non_got_ref after adjust_dynamic_relocs
[binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 enum _tls_type
210 {
211 GOT_UNKNOWN = 0,
212 GOT_NORMAL = 1,
213 GOT_TLS_GD = 2,
214 GOT_TLS_LDM = 4,
215 GOT_TLS_IE = 8
216 };
217
218 struct elf32_hppa_link_hash_entry
219 {
220 struct elf_link_hash_entry eh;
221
222 /* A pointer to the most recently used stub hash entry against this
223 symbol. */
224 struct elf32_hppa_stub_hash_entry *hsh_cache;
225
226 /* Used to count relocations for delayed sizing of relocation
227 sections. */
228 struct elf32_hppa_dyn_reloc_entry
229 {
230 /* Next relocation in the chain. */
231 struct elf32_hppa_dyn_reloc_entry *hdh_next;
232
233 /* The input section of the reloc. */
234 asection *sec;
235
236 /* Number of relocs copied in this section. */
237 bfd_size_type count;
238
239 #if RELATIVE_DYNRELOCS
240 /* Number of relative relocs copied for the input section. */
241 bfd_size_type relative_count;
242 #endif
243 } *dyn_relocs;
244
245 ENUM_BITFIELD (_tls_type) tls_type : 8;
246
247 /* Set if this symbol is used by a plabel reloc. */
248 unsigned int plabel:1;
249 };
250
251 struct elf32_hppa_link_hash_table
252 {
253 /* The main hash table. */
254 struct elf_link_hash_table etab;
255
256 /* The stub hash table. */
257 struct bfd_hash_table bstab;
258
259 /* Linker stub bfd. */
260 bfd *stub_bfd;
261
262 /* Linker call-backs. */
263 asection * (*add_stub_section) (const char *, asection *);
264 void (*layout_sections_again) (void);
265
266 /* Array to keep track of which stub sections have been created, and
267 information on stub grouping. */
268 struct map_stub
269 {
270 /* This is the section to which stubs in the group will be
271 attached. */
272 asection *link_sec;
273 /* The stub section. */
274 asection *stub_sec;
275 } *stub_group;
276
277 /* Assorted information used by elf32_hppa_size_stubs. */
278 unsigned int bfd_count;
279 unsigned int top_index;
280 asection **input_list;
281 Elf_Internal_Sym **all_local_syms;
282
283 /* Used during a final link to store the base of the text and data
284 segments so that we can perform SEGREL relocations. */
285 bfd_vma text_segment_base;
286 bfd_vma data_segment_base;
287
288 /* Whether we support multiple sub-spaces for shared libs. */
289 unsigned int multi_subspace:1;
290
291 /* Flags set when various size branches are detected. Used to
292 select suitable defaults for the stub group size. */
293 unsigned int has_12bit_branch:1;
294 unsigned int has_17bit_branch:1;
295 unsigned int has_22bit_branch:1;
296
297 /* Set if we need a .plt stub to support lazy dynamic linking. */
298 unsigned int need_plt_stub:1;
299
300 /* Small local sym cache. */
301 struct sym_cache sym_cache;
302
303 /* Data for LDM relocations. */
304 union
305 {
306 bfd_signed_vma refcount;
307 bfd_vma offset;
308 } tls_ldm_got;
309 };
310
311 /* Various hash macros and functions. */
312 #define hppa_link_hash_table(p) \
313 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
314 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
315
316 #define hppa_elf_hash_entry(ent) \
317 ((struct elf32_hppa_link_hash_entry *)(ent))
318
319 #define hppa_stub_hash_entry(ent) \
320 ((struct elf32_hppa_stub_hash_entry *)(ent))
321
322 #define hppa_stub_hash_lookup(table, string, create, copy) \
323 ((struct elf32_hppa_stub_hash_entry *) \
324 bfd_hash_lookup ((table), (string), (create), (copy)))
325
326 #define hppa_elf_local_got_tls_type(abfd) \
327 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
328
329 #define hh_name(hh) \
330 (hh ? hh->eh.root.root.string : "<undef>")
331
332 #define eh_name(eh) \
333 (eh ? eh->root.root.string : "<undef>")
334
335 /* Assorted hash table functions. */
336
337 /* Initialize an entry in the stub hash table. */
338
339 static struct bfd_hash_entry *
340 stub_hash_newfunc (struct bfd_hash_entry *entry,
341 struct bfd_hash_table *table,
342 const char *string)
343 {
344 /* Allocate the structure if it has not already been allocated by a
345 subclass. */
346 if (entry == NULL)
347 {
348 entry = bfd_hash_allocate (table,
349 sizeof (struct elf32_hppa_stub_hash_entry));
350 if (entry == NULL)
351 return entry;
352 }
353
354 /* Call the allocation method of the superclass. */
355 entry = bfd_hash_newfunc (entry, table, string);
356 if (entry != NULL)
357 {
358 struct elf32_hppa_stub_hash_entry *hsh;
359
360 /* Initialize the local fields. */
361 hsh = hppa_stub_hash_entry (entry);
362 hsh->stub_sec = NULL;
363 hsh->stub_offset = 0;
364 hsh->target_value = 0;
365 hsh->target_section = NULL;
366 hsh->stub_type = hppa_stub_long_branch;
367 hsh->hh = NULL;
368 hsh->id_sec = NULL;
369 }
370
371 return entry;
372 }
373
374 /* Initialize an entry in the link hash table. */
375
376 static struct bfd_hash_entry *
377 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
378 struct bfd_hash_table *table,
379 const char *string)
380 {
381 /* Allocate the structure if it has not already been allocated by a
382 subclass. */
383 if (entry == NULL)
384 {
385 entry = bfd_hash_allocate (table,
386 sizeof (struct elf32_hppa_link_hash_entry));
387 if (entry == NULL)
388 return entry;
389 }
390
391 /* Call the allocation method of the superclass. */
392 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
393 if (entry != NULL)
394 {
395 struct elf32_hppa_link_hash_entry *hh;
396
397 /* Initialize the local fields. */
398 hh = hppa_elf_hash_entry (entry);
399 hh->hsh_cache = NULL;
400 hh->dyn_relocs = NULL;
401 hh->plabel = 0;
402 hh->tls_type = GOT_UNKNOWN;
403 }
404
405 return entry;
406 }
407
408 /* Free the derived linker hash table. */
409
410 static void
411 elf32_hppa_link_hash_table_free (bfd *obfd)
412 {
413 struct elf32_hppa_link_hash_table *htab
414 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
415
416 bfd_hash_table_free (&htab->bstab);
417 _bfd_elf_link_hash_table_free (obfd);
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_zmalloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry),
436 HPPA32_ELF_DATA))
437 {
438 free (htab);
439 return NULL;
440 }
441
442 /* Init the stub hash table too. */
443 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
444 sizeof (struct elf32_hppa_stub_hash_entry)))
445 {
446 _bfd_elf_link_hash_table_free (abfd);
447 return NULL;
448 }
449 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
450
451 htab->text_segment_base = (bfd_vma) -1;
452 htab->data_segment_base = (bfd_vma) -1;
453 return &htab->etab.root;
454 }
455
456 /* Initialize the linker stubs BFD so that we can use it for linker
457 created dynamic sections. */
458
459 void
460 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
461 {
462 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
463
464 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
465 htab->etab.dynobj = abfd;
466 }
467
468 /* Build a name for an entry in the stub hash table. */
469
470 static char *
471 hppa_stub_name (const asection *input_section,
472 const asection *sym_sec,
473 const struct elf32_hppa_link_hash_entry *hh,
474 const Elf_Internal_Rela *rela)
475 {
476 char *stub_name;
477 bfd_size_type len;
478
479 if (hh)
480 {
481 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
482 stub_name = bfd_malloc (len);
483 if (stub_name != NULL)
484 sprintf (stub_name, "%08x_%s+%x",
485 input_section->id & 0xffffffff,
486 hh_name (hh),
487 (int) rela->r_addend & 0xffffffff);
488 }
489 else
490 {
491 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
492 stub_name = bfd_malloc (len);
493 if (stub_name != NULL)
494 sprintf (stub_name, "%08x_%x:%x+%x",
495 input_section->id & 0xffffffff,
496 sym_sec->id & 0xffffffff,
497 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
498 (int) rela->r_addend & 0xffffffff);
499 }
500 return stub_name;
501 }
502
503 /* Look up an entry in the stub hash. Stub entries are cached because
504 creating the stub name takes a bit of time. */
505
506 static struct elf32_hppa_stub_hash_entry *
507 hppa_get_stub_entry (const asection *input_section,
508 const asection *sym_sec,
509 struct elf32_hppa_link_hash_entry *hh,
510 const Elf_Internal_Rela *rela,
511 struct elf32_hppa_link_hash_table *htab)
512 {
513 struct elf32_hppa_stub_hash_entry *hsh_entry;
514 const asection *id_sec;
515
516 /* If this input section is part of a group of sections sharing one
517 stub section, then use the id of the first section in the group.
518 Stub names need to include a section id, as there may well be
519 more than one stub used to reach say, printf, and we need to
520 distinguish between them. */
521 id_sec = htab->stub_group[input_section->id].link_sec;
522
523 if (hh != NULL && hh->hsh_cache != NULL
524 && hh->hsh_cache->hh == hh
525 && hh->hsh_cache->id_sec == id_sec)
526 {
527 hsh_entry = hh->hsh_cache;
528 }
529 else
530 {
531 char *stub_name;
532
533 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
534 if (stub_name == NULL)
535 return NULL;
536
537 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
538 stub_name, FALSE, FALSE);
539 if (hh != NULL)
540 hh->hsh_cache = hsh_entry;
541
542 free (stub_name);
543 }
544
545 return hsh_entry;
546 }
547
548 /* Add a new stub entry to the stub hash. Not all fields of the new
549 stub entry are initialised. */
550
551 static struct elf32_hppa_stub_hash_entry *
552 hppa_add_stub (const char *stub_name,
553 asection *section,
554 struct elf32_hppa_link_hash_table *htab)
555 {
556 asection *link_sec;
557 asection *stub_sec;
558 struct elf32_hppa_stub_hash_entry *hsh;
559
560 link_sec = htab->stub_group[section->id].link_sec;
561 stub_sec = htab->stub_group[section->id].stub_sec;
562 if (stub_sec == NULL)
563 {
564 stub_sec = htab->stub_group[link_sec->id].stub_sec;
565 if (stub_sec == NULL)
566 {
567 size_t namelen;
568 bfd_size_type len;
569 char *s_name;
570
571 namelen = strlen (link_sec->name);
572 len = namelen + sizeof (STUB_SUFFIX);
573 s_name = bfd_alloc (htab->stub_bfd, len);
574 if (s_name == NULL)
575 return NULL;
576
577 memcpy (s_name, link_sec->name, namelen);
578 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
579 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
580 if (stub_sec == NULL)
581 return NULL;
582 htab->stub_group[link_sec->id].stub_sec = stub_sec;
583 }
584 htab->stub_group[section->id].stub_sec = stub_sec;
585 }
586
587 /* Enter this entry into the linker stub hash table. */
588 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
589 TRUE, FALSE);
590 if (hsh == NULL)
591 {
592 /* xgettext:c-format */
593 _bfd_error_handler (_("%B: cannot create stub entry %s"),
594 section->owner, stub_name);
595 return NULL;
596 }
597
598 hsh->stub_sec = stub_sec;
599 hsh->stub_offset = 0;
600 hsh->id_sec = link_sec;
601 return hsh;
602 }
603
604 /* Determine the type of stub needed, if any, for a call. */
605
606 static enum elf32_hppa_stub_type
607 hppa_type_of_stub (asection *input_sec,
608 const Elf_Internal_Rela *rela,
609 struct elf32_hppa_link_hash_entry *hh,
610 bfd_vma destination,
611 struct bfd_link_info *info)
612 {
613 bfd_vma location;
614 bfd_vma branch_offset;
615 bfd_vma max_branch_offset;
616 unsigned int r_type;
617
618 if (hh != NULL
619 && hh->eh.plt.offset != (bfd_vma) -1
620 && hh->eh.dynindx != -1
621 && !hh->plabel
622 && (bfd_link_pic (info)
623 || !hh->eh.def_regular
624 || hh->eh.root.type == bfd_link_hash_defweak))
625 {
626 /* We need an import stub. Decide between hppa_stub_import
627 and hppa_stub_import_shared later. */
628 return hppa_stub_import;
629 }
630
631 /* Determine where the call point is. */
632 location = (input_sec->output_offset
633 + input_sec->output_section->vma
634 + rela->r_offset);
635
636 branch_offset = destination - location - 8;
637 r_type = ELF32_R_TYPE (rela->r_info);
638
639 /* Determine if a long branch stub is needed. parisc branch offsets
640 are relative to the second instruction past the branch, ie. +8
641 bytes on from the branch instruction location. The offset is
642 signed and counts in units of 4 bytes. */
643 if (r_type == (unsigned int) R_PARISC_PCREL17F)
644 max_branch_offset = (1 << (17 - 1)) << 2;
645
646 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
647 max_branch_offset = (1 << (12 - 1)) << 2;
648
649 else /* R_PARISC_PCREL22F. */
650 max_branch_offset = (1 << (22 - 1)) << 2;
651
652 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
653 return hppa_stub_long_branch;
654
655 return hppa_stub_none;
656 }
657
658 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
659 IN_ARG contains the link info pointer. */
660
661 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
662 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
663
664 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
665 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
666 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
667
668 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
669 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
670 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
671 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
672
673 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
674 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
675
676 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
677 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
678 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
679 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
680
681 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
682 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
683 #define NOP 0x08000240 /* nop */
684 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
685 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
686 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
687
688 #ifndef R19_STUBS
689 #define R19_STUBS 1
690 #endif
691
692 #if R19_STUBS
693 #define LDW_R1_DLT LDW_R1_R19
694 #else
695 #define LDW_R1_DLT LDW_R1_DP
696 #endif
697
698 static bfd_boolean
699 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
700 {
701 struct elf32_hppa_stub_hash_entry *hsh;
702 struct bfd_link_info *info;
703 struct elf32_hppa_link_hash_table *htab;
704 asection *stub_sec;
705 bfd *stub_bfd;
706 bfd_byte *loc;
707 bfd_vma sym_value;
708 bfd_vma insn;
709 bfd_vma off;
710 int val;
711 int size;
712
713 /* Massage our args to the form they really have. */
714 hsh = hppa_stub_hash_entry (bh);
715 info = (struct bfd_link_info *)in_arg;
716
717 htab = hppa_link_hash_table (info);
718 if (htab == NULL)
719 return FALSE;
720
721 stub_sec = hsh->stub_sec;
722
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
726
727 stub_bfd = stub_sec->owner;
728
729 switch (hsh->stub_type)
730 {
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
739
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
743
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
747
748 size = 8;
749 break;
750
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
756
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
761
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
766
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
772
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
778
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->etab.splt->output_offset
782 + htab->etab.splt->output_section->vma
783 - elf_gp (htab->etab.splt->output_section->owner));
784
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
793
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 if (htab->multi_subspace)
804 {
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
808
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
813
814 size = 28;
815 }
816 else
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
822
823 size = 16;
824 }
825
826 break;
827
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
833
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 {
843 _bfd_error_handler
844 /* xgettext:c-format */
845 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
846 hsh->target_section->owner,
847 stub_sec,
848 hsh->stub_offset,
849 hsh->bh_root.string);
850 bfd_set_error (bfd_error_bad_value);
851 return FALSE;
852 }
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
855 if (!htab->has_22bit_branch)
856 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
857 else
858 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
859 bfd_put_32 (stub_bfd, insn, loc);
860
861 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
864 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
865 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
866
867 /* Point the function symbol at the stub. */
868 hsh->hh->eh.root.u.def.section = stub_sec;
869 hsh->hh->eh.root.u.def.value = stub_sec->size;
870
871 size = 24;
872 break;
873
874 default:
875 BFD_FAIL ();
876 return FALSE;
877 }
878
879 stub_sec->size += size;
880 return TRUE;
881 }
882
883 #undef LDIL_R1
884 #undef BE_SR4_R1
885 #undef BL_R1
886 #undef ADDIL_R1
887 #undef DEPI_R1
888 #undef LDW_R1_R21
889 #undef LDW_R1_DLT
890 #undef LDW_R1_R19
891 #undef ADDIL_R19
892 #undef LDW_R1_DP
893 #undef LDSID_R21_R1
894 #undef MTSP_R1
895 #undef BE_SR0_R21
896 #undef STW_RP
897 #undef BV_R0_R21
898 #undef BL_RP
899 #undef NOP
900 #undef LDW_RP
901 #undef LDSID_RP_R1
902 #undef BE_SR0_RP
903
904 /* As above, but don't actually build the stub. Just bump offset so
905 we know stub section sizes. */
906
907 static bfd_boolean
908 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
909 {
910 struct elf32_hppa_stub_hash_entry *hsh;
911 struct elf32_hppa_link_hash_table *htab;
912 int size;
913
914 /* Massage our args to the form they really have. */
915 hsh = hppa_stub_hash_entry (bh);
916 htab = in_arg;
917
918 if (hsh->stub_type == hppa_stub_long_branch)
919 size = 8;
920 else if (hsh->stub_type == hppa_stub_long_branch_shared)
921 size = 12;
922 else if (hsh->stub_type == hppa_stub_export)
923 size = 24;
924 else /* hppa_stub_import or hppa_stub_import_shared. */
925 {
926 if (htab->multi_subspace)
927 size = 28;
928 else
929 size = 16;
930 }
931
932 hsh->stub_sec->size += size;
933 return TRUE;
934 }
935
936 /* Return nonzero if ABFD represents an HPPA ELF32 file.
