e67a1ed5f67f3c67fae11c0654945560b9c0d2fe
[binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil L'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n R'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw R'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil L'ltoff,%r19 ; get procedure entry point
80 : ldw R'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw R'lt_ptr+ltoff(%r1),%r21
88 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil L'ltoff,%r19 ; get procedure entry point
97 : ldw R'ltoff(%r1),%r21
98 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120
121 static const bfd_byte plt_stub[] =
122 {
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126 #define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
131 };
132
133 /* Section name for stubs is the associated section name plus this
134 string. */
135 #define STUB_SUFFIX ".stub"
136
137 /* Setting the following non-zero makes all long branch stubs
138 generated during a shared link of the PIC variety. This saves on
139 relocs, but costs one extra instruction per stub. */
140 #ifndef LONG_BRANCH_PIC_IN_SHLIB
141 #define LONG_BRANCH_PIC_IN_SHLIB 1
142 #endif
143
144 /* Set this non-zero to use import stubs instead of long branch stubs
145 where a .plt entry exists for the symbol. This is a fairly useless
146 option as import stubs are bigger than PIC long branch stubs. */
147 #ifndef LONG_BRANCH_VIA_PLT
148 #define LONG_BRANCH_VIA_PLT 0
149 #endif
150
151 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
152 shared object's dynamic section. */
153 #ifndef RELATIVE_DYNAMIC_RELOCS
154 #define RELATIVE_DYNAMIC_RELOCS 0
155 #endif
156
157 enum elf32_hppa_stub_type {
158 hppa_stub_long_branch,
159 hppa_stub_long_branch_shared,
160 hppa_stub_import,
161 hppa_stub_import_shared,
162 hppa_stub_export,
163 hppa_stub_none
164 };
165
166 struct elf32_hppa_stub_hash_entry {
167
168 /* Base hash table entry structure. */
169 struct bfd_hash_entry root;
170
171 /* The stub section. */
172 asection *stub_sec;
173
174 #if ! LONG_BRANCH_PIC_IN_SHLIB
175 /* It's associated reloc section. */
176 asection *reloc_sec;
177 #endif
178
179 /* Offset within stub_sec of the beginning of this stub. */
180 bfd_vma stub_offset;
181
182 /* Given the symbol's value and its section we can determine its final
183 value when building the stubs (so the stub knows where to jump. */
184 bfd_vma target_value;
185 asection *target_section;
186
187 enum elf32_hppa_stub_type stub_type;
188
189 /* The symbol table entry, if any, that this was derived from. */
190 struct elf32_hppa_link_hash_entry *h;
191
192 /* Where this stub is being called from, or, in the case of combined
193 stub sections, the first input section in the group. */
194 asection *id_sec;
195 };
196
197 struct elf32_hppa_link_hash_entry {
198
199 struct elf_link_hash_entry elf;
200
201 /* A pointer to the most recently used stub hash entry against this
202 symbol. */
203 struct elf32_hppa_stub_hash_entry *stub_cache;
204
205 #if ! LONG_BRANCH_PIC_IN_SHLIB
206 /* Used to track whether we have allocated space for a long branch
207 stub relocation for this symbol in the given section. */
208 asection *stub_reloc_sec;
209 #endif
210
211 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
212 /* Used to count relocations for delayed sizing of relocation
213 sections. */
214 struct elf32_hppa_dyn_reloc_entry {
215
216 /* Next relocation in the chain. */
217 struct elf32_hppa_dyn_reloc_entry *next;
218
219 /* The section in dynobj. */
220 asection *section;
221
222 /* Number of relocs copied in this section. */
223 bfd_size_type count;
224 } *reloc_entries;
225 #endif
226
227 /* Set during a static link if we detect a function is PIC. */
228 unsigned int pic_call:1;
229
230 /* Set if this symbol is used by a plabel reloc. */
231 unsigned int plabel:1;
232
233 /* Set if this symbol is an init or fini function and thus should
234 use an absolute reloc. */
235 unsigned int plt_abs:1;
236 };
237
238 struct elf32_hppa_link_hash_table {
239
240 /* The main hash table. */
241 struct elf_link_hash_table root;
242
243 /* The stub hash table. */
244 struct bfd_hash_table stub_hash_table;
245
246 /* Linker stub bfd. */
247 bfd *stub_bfd;
248
249 /* Linker call-backs. */
250 asection * (*add_stub_section) PARAMS ((const char *, asection *));
251 void (*layout_sections_again) PARAMS ((void));
252
253 /* Array to keep track of which stub sections have been created, and
254 information on stub grouping. */
255 struct map_stub {
256 /* This is the section to which stubs in the group will be
257 attached. */
258 asection *link_sec;
259 /* The stub section. */
260 asection *stub_sec;
261 #if ! LONG_BRANCH_PIC_IN_SHLIB
262 /* The stub section's reloc section. */
263 asection *reloc_sec;
264 #endif
265 } *stub_group;
266
267 /* Short-cuts to get to dynamic linker sections. */
268 asection *sgot;
269 asection *srelgot;
270 asection *splt;
271 asection *srelplt;
272 asection *sdynbss;
273 asection *srelbss;
274
275 /* Whether we support multiple sub-spaces for shared libs. */
276 unsigned int multi_subspace:1;
277
278 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
279 select suitable defaults for the stub group size. */
280 unsigned int has_12bit_branch:1;
281 unsigned int has_17bit_branch:1;
282
283 /* Set if we need a .plt stub to support lazy dynamic linking. */
284 unsigned int need_plt_stub:1;
285 };
286
287 /* Various hash macros and functions. */
288 #define hppa_link_hash_table(p) \
289 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
290
291 #define hppa_stub_hash_lookup(table, string, create, copy) \
292 ((struct elf32_hppa_stub_hash_entry *) \
293 bfd_hash_lookup ((table), (string), (create), (copy)))
294
295 static struct bfd_hash_entry *stub_hash_newfunc
296 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
297
298 static struct bfd_hash_entry *hppa_link_hash_newfunc
299 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
300
301 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
302 PARAMS ((bfd *));
303
304 /* Stub handling functions. */
305 static char *hppa_stub_name
306 PARAMS ((const asection *, const asection *,
307 const struct elf32_hppa_link_hash_entry *,
308 const Elf_Internal_Rela *));
309
310 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
311 PARAMS ((const asection *, const asection *,
312 struct elf32_hppa_link_hash_entry *,
313 const Elf_Internal_Rela *,
314 struct elf32_hppa_link_hash_table *));
315
316 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
317 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
318
319 static enum elf32_hppa_stub_type hppa_type_of_stub
320 PARAMS ((asection *, const Elf_Internal_Rela *,
321 struct elf32_hppa_link_hash_entry *, bfd_vma));
322
323 static boolean hppa_build_one_stub
324 PARAMS ((struct bfd_hash_entry *, PTR));
325
326 static boolean hppa_size_one_stub
327 PARAMS ((struct bfd_hash_entry *, PTR));
328
329 /* BFD and elf backend functions. */
330 static boolean elf32_hppa_object_p PARAMS ((bfd *));
331
332 static boolean elf32_hppa_add_symbol_hook
333 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
334 const char **, flagword *, asection **, bfd_vma *));
335
336 static boolean elf32_hppa_create_dynamic_sections
337 PARAMS ((bfd *, struct bfd_link_info *));
338
339 static boolean elf32_hppa_check_relocs
340 PARAMS ((bfd *, struct bfd_link_info *,
341 asection *, const Elf_Internal_Rela *));
342
343 static asection *elf32_hppa_gc_mark_hook
344 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
345 struct elf_link_hash_entry *, Elf_Internal_Sym *));
346
347 static boolean elf32_hppa_gc_sweep_hook
348 PARAMS ((bfd *, struct bfd_link_info *,
349 asection *, const Elf_Internal_Rela *));
350
351 static void elf32_hppa_hide_symbol
352 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
353
354 static boolean elf32_hppa_adjust_dynamic_symbol
355 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
356
357 static boolean hppa_handle_PIC_calls
358 PARAMS ((struct elf_link_hash_entry *, PTR));
359
360 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
361 || RELATIVE_DYNAMIC_RELOCS)
362 static boolean hppa_discard_copies
363 PARAMS ((struct elf_link_hash_entry *, PTR));
364 #endif
365
366 static boolean clobber_millicode_symbols
367 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
368
369 static boolean elf32_hppa_size_dynamic_sections
370 PARAMS ((bfd *, struct bfd_link_info *));
371
372 static bfd_reloc_status_type final_link_relocate
373 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
374 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
375 struct elf32_hppa_link_hash_entry *));
376
377 static boolean elf32_hppa_relocate_section
378 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
379 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
380
381 static boolean elf32_hppa_finish_dynamic_symbol
382 PARAMS ((bfd *, struct bfd_link_info *,
383 struct elf_link_hash_entry *, Elf_Internal_Sym *));
384
385 static boolean elf32_hppa_finish_dynamic_sections
386 PARAMS ((bfd *, struct bfd_link_info *));
387
388 static int elf32_hppa_elf_get_symbol_type
389 PARAMS ((Elf_Internal_Sym *, int));
390
391 /* Assorted hash table functions. */
392
393 /* Initialize an entry in the stub hash table. */
394
395 static struct bfd_hash_entry *
396 stub_hash_newfunc (entry, table, string)
397 struct bfd_hash_entry *entry;
398 struct bfd_hash_table *table;
399 const char *string;
400 {
401 struct elf32_hppa_stub_hash_entry *ret;
402
403 ret = (struct elf32_hppa_stub_hash_entry *) entry;
404
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (ret == NULL)
408 {
409 ret = ((struct elf32_hppa_stub_hash_entry *)
410 bfd_hash_allocate (table,
411 sizeof (struct elf32_hppa_stub_hash_entry)));
412 if (ret == NULL)
413 return NULL;
414 }
415
416 /* Call the allocation method of the superclass. */
417 ret = ((struct elf32_hppa_stub_hash_entry *)
418 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
419
420 if (ret)
421 {
422 /* Initialize the local fields. */
423 ret->stub_sec = NULL;
424 #if ! LONG_BRANCH_PIC_IN_SHLIB
425 ret->reloc_sec = NULL;
426 #endif
427 ret->stub_offset = 0;
428 ret->target_value = 0;
429 ret->target_section = NULL;
430 ret->stub_type = hppa_stub_long_branch;
431 ret->h = NULL;
432 ret->id_sec = NULL;
433 }
434
435 return (struct bfd_hash_entry *) ret;
436 }
437
438 /* Initialize an entry in the link hash table. */
439
440 static struct bfd_hash_entry *
441 hppa_link_hash_newfunc (entry, table, string)
442 struct bfd_hash_entry *entry;
443 struct bfd_hash_table *table;
444 const char *string;
445 {
446 struct elf32_hppa_link_hash_entry *ret;
447
448 ret = (struct elf32_hppa_link_hash_entry *) entry;
449
450 /* Allocate the structure if it has not already been allocated by a
451 subclass. */
452 if (ret == NULL)
453 {
454 ret = ((struct elf32_hppa_link_hash_entry *)
455 bfd_hash_allocate (table,
456 sizeof (struct elf32_hppa_link_hash_entry)));
457 if (ret == NULL)
458 return NULL;
459 }
460
461 /* Call the allocation method of the superclass. */
462 ret = ((struct elf32_hppa_link_hash_entry *)
463 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
464 table, string));
465
466 if (ret)
467 {
468 /* Initialize the local fields. */
469 #if ! LONG_BRANCH_PIC_IN_SHLIB
470 ret->stub_reloc_sec = NULL;
471 #endif
472 ret->stub_cache = NULL;
473 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
474 ret->reloc_entries = NULL;
475 #endif
476 ret->pic_call = 0;
477 ret->plabel = 0;
478 ret->plt_abs = 0;
479 }
480
481 return (struct bfd_hash_entry *) ret;
482 }
483
484 /* Create the derived linker hash table. The PA ELF port uses the derived
485 hash table to keep information specific to the PA ELF linker (without
486 using static variables). */
487
488 static struct bfd_link_hash_table *
489 elf32_hppa_link_hash_table_create (abfd)
490 bfd *abfd;
491 {
492 struct elf32_hppa_link_hash_table *ret;
493
494 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
495 if (ret == NULL)
496 return NULL;
497
498 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
499 {
500 bfd_release (abfd, ret);
501 return NULL;
502 }
503
504 /* Init the stub hash table too. */
505 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
506 return NULL;
507
508 ret->stub_bfd = NULL;
509 ret->add_stub_section = NULL;
510 ret->layout_sections_again = NULL;
511 ret->stub_group = NULL;
512 ret->sgot = NULL;
513 ret->srelgot = NULL;
514 ret->splt = NULL;
515 ret->srelplt = NULL;
516 ret->sdynbss = NULL;
517 ret->srelbss = NULL;
518 ret->multi_subspace = 0;
519 ret->has_12bit_branch = 0;
520 ret->has_17bit_branch = 0;
521 ret->need_plt_stub = 0;
522
523 return &ret->root.root;
524 }
525
526 /* Build a name for an entry in the stub hash table. */
527
528 static char *
529 hppa_stub_name (input_section, sym_sec, hash, rel)
530 const asection *input_section;
531 const asection *sym_sec;
532 const struct elf32_hppa_link_hash_entry *hash;
533 const Elf_Internal_Rela *rel;
534 {
535 char *stub_name;
536 size_t len;
537
538 if (hash)
539 {
540 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
541 stub_name = bfd_malloc (len);
542 if (stub_name != NULL)
543 {
544 sprintf (stub_name, "%08x_%s+%x",
545 input_section->id & 0xffffffff,
546 hash->elf.root.root.string,
547 (int) rel->r_addend & 0xffffffff);
548 }
549 }
550 else
551 {
552 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
553 stub_name = bfd_malloc (len);
554 if (stub_name != NULL)
555 {
556 sprintf (stub_name, "%08x_%x:%x+%x",
557 input_section->id & 0xffffffff,
558 sym_sec->id & 0xffffffff,
559 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
560 (int) rel->r_addend & 0xffffffff);
561 }
562 }
563 return stub_name;
564 }
565
566 /* Look up an entry in the stub hash. Stub entries are cached because
567 creating the stub name takes a bit of time. */
568
569 static struct elf32_hppa_stub_hash_entry *
570 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
571 const asection *input_section;
572 const asection *sym_sec;
573 struct elf32_hppa_link_hash_entry *hash;
574 const Elf_Internal_Rela *rel;
575 struct elf32_hppa_link_hash_table *hplink;
576 {
577 struct elf32_hppa_stub_hash_entry *stub_entry;
578 const asection *id_sec;
579
580 /* If this input section is part of a group of sections sharing one
581 stub section, then use the id of the first section in the group.
