Allow adrCCl. [Patch from Phillip BLundel]
[binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120
121 static const bfd_byte plt_stub[] =
122 {
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126 #define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
131 };
132
133 /* Section name for stubs is the associated section name plus this
134 string. */
135 #define STUB_SUFFIX ".stub"
136
137 /* Setting the following non-zero makes all long branch stubs
138 generated during a shared link of the PIC variety. This saves on
139 relocs, but costs one extra instruction per stub. */
140 #ifndef LONG_BRANCH_PIC_IN_SHLIB
141 #define LONG_BRANCH_PIC_IN_SHLIB 1
142 #endif
143
144 /* Set this non-zero to use import stubs instead of long branch stubs
145 where a .plt entry exists for the symbol. This is a fairly useless
146 option as import stubs are bigger than PIC long branch stubs. */
147 #ifndef LONG_BRANCH_VIA_PLT
148 #define LONG_BRANCH_VIA_PLT 0
149 #endif
150
151 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
152 shared object's dynamic section. */
153 #ifndef RELATIVE_DYNAMIC_RELOCS
154 #define RELATIVE_DYNAMIC_RELOCS 0
155 #endif
156
157 enum elf32_hppa_stub_type {
158 hppa_stub_long_branch,
159 hppa_stub_long_branch_shared,
160 hppa_stub_import,
161 hppa_stub_import_shared,
162 hppa_stub_export,
163 hppa_stub_none
164 };
165
166 struct elf32_hppa_stub_hash_entry {
167
168 /* Base hash table entry structure. */
169 struct bfd_hash_entry root;
170
171 /* The stub section. */
172 asection *stub_sec;
173
174 #if ! LONG_BRANCH_PIC_IN_SHLIB
175 /* It's associated reloc section. */
176 asection *reloc_sec;
177 #endif
178
179 /* Offset within stub_sec of the beginning of this stub. */
180 bfd_vma stub_offset;
181
182 /* Given the symbol's value and its section we can determine its final
183 value when building the stubs (so the stub knows where to jump. */
184 bfd_vma target_value;
185 asection *target_section;
186
187 enum elf32_hppa_stub_type stub_type;
188
189 /* The symbol table entry, if any, that this was derived from. */
190 struct elf32_hppa_link_hash_entry *h;
191
192 /* Where this stub is being called from, or, in the case of combined
193 stub sections, the first input section in the group. */
194 asection *id_sec;
195 };
196
197 struct elf32_hppa_link_hash_entry {
198
199 struct elf_link_hash_entry elf;
200
201 /* A pointer to the most recently used stub hash entry against this
202 symbol. */
203 struct elf32_hppa_stub_hash_entry *stub_cache;
204
205 #if ! LONG_BRANCH_PIC_IN_SHLIB
206 /* Used to track whether we have allocated space for a long branch
207 stub relocation for this symbol in the given section. */
208 asection *stub_reloc_sec;
209 #endif
210
211 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
212 /* Used to count relocations for delayed sizing of relocation
213 sections. */
214 struct elf32_hppa_dyn_reloc_entry {
215
216 /* Next relocation in the chain. */
217 struct elf32_hppa_dyn_reloc_entry *next;
218
219 /* The section in dynobj. */
220 asection *section;
221
222 /* Number of relocs copied in this section. */
223 bfd_size_type count;
224 } *reloc_entries;
225 #endif
226
227 /* Set during a static link if we detect a function is PIC. */
228 unsigned int maybe_pic_call:1;
229
230 /* Set if the only reason we need a .plt entry is for a non-PIC to
231 PIC function call. */
232 unsigned int pic_call:1;
233
234 /* Set if this symbol is used by a plabel reloc. */
235 unsigned int plabel:1;
236
237 /* Set if this symbol is an init or fini function and thus should
238 use an absolute reloc. */
239 unsigned int plt_abs:1;
240 };
241
242 struct elf32_hppa_link_hash_table {
243
244 /* The main hash table. */
245 struct elf_link_hash_table root;
246
247 /* The stub hash table. */
248 struct bfd_hash_table stub_hash_table;
249
250 /* Linker stub bfd. */
251 bfd *stub_bfd;
252
253 /* Linker call-backs. */
254 asection * (*add_stub_section) PARAMS ((const char *, asection *));
255 void (*layout_sections_again) PARAMS ((void));
256
257 /* Array to keep track of which stub sections have been created, and
258 information on stub grouping. */
259 struct map_stub {
260 /* This is the section to which stubs in the group will be
261 attached. */
262 asection *link_sec;
263 /* The stub section. */
264 asection *stub_sec;
265 #if ! LONG_BRANCH_PIC_IN_SHLIB
266 /* The stub section's reloc section. */
267 asection *reloc_sec;
268 #endif
269 } *stub_group;
270
271 /* Short-cuts to get to dynamic linker sections. */
272 asection *sgot;
273 asection *srelgot;
274 asection *splt;
275 asection *srelplt;
276 asection *sdynbss;
277 asection *srelbss;
278
279 /* Used during a final link to store the base of the text and data
280 segments so that we can perform SEGREL relocations. */
281 bfd_vma text_segment_base;
282 bfd_vma data_segment_base;
283
284 /* Whether we support multiple sub-spaces for shared libs. */
285 unsigned int multi_subspace:1;
286
287 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
288 select suitable defaults for the stub group size. */
289 unsigned int has_12bit_branch:1;
290 unsigned int has_17bit_branch:1;
291
292 /* Set if we need a .plt stub to support lazy dynamic linking. */
293 unsigned int need_plt_stub:1;
294 };
295
296 /* Various hash macros and functions. */
297 #define hppa_link_hash_table(p) \
298 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
299
300 #define hppa_stub_hash_lookup(table, string, create, copy) \
301 ((struct elf32_hppa_stub_hash_entry *) \
302 bfd_hash_lookup ((table), (string), (create), (copy)))
303
304 static struct bfd_hash_entry *stub_hash_newfunc
305 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
306
307 static struct bfd_hash_entry *hppa_link_hash_newfunc
308 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
309
310 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
311 PARAMS ((bfd *));
312
313 /* Stub handling functions. */
314 static char *hppa_stub_name
315 PARAMS ((const asection *, const asection *,
316 const struct elf32_hppa_link_hash_entry *,
317 const Elf_Internal_Rela *));
318
319 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
320 PARAMS ((const asection *, const asection *,
321 struct elf32_hppa_link_hash_entry *,
322 const Elf_Internal_Rela *,
323 struct elf32_hppa_link_hash_table *));
324
325 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
326 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
327
328 static enum elf32_hppa_stub_type hppa_type_of_stub
329 PARAMS ((asection *, const Elf_Internal_Rela *,
330 struct elf32_hppa_link_hash_entry *, bfd_vma));
331
332 static boolean hppa_build_one_stub
333 PARAMS ((struct bfd_hash_entry *, PTR));
334
335 static boolean hppa_size_one_stub
336 PARAMS ((struct bfd_hash_entry *, PTR));
337
338 /* BFD and elf backend functions. */
339 static boolean elf32_hppa_object_p PARAMS ((bfd *));
340
341 static boolean elf32_hppa_add_symbol_hook
342 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 const char **, flagword *, asection **, bfd_vma *));
344
345 static boolean elf32_hppa_create_dynamic_sections
346 PARAMS ((bfd *, struct bfd_link_info *));
347
348 static boolean elf32_hppa_check_relocs
349 PARAMS ((bfd *, struct bfd_link_info *,
350 asection *, const Elf_Internal_Rela *));
351
352 static asection *elf32_hppa_gc_mark_hook
353 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 struct elf_link_hash_entry *, Elf_Internal_Sym *));
355
356 static boolean elf32_hppa_gc_sweep_hook
357 PARAMS ((bfd *, struct bfd_link_info *,
358 asection *, const Elf_Internal_Rela *));
359
360 static void elf32_hppa_hide_symbol
361 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362
363 static boolean elf32_hppa_adjust_dynamic_symbol
364 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365
366 static boolean hppa_handle_PIC_calls
367 PARAMS ((struct elf_link_hash_entry *, PTR));
368
369 static boolean allocate_plt_and_got
370 PARAMS ((struct elf_link_hash_entry *, PTR));
371
372 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
373 || RELATIVE_DYNAMIC_RELOCS)
374 static boolean hppa_discard_copies
375 PARAMS ((struct elf_link_hash_entry *, PTR));
376 #endif
377
378 static boolean clobber_millicode_symbols
379 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
380
381 static boolean elf32_hppa_size_dynamic_sections
382 PARAMS ((bfd *, struct bfd_link_info *));
383
384 static boolean elf32_hppa_final_link
385 PARAMS ((bfd *, struct bfd_link_info *));
386
387 static void hppa_record_segment_addr
388 PARAMS ((bfd *, asection *, PTR));
389
390 static bfd_reloc_status_type final_link_relocate
391 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
392 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
393 struct elf32_hppa_link_hash_entry *));
394
395 static boolean elf32_hppa_relocate_section
396 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
397 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
398
399 static int hppa_unwind_entry_compare
400 PARAMS ((const PTR, const PTR));
401
402 static boolean elf32_hppa_finish_dynamic_symbol
403 PARAMS ((bfd *, struct bfd_link_info *,
404 struct elf_link_hash_entry *, Elf_Internal_Sym *));
405
406 static boolean elf32_hppa_finish_dynamic_sections
407 PARAMS ((bfd *, struct bfd_link_info *));
408
409 static void elf32_hppa_post_process_headers
410 PARAMS ((bfd *, struct bfd_link_info *));
411
412 static int elf32_hppa_elf_get_symbol_type
413 PARAMS ((Elf_Internal_Sym *, int));
414
415 /* Assorted hash table functions. */
416
417 /* Initialize an entry in the stub hash table. */
418
419 static struct bfd_hash_entry *
420 stub_hash_newfunc (entry, table, string)
421 struct bfd_hash_entry *entry;
422 struct bfd_hash_table *table;
423 const char *string;
424 {
425 struct elf32_hppa_stub_hash_entry *ret;
426
427 ret = (struct elf32_hppa_stub_hash_entry *) entry;
428
429 /* Allocate the structure if it has not already been allocated by a
430 subclass. */
431 if (ret == NULL)
432 {
433 ret = ((struct elf32_hppa_stub_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf32_hppa_stub_hash_entry)));
436 if (ret == NULL)
437 return NULL;
438 }
439
440 /* Call the allocation method of the superclass. */
441 ret = ((struct elf32_hppa_stub_hash_entry *)
442 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
443
444 if (ret)
445 {
446 /* Initialize the local fields. */
447 ret->stub_sec = NULL;
448 #if ! LONG_BRANCH_PIC_IN_SHLIB
449 ret->reloc_sec = NULL;
450 #endif
451 ret->stub_offset = 0;
452 ret->target_value = 0;
453 ret->target_section = NULL;
454 ret->stub_type = hppa_stub_long_branch;
455 ret->h = NULL;
456 ret->id_sec = NULL;
457 }
458
459 return (struct bfd_hash_entry *) ret;
460 }
461
462 /* Initialize an entry in the link hash table. */
463
464 static struct bfd_hash_entry *
465 hppa_link_hash_newfunc (entry, table, string)
466 struct bfd_hash_entry *entry;
467 struct bfd_hash_table *table;
468 const char *string;
469 {
470 struct elf32_hppa_link_hash_entry *ret;
471
472 ret = (struct elf32_hppa_link_hash_entry *) entry;
473
474 /* Allocate the structure if it has not already been allocated by a
475 subclass. */
476 if (ret == NULL)
477 {
478 ret = ((struct elf32_hppa_link_hash_entry *)
479 bfd_hash_allocate (table,
480 sizeof (struct elf32_hppa_link_hash_entry)));
481 if (ret == NULL)
482 return NULL;
483 }
484
485 /* Call the allocation method of the superclass. */
486 ret = ((struct elf32_hppa_link_hash_entry *)
487 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
488 table, string));
489
490 if (ret)
491 {
492 /* Initialize the local fields. */
493 #if ! LONG_BRANCH_PIC_IN_SHLIB
494 ret->stub_reloc_sec = NULL;
495 #endif
496 ret->stub_cache = NULL;
497 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
498 ret->reloc_entries = NULL;
499 #endif
500 ret->maybe_pic_call = 0;
501 ret->pic_call = 0;
502 ret->plabel = 0;
503 ret->plt_abs = 0;
504 }
505
506 return (struct bfd_hash_entry *) ret;
507 }
508
509 /* Create the derived linker hash table. The PA ELF port uses the derived
510 hash table to keep information specific to the PA ELF linker (without
511 using static variables). */
512
513 static struct bfd_link_hash_table *
514 elf32_hppa_link_hash_table_create (abfd)
515 bfd *abfd;
516 {
517 struct elf32_hppa_link_hash_table *ret;
518
519 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
520 if (ret == NULL)
521 return NULL;
522
523 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
524 {
525 bfd_release (abfd, ret);
526 return NULL;
527 }
528
529 /* Init the stub hash table too. */
530 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
531 return NULL;
532
533 ret->stub_bfd = NULL;
534 ret->add_stub_section = NULL;
535 ret->layout_sections_again = NULL;
536 ret->stub_group = NULL;
537 ret->sgot = NULL;
538 ret->srelgot = NULL;
539 ret->splt = NULL;
540 ret->srelplt = NULL;
541 ret->sdynbss = NULL;
542 ret->srelbss = NULL;
543 ret->text_segment_base = (bfd_vma) -1;
544 ret->data_segment_base = (bfd_vma) -1;
545 ret->multi_subspace = 0;
546 ret->has_12bit_branch = 0;
547 ret->has_17bit_branch = 0;
548 ret->need_plt_stub = 0;
549
550 return &ret->root.root;
551 }
552
553 /* Build a name for an entry in the stub hash table. */
554
555 static char *
556 hppa_stub_name (input_section, sym_sec, hash, rel)
557 const asection *input_section;
558 const asection *sym_sec;
559 const struct elf32_hppa_link_hash_entry *hash;
560 const Elf_Internal_Rela *rel;
561 {
562 char *stub_name;
563 size_t len;
564
565 if (hash)
566 {
567 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
568 stub_name = bfd_malloc (len);
569 if (stub_name != NULL)
570 {
571 sprintf (stub_name, "%08x_%s+%x",
572 input_section->id & 0xffffffff,
573 hash->elf.root.root.string,
574 (int) rel->r_addend & 0xffffffff);
575 }
576 }
577 else
578 {
579 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
580 stub_name = bfd_malloc (len);
581 if (stub_name != NULL)
582 {
583 sprintf (stub_name, "%08x_%x:%x+%x",
584 input_section->id & 0xffffffff,
585 sym_sec->id & 0xffffffff,
586 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
587 (int) rel->r_addend & 0xffffffff);
588 }
589 }
590 return stub_name;
591 }
592
593 /* Look up an entry in the stub hash. Stub entries are cached because
594 creating the stub name takes a bit of time. */
595
596 static struct elf32_hppa_stub_hash_entry *
597 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
598 const asection *input_section;
599 const asection *sym_sec;
600 struct elf32_hppa_link_hash_entry *hash;
601 const Elf_Internal_Rela *rel;
602 struct elf32_hppa_link_hash_table *hplink;
603 {
604 struct elf32_hppa_stub_hash_entry *stub_entry;
605 const asection *id_sec;
606
607 /* If this input section is part of a group of sections sharing one
608 stub section, then use the id of the first section in the group.
