Revert ARM linker patch and apply similar patch to bfd instead
[binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void elf32_arm_post_process_headers
46 PARAMS ((bfd *, struct bfd_link_info *));
47 static int elf32_arm_to_thumb_stub
48 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
49 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
50 static int elf32_thumb_to_arm_stub
51 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
52 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
53 static boolean elf32_arm_relocate_section
54 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
55 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
56 static asection * elf32_arm_gc_mark_hook
57 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
58 struct elf_link_hash_entry *, Elf_Internal_Sym *));
59 static boolean elf32_arm_gc_sweep_hook
60 PARAMS ((bfd *, struct bfd_link_info *, asection *,
61 const Elf_Internal_Rela *));
62 static boolean elf32_arm_check_relocs
63 PARAMS ((bfd *, struct bfd_link_info *, asection *,
64 const Elf_Internal_Rela *));
65 static boolean elf32_arm_find_nearest_line
66 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
67 const char **, unsigned int *));
68 static boolean elf32_arm_adjust_dynamic_symbol
69 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
70 static boolean elf32_arm_size_dynamic_sections
71 PARAMS ((bfd *, struct bfd_link_info *));
72 static boolean elf32_arm_finish_dynamic_symbol
73 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
74 Elf_Internal_Sym *));
75 static boolean elf32_arm_finish_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
78 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
79 #ifdef USE_REL
80 static void arm_add_to_rel
81 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
82 #endif
83 static enum elf_reloc_type_class elf32_arm_reloc_type_class
84 PARAMS ((const Elf_Internal_Rela *));
85
86 #ifndef ELFARM_NABI_C_INCLUDED
87 static void record_arm_to_thumb_glue
88 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
89 static void record_thumb_to_arm_glue
90 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
91 boolean bfd_elf32_arm_allocate_interworking_sections
92 PARAMS ((struct bfd_link_info *));
93 boolean bfd_elf32_arm_get_bfd_for_interworking
94 PARAMS ((bfd *, struct bfd_link_info *));
95 boolean bfd_elf32_arm_process_before_allocation
96 PARAMS ((bfd *, struct bfd_link_info *, int));
97 #endif
98
99
100 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
101
102 /* The linker script knows the section names for placement.
103 The entry_names are used to do simple name mangling on the stubs.
104 Given a function name, and its type, the stub can be found. The
105 name can be changed. The only requirement is the %s be present. */
106 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
107 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
108
109 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
110 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
111
112 /* The name of the dynamic interpreter. This is put in the .interp
113 section. */
114 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
115
116 /* The size in bytes of an entry in the procedure linkage table. */
117 #define PLT_ENTRY_SIZE 16
118
119 /* The first entry in a procedure linkage table looks like
120 this. It is set up so that any shared library function that is
121 called before the relocation has been set up calls the dynamic
122 linker first. */
123 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
124 {
125 0xe52de004, /* str lr, [sp, #-4]! */
126 0xe59fe010, /* ldr lr, [pc, #16] */
127 0xe08fe00e, /* add lr, pc, lr */
128 0xe5bef008 /* ldr pc, [lr, #8]! */
129 };
130
131 /* Subsequent entries in a procedure linkage table look like
132 this. */
133 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
134 {
135 0xe59fc004, /* ldr ip, [pc, #4] */
136 0xe08fc00c, /* add ip, pc, ip */
137 0xe59cf000, /* ldr pc, [ip] */
138 0x00000000 /* offset to symbol in got */
139 };
140
141 /* The ARM linker needs to keep track of the number of relocs that it
142 decides to copy in check_relocs for each symbol. This is so that
143 it can discard PC relative relocs if it doesn't need them when
144 linking with -Bsymbolic. We store the information in a field
145 extending the regular ELF linker hash table. */
146
147 /* This structure keeps track of the number of PC relative relocs we
148 have copied for a given symbol. */
149 struct elf32_arm_pcrel_relocs_copied
150 {
151 /* Next section. */
152 struct elf32_arm_pcrel_relocs_copied * next;
153 /* A section in dynobj. */
154 asection * section;
155 /* Number of relocs copied in this section. */
156 bfd_size_type count;
157 };
158
159 /* Arm ELF linker hash entry. */
160 struct elf32_arm_link_hash_entry
161 {
162 struct elf_link_hash_entry root;
163
164 /* Number of PC relative relocs copied for this symbol. */
165 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
166 };
167
168 /* Declare this now that the above structures are defined. */
169 static boolean elf32_arm_discard_copies
170 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
171
172 /* Traverse an arm ELF linker hash table. */
173 #define elf32_arm_link_hash_traverse(table, func, info) \
174 (elf_link_hash_traverse \
175 (&(table)->root, \
176 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
177 (info)))
178
179 /* Get the ARM elf linker hash table from a link_info structure. */
180 #define elf32_arm_hash_table(info) \
181 ((struct elf32_arm_link_hash_table *) ((info)->hash))
182
183 /* ARM ELF linker hash table. */
184 struct elf32_arm_link_hash_table
185 {
186 /* The main hash table. */
187 struct elf_link_hash_table root;
188
189 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
190 bfd_size_type thumb_glue_size;
191
192 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
193 bfd_size_type arm_glue_size;
194
195 /* An arbitary input BFD chosen to hold the glue sections. */
196 bfd * bfd_of_glue_owner;
197
198 /* A boolean indicating whether knowledge of the ARM's pipeline
199 length should be applied by the linker. */
200 int no_pipeline_knowledge;
201 };
202
203 /* Create an entry in an ARM ELF linker hash table. */
204
205 static struct bfd_hash_entry *
206 elf32_arm_link_hash_newfunc (entry, table, string)
207 struct bfd_hash_entry * entry;
208 struct bfd_hash_table * table;
209 const char * string;
210 {
211 struct elf32_arm_link_hash_entry * ret =
212 (struct elf32_arm_link_hash_entry *) entry;
213
214 /* Allocate the structure if it has not already been allocated by a
215 subclass. */
216 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
217 ret = ((struct elf32_arm_link_hash_entry *)
218 bfd_hash_allocate (table,
219 sizeof (struct elf32_arm_link_hash_entry)));
220 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
221 return (struct bfd_hash_entry *) ret;
222
223 /* Call the allocation method of the superclass. */
224 ret = ((struct elf32_arm_link_hash_entry *)
225 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
226 table, string));
227 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
228 ret->pcrel_relocs_copied = NULL;
229
230 return (struct bfd_hash_entry *) ret;
231 }
232
233 /* Create an ARM elf linker hash table. */
234
235 static struct bfd_link_hash_table *
236 elf32_arm_link_hash_table_create (abfd)
237 bfd *abfd;
238 {
239 struct elf32_arm_link_hash_table *ret;
240 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
241
242 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
243 if (ret == (struct elf32_arm_link_hash_table *) NULL)
244 return NULL;
245
246 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
247 elf32_arm_link_hash_newfunc))
248 {
249 free (ret);
250 return NULL;
251 }
252
253 ret->thumb_glue_size = 0;
254 ret->arm_glue_size = 0;
255 ret->bfd_of_glue_owner = NULL;
256 ret->no_pipeline_knowledge = 0;
257
258 return &ret->root.root;
259 }
260
261 /* Locate the Thumb encoded calling stub for NAME. */
262
263 static struct elf_link_hash_entry *
264 find_thumb_glue (link_info, name, input_bfd)
265 struct bfd_link_info *link_info;
266 const char *name;
267 bfd *input_bfd;
268 {
269 char *tmp_name;
270 struct elf_link_hash_entry *hash;
271 struct elf32_arm_link_hash_table *hash_table;
272
273 /* We need a pointer to the armelf specific hash table. */
274 hash_table = elf32_arm_hash_table (link_info);
275
276 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
277 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
278
279 BFD_ASSERT (tmp_name);
280
281 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
282
283 hash = elf_link_hash_lookup
284 (&(hash_table)->root, tmp_name, false, false, true);
285
286 if (hash == NULL)
287 /* xgettext:c-format */
288 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
289 bfd_archive_filename (input_bfd), tmp_name, name);
290
291 free (tmp_name);
292
293 return hash;
294 }
295
296 /* Locate the ARM encoded calling stub for NAME. */
297
298 static struct elf_link_hash_entry *
299 find_arm_glue (link_info, name, input_bfd)
300 struct bfd_link_info *link_info;
301 const char *name;
302 bfd *input_bfd;
303 {
304 char *tmp_name;
305 struct elf_link_hash_entry *myh;
306 struct elf32_arm_link_hash_table *hash_table;
307
308 /* We need a pointer to the elfarm specific hash table. */
309 hash_table = elf32_arm_hash_table (link_info);
310
311 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
312 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
313
314 BFD_ASSERT (tmp_name);
315
316 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
317
318 myh = elf_link_hash_lookup
319 (&(hash_table)->root, tmp_name, false, false, true);
320
321 if (myh == NULL)
322 /* xgettext:c-format */
323 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
324 bfd_archive_filename (input_bfd), tmp_name, name);
325
326 free (tmp_name);
327
328 return myh;
329 }
330
331 /* ARM->Thumb glue:
332
333 .arm
334 __func_from_arm:
335 ldr r12, __func_addr
336 bx r12
337 __func_addr:
338 .word func @ behave as if you saw a ARM_32 reloc. */
339
340 #define ARM2THUMB_GLUE_SIZE 12
341 static const insn32 a2t1_ldr_insn = 0xe59fc000;
342 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
343 static const insn32 a2t3_func_addr_insn = 0x00000001;
344
345 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
346
347 .thumb .thumb
348 .align 2 .align 2
349 __func_from_thumb: __func_from_thumb:
350 bx pc push {r6, lr}
351 nop ldr r6, __func_addr
352 .arm mov lr, pc
353 __func_change_to_arm: bx r6
354 b func .arm
355 __func_back_to_thumb:
356 ldmia r13! {r6, lr}
357 bx lr
358 __func_addr:
359 .word func */
360
361 #define THUMB2ARM_GLUE_SIZE 8
362 static const insn16 t2a1_bx_pc_insn = 0x4778;
363 static const insn16 t2a2_noop_insn = 0x46c0;
364 static const insn32 t2a3_b_insn = 0xea000000;
365
366 static const insn16 t2a1_push_insn = 0xb540;
367 static const insn16 t2a2_ldr_insn = 0x4e03;
368 static const insn16 t2a3_mov_insn = 0x46fe;
369 static const insn16 t2a4_bx_insn = 0x4730;
370 static const insn32 t2a5_pop_insn = 0xe8bd4040;
371 static const insn32 t2a6_bx_insn = 0xe12fff1e;
372
373 #ifndef ELFARM_NABI_C_INCLUDED
374 boolean
375 bfd_elf32_arm_allocate_interworking_sections (info)
376 struct bfd_link_info * info;
377 {
378 asection * s;
379 bfd_byte * foo;
380 struct elf32_arm_link_hash_table * globals;
381
382 globals = elf32_arm_hash_table (info);
383
384 BFD_ASSERT (globals != NULL);
385
386 if (globals->arm_glue_size != 0)
387 {
388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
389
390 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
391 ARM2THUMB_GLUE_SECTION_NAME);
392
393 BFD_ASSERT (s != NULL);
394
395 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
396 globals->arm_glue_size);
397
398 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
399 s->contents = foo;
400 }
401
402 if (globals->thumb_glue_size != 0)
403 {
404 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
405
406 s = bfd_get_section_by_name
407 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
408
409 BFD_ASSERT (s != NULL);
410
411 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
412 globals->thumb_glue_size);
413
414 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
415 s->contents = foo;
416 }
417
418 return true;
419 }
420
421 static void
422 record_arm_to_thumb_glue (link_info, h)
423 struct bfd_link_info * link_info;
424 struct elf_link_hash_entry * h;
425 {
426 const char * name = h->root.root.string;
427 asection * s;
428 char * tmp_name;
429 struct elf_link_hash_entry * myh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, false, false, true);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 val = globals->arm_glue_size + 1;
464 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
465 tmp_name, BSF_GLOBAL, s, val,
