* coff-mips.c (mips_bfd_reloc_type_lookup): Replace
[binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
292
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
298
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
301
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
305
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
308
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
314
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
318
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
321
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
324
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
328
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
332
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
339
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
345
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
366
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
371
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 bfd_release (abfd, ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Build a name for an entry in the stub hash table. */
518
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
525 {
526 char *stub_name;
527 bfd_size_type len;
528
529 if (hash)
530 {
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
534 {
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
539 }
540 }
541 else
542 {
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
546 {
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 return stub_name;
555 }
556
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
559
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
567 {
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
570
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
577
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
581 {
582 stub_entry = hash->stub_cache;
583 }
584 else
585 {
586 char *stub_name;
587
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
591
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (stub_entry == NULL)
595 {
596 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
597 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
598 bfd_archive_filename (input_section->owner),
599 input_section->name,
600 (long) rel->r_offset,
601 stub_name);
602 }
603 else
604 {
605 if (hash != NULL)
606 hash->stub_cache = stub_entry;
607 }
608
609 free (stub_name);
610 }
611
612 return stub_entry;
613 }
614
615 /* Add a new stub entry to the stub hash. Not all fields of the new
616 stub entry are initialised. */
617
618 static struct elf32_hppa_stub_hash_entry *
619 hppa_add_stub (stub_name, section, htab)
620 const char *stub_name;
621 asection *section;
622 struct elf32_hppa_link_hash_table *htab;
623 {
624 asection *link_sec;
625 asection *stub_sec;
626 struct elf32_hppa_stub_hash_entry *stub_entry;
627
628 link_sec = htab->stub_group[section->id].link_sec;
629 stub_sec = htab->stub_group[section->id].stub_sec;
630 if (stub_sec == NULL)
631 {
632 stub_sec = htab->stub_group[link_sec->id].stub_sec;
633 if (stub_sec == NULL)
634 {
635 bfd_size_type len;
636 char *s_name;
637
638 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
639 s_name = bfd_alloc (htab->stub_bfd, len);
640 if (s_name == NULL)
641 return NULL;
642
643 strcpy (s_name, link_sec->name);
644 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
645 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
646 if (stub_sec == NULL)
647 return NULL;
648 htab->stub_group[link_sec->id].stub_sec = stub_sec;
649 }
650 htab->stub_group[section->id].stub_sec = stub_sec;
651 }
652
653 /* Enter this entry into the linker stub hash table. */
654 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
655 true, false);
656 if (stub_entry == NULL)
657 {
658 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
659 bfd_archive_filename (section->owner),
660 stub_name);
661 return NULL;
662 }
663
664 stub_entry->stub_sec = stub_sec;
665 stub_entry->stub_offset = 0;
666 stub_entry->id_sec = link_sec;
667 return stub_entry;
668 }
669
670 /* Determine the type of stub needed, if any, for a call. */
671
672 static enum elf32_hppa_stub_type
673 hppa_type_of_stub (input_sec, rel, hash, destination)
674 asection *input_sec;
675 const Elf_Internal_Rela *rel;
676 struct elf32_hppa_link_hash_entry *hash;
677 bfd_vma destination;
678 {
679 bfd_vma location;
680 bfd_vma branch_offset;
681 bfd_vma max_branch_offset;
682 unsigned int r_type;
683
684 if (hash != NULL
685 && (((hash->elf.root.type == bfd_link_hash_defined
686 || hash->elf.root.type == bfd_link_hash_defweak)
687 && hash->elf.root.u.def.section->output_section == NULL)
688 || (hash->elf.root.type == bfd_link_hash_defweak
689 && hash->elf.dynindx != -1
690 && hash->elf.plt.offset != (bfd_vma) -1)
691 || hash->elf.root.type == bfd_link_hash_undefweak
692 || hash->elf.root.type == bfd_link_hash_undefined
693 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
694 {
695 /* If output_section is NULL, then it's a symbol defined in a
696 shared library. We will need an import stub. Decide between
697 hppa_stub_import and hppa_stub_import_shared later. For
698 shared links we need stubs for undefined or weak syms too;
699 They will presumably be resolved by the dynamic linker. */
700 return hppa_stub_import;
701 }
702
703 /* Determine where the call point is. */
704 location = (input_sec->output_offset
705 + input_sec->output_section->vma
706 + rel->r_offset);
707
708 branch_offset = destination - location - 8;
709 r_type = ELF32_R_TYPE (rel->r_info);
710
711 /* Determine if a long branch stub is needed. parisc branch offsets
712 are relative to the second instruction past the branch, ie. +8
713 bytes on from the branch instruction location. The offset is
714 signed and counts in units of 4 bytes. */
715 if (r_type == (unsigned int) R_PARISC_PCREL17F)
716 {
717 max_branch_offset = (1 << (17-1)) << 2;
718 }
719 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
720 {
721 max_branch_offset = (1 << (12-1)) << 2;
722 }
723 else /* R_PARISC_PCREL22F. */
724 {
725 max_branch_offset = (1 << (22-1)) << 2;
726 }
727
728 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
729 return hppa_stub_long_branch;
730
731 return hppa_stub_none;
732 }
733
734 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
735 IN_ARG contains the link info pointer. */
736
737 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
738 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
739
740 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
741 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
742 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
743
744 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
745 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
746 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
747 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
748
749 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
750 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
751
752 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
753 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
754 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
755 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
756
757 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
758 #define NOP 0x08000240 /* nop */
759 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
760 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
761 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
762
763 #ifndef R19_STUBS
764 #define R19_STUBS 1
765 #endif
766
767 #if R19_STUBS
768 #define LDW_R1_DLT LDW_R1_R19
769 #else
770 #define LDW_R1_DLT LDW_R1_DP
771 #endif
772
773 static boolean
774 hppa_build_one_stub (gen_entry, in_arg)
775 struct bfd_hash_entry *gen_entry;
776 PTR in_arg;
777 {
778 struct elf32_hppa_stub_hash_entry *stub_entry;
779 struct bfd_link_info *info;
780 struct elf32_hppa_link_hash_table *htab;
781 asection *stub_sec;
782 bfd *stub_bfd;
783 bfd_byte *loc;
784 bfd_vma sym_value;
785 bfd_vma insn;
786 bfd_vma off;
787 int val;
788 int size;
789
790 /* Massage our args to the form they really have. */
791 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
792 info = (struct bfd_link_info *) in_arg;
793
794 htab = hppa_link_hash_table (info);
795 stub_sec = stub_entry->stub_sec;
796
797 /* Make a note of the offset within the stubs for this entry. */
798 stub_entry->stub_offset = stub_sec->_raw_size;
799 loc = stub_sec->contents + stub_entry->stub_offset;
800
801 stub_bfd = stub_sec->owner;
802
803 switch (stub_entry->stub_type)
804 {
805 case hppa_stub_long_branch:
806 /* Create the long branch. A long branch is formed with "ldil"
807 loading the upper bits of the target address into a register,
808 then branching with "be" which adds in the lower bits.
809 The "be" has its delay slot nullified. */
810 sym_value = (stub_entry->target_value
811 + stub_entry->target_section->output_offset
812 + stub_entry->target_section->output_section->vma);
813
814 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
815 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
816 bfd_put_32 (stub_bfd, insn, loc);
817
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
819 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
820 bfd_put_32 (stub_bfd, insn, loc + 4);
821
822 size = 8;
823 break;
824
825 case hppa_stub_long_branch_shared:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (stub_entry->target_value
828 + stub_entry->target_section->output_offset
829 + stub_entry->target_section->output_section->vma);
830
831 /* And this is where we are coming from, more or less. */
832 sym_value -= (stub_entry->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
835
836 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
837 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
838 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
839 bfd_put_32 (stub_bfd, insn, loc + 4);
840
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
842 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
843 bfd_put_32 (stub_bfd, insn, loc + 8);
844 size = 12;
845 break;
846
847 case hppa_stub_import:
848 case hppa_stub_import_shared:
849 off = stub_entry->h->elf.plt.offset;
850 if (off >= (bfd_vma) -2)
851 abort ();
852
853 off &= ~ (bfd_vma) 1;
854 sym_value = (off
855 + htab->splt->output_offset
856 + htab->splt->output_section->vma
857 - elf_gp (htab->splt->output_section->owner));
858
859 insn = ADDIL_DP;
860 #if R19_STUBS
861 if (stub_entry->stub_type == hppa_stub_import_shared)
862 insn = ADDIL_R19;
863 #endif
864 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
865 insn = hppa_rebuild_insn ((int) insn, val, 21);
866 bfd_put_32 (stub_bfd, insn, loc);
867
868 /* It is critical to use lrsel/rrsel here because we are using
869 two different offsets (+0 and +4) from sym_value. If we use
870 lsel/rsel then with unfortunate sym_values we will round
871 sym_value+4 up to the next 2k block leading to a mis-match
872 between the lsel and rsel value. */
873 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
874 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
875 bfd_put_32 (stub_bfd, insn, loc + 4);
876
877 if (htab->multi_subspace)
878 {
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 8);
882
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
886 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
887
888 size = 28;
889 }
890 else
891 {
892 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
893 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
894 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
895 bfd_put_32 (stub_bfd, insn, loc + 12);
896
897 size = 16;
898 }
899
900 if (!info->shared
901 && stub_entry->h != NULL
902 && stub_entry->h->pic_call)
903 {
904 /* Build the .plt entry needed to call a PIC function from
905 statically linked code. We don't need any relocs. */
906 bfd *dynobj;
907 struct elf32_hppa_link_hash_entry *eh;
908 bfd_vma value;
909
910 dynobj = htab->elf.dynobj;
911 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
912
913 if (eh->elf.root.type != bfd_link_hash_defined
914 && eh->elf.root.type != bfd_link_hash_defweak)
915 abort ();
916
917 value = (eh->elf.root.u.def.value
918 + eh->elf.root.u.def.section->output_offset
919 + eh->elf.root.u.def.section->output_section->vma);
920
921 /* Fill in the entry in the procedure linkage table.
922
923 The format of a plt entry is
924 <funcaddr>
925 <__gp>. */
926
927 bfd_put_32 (htab->splt->owner, value,
928 htab->splt->contents + off);
929 value = elf_gp (htab->splt->output_section->owner);
930 bfd_put_32 (htab->splt->owner, value,
931 htab->splt->contents + off + 4);
932 }
933 break;
934
935 case hppa_stub_export:
936 /* Branches are relative. This is where we are going to. */
937 sym_value = (stub_entry->target_value
938 + stub_entry->target_section->output_offset
939 + stub_entry->target_section->output_section->vma);
940
941 /* And this is where we are coming from. */
942 sym_value -= (stub_entry->stub_offset
943 + stub_sec->output_offset
944 + stub_sec->output_section->vma);
945
946 if (sym_value - 8 + 0x40000 >= 0x80000)
947 {
948 (*_bfd_error_handler)
949 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
950 bfd_archive_filename (stub_entry->target_section->owner),
951 stub_sec->name,
952 (long) stub_entry->stub_offset,
953 stub_entry->root.string);
954 bfd_set_error (bfd_error_bad_value);
955 return false;
956 }
957
958 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
959 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
960 bfd_put_32 (stub_bfd, insn, loc);
961
962 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
963 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
964 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
965 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
966 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
967
968 /* Point the function symbol at the stub. */
969 stub_entry->h->elf.root.u.def.section = stub_sec;
970 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
971
972 size = 24;
973 break;
974
975 default:
976 BFD_FAIL ();
977 return false;
978 }
979
980 stub_sec->_raw_size += size;
981 return true;
982 }
983
984 #undef LDIL_R1
985 #undef BE_SR4_R1
986 #undef BL_R1
987 #undef ADDIL_R1
988 #undef DEPI_R1
989 #undef ADDIL_DP
990 #undef LDW_R1_R21
991 #undef LDW_R1_DLT
992 #undef LDW_R1_R19
993 #undef ADDIL_R19
994 #undef LDW_R1_DP
995 #undef LDSID_R21_R1
996 #undef MTSP_R1
997 #undef BE_SR0_R21
998 #undef STW_RP
999 #undef BV_R0_R21
1000 #undef BL_RP
1001 #undef NOP
1002 #undef LDW_RP
1003 #undef LDSID_RP_R1
1004 #undef BE_SR0_RP
1005
1006 /* As above, but don't actually build the stub. Just bump offset so
1007 we know stub section sizes. */
1008
1009 static boolean
1010 hppa_size_one_stub (gen_entry, in_arg)
1011 struct bfd_hash_entry *gen_entry;
1012 PTR in_arg;
1013 {
1014 struct elf32_hppa_stub_hash_entry *stub_entry;
1015 struct elf32_hppa_link_hash_table *htab;
1016 int size;
1017
1018 /* Massage our args to the form they really have. */
1019 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1020 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1021
1022 if (stub_entry->stub_type == hppa_stub_long_branch)
1023 size = 8;
1024 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1025 size = 12;
1026 else if (stub_entry->stub_type == hppa_stub_export)
1027 size = 24;
1028 else /* hppa_stub_import or hppa_stub_import_shared. */
1029 {
1030 if (htab->multi_subspace)
1031 size = 28;
1032 else
1033 size = 16;
1034 }
1035
1036 stub_entry->stub_sec->_raw_size += size;
1037 return true;
1038 }
1039
1040 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1041 Additionally we set the default architecture and machine. */
1042
1043 static boolean
1044 elf32_hppa_object_p (abfd)
1045 bfd *abfd;
1046 {
1047 Elf_Internal_Ehdr * i_ehdrp;
1048 unsigned int flags;
1049
1050 i_ehdrp = elf_elfheader (abfd);
1051 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1052 {
1053 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1054 return false;
1055 }
1056 else
1057 {
1058 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1059 return false;
1060 }
1061
1062 flags = i_ehdrp->e_flags;
1063 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1064 {
1065 case EFA_PARISC_1_0:
1066 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1067 case EFA_PARISC_1_1:
1068 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1069 case EFA_PARISC_2_0:
1070 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1071 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1072 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1073 }
1074 return true;
1075 }
1076
1077 /* Undo the generic ELF code's subtraction of section->vma from the
1078 value of each external symbol. */
1079
1080 static boolean
1081 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1082 bfd *abfd ATTRIBUTE_UNUSED;
1083 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1084 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1085 const char **namep ATTRIBUTE_UNUSED;
1086 flagword *flagsp ATTRIBUTE_UNUSED;
1087 asection **secp;
1088 bfd_vma *valp;
1089 {
1090 *valp += (*secp)->vma;
1091 return true;
1092 }
1093
1094 /* Create the .plt and .got sections, and set up our hash table
1095 short-cuts to various dynamic sections. */
1096
1097 static boolean
1098 elf32_hppa_create_dynamic_sections (abfd, info)
1099 bfd *abfd;
1100 struct bfd_link_info *info;
1101 {
1102 struct elf32_hppa_link_hash_table *htab;
1103
1104 /* Don't try to create the .plt and .got twice. */
1105 htab = hppa_link_hash_table (info);
1106 if (htab->splt != NULL)
1107 return true;
1108
1109 /* Call the generic code to do most of the work. */
1110 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1111 return false;
1112
1113 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1114 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1115
1116 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1117 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1118 if (htab->srelgot == NULL
1119 || ! bfd_set_section_flags (abfd, htab->srelgot,
1120 (SEC_ALLOC
1121 | SEC_LOAD
1122 | SEC_HAS_CONTENTS
1123 | SEC_IN_MEMORY
1124 | SEC_LINKER_CREATED
1125 | SEC_READONLY))
1126 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1127 return false;
1128
1129 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1130 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1131
1132 return true;
1133 }
1134
1135 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1136
1137 static void
1138 elf32_hppa_copy_indirect_symbol (dir, ind)
1139 struct elf_link_hash_entry *dir, *ind;
1140 {
1141 struct elf32_hppa_link_hash_entry *edir, *eind;
1142
1143 edir = (struct elf32_hppa_link_hash_entry *) dir;
1144 eind = (struct elf32_hppa_link_hash_entry *) ind;
1145
1146 if (eind->dyn_relocs != NULL)
1147 {
1148 if (edir->dyn_relocs != NULL)
1149 {
1150 struct elf32_hppa_dyn_reloc_entry **pp;
1151 struct elf32_hppa_dyn_reloc_entry *p;
1152
1153 if (ind->root.type == bfd_link_hash_indirect)
1154 abort ();
1155
1156 /* Add reloc counts against the weak sym to the strong sym
1157 list. Merge any entries against the same section. */
1158 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1159 {
1160 struct elf32_hppa_dyn_reloc_entry *q;
1161
1162 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1163 if (q->sec == p->sec)
1164 {
1165 #if RELATIVE_DYNRELOCS
1166 q->relative_count += p->relative_count;
1167 #endif
1168 q->count += p->count;
1169 *pp = p->next;
1170 break;
1171 }
1172 if (q == NULL)
1173 pp = &p->next;
1174 }
1175 *pp = edir->dyn_relocs;
1176 }
1177
1178 edir->dyn_relocs = eind->dyn_relocs;
1179 eind->dyn_relocs = NULL;
1180 }
1181
1182 _bfd_elf_link_hash_copy_indirect (dir, ind);
1183 }
1184
1185 /* Look through the relocs for a section during the first phase, and
1186 calculate needed space in the global offset table, procedure linkage
1187 table, and dynamic reloc sections. At this point we haven't
1188 necessarily read all the input files. */
1189
1190 static boolean
1191 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1192 bfd *abfd;
1193 struct bfd_link_info *info;
1194 asection *sec;
1195 const Elf_Internal_Rela *relocs;
1196 {
1197 Elf_Internal_Shdr *symtab_hdr;
1198 struct elf_link_hash_entry **sym_hashes;
1199 const Elf_Internal_Rela *rel;
1200 const Elf_Internal_Rela *rel_end;
1201 struct elf32_hppa_link_hash_table *htab;
1202 asection *sreloc;
1203 asection *stubreloc;
1204
1205 if (info->relocateable)
1206 return true;
1207
1208 htab = hppa_link_hash_table (info);
1209 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1210 sym_hashes = elf_sym_hashes (abfd);
1211 sreloc = NULL;
1212 stubreloc = NULL;
1213
1214 rel_end = relocs + sec->reloc_count;
1215 for (rel = relocs; rel < rel_end; rel++)
1216 {
1217 enum {
1218 NEED_GOT = 1,
1219 NEED_PLT = 2,
1220 NEED_DYNREL = 4,
1221 PLT_PLABEL = 8
1222 };
1223
1224 unsigned int r_symndx, r_type;
1225 struct elf32_hppa_link_hash_entry *h;
1226 int need_entry;
1227
1228 r_symndx = ELF32_R_SYM (rel->r_info);
1229
1230 if (r_symndx < symtab_hdr->sh_info)
1231 h = NULL;
1232 else
1233 h = ((struct elf32_hppa_link_hash_entry *)
1234 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1235
1236 r_type = ELF32_R_TYPE (rel->r_info);
1237
1238 switch (r_type)
1239 {
1240 case R_PARISC_DLTIND14F:
1241 case R_PARISC_DLTIND14R:
1242 case R_PARISC_DLTIND21L:
1243 /* This symbol requires a global offset table entry. */
1244 need_entry = NEED_GOT;
1245
1246 /* Mark this section as containing PIC code. */
1247 sec->flags |= SEC_HAS_GOT_REF;
1248 break;
1249
1250 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1251 case R_PARISC_PLABEL21L:
1252 case R_PARISC_PLABEL32:
1253 /* If the addend is non-zero, we break badly. */
1254 if (rel->r_addend != 0)
1255 abort ();
1256
1257 /* If we are creating a shared library, then we need to
1258 create a PLT entry for all PLABELs, because PLABELs with
1259 local symbols may be passed via a pointer to another
1260 object. Additionally, output a dynamic relocation
1261 pointing to the PLT entry.
1262 For executables, the original 32-bit ABI allowed two
1263 different styles of PLABELs (function pointers): For
1264 global functions, the PLABEL word points into the .plt
1265 two bytes past a (function address, gp) pair, and for
1266 local functions the PLABEL points directly at the
1267 function. The magic +2 for the first type allows us to
1268 differentiate between the two. As you can imagine, this
1269 is a real pain when it comes to generating code to call
1270 functions indirectly or to compare function pointers.
1271 We avoid the mess by always pointing a PLABEL into the
1272 .plt, even for local functions. */
1273 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1274 break;
1275
1276 case R_PARISC_PCREL12F:
1277 htab->has_12bit_branch = 1;
1278 /* Fall thru. */
1279 case R_PARISC_PCREL17C:
1280 case R_PARISC_PCREL17F:
1281 htab->has_17bit_branch = 1;
1282 /* Fall thru. */
1283 case R_PARISC_PCREL22F:
1284 /* Function calls might need to go through the .plt, and
1285 might require long branch stubs. */
1286 if (h == NULL)
1287 {
1288 /* We know local syms won't need a .plt entry, and if
1289 they need a long branch stub we can't guarantee that
1290 we can reach the stub. So just flag an error later
1291 if we're doing a shared link and find we need a long
1292 branch stub. */
1293 continue;
1294 }
1295 else
1296 {
1297 /* Global symbols will need a .plt entry if they remain
1298 global, and in most cases won't need a long branch
1299 stub. Unfortunately, we have to cater for the case
1300 where a symbol is forced local by versioning, or due
1301 to symbolic linking, and we lose the .plt entry. */
1302 need_entry = NEED_PLT;
1303 if (h->elf.type == STT_PARISC_MILLI)
1304 need_entry = 0;
1305 }
1306 break;
1307
1308 case R_PARISC_SEGBASE: /* Used to set segment base. */
1309 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1310 case R_PARISC_PCREL14F: /* PC relative load/store. */
1311 case R_PARISC_PCREL14R:
1312 case R_PARISC_PCREL17R: /* External branches. */
1313 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1314 /* We don't need to propagate the relocation if linking a
1315 shared object since these are section relative. */
1316 continue;
1317
1318 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1319 case R_PARISC_DPREL14R:
1320 case R_PARISC_DPREL21L:
1321 if (info->shared)
1322 {
1323 (*_bfd_error_handler)
1324 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1325 bfd_archive_filename (abfd),
1326 elf_hppa_howto_table[r_type].name);
1327 bfd_set_error (bfd_error_bad_value);
1328 return false;
1329 }
1330 /* Fall through. */
1331
1332 case R_PARISC_DIR17F: /* Used for external branches. */
1333 case R_PARISC_DIR17R:
1334 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1335 case R_PARISC_DIR14R:
1336 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1337 #if 1
1338 /* Help debug shared library creation. Any of the above
1339 relocs can be used in shared libs, but they may cause
1340 pages to become unshared. */
1341 if (info->shared)
1342 {
1343 (*_bfd_error_handler)
1344 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1345 bfd_archive_filename (abfd),
1346 elf_hppa_howto_table[r_type].name);
1347 }
1348 /* Fall through. */
1349 #endif
1350
1351 case R_PARISC_DIR32: /* .word relocs. */
1352 /* We may want to output a dynamic relocation later. */
1353 need_entry = NEED_DYNREL;
1354 break;
1355
1356 /* This relocation describes the C++ object vtable hierarchy.
1357 Reconstruct it for later use during GC. */
1358 case R_PARISC_GNU_VTINHERIT:
1359 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1360 &h->elf, rel->r_offset))
1361 return false;
1362 continue;
1363
1364 /* This relocation describes which C++ vtable entries are actually
1365 used. Record for later use during GC. */
1366 case R_PARISC_GNU_VTENTRY:
1367 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1368 &h->elf, rel->r_addend))
1369 return false;
1370 continue;
1371
1372 default:
1373 continue;
1374 }
1375
1376 /* Now carry out our orders. */
1377 if (need_entry & NEED_GOT)
1378 {
1379 /* Allocate space for a GOT entry, as well as a dynamic
1380 relocation for this entry. */
1381 if (htab->sgot == NULL)
1382 {
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1386 return false;
1387 }
1388
1389 if (h != NULL)
1390 {
1391 h->elf.got.refcount += 1;
1392 }
1393 else
1394 {
1395 bfd_signed_vma *local_got_refcounts;
1396
1397 /* This is a global offset table entry for a local symbol. */
1398 local_got_refcounts = elf_local_got_refcounts (abfd);
1399 if (local_got_refcounts == NULL)
1400 {
1401 bfd_size_type size;
1402
1403 /* Allocate space for local got offsets and local
1404 plt offsets. Done this way to save polluting
1405 elf_obj_tdata with another target specific
1406 pointer. */
1407 size = symtab_hdr->sh_info;
1408 size *= 2 * sizeof (bfd_signed_vma);
1409 local_got_refcounts = ((bfd_signed_vma *)
1410 bfd_zalloc (abfd, size));
1411 if (local_got_refcounts == NULL)
1412 return false;
1413 elf_local_got_refcounts (abfd) = local_got_refcounts;
1414 }
1415 local_got_refcounts[r_symndx] += 1;
1416 }
1417 }
1418
1419 if (need_entry & NEED_PLT)
1420 {
1421 /* If we are creating a shared library, and this is a reloc
1422 against a weak symbol or a global symbol in a dynamic
1423 object, then we will be creating an import stub and a
1424 .plt entry for the symbol. Similarly, on a normal link
1425 to symbols defined in a dynamic object we'll need the
1426 import stub and a .plt entry. We don't know yet whether
1427 the symbol is defined or not, so make an entry anyway and
1428 clean up later in adjust_dynamic_symbol. */
1429 if ((sec->flags & SEC_ALLOC) != 0)
1430 {
1431 if (h != NULL)
1432 {
1433 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1434 h->elf.plt.refcount += 1;
1435
1436 /* If this .plt entry is for a plabel, mark it so
1437 that adjust_dynamic_symbol will keep the entry
1438 even if it appears to be local. */
1439 if (need_entry & PLT_PLABEL)
1440 h->plabel = 1;
1441 }
1442 else if (need_entry & PLT_PLABEL)
1443 {
1444 bfd_signed_vma *local_got_refcounts;
1445 bfd_signed_vma *local_plt_refcounts;
1446
1447 local_got_refcounts = elf_local_got_refcounts (abfd);
1448 if (local_got_refcounts == NULL)
1449 {
1450 bfd_size_type size;
1451
1452 /* Allocate space for local got offsets and local
1453 plt offsets. */
1454 size = symtab_hdr->sh_info;
1455 size *= 2 * sizeof (bfd_signed_vma);
1456 local_got_refcounts = ((bfd_signed_vma *)
1457 bfd_zalloc (abfd, size));
1458 if (local_got_refcounts == NULL)
1459 return false;
1460 elf_local_got_refcounts (abfd) = local_got_refcounts;
1461 }
1462 local_plt_refcounts = (local_got_refcounts
1463 + symtab_hdr->sh_info);
1464 local_plt_refcounts[r_symndx] += 1;
1465 }
1466 }
1467 }
1468
1469 if (need_entry & NEED_DYNREL)
1470 {
1471 /* Flag this symbol as having a non-got, non-plt reference
1472 so that we generate copy relocs if it turns out to be
1473 dynamic. */
1474 if (h != NULL && !info->shared)
1475 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1476
1477 /* If we are creating a shared library then we need to copy
1478 the reloc into the shared library. However, if we are
1479 linking with -Bsymbolic, we need only copy absolute
1480 relocs or relocs against symbols that are not defined in
1481 an object we are including in the link. PC- or DP- or
1482 DLT-relative relocs against any local sym or global sym
1483 with DEF_REGULAR set, can be discarded. At this point we
1484 have not seen all the input files, so it is possible that
1485 DEF_REGULAR is not set now but will be set later (it is
1486 never cleared). We account for that possibility below by
1487 storing information in the dyn_relocs field of the
1488 hash table entry.
1489
1490 A similar situation to the -Bsymbolic case occurs when
1491 creating shared libraries and symbol visibility changes
1492 render the symbol local.
1493
1494 As it turns out, all the relocs we will be creating here
1495 are absolute, so we cannot remove them on -Bsymbolic
1496 links or visibility changes anyway. A STUB_REL reloc
1497 is absolute too, as in that case it is the reloc in the
1498 stub we will be creating, rather than copying the PCREL
1499 reloc in the branch.
1500
1501 If on the other hand, we are creating an executable, we
1502 may need to keep relocations for symbols satisfied by a
1503 dynamic library if we manage to avoid copy relocs for the
1504 symbol. */
1505 if ((info->shared
1506 && (sec->flags & SEC_ALLOC) != 0
1507 && (IS_ABSOLUTE_RELOC (r_type)
1508 || (h != NULL
1509 && (!info->symbolic
1510 || h->elf.root.type == bfd_link_hash_defweak
1511 || (h->elf.elf_link_hash_flags
1512 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1513 || (!info->shared
1514 && (sec->flags & SEC_ALLOC) != 0
1515 && h != NULL
1516 && (h->elf.root.type == bfd_link_hash_defweak
1517 || (h->elf.elf_link_hash_flags
1518 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1519 {
1520 struct elf32_hppa_dyn_reloc_entry *p;
1521 struct elf32_hppa_dyn_reloc_entry **head;
1522
1523 /* Create a reloc section in dynobj and make room for
1524 this reloc. */
1525 if (sreloc == NULL)
1526 {
1527 char *name;
1528 bfd *dynobj;
1529
1530 name = (bfd_elf_string_from_elf_section
1531 (abfd,
1532 elf_elfheader (abfd)->e_shstrndx,
1533 elf_section_data (sec)->rel_hdr.sh_name));
1534 if (name == NULL)
1535 {
1536 (*_bfd_error_handler)
1537 (_("Could not find relocation section for %s"),
1538 sec->name);
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1541 }
1542
1543 if (htab->elf.dynobj == NULL)
1544 htab->elf.dynobj = abfd;
1545
1546 dynobj = htab->elf.dynobj;
1547 sreloc = bfd_get_section_by_name (dynobj, name);
1548 if (sreloc == NULL)
1549 {
1550 flagword flags;
1551
1552 sreloc = bfd_make_section (dynobj, name);
1553 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1554 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1555 if ((sec->flags & SEC_ALLOC) != 0)
1556 flags |= SEC_ALLOC | SEC_LOAD;
1557 if (sreloc == NULL
1558 || !bfd_set_section_flags (dynobj, sreloc, flags)
1559 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1560 return false;
1561 }
1562
1563 elf_section_data (sec)->sreloc = sreloc;
1564 }
1565
1566 /* If this is a global symbol, we count the number of
1567 relocations we need for this symbol. */
1568 if (h != NULL)
1569 {
1570 head = &h->dyn_relocs;
1571 }
1572 else
1573 {
1574 /* Track dynamic relocs needed for local syms too.
