2356 }
2357 }
2358 return NULL;
2359 }
2360
2361 /* Update the got entry reference counts for the section being removed. */
2362
2363 static boolean
2364 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2365 bfd *abfd ATTRIBUTE_UNUSED;
2366 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2367 asection *sec ATTRIBUTE_UNUSED;
2368 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2369 {
2370 /* We don't support garbage collection of GOT and PLT relocs yet. */
2371 return true;
2372 }
2373
2374 /* Look through the relocs for a section during the first phase. */
2375
2376 static boolean
2377 elf32_arm_check_relocs (abfd, info, sec, relocs)
2378 bfd * abfd;
2379 struct bfd_link_info * info;
2380 asection * sec;
2381 const Elf_Internal_Rela * relocs;
2382 {
2383 Elf_Internal_Shdr * symtab_hdr;
2384 struct elf_link_hash_entry ** sym_hashes;
2385 struct elf_link_hash_entry ** sym_hashes_end;
2386 const Elf_Internal_Rela * rel;
2387 const Elf_Internal_Rela * rel_end;
2388 bfd * dynobj;
2389 asection * sgot, *srelgot, *sreloc;
2390 bfd_vma * local_got_offsets;
2391
2392 if (info->relocateable)
2393 return true;
2394
2395 sgot = srelgot = sreloc = NULL;
2396
2397 dynobj = elf_hash_table (info)->dynobj;
2398 local_got_offsets = elf_local_got_offsets (abfd);
2399
2400 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2401 sym_hashes = elf_sym_hashes (abfd);
2402 sym_hashes_end = sym_hashes
2403 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2404
2405 if (!elf_bad_symtab (abfd))
2406 sym_hashes_end -= symtab_hdr->sh_info;
2407
2408 rel_end = relocs + sec->reloc_count;
2409 for (rel = relocs; rel < rel_end; rel++)
2410 {
2411 struct elf_link_hash_entry *h;
2412 unsigned long r_symndx;
2413
2414 r_symndx = ELF32_R_SYM (rel->r_info);
2415 if (r_symndx < symtab_hdr->sh_info)
2416 h = NULL;
2417 else
2418 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2419
2420 /* Some relocs require a global offset table. */
2421 if (dynobj == NULL)
2422 {
2423 switch (ELF32_R_TYPE (rel->r_info))
2424 {
2425 case R_ARM_GOT32:
2426 case R_ARM_GOTOFF:
2427 case R_ARM_GOTPC:
2428 elf_hash_table (info)->dynobj = dynobj = abfd;
2429 if (! _bfd_elf_create_got_section (dynobj, info))
2430 return false;
2431 break;
2432
2433 default:
2434 break;
2435 }
2436 }
2437
2438 switch (ELF32_R_TYPE (rel->r_info))
2439 {
2440 case R_ARM_GOT32:
2441 /* This symbol requires a global offset table entry. */
2442 if (sgot == NULL)
2443 {
2444 sgot = bfd_get_section_by_name (dynobj, ".got");
2445 BFD_ASSERT (sgot != NULL);
2446 }
2447
2448 /* Get the got relocation section if necessary. */
2449 if (srelgot == NULL
2450 && (h != NULL || info->shared))
2451 {
2452 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2453
2454 /* If no got relocation section, make one and initialize. */
2455 if (srelgot == NULL)
2456 {
2457 srelgot = bfd_make_section (dynobj, ".rel.got");
2458 if (srelgot == NULL
2459 || ! bfd_set_section_flags (dynobj, srelgot,
2460 (SEC_ALLOC
2461 | SEC_LOAD
2462 | SEC_HAS_CONTENTS
2463 | SEC_IN_MEMORY
2464 | SEC_LINKER_CREATED
2465 | SEC_READONLY))
2466 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2467 return false;
2468 }
2469 }
2470
2471 if (h != NULL)
2472 {
2473 if (h->got.offset != (bfd_vma) -1)
2474 /* We have already allocated space in the .got. */
2475 break;
2476
2477 h->got.offset = sgot->_raw_size;
2478
2479 /* Make sure this symbol is output as a dynamic symbol. */
2480 if (h->dynindx == -1)
2481 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2482 return false;
2483
2484 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2485 }
2486 else
2487 {
2488 /* This is a global offset table entry for a local
2489 symbol. */
2490 if (local_got_offsets == NULL)
2491 {
2492 size_t size;
2493 register unsigned int i;
2494
2495 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2496 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2497 if (local_got_offsets == NULL)
2498 return false;
2499 elf_local_got_offsets (abfd) = local_got_offsets;
2500 for (i = 0; i < symtab_hdr->sh_info; i++)
2501 local_got_offsets[i] = (bfd_vma) -1;
2502 }
2503
2504 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2505 /* We have already allocated space in the .got. */
2506 break;
2507