466 NULL, true, false,
467 (struct bfd_link_hash_entry **) &myh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct elf32_arm_link_hash_table *hash_table;
486 char bind;
487 bfd_vma val;
488
489 hash_table = elf32_arm_hash_table (link_info);
490
491 BFD_ASSERT (hash_table != NULL);
492 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
493
494 s = bfd_get_section_by_name
495 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
496
497 BFD_ASSERT (s != NULL);
498
499 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
500 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
501
502 BFD_ASSERT (tmp_name);
503
504 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
505
506 myh = elf_link_hash_lookup
507 (&(hash_table)->root, tmp_name, false, false, true);
508
509 if (myh != NULL)
510 {
511 /* We've already seen this guy. */
512 free (tmp_name);
513 return;
514 }
515
516 val = hash_table->thumb_glue_size + 1;
517 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
518 tmp_name, BSF_GLOBAL, s, val,
519 NULL, true, false,
520 (struct bfd_link_hash_entry **) &myh);
521
522 /* If we mark it 'Thumb', the disassembler will do a better job. */
523 bind = ELF_ST_BIND (myh->type);
524 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
525
526 free (tmp_name);
527
528 #define CHANGE_TO_ARM "__%s_change_to_arm"
529 #define BACK_FROM_ARM "__%s_back_from_arm"
530
531 /* Allocate another symbol to mark where we switch to Arm mode. */
532 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
533 + strlen (CHANGE_TO_ARM) + 1);
534
535 BFD_ASSERT (tmp_name);
536
537 sprintf (tmp_name, CHANGE_TO_ARM, name);
538
539 myh = NULL;
540
541 val = hash_table->thumb_glue_size + 4,
542 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
543 tmp_name, BSF_LOCAL, s, val,
544 NULL, true, false,
545 (struct bfd_link_hash_entry **) &myh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocateable)
568 return true;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return false;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return false;
603
604 sec->gc_mark = 1;
605 }
606
607 return true;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocateable)
624 return true;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return true;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return true;
637 }
638
639 boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocateable)
656 return true;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return true;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, false);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return true;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return false;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return false;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return false;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point
933 to here. */
934 ret_offset = (s->output_offset
935 + my_offset
936 - (input_section->output_offset
937 + offset + addend)
938 - 8);
939
940 tmp = bfd_get_32 (input_bfd, hit_data
941 - input_section->vma);
942
943 bfd_put_32 (output_bfd,
944 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
945 hit_data - input_section->vma);
946
947 return true;
948 }
949
950 /* Arm code calling a Thumb function. */
951
952 static int
953 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
954 hit_data, sym_sec, offset, addend, val)
955 struct bfd_link_info * info;
956 const char * name;
957 bfd * input_bfd;
958 bfd * output_bfd;
959 asection * input_section;
960 bfd_byte * hit_data;
961 asection * sym_sec;
962 bfd_vma offset;
963 bfd_signed_vma addend;
964 bfd_vma val;
965 {
966 unsigned long int tmp;
967 bfd_vma my_offset;
968 asection * s;
969 long int ret_offset;
970 struct elf_link_hash_entry * myh;
971 struct elf32_arm_link_hash_table * globals;
972
973 myh = find_arm_glue (info, name, input_bfd);
974 if (myh == NULL)
975 return false;
976
977 globals = elf32_arm_hash_table (info);
978
979 BFD_ASSERT (globals != NULL);
980 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
981
982 my_offset = myh->root.u.def.value;
983 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
984 ARM2THUMB_GLUE_SECTION_NAME);
985 BFD_ASSERT (s != NULL);
986 BFD_ASSERT (s->contents != NULL);
987 BFD_ASSERT (s->output_section != NULL);
988
989 if ((my_offset & 0x01) == 0x01)
990 {
991 if (sym_sec != NULL
992 && sym_sec->owner != NULL
993 && !INTERWORK_FLAG (sym_sec->owner))
994 {
995 (*_bfd_error_handler)
996 (_("%s(%s): warning: interworking not enabled."),
997 bfd_archive_filename (sym_sec->owner), name);
998 (*_bfd_error_handler)
999 (_(" first occurrence: %s: arm call to thumb"),
1000 bfd_archive_filename (input_bfd));
1001 }
1002
1003 --my_offset;
1004 myh->root.u.def.value = my_offset;
1005
1006 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1007 s->contents + my_offset);
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1010 s->contents + my_offset + 4);
1011
1012 /* It's a thumb address. Add the low order bit. */
1013 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1014 s->contents + my_offset + 8);
1015 }
1016
1017 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1018
1019 tmp = bfd_get_32 (input_bfd, hit_data);
1020 tmp = tmp & 0xFF000000;
1021
1022 /* Somehow these are both 4 too far, so subtract 8. */
1023 ret_offset = (s->output_offset
1024 + my_offset
1025 + s->output_section->vma
1026 - (input_section->output_offset
1027 + input_section->output_section->vma
1028 + offset + addend)
1029 - 8);
1030
1031 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1032
1033 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1034
1035 return true;
1036 }
1037
1038 /* Perform a relocation as part of a final link. */
1039
1040 static bfd_reloc_status_type
1041 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1042 input_section, contents, rel, value,
1043 info, sym_sec, sym_name, sym_flags, h)
1044 reloc_howto_type * howto;
1045 bfd * input_bfd;
1046 bfd * output_bfd;
1047 asection * input_section;
1048 bfd_byte * contents;
1049 Elf_Internal_Rela * rel;
1050 bfd_vma value;
1051 struct bfd_link_info * info;
1052 asection * sym_sec;
1053 const char * sym_name;
1054 int sym_flags;
1055 struct elf_link_hash_entry * h;
1056 {
1057 unsigned long r_type = howto->type;
1058 unsigned long r_symndx;
1059 bfd_byte * hit_data = contents + rel->r_offset;
1060 bfd * dynobj = NULL;
1061 Elf_Internal_Shdr * symtab_hdr;
1062 struct elf_link_hash_entry ** sym_hashes;
1063 bfd_vma * local_got_offsets;
1064 asection * sgot = NULL;
1065 asection * splt = NULL;
1066 asection * sreloc = NULL;
1067 bfd_vma addend;
1068 bfd_signed_vma signed_addend;
1069 struct elf32_arm_link_hash_table * globals;
1070
1071 /* If the start address has been set, then set the EF_ARM_HASENTRY
1072 flag. Setting this more than once is redundant, but the cost is
1073 not too high, and it keeps the code simple.
1074
1075 The test is done here, rather than somewhere else, because the
1076 start address is only set just before the final link commences.
1077
1078 Note - if the user deliberately sets a start address of 0, the
1079 flag will not be set. */
1080 if (bfd_get_start_address (output_bfd) != 0)
1081 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1082
1083 globals = elf32_arm_hash_table (info);
1084
1085 dynobj = elf_hash_table (info)->dynobj;
1086 if (dynobj)
1087 {
1088 sgot = bfd_get_section_by_name (dynobj, ".got");
1089 splt = bfd_get_section_by_name (dynobj, ".plt");
1090 }
1091 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1092 sym_hashes = elf_sym_hashes (input_bfd);
1093 local_got_offsets = elf_local_got_offsets (input_bfd);
1094 r_symndx = ELF32_R_SYM (rel->r_info);
1095
1096 #ifdef USE_REL
1097 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1098
1099 if (addend & ((howto->src_mask + 1) >> 1))
1100 {
1101 signed_addend = -1;
1102 signed_addend &= ~ howto->src_mask;
1103 signed_addend |= addend;
1104 }
1105 else
1106 signed_addend = addend;
1107 #else
1108 addend = signed_addend = rel->r_addend;
1109 #endif
1110
1111 switch (r_type)
1112 {
1113 case R_ARM_NONE:
1114 return bfd_reloc_ok;
1115
1116 case R_ARM_PC24:
1117 case R_ARM_ABS32:
1118 case R_ARM_REL32:
1119 #ifndef OLD_ARM_ABI
1120 case R_ARM_XPC25:
1121 #endif
1122 /* When generating a shared object, these relocations are copied
1123 into the output file to be resolved at run time. */
1124 if (info->shared
1125 && r_symndx != 0
1126 && (r_type != R_ARM_PC24
1127 || (h != NULL
1128 && h->dynindx != -1
1129 && (! info->symbolic
1130 || (h->elf_link_hash_flags
1131 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1132 {
1133 Elf_Internal_Rel outrel;
1134 boolean skip, relocate;
1135
1136 if (sreloc == NULL)
1137 {
1138 const char * name;
1139
1140 name = (bfd_elf_string_from_elf_section
1141 (input_bfd,
1142 elf_elfheader (input_bfd)->e_shstrndx,
1143 elf_section_data (input_section)->rel_hdr.sh_name));
1144 if (name == NULL)
1145 return bfd_reloc_notsupported;
1146
1147 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1148 && strcmp (bfd_get_section_name (input_bfd,
1149 input_section),
1150 name + 4) == 0);
1151
1152 sreloc = bfd_get_section_by_name (dynobj, name);
1153 BFD_ASSERT (sreloc != NULL);
1154 }
1155
1156 skip = false;
1157 relocate = false;
1158
1159 outrel.r_offset =
1160 _bfd_elf_section_offset (output_bfd, info, input_section,
1161 rel->r_offset);
1162 if (outrel.r_offset == (bfd_vma) -1)
1163 skip = true;
1164 else if (outrel.r_offset == (bfd_vma) -2)
1165 skip = true, relocate = true;
1166 outrel.r_offset += (input_section->output_section->vma
1167 + input_section->output_offset);
1168
1169 if (skip)
1170 memset (&outrel, 0, sizeof outrel);
1171 else if (r_type == R_ARM_PC24)
1172 {
1173 BFD_ASSERT (h != NULL && h->dynindx != -1);
1174 if ((input_section->flags & SEC_ALLOC) == 0)
1175 relocate = true;
1176 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1177 }
1178 else
1179 {
1180 if (h == NULL
1181 || ((info->symbolic || h->dynindx == -1)
1182 && (h->elf_link_hash_flags
1183 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1184 {
1185 relocate = true;
1186 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1187 }
1188 else
1189 {
1190 BFD_ASSERT (h->dynindx != -1);
1191 if ((input_section->flags & SEC_ALLOC) == 0)
1192 relocate = true;
1193 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1194 }
1195 }
1196
1197 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1198 (((Elf32_External_Rel *)
1199 sreloc->contents)
1200 + sreloc->reloc_count));
1201 ++sreloc->reloc_count;
1202
1203 /* If this reloc is against an external symbol, we do not want to
1204 fiddle with the addend. Otherwise, we need to include the symbol
1205 value so that it becomes an addend for the dynamic reloc. */
1206 if (! relocate)
1207 return bfd_reloc_ok;
1208
1209 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1210 contents, rel->r_offset, value,
1211 (bfd_vma) 0);
1212 }
1213 else switch (r_type)
1214 {
1215 #ifndef OLD_ARM_ABI
1216 case R_ARM_XPC25: /* Arm BLX instruction. */
1217 #endif
1218 case R_ARM_PC24: /* Arm B/BL instruction */
1219 #ifndef OLD_ARM_ABI
1220 if (r_type == R_ARM_XPC25)
1221 {
1222 /* Check for Arm calling Arm function. */
1223 /* FIXME: Should we translate the instruction into a BL
1224 instruction instead ? */
1225 if (sym_flags != STT_ARM_TFUNC)
1226 (*_bfd_error_handler) (_("\
1227 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1228 bfd_archive_filename (input_bfd),
1229 h ? h->root.root.string : "(local)");
1230 }
1231 else
1232 #endif
1233 {
1234 /* Check for Arm calling Thumb function. */
1235 if (sym_flags == STT_ARM_TFUNC)
1236 {
1237 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1238 input_section, hit_data, sym_sec, rel->r_offset,
1239 signed_addend, value);
1240 return bfd_reloc_ok;
1241 }
1242 }
1243
1244 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1245 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1246 {
1247 /* The old way of doing things. Trearing the addend as a
1248 byte sized field and adding in the pipeline offset. */
1249 value -= (input_section->output_section->vma
1250 + input_section->output_offset);
1251 value -= rel->r_offset;
1252 value += addend;
1253
1254 if (! globals->no_pipeline_knowledge)
1255 value -= 8;
1256 }
1257 else
1258 {
1259 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1260 where:
1261 S is the address of the symbol in the relocation.
1262 P is address of the instruction being relocated.
1263 A is the addend (extracted from the instruction) in bytes.
1264
1265 S is held in 'value'.
1266 P is the base address of the section containing the instruction
1267 plus the offset of the reloc into that section, ie:
1268 (input_section->output_section->vma +
1269 input_section->output_offset +
1270 rel->r_offset).