1575 We really need local syms available to do this
1576 easily. Oh well. */
1577
1578 asection *s;
1579 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1580 sec, r_symndx);
1581 if (s == NULL)
1582 return false;
1583
1584 head = ((struct elf32_hppa_dyn_reloc_entry **)
1585 &elf_section_data (s)->local_dynrel);
1586 }
1587
1588 p = *head;
1589 if (p == NULL || p->sec != sec)
1590 {
1591 p = ((struct elf32_hppa_dyn_reloc_entry *)
1592 bfd_alloc (htab->elf.dynobj,
1593 (bfd_size_type) sizeof *p));
1594 if (p == NULL)
1595 return false;
1596 p->next = *head;
1597 *head = p;
1598 p->sec = sec;
1599 p->count = 0;
1600 #if RELATIVE_DYNRELOCS
1601 p->relative_count = 0;
1602 #endif
1603 }
1604
1605 p->count += 1;
1606 #if RELATIVE_DYNRELOCS
1607 if (!IS_ABSOLUTE_RELOC (rtype))
1608 p->relative_count += 1;
1609 #endif
1610 }
1611 }
1612 }
1613
1614 return true;
1615 }
1616
1617 /* Return the section that should be marked against garbage collection
1618 for a given relocation. */
1619
1620 static asection *
1621 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1622 bfd *abfd;
1623 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1624 Elf_Internal_Rela *rel;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1627 {
1628 if (h != NULL)
1629 {
1630 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1631 {
1632 case R_PARISC_GNU_VTINHERIT:
1633 case R_PARISC_GNU_VTENTRY:
1634 break;
1635
1636 default:
1637 switch (h->root.type)
1638 {
1639 case bfd_link_hash_defined:
1640 case bfd_link_hash_defweak:
1641 return h->root.u.def.section;
1642
1643 case bfd_link_hash_common:
1644 return h->root.u.c.p->section;
1645
1646 default:
1647 break;
1648 }
1649 }
1650 }
1651 else
1652 {
1653 if (!(elf_bad_symtab (abfd)
1654 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1655 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1656 && sym->st_shndx != SHN_COMMON))
1657 {
1658 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1659 }
1660 }
1661
1662 return NULL;
1663 }
1664
1665 /* Update the got and plt entry reference counts for the section being
1666 removed. */
1667
1668 static boolean
1669 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1670 bfd *abfd;
1671 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1672 asection *sec;
1673 const Elf_Internal_Rela *relocs;
1674 {
1675 Elf_Internal_Shdr *symtab_hdr;
1676 struct elf_link_hash_entry **sym_hashes;
1677 bfd_signed_vma *local_got_refcounts;
1678 bfd_signed_vma *local_plt_refcounts;
1679 const Elf_Internal_Rela *rel, *relend;
1680 unsigned long r_symndx;
1681 struct elf_link_hash_entry *h;
1682 struct elf32_hppa_link_hash_table *htab;
1683 bfd *dynobj;
1684
1685 elf_section_data (sec)->local_dynrel = NULL;
1686
1687 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1688 sym_hashes = elf_sym_hashes (abfd);
1689 local_got_refcounts = elf_local_got_refcounts (abfd);
1690 local_plt_refcounts = local_got_refcounts;
1691 if (local_plt_refcounts != NULL)
1692 local_plt_refcounts += symtab_hdr->sh_info;
1693 htab = hppa_link_hash_table (info);
1694 dynobj = htab->elf.dynobj;
1695 if (dynobj == NULL)
1696 return true;
1697
1698 relend = relocs + sec->reloc_count;
1699 for (rel = relocs; rel < relend; rel++)
1700 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1701 {
1702 case R_PARISC_DLTIND14F:
1703 case R_PARISC_DLTIND14R:
1704 case R_PARISC_DLTIND21L:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->got.refcount > 0)
1710 h->got.refcount -= 1;
1711 }
1712 else if (local_got_refcounts != NULL)
1713 {
1714 if (local_got_refcounts[r_symndx] > 0)
1715 local_got_refcounts[r_symndx] -= 1;
1716 }
1717 break;
1718
1719 case R_PARISC_PCREL12F:
1720 case R_PARISC_PCREL17C:
1721 case R_PARISC_PCREL17F:
1722 case R_PARISC_PCREL22F:
1723 r_symndx = ELF32_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1725 {
1726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1727 if (h->plt.refcount > 0)
1728 h->plt.refcount -= 1;
1729 }
1730 break;
1731
1732 case R_PARISC_PLABEL14R:
1733 case R_PARISC_PLABEL21L:
1734 case R_PARISC_PLABEL32:
1735 r_symndx = ELF32_R_SYM (rel->r_info);
1736 if (r_symndx >= symtab_hdr->sh_info)
1737 {
1738 struct elf32_hppa_link_hash_entry *eh;
1739 struct elf32_hppa_dyn_reloc_entry **pp;
1740 struct elf32_hppa_dyn_reloc_entry *p;
1741
1742 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1743
1744 if (h->plt.refcount > 0)
1745 h->plt.refcount -= 1;
1746
1747 eh = (struct elf32_hppa_link_hash_entry *) h;
1748
1749 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1750 if (p->sec == sec)
1751 {
1752 #if RELATIVE_DYNRELOCS
1753 if (!IS_ABSOLUTE_RELOC (rtype))
1754 p->relative_count -= 1;
1755 #endif
1756 p->count -= 1;
1757 if (p->count == 0)
1758 *pp = p->next;
1759 break;
1760 }
1761 }
1762 else if (local_plt_refcounts != NULL)
1763 {
1764 if (local_plt_refcounts[r_symndx] > 0)
1765 local_plt_refcounts[r_symndx] -= 1;
1766 }
1767 break;
1768
1769 case R_PARISC_DIR32:
1770 r_symndx = ELF32_R_SYM (rel->r_info);
1771 if (r_symndx >= symtab_hdr->sh_info)
1772 {
1773 struct elf32_hppa_link_hash_entry *eh;
1774 struct elf32_hppa_dyn_reloc_entry **pp;
1775 struct elf32_hppa_dyn_reloc_entry *p;
1776
1777 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1778
1779 eh = (struct elf32_hppa_link_hash_entry *) h;
1780
1781 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1782 if (p->sec == sec)
1783 {
1784 #if RELATIVE_DYNRELOCS
1785 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1786 p->relative_count -= 1;
1787 #endif
1788 p->count -= 1;
1789 if (p->count == 0)
1790 *pp = p->next;
1791 break;
1792 }
1793 }
1794 break;
1795
1796 default:
1797 break;
1798 }
1799
1800 return true;
1801 }
1802
1803 /* Our own version of hide_symbol, so that we can keep plt entries for
1804 plabels. */
1805
1806 static void
1807 elf32_hppa_hide_symbol (info, h)
1808 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1809 struct elf_link_hash_entry *h;
1810 {
1811 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1812 h->dynindx = -1;
1813 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1814 {
1815 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1816 h->plt.offset = (bfd_vma) -1;
1817 }
1818 }
1819
1820 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1821 will be called from elflink.h. If elflink.h doesn't call our
1822 finish_dynamic_symbol routine, we'll need to do something about
1823 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1824 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1825 ((DYN) \
1826 && ((INFO)->shared \
1827 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1828 && ((H)->dynindx != -1 \
1829 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1830
1831 /* Adjust a symbol defined by a dynamic object and referenced by a
1832 regular object. The current definition is in some section of the
1833 dynamic object, but we're not including those sections. We have to
1834 change the definition to something the rest of the link can
1835 understand. */
1836
1837 static boolean
1838 elf32_hppa_adjust_dynamic_symbol (info, h)
1839 struct bfd_link_info *info;
1840 struct elf_link_hash_entry *h;
1841 {
1842 struct elf32_hppa_link_hash_table *htab;
1843 struct elf32_hppa_link_hash_entry *eh;
1844 struct elf32_hppa_dyn_reloc_entry *p;
1845 asection *s;
1846 unsigned int power_of_two;
1847
1848 /* If this is a function, put it in the procedure linkage table. We
1849 will fill in the contents of the procedure linkage table later,
1850 when we know the address of the .got section. */
1851 if (h->type == STT_FUNC
1852 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1853 {
1854 if (!info->shared
1855 && h->plt.refcount > 0
1856 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1857 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1858 {
1859 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1860 }
1861
1862 if (h->plt.refcount <= 0
1863 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1864 && h->root.type != bfd_link_hash_defweak
1865 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1866 && (!info->shared || info->symbolic)))
1867 {
1868 /* The .plt entry is not needed when:
1869 a) Garbage collection has removed all references to the
1870 symbol, or
1871 b) We know for certain the symbol is defined in this
1872 object, and it's not a weak definition, nor is the symbol
1873 used by a plabel relocation. Either this object is the
1874 application or we are doing a shared symbolic link. */
1875
1876 /* As a special sop to the hppa ABI, we keep a .plt entry
1877 for functions in sections containing PIC code. */
1878 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1879 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1880 else
1881 {
1882 h->plt.offset = (bfd_vma) -1;
1883 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1884 }
1885 }
1886
1887 return true;
1888 }
1889 else
1890 h->plt.offset = (bfd_vma) -1;
1891
1892 /* If this is a weak symbol, and there is a real definition, the
1893 processor independent code will have arranged for us to see the
1894 real definition first, and we can just use the same value. */
1895 if (h->weakdef != NULL)
1896 {
1897 if (h->weakdef->root.type != bfd_link_hash_defined
1898 && h->weakdef->root.type != bfd_link_hash_defweak)
1899 abort ();
1900 h->root.u.def.section = h->weakdef->root.u.def.section;
1901 h->root.u.def.value = h->weakdef->root.u.def.value;
1902 return true;
1903 }
1904
1905 /* This is a reference to a symbol defined by a dynamic object which
1906 is not a function. */
1907
1908 /* If we are creating a shared library, we must presume that the
1909 only references to the symbol are via the global offset table.
1910 For such cases we need not do anything here; the relocations will
1911 be handled correctly by relocate_section. */
1912 if (info->shared)
1913 return true;
1914
1915 /* If there are no references to this symbol that do not use the
1916 GOT, we don't need to generate a copy reloc. */
1917 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1918 return true;
1919
1920 eh = (struct elf32_hppa_link_hash_entry *) h;
1921 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1922 {
1923 s = p->sec->output_section;
1924 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1925 break;
1926 }
1927
1928 /* If we didn't find any dynamic relocs in read-only sections, then
1929 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1930 if (p == NULL)
1931 {
1932 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1933 return true;
1934 }
1935
1936 /* We must allocate the symbol in our .dynbss section, which will
1937 become part of the .bss section of the executable. There will be
1938 an entry for this symbol in the .dynsym section. The dynamic
1939 object will contain position independent code, so all references
1940 from the dynamic object to this symbol will go through the global
1941 offset table. The dynamic linker will use the .dynsym entry to
1942 determine the address it must put in the global offset table, so
1943 both the dynamic object and the regular object will refer to the
1944 same memory location for the variable. */
1945
1946 htab = hppa_link_hash_table (info);
1947
1948 /* We must generate a COPY reloc to tell the dynamic linker to
1949 copy the initial value out of the dynamic object and into the
1950 runtime process image. */
1951 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1952 {
1953 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1954 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1955 }
1956
1957 /* We need to figure out the alignment required for this symbol. I
1958 have no idea how other ELF linkers handle this. */
1959
1960 power_of_two = bfd_log2 (h->size);
1961 if (power_of_two > 3)
1962 power_of_two = 3;
1963
1964 /* Apply the required alignment. */
1965 s = htab->sdynbss;
1966 s->_raw_size = BFD_ALIGN (s->_raw_size,
1967 (bfd_size_type) (1 << power_of_two));
1968 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1969 {
1970 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1971 return false;
1972 }
1973
1974 /* Define the symbol as being at this point in the section. */
1975 h->root.u.def.section = s;
1976 h->root.u.def.value = s->_raw_size;
1977
1978 /* Increment the section size to make room for the symbol. */
1979 s->_raw_size += h->size;
1980
1981 return true;
1982 }
1983
1984 /* Called via elf_link_hash_traverse to create .plt entries for an
1985 application that uses statically linked PIC functions. Similar to
1986 the first part of elf32_hppa_adjust_dynamic_symbol. */
1987
1988 static boolean
1989 mark_PIC_calls (h, inf)
1990 struct elf_link_hash_entry *h;
1991 PTR inf ATTRIBUTE_UNUSED;
1992 {
1993 if (! (h->plt.refcount > 0
1994 && (h->root.type == bfd_link_hash_defined
1995 || h->root.type == bfd_link_hash_defweak)
1996 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1997 {
1998 h->plt.offset = (bfd_vma) -1;
1999 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2000 return true;
2001 }
2002
2003 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2004 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2005 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2006
2007 return true;
2008 }
2009
2010 /* Allocate space in the .plt for entries that won't have relocations.
2011 ie. pic_call and plabel entries. */
2012
2013 static boolean
2014 allocate_plt_static (h, inf)
2015 struct elf_link_hash_entry *h;
2016 PTR inf;
2017 {
2018 struct bfd_link_info *info;
2019 struct elf32_hppa_link_hash_table *htab;
2020 asection *s;
2021
2022 if (h->root.type == bfd_link_hash_indirect
2023 || h->root.type == bfd_link_hash_warning)
2024 return true;
2025
2026 info = (struct bfd_link_info *) inf;
2027 htab = hppa_link_hash_table (info);
2028 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2029 {
2030 /* Make an entry in the .plt section for non-pic code that is
2031 calling pic code. */
2032 s = htab->splt;
2033 h->plt.offset = s->_raw_size;
2034 s->_raw_size += PLT_ENTRY_SIZE;
2035 }
2036 else if (htab->elf.dynamic_sections_created
2037 && h->plt.refcount > 0)
2038 {
2039 /* Make sure this symbol is output as a dynamic symbol.