582 Stub names need to include a section id, as there may well be
583 more than one stub used to reach say, printf, and we need to
584 distinguish between them. */
585 id_sec = hplink->stub_group[input_section->id].link_sec;
586
587 if (hash != NULL && hash->stub_cache != NULL
588 && hash->stub_cache->h == hash
589 && hash->stub_cache->id_sec == id_sec)
590 {
591 stub_entry = hash->stub_cache;
592 }
593 else
594 {
595 char *stub_name;
596
597 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
598 if (stub_name == NULL)
599 return NULL;
600
601 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
602 stub_name, false, false);
603 if (stub_entry == NULL)
604 {
605 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
606 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
607 bfd_get_filename (input_section->owner),
608 input_section->name,
609 (long) rel->r_offset,
610 stub_name);
611 }
612 else
613 {
614 if (hash != NULL)
615 hash->stub_cache = stub_entry;
616 }
617
618 free (stub_name);
619 }
620
621 return stub_entry;
622 }
623
624 /* Add a new stub entry to the stub hash. Not all fields of the new
625 stub entry are initialised. */
626
627 static struct elf32_hppa_stub_hash_entry *
628 hppa_add_stub (stub_name, section, hplink)
629 const char *stub_name;
630 asection *section;
631 struct elf32_hppa_link_hash_table *hplink;
632 {
633 asection *link_sec;
634 asection *stub_sec;
635 struct elf32_hppa_stub_hash_entry *stub_entry;
636
637 link_sec = hplink->stub_group[section->id].link_sec;
638 stub_sec = hplink->stub_group[section->id].stub_sec;
639 if (stub_sec == NULL)
640 {
641 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
642 if (stub_sec == NULL)
643 {
644 size_t len;
645 char *s_name;
646
647 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
648 s_name = bfd_alloc (hplink->stub_bfd, len);
649 if (s_name == NULL)
650 return NULL;
651
652 strcpy (s_name, link_sec->name);
653 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
654 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
655 if (stub_sec == NULL)
656 return NULL;
657 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
658 }
659 hplink->stub_group[section->id].stub_sec = stub_sec;
660 }
661
662 /* Enter this entry into the linker stub hash table. */
663 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
664 true, false);
665 if (stub_entry == NULL)
666 {
667 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
668 bfd_get_filename (section->owner),
669 stub_name);
670 return NULL;
671 }
672
673 stub_entry->stub_sec = stub_sec;
674 #if ! LONG_BRANCH_PIC_IN_SHLIB
675 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
676 #endif
677 stub_entry->stub_offset = 0;
678 stub_entry->id_sec = link_sec;
679 return stub_entry;
680 }
681
682 /* Determine the type of stub needed, if any, for a call. */
683
684 static enum elf32_hppa_stub_type
685 hppa_type_of_stub (input_sec, rel, hash, destination)
686 asection *input_sec;
687 const Elf_Internal_Rela *rel;
688 struct elf32_hppa_link_hash_entry *hash;
689 bfd_vma destination;
690 {
691 bfd_vma location;
692 bfd_vma branch_offset;
693 bfd_vma max_branch_offset;
694 unsigned int r_type;
695
696 if (hash != NULL
697 && (((hash->elf.root.type == bfd_link_hash_defined
698 || hash->elf.root.type == bfd_link_hash_defweak)
699 && hash->elf.root.u.def.section->output_section == NULL)
700 || (hash->elf.root.type == bfd_link_hash_defweak
701 && hash->elf.dynindx != -1
702 && hash->elf.plt.offset != (bfd_vma) -1)
703 || hash->elf.root.type == bfd_link_hash_undefweak
704 || hash->elf.root.type == bfd_link_hash_undefined
705 || hash->pic_call))
706 {
707 /* If output_section is NULL, then it's a symbol defined in a
708 shared library. We will need an import stub. Decide between
709 hppa_stub_import and hppa_stub_import_shared later. For
710 shared links we need stubs for undefined or weak syms too;
711 They will presumably be resolved by the dynamic linker. */
712 return hppa_stub_import;
713 }
714
715 /* Determine where the call point is. */
716 location = (input_sec->output_offset
717 + input_sec->output_section->vma
718 + rel->r_offset);
719
720 branch_offset = destination - location - 8;
721 r_type = ELF32_R_TYPE (rel->r_info);
722
723 /* Determine if a long branch stub is needed. parisc branch offsets
724 are relative to the second instruction past the branch, ie. +8
725 bytes on from the branch instruction location. The offset is
726 signed and counts in units of 4 bytes. */
727 if (r_type == (unsigned int) R_PARISC_PCREL17F)
728 {
729 max_branch_offset = (1 << (17-1)) << 2;
730 }
731 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
732 {
733 max_branch_offset = (1 << (12-1)) << 2;
734 }
735 else /* R_PARISC_PCREL22F. */
736 {
737 max_branch_offset = (1 << (22-1)) << 2;
738 }
739
740 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
741 {
742 #if LONG_BRANCH_VIA_PLT
743 if (hash != NULL
744 && hash->elf.dynindx != -1
745 && hash->elf.plt.offset != (bfd_vma) -1)
746 {
747 /* If we are doing a shared link and find we need a long
748 branch stub, then go via the .plt if possible. */
749 return hppa_stub_import;
750 }
751 else
752 #endif
753 return hppa_stub_long_branch;
754 }
755 return hppa_stub_none;
756 }
757
758 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
759 IN_ARG contains the link info pointer. */
760
761 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
762 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
763
764 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
765 #define ADDIL_R1 0x28200000 /* addil L'XXX,%r1,%r1 */
766 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
767
768 #define ADDIL_DP 0x2b600000 /* addil L'XXX,%dp,%r1 */
769 #define LDW_R1_R21 0x48350000 /* ldw R'XXX(%sr0,%r1),%r21 */
770 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
771 #define LDW_R1_R19 0x48330000 /* ldw R'XXX(%sr0,%r1),%r19 */
772
773 #define ADDIL_R19 0x2a600000 /* addil L'XXX,%r19,%r1 */
774 #define LDW_R1_DP 0x483b0000 /* ldw R'XXX(%sr0,%r1),%dp */
775
776 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
777 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
778 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
779 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
780
781 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
782 #define NOP 0x08000240 /* nop */
783 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
784 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
785 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
786
787 #ifndef R19_STUBS
788 #define R19_STUBS 1
789 #endif
790
791 #if R19_STUBS
792 #define LDW_R1_DLT LDW_R1_R19
793 #else
794 #define LDW_R1_DLT LDW_R1_DP
795 #endif
796
797 static boolean
798 hppa_build_one_stub (gen_entry, in_arg)
799 struct bfd_hash_entry *gen_entry;
800 PTR in_arg;
801 {
802 struct elf32_hppa_stub_hash_entry *stub_entry;
803 struct bfd_link_info *info;
804 struct elf32_hppa_link_hash_table *hplink;
805 asection *stub_sec;
806 bfd *stub_bfd;
807 bfd_byte *loc;
808 bfd_vma sym_value;
809 bfd_vma insn;
810 int val;
811 int size;
812
813 /* Massage our args to the form they really have. */
814 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
815 info = (struct bfd_link_info *) in_arg;
816
817 hplink = hppa_link_hash_table (info);
818 stub_sec = stub_entry->stub_sec;
819
820 /* Make a note of the offset within the stubs for this entry. */
821 stub_entry->stub_offset = stub_sec->_raw_size;
822 loc = stub_sec->contents + stub_entry->stub_offset;
823
824 stub_bfd = stub_sec->owner;
825
826 switch (stub_entry->stub_type)
827 {
828 case hppa_stub_long_branch:
829 /* Create the long branch. A long branch is formed with "ldil"
830 loading the upper bits of the target address into a register,
831 then branching with "be" which adds in the lower bits.
832 The "be" has its delay slot nullified. */
833 sym_value = (stub_entry->target_value
834 + stub_entry->target_section->output_offset
835 + stub_entry->target_section->output_section->vma);
836
837 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
838 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
839 bfd_put_32 (stub_bfd, insn, loc);
840
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
842 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
843 bfd_put_32 (stub_bfd, insn, loc + 4);
844
845 #if ! LONG_BRANCH_PIC_IN_SHLIB
846 if (info->shared)
847 {
848 /* Output a dynamic relocation for this stub. We only
849 output one PCREL21L reloc per stub, trusting that the
850 dynamic linker will also fix the implied PCREL17R for the
851 second instruction. PCREL21L dynamic relocs had better
852 never be emitted for some other purpose... */
853 asection *srel;
854 Elf_Internal_Rela outrel;
855
856 if (stub_entry->h == NULL)
857 {
858 (*_bfd_error_handler)
859 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
860 bfd_get_filename (stub_entry->target_section->owner),
861 stub_sec->name,
862 (long) stub_entry->stub_offset,
863 stub_entry->root.string);
864 bfd_set_error (bfd_error_bad_value);
865 return false;
866 }
867
868 srel = stub_entry->reloc_sec;
869 if (srel == NULL)
870 {
871 (*_bfd_error_handler)
872 (_("Could not find relocation section for %s"),
873 stub_sec->name);
874 bfd_set_error (bfd_error_bad_value);
875 return false;
876 }
877
878 outrel.r_offset = (stub_entry->stub_offset
879 + stub_sec->output_offset
880 + stub_sec->output_section->vma);
881 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
882 outrel.r_addend = sym_value;
883 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
884 &outrel,
885 ((Elf32_External_Rela *)
886 srel->contents + srel->reloc_count));
887 ++srel->reloc_count;
888 }
889 #endif
890 size = 8;
891 break;
892
893 case hppa_stub_long_branch_shared:
894 /* Branches are relative. This is where we are going to. */
895 sym_value = (stub_entry->target_value
896 + stub_entry->target_section->output_offset
897 + stub_entry->target_section->output_section->vma);
898
899 /* And this is where we are coming from, more or less. */
900 sym_value -= (stub_entry->stub_offset
901 + stub_sec->output_offset
902 + stub_sec->output_section->vma);
903
904 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
905 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
906 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
907 bfd_put_32 (stub_bfd, insn, loc + 4);
908
909 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
910 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
911 bfd_put_32 (stub_bfd, insn, loc + 8);
912 size = 12;
913 break;
914
915 case hppa_stub_import:
916 case hppa_stub_import_shared:
917 sym_value = (stub_entry->h->elf.plt.offset
918 + hplink->splt->output_offset
919 + hplink->splt->output_section->vma
920 - elf_gp (hplink->splt->output_section->owner));
921
922 insn = ADDIL_DP;
923 #if R19_STUBS
924 if (stub_entry->stub_type == hppa_stub_import_shared)
925 insn = ADDIL_R19;
926 #endif
927 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
928 insn = hppa_rebuild_insn ((int) insn, val, 21);
929 bfd_put_32 (stub_bfd, insn, loc);
930
931 /* It is critical to use lrsel/rrsel here because we are using
932 two different offsets (+0 and +4) from sym_value. If we use
933 lsel/rsel then with unfortunate sym_values we will round
934 sym_value+4 up to the next 2k block leading to a mis-match
935 between the lsel and rsel value. */
936 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
937 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
938 bfd_put_32 (stub_bfd, insn, loc + 4);
939
940 if (hplink->multi_subspace)
941 {
942 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
943 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
944 bfd_put_32 (stub_bfd, insn, loc + 8);
945
946 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
947 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
948 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
949 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
950
951 size = 28;
952 }
953 else
954 {
955 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
956 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
957 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
958 bfd_put_32 (stub_bfd, insn, loc + 12);
959
960 size = 16;
961 }
962
963 if (!info->shared
964 && stub_entry->h != NULL
965 && stub_entry->h->pic_call)
966 {
967 /* Build the .plt entry needed to call a PIC function from
968 statically linked code. We don't need any relocs. */
969 bfd *dynobj;
970 struct elf32_hppa_link_hash_entry *eh;
971 bfd_vma value;
972
973 dynobj = hplink->root.dynobj;
974 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
975
976 BFD_ASSERT (eh->elf.root.type == bfd_link_hash_defined
977 || eh->elf.root.type == bfd_link_hash_defweak);
978
979 value = (eh->elf.root.u.def.value
980 + eh->elf.root.u.def.section->output_offset
981 + eh->elf.root.u.def.section->output_section->vma);
982
983 /* Fill in the entry in the procedure linkage table.