937 Additionally we set the default architecture and machine. */
938
939 static bfd_boolean
940 elf32_hppa_object_p (bfd *abfd)
941 {
942 Elf_Internal_Ehdr * i_ehdrp;
943 unsigned int flags;
944
945 i_ehdrp = elf_elfheader (abfd);
946 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
947 {
948 /* GCC on hppa-linux produces binaries with OSABI=GNU,
949 but the kernel produces corefiles with OSABI=SysV. */
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
951 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 return FALSE;
953 }
954 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
955 {
956 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960 return FALSE;
961 }
962 else
963 {
964 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
965 return FALSE;
966 }
967
968 flags = i_ehdrp->e_flags;
969 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 {
971 case EFA_PARISC_1_0:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
973 case EFA_PARISC_1_1:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
975 case EFA_PARISC_2_0:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
977 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
978 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
979 }
980 return TRUE;
981 }
982
983 /* Create the .plt and .got sections, and set up our hash table
984 short-cuts to various dynamic sections. */
985
986 static bfd_boolean
987 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
988 {
989 struct elf32_hppa_link_hash_table *htab;
990 struct elf_link_hash_entry *eh;
991
992 /* Don't try to create the .plt and .got twice. */
993 htab = hppa_link_hash_table (info);
994 if (htab == NULL)
995 return FALSE;
996 if (htab->etab.splt != NULL)
997 return TRUE;
998
999 /* Call the generic code to do most of the work. */
1000 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1001 return FALSE;
1002
1003 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1004 application, because __canonicalize_funcptr_for_compare needs it. */
1005 eh = elf_hash_table (info)->hgot;
1006 eh->forced_local = 0;
1007 eh->other = STV_DEFAULT;
1008 return bfd_elf_link_record_dynamic_symbol (info, eh);
1009 }
1010
1011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1012
1013 static void
1014 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1015 struct elf_link_hash_entry *eh_dir,
1016 struct elf_link_hash_entry *eh_ind)
1017 {
1018 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1019
1020 hh_dir = hppa_elf_hash_entry (eh_dir);
1021 hh_ind = hppa_elf_hash_entry (eh_ind);
1022
1023 if (hh_ind->dyn_relocs != NULL)
1024 {
1025 if (hh_dir->dyn_relocs != NULL)
1026 {
1027 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1028 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1029
1030 /* Add reloc counts against the indirect sym to the direct sym
1031 list. Merge any entries against the same section. */
1032 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1033 {
1034 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1035
1036 for (hdh_q = hh_dir->dyn_relocs;
1037 hdh_q != NULL;
1038 hdh_q = hdh_q->hdh_next)
1039 if (hdh_q->sec == hdh_p->sec)
1040 {
1041 #if RELATIVE_DYNRELOCS
1042 hdh_q->relative_count += hdh_p->relative_count;
1043 #endif
1044 hdh_q->count += hdh_p->count;
1045 *hdh_pp = hdh_p->hdh_next;
1046 break;
1047 }
1048 if (hdh_q == NULL)
1049 hdh_pp = &hdh_p->hdh_next;
1050 }
1051 *hdh_pp = hh_dir->dyn_relocs;
1052 }
1053
1054 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1055 hh_ind->dyn_relocs = NULL;
1056 }
1057
1058 if (ELIMINATE_COPY_RELOCS
1059 && eh_ind->root.type != bfd_link_hash_indirect
1060 && eh_dir->dynamic_adjusted)
1061 {
1062 /* If called to transfer flags for a weakdef during processing
1063 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1064 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1065 if (eh_dir->versioned != versioned_hidden)
1066 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1067 eh_dir->ref_regular |= eh_ind->ref_regular;
1068 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1069 eh_dir->needs_plt |= eh_ind->needs_plt;
1070 }
1071 else
1072 {
1073 if (eh_ind->root.type == bfd_link_hash_indirect)
1074 {
1075 hh_dir->plabel |= hh_ind->plabel;
1076 hh_dir->tls_type |= hh_ind->tls_type;
1077 hh_ind->tls_type = GOT_UNKNOWN;
1078 }
1079
1080 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1081 }
1082 }
1083
1084 static int
1085 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1086 int r_type, int is_local ATTRIBUTE_UNUSED)
1087 {
1088 /* For now we don't support linker optimizations. */
1089 return r_type;
1090 }
1091
1092 /* Return a pointer to the local GOT, PLT and TLS reference counts
1093 for ABFD. Returns NULL if the storage allocation fails. */
1094
1095 static bfd_signed_vma *
1096 hppa32_elf_local_refcounts (bfd *abfd)
1097 {
1098 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1099 bfd_signed_vma *local_refcounts;
1100
1101 local_refcounts = elf_local_got_refcounts (abfd);
1102 if (local_refcounts == NULL)
1103 {
1104 bfd_size_type size;
1105
1106 /* Allocate space for local GOT and PLT reference
1107 counts. Done this way to save polluting elf_obj_tdata
1108 with another target specific pointer. */
1109 size = symtab_hdr->sh_info;
1110 size *= 2 * sizeof (bfd_signed_vma);
1111 /* Add in space to store the local GOT TLS types. */
1112 size += symtab_hdr->sh_info;
1113 local_refcounts = bfd_zalloc (abfd, size);
1114 if (local_refcounts == NULL)
1115 return NULL;
1116 elf_local_got_refcounts (abfd) = local_refcounts;
1117 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1118 symtab_hdr->sh_info);
1119 }
1120 return local_refcounts;
1121 }
1122
1123
1124 /* Look through the relocs for a section during the first phase, and
1125 calculate needed space in the global offset table, procedure linkage
1126 table, and dynamic reloc sections. At this point we haven't
1127 necessarily read all the input files. */
1128
1129 static bfd_boolean
1130 elf32_hppa_check_relocs (bfd *abfd,
1131 struct bfd_link_info *info,
1132 asection *sec,
1133 const Elf_Internal_Rela *relocs)
1134 {
1135 Elf_Internal_Shdr *symtab_hdr;
1136 struct elf_link_hash_entry **eh_syms;
1137 const Elf_Internal_Rela *rela;
1138 const Elf_Internal_Rela *rela_end;
1139 struct elf32_hppa_link_hash_table *htab;
1140 asection *sreloc;
1141
1142 if (bfd_link_relocatable (info))
1143 return TRUE;
1144
1145 htab = hppa_link_hash_table (info);
1146 if (htab == NULL)
1147 return FALSE;
1148 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1149 eh_syms = elf_sym_hashes (abfd);
1150 sreloc = NULL;
1151
1152 rela_end = relocs + sec->reloc_count;
1153 for (rela = relocs; rela < rela_end; rela++)
1154 {
1155 enum {
1156 NEED_GOT = 1,
1157 NEED_PLT = 2,
1158 NEED_DYNREL = 4,
1159 PLT_PLABEL = 8
1160 };
1161
1162 unsigned int r_symndx, r_type;
1163 struct elf32_hppa_link_hash_entry *hh;
1164 int need_entry = 0;
1165
1166 r_symndx = ELF32_R_SYM (rela->r_info);
1167
1168 if (r_symndx < symtab_hdr->sh_info)
1169 hh = NULL;
1170 else
1171 {
1172 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1173 while (hh->eh.root.type == bfd_link_hash_indirect
1174 || hh->eh.root.type == bfd_link_hash_warning)
1175 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1176
1177 /* PR15323, ref flags aren't set for references in the same
1178 object. */
1179 hh->eh.root.non_ir_ref_regular = 1;
1180 }
1181
1182 r_type = ELF32_R_TYPE (rela->r_info);
1183 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1184
1185 switch (r_type)
1186 {
1187 case R_PARISC_DLTIND14F:
1188 case R_PARISC_DLTIND14R:
1189 case R_PARISC_DLTIND21L:
1190 /* This symbol requires a global offset table entry. */
1191 need_entry = NEED_GOT;
1192 break;
1193
1194 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1195 case R_PARISC_PLABEL21L:
1196 case R_PARISC_PLABEL32:
1197 /* If the addend is non-zero, we break badly. */
1198 if (rela->r_addend != 0)
1199 abort ();
1200
1201 /* If we are creating a shared library, then we need to
1202 create a PLT entry for all PLABELs, because PLABELs with
1203 local symbols may be passed via a pointer to another
1204 object. Additionally, output a dynamic relocation
1205 pointing to the PLT entry.
1206
1207 For executables, the original 32-bit ABI allowed two
1208 different styles of PLABELs (function pointers): For
1209 global functions, the PLABEL word points into the .plt
1210 two bytes past a (function address, gp) pair, and for
1211 local functions the PLABEL points directly at the
1212 function. The magic +2 for the first type allows us to
1213 differentiate between the two. As you can imagine, this
1214 is a real pain when it comes to generating code to call
1215 functions indirectly or to compare function pointers.
1216 We avoid the mess by always pointing a PLABEL into the
1217 .plt, even for local functions. */
1218 need_entry = PLT_PLABEL | NEED_PLT;
1219 if (bfd_link_pic (info))
1220 need_entry |= NEED_DYNREL;
1221 break;
1222
1223 case R_PARISC_PCREL12F:
1224 htab->has_12bit_branch = 1;
1225 goto branch_common;
1226
1227 case R_PARISC_PCREL17C:
1228 case R_PARISC_PCREL17F:
1229 htab->has_17bit_branch = 1;
1230 goto branch_common;
1231
1232 case R_PARISC_PCREL22F:
1233 htab->has_22bit_branch = 1;
1234 branch_common:
1235 /* Function calls might need to go through the .plt, and
1236 might require long branch stubs. */
1237 if (hh == NULL)
1238 {
1239 /* We know local syms won't need a .plt entry, and if
1240 they need a long branch stub we can't guarantee that
1241 we can reach the stub. So just flag an error later
1242 if we're doing a shared link and find we need a long
1243 branch stub. */
1244 continue;
1245 }
1246 else
1247 {
1248 /* Global symbols will need a .plt entry if they remain
1249 global, and in most cases won't need a long branch
1250 stub. Unfortunately, we have to cater for the case
1251 where a symbol is forced local by versioning, or due
1252 to symbolic linking, and we lose the .plt entry. */
1253 need_entry = NEED_PLT;
1254 if (hh->eh.type == STT_PARISC_MILLI)
1255 need_entry = 0;
1256 }
1257 break;
1258
1259 case R_PARISC_SEGBASE: /* Used to set segment base. */
1260 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1261 case R_PARISC_PCREL14F: /* PC relative load/store. */
1262 case R_PARISC_PCREL14R:
1263 case R_PARISC_PCREL17R: /* External branches. */
1264 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1265 case R_PARISC_PCREL32:
1266 /* We don't need to propagate the relocation if linking a
1267 shared object since these are section relative. */
1268 continue;
1269
1270 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1271 case R_PARISC_DPREL14R:
1272 case R_PARISC_DPREL21L:
1273 if (bfd_link_pic (info))
1274 {
1275 _bfd_error_handler
1276 /* xgettext:c-format */
1277 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1278 abfd,
1279 elf_hppa_howto_table[r_type].name);
1280 bfd_set_error (bfd_error_bad_value);
1281 return FALSE;
1282 }
1283 /* Fall through. */
1284
1285 case R_PARISC_DIR17F: /* Used for external branches. */
1286 case R_PARISC_DIR17R:
1287 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1288 case R_PARISC_DIR14R:
1289 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1290 case R_PARISC_DIR32: /* .word relocs. */
1291 /* We may want to output a dynamic relocation later. */
1292 need_entry = NEED_DYNREL;
1293 break;
1294
1295 /* This relocation describes the C++ object vtable hierarchy.
1296 Reconstruct it for later use during GC. */
1297 case R_PARISC_GNU_VTINHERIT:
1298 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1299 return FALSE;
1300 continue;
1301
1302 /* This relocation describes which C++ vtable entries are actually
1303 used. Record for later use during GC. */
1304 case R_PARISC_GNU_VTENTRY:
1305 BFD_ASSERT (hh != NULL);
1306 if (hh != NULL
1307 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1308 return FALSE;
1309 continue;
1310
1311 case R_PARISC_TLS_GD21L:
1312 case R_PARISC_TLS_GD14R:
1313 case R_PARISC_TLS_LDM21L:
1314 case R_PARISC_TLS_LDM14R:
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 if (bfd_link_dll (info))
1321 info->flags |= DF_STATIC_TLS;
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 default:
1326 continue;
1327 }
1328
1329 /* Now carry out our orders. */
1330 if (need_entry & NEED_GOT)
1331 {
1332 int tls_type = GOT_NORMAL;
1333
1334 switch (r_type)
1335 {
1336 default:
1337 break;
1338 case R_PARISC_TLS_GD21L:
1339 case R_PARISC_TLS_GD14R:
1340 tls_type = GOT_TLS_GD;
1341 break;
1342 case R_PARISC_TLS_LDM21L:
1343 case R_PARISC_TLS_LDM14R:
1344 tls_type = GOT_TLS_LDM;
1345 break;
1346 case R_PARISC_TLS_IE21L:
1347 case R_PARISC_TLS_IE14R:
1348 tls_type = GOT_TLS_IE;
1349 break;
1350 }
1351
1352 /* Allocate space for a GOT entry, as well as a dynamic
1353 relocation for this entry. */
1354 if (htab->etab.sgot == NULL)
1355 {
1356 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1357 return FALSE;
1358 }
1359
1360 if (hh != NULL)
1361 {
1362 if (tls_type == GOT_TLS_LDM)
1363 htab->tls_ldm_got.refcount += 1;
1364 else
1365 hh->eh.got.refcount += 1;
1366 hh->tls_type |= tls_type;
1367 }
1368 else
1369 {
1370 bfd_signed_vma *local_got_refcounts;
1371
1372 /* This is a global offset table entry for a local symbol. */
1373 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1374 if (local_got_refcounts == NULL)
1375 return FALSE;
1376 if (tls_type == GOT_TLS_LDM)
1377 htab->tls_ldm_got.refcount += 1;
1378 else
1379 local_got_refcounts[r_symndx] += 1;
1380
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1382 }
1383 }
1384
1385 if (need_entry & NEED_PLT)
1386 {
1387 /* If we are creating a shared library, and this is a reloc
1388 against a weak symbol or a global symbol in a dynamic
1389 object, then we will be creating an import stub and a
1390 .plt entry for the symbol. Similarly, on a normal link
1391 to symbols defined in a dynamic object we'll need the
1392 import stub and a .plt entry. We don't know yet whether
1393 the symbol is defined or not, so make an entry anyway and
1394 clean up later in adjust_dynamic_symbol. */
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 {
1397 if (hh != NULL)
1398 {
1399 hh->eh.needs_plt = 1;
1400 hh->eh.plt.refcount += 1;
1401
1402 /* If this .plt entry is for a plabel, mark it so
1403 that adjust_dynamic_symbol will keep the entry
1404 even if it appears to be local. */
1405 if (need_entry & PLT_PLABEL)
1406 hh->plabel = 1;
1407 }
1408 else if (need_entry & PLT_PLABEL)
1409 {
1410 bfd_signed_vma *local_got_refcounts;
1411 bfd_signed_vma *local_plt_refcounts;
1412
1413 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1414 if (local_got_refcounts == NULL)
1415 return FALSE;
1416 local_plt_refcounts = (local_got_refcounts
1417 + symtab_hdr->sh_info);
1418 local_plt_refcounts[r_symndx] += 1;
1419 }
1420 }
1421 }
1422
1423 if ((need_entry & NEED_DYNREL) != 0
1424 && (sec->flags & SEC_ALLOC) != 0)
1425 {
1426 /* Flag this symbol as having a non-got, non-plt reference
1427 so that we generate copy relocs if it turns out to be
1428 dynamic. */
1429 if (hh != NULL && !bfd_link_pic (info))
1430 hh->eh.non_got_ref = 1;
1431
1432 /* If we are creating a shared library then we need to copy
1433 the reloc into the shared library. However, if we are
1434 linking with -Bsymbolic, we need only copy absolute
1435 relocs or relocs against symbols that are not defined in
1436 an object we are including in the link. PC- or DP- or
1437 DLT-relative relocs against any local sym or global sym
1438 with DEF_REGULAR set, can be discarded. At this point we
1439 have not seen all the input files, so it is possible that
1440 DEF_REGULAR is not set now but will be set later (it is
1441 never cleared). We account for that possibility below by
1442 storing information in the dyn_relocs field of the
1443 hash table entry.