609 Stub names need to include a section id, as there may well be
610 more than one stub used to reach say, printf, and we need to
611 distinguish between them. */
612 id_sec = hplink->stub_group[input_section->id].link_sec;
613
614 if (hash != NULL && hash->stub_cache != NULL
615 && hash->stub_cache->h == hash
616 && hash->stub_cache->id_sec == id_sec)
617 {
618 stub_entry = hash->stub_cache;
619 }
620 else
621 {
622 char *stub_name;
623
624 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
625 if (stub_name == NULL)
626 return NULL;
627
628 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
629 stub_name, false, false);
630 if (stub_entry == NULL)
631 {
632 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
633 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
634 bfd_get_filename (input_section->owner),
635 input_section->name,
636 (long) rel->r_offset,
637 stub_name);
638 }
639 else
640 {
641 if (hash != NULL)
642 hash->stub_cache = stub_entry;
643 }
644
645 free (stub_name);
646 }
647
648 return stub_entry;
649 }
650
651 /* Add a new stub entry to the stub hash. Not all fields of the new
652 stub entry are initialised. */
653
654 static struct elf32_hppa_stub_hash_entry *
655 hppa_add_stub (stub_name, section, hplink)
656 const char *stub_name;
657 asection *section;
658 struct elf32_hppa_link_hash_table *hplink;
659 {
660 asection *link_sec;
661 asection *stub_sec;
662 struct elf32_hppa_stub_hash_entry *stub_entry;
663
664 link_sec = hplink->stub_group[section->id].link_sec;
665 stub_sec = hplink->stub_group[section->id].stub_sec;
666 if (stub_sec == NULL)
667 {
668 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
669 if (stub_sec == NULL)
670 {
671 size_t len;
672 char *s_name;
673
674 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
675 s_name = bfd_alloc (hplink->stub_bfd, len);
676 if (s_name == NULL)
677 return NULL;
678
679 strcpy (s_name, link_sec->name);
680 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
681 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
682 if (stub_sec == NULL)
683 return NULL;
684 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
685 }
686 hplink->stub_group[section->id].stub_sec = stub_sec;
687 }
688
689 /* Enter this entry into the linker stub hash table. */
690 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
691 true, false);
692 if (stub_entry == NULL)
693 {
694 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
695 bfd_get_filename (section->owner),
696 stub_name);
697 return NULL;
698 }
699
700 stub_entry->stub_sec = stub_sec;
701 #if ! LONG_BRANCH_PIC_IN_SHLIB
702 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
703 #endif
704 stub_entry->stub_offset = 0;
705 stub_entry->id_sec = link_sec;
706 return stub_entry;
707 }
708
709 /* Determine the type of stub needed, if any, for a call. */
710
711 static enum elf32_hppa_stub_type
712 hppa_type_of_stub (input_sec, rel, hash, destination)
713 asection *input_sec;
714 const Elf_Internal_Rela *rel;
715 struct elf32_hppa_link_hash_entry *hash;
716 bfd_vma destination;
717 {
718 bfd_vma location;
719 bfd_vma branch_offset;
720 bfd_vma max_branch_offset;
721 unsigned int r_type;
722
723 if (hash != NULL
724 && (((hash->elf.root.type == bfd_link_hash_defined
725 || hash->elf.root.type == bfd_link_hash_defweak)
726 && hash->elf.root.u.def.section->output_section == NULL)
727 || (hash->elf.root.type == bfd_link_hash_defweak
728 && hash->elf.dynindx != -1
729 && hash->elf.plt.offset != (bfd_vma) -1)
730 || hash->elf.root.type == bfd_link_hash_undefweak
731 || hash->elf.root.type == bfd_link_hash_undefined
732 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
733 {
734 /* If output_section is NULL, then it's a symbol defined in a
735 shared library. We will need an import stub. Decide between
736 hppa_stub_import and hppa_stub_import_shared later. For
737 shared links we need stubs for undefined or weak syms too;
738 They will presumably be resolved by the dynamic linker. */
739 return hppa_stub_import;
740 }
741
742 /* Determine where the call point is. */
743 location = (input_sec->output_offset
744 + input_sec->output_section->vma
745 + rel->r_offset);
746
747 branch_offset = destination - location - 8;
748 r_type = ELF32_R_TYPE (rel->r_info);
749
750 /* Determine if a long branch stub is needed. parisc branch offsets
751 are relative to the second instruction past the branch, ie. +8
752 bytes on from the branch instruction location. The offset is
753 signed and counts in units of 4 bytes. */
754 if (r_type == (unsigned int) R_PARISC_PCREL17F)
755 {
756 max_branch_offset = (1 << (17-1)) << 2;
757 }
758 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
759 {
760 max_branch_offset = (1 << (12-1)) << 2;
761 }
762 else /* R_PARISC_PCREL22F. */
763 {
764 max_branch_offset = (1 << (22-1)) << 2;
765 }
766
767 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
768 {
769 #if LONG_BRANCH_VIA_PLT
770 if (hash != NULL
771 && hash->elf.dynindx != -1
772 && hash->elf.plt.offset != (bfd_vma) -1
773 && hash->elf.type != STT_PARISC_MILLI)
774 {
775 /* If we are doing a shared link and find we need a long
776 branch stub, then go via the .plt if possible. */
777 return hppa_stub_import;
778 }
779 else
780 #endif
781 return hppa_stub_long_branch;
782 }
783 return hppa_stub_none;
784 }
785
786 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
787 IN_ARG contains the link info pointer. */
788
789 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
790 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
791
792 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
793 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
794 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
795
796 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
797 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
798 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
799 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
800
801 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
802 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
803
804 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
805 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
806 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
807 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
808
809 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
810 #define NOP 0x08000240 /* nop */
811 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
812 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
813 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
814
815 #ifndef R19_STUBS
816 #define R19_STUBS 1
817 #endif
818
819 #if R19_STUBS
820 #define LDW_R1_DLT LDW_R1_R19
821 #else
822 #define LDW_R1_DLT LDW_R1_DP
823 #endif
824
825 static boolean
826 hppa_build_one_stub (gen_entry, in_arg)
827 struct bfd_hash_entry *gen_entry;
828 PTR in_arg;
829 {
830 struct elf32_hppa_stub_hash_entry *stub_entry;
831 struct bfd_link_info *info;
832 struct elf32_hppa_link_hash_table *hplink;
833 asection *stub_sec;
834 bfd *stub_bfd;
835 bfd_byte *loc;
836 bfd_vma sym_value;
837 bfd_vma insn;
838 bfd_vma off;
839 int val;
840 int size;
841
842 /* Massage our args to the form they really have. */
843 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
844 info = (struct bfd_link_info *) in_arg;
845
846 hplink = hppa_link_hash_table (info);
847 stub_sec = stub_entry->stub_sec;
848
849 /* Make a note of the offset within the stubs for this entry. */
850 stub_entry->stub_offset = stub_sec->_raw_size;
851 loc = stub_sec->contents + stub_entry->stub_offset;
852
853 stub_bfd = stub_sec->owner;
854
855 switch (stub_entry->stub_type)
856 {
857 case hppa_stub_long_branch:
858 /* Create the long branch. A long branch is formed with "ldil"
859 loading the upper bits of the target address into a register,
860 then branching with "be" which adds in the lower bits.
861 The "be" has its delay slot nullified. */
862 sym_value = (stub_entry->target_value
863 + stub_entry->target_section->output_offset
864 + stub_entry->target_section->output_section->vma);
865
866 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
867 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
868 bfd_put_32 (stub_bfd, insn, loc);
869
870 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
871 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
872 bfd_put_32 (stub_bfd, insn, loc + 4);
873
874 #if ! LONG_BRANCH_PIC_IN_SHLIB
875 if (info->shared)
876 {
877 /* Output a dynamic relocation for this stub. We only
878 output one PCREL21L reloc per stub, trusting that the
879 dynamic linker will also fix the implied PCREL17R for the
880 second instruction. PCREL21L dynamic relocs had better
881 never be emitted for some other purpose... */
882 asection *srel;
883 Elf_Internal_Rela outrel;
884
885 if (stub_entry->h == NULL)
886 {
887 (*_bfd_error_handler)
888 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
889 bfd_get_filename (stub_entry->target_section->owner),
890 stub_sec->name,
891 (long) stub_entry->stub_offset,
892 stub_entry->root.string);
893 bfd_set_error (bfd_error_bad_value);
894 return false;
895 }
896
897 srel = stub_entry->reloc_sec;
898 if (srel == NULL)
899 {
900 (*_bfd_error_handler)
901 (_("Could not find relocation section for %s"),
902 stub_sec->name);
903 bfd_set_error (bfd_error_bad_value);
904 return false;
905 }
906
907 outrel.r_offset = (stub_entry->stub_offset
908 + stub_sec->output_offset
909 + stub_sec->output_section->vma);
910 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
911 outrel.r_addend = sym_value;
912 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
913 &outrel,
914 ((Elf32_External_Rela *)
915 srel->contents + srel->reloc_count));
916 ++srel->reloc_count;
917 }
918 #endif
919 size = 8;
920 break;
921
922 case hppa_stub_long_branch_shared:
923 /* Branches are relative. This is where we are going to. */
924 sym_value = (stub_entry->target_value
925 + stub_entry->target_section->output_offset
926 + stub_entry->target_section->output_section->vma);
927
928 /* And this is where we are coming from, more or less. */
929 sym_value -= (stub_entry->stub_offset
930 + stub_sec->output_offset
931 + stub_sec->output_section->vma);
932
933 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
934 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
935 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
936 bfd_put_32 (stub_bfd, insn, loc + 4);
937
938 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
939 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
940 bfd_put_32 (stub_bfd, insn, loc + 8);
941 size = 12;
942 break;
943
944 case hppa_stub_import:
945 case hppa_stub_import_shared:
946 off = stub_entry->h->elf.plt.offset;
947 if (off >= (bfd_vma) -2)
948 abort ();
949
950 off &= ~ (bfd_vma) 1;
951 sym_value = (off
952 + hplink->splt->output_offset
953 + hplink->splt->output_section->vma
954 - elf_gp (hplink->splt->output_section->owner));
955
956 insn = ADDIL_DP;
957 #if R19_STUBS
958 if (stub_entry->stub_type == hppa_stub_import_shared)
959 insn = ADDIL_R19;
960 #endif
961 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
962 insn = hppa_rebuild_insn ((int) insn, val, 21);
963 bfd_put_32 (stub_bfd, insn, loc);
964
965 /* It is critical to use lrsel/rrsel here because we are using
966 two different offsets (+0 and +4) from sym_value. If we use
967 lsel/rsel then with unfortunate sym_values we will round
968 sym_value+4 up to the next 2k block leading to a mis-match
969 between the lsel and rsel value. */
970 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
971 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
972 bfd_put_32 (stub_bfd, insn, loc + 4);
973
974 if (hplink->multi_subspace)
975 {
976 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
977 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
978 bfd_put_32 (stub_bfd, insn, loc + 8);
979
980 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
981 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
982 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
983 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
984
985 size = 28;
986 }
987 else
988 {
989 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
990 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
991 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
992 bfd_put_32 (stub_bfd, insn, loc + 12);
993
994 size = 16;
995 }
996
997 if (!info->shared
998 && stub_entry->h != NULL
999 && stub_entry->h->pic_call)
1000 {
1001 /* Build the .plt entry needed to call a PIC function from
1002 statically linked code. We don't need any relocs. */
1003 bfd *dynobj;
1004 struct elf32_hppa_link_hash_entry *eh;
1005 bfd_vma value;
1006
1007 dynobj = hplink->root.dynobj;
1008 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
1009
1010 if (eh->elf.root.type != bfd_link_hash_defined
1011 && eh->elf.root.type != bfd_link_hash_defweak)
1012 abort ();
1013
1014 value = (eh->elf.root.u.def.value
1015 + eh->elf.root.u.def.section->output_offset
1016 + eh->elf.root.u.def.section->output_section->vma);
1017
1018 /* Fill in the entry in the procedure linkage table.
1019
1020 The format of a plt entry is
1021 <funcaddr>
1022 <__gp>. */
1023
1024 bfd_put_32 (hplink->splt->owner, value,
1025 hplink->splt->contents + off);
1026 value = elf_gp (hplink->splt->output_section->owner);
1027 bfd_put_32 (hplink->splt->owner, value,
1028 hplink->splt->contents + off + 4);
1029 }
1030 break;
1031
1032 case hppa_stub_export:
1033 /* Branches are relative. This is where we are going to. */
1034 sym_value = (stub_entry->target_value
1035 + stub_entry->target_section->output_offset
1036 + stub_entry->target_section->output_section->vma);
1037
1038 /* And this is where we are coming from. */
1039 sym_value -= (stub_entry->stub_offset
1040 + stub_sec->output_offset
1041 + stub_sec->output_section->vma);
1042
1043 if (sym_value - 8 + 0x40000 >= 0x80000)
1044 {
1045 (*_bfd_error_handler)
1046 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1047 bfd_get_filename (stub_entry->target_section->owner),
1048 stub_sec->name,
1049 (long) stub_entry->stub_offset,
1050 stub_entry->root.string);
1051 bfd_set_error (bfd_error_bad_value);
1052 return false;
1053 }
1054
1055 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1056 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1057 bfd_put_32 (stub_bfd, insn, loc);
1058
1059 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1060 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1061 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1062 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1063 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1064
1065 /* Point the function symbol at the stub. */
1066 stub_entry->h->elf.root.u.def.section = stub_sec;
1067 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1068
1069 size = 24;
1070 break;
1071
1072 default:
1073 BFD_FAIL ();
1074 return false;
1075 }
1076
1077 stub_sec->_raw_size += size;
1078 return true;
1079 }
1080
1081 #undef LDIL_R1
1082 #undef BE_SR4_R1
1083 #undef BL_R1
1084 #undef ADDIL_R1
1085 #undef DEPI_R1
1086 #undef ADDIL_DP
1087 #undef LDW_R1_R21
1088 #undef LDW_R1_DLT
1089 #undef LDW_R1_R19
1090 #undef ADDIL_R19
1091 #undef LDW_R1_DP
1092 #undef LDSID_R21_R1
1093 #undef MTSP_R1
1094 #undef BE_SR0_R21
1095 #undef STW_RP
1096 #undef BV_R0_R21
1097 #undef BL_RP
1098 #undef NOP
1099 #undef LDW_RP
1100 #undef LDSID_RP_R1
1101 #undef BE_SR0_RP
1102
1103 /* As above, but don't actually build the stub. Just bump offset so
1104 we know stub section sizes. */
1105
1106 static boolean
1107 hppa_size_one_stub (gen_entry, in_arg)
1108 struct bfd_hash_entry *gen_entry;
1109 PTR in_arg;
1110 {
1111 struct elf32_hppa_stub_hash_entry *stub_entry;
1112 struct elf32_hppa_link_hash_table *hplink;
1113 int size;
1114
1115 /* Massage our args to the form they really have. */
1116 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1117 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1118
1119 if (stub_entry->stub_type == hppa_stub_long_branch)
1120 {
1121 #if ! LONG_BRANCH_PIC_IN_SHLIB
1122 if (stub_entry->reloc_sec != NULL)
1123 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1124 #endif
1125 size = 8;
1126 }
1127 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1128 size = 12;
1129 else if (stub_entry->stub_type == hppa_stub_export)
1130 size = 24;
1131 else /* hppa_stub_import or hppa_stub_import_shared. */
1132 {
1133 if (hplink->multi_subspace)
1134 size = 28;
1135 else
1136 size = 16;
1137 }
1138
1139 stub_entry->stub_sec->_raw_size += size;
1140 return true;
1141 }
1142
1143 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1144 Additionally we set the default architecture and machine. */
1145
1146 static boolean
1147 elf32_hppa_object_p (abfd)
1148 bfd *abfd;
1149 {
1150 Elf_Internal_Ehdr * i_ehdrp;
1151 unsigned int flags;
1152
1153 i_ehdrp = elf_elfheader (abfd);
1154 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1155 {
1156 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1157 return false;
1158 }
1159 else
1160 {
1161 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1162 return false;
1163 }
1164
1165 flags = i_ehdrp->e_flags;
1166 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1167 {
1168 case EFA_PARISC_1_0:
1169 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1170 case EFA_PARISC_1_1:
1171 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1172 case EFA_PARISC_2_0:
1173 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1174 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1175 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1176 }
1177 return true;
1178 }
1179
1180 /* Undo the generic ELF code's subtraction of section->vma from the
1181 value of each external symbol. */
1182
1183 static boolean
1184 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1185 bfd *abfd ATTRIBUTE_UNUSED;
1186 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1187 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1188 const char **namep ATTRIBUTE_UNUSED;
1189 flagword *flagsp ATTRIBUTE_UNUSED;
1190 asection **secp;
1191 bfd_vma *valp;
1192 {
1193 *valp += (*secp)->vma;
1194 return true;
1195 }
1196
1197 /* Create the .plt and .got sections, and set up our hash table
1198 short-cuts to various dynamic sections. */
1199
1200 static boolean
1201 elf32_hppa_create_dynamic_sections (abfd, info)
1202 bfd *abfd;
1203 struct bfd_link_info *info;
1204 {
1205 struct elf32_hppa_link_hash_table *hplink;
1206
1207 /* Don't try to create the .plt and .got twice. */
1208 hplink = hppa_link_hash_table (info);
1209 if (hplink->splt != NULL)
1210 return true;
1211
1212 /* Call the generic code to do most of the work. */
1213 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1214 return false;
1215
1216 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1217 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1218
1219 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1220 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1221 if (hplink->srelgot == NULL
1222 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1223 (SEC_ALLOC
1224 | SEC_LOAD
1225 | SEC_HAS_CONTENTS
1226 | SEC_IN_MEMORY
1227 | SEC_LINKER_CREATED
1228 | SEC_READONLY))
1229 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1230 return false;
1231
1232 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1233 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1234
1235 return true;
1236 }
1237
1238 /* Look through the relocs for a section during the first phase, and
1239 allocate space in the global offset table or procedure linkage
1240 table. At this point we haven't necessarily read all the input
1241 files. */
1242
1243 static boolean
1244 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1245 bfd *abfd;
1246 struct bfd_link_info *info;
1247 asection *sec;
1248 const Elf_Internal_Rela *relocs;
1249 {
1250 bfd *dynobj;
1251 Elf_Internal_Shdr *symtab_hdr;
1252 struct elf_link_hash_entry **sym_hashes;
1253 bfd_signed_vma *local_got_refcounts;
1254 const Elf_Internal_Rela *rel;
1255 const Elf_Internal_Rela *rel_end;
1256 struct elf32_hppa_link_hash_table *hplink;
1257 asection *sreloc;
1258 asection *stubreloc;
1259
1260 if (info->relocateable)
1261 return true;
1262
1263 hplink = hppa_link_hash_table (info);
1264 dynobj = hplink->root.dynobj;
1265 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1266 sym_hashes = elf_sym_hashes (abfd);
1267 local_got_refcounts = elf_local_got_refcounts (abfd);
1268 sreloc = NULL;
1269 stubreloc = NULL;
1270
1271 rel_end = relocs + sec->reloc_count;
1272 for (rel = relocs; rel < rel_end; rel++)
1273 {
1274 enum {
1275 NEED_GOT = 1,
1276 NEED_PLT = 2,
1277 NEED_DYNREL = 4,
1278 #if LONG_BRANCH_PIC_IN_SHLIB
1279 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1280 #else
1281 NEED_STUBREL = 8,
1282 #endif
1283 PLT_PLABEL = 16
1284 };
1285
1286 unsigned int r_symndx, r_type;
1287 struct elf32_hppa_link_hash_entry *h;
1288 int need_entry;
1289
1290 r_symndx = ELF32_R_SYM (rel->r_info);
1291
1292 if (r_symndx < symtab_hdr->sh_info)
1293 h = NULL;
1294 else
1295 h = ((struct elf32_hppa_link_hash_entry *)
1296 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1297
1298 r_type = ELF32_R_TYPE (rel->r_info);
1299
1300 switch (r_type)
1301 {
1302 case R_PARISC_DLTIND14F:
1303 case R_PARISC_DLTIND14R:
1304 case R_PARISC_DLTIND21L:
1305 /* This symbol requires a global offset table entry. */
1306 need_entry = NEED_GOT;
1307
1308 /* Mark this section as containing PIC code. */
1309 sec->flags |= SEC_HAS_GOT_REF;
1310 break;
1311
1312 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1313 case R_PARISC_PLABEL21L:
1314 case R_PARISC_PLABEL32:
1315 /* If the addend is non-zero, we break badly. */
1316 if (rel->r_addend != 0)
1317 abort ();
1318
1319 /* If we are creating a shared library, then we need to
1320 create a PLT entry for all PLABELs, because PLABELs with
1321 local symbols may be passed via a pointer to another
1322 object. Additionally, output a dynamic relocation
1323 pointing to the PLT entry.