984
985 The format of a plt entry is
986 <funcaddr>
987 <__gp>. */
988
989 bfd_put_32 (hplink->splt->owner, value,
990 hplink->splt->contents + eh->elf.plt.offset);
991 value = elf_gp (hplink->splt->output_section->owner);
992 bfd_put_32 (hplink->splt->owner, value,
993 hplink->splt->contents + eh->elf.plt.offset + 4);
994 }
995 break;
996
997 case hppa_stub_export:
998 /* Branches are relative. This is where we are going to. */
999 sym_value = (stub_entry->target_value
1000 + stub_entry->target_section->output_offset
1001 + stub_entry->target_section->output_section->vma);
1002
1003 /* And this is where we are coming from. */
1004 sym_value -= (stub_entry->stub_offset
1005 + stub_sec->output_offset
1006 + stub_sec->output_section->vma);
1007
1008 if (sym_value - 8 + 0x40000 >= 0x80000)
1009 {
1010 (*_bfd_error_handler)
1011 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1012 bfd_get_filename (stub_entry->target_section->owner),
1013 stub_sec->name,
1014 (long) stub_entry->stub_offset,
1015 stub_entry->root.string);
1016 bfd_set_error (bfd_error_bad_value);
1017 return false;
1018 }
1019
1020 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1021 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1022 bfd_put_32 (stub_bfd, insn, loc);
1023
1024 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1025 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1026 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1027 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1028 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1029
1030 /* Point the function symbol at the stub. */
1031 stub_entry->h->elf.root.u.def.section = stub_sec;
1032 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1033
1034 size = 24;
1035 break;
1036
1037 default:
1038 BFD_FAIL ();
1039 return false;
1040 }
1041
1042 stub_sec->_raw_size += size;
1043 return true;
1044 }
1045
1046 #undef LDIL_R1
1047 #undef BE_SR4_R1
1048 #undef BL_R1
1049 #undef ADDIL_R1
1050 #undef DEPI_R1
1051 #undef ADDIL_DP
1052 #undef LDW_R1_R21
1053 #undef LDW_R1_DLT
1054 #undef LDW_R1_R19
1055 #undef ADDIL_R19
1056 #undef LDW_R1_DP
1057 #undef LDSID_R21_R1
1058 #undef MTSP_R1
1059 #undef BE_SR0_R21
1060 #undef STW_RP
1061 #undef BV_R0_R21
1062 #undef BL_RP
1063 #undef NOP
1064 #undef LDW_RP
1065 #undef LDSID_RP_R1
1066 #undef BE_SR0_RP
1067
1068 /* As above, but don't actually build the stub. Just bump offset so
1069 we know stub section sizes. */
1070
1071 static boolean
1072 hppa_size_one_stub (gen_entry, in_arg)
1073 struct bfd_hash_entry *gen_entry;
1074 PTR in_arg;
1075 {
1076 struct elf32_hppa_stub_hash_entry *stub_entry;
1077 struct elf32_hppa_link_hash_table *hplink;
1078 int size;
1079
1080 /* Massage our args to the form they really have. */
1081 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1082 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1083
1084 if (stub_entry->stub_type == hppa_stub_long_branch)
1085 {
1086 #if ! LONG_BRANCH_PIC_IN_SHLIB
1087 if (stub_entry->reloc_sec != NULL)
1088 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1089 #endif
1090 size = 8;
1091 }
1092 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1093 size = 12;
1094 else if (stub_entry->stub_type == hppa_stub_export)
1095 size = 24;
1096 else /* hppa_stub_import or hppa_stub_import_shared. */
1097 {
1098 if (hplink->multi_subspace)
1099 size = 28;
1100 else
1101 size = 16;
1102 }
1103
1104 stub_entry->stub_sec->_raw_size += size;
1105 return true;
1106 }
1107
1108 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1109 Additionally we set the default architecture and machine. */
1110
1111 static boolean
1112 elf32_hppa_object_p (abfd)
1113 bfd *abfd;
1114 {
1115 unsigned int flags = elf_elfheader (abfd)->e_flags;
1116
1117 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1118 {
1119 case EFA_PARISC_1_0:
1120 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1121 case EFA_PARISC_1_1:
1122 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1123 case EFA_PARISC_2_0:
1124 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1125 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1126 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1127 }
1128 return true;
1129 }
1130
1131 /* Undo the generic ELF code's subtraction of section->vma from the
1132 value of each external symbol. */
1133
1134 static boolean
1135 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1136 bfd *abfd ATTRIBUTE_UNUSED;
1137 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1138 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1139 const char **namep ATTRIBUTE_UNUSED;
1140 flagword *flagsp ATTRIBUTE_UNUSED;
1141 asection **secp;
1142 bfd_vma *valp;
1143 {
1144 *valp += (*secp)->vma;
1145 return true;
1146 }
1147
1148 /* Create the .plt and .got sections, and set up our hash table
1149 short-cuts to various dynamic sections. */
1150
1151 static boolean
1152 elf32_hppa_create_dynamic_sections (abfd, info)
1153 bfd *abfd;
1154 struct bfd_link_info *info;
1155 {
1156 struct elf32_hppa_link_hash_table *hplink;
1157
1158 /* Don't try to create the .plt and .got twice. */
1159 hplink = hppa_link_hash_table (info);
1160 if (hplink->splt != NULL)
1161 return true;
1162
1163 /* Call the generic code to do most of the work. */
1164 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1165 return false;
1166
1167 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1168 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1169
1170 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1171 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1172 if (hplink->srelgot == NULL
1173 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1174 (SEC_ALLOC
1175 | SEC_LOAD
1176 | SEC_HAS_CONTENTS
1177 | SEC_IN_MEMORY
1178 | SEC_LINKER_CREATED
1179 | SEC_READONLY))
1180 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1181 return false;
1182
1183 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1184 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1185
1186 return true;
1187 }
1188
1189 /* Look through the relocs for a section during the first phase, and
1190 allocate space in the global offset table or procedure linkage
1191 table. At this point we haven't necessarily read all the input
1192 files. */
1193
1194 static boolean
1195 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1196 bfd *abfd;
1197 struct bfd_link_info *info;
1198 asection *sec;
1199 const Elf_Internal_Rela *relocs;
1200 {
1201 bfd *dynobj;
1202 Elf_Internal_Shdr *symtab_hdr;
1203 struct elf_link_hash_entry **sym_hashes;
1204 bfd_signed_vma *local_got_refcounts;
1205 const Elf_Internal_Rela *rel;
1206 const Elf_Internal_Rela *rel_end;
1207 struct elf32_hppa_link_hash_table *hplink;
1208 asection *sreloc;
1209 asection *stubreloc;
1210
1211 if (info->relocateable)
1212 return true;
1213
1214 hplink = hppa_link_hash_table (info);
1215 dynobj = hplink->root.dynobj;
1216 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1217 sym_hashes = elf_sym_hashes (abfd);
1218 local_got_refcounts = elf_local_got_refcounts (abfd);
1219 sreloc = NULL;
1220 stubreloc = NULL;
1221
1222 rel_end = relocs + sec->reloc_count;
1223 for (rel = relocs; rel < rel_end; rel++)
1224 {
1225 enum {
1226 NEED_GOT = 1,
1227 NEED_PLT = 2,
1228 NEED_DYNREL = 4,
1229 #if LONG_BRANCH_PIC_IN_SHLIB
1230 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1231 #else
1232 NEED_STUBREL = 8,
1233 #endif
1234 PLT_PLABEL = 16
1235 };
1236
1237 unsigned int r_symndx, r_type;
1238 struct elf32_hppa_link_hash_entry *h;
1239 int need_entry;
1240
1241 r_symndx = ELF32_R_SYM (rel->r_info);
1242
1243 if (r_symndx < symtab_hdr->sh_info)
1244 h = NULL;
1245 else
1246 h = ((struct elf32_hppa_link_hash_entry *)
1247 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1248
1249 r_type = ELF32_R_TYPE (rel->r_info);
1250
1251 switch (r_type)
1252 {
1253 case R_PARISC_DLTIND14F:
1254 case R_PARISC_DLTIND14R:
1255 case R_PARISC_DLTIND21L:
1256 /* This symbol requires a global offset table entry. */
1257 need_entry = NEED_GOT;
1258
1259 /* Mark this section as containing PIC code. */
1260 sec->flags |= SEC_HAS_GOT_REF;
1261 break;
1262
1263 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1264 case R_PARISC_PLABEL21L:
1265 case R_PARISC_PLABEL32:
1266 /* If the addend is non-zero, we break badly. */
1267 BFD_ASSERT (rel->r_addend == 0);
1268
1269 /* If we are creating a shared library, then we need to
1270 create a PLT entry for all PLABELs, because PLABELs with
1271 local symbols may be passed via a pointer to another
1272 object. Additionally, output a dynamic relocation
1273 pointing to the PLT entry. */
1274 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1275 break;
1276
1277 case R_PARISC_PCREL12F:
1278 hplink->has_12bit_branch = 1;
1279 /* Fall thru. */
1280 case R_PARISC_PCREL17C:
1281 case R_PARISC_PCREL17F:
1282 hplink->has_17bit_branch = 1;
1283 /* Fall thru. */
1284 case R_PARISC_PCREL22F:
1285 /* Function calls might need to go through the .plt, and
1286 might require long branch stubs. */
1287 if (h == NULL)
1288 {
1289 /* We know local syms won't need a .plt entry, and if
1290 they need a long branch stub we can't guarantee that
1291 we can reach the stub. So just flag an error later
1292 if we're doing a shared link and find we need a long
1293 branch stub. */
1294 continue;
1295 }
1296 else
1297 {
1298 /* Global symbols will need a .plt entry if they remain
1299 global, and in most cases won't need a long branch
1300 stub. Unfortunately, we have to cater for the case
1301 where a symbol is forced local by versioning, or due
1302 to symbolic linking, and we lose the .plt entry. */
1303 need_entry = NEED_PLT | NEED_STUBREL;
1304 }
1305 break;
1306
1307 case R_PARISC_SEGBASE: /* Used to set segment base. */
1308 case R_PARISC_SEGREL32: /* Relative reloc. */
1309 case R_PARISC_PCREL14F: /* PC relative load/store. */
1310 case R_PARISC_PCREL14R:
1311 case R_PARISC_PCREL17R: /* External branches. */
1312 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1313 /* We don't need to propagate the relocation if linking a
1314 shared object since these are section relative. */
1315 continue;
1316
1317 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1318 case R_PARISC_DPREL14R:
1319 case R_PARISC_DPREL21L:
1320 if (info->shared)
1321 {
1322 (*_bfd_error_handler)
1323 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1324 bfd_get_filename (abfd),
1325 elf_hppa_howto_table[r_type].name);
1326 bfd_set_error (bfd_error_bad_value);
1327 return false;
1328 }
1329 /* Fall through. */
1330
1331 case R_PARISC_DIR17F: /* Used for external branches. */
1332 case R_PARISC_DIR17R:
1333 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1334 case R_PARISC_DIR14R:
1335 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1336 #if 1
1337 /* Help debug shared library creation. Any of the above
1338 relocs can be used in shared libs, but they may cause
1339 pages to become unshared. */
1340 if (info->shared)
1341 {
1342 (*_bfd_error_handler)
1343 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1344 bfd_get_filename (abfd),
1345 elf_hppa_howto_table[r_type].name);
1346 }
1347 /* Fall through. */
1348 #endif
1349
1350 case R_PARISC_DIR32: /* .word, PARISC.unwind relocs. */
1351 /* We may want to output a dynamic relocation later. */
1352 need_entry = NEED_DYNREL;
1353 break;
1354
1355 /* This relocation describes the C++ object vtable hierarchy.
1356 Reconstruct it for later use during GC. */
1357 case R_PARISC_GNU_VTINHERIT:
1358 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1359 &h->elf, rel->r_offset))
1360 return false;
1361 continue;
1362
1363 /* This relocation describes which C++ vtable entries are actually
1364 used. Record for later use during GC. */
1365 case R_PARISC_GNU_VTENTRY:
1366 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1367 &h->elf, rel->r_addend))
1368 return false;
1369 continue;
1370
1371 default:
1372 continue;
1373 }
1374
1375 /* Now carry out our orders. */
1376 if (need_entry & NEED_GOT)
1377 {
1378 /* Allocate space for a GOT entry, as well as a dynamic
1379 relocation for this entry. */
1380 if (dynobj == NULL)
1381 hplink->root.dynobj = dynobj = abfd;
1382
1383 if (hplink->sgot == NULL)
1384 {
1385 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1386 return false;
1387 }
1388
1389 if (h != NULL)
1390 {
1391 if (h->elf.got.refcount == -1)
1392 {
1393 h->elf.got.refcount = 1;
1394
1395 /* Make sure this symbol is output as a dynamic symbol. */
1396 if (h->elf.dynindx == -1)
1397 {
1398 if (! bfd_elf32_link_record_dynamic_symbol (info,
1399 &h->elf))
1400 return false;
1401 }
1402
1403 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1404 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1405 }
1406 else
1407 h->elf.got.refcount += 1;
1408 }
1409 else
1410 {
1411 /* This is a global offset table entry for a local symbol. */
1412 if (local_got_refcounts == NULL)
1413 {
1414 size_t size;
1415
1416 /* Allocate space for local got offsets and local
1417 plt offsets. Done this way to save polluting
1418 elf_obj_tdata with another target specific
1419 pointer. */
1420 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1421 local_got_refcounts = ((bfd_signed_vma *)
1422 bfd_alloc (abfd, size));
1423 if (local_got_refcounts == NULL)
1424 return false;
1425 elf_local_got_refcounts (abfd) = local_got_refcounts;
1426 memset (local_got_refcounts, -1, size);
1427 }
1428 if (local_got_refcounts[r_symndx] == -1)
1429 {
1430 local_got_refcounts[r_symndx] = 1;
1431
1432 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1433 if (info->shared)
1434 {
1435 /* If we are generating a shared object, we need to
1436 output a reloc so that the dynamic linker can
1437 adjust this GOT entry (because the address
1438 the shared library is loaded at is not fixed). */
1439 hplink->srelgot->_raw_size +=
1440 sizeof (Elf32_External_Rela);
1441 }
1442 }
1443 else
1444 local_got_refcounts[r_symndx] += 1;
1445 }
1446 }
1447
1448 if (need_entry & NEED_PLT)
1449 {
1450 /* If we are creating a shared library, and this is a reloc
1451 against a weak symbol or a global symbol in a dynamic
1452 object, then we will be creating an import stub and a
1453 .plt entry for the symbol. Similarly, on a normal link
1454 to symbols defined in a dynamic object we'll need the
1455 import stub and a .plt entry. We don't know yet whether
1456 the symbol is defined or not, so make an entry anyway and
1457 clean up later in adjust_dynamic_symbol. */
1458 if ((sec->flags & SEC_ALLOC) != 0)
1459 {
1460 if (h != NULL)
1461 {
1462 if (h->elf.plt.refcount == -1)
1463 {
1464 h->elf.plt.refcount = 1;
1465 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1466 }
1467 else
1468 h->elf.plt.refcount += 1;
1469
1470 /* If this .plt entry is for a plabel, mark it so
1471 that adjust_dynamic_symbol will keep the entry
1472 even if it appears to be local. */
1473 if (need_entry & PLT_PLABEL)
1474 h->plabel = 1;
1475 }
1476 else if (need_entry & PLT_PLABEL)
1477 {
1478 int indx;
1479
1480 if (local_got_refcounts == NULL)
1481 {
1482 size_t size;
1483
1484 /* Allocate space for local got offsets and local
1485 plt offsets. */
1486 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1487 local_got_refcounts = ((bfd_signed_vma *)
1488 bfd_alloc (abfd, size));
1489 if (local_got_refcounts == NULL)
1490 return false;
1491 elf_local_got_refcounts (abfd) = local_got_refcounts;
1492 memset (local_got_refcounts, -1, size);
1493 }
1494 indx = r_symndx + symtab_hdr->sh_info;
1495 if (local_got_refcounts[indx] == -1)
1496 local_got_refcounts[indx] = 1;
1497 else
1498 local_got_refcounts[indx] += 1;
1499 }
1500 }
1501 }
1502
1503 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1504 {
1505 /* Flag this symbol as having a non-got, non-plt reference
1506 so that we generate copy relocs if it turns out to be
1507 dynamic. */
1508 if (h != NULL)
1509 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1510
1511 /* If we are creating a shared library then we need to copy
1512 the reloc into the shared library. However, if we are
1513 linking with -Bsymbolic, we need only copy absolute
1514 relocs or relocs against symbols that are not defined in
1515 an object we are including in the link. PC- or DP- or
1516 DLT-relative relocs against any local sym or global sym
1517 with DEF_REGULAR set, can be discarded. At this point we
1518 have not seen all the input files, so it is possible that
1519 DEF_REGULAR is not set now but will be set later (it is
1520 never cleared). We account for that possibility below by
1521 storing information in the reloc_entries field of the
1522 hash table entry.
1523
1524 A similar situation to the -Bsymbolic case occurs when
1525 creating shared libraries and symbol visibility changes
1526 render the symbol local.