2040 Undefined weak syms won't yet be marked as dynamic. */
2041 if (h->dynindx == -1
2042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2043 && h->type != STT_PARISC_MILLI)
2044 {
2045 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2046 return false;
2047 }
2048
2049 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2050 {
2051 /* Allocate these later. */
2052 }
2053 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2054 {
2055 /* Make an entry in the .plt section for plabel references
2056 that won't have a .plt entry for other reasons. */
2057 s = htab->splt;
2058 h->plt.offset = s->_raw_size;
2059 s->_raw_size += PLT_ENTRY_SIZE;
2060 }
2061 else
2062 {
2063 /* No .plt entry needed. */
2064 h->plt.offset = (bfd_vma) -1;
2065 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2066 }
2067 }
2068 else
2069 {
2070 h->plt.offset = (bfd_vma) -1;
2071 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2072 }
2073
2074 return true;
2075 }
2076
2077 /* Allocate space in .plt, .got and associated reloc sections for
2078 global syms. */
2079
2080 static boolean
2081 allocate_dynrelocs (h, inf)
2082 struct elf_link_hash_entry *h;
2083 PTR inf;
2084 {
2085 struct bfd_link_info *info;
2086 struct elf32_hppa_link_hash_table *htab;
2087 asection *s;
2088 struct elf32_hppa_link_hash_entry *eh;
2089 struct elf32_hppa_dyn_reloc_entry *p;
2090
2091 if (h->root.type == bfd_link_hash_indirect
2092 || h->root.type == bfd_link_hash_warning)
2093 return true;
2094
2095 info = (struct bfd_link_info *) inf;
2096 htab = hppa_link_hash_table (info);
2097 if (htab->elf.dynamic_sections_created
2098 && h->plt.offset != (bfd_vma) -1
2099 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2100 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2101 {
2102 /* Make an entry in the .plt section. */
2103 s = htab->splt;
2104 h->plt.offset = s->_raw_size;
2105 s->_raw_size += PLT_ENTRY_SIZE;
2106
2107 /* We also need to make an entry in the .rela.plt section. */
2108 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2109 htab->need_plt_stub = 1;
2110 }
2111
2112 if (h->got.refcount > 0)
2113 {
2114 /* Make sure this symbol is output as a dynamic symbol.
2115 Undefined weak syms won't yet be marked as dynamic. */
2116 if (h->dynindx == -1
2117 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2118 && h->type != STT_PARISC_MILLI)
2119 {
2120 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2121 return false;
2122 }
2123
2124 s = htab->sgot;
2125 h->got.offset = s->_raw_size;
2126 s->_raw_size += GOT_ENTRY_SIZE;
2127 if (htab->elf.dynamic_sections_created
2128 && (info->shared
2129 || (h->dynindx != -1
2130 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2131 {
2132 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2133 }
2134 }
2135 else
2136 h->got.offset = (bfd_vma) -1;
2137
2138 eh = (struct elf32_hppa_link_hash_entry *) h;
2139 if (eh->dyn_relocs == NULL)
2140 return true;
2141
2142 /* If this is a -Bsymbolic shared link, then we need to discard all
2143 space allocated for dynamic pc-relative relocs against symbols
2144 defined in a regular object. For the normal shared case, discard
2145 space for relocs that have become local due to symbol visibility
2146 changes. */
2147 if (info->shared)
2148 {
2149 #if RELATIVE_DYNRELOCS
2150 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2151 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2152 || info->symbolic))
2153 {
2154 struct elf32_hppa_dyn_reloc_entry **pp;
2155
2156 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2157 {
2158 p->count -= p->relative_count;
2159 p->relative_count = 0;
2160 if (p->count == 0)
2161 *pp = p->next;
2162 else
2163 pp = &p->next;
2164 }
2165 }
2166 #endif
2167 }
2168 else
2169 {
2170 /* For the non-shared case, discard space for relocs against
2171 symbols which turn out to need copy relocs or are not
2172 dynamic. */
2173 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2174 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2176 || (htab->elf.dynamic_sections_created
2177 && (h->root.type == bfd_link_hash_undefweak
2178 || h->root.type == bfd_link_hash_undefined))))
2179 {
2180 /* Make sure this symbol is output as a dynamic symbol.
2181 Undefined weak syms won't yet be marked as dynamic. */
2182 if (h->dynindx == -1
2183 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2184 && h->type != STT_PARISC_MILLI)
2185 {
2186 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2187 return false;
2188 }
2189
2190 /* If that succeeded, we know we'll be keeping all the
2191 relocs. */
2192 if (h->dynindx != -1)
2193 goto keep;
2194 }
2195
2196 eh->dyn_relocs = NULL;
2197 return true;
2198
2199 keep: ;
2200 }
2201
2202 /* Finally, allocate space. */
2203 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2204 {
2205 asection *sreloc = elf_section_data (p->sec)->sreloc;
2206 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2207 }
2208
2209 return true;
2210 }
2211
2212 /* This function is called via elf_link_hash_traverse to force
2213 millicode symbols local so they do not end up as globals in the
2214 dynamic symbol table. We ought to be able to do this in
2215 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2216 for all dynamic symbols. Arguably, this is a bug in
2217 elf_adjust_dynamic_symbol. */
2218
2219 static boolean
2220 clobber_millicode_symbols (h, info)
2221 struct elf_link_hash_entry *h;
2222 struct bfd_link_info *info;
2223 {
2224 /* We only want to remove these from the dynamic symbol table.
2225 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2226 if (h->type == STT_PARISC_MILLI)
2227 {
2228 struct elf32_hppa_link_hash_table *htab;
2229 unsigned short oldflags = h->elf_link_hash_flags;
2230
2231 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2232 elf32_hppa_hide_symbol (info, h);
2233 htab = hppa_link_hash_table (info);
2234 _bfd_elf_strtab_delref (htab->elf.dynstr, h->dynstr_index);
2235 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2236 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2237 }
2238 return true;
2239 }
2240
2241 /* Find any dynamic relocs that apply to read-only sections. */
2242
2243 static boolean
2244 readonly_dynrelocs (h, inf)
2245 struct elf_link_hash_entry *h;
2246 PTR inf;
2247 {
2248 struct elf32_hppa_link_hash_entry *eh;
2249 struct elf32_hppa_dyn_reloc_entry *p;
2250
2251 eh = (struct elf32_hppa_link_hash_entry *) h;
2252 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2253 {
2254 asection *s = p->sec->output_section;
2255
2256 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2257 {
2258 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2259
2260 info->flags |= DF_TEXTREL;
2261
2262 /* Not an error, just cut short the traversal. */
2263 return false;
2264 }
2265 }
2266 return true;
2267 }
2268
2269 /* Set the sizes of the dynamic sections. */
2270
2271 static boolean
2272 elf32_hppa_size_dynamic_sections (output_bfd, info)
2273 bfd *output_bfd ATTRIBUTE_UNUSED;
2274 struct bfd_link_info *info;
2275 {
2276 struct elf32_hppa_link_hash_table *htab;
2277 bfd *dynobj;
2278 bfd *ibfd;
2279 asection *s;
2280 boolean relocs;
2281
2282 htab = hppa_link_hash_table (info);
2283 dynobj = htab->elf.dynobj;
2284 if (dynobj == NULL)
2285 abort ();
2286
2287 if (htab->elf.dynamic_sections_created)
2288 {
2289 /* Set the contents of the .interp section to the interpreter. */
2290 if (! info->shared)
2291 {
2292 s = bfd_get_section_by_name (dynobj, ".interp");
2293 if (s == NULL)
2294 abort ();
2295 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2297 }
2298
2299 /* Force millicode symbols local. */
2300 elf_link_hash_traverse (&htab->elf,
2301 clobber_millicode_symbols,
2302 info);
2303 }
2304 else
2305 {
2306 /* Run through the function symbols, looking for any that are
2307 PIC, and mark them as needing .plt entries so that %r19 will
2308 be set up. */
2309 if (! info->shared)
2310 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2311 }
2312
2313 /* Set up .got and .plt offsets for local syms, and space for local
2314 dynamic relocs. */
2315 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2316 {
2317 bfd_signed_vma *local_got;
2318 bfd_signed_vma *end_local_got;
2319 bfd_signed_vma *local_plt;
2320 bfd_signed_vma *end_local_plt;
2321 bfd_size_type locsymcount;
2322 Elf_Internal_Shdr *symtab_hdr;
2323 asection *srel;
2324
2325 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2326 continue;
2327
2328 for (s = ibfd->sections; s != NULL; s = s->next)
2329 {
2330 struct elf32_hppa_dyn_reloc_entry *p;
2331
2332 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2333 elf_section_data (s)->local_dynrel);
2334 p != NULL;
2335 p = p->next)
2336 {
2337 if (!bfd_is_abs_section (p->sec)
2338 && bfd_is_abs_section (p->sec->output_section))
2339 {
2340 /* Input section has been discarded, either because
2341 it is a copy of a linkonce section or due to
2342 linker script /DISCARD/, so we'll be discarding
2343 the relocs too. */
2344 }
2345 else
2346 {
2347 srel = elf_section_data (p->sec)->sreloc;
2348 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2349 }
2350 }
2351 }
2352
2353 local_got = elf_local_got_refcounts (ibfd);
2354 if (!local_got)
2355 continue;
2356
2357 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2358 locsymcount = symtab_hdr->sh_info;
2359 end_local_got = local_got + locsymcount;
2360 s = htab->sgot;
2361 srel = htab->srelgot;
2362 for (; local_got < end_local_got; ++local_got)
2363 {
2364 if (*local_got > 0)
2365 {
2366 *local_got = s->_raw_size;
2367 s->_raw_size += GOT_ENTRY_SIZE;
2368 if (info->shared)
2369 srel->_raw_size += sizeof (Elf32_External_Rela);
2370 }
2371 else
2372 *local_got = (bfd_vma) -1;
2373 }
2374
2375 local_plt = end_local_got;
2376 end_local_plt = local_plt + locsymcount;
2377 if (! htab->elf.dynamic_sections_created)
2378 {
2379 /* Won't be used, but be safe. */
2380 for (; local_plt < end_local_plt; ++local_plt)
2381 *local_plt = (bfd_vma) -1;
2382 }
2383 else
2384 {
2385 s = htab->splt;
2386 srel = htab->srelplt;
2387 for (; local_plt < end_local_plt; ++local_plt)
2388 {
2389 if (*local_plt > 0)
2390 {
2391 *local_plt = s->_raw_size;
2392 s->_raw_size += PLT_ENTRY_SIZE;
2393 if (info->shared)
2394 srel->_raw_size += sizeof (Elf32_External_Rela);
2395 }
2396 else
2397 *local_plt = (bfd_vma) -1;
2398 }
2399 }
2400 }
2401
2402 /* Do all the .plt entries without relocs first. The dynamic linker
2403 uses the last .plt reloc to find the end of the .plt (and hence
2404 the start of the .got) for lazy linking. */
2405 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2406
2407 /* Allocate global sym .plt and .got entries, and space for global
2408 sym dynamic relocs. */
2409 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2410
2411 /* The check_relocs and adjust_dynamic_symbol entry points have
2412 determined the sizes of the various dynamic sections. Allocate
2413 memory for them. */
2414 relocs = false;
2415 for (s = dynobj->sections; s != NULL; s = s->next)
2416 {
2417 if ((s->flags & SEC_LINKER_CREATED) == 0)
2418 continue;
2419
2420 if (s == htab->splt)
2421 {
2422 if (htab->need_plt_stub)
2423 {
2424 /* Make space for the plt stub at the end of the .plt
2425 section. We want this stub right at the end, up
2426 against the .got section. */
2427 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2428 int pltalign = bfd_section_alignment (dynobj, s);
2429 bfd_size_type mask;
2430
2431 if (gotalign > pltalign)
2432 bfd_set_section_alignment (dynobj, s, gotalign);
2433 mask = ((bfd_size_type) 1 << gotalign) - 1;
2434 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2435 }
2436 }
2437 else if (s == htab->sgot)
2438 ;
2439 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2440 {
2441 if (s->_raw_size != 0)
2442 {
2443 /* Remember whether there are any reloc sections other
2444 than .rela.plt. */
2445 if (s != htab->srelplt)
2446 relocs = true;
2447
2448 /* We use the reloc_count field as a counter if we need
2449 to copy relocs into the output file. */
2450 s->reloc_count = 0;
2451 }
2452 }
2453 else
2454 {
2455 /* It's not one of our sections, so don't allocate space. */
2456 continue;
2457 }
2458
2459 if (s->_raw_size == 0)
2460 {
2461 /* If we don't need this section, strip it from the
2462 output file. This is mostly to handle .rela.bss and
2463 .rela.plt. We must create both sections in
2464 create_dynamic_sections, because they must be created
2465 before the linker maps input sections to output
2466 sections. The linker does that before
2467 adjust_dynamic_symbol is called, and it is that
2468 function which decides whether anything needs to go
2469 into these sections. */
2470 _bfd_strip_section_from_output (info, s);
2471 continue;
2472 }
2473
2474 /* Allocate memory for the section contents. Zero it, because
2475 we may not fill in all the reloc sections. */
2476 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2477 if (s->contents == NULL && s->_raw_size != 0)
2478 return false;
2479 }
2480
2481 if (htab->elf.dynamic_sections_created)
2482 {
2483 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2484 actually has nothing to do with the PLT, it is how we
2485 communicate the LTP value of a load module to the dynamic
2486 linker. */
2487 #define add_dynamic_entry(TAG, VAL) \
2488 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2489
2490 if (!add_dynamic_entry (DT_PLTGOT, 0))
2491 return false;
2492
2493 /* Add some entries to the .dynamic section. We fill in the
2494 values later, in elf32_hppa_finish_dynamic_sections, but we
2495 must add the entries now so that we get the correct size for
2496 the .dynamic section. The DT_DEBUG entry is filled in by the
2497 dynamic linker and used by the debugger. */
2498 if (!info->shared)
2499 {
2500 if (!add_dynamic_entry (DT_DEBUG, 0))
2501 return false;
2502 }
2503
2504 if (htab->srelplt->_raw_size != 0)
2505 {
2506 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2507 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2508 || !add_dynamic_entry (DT_JMPREL, 0))
2509 return false;
2510 }
2511
2512 if (relocs)
2513 {
2514 if (!add_dynamic_entry (DT_RELA, 0)
2515 || !add_dynamic_entry (DT_RELASZ, 0)
2516 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2517 return false;
2518
2519 /* If any dynamic relocs apply to a read-only section,
2520 then we need a DT_TEXTREL entry. */
2521 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
2522
2523 if ((info->flags & DF_TEXTREL) != 0)
2524 {
2525 if (!add_dynamic_entry (DT_TEXTREL, 0))
2526 return false;
2527 }
2528 }
2529 }
2530 #undef add_dynamic_entry
2531
2532 return true;
2533 }
2534
2535 /* External entry points for sizing and building linker stubs. */
2536
2537 /* Determine and set the size of the stub section for a final link.