1324 For executables, the original 32-bit ABI allowed two
1325 different styles of PLABELs (function pointers): For
1326 global functions, the PLABEL word points into the .plt
1327 two bytes past a (function address, gp) pair, and for
1328 local functions the PLABEL points directly at the
1329 function. The magic +2 for the first type allows us to
1330 differentiate between the two. As you can imagine, this
1331 is a real pain when it comes to generating code to call
1332 functions indirectly or to compare function pointers.
1333 We avoid the mess by always pointing a PLABEL into the
1334 .plt, even for local functions. */
1335 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1336 break;
1337
1338 case R_PARISC_PCREL12F:
1339 hplink->has_12bit_branch = 1;
1340 /* Fall thru. */
1341 case R_PARISC_PCREL17C:
1342 case R_PARISC_PCREL17F:
1343 hplink->has_17bit_branch = 1;
1344 /* Fall thru. */
1345 case R_PARISC_PCREL22F:
1346 /* Function calls might need to go through the .plt, and
1347 might require long branch stubs. */
1348 if (h == NULL)
1349 {
1350 /* We know local syms won't need a .plt entry, and if
1351 they need a long branch stub we can't guarantee that
1352 we can reach the stub. So just flag an error later
1353 if we're doing a shared link and find we need a long
1354 branch stub. */
1355 continue;
1356 }
1357 else
1358 {
1359 /* Global symbols will need a .plt entry if they remain
1360 global, and in most cases won't need a long branch
1361 stub. Unfortunately, we have to cater for the case
1362 where a symbol is forced local by versioning, or due
1363 to symbolic linking, and we lose the .plt entry. */
1364 need_entry = NEED_PLT | NEED_STUBREL;
1365 if (h->elf.type == STT_PARISC_MILLI)
1366 need_entry = NEED_STUBREL;
1367 }
1368 break;
1369
1370 case R_PARISC_SEGBASE: /* Used to set segment base. */
1371 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1372 case R_PARISC_PCREL14F: /* PC relative load/store. */
1373 case R_PARISC_PCREL14R:
1374 case R_PARISC_PCREL17R: /* External branches. */
1375 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1376 /* We don't need to propagate the relocation if linking a
1377 shared object since these are section relative. */
1378 continue;
1379
1380 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1381 case R_PARISC_DPREL14R:
1382 case R_PARISC_DPREL21L:
1383 if (info->shared)
1384 {
1385 (*_bfd_error_handler)
1386 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1387 bfd_get_filename (abfd),
1388 elf_hppa_howto_table[r_type].name);
1389 bfd_set_error (bfd_error_bad_value);
1390 return false;
1391 }
1392 /* Fall through. */
1393
1394 case R_PARISC_DIR17F: /* Used for external branches. */
1395 case R_PARISC_DIR17R:
1396 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1397 case R_PARISC_DIR14R:
1398 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1399 #if 1
1400 /* Help debug shared library creation. Any of the above
1401 relocs can be used in shared libs, but they may cause
1402 pages to become unshared. */
1403 if (info->shared)
1404 {
1405 (*_bfd_error_handler)
1406 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1407 bfd_get_filename (abfd),
1408 elf_hppa_howto_table[r_type].name);
1409 }
1410 /* Fall through. */
1411 #endif
1412
1413 case R_PARISC_DIR32: /* .word relocs. */
1414 /* We may want to output a dynamic relocation later. */
1415 need_entry = NEED_DYNREL;
1416 break;
1417
1418 /* This relocation describes the C++ object vtable hierarchy.
1419 Reconstruct it for later use during GC. */
1420 case R_PARISC_GNU_VTINHERIT:
1421 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1422 &h->elf, rel->r_offset))
1423 return false;
1424 continue;
1425
1426 /* This relocation describes which C++ vtable entries are actually
1427 used. Record for later use during GC. */
1428 case R_PARISC_GNU_VTENTRY:
1429 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1430 &h->elf, rel->r_addend))
1431 return false;
1432 continue;
1433
1434 default:
1435 continue;
1436 }
1437
1438 /* Now carry out our orders. */
1439 if (need_entry & NEED_GOT)
1440 {
1441 /* Allocate space for a GOT entry, as well as a dynamic
1442 relocation for this entry. */
1443 if (dynobj == NULL)
1444 hplink->root.dynobj = dynobj = abfd;
1445
1446 if (hplink->sgot == NULL)
1447 {
1448 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1449 return false;
1450 }
1451
1452 if (h != NULL)
1453 {
1454 if (h->elf.got.refcount == -1)
1455 {
1456 h->elf.got.refcount = 1;
1457
1458 /* Make sure this symbol is output as a dynamic symbol. */
1459 if (h->elf.dynindx == -1)
1460 {
1461 if (! bfd_elf32_link_record_dynamic_symbol (info,
1462 &h->elf))
1463 return false;
1464 }
1465 }
1466 else
1467 h->elf.got.refcount += 1;
1468 }
1469 else
1470 {
1471 /* This is a global offset table entry for a local symbol. */
1472 if (local_got_refcounts == NULL)
1473 {
1474 size_t size;
1475
1476 /* Allocate space for local got offsets and local
1477 plt offsets. Done this way to save polluting
1478 elf_obj_tdata with another target specific
1479 pointer. */
1480 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1481 local_got_refcounts = ((bfd_signed_vma *)
1482 bfd_alloc (abfd, size));
1483 if (local_got_refcounts == NULL)
1484 return false;
1485 elf_local_got_refcounts (abfd) = local_got_refcounts;
1486 memset (local_got_refcounts, -1, size);
1487 }
1488 if (local_got_refcounts[r_symndx] == -1)
1489 local_got_refcounts[r_symndx] = 1;
1490 else
1491 local_got_refcounts[r_symndx] += 1;
1492 }
1493 }
1494
1495 if (need_entry & NEED_PLT)
1496 {
1497 /* If we are creating a shared library, and this is a reloc
1498 against a weak symbol or a global symbol in a dynamic
1499 object, then we will be creating an import stub and a
1500 .plt entry for the symbol. Similarly, on a normal link
1501 to symbols defined in a dynamic object we'll need the
1502 import stub and a .plt entry. We don't know yet whether
1503 the symbol is defined or not, so make an entry anyway and
1504 clean up later in adjust_dynamic_symbol. */
1505 if ((sec->flags & SEC_ALLOC) != 0)
1506 {
1507 if (h != NULL)
1508 {
1509 if (h->elf.plt.refcount == -1)
1510 {
1511 h->elf.plt.refcount = 1;
1512 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1513 }
1514 else
1515 h->elf.plt.refcount += 1;
1516
1517 /* If this .plt entry is for a plabel, mark it so
1518 that adjust_dynamic_symbol will keep the entry
1519 even if it appears to be local. */
1520 if (need_entry & PLT_PLABEL)
1521 h->plabel = 1;
1522 }
1523 else if (need_entry & PLT_PLABEL)
1524 {
1525 bfd_signed_vma *local_plt_refcounts;
1526
1527 if (local_got_refcounts == NULL)
1528 {
1529 size_t size;
1530
1531 /* Allocate space for local got offsets and local
1532 plt offsets. */
1533 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1534 local_got_refcounts = ((bfd_signed_vma *)
1535 bfd_alloc (abfd, size));
1536 if (local_got_refcounts == NULL)
1537 return false;
1538 elf_local_got_refcounts (abfd) = local_got_refcounts;
1539 memset (local_got_refcounts, -1, size);
1540 }
1541 local_plt_refcounts = (local_got_refcounts
1542 + symtab_hdr->sh_info);
1543 if (local_plt_refcounts[r_symndx] == -1)
1544 local_plt_refcounts[r_symndx] = 1;
1545 else
1546 local_plt_refcounts[r_symndx] += 1;
1547 }
1548 }
1549 }
1550
1551 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1552 {
1553 /* Flag this symbol as having a non-got, non-plt reference
1554 so that we generate copy relocs if it turns out to be
1555 dynamic. */
1556 if (h != NULL)
1557 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1558
1559 /* If we are creating a shared library then we need to copy
1560 the reloc into the shared library. However, if we are
1561 linking with -Bsymbolic, we need only copy absolute
1562 relocs or relocs against symbols that are not defined in
1563 an object we are including in the link. PC- or DP- or
1564 DLT-relative relocs against any local sym or global sym
1565 with DEF_REGULAR set, can be discarded. At this point we
1566 have not seen all the input files, so it is possible that
1567 DEF_REGULAR is not set now but will be set later (it is
1568 never cleared). We account for that possibility below by
1569 storing information in the reloc_entries field of the
1570 hash table entry.
1571
1572 A similar situation to the -Bsymbolic case occurs when
1573 creating shared libraries and symbol visibility changes
1574 render the symbol local.
1575
1576 As it turns out, all the relocs we will be creating here
1577 are absolute, so we cannot remove them on -Bsymbolic
1578 links or visibility changes anyway. A STUB_REL reloc
1579 is absolute too, as in that case it is the reloc in the
1580 stub we will be creating, rather than copying the PCREL
1581 reloc in the branch. */
1582 if ((sec->flags & SEC_ALLOC) != 0
1583 && info->shared
1584 #if RELATIVE_DYNAMIC_RELOCS
1585 && (!info->symbolic
1586 || is_absolute_reloc (r_type)
1587 || (h != NULL
1588 && ((h->elf.elf_link_hash_flags
1589 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1590 #endif
1591 )
1592 {
1593 boolean doit;
1594 asection *srel;
1595
1596 srel = sreloc;
1597 if ((need_entry & NEED_STUBREL))
1598 srel = stubreloc;
1599
1600 /* Create a reloc section in dynobj and make room for
1601 this reloc. */
1602 if (srel == NULL)
1603 {
1604 char *name;
1605
1606 if (dynobj == NULL)
1607 hplink->root.dynobj = dynobj = abfd;
1608
1609 name = bfd_elf_string_from_elf_section
1610 (abfd,
1611 elf_elfheader (abfd)->e_shstrndx,
1612 elf_section_data (sec)->rel_hdr.sh_name);
1613 if (name == NULL)
1614 {
1615 (*_bfd_error_handler)
1616 (_("Could not find relocation section for %s"),
1617 sec->name);
1618 bfd_set_error (bfd_error_bad_value);
1619 return false;
1620 }
1621
1622 if ((need_entry & NEED_STUBREL))
1623 {
1624 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1625 char *newname = bfd_malloc (len);
1626
1627 if (newname == NULL)
1628 return false;
1629 strcpy (newname, name);
1630 strcpy (newname + len - sizeof (STUB_SUFFIX),
1631 STUB_SUFFIX);
1632 name = newname;
1633 }
1634
1635 srel = bfd_get_section_by_name (dynobj, name);
1636 if (srel == NULL)
1637 {
1638 flagword flags;
1639
1640 srel = bfd_make_section (dynobj, name);
1641 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1642 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1643 if ((sec->flags & SEC_ALLOC) != 0)
1644 flags |= SEC_ALLOC | SEC_LOAD;
1645 if (srel == NULL
1646 || !bfd_set_section_flags (dynobj, srel, flags)
1647 || !bfd_set_section_alignment (dynobj, srel, 2))
1648 return false;
1649 }
1650 else if ((need_entry & NEED_STUBREL))
1651 free (name);
1652
1653 if ((need_entry & NEED_STUBREL))
1654 stubreloc = srel;
1655 else
1656 sreloc = srel;
1657 }
1658
1659 #if ! LONG_BRANCH_PIC_IN_SHLIB
1660 /* If this is a function call, we only need one dynamic
1661 reloc for the stub as all calls to a particular
1662 function will go through the same stub. Actually, a
1663 long branch stub needs two relocations, but we count
1664 on some intelligence on the part of the dynamic
1665 linker. */
1666 if ((need_entry & NEED_STUBREL))
1667 {
1668 doit = h->stub_reloc_sec != stubreloc;
1669 h->stub_reloc_sec = stubreloc;
1670 }
1671 else
1672 #endif
1673 doit = 1;
1674
1675 if (doit)
1676 {
1677 srel->_raw_size += sizeof (Elf32_External_Rela);
1678
1679 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1680 /* Keep track of relocations we have entered for
1681 this global symbol, so that we can discard them
1682 later if necessary. */
1683 if (h != NULL
1684 && (0
1685 #if RELATIVE_DYNAMIC_RELOCS
1686 || ! is_absolute_reloc (rtype)
1687 #endif
1688 || (need_entry & NEED_STUBREL)))
1689 {
1690 struct elf32_hppa_dyn_reloc_entry *p;
1691
1692 for (p = h->reloc_entries; p != NULL; p = p->next)
1693 if (p->section == srel)
1694 break;
1695
1696 if (p == NULL)
1697 {
1698 p = ((struct elf32_hppa_dyn_reloc_entry *)
1699 bfd_alloc (dynobj, sizeof *p));
1700 if (p == NULL)
1701 return false;
1702 p->next = h->reloc_entries;
1703 h->reloc_entries = p;
1704 p->section = srel;
1705 p->count = 0;
1706 }
1707
1708 /* NEED_STUBREL and NEED_DYNREL are never both
1709 set. Leave the count at zero for the
1710 NEED_STUBREL case as we only ever have one
1711 stub reloc per section per symbol, and this
1712 simplifies code in hppa_discard_copies. */
1713 if (! (need_entry & NEED_STUBREL))
1714 ++p->count;
1715 }
1716 #endif
1717 }
1718 }
1719 }
1720 }
1721
1722 return true;
1723 }
1724
1725 /* Return the section that should be marked against garbage collection
1726 for a given relocation. */
1727
1728 static asection *
1729 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1730 bfd *abfd;
1731 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1732 Elf_Internal_Rela *rel;
1733 struct elf_link_hash_entry *h;
1734 Elf_Internal_Sym *sym;
1735 {
1736 if (h != NULL)
1737 {
1738 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1739 {
1740 case R_PARISC_GNU_VTINHERIT:
1741 case R_PARISC_GNU_VTENTRY:
1742 break;
1743
1744 default:
1745 switch (h->root.type)
1746 {
1747 case bfd_link_hash_defined:
1748 case bfd_link_hash_defweak:
1749 return h->root.u.def.section;
1750
1751 case bfd_link_hash_common:
1752 return h->root.u.c.p->section;
1753
1754 default:
1755 break;
1756 }
1757 }
1758 }
1759 else
1760 {
1761 if (!(elf_bad_symtab (abfd)
1762 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1763 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1764 && sym->st_shndx != SHN_COMMON))
1765 {
1766 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1767 }
1768 }
1769
1770 return NULL;
1771 }
1772
1773 /* Update the got and plt entry reference counts for the section being
1774 removed. */
1775
1776 static boolean
1777 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1778 bfd *abfd;
1779 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1780 asection *sec;
1781 const Elf_Internal_Rela *relocs;
1782 {
1783 Elf_Internal_Shdr *symtab_hdr;