1271 A is the addend, converted into bytes, ie:
1272 (signed_addend * 4)
1273
1274 Note: None of these operations have knowledge of the pipeline
1275 size of the processor, thus it is up to the assembler to encode
1276 this information into the addend. */
1277 value -= (input_section->output_section->vma
1278 + input_section->output_offset);
1279 value -= rel->r_offset;
1280 value += (signed_addend << howto->size);
1281
1282 /* Previous versions of this code also used to add in the pipeline
1283 offset here. This is wrong because the linker is not supposed
1284 to know about such things, and one day it might change. In order
1285 to support old binaries that need the old behaviour however, so
1286 we attempt to detect which ABI was used to create the reloc. */
1287 if (! globals->no_pipeline_knowledge)
1288 {
1289 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1290
1291 i_ehdrp = elf_elfheader (input_bfd);
1292
1293 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1294 value -= 8;
1295 }
1296 }
1297
1298 signed_addend = value;
1299 signed_addend >>= howto->rightshift;
1300
1301 /* It is not an error for an undefined weak reference to be
1302 out of range. Any program that branches to such a symbol
1303 is going to crash anyway, so there is no point worrying
1304 about getting the destination exactly right. */
1305 if (! h || h->root.type != bfd_link_hash_undefweak)
1306 {
1307 /* Perform a signed range check. */
1308 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1309 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1310 return bfd_reloc_overflow;
1311 }
1312
1313 #ifndef OLD_ARM_ABI
1314 /* If necessary set the H bit in the BLX instruction. */
1315 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1316 value = (signed_addend & howto->dst_mask)
1317 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1318 | (1 << 24);
1319 else
1320 #endif
1321 value = (signed_addend & howto->dst_mask)
1322 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1323 break;
1324
1325 case R_ARM_ABS32:
1326 value += addend;
1327 if (sym_flags == STT_ARM_TFUNC)
1328 value |= 1;
1329 break;
1330
1331 case R_ARM_REL32:
1332 value -= (input_section->output_section->vma
1333 + input_section->output_offset + rel->r_offset);
1334 value += addend;
1335 break;
1336 }
1337
1338 bfd_put_32 (input_bfd, value, hit_data);
1339 return bfd_reloc_ok;
1340
1341 case R_ARM_ABS8:
1342 value += addend;
1343 if ((long) value > 0x7f || (long) value < -0x80)
1344 return bfd_reloc_overflow;
1345
1346 bfd_put_8 (input_bfd, value, hit_data);
1347 return bfd_reloc_ok;
1348
1349 case R_ARM_ABS16:
1350 value += addend;
1351
1352 if ((long) value > 0x7fff || (long) value < -0x8000)
1353 return bfd_reloc_overflow;
1354
1355 bfd_put_16 (input_bfd, value, hit_data);
1356 return bfd_reloc_ok;
1357
1358 case R_ARM_ABS12:
1359 /* Support ldr and str instruction for the arm */
1360 /* Also thumb b (unconditional branch). ??? Really? */
1361 value += addend;
1362
1363 if ((long) value > 0x7ff || (long) value < -0x800)
1364 return bfd_reloc_overflow;
1365
1366 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1367 bfd_put_32 (input_bfd, value, hit_data);
1368 return bfd_reloc_ok;
1369
1370 case R_ARM_THM_ABS5:
1371 /* Support ldr and str instructions for the thumb. */
1372 #ifdef USE_REL
1373 /* Need to refetch addend. */
1374 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1375 /* ??? Need to determine shift amount from operand size. */
1376 addend >>= howto->rightshift;
1377 #endif
1378 value += addend;
1379
1380 /* ??? Isn't value unsigned? */
1381 if ((long) value > 0x1f || (long) value < -0x10)
1382 return bfd_reloc_overflow;
1383
1384 /* ??? Value needs to be properly shifted into place first. */
1385 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1386 bfd_put_16 (input_bfd, value, hit_data);
1387 return bfd_reloc_ok;
1388
1389 #ifndef OLD_ARM_ABI
1390 case R_ARM_THM_XPC22:
1391 #endif
1392 case R_ARM_THM_PC22:
1393 /* Thumb BL (branch long instruction). */
1394 {
1395 bfd_vma relocation;
1396 boolean overflow = false;
1397 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1398 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1399 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1400 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1401 bfd_vma check;
1402 bfd_signed_vma signed_check;
1403
1404 #ifdef USE_REL
1405 /* Need to refetch the addend and squish the two 11 bit pieces
1406 together. */
1407 {
1408 bfd_vma upper = upper_insn & 0x7ff;
1409 bfd_vma lower = lower_insn & 0x7ff;
1410 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1411 addend = (upper << 12) | (lower << 1);
1412 signed_addend = addend;
1413 }
1414 #endif
1415 #ifndef OLD_ARM_ABI
1416 if (r_type == R_ARM_THM_XPC22)
1417 {
1418 /* Check for Thumb to Thumb call. */
1419 /* FIXME: Should we translate the instruction into a BL
1420 instruction instead ? */
1421 if (sym_flags == STT_ARM_TFUNC)
1422 (*_bfd_error_handler) (_("\
1423 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1424 bfd_archive_filename (input_bfd),
1425 h ? h->root.root.string : "(local)");
1426 }
1427 else
1428 #endif
1429 {
1430 /* If it is not a call to Thumb, assume call to Arm.
1431 If it is a call relative to a section name, then it is not a
1432 function call at all, but rather a long jump. */
1433 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1434 {
1435 if (elf32_thumb_to_arm_stub
1436 (info, sym_name, input_bfd, output_bfd, input_section,
1437 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1438 return bfd_reloc_ok;
1439 else
1440 return bfd_reloc_dangerous;
1441 }
1442 }
1443
1444 relocation = value + signed_addend;
1445
1446 relocation -= (input_section->output_section->vma
1447 + input_section->output_offset
1448 + rel->r_offset);
1449
1450 if (! globals->no_pipeline_knowledge)
1451 {
1452 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1453
1454 i_ehdrp = elf_elfheader (input_bfd);
1455
1456 /* Previous versions of this code also used to add in the pipline
1457 offset here. This is wrong because the linker is not supposed
1458 to know about such things, and one day it might change. In order
1459 to support old binaries that need the old behaviour however, so
1460 we attempt to detect which ABI was used to create the reloc. */
1461 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1462 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1463 || i_ehdrp->e_ident[EI_OSABI] == 0)
1464 relocation += 4;
1465 }
1466
1467 check = relocation >> howto->rightshift;
1468
1469 /* If this is a signed value, the rightshift just dropped
1470 leading 1 bits (assuming twos complement). */
1471 if ((bfd_signed_vma) relocation >= 0)
1472 signed_check = check;
1473 else
1474 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1475
1476 /* Assumes two's complement. */
1477 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1478 overflow = true;
1479
1480 #ifndef OLD_ARM_ABI
1481 if (r_type == R_ARM_THM_XPC22
1482 && ((lower_insn & 0x1800) == 0x0800))
1483 /* For a BLX instruction, make sure that the relocation is rounded up
1484 to a word boundary. This follows the semantics of the instruction
1485 which specifies that bit 1 of the target address will come from bit
1486 1 of the base address. */
1487 relocation = (relocation + 2) & ~ 3;
1488 #endif
1489 /* Put RELOCATION back into the insn. */
1490 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1491 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1492
1493 /* Put the relocated value back in the object file: */
1494 bfd_put_16 (input_bfd, upper_insn, hit_data);
1495 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1496
1497 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1498 }
1499 break;
1500
1501 case R_ARM_THM_PC11:
1502 /* Thumb B (branch) instruction). */
1503 {
1504 bfd_vma relocation;
1505 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1506 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1507 bfd_vma check;
1508 bfd_signed_vma signed_check;
1509
1510 #ifdef USE_REL
1511 /* Need to refetch addend. */
1512 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1513 /* ??? Need to determine shift amount from operand size. */
1514 addend >>= howto->rightshift;
1515 #endif
1516 relocation = value + addend;
1517
1518 relocation -= (input_section->output_section->vma
1519 + input_section->output_offset
1520 + rel->r_offset);
1521
1522 check = relocation >> howto->rightshift;
1523
1524 /* If this is a signed value, the rightshift just
1525 dropped leading 1 bits (assuming twos complement). */
1526 if ((bfd_signed_vma) relocation >= 0)
1527 signed_check = check;
1528 else
1529 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1530
1531 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1532
1533 bfd_put_16 (input_bfd, relocation, hit_data);
1534
1535 /* Assumes two's complement. */
1536 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1537 return bfd_reloc_overflow;
1538
1539 return bfd_reloc_ok;
1540 }
1541
1542 case R_ARM_GNU_VTINHERIT:
1543 case R_ARM_GNU_VTENTRY:
1544 return bfd_reloc_ok;
1545
1546 case R_ARM_COPY:
1547 return bfd_reloc_notsupported;
1548
1549 case R_ARM_GLOB_DAT:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_JUMP_SLOT:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_RELATIVE:
1556 return bfd_reloc_notsupported;
1557
1558 case R_ARM_GOTOFF:
1559 /* Relocation is relative to the start of the
1560 global offset table. */
1561
1562 BFD_ASSERT (sgot != NULL);
1563 if (sgot == NULL)
1564 return bfd_reloc_notsupported;
1565
1566 /* If we are addressing a Thumb function, we need to adjust the
1567 address by one, so that attempts to call the function pointer will
1568 correctly interpret it as Thumb code. */
1569 if (sym_flags == STT_ARM_TFUNC)
1570 value += 1;
1571
1572 /* Note that sgot->output_offset is not involved in this
1573 calculation. We always want the start of .got. If we
1574 define _GLOBAL_OFFSET_TABLE in a different way, as is
1575 permitted by the ABI, we might have to change this
1576 calculation. */
1577 value -= sgot->output_section->vma;
1578 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1579 contents, rel->r_offset, value,
1580 (bfd_vma) 0);
1581
1582 case R_ARM_GOTPC:
1583 /* Use global offset table as symbol value. */
1584 BFD_ASSERT (sgot != NULL);
1585
1586 if (sgot == NULL)
1587 return bfd_reloc_notsupported;
1588
1589 value = sgot->output_section->vma;
1590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1591 contents, rel->r_offset, value,
1592 (bfd_vma) 0);
1593
1594 case R_ARM_GOT32:
1595 /* Relocation is to the entry for this symbol in the
1596 global offset table. */
1597 if (sgot == NULL)
1598 return bfd_reloc_notsupported;
1599
1600 if (h != NULL)
1601 {
1602 bfd_vma off;
1603
1604 off = h->got.offset;
1605 BFD_ASSERT (off != (bfd_vma) -1);
1606
1607 if (!elf_hash_table (info)->dynamic_sections_created ||
1608 (info->shared && (info->symbolic || h->dynindx == -1)
1609 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1610 {
1611 /* This is actually a static link, or it is a -Bsymbolic link
1612 and the symbol is defined locally. We must initialize this
1613 entry in the global offset table. Since the offset must
1614 always be a multiple of 4, we use the least significant bit
1615 to record whether we have initialized it already.