1444
1445 A similar situation to the -Bsymbolic case occurs when
1446 creating shared libraries and symbol visibility changes
1447 render the symbol local.
1448
1449 As it turns out, all the relocs we will be creating here
1450 are absolute, so we cannot remove them on -Bsymbolic
1451 links or visibility changes anyway. A STUB_REL reloc
1452 is absolute too, as in that case it is the reloc in the
1453 stub we will be creating, rather than copying the PCREL
1454 reloc in the branch.
1455
1456 If on the other hand, we are creating an executable, we
1457 may need to keep relocations for symbols satisfied by a
1458 dynamic library if we manage to avoid copy relocs for the
1459 symbol. */
1460 if ((bfd_link_pic (info)
1461 && (IS_ABSOLUTE_RELOC (r_type)
1462 || (hh != NULL
1463 && (!SYMBOLIC_BIND (info, &hh->eh)
1464 || hh->eh.root.type == bfd_link_hash_defweak
1465 || !hh->eh.def_regular))))
1466 || (ELIMINATE_COPY_RELOCS
1467 && !bfd_link_pic (info)
1468 && hh != NULL
1469 && (hh->eh.root.type == bfd_link_hash_defweak
1470 || !hh->eh.def_regular)))
1471 {
1472 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1473 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1474
1475 /* Create a reloc section in dynobj and make room for
1476 this reloc. */
1477 if (sreloc == NULL)
1478 {
1479 sreloc = _bfd_elf_make_dynamic_reloc_section
1480 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1481
1482 if (sreloc == NULL)
1483 {
1484 bfd_set_error (bfd_error_bad_value);
1485 return FALSE;
1486 }
1487 }
1488
1489 /* If this is a global symbol, we count the number of
1490 relocations we need for this symbol. */
1491 if (hh != NULL)
1492 {
1493 hdh_head = &hh->dyn_relocs;
1494 }
1495 else
1496 {
1497 /* Track dynamic relocs needed for local syms too.
1498 We really need local syms available to do this
1499 easily. Oh well. */
1500 asection *sr;
1501 void *vpp;
1502 Elf_Internal_Sym *isym;
1503
1504 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1505 abfd, r_symndx);
1506 if (isym == NULL)
1507 return FALSE;
1508
1509 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1510 if (sr == NULL)
1511 sr = sec;
1512
1513 vpp = &elf_section_data (sr)->local_dynrel;
1514 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1515 }
1516
1517 hdh_p = *hdh_head;
1518 if (hdh_p == NULL || hdh_p->sec != sec)
1519 {
1520 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1521 if (hdh_p == NULL)
1522 return FALSE;
1523 hdh_p->hdh_next = *hdh_head;
1524 *hdh_head = hdh_p;
1525 hdh_p->sec = sec;
1526 hdh_p->count = 0;
1527 #if RELATIVE_DYNRELOCS
1528 hdh_p->relative_count = 0;
1529 #endif
1530 }
1531
1532 hdh_p->count += 1;
1533 #if RELATIVE_DYNRELOCS
1534 if (!IS_ABSOLUTE_RELOC (rtype))
1535 hdh_p->relative_count += 1;
1536 #endif
1537 }
1538 }
1539 }
1540
1541 return TRUE;
1542 }
1543
1544 /* Return the section that should be marked against garbage collection
1545 for a given relocation. */
1546
1547 static asection *
1548 elf32_hppa_gc_mark_hook (asection *sec,
1549 struct bfd_link_info *info,
1550 Elf_Internal_Rela *rela,
1551 struct elf_link_hash_entry *hh,
1552 Elf_Internal_Sym *sym)
1553 {
1554 if (hh != NULL)
1555 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1556 {
1557 case R_PARISC_GNU_VTINHERIT:
1558 case R_PARISC_GNU_VTENTRY:
1559 return NULL;
1560 }
1561
1562 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1563 }
1564
1565 /* Support for core dump NOTE sections. */
1566
1567 static bfd_boolean
1568 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1569 {
1570 int offset;
1571 size_t size;
1572
1573 switch (note->descsz)
1574 {
1575 default:
1576 return FALSE;
1577
1578 case 396: /* Linux/hppa */
1579 /* pr_cursig */
1580 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1581
1582 /* pr_pid */
1583 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1584
1585 /* pr_reg */
1586 offset = 72;
1587 size = 320;
1588
1589 break;
1590 }
1591
1592 /* Make a ".reg/999" section. */
1593 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1594 size, note->descpos + offset);
1595 }
1596
1597 static bfd_boolean
1598 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1599 {
1600 switch (note->descsz)
1601 {
1602 default:
1603 return FALSE;
1604
1605 case 124: /* Linux/hppa elf_prpsinfo. */
1606 elf_tdata (abfd)->core->program
1607 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1608 elf_tdata (abfd)->core->command
1609 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1610 }
1611
1612 /* Note that for some reason, a spurious space is tacked
1613 onto the end of the args in some (at least one anyway)
1614 implementations, so strip it off if it exists. */
1615 {
1616 char *command = elf_tdata (abfd)->core->command;
1617 int n = strlen (command);
1618
1619 if (0 < n && command[n - 1] == ' ')
1620 command[n - 1] = '\0';
1621 }
1622
1623 return TRUE;
1624 }
1625
1626 /* Our own version of hide_symbol, so that we can keep plt entries for
1627 plabels. */
1628
1629 static void
1630 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1631 struct elf_link_hash_entry *eh,
1632 bfd_boolean force_local)
1633 {
1634 if (force_local)
1635 {
1636 eh->forced_local = 1;
1637 if (eh->dynindx != -1)
1638 {
1639 eh->dynindx = -1;
1640 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1641 eh->dynstr_index);
1642 }
1643
1644 /* PR 16082: Remove version information from hidden symbol. */
1645 eh->verinfo.verdef = NULL;
1646 eh->verinfo.vertree = NULL;
1647 }
1648
1649 /* STT_GNU_IFUNC symbol must go through PLT. */
1650 if (! hppa_elf_hash_entry (eh)->plabel
1651 && eh->type != STT_GNU_IFUNC)
1652 {
1653 eh->needs_plt = 0;
1654 eh->plt = elf_hash_table (info)->init_plt_offset;
1655 }
1656 }
1657
1658 /* Find any dynamic relocs that apply to read-only sections. */
1659
1660 static asection *
1661 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1662 {
1663 struct elf32_hppa_link_hash_entry *hh;
1664 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1665
1666 hh = hppa_elf_hash_entry (eh);
1667 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1668 {
1669 asection *sec = hdh_p->sec->output_section;
1670
1671 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1672 return hdh_p->sec;
1673 }
1674 return NULL;
1675 }
1676
1677 /* Adjust a symbol defined by a dynamic object and referenced by a
1678 regular object. The current definition is in some section of the
1679 dynamic object, but we're not including those sections. We have to
1680 change the definition to something the rest of the link can
1681 understand. */
1682
1683 static bfd_boolean
1684 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1685 struct elf_link_hash_entry *eh)
1686 {
1687 struct elf32_hppa_link_hash_table *htab;
1688 asection *sec, *srel;
1689
1690 /* If this is a function, put it in the procedure linkage table. We
1691 will fill in the contents of the procedure linkage table later. */
1692 if (eh->type == STT_FUNC
1693 || eh->needs_plt)
1694 {
1695 /* Prior to adjust_dynamic_symbol, non_got_ref set means that
1696 check_relocs generated dyn_relocs for this symbol.
1697 After adjust_dynamic_symbol, non_got_ref clear in the non-pic
1698 case means that dyn_relocs for this symbol should be
1699 discarded; We either want the symbol to remain undefined, or
1700 we have a local definition of some sort. The "local
1701 definition" for non-function symbols may be due to creating a
1702 local definition in .dynbss.
1703 Unlike other targets, elf32-hppa.c does not define a function
1704 symbol in a non-pic executable on PLT stub code, so we don't
1705 have a local definition in that case. */
1706 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1707 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1708 /* Arrange to discard dyn_relocs if we've decided that a
1709 function symbol is local. */
1710 if (local)
1711 eh->non_got_ref = 0;
1712
1713 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1714 The refcounts are not reliable when it has been hidden since
1715 hide_symbol can be called before the plabel flag is set. */
1716 if (hppa_elf_hash_entry (eh)->plabel)
1717 eh->plt.refcount = 1;
1718
1719 /* Note that unlike some other backends, the refcount is not
1720 incremented for a non-call (and non-plabel) function reference. */
1721 else if (eh->plt.refcount <= 0
1722 || local)
1723 {
1724 /* The .plt entry is not needed when:
1725 a) Garbage collection has removed all references to the
1726 symbol, or
1727 b) We know for certain the symbol is defined in this
1728 object, and it's not a weak definition, nor is the symbol
1729 used by a plabel relocation. Either this object is the
1730 application or we are doing a shared symbolic link. */
1731 eh->plt.offset = (bfd_vma) -1;
1732 eh->needs_plt = 0;
1733 }
1734
1735 /* Function symbols can't have copy relocs. */
1736 return TRUE;
1737 }
1738 else
1739 eh->plt.offset = (bfd_vma) -1;
1740
1741 /* If this is a weak symbol, and there is a real definition, the
1742 processor independent code will have arranged for us to see the
1743 real definition first, and we can just use the same value. */
1744 if (eh->u.weakdef != NULL)
1745 {
1746 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1747 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1748 abort ();
1749 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1750 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1751 if (ELIMINATE_COPY_RELOCS)
1752 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1753 return TRUE;
1754 }
1755
1756 /* This is a reference to a symbol defined by a dynamic object which
1757 is not a function. */
1758
1759 /* If we are creating a shared library, we must presume that the
1760 only references to the symbol are via the global offset table.
1761 For such cases we need not do anything here; the relocations will
1762 be handled correctly by relocate_section. */
1763 if (bfd_link_pic (info))
1764 return TRUE;
1765
1766 /* If there are no references to this symbol that do not use the
1767 GOT, we don't need to generate a copy reloc. */
1768 if (!eh->non_got_ref)
1769 return TRUE;
1770
1771 /* If -z nocopyreloc was given, we won't generate them either. */
1772 if (info->nocopyreloc)
1773 return TRUE;
1774
1775 if (ELIMINATE_COPY_RELOCS
1776 && !readonly_dynrelocs (eh))
1777 {
1778 /* If we didn't find any dynamic relocs in read-only sections, then
1779 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1780 return TRUE;
1781 }
1782
1783 /* We must allocate the symbol in our .dynbss section, which will
1784 become part of the .bss section of the executable. There will be
1785 an entry for this symbol in the .dynsym section. The dynamic
1786 object will contain position independent code, so all references
1787 from the dynamic object to this symbol will go through the global
1788 offset table. The dynamic linker will use the .dynsym entry to
1789 determine the address it must put in the global offset table, so
1790 both the dynamic object and the regular object will refer to the
1791 same memory location for the variable. */
1792
1793 htab = hppa_link_hash_table (info);
1794 if (htab == NULL)
1795 return FALSE;
1796
1797 /* We must generate a COPY reloc to tell the dynamic linker to
1798 copy the initial value out of the dynamic object and into the
1799 runtime process image. */
1800 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1801 {
1802 sec = htab->etab.sdynrelro;
1803 srel = htab->etab.sreldynrelro;
1804 }
1805 else
1806 {
1807 sec = htab->etab.sdynbss;
1808 srel = htab->etab.srelbss;
1809 }
1810 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1811 {
1812 srel->size += sizeof (Elf32_External_Rela);
1813 eh->needs_copy = 1;
1814 }
1815
1816 /* We no longer want dyn_relocs. */
1817 eh->non_got_ref = 0;
1818 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1819 }
1820
1821 /* If EH is undefined, make it dynamic if that makes sense. */
1822
1823 static bfd_boolean
1824 ensure_undef_dynamic (struct bfd_link_info *info,
1825 struct elf_link_hash_entry *eh)
1826 {
1827 struct elf_link_hash_table *htab = elf_hash_table (info);
1828
1829 if (htab->dynamic_sections_created
1830 && (eh->root.type == bfd_link_hash_undefweak
1831 || eh->root.type == bfd_link_hash_undefined)
1832 && eh->dynindx == -1
1833 && !eh->forced_local
1834 && eh->type != STT_PARISC_MILLI
1835 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1836 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1837 return bfd_elf_link_record_dynamic_symbol (info, eh);
1838 return TRUE;
1839 }
1840
1841 /* Allocate space in the .plt for entries that won't have relocations.
1842 ie. plabel entries. */
1843
1844 static bfd_boolean
1845 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1846 {
1847 struct bfd_link_info *info;
1848 struct elf32_hppa_link_hash_table *htab;
1849 struct elf32_hppa_link_hash_entry *hh;
1850 asection *sec;
1851
1852 if (eh->root.type == bfd_link_hash_indirect)
1853 return TRUE;
1854
1855 info = (struct bfd_link_info *) inf;
1856 hh = hppa_elf_hash_entry (eh);
1857 htab = hppa_link_hash_table (info);
1858 if (htab == NULL)
1859 return FALSE;
1860
1861 if (htab->etab.dynamic_sections_created
1862 && eh->plt.refcount > 0)
1863 {
1864 if (!ensure_undef_dynamic (info, eh))
1865 return FALSE;
1866
1867 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1868 {
1869 /* Allocate these later. From this point on, h->plabel
1870 means that the plt entry is only used by a plabel.
1871 We'll be using a normal plt entry for this symbol, so
1872 clear the plabel indicator. */
1873
1874 hh->plabel = 0;
1875 }
1876 else if (hh->plabel)
1877 {
1878 /* Make an entry in the .plt section for plabel references
1879 that won't have a .plt entry for other reasons. */
1880 sec = htab->etab.splt;
1881 eh->plt.offset = sec->size;
1882 sec->size += PLT_ENTRY_SIZE;
1883 if (bfd_link_pic (info))
1884 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1885 }
1886 else
1887 {
1888 /* No .plt entry needed. */
1889 eh->plt.offset = (bfd_vma) -1;
1890 eh->needs_plt = 0;
1891 }
1892 }
1893 else
1894 {
1895 eh->plt.offset = (bfd_vma) -1;
1896 eh->needs_plt = 0;
1897 }
1898
1899 return TRUE;
1900 }
1901
1902 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1903
1904 static inline unsigned int
1905 got_entries_needed (int tls_type)
1906 {
1907 unsigned int need = 0;
1908
1909 if ((tls_type & GOT_NORMAL) != 0)
1910 need += GOT_ENTRY_SIZE;
1911 if ((tls_type & GOT_TLS_GD) != 0)
1912 need += GOT_ENTRY_SIZE * 2;
1913 if ((tls_type & GOT_TLS_IE) != 0)
1914 need += GOT_ENTRY_SIZE;
1915 return need;
1916 }
1917
1918 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1919 NEEDed GOT entries. KNOWN says a TPREL offset can be calculated
1920 at link time. */
1921
1922 static inline unsigned int
1923 got_relocs_needed (int tls_type, unsigned int need, bfd_boolean known)
1924 {
1925 /* All the entries we allocated need relocs.