1784 struct elf_link_hash_entry **sym_hashes;
1785 bfd_signed_vma *local_got_refcounts;
1786 bfd_signed_vma *local_plt_refcounts;
1787 const Elf_Internal_Rela *rel, *relend;
1788 unsigned long r_symndx;
1789 struct elf_link_hash_entry *h;
1790 struct elf32_hppa_link_hash_table *hplink;
1791 bfd *dynobj;
1792
1793 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1794 sym_hashes = elf_sym_hashes (abfd);
1795 local_got_refcounts = elf_local_got_refcounts (abfd);
1796 local_plt_refcounts = local_got_refcounts;
1797 if (local_plt_refcounts != NULL)
1798 local_plt_refcounts += symtab_hdr->sh_info;
1799 hplink = hppa_link_hash_table (info);
1800 dynobj = hplink->root.dynobj;
1801 if (dynobj == NULL)
1802 return true;
1803
1804 relend = relocs + sec->reloc_count;
1805 for (rel = relocs; rel < relend; rel++)
1806 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1807 {
1808 case R_PARISC_DLTIND14F:
1809 case R_PARISC_DLTIND14R:
1810 case R_PARISC_DLTIND21L:
1811 r_symndx = ELF32_R_SYM (rel->r_info);
1812 if (r_symndx >= symtab_hdr->sh_info)
1813 {
1814 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1815 if (h->got.refcount > 0)
1816 h->got.refcount -= 1;
1817 }
1818 else if (local_got_refcounts != NULL)
1819 {
1820 if (local_got_refcounts[r_symndx] > 0)
1821 local_got_refcounts[r_symndx] -= 1;
1822 }
1823 break;
1824
1825 case R_PARISC_PCREL12F:
1826 case R_PARISC_PCREL17C:
1827 case R_PARISC_PCREL17F:
1828 case R_PARISC_PCREL22F:
1829 r_symndx = ELF32_R_SYM (rel->r_info);
1830 if (r_symndx >= symtab_hdr->sh_info)
1831 {
1832 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1833 if (h->plt.refcount > 0)
1834 h->plt.refcount -= 1;
1835 }
1836 break;
1837
1838 case R_PARISC_PLABEL14R:
1839 case R_PARISC_PLABEL21L:
1840 case R_PARISC_PLABEL32:
1841 r_symndx = ELF32_R_SYM (rel->r_info);
1842 if (r_symndx >= symtab_hdr->sh_info)
1843 {
1844 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1845 if (h->plt.refcount > 0)
1846 h->plt.refcount -= 1;
1847 }
1848 else if (local_plt_refcounts != NULL)
1849 {
1850 if (local_plt_refcounts[r_symndx] > 0)
1851 local_plt_refcounts[r_symndx] -= 1;
1852 }
1853 break;
1854
1855 default:
1856 break;
1857 }
1858
1859 return true;
1860 }
1861
1862 /* Our own version of hide_symbol, so that we can keep plt entries for
1863 plabels. */
1864
1865 static void
1866 elf32_hppa_hide_symbol (info, h)
1867 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1868 struct elf_link_hash_entry *h;
1869 {
1870 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1871 h->dynindx = -1;
1872 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1873 {
1874 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1875 h->plt.offset = (bfd_vma) -1;
1876 }
1877 }
1878
1879 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1880 will be called from elflink.h. If elflink.h doesn't call our
1881 finish_dynamic_symbol routine, we'll need to do something about
1882 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1883 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1884 ((DYN) \
1885 && ((INFO)->shared \
1886 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1887 && ((H)->dynindx != -1 \
1888 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1889
1890 /* Adjust a symbol defined by a dynamic object and referenced by a
1891 regular object. The current definition is in some section of the
1892 dynamic object, but we're not including those sections. We have to
1893 change the definition to something the rest of the link can
1894 understand. */
1895
1896 static boolean
1897 elf32_hppa_adjust_dynamic_symbol (info, h)
1898 struct bfd_link_info *info;
1899 struct elf_link_hash_entry *h;
1900 {
1901 bfd *dynobj;
1902 struct elf32_hppa_link_hash_table *hplink;
1903 asection *s;
1904
1905 hplink = hppa_link_hash_table (info);
1906 dynobj = hplink->root.dynobj;
1907
1908 /* If this is a function, put it in the procedure linkage table. We
1909 will fill in the contents of the procedure linkage table later,
1910 when we know the address of the .got section. */
1911 if (h->type == STT_FUNC
1912 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1913 {
1914 if (!info->shared
1915 && h->plt.refcount > 0
1916 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1917 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1918 {
1919 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1920 }
1921
1922 if (h->plt.refcount <= 0
1923 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1924 && h->root.type != bfd_link_hash_defweak
1925 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1926 && (!info->shared || info->symbolic)))
1927 {
1928 /* The .plt entry is not needed when:
1929 a) Garbage collection has removed all references to the
1930 symbol, or
1931 b) We know for certain the symbol is defined in this
1932 object, and it's not a weak definition, nor is the symbol
1933 used by a plabel relocation. Either this object is the
1934 application or we are doing a shared symbolic link. */
1935
1936 /* As a special sop to the hppa ABI, we keep a .plt entry
1937 for functions in sections containing PIC code. */
1938 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1939 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1940 else
1941 {
1942 h->plt.offset = (bfd_vma) -1;
1943 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1944 return true;
1945 }
1946 }
1947
1948 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1949 {
1950 /* Make sure this symbol is output as a dynamic symbol. */
1951 if (h->dynindx == -1
1952 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1953 {
1954 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1955 return false;
1956 }
1957 }
1958
1959 return true;
1960 }
1961
1962 /* If this is a weak symbol, and there is a real definition, the
1963 processor independent code will have arranged for us to see the
1964 real definition first, and we can just use the same value. */
1965 if (h->weakdef != NULL)
1966 {
1967 if (h->weakdef->root.type != bfd_link_hash_defined
1968 && h->weakdef->root.type != bfd_link_hash_defweak)
1969 abort ();
1970 h->root.u.def.section = h->weakdef->root.u.def.section;
1971 h->root.u.def.value = h->weakdef->root.u.def.value;
1972 return true;
1973 }
1974
1975 /* This is a reference to a symbol defined by a dynamic object which
1976 is not a function. */
1977
1978 /* If we are creating a shared library, we must presume that the
1979 only references to the symbol are via the global offset table.
1980 For such cases we need not do anything here; the relocations will
1981 be handled correctly by relocate_section. */
1982 if (info->shared)
1983 return true;
1984
1985 /* If there are no references to this symbol that do not use the
1986 GOT, we don't need to generate a copy reloc. */
1987 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1988 return true;
1989
1990 /* We must allocate the symbol in our .dynbss section, which will
1991 become part of the .bss section of the executable. There will be
1992 an entry for this symbol in the .dynsym section. The dynamic
1993 object will contain position independent code, so all references
1994 from the dynamic object to this symbol will go through the global
1995 offset table. The dynamic linker will use the .dynsym entry to
1996 determine the address it must put in the global offset table, so
1997 both the dynamic object and the regular object will refer to the
1998 same memory location for the variable. */
1999
2000 s = hplink->sdynbss;
2001
2002 /* We must generate a COPY reloc to tell the dynamic linker to
2003 copy the initial value out of the dynamic object and into the
2004 runtime process image. We need to remember the offset into the
2005 .rela.bss section we are going to use. */
2006 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2007 {
2008 asection *srel;
2009
2010 srel = hplink->srelbss;
2011 srel->_raw_size += sizeof (Elf32_External_Rela);
2012 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2013 }
2014
2015 {
2016 /* We need to figure out the alignment required for this symbol. I
2017 have no idea how other ELF linkers handle this. */
2018 unsigned int power_of_two;
2019
2020 power_of_two = bfd_log2 (h->size);
2021 if (power_of_two > 3)
2022 power_of_two = 3;
2023
2024 /* Apply the required alignment. */
2025 s->_raw_size = BFD_ALIGN (s->_raw_size,
2026 (bfd_size_type) (1 << power_of_two));
2027 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2028 {
2029 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2030 return false;
2031 }
2032 }
2033 /* Define the symbol as being at this point in the section. */
2034 h->root.u.def.section = s;
2035 h->root.u.def.value = s->_raw_size;
2036
2037 /* Increment the section size to make room for the symbol. */
2038 s->_raw_size += h->size;
2039
2040 return true;
2041 }
2042
2043 /* Called via elf_link_hash_traverse to create .plt entries for an
2044 application that uses statically linked PIC functions. Similar to
2045 the first part of elf32_hppa_adjust_dynamic_symbol. */
2046
2047 static boolean
2048 hppa_handle_PIC_calls (h, inf)
2049 struct elf_link_hash_entry *h;
2050 PTR inf ATTRIBUTE_UNUSED;
2051 {
2052 if (! (h->plt.refcount > 0
2053 && (h->root.type == bfd_link_hash_defined
2054 || h->root.type == bfd_link_hash_defweak)
2055 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2056 {
2057 h->plt.offset = (bfd_vma) -1;
2058 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2059 return true;
2060 }
2061
2062 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2063 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2064 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2065
2066 return true;
2067 }
2068
2069 /* Allocate space in .plt, .got and associated reloc sections for
2070 global syms. */
2071
2072 static boolean
2073 allocate_plt_and_got (h, inf)
2074 struct elf_link_hash_entry *h;
2075 PTR inf;
2076 {
2077 struct bfd_link_info *info;
2078 struct elf32_hppa_link_hash_table *hplink;
2079 asection *s;
2080
2081 if (h->root.type == bfd_link_hash_indirect
2082 || h->root.type == bfd_link_hash_warning)
2083 return true;
2084
2085 info = (struct bfd_link_info *) inf;
2086 hplink = hppa_link_hash_table (info);
2087 if ((hplink->root.dynamic_sections_created
2088 && h->plt.refcount > 0)
2089 || ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2090 {
2091 /* Make an entry in the .plt section. */
2092 s = hplink->splt;
2093 h->plt.offset = s->_raw_size;
2094 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
2095 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
2096 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2097 {
2098 /* Add some extra space for the dynamic linker to use. */
2099 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
2100 }
2101 else
2102 s->_raw_size += PLT_ENTRY_SIZE;
2103
2104 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call
2105 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2106 {
2107 /* We also need to make an entry in the .rela.plt section. */
2108 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2109 hplink->need_plt_stub = 1;
2110 }
2111 }
2112 else
2113 {
2114 h->plt.offset = (bfd_vma) -1;
2115 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2116 }
2117
2118 if (h->got.refcount > 0)
2119 {
2120 boolean dyn;
2121
2122 s = hplink->sgot;
2123 h->got.offset = s->_raw_size;
2124 s->_raw_size += GOT_ENTRY_SIZE;
2125 dyn = hplink->root.dynamic_sections_created;
2126 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
2127 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2128 }
2129 else
2130 h->got.offset = (bfd_vma) -1;
2131
2132 return true;
2133 }
2134
2135 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2136 || RELATIVE_DYNAMIC_RELOCS)
2137 /* This function is called via elf_link_hash_traverse to discard space
2138 we allocated for relocs that it turned out we didn't need. */
2139
2140 static boolean
2141 hppa_discard_copies (h, inf)
2142 struct elf_link_hash_entry *h;
2143 PTR inf;
2144 {
2145 struct elf32_hppa_dyn_reloc_entry *s;
2146 struct elf32_hppa_link_hash_entry *eh;
2147 struct bfd_link_info *info;
2148
2149 eh = (struct elf32_hppa_link_hash_entry *) h;
2150 info = (struct bfd_link_info *) inf;
2151
2152 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2153 /* Handle the stub reloc case. If we have a plt entry for the
2154 function, we won't be needing long branch stubs. s->count will
2155 only be zero for stub relocs, which provides a handy way of
2156 flagging these relocs, and means we need do nothing special for
2157 the forced local and symbolic link case. */
2158 if (eh->stub_reloc_sec != NULL
2159 && eh->elf.plt.offset != (bfd_vma) -1)
2160 {
2161 for (s = eh->reloc_entries; s != NULL; s = s->next)
2162 if (s->count == 0)
2163 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2164 }
2165 #endif
2166
2167 #if RELATIVE_DYNAMIC_RELOCS
2168 /* If a symbol has been forced local or we have found a regular
2169 definition for the symbolic link case, then we won't be needing
2170 any relocs. */
2171 if (eh->elf.dynindx == -1
2172 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2173 && !is_absolute_reloc (r_type)
2174 && info->symbolic))
2175 {
2176 for (s = eh->reloc_entries; s != NULL; s = s->next)
2177 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2178 }
2179 #endif
2180
2181 return true;
2182 }
2183 #endif
2184
2185 /* This function is called via elf_link_hash_traverse to force
2186 millicode symbols local so they do not end up as globals in the
2187 dynamic symbol table. We ought to be able to do this in
2188 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2189 for all dynamic symbols. Arguably, this is a bug in
2190 elf_adjust_dynamic_symbol. */
2191
2192 static boolean
2193 clobber_millicode_symbols (h, info)
2194 struct elf_link_hash_entry *h;
2195 struct bfd_link_info *info;
2196 {
2197 /* We only want to remove these from the dynamic symbol table.