1527
1528 As it turns out, all the relocs we will be creating here
1529 are absolute, so we cannot remove them on -Bsymbolic
1530 links or visibility changes anyway. A STUB_REL reloc
1531 is absolute too, as in that case it is the reloc in the
1532 stub we will be creating, rather than copying the PCREL
1533 reloc in the branch. */
1534 if ((sec->flags & SEC_ALLOC) != 0
1535 && info->shared
1536 #if RELATIVE_DYNAMIC_RELOCS
1537 && (!info->symbolic
1538 || is_absolute_reloc (r_type)
1539 || (h != NULL
1540 && ((h->elf.elf_link_hash_flags
1541 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1542 #endif
1543 )
1544 {
1545 boolean doit;
1546 asection *srel;
1547
1548 srel = sreloc;
1549 if ((need_entry & NEED_STUBREL))
1550 srel = stubreloc;
1551
1552 /* Create a reloc section in dynobj and make room for
1553 this reloc. */
1554 if (srel == NULL)
1555 {
1556 char *name;
1557
1558 if (dynobj == NULL)
1559 hplink->root.dynobj = dynobj = abfd;
1560
1561 name = bfd_elf_string_from_elf_section
1562 (abfd,
1563 elf_elfheader (abfd)->e_shstrndx,
1564 elf_section_data (sec)->rel_hdr.sh_name);
1565 if (name == NULL)
1566 {
1567 (*_bfd_error_handler)
1568 (_("Could not find relocation section for %s"),
1569 sec->name);
1570 bfd_set_error (bfd_error_bad_value);
1571 return false;
1572 }
1573
1574 if ((need_entry & NEED_STUBREL))
1575 {
1576 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1577 char *newname = bfd_malloc (len);
1578
1579 if (newname == NULL)
1580 return false;
1581 strcpy (newname, name);
1582 strcpy (newname + len - sizeof (STUB_SUFFIX),
1583 STUB_SUFFIX);
1584 name = newname;
1585 }
1586
1587 srel = bfd_get_section_by_name (dynobj, name);
1588 if (srel == NULL)
1589 {
1590 flagword flags;
1591
1592 srel = bfd_make_section (dynobj, name);
1593 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1594 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1595 if ((sec->flags & SEC_ALLOC) != 0)
1596 flags |= SEC_ALLOC | SEC_LOAD;
1597 if (srel == NULL
1598 || !bfd_set_section_flags (dynobj, srel, flags)
1599 || !bfd_set_section_alignment (dynobj, srel, 2))
1600 return false;
1601 }
1602 else if ((need_entry & NEED_STUBREL))
1603 free (name);
1604
1605 if ((need_entry & NEED_STUBREL))
1606 stubreloc = srel;
1607 else
1608 sreloc = srel;
1609 }
1610
1611 #if ! LONG_BRANCH_PIC_IN_SHLIB
1612 /* If this is a function call, we only need one dynamic
1613 reloc for the stub as all calls to a particular
1614 function will go through the same stub. Actually, a
1615 long branch stub needs two relocations, but we count
1616 on some intelligence on the part of the dynamic
1617 linker. */
1618 if ((need_entry & NEED_STUBREL))
1619 {
1620 doit = h->stub_reloc_sec != stubreloc;
1621 h->stub_reloc_sec = stubreloc;
1622 }
1623 else
1624 #endif
1625 doit = 1;
1626
1627 if (doit)
1628 {
1629 srel->_raw_size += sizeof (Elf32_External_Rela);
1630
1631 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1632 /* Keep track of relocations we have entered for
1633 this global symbol, so that we can discard them
1634 later if necessary. */
1635 if (h != NULL
1636 && (0
1637 #if RELATIVE_DYNAMIC_RELOCS
1638 || ! is_absolute_reloc (rtype)
1639 #endif
1640 || (need_entry & NEED_STUBREL)))
1641 {
1642 struct elf32_hppa_dyn_reloc_entry *p;
1643
1644 for (p = h->reloc_entries; p != NULL; p = p->next)
1645 if (p->section == srel)
1646 break;
1647
1648 if (p == NULL)
1649 {
1650 p = ((struct elf32_hppa_dyn_reloc_entry *)
1651 bfd_alloc (dynobj, sizeof *p));
1652 if (p == NULL)
1653 return false;
1654 p->next = h->reloc_entries;
1655 h->reloc_entries = p;
1656 p->section = srel;
1657 p->count = 0;
1658 }
1659
1660 /* NEED_STUBREL and NEED_DYNREL are never both
1661 set. Leave the count at zero for the
1662 NEED_STUBREL case as we only ever have one
1663 stub reloc per section per symbol, and this
1664 simplifies code in hppa_discard_copies. */
1665 if (! (need_entry & NEED_STUBREL))
1666 ++p->count;
1667 }
1668 #endif
1669 }
1670 }
1671 }
1672 }
1673
1674 return true;
1675 }
1676
1677 /* Return the section that should be marked against garbage collection
1678 for a given relocation. */
1679
1680 static asection *
1681 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1682 bfd *abfd;
1683 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1684 Elf_Internal_Rela *rel;
1685 struct elf_link_hash_entry *h;
1686 Elf_Internal_Sym *sym;
1687 {
1688 if (h != NULL)
1689 {
1690 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1691 {
1692 case R_PARISC_GNU_VTINHERIT:
1693 case R_PARISC_GNU_VTENTRY:
1694 break;
1695
1696 default:
1697 switch (h->root.type)
1698 {
1699 case bfd_link_hash_defined:
1700 case bfd_link_hash_defweak:
1701 return h->root.u.def.section;
1702
1703 case bfd_link_hash_common:
1704 return h->root.u.c.p->section;
1705
1706 default:
1707 break;
1708 }
1709 }
1710 }
1711 else
1712 {
1713 if (!(elf_bad_symtab (abfd)
1714 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1715 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1716 && sym->st_shndx != SHN_COMMON))
1717 {
1718 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1719 }
1720 }
1721
1722 return NULL;
1723 }
1724
1725 /* Update the got and plt entry reference counts for the section being
1726 removed. */
1727
1728 static boolean
1729 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1730 bfd *abfd;
1731 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1732 asection *sec;
1733 const Elf_Internal_Rela *relocs;
1734 {
1735 Elf_Internal_Shdr *symtab_hdr;
1736 struct elf_link_hash_entry **sym_hashes;
1737 bfd_signed_vma *local_got_refcounts;
1738 bfd_signed_vma *local_plt_refcounts;
1739 const Elf_Internal_Rela *rel, *relend;
1740 unsigned long r_symndx;
1741 struct elf_link_hash_entry *h;
1742 struct elf32_hppa_link_hash_table *hplink;
1743 bfd *dynobj;
1744 asection *sgot;
1745 asection *srelgot;
1746
1747 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1748 sym_hashes = elf_sym_hashes (abfd);
1749 local_got_refcounts = elf_local_got_refcounts (abfd);
1750 local_plt_refcounts = local_got_refcounts;
1751 if (local_plt_refcounts != NULL)
1752 local_plt_refcounts += symtab_hdr->sh_info;
1753 hplink = hppa_link_hash_table (info);
1754 dynobj = hplink->root.dynobj;
1755 if (dynobj == NULL)
1756 return true;
1757
1758 sgot = hplink->sgot;
1759 srelgot = hplink->srelgot;
1760
1761 relend = relocs + sec->reloc_count;
1762 for (rel = relocs; rel < relend; rel++)
1763 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1764 {
1765 case R_PARISC_DLTIND14F:
1766 case R_PARISC_DLTIND14R:
1767 case R_PARISC_DLTIND21L:
1768 r_symndx = ELF32_R_SYM (rel->r_info);
1769 if (r_symndx >= symtab_hdr->sh_info)
1770 {
1771 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1772 if (h->got.refcount > 0)
1773 {
1774 h->got.refcount -= 1;
1775 if (h->got.refcount == 0)
1776 {
1777 sgot->_raw_size -= GOT_ENTRY_SIZE;
1778 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1779 }
1780 }
1781 }
1782 else if (local_got_refcounts != NULL)
1783 {
1784 if (local_got_refcounts[r_symndx] > 0)
1785 {
1786 local_got_refcounts[r_symndx] -= 1;
1787 if (local_got_refcounts[r_symndx] == 0)
1788 {
1789 sgot->_raw_size -= GOT_ENTRY_SIZE;
1790 if (info->shared)
1791 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1792 }
1793 }
1794 }
1795 break;
1796
1797 case R_PARISC_PCREL12F:
1798 case R_PARISC_PCREL17C:
1799 case R_PARISC_PCREL17F:
1800 case R_PARISC_PCREL22F:
1801 r_symndx = ELF32_R_SYM (rel->r_info);
1802 if (r_symndx >= symtab_hdr->sh_info)
1803 {
1804 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1805 if (h->plt.refcount > 0)
1806 h->plt.refcount -= 1;
1807 }
1808 break;
1809
1810 case R_PARISC_PLABEL14R:
1811 case R_PARISC_PLABEL21L:
1812 case R_PARISC_PLABEL32:
1813 r_symndx = ELF32_R_SYM (rel->r_info);
1814 if (r_symndx >= symtab_hdr->sh_info)
1815 {
1816 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1817 if (h->plt.refcount > 0)
1818 h->plt.refcount -= 1;
1819 }
1820 else if (local_plt_refcounts != NULL)
1821 {
1822 if (local_plt_refcounts[r_symndx] > 0)
1823 local_plt_refcounts[r_symndx] -= 1;
1824 }
1825 break;
1826
1827 default:
1828 break;
1829 }
1830
1831 return true;
1832 }
1833
1834 /* Our own version of hide_symbol, so that we can keep plt entries for
1835 plabels. */
1836
1837 static void
1838 elf32_hppa_hide_symbol (info, h)
1839 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1840 struct elf_link_hash_entry *h;
1841 {
1842 h->dynindx = -1;
1843 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1844 {
1845 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1846 h->plt.offset = (bfd_vma) -1;
1847 }
1848 }
1849
1850 /* Adjust a symbol defined by a dynamic object and referenced by a
1851 regular object. The current definition is in some section of the
1852 dynamic object, but we're not including those sections. We have to
1853 change the definition to something the rest of the link can
1854 understand. */
1855
1856 static boolean
1857 elf32_hppa_adjust_dynamic_symbol (info, h)
1858 struct bfd_link_info *info;
1859 struct elf_link_hash_entry *h;
1860 {
1861 bfd *dynobj;
1862 struct elf32_hppa_link_hash_table *hplink;
1863 asection *s;
1864
1865 hplink = hppa_link_hash_table (info);
1866 dynobj = hplink->root.dynobj;
1867
1868 /* If this is a function, put it in the procedure linkage table. We
1869 will fill in the contents of the procedure linkage table later,
1870 when we know the address of the .got section. */
1871 if (h->type == STT_FUNC
1872 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1873 {
1874 if (h->plt.refcount <= 0
1875 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1876 && h->root.type != bfd_link_hash_defweak
1877 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1878 && (!info->shared || info->symbolic)))
1879 {
1880 /* The .plt entry is not needed when:
1881 a) Garbage collection has removed all references to the
1882 symbol, or
1883 b) We know for certain the symbol is defined in this
1884 object, and it's not a weak definition, nor is the symbol
1885 used by a plabel relocation. Either this object is the
1886 application or we are doing a shared symbolic link. */
1887
1888 /* As a special sop to the hppa ABI, we keep a .plt entry
1889 for functions in sections containing PIC code. */
1890 if (!info->shared
1891 && h->plt.refcount > 0
1892 && (h->root.type == bfd_link_hash_defined
1893 || h->root.type == bfd_link_hash_defweak)
1894 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1895 {
1896 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1897 }
1898 else
1899 {
1900 h->plt.offset = (bfd_vma) -1;
1901 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1902 return true;
1903 }
1904 }
1905
1906 /* Make an entry in the .plt section. */
1907 s = hplink->splt;
1908 h->plt.offset = s->_raw_size;
1909 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
1910 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
1911 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1912 {
1913 /* Add some extra space for the dynamic linker to use. */
1914 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
1915 }
1916 else
1917 s->_raw_size += PLT_ENTRY_SIZE;
1918
1919 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1920 {
1921 /* Make sure this symbol is output as a dynamic symbol. */
1922 if (h->dynindx == -1
1923 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1924 {
1925 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1926 return false;
1927 }
1928
1929 /* We also need to make an entry in the .rela.plt section. */
1930 s = hplink->srelplt;
1931 s->_raw_size += sizeof (Elf32_External_Rela);
1932
1933 hplink->need_plt_stub = 1;
1934 }
1935 return true;
1936 }
1937
1938 /* If this is a weak symbol, and there is a real definition, the
1939 processor independent code will have arranged for us to see the
1940 real definition first, and we can just use the same value. */
1941 if (h->weakdef != NULL)
1942 {
1943 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1944 || h->weakdef->root.type == bfd_link_hash_defweak);
1945 h->root.u.def.section = h->weakdef->root.u.def.section;
1946 h->root.u.def.value = h->weakdef->root.u.def.value;
1947 return true;
1948 }
1949
1950 /* This is a reference to a symbol defined by a dynamic object which
1951 is not a function. */
1952
1953 /* If we are creating a shared library, we must presume that the
1954 only references to the symbol are via the global offset table.
1955 For such cases we need not do anything here; the relocations will
1956 be handled correctly by relocate_section. */
1957 if (info->shared)
1958 return true;
1959
1960 /* If there are no references to this symbol that do not use the
1961 GOT, we don't need to generate a copy reloc. */
1962 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1963 return true;
1964
1965 /* We must allocate the symbol in our .dynbss section, which will
1966 become part of the .bss section of the executable. There will be
1967 an entry for this symbol in the .dynsym section. The dynamic
1968 object will contain position independent code, so all references
1969 from the dynamic object to this symbol will go through the global
1970 offset table. The dynamic linker will use the .dynsym entry to
1971 determine the address it must put in the global offset table, so
1972 both the dynamic object and the regular object will refer to the
1973 same memory location for the variable. */
1974
1975 s = hplink->sdynbss;
1976
1977 /* We must generate a COPY reloc to tell the dynamic linker to
1978 copy the initial value out of the dynamic object and into the
1979 runtime process image. We need to remember the offset into the
1980 .rela.bss section we are going to use. */
1981 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1982 {
1983 asection *srel;
1984
1985 srel = hplink->srelbss;
1986 srel->_raw_size += sizeof (Elf32_External_Rela);
1987 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1988 }
1989
1990 {
1991 /* We need to figure out the alignment required for this symbol. I
1992 have no idea how other ELF linkers handle this. */
1993 unsigned int power_of_two;
1994
1995 power_of_two = bfd_log2 (h->size);
1996 if (power_of_two > 3)
1997 power_of_two = 3;
1998
1999 /* Apply the required alignment. */
2000 s->_raw_size = BFD_ALIGN (s->_raw_size,
2001 (bfd_size_type) (1 << power_of_two));
2002 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2003 {
2004 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2005 return false;
2006 }
2007 }
2008 /* Define the symbol as being at this point in the section. */
2009 h->root.u.def.section = s;
2010 h->root.u.def.value = s->_raw_size;
2011
2012 /* Increment the section size to make room for the symbol. */
2013 s->_raw_size += h->size;
2014
2015 return true;
2016 }
2017
2018 /* Called via elf_link_hash_traverse to create .plt entries for an
2019 application that uses statically linked PIC functions. Similar to
2020 the first part of elf32_hppa_adjust_dynamic_symbol. */
2021
2022 static boolean
2023 hppa_handle_PIC_calls (h, inf)
2024 struct elf_link_hash_entry *h;
2025 PTR inf;
2026 {
2027 struct bfd_link_info *info;
2028 bfd *dynobj;
2029 struct elf32_hppa_link_hash_table *hplink;
2030 asection *s;
2031
2032 if (! (h->plt.refcount > 0
2033 && (h->root.type == bfd_link_hash_defined
2034 || h->root.type == bfd_link_hash_defweak)
2035 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2036 {
2037 h->plt.offset = (bfd_vma) -1;
2038 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2039 return true;
2040 }
2041
2042 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2043 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2044
2045 info = (struct bfd_link_info *) inf;
2046 hplink = hppa_link_hash_table (info);
2047 dynobj = hplink->root.dynobj;
2048
2049 /* Make an entry in the .plt section. */
2050 s = hplink->splt;
2051 h->plt.offset = s->_raw_size;
2052 s->_raw_size += PLT_ENTRY_SIZE;
2053
2054 return true;
2055 }
2056
2057 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2058 || RELATIVE_DYNAMIC_RELOCS)
2059 /* This function is called via elf_link_hash_traverse to discard space
2060 we allocated for relocs that it turned out we didn't need. */
2061
2062 static boolean
2063 hppa_discard_copies (h, inf)
2064 struct elf_link_hash_entry *h;
2065 PTR inf;
2066 {
2067 struct elf32_hppa_dyn_reloc_entry *s;
2068 struct elf32_hppa_link_hash_entry *eh;
2069 struct bfd_link_info *info;
2070
2071 eh = (struct elf32_hppa_link_hash_entry *) h;
2072 info = (struct bfd_link_info *) inf;
2073
2074 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2075 /* Handle the stub reloc case. If we have a plt entry for the
2076 function, we won't be needing long branch stubs. s->count will
2077 only be zero for stub relocs, which provides a handy way of
2078 flagging these relocs, and means we need do nothing special for
2079 the forced local and symbolic link case. */
2080 if (eh->stub_reloc_sec != NULL
2081 && eh->elf.plt.offset != (bfd_vma) -1)
2082 {
2083 for (s = eh->reloc_entries; s != NULL; s = s->next)
2084 if (s->count == 0)
2085 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2086 }
2087 #endif
2088
2089 #if RELATIVE_DYNAMIC_RELOCS
2090 /* If a symbol has been forced local or we have found a regular
2091 definition for the symbolic link case, then we won't be needing
2092 any relocs. */
2093 if (eh->elf.dynindx == -1
2094 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2095 && !is_absolute_reloc (r_type)
2096 && info->symbolic))
2097 {
2098 for (s = eh->reloc_entries; s != NULL; s = s->next)
2099 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2100 }
2101 #endif
2102
2103 return true;
2104 }
2105 #endif
2106
2107 /* This function is called via elf_link_hash_traverse to force
2108 millicode symbols local so they do not end up as globals in the
2109 dynamic symbol table. We ought to be able to do this in
2110 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2111 for all dynamic symbols. Arguably, this is a bug in
2112 elf_adjust_dynamic_symbol. */
2113
2114 static boolean
2115 clobber_millicode_symbols (h, info)
2116 struct elf_link_hash_entry *h;
2117 struct bfd_link_info *info;
2118 {
2119 /* Note! We only want to remove these from the dynamic symbol
2120 table. Therefore we do not set ELF_LINK_FORCED_LOCAL. */
2121 if (h->type == STT_PARISC_MILLI)
2122 elf32_hppa_hide_symbol(info, h);
2123 return true;
2124 }
2125
2126 /* Set the sizes of the dynamic sections. */
2127
2128 static boolean
2129 elf32_hppa_size_dynamic_sections (output_bfd, info)
2130 bfd *output_bfd;
2131 struct bfd_link_info *info;
2132 {
2133 struct elf32_hppa_link_hash_table *hplink;
2134 bfd *dynobj;
2135 asection *s;
2136 boolean relocs;
2137 boolean reltext;
2138
2139 hplink = hppa_link_hash_table (info);
2140 dynobj = hplink->root.dynobj;
2141 BFD_ASSERT (dynobj != NULL);
2142
2143 if (hplink->root.dynamic_sections_created)
2144 {
2145 bfd *i;
2146
2147 /* Set the contents of the .interp section to the interpreter. */
2148 if (! info->shared)
2149 {
2150 s = bfd_get_section_by_name (dynobj, ".interp");
2151 BFD_ASSERT (s != NULL);
2152 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2153 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2154 }
2155
2156 /* Force millicode symbols local. */
2157 elf_link_hash_traverse (&hplink->root,
2158 clobber_millicode_symbols,
2159 info);
2160
2161 /* Set up .plt offsets for local plabels. */
2162 for (i = info->input_bfds; i; i = i->link_next)
2163 {
2164 bfd_signed_vma *local_plt;
2165 bfd_signed_vma *end_local_plt;
2166 bfd_size_type locsymcount;
2167 Elf_Internal_Shdr *symtab_hdr;
2168
2169 local_plt = elf_local_got_refcounts (i);
2170 if (!local_plt)
2171 continue;
2172
2173 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2174 locsymcount = symtab_hdr->sh_info;
2175 local_plt += locsymcount;
2176 end_local_plt = local_plt + locsymcount;
2177
2178 for (; local_plt < end_local_plt; ++local_plt)
2179 {
2180 if (*local_plt > 0)
2181 {
2182 s = hplink->splt;
2183 *local_plt = s->_raw_size;
2184 s->_raw_size += PLT_ENTRY_SIZE;
2185 if (info->shared)
2186 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2187 }
2188 else
2189 *local_plt = (bfd_vma) -1;
2190 }
2191 }
2192 }
2193 else
2194 {
2195 /* Run through the function symbols, looking for any that are
2196 PIC, and allocate space for the necessary .plt entries so
2197 that %r19 will be set up. */
2198 if (! info->shared)
2199 elf_link_hash_traverse (&hplink->root,
2200 hppa_handle_PIC_calls,
2201 info);
2202
2203 /* We may have created entries in the .rela.got section.