2508 local_got_offsets[r_symndx] = sgot->_raw_size;
2509
2510 if (info->shared)
2511 /* If we are generating a shared object, we need to
2512 output a R_ARM_RELATIVE reloc so that the dynamic
2513 linker can adjust this GOT entry. */
2514 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2515 }
2516
2517 sgot->_raw_size += 4;
2518 break;
2519
2520 case R_ARM_PLT32:
2521 /* This symbol requires a procedure linkage table entry. We
2522 actually build the entry in adjust_dynamic_symbol,
2523 because this might be a case of linking PIC code which is
2524 never referenced by a dynamic object, in which case we
2525 don't need to generate a procedure linkage table entry
2526 after all. */
2527
2528 /* If this is a local symbol, we resolve it directly without
2529 creating a procedure linkage table entry. */
2530 if (h == NULL)
2531 continue;
2532
2533 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2534 break;
2535
2536 case R_ARM_ABS32:
2537 case R_ARM_REL32:
2538 case R_ARM_PC24:
2539 /* If we are creating a shared library, and this is a reloc
2540 against a global symbol, or a non PC relative reloc
2541 against a local symbol, then we need to copy the reloc
2542 into the shared library. However, if we are linking with
2543 -Bsymbolic, we do not need to copy a reloc against a
2544 global symbol which is defined in an object we are
2545 including in the link (i.e., DEF_REGULAR is set). At
2546 this point we have not seen all the input files, so it is
2547 possible that DEF_REGULAR is not set now but will be set
2548 later (it is never cleared). We account for that
2549 possibility below by storing information in the
2550 pcrel_relocs_copied field of the hash table entry. */
2551 if (info->shared
2552 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2553 || (h != NULL
2554 && (! info->symbolic
2555 || (h->elf_link_hash_flags
2556 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2557 {
2558 /* When creating a shared object, we must copy these
2559 reloc types into the output file. We create a reloc
2560 section in dynobj and make room for this reloc. */
2561 if (sreloc == NULL)
2562 {
2563 const char * name;
2564
2565 name = (bfd_elf_string_from_elf_section
2566 (abfd,
2567 elf_elfheader (abfd)->e_shstrndx,
2568 elf_section_data (sec)->rel_hdr.sh_name));
2569 if (name == NULL)
2570 return false;
2571
2572 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2573 && strcmp (bfd_get_section_name (abfd, sec),
2574 name + 4) == 0);
2575
2576 sreloc = bfd_get_section_by_name (dynobj, name);
2577 if (sreloc == NULL)
2578 {
2579 flagword flags;
2580
2581 sreloc = bfd_make_section (dynobj, name);
2582 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2583 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2584 if ((sec->flags & SEC_ALLOC) != 0)
2585 flags |= SEC_ALLOC | SEC_LOAD;
2586 if (sreloc == NULL
2587 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2588 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2589 return false;
2590 }
2591 }
2592
2593 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2594 /* If we are linking with -Bsymbolic, and this is a
2595 global symbol, we count the number of PC relative
2596 relocations we have entered for this symbol, so that
2597 we can discard them again if the symbol is later
2598 defined by a regular object. Note that this function
2599 is only called if we are using an elf_i386 linker
2600 hash table, which means that h is really a pointer to
2601 an elf_i386_link_hash_entry. */
2602 if (h != NULL && info->symbolic
2603 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2604 {
2605 struct elf32_arm_link_hash_entry * eh;
2606 struct elf32_arm_pcrel_relocs_copied * p;
2607
2608 eh = (struct elf32_arm_link_hash_entry *) h;
2609
2610 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2611 if (p->section == sreloc)
2612 break;
2613
2614 if (p == NULL)
2615 {
2616 p = ((struct elf32_arm_pcrel_relocs_copied *)
2617 bfd_alloc (dynobj, sizeof * p));
2618
2619 if (p == NULL)
2620 return false;
2621 p->next = eh->pcrel_relocs_copied;
2622 eh->pcrel_relocs_copied = p;
2623 p->section = sreloc;
2624 p->count = 0;
2625 }
2626
2627 ++p->count;
2628 }
2629 }
2630 break;
2631
2632 /* This relocation describes the C++ object vtable hierarchy.