2198 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2199 if (h->type == STT_PARISC_MILLI)
2200 {
2201 unsigned short oldflags = h->elf_link_hash_flags;
2202 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2203 elf32_hppa_hide_symbol (info, h);
2204 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2205 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2206 }
2207 return true;
2208 }
2209
2210 /* Set the sizes of the dynamic sections. */
2211
2212 static boolean
2213 elf32_hppa_size_dynamic_sections (output_bfd, info)
2214 bfd *output_bfd;
2215 struct bfd_link_info *info;
2216 {
2217 struct elf32_hppa_link_hash_table *hplink;
2218 bfd *dynobj;
2219 bfd *i;
2220 asection *s;
2221 boolean relocs;
2222 boolean reltext;
2223
2224 hplink = hppa_link_hash_table (info);
2225 dynobj = hplink->root.dynobj;
2226 if (dynobj == NULL)
2227 abort ();
2228
2229 if (hplink->root.dynamic_sections_created)
2230 {
2231
2232 /* Set the contents of the .interp section to the interpreter. */
2233 if (! info->shared)
2234 {
2235 s = bfd_get_section_by_name (dynobj, ".interp");
2236 if (s == NULL)
2237 abort ();
2238 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2239 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2240 }
2241
2242 /* Force millicode symbols local. */
2243 elf_link_hash_traverse (&hplink->root,
2244 clobber_millicode_symbols,
2245 info);
2246 }
2247 else
2248 {
2249 /* Run through the function symbols, looking for any that are
2250 PIC, and allocate space for the necessary .plt entries so
2251 that %r19 will be set up. */
2252 if (! info->shared)
2253 elf_link_hash_traverse (&hplink->root,
2254 hppa_handle_PIC_calls,
2255 info);
2256 }
2257
2258 /* Set up .got and .plt offsets for local syms. */
2259 for (i = info->input_bfds; i; i = i->link_next)
2260 {
2261 bfd_signed_vma *local_got;
2262 bfd_signed_vma *end_local_got;
2263 bfd_signed_vma *local_plt;
2264 bfd_signed_vma *end_local_plt;
2265 bfd_size_type locsymcount;
2266 Elf_Internal_Shdr *symtab_hdr;
2267 asection *srel;
2268
2269 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
2270 continue;
2271
2272 local_got = elf_local_got_refcounts (i);
2273 if (!local_got)
2274 continue;
2275
2276 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2277 locsymcount = symtab_hdr->sh_info;
2278 end_local_got = local_got + locsymcount;
2279 s = hplink->sgot;
2280 srel = hplink->srelgot;
2281 for (; local_got < end_local_got; ++local_got)
2282 {
2283 if (*local_got > 0)
2284 {
2285 *local_got = s->_raw_size;
2286 s->_raw_size += GOT_ENTRY_SIZE;
2287 if (info->shared)
2288 srel->_raw_size += sizeof (Elf32_External_Rela);
2289 }
2290 else
2291 *local_got = (bfd_vma) -1;
2292 }
2293
2294 local_plt = end_local_got;
2295 end_local_plt = local_plt + locsymcount;
2296 if (! hplink->root.dynamic_sections_created)
2297 {
2298 /* Won't be used, but be safe. */
2299 for (; local_plt < end_local_plt; ++local_plt)
2300 *local_plt = (bfd_vma) -1;
2301 }
2302 else
2303 {
2304 s = hplink->splt;
2305 srel = hplink->srelplt;
2306 for (; local_plt < end_local_plt; ++local_plt)
2307 {
2308 if (*local_plt > 0)
2309 {
2310 *local_plt = s->_raw_size;
2311 s->_raw_size += PLT_ENTRY_SIZE;
2312 if (info->shared)
2313 srel->_raw_size += sizeof (Elf32_External_Rela);
2314 }
2315 else
2316 *local_plt = (bfd_vma) -1;
2317 }
2318 }
2319 }
2320
2321 /* Allocate global sym .plt and .got entries. */
2322 elf_link_hash_traverse (&hplink->root,
2323 allocate_plt_and_got,
2324 info);
2325
2326 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2327 || RELATIVE_DYNAMIC_RELOCS)
2328 /* If this is a -Bsymbolic shared link, then we need to discard all
2329 relocs against symbols defined in a regular object. We also need
2330 to lose relocs we've allocated for long branch stubs if we know
2331 we won't be generating a stub. */
2332 if (info->shared)
2333 elf_link_hash_traverse (&hplink->root,
2334 hppa_discard_copies,
2335 info);
2336 #endif
2337
2338 /* The check_relocs and adjust_dynamic_symbol entry points have
2339 determined the sizes of the various dynamic sections. Allocate
2340 memory for them. */
2341 relocs = false;
2342 reltext = false;
2343 for (s = dynobj->sections; s != NULL; s = s->next)
2344 {
2345 if ((s->flags & SEC_LINKER_CREATED) == 0)
2346 continue;
2347
2348 if (s == hplink->splt)
2349 {
2350 if (hplink->need_plt_stub)
2351 {
2352 /* Make space for the plt stub at the end of the .plt
2353 section. We want this stub right at the end, up
2354 against the .got section. */
2355 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2356 int pltalign = bfd_section_alignment (dynobj, s);
2357 bfd_size_type mask;
2358
2359 if (gotalign > pltalign)
2360 bfd_set_section_alignment (dynobj, s, gotalign);
2361 mask = ((bfd_size_type) 1 << gotalign) - 1;
2362 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2363 }
2364 }
2365 else if (s == hplink->sgot)
2366 ;
2367 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2368 {
2369 if (s->_raw_size != 0)
2370 {
2371 asection *target;
2372 const char *outname;
2373
2374 /* Remember whether there are any reloc sections other
2375 than .rela.plt. */
2376 if (s != hplink->srelplt)
2377 relocs = true;
2378
2379 /* If this relocation section applies to a read only
2380 section, then we probably need a DT_TEXTREL entry. */
2381 outname = bfd_get_section_name (output_bfd,
2382 s->output_section);
2383 target = bfd_get_section_by_name (output_bfd, outname + 5);
2384 if (target != NULL
2385 && (target->flags & SEC_READONLY) != 0
2386 && (target->flags & SEC_ALLOC) != 0)
2387 reltext = true;
2388
2389 /* We use the reloc_count field as a counter if we need
2390 to copy relocs into the output file. */
2391 s->reloc_count = 0;
2392 }
2393 }
2394 else
2395 {
2396 /* It's not one of our sections, so don't allocate space. */
2397 continue;
2398 }
2399
2400 if (s->_raw_size == 0)
2401 {
2402 /* If we don't need this section, strip it from the
2403 output file. This is mostly to handle .rela.bss and
2404 .rela.plt. We must create both sections in
2405 create_dynamic_sections, because they must be created
2406 before the linker maps input sections to output
2407 sections. The linker does that before
2408 adjust_dynamic_symbol is called, and it is that
2409 function which decides whether anything needs to go
2410 into these sections. */
2411 _bfd_strip_section_from_output (info, s);
2412 continue;
2413 }
2414
2415 /* Allocate memory for the section contents. Zero it, because
2416 we may not fill in all the reloc sections. */
2417 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2418 if (s->contents == NULL && s->_raw_size != 0)
2419 return false;
2420 }
2421
2422 if (hplink->root.dynamic_sections_created)
2423 {
2424 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2425 actually has nothing to do with the PLT, it is how we
2426 communicate the LTP value of a load module to the dynamic
2427 linker. */
2428 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2429 return false;
2430
2431 /* Add some entries to the .dynamic section. We fill in the
2432 values later, in elf32_hppa_finish_dynamic_sections, but we
2433 must add the entries now so that we get the correct size for
2434 the .dynamic section. The DT_DEBUG entry is filled in by the
2435 dynamic linker and used by the debugger. */
2436 if (! info->shared)
2437 {
2438 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2439 return false;
2440 }
2441
2442 if (hplink->srelplt->_raw_size != 0)
2443 {
2444 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2445 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2446 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2447 return false;
2448 }
2449
2450 if (relocs)
2451 {
2452 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2453 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2454 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2455 sizeof (Elf32_External_Rela)))
2456 return false;
2457 }
2458
2459 if (reltext)
2460 {
2461 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2462 return false;
2463 info->flags |= DF_TEXTREL;
2464 }
2465 }
2466
2467 return true;
2468 }
2469
2470 /* External entry points for sizing and building linker stubs. */
2471
2472 /* Determine and set the size of the stub section for a final link.
2473
2474 The basic idea here is to examine all the relocations looking for
2475 PC-relative calls to a target that is unreachable with a "bl"
2476 instruction. */
2477
2478 boolean
2479 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2480 add_stub_section, layout_sections_again)
2481 bfd *output_bfd;
2482 bfd *stub_bfd;
2483 struct bfd_link_info *info;
2484 boolean multi_subspace;
2485 bfd_signed_vma group_size;
2486 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2487 void (*layout_sections_again) PARAMS ((void));
2488 {
2489 bfd *input_bfd;
2490 asection *section;
2491 asection **input_list, **list;
2492 Elf_Internal_Sym *local_syms, **all_local_syms;
2493 unsigned int bfd_indx, bfd_count;
2494 int top_id, top_index;
2495 struct elf32_hppa_link_hash_table *hplink;
2496 bfd_size_type stub_group_size;
2497 boolean stubs_always_before_branch;
2498 boolean stub_changed = 0;
2499 boolean ret = 0;
2500
2501 hplink = hppa_link_hash_table (info);
2502
2503 /* Stash our params away. */
2504 hplink->stub_bfd = stub_bfd;
2505 hplink->multi_subspace = multi_subspace;
2506 hplink->add_stub_section = add_stub_section;
2507 hplink->layout_sections_again = layout_sections_again;
2508 stubs_always_before_branch = group_size < 0;
2509 if (group_size < 0)
2510 stub_group_size = -group_size;
2511 else
2512 stub_group_size = group_size;
2513 if (stub_group_size == 1)
2514 {
2515 /* Default values. */
2516 stub_group_size = 8000000;
2517 if (hplink->has_17bit_branch || hplink->multi_subspace)
2518 stub_group_size = 250000;
2519 if (hplink->has_12bit_branch)
2520 stub_group_size = 7812;
2521 }
2522
2523 /* Count the number of input BFDs and find the top input section id. */
2524 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2525 input_bfd != NULL;
2526 input_bfd = input_bfd->link_next)
2527 {
2528 bfd_count += 1;
2529 for (section = input_bfd->sections;
2530 section != NULL;
2531 section = section->next)
2532 {
2533 if (top_id < section->id)
2534 top_id = section->id;
2535 }
2536 }
2537
2538 hplink->stub_group
2539 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2540 if (hplink->stub_group == NULL)
2541 return false;
2542
2543 /* Make a list of input sections for each output section included in
2544 the link.
2545
2546 We can't use output_bfd->section_count here to find the top output
2547 section index as some sections may have been removed, and
2548 _bfd_strip_section_from_output doesn't renumber the indices. */
2549 for (section = output_bfd->sections, top_index = 0;
2550 section != NULL;
2551 section = section->next)
2552 {
2553 if (top_index < section->index)
2554 top_index = section->index;
2555 }
2556
2557 input_list
2558 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2559 if (input_list == NULL)
2560 return false;
2561
2562 /* For sections we aren't interested in, mark their entries with a
2563 value we can check later. */
2564 list = input_list + top_index;
2565 do
2566 *list = bfd_abs_section_ptr;
2567 while (list-- != input_list);
2568
2569 for (section = output_bfd->sections;
2570 section != NULL;
2571 section = section->next)
2572 {
2573 if ((section->flags & SEC_CODE) != 0)
2574 input_list[section->index] = NULL;
2575 }
2576
2577 /* Now actually build the lists. */
2578 for (input_bfd = info->input_bfds;
2579 input_bfd != NULL;
2580 input_bfd = input_bfd->link_next)
2581 {
2582 for (section = input_bfd->sections;
2583 section != NULL;
2584 section = section->next)
2585 {
2586 if (section->output_section != NULL
2587 && section->output_section->owner == output_bfd
2588 && section->output_section->index <= top_index)
2589 {
2590 list = input_list + section->output_section->index;
2591 if (*list != bfd_abs_section_ptr)
2592 {
2593 /* Steal the link_sec pointer for our list. */
2594 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2595 /* This happens to make the list in reverse order,
2596 which is what we want. */
2597 PREV_SEC (section) = *list;
2598 *list = section;
2599 }
2600 }
2601 }
2602 }
2603
2604 /* See whether we can group stub sections together. Grouping stub
2605 sections may result in fewer stubs. More importantly, we need to
2606 put all .init* and .fini* stubs at the beginning of the .init or
2607 .fini output sections respectively, because glibc splits the
2608 _init and _fini functions into multiple parts. Putting a stub in
2609 the middle of a function is not a good idea. */
2610 list = input_list + top_index;
2611 do
2612 {
2613 asection *tail = *list;
2614 if (tail == bfd_abs_section_ptr)
2615 continue;
2616 while (tail != NULL)
2617 {
2618 asection *curr;
2619 asection *prev;
2620 bfd_size_type total;
2621
2622 curr = tail;
2623 if (tail->_cooked_size)
2624 total = tail->_cooked_size;
2625 else
2626 total = tail->_raw_size;
2627 while ((prev = PREV_SEC (curr)) != NULL
2628 && ((total += curr->output_offset - prev->output_offset)
2629 < stub_group_size))
2630 curr = prev;
2631
2632 /* OK, the size from the start of CURR to the end is less
2633 than 250000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 250000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 12144 bytes, or
2640 1518 long branch stubs. It seems unlikely for more than
2641 1518 different functions to be called, especially from
2642 code only 250000 bytes long. */
2643 do
2644 {
2645 prev = PREV_SEC (tail);
2646 /* Set up this stub group. */
2647 hplink->stub_group[tail->id].link_sec = curr;
2648 }
2649 while (tail != curr && (tail = prev) != NULL);
2650
2651 /* But wait, there's more! Input sections up to 250000
2652 bytes before the stub section can be handled by it too. */
2653 if (!stubs_always_before_branch)
2654 {
2655 total = 0;
2656 while (prev != NULL
2657 && ((total += tail->output_offset - prev->output_offset)
2658 < stub_group_size))
2659 {
2660 tail = prev;
2661 prev = PREV_SEC (tail);
2662 hplink->stub_group[tail->id].link_sec = curr;
2663 }
2664 }
2665 tail = prev;
2666 }
2667 }
2668 while (list-- != input_list);
2669 free (input_list);
2670 #undef PREV_SEC
2671
2672 /* We want to read in symbol extension records only once. To do this
2673 we need to read in the local symbols in parallel and save them for
2674 later use; so hold pointers to the local symbols in an array. */
2675 all_local_syms
2676 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2677 * bfd_count);
2678 if (all_local_syms == NULL)
2679 return false;
2680
2681 /* Walk over all the input BFDs, swapping in local symbols.
2682 If we are creating a shared library, create hash entries for the
2683 export stubs. */
2684 for (input_bfd = info->input_bfds, bfd_indx = 0;
2685 input_bfd != NULL;
2686 input_bfd = input_bfd->link_next, bfd_indx++)
2687 {
2688 Elf_Internal_Shdr *symtab_hdr;
2689 Elf_Internal_Sym *isym;
2690 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2691
2692 /* We'll need the symbol table in a second. */
2693 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2694 if (symtab_hdr->sh_info == 0)
2695 continue;
2696
2697 /* We need an array of the local symbols attached to the input bfd.