2204 However, if we are not creating the dynamic sections, we will
2205 not actually use these entries. Reset the size of .rela.got,
2206 which will cause it to get stripped from the output file
2207 below. */
2208 hplink->srelgot->_raw_size = 0;
2209 }
2210
2211 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2212 || RELATIVE_DYNAMIC_RELOCS)
2213 /* If this is a -Bsymbolic shared link, then we need to discard all
2214 relocs against symbols defined in a regular object. We also need
2215 to lose relocs we've allocated for long branch stubs if we know
2216 we won't be generating a stub. */
2217 if (info->shared)
2218 elf_link_hash_traverse (&hplink->root,
2219 hppa_discard_copies,
2220 info);
2221 #endif
2222
2223 /* The check_relocs and adjust_dynamic_symbol entry points have
2224 determined the sizes of the various dynamic sections. Allocate
2225 memory for them. */
2226 relocs = false;
2227 reltext = false;
2228 for (s = dynobj->sections; s != NULL; s = s->next)
2229 {
2230 const char *name;
2231
2232 if ((s->flags & SEC_LINKER_CREATED) == 0)
2233 continue;
2234
2235 /* It's OK to base decisions on the section name, because none
2236 of the dynobj section names depend upon the input files. */
2237 name = bfd_get_section_name (dynobj, s);
2238
2239 if (strncmp (name, ".rela", 5) == 0)
2240 {
2241 if (s->_raw_size != 0)
2242 {
2243 asection *target;
2244 const char *outname;
2245
2246 /* Remember whether there are any reloc sections other
2247 than .rela.plt. */
2248 if (strcmp (name+5, ".plt") != 0)
2249 relocs = true;
2250
2251 /* If this relocation section applies to a read only
2252 section, then we probably need a DT_TEXTREL entry. */
2253 outname = bfd_get_section_name (output_bfd,
2254 s->output_section);
2255 target = bfd_get_section_by_name (output_bfd, outname + 5);
2256 if (target != NULL
2257 && (target->flags & SEC_READONLY) != 0
2258 && (target->flags & SEC_ALLOC) != 0)
2259 reltext = true;
2260
2261 /* We use the reloc_count field as a counter if we need
2262 to copy relocs into the output file. */
2263 s->reloc_count = 0;
2264 }
2265 }
2266 else if (strcmp (name, ".plt") == 0)
2267 {
2268 if (hplink->need_plt_stub)
2269 {
2270 /* Make space for the plt stub at the end of the .plt
2271 section. We want this stub right at the end, up
2272 against the .got section. */
2273 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2274 int pltalign = bfd_section_alignment (dynobj, s);
2275 bfd_size_type mask;
2276
2277 if (gotalign > pltalign)
2278 bfd_set_section_alignment (dynobj, s, gotalign);
2279 mask = ((bfd_size_type) 1 << gotalign) - 1;
2280 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2281 }
2282 }
2283 else if (strcmp (name, ".got") == 0)
2284 ;
2285 else
2286 {
2287 /* It's not one of our sections, so don't allocate space. */
2288 continue;
2289 }
2290
2291 if (s->_raw_size == 0)
2292 {
2293 /* If we don't need this section, strip it from the
2294 output file. This is mostly to handle .rela.bss and
2295 .rela.plt. We must create both sections in
2296 create_dynamic_sections, because they must be created
2297 before the linker maps input sections to output
2298 sections. The linker does that before
2299 adjust_dynamic_symbol is called, and it is that
2300 function which decides whether anything needs to go
2301 into these sections. */
2302 _bfd_strip_section_from_output (info, s);
2303 continue;
2304 }
2305
2306 /* Allocate memory for the section contents. Zero it, because
2307 we may not fill in all the reloc sections. */
2308 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2309 if (s->contents == NULL && s->_raw_size != 0)
2310 return false;
2311 }
2312
2313 if (hplink->root.dynamic_sections_created)
2314 {
2315 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2316 actually has nothing to do with the PLT, it is how we
2317 communicate the LTP value of a load module to the dynamic
2318 linker. */
2319 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2320 return false;
2321
2322 /* Add some entries to the .dynamic section. We fill in the
2323 values later, in elf32_hppa_finish_dynamic_sections, but we
2324 must add the entries now so that we get the correct size for
2325 the .dynamic section. The DT_DEBUG entry is filled in by the
2326 dynamic linker and used by the debugger. */
2327 if (! info->shared)
2328 {
2329 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2330 return false;
2331 }
2332
2333 if (hplink->srelplt->_raw_size != 0)
2334 {
2335 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2336 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2337 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2338 return false;
2339 }
2340
2341 if (relocs)
2342 {
2343 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2344 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2345 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2346 sizeof (Elf32_External_Rela)))
2347 return false;
2348 }
2349
2350 if (reltext)
2351 {
2352 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2353 return false;
2354 info->flags |= DF_TEXTREL;
2355 }
2356 }
2357
2358 return true;
2359 }
2360
2361 /* External entry points for sizing and building linker stubs. */
2362
2363 /* Determine and set the size of the stub section for a final link.
2364
2365 The basic idea here is to examine all the relocations looking for
2366 PC-relative calls to a target that is unreachable with a "bl"
2367 instruction. */
2368
2369 boolean
2370 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2371 add_stub_section, layout_sections_again)
2372 bfd *output_bfd;
2373 bfd *stub_bfd;
2374 struct bfd_link_info *info;
2375 boolean multi_subspace;
2376 bfd_signed_vma group_size;
2377 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2378 void (*layout_sections_again) PARAMS ((void));
2379 {
2380 bfd *input_bfd;
2381 asection *section;
2382 asection **input_list, **list;
2383 Elf_Internal_Sym *local_syms, **all_local_syms;
2384 unsigned int bfd_indx, bfd_count;
2385 int top_id, top_index;
2386 struct elf32_hppa_link_hash_table *hplink;
2387 bfd_size_type stub_group_size;
2388 boolean stubs_always_before_branch;
2389 boolean stub_changed = 0;
2390 boolean ret = 0;
2391
2392 hplink = hppa_link_hash_table (info);
2393
2394 /* Stash our params away. */
2395 hplink->stub_bfd = stub_bfd;
2396 hplink->multi_subspace = multi_subspace;
2397 hplink->add_stub_section = add_stub_section;
2398 hplink->layout_sections_again = layout_sections_again;
2399 stubs_always_before_branch = group_size < 0;
2400 if (group_size < 0)
2401 stub_group_size = -group_size;
2402 else
2403 stub_group_size = group_size;
2404 if (stub_group_size == 1)
2405 {
2406 /* Default values. */
2407 stub_group_size = 8000000;
2408 if (hplink->has_17bit_branch || hplink->multi_subspace)
2409 stub_group_size = 250000;
2410 if (hplink->has_12bit_branch)
2411 stub_group_size = 7812;
2412 }
2413
2414 /* Count the number of input BFDs and find the top input section id. */
2415 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2416 input_bfd != NULL;
2417 input_bfd = input_bfd->link_next)
2418 {
2419 bfd_count += 1;
2420 for (section = input_bfd->sections;
2421 section != NULL;
2422 section = section->next)
2423 {
2424 if (top_id < section->id)
2425 top_id = section->id;
2426 }
2427 }
2428
2429 hplink->stub_group
2430 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2431 if (hplink->stub_group == NULL)
2432 return false;
2433
2434 /* Make a list of input sections for each output section included in
2435 the link.
2436
2437 We can't use output_bfd->section_count here to find the top output
2438 section index as some sections may have been removed, and
2439 _bfd_strip_section_from_output doesn't renumber the indices. */
2440 for (section = output_bfd->sections, top_index = 0;
2441 section != NULL;
2442 section = section->next)
2443 {
2444 if (top_index < section->index)
2445 top_index = section->index;
2446 }
2447
2448 input_list
2449 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2450 if (input_list == NULL)
2451 return false;
2452
2453 /* For sections we aren't interested in, mark their entries with a
2454 value we can check later. */
2455 list = input_list + top_index;
2456 do
2457 *list = bfd_abs_section_ptr;
2458 while (list-- != input_list);
2459
2460 for (section = output_bfd->sections;
2461 section != NULL;
2462 section = section->next)
2463 {
2464 if ((section->flags & SEC_CODE) != 0)
2465 input_list[section->index] = NULL;
2466 }
2467
2468 /* Now actually build the lists. */
2469 for (input_bfd = info->input_bfds;
2470 input_bfd != NULL;
2471 input_bfd = input_bfd->link_next)
2472 {
2473 for (section = input_bfd->sections;
2474 section != NULL;
2475 section = section->next)
2476 {
2477 if (section->output_section != NULL
2478 && section->output_section->owner == output_bfd
2479 && section->output_section->index <= top_index)
2480 {
2481 list = input_list + section->output_section->index;
2482 if (*list != bfd_abs_section_ptr)
2483 {
2484 /* Steal the link_sec pointer for our list. */
2485 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2486 /* This happens to make the list in reverse order,
2487 which is what we want. */
2488 PREV_SEC (section) = *list;
2489 *list = section;
2490 }
2491 }
2492 }
2493 }
2494
2495 /* See whether we can group stub sections together. Grouping stub
2496 sections may result in fewer stubs. More importantly, we need to
2497 put all .init* and .fini* stubs at the beginning of the .init or
2498 .fini output sections respectively, because glibc splits the
2499 _init and _fini functions into multiple parts. Putting a stub in
2500 the middle of a function is not a good idea. */
2501 list = input_list + top_index;
2502 do
2503 {
2504 asection *tail = *list;
2505 if (tail == bfd_abs_section_ptr)
2506 continue;
2507 while (tail != NULL)
2508 {
2509 asection *curr;
2510 asection *prev;
2511 bfd_size_type total;
2512
2513 curr = tail;
2514 if (tail->_cooked_size)
2515 total = tail->_cooked_size;
2516 else
2517 total = tail->_raw_size;
2518 while ((prev = PREV_SEC (curr)) != NULL
2519 && ((total += curr->output_offset - prev->output_offset)
2520 < stub_group_size))
2521 curr = prev;
2522
2523 /* OK, the size from the start of CURR to the end is less
2524 than 250000 bytes and thus can be handled by one stub
2525 section. (or the tail section is itself larger than
2526 250000 bytes, in which case we may be toast.)
2527 We should really be keeping track of the total size of
2528 stubs added here, as stubs contribute to the final output
2529 section size. That's a little tricky, and this way will
2530 only break if stubs added total more than 12144 bytes, or
2531 1518 long branch stubs. It seems unlikely for more than
2532 1518 different functions to be called, especially from
2533 code only 250000 bytes long. */
2534 do
2535 {
2536 prev = PREV_SEC (tail);
2537 /* Set up this stub group. */
2538 hplink->stub_group[tail->id].link_sec = curr;
2539 }
2540 while (tail != curr && (tail = prev) != NULL);
2541
2542 /* But wait, there's more! Input sections up to 250000
2543 bytes before the stub section can be handled by it too. */
2544 if (!stubs_always_before_branch)
2545 {
2546 total = 0;
2547 while (prev != NULL
2548 && ((total += tail->output_offset - prev->output_offset)
2549 < stub_group_size))
2550 {
2551 tail = prev;
2552 prev = PREV_SEC (tail);
2553 hplink->stub_group[tail->id].link_sec = curr;
2554 }
2555 }
2556 tail = prev;
2557 }
2558 }
2559 while (list-- != input_list);
2560 free (input_list);
2561 #undef PREV_SEC
2562
2563 /* We want to read in symbol extension records only once. To do this
2564 we need to read in the local symbols in parallel and save them for
2565 later use; so hold pointers to the local symbols in an array. */
2566 all_local_syms
2567 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2568 * bfd_count);
2569 if (all_local_syms == NULL)
2570 return false;
2571
2572 /* Walk over all the input BFDs, swapping in local symbols.