1926 Except IE in executable with a local symbol. We could also omit
1927 the DTPOFF reloc on the second word of a GD entry under the same
1928 condition as that for IE, but ld.so might want to differentiate
1929 LD and GD entries at some stage. */
1930 if ((tls_type & GOT_TLS_IE) != 0 && known)
1931 need -= GOT_ENTRY_SIZE;
1932 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1933 }
1934
1935 /* Allocate space in .plt, .got and associated reloc sections for
1936 global syms. */
1937
1938 static bfd_boolean
1939 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1940 {
1941 struct bfd_link_info *info;
1942 struct elf32_hppa_link_hash_table *htab;
1943 asection *sec;
1944 struct elf32_hppa_link_hash_entry *hh;
1945 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1946
1947 if (eh->root.type == bfd_link_hash_indirect)
1948 return TRUE;
1949
1950 info = inf;
1951 htab = hppa_link_hash_table (info);
1952 if (htab == NULL)
1953 return FALSE;
1954
1955 hh = hppa_elf_hash_entry (eh);
1956
1957 if (htab->etab.dynamic_sections_created
1958 && eh->plt.offset != (bfd_vma) -1
1959 && !hh->plabel
1960 && eh->plt.refcount > 0)
1961 {
1962 /* Make an entry in the .plt section. */
1963 sec = htab->etab.splt;
1964 eh->plt.offset = sec->size;
1965 sec->size += PLT_ENTRY_SIZE;
1966
1967 /* We also need to make an entry in the .rela.plt section. */
1968 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1969 htab->need_plt_stub = 1;
1970 }
1971
1972 if (eh->got.refcount > 0)
1973 {
1974 unsigned int need;
1975
1976 if (!ensure_undef_dynamic (info, eh))
1977 return FALSE;
1978
1979 sec = htab->etab.sgot;
1980 eh->got.offset = sec->size;
1981 need = got_entries_needed (hh->tls_type);
1982 sec->size += need;
1983 if (htab->etab.dynamic_sections_created
1984 && (bfd_link_pic (info)
1985 || (eh->dynindx != -1
1986 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1987 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1988 {
1989 bfd_boolean tprel_known = (bfd_link_executable (info)
1990 && SYMBOL_REFERENCES_LOCAL (info, eh));
1991 htab->etab.srelgot->size
1992 += got_relocs_needed (hh->tls_type, need, tprel_known);
1993 }
1994 }
1995 else
1996 eh->got.offset = (bfd_vma) -1;
1997
1998 /* If no dynamic sections we can't have dynamic relocs. */
1999 if (!htab->etab.dynamic_sections_created)
2000 hh->dyn_relocs = NULL;
2001
2002 /* Discard relocs on undefined syms with non-default visibility. */
2003 else if ((eh->root.type == bfd_link_hash_undefined
2004 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2005 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2006 hh->dyn_relocs = NULL;
2007
2008 if (hh->dyn_relocs == NULL)
2009 {
2010 eh->non_got_ref = 0;
2011 return TRUE;
2012 }
2013
2014 /* If this is a -Bsymbolic shared link, then we need to discard all
2015 space allocated for dynamic pc-relative relocs against symbols
2016 defined in a regular object. For the normal shared case, discard
2017 space for relocs that have become local due to symbol visibility
2018 changes. */
2019 if (bfd_link_pic (info))
2020 {
2021 #if RELATIVE_DYNRELOCS
2022 if (SYMBOL_CALLS_LOCAL (info, eh))
2023 {
2024 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2025
2026 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2027 {
2028 hdh_p->count -= hdh_p->relative_count;
2029 hdh_p->relative_count = 0;
2030 if (hdh_p->count == 0)
2031 *hdh_pp = hdh_p->hdh_next;
2032 else
2033 hdh_pp = &hdh_p->hdh_next;
2034 }
2035 }
2036 #endif
2037
2038 if (hh->dyn_relocs != NULL)
2039 {
2040 if (!ensure_undef_dynamic (info, eh))
2041 return FALSE;
2042 }
2043 }
2044 else if (ELIMINATE_COPY_RELOCS)
2045 {
2046 /* For the non-shared case, discard space for relocs against
2047 symbols which turn out to need copy relocs or are not
2048 dynamic. */
2049
2050 if (eh->dynamic_adjusted
2051 && eh->non_got_ref
2052 && !eh->def_regular
2053 && !ELF_COMMON_DEF_P (eh))
2054 {
2055 if (!ensure_undef_dynamic (info, eh))
2056 return FALSE;
2057
2058 if (eh->dynindx == -1)
2059 {
2060 eh->non_got_ref = 0;
2061 hh->dyn_relocs = NULL;
2062 }
2063 }
2064 else
2065 {
2066 eh->non_got_ref = 0;
2067 hh->dyn_relocs = NULL;
2068 }
2069 }
2070
2071 /* Finally, allocate space. */
2072 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2073 {
2074 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2075 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2076 }
2077
2078 return TRUE;
2079 }
2080
2081 /* This function is called via elf_link_hash_traverse to force
2082 millicode symbols local so they do not end up as globals in the
2083 dynamic symbol table. We ought to be able to do this in
2084 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2085 for all dynamic symbols. Arguably, this is a bug in
2086 elf_adjust_dynamic_symbol. */
2087
2088 static bfd_boolean
2089 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2090 struct bfd_link_info *info)
2091 {
2092 if (eh->type == STT_PARISC_MILLI
2093 && !eh->forced_local)
2094 {
2095 elf32_hppa_hide_symbol (info, eh, TRUE);
2096 }
2097 return TRUE;
2098 }
2099
2100 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2101 read-only sections. */
2102
2103 static bfd_boolean
2104 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2105 {
2106 asection *sec;
2107
2108 if (eh->root.type == bfd_link_hash_indirect)
2109 return TRUE;
2110
2111 sec = readonly_dynrelocs (eh);
2112 if (sec != NULL)
2113 {
2114 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2115
2116 info->flags |= DF_TEXTREL;
2117 info->callbacks->minfo
2118 (_("%B: dynamic relocation in read-only section `%A'\n"),
2119 sec->owner, sec);
2120
2121 /* Not an error, just cut short the traversal. */
2122 return FALSE;
2123 }
2124 return TRUE;
2125 }
2126
2127 /* Set the sizes of the dynamic sections. */
2128
2129 static bfd_boolean
2130 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2131 struct bfd_link_info *info)
2132 {
2133 struct elf32_hppa_link_hash_table *htab;
2134 bfd *dynobj;
2135 bfd *ibfd;
2136 asection *sec;
2137 bfd_boolean relocs;
2138
2139 htab = hppa_link_hash_table (info);
2140 if (htab == NULL)
2141 return FALSE;
2142
2143 dynobj = htab->etab.dynobj;
2144 if (dynobj == NULL)
2145 abort ();
2146
2147 if (htab->etab.dynamic_sections_created)
2148 {
2149 /* Set the contents of the .interp section to the interpreter. */
2150 if (bfd_link_executable (info) && !info->nointerp)
2151 {
2152 sec = bfd_get_linker_section (dynobj, ".interp");
2153 if (sec == NULL)
2154 abort ();
2155 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2156 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2157 }
2158
2159 /* Force millicode symbols local. */
2160 elf_link_hash_traverse (&htab->etab,
2161 clobber_millicode_symbols,
2162 info);
2163 }
2164
2165 /* Set up .got and .plt offsets for local syms, and space for local
2166 dynamic relocs. */
2167 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2168 {
2169 bfd_signed_vma *local_got;
2170 bfd_signed_vma *end_local_got;
2171 bfd_signed_vma *local_plt;
2172 bfd_signed_vma *end_local_plt;
2173 bfd_size_type locsymcount;
2174 Elf_Internal_Shdr *symtab_hdr;
2175 asection *srel;
2176 char *local_tls_type;
2177
2178 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2179 continue;
2180
2181 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2182 {
2183 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2184
2185 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2186 elf_section_data (sec)->local_dynrel);
2187 hdh_p != NULL;
2188 hdh_p = hdh_p->hdh_next)
2189 {
2190 if (!bfd_is_abs_section (hdh_p->sec)
2191 && bfd_is_abs_section (hdh_p->sec->output_section))
2192 {
2193 /* Input section has been discarded, either because
2194 it is a copy of a linkonce section or due to
2195 linker script /DISCARD/, so we'll be discarding
2196 the relocs too. */
2197 }
2198 else if (hdh_p->count != 0)
2199 {
2200 srel = elf_section_data (hdh_p->sec)->sreloc;
2201 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2202 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2203 info->flags |= DF_TEXTREL;
2204 }
2205 }
2206 }
2207
2208 local_got = elf_local_got_refcounts (ibfd);
2209 if (!local_got)
2210 continue;
2211
2212 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2213 locsymcount = symtab_hdr->sh_info;
2214 end_local_got = local_got + locsymcount;
2215 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2216 sec = htab->etab.sgot;
2217 srel = htab->etab.srelgot;
2218 for (; local_got < end_local_got; ++local_got)
2219 {
2220 if (*local_got > 0)
2221 {
2222 unsigned int need;
2223
2224 *local_got = sec->size;
2225 need = got_entries_needed (*local_tls_type);
2226 sec->size += need;
2227 if (bfd_link_pic (info))
2228 {
2229 bfd_boolean tprel_known = bfd_link_executable (info);
2230 htab->etab.srelgot->size
2231 += got_relocs_needed (*local_tls_type, need, tprel_known);
2232 }
2233 }
2234 else
2235 *local_got = (bfd_vma) -1;
2236
2237 ++local_tls_type;
2238 }
2239
2240 local_plt = end_local_got;
2241 end_local_plt = local_plt + locsymcount;
2242 if (! htab->etab.dynamic_sections_created)
2243 {
2244 /* Won't be used, but be safe. */
2245 for (; local_plt < end_local_plt; ++local_plt)
2246 *local_plt = (bfd_vma) -1;
2247 }
2248 else
2249 {
2250 sec = htab->etab.splt;
2251 srel = htab->etab.srelplt;
2252 for (; local_plt < end_local_plt; ++local_plt)
2253 {
2254 if (*local_plt > 0)
2255 {
2256 *local_plt = sec->size;
2257 sec->size += PLT_ENTRY_SIZE;
2258 if (bfd_link_pic (info))
2259 srel->size += sizeof (Elf32_External_Rela);
2260 }
2261 else
2262 *local_plt = (bfd_vma) -1;
2263 }
2264 }
2265 }
2266
2267 if (htab->tls_ldm_got.refcount > 0)
2268 {
2269 /* Allocate 2 got entries and 1 dynamic reloc for
2270 R_PARISC_TLS_DTPMOD32 relocs. */
2271 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2272 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2273 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2274 }
2275 else
2276 htab->tls_ldm_got.offset = -1;
2277
2278 /* Do all the .plt entries without relocs first. The dynamic linker
2279 uses the last .plt reloc to find the end of the .plt (and hence
2280 the start of the .got) for lazy linking. */
2281 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2282
2283 /* Allocate global sym .plt and .got entries, and space for global
2284 sym dynamic relocs. */
2285 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2286
2287 /* The check_relocs and adjust_dynamic_symbol entry points have
2288 determined the sizes of the various dynamic sections. Allocate
2289 memory for them. */
2290 relocs = FALSE;
2291 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2292 {
2293 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2294 continue;
2295
2296 if (sec == htab->etab.splt)
2297 {
2298 if (htab->need_plt_stub)
2299 {
2300 /* Make space for the plt stub at the end of the .plt
2301 section. We want this stub right at the end, up
2302 against the .got section. */
2303 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2304 int pltalign = bfd_section_alignment (dynobj, sec);
2305 bfd_size_type mask;
2306
2307 if (gotalign > pltalign)
2308 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2309 mask = ((bfd_size_type) 1 << gotalign) - 1;
2310 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2311 }
2312 }
2313 else if (sec == htab->etab.sgot
2314 || sec == htab->etab.sdynbss
2315 || sec == htab->etab.sdynrelro)
2316 ;
2317 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2318 {
2319 if (sec->size != 0)
2320 {
2321 /* Remember whether there are any reloc sections other
2322 than .rela.plt. */
2323 if (sec != htab->etab.srelplt)
2324 relocs = TRUE;
2325
2326 /* We use the reloc_count field as a counter if we need
2327 to copy relocs into the output file. */
2328 sec->reloc_count = 0;
2329 }
2330 }
2331 else
2332 {
2333 /* It's not one of our sections, so don't allocate space. */
2334 continue;
2335 }
2336
2337 if (sec->size == 0)
2338 {
2339 /* If we don't need this section, strip it from the
2340 output file. This is mostly to handle .rela.bss and
2341 .rela.plt. We must create both sections in
2342 create_dynamic_sections, because they must be created
2343 before the linker maps input sections to output
2344 sections. The linker does that before
2345 adjust_dynamic_symbol is called, and it is that
2346 function which decides whether anything needs to go
2347 into these sections. */
2348 sec->flags |= SEC_EXCLUDE;
2349 continue;
2350 }
2351
2352 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2353 continue;
2354
2355 /* Allocate memory for the section contents. Zero it, because
2356 we may not fill in all the reloc sections. */
2357 sec->contents = bfd_zalloc (dynobj, sec->size);
2358 if (sec->contents == NULL)
2359 return FALSE;
2360 }
2361
2362 if (htab->etab.dynamic_sections_created)
2363 {
2364 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2365 actually has nothing to do with the PLT, it is how we
2366 communicate the LTP value of a load module to the dynamic
2367 linker. */
2368 #define add_dynamic_entry(TAG, VAL) \
2369 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2370
2371 if (!add_dynamic_entry (DT_PLTGOT, 0))
2372 return FALSE;
2373
2374 /* Add some entries to the .dynamic section. We fill in the
2375 values later, in elf32_hppa_finish_dynamic_sections, but we
2376 must add the entries now so that we get the correct size for
2377 the .dynamic section. The DT_DEBUG entry is filled in by the
2378 dynamic linker and used by the debugger. */
2379 if (bfd_link_executable (info))
2380 {
2381 if (!add_dynamic_entry (DT_DEBUG, 0))
2382 return FALSE;
2383 }
2384
2385 if (htab->etab.srelplt->size != 0)
2386 {
2387 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2388 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2389 || !add_dynamic_entry (DT_JMPREL, 0))
2390 return FALSE;
2391 }
2392
2393 if (relocs)
2394 {
2395 if (!add_dynamic_entry (DT_RELA, 0)
2396 || !add_dynamic_entry (DT_RELASZ, 0)
2397 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2398 return FALSE;
2399
2400 /* If any dynamic relocs apply to a read-only section,
2401 then we need a DT_TEXTREL entry. */
2402 if ((info->flags & DF_TEXTREL) == 0)
2403 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2404
2405 if ((info->flags & DF_TEXTREL) != 0)
2406 {
2407 if (!add_dynamic_entry (DT_TEXTREL, 0))
2408 return FALSE;
2409 }
2410 }
2411 }
2412 #undef add_dynamic_entry
2413
2414 return TRUE;
2415 }
2416
2417 /* External entry points for sizing and building linker stubs. */
2418
2419 /* Set up various things so that we can make a list of input sections
2420 for each output section included in the link. Returns -1 on error,
2421 0 when no stubs will be needed, and 1 on success. */
2422
2423 int
2424 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2425 {
2426 bfd *input_bfd;
2427 unsigned int bfd_count;
2428 unsigned int top_id, top_index;
2429 asection *section;
2430 asection **input_list, **list;
2431 bfd_size_type amt;
2432 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2433
2434 if (htab == NULL)
2435 return -1;
2436
2437 /* Count the number of input BFDs and find the top input section id. */
2438 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2439 input_bfd != NULL;
2440 input_bfd = input_bfd->link.next)
2441 {
2442 bfd_count += 1;
2443 for (section = input_bfd->sections;
2444 section != NULL;
2445 section = section->next)
2446 {
2447 if (top_id < section->id)
2448 top_id = section->id;
2449 }
2450 }
2451 htab->bfd_count = bfd_count;
2452
2453 amt = sizeof (struct map_stub) * (top_id + 1);
2454 htab->stub_group = bfd_zmalloc (amt);
2455 if (htab->stub_group == NULL)
2456 return -1;
2457
2458 /* We can't use output_bfd->section_count here to find the top output
2459 section index as some sections may have been removed, and
2460 strip_excluded_output_sections doesn't renumber the indices. */
2461 for (section = output_bfd->sections, top_index = 0;
2462 section != NULL;
2463 section = section->next)
2464 {
2465 if (top_index < section->index)
2466 top_index = section->index;
2467 }
2468
2469 htab->top_index = top_index;
2470 amt = sizeof (asection *) * (top_index + 1);
2471 input_list = bfd_malloc (amt);
2472 htab->input_list = input_list;
2473 if (input_list == NULL)
2474 return -1;
2475
2476 /* For sections we aren't interested in, mark their entries with a
2477 value we can check later. */
2478 list = input_list + top_index;
2479 do
2480 *list = bfd_abs_section_ptr;
2481 while (list-- != input_list);
2482
2483 for (section = output_bfd->sections;
2484 section != NULL;
2485 section = section->next)
2486 {
2487 if ((section->flags & SEC_CODE) != 0)
2488 input_list[section->index] = NULL;
2489 }
2490
2491 return 1;
2492 }
2493
2494 /* The linker repeatedly calls this function for each input section,
2495 in the order that input sections are linked into output sections.