2633 Reconstruct it for later use during GC. */
2634 case R_ARM_GNU_VTINHERIT:
2635 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2636 return false;
2637 break;
2638
2639 /* This relocation describes which C++ vtable entries are actually
2640 used. Record for later use during GC. */
2641 case R_ARM_GNU_VTENTRY:
2642 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2643 return false;
2644 break;
2645 }
2646 }
2647
2648 return true;
2649 }
2650
2651 /* Find the nearest line to a particular section and offset, for error
2652 reporting. This code is a duplicate of the code in elf.c, except
2653 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2654
2655 static boolean
2656 elf32_arm_find_nearest_line
2657 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2658 bfd * abfd;
2659 asection * section;
2660 asymbol ** symbols;
2661 bfd_vma offset;
2662 CONST char ** filename_ptr;
2663 CONST char ** functionname_ptr;
2664 unsigned int * line_ptr;
2665 {
2666 boolean found;
2667 const char * filename;
2668 asymbol * func;
2669 bfd_vma low_func;
2670 asymbol ** p;
2671
2672 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2673 filename_ptr, functionname_ptr,
2674 line_ptr, 0,
2675 &elf_tdata (abfd)->dwarf2_find_line_info))
2676 return true;
2677
2678 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2679 &found, filename_ptr,
2680 functionname_ptr, line_ptr,
2681 &elf_tdata (abfd)->line_info))
2682 return false;
2683
2684 if (found)
2685 return true;
2686
2687 if (symbols == NULL)
2688 return false;
2689
2690 filename = NULL;
2691 func = NULL;
2692 low_func = 0;
2693
2694 for (p = symbols; *p != NULL; p++)
2695 {
2696 elf_symbol_type *q;
2697
2698 q = (elf_symbol_type *) *p;
2699
2700 if (bfd_get_section (&q->symbol) != section)
2701 continue;
2702
2703 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2704 {
2705 default:
2706 break;
2707 case STT_FILE:
2708 filename = bfd_asymbol_name (&q->symbol);
2709 break;
2710 case STT_NOTYPE:
2711 case STT_FUNC:
2712 case STT_ARM_TFUNC:
2713 if (q->symbol.section == section
2714 && q->symbol.value >= low_func
2715 && q->symbol.value <= offset)
2716 {
2717 func = (asymbol *) q;
2718 low_func = q->symbol.value;
2719 }
2720 break;
2721 }
2722 }
2723
2724 if (func == NULL)
2725 return false;
2726
2727 *filename_ptr = filename;
2728 *functionname_ptr = bfd_asymbol_name (func);
2729 *line_ptr = 0;
2730
2731 return true;
2732 }
2733
2734 /* Adjust a symbol defined by a dynamic object and referenced by a
2735 regular object. The current definition is in some section of the
2736 dynamic object, but we're not including those sections. We have to
2737 change the definition to something the rest of the link can
2738 understand. */
2739
2740 static boolean
2741 elf32_arm_adjust_dynamic_symbol (info, h)
2742 struct bfd_link_info * info;
2743 struct elf_link_hash_entry * h;
2744 {
2745 bfd * dynobj;
2746 asection * s;
2747 unsigned int power_of_two;
2748
2749 dynobj = elf_hash_table (info)->dynobj;
2750
2751 /* Make sure we know what is going on here. */
2752 BFD_ASSERT (dynobj != NULL
2753 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2754 || h->weakdef != NULL
2755 || ((h->elf_link_hash_flags