2538
2539 The basic idea here is to examine all the relocations looking for
2540 PC-relative calls to a target that is unreachable with a "bl"
2541 instruction. */
2542
2543 boolean
2544 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2545 add_stub_section, layout_sections_again)
2546 bfd *output_bfd;
2547 bfd *stub_bfd;
2548 struct bfd_link_info *info;
2549 boolean multi_subspace;
2550 bfd_signed_vma group_size;
2551 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2552 void (*layout_sections_again) PARAMS ((void));
2553 {
2554 bfd *input_bfd;
2555 asection *section;
2556 asection **input_list, **list;
2557 Elf_Internal_Sym *local_syms, **all_local_syms;
2558 unsigned int bfd_indx, bfd_count;
2559 int top_id, top_index;
2560 struct elf32_hppa_link_hash_table *htab;
2561 bfd_size_type stub_group_size;
2562 boolean stubs_always_before_branch;
2563 boolean stub_changed = 0;
2564 boolean ret = 0;
2565 bfd_size_type amt;
2566
2567 htab = hppa_link_hash_table (info);
2568
2569 /* Stash our params away. */
2570 htab->stub_bfd = stub_bfd;
2571 htab->multi_subspace = multi_subspace;
2572 htab->add_stub_section = add_stub_section;
2573 htab->layout_sections_again = layout_sections_again;
2574 stubs_always_before_branch = group_size < 0;
2575 if (group_size < 0)
2576 stub_group_size = -group_size;
2577 else
2578 stub_group_size = group_size;
2579 if (stub_group_size == 1)
2580 {
2581 /* Default values. */
2582 stub_group_size = 7680000;
2583 if (htab->has_17bit_branch || htab->multi_subspace)
2584 stub_group_size = 240000;
2585 if (htab->has_12bit_branch)
2586 stub_group_size = 7500;
2587 }
2588
2589 /* Count the number of input BFDs and find the top input section id. */
2590 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2591 input_bfd != NULL;
2592 input_bfd = input_bfd->link_next)
2593 {
2594 bfd_count += 1;
2595 for (section = input_bfd->sections;
2596 section != NULL;
2597 section = section->next)
2598 {
2599 if (top_id < section->id)
2600 top_id = section->id;
2601 }
2602 }
2603
2604 amt = sizeof (struct map_stub) * (top_id + 1);
2605 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2606 if (htab->stub_group == NULL)
2607 return false;
2608
2609 /* Make a list of input sections for each output section included in
2610 the link.
2611
2612 We can't use output_bfd->section_count here to find the top output
2613 section index as some sections may have been removed, and
2614 _bfd_strip_section_from_output doesn't renumber the indices. */
2615 for (section = output_bfd->sections, top_index = 0;
2616 section != NULL;
2617 section = section->next)
2618 {
2619 if (top_index < section->index)
2620 top_index = section->index;
2621 }
2622
2623 amt = sizeof (asection *) * (top_index + 1);
2624 input_list = (asection **) bfd_malloc (amt);
2625 if (input_list == NULL)
2626 return false;
2627
2628 /* For sections we aren't interested in, mark their entries with a
2629 value we can check later. */
2630 list = input_list + top_index;
2631 do
2632 *list = bfd_abs_section_ptr;
2633 while (list-- != input_list);
2634
2635 for (section = output_bfd->sections;
2636 section != NULL;
2637 section = section->next)
2638 {
2639 if ((section->flags & SEC_CODE) != 0)
2640 input_list[section->index] = NULL;
2641 }
2642
2643 /* Now actually build the lists. */
2644 for (input_bfd = info->input_bfds;
2645 input_bfd != NULL;
2646 input_bfd = input_bfd->link_next)
2647 {
2648 for (section = input_bfd->sections;
2649 section != NULL;
2650 section = section->next)
2651 {
2652 if (section->output_section != NULL
2653 && section->output_section->owner == output_bfd
2654 && section->output_section->index <= top_index)
2655 {
2656 list = input_list + section->output_section->index;
2657 if (*list != bfd_abs_section_ptr)
2658 {
2659 /* Steal the link_sec pointer for our list. */
2660 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2661 /* This happens to make the list in reverse order,
2662 which is what we want. */
2663 PREV_SEC (section) = *list;
2664 *list = section;
2665 }
2666 }
2667 }
2668 }
2669
2670 /* See whether we can group stub sections together. Grouping stub
2671 sections may result in fewer stubs. More importantly, we need to
2672 put all .init* and .fini* stubs at the beginning of the .init or
2673 .fini output sections respectively, because glibc splits the
2674 _init and _fini functions into multiple parts. Putting a stub in
2675 the middle of a function is not a good idea. */
2676 list = input_list + top_index;
2677 do
2678 {
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2683 {
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2687
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2697
2698 /* OK, the size from the start of CURR to the end is less
2699 than 240000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 240000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 22144 bytes, or
2706 2768 long branch stubs. It seems unlikely for more than
2707 2768 different functions to be called, especially from
2708 code only 240000 bytes long. This limit used to be
2709 250000, but c++ code tends to generate lots of little
2710 functions, and sometimes violated the assumption. */
2711 do
2712 {
2713 prev = PREV_SEC (tail);
2714 /* Set up this stub group. */
2715 htab->stub_group[tail->id].link_sec = curr;
2716 }
2717 while (tail != curr && (tail = prev) != NULL);
2718
2719 /* But wait, there's more! Input sections up to 240000
2720 bytes before the stub section can be handled by it too. */
2721 if (!stubs_always_before_branch)
2722 {
2723 total = 0;
2724 while (prev != NULL
2725 && ((total += tail->output_offset - prev->output_offset)
2726 < stub_group_size))
2727 {
2728 tail = prev;
2729 prev = PREV_SEC (tail);
2730 htab->stub_group[tail->id].link_sec = curr;
2731 }
2732 }
2733 tail = prev;
2734 }
2735 }
2736 while (list-- != input_list);
2737 free (input_list);
2738 #undef PREV_SEC
2739
2740 /* We want to read in symbol extension records only once. To do this
2741 we need to read in the local symbols in parallel and save them for
2742 later use; so hold pointers to the local symbols in an array. */
2743 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2744 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2745 if (all_local_syms == NULL)
2746 return false;
2747
2748 /* Walk over all the input BFDs, swapping in local symbols.
2749 If we are creating a shared library, create hash entries for the
2750 export stubs. */
2751 for (input_bfd = info->input_bfds, bfd_indx = 0;
2752 input_bfd != NULL;
2753 input_bfd = input_bfd->link_next, bfd_indx++)
2754 {
2755 Elf_Internal_Shdr *symtab_hdr;
2756 Elf_Internal_Sym *isym;
2757 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2758 bfd_size_type sec_size;
2759
2760 /* We'll need the symbol table in a second. */
2761 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2762 if (symtab_hdr->sh_info == 0)
2763 continue;
2764
2765 /* We need an array of the local symbols attached to the input bfd.
2766 Unfortunately, we're going to have to read & swap them in. */
2767 sec_size = symtab_hdr->sh_info;
2768 sec_size *= sizeof (Elf_Internal_Sym);
2769 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2770 if (local_syms == NULL)
2771 {
2772 goto error_ret_free_local;
2773 }
2774 all_local_syms[bfd_indx] = local_syms;
2775 sec_size = symtab_hdr->sh_info;
2776 sec_size *= sizeof (Elf32_External_Sym);
2777 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2778 if (ext_syms == NULL)
2779 {
2780 goto error_ret_free_local;
2781 }
2782
2783 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2784 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size))
2785 {
2786 free (ext_syms);
2787 goto error_ret_free_local;
2788 }
2789
2790 /* Swap the local symbols in. */
2791 isym = local_syms;
2792 esym = ext_syms;
2793 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2794 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2795
2796 /* Now we can free the external symbols. */
2797 free (ext_syms);
2798
2799 if (info->shared && htab->multi_subspace)
2800 {
2801 struct elf_link_hash_entry **sym_hashes;
2802 struct elf_link_hash_entry **end_hashes;
2803 unsigned int symcount;
2804
2805 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2806 - symtab_hdr->sh_info);
2807 sym_hashes = elf_sym_hashes (input_bfd);
2808 end_hashes = sym_hashes + symcount;
2809
2810 /* Look through the global syms for functions; We need to
2811 build export stubs for all globally visible functions. */
2812 for (; sym_hashes < end_hashes; sym_hashes++)
2813 {
2814 struct elf32_hppa_link_hash_entry *hash;
2815
2816 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2817
2818 while (hash->elf.root.type == bfd_link_hash_indirect
2819 || hash->elf.root.type == bfd_link_hash_warning)
2820 hash = ((struct elf32_hppa_link_hash_entry *)
2821 hash->elf.root.u.i.link);
2822
2823 /* At this point in the link, undefined syms have been
2824 resolved, so we need to check that the symbol was
2825 defined in this BFD. */
2826 if ((hash->elf.root.type == bfd_link_hash_defined
2827 || hash->elf.root.type == bfd_link_hash_defweak)
2828 && hash->elf.type == STT_FUNC
2829 && hash->elf.root.u.def.section->output_section != NULL
2830 && (hash->elf.root.u.def.section->output_section->owner
2831 == output_bfd)
2832 && hash->elf.root.u.def.section->owner == input_bfd
2833 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2834 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2835 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2836 {
2837 asection *sec;
2838 const char *stub_name;
2839 struct elf32_hppa_stub_hash_entry *stub_entry;
2840
2841 sec = hash->elf.root.u.def.section;
2842 stub_name = hash->elf.root.root.string;
2843 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2844 stub_name,
2845 false, false);
2846 if (stub_entry == NULL)
2847 {
2848 stub_entry = hppa_add_stub (stub_name, sec, htab);
2849 if (!stub_entry)
2850 goto error_ret_free_local;
2851
2852 stub_entry->target_value = hash->elf.root.u.def.value;
2853 stub_entry->target_section = hash->elf.root.u.def.section;
2854 stub_entry->stub_type = hppa_stub_export;
2855 stub_entry->h = hash;
2856 stub_changed = 1;
2857 }
2858 else
2859 {
2860 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2861 bfd_archive_filename (input_bfd),
2862 stub_name);
2863 }
2864 }
2865 }
2866 }
2867 }
2868
2869 while (1)
2870 {
2871 asection *stub_sec;
2872
2873 for (input_bfd = info->input_bfds, bfd_indx = 0;
2874 input_bfd != NULL;
2875 input_bfd = input_bfd->link_next, bfd_indx++)
2876 {
2877 Elf_Internal_Shdr *symtab_hdr;
2878
2879 /* We'll need the symbol table in a second. */
2880 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2881 if (symtab_hdr->sh_info == 0)
2882 continue;
2883
2884 local_syms = all_local_syms[bfd_indx];
2885
2886 /* Walk over each section attached to the input bfd. */
2887 for (section = input_bfd->sections;
2888 section != NULL;
2889 section = section->next)
2890 {
2891 Elf_Internal_Shdr *input_rel_hdr;
2892 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2893 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2894
2895 /* If there aren't any relocs, then there's nothing more
2896 to do. */
2897 if ((section->flags & SEC_RELOC) == 0
2898 || section->reloc_count == 0)
2899 continue;
2900
2901 /* If this section is a link-once section that will be
2902 discarded, then don't create any stubs. */
2903 if (section->output_section == NULL
2904 || section->output_section->owner != output_bfd)
2905 continue;
2906
2907 /* Allocate space for the external relocations. */
2908 amt = section->reloc_count;
2909 amt *= sizeof (Elf32_External_Rela);
2910 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2911 if (external_relocs == NULL)
2912 {
2913 goto error_ret_free_local;
2914 }
2915
2916 /* Likewise for the internal relocations. */
2917 amt = section->reloc_count;
2918 amt *= sizeof (Elf_Internal_Rela);
2919 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2920 if (internal_relocs == NULL)
2921 {
2922 free (external_relocs);
2923 goto error_ret_free_local;
2924 }
2925
2926 /* Read in the external relocs. */
2927 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2928 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2929 || bfd_bread (external_relocs,
2930 input_rel_hdr->sh_size,
2931 input_bfd) != input_rel_hdr->sh_size)
2932 {
2933 free (external_relocs);
2934 error_ret_free_internal:
2935 free (internal_relocs);
2936 goto error_ret_free_local;
2937 }
2938
2939 /* Swap in the relocs. */
2940 erela = external_relocs;
2941 erelaend = erela + section->reloc_count;
2942 irela = internal_relocs;
2943 for (; erela < erelaend; erela++, irela++)
2944 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2945
2946 /* We're done with the external relocs, free them. */
2947 free (external_relocs);
2948
2949 /* Now examine each relocation. */
2950 irela = internal_relocs;
2951 irelaend = irela + section->reloc_count;
2952 for (; irela < irelaend; irela++)
2953 {
2954 unsigned int r_type, r_indx;
2955 enum elf32_hppa_stub_type stub_type;
2956 struct elf32_hppa_stub_hash_entry *stub_entry;
2957 asection *sym_sec;
2958 bfd_vma sym_value;
2959 bfd_vma destination;
2960 struct elf32_hppa_link_hash_entry *hash;
2961 char *stub_name;
2962 const asection *id_sec;
2963
2964 r_type = ELF32_R_TYPE (irela->r_info);
2965 r_indx = ELF32_R_SYM (irela->r_info);
2966
2967 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2968 {
2969 bfd_set_error (bfd_error_bad_value);
2970 goto error_ret_free_internal;
2971 }
2972
2973 /* Only look for stubs on call instructions. */
2974 if (r_type != (unsigned int) R_PARISC_PCREL12F
2975 && r_type != (unsigned int) R_PARISC_PCREL17F
2976 && r_type != (unsigned int) R_PARISC_PCREL22F)
2977 continue;
2978
2979 /* Now determine the call target, its name, value,
2980 section. */
2981 sym_sec = NULL;
2982 sym_value = 0;
2983 destination = 0;
2984 hash = NULL;
2985 if (r_indx < symtab_hdr->sh_info)
2986 {
2987 /* It's a local symbol. */
2988 Elf_Internal_Sym *sym;
2989 Elf_Internal_Shdr *hdr;
2990
2991 sym = local_syms + r_indx;
2992 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2993 sym_sec = hdr->bfd_section;
2994 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2995 sym_value = sym->st_value;
2996 destination = (sym_value + irela->r_addend
2997 + sym_sec->output_offset
2998 + sym_sec->output_section->vma);
2999 }
3000 else
3001 {
3002 /* It's an external symbol. */
3003 int e_indx;
3004
3005 e_indx = r_indx - symtab_hdr->sh_info;
3006 hash = ((struct elf32_hppa_link_hash_entry *)
3007 elf_sym_hashes (input_bfd)[e_indx]);
3008
3009 while (hash->elf.root.type == bfd_link_hash_indirect
3010 || hash->elf.root.type == bfd_link_hash_warning)
3011 hash = ((struct elf32_hppa_link_hash_entry *)
3012 hash->elf.root.u.i.link);
3013
3014 if (hash->elf.root.type == bfd_link_hash_defined
3015 || hash->elf.root.type == bfd_link_hash_defweak)
3016 {
3017 sym_sec = hash->elf.root.u.def.section;
3018 sym_value = hash->elf.root.u.def.value;
3019 if (sym_sec->output_section != NULL)
3020 destination = (sym_value + irela->r_addend
3021 + sym_sec->output_offset