2698 Unfortunately, we're going to have to read & swap them in. */
2699 local_syms = (Elf_Internal_Sym *)
2700 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2701 if (local_syms == NULL)
2702 {
2703 goto error_ret_free_local;
2704 }
2705 all_local_syms[bfd_indx] = local_syms;
2706 ext_syms = (Elf32_External_Sym *)
2707 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2708 if (ext_syms == NULL)
2709 {
2710 goto error_ret_free_local;
2711 }
2712
2713 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2714 || (bfd_read (ext_syms, 1,
2715 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2716 input_bfd)
2717 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2718 {
2719 free (ext_syms);
2720 goto error_ret_free_local;
2721 }
2722
2723 /* Swap the local symbols in. */
2724 isym = local_syms;
2725 esym = ext_syms;
2726 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2727 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2728
2729 /* Now we can free the external symbols. */
2730 free (ext_syms);
2731
2732 #if ! LONG_BRANCH_PIC_IN_SHLIB
2733 /* If this is a shared link, find all the stub reloc sections. */
2734 if (info->shared)
2735 for (section = input_bfd->sections;
2736 section != NULL;
2737 section = section->next)
2738 {
2739 char *name;
2740 asection *reloc_sec;
2741
2742 name = bfd_malloc (strlen (section->name)
2743 + sizeof STUB_SUFFIX
2744 + 5);
2745 if (name == NULL)
2746 return false;
2747 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2748 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2749 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2750 free (name);
2751 }
2752 #endif
2753
2754 if (info->shared && hplink->multi_subspace)
2755 {
2756 struct elf_link_hash_entry **sym_hashes;
2757 struct elf_link_hash_entry **end_hashes;
2758 unsigned int symcount;
2759
2760 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2761 - symtab_hdr->sh_info);
2762 sym_hashes = elf_sym_hashes (input_bfd);
2763 end_hashes = sym_hashes + symcount;
2764
2765 /* Look through the global syms for functions; We need to
2766 build export stubs for all globally visible functions. */
2767 for (; sym_hashes < end_hashes; sym_hashes++)
2768 {
2769 struct elf32_hppa_link_hash_entry *hash;
2770
2771 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2772
2773 while (hash->elf.root.type == bfd_link_hash_indirect
2774 || hash->elf.root.type == bfd_link_hash_warning)
2775 hash = ((struct elf32_hppa_link_hash_entry *)
2776 hash->elf.root.u.i.link);
2777
2778 /* At this point in the link, undefined syms have been
2779 resolved, so we need to check that the symbol was
2780 defined in this BFD. */
2781 if ((hash->elf.root.type == bfd_link_hash_defined
2782 || hash->elf.root.type == bfd_link_hash_defweak)
2783 && hash->elf.type == STT_FUNC
2784 && hash->elf.root.u.def.section->output_section != NULL
2785 && (hash->elf.root.u.def.section->output_section->owner
2786 == output_bfd)
2787 && hash->elf.root.u.def.section->owner == input_bfd
2788 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2789 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2790 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2791 {
2792 asection *sec;
2793 const char *stub_name;
2794 struct elf32_hppa_stub_hash_entry *stub_entry;
2795
2796 sec = hash->elf.root.u.def.section;
2797 stub_name = hash->elf.root.root.string;
2798 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2799 stub_name,
2800 false, false);
2801 if (stub_entry == NULL)
2802 {
2803 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2804 if (!stub_entry)
2805 goto error_ret_free_local;
2806
2807 stub_entry->target_value = hash->elf.root.u.def.value;
2808 stub_entry->target_section = hash->elf.root.u.def.section;
2809 stub_entry->stub_type = hppa_stub_export;
2810 stub_entry->h = hash;
2811 stub_changed = 1;
2812 }
2813 else
2814 {
2815 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2816 bfd_get_filename (input_bfd),
2817 stub_name);
2818 }
2819 }
2820 }
2821 }
2822 }
2823
2824 while (1)
2825 {
2826 asection *stub_sec;
2827
2828 for (input_bfd = info->input_bfds, bfd_indx = 0;
2829 input_bfd != NULL;
2830 input_bfd = input_bfd->link_next, bfd_indx++)
2831 {
2832 Elf_Internal_Shdr *symtab_hdr;
2833
2834 /* We'll need the symbol table in a second. */
2835 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2836 if (symtab_hdr->sh_info == 0)
2837 continue;
2838
2839 local_syms = all_local_syms[bfd_indx];
2840
2841 /* Walk over each section attached to the input bfd. */
2842 for (section = input_bfd->sections;
2843 section != NULL;
2844 section = section->next)
2845 {
2846 Elf_Internal_Shdr *input_rel_hdr;
2847 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2848 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2849
2850 /* If there aren't any relocs, then there's nothing more
2851 to do. */
2852 if ((section->flags & SEC_RELOC) == 0
2853 || section->reloc_count == 0)
2854 continue;
2855
2856 /* If this section is a link-once section that will be
2857 discarded, then don't create any stubs. */
2858 if (section->output_section == NULL
2859 || section->output_section->owner != output_bfd)
2860 continue;
2861
2862 /* Allocate space for the external relocations. */
2863 external_relocs
2864 = ((Elf32_External_Rela *)
2865 bfd_malloc (section->reloc_count
2866 * sizeof (Elf32_External_Rela)));
2867 if (external_relocs == NULL)
2868 {
2869 goto error_ret_free_local;
2870 }
2871
2872 /* Likewise for the internal relocations. */
2873 internal_relocs = ((Elf_Internal_Rela *)
2874 bfd_malloc (section->reloc_count
2875 * sizeof (Elf_Internal_Rela)));
2876 if (internal_relocs == NULL)
2877 {
2878 free (external_relocs);
2879 goto error_ret_free_local;
2880 }
2881
2882 /* Read in the external relocs. */
2883 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2884 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2885 || bfd_read (external_relocs, 1,
2886 input_rel_hdr->sh_size,
2887 input_bfd) != input_rel_hdr->sh_size)
2888 {
2889 free (external_relocs);
2890 error_ret_free_internal:
2891 free (internal_relocs);
2892 goto error_ret_free_local;
2893 }
2894
2895 /* Swap in the relocs. */
2896 erela = external_relocs;
2897 erelaend = erela + section->reloc_count;
2898 irela = internal_relocs;
2899 for (; erela < erelaend; erela++, irela++)
2900 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2901
2902 /* We're done with the external relocs, free them. */
2903 free (external_relocs);
2904
2905 /* Now examine each relocation. */
2906 irela = internal_relocs;
2907 irelaend = irela + section->reloc_count;
2908 for (; irela < irelaend; irela++)
2909 {
2910 unsigned int r_type, r_indx;
2911 enum elf32_hppa_stub_type stub_type;
2912 struct elf32_hppa_stub_hash_entry *stub_entry;
2913 asection *sym_sec;
2914 bfd_vma sym_value;
2915 bfd_vma destination;
2916 struct elf32_hppa_link_hash_entry *hash;
2917 char *stub_name;
2918 const asection *id_sec;
2919
2920 r_type = ELF32_R_TYPE (irela->r_info);
2921 r_indx = ELF32_R_SYM (irela->r_info);
2922
2923 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2924 {
2925 bfd_set_error (bfd_error_bad_value);
2926 goto error_ret_free_internal;
2927 }
2928
2929 /* Only look for stubs on call instructions. */
2930 if (r_type != (unsigned int) R_PARISC_PCREL12F
2931 && r_type != (unsigned int) R_PARISC_PCREL17F
2932 && r_type != (unsigned int) R_PARISC_PCREL22F)
2933 continue;
2934
2935 /* Now determine the call target, its name, value,
2936 section. */
2937 sym_sec = NULL;
2938 sym_value = 0;
2939 destination = 0;
2940 hash = NULL;
2941 if (r_indx < symtab_hdr->sh_info)
2942 {
2943 /* It's a local symbol. */
2944 Elf_Internal_Sym *sym;
2945 Elf_Internal_Shdr *hdr;
2946
2947 sym = local_syms + r_indx;
2948 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2949 sym_sec = hdr->bfd_section;
2950 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2951 sym_value = sym->st_value;
2952 destination = (sym_value + irela->r_addend
2953 + sym_sec->output_offset
2954 + sym_sec->output_section->vma);
2955 }
2956 else
2957 {
2958 /* It's an external symbol. */
2959 int e_indx;
2960
2961 e_indx = r_indx - symtab_hdr->sh_info;
2962 hash = ((struct elf32_hppa_link_hash_entry *)
2963 elf_sym_hashes (input_bfd)[e_indx]);
2964
2965 while (hash->elf.root.type == bfd_link_hash_indirect
2966 || hash->elf.root.type == bfd_link_hash_warning)
2967 hash = ((struct elf32_hppa_link_hash_entry *)
2968 hash->elf.root.u.i.link);
2969
2970 if (hash->elf.root.type == bfd_link_hash_defined
2971 || hash->elf.root.type == bfd_link_hash_defweak)
2972 {
2973 sym_sec = hash->elf.root.u.def.section;
2974 sym_value = hash->elf.root.u.def.value;
2975 if (sym_sec->output_section != NULL)
2976 destination = (sym_value + irela->r_addend
2977 + sym_sec->output_offset
2978 + sym_sec->output_section->vma);
2979 }
2980 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2981 {
2982 if (! info->shared)
2983 continue;
2984 }
2985 else if (hash->elf.root.type == bfd_link_hash_undefined)
2986 {
2987 if (! (info->shared
2988 && !info->no_undefined
2989 && (ELF_ST_VISIBILITY (hash->elf.other)
2990 == STV_DEFAULT)))
2991 continue;
2992 }
2993 else
2994 {
2995 bfd_set_error (bfd_error_bad_value);
2996 goto error_ret_free_internal;
2997 }
2998 }
2999
3000 /* Determine what (if any) linker stub is needed. */
3001 stub_type = hppa_type_of_stub (section, irela, hash,
3002 destination);
3003 if (stub_type == hppa_stub_none)
3004 continue;
3005
3006 /* Support for grouping stub sections. */
3007 id_sec = hplink->stub_group[section->id].link_sec;
3008
3009 /* Get the name of this stub. */
3010 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3011 if (!stub_name)
3012 goto error_ret_free_internal;
3013
3014 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
3015 stub_name,
3016 false, false);
3017 if (stub_entry != NULL)
3018 {
3019 /* The proper stub has already been created. */
3020 free (stub_name);
3021 continue;
3022 }
3023
3024 stub_entry = hppa_add_stub (stub_name, section, hplink);
3025 if (stub_entry == NULL)
3026 {
3027 free (stub_name);
3028 goto error_ret_free_local;
3029 }
3030
3031 stub_entry->target_value = sym_value;
3032 stub_entry->target_section = sym_sec;
3033 stub_entry->stub_type = stub_type;
3034 if (info->shared)
3035 {
3036 if (stub_type == hppa_stub_import)
3037 stub_entry->stub_type = hppa_stub_import_shared;
3038 else if (stub_type == hppa_stub_long_branch
3039 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3040 stub_entry->stub_type = hppa_stub_long_branch_shared;
3041 }
3042 stub_entry->h = hash;
3043 stub_changed = 1;
3044 }
3045
3046 /* We're done with the internal relocs, free them. */
3047 free (internal_relocs);
3048 }
3049 }
3050
3051 if (!stub_changed)
3052 break;
3053
3054 /* OK, we've added some stubs. Find out the new size of the
3055 stub sections. */
3056 for (stub_sec = hplink->stub_bfd->sections;
3057 stub_sec != NULL;
3058 stub_sec = stub_sec->next)
3059 {
3060 stub_sec->_raw_size = 0;
3061 stub_sec->_cooked_size = 0;
3062 }
3063 #if ! LONG_BRANCH_PIC_IN_SHLIB
3064 {
3065 int i;
3066
3067 for (i = top_id; i >= 0; --i)
3068 {
3069 /* This will probably hit the same section many times.. */
3070 stub_sec = hplink->stub_group[i].reloc_sec;
3071 if (stub_sec != NULL)
3072 {
3073 stub_sec->_raw_size = 0;
3074 stub_sec->_cooked_size = 0;
3075 }
3076 }
3077 }
3078 #endif
3079
3080 bfd_hash_traverse (&hplink->stub_hash_table,
3081 hppa_size_one_stub,
3082 hplink);
3083
3084 /* Ask the linker to do its stuff. */
3085 (*hplink->layout_sections_again) ();
3086 stub_changed = 0;
3087 }
3088
3089 ret = 1;
3090
3091 error_ret_free_local:
3092 while (bfd_count-- > 0)
3093 if (all_local_syms[bfd_count])
3094 free (all_local_syms[bfd_count]);
3095 free (all_local_syms);
3096
3097 return ret;
3098 }
3099
3100 /* For a final link, this function is called after we have sized the
3101 stubs to provide a value for __gp. */
3102
3103 boolean
3104 elf32_hppa_set_gp (abfd, info)
3105 bfd *abfd;
3106 struct bfd_link_info *info;
3107 {
3108 struct elf32_hppa_link_hash_table *hplink;
3109 struct elf_link_hash_entry *h;
3110 asection *sec;
3111 bfd_vma gp_val;
3112
3113 hplink = hppa_link_hash_table (info);
3114 h = elf_link_hash_lookup (&hplink->root, "$global$",
3115 false, false, false);
3116
3117 if (h != NULL
3118 && (h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak))
3120 {
3121 gp_val = h->root.u.def.value;
3122 sec = h->root.u.def.section;
3123 }
3124 else
3125 {
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134
3135 sec = hplink->splt;
3136 if (sec != NULL)
3137 {
3138 gp_val = sec->_raw_size;
3139 if (gp_val > 0x2000
3140 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3141 {
3142 gp_val = 0x2000;
3143 }
3144 }
3145 else
3146 {
3147 gp_val = 0;
3148 sec = hplink->sgot;
3149 if (sec != NULL)
3150 {
3151 /* We know we don't have a .plt. If .got is large,
3152 offset our LTP. */
3153 if (sec->_raw_size > 0x2000)
3154 gp_val = 0x2000;
3155 }
3156 else
3157 {
3158 /* No .plt or .got. Who cares what the LTP is? */
3159 sec = bfd_get_section_by_name (abfd, ".data");
3160 }
3161 }
3162
3163 if (h != NULL)
3164 {
3165 h->root.type = bfd_link_hash_defined;
3166 h->root.u.def.value = gp_val;
3167 if (sec != NULL)
3168 h->root.u.def.section = sec;
3169 else
3170 h->root.u.def.section = bfd_abs_section_ptr;
3171 }
3172 }
3173
3174 if (sec != NULL && sec->output_section != NULL)
3175 gp_val += sec->output_section->vma + sec->output_offset;
3176
3177 elf_gp (abfd) = gp_val;
3178 return true;
3179 }
3180
3181 /* Build all the stubs associated with the current output file. The
3182 stubs are kept in a hash table attached to the main linker hash
3183 table. We also set up the .plt entries for statically linked PIC
3184 functions here. This function is called via hppaelf_finish in the
3185 linker. */
3186
3187 boolean
3188 elf32_hppa_build_stubs (info)
3189 struct bfd_link_info *info;
3190 {
3191 asection *stub_sec;
3192 struct bfd_hash_table *table;
3193 struct elf32_hppa_link_hash_table *hplink;
3194
3195 hplink = hppa_link_hash_table (info);
3196
3197 for (stub_sec = hplink->stub_bfd->sections;
3198 stub_sec != NULL;
3199 stub_sec = stub_sec->next)
3200 {
3201 size_t size;
3202
3203 /* Allocate memory to hold the linker stubs. */
3204 size = stub_sec->_raw_size;
3205 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3206 size);
3207 if (stub_sec->contents == NULL && size != 0)
3208 return false;
3209 stub_sec->_raw_size = 0;
3210 }
3211
3212 /* Build the stubs as directed by the stub hash table. */
3213 table = &hplink->stub_hash_table;
3214 bfd_hash_traverse (table, hppa_build_one_stub, info);
3215
3216 return true;
3217 }
3218
3219 /* Perform a final link. */
3220
3221 static boolean
3222 elf32_hppa_final_link (abfd, info)
3223 bfd *abfd;
3224 struct bfd_link_info *info;
3225 {
3226 asection *s;
3227
3228 /* Invoke the regular ELF linker to do all the work. */
3229 if (!bfd_elf32_bfd_final_link (abfd, info))
3230 return false;
3231
3232 /* If we're producing a final executable, sort the contents of the
3233 unwind section. Magic section names, but this is much safer than
3234 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3235 occurred. Consider what happens if someone inept creates a
3236 linker script that puts unwind information in .text. */
3237 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3238 if (s != NULL)
3239 {
3240 bfd_size_type size;
3241 char *contents;
3242
3243 size = s->_raw_size;
3244 contents = bfd_malloc (size);
3245 if (contents == NULL)
3246 return false;
3247
3248 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3249 return false;
3250
3251 qsort (contents, size / 16, 16, hppa_unwind_entry_compare);
3252
3253 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3254 return false;
3255 }
3256 return true;
3257 }
3258
3259 /* Record the lowest address for the data and text segments. */
3260
3261 static void
3262 hppa_record_segment_addr (abfd, section, data)
3263 bfd *abfd ATTRIBUTE_UNUSED;
3264 asection *section;
3265 PTR data;
3266 {
3267 struct elf32_hppa_link_hash_table *hplink;
3268
3269 hplink = (struct elf32_hppa_link_hash_table *) data;
3270
3271 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3272 {
3273 bfd_vma value = section->vma - section->filepos;
3274
3275 if ((section->flags & SEC_READONLY) != 0)
3276 {
3277 if (value < hplink->text_segment_base)
3278 hplink->text_segment_base = value;
3279 }
3280 else
3281 {
3282 if (value < hplink->data_segment_base)
3283 hplink->data_segment_base = value;
3284 }
3285 }
3286 }
3287
3288 /* Perform a relocation as part of a final link. */
3289
3290 static bfd_reloc_status_type
3291 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3292 asection *input_section;
3293 bfd_byte *contents;
3294 const Elf_Internal_Rela *rel;
3295 bfd_vma value;