2756 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2757 && (h->elf_link_hash_flags
2758 & ELF_LINK_HASH_REF_REGULAR) != 0
2759 && (h->elf_link_hash_flags
2760 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2761
2762 /* If this is a function, put it in the procedure linkage table. We
2763 will fill in the contents of the procedure linkage table later,
2764 when we know the address of the .got section. */
2765 if (h->type == STT_FUNC
2766 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2767 {
2768 if (! info->shared
2769 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2770 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2771 {
2772 /* This case can occur if we saw a PLT32 reloc in an input
2773 file, but the symbol was never referred to by a dynamic
2774 object. In such a case, we don't actually need to build
2775 a procedure linkage table, and we can just do a PC32
2776 reloc instead. */
2777 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2778 return true;
2779 }
2780
2781 /* Make sure this symbol is output as a dynamic symbol. */
2782 if (h->dynindx == -1)
2783 {
2784 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2785 return false;
2786 }
2787
2788 s = bfd_get_section_by_name (dynobj, ".plt");
2789 BFD_ASSERT (s != NULL);
2790
2791 /* If this is the first .plt entry, make room for the special
2792 first entry. */
2793 if (s->_raw_size == 0)
2794 s->_raw_size += PLT_ENTRY_SIZE;
2795
2796 /* If this symbol is not defined in a regular file, and we are
2797 not generating a shared library, then set the symbol to this
2798 location in the .plt. This is required to make function
2799 pointers compare as equal between the normal executable and
2800 the shared library. */
2801 if (! info->shared
2802 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2803 {
2804 h->root.u.def.section = s;
2805 h->root.u.def.value = s->_raw_size;
2806 }
2807
2808 h->plt.offset = s->_raw_size;
2809
2810 /* Make room for this entry. */
2811 s->_raw_size += PLT_ENTRY_SIZE;
2812
2813 /* We also need to make an entry in the .got.plt section, which
2814 will be placed in the .got section by the linker script. */
2815 s = bfd_get_section_by_name (dynobj, ".got.plt");
2816 BFD_ASSERT (s != NULL);
2817 s->_raw_size += 4;
2818
2819 /* We also need to make an entry in the .rel.plt section. */
2820
2821 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2822 BFD_ASSERT (s != NULL);
2823 s->_raw_size += sizeof (Elf32_External_Rel);
2824
2825 return true;
2826 }
2827
2828 /* If this is a weak symbol, and there is a real definition, the
2829 processor independent code will have arranged for us to see the
2830 real definition first, and we can just use the same value. */
2831 if (h->weakdef != NULL)
2832 {
2833 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2834 || h->weakdef->root.type == bfd_link_hash_defweak);
2835 h->root.u.def.section = h->weakdef->root.u.def.section;
2836 h->root.u.def.value = h->weakdef->root.u.def.value;
2837 return true;
2838 }
2839
2840 /* This is a reference to a symbol defined by a dynamic object which
2841 is not a function. */
2842
2843 /* If we are creating a shared library, we must presume that the
2844 only references to the symbol are via the global offset table.