2496 Build lists of input sections to determine groupings between which
2497 we may insert linker stubs. */
2498
2499 void
2500 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2501 {
2502 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2503
2504 if (htab == NULL)
2505 return;
2506
2507 if (isec->output_section->index <= htab->top_index)
2508 {
2509 asection **list = htab->input_list + isec->output_section->index;
2510 if (*list != bfd_abs_section_ptr)
2511 {
2512 /* Steal the link_sec pointer for our list. */
2513 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2514 /* This happens to make the list in reverse order,
2515 which is what we want. */
2516 PREV_SEC (isec) = *list;
2517 *list = isec;
2518 }
2519 }
2520 }
2521
2522 /* See whether we can group stub sections together. Grouping stub
2523 sections may result in fewer stubs. More importantly, we need to
2524 put all .init* and .fini* stubs at the beginning of the .init or
2525 .fini output sections respectively, because glibc splits the
2526 _init and _fini functions into multiple parts. Putting a stub in
2527 the middle of a function is not a good idea. */
2528
2529 static void
2530 group_sections (struct elf32_hppa_link_hash_table *htab,
2531 bfd_size_type stub_group_size,
2532 bfd_boolean stubs_always_before_branch)
2533 {
2534 asection **list = htab->input_list + htab->top_index;
2535 do
2536 {
2537 asection *tail = *list;
2538 if (tail == bfd_abs_section_ptr)
2539 continue;
2540 while (tail != NULL)
2541 {
2542 asection *curr;
2543 asection *prev;
2544 bfd_size_type total;
2545 bfd_boolean big_sec;
2546
2547 curr = tail;
2548 total = tail->size;
2549 big_sec = total >= stub_group_size;
2550
2551 while ((prev = PREV_SEC (curr)) != NULL
2552 && ((total += curr->output_offset - prev->output_offset)
2553 < stub_group_size))
2554 curr = prev;
2555
2556 /* OK, the size from the start of CURR to the end is less
2557 than 240000 bytes and thus can be handled by one stub
2558 section. (or the tail section is itself larger than
2559 240000 bytes, in which case we may be toast.)
2560 We should really be keeping track of the total size of
2561 stubs added here, as stubs contribute to the final output
2562 section size. That's a little tricky, and this way will
2563 only break if stubs added total more than 22144 bytes, or
2564 2768 long branch stubs. It seems unlikely for more than
2565 2768 different functions to be called, especially from
2566 code only 240000 bytes long. This limit used to be
2567 250000, but c++ code tends to generate lots of little
2568 functions, and sometimes violated the assumption. */
2569 do
2570 {
2571 prev = PREV_SEC (tail);
2572 /* Set up this stub group. */
2573 htab->stub_group[tail->id].link_sec = curr;
2574 }
2575 while (tail != curr && (tail = prev) != NULL);
2576
2577 /* But wait, there's more! Input sections up to 240000
2578 bytes before the stub section can be handled by it too.
2579 Don't do this if we have a really large section after the
2580 stubs, as adding more stubs increases the chance that
2581 branches may not reach into the stub section. */
2582 if (!stubs_always_before_branch && !big_sec)
2583 {
2584 total = 0;
2585 while (prev != NULL
2586 && ((total += tail->output_offset - prev->output_offset)
2587 < stub_group_size))
2588 {
2589 tail = prev;
2590 prev = PREV_SEC (tail);
2591 htab->stub_group[tail->id].link_sec = curr;
2592 }
2593 }
2594 tail = prev;
2595 }
2596 }
2597 while (list-- != htab->input_list);
2598 free (htab->input_list);
2599 #undef PREV_SEC
2600 }
2601
2602 /* Read in all local syms for all input bfds, and create hash entries
2603 for export stubs if we are building a multi-subspace shared lib.
2604 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2605
2606 static int
2607 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2608 {
2609 unsigned int bfd_indx;
2610 Elf_Internal_Sym *local_syms, **all_local_syms;
2611 int stub_changed = 0;
2612 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2613
2614 if (htab == NULL)
2615 return -1;
2616
2617 /* We want to read in symbol extension records only once. To do this
2618 we need to read in the local symbols in parallel and save them for
2619 later use; so hold pointers to the local symbols in an array. */
2620 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2621 all_local_syms = bfd_zmalloc (amt);
2622 htab->all_local_syms = all_local_syms;
2623 if (all_local_syms == NULL)
2624 return -1;
2625
2626 /* Walk over all the input BFDs, swapping in local symbols.
2627 If we are creating a shared library, create hash entries for the
2628 export stubs. */
2629 for (bfd_indx = 0;
2630 input_bfd != NULL;
2631 input_bfd = input_bfd->link.next, bfd_indx++)
2632 {
2633 Elf_Internal_Shdr *symtab_hdr;
2634
2635 /* We'll need the symbol table in a second. */
2636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2637 if (symtab_hdr->sh_info == 0)
2638 continue;
2639
2640 /* We need an array of the local symbols attached to the input bfd. */
2641 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2642 if (local_syms == NULL)
2643 {
2644 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2645 symtab_hdr->sh_info, 0,
2646 NULL, NULL, NULL);
2647 /* Cache them for elf_link_input_bfd. */
2648 symtab_hdr->contents = (unsigned char *) local_syms;
2649 }
2650 if (local_syms == NULL)
2651 return -1;
2652
2653 all_local_syms[bfd_indx] = local_syms;
2654
2655 if (bfd_link_pic (info) && htab->multi_subspace)
2656 {
2657 struct elf_link_hash_entry **eh_syms;
2658 struct elf_link_hash_entry **eh_symend;
2659 unsigned int symcount;
2660
2661 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2662 - symtab_hdr->sh_info);
2663 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2664 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2665
2666 /* Look through the global syms for functions; We need to
2667 build export stubs for all globally visible functions. */
2668 for (; eh_syms < eh_symend; eh_syms++)
2669 {
2670 struct elf32_hppa_link_hash_entry *hh;
2671
2672 hh = hppa_elf_hash_entry (*eh_syms);
2673
2674 while (hh->eh.root.type == bfd_link_hash_indirect
2675 || hh->eh.root.type == bfd_link_hash_warning)
2676 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2677
2678 /* At this point in the link, undefined syms have been
2679 resolved, so we need to check that the symbol was
2680 defined in this BFD. */
2681 if ((hh->eh.root.type == bfd_link_hash_defined
2682 || hh->eh.root.type == bfd_link_hash_defweak)
2683 && hh->eh.type == STT_FUNC
2684 && hh->eh.root.u.def.section->output_section != NULL
2685 && (hh->eh.root.u.def.section->output_section->owner
2686 == output_bfd)
2687 && hh->eh.root.u.def.section->owner == input_bfd
2688 && hh->eh.def_regular
2689 && !hh->eh.forced_local
2690 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2691 {
2692 asection *sec;
2693 const char *stub_name;
2694 struct elf32_hppa_stub_hash_entry *hsh;
2695
2696 sec = hh->eh.root.u.def.section;
2697 stub_name = hh_name (hh);
2698 hsh = hppa_stub_hash_lookup (&htab->bstab,
2699 stub_name,
2700 FALSE, FALSE);
2701 if (hsh == NULL)
2702 {
2703 hsh = hppa_add_stub (stub_name, sec, htab);
2704 if (!hsh)
2705 return -1;
2706
2707 hsh->target_value = hh->eh.root.u.def.value;
2708 hsh->target_section = hh->eh.root.u.def.section;
2709 hsh->stub_type = hppa_stub_export;
2710 hsh->hh = hh;
2711 stub_changed = 1;
2712 }
2713 else
2714 {
2715 /* xgettext:c-format */
2716 _bfd_error_handler (_("%B: duplicate export stub %s"),
2717 input_bfd, stub_name);
2718 }
2719 }
2720 }
2721 }
2722 }
2723
2724 return stub_changed;
2725 }
2726
2727 /* Determine and set the size of the stub section for a final link.
2728
2729 The basic idea here is to examine all the relocations looking for
2730 PC-relative calls to a target that is unreachable with a "bl"
2731 instruction. */
2732
2733 bfd_boolean
2734 elf32_hppa_size_stubs
2735 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2736 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2737 asection * (*add_stub_section) (const char *, asection *),
2738 void (*layout_sections_again) (void))
2739 {
2740 bfd_size_type stub_group_size;
2741 bfd_boolean stubs_always_before_branch;
2742 bfd_boolean stub_changed;
2743 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2744
2745 if (htab == NULL)
2746 return FALSE;
2747
2748 /* Stash our params away. */
2749 htab->stub_bfd = stub_bfd;
2750 htab->multi_subspace = multi_subspace;
2751 htab->add_stub_section = add_stub_section;
2752 htab->layout_sections_again = layout_sections_again;
2753 stubs_always_before_branch = group_size < 0;
2754 if (group_size < 0)
2755 stub_group_size = -group_size;
2756 else
2757 stub_group_size = group_size;
2758 if (stub_group_size == 1)
2759 {
2760 /* Default values. */
2761 if (stubs_always_before_branch)
2762 {
2763 stub_group_size = 7680000;
2764 if (htab->has_17bit_branch || htab->multi_subspace)
2765 stub_group_size = 240000;
2766 if (htab->has_12bit_branch)
2767 stub_group_size = 7500;
2768 }
2769 else
2770 {
2771 stub_group_size = 6971392;
2772 if (htab->has_17bit_branch || htab->multi_subspace)
2773 stub_group_size = 217856;
2774 if (htab->has_12bit_branch)
2775 stub_group_size = 6808;
2776 }
2777 }
2778
2779 group_sections (htab, stub_group_size, stubs_always_before_branch);
2780
2781 switch (get_local_syms (output_bfd, info->input_bfds, info))
2782 {
2783 default:
2784 if (htab->all_local_syms)
2785 goto error_ret_free_local;
2786 return FALSE;
2787
2788 case 0:
2789 stub_changed = FALSE;
2790 break;
2791
2792 case 1:
2793 stub_changed = TRUE;
2794 break;
2795 }
2796
2797 while (1)
2798 {
2799 bfd *input_bfd;
2800 unsigned int bfd_indx;
2801 asection *stub_sec;
2802
2803 for (input_bfd = info->input_bfds, bfd_indx = 0;
2804 input_bfd != NULL;
2805 input_bfd = input_bfd->link.next, bfd_indx++)
2806 {
2807 Elf_Internal_Shdr *symtab_hdr;
2808 asection *section;
2809 Elf_Internal_Sym *local_syms;
2810
2811 /* We'll need the symbol table in a second. */
2812 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2813 if (symtab_hdr->sh_info == 0)
2814 continue;
2815
2816 local_syms = htab->all_local_syms[bfd_indx];
2817
2818 /* Walk over each section attached to the input bfd. */
2819 for (section = input_bfd->sections;
2820 section != NULL;
2821 section = section->next)
2822 {
2823 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2824
2825 /* If there aren't any relocs, then there's nothing more
2826 to do. */
2827 if ((section->flags & SEC_RELOC) == 0
2828 || section->reloc_count == 0)
2829 continue;
2830
2831 /* If this section is a link-once section that will be
2832 discarded, then don't create any stubs. */
2833 if (section->output_section == NULL
2834 || section->output_section->owner != output_bfd)
2835 continue;
2836
2837 /* Get the relocs. */
2838 internal_relocs
2839 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2840 info->keep_memory);
2841 if (internal_relocs == NULL)
2842 goto error_ret_free_local;
2843
2844 /* Now examine each relocation. */
2845 irela = internal_relocs;
2846 irelaend = irela + section->reloc_count;
2847 for (; irela < irelaend; irela++)
2848 {
2849 unsigned int r_type, r_indx;
2850 enum elf32_hppa_stub_type stub_type;
2851 struct elf32_hppa_stub_hash_entry *hsh;
2852 asection *sym_sec;
2853 bfd_vma sym_value;
2854 bfd_vma destination;
2855 struct elf32_hppa_link_hash_entry *hh;
2856 char *stub_name;
2857 const asection *id_sec;
2858
2859 r_type = ELF32_R_TYPE (irela->r_info);
2860 r_indx = ELF32_R_SYM (irela->r_info);
2861
2862 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2863 {
2864 bfd_set_error (bfd_error_bad_value);
2865 error_ret_free_internal:
2866 if (elf_section_data (section)->relocs == NULL)
2867 free (internal_relocs);
2868 goto error_ret_free_local;
2869 }
2870
2871 /* Only look for stubs on call instructions. */
2872 if (r_type != (unsigned int) R_PARISC_PCREL12F
2873 && r_type != (unsigned int) R_PARISC_PCREL17F
2874 && r_type != (unsigned int) R_PARISC_PCREL22F)
2875 continue;
2876
2877 /* Now determine the call target, its name, value,
2878 section. */
2879 sym_sec = NULL;
2880 sym_value = 0;
2881 destination = 0;
2882 hh = NULL;
2883 if (r_indx < symtab_hdr->sh_info)
2884 {
2885 /* It's a local symbol. */
2886 Elf_Internal_Sym *sym;
2887 Elf_Internal_Shdr *hdr;
2888 unsigned int shndx;
2889
2890 sym = local_syms + r_indx;
2891 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2892 sym_value = sym->st_value;
2893 shndx = sym->st_shndx;
2894 if (shndx < elf_numsections (input_bfd))
2895 {
2896 hdr = elf_elfsections (input_bfd)[shndx];
2897 sym_sec = hdr->bfd_section;
2898 destination = (sym_value + irela->r_addend
2899 + sym_sec->output_offset
2900 + sym_sec->output_section->vma);
2901 }
2902 }
2903 else
2904 {
2905 /* It's an external symbol. */
2906 int e_indx;
2907
2908 e_indx = r_indx - symtab_hdr->sh_info;
2909 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2910
2911 while (hh->eh.root.type == bfd_link_hash_indirect
2912 || hh->eh.root.type == bfd_link_hash_warning)
2913 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2914
2915 if (hh->eh.root.type == bfd_link_hash_defined
2916 || hh->eh.root.type == bfd_link_hash_defweak)
2917 {
2918 sym_sec = hh->eh.root.u.def.section;
2919 sym_value = hh->eh.root.u.def.value;
2920 if (sym_sec->output_section != NULL)
2921 destination = (sym_value + irela->r_addend
2922 + sym_sec->output_offset
2923 + sym_sec->output_section->vma);
2924 }
2925 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2926 {
2927 if (! bfd_link_pic (info))
2928 continue;
2929 }
2930 else if (hh->eh.root.type == bfd_link_hash_undefined)
2931 {
2932 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2933 && (ELF_ST_VISIBILITY (hh->eh.other)
2934 == STV_DEFAULT)
2935 && hh->eh.type != STT_PARISC_MILLI))
2936 continue;
2937 }
2938 else
2939 {
2940 bfd_set_error (bfd_error_bad_value);
2941 goto error_ret_free_internal;
2942 }
2943 }
2944
2945 /* Determine what (if any) linker stub is needed. */
2946 stub_type = hppa_type_of_stub (section, irela, hh,
2947 destination, info);
2948 if (stub_type == hppa_stub_none)
2949 continue;
2950
2951 /* Support for grouping stub sections. */
2952 id_sec = htab->stub_group[section->id].link_sec;
2953
2954 /* Get the name of this stub. */
2955 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2956 if (!stub_name)
2957 goto error_ret_free_internal;
2958
2959 hsh = hppa_stub_hash_lookup (&htab->bstab,
2960 stub_name,
2961 FALSE, FALSE);
2962 if (hsh != NULL)
2963 {
2964 /* The proper stub has already been created. */
2965 free (stub_name);
2966 continue;
2967 }
2968
2969 hsh = hppa_add_stub (stub_name, section, htab);
2970 if (hsh == NULL)
2971 {
2972 free (stub_name);
2973 goto error_ret_free_internal;
2974 }
2975
2976 hsh->target_value = sym_value;
2977 hsh->target_section = sym_sec;
2978 hsh->stub_type = stub_type;
2979 if (bfd_link_pic (info))
2980 {
2981 if (stub_type == hppa_stub_import)
2982 hsh->stub_type = hppa_stub_import_shared;
2983 else if (stub_type == hppa_stub_long_branch)
2984 hsh->stub_type = hppa_stub_long_branch_shared;
2985 }
2986 hsh->hh = hh;
2987 stub_changed = TRUE;
2988 }
2989
2990 /* We're done with the internal relocs, free them. */
2991 if (elf_section_data (section)->relocs == NULL)
2992 free (internal_relocs);
2993 }
2994 }
2995
2996 if (!stub_changed)
2997 break;
2998
2999 /* OK, we've added some stubs. Find out the new size of the
3000 stub sections. */
3001 for (stub_sec = htab->stub_bfd->sections;
3002 stub_sec != NULL;
3003 stub_sec = stub_sec->next)
3004 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3005 stub_sec->size = 0;
3006
3007 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3008
3009 /* Ask the linker to do its stuff. */
3010 (*htab->layout_sections_again) ();
3011 stub_changed = FALSE;
3012 }
3013
3014 free (htab->all_local_syms);
3015 return TRUE;
3016
3017 error_ret_free_local:
3018 free (htab->all_local_syms);
3019 return FALSE;
3020 }
3021
3022 /* For a final link, this function is called after we have sized the
3023 stubs to provide a value for __gp. */
3024
3025 bfd_boolean
3026 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3027 {
3028 struct bfd_link_hash_entry *h;
3029 asection *sec = NULL;
3030 bfd_vma gp_val = 0;
3031
3032 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3033
3034 if (h != NULL
3035 && (h->type == bfd_link_hash_defined
3036 || h->type == bfd_link_hash_defweak))
3037 {
3038 gp_val = h->u.def.value;
3039 sec = h->u.def.section;
3040 }
3041 else
3042 {
3043 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3044 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3045
3046 /* Choose to point our LTP at, in this order, one of .plt, .got,
3047 or .data, if these sections exist. In the case of choosing
3048 .plt try to make the LTP ideal for addressing anywhere in the
3049 .plt or .got with a 14 bit signed offset. Typically, the end
3050 of the .plt is the start of the .got, so choose .plt + 0x2000
3051 if either the .plt or .got is larger than 0x2000. If both
3052 the .plt and .got are smaller than 0x2000, choose the end of
3053 the .plt section. */
3054 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3055 ? NULL : splt;
3056 if (sec != NULL)
3057 {
3058 gp_val = sec->size;
3059 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3060 {
3061 gp_val = 0x2000;
3062 }
3063 }
3064 else
3065 {
3066 sec = sgot;
3067 if (sec != NULL)
3068 {
3069 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3070 {
3071 /* We know we don't have a .plt. If .got is large,
3072 offset our LTP. */
3073 if (sec->size > 0x2000)
3074 gp_val = 0x2000;
3075 }
3076 }
3077 else
3078 {
3079 /* No .plt or .got. Who cares what the LTP is? */
3080 sec = bfd_get_section_by_name (abfd, ".data");
3081 }
3082 }
3083
3084 if (h != NULL)
3085 {
3086 h->type = bfd_link_hash_defined;
3087 h->u.def.value = gp_val;
3088 if (sec != NULL)
3089 h->u.def.section = sec;
3090 else
3091 h->u.def.section = bfd_abs_section_ptr;
3092 }
3093 }
3094
3095 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3096 {
3097 if (sec != NULL && sec->output_section != NULL)
3098 gp_val += sec->output_section->vma + sec->output_offset;
3099
3100 elf_gp (abfd) = gp_val;
3101 }
3102 return TRUE;
3103 }
3104
3105 /* Build all the stubs associated with the current output file. The
3106 stubs are kept in a hash table attached to the main linker hash
3107 table. We also set up the .plt entries for statically linked PIC
3108 functions here. This function is called via hppaelf_finish in the
3109 linker. */
3110
3111 bfd_boolean
3112 elf32_hppa_build_stubs (struct bfd_link_info *info)
3113 {
3114 asection *stub_sec;
3115 struct bfd_hash_table *table;
3116 struct elf32_hppa_link_hash_table *htab;
3117
3118 htab = hppa_link_hash_table (info);
3119 if (htab == NULL)
3120 return FALSE;
3121
3122 for (stub_sec = htab->stub_bfd->sections;
3123 stub_sec != NULL;
3124 stub_sec = stub_sec->next)
3125 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3126 && stub_sec->size != 0)
3127 {
3128 /* Allocate memory to hold the linker stubs. */
3129 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3130 if (stub_sec->contents == NULL)
3131 return FALSE;
3132 stub_sec->size = 0;
3133 }
3134
3135 /* Build the stubs as directed by the stub hash table. */
3136 table = &htab->bstab;
3137 bfd_hash_traverse (table, hppa_build_one_stub, info);
3138
3139 return TRUE;
3140 }
3141
3142 /* Return the base vma address which should be subtracted from the real
3143 address when resolving a dtpoff relocation.