2573 If we are creating a shared library, create hash entries for the
2574 export stubs. */
2575 for (input_bfd = info->input_bfds, bfd_indx = 0;
2576 input_bfd != NULL;
2577 input_bfd = input_bfd->link_next, bfd_indx++)
2578 {
2579 Elf_Internal_Shdr *symtab_hdr;
2580 Elf_Internal_Sym *isym;
2581 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2582
2583 /* We'll need the symbol table in a second. */
2584 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2585 if (symtab_hdr->sh_info == 0)
2586 continue;
2587
2588 /* We need an array of the local symbols attached to the input bfd.
2589 Unfortunately, we're going to have to read & swap them in. */
2590 local_syms = (Elf_Internal_Sym *)
2591 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2592 if (local_syms == NULL)
2593 {
2594 goto error_ret_free_local;
2595 }
2596 all_local_syms[bfd_indx] = local_syms;
2597 ext_syms = (Elf32_External_Sym *)
2598 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2599 if (ext_syms == NULL)
2600 {
2601 goto error_ret_free_local;
2602 }
2603
2604 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2605 || (bfd_read (ext_syms, 1,
2606 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2607 input_bfd)
2608 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2609 {
2610 free (ext_syms);
2611 goto error_ret_free_local;
2612 }
2613
2614 /* Swap the local symbols in. */
2615 isym = local_syms;
2616 esym = ext_syms;
2617 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2618 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2619
2620 /* Now we can free the external symbols. */
2621 free (ext_syms);
2622
2623 #if ! LONG_BRANCH_PIC_IN_SHLIB
2624 /* If this is a shared link, find all the stub reloc sections. */
2625 if (info->shared)
2626 for (section = input_bfd->sections;
2627 section != NULL;
2628 section = section->next)
2629 {
2630 char *name;
2631 asection *reloc_sec;
2632
2633 name = bfd_malloc (strlen (section->name)
2634 + sizeof STUB_SUFFIX
2635 + 5);
2636 if (name == NULL)
2637 return false;
2638 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2639 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2640 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2641 free (name);
2642 }
2643 #endif
2644
2645 if (info->shared && hplink->multi_subspace)
2646 {
2647 struct elf_link_hash_entry **sym_hashes;
2648 struct elf_link_hash_entry **end_hashes;
2649 unsigned int symcount;
2650
2651 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2652 - symtab_hdr->sh_info);
2653 sym_hashes = elf_sym_hashes (input_bfd);
2654 end_hashes = sym_hashes + symcount;
2655
2656 /* Look through the global syms for functions; We need to
2657 build export stubs for all globally visible functions. */
2658 for (; sym_hashes < end_hashes; sym_hashes++)
2659 {
2660 struct elf32_hppa_link_hash_entry *hash;
2661
2662 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2663
2664 while (hash->elf.root.type == bfd_link_hash_indirect
2665 || hash->elf.root.type == bfd_link_hash_warning)
2666 hash = ((struct elf32_hppa_link_hash_entry *)
2667 hash->elf.root.u.i.link);
2668
2669 /* At this point in the link, undefined syms have been
2670 resolved, so we need to check that the symbol was
2671 defined in this BFD. */
2672 if ((hash->elf.root.type == bfd_link_hash_defined
2673 || hash->elf.root.type == bfd_link_hash_defweak)
2674 && hash->elf.type == STT_FUNC
2675 && hash->elf.root.u.def.section->output_section != NULL
2676 && (hash->elf.root.u.def.section->output_section->owner
2677 == output_bfd)
2678 && hash->elf.root.u.def.section->owner == input_bfd
2679 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2680 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2681 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2682 {
2683 asection *sec;
2684 const char *stub_name;
2685 struct elf32_hppa_stub_hash_entry *stub_entry;
2686
2687 sec = hash->elf.root.u.def.section;
2688 stub_name = hash->elf.root.root.string;
2689 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2690 stub_name,
2691 false, false);
2692 if (stub_entry == NULL)
2693 {
2694 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2695 if (!stub_entry)
2696 goto error_ret_free_local;
2697
2698 stub_entry->target_value = hash->elf.root.u.def.value;
2699 stub_entry->target_section = hash->elf.root.u.def.section;
2700 stub_entry->stub_type = hppa_stub_export;
2701 stub_entry->h = hash;
2702 stub_changed = 1;
2703 }
2704 else
2705 {
2706 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2707 bfd_get_filename (input_bfd),
2708 stub_name);
2709 }
2710 }
2711 }
2712 }
2713 }
2714
2715 while (1)
2716 {
2717 asection *stub_sec;
2718
2719 for (input_bfd = info->input_bfds, bfd_indx = 0;
2720 input_bfd != NULL;
2721 input_bfd = input_bfd->link_next, bfd_indx++)
2722 {
2723 Elf_Internal_Shdr *symtab_hdr;
2724
2725 /* We'll need the symbol table in a second. */
2726 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2727 if (symtab_hdr->sh_info == 0)
2728 continue;
2729
2730 local_syms = all_local_syms[bfd_indx];
2731
2732 /* Walk over each section attached to the input bfd. */
2733 for (section = input_bfd->sections;
2734 section != NULL;
2735 section = section->next)
2736 {
2737 Elf_Internal_Shdr *input_rel_hdr;
2738 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2739 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2740
2741 /* If there aren't any relocs, then there's nothing more
2742 to do. */
2743 if ((section->flags & SEC_RELOC) == 0
2744 || section->reloc_count == 0)
2745 continue;
2746
2747 /* If this section is a link-once section that will be
2748 discarded, then don't create any stubs. */
2749 if (section->output_section == NULL
2750 || section->output_section->owner != output_bfd)
2751 continue;
2752
2753 /* Allocate space for the external relocations. */
2754 external_relocs
2755 = ((Elf32_External_Rela *)
2756 bfd_malloc (section->reloc_count
2757 * sizeof (Elf32_External_Rela)));
2758 if (external_relocs == NULL)
2759 {
2760 goto error_ret_free_local;
2761 }
2762
2763 /* Likewise for the internal relocations. */
2764 internal_relocs = ((Elf_Internal_Rela *)
2765 bfd_malloc (section->reloc_count
2766 * sizeof (Elf_Internal_Rela)));
2767 if (internal_relocs == NULL)
2768 {
2769 free (external_relocs);
2770 goto error_ret_free_local;
2771 }
2772
2773 /* Read in the external relocs. */
2774 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2775 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2776 || bfd_read (external_relocs, 1,
2777 input_rel_hdr->sh_size,
2778 input_bfd) != input_rel_hdr->sh_size)
2779 {
2780 free (external_relocs);
2781 error_ret_free_internal:
2782 free (internal_relocs);
2783 goto error_ret_free_local;
2784 }
2785
2786 /* Swap in the relocs. */
2787 erela = external_relocs;
2788 erelaend = erela + section->reloc_count;
2789 irela = internal_relocs;
2790 for (; erela < erelaend; erela++, irela++)
2791 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2792
2793 /* We're done with the external relocs, free them. */
2794 free (external_relocs);
2795
2796 /* Now examine each relocation. */
2797 irela = internal_relocs;
2798 irelaend = irela + section->reloc_count;
2799 for (; irela < irelaend; irela++)
2800 {
2801 unsigned int r_type, r_indx;
2802 enum elf32_hppa_stub_type stub_type;
2803 struct elf32_hppa_stub_hash_entry *stub_entry;
2804 asection *sym_sec;
2805 bfd_vma sym_value;
2806 bfd_vma destination;
2807 struct elf32_hppa_link_hash_entry *hash;
2808 char *stub_name;
2809 const asection *id_sec;
2810
2811 r_type = ELF32_R_TYPE (irela->r_info);
2812 r_indx = ELF32_R_SYM (irela->r_info);
2813
2814 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2815 {
2816 bfd_set_error (bfd_error_bad_value);
2817 goto error_ret_free_internal;
2818 }
2819
2820 /* Only look for stubs on call instructions. */
2821 if (r_type != (unsigned int) R_PARISC_PCREL12F
2822 && r_type != (unsigned int) R_PARISC_PCREL17F
2823 && r_type != (unsigned int) R_PARISC_PCREL22F)
2824 continue;
2825
2826 /* Now determine the call target, its name, value,
2827 section. */
2828 sym_sec = NULL;
2829 sym_value = 0;
2830 destination = 0;
2831 hash = NULL;
2832 if (r_indx < symtab_hdr->sh_info)
2833 {
2834 /* It's a local symbol. */
2835 Elf_Internal_Sym *sym;
2836 Elf_Internal_Shdr *hdr;
2837
2838 sym = local_syms + r_indx;
2839 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2840 sym_sec = hdr->bfd_section;
2841 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2842 sym_value = sym->st_value;
2843 destination = (sym_value + irela->r_addend
2844 + sym_sec->output_offset
2845 + sym_sec->output_section->vma);
2846 }
2847 else
2848 {
2849 /* It's an external symbol. */
2850 int e_indx;
2851
2852 e_indx = r_indx - symtab_hdr->sh_info;
2853 hash = ((struct elf32_hppa_link_hash_entry *)
2854 elf_sym_hashes (input_bfd)[e_indx]);
2855
2856 while (hash->elf.root.type == bfd_link_hash_indirect
2857 || hash->elf.root.type == bfd_link_hash_warning)
2858 hash = ((struct elf32_hppa_link_hash_entry *)
2859 hash->elf.root.u.i.link);
2860
2861 if (hash->elf.root.type == bfd_link_hash_defined
2862 || hash->elf.root.type == bfd_link_hash_defweak)
2863 {
2864 sym_sec = hash->elf.root.u.def.section;
2865 sym_value = hash->elf.root.u.def.value;
2866 if (sym_sec->output_section != NULL)
2867 destination = (sym_value + irela->r_addend
2868 + sym_sec->output_offset
2869 + sym_sec->output_section->vma);
2870 }
2871 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2872 {
2873 if (! info->shared)
2874 continue;
2875 }
2876 else if (hash->elf.root.type == bfd_link_hash_undefined)
2877 {
2878 if (! (info->shared
2879 && !info->no_undefined
2880 && (ELF_ST_VISIBILITY (hash->elf.other)
2881 == STV_DEFAULT)))
2882 continue;
2883 }
2884 else
2885 {
2886 bfd_set_error (bfd_error_bad_value);
2887 goto error_ret_free_internal;
2888 }
2889 }
2890
2891 /* Determine what (if any) linker stub is needed. */
2892 stub_type = hppa_type_of_stub (section, irela, hash,
2893 destination);
2894 if (stub_type == hppa_stub_none)
2895 continue;
2896
2897 /* Support for grouping stub sections. */
2898 id_sec = hplink->stub_group[section->id].link_sec;
2899
2900 /* Get the name of this stub. */
2901 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2902 if (!stub_name)
2903 goto error_ret_free_internal;
2904
2905 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2906 stub_name,
2907 false, false);
2908 if (stub_entry != NULL)
2909 {
2910 /* The proper stub has already been created. */
2911 free (stub_name);
2912 continue;
2913 }
2914
2915 stub_entry = hppa_add_stub (stub_name, section, hplink);
2916 if (stub_entry == NULL)
2917 {
2918 free (stub_name);
2919 goto error_ret_free_local;
2920 }
2921
2922 stub_entry->target_value = sym_value;
2923 stub_entry->target_section = sym_sec;
2924 stub_entry->stub_type = stub_type;
2925 if (info->shared)
2926 {
2927 if (stub_type == hppa_stub_import)
2928 stub_entry->stub_type = hppa_stub_import_shared;
2929 else if (stub_type == hppa_stub_long_branch
2930 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
2931 stub_entry->stub_type = hppa_stub_long_branch_shared;
2932 }
2933 stub_entry->h = hash;
2934 stub_changed = 1;
2935 }
2936
2937 /* We're done with the internal relocs, free them. */
2938 free (internal_relocs);
2939 }
2940 }
2941
2942 if (!stub_changed)
2943 break;
2944
2945 /* OK, we've added some stubs. Find out the new size of the
2946 stub sections. */
2947 for (stub_sec = hplink->stub_bfd->sections;
2948 stub_sec != NULL;
2949 stub_sec = stub_sec->next)
2950 {
2951 stub_sec->_raw_size = 0;
2952 stub_sec->_cooked_size = 0;
2953 }
2954 #if ! LONG_BRANCH_PIC_IN_SHLIB
2955 {
2956 int i;
2957
2958 for (i = top_id; i >= 0; --i)
2959 {
2960 /* This will probably hit the same section many times.. */
2961 stub_sec = hplink->stub_group[i].reloc_sec;
2962 if (stub_sec != NULL)
2963 {
2964 stub_sec->_raw_size = 0;
2965 stub_sec->_cooked_size = 0;
2966 }
2967 }
2968 }
2969 #endif
2970
2971 bfd_hash_traverse (&hplink->stub_hash_table,
2972 hppa_size_one_stub,
2973 hplink);
2974
2975 /* Ask the linker to do its stuff. */
2976 (*hplink->layout_sections_again) ();
2977 stub_changed = 0;
2978 }
2979
2980 ret = 1;
2981
2982 error_ret_free_local:
2983 while (bfd_count-- > 0)
2984 if (all_local_syms[bfd_count])
2985 free (all_local_syms[bfd_count]);
2986 free (all_local_syms);
2987
2988 return ret;
2989 }
2990
2991 /* For a final link, this function is called after we have sized the
2992 stubs to provide a value for __gp. */
2993
2994 boolean
2995 elf32_hppa_set_gp (abfd, info)
2996 bfd *abfd;
2997 struct bfd_link_info *info;
2998 {
2999 struct elf32_hppa_link_hash_table *hplink;
3000 struct elf_link_hash_entry *h;
3001 asection *sec;
3002 bfd_vma gp_val;
3003
3004 hplink = hppa_link_hash_table (info);
3005 h = elf_link_hash_lookup (&hplink->root, "$global$",
3006 false, false, false);
3007
3008 if (h != NULL && h->root.type == bfd_link_hash_defined)
3009 {
3010 gp_val = h->root.u.def.value;
3011 sec = h->root.u.def.section;
3012 }
3013 else
3014 {
3015 /* Choose to point our LTP at, in this order, one of .plt, .got,
3016 or .data, if these sections exist. In the case of choosing
3017 .plt try to make the LTP ideal for addressing anywhere in the
3018 .plt or .got with a 14 bit signed offset. Typically, the end
3019 of the .plt is the start of the .got, so choose .plt + 0x2000
3020 if either the .plt or .got is larger than 0x2000. If both
3021 the .plt and .got are smaller than 0x2000, choose the end of
3022 the .plt section. */
3023
3024 sec = hplink->splt;
3025 if (sec != NULL)
3026 {
3027 gp_val = sec->_raw_size;
3028 if (gp_val > 0x2000
3029 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3030 {
3031 gp_val = 0x2000;
3032 }
3033 }
3034 else
3035 {
3036 gp_val = 0;
3037 sec = hplink->sgot;
3038 if (sec != NULL)
3039 {
3040 /* We know we don't have a .plt. If .got is large,
3041 offset our LTP. */