2845 For such cases we need not do anything here; the relocations will
2846 be handled correctly by relocate_section. */
2847 if (info->shared)
2848 return true;
2849
2850 /* We must allocate the symbol in our .dynbss section, which will
2851 become part of the .bss section of the executable. There will be
2852 an entry for this symbol in the .dynsym section. The dynamic
2853 object will contain position independent code, so all references
2854 from the dynamic object to this symbol will go through the global
2855 offset table. The dynamic linker will use the .dynsym entry to
2856 determine the address it must put in the global offset table, so
2857 both the dynamic object and the regular object will refer to the
2858 same memory location for the variable. */
2859 s = bfd_get_section_by_name (dynobj, ".dynbss");
2860 BFD_ASSERT (s != NULL);
2861
2862 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2863 copy the initial value out of the dynamic object and into the
2864 runtime process image. We need to remember the offset into the
2865 .rel.bss section we are going to use. */
2866 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2867 {
2868 asection *srel;
2869
2870 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2871 BFD_ASSERT (srel != NULL);
2872 srel->_raw_size += sizeof (Elf32_External_Rel);
2873 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2874 }
2875
2876 /* We need to figure out the alignment required for this symbol. I
2877 have no idea how ELF linkers handle this. */
2878 power_of_two = bfd_log2 (h->size);
2879 if (power_of_two > 3)
2880 power_of_two = 3;
2881
2882 /* Apply the required alignment. */
2883 s->_raw_size = BFD_ALIGN (s->_raw_size,
2884 (bfd_size_type) (1 << power_of_two));
2885 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2886 {
2887 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2888 return false;
2889 }
2890
2891 /* Define the symbol as being at this point in the section. */
2892 h->root.u.def.section = s;
2893 h->root.u.def.value = s->_raw_size;
2894
2895 /* Increment the section size to make room for the symbol. */
2896 s->_raw_size += h->size;
2897
2898 return true;
2899 }
2900
2901 /* Set the sizes of the dynamic sections. */
2902
2903 static boolean
2904 elf32_arm_size_dynamic_sections (output_bfd, info)
2905 bfd * output_bfd;
2906 struct bfd_link_info * info;
2907 {
2908 bfd * dynobj;
2909 asection * s;
2910 boolean plt;
2911 boolean relocs;
2912 boolean reltext;
2913
2914 dynobj = elf_hash_table (info)->dynobj;
2915 BFD_ASSERT (dynobj != NULL);
2916
2917 if (elf_hash_table (info)->dynamic_sections_created)
2918 {
2919 /* Set the contents of the .interp section to the interpreter. */
2920 if (! info->shared)
2921 {
2922 s = bfd_get_section_by_name (dynobj, ".interp");
2923 BFD_ASSERT (s != NULL);
2924 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2925 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2926 }
2927 }
2928 else
2929 {
2930 /* We may have created entries in the .rel.got section.
2931 However, if we are not creating the dynamic sections, we will
2932 not actually use these entries. Reset the size of .rel.got,
2933 which will cause it to get stripped from the output file
2934 below. */
2935 s = bfd_get_section_by_name (dynobj, ".rel.got");
2936 if (s != NULL)
2937 s->_raw_size = 0;
2938 }
2939
2940 /* If this is a -Bsymbolic shared link, then we need to discard all
2941 PC relative relocs against symbols defined in a regular object.
2942 We allocated space for them in the check_relocs routine, but we
2943 will not fill them in in the relocate_section routine. */
2944 if (info->shared && info->symbolic)
2945 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2946 elf32_arm_discard_copies,
2947 (PTR) NULL);
2948
2949 /* The check_relocs and adjust_dynamic_symbol entry points have
2950 determined the sizes of the various dynamic sections. Allocate
2951 memory for them. */
2952 plt = false;
2953 relocs = false;
2954 reltext = false;
2955 for (s = dynobj->sections; s != NULL; s = s->next)
2956 {
2957 const char * name;
2958 boolean strip;
2959
2960 if ((s->flags & SEC_LINKER_CREATED) == 0)
2961 continue;
2962
2963 /* It's OK to base decisions on the section name, because none
2964 of the dynobj section names depend upon the input files. */
2965 name = bfd_get_section_name (dynobj, s);
2966
2967 strip = false;
2968
2969 if (strcmp (name, ".plt") == 0)
2970 {
2971 if (s->_raw_size == 0)
2972 {
2973 /* Strip this section if we don't need it; see the
2974 comment below. */
2975 strip = true;
2976 }
2977 else
2978 {
2979 /* Remember whether there is a PLT. */
2980 plt = true;
2981 }
2982 }
2983 else if (strncmp (name, ".rel", 4) == 0)
2984 {
2985 if (s->_raw_size == 0)
2986 {
2987 /* If we don't need this section, strip it from the
2988 output file. This is mostly to handle .rel.bss and
2989 .rel.plt. We must create both sections in
2990 create_dynamic_sections, because they must be created
2991 before the linker maps input sections to output
2992 sections. The linker does that before
2993 adjust_dynamic_symbol is called, and it is that