3144 This is PT_TLS segment p_vaddr. */
3145
3146 static bfd_vma
3147 dtpoff_base (struct bfd_link_info *info)
3148 {
3149 /* If tls_sec is NULL, we should have signalled an error already. */
3150 if (elf_hash_table (info)->tls_sec == NULL)
3151 return 0;
3152 return elf_hash_table (info)->tls_sec->vma;
3153 }
3154
3155 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3156
3157 static bfd_vma
3158 tpoff (struct bfd_link_info *info, bfd_vma address)
3159 {
3160 struct elf_link_hash_table *htab = elf_hash_table (info);
3161
3162 /* If tls_sec is NULL, we should have signalled an error already. */
3163 if (htab->tls_sec == NULL)
3164 return 0;
3165 /* hppa TLS ABI is variant I and static TLS block start just after
3166 tcbhead structure which has 2 pointer fields. */
3167 return (address - htab->tls_sec->vma
3168 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3169 }
3170
3171 /* Perform a final link. */
3172
3173 static bfd_boolean
3174 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3175 {
3176 struct stat buf;
3177
3178 /* Invoke the regular ELF linker to do all the work. */
3179 if (!bfd_elf_final_link (abfd, info))
3180 return FALSE;
3181
3182 /* If we're producing a final executable, sort the contents of the
3183 unwind section. */
3184 if (bfd_link_relocatable (info))
3185 return TRUE;
3186
3187 /* Do not attempt to sort non-regular files. This is here
3188 especially for configure scripts and kernel builds which run
3189 tests with "ld [...] -o /dev/null". */
3190 if (stat (abfd->filename, &buf) != 0
3191 || !S_ISREG(buf.st_mode))
3192 return TRUE;
3193
3194 return elf_hppa_sort_unwind (abfd);
3195 }
3196
3197 /* Record the lowest address for the data and text segments. */
3198
3199 static void
3200 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3201 {
3202 struct elf32_hppa_link_hash_table *htab;
3203
3204 htab = (struct elf32_hppa_link_hash_table*) data;
3205 if (htab == NULL)
3206 return;
3207
3208 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3209 {
3210 bfd_vma value;
3211 Elf_Internal_Phdr *p;
3212
3213 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3214 BFD_ASSERT (p != NULL);
3215 value = p->p_vaddr;
3216
3217 if ((section->flags & SEC_READONLY) != 0)
3218 {
3219 if (value < htab->text_segment_base)
3220 htab->text_segment_base = value;
3221 }
3222 else
3223 {
3224 if (value < htab->data_segment_base)
3225 htab->data_segment_base = value;
3226 }
3227 }
3228 }
3229
3230 /* Perform a relocation as part of a final link. */
3231
3232 static bfd_reloc_status_type
3233 final_link_relocate (asection *input_section,
3234 bfd_byte *contents,
3235 const Elf_Internal_Rela *rela,
3236 bfd_vma value,
3237 struct elf32_hppa_link_hash_table *htab,
3238 asection *sym_sec,
3239 struct elf32_hppa_link_hash_entry *hh,
3240 struct bfd_link_info *info)
3241 {
3242 int insn;
3243 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3244 unsigned int orig_r_type = r_type;
3245 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3246 int r_format = howto->bitsize;
3247 enum hppa_reloc_field_selector_type_alt r_field;
3248 bfd *input_bfd = input_section->owner;
3249 bfd_vma offset = rela->r_offset;
3250 bfd_vma max_branch_offset = 0;
3251 bfd_byte *hit_data = contents + offset;
3252 bfd_signed_vma addend = rela->r_addend;
3253 bfd_vma location;
3254 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3255 int val;
3256
3257 if (r_type == R_PARISC_NONE)
3258 return bfd_reloc_ok;
3259
3260 insn = bfd_get_32 (input_bfd, hit_data);
3261
3262 /* Find out where we are and where we're going. */
3263 location = (offset +
3264 input_section->output_offset +
3265 input_section->output_section->vma);
3266
3267 /* If we are not building a shared library, convert DLTIND relocs to
3268 DPREL relocs. */
3269 if (!bfd_link_pic (info))
3270 {
3271 switch (r_type)
3272 {
3273 case R_PARISC_DLTIND21L:
3274 case R_PARISC_TLS_GD21L:
3275 case R_PARISC_TLS_LDM21L:
3276 case R_PARISC_TLS_IE21L:
3277 r_type = R_PARISC_DPREL21L;
3278 break;
3279
3280 case R_PARISC_DLTIND14R:
3281 case R_PARISC_TLS_GD14R:
3282 case R_PARISC_TLS_LDM14R:
3283 case R_PARISC_TLS_IE14R:
3284 r_type = R_PARISC_DPREL14R;
3285 break;
3286
3287 case R_PARISC_DLTIND14F:
3288 r_type = R_PARISC_DPREL14F;
3289 break;
3290 }
3291 }
3292
3293 switch (r_type)
3294 {
3295 case R_PARISC_PCREL12F:
3296 case R_PARISC_PCREL17F:
3297 case R_PARISC_PCREL22F:
3298 /* If this call should go via the plt, find the import stub in
3299 the stub hash. */
3300 if (sym_sec == NULL
3301 || sym_sec->output_section == NULL
3302 || (hh != NULL
3303 && hh->eh.plt.offset != (bfd_vma) -1
3304 && hh->eh.dynindx != -1
3305 && !hh->plabel
3306 && (bfd_link_pic (info)
3307 || !hh->eh.def_regular
3308 || hh->eh.root.type == bfd_link_hash_defweak)))
3309 {
3310 hsh = hppa_get_stub_entry (input_section, sym_sec,
3311 hh, rela, htab);
3312 if (hsh != NULL)
3313 {
3314 value = (hsh->stub_offset
3315 + hsh->stub_sec->output_offset
3316 + hsh->stub_sec->output_section->vma);
3317 addend = 0;
3318 }
3319 else if (sym_sec == NULL && hh != NULL
3320 && hh->eh.root.type == bfd_link_hash_undefweak)
3321 {
3322 /* It's OK if undefined weak. Calls to undefined weak
3323 symbols behave as if the "called" function
3324 immediately returns. We can thus call to a weak
3325 function without first checking whether the function
3326 is defined. */
3327 value = location;
3328 addend = 8;
3329 }
3330 else
3331 return bfd_reloc_undefined;
3332 }
3333 /* Fall thru. */
3334
3335 case R_PARISC_PCREL21L:
3336 case R_PARISC_PCREL17C:
3337 case R_PARISC_PCREL17R:
3338 case R_PARISC_PCREL14R:
3339 case R_PARISC_PCREL14F:
3340 case R_PARISC_PCREL32:
3341 /* Make it a pc relative offset. */
3342 value -= location;
3343 addend -= 8;
3344 break;
3345
3346 case R_PARISC_DPREL21L:
3347 case R_PARISC_DPREL14R:
3348 case R_PARISC_DPREL14F:
3349 /* Convert instructions that use the linkage table pointer (r19) to
3350 instructions that use the global data pointer (dp). This is the
3351 most efficient way of using PIC code in an incomplete executable,
3352 but the user must follow the standard runtime conventions for
3353 accessing data for this to work. */
3354 if (orig_r_type != r_type)
3355 {
3356 if (r_type == R_PARISC_DPREL21L)
3357 {
3358 /* GCC sometimes uses a register other than r19 for the
3359 operation, so we must convert any addil instruction
3360 that uses this relocation. */
3361 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3362 insn = ADDIL_DP;
3363 else
3364 /* We must have a ldil instruction. It's too hard to find
3365 and convert the associated add instruction, so issue an
3366 error. */
3367 _bfd_error_handler
3368 /* xgettext:c-format */
3369 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3370 input_bfd,
3371 input_section,
3372 offset,
3373 howto->name,
3374 insn);
3375 }
3376 else if (r_type == R_PARISC_DPREL14F)
3377 {
3378 /* This must be a format 1 load/store. Change the base
3379 register to dp. */
3380 insn = (insn & 0xfc1ffff) | (27 << 21);
3381 }
3382 }
3383
3384 /* For all the DP relative relocations, we need to examine the symbol's
3385 section. If it has no section or if it's a code section, then
3386 "data pointer relative" makes no sense. In that case we don't
3387 adjust the "value", and for 21 bit addil instructions, we change the
3388 source addend register from %dp to %r0. This situation commonly
3389 arises for undefined weak symbols and when a variable's "constness"
3390 is declared differently from the way the variable is defined. For
3391 instance: "extern int foo" with foo defined as "const int foo". */
3392 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3393 {
3394 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3395 == (((int) OP_ADDIL << 26) | (27 << 21)))
3396 {
3397 insn &= ~ (0x1f << 21);
3398 }
3399 /* Now try to make things easy for the dynamic linker. */
3400
3401 break;
3402 }
3403 /* Fall thru. */
3404
3405 case R_PARISC_DLTIND21L:
3406 case R_PARISC_DLTIND14R:
3407 case R_PARISC_DLTIND14F:
3408 case R_PARISC_TLS_GD21L:
3409 case R_PARISC_TLS_LDM21L:
3410 case R_PARISC_TLS_IE21L:
3411 case R_PARISC_TLS_GD14R:
3412 case R_PARISC_TLS_LDM14R:
3413 case R_PARISC_TLS_IE14R:
3414 value -= elf_gp (input_section->output_section->owner);
3415 break;
3416
3417 case R_PARISC_SEGREL32:
3418 if ((sym_sec->flags & SEC_CODE) != 0)
3419 value -= htab->text_segment_base;
3420 else
3421 value -= htab->data_segment_base;
3422 break;
3423
3424 default:
3425 break;
3426 }
3427
3428 switch (r_type)
3429 {
3430 case R_PARISC_DIR32:
3431 case R_PARISC_DIR14F:
3432 case R_PARISC_DIR17F:
3433 case R_PARISC_PCREL17C:
3434 case R_PARISC_PCREL14F:
3435 case R_PARISC_PCREL32:
3436 case R_PARISC_DPREL14F:
3437 case R_PARISC_PLABEL32:
3438 case R_PARISC_DLTIND14F:
3439 case R_PARISC_SEGBASE:
3440 case R_PARISC_SEGREL32:
3441 case R_PARISC_TLS_DTPMOD32:
3442 case R_PARISC_TLS_DTPOFF32:
3443 case R_PARISC_TLS_TPREL32:
3444 r_field = e_fsel;
3445 break;
3446
3447 case R_PARISC_DLTIND21L:
3448 case R_PARISC_PCREL21L:
3449 case R_PARISC_PLABEL21L:
3450 r_field = e_lsel;
3451 break;
3452
3453 case R_PARISC_DIR21L:
3454 case R_PARISC_DPREL21L:
3455 case R_PARISC_TLS_GD21L:
3456 case R_PARISC_TLS_LDM21L:
3457 case R_PARISC_TLS_LDO21L:
3458 case R_PARISC_TLS_IE21L:
3459 case R_PARISC_TLS_LE21L:
3460 r_field = e_lrsel;
3461 break;
3462
3463 case R_PARISC_PCREL17R:
3464 case R_PARISC_PCREL14R:
3465 case R_PARISC_PLABEL14R:
3466 case R_PARISC_DLTIND14R:
3467 r_field = e_rsel;
3468 break;
3469
3470 case R_PARISC_DIR17R:
3471 case R_PARISC_DIR14R:
3472 case R_PARISC_DPREL14R:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM14R:
3475 case R_PARISC_TLS_LDO14R:
3476 case R_PARISC_TLS_IE14R:
3477 case R_PARISC_TLS_LE14R:
3478 r_field = e_rrsel;
3479 break;
3480
3481 case R_PARISC_PCREL12F:
3482 case R_PARISC_PCREL17F:
3483 case R_PARISC_PCREL22F:
3484 r_field = e_fsel;
3485
3486 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3487 {
3488 max_branch_offset = (1 << (17-1)) << 2;
3489 }
3490 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3491 {
3492 max_branch_offset = (1 << (12-1)) << 2;
3493 }
3494 else
3495 {
3496 max_branch_offset = (1 << (22-1)) << 2;
3497 }
3498
3499 /* sym_sec is NULL on undefined weak syms or when shared on
3500 undefined syms. We've already checked for a stub for the
3501 shared undefined case. */
3502 if (sym_sec == NULL)
3503 break;
3504
3505 /* If the branch is out of reach, then redirect the
3506 call to the local stub for this function. */
3507 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3508 {
3509 hsh = hppa_get_stub_entry (input_section, sym_sec,
3510 hh, rela, htab);
3511 if (hsh == NULL)
3512 return bfd_reloc_undefined;
3513
3514 /* Munge up the value and addend so that we call the stub
3515 rather than the procedure directly. */
3516 value = (hsh->stub_offset
3517 + hsh->stub_sec->output_offset
3518 + hsh->stub_sec->output_section->vma
3519 - location);
3520 addend = -8;
3521 }
3522 break;
3523
3524 /* Something we don't know how to handle. */
3525 default:
3526 return bfd_reloc_notsupported;
3527 }
3528
3529 /* Make sure we can reach the stub. */
3530 if (max_branch_offset != 0
3531 && value + addend + max_branch_offset >= 2*max_branch_offset)
3532 {
3533 _bfd_error_handler
3534 /* xgettext:c-format */
3535 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3536 input_bfd,
3537 input_section,
3538 offset,
3539 hsh->bh_root.string);
3540 bfd_set_error (bfd_error_bad_value);
3541 return bfd_reloc_notsupported;
3542 }
3543
3544 val = hppa_field_adjust (value, addend, r_field);
3545
3546 switch (r_type)
3547 {
3548 case R_PARISC_PCREL12F:
3549 case R_PARISC_PCREL17C:
3550 case R_PARISC_PCREL17F:
3551 case R_PARISC_PCREL17R:
3552 case R_PARISC_PCREL22F:
3553 case R_PARISC_DIR17F:
3554 case R_PARISC_DIR17R:
3555 /* This is a branch. Divide the offset by four.