1616
1617 When doing a dynamic link, we create a .rel.got relocation
1618 entry to initialize the value. This is done in the
1619 finish_dynamic_symbol routine. */
1620 if ((off & 1) != 0)
1621 off &= ~1;
1622 else
1623 {
1624 /* If we are addressing a Thumb function, we need to
1625 adjust the address by one, so that attempts to
1626 call the function pointer will correctly
1627 interpret it as Thumb code. */
1628 if (sym_flags == STT_ARM_TFUNC)
1629 value |= 1;
1630
1631 bfd_put_32 (output_bfd, value, sgot->contents + off);
1632 h->got.offset |= 1;
1633 }
1634 }
1635
1636 value = sgot->output_offset + off;
1637 }
1638 else
1639 {
1640 bfd_vma off;
1641
1642 BFD_ASSERT (local_got_offsets != NULL &&
1643 local_got_offsets[r_symndx] != (bfd_vma) -1);
1644
1645 off = local_got_offsets[r_symndx];
1646
1647 /* The offset must always be a multiple of 4. We use the
1648 least significant bit to record whether we have already
1649 generated the necessary reloc. */
1650 if ((off & 1) != 0)
1651 off &= ~1;
1652 else
1653 {
1654 bfd_put_32 (output_bfd, value, sgot->contents + off);
1655
1656 if (info->shared)
1657 {
1658 asection * srelgot;
1659 Elf_Internal_Rel outrel;
1660
1661 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1662 BFD_ASSERT (srelgot != NULL);
1663
1664 outrel.r_offset = (sgot->output_section->vma
1665 + sgot->output_offset
1666 + off);
1667 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1668 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1669 (((Elf32_External_Rel *)
1670 srelgot->contents)
1671 + srelgot->reloc_count));
1672 ++srelgot->reloc_count;
1673 }
1674
1675 local_got_offsets[r_symndx] |= 1;
1676 }
1677
1678 value = sgot->output_offset + off;
1679 }
1680
1681 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1682 contents, rel->r_offset, value,
1683 (bfd_vma) 0);
1684
1685 case R_ARM_PLT32:
1686 /* Relocation is to the entry for this symbol in the
1687 procedure linkage table. */
1688
1689 /* Resolve a PLT32 reloc against a local symbol directly,
1690 without using the procedure linkage table. */
1691 if (h == NULL)
1692 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1693 contents, rel->r_offset, value,
1694 (bfd_vma) 0);
1695
1696 if (h->plt.offset == (bfd_vma) -1)
1697 /* We didn't make a PLT entry for this symbol. This
1698 happens when statically linking PIC code, or when
1699 using -Bsymbolic. */
1700 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1701 contents, rel->r_offset, value,
1702 (bfd_vma) 0);
1703
1704 BFD_ASSERT(splt != NULL);
1705 if (splt == NULL)
1706 return bfd_reloc_notsupported;
1707
1708 value = (splt->output_section->vma
1709 + splt->output_offset
1710 + h->plt.offset);
1711 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1712 contents, rel->r_offset, value,
1713 (bfd_vma) 0);
1714
1715 case R_ARM_SBREL32:
1716 return bfd_reloc_notsupported;
1717
1718 case R_ARM_AMP_VCALL9:
1719 return bfd_reloc_notsupported;
1720
1721 case R_ARM_RSBREL32:
1722 return bfd_reloc_notsupported;
1723
1724 case R_ARM_THM_RPC22:
1725 return bfd_reloc_notsupported;
1726
1727 case R_ARM_RREL32:
1728 return bfd_reloc_notsupported;
1729
1730 case R_ARM_RABS32:
1731 return bfd_reloc_notsupported;
1732
1733 case R_ARM_RPC24:
1734 return bfd_reloc_notsupported;
1735
1736 case R_ARM_RBASE:
1737 return bfd_reloc_notsupported;
1738
1739 default:
1740 return bfd_reloc_notsupported;
1741 }
1742 }
1743
1744 #ifdef USE_REL
1745 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1746 static void
1747 arm_add_to_rel (abfd, address, howto, increment)
1748 bfd * abfd;
1749 bfd_byte * address;
1750 reloc_howto_type * howto;
1751 bfd_signed_vma increment;
1752 {
1753 bfd_signed_vma addend;
1754
1755 if (howto->type == R_ARM_THM_PC22)
1756 {
1757 int upper_insn, lower_insn;
1758 int upper, lower;
1759
1760 upper_insn = bfd_get_16 (abfd, address);
1761 lower_insn = bfd_get_16 (abfd, address + 2);
1762 upper = upper_insn & 0x7ff;
1763 lower = lower_insn & 0x7ff;
1764
1765 addend = (upper << 12) | (lower << 1);
1766 addend += increment;
1767 addend >>= 1;
1768
1769 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1770 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1771
1772 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1773 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1774 }
1775 else
1776 {
1777 bfd_vma contents;
1778
1779 contents = bfd_get_32 (abfd, address);
1780
1781 /* Get the (signed) value from the instruction. */
1782 addend = contents & howto->src_mask;
1783 if (addend & ((howto->src_mask + 1) >> 1))
1784 {
1785 bfd_signed_vma mask;
1786
1787 mask = -1;
1788 mask &= ~ howto->src_mask;
1789 addend |= mask;
1790 }
1791
1792 /* Add in the increment, (which is a byte value). */
1793 switch (howto->type)
1794 {
1795 default:
1796 addend += increment;
1797 break;
1798
1799 case R_ARM_PC24:
1800 addend <<= howto->size;
1801 addend += increment;
1802
1803 /* Should we check for overflow here ? */
1804
1805 /* Drop any undesired bits. */
1806 addend >>= howto->rightshift;
1807 break;
1808 }
1809
1810 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1811
1812 bfd_put_32 (abfd, contents, address);
1813 }
1814 }
1815 #endif /* USE_REL */
1816
1817 /* Relocate an ARM ELF section. */
1818 static boolean
1819 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1820 contents, relocs, local_syms, local_sections)
1821 bfd * output_bfd;
1822 struct bfd_link_info * info;
1823 bfd * input_bfd;
1824 asection * input_section;
1825 bfd_byte * contents;
1826 Elf_Internal_Rela * relocs;
1827 Elf_Internal_Sym * local_syms;
1828 asection ** local_sections;
1829 {
1830 Elf_Internal_Shdr * symtab_hdr;
1831 struct elf_link_hash_entry ** sym_hashes;
1832 Elf_Internal_Rela * rel;
1833 Elf_Internal_Rela * relend;
1834 const char * name;
1835
1836 #ifndef USE_REL
1837 if (info->relocateable)
1838 return true;
1839 #endif
1840
1841 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1842 sym_hashes = elf_sym_hashes (input_bfd);
1843
1844 rel = relocs;
1845 relend = relocs + input_section->reloc_count;
1846 for (; rel < relend; rel++)
1847 {
1848 int r_type;
1849 reloc_howto_type * howto;
1850 unsigned long r_symndx;
1851 Elf_Internal_Sym * sym;
1852 asection * sec;
1853 struct elf_link_hash_entry * h;
1854 bfd_vma relocation;
1855 bfd_reloc_status_type r;
1856 arelent bfd_reloc;
1857
1858 r_symndx = ELF32_R_SYM (rel->r_info);
1859 r_type = ELF32_R_TYPE (rel->r_info);
1860
1861 if ( r_type == R_ARM_GNU_VTENTRY
1862 || r_type == R_ARM_GNU_VTINHERIT)
1863 continue;
1864
1865 #ifdef USE_REL
1866 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1867 (Elf_Internal_Rel *) rel);
1868 #else
1869 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1870 #endif
1871 howto = bfd_reloc.howto;
1872
1873 #ifdef USE_REL
1874 if (info->relocateable)
1875 {
1876 /* This is a relocateable link. We don't have to change
1877 anything, unless the reloc is against a section symbol,
1878 in which case we have to adjust according to where the
1879 section symbol winds up in the output section. */
1880 if (r_symndx < symtab_hdr->sh_info)
1881 {
1882 sym = local_syms + r_symndx;
1883 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1884 {
1885 sec = local_sections[r_symndx];
1886 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1887 howto,
1888 (bfd_signed_vma) (sec->output_offset
1889 + sym->st_value));
1890 }
1891 }
1892
1893 continue;
1894 }
1895 #endif
1896
1897 /* This is a final link. */
1898 h = NULL;
1899 sym = NULL;
1900 sec = NULL;
1901
1902 if (r_symndx < symtab_hdr->sh_info)
1903 {
1904 sym = local_syms + r_symndx;
1905 sec = local_sections[r_symndx];
1906 #ifdef USE_REL
1907 relocation = (sec->output_section->vma
1908 + sec->output_offset
1909 + sym->st_value);
1910 if ((sec->flags & SEC_MERGE)
1911 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1912 {
1913 asection *msec;
1914 bfd_vma addend, value;
1915
1916 if (howto->rightshift)
1917 {
1918 (*_bfd_error_handler)
1919 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1920 bfd_archive_filename (input_bfd),
1921 bfd_get_section_name (input_bfd, input_section),
1922 (long) rel->r_offset, howto->name);
1923 return false;
1924 }
1925
1926 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1927
1928 /* Get the (signed) value from the instruction. */
1929 addend = value & howto->src_mask;
1930 if (addend & ((howto->src_mask + 1) >> 1))
1931 {
1932 bfd_signed_vma mask;
1933
1934 mask = -1;
1935 mask &= ~ howto->src_mask;
1936 addend |= mask;
1937 }
1938 msec = sec;
1939 addend =
1940 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1941 - relocation;
1942 addend += msec->output_section->vma + msec->output_offset;
1943 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1944 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1945 }
1946 #else
1947 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1948 #endif
1949 }
1950 else
1951 {
1952 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1953
1954 while ( h->root.type == bfd_link_hash_indirect
1955 || h->root.type == bfd_link_hash_warning)
1956 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1957
1958 if ( h->root.type == bfd_link_hash_defined
1959 || h->root.type == bfd_link_hash_defweak)
1960 {
1961 int relocation_needed = 1;
1962
1963 sec = h->root.u.def.section;
1964
1965 /* In these cases, we don't need the relocation value.