2994 function which decides whether anything needs to go
2995 into these sections. */
2996 strip = true;
2997 }
2998 else
2999 {
3000 asection * target;
3001
3002 /* Remember whether there are any reloc sections other
3003 than .rel.plt. */
3004 if (strcmp (name, ".rel.plt") != 0)
3005 {
3006 const char *outname;
3007
3008 relocs = true;
3009
3010 /* If this relocation section applies to a read only
3011 section, then we probably need a DT_TEXTREL
3012 entry. The entries in the .rel.plt section
3013 really apply to the .got section, which we
3014 created ourselves and so know is not readonly. */
3015 outname = bfd_get_section_name (output_bfd,
3016 s->output_section);
3017 target = bfd_get_section_by_name (output_bfd, outname + 4);
3018
3019 if (target != NULL
3020 && (target->flags & SEC_READONLY) != 0
3021 && (target->flags & SEC_ALLOC) != 0)
3022 reltext = true;
3023 }
3024
3025 /* We use the reloc_count field as a counter if we need
3026 to copy relocs into the output file. */
3027 s->reloc_count = 0;
3028 }
3029 }
3030 else if (strncmp (name, ".got", 4) != 0)
3031 {
3032 /* It's not one of our sections, so don't allocate space. */
3033 continue;
3034 }
3035
3036 if (strip)
3037 {
3038 asection ** spp;
3039
3040 for (spp = &s->output_section->owner->sections;
3041 *spp != s->output_section;
3042 spp = &(*spp)->next)
3043 ;
3044 *spp = s->output_section->next;
3045 --s->output_section->owner->section_count;
3046
3047 continue;
3048 }
3049
3050 /* Allocate memory for the section contents. */
3051 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3052 if (s->contents == NULL && s->_raw_size != 0)
3053 return false;
3054 }
3055
3056 if (elf_hash_table (info)->dynamic_sections_created)
3057 {
3058 /* Add some entries to the .dynamic section. We fill in the
3059 values later, in elf32_arm_finish_dynamic_sections, but we
3060 must add the entries now so that we get the correct size for
3061 the .dynamic section. The DT_DEBUG entry is filled in by the
3062 dynamic linker and used by the debugger. */
3063 if (! info->shared)
3064 {
3065 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3066 return false;
3067 }
3068
3069 if (plt)
3070 {
3071 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3072 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3073 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3074 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3075 return false;
3076 }
3077
3078 if (relocs)
3079 {
3080 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3081 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3082 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3083 sizeof (Elf32_External_Rel)))
3084 return false;
3085 }
3086
3087 if (reltext)
3088 {
3089 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3090 return false;
3091 info->flags |= DF_TEXTREL;
3092 }
3093 }
3094
3095 return true;
3096 }
3097
3098 /* This function is called via elf32_arm_link_hash_traverse if we are
3099 creating a shared object with -Bsymbolic. It discards the space
3100 allocated to copy PC relative relocs against symbols which are
3101 defined in regular objects. We allocated space for them in the
3102 check_relocs routine, but we won't fill them in in the
3103 relocate_section routine. */
3104
3105 static boolean
3106 elf32_arm_discard_copies (h, ignore)
3107 struct elf32_arm_link_hash_entry * h;
3108 PTR ignore ATTRIBUTE_UNUSED;
3109 {
3110 struct elf32_arm_pcrel_relocs_copied * s;
3111
3112 /* We only discard relocs for symbols defined in a regular object. */
3113 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3114 return true;
3115
3116 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3117 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3118
3119 return true;
3120 }
3121
3122 /* Finish up dynamic symbol handling. We set the contents of various
3123 dynamic sections here. */
3124
3125 static boolean
3126 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3127 bfd * output_bfd;
3128 struct bfd_link_info * info;
3129 struct elf_link_hash_entry * h;
3130 Elf_Internal_Sym * sym;
3131 {
3132 bfd * dynobj;
3133
3134 dynobj = elf_hash_table (info)->dynobj;
3135
3136 if (h->plt.offset != (bfd_vma) -1)
3137 {
3138 asection * splt;
3139 asection * sgot;
3140 asection * srel;
3141 bfd_vma plt_index;
3142 bfd_vma got_offset;
3143 Elf_Internal_Rel rel;
3144
3145 /* This symbol has an entry in the procedure linkage table. Set
3146 it up. */
3147
3148 BFD_ASSERT (h->dynindx != -1);
3149
3150 splt = bfd_get_section_by_name (dynobj, ".plt");
3151 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3152 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3153 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3154
3155 /* Get the index in the procedure linkage table which
3156 corresponds to this symbol. This is the index of this symbol
3157 in all the symbols for which we are making plt entries. The
3158 first entry in the procedure linkage table is reserved. */
3159 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3160
3161 /* Get the offset into the .got table of the entry that
3162 corresponds to this function. Each .got entry is 4 bytes.