3022 + sym_sec->output_section->vma);
3023 }
3024 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3025 {
3026 if (! info->shared)
3027 continue;
3028 }
3029 else if (hash->elf.root.type == bfd_link_hash_undefined)
3030 {
3031 if (! (info->shared
3032 && !info->no_undefined
3033 && (ELF_ST_VISIBILITY (hash->elf.other)
3034 == STV_DEFAULT)
3035 && hash->elf.type != STT_PARISC_MILLI))
3036 continue;
3037 }
3038 else
3039 {
3040 bfd_set_error (bfd_error_bad_value);
3041 goto error_ret_free_internal;
3042 }
3043 }
3044
3045 /* Determine what (if any) linker stub is needed. */
3046 stub_type = hppa_type_of_stub (section, irela, hash,
3047 destination);
3048 if (stub_type == hppa_stub_none)
3049 continue;
3050
3051 /* Support for grouping stub sections. */
3052 id_sec = htab->stub_group[section->id].link_sec;
3053
3054 /* Get the name of this stub. */
3055 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3056 if (!stub_name)
3057 goto error_ret_free_internal;
3058
3059 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3060 stub_name,
3061 false, false);
3062 if (stub_entry != NULL)
3063 {
3064 /* The proper stub has already been created. */
3065 free (stub_name);
3066 continue;
3067 }
3068
3069 stub_entry = hppa_add_stub (stub_name, section, htab);
3070 if (stub_entry == NULL)
3071 {
3072 free (stub_name);
3073 goto error_ret_free_local;
3074 }
3075
3076 stub_entry->target_value = sym_value;
3077 stub_entry->target_section = sym_sec;
3078 stub_entry->stub_type = stub_type;
3079 if (info->shared)
3080 {
3081 if (stub_type == hppa_stub_import)
3082 stub_entry->stub_type = hppa_stub_import_shared;
3083 else if (stub_type == hppa_stub_long_branch)
3084 stub_entry->stub_type = hppa_stub_long_branch_shared;
3085 }
3086 stub_entry->h = hash;
3087 stub_changed = 1;
3088 }
3089
3090 /* We're done with the internal relocs, free them. */
3091 free (internal_relocs);
3092 }
3093 }
3094
3095 if (!stub_changed)
3096 break;
3097
3098 /* OK, we've added some stubs. Find out the new size of the
3099 stub sections. */
3100 for (stub_sec = htab->stub_bfd->sections;
3101 stub_sec != NULL;
3102 stub_sec = stub_sec->next)
3103 {
3104 stub_sec->_raw_size = 0;
3105 stub_sec->_cooked_size = 0;
3106 }
3107
3108 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3109
3110 /* Ask the linker to do its stuff. */
3111 (*htab->layout_sections_again) ();
3112 stub_changed = 0;
3113 }
3114
3115 ret = 1;
3116
3117 error_ret_free_local:
3118 while (bfd_count-- > 0)
3119 if (all_local_syms[bfd_count])
3120 free (all_local_syms[bfd_count]);
3121 free (all_local_syms);
3122
3123 return ret;
3124 }
3125
3126 /* For a final link, this function is called after we have sized the
3127 stubs to provide a value for __gp. */
3128
3129 boolean
3130 elf32_hppa_set_gp (abfd, info)
3131 bfd *abfd;
3132 struct bfd_link_info *info;
3133 {
3134 struct elf32_hppa_link_hash_table *htab;
3135 struct elf_link_hash_entry *h;
3136 asection *sec;
3137 bfd_vma gp_val;
3138
3139 htab = hppa_link_hash_table (info);
3140 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3141
3142 if (h != NULL
3143 && (h->root.type == bfd_link_hash_defined
3144 || h->root.type == bfd_link_hash_defweak))
3145 {
3146 gp_val = h->root.u.def.value;
3147 sec = h->root.u.def.section;
3148 }
3149 else
3150 {
3151 /* Choose to point our LTP at, in this order, one of .plt, .got,
3152 or .data, if these sections exist. In the case of choosing
3153 .plt try to make the LTP ideal for addressing anywhere in the
3154 .plt or .got with a 14 bit signed offset. Typically, the end
3155 of the .plt is the start of the .got, so choose .plt + 0x2000
3156 if either the .plt or .got is larger than 0x2000. If both
3157 the .plt and .got are smaller than 0x2000, choose the end of
3158 the .plt section. */
3159
3160 sec = htab->splt;
3161 if (sec != NULL)
3162 {
3163 gp_val = sec->_raw_size;
3164 if (gp_val > 0x2000
3165 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3166 {
3167 gp_val = 0x2000;
3168 }
3169 }
3170 else
3171 {
3172 gp_val = 0;
3173 sec = htab->sgot;
3174 if (sec != NULL)
3175 {
3176 /* We know we don't have a .plt. If .got is large,
3177 offset our LTP. */
3178 if (sec->_raw_size > 0x2000)
3179 gp_val = 0x2000;
3180 }
3181 else
3182 {
3183 /* No .plt or .got. Who cares what the LTP is? */
3184 sec = bfd_get_section_by_name (abfd, ".data");
3185 }
3186 }
3187
3188 if (h != NULL)
3189 {
3190 h->root.type = bfd_link_hash_defined;
3191 h->root.u.def.value = gp_val;
3192 if (sec != NULL)
3193 h->root.u.def.section = sec;
3194 else
3195 h->root.u.def.section = bfd_abs_section_ptr;
3196 }
3197 }
3198
3199 if (sec != NULL && sec->output_section != NULL)
3200 gp_val += sec->output_section->vma + sec->output_offset;
3201
3202 elf_gp (abfd) = gp_val;
3203 return true;
3204 }
3205
3206 /* Build all the stubs associated with the current output file. The
3207 stubs are kept in a hash table attached to the main linker hash
3208 table. We also set up the .plt entries for statically linked PIC
3209 functions here. This function is called via hppaelf_finish in the
3210 linker. */
3211
3212 boolean
3213 elf32_hppa_build_stubs (info)
3214 struct bfd_link_info *info;
3215 {
3216 asection *stub_sec;
3217 struct bfd_hash_table *table;
3218 struct elf32_hppa_link_hash_table *htab;
3219
3220 htab = hppa_link_hash_table (info);
3221
3222 for (stub_sec = htab->stub_bfd->sections;
3223 stub_sec != NULL;
3224 stub_sec = stub_sec->next)
3225 {
3226 bfd_size_type size;
3227
3228 /* Allocate memory to hold the linker stubs. */
3229 size = stub_sec->_raw_size;
3230 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3231 if (stub_sec->contents == NULL && size != 0)
3232 return false;
3233 stub_sec->_raw_size = 0;
3234 }
3235
3236 /* Build the stubs as directed by the stub hash table. */
3237 table = &htab->stub_hash_table;
3238 bfd_hash_traverse (table, hppa_build_one_stub, info);
3239
3240 return true;
3241 }
3242
3243 /* Perform a final link. */
3244
3245 static boolean
3246 elf32_hppa_final_link (abfd, info)
3247 bfd *abfd;
3248 struct bfd_link_info *info;
3249 {
3250 asection *s;
3251
3252 /* Invoke the regular ELF linker to do all the work. */
3253 if (!bfd_elf32_bfd_final_link (abfd, info))
3254 return false;
3255
3256 /* If we're producing a final executable, sort the contents of the
3257 unwind section. Magic section names, but this is much safer than
3258 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3259 occurred. Consider what happens if someone inept creates a
3260 linker script that puts unwind information in .text. */
3261 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3262 if (s != NULL)
3263 {
3264 bfd_size_type size;
3265 char *contents;
3266
3267 size = s->_raw_size;
3268 contents = bfd_malloc (size);
3269 if (contents == NULL)
3270 return false;
3271
3272 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3273 return false;
3274
3275 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3276
3277 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3278 return false;
3279 }
3280 return true;
3281 }
3282
3283 /* Record the lowest address for the data and text segments. */
3284
3285 static void
3286 hppa_record_segment_addr (abfd, section, data)
3287 bfd *abfd ATTRIBUTE_UNUSED;
3288 asection *section;
3289 PTR data;
3290 {
3291 struct elf32_hppa_link_hash_table *htab;
3292
3293 htab = (struct elf32_hppa_link_hash_table *) data;
3294
3295 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3296 {
3297 bfd_vma value = section->vma - section->filepos;
3298
3299 if ((section->flags & SEC_READONLY) != 0)
3300 {
3301 if (value < htab->text_segment_base)
3302 htab->text_segment_base = value;
3303 }
3304 else
3305 {
3306 if (value < htab->data_segment_base)
3307 htab->data_segment_base = value;
3308 }
3309 }
3310 }
3311
3312 /* Perform a relocation as part of a final link. */
3313
3314 static bfd_reloc_status_type
3315 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3316 asection *input_section;
3317 bfd_byte *contents;
3318 const Elf_Internal_Rela *rel;
3319 bfd_vma value;
3320 struct elf32_hppa_link_hash_table *htab;
3321 asection *sym_sec;
3322 struct elf32_hppa_link_hash_entry *h;
3323 {
3324 int insn;
3325 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3326 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3327 int r_format = howto->bitsize;
3328 enum hppa_reloc_field_selector_type_alt r_field;
3329 bfd *input_bfd = input_section->owner;
3330 bfd_vma offset = rel->r_offset;
3331 bfd_vma max_branch_offset = 0;
3332 bfd_byte *hit_data = contents + offset;
3333 bfd_signed_vma addend = rel->r_addend;
3334 bfd_vma location;
3335 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3336 int val;
3337
3338 if (r_type == R_PARISC_NONE)
3339 return bfd_reloc_ok;
3340
3341 insn = bfd_get_32 (input_bfd, hit_data);
3342
3343 /* Find out where we are and where we're going. */
3344 location = (offset +
3345 input_section->output_offset +
3346 input_section->output_section->vma);
3347
3348 switch (r_type)
3349 {
3350 case R_PARISC_PCREL12F:
3351 case R_PARISC_PCREL17F:
3352 case R_PARISC_PCREL22F:
3353 /* If this is a call to a function defined in another dynamic
3354 library, or if it is a call to a PIC function in the same
3355 object, or if this is a shared link and it is a call to a
3356 weak symbol which may or may not be in the same object, then
3357 find the import stub in the stub hash. */
3358 if (sym_sec == NULL
3359 || sym_sec->output_section == NULL
3360 || (h != NULL
3361 && ((h->maybe_pic_call
3362 && !(input_section->flags & SEC_HAS_GOT_REF))
3363 || (h->elf.root.type == bfd_link_hash_defweak
3364 && h->elf.dynindx != -1
3365 && h->elf.plt.offset != (bfd_vma) -1))))
3366 {
3367 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3368 h, rel, htab);
3369 if (stub_entry != NULL)
3370 {
3371 value = (stub_entry->stub_offset
3372 + stub_entry->stub_sec->output_offset
3373 + stub_entry->stub_sec->output_section->vma);
3374 addend = 0;
3375 }
3376 else if (sym_sec == NULL && h != NULL
3377 && h->elf.root.type == bfd_link_hash_undefweak)
3378 {
3379 /* It's OK if undefined weak. Calls to undefined weak
3380 symbols behave as if the "called" function
3381 immediately returns. We can thus call to a weak
3382 function without first checking whether the function
3383 is defined. */
3384 value = location;
3385 addend = 8;
3386 }
3387 else
3388 return bfd_reloc_notsupported;
3389 }
3390 /* Fall thru. */
3391
3392 case R_PARISC_PCREL21L:
3393 case R_PARISC_PCREL17C:
3394 case R_PARISC_PCREL17R:
3395 case R_PARISC_PCREL14R:
3396 case R_PARISC_PCREL14F:
3397 /* Make it a pc relative offset. */
3398 value -= location;
3399 addend -= 8;
3400 break;
3401
3402 case R_PARISC_DPREL21L:
3403 case R_PARISC_DPREL14R:
3404 case R_PARISC_DPREL14F:
3405 /* For all the DP relative relocations, we need to examine the symbol's
3406 section. If it's a code section, then "data pointer relative" makes
3407 no sense. In that case we don't adjust the "value", and for 21 bit
3408 addil instructions, we change the source addend register from %dp to
3409 %r0. This situation commonly arises when a variable's "constness"
3410 is declared differently from the way the variable is defined. For
3411 instance: "extern int foo" with foo defined as "const int foo". */
3412 if (sym_sec == NULL)
3413 break;
3414 if ((sym_sec->flags & SEC_CODE) != 0)
3415 {
3416 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3417 == (((int) OP_ADDIL << 26) | (27 << 21)))
3418 {
3419 insn &= ~ (0x1f << 21);
3420 #if 1 /* debug them. */
3421 (*_bfd_error_handler)
3422 (_("%s(%s+0x%lx): fixing %s"),
3423 bfd_archive_filename (input_bfd),
3424 input_section->name,
3425 (long) rel->r_offset,
3426 howto->name);
3427 #endif
3428 }
3429 /* Now try to make things easy for the dynamic linker. */
3430
3431 break;
3432 }
3433 /* Fall thru. */
3434
3435 case R_PARISC_DLTIND21L:
3436 case R_PARISC_DLTIND14R:
3437 case R_PARISC_DLTIND14F:
3438 value -= elf_gp (input_section->output_section->owner);
3439 break;
3440
3441 case R_PARISC_SEGREL32:
3442 if ((sym_sec->flags & SEC_CODE) != 0)
3443 value -= htab->text_segment_base;
3444 else
3445 value -= htab->data_segment_base;
3446 break;
3447
3448 default:
3449 break;
3450 }
3451
3452 switch (r_type)
3453 {
3454 case R_PARISC_DIR32:
3455 case R_PARISC_DIR14F:
3456 case R_PARISC_DIR17F:
3457 case R_PARISC_PCREL17C:
3458 case R_PARISC_PCREL14F:
3459 case R_PARISC_DPREL14F:
3460 case R_PARISC_PLABEL32:
3461 case R_PARISC_DLTIND14F:
3462 case R_PARISC_SEGBASE:
3463 case R_PARISC_SEGREL32:
3464 r_field = e_fsel;
3465 break;
3466
3467 case R_PARISC_DIR21L:
3468 case R_PARISC_PCREL21L:
3469 case R_PARISC_DPREL21L:
3470 case R_PARISC_PLABEL21L:
3471 case R_PARISC_DLTIND21L:
3472 r_field = e_lrsel;
3473 break;
3474
3475 case R_PARISC_DIR17R:
3476 case R_PARISC_PCREL17R:
3477 case R_PARISC_DIR14R:
3478 case R_PARISC_PCREL14R:
3479 case R_PARISC_DPREL14R:
3480 case R_PARISC_PLABEL14R:
3481 case R_PARISC_DLTIND14R:
3482 r_field = e_rrsel;
3483 break;
3484
3485 case R_PARISC_PCREL12F:
3486 case R_PARISC_PCREL17F:
3487 case R_PARISC_PCREL22F:
3488 r_field = e_fsel;
3489
3490 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3491 {
3492 max_branch_offset = (1 << (17-1)) << 2;
3493 }
3494 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3495 {
3496 max_branch_offset = (1 << (12-1)) << 2;
3497 }
3498 else
3499 {
3500 max_branch_offset = (1 << (22-1)) << 2;
3501 }
3502
3503 /* sym_sec is NULL on undefined weak syms or when shared on
3504 undefined syms. We've already checked for a stub for the
3505 shared undefined case. */
3506 if (sym_sec == NULL)
3507 break;
3508
3509 /* If the branch is out of reach, then redirect the
3510 call to the local stub for this function. */
3511 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3512 {
3513 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3514 h, rel, htab);
3515 if (stub_entry == NULL)
3516 return bfd_reloc_notsupported;
3517
3518 /* Munge up the value and addend so that we call the stub
3519 rather than the procedure directly. */
3520 value = (stub_entry->stub_offset
3521 + stub_entry->stub_sec->output_offset
3522 + stub_entry->stub_sec->output_section->vma
3523 - location);
3524 addend = -8;
3525 }
3526 break;
3527
3528 /* Something we don't know how to handle. */
3529 default:
3530 return bfd_reloc_notsupported;
3531 }
3532
3533 /* Make sure we can reach the stub. */
3534 if (max_branch_offset != 0
3535 && value + addend + max_branch_offset >= 2*max_branch_offset)
3536 {
3537 (*_bfd_error_handler)
3538 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3539 bfd_archive_filename (input_bfd),
3540 input_section->name,
3541 (long) rel->r_offset,
3542 stub_entry->root.string);
3543 bfd_set_error (bfd_error_bad_value);
3544 return bfd_reloc_notsupported;
3545 }
3546
3547 val = hppa_field_adjust (value, addend, r_field);
3548
3549 switch (r_type)
3550 {
3551 case R_PARISC_PCREL12F:
3552 case R_PARISC_PCREL17C:
3553 case R_PARISC_PCREL17F:
3554 case R_PARISC_PCREL17R:
3555 case R_PARISC_PCREL22F:
3556 case R_PARISC_DIR17F:
3557 case R_PARISC_DIR17R:
3558 /* This is a branch. Divide the offset by four.