1966 We check specially because in some obscure cases
1967 sec->output_section will be NULL. */
1968 switch (r_type)
1969 {
1970 case R_ARM_PC24:
1971 case R_ARM_ABS32:
1972 case R_ARM_THM_PC22:
1973 if (info->shared
1974 && (
1975 (!info->symbolic && h->dynindx != -1)
1976 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1977 )
1978 && ((input_section->flags & SEC_ALLOC) != 0
1979 /* DWARF will emit R_ARM_ABS32 relocations in its
1980 sections against symbols defined externally
1981 in shared libraries. We can't do anything
1982 with them here. */
1983 || ((input_section->flags & SEC_DEBUGGING) != 0
1984 && (h->elf_link_hash_flags
1985 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1986 )
1987 relocation_needed = 0;
1988 break;
1989
1990 case R_ARM_GOTPC:
1991 relocation_needed = 0;
1992 break;
1993
1994 case R_ARM_GOT32:
1995 if (elf_hash_table(info)->dynamic_sections_created
1996 && (!info->shared
1997 || (!info->symbolic && h->dynindx != -1)
1998 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1999 )
2000 )
2001 relocation_needed = 0;
2002 break;
2003
2004 case R_ARM_PLT32:
2005 if (h->plt.offset != (bfd_vma)-1)
2006 relocation_needed = 0;
2007 break;
2008
2009 default:
2010 if (sec->output_section == NULL)
2011 {
2012 (*_bfd_error_handler)
2013 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2014 bfd_archive_filename (input_bfd),
2015 r_type,
2016 h->root.root.string,
2017 bfd_get_section_name (input_bfd, input_section));
2018 relocation_needed = 0;
2019 }
2020 }
2021
2022 if (relocation_needed)
2023 relocation = h->root.u.def.value
2024 + sec->output_section->vma
2025 + sec->output_offset;
2026 else
2027 relocation = 0;
2028 }
2029 else if (h->root.type == bfd_link_hash_undefweak)
2030 relocation = 0;
2031 else if (info->shared && !info->symbolic
2032 && !info->no_undefined
2033 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2034 relocation = 0;
2035 else
2036 {
2037 if (!((*info->callbacks->undefined_symbol)
2038 (info, h->root.root.string, input_bfd,
2039 input_section, rel->r_offset,
2040 (!info->shared || info->no_undefined
2041 || ELF_ST_VISIBILITY (h->other)))))
2042 return false;
2043 relocation = 0;
2044 }
2045 }
2046
2047 if (h != NULL)
2048 name = h->root.root.string;
2049 else
2050 {
2051 name = (bfd_elf_string_from_elf_section
2052 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2053 if (name == NULL || *name == '\0')
2054 name = bfd_section_name (input_bfd, sec);
2055 }
2056
2057 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2058 input_section, contents, rel,
2059 relocation, info, sec, name,
2060 (h ? ELF_ST_TYPE (h->type) :
2061 ELF_ST_TYPE (sym->st_info)), h);
2062
2063 if (r != bfd_reloc_ok)
2064 {
2065 const char * msg = (const char *) 0;
2066
2067 switch (r)
2068 {
2069 case bfd_reloc_overflow:
2070 /* If the overflowing reloc was to an undefined symbol,
2071 we have already printed one error message and there
2072 is no point complaining again. */
2073 if ((! h ||
2074 h->root.type != bfd_link_hash_undefined)
2075 && (!((*info->callbacks->reloc_overflow)
2076 (info, name, howto->name, (bfd_vma) 0,
2077 input_bfd, input_section, rel->r_offset))))
2078 return false;
2079 break;
2080
2081 case bfd_reloc_undefined:
2082 if (!((*info->callbacks->undefined_symbol)
2083 (info, name, input_bfd, input_section,
2084 rel->r_offset, true)))
2085 return false;
2086 break;
2087
2088 case bfd_reloc_outofrange:
2089 msg = _("internal error: out of range error");
2090 goto common_error;
2091
2092 case bfd_reloc_notsupported:
2093 msg = _("internal error: unsupported relocation error");
2094 goto common_error;
2095
2096 case bfd_reloc_dangerous:
2097 msg = _("internal error: dangerous error");
2098 goto common_error;
2099
2100 default:
2101 msg = _("internal error: unknown error");
2102 /* fall through */
2103
2104 common_error:
2105 if (!((*info->callbacks->warning)
2106 (info, msg, name, input_bfd, input_section,
2107 rel->r_offset)))
2108 return false;
2109 break;
2110 }
2111 }
2112 }
2113
2114 return true;
2115 }
2116
2117 /* Function to keep ARM specific flags in the ELF header. */
2118 static boolean
2119 elf32_arm_set_private_flags (abfd, flags)
2120 bfd *abfd;
2121 flagword flags;
2122 {
2123 if (elf_flags_init (abfd)
2124 && elf_elfheader (abfd)->e_flags != flags)
2125 {
2126 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2127 {
2128 if (flags & EF_ARM_INTERWORK)
2129 (*_bfd_error_handler) (_("\
2130 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2131 bfd_archive_filename (abfd));
2132 else
2133 _bfd_error_handler (_("\
2134 Warning: Clearing the interworking flag of %s due to outside request"),
2135 bfd_archive_filename (abfd));
2136 }
2137 }
2138 else
2139 {
2140 elf_elfheader (abfd)->e_flags = flags;
2141 elf_flags_init (abfd) = true;
2142 }
2143
2144 return true;
2145 }
2146
2147 /* Copy backend specific data from one object module to another. */
2148
2149 static boolean
2150 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2151 bfd *ibfd;
2152 bfd *obfd;
2153 {
2154 flagword in_flags;
2155 flagword out_flags;
2156
2157 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2158 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2159 return true;
2160
2161 in_flags = elf_elfheader (ibfd)->e_flags;
2162 out_flags = elf_elfheader (obfd)->e_flags;
2163
2164 if (elf_flags_init (obfd)
2165 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2166 && in_flags != out_flags)
2167 {
2168 /* Cannot mix APCS26 and APCS32 code. */
2169 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2170 return false;
2171
2172 /* Cannot mix float APCS and non-float APCS code. */
2173 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2174 return false;
2175
2176 /* If the src and dest have different interworking flags
2177 then turn off the interworking bit. */
2178 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2179 {
2180 if (out_flags & EF_ARM_INTERWORK)
2181 _bfd_error_handler (_("\
2182 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2183 bfd_get_filename (obfd),
2184 bfd_archive_filename (ibfd));
2185
2186 in_flags &= ~EF_ARM_INTERWORK;
2187 }
2188
2189 /* Likewise for PIC, though don't warn for this case. */
2190 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2191 in_flags &= ~EF_ARM_PIC;
2192 }
2193
2194 elf_elfheader (obfd)->e_flags = in_flags;
2195 elf_flags_init (obfd) = true;
2196
2197 return true;
2198 }
2199
2200 /* Merge backend specific data from an object file to the output
2201 object file when linking. */
2202
2203 static boolean
2204 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2205 bfd * ibfd;
2206 bfd * obfd;
2207 {
2208 flagword out_flags;
2209 flagword in_flags;
2210 boolean flags_compatible = true;
2211 boolean null_input_bfd = true;
2212 asection *sec;
2213
2214 /* Check if we have the same endianess. */
2215 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2216 return false;
2217
2218 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2219 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2220 return true;
2221
2222 /* The input BFD must have had its flags initialised. */
2223 /* The following seems bogus to me -- The flags are initialized in
2224 the assembler but I don't think an elf_flags_init field is
2225 written into the object. */
2226 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2227
2228 in_flags = elf_elfheader (ibfd)->e_flags;
2229 out_flags = elf_elfheader (obfd)->e_flags;
2230
2231 if (!elf_flags_init (obfd))
2232 {
2233 /* If the input is the default architecture and had the default
2234 flags then do not bother setting the flags for the output
2235 architecture, instead allow future merges to do this. If no
2236 future merges ever set these flags then they will retain their
2237 uninitialised values, which surprise surprise, correspond
2238 to the default values. */
2239 if (bfd_get_arch_info (ibfd)->the_default
2240 && elf_elfheader (ibfd)->e_flags == 0)
2241 return true;
2242
2243 elf_flags_init (obfd) = true;
2244 elf_elfheader (obfd)->e_flags = in_flags;
2245
2246 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2247 && bfd_get_arch_info (obfd)->the_default)
2248 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2249
2250 return true;
2251 }
2252
2253 /* Identical flags must be compatible. */
2254 if (in_flags == out_flags)
2255 return true;
2256
2257 /* Check to see if the input BFD actually contains any sections.
2258 If not, its flags may not have been initialised either, but it cannot
2259 actually cause any incompatibility. */
2260 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2261 {
2262 /* Ignore synthetic glue sections. */
2263 if (strcmp (sec->name, ".glue_7")
2264 && strcmp (sec->name, ".glue_7t"))
2265 {
2266 null_input_bfd = false;
2267 break;
2268 }
2269 }
2270 if (null_input_bfd)
2271 return true;
2272
2273 /* Complain about various flag mismatches. */
2274 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2275 {
2276 _bfd_error_handler (_("\
2277 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2278 bfd_archive_filename (ibfd),
2279 (in_flags & EF_ARM_EABIMASK) >> 24,
2280 bfd_get_filename (obfd),
2281 (out_flags & EF_ARM_EABIMASK) >> 24);
2282 return false;
2283 }
2284
2285 /* Not sure what needs to be checked for EABI versions >= 1. */
2286 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2287 {
2288 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2289 {
2290 _bfd_error_handler (_("\
2291 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2292 bfd_archive_filename (ibfd),
2293 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2294 bfd_get_filename (obfd),
2295 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2296 flags_compatible = false;
2297 }
2298
2299 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2300 {
2301 if (in_flags & EF_ARM_APCS_FLOAT)
2302 _bfd_error_handler (_("\
2303 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2304 bfd_archive_filename (ibfd),
2305 bfd_get_filename (obfd));
2306 else
2307 _bfd_error_handler (_("\
2308 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2309 bfd_archive_filename (ibfd),
2310 bfd_get_filename (obfd));
2311
2312 flags_compatible = false;
2313 }
2314
2315 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2316 {
2317 if (in_flags & EF_ARM_VFP_FLOAT)
2318 _bfd_error_handler (_("\
2319 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2320 bfd_archive_filename (ibfd),
2321 bfd_get_filename (obfd));
2322 else
2323 _bfd_error_handler (_("\
2324 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2325 bfd_archive_filename (ibfd),
2326 bfd_get_filename (obfd));
2327
2328 flags_compatible = false;
2329 }
2330
2331 #ifdef EF_ARM_SOFT_FLOAT
2332 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2333 {
2334 /* We can allow interworking between code that is VFP format
2335 layout, and uses either soft float or integer regs for
2336 passing floating point arguments and results. We already
2337 know that the APCS_FLOAT flags match; similarly for VFP
2338 flags. */
2339 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2340 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2341 {
2342 if (in_flags & EF_ARM_SOFT_FLOAT)
2343 _bfd_error_handler (_("\
2344 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2345 bfd_archive_filename (ibfd),
2346 bfd_get_filename (obfd));
2347 else
2348 _bfd_error_handler (_("\
2349 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2350 bfd_archive_filename (ibfd),
2351 bfd_get_filename (obfd));
2352
2353 flags_compatible = false;
2354 }
2355 }
2356 #endif
2357
2358 /* Interworking mismatch is only a warning. */
2359 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2360 {
2361 if (in_flags & EF_ARM_INTERWORK)
2362 {
2363 _bfd_error_handler (_("\
2364 Warning: %s supports interworking, whereas %s does not"),
2365 bfd_archive_filename (ibfd),
2366 bfd_get_filename (obfd));
2367 }
2368 else
2369 {
2370 _bfd_error_handler (_("\
2371 Warning: %s does not support interworking, whereas %s does"),
2372 bfd_archive_filename (ibfd),
2373 bfd_get_filename (obfd));
2374 }
2375 }
2376 }
2377
2378 return flags_compatible;
2379 }
2380
2381 /* Display the flags field. */
2382
2383 static boolean
2384 elf32_arm_print_private_bfd_data (abfd, ptr)
2385 bfd *abfd;
2386 PTR ptr;
2387 {
2388 FILE * file = (FILE *) ptr;
2389 unsigned long flags;
2390
2391 BFD_ASSERT (abfd != NULL && ptr != NULL);
2392
2393 /* Print normal ELF private data. */
2394 _bfd_elf_print_private_bfd_data (abfd, ptr);
2395
2396 flags = elf_elfheader (abfd)->e_flags;
2397 /* Ignore init flag - it may not be set, despite the flags field
2398 containing valid data. */
2399