3163 The first three are reserved. */
3164 got_offset = (plt_index + 3) * 4;
3165
3166 /* Fill in the entry in the procedure linkage table. */
3167 memcpy (splt->contents + h->plt.offset,
3168 elf32_arm_plt_entry,
3169 PLT_ENTRY_SIZE);
3170 bfd_put_32 (output_bfd,
3171 (sgot->output_section->vma
3172 + sgot->output_offset
3173 + got_offset
3174 - splt->output_section->vma
3175 - splt->output_offset
3176 - h->plt.offset - 12),
3177 splt->contents + h->plt.offset + 12);
3178
3179 /* Fill in the entry in the global offset table. */
3180 bfd_put_32 (output_bfd,
3181 (splt->output_section->vma
3182 + splt->output_offset),
3183 sgot->contents + got_offset);
3184
3185 /* Fill in the entry in the .rel.plt section. */
3186 rel.r_offset = (sgot->output_section->vma
3187 + sgot->output_offset
3188 + got_offset);
3189 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3190 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3191 ((Elf32_External_Rel *) srel->contents
3192 + plt_index));
3193
3194 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3195 {
3196 /* Mark the symbol as undefined, rather than as defined in
3197 the .plt section. Leave the value alone. */
3198 sym->st_shndx = SHN_UNDEF;
3199 }
3200 }
3201
3202 if (h->got.offset != (bfd_vma) -1)
3203 {
3204 asection * sgot;
3205 asection * srel;
3206 Elf_Internal_Rel rel;
3207
3208 /* This symbol has an entry in the global offset table. Set it
3209 up. */
3210 sgot = bfd_get_section_by_name (dynobj, ".got");
3211 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3212 BFD_ASSERT (sgot != NULL && srel != NULL);
3213
3214 rel.r_offset = (sgot->output_section->vma
3215 + sgot->output_offset
3216 + (h->got.offset &~ 1));
3217
3218 /* If this is a -Bsymbolic link, and the symbol is defined
3219 locally, we just want to emit a RELATIVE reloc. The entry in
3220 the global offset table will already have been initialized in
3221 the relocate_section function. */
3222 if (info->shared
3223 && (info->symbolic || h->dynindx == -1)
3224 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3225 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3226 else
3227 {
3228 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3229 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3230 }
3231
3232 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3233 ((Elf32_External_Rel *) srel->contents
3234 + srel->reloc_count));
3235 ++srel->reloc_count;
3236 }
3237
3238 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3239 {
3240 asection * s;
3241 Elf_Internal_Rel rel;
3242
3243 /* This symbol needs a copy reloc. Set it up. */
3244 BFD_ASSERT (h->dynindx != -1
3245 && (h->root.type == bfd_link_hash_defined
3246 || h->root.type == bfd_link_hash_defweak));
3247
3248 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3249 ".rel.bss");
3250 BFD_ASSERT (s != NULL);
3251
3252 rel.r_offset = (h->root.u.def.value
3253 + h->root.u.def.section->output_section->vma
3254 + h->root.u.def.section->output_offset);
3255 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3256 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3257 ((Elf32_External_Rel *) s->contents
3258 + s->reloc_count));
3259 ++s->reloc_count;
3260 }
3261
3262 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3263 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3264 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3265 sym->st_shndx = SHN_ABS;
3266
3267 return true;
3268 }
3269
3270 /* Finish up the dynamic sections. */
3271
3272 static boolean
3273 elf32_arm_finish_dynamic_sections (output_bfd, info)
3274 bfd * output_bfd;
3275 struct bfd_link_info * info;
3276 {
3277 bfd * dynobj;
3278 asection * sgot;
3279 asection * sdyn;
3280
3281 dynobj = elf_hash_table (info)->dynobj;
3282
3283 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3284 BFD_ASSERT (sgot != NULL);
3285 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3286
3287 if (elf_hash_table (info)->dynamic_sections_created)
3288 {
3289 asection *splt;
3290 Elf32_External_Dyn *dyncon, *dynconend;
3291
3292 splt = bfd_get_section_by_name (dynobj, ".plt");
3293 BFD_ASSERT (splt != NULL && sdyn != NULL);
3294
3295 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3296 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3297
3298 for (; dyncon < dynconend; dyncon++)
3299 {
3300 Elf_Internal_Dyn dyn;