3556 Note that we need to decide whether it's a branch or
3557 otherwise by inspecting the reloc. Inspecting insn won't
3558 work as insn might be from a .word directive. */
3559 val >>= 2;
3560 break;
3561
3562 default:
3563 break;
3564 }
3565
3566 insn = hppa_rebuild_insn (insn, val, r_format);
3567
3568 /* Update the instruction word. */
3569 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3570 return bfd_reloc_ok;
3571 }
3572
3573 /* Relocate an HPPA ELF section. */
3574
3575 static bfd_boolean
3576 elf32_hppa_relocate_section (bfd *output_bfd,
3577 struct bfd_link_info *info,
3578 bfd *input_bfd,
3579 asection *input_section,
3580 bfd_byte *contents,
3581 Elf_Internal_Rela *relocs,
3582 Elf_Internal_Sym *local_syms,
3583 asection **local_sections)
3584 {
3585 bfd_vma *local_got_offsets;
3586 struct elf32_hppa_link_hash_table *htab;
3587 Elf_Internal_Shdr *symtab_hdr;
3588 Elf_Internal_Rela *rela;
3589 Elf_Internal_Rela *relend;
3590
3591 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3592
3593 htab = hppa_link_hash_table (info);
3594 if (htab == NULL)
3595 return FALSE;
3596
3597 local_got_offsets = elf_local_got_offsets (input_bfd);
3598
3599 rela = relocs;
3600 relend = relocs + input_section->reloc_count;
3601 for (; rela < relend; rela++)
3602 {
3603 unsigned int r_type;
3604 reloc_howto_type *howto;
3605 unsigned int r_symndx;
3606 struct elf32_hppa_link_hash_entry *hh;
3607 Elf_Internal_Sym *sym;
3608 asection *sym_sec;
3609 bfd_vma relocation;
3610 bfd_reloc_status_type rstatus;
3611 const char *sym_name;
3612 bfd_boolean plabel;
3613 bfd_boolean warned_undef;
3614
3615 r_type = ELF32_R_TYPE (rela->r_info);
3616 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3617 {
3618 bfd_set_error (bfd_error_bad_value);
3619 return FALSE;
3620 }
3621 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3622 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3623 continue;
3624
3625 r_symndx = ELF32_R_SYM (rela->r_info);
3626 hh = NULL;
3627 sym = NULL;
3628 sym_sec = NULL;
3629 warned_undef = FALSE;
3630 if (r_symndx < symtab_hdr->sh_info)
3631 {
3632 /* This is a local symbol, h defaults to NULL. */
3633 sym = local_syms + r_symndx;
3634 sym_sec = local_sections[r_symndx];
3635 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3636 }
3637 else
3638 {
3639 struct elf_link_hash_entry *eh;
3640 bfd_boolean unresolved_reloc, ignored;
3641 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3642
3643 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3644 r_symndx, symtab_hdr, sym_hashes,
3645 eh, sym_sec, relocation,
3646 unresolved_reloc, warned_undef,
3647 ignored);
3648
3649 if (!bfd_link_relocatable (info)
3650 && relocation == 0
3651 && eh->root.type != bfd_link_hash_defined
3652 && eh->root.type != bfd_link_hash_defweak
3653 && eh->root.type != bfd_link_hash_undefweak)
3654 {
3655 if (info->unresolved_syms_in_objects == RM_IGNORE
3656 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3657 && eh->type == STT_PARISC_MILLI)
3658 {
3659 (*info->callbacks->undefined_symbol)
3660 (info, eh_name (eh), input_bfd,
3661 input_section, rela->r_offset, FALSE);
3662 warned_undef = TRUE;
3663 }
3664 }
3665 hh = hppa_elf_hash_entry (eh);
3666 }
3667
3668 if (sym_sec != NULL && discarded_section (sym_sec))
3669 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3670 rela, 1, relend,
3671 elf_hppa_howto_table + r_type, 0,
3672 contents);
3673
3674 if (bfd_link_relocatable (info))
3675 continue;
3676
3677 /* Do any required modifications to the relocation value, and
3678 determine what types of dynamic info we need to output, if
3679 any. */
3680 plabel = 0;
3681 switch (r_type)
3682 {
3683 case R_PARISC_DLTIND14F:
3684 case R_PARISC_DLTIND14R:
3685 case R_PARISC_DLTIND21L:
3686 {
3687 bfd_vma off;
3688 bfd_boolean do_got = FALSE;
3689 bfd_boolean reloc = bfd_link_pic (info);
3690
3691 /* Relocation is to the entry for this symbol in the
3692 global offset table. */
3693 if (hh != NULL)
3694 {
3695 bfd_boolean dyn;
3696
3697 off = hh->eh.got.offset;
3698 dyn = htab->etab.dynamic_sections_created;
3699 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3700 && (reloc
3701 || (hh->eh.dynindx != -1
3702 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3703 if (!reloc
3704 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3705 bfd_link_pic (info),
3706 &hh->eh))
3707 {
3708 /* If we aren't going to call finish_dynamic_symbol,
3709 then we need to handle initialisation of the .got
3710 entry and create needed relocs here. Since the
3711 offset must always be a multiple of 4, we use the
3712 least significant bit to record whether we have
3713 initialised it already. */
3714 if ((off & 1) != 0)
3715 off &= ~1;
3716 else
3717 {
3718 hh->eh.got.offset |= 1;
3719 do_got = TRUE;
3720 }
3721 }
3722 }
3723 else
3724 {
3725 /* Local symbol case. */
3726 if (local_got_offsets == NULL)
3727 abort ();
3728
3729 off = local_got_offsets[r_symndx];
3730
3731 /* The offset must always be a multiple of 4. We use
3732 the least significant bit to record whether we have
3733 already generated the necessary reloc. */
3734 if ((off & 1) != 0)
3735 off &= ~1;
3736 else
3737 {
3738 local_got_offsets[r_symndx] |= 1;
3739 do_got = TRUE;
3740 }
3741 }
3742
3743 if (do_got)
3744 {
3745 if (reloc)
3746 {
3747 /* Output a dynamic relocation for this GOT entry.
3748 In this case it is relative to the base of the
3749 object because the symbol index is zero. */
3750 Elf_Internal_Rela outrel;
3751 bfd_byte *loc;
3752 asection *sec = htab->etab.srelgot;
3753
3754 outrel.r_offset = (off
3755 + htab->etab.sgot->output_offset
3756 + htab->etab.sgot->output_section->vma);
3757 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3758 outrel.r_addend = relocation;
3759 loc = sec->contents;
3760 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3761 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3762 }
3763 else
3764 bfd_put_32 (output_bfd, relocation,
3765 htab->etab.sgot->contents + off);
3766 }
3767
3768 if (off >= (bfd_vma) -2)
3769 abort ();
3770
3771 /* Add the base of the GOT to the relocation value. */
3772 relocation = (off
3773 + htab->etab.sgot->output_offset
3774 + htab->etab.sgot->output_section->vma);
3775 }
3776 break;
3777
3778 case R_PARISC_SEGREL32:
3779 /* If this is the first SEGREL relocation, then initialize
3780 the segment base values. */
3781 if (htab->text_segment_base == (bfd_vma) -1)
3782 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3783 break;
3784
3785 case R_PARISC_PLABEL14R:
3786 case R_PARISC_PLABEL21L:
3787 case R_PARISC_PLABEL32:
3788 if (htab->etab.dynamic_sections_created)
3789 {
3790 bfd_vma off;
3791 bfd_boolean do_plt = 0;
3792 /* If we have a global symbol with a PLT slot, then
3793 redirect this relocation to it. */
3794 if (hh != NULL)
3795 {
3796 off = hh->eh.plt.offset;
3797 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3798 bfd_link_pic (info),
3799 &hh->eh))
3800 {
3801 /* In a non-shared link, adjust_dynamic_symbols
3802 isn't called for symbols forced local. We
3803 need to write out the plt entry here. */
3804 if ((off & 1) != 0)
3805 off &= ~1;
3806 else
3807 {
3808 hh->eh.plt.offset |= 1;
3809 do_plt = 1;
3810 }
3811 }
3812 }
3813 else
3814 {
3815 bfd_vma *local_plt_offsets;
3816
3817 if (local_got_offsets == NULL)
3818 abort ();
3819
3820 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3821 off = local_plt_offsets[r_symndx];
3822
3823 /* As for the local .got entry case, we use the last
3824 bit to record whether we've already initialised
3825 this local .plt entry. */
3826 if ((off & 1) != 0)
3827 off &= ~1;
3828 else
3829 {
3830 local_plt_offsets[r_symndx] |= 1;
3831 do_plt = 1;
3832 }
3833 }
3834
3835 if (do_plt)
3836 {
3837 if (bfd_link_pic (info))
3838 {
3839 /* Output a dynamic IPLT relocation for this
3840 PLT entry. */
3841 Elf_Internal_Rela outrel;
3842 bfd_byte *loc;
3843 asection *s = htab->etab.srelplt;
3844
3845 outrel.r_offset = (off
3846 + htab->etab.splt->output_offset
3847 + htab->etab.splt->output_section->vma);
3848 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3849 outrel.r_addend = relocation;
3850 loc = s->contents;
3851 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3852 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3853 }
3854 else
3855 {
3856 bfd_put_32 (output_bfd,
3857 relocation,
3858 htab->etab.splt->contents + off);
3859 bfd_put_32 (output_bfd,
3860 elf_gp (htab->etab.splt->output_section->owner),
3861 htab->etab.splt->contents + off + 4);
3862 }
3863 }
3864
3865 if (off >= (bfd_vma) -2)
3866 abort ();
3867
3868 /* PLABELs contain function pointers. Relocation is to
3869 the entry for the function in the .plt. The magic +2
3870 offset signals to $$dyncall that the function pointer
3871 is in the .plt and thus has a gp pointer too.
3872 Exception: Undefined PLABELs should have a value of
3873 zero. */
3874 if (hh == NULL
3875 || (hh->eh.root.type != bfd_link_hash_undefweak
3876 && hh->eh.root.type != bfd_link_hash_undefined))
3877 {
3878 relocation = (off
3879 + htab->etab.splt->output_offset
3880 + htab->etab.splt->output_section->vma
3881 + 2);
3882 }
3883 plabel = 1;
3884 }
3885 /* Fall through. */
3886
3887 case R_PARISC_DIR17F:
3888 case R_PARISC_DIR17R:
3889 case R_PARISC_DIR14F:
3890 case R_PARISC_DIR14R:
3891 case R_PARISC_DIR21L:
3892 case R_PARISC_DPREL14F:
3893 case R_PARISC_DPREL14R:
3894 case R_PARISC_DPREL21L:
3895 case R_PARISC_DIR32:
3896 if ((input_section->flags & SEC_ALLOC) == 0)
3897 break;
3898
3899 /* The reloc types handled here and this conditional
3900 expression must match the code in ..check_relocs and
3901 allocate_dynrelocs. ie. We need exactly the same condition
3902 as in ..check_relocs, with some extra conditions (dynindx
3903 test in this case) to cater for relocs removed by
3904 allocate_dynrelocs. */
3905 if ((bfd_link_pic (info)
3906 && !(hh != NULL
3907 && ((hh->eh.root.type == bfd_link_hash_undefined
3908 && ELF_ST_VISIBILITY (hh->eh.other) != STV_DEFAULT)
3909 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))
3910 && (IS_ABSOLUTE_RELOC (r_type)
3911 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3912 || (ELIMINATE_COPY_RELOCS
3913 && !bfd_link_pic (info)
3914 && hh != NULL
3915 && hh->eh.non_got_ref))
3916 {
3917 Elf_Internal_Rela outrel;
3918 bfd_boolean skip;
3919 asection *sreloc;
3920 bfd_byte *loc;
3921
3922 /* When generating a shared object, these relocations
3923 are copied into the output file to be resolved at run
3924 time. */
3925
3926 outrel.r_addend = rela->r_addend;
3927 outrel.r_offset =
3928 _bfd_elf_section_offset (output_bfd, info, input_section,
3929 rela->r_offset);
3930 skip = (outrel.r_offset == (bfd_vma) -1
3931 || outrel.r_offset == (bfd_vma) -2);
3932 outrel.r_offset += (input_section->output_offset
3933 + input_section->output_section->vma);
3934
3935 if (skip)
3936 {
3937 memset (&outrel, 0, sizeof (outrel));
3938 }
3939 else if (hh != NULL
3940 && hh->eh.dynindx != -1
3941 && (plabel
3942 || !IS_ABSOLUTE_RELOC (r_type)
3943 || !bfd_link_pic (info)
3944 || !SYMBOLIC_BIND (info, &hh->eh)
3945 || !hh->eh.def_regular))
3946 {
3947 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3948 }
3949 else /* It's a local symbol, or one marked to become local. */
3950 {
3951 int indx = 0;
3952
3953 /* Add the absolute offset of the symbol. */
3954 outrel.r_addend += relocation;
3955
3956 /* Global plabels need to be processed by the
3957 dynamic linker so that functions have at most one
3958 fptr. For this reason, we need to differentiate
3959 between global and local plabels, which we do by
3960 providing the function symbol for a global plabel
3961 reloc, and no symbol for local plabels. */
3962 if (! plabel
3963 && sym_sec != NULL
3964 && sym_sec->output_section != NULL
3965 && ! bfd_is_abs_section (sym_sec))
3966 {
3967 asection *osec;
3968
3969 osec = sym_sec->output_section;
3970 indx = elf_section_data (osec)->dynindx;
3971 if (indx == 0)
3972 {
3973 osec = htab->etab.text_index_section;
3974 indx = elf_section_data (osec)->dynindx;
3975 }
3976 BFD_ASSERT (indx != 0);
3977
3978 /* We are turning this relocation into one
3979 against a section symbol, so subtract out the
3980 output section's address but not the offset
3981 of the input section in the output section. */
3982 outrel.r_addend -= osec->vma;
3983 }
3984
3985 outrel.r_info = ELF32_R_INFO (indx, r_type);
3986 }
3987 sreloc = elf_section_data (input_section)->sreloc;
3988 if (sreloc == NULL)
3989 abort ();
3990
3991 loc = sreloc->contents;
3992 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3993 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3994 }
3995 break;
3996
3997 case R_PARISC_TLS_LDM21L:
3998 case R_PARISC_TLS_LDM14R:
3999 {
4000 bfd_vma off;
4001
4002 off = htab->tls_ldm_got.offset;
4003 if (off & 1)
4004 off &= ~1;
4005 else
4006 {
4007 Elf_Internal_Rela outrel;
4008 bfd_byte *loc;
4009
4010 outrel.r_offset = (off
4011 + htab->etab.sgot->output_section->vma
4012 + htab->etab.sgot->output_offset);
4013 outrel.r_addend = 0;
4014 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4015 loc = htab->etab.srelgot->contents;
4016 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4017
4018 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4019 htab->tls_ldm_got.offset |= 1;
4020 }
4021
4022 /* Add the base of the GOT to the relocation value. */
4023 relocation = (off
4024 + htab->etab.sgot->output_offset
4025 + htab->etab.sgot->output_section->vma);
4026
4027 break;
4028 }
4029
4030 case R_PARISC_TLS_LDO21L:
4031 case R_PARISC_TLS_LDO14R:
4032 relocation -= dtpoff_base (info);
4033 break;
4034
4035 case R_PARISC_TLS_GD21L:
4036 case R_PARISC_TLS_GD14R:
4037 case R_PARISC_TLS_IE21L:
4038 case R_PARISC_TLS_IE14R:
4039 {
4040 bfd_vma off;
4041 int indx;
4042 char tls_type;
4043
4044 indx = 0;
4045 if (hh != NULL)
4046 {
4047 if (!htab->etab.dynamic_sections_created
4048 || hh->eh.dynindx == -1
4049 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4050 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4051 /* This is actually a static link, or it is a
4052 -Bsymbolic link and the symbol is defined
4053 locally, or the symbol was forced to be local
4054 because of a version file. */
4055 ;
4056 else
4057 indx = hh->eh.dynindx;
4058 off = hh->eh.got.offset;
4059 tls_type = hh->tls_type;
4060 }
4061 else
4062 {
4063 off = local_got_offsets[r_symndx];
4064 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4065 }
4066
4067 if (tls_type == GOT_UNKNOWN)
4068 abort ();
4069
4070 if ((off & 1) != 0)
4071 off &= ~1;
4072 else
4073 {
4074 bfd_boolean need_relocs = FALSE;
4075 Elf_Internal_Rela outrel;
4076 bfd_byte *loc = NULL;
4077 int cur_off = off;
4078
4079 /* The GOT entries have not been initialized yet. Do it
4080 now, and emit any relocations. If both an IE GOT and a
4081 GD GOT are necessary, we emit the GD first. */
4082
4083 if (indx != 0
4084 || (bfd_link_pic (info)
4085 && (hh == NULL
4086 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4087 {
4088 need_relocs = TRUE;
4089 loc = htab->etab.srelgot->contents;
4090 loc += (htab->etab.srelgot->reloc_count
4091 * sizeof (Elf32_External_Rela));
4092 }
4093
4094 if (tls_type & GOT_TLS_GD)
4095 {
4096 if (need_relocs)
4097 {
4098 outrel.r_offset
4099 = (cur_off
4100 + htab->etab.sgot->output_section->vma
4101 + htab->etab.sgot->output_offset);
4102 outrel.r_info
4103 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4104 outrel.r_addend = 0;
4105 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4106 htab->etab.srelgot->reloc_count++;
4107 loc += sizeof (Elf32_External_Rela);
4108 outrel.r_info
4109 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4110 outrel.r_offset += 4;
4111 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4112 htab->etab.srelgot->reloc_count++;
4113 loc += sizeof (Elf32_External_Rela);