3042 if (sec->_raw_size > 0x2000)
3043 gp_val = 0x2000;
3044 }
3045 else
3046 {
3047 /* No .plt or .got. Who cares what the LTP is? */
3048 sec = bfd_get_section_by_name (abfd, ".data");
3049 }
3050 }
3051 }
3052
3053 if (sec != NULL)
3054 gp_val += sec->output_section->vma + sec->output_offset;
3055
3056 elf_gp (abfd) = gp_val;
3057 return true;
3058 }
3059
3060 /* Build all the stubs associated with the current output file. The
3061 stubs are kept in a hash table attached to the main linker hash
3062 table. We also set up the .plt entries for statically linked PIC
3063 functions here. This function is called via hppaelf_finish in the
3064 linker. */
3065
3066 boolean
3067 elf32_hppa_build_stubs (info)
3068 struct bfd_link_info *info;
3069 {
3070 asection *stub_sec;
3071 struct bfd_hash_table *table;
3072 struct elf32_hppa_link_hash_table *hplink;
3073
3074 hplink = hppa_link_hash_table (info);
3075
3076 for (stub_sec = hplink->stub_bfd->sections;
3077 stub_sec != NULL;
3078 stub_sec = stub_sec->next)
3079 {
3080 size_t size;
3081
3082 /* Allocate memory to hold the linker stubs. */
3083 size = stub_sec->_raw_size;
3084 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3085 size);
3086 if (stub_sec->contents == NULL && size != 0)
3087 return false;
3088 stub_sec->_raw_size = 0;
3089 }
3090
3091 /* Build the stubs as directed by the stub hash table. */
3092 table = &hplink->stub_hash_table;
3093 bfd_hash_traverse (table, hppa_build_one_stub, info);
3094
3095 return true;
3096 }
3097
3098 /* Perform a relocation as part of a final link. */
3099
3100 static bfd_reloc_status_type
3101 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3102 asection *input_section;
3103 bfd_byte *contents;
3104 const Elf_Internal_Rela *rel;
3105 bfd_vma value;
3106 struct elf32_hppa_link_hash_table *hplink;
3107 asection *sym_sec;
3108 struct elf32_hppa_link_hash_entry *h;
3109 {
3110 int insn;
3111 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3112 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3113 int r_format = howto->bitsize;
3114 enum hppa_reloc_field_selector_type_alt r_field;
3115 bfd *input_bfd = input_section->owner;
3116 bfd_vma offset = rel->r_offset;
3117 bfd_vma max_branch_offset = 0;
3118 bfd_byte *hit_data = contents + offset;
3119 bfd_signed_vma addend = rel->r_addend;
3120 bfd_vma location;
3121 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3122 int val;
3123
3124 if (r_type == R_PARISC_NONE)
3125 return bfd_reloc_ok;
3126
3127 insn = bfd_get_32 (input_bfd, hit_data);
3128
3129 /* Find out where we are and where we're going. */
3130 location = (offset +
3131 input_section->output_offset +
3132 input_section->output_section->vma);
3133
3134 switch (r_type)
3135 {
3136 case R_PARISC_PCREL12F:
3137 case R_PARISC_PCREL17F:
3138 case R_PARISC_PCREL22F:
3139 /* If this is a call to a function defined in another dynamic
3140 library, or if it is a call to a PIC function in the same
3141 object, or if this is a shared link and it is a call to a
3142 weak symbol which may or may not be in the same object, then
3143 find the import stub in the stub hash. */
3144 if (sym_sec == NULL
3145 || sym_sec->output_section == NULL
3146 || (h != NULL &&
3147 (h->pic_call
3148 || (h->elf.root.type == bfd_link_hash_defweak
3149 && h->elf.dynindx != -1
3150 && h->elf.plt.offset != (bfd_vma) -1))))
3151 {
3152 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3153 h, rel, hplink);
3154 if (stub_entry != NULL)
3155 {
3156 value = (stub_entry->stub_offset
3157 + stub_entry->stub_sec->output_offset
3158 + stub_entry->stub_sec->output_section->vma);
3159 addend = 0;
3160 }
3161 else if (sym_sec == NULL && h != NULL
3162 && h->elf.root.type == bfd_link_hash_undefweak)
3163 {
3164 /* It's OK if undefined weak. Make undefined weak
3165 branches go nowhere. */
3166 value = location;
3167 addend = 0;
3168 }
3169 else
3170 return bfd_reloc_notsupported;
3171 }
3172 /* Fall thru. */
3173
3174 case R_PARISC_PCREL21L:
3175 case R_PARISC_PCREL17C:
3176 case R_PARISC_PCREL17R:
3177 case R_PARISC_PCREL14R:
3178 case R_PARISC_PCREL14F:
3179 /* Make it a pc relative offset. */
3180 value -= location;
3181 addend -= 8;
3182 break;
3183
3184 case R_PARISC_DPREL21L:
3185 case R_PARISC_DPREL14R:
3186 case R_PARISC_DPREL14F:
3187 /* For all the DP relative relocations, we need to examine the symbol's
3188 section. If it's a code section, then "data pointer relative" makes
3189 no sense. In that case we don't adjust the "value", and for 21 bit
3190 addil instructions, we change the source addend register from %dp to
3191 %r0. This situation commonly arises when a variable's "constness"
3192 is declared differently from the way the variable is defined. For
3193 instance: "extern int foo" with foo defined as "const int foo". */
3194 if (sym_sec == NULL)
3195 break;
3196 if ((sym_sec->flags & SEC_CODE) != 0)
3197 {
3198 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3199 == (((int) OP_ADDIL << 26) | (27 << 21)))
3200 {
3201 insn &= ~ (0x1f << 21);
3202 #if 1 /* debug them. */
3203 (*_bfd_error_handler)
3204 (_("%s(%s+0x%lx): fixing %s"),
3205 bfd_get_filename (input_bfd),
3206 input_section->name,
3207 (long) rel->r_offset,
3208 howto->name);
3209 #endif
3210 }
3211 /* Now try to make things easy for the dynamic linker. */
3212
3213 break;
3214 }
3215 /* Fall thru. */
3216
3217 case R_PARISC_DLTIND21L:
3218 case R_PARISC_DLTIND14R:
3219 case R_PARISC_DLTIND14F:
3220 value -= elf_gp (input_section->output_section->owner);
3221 break;
3222
3223 default:
3224 break;
3225 }
3226
3227 switch (r_type)
3228 {
3229 case R_PARISC_DIR32:
3230 case R_PARISC_DIR14F:
3231 case R_PARISC_DIR17F:
3232 case R_PARISC_PCREL17C:
3233 case R_PARISC_PCREL14F:
3234 case R_PARISC_DPREL14F:
3235 case R_PARISC_PLABEL32:
3236 case R_PARISC_DLTIND14F:
3237 case R_PARISC_SEGBASE:
3238 case R_PARISC_SEGREL32:
3239 r_field = e_fsel;
3240 break;
3241
3242 case R_PARISC_DIR21L:
3243 case R_PARISC_PCREL21L:
3244 case R_PARISC_DPREL21L:
3245 case R_PARISC_PLABEL21L:
3246 case R_PARISC_DLTIND21L:
3247 r_field = e_lrsel;
3248 break;
3249
3250 case R_PARISC_DIR17R:
3251 case R_PARISC_PCREL17R:
3252 case R_PARISC_DIR14R:
3253 case R_PARISC_PCREL14R:
3254 case R_PARISC_DPREL14R:
3255 case R_PARISC_PLABEL14R:
3256 case R_PARISC_DLTIND14R:
3257 r_field = e_rrsel;
3258 break;
3259
3260 case R_PARISC_PCREL12F:
3261 case R_PARISC_PCREL17F:
3262 case R_PARISC_PCREL22F:
3263 r_field = e_fsel;
3264
3265 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3266 {
3267 max_branch_offset = (1 << (17-1)) << 2;
3268 }
3269 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3270 {
3271 max_branch_offset = (1 << (12-1)) << 2;
3272 }
3273 else
3274 {
3275 max_branch_offset = (1 << (22-1)) << 2;
3276 }
3277
3278 /* sym_sec is NULL on undefined weak syms or when shared on
3279 undefined syms. We've already checked for a stub for the
3280 shared undefined case. */
3281 if (sym_sec == NULL)
3282 break;
3283
3284 /* If the branch is out of reach, then redirect the
3285 call to the local stub for this function. */
3286 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3287 {
3288 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3289 h, rel, hplink);
3290 if (stub_entry == NULL)
3291 return bfd_reloc_notsupported;
3292
3293 /* Munge up the value and addend so that we call the stub
3294 rather than the procedure directly. */
3295 value = (stub_entry->stub_offset
3296 + stub_entry->stub_sec->output_offset
3297 + stub_entry->stub_sec->output_section->vma
3298 - location);
3299 addend = -8;
3300 }
3301 break;
3302
3303 /* Something we don't know how to handle. */
3304 default:
3305 return bfd_reloc_notsupported;
3306 }
3307
3308 /* Make sure we can reach the stub. */
3309 if (max_branch_offset != 0
3310 && value + addend + max_branch_offset >= 2*max_branch_offset)
3311 {
3312 (*_bfd_error_handler)
3313 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3314 bfd_get_filename (input_bfd),
3315 input_section->name,
3316 (long) rel->r_offset,
3317 stub_entry->root.string);
3318 return bfd_reloc_notsupported;
3319 }
3320
3321 val = hppa_field_adjust (value, addend, r_field);
3322
3323 switch (r_type)
3324 {
3325 case R_PARISC_PCREL12F:
3326 case R_PARISC_PCREL17C:
3327 case R_PARISC_PCREL17F:
3328 case R_PARISC_PCREL17R:
3329 case R_PARISC_PCREL22F:
3330 case R_PARISC_DIR17F:
3331 case R_PARISC_DIR17R:
3332 /* This is a branch. Divide the offset by four.
3333 Note that we need to decide whether it's a branch or
3334 otherwise by inspecting the reloc. Inspecting insn won't
3335 work as insn might be from a .word directive. */
3336 val >>= 2;
3337 break;
3338
3339 default:
3340 break;
3341 }
3342
3343 insn = hppa_rebuild_insn (insn, val, r_format);
3344
3345 /* Update the instruction word. */
3346 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3347 return bfd_reloc_ok;
3348 }
3349
3350 /* Relocate an HPPA ELF section. */
3351
3352 static boolean
3353 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3354 contents, relocs, local_syms, local_sections)
3355 bfd *output_bfd;
3356 struct bfd_link_info *info;
3357 bfd *input_bfd;
3358 asection *input_section;
3359 bfd_byte *contents;
3360 Elf_Internal_Rela *relocs;
3361 Elf_Internal_Sym *local_syms;
3362 asection **local_sections;
3363 {
3364 bfd *dynobj;
3365 bfd_vma *local_got_offsets;
3366 struct elf32_hppa_link_hash_table *hplink;
3367 Elf_Internal_Shdr *symtab_hdr;
3368 Elf_Internal_Rela *rel;
3369 Elf_Internal_Rela *relend;
3370 asection *sreloc;
3371
3372 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3373
3374 hplink = hppa_link_hash_table (info);
3375 dynobj = hplink->root.dynobj;
3376 local_got_offsets = elf_local_got_offsets (input_bfd);
3377 sreloc = NULL;
3378
3379 rel = relocs;
3380 relend = relocs + input_section->reloc_count;
3381 for (; rel < relend; rel++)
3382 {
3383 unsigned int r_type;
3384 reloc_howto_type *howto;
3385 unsigned int r_symndx;
3386 struct elf32_hppa_link_hash_entry *h;
3387 Elf_Internal_Sym *sym;
3388 asection *sym_sec;
3389 bfd_vma relocation;
3390 bfd_reloc_status_type r;
3391 const char *sym_name;
3392 boolean plabel;
3393
3394 r_type = ELF32_R_TYPE (rel->r_info);
3395 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3396 {
3397 bfd_set_error (bfd_error_bad_value);
3398 return false;
3399 }
3400 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3401 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3402 continue;
3403
3404 r_symndx = ELF32_R_SYM (rel->r_info);
3405
3406 if (info->relocateable)
3407 {
3408 /* This is a relocateable link. We don't have to change
3409 anything, unless the reloc is against a section symbol,
3410 in which case we have to adjust according to where the
3411 section symbol winds up in the output section. */
3412 if (r_symndx < symtab_hdr->sh_info)
3413 {
3414 sym = local_syms + r_symndx;
3415 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3416 {
3417 sym_sec = local_sections[r_symndx];
3418 rel->r_addend += sym_sec->output_offset;
3419 }
3420 }
3421 continue;
3422 }
3423
3424 /* This is a final link. */
3425 h = NULL;
3426 sym = NULL;
3427 sym_sec = NULL;
3428 if (r_symndx < symtab_hdr->sh_info)
3429 {
3430 /* This is a local symbol, h defaults to NULL. */
3431 sym = local_syms + r_symndx;
3432 sym_sec = local_sections[r_symndx];
3433 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3434 ? 0 : sym->st_value)
3435 + sym_sec->output_offset
3436 + sym_sec->output_section->vma);
3437 }
3438 else
3439 {
3440 int indx;
3441
3442 /* It's a global; Find its entry in the link hash. */
3443 indx = r_symndx - symtab_hdr->sh_info;
3444 h = ((struct elf32_hppa_link_hash_entry *)
3445 elf_sym_hashes (input_bfd)[indx]);
3446 while (h->elf.root.type == bfd_link_hash_indirect
3447 || h->elf.root.type == bfd_link_hash_warning)
3448 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3449
3450 relocation = 0;
3451 if (h->elf.root.type == bfd_link_hash_defined
3452 || h->elf.root.type == bfd_link_hash_defweak)
3453 {
3454 sym_sec = h->elf.root.u.def.section;
3455 /* If sym_sec->output_section is NULL, then it's a
3456 symbol defined in a shared library. */
3457 if (sym_sec->output_section != NULL)
3458 relocation = (h->elf.root.u.def.value
3459 + sym_sec->output_offset
3460 + sym_sec->output_section->vma);
3461 }
3462 else if (h->elf.root.type == bfd_link_hash_undefweak)
3463 ;
3464 else if (info->shared && !info->no_undefined
3465 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT)
3466 {
3467 if (info->symbolic)
3468 if (!((*info->callbacks->undefined_symbol)
3469 (info, h->elf.root.root.string, input_bfd,
3470 input_section, rel->r_offset, false)))
3471 return false;
3472 }
3473 else
3474 {
3475 if (!((*info->callbacks->undefined_symbol)
3476 (info, h->elf.root.root.string, input_bfd,
3477 input_section, rel->r_offset, true)))
3478 return false;
3479 }
3480 }
3481
3482 /* Do any required modifications to the relocation value, and
3483 determine what types of dynamic info we need to output, if
3484 any. */
3485 plabel = 0;
3486 switch (r_type)
3487 {
3488 case R_PARISC_DLTIND14F:
3489 case R_PARISC_DLTIND14R:
3490 case R_PARISC_DLTIND21L:
3491 /* Relocation is to the entry for this symbol in the global
3492 offset table. */
3493 if (h != NULL)
3494 {
3495 bfd_vma off;
3496
3497 off = h->elf.got.offset;
3498 BFD_ASSERT (off != (bfd_vma) -1);
3499
3500 if (! hplink->root.dynamic_sections_created
3501 || (info->shared
3502 && (info->symbolic || h->elf.dynindx == -1)
3503 && (h->elf.elf_link_hash_flags
3504 & ELF_LINK_HASH_DEF_REGULAR) != 0))
3505 {
3506 /* This is actually a static link, or it is a
3507 -Bsymbolic link and the symbol is defined
3508 locally, or the symbol was forced to be local
3509 because of a version file. We must initialize
3510 this entry in the global offset table. Since the
3511 offset must always be a multiple of 4, we use the
3512 least significant bit to record whether we have
3513 initialized it already.