3301 const char * name;
3302 asection * s;
3303
3304 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3305
3306 switch (dyn.d_tag)
3307 {
3308 default:
3309 break;
3310
3311 case DT_PLTGOT:
3312 name = ".got";
3313 goto get_vma;
3314 case DT_JMPREL:
3315 name = ".rel.plt";
3316 get_vma:
3317 s = bfd_get_section_by_name (output_bfd, name);
3318 BFD_ASSERT (s != NULL);
3319 dyn.d_un.d_ptr = s->vma;
3320 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3321 break;
3322
3323 case DT_PLTRELSZ:
3324 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3325 BFD_ASSERT (s != NULL);
3326 if (s->_cooked_size != 0)
3327 dyn.d_un.d_val = s->_cooked_size;
3328 else
3329 dyn.d_un.d_val = s->_raw_size;
3330 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3331 break;
3332
3333 case DT_RELSZ:
3334 /* My reading of the SVR4 ABI indicates that the
3335 procedure linkage table relocs (DT_JMPREL) should be
3336 included in the overall relocs (DT_REL). This is
3337 what Solaris does. However, UnixWare can not handle
3338 that case. Therefore, we override the DT_RELSZ entry
3339 here to make it not include the JMPREL relocs. Since
3340 the linker script arranges for .rel.plt to follow all
3341 other relocation sections, we don't have to worry
3342 about changing the DT_REL entry. */
3343 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3344 if (s != NULL)
3345 {
3346 if (s->_cooked_size != 0)
3347 dyn.d_un.d_val -= s->_cooked_size;
3348 else
3349 dyn.d_un.d_val -= s->_raw_size;
3350 }
3351 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3352 break;
3353 }
3354 }
3355
3356 /* Fill in the first entry in the procedure linkage table. */
3357 if (splt->_raw_size > 0)
3358 memcpy (splt->contents, elf32_arm_plt0_entry, PLT_ENTRY_SIZE);
3359
3360 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3361 really seem like the right value. */
3362 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3363 }
3364
3365 /* Fill in the first three entries in the global offset table. */
3366 if (sgot->_raw_size > 0)
3367 {
3368 if (sdyn == NULL)
3369 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3370 else
3371 bfd_put_32 (output_bfd,
3372 sdyn->output_section->vma + sdyn->output_offset,
3373 sgot->contents);
3374 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3375 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3376 }
3377
3378 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3379
3380 return true;
3381 }
3382
3383 static void
3384 elf32_arm_post_process_headers (abfd, link_info)
3385 bfd * abfd;
3386 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3387 {
3388 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3389
3390 i_ehdrp = elf_elfheader (abfd);
3391
3392 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3393 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3394 }
3395
3396 #define ELF_ARCH bfd_arch_arm
3397 #define ELF_MACHINE_CODE EM_ARM
3398 #define ELF_MAXPAGESIZE 0x8000
3399
3400 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3401 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3402 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3403 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3404 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3405 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3406 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3407
3408 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3409 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3410 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3411 #define elf_backend_check_relocs elf32_arm_check_relocs
3412 #define elf_backend_relocate_section elf32_arm_relocate_section
3413 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3414 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3415 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3416 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3417 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3418 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3419
3420 #define elf_backend_can_gc_sections 1
3421 #define elf_backend_plt_readonly 1
3422 #define elf_backend_want_got_plt 1
3423 #define elf_backend_want_plt_sym 0
3424
3425 #define elf_backend_got_header_size 12
3426 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3427
3428 #include "elf32-target.h"