2400 /* xgettext:c-format */
2401 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2402
2403 switch (EF_ARM_EABI_VERSION (flags))
2404 {
2405 case EF_ARM_EABI_UNKNOWN:
2406 /* The following flag bits are GNU extenstions and not part of the
2407 official ARM ELF extended ABI. Hence they are only decoded if
2408 the EABI version is not set. */
2409 if (flags & EF_ARM_INTERWORK)
2410 fprintf (file, _(" [interworking enabled]"));
2411
2412 if (flags & EF_ARM_APCS_26)
2413 fprintf (file, " [APCS-26]");
2414 else
2415 fprintf (file, " [APCS-32]");
2416
2417 if (flags & EF_ARM_VFP_FLOAT)
2418 fprintf (file, _(" [VFP float format]"));
2419 else
2420 fprintf (file, _(" [FPA float format]"));
2421
2422 if (flags & EF_ARM_APCS_FLOAT)
2423 fprintf (file, _(" [floats passed in float registers]"));
2424
2425 if (flags & EF_ARM_PIC)
2426 fprintf (file, _(" [position independent]"));
2427
2428 if (flags & EF_ARM_NEW_ABI)
2429 fprintf (file, _(" [new ABI]"));
2430
2431 if (flags & EF_ARM_OLD_ABI)
2432 fprintf (file, _(" [old ABI]"));
2433
2434 if (flags & EF_ARM_SOFT_FLOAT)
2435 fprintf (file, _(" [software FP]"));
2436
2437 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2438 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2439 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2440 break;
2441
2442 case EF_ARM_EABI_VER1:
2443 fprintf (file, _(" [Version1 EABI]"));
2444
2445 if (flags & EF_ARM_SYMSARESORTED)
2446 fprintf (file, _(" [sorted symbol table]"));
2447 else
2448 fprintf (file, _(" [unsorted symbol table]"));
2449
2450 flags &= ~ EF_ARM_SYMSARESORTED;
2451 break;
2452
2453 case EF_ARM_EABI_VER2:
2454 fprintf (file, _(" [Version2 EABI]"));
2455
2456 if (flags & EF_ARM_SYMSARESORTED)
2457 fprintf (file, _(" [sorted symbol table]"));
2458 else
2459 fprintf (file, _(" [unsorted symbol table]"));
2460
2461 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2462 fprintf (file, _(" [dynamic symbols use segment index]"));
2463
2464 if (flags & EF_ARM_MAPSYMSFIRST)
2465 fprintf (file, _(" [mapping symbols precede others]"));
2466
2467 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2468 | EF_ARM_MAPSYMSFIRST);
2469 break;
2470
2471 default:
2472 fprintf (file, _(" <EABI version unrecognised>"));
2473 break;
2474 }
2475
2476 flags &= ~ EF_ARM_EABIMASK;
2477
2478 if (flags & EF_ARM_RELEXEC)
2479 fprintf (file, _(" [relocatable executable]"));
2480
2481 if (flags & EF_ARM_HASENTRY)
2482 fprintf (file, _(" [has entry point]"));
2483
2484 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2485
2486 if (flags)
2487 fprintf (file, _("<Unrecognised flag bits set>"));
2488
2489 fputc ('\n', file);
2490
2491 return true;
2492 }
2493
2494 static int
2495 elf32_arm_get_symbol_type (elf_sym, type)
2496 Elf_Internal_Sym * elf_sym;
2497 int type;
2498 {
2499 switch (ELF_ST_TYPE (elf_sym->st_info))
2500 {
2501 case STT_ARM_TFUNC:
2502 return ELF_ST_TYPE (elf_sym->st_info);
2503
2504 case STT_ARM_16BIT:
2505 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2506 This allows us to distinguish between data used by Thumb instructions
2507 and non-data (which is probably code) inside Thumb regions of an
2508 executable. */
2509 if (type != STT_OBJECT)
2510 return ELF_ST_TYPE (elf_sym->st_info);
2511 break;
2512
2513 default:
2514 break;
2515 }
2516
2517 return type;
2518 }
2519
2520 static asection *
2521 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2522 asection *sec;
2523 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2524 Elf_Internal_Rela *rel;
2525 struct elf_link_hash_entry *h;
2526 Elf_Internal_Sym *sym;
2527 {
2528 if (h != NULL)
2529 {
2530 switch (ELF32_R_TYPE (rel->r_info))
2531 {
2532 case R_ARM_GNU_VTINHERIT:
2533 case R_ARM_GNU_VTENTRY:
2534 break;
2535
2536 default:
2537 switch (h->root.type)
2538 {
2539 case bfd_link_hash_defined:
2540 case bfd_link_hash_defweak:
2541 return h->root.u.def.section;
2542
2543 case bfd_link_hash_common:
2544 return h->root.u.c.p->section;
2545
2546 default:
2547 break;
2548 }
2549 }
2550 }
2551 else
2552 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2553
2554 return NULL;
2555 }
2556
2557 /* Update the got entry reference counts for the section being removed. */
2558
2559 static boolean
2560 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2561 bfd *abfd ATTRIBUTE_UNUSED;
2562 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2563 asection *sec ATTRIBUTE_UNUSED;
2564 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2565 {
2566 /* We don't support garbage collection of GOT and PLT relocs yet. */
2567 return true;
2568 }
2569
2570 /* Look through the relocs for a section during the first phase. */
2571
2572 static boolean
2573 elf32_arm_check_relocs (abfd, info, sec, relocs)
2574 bfd * abfd;
2575 struct bfd_link_info * info;
2576 asection * sec;
2577 const Elf_Internal_Rela * relocs;
2578 {
2579 Elf_Internal_Shdr * symtab_hdr;
2580 struct elf_link_hash_entry ** sym_hashes;
2581 struct elf_link_hash_entry ** sym_hashes_end;
2582 const Elf_Internal_Rela * rel;
2583 const Elf_Internal_Rela * rel_end;
2584 bfd * dynobj;
2585 asection * sgot, *srelgot, *sreloc;
2586 bfd_vma * local_got_offsets;
2587
2588 if (info->relocateable)
2589 return true;
2590
2591 sgot = srelgot = sreloc = NULL;
2592
2593 dynobj = elf_hash_table (info)->dynobj;
2594 local_got_offsets = elf_local_got_offsets (abfd);
2595
2596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2597 sym_hashes = elf_sym_hashes (abfd);
2598 sym_hashes_end = sym_hashes
2599 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2600
2601 if (!elf_bad_symtab (abfd))
2602 sym_hashes_end -= symtab_hdr->sh_info;
2603
2604 rel_end = relocs + sec->reloc_count;
2605 for (rel = relocs; rel < rel_end; rel++)
2606 {
2607 struct elf_link_hash_entry *h;
2608 unsigned long r_symndx;
2609
2610 r_symndx = ELF32_R_SYM (rel->r_info);
2611 if (r_symndx < symtab_hdr->sh_info)
2612 h = NULL;
2613 else
2614 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2615
2616 /* Some relocs require a global offset table. */
2617 if (dynobj == NULL)
2618 {
2619 switch (ELF32_R_TYPE (rel->r_info))
2620 {
2621 case R_ARM_GOT32:
2622 case R_ARM_GOTOFF:
2623 case R_ARM_GOTPC:
2624 elf_hash_table (info)->dynobj = dynobj = abfd;
2625 if (! _bfd_elf_create_got_section (dynobj, info))
2626 return false;
2627 break;
2628
2629 default:
2630 break;
2631 }
2632 }
2633
2634 switch (ELF32_R_TYPE (rel->r_info))
2635 {
2636 case R_ARM_GOT32:
2637 /* This symbol requires a global offset table entry. */
2638 if (sgot == NULL)
2639 {
2640 sgot = bfd_get_section_by_name (dynobj, ".got");
2641 BFD_ASSERT (sgot != NULL);
2642 }
2643
2644 /* Get the got relocation section if necessary. */
2645 if (srelgot == NULL
2646 && (h != NULL || info->shared))
2647 {
2648 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2649
2650 /* If no got relocation section, make one and initialize. */
2651 if (srelgot == NULL)
2652 {
2653 srelgot = bfd_make_section (dynobj, ".rel.got");
2654 if (srelgot == NULL
2655 || ! bfd_set_section_flags (dynobj, srelgot,
2656 (SEC_ALLOC
2657 | SEC_LOAD
2658 | SEC_HAS_CONTENTS
2659 | SEC_IN_MEMORY
2660 | SEC_LINKER_CREATED
2661 | SEC_READONLY))
2662 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2663 return false;
2664 }
2665 }
2666
2667 if (h != NULL)
2668 {
2669 if (h->got.offset != (bfd_vma) -1)
2670 /* We have already allocated space in the .got. */
2671 break;
2672
2673 h->got.offset = sgot->_raw_size;
2674
2675 /* Make sure this symbol is output as a dynamic symbol. */
2676 if (h->dynindx == -1)
2677 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2678 return false;
2679
2680 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2681 }
2682 else
2683 {
2684 /* This is a global offset table entry for a local
2685 symbol. */
2686 if (local_got_offsets == NULL)
2687 {
2688 bfd_size_type size;
2689 unsigned int i;
2690
2691 size = symtab_hdr->sh_info;
2692 size *= sizeof (bfd_vma);
2693 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2694 if (local_got_offsets == NULL)
2695 return false;
2696 elf_local_got_offsets (abfd) = local_got_offsets;
2697 for (i = 0; i < symtab_hdr->sh_info; i++)
2698 local_got_offsets[i] = (bfd_vma) -1;
2699 }
2700
2701 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2702 /* We have already allocated space in the .got. */
2703 break;
2704
2705 local_got_offsets[r_symndx] = sgot->_raw_size;
2706
2707 if (info->shared)
2708 /* If we are generating a shared object, we need to
2709 output a R_ARM_RELATIVE reloc so that the dynamic
2710 linker can adjust this GOT entry. */
2711 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2712 }
2713
2714 sgot->_raw_size += 4;
2715 break;
2716
2717 case R_ARM_PLT32:
2718 /* This symbol requires a procedure linkage table entry. We
2719 actually build the entry in adjust_dynamic_symbol,
2720 because this might be a case of linking PIC code which is
2721 never referenced by a dynamic object, in which case we
2722 don't need to generate a procedure linkage table entry
2723 after all. */
2724
2725 /* If this is a local symbol, we resolve it directly without
2726 creating a procedure linkage table entry. */
2727 if (h == NULL)
2728 continue;
2729
2730 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2731 break;
2732
2733 case R_ARM_ABS32:
2734 case R_ARM_REL32:
2735 case R_ARM_PC24:
2736 /* If we are creating a shared library, and this is a reloc
2737 against a global symbol, or a non PC relative reloc
2738 against a local symbol, then we need to copy the reloc
2739 into the shared library. However, if we are linking with
2740 -Bsymbolic, we do not need to copy a reloc against a
2741 global symbol which is defined in an object we are
2742 including in the link (i.e., DEF_REGULAR is set). At
2743 this point we have not seen all the input files, so it is
2744 possible that DEF_REGULAR is not set now but will be set
2745 later (it is never cleared). We account for that
2746 possibility below by storing information in the
2747 pcrel_relocs_copied field of the hash table entry. */
2748 if (info->shared
2749 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2750 || (h != NULL
2751 && (! info->symbolic
2752 || (h->elf_link_hash_flags
2753 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2754 {
2755 /* When creating a shared object, we must copy these
2756 reloc types into the output file. We create a reloc
2757 section in dynobj and make room for this reloc. */
2758 if (sreloc == NULL)
2759 {
2760 const char * name;
2761
2762 name = (bfd_elf_string_from_elf_section
2763 (abfd,
2764 elf_elfheader (abfd)->e_shstrndx,
2765 elf_section_data (sec)->rel_hdr.sh_name));
2766 if (name == NULL)
2767 return false;
2768
2769 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2770 && strcmp (bfd_get_section_name (abfd, sec),
2771 name + 4) == 0);
2772
2773 sreloc = bfd_get_section_by_name (dynobj, name);
2774 if (sreloc == NULL)
2775 {
2776 flagword flags;
2777
2778 sreloc = bfd_make_section (dynobj, name);
2779 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2780 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2781 if ((sec->flags & SEC_ALLOC) != 0)
2782 flags |= SEC_ALLOC | SEC_LOAD;
2783 if (sreloc == NULL
2784 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2785 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2786 return false;
2787 }
2788 if (sec->flags & SEC_READONLY)
2789 info->flags |= DF_TEXTREL;
2790 }
2791
2792 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2793 /* If we are linking with -Bsymbolic, and this is a
2794 global symbol, we count the number of PC relative
2795 relocations we have entered for this symbol, so that
2796 we can discard them again if the symbol is later
2797 defined by a regular object. Note that this function
2798 is only called if we are using an elf_i386 linker
2799 hash table, which means that h is really a pointer to
2800 an elf_i386_link_hash_entry. */
2801 if (h != NULL && info->symbolic
2802 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2803 {
2804 struct elf32_arm_link_hash_entry * eh;
2805 struct elf32_arm_pcrel_relocs_copied * p;
2806
2807 eh = (struct elf32_arm_link_hash_entry *) h;
2808
2809 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2810 if (p->section == sreloc)
2811 break;
2812
2813 if (p == NULL)
2814 {
2815 p = ((struct elf32_arm_pcrel_relocs_copied *)
2816 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2817 if (p == NULL)
2818 return false;
2819 p->next = eh->pcrel_relocs_copied;
2820 eh->pcrel_relocs_copied = p;
2821 p->section = sreloc;
2822 p->count = 0;
2823 }
2824
2825 ++p->count;
2826 }
2827 }
2828 break;
2829
2830 /* This relocation describes the C++ object vtable hierarchy.