3559 Note that we need to decide whether it's a branch or
3560 otherwise by inspecting the reloc. Inspecting insn won't
3561 work as insn might be from a .word directive. */
3562 val >>= 2;
3563 break;
3564
3565 default:
3566 break;
3567 }
3568
3569 insn = hppa_rebuild_insn (insn, val, r_format);
3570
3571 /* Update the instruction word. */
3572 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3573 return bfd_reloc_ok;
3574 }
3575
3576 /* Relocate an HPPA ELF section. */
3577
3578 static boolean
3579 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3580 contents, relocs, local_syms, local_sections)
3581 bfd *output_bfd;
3582 struct bfd_link_info *info;
3583 bfd *input_bfd;
3584 asection *input_section;
3585 bfd_byte *contents;
3586 Elf_Internal_Rela *relocs;
3587 Elf_Internal_Sym *local_syms;
3588 asection **local_sections;
3589 {
3590 bfd_vma *local_got_offsets;
3591 struct elf32_hppa_link_hash_table *htab;
3592 Elf_Internal_Shdr *symtab_hdr;
3593 Elf_Internal_Rela *rel;
3594 Elf_Internal_Rela *relend;
3595
3596 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3597
3598 htab = hppa_link_hash_table (info);
3599 local_got_offsets = elf_local_got_offsets (input_bfd);
3600
3601 rel = relocs;
3602 relend = relocs + input_section->reloc_count;
3603 for (; rel < relend; rel++)
3604 {
3605 unsigned int r_type;
3606 reloc_howto_type *howto;
3607 unsigned int r_symndx;
3608 struct elf32_hppa_link_hash_entry *h;
3609 Elf_Internal_Sym *sym;
3610 asection *sym_sec;
3611 bfd_vma relocation;
3612 bfd_reloc_status_type r;
3613 const char *sym_name;
3614 boolean plabel;
3615
3616 r_type = ELF32_R_TYPE (rel->r_info);
3617 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3618 {
3619 bfd_set_error (bfd_error_bad_value);
3620 return false;
3621 }
3622 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3623 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3624 continue;
3625
3626 r_symndx = ELF32_R_SYM (rel->r_info);
3627
3628 if (info->relocateable)
3629 {
3630 /* This is a relocatable link. We don't have to change
3631 anything, unless the reloc is against a section symbol,
3632 in which case we have to adjust according to where the
3633 section symbol winds up in the output section. */
3634 if (r_symndx < symtab_hdr->sh_info)
3635 {
3636 sym = local_syms + r_symndx;
3637 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3638 {
3639 sym_sec = local_sections[r_symndx];
3640 rel->r_addend += sym_sec->output_offset;
3641 }
3642 }
3643 continue;
3644 }
3645
3646 /* This is a final link. */
3647 h = NULL;
3648 sym = NULL;
3649 sym_sec = NULL;
3650 if (r_symndx < symtab_hdr->sh_info)
3651 {
3652 /* This is a local symbol, h defaults to NULL. */
3653 sym = local_syms + r_symndx;
3654 sym_sec = local_sections[r_symndx];
3655 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3656 }
3657 else
3658 {
3659 int indx;
3660
3661 /* It's a global; Find its entry in the link hash. */
3662 indx = r_symndx - symtab_hdr->sh_info;
3663 h = ((struct elf32_hppa_link_hash_entry *)
3664 elf_sym_hashes (input_bfd)[indx]);
3665 while (h->elf.root.type == bfd_link_hash_indirect
3666 || h->elf.root.type == bfd_link_hash_warning)
3667 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3668
3669 relocation = 0;
3670 if (h->elf.root.type == bfd_link_hash_defined
3671 || h->elf.root.type == bfd_link_hash_defweak)
3672 {
3673 sym_sec = h->elf.root.u.def.section;
3674 /* If sym_sec->output_section is NULL, then it's a
3675 symbol defined in a shared library. */
3676 if (sym_sec->output_section != NULL)
3677 relocation = (h->elf.root.u.def.value
3678 + sym_sec->output_offset
3679 + sym_sec->output_section->vma);
3680 }
3681 else if (h->elf.root.type == bfd_link_hash_undefweak)
3682 ;
3683 else if (info->shared && !info->no_undefined
3684 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3685 && h->elf.type != STT_PARISC_MILLI)
3686 {
3687 if (info->symbolic && !info->allow_shlib_undefined)
3688 if (!((*info->callbacks->undefined_symbol)
3689 (info, h->elf.root.root.string, input_bfd,
3690 input_section, rel->r_offset, false)))
3691 return false;
3692 }
3693 else
3694 {
3695 if (!((*info->callbacks->undefined_symbol)
3696 (info, h->elf.root.root.string, input_bfd,
3697 input_section, rel->r_offset, true)))
3698 return false;
3699 }
3700 }
3701
3702 /* Do any required modifications to the relocation value, and
3703 determine what types of dynamic info we need to output, if
3704 any. */
3705 plabel = 0;
3706 switch (r_type)
3707 {
3708 case R_PARISC_DLTIND14F:
3709 case R_PARISC_DLTIND14R:
3710 case R_PARISC_DLTIND21L:
3711 {
3712 bfd_vma off;
3713 boolean do_got = 0;
3714
3715 /* Relocation is to the entry for this symbol in the
3716 global offset table. */
3717 if (h != NULL)
3718 {
3719 boolean dyn;
3720
3721 off = h->elf.got.offset;
3722 dyn = htab->elf.dynamic_sections_created;
3723 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3724 {
3725 /* If we aren't going to call finish_dynamic_symbol,
3726 then we need to handle initialisation of the .got
3727 entry and create needed relocs here. Since the
3728 offset must always be a multiple of 4, we use the
3729 least significant bit to record whether we have
3730 initialised it already. */
3731 if ((off & 1) != 0)
3732 off &= ~1;
3733 else
3734 {
3735 h->elf.got.offset |= 1;
3736 do_got = 1;
3737 }
3738 }
3739 }
3740 else
3741 {
3742 /* Local symbol case. */
3743 if (local_got_offsets == NULL)
3744 abort ();
3745
3746 off = local_got_offsets[r_symndx];
3747
3748 /* The offset must always be a multiple of 4. We use
3749 the least significant bit to record whether we have
3750 already generated the necessary reloc. */
3751 if ((off & 1) != 0)
3752 off &= ~1;
3753 else
3754 {
3755 local_got_offsets[r_symndx] |= 1;
3756 do_got = 1;
3757 }
3758 }
3759
3760 if (do_got)
3761 {
3762 if (info->shared)
3763 {
3764 /* Output a dynamic relocation for this GOT entry.
3765 In this case it is relative to the base of the
3766 object because the symbol index is zero. */
3767 Elf_Internal_Rela outrel;
3768 asection *srelgot = htab->srelgot;
3769 Elf32_External_Rela *loc;
3770
3771 outrel.r_offset = (off
3772 + htab->sgot->output_offset
3773 + htab->sgot->output_section->vma);
3774 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3775 outrel.r_addend = relocation;
3776 loc = (Elf32_External_Rela *) srelgot->contents;
3777 loc += srelgot->reloc_count++;
3778 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3779 }
3780 else
3781 bfd_put_32 (output_bfd, relocation,
3782 htab->sgot->contents + off);
3783 }
3784
3785 if (off >= (bfd_vma) -2)
3786 abort ();
3787
3788 /* Add the base of the GOT to the relocation value. */
3789 relocation = (off
3790 + htab->sgot->output_offset
3791 + htab->sgot->output_section->vma);
3792 }
3793 break;
3794
3795 case R_PARISC_SEGREL32:
3796 /* If this is the first SEGREL relocation, then initialize
3797 the segment base values. */
3798 if (htab->text_segment_base == (bfd_vma) -1)
3799 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3800 break;
3801
3802 case R_PARISC_PLABEL14R:
3803 case R_PARISC_PLABEL21L:
3804 case R_PARISC_PLABEL32:
3805 if (htab->elf.dynamic_sections_created)
3806 {
3807 bfd_vma off;
3808 boolean do_plt = 0;
3809
3810 /* If we have a global symbol with a PLT slot, then
3811 redirect this relocation to it. */
3812 if (h != NULL)
3813 {
3814 off = h->elf.plt.offset;
3815 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3816 {
3817 /* In a non-shared link, adjust_dynamic_symbols
3818 isn't called for symbols forced local. We
3819 need to write out the plt entry here. */
3820 if ((off & 1) != 0)
3821 off &= ~1;
3822 else
3823 {
3824 h->elf.plt.offset |= 1;
3825 do_plt = 1;
3826 }
3827 }
3828 }
3829 else
3830 {
3831 bfd_vma *local_plt_offsets;
3832
3833 if (local_got_offsets == NULL)
3834 abort ();
3835
3836 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3837 off = local_plt_offsets[r_symndx];
3838
3839 /* As for the local .got entry case, we use the last
3840 bit to record whether we've already initialised
3841 this local .plt entry. */
3842 if ((off & 1) != 0)
3843 off &= ~1;
3844 else
3845 {
3846 local_plt_offsets[r_symndx] |= 1;
3847 do_plt = 1;
3848 }
3849 }
3850
3851 if (do_plt)
3852 {
3853 if (info->shared)
3854 {
3855 /* Output a dynamic IPLT relocation for this
3856 PLT entry. */
3857 Elf_Internal_Rela outrel;
3858 asection *srelplt = htab->srelplt;
3859 Elf32_External_Rela *loc;
3860
3861 outrel.r_offset = (off
3862 + htab->splt->output_offset
3863 + htab->splt->output_section->vma);
3864 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3865 outrel.r_addend = relocation;
3866 loc = (Elf32_External_Rela *) srelplt->contents;
3867 loc += srelplt->reloc_count++;
3868 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3869 }
3870 else
3871 {
3872 bfd_put_32 (output_bfd,
3873 relocation,
3874 htab->splt->contents + off);
3875 bfd_put_32 (output_bfd,
3876 elf_gp (htab->splt->output_section->owner),
3877 htab->splt->contents + off + 4);
3878 }
3879 }
3880
3881 if (off >= (bfd_vma) -2)
3882 abort ();
3883
3884 /* PLABELs contain function pointers. Relocation is to
3885 the entry for the function in the .plt. The magic +2
3886 offset signals to $$dyncall that the function pointer
3887 is in the .plt and thus has a gp pointer too.
3888 Exception: Undefined PLABELs should have a value of
3889 zero. */
3890 if (h == NULL
3891 || (h->elf.root.type != bfd_link_hash_undefweak
3892 && h->elf.root.type != bfd_link_hash_undefined))
3893 {
3894 relocation = (off
3895 + htab->splt->output_offset
3896 + htab->splt->output_section->vma
3897 + 2);
3898 }
3899 plabel = 1;
3900 }
3901 /* Fall through and possibly emit a dynamic relocation. */
3902
3903 case R_PARISC_DIR17F:
3904 case R_PARISC_DIR17R:
3905 case R_PARISC_DIR14F:
3906 case R_PARISC_DIR14R:
3907 case R_PARISC_DIR21L:
3908 case R_PARISC_DPREL14F:
3909 case R_PARISC_DPREL14R:
3910 case R_PARISC_DPREL21L:
3911 case R_PARISC_DIR32:
3912 /* r_symndx will be zero only for relocs against symbols
3913 from removed linkonce sections, or sections discarded by
3914 a linker script. */
3915 if (r_symndx == 0
3916 || (input_section->flags & SEC_ALLOC) == 0)
3917 break;
3918
3919 /* The reloc types handled here and this conditional
3920 expression must match the code in ..check_relocs and
3921 allocate_dynrelocs. ie. We need exactly the same condition
3922 as in ..check_relocs, with some extra conditions (dynindx
3923 test in this case) to cater for relocs removed by
3924 allocate_dynrelocs. If you squint, the non-shared test
3925 here does indeed match the one in ..check_relocs, the
3926 difference being that here we test DEF_DYNAMIC as well as
3927 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3928 which is why we can't use just that test here.