3296 struct elf32_hppa_link_hash_table *hplink;
3297 asection *sym_sec;
3298 struct elf32_hppa_link_hash_entry *h;
3299 {
3300 int insn;
3301 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3302 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3303 int r_format = howto->bitsize;
3304 enum hppa_reloc_field_selector_type_alt r_field;
3305 bfd *input_bfd = input_section->owner;
3306 bfd_vma offset = rel->r_offset;
3307 bfd_vma max_branch_offset = 0;
3308 bfd_byte *hit_data = contents + offset;
3309 bfd_signed_vma addend = rel->r_addend;
3310 bfd_vma location;
3311 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3312 int val;
3313
3314 if (r_type == R_PARISC_NONE)
3315 return bfd_reloc_ok;
3316
3317 insn = bfd_get_32 (input_bfd, hit_data);
3318
3319 /* Find out where we are and where we're going. */
3320 location = (offset +
3321 input_section->output_offset +
3322 input_section->output_section->vma);
3323
3324 switch (r_type)
3325 {
3326 case R_PARISC_PCREL12F:
3327 case R_PARISC_PCREL17F:
3328 case R_PARISC_PCREL22F:
3329 /* If this is a call to a function defined in another dynamic
3330 library, or if it is a call to a PIC function in the same
3331 object, or if this is a shared link and it is a call to a
3332 weak symbol which may or may not be in the same object, then
3333 find the import stub in the stub hash. */
3334 if (sym_sec == NULL
3335 || sym_sec->output_section == NULL
3336 || (h != NULL
3337 && ((h->maybe_pic_call
3338 && !(input_section->flags & SEC_HAS_GOT_REF))
3339 || (h->elf.root.type == bfd_link_hash_defweak
3340 && h->elf.dynindx != -1
3341 && h->elf.plt.offset != (bfd_vma) -1))))
3342 {
3343 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3344 h, rel, hplink);
3345 if (stub_entry != NULL)
3346 {
3347 value = (stub_entry->stub_offset
3348 + stub_entry->stub_sec->output_offset
3349 + stub_entry->stub_sec->output_section->vma);
3350 addend = 0;
3351 }
3352 else if (sym_sec == NULL && h != NULL
3353 && h->elf.root.type == bfd_link_hash_undefweak)
3354 {
3355 /* It's OK if undefined weak. Calls to undefined weak
3356 symbols behave as if the "called" function
3357 immediately returns. We can thus call to a weak
3358 function without first checking whether the function
3359 is defined. */
3360 value = location;
3361 addend = 8;
3362 }
3363 else
3364 return bfd_reloc_notsupported;
3365 }
3366 /* Fall thru. */
3367
3368 case R_PARISC_PCREL21L:
3369 case R_PARISC_PCREL17C:
3370 case R_PARISC_PCREL17R:
3371 case R_PARISC_PCREL14R:
3372 case R_PARISC_PCREL14F:
3373 /* Make it a pc relative offset. */
3374 value -= location;
3375 addend -= 8;
3376 break;
3377
3378 case R_PARISC_DPREL21L:
3379 case R_PARISC_DPREL14R:
3380 case R_PARISC_DPREL14F:
3381 /* For all the DP relative relocations, we need to examine the symbol's
3382 section. If it's a code section, then "data pointer relative" makes
3383 no sense. In that case we don't adjust the "value", and for 21 bit
3384 addil instructions, we change the source addend register from %dp to
3385 %r0. This situation commonly arises when a variable's "constness"
3386 is declared differently from the way the variable is defined. For
3387 instance: "extern int foo" with foo defined as "const int foo". */
3388 if (sym_sec == NULL)
3389 break;
3390 if ((sym_sec->flags & SEC_CODE) != 0)
3391 {
3392 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3393 == (((int) OP_ADDIL << 26) | (27 << 21)))
3394 {
3395 insn &= ~ (0x1f << 21);
3396 #if 1 /* debug them. */
3397 (*_bfd_error_handler)
3398 (_("%s(%s+0x%lx): fixing %s"),
3399 bfd_get_filename (input_bfd),
3400 input_section->name,
3401 (long) rel->r_offset,
3402 howto->name);
3403 #endif
3404 }
3405 /* Now try to make things easy for the dynamic linker. */
3406
3407 break;
3408 }
3409 /* Fall thru. */
3410
3411 case R_PARISC_DLTIND21L:
3412 case R_PARISC_DLTIND14R:
3413 case R_PARISC_DLTIND14F:
3414 value -= elf_gp (input_section->output_section->owner);
3415 break;
3416
3417 case R_PARISC_SEGREL32:
3418 if ((sym_sec->flags & SEC_CODE) != 0)
3419 value -= hplink->text_segment_base;
3420 else
3421 value -= hplink->data_segment_base;
3422 break;
3423
3424 default:
3425 break;
3426 }
3427
3428 switch (r_type)
3429 {
3430 case R_PARISC_DIR32:
3431 case R_PARISC_DIR14F:
3432 case R_PARISC_DIR17F:
3433 case R_PARISC_PCREL17C:
3434 case R_PARISC_PCREL14F:
3435 case R_PARISC_DPREL14F:
3436 case R_PARISC_PLABEL32:
3437 case R_PARISC_DLTIND14F:
3438 case R_PARISC_SEGBASE:
3439 case R_PARISC_SEGREL32:
3440 r_field = e_fsel;
3441 break;
3442
3443 case R_PARISC_DIR21L:
3444 case R_PARISC_PCREL21L:
3445 case R_PARISC_DPREL21L:
3446 case R_PARISC_PLABEL21L:
3447 case R_PARISC_DLTIND21L:
3448 r_field = e_lrsel;
3449 break;
3450
3451 case R_PARISC_DIR17R:
3452 case R_PARISC_PCREL17R:
3453 case R_PARISC_DIR14R:
3454 case R_PARISC_PCREL14R:
3455 case R_PARISC_DPREL14R:
3456 case R_PARISC_PLABEL14R:
3457 case R_PARISC_DLTIND14R:
3458 r_field = e_rrsel;
3459 break;
3460
3461 case R_PARISC_PCREL12F:
3462 case R_PARISC_PCREL17F:
3463 case R_PARISC_PCREL22F:
3464 r_field = e_fsel;
3465
3466 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3467 {
3468 max_branch_offset = (1 << (17-1)) << 2;
3469 }
3470 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3471 {
3472 max_branch_offset = (1 << (12-1)) << 2;
3473 }
3474 else
3475 {
3476 max_branch_offset = (1 << (22-1)) << 2;
3477 }
3478
3479 /* sym_sec is NULL on undefined weak syms or when shared on
3480 undefined syms. We've already checked for a stub for the
3481 shared undefined case. */
3482 if (sym_sec == NULL)
3483 break;
3484
3485 /* If the branch is out of reach, then redirect the
3486 call to the local stub for this function. */
3487 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3488 {
3489 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3490 h, rel, hplink);
3491 if (stub_entry == NULL)
3492 return bfd_reloc_notsupported;
3493
3494 /* Munge up the value and addend so that we call the stub
3495 rather than the procedure directly. */
3496 value = (stub_entry->stub_offset
3497 + stub_entry->stub_sec->output_offset
3498 + stub_entry->stub_sec->output_section->vma
3499 - location);
3500 addend = -8;
3501 }
3502 break;
3503
3504 /* Something we don't know how to handle. */
3505 default:
3506 return bfd_reloc_notsupported;
3507 }
3508
3509 /* Make sure we can reach the stub. */
3510 if (max_branch_offset != 0
3511 && value + addend + max_branch_offset >= 2*max_branch_offset)
3512 {
3513 (*_bfd_error_handler)
3514 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3515 bfd_get_filename (input_bfd),
3516 input_section->name,
3517 (long) rel->r_offset,
3518 stub_entry->root.string);
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 val = hppa_field_adjust (value, addend, r_field);
3523
3524 switch (r_type)
3525 {
3526 case R_PARISC_PCREL12F:
3527 case R_PARISC_PCREL17C:
3528 case R_PARISC_PCREL17F:
3529 case R_PARISC_PCREL17R:
3530 case R_PARISC_PCREL22F:
3531 case R_PARISC_DIR17F:
3532 case R_PARISC_DIR17R:
3533 /* This is a branch. Divide the offset by four.
3534 Note that we need to decide whether it's a branch or
3535 otherwise by inspecting the reloc. Inspecting insn won't
3536 work as insn might be from a .word directive. */
3537 val >>= 2;
3538 break;
3539
3540 default:
3541 break;
3542 }
3543
3544 insn = hppa_rebuild_insn (insn, val, r_format);
3545
3546 /* Update the instruction word. */
3547 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3548 return bfd_reloc_ok;
3549 }
3550
3551 /* Relocate an HPPA ELF section. */
3552
3553 static boolean
3554 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3555 contents, relocs, local_syms, local_sections)
3556 bfd *output_bfd;
3557 struct bfd_link_info *info;
3558 bfd *input_bfd;
3559 asection *input_section;
3560 bfd_byte *contents;
3561 Elf_Internal_Rela *relocs;
3562 Elf_Internal_Sym *local_syms;
3563 asection **local_sections;
3564 {
3565 bfd *dynobj;
3566 bfd_vma *local_got_offsets;
3567 struct elf32_hppa_link_hash_table *hplink;
3568 Elf_Internal_Shdr *symtab_hdr;
3569 Elf_Internal_Rela *rel;
3570 Elf_Internal_Rela *relend;
3571 asection *sreloc;
3572
3573 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3574
3575 hplink = hppa_link_hash_table (info);
3576 dynobj = hplink->root.dynobj;
3577 local_got_offsets = elf_local_got_offsets (input_bfd);
3578 sreloc = NULL;
3579
3580 rel = relocs;
3581 relend = relocs + input_section->reloc_count;
3582 for (; rel < relend; rel++)
3583 {
3584 unsigned int r_type;
3585 reloc_howto_type *howto;
3586 unsigned int r_symndx;
3587 struct elf32_hppa_link_hash_entry *h;
3588 Elf_Internal_Sym *sym;
3589 asection *sym_sec;
3590 bfd_vma relocation;
3591 bfd_reloc_status_type r;
3592 const char *sym_name;
3593 boolean plabel;
3594 bfd_vma off;
3595
3596 r_type = ELF32_R_TYPE (rel->r_info);
3597 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3598 {
3599 bfd_set_error (bfd_error_bad_value);
3600 return false;
3601 }
3602 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3603 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3604 continue;
3605
3606 r_symndx = ELF32_R_SYM (rel->r_info);
3607
3608 if (info->relocateable)
3609 {
3610 /* This is a relocateable link. We don't have to change
3611 anything, unless the reloc is against a section symbol,
3612 in which case we have to adjust according to where the
3613 section symbol winds up in the output section. */
3614 if (r_symndx < symtab_hdr->sh_info)
3615 {
3616 sym = local_syms + r_symndx;
3617 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3618 {
3619 sym_sec = local_sections[r_symndx];
3620 rel->r_addend += sym_sec->output_offset;
3621 }
3622 }
3623 continue;
3624 }
3625
3626 /* This is a final link. */
3627 h = NULL;
3628 sym = NULL;
3629 sym_sec = NULL;
3630 if (r_symndx < symtab_hdr->sh_info)
3631 {
3632 /* This is a local symbol, h defaults to NULL. */
3633 sym = local_syms + r_symndx;
3634 sym_sec = local_sections[r_symndx];
3635 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3636 ? 0 : sym->st_value)
3637 + sym_sec->output_offset
3638 + sym_sec->output_section->vma);
3639 }
3640 else
3641 {
3642 int indx;
3643
3644 /* It's a global; Find its entry in the link hash. */
3645 indx = r_symndx - symtab_hdr->sh_info;
3646 h = ((struct elf32_hppa_link_hash_entry *)
3647 elf_sym_hashes (input_bfd)[indx]);
3648 while (h->elf.root.type == bfd_link_hash_indirect
3649 || h->elf.root.type == bfd_link_hash_warning)
3650 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3651
3652 relocation = 0;
3653 if (h->elf.root.type == bfd_link_hash_defined
3654 || h->elf.root.type == bfd_link_hash_defweak)
3655 {
3656 sym_sec = h->elf.root.u.def.section;
3657 /* If sym_sec->output_section is NULL, then it's a
3658 symbol defined in a shared library. */
3659 if (sym_sec->output_section != NULL)
3660 relocation = (h->elf.root.u.def.value
3661 + sym_sec->output_offset
3662 + sym_sec->output_section->vma);
3663 }
3664 else if (h->elf.root.type == bfd_link_hash_undefweak)
3665 ;
3666 else if (info->shared && !info->no_undefined
3667 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3668 && h->elf.type != STT_PARISC_MILLI)
3669 {
3670 if (info->symbolic)
3671 if (!((*info->callbacks->undefined_symbol)
3672 (info, h->elf.root.root.string, input_bfd,
3673 input_section, rel->r_offset, false)))
3674 return false;
3675 }
3676 else
3677 {
3678 if (!((*info->callbacks->undefined_symbol)
3679 (info, h->elf.root.root.string, input_bfd,
3680 input_section, rel->r_offset, true)))
3681 return false;
3682 }
3683 }
3684
3685 /* Do any required modifications to the relocation value, and
3686 determine what types of dynamic info we need to output, if
3687 any. */
3688 plabel = 0;
3689 switch (r_type)
3690 {
3691 case R_PARISC_DLTIND14F:
3692 case R_PARISC_DLTIND14R:
3693 case R_PARISC_DLTIND21L:
3694 /* Relocation is to the entry for this symbol in the global
3695 offset table. */
3696 if (h != NULL)
3697 {
3698 boolean dyn;
3699
3700 off = h->elf.got.offset;
3701 dyn = hplink->root.dynamic_sections_created;
3702 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3703 {
3704 /* This is actually a static link, or it is a
3705 -Bsymbolic link and the symbol is defined
3706 locally, or the symbol was forced to be local
3707 because of a version file. We must initialize
3708 this entry in the global offset table. Since the
3709 offset must always be a multiple of 4, we use the
3710 least significant bit to record whether we have
3711 initialized it already.
3712
3713 When doing a dynamic link, we create a .rela.got
3714 relocation entry to initialize the value. This
3715 is done in the finish_dynamic_symbol routine. */
3716 if ((off & 1) != 0)
3717 off &= ~1;
3718 else
3719 {
3720 bfd_put_32 (output_bfd, relocation,
3721 hplink->sgot->contents + off);
3722 h->elf.got.offset |= 1;
3723 }
3724 }
3725 }
3726 else
3727 {
3728 /* Local symbol case. */
3729 if (local_got_offsets == NULL)
3730 abort ();
3731
3732 off = local_got_offsets[r_symndx];
3733
3734 /* The offset must always be a multiple of 4. We use
3735 the least significant bit to record whether we have
3736 already generated the necessary reloc. */
3737 if ((off & 1) != 0)
3738 off &= ~1;
3739 else
3740 {
3741 bfd_put_32 (output_bfd, relocation,
3742 hplink->sgot->contents + off);
3743
3744 if (info->shared)
3745 {
3746 /* Output a dynamic relocation for this GOT
3747 entry. In this case it is relative to the
3748 base of the object because the symbol index
3749 is zero. */
3750 Elf_Internal_Rela outrel;
3751 asection *srelgot = hplink->srelgot;
3752
3753 outrel.r_offset = (off
3754 + hplink->sgot->output_offset
3755 + hplink->sgot->output_section->vma);
3756 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3757 outrel.r_addend = relocation;
3758 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3759 ((Elf32_External_Rela *)
3760 srelgot->contents
3761 + srelgot->reloc_count));
3762 ++srelgot->reloc_count;
3763 }
3764
3765 local_got_offsets[r_symndx] |= 1;
3766 }
3767 }
3768
3769 if (off >= (bfd_vma) -2)
3770 abort ();
3771
3772 /* Add the base of the GOT to the relocation value. */
3773 relocation = (off
3774 + hplink->sgot->output_offset
3775 + hplink->sgot->output_section->vma);
3776 break;
3777
3778 case R_PARISC_SEGREL32:
3779 /* If this is the first SEGREL relocation, then initialize
3780 the segment base values. */
3781 if (hplink->text_segment_base == (bfd_vma) -1)
3782 bfd_map_over_sections (output_bfd,
3783 hppa_record_segment_addr,
3784 hplink);
3785 break;
3786
3787 case R_PARISC_PLABEL14R:
3788 case R_PARISC_PLABEL21L:
3789 case R_PARISC_PLABEL32:
3790 if (hplink->root.dynamic_sections_created)
3791 {
3792 /* If we have a global symbol with a PLT slot, then
3793 redirect this relocation to it. */
3794 if (h != NULL)
3795 {
3796 off = h->elf.plt.offset;
3797 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3798 {
3799 /* In a non-shared link, adjust_dynamic_symbols
3800 isn't called for symbols forced local. We
3801 need to write out the plt entry here. */
3802 if ((off & 1) != 0)
3803 off &= ~1;
3804 else
3805 {
3806 bfd_put_32 (output_bfd,
3807 relocation,
3808 hplink->splt->contents + off);
3809 bfd_put_32 (output_bfd,
3810 elf_gp (hplink->splt->output_section->owner),
3811 hplink->splt->contents + off + 4);
3812 h->elf.plt.offset |= 1;
3813 }
3814 }
3815 }
3816 else
3817 {
3818 bfd_vma *local_plt_offsets;
3819
3820 if (local_got_offsets == NULL)
3821 abort ();
3822
3823 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3824 off = local_plt_offsets[r_symndx];
3825
3826 /* As for the local .got entry case, we use the last
3827 bit to record whether we've already initialised
3828 this local .plt entry. */
3829 if ((off & 1) != 0)
3830 off &= ~1;
3831 else
3832 {
3833 bfd_put_32 (output_bfd,
3834 relocation,
3835 hplink->splt->contents + off);
3836 bfd_put_32 (output_bfd,
3837 elf_gp (hplink->splt->output_section->owner),
3838 hplink->splt->contents + off + 4);
3839
3840 if (info->shared)
3841 {
3842 /* Output a dynamic IPLT relocation for this
3843 PLT entry. */
3844 Elf_Internal_Rela outrel;
3845 asection *srelplt = hplink->srelplt;
3846
3847 outrel.r_offset = (off
3848 + hplink->splt->output_offset
3849 + hplink->splt->output_section->vma);
3850 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3851 outrel.r_addend = relocation;
3852 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3853 ((Elf32_External_Rela *)
3854 srelplt->contents
3855 + srelplt->reloc_count));
3856 ++srelplt->reloc_count;
3857 }
3858
3859 local_plt_offsets[r_symndx] |= 1;
3860 }
3861 }
3862
3863 if (off >= (bfd_vma) -2)
3864 abort ();
3865
3866 /* PLABELs contain function pointers. Relocation is to
3867 the entry for the function in the .plt. The magic +2
3868 offset signals to $$dyncall that the function pointer
3869 is in the .plt and thus has a gp pointer too.