2831 Reconstruct it for later use during GC. */
2832 case R_ARM_GNU_VTINHERIT:
2833 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2834 return false;
2835 break;
2836
2837 /* This relocation describes which C++ vtable entries are actually
2838 used. Record for later use during GC. */
2839 case R_ARM_GNU_VTENTRY:
2840 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2841 return false;
2842 break;
2843 }
2844 }
2845
2846 return true;
2847 }
2848
2849 /* Find the nearest line to a particular section and offset, for error
2850 reporting. This code is a duplicate of the code in elf.c, except
2851 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2852
2853 static boolean
2854 elf32_arm_find_nearest_line
2855 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2856 bfd * abfd;
2857 asection * section;
2858 asymbol ** symbols;
2859 bfd_vma offset;
2860 const char ** filename_ptr;
2861 const char ** functionname_ptr;
2862 unsigned int * line_ptr;
2863 {
2864 boolean found;
2865 const char * filename;
2866 asymbol * func;
2867 bfd_vma low_func;
2868 asymbol ** p;
2869
2870 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2871 filename_ptr, functionname_ptr,
2872 line_ptr, 0,
2873 &elf_tdata (abfd)->dwarf2_find_line_info))
2874 return true;
2875
2876 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2877 &found, filename_ptr,
2878 functionname_ptr, line_ptr,
2879 &elf_tdata (abfd)->line_info))
2880 return false;
2881
2882 if (found)
2883 return true;
2884
2885 if (symbols == NULL)
2886 return false;
2887
2888 filename = NULL;
2889 func = NULL;
2890 low_func = 0;
2891
2892 for (p = symbols; *p != NULL; p++)
2893 {
2894 elf_symbol_type *q;
2895
2896 q = (elf_symbol_type *) *p;
2897
2898 if (bfd_get_section (&q->symbol) != section)
2899 continue;
2900
2901 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2902 {
2903 default:
2904 break;
2905 case STT_FILE:
2906 filename = bfd_asymbol_name (&q->symbol);
2907 break;
2908 case STT_NOTYPE:
2909 case STT_FUNC:
2910 case STT_ARM_TFUNC:
2911 if (q->symbol.section == section
2912 && q->symbol.value >= low_func
2913 && q->symbol.value <= offset)
2914 {
2915 func = (asymbol *) q;
2916 low_func = q->symbol.value;
2917 }
2918 break;
2919 }
2920 }
2921
2922 if (func == NULL)
2923 return false;
2924
2925 *filename_ptr = filename;
2926 *functionname_ptr = bfd_asymbol_name (func);
2927 *line_ptr = 0;
2928
2929 return true;
2930 }
2931
2932 /* Adjust a symbol defined by a dynamic object and referenced by a
2933 regular object. The current definition is in some section of the
2934 dynamic object, but we're not including those sections. We have to
2935 change the definition to something the rest of the link can
2936 understand. */
2937
2938 static boolean
2939 elf32_arm_adjust_dynamic_symbol (info, h)
2940 struct bfd_link_info * info;
2941 struct elf_link_hash_entry * h;
2942 {
2943 bfd * dynobj;
2944 asection * s;
2945 unsigned int power_of_two;
2946
2947 dynobj = elf_hash_table (info)->dynobj;
2948
2949 /* Make sure we know what is going on here. */
2950 BFD_ASSERT (dynobj != NULL
2951 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2952 || h->weakdef != NULL
2953 || ((h->elf_link_hash_flags
2954 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2955 && (h->elf_link_hash_flags
2956 & ELF_LINK_HASH_REF_REGULAR) != 0
2957 && (h->elf_link_hash_flags
2958 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2959
2960 /* If this is a function, put it in the procedure linkage table. We
2961 will fill in the contents of the procedure linkage table later,
2962 when we know the address of the .got section. */
2963 if (h->type == STT_FUNC
2964 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2965 {
2966 if (! info->shared
2967 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2968 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2969 {
2970 /* This case can occur if we saw a PLT32 reloc in an input
2971 file, but the symbol was never referred to by a dynamic
2972 object. In such a case, we don't actually need to build
2973 a procedure linkage table, and we can just do a PC32
2974 reloc instead. */
2975 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2976 return true;
2977 }
2978
2979 /* Make sure this symbol is output as a dynamic symbol. */
2980 if (h->dynindx == -1)
2981 {
2982 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2983 return false;
2984 }
2985
2986 s = bfd_get_section_by_name (dynobj, ".plt");
2987 BFD_ASSERT (s != NULL);
2988
2989 /* If this is the first .plt entry, make room for the special
2990 first entry. */
2991 if (s->_raw_size == 0)
2992 s->_raw_size += PLT_ENTRY_SIZE;
2993
2994 /* If this symbol is not defined in a regular file, and we are
2995 not generating a shared library, then set the symbol to this
2996 location in the .plt. This is required to make function
2997 pointers compare as equal between the normal executable and
2998 the shared library. */
2999 if (! info->shared
3000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3001 {
3002 h->root.u.def.section = s;
3003 h->root.u.def.value = s->_raw_size;
3004 }
3005
3006 h->plt.offset = s->_raw_size;
3007
3008 /* Make room for this entry. */
3009 s->_raw_size += PLT_ENTRY_SIZE;
3010
3011 /* We also need to make an entry in the .got.plt section, which
3012 will be placed in the .got section by the linker script. */
3013 s = bfd_get_section_by_name (dynobj, ".got.plt");
3014 BFD_ASSERT (s != NULL);
3015 s->_raw_size += 4;
3016
3017 /* We also need to make an entry in the .rel.plt section. */
3018
3019 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3020 BFD_ASSERT (s != NULL);
3021 s->_raw_size += sizeof (Elf32_External_Rel);
3022
3023 return true;
3024 }
3025
3026 /* If this is a weak symbol, and there is a real definition, the
3027 processor independent code will have arranged for us to see the
3028 real definition first, and we can just use the same value. */
3029 if (h->weakdef != NULL)
3030 {
3031 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3032 || h->weakdef->root.type == bfd_link_hash_defweak);
3033 h->root.u.def.section = h->weakdef->root.u.def.section;
3034 h->root.u.def.value = h->weakdef->root.u.def.value;
3035 return true;
3036 }
3037
3038 /* This is a reference to a symbol defined by a dynamic object which
3039 is not a function. */
3040
3041 /* If we are creating a shared library, we must presume that the
3042 only references to the symbol are via the global offset table.
3043 For such cases we need not do anything here; the relocations will
3044 be handled correctly by relocate_section. */
3045 if (info->shared)
3046 return true;
3047
3048 /* We must allocate the symbol in our .dynbss section, which will
3049 become part of the .bss section of the executable. There will be
3050 an entry for this symbol in the .dynsym section. The dynamic
3051 object will contain position independent code, so all references
3052 from the dynamic object to this symbol will go through the global
3053 offset table. The dynamic linker will use the .dynsym entry to
3054 determine the address it must put in the global offset table, so
3055 both the dynamic object and the regular object will refer to the
3056 same memory location for the variable. */
3057 s = bfd_get_section_by_name (dynobj, ".dynbss");
3058 BFD_ASSERT (s != NULL);
3059
3060 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3061 copy the initial value out of the dynamic object and into the
3062 runtime process image. We need to remember the offset into the
3063 .rel.bss section we are going to use. */
3064 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3065 {
3066 asection *srel;
3067
3068 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3069 BFD_ASSERT (srel != NULL);
3070 srel->_raw_size += sizeof (Elf32_External_Rel);
3071 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3072 }
3073
3074 /* We need to figure out the alignment required for this symbol. I
3075 have no idea how ELF linkers handle this. */
3076 power_of_two = bfd_log2 (h->size);
3077 if (power_of_two > 3)
3078 power_of_two = 3;
3079
3080 /* Apply the required alignment. */
3081 s->_raw_size = BFD_ALIGN (s->_raw_size,
3082 (bfd_size_type) (1 << power_of_two));
3083 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3084 {
3085 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3086 return false;
3087 }
3088
3089 /* Define the symbol as being at this point in the section. */
3090 h->root.u.def.section = s;
3091 h->root.u.def.value = s->_raw_size;
3092
3093 /* Increment the section size to make room for the symbol. */
3094 s->_raw_size += h->size;
3095
3096 return true;
3097 }
3098
3099 /* Set the sizes of the dynamic sections. */
3100
3101 static boolean
3102 elf32_arm_size_dynamic_sections (output_bfd, info)
3103 bfd * output_bfd ATTRIBUTE_UNUSED;
3104 struct bfd_link_info * info;
3105 {
3106 bfd * dynobj;
3107 asection * s;
3108 boolean plt;
3109 boolean relocs;
3110
3111 dynobj = elf_hash_table (info)->dynobj;
3112 BFD_ASSERT (dynobj != NULL);
3113
3114 if (elf_hash_table (info)->dynamic_sections_created)
3115 {
3116 /* Set the contents of the .interp section to the interpreter. */
3117 if (! info->shared)
3118 {
3119 s = bfd_get_section_by_name (dynobj, ".interp");
3120 BFD_ASSERT (s != NULL);
3121 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3122 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3123 }
3124 }
3125 else
3126 {
3127 /* We may have created entries in the .rel.got section.
3128 However, if we are not creating the dynamic sections, we will
3129 not actually use these entries. Reset the size of .rel.got,
3130 which will cause it to get stripped from the output file
3131 below. */
3132 s = bfd_get_section_by_name (dynobj, ".rel.got");
3133 if (s != NULL)
3134 s->_raw_size = 0;
3135 }
3136
3137 /* If this is a -Bsymbolic shared link, then we need to discard all
3138 PC relative relocs against symbols defined in a regular object.
3139 We allocated space for them in the check_relocs routine, but we
3140 will not fill them in in the relocate_section routine. */
3141 if (info->shared && info->symbolic)
3142 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3143 elf32_arm_discard_copies,
3144 (PTR) NULL);
3145
3146 /* The check_relocs and adjust_dynamic_symbol entry points have
3147 determined the sizes of the various dynamic sections. Allocate
3148 memory for them. */
3149 plt = false;
3150 relocs = false;
3151 for (s = dynobj->sections; s != NULL; s = s->next)
3152 {
3153 const char * name;
3154 boolean strip;
3155
3156 if ((s->flags & SEC_LINKER_CREATED) == 0)
3157 continue;
3158
3159 /* It's OK to base decisions on the section name, because none
3160 of the dynobj section names depend upon the input files. */
3161 name = bfd_get_section_name (dynobj, s);
3162
3163 strip = false;
3164
3165 if (strcmp (name, ".plt") == 0)
3166 {
3167 if (s->_raw_size == 0)
3168 {
3169 /* Strip this section if we don't need it; see the
3170 comment below. */
3171 strip = true;
3172 }
3173 else
3174 {
3175 /* Remember whether there is a PLT. */
3176 plt = true;
3177 }
3178 }
3179 else if (strncmp (name, ".rel", 4) == 0)
3180 {
3181 if (s->_raw_size == 0)
3182 {
3183 /* If we don't need this section, strip it from the
3184 output file. This is mostly to handle .rel.bss and
3185 .rel.plt. We must create both sections in
3186 create_dynamic_sections, because they must be created
3187 before the linker maps input sections to output
3188 sections. The linker does that before
3189 adjust_dynamic_symbol is called, and it is that
3190 function which decides whether anything needs to go
3191 into these sections. */
3192 strip = true;
3193 }
3194 else
3195 {
3196 /* Remember whether there are any reloc sections other
3197 than .rel.plt. */
3198 if (strcmp (name, ".rel.plt") != 0)
3199 relocs = true;
3200
3201 /* We use the reloc_count field as a counter if we need
3202 to copy relocs into the output file. */
3203 s->reloc_count = 0;
3204 }
3205 }
3206 else if (strncmp (name, ".got", 4) != 0)
3207 {
3208 /* It's not one of our sections, so don't allocate space. */
3209 continue;
3210 }
3211
3212 if (strip)
3213 {
3214 asection ** spp;
3215
3216 for (spp = &s->output_section->owner->sections;
3217 *spp != NULL;
3218 spp = &(*spp)->next)
3219 {
3220 if (*spp == s->output_section)
3221 {
3222 bfd_section_list_remove (s->output_section->owner, spp);
3223 --s->output_section->owner->section_count;
3224 break;
3225 }
3226 }
3227 continue;
3228 }
3229
3230 /* Allocate memory for the section contents. */
3231 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3232 if (s->contents == NULL && s->_raw_size != 0)
3233 return false;
3234 }
3235
3236 if (elf_hash_table (info)->dynamic_sections_created)
3237 {
3238 /* Add some entries to the .dynamic section. We fill in the
3239 values later, in elf32_arm_finish_dynamic_sections, but we
3240 must add the entries now so that we get the correct size for
3241 the .dynamic section. The DT_DEBUG entry is filled in by the
3242 dynamic linker and used by the debugger. */
3243 #define add_dynamic_entry(TAG, VAL) \
3244 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3245
3246 if (!info->shared)
3247 {
3248 if (!add_dynamic_entry (DT_DEBUG, 0))
3249 return false;
3250 }
3251
3252 if (plt)
3253 {
3254 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3255 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3256 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3257 || !add_dynamic_entry (DT_JMPREL, 0))
3258 return false;
3259 }
3260
3261 if (relocs)
3262 {
3263 if ( !add_dynamic_entry (DT_REL, 0)
3264 || !add_dynamic_entry (DT_RELSZ, 0)
3265 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3266 return false;
3267 }
3268
3269 if ((info->flags & DF_TEXTREL) != 0)
3270 {
3271 if (!add_dynamic_entry (DT_TEXTREL, 0))
3272 return false;
3273 info->flags |= DF_TEXTREL;
3274 }
3275 }
3276 #undef add_synamic_entry
3277
3278 return true;
3279 }
3280
3281 /* This function is called via elf32_arm_link_hash_traverse if we are
3282 creating a shared object with -Bsymbolic. It discards the space
3283 allocated to copy PC relative relocs against symbols which are
3284 defined in regular objects. We allocated space for them in the
3285 check_relocs routine, but we won't fill them in in the
3286 relocate_section routine. */
3287
3288 static boolean
3289 elf32_arm_discard_copies (h, ignore)
3290 struct elf32_arm_link_hash_entry * h;
3291 PTR ignore ATTRIBUTE_UNUSED;
3292 {
3293 struct elf32_arm_pcrel_relocs_copied * s;
3294
3295 if (h->root.root.type == bfd_link_hash_warning)
3296 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3297
3298 /* We only discard relocs for symbols defined in a regular object. */
3299 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3300 return true;
3301
3302 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3303 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3304
3305 return true;
3306 }
3307
3308 /* Finish up dynamic symbol handling. We set the contents of various
3309 dynamic sections here. */
3310
3311 static boolean
3312 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3313 bfd * output_bfd;
3314 struct bfd_link_info * info;
3315 struct elf_link_hash_entry * h;
3316 Elf_Internal_Sym * sym;
3317 {
3318 bfd * dynobj;
3319
3320 dynobj = elf_hash_table (info)->dynobj;
3321
3322 if (h->plt.offset != (bfd_vma) -1)
3323 {
3324 asection * splt;
3325 asection * sgot;
3326 asection * srel;
3327 bfd_vma plt_index;
3328 bfd_vma got_offset;
3329 Elf_Internal_Rel rel;
3330
3331 /* This symbol has an entry in the procedure linkage table. Set
3332 it up. */
3333
3334 BFD_ASSERT (h->dynindx != -1);
3335
3336 splt = bfd_get_section_by_name (dynobj, ".plt");
3337 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3338 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3339 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3340
3341 /* Get the index in the procedure linkage table which
3342 corresponds to this symbol. This is the index of this symbol
3343 in all the symbols for which we are making plt entries. The
3344 first entry in the procedure linkage table is reserved. */
3345 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3346
3347 /* Get the offset into the .got table of the entry that
3348 corresponds to this function. Each .got entry is 4 bytes.