4114 bfd_put_32 (output_bfd, 0,
4115 htab->etab.sgot->contents + cur_off);
4116 bfd_put_32 (output_bfd, 0,
4117 htab->etab.sgot->contents + cur_off + 4);
4118 }
4119 else
4120 {
4121 /* If we are not emitting relocations for a
4122 general dynamic reference, then we must be in a
4123 static link or an executable link with the
4124 symbol binding locally. Mark it as belonging
4125 to module 1, the executable. */
4126 bfd_put_32 (output_bfd, 1,
4127 htab->etab.sgot->contents + cur_off);
4128 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4129 htab->etab.sgot->contents + cur_off + 4);
4130 }
4131 cur_off += 8;
4132 }
4133
4134 if (tls_type & GOT_TLS_IE)
4135 {
4136 if (need_relocs
4137 && !(bfd_link_executable (info)
4138 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4139 {
4140 outrel.r_offset
4141 = (cur_off
4142 + htab->etab.sgot->output_section->vma
4143 + htab->etab.sgot->output_offset);
4144 outrel.r_info = ELF32_R_INFO (indx,
4145 R_PARISC_TLS_TPREL32);
4146 if (indx == 0)
4147 outrel.r_addend = relocation - dtpoff_base (info);
4148 else
4149 outrel.r_addend = 0;
4150 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4151 htab->etab.srelgot->reloc_count++;
4152 loc += sizeof (Elf32_External_Rela);
4153 }
4154 else
4155 bfd_put_32 (output_bfd, tpoff (info, relocation),
4156 htab->etab.sgot->contents + cur_off);
4157 cur_off += 4;
4158 }
4159
4160 if (hh != NULL)
4161 hh->eh.got.offset |= 1;
4162 else
4163 local_got_offsets[r_symndx] |= 1;
4164 }
4165
4166 if ((tls_type & GOT_NORMAL) != 0
4167 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4168 {
4169 if (hh != NULL)
4170 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4171 hh_name (hh));
4172 else
4173 {
4174 Elf_Internal_Sym *isym
4175 = bfd_sym_from_r_symndx (&htab->sym_cache,
4176 input_bfd, r_symndx);
4177 if (isym == NULL)
4178 return FALSE;
4179 sym_name
4180 = bfd_elf_string_from_elf_section (input_bfd,
4181 symtab_hdr->sh_link,
4182 isym->st_name);
4183 if (sym_name == NULL)
4184 return FALSE;
4185 if (*sym_name == '\0')
4186 sym_name = bfd_section_name (input_bfd, sym_sec);
4187 _bfd_error_handler
4188 (_("%B:%s has both normal and TLS relocs"),
4189 input_bfd, sym_name);
4190 }
4191 bfd_set_error (bfd_error_bad_value);
4192 return FALSE;
4193 }
4194
4195 if ((tls_type & GOT_TLS_GD)
4196 && r_type != R_PARISC_TLS_GD21L
4197 && r_type != R_PARISC_TLS_GD14R)
4198 off += 2 * GOT_ENTRY_SIZE;
4199
4200 /* Add the base of the GOT to the relocation value. */
4201 relocation = (off
4202 + htab->etab.sgot->output_offset
4203 + htab->etab.sgot->output_section->vma);
4204
4205 break;
4206 }
4207
4208 case R_PARISC_TLS_LE21L:
4209 case R_PARISC_TLS_LE14R:
4210 {
4211 relocation = tpoff (info, relocation);
4212 break;
4213 }
4214 break;
4215
4216 default:
4217 break;
4218 }
4219
4220 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4221 htab, sym_sec, hh, info);
4222
4223 if (rstatus == bfd_reloc_ok)
4224 continue;
4225
4226 if (hh != NULL)
4227 sym_name = hh_name (hh);
4228 else
4229 {
4230 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4231 symtab_hdr->sh_link,
4232 sym->st_name);
4233 if (sym_name == NULL)
4234 return FALSE;
4235 if (*sym_name == '\0')
4236 sym_name = bfd_section_name (input_bfd, sym_sec);
4237 }
4238
4239 howto = elf_hppa_howto_table + r_type;
4240
4241 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4242 {
4243 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4244 {
4245 _bfd_error_handler
4246 /* xgettext:c-format */
4247 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4248 input_bfd,
4249 input_section,
4250 rela->r_offset,
4251 howto->name,
4252 sym_name);
4253 bfd_set_error (bfd_error_bad_value);
4254 return FALSE;
4255 }
4256 }
4257 else
4258 (*info->callbacks->reloc_overflow)
4259 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4260 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4261 }
4262
4263 return TRUE;
4264 }
4265
4266 /* Finish up dynamic symbol handling. We set the contents of various
4267 dynamic sections here. */
4268
4269 static bfd_boolean
4270 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4271 struct bfd_link_info *info,
4272 struct elf_link_hash_entry *eh,
4273 Elf_Internal_Sym *sym)
4274 {
4275 struct elf32_hppa_link_hash_table *htab;
4276 Elf_Internal_Rela rela;
4277 bfd_byte *loc;
4278
4279 htab = hppa_link_hash_table (info);
4280 if (htab == NULL)
4281 return FALSE;
4282
4283 if (eh->plt.offset != (bfd_vma) -1)
4284 {
4285 bfd_vma value;
4286
4287 if (eh->plt.offset & 1)
4288 abort ();
4289
4290 /* This symbol has an entry in the procedure linkage table. Set
4291 it up.
4292
4293 The format of a plt entry is
4294 <funcaddr>
4295 <__gp>
4296 */
4297 value = 0;
4298 if (eh->root.type == bfd_link_hash_defined
4299 || eh->root.type == bfd_link_hash_defweak)
4300 {
4301 value = eh->root.u.def.value;
4302 if (eh->root.u.def.section->output_section != NULL)
4303 value += (eh->root.u.def.section->output_offset
4304 + eh->root.u.def.section->output_section->vma);
4305 }
4306
4307 /* Create a dynamic IPLT relocation for this entry. */
4308 rela.r_offset = (eh->plt.offset
4309 + htab->etab.splt->output_offset
4310 + htab->etab.splt->output_section->vma);
4311 if (eh->dynindx != -1)
4312 {
4313 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4314 rela.r_addend = 0;
4315 }
4316 else
4317 {
4318 /* This symbol has been marked to become local, and is
4319 used by a plabel so must be kept in the .plt. */
4320 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4321 rela.r_addend = value;
4322 }
4323
4324 loc = htab->etab.srelplt->contents;
4325 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4326 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4327
4328 if (!eh->def_regular)
4329 {
4330 /* Mark the symbol as undefined, rather than as defined in
4331 the .plt section. Leave the value alone. */
4332 sym->st_shndx = SHN_UNDEF;
4333 }
4334 }
4335
4336 if (eh->got.offset != (bfd_vma) -1
4337 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4338 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4339 {
4340 bfd_boolean is_dyn = (eh->dynindx != -1
4341 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4342
4343 if (is_dyn || bfd_link_pic (info))
4344 {
4345 /* This symbol has an entry in the global offset table. Set
4346 it up. */
4347
4348 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4349 + htab->etab.sgot->output_offset
4350 + htab->etab.sgot->output_section->vma);
4351
4352 /* If this is a -Bsymbolic link and the symbol is defined
4353 locally or was forced to be local because of a version
4354 file, we just want to emit a RELATIVE reloc. The entry
4355 in the global offset table will already have been
4356 initialized in the relocate_section function. */
4357 if (!is_dyn)
4358 {
4359 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4360 rela.r_addend = (eh->root.u.def.value
4361 + eh->root.u.def.section->output_offset
4362 + eh->root.u.def.section->output_section->vma);
4363 }
4364 else
4365 {
4366 if ((eh->got.offset & 1) != 0)
4367 abort ();
4368
4369 bfd_put_32 (output_bfd, 0,
4370 htab->etab.sgot->contents + (eh->got.offset & ~1));
4371 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4372 rela.r_addend = 0;
4373 }
4374
4375 loc = htab->etab.srelgot->contents;
4376 loc += (htab->etab.srelgot->reloc_count++
4377 * sizeof (Elf32_External_Rela));
4378 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4379 }
4380 }
4381
4382 if (eh->needs_copy)
4383 {
4384 asection *sec;
4385
4386 /* This symbol needs a copy reloc. Set it up. */
4387
4388 if (! (eh->dynindx != -1
4389 && (eh->root.type == bfd_link_hash_defined
4390 || eh->root.type == bfd_link_hash_defweak)))
4391 abort ();
4392
4393 rela.r_offset = (eh->root.u.def.value
4394 + eh->root.u.def.section->output_offset
4395 + eh->root.u.def.section->output_section->vma);
4396 rela.r_addend = 0;
4397 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4398 if (eh->root.u.def.section == htab->etab.sdynrelro)
4399 sec = htab->etab.sreldynrelro;
4400 else
4401 sec = htab->etab.srelbss;
4402 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4403 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4404 }
4405
4406 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4407 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4408 {
4409 sym->st_shndx = SHN_ABS;
4410 }
4411
4412 return TRUE;
4413 }
4414
4415 /* Used to decide how to sort relocs in an optimal manner for the
4416 dynamic linker, before writing them out. */
4417
4418 static enum elf_reloc_type_class
4419 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4420 const asection *rel_sec ATTRIBUTE_UNUSED,
4421 const Elf_Internal_Rela *rela)
4422 {
4423 /* Handle TLS relocs first; we don't want them to be marked
4424 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4425 check below. */
4426 switch ((int) ELF32_R_TYPE (rela->r_info))
4427 {
4428 case R_PARISC_TLS_DTPMOD32:
4429 case R_PARISC_TLS_DTPOFF32:
4430 case R_PARISC_TLS_TPREL32:
4431 return reloc_class_normal;
4432 }
4433
4434 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4435 return reloc_class_relative;
4436
4437 switch ((int) ELF32_R_TYPE (rela->r_info))
4438 {
4439 case R_PARISC_IPLT:
4440 return reloc_class_plt;
4441 case R_PARISC_COPY:
4442 return reloc_class_copy;
4443 default:
4444 return reloc_class_normal;
4445 }
4446 }
4447
4448 /* Finish up the dynamic sections. */
4449
4450 static bfd_boolean
4451 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4452 struct bfd_link_info *info)
4453 {
4454 bfd *dynobj;
4455 struct elf32_hppa_link_hash_table *htab;
4456 asection *sdyn;
4457 asection * sgot;
4458
4459 htab = hppa_link_hash_table (info);
4460 if (htab == NULL)
4461 return FALSE;
4462
4463 dynobj = htab->etab.dynobj;
4464
4465 sgot = htab->etab.sgot;
4466 /* A broken linker script might have discarded the dynamic sections.
4467 Catch this here so that we do not seg-fault later on. */
4468 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4469 return FALSE;
4470
4471 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4472
4473 if (htab->etab.dynamic_sections_created)
4474 {
4475 Elf32_External_Dyn *dyncon, *dynconend;
4476
4477 if (sdyn == NULL)
4478 abort ();
4479
4480 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4481 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4482 for (; dyncon < dynconend; dyncon++)
4483 {
4484 Elf_Internal_Dyn dyn;
4485 asection *s;
4486
4487 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4488
4489 switch (dyn.d_tag)
4490 {
4491 default:
4492 continue;
4493
4494 case DT_PLTGOT:
4495 /* Use PLTGOT to set the GOT register. */
4496 dyn.d_un.d_ptr = elf_gp (output_bfd);
4497 break;
4498
4499 case DT_JMPREL:
4500 s = htab->etab.srelplt;
4501 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4502 break;
4503
4504 case DT_PLTRELSZ:
4505 s = htab->etab.srelplt;
4506 dyn.d_un.d_val = s->size;
4507 break;
4508 }
4509
4510 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4511 }
4512 }
4513
4514 if (sgot != NULL && sgot->size != 0)
4515 {
4516 /* Fill in the first entry in the global offset table.
4517 We use it to point to our dynamic section, if we have one. */
4518 bfd_put_32 (output_bfd,
4519 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4520 sgot->contents);
4521
4522 /* The second entry is reserved for use by the dynamic linker. */
4523 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4524
4525 /* Set .got entry size. */
4526 elf_section_data (sgot->output_section)
4527 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4528 }
4529
4530 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4531 {
4532 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4533 plt stubs and as such the section does not hold a table of fixed-size
4534 entries. */
4535 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4536
4537 if (htab->need_plt_stub)
4538 {
4539 /* Set up the .plt stub. */
4540 memcpy (htab->etab.splt->contents
4541 + htab->etab.splt->size - sizeof (plt_stub),
4542 plt_stub, sizeof (plt_stub));
4543
4544 if ((htab->etab.splt->output_offset
4545 + htab->etab.splt->output_section->vma
4546 + htab->etab.splt->size)
4547 != (sgot->output_offset
4548 + sgot->output_section->vma))
4549 {
4550 _bfd_error_handler
4551 (_(".got section not immediately after .plt section"));
4552 return FALSE;
4553 }
4554 }
4555 }
4556
4557 return TRUE;
4558 }
4559
4560 /* Called when writing out an object file to decide the type of a
4561 symbol. */
4562 static int
4563 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4564 {
4565 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4566 return STT_PARISC_MILLI;
4567 else
4568 return type;
4569 }
4570
4571 /* Misc BFD support code. */
4572 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4573 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4574 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4575 #define elf_info_to_howto elf_hppa_info_to_howto
4576 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4577
4578 /* Stuff for the BFD linker. */
4579 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4580 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4581 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4582 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4583 #define elf_backend_check_relocs elf32_hppa_check_relocs
4584 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4585 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4586 #define elf_backend_fake_sections elf_hppa_fake_sections
4587 #define elf_backend_relocate_section elf32_hppa_relocate_section
4588 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4589 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4590 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4591 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4592 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4593 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4594 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4595 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4596 #define elf_backend_object_p elf32_hppa_object_p
4597 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4598 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4599 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4600 #define elf_backend_action_discarded elf_hppa_action_discarded
4601
4602 #define elf_backend_can_gc_sections 1
4603 #define elf_backend_can_refcount 1
4604 #define elf_backend_plt_alignment 2
4605 #define elf_backend_want_got_plt 0
4606 #define elf_backend_plt_readonly 0
4607 #define elf_backend_want_plt_sym 0
4608 #define elf_backend_got_header_size 8
4609 #define elf_backend_want_dynrelro 1
4610 #define elf_backend_rela_normal 1
4611 #define elf_backend_dtrel_excludes_plt 1
4612 #define elf_backend_no_page_alias 1
4613
4614 #define TARGET_BIG_SYM hppa_elf32_vec
4615 #define TARGET_BIG_NAME "elf32-hppa"
4616 #define ELF_ARCH bfd_arch_hppa
4617 #define ELF_TARGET_ID HPPA32_ELF_DATA
4618 #define ELF_MACHINE_CODE EM_PARISC
4619 #define ELF_MAXPAGESIZE 0x1000
4620 #define ELF_OSABI ELFOSABI_HPUX
4621 #define elf32_bed elf32_hppa_hpux_bed
4622
4623 #include "elf32-target.h"
4624
4625 #undef TARGET_BIG_SYM
4626 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4627 #undef TARGET_BIG_NAME
4628 #define TARGET_BIG_NAME "elf32-hppa-linux"
4629 #undef ELF_OSABI
4630 #define ELF_OSABI ELFOSABI_GNU
4631 #undef elf32_bed
4632 #define elf32_bed elf32_hppa_linux_bed
4633
4634 #include "elf32-target.h"
4635
4636 #undef TARGET_BIG_SYM
4637 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4638 #undef TARGET_BIG_NAME
4639 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4640 #undef ELF_OSABI
4641 #define ELF_OSABI ELFOSABI_NETBSD
4642 #undef elf32_bed
4643 #define elf32_bed elf32_hppa_netbsd_bed
4644
4645 #include "elf32-target.h"