3870 Exception: Undefined PLABELs should have a value of
3871 zero. */
3872 if (h == NULL
3873 || (h->elf.root.type != bfd_link_hash_undefweak
3874 && h->elf.root.type != bfd_link_hash_undefined))
3875 {
3876 relocation = (off
3877 + hplink->splt->output_offset
3878 + hplink->splt->output_section->vma
3879 + 2);
3880 }
3881 plabel = 1;
3882 }
3883 /* Fall through and possibly emit a dynamic relocation. */
3884
3885 case R_PARISC_DIR17F:
3886 case R_PARISC_DIR17R:
3887 case R_PARISC_DIR14F:
3888 case R_PARISC_DIR14R:
3889 case R_PARISC_DIR21L:
3890 case R_PARISC_DPREL14F:
3891 case R_PARISC_DPREL14R:
3892 case R_PARISC_DPREL21L:
3893 case R_PARISC_DIR32:
3894 /* The reloc types handled here and this conditional
3895 expression must match the code in check_relocs and
3896 hppa_discard_copies. ie. We need exactly the same
3897 condition as in check_relocs, with some extra conditions
3898 (dynindx test in this case) to cater for relocs removed
3899 by hppa_discard_copies. */
3900 if ((input_section->flags & SEC_ALLOC) != 0
3901 && info->shared
3902 #if RELATIVE_DYNAMIC_RELOCS
3903 && (is_absolute_reloc (r_type)
3904 || ((!info->symbolic
3905 || (h != NULL
3906 && ((h->elf.elf_link_hash_flags
3907 & ELF_LINK_HASH_DEF_REGULAR) == 0
3908 || h->elf.root.type == bfd_link_hash_defweak)))
3909 && (h == NULL || h->elf.dynindx != -1)))
3910 #endif
3911 )
3912 {
3913 Elf_Internal_Rela outrel;
3914 boolean skip;
3915
3916 /* When generating a shared object, these relocations
3917 are copied into the output file to be resolved at run
3918 time. */
3919
3920 if (sreloc == NULL)
3921 {
3922 const char *name;
3923
3924 name = (bfd_elf_string_from_elf_section
3925 (input_bfd,
3926 elf_elfheader (input_bfd)->e_shstrndx,
3927 elf_section_data (input_section)->rel_hdr.sh_name));
3928 if (name == NULL)
3929 return false;
3930 sreloc = bfd_get_section_by_name (dynobj, name);
3931 if (sreloc == NULL)
3932 abort ();
3933 }
3934
3935 outrel.r_offset = rel->r_offset;
3936 outrel.r_addend = rel->r_addend;
3937 skip = false;
3938 if (elf_section_data (input_section)->stab_info != NULL)
3939 {
3940 bfd_vma off;
3941
3942 off = (_bfd_stab_section_offset
3943 (output_bfd, &hplink->root.stab_info,
3944 input_section,
3945 &elf_section_data (input_section)->stab_info,
3946 rel->r_offset));
3947 if (off == (bfd_vma) -1)
3948 skip = true;
3949 outrel.r_offset = off;
3950 }
3951
3952 outrel.r_offset += (input_section->output_offset
3953 + input_section->output_section->vma);
3954
3955 if (skip)
3956 {
3957 memset (&outrel, 0, sizeof (outrel));
3958 }
3959 else if (h != NULL
3960 && h->elf.dynindx != -1
3961 && (plabel
3962 || !info->symbolic
3963 || (h->elf.elf_link_hash_flags
3964 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3965 {
3966 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3967 }
3968 else /* It's a local symbol, or one marked to become local. */
3969 {
3970 int indx = 0;
3971
3972 /* Add the absolute offset of the symbol. */
3973 outrel.r_addend += relocation;
3974
3975 /* Global plabels need to be processed by the
3976 dynamic linker so that functions have at most one
3977 fptr. For this reason, we need to differentiate
3978 between global and local plabels, which we do by
3979 providing the function symbol for a global plabel
3980 reloc, and no symbol for local plabels. */
3981 if (! plabel
3982 && sym_sec != NULL
3983 && sym_sec->output_section != NULL
3984 && ! bfd_is_abs_section (sym_sec))
3985 {
3986 indx = elf_section_data (sym_sec->output_section)->dynindx;
3987 /* We are turning this relocation into one
3988 against a section symbol, so subtract out the
3989 output section's address but not the offset
3990 of the input section in the output section. */
3991 outrel.r_addend -= sym_sec->output_section->vma;
3992 }
3993
3994 outrel.r_info = ELF32_R_INFO (indx, r_type);
3995 }
3996 #if 0
3997 /* EH info can cause unaligned DIR32 relocs.
3998 Tweak the reloc type for the dynamic linker. */
3999 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4000 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4001 R_PARISC_DIR32U);
4002 #endif
4003 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4004 ((Elf32_External_Rela *)
4005 sreloc->contents
4006 + sreloc->reloc_count));
4007 ++sreloc->reloc_count;
4008 }
4009 break;
4010
4011 default:
4012 break;
4013 }
4014
4015 r = final_link_relocate (input_section, contents, rel, relocation,
4016 hplink, sym_sec, h);
4017
4018 if (r == bfd_reloc_ok)
4019 continue;
4020
4021 if (h != NULL)
4022 sym_name = h->elf.root.root.string;
4023 else
4024 {
4025 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4026 symtab_hdr->sh_link,
4027 sym->st_name);
4028 if (sym_name == NULL)
4029 return false;
4030 if (*sym_name == '\0')
4031 sym_name = bfd_section_name (input_bfd, sym_sec);
4032 }
4033
4034 howto = elf_hppa_howto_table + r_type;
4035
4036 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4037 {
4038 (*_bfd_error_handler)
4039 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4040 bfd_get_filename (input_bfd),
4041 input_section->name,
4042 (long) rel->r_offset,
4043 howto->name,
4044 sym_name);
4045 }
4046 else
4047 {
4048 if (!((*info->callbacks->reloc_overflow)
4049 (info, sym_name, howto->name, (bfd_vma) 0,
4050 input_bfd, input_section, rel->r_offset)))
4051 return false;
4052 }
4053 }
4054
4055 return true;
4056 }
4057
4058 /* Comparison function for qsort to sort unwind section during a
4059 final link. */
4060
4061 static int
4062 hppa_unwind_entry_compare (a, b)
4063 const PTR a;
4064 const PTR b;
4065 {
4066 const bfd_byte *ap, *bp;
4067 unsigned long av, bv;
4068
4069 ap = (const bfd_byte *) a;
4070 av = (unsigned long) ap[0] << 24;
4071 av |= (unsigned long) ap[1] << 16;
4072 av |= (unsigned long) ap[2] << 8;
4073 av |= (unsigned long) ap[3];
4074
4075 bp = (const bfd_byte *) b;
4076 bv = (unsigned long) bp[0] << 24;
4077 bv |= (unsigned long) bp[1] << 16;
4078 bv |= (unsigned long) bp[2] << 8;
4079 bv |= (unsigned long) bp[3];
4080
4081 return av < bv ? -1 : av > bv ? 1 : 0;
4082 }
4083
4084 /* Finish up dynamic symbol handling. We set the contents of various
4085 dynamic sections here. */
4086
4087 static boolean
4088 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4089 bfd *output_bfd;
4090 struct bfd_link_info *info;
4091 struct elf_link_hash_entry *h;
4092 Elf_Internal_Sym *sym;
4093 {
4094 struct elf32_hppa_link_hash_table *hplink;
4095 bfd *dynobj;
4096
4097 hplink = hppa_link_hash_table (info);
4098 dynobj = hplink->root.dynobj;
4099
4100 if (h->plt.offset != (bfd_vma) -1)
4101 {
4102 bfd_vma value;
4103
4104 if (h->plt.offset & 1)
4105 abort ();
4106
4107 /* This symbol has an entry in the procedure linkage table. Set
4108 it up.
4109
4110 The format of a plt entry is
4111 <funcaddr>
4112 <__gp>
4113 */
4114 value = 0;
4115 if (h->root.type == bfd_link_hash_defined
4116 || h->root.type == bfd_link_hash_defweak)
4117 {
4118 value = h->root.u.def.value;
4119 if (h->root.u.def.section->output_section != NULL)
4120 value += (h->root.u.def.section->output_offset
4121 + h->root.u.def.section->output_section->vma);
4122 }
4123
4124 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4125 {
4126 Elf_Internal_Rela rel;
4127
4128 /* Create a dynamic IPLT relocation for this entry. */
4129 rel.r_offset = (h->plt.offset
4130 + hplink->splt->output_offset
4131 + hplink->splt->output_section->vma);
4132 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4133 && h->dynindx != -1)
4134 {
4135 /* To support lazy linking, the function pointer is
4136 initialised to point to a special stub stored at the
4137 end of the .plt. This is not done for plt entries
4138 with a base-relative dynamic relocation. */
4139 value = (hplink->splt->output_offset
4140 + hplink->splt->output_section->vma
4141 + hplink->splt->_raw_size
4142 - sizeof (plt_stub)
4143 + PLT_STUB_ENTRY);
4144 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4145 rel.r_addend = 0;
4146 }
4147 else
4148 {
4149 /* This symbol has been marked to become local, and is
4150 used by a plabel so must be kept in the .plt. */
4151 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4152 rel.r_addend = value;
4153 }
4154
4155 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
4156 &rel,
4157 ((Elf32_External_Rela *)
4158 hplink->srelplt->contents
4159 + hplink->srelplt->reloc_count));
4160 hplink->srelplt->reloc_count++;
4161 }
4162
4163 bfd_put_32 (hplink->splt->owner,
4164 value,
4165 hplink->splt->contents + h->plt.offset);
4166 bfd_put_32 (hplink->splt->owner,
4167 elf_gp (hplink->splt->output_section->owner),
4168 hplink->splt->contents + h->plt.offset + 4);
4169 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4170 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4171 && h->dynindx != -1)
4172 {
4173 memset (hplink->splt->contents + h->plt.offset + 8,
4174 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4175 }
4176
4177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4178 {
4179 /* Mark the symbol as undefined, rather than as defined in
4180 the .plt section. Leave the value alone. */
4181 sym->st_shndx = SHN_UNDEF;
4182 }
4183 }
4184
4185 if (h->got.offset != (bfd_vma) -1)
4186 {
4187 Elf_Internal_Rela rel;
4188
4189 /* This symbol has an entry in the global offset table. Set it
4190 up. */
4191
4192 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4193 + hplink->sgot->output_offset
4194 + hplink->sgot->output_section->vma);
4195
4196 /* If this is a -Bsymbolic link and the symbol is defined
4197 locally or was forced to be local because of a version file,
4198 we just want to emit a RELATIVE reloc. The entry in the
4199 global offset table will already have been initialized in the
4200 relocate_section function. */
4201 if (info->shared
4202 && (info->symbolic || h->dynindx == -1)
4203 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4204 {
4205 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4206 rel.r_addend = (h->root.u.def.value
4207 + h->root.u.def.section->output_offset
4208 + h->root.u.def.section->output_section->vma);
4209 }
4210 else
4211 {
4212 if ((h->got.offset & 1) != 0)
4213 abort ();
4214 bfd_put_32 (output_bfd, (bfd_vma) 0,
4215 hplink->sgot->contents + h->got.offset);
4216 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4217 rel.r_addend = 0;
4218 }
4219
4220 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4221 ((Elf32_External_Rela *)
4222 hplink->srelgot->contents
4223 + hplink->srelgot->reloc_count));
4224 ++hplink->srelgot->reloc_count;
4225 }
4226
4227 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4228 {
4229 asection *s;
4230 Elf_Internal_Rela rel;
4231
4232 /* This symbol needs a copy reloc. Set it up. */
4233
4234 if (! (h->dynindx != -1
4235 && (h->root.type == bfd_link_hash_defined
4236 || h->root.type == bfd_link_hash_defweak)))
4237 abort ();
4238
4239 s = hplink->srelbss;
4240
4241 rel.r_offset = (h->root.u.def.value
4242 + h->root.u.def.section->output_offset
4243 + h->root.u.def.section->output_section->vma);
4244 rel.r_addend = 0;
4245 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4246 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4247 ((Elf32_External_Rela *) s->contents
4248 + s->reloc_count));
4249 ++s->reloc_count;
4250 }
4251
4252 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4253 if (h->root.root.string[0] == '_'
4254 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4255 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4256 {
4257 sym->st_shndx = SHN_ABS;
4258 }
4259
4260 return true;
4261 }
4262
4263 /* Finish up the dynamic sections. */
4264
4265 static boolean
4266 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4267 bfd *output_bfd;
4268 struct bfd_link_info *info;
4269 {
4270 bfd *dynobj;
4271 struct elf32_hppa_link_hash_table *hplink;
4272 asection *sdyn;
4273
4274 hplink = hppa_link_hash_table (info);
4275 dynobj = hplink->root.dynobj;
4276
4277 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4278
4279 if (hplink->root.dynamic_sections_created)
4280 {
4281 Elf32_External_Dyn *dyncon, *dynconend;
4282
4283 if (sdyn == NULL)
4284 abort ();
4285
4286 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4287 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4288 for (; dyncon < dynconend; dyncon++)
4289 {
4290 Elf_Internal_Dyn dyn;
4291 asection *s;
4292
4293 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4294
4295 switch (dyn.d_tag)
4296 {
4297 default:
4298 break;
4299
4300 case DT_PLTGOT:
4301 /* Use PLTGOT to set the GOT register. */
4302 dyn.d_un.d_ptr = elf_gp (output_bfd);
4303 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4304 break;
4305
4306 case DT_JMPREL:
4307 s = hplink->srelplt;
4308 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4309 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4310 break;
4311
4312 case DT_PLTRELSZ:
4313 s = hplink->srelplt;
4314 if (s->_cooked_size != 0)
4315 dyn.d_un.d_val = s->_cooked_size;
4316 else
4317 dyn.d_un.d_val = s->_raw_size;
4318 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4319 break;
4320 }
4321 }
4322 }
4323
4324 if (hplink->sgot->_raw_size != 0)
4325 {
4326 /* Fill in the first entry in the global offset table.
4327 We use it to point to our dynamic section, if we have one. */
4328 bfd_put_32 (output_bfd,
4329 (sdyn != NULL
4330 ? sdyn->output_section->vma + sdyn->output_offset
4331 : (bfd_vma) 0),
4332 hplink->sgot->contents);
4333
4334 /* The second entry is reserved for use by the dynamic linker. */
4335 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4336
4337 /* Set .got entry size. */
4338 elf_section_data (hplink->sgot->output_section)
4339 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4340 }
4341
4342 if (hplink->splt->_raw_size != 0)
4343 {
4344 /* Set plt entry size. */
4345 elf_section_data (hplink->splt->output_section)
4346 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4347
4348 if (hplink->need_plt_stub)
4349 {
4350 /* Set up the .plt stub. */
4351 memcpy (hplink->splt->contents
4352 + hplink->splt->_raw_size - sizeof (plt_stub),
4353 plt_stub, sizeof (plt_stub));
4354
4355 if ((hplink->splt->output_offset
4356 + hplink->splt->output_section->vma
4357 + hplink->splt->_raw_size)
4358 != (hplink->sgot->output_offset
4359 + hplink->sgot->output_section->vma))
4360 {
4361 (*_bfd_error_handler)
4362 (_(".got section not immediately after .plt section"));
4363 return false;
4364 }
4365 }
4366 }
4367
4368 return true;
4369 }
4370
4371 /* Tweak the OSABI field of the elf header. */
4372
4373 static void
4374 elf32_hppa_post_process_headers (abfd, link_info)
4375 bfd *abfd;
4376 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4377 {
4378 Elf_Internal_Ehdr * i_ehdrp;
4379
4380 i_ehdrp = elf_elfheader (abfd);
4381
4382 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4383 {
4384 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4385 }
4386 else
4387 {
4388 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4389 }
4390 }
4391
4392 /* Called when writing out an object file to decide the type of a
4393 symbol. */
4394 static int
4395 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4396 Elf_Internal_Sym *elf_sym;
4397 int type;
4398 {
4399 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4400 return STT_PARISC_MILLI;
4401 else
4402 return type;
4403 }
4404
4405 /* Misc BFD support code. */
4406 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4407 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4408 #define elf_info_to_howto elf_hppa_info_to_howto
4409 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4410
4411 /* Stuff for the BFD linker. */
4412 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4413 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4414 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4415 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4416 #define elf_backend_check_relocs elf32_hppa_check_relocs
4417 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4418 #define elf_backend_fake_sections elf_hppa_fake_sections
4419 #define elf_backend_relocate_section elf32_hppa_relocate_section
4420 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4421 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4422 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4423 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4424 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4425 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4426 #define elf_backend_object_p elf32_hppa_object_p
4427 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4428 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4429 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4430
4431 #define elf_backend_can_gc_sections 1
4432 #define elf_backend_plt_alignment 2
4433 #define elf_backend_want_got_plt 0
4434 #define elf_backend_plt_readonly 0
4435 #define elf_backend_want_plt_sym 0
4436 #define elf_backend_got_header_size 8
4437
4438 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4439 #define TARGET_BIG_NAME "elf32-hppa"
4440 #define ELF_ARCH bfd_arch_hppa
4441 #define ELF_MACHINE_CODE EM_PARISC
4442 #define ELF_MAXPAGESIZE 0x1000
4443
4444 #include "elf32-target.h"
4445
4446 #undef TARGET_BIG_SYM
4447 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4448 #undef TARGET_BIG_NAME
4449 #define TARGET_BIG_NAME "elf32-hppa-linux"
4450
4451 #define INCLUDED_TARGET_FILE 1
4452 #include "elf32-target.h"