3349 The first three are reserved. */
3350 got_offset = (plt_index + 3) * 4;
3351
3352 /* Fill in the entry in the procedure linkage table. */
3353 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3354 splt->contents + h->plt.offset + 0);
3355 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3356 splt->contents + h->plt.offset + 4);
3357 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3358 splt->contents + h->plt.offset + 8);
3359 bfd_put_32 (output_bfd,
3360 (sgot->output_section->vma
3361 + sgot->output_offset
3362 + got_offset
3363 - splt->output_section->vma
3364 - splt->output_offset
3365 - h->plt.offset - 12),
3366 splt->contents + h->plt.offset + 12);
3367
3368 /* Fill in the entry in the global offset table. */
3369 bfd_put_32 (output_bfd,
3370 (splt->output_section->vma
3371 + splt->output_offset),
3372 sgot->contents + got_offset);
3373
3374 /* Fill in the entry in the .rel.plt section. */
3375 rel.r_offset = (sgot->output_section->vma
3376 + sgot->output_offset
3377 + got_offset);
3378 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3379 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3380 ((Elf32_External_Rel *) srel->contents
3381 + plt_index));
3382
3383 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3384 {
3385 /* Mark the symbol as undefined, rather than as defined in
3386 the .plt section. Leave the value alone. */
3387 sym->st_shndx = SHN_UNDEF;
3388 /* If the symbol is weak, we do need to clear the value.
3389 Otherwise, the PLT entry would provide a definition for
3390 the symbol even if the symbol wasn't defined anywhere,
3391 and so the symbol would never be NULL. */
3392 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3393 == 0)
3394 sym->st_value = 0;
3395 }
3396 }
3397
3398 if (h->got.offset != (bfd_vma) -1)
3399 {
3400 asection * sgot;
3401 asection * srel;
3402 Elf_Internal_Rel rel;
3403
3404 /* This symbol has an entry in the global offset table. Set it
3405 up. */
3406 sgot = bfd_get_section_by_name (dynobj, ".got");
3407 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3408 BFD_ASSERT (sgot != NULL && srel != NULL);
3409
3410 rel.r_offset = (sgot->output_section->vma
3411 + sgot->output_offset
3412 + (h->got.offset &~ (bfd_vma) 1));
3413
3414 /* If this is a -Bsymbolic link, and the symbol is defined
3415 locally, we just want to emit a RELATIVE reloc. The entry in
3416 the global offset table will already have been initialized in
3417 the relocate_section function. */
3418 if (info->shared
3419 && (info->symbolic || h->dynindx == -1)
3420 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3421 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3422 else
3423 {
3424 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3425 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3426 }
3427
3428 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3429 ((Elf32_External_Rel *) srel->contents
3430 + srel->reloc_count));
3431 ++srel->reloc_count;
3432 }
3433
3434 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3435 {
3436 asection * s;
3437 Elf_Internal_Rel rel;
3438
3439 /* This symbol needs a copy reloc. Set it up. */
3440 BFD_ASSERT (h->dynindx != -1
3441 && (h->root.type == bfd_link_hash_defined
3442 || h->root.type == bfd_link_hash_defweak));
3443
3444 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3445 ".rel.bss");
3446 BFD_ASSERT (s != NULL);
3447
3448 rel.r_offset = (h->root.u.def.value
3449 + h->root.u.def.section->output_section->vma
3450 + h->root.u.def.section->output_offset);
3451 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3452 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3453 ((Elf32_External_Rel *) s->contents
3454 + s->reloc_count));
3455 ++s->reloc_count;
3456 }
3457
3458 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3459 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3460 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3461 sym->st_shndx = SHN_ABS;
3462
3463 return true;
3464 }
3465
3466 /* Finish up the dynamic sections. */
3467
3468 static boolean
3469 elf32_arm_finish_dynamic_sections (output_bfd, info)
3470 bfd * output_bfd;
3471 struct bfd_link_info * info;
3472 {
3473 bfd * dynobj;
3474 asection * sgot;
3475 asection * sdyn;
3476
3477 dynobj = elf_hash_table (info)->dynobj;
3478
3479 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3480 BFD_ASSERT (sgot != NULL);
3481 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3482
3483 if (elf_hash_table (info)->dynamic_sections_created)
3484 {
3485 asection *splt;
3486 Elf32_External_Dyn *dyncon, *dynconend;
3487
3488 splt = bfd_get_section_by_name (dynobj, ".plt");
3489 BFD_ASSERT (splt != NULL && sdyn != NULL);
3490
3491 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3492 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3493
3494 for (; dyncon < dynconend; dyncon++)
3495 {
3496 Elf_Internal_Dyn dyn;
3497 const char * name;
3498 asection * s;
3499
3500 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3501
3502 switch (dyn.d_tag)
3503 {
3504 default:
3505 break;
3506
3507 case DT_PLTGOT:
3508 name = ".got";
3509 goto get_vma;
3510 case DT_JMPREL:
3511 name = ".rel.plt";
3512 get_vma:
3513 s = bfd_get_section_by_name (output_bfd, name);
3514 BFD_ASSERT (s != NULL);
3515 dyn.d_un.d_ptr = s->vma;
3516 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3517 break;
3518
3519 case DT_PLTRELSZ:
3520 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3521 BFD_ASSERT (s != NULL);
3522 if (s->_cooked_size != 0)
3523 dyn.d_un.d_val = s->_cooked_size;
3524 else
3525 dyn.d_un.d_val = s->_raw_size;
3526 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3527 break;
3528
3529 case DT_RELSZ:
3530 /* My reading of the SVR4 ABI indicates that the
3531 procedure linkage table relocs (DT_JMPREL) should be
3532 included in the overall relocs (DT_REL). This is
3533 what Solaris does. However, UnixWare can not handle
3534 that case. Therefore, we override the DT_RELSZ entry
3535 here to make it not include the JMPREL relocs. Since
3536 the linker script arranges for .rel.plt to follow all
3537 other relocation sections, we don't have to worry
3538 about changing the DT_REL entry. */
3539 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3540 if (s != NULL)
3541 {
3542 if (s->_cooked_size != 0)
3543 dyn.d_un.d_val -= s->_cooked_size;
3544 else
3545 dyn.d_un.d_val -= s->_raw_size;
3546 }
3547 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3548 break;
3549
3550 /* Set the bottom bit of DT_INIT/FINI if the
3551 corresponding function is Thumb. */
3552 case DT_INIT:
3553 name = info->init_function;
3554 goto get_sym;
3555 case DT_FINI:
3556 name = info->fini_function;
3557 get_sym:
3558 /* If it wasn't set by elf_bfd_final_link
3559 then there is nothing to ajdust. */
3560 if (dyn.d_un.d_val != 0)
3561 {
3562 struct elf_link_hash_entry * eh;
3563
3564 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3565 false, false, true);
3566 if (eh != (struct elf_link_hash_entry *) NULL
3567 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3568 {
3569 dyn.d_un.d_val |= 1;
3570 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3571 }
3572 }
3573 break;
3574 }
3575 }
3576
3577 /* Fill in the first entry in the procedure linkage table. */
3578 if (splt->_raw_size > 0)
3579 {
3580 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3581 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3582 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3583 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3584 }
3585
3586 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3587 really seem like the right value. */
3588 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3589 }
3590
3591 /* Fill in the first three entries in the global offset table. */
3592 if (sgot->_raw_size > 0)
3593 {
3594 if (sdyn == NULL)
3595 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3596 else
3597 bfd_put_32 (output_bfd,
3598 sdyn->output_section->vma + sdyn->output_offset,
3599 sgot->contents);
3600 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3601 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3602 }
3603
3604 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3605
3606 return true;
3607 }
3608
3609 static void
3610 elf32_arm_post_process_headers (abfd, link_info)
3611 bfd * abfd;
3612 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3613 {
3614 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3615
3616 i_ehdrp = elf_elfheader (abfd);
3617
3618 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3619 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3620 }
3621
3622 static enum elf_reloc_type_class
3623 elf32_arm_reloc_type_class (rela)
3624 const Elf_Internal_Rela *rela;
3625 {
3626 switch ((int) ELF32_R_TYPE (rela->r_info))
3627 {
3628 case R_ARM_RELATIVE:
3629 return reloc_class_relative;
3630 case R_ARM_JUMP_SLOT:
3631 return reloc_class_plt;
3632 case R_ARM_COPY:
3633 return reloc_class_copy;
3634 default:
3635 return reloc_class_normal;
3636 }
3637 }
3638
3639
3640 #define ELF_ARCH bfd_arch_arm
3641 #define ELF_MACHINE_CODE EM_ARM
3642 #ifndef ELF_MAXPAGESIZE
3643 #define ELF_MAXPAGESIZE 0x8000
3644 #endif
3645
3646 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3647 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3648 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3649 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3650 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3651 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3652 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3653
3654 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3655 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3656 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3657 #define elf_backend_check_relocs elf32_arm_check_relocs
3658 #define elf_backend_relocate_section elf32_arm_relocate_section
3659 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3660 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3661 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3662 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3663 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3664 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3665 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3666
3667 #define elf_backend_can_gc_sections 1
3668 #define elf_backend_plt_readonly 1
3669 #define elf_backend_want_got_plt 1
3670 #define elf_backend_want_plt_sym 0
3671 #ifndef USE_REL
3672 #define elf_backend_rela_normal 1
3673 #endif
3674
3675 #define elf_backend_got_header_size 12
3676 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3677
3678 #include "elf32-target.h"
3679