3929 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3930 there all files have not been loaded. */
3931 if ((info->shared
3932 && (IS_ABSOLUTE_RELOC (r_type)
3933 || (h != NULL
3934 && h->elf.dynindx != -1
3935 && (!info->symbolic
3936 || (h->elf.elf_link_hash_flags
3937 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3938 || (!info->shared
3939 && h != NULL
3940 && h->elf.dynindx != -1
3941 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3942 && (((h->elf.elf_link_hash_flags
3943 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3944 && (h->elf.elf_link_hash_flags
3945 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3946 || h->elf.root.type == bfd_link_hash_undefweak
3947 || h->elf.root.type == bfd_link_hash_undefined)))
3948 {
3949 Elf_Internal_Rela outrel;
3950 boolean skip;
3951 asection *sreloc;
3952 Elf32_External_Rela *loc;
3953
3954 /* When generating a shared object, these relocations
3955 are copied into the output file to be resolved at run
3956 time. */
3957
3958 outrel.r_offset = rel->r_offset;
3959 outrel.r_addend = rel->r_addend;
3960 skip = false;
3961 if (elf_section_data (input_section)->stab_info != NULL)
3962 {
3963 bfd_vma off;
3964
3965 off = (_bfd_stab_section_offset
3966 (output_bfd, &htab->elf.stab_info,
3967 input_section,
3968 &elf_section_data (input_section)->stab_info,
3969 rel->r_offset));
3970 if (off == (bfd_vma) -1)
3971 skip = true;
3972 outrel.r_offset = off;
3973 }
3974
3975 outrel.r_offset += (input_section->output_offset
3976 + input_section->output_section->vma);
3977
3978 if (skip)
3979 {
3980 memset (&outrel, 0, sizeof (outrel));
3981 }
3982 else if (h != NULL
3983 && h->elf.dynindx != -1
3984 && (plabel
3985 || !IS_ABSOLUTE_RELOC (r_type)
3986 || !info->shared
3987 || !info->symbolic
3988 || (h->elf.elf_link_hash_flags
3989 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3990 {
3991 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3992 }
3993 else /* It's a local symbol, or one marked to become local. */
3994 {
3995 int indx = 0;
3996
3997 /* Add the absolute offset of the symbol. */
3998 outrel.r_addend += relocation;
3999
4000 /* Global plabels need to be processed by the
4001 dynamic linker so that functions have at most one
4002 fptr. For this reason, we need to differentiate
4003 between global and local plabels, which we do by
4004 providing the function symbol for a global plabel
4005 reloc, and no symbol for local plabels. */
4006 if (! plabel
4007 && sym_sec != NULL
4008 && sym_sec->output_section != NULL
4009 && ! bfd_is_abs_section (sym_sec))
4010 {
4011 indx = elf_section_data (sym_sec->output_section)->dynindx;
4012 /* We are turning this relocation into one
4013 against a section symbol, so subtract out the
4014 output section's address but not the offset
4015 of the input section in the output section. */
4016 outrel.r_addend -= sym_sec->output_section->vma;
4017 }
4018
4019 outrel.r_info = ELF32_R_INFO (indx, r_type);
4020 }
4021 #if 0
4022 /* EH info can cause unaligned DIR32 relocs.
4023 Tweak the reloc type for the dynamic linker. */
4024 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4025 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4026 R_PARISC_DIR32U);
4027 #endif
4028 sreloc = elf_section_data (input_section)->sreloc;
4029 if (sreloc == NULL)
4030 abort ();
4031
4032 loc = (Elf32_External_Rela *) sreloc->contents;
4033 loc += sreloc->reloc_count++;
4034 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4035 }
4036 break;
4037
4038 default:
4039 break;
4040 }
4041
4042 r = final_link_relocate (input_section, contents, rel, relocation,
4043 htab, sym_sec, h);
4044
4045 if (r == bfd_reloc_ok)
4046 continue;
4047
4048 if (h != NULL)
4049 sym_name = h->elf.root.root.string;
4050 else
4051 {
4052 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4053 symtab_hdr->sh_link,
4054 sym->st_name);
4055 if (sym_name == NULL)
4056 return false;
4057 if (*sym_name == '\0')
4058 sym_name = bfd_section_name (input_bfd, sym_sec);
4059 }
4060
4061 howto = elf_hppa_howto_table + r_type;
4062
4063 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4064 {
4065 (*_bfd_error_handler)
4066 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4067 bfd_archive_filename (input_bfd),
4068 input_section->name,
4069 (long) rel->r_offset,
4070 howto->name,
4071 sym_name);
4072 bfd_set_error (bfd_error_bad_value);
4073 return false;
4074 }
4075 else
4076 {
4077 if (!((*info->callbacks->reloc_overflow)
4078 (info, sym_name, howto->name, (bfd_vma) 0,
4079 input_bfd, input_section, rel->r_offset)))
4080 return false;
4081 }
4082 }
4083
4084 return true;
4085 }
4086
4087 /* Comparison function for qsort to sort unwind section during a
4088 final link. */
4089
4090 static int
4091 hppa_unwind_entry_compare (a, b)
4092 const PTR a;
4093 const PTR b;
4094 {
4095 const bfd_byte *ap, *bp;
4096 unsigned long av, bv;
4097
4098 ap = (const bfd_byte *) a;
4099 av = (unsigned long) ap[0] << 24;
4100 av |= (unsigned long) ap[1] << 16;
4101 av |= (unsigned long) ap[2] << 8;
4102 av |= (unsigned long) ap[3];
4103
4104 bp = (const bfd_byte *) b;
4105 bv = (unsigned long) bp[0] << 24;
4106 bv |= (unsigned long) bp[1] << 16;
4107 bv |= (unsigned long) bp[2] << 8;
4108 bv |= (unsigned long) bp[3];
4109
4110 return av < bv ? -1 : av > bv ? 1 : 0;
4111 }
4112
4113 /* Finish up dynamic symbol handling. We set the contents of various
4114 dynamic sections here. */
4115
4116 static boolean
4117 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4118 bfd *output_bfd;
4119 struct bfd_link_info *info;
4120 struct elf_link_hash_entry *h;
4121 Elf_Internal_Sym *sym;
4122 {
4123 struct elf32_hppa_link_hash_table *htab;
4124
4125 htab = hppa_link_hash_table (info);
4126
4127 if (h->plt.offset != (bfd_vma) -1)
4128 {
4129 bfd_vma value;
4130
4131 if (h->plt.offset & 1)
4132 abort ();
4133
4134 /* This symbol has an entry in the procedure linkage table. Set
4135 it up.
4136
4137 The format of a plt entry is
4138 <funcaddr>
4139 <__gp>
4140 */
4141 value = 0;
4142 if (h->root.type == bfd_link_hash_defined
4143 || h->root.type == bfd_link_hash_defweak)
4144 {
4145 value = h->root.u.def.value;
4146 if (h->root.u.def.section->output_section != NULL)
4147 value += (h->root.u.def.section->output_offset
4148 + h->root.u.def.section->output_section->vma);
4149 }
4150
4151 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4152 {
4153 Elf_Internal_Rela rel;
4154 Elf32_External_Rela *loc;
4155
4156 /* Create a dynamic IPLT relocation for this entry. */
4157 rel.r_offset = (h->plt.offset
4158 + htab->splt->output_offset
4159 + htab->splt->output_section->vma);
4160 if (h->dynindx != -1)
4161 {
4162 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4163 rel.r_addend = 0;
4164 }
4165 else
4166 {
4167 /* This symbol has been marked to become local, and is
4168 used by a plabel so must be kept in the .plt. */
4169 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4170 rel.r_addend = value;
4171 }
4172
4173 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4174 loc += htab->srelplt->reloc_count++;
4175 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4176 &rel, loc);
4177 }
4178 else
4179 {
4180 bfd_put_32 (htab->splt->owner,
4181 value,
4182 htab->splt->contents + h->plt.offset);
4183 bfd_put_32 (htab->splt->owner,
4184 elf_gp (htab->splt->output_section->owner),
4185 htab->splt->contents + h->plt.offset + 4);
4186 }
4187
4188 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4189 {
4190 /* Mark the symbol as undefined, rather than as defined in
4191 the .plt section. Leave the value alone. */
4192 sym->st_shndx = SHN_UNDEF;
4193 }
4194 }
4195
4196 if (h->got.offset != (bfd_vma) -1)
4197 {
4198 Elf_Internal_Rela rel;
4199 Elf32_External_Rela *loc;
4200
4201 /* This symbol has an entry in the global offset table. Set it
4202 up. */
4203
4204 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4205 + htab->sgot->output_offset
4206 + htab->sgot->output_section->vma);
4207
4208 /* If this is a -Bsymbolic link and the symbol is defined
4209 locally or was forced to be local because of a version file,
4210 we just want to emit a RELATIVE reloc. The entry in the
4211 global offset table will already have been initialized in the
4212 relocate_section function. */
4213 if (info->shared
4214 && (info->symbolic || h->dynindx == -1)
4215 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4216 {
4217 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4218 rel.r_addend = (h->root.u.def.value
4219 + h->root.u.def.section->output_offset
4220 + h->root.u.def.section->output_section->vma);
4221 }
4222 else
4223 {
4224 if ((h->got.offset & 1) != 0)
4225 abort ();
4226 bfd_put_32 (output_bfd, (bfd_vma) 0,
4227 htab->sgot->contents + h->got.offset);
4228 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4229 rel.r_addend = 0;
4230 }
4231
4232 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4233 loc += htab->srelgot->reloc_count++;
4234 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4235 }
4236
4237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4238 {
4239 asection *s;
4240 Elf_Internal_Rela rel;
4241 Elf32_External_Rela *loc;
4242
4243 /* This symbol needs a copy reloc. Set it up. */
4244
4245 if (! (h->dynindx != -1
4246 && (h->root.type == bfd_link_hash_defined
4247 || h->root.type == bfd_link_hash_defweak)))
4248 abort ();
4249
4250 s = htab->srelbss;
4251
4252 rel.r_offset = (h->root.u.def.value
4253 + h->root.u.def.section->output_offset
4254 + h->root.u.def.section->output_section->vma);
4255 rel.r_addend = 0;
4256 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4257 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4258 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4259 }
4260
4261 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4262 if (h->root.root.string[0] == '_'
4263 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4264 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4265 {
4266 sym->st_shndx = SHN_ABS;
4267 }
4268
4269 return true;
4270 }
4271
4272 /* Used to decide how to sort relocs in an optimal manner for the
4273 dynamic linker, before writing them out. */
4274
4275 static enum elf_reloc_type_class
4276 elf32_hppa_reloc_type_class (rela)
4277 const Elf_Internal_Rela *rela;
4278 {
4279 if (ELF32_R_SYM (rela->r_info) == 0)
4280 return reloc_class_relative;
4281
4282 switch ((int) ELF32_R_TYPE (rela->r_info))
4283 {
4284 case R_PARISC_IPLT:
4285 return reloc_class_plt;
4286 case R_PARISC_COPY:
4287 return reloc_class_copy;
4288 default:
4289 return reloc_class_normal;
4290 }
4291 }
4292
4293 /* Finish up the dynamic sections. */
4294
4295 static boolean
4296 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4297 bfd *output_bfd;
4298 struct bfd_link_info *info;
4299 {
4300 bfd *dynobj;
4301 struct elf32_hppa_link_hash_table *htab;
4302 asection *sdyn;
4303
4304 htab = hppa_link_hash_table (info);
4305 dynobj = htab->elf.dynobj;
4306
4307 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4308
4309 if (htab->elf.dynamic_sections_created)
4310 {
4311 Elf32_External_Dyn *dyncon, *dynconend;
4312
4313 if (sdyn == NULL)
4314 abort ();
4315
4316 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4317 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4318 for (; dyncon < dynconend; dyncon++)
4319 {
4320 Elf_Internal_Dyn dyn;
4321 asection *s;
4322
4323 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4324
4325 switch (dyn.d_tag)
4326 {
4327 default:
4328 continue;
4329
4330 case DT_PLTGOT:
4331 /* Use PLTGOT to set the GOT register. */
4332 dyn.d_un.d_ptr = elf_gp (output_bfd);
4333 break;
4334
4335 case DT_JMPREL:
4336 s = htab->srelplt;
4337 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4338 break;
4339
4340 case DT_PLTRELSZ:
4341 s = htab->srelplt;
4342 if (s->_cooked_size != 0)
4343 dyn.d_un.d_val = s->_cooked_size;
4344 else
4345 dyn.d_un.d_val = s->_raw_size;
4346 break;
4347
4348 case DT_RELASZ:
4349 /* Don't count procedure linkage table relocs in the
4350 overall reloc count. */
4351 if (htab->srelplt != NULL)
4352 {
4353 s = htab->srelplt->output_section;
4354 if (s->_cooked_size != 0)
4355 dyn.d_un.d_val -= s->_cooked_size;
4356 else
4357 dyn.d_un.d_val -= s->_raw_size;
4358 }
4359 break;
4360 }
4361
4362 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4363 }
4364 }
4365
4366 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4367 {
4368 /* Fill in the first entry in the global offset table.
4369 We use it to point to our dynamic section, if we have one. */
4370 bfd_put_32 (output_bfd,
4371 (sdyn != NULL
4372 ? sdyn->output_section->vma + sdyn->output_offset
4373 : (bfd_vma) 0),
4374 htab->sgot->contents);
4375
4376 /* The second entry is reserved for use by the dynamic linker. */
4377 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4378
4379 /* Set .got entry size. */
4380 elf_section_data (htab->sgot->output_section)
4381 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4382 }
4383
4384 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4385 {
4386 /* Set plt entry size. */
4387 elf_section_data (htab->splt->output_section)
4388 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4389
4390 if (htab->need_plt_stub)
4391 {
4392 /* Set up the .plt stub. */
4393 memcpy (htab->splt->contents
4394 + htab->splt->_raw_size - sizeof (plt_stub),
4395 plt_stub, sizeof (plt_stub));
4396
4397 if ((htab->splt->output_offset
4398 + htab->splt->output_section->vma
4399 + htab->splt->_raw_size)
4400 != (htab->sgot->output_offset
4401 + htab->sgot->output_section->vma))
4402 {
4403 (*_bfd_error_handler)
4404 (_(".got section not immediately after .plt section"));
4405 return false;
4406 }
4407 }
4408 }
4409
4410 return true;
4411 }
4412
4413 /* Tweak the OSABI field of the elf header. */
4414
4415 static void
4416 elf32_hppa_post_process_headers (abfd, link_info)
4417 bfd *abfd;
4418 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4419 {
4420 Elf_Internal_Ehdr * i_ehdrp;
4421
4422 i_ehdrp = elf_elfheader (abfd);
4423
4424 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4425 {
4426 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4427 }
4428 else
4429 {
4430 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4431 }
4432 }
4433
4434 /* Called when writing out an object file to decide the type of a
4435 symbol. */
4436 static int
4437 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4438 Elf_Internal_Sym *elf_sym;
4439 int type;
4440 {
4441 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4442 return STT_PARISC_MILLI;
4443 else
4444 return type;
4445 }
4446
4447 /* Misc BFD support code. */
4448 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4449 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4450 #define elf_info_to_howto elf_hppa_info_to_howto
4451 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4452
4453 /* Stuff for the BFD linker. */
4454 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4455 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4456 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4457 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4458 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4459 #define elf_backend_check_relocs elf32_hppa_check_relocs
4460 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4461 #define elf_backend_fake_sections elf_hppa_fake_sections
4462 #define elf_backend_relocate_section elf32_hppa_relocate_section
4463 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4464 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4465 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4466 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4467 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4468 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4469 #define elf_backend_object_p elf32_hppa_object_p
4470 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4471 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4472 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4473 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4474
4475 #define elf_backend_can_gc_sections 1
4476 #define elf_backend_can_refcount 1
4477 #define elf_backend_plt_alignment 2
4478 #define elf_backend_want_got_plt 0
4479 #define elf_backend_plt_readonly 0
4480 #define elf_backend_want_plt_sym 0
4481 #define elf_backend_got_header_size 8
4482
4483 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4484 #define TARGET_BIG_NAME "elf32-hppa"
4485 #define ELF_ARCH bfd_arch_hppa
4486 #define ELF_MACHINE_CODE EM_PARISC
4487 #define ELF_MAXPAGESIZE 0x1000
4488
4489 #include "elf32-target.h"
4490
4491 #undef TARGET_BIG_SYM
4492 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4493 #undef TARGET_BIG_NAME
4494 #define TARGET_BIG_NAME "elf32-hppa-linux"
4495
4496 #define INCLUDED_TARGET_FILE 1
4497 #include "elf32-target.h"