3514
3515 When doing a dynamic link, we create a .rela.got
3516 relocation entry to initialize the value. This
3517 is done in the finish_dynamic_symbol routine. */
3518 if ((off & 1) != 0)
3519 off &= ~1;
3520 else
3521 {
3522 bfd_put_32 (output_bfd, relocation,
3523 hplink->sgot->contents + off);
3524 h->elf.got.offset |= 1;
3525 }
3526 }
3527
3528 relocation = off;
3529 }
3530 else
3531 {
3532 /* Local symbol case. */
3533 bfd_vma off;
3534
3535 BFD_ASSERT (local_got_offsets != NULL
3536 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3537
3538 off = local_got_offsets[r_symndx];
3539
3540 /* The offset must always be a multiple of 4. We use
3541 the least significant bit to record whether we have
3542 already generated the necessary reloc. */
3543 if ((off & 1) != 0)
3544 off &= ~1;
3545 else
3546 {
3547 bfd_put_32 (output_bfd, relocation,
3548 hplink->sgot->contents + off);
3549
3550 if (info->shared)
3551 {
3552 /* Output a dynamic *ABS* relocation for this
3553 GOT entry. In this case it is relative to
3554 the base of the object because the symbol
3555 index is zero. */
3556 Elf_Internal_Rela outrel;
3557 asection *srelgot = hplink->srelgot;
3558
3559 outrel.r_offset = (off
3560 + hplink->sgot->output_offset
3561 + hplink->sgot->output_section->vma);
3562 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3563 outrel.r_addend = relocation;
3564 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3565 ((Elf32_External_Rela *)
3566 srelgot->contents
3567 + srelgot->reloc_count));
3568 ++srelgot->reloc_count;
3569 }
3570
3571 local_got_offsets[r_symndx] |= 1;
3572 }
3573
3574 relocation = off;
3575 }
3576
3577 /* Add the base of the GOT to the relocation value. */
3578 relocation += (hplink->sgot->output_offset
3579 + hplink->sgot->output_section->vma);
3580 break;
3581
3582 case R_PARISC_PLABEL14R:
3583 case R_PARISC_PLABEL21L:
3584 case R_PARISC_PLABEL32:
3585 if (hplink->root.dynamic_sections_created)
3586 {
3587 bfd_vma off;
3588
3589 /* If we have a global symbol with a PLT slot, then
3590 redirect this relocation to it. */
3591 if (h != NULL)
3592 {
3593 off = h->elf.plt.offset;
3594 }
3595 else
3596 {
3597 int indx;
3598
3599 indx = r_symndx + symtab_hdr->sh_info;
3600 off = local_got_offsets[indx];
3601
3602 /* As for the local .got entry case, we use the last
3603 bit to record whether we've already initialised
3604 this local .plt entry. */
3605 if ((off & 1) != 0)
3606 off &= ~1;
3607 else
3608 {
3609 bfd_put_32 (output_bfd,
3610 relocation,
3611 hplink->splt->contents + off);
3612 bfd_put_32 (output_bfd,
3613 elf_gp (hplink->splt->output_section->owner),
3614 hplink->splt->contents + off + 4);
3615
3616 if (info->shared)
3617 {
3618 /* Output a dynamic IPLT relocation for this
3619 PLT entry. */
3620 Elf_Internal_Rela outrel;
3621 asection *srelplt = hplink->srelplt;
3622
3623 outrel.r_offset = (off
3624 + hplink->splt->output_offset
3625 + hplink->splt->output_section->vma);
3626 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3627 outrel.r_addend = relocation;
3628 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3629 ((Elf32_External_Rela *)
3630 srelplt->contents
3631 + srelplt->reloc_count));
3632 ++srelplt->reloc_count;
3633 }
3634
3635 local_got_offsets[indx] |= 1;
3636 }
3637 }
3638
3639 BFD_ASSERT (off < (bfd_vma) -2);
3640
3641 /* PLABELs contain function pointers. Relocation is to
3642 the entry for the function in the .plt. The magic +2
3643 offset signals to $$dyncall that the function pointer
3644 is in the .plt and thus has a gp pointer too.
3645 Exception: Undefined PLABELs should have a value of
3646 zero. */
3647 if (h == NULL
3648 || (h->elf.root.type != bfd_link_hash_undefweak
3649 && h->elf.root.type != bfd_link_hash_undefined))
3650 {
3651 relocation = (off
3652 + hplink->splt->output_offset
3653 + hplink->splt->output_section->vma
3654 + 2);
3655 }
3656 plabel = 1;
3657 }
3658 /* Fall through and possibly emit a dynamic relocation. */
3659
3660 case R_PARISC_DIR17F:
3661 case R_PARISC_DIR17R:
3662 case R_PARISC_DIR14F:
3663 case R_PARISC_DIR14R:
3664 case R_PARISC_DIR21L:
3665 case R_PARISC_DPREL14F:
3666 case R_PARISC_DPREL14R:
3667 case R_PARISC_DPREL21L:
3668 case R_PARISC_DIR32:
3669 /* The reloc types handled here and this conditional
3670 expression must match the code in check_relocs and
3671 hppa_discard_copies. ie. We need exactly the same
3672 condition as in check_relocs, with some extra conditions
3673 (dynindx test in this case) to cater for relocs removed
3674 by hppa_discard_copies. */
3675 if ((input_section->flags & SEC_ALLOC) != 0
3676 && info->shared
3677 #if RELATIVE_DYNAMIC_RELOCS
3678 && (is_absolute_reloc (r_type)
3679 || ((!info->symbolic
3680 || (h != NULL
3681 && ((h->elf.elf_link_hash_flags
3682 & ELF_LINK_HASH_DEF_REGULAR) == 0
3683 || h->elf.root.type == bfd_link_hash_defweak)))
3684 && (h == NULL || h->elf.dynindx != -1)))
3685 #endif
3686 )
3687 {
3688 Elf_Internal_Rela outrel;
3689 boolean skip;
3690
3691 /* When generating a shared object, these relocations
3692 are copied into the output file to be resolved at run
3693 time. */
3694
3695 if (sreloc == NULL)
3696 {
3697 const char *name;
3698
3699 name = (bfd_elf_string_from_elf_section
3700 (input_bfd,
3701 elf_elfheader (input_bfd)->e_shstrndx,
3702 elf_section_data (input_section)->rel_hdr.sh_name));
3703 if (name == NULL)
3704 return false;
3705 sreloc = bfd_get_section_by_name (dynobj, name);
3706 BFD_ASSERT (sreloc != NULL);
3707 }
3708
3709 outrel.r_offset = rel->r_offset;
3710 outrel.r_addend = rel->r_addend;
3711 skip = false;
3712 if (elf_section_data (input_section)->stab_info != NULL)
3713 {
3714 bfd_vma off;
3715
3716 off = (_bfd_stab_section_offset
3717 (output_bfd, &hplink->root.stab_info,
3718 input_section,
3719 &elf_section_data (input_section)->stab_info,
3720 rel->r_offset));
3721 if (off == (bfd_vma) -1)
3722 skip = true;
3723 outrel.r_offset = off;
3724 }
3725
3726 outrel.r_offset += (input_section->output_offset
3727 + input_section->output_section->vma);
3728
3729 if (skip)
3730 {
3731 memset (&outrel, 0, sizeof (outrel));
3732 }
3733 else if (h != NULL
3734 && h->elf.dynindx != -1
3735 && (plabel
3736 || !info->symbolic
3737 || (h->elf.elf_link_hash_flags
3738 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3739 {
3740 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3741 }
3742 else /* It's a local symbol, or one marked to become local. */
3743 {
3744 int indx = 0;
3745
3746 /* Add the absolute offset of the symbol. */
3747 outrel.r_addend += relocation;
3748
3749 /* Global plabels need to be processed by the
3750 dynamic linker so that functions have at most one
3751 fptr. For this reason, we need to differentiate
3752 between global and local plabels, which we do by
3753 providing the function symbol for a global plabel
3754 reloc, and no symbol for local plabels. */
3755 if (! plabel
3756 && sym_sec != NULL
3757 && sym_sec->output_section != NULL
3758 && ! bfd_is_abs_section (sym_sec))
3759 {
3760 indx = elf_section_data (sym_sec->output_section)->dynindx;
3761 /* We are turning this relocation into one
3762 against a section symbol, so subtract out the
3763 output section's address but not the offset
3764 of the input section in the output section. */
3765 outrel.r_addend -= sym_sec->output_section->vma;
3766 }
3767
3768 outrel.r_info = ELF32_R_INFO (indx, r_type);
3769 }
3770
3771 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3772 ((Elf32_External_Rela *)
3773 sreloc->contents
3774 + sreloc->reloc_count));
3775 ++sreloc->reloc_count;
3776 }
3777 break;
3778
3779 default:
3780 break;
3781 }
3782
3783 r = final_link_relocate (input_section, contents, rel, relocation,
3784 hplink, sym_sec, h);
3785
3786 if (r == bfd_reloc_ok)
3787 continue;
3788
3789 if (h != NULL)
3790 sym_name = h->elf.root.root.string;
3791 else
3792 {
3793 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3794 symtab_hdr->sh_link,
3795 sym->st_name);
3796 if (sym_name == NULL)
3797 return false;
3798 if (*sym_name == '\0')
3799 sym_name = bfd_section_name (input_bfd, sym_sec);
3800 }
3801
3802 howto = elf_hppa_howto_table + r_type;
3803
3804 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3805 {
3806 (*_bfd_error_handler)
3807 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3808 bfd_get_filename (input_bfd),
3809 input_section->name,
3810 (long) rel->r_offset,
3811 howto->name,
3812 sym_name);
3813 }
3814 else
3815 {
3816 if (!((*info->callbacks->reloc_overflow)
3817 (info, sym_name, howto->name, (bfd_vma) 0,
3818 input_bfd, input_section, rel->r_offset)))
3819 return false;
3820 }
3821 }
3822
3823 return true;
3824 }
3825
3826 /* Finish up dynamic symbol handling. We set the contents of various
3827 dynamic sections here. */
3828
3829 static boolean
3830 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
3831 bfd *output_bfd;
3832 struct bfd_link_info *info;
3833 struct elf_link_hash_entry *h;
3834 Elf_Internal_Sym *sym;
3835 {
3836 struct elf32_hppa_link_hash_table *hplink;
3837 bfd *dynobj;
3838
3839 hplink = hppa_link_hash_table (info);
3840 dynobj = hplink->root.dynobj;
3841
3842 if (h->plt.offset != (bfd_vma) -1)
3843 {
3844 bfd_vma value;
3845
3846 /* This symbol has an entry in the procedure linkage table. Set
3847 it up.
3848
3849 The format of a plt entry is
3850 <funcaddr>
3851 <__gp>
3852 */
3853 value = 0;
3854 if (h->root.type == bfd_link_hash_defined
3855 || h->root.type == bfd_link_hash_defweak)
3856 {
3857 value = h->root.u.def.value;
3858 if (h->root.u.def.section->output_section != NULL)
3859 value += (h->root.u.def.section->output_offset
3860 + h->root.u.def.section->output_section->vma);
3861 }
3862
3863 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
3864 {
3865 Elf_Internal_Rela rel;
3866
3867 /* Create a dynamic IPLT relocation for this entry. */
3868 rel.r_offset = (h->plt.offset
3869 + hplink->splt->output_offset
3870 + hplink->splt->output_section->vma);
3871 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
3872 && h->dynindx != -1)
3873 {
3874 /* To support lazy linking, the function pointer is
3875 initialised to point to a special stub stored at the
3876 end of the .plt. This is only done for plt entries
3877 with a non-*ABS* dynamic relocation. */
3878 value = (hplink->splt->output_offset
3879 + hplink->splt->output_section->vma
3880 + hplink->splt->_raw_size
3881 - sizeof (plt_stub)
3882 + PLT_STUB_ENTRY);
3883 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3884 rel.r_addend = 0;
3885 }
3886 else
3887 {
3888 /* This symbol has been marked to become local, and is
3889 used by a plabel so must be kept in the .plt. */
3890 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3891 rel.r_addend = value;
3892 }
3893
3894 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
3895 &rel,
3896 ((Elf32_External_Rela *)
3897 hplink->srelplt->contents
3898 + hplink->srelplt->reloc_count));
3899 hplink->srelplt->reloc_count++;
3900 }
3901
3902 bfd_put_32 (hplink->splt->owner,
3903 value,
3904 hplink->splt->contents + h->plt.offset);
3905 bfd_put_32 (hplink->splt->owner,
3906 elf_gp (hplink->splt->output_section->owner),
3907 hplink->splt->contents + h->plt.offset + 4);
3908 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
3909 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
3910 && h->dynindx != -1)
3911 {
3912 memset (hplink->splt->contents + h->plt.offset + 8,
3913 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
3914 }
3915
3916 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3917 {
3918 /* Mark the symbol as undefined, rather than as defined in
3919 the .plt section. Leave the value alone. */
3920 sym->st_shndx = SHN_UNDEF;
3921 }
3922 }
3923
3924 if (h->got.offset != (bfd_vma) -1)
3925 {
3926 Elf_Internal_Rela rel;
3927
3928 /* This symbol has an entry in the global offset table. Set it
3929 up. */
3930
3931 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3932 + hplink->sgot->output_offset
3933 + hplink->sgot->output_section->vma);
3934
3935 /* If this is a static link, or it is a -Bsymbolic link and the
3936 symbol is defined locally or was forced to be local because
3937 of a version file, we just want to emit a RELATIVE reloc.
3938 The entry in the global offset table will already have been
3939 initialized in the relocate_section function. */
3940 if (! hplink->root.dynamic_sections_created
3941 || (info->shared
3942 && (info->symbolic || h->dynindx == -1)
3943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3944 {
3945 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3946 rel.r_addend = (h->root.u.def.value
3947 + h->root.u.def.section->output_offset
3948 + h->root.u.def.section->output_section->vma);
3949 }
3950 else
3951 {
3952 BFD_ASSERT((h->got.offset & 1) == 0);
3953 bfd_put_32 (output_bfd, (bfd_vma) 0,
3954 hplink->sgot->contents + h->got.offset);
3955 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3956 rel.r_addend = 0;
3957 }
3958
3959 bfd_elf32_swap_reloca_out (output_bfd, &rel,
3960 ((Elf32_External_Rela *)
3961 hplink->srelgot->contents
3962 + hplink->srelgot->reloc_count));
3963 ++hplink->srelgot->reloc_count;
3964 }
3965
3966 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3967 {
3968 asection *s;
3969 Elf_Internal_Rela rel;
3970
3971 /* This symbol needs a copy reloc. Set it up. */
3972
3973 BFD_ASSERT (h->dynindx != -1
3974 && (h->root.type == bfd_link_hash_defined
3975 || h->root.type == bfd_link_hash_defweak));
3976
3977 s = hplink->srelbss;
3978
3979 rel.r_offset = (h->root.u.def.value
3980 + h->root.u.def.section->output_offset
3981 + h->root.u.def.section->output_section->vma);
3982 rel.r_addend = 0;
3983 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3984 bfd_elf32_swap_reloca_out (output_bfd, &rel,
3985 ((Elf32_External_Rela *) s->contents
3986 + s->reloc_count));
3987 ++s->reloc_count;
3988 }
3989
3990 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3991 if (h->root.root.string[0] == '_'
3992 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3993 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3994 {
3995 sym->st_shndx = SHN_ABS;
3996 }
3997
3998 return true;
3999 }
4000
4001 /* Finish up the dynamic sections. */
4002
4003 static boolean
4004 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4005 bfd *output_bfd;
4006 struct bfd_link_info *info;
4007 {
4008 bfd *dynobj;
4009 struct elf32_hppa_link_hash_table *hplink;
4010 asection *sdyn;
4011
4012 hplink = hppa_link_hash_table (info);
4013 dynobj = hplink->root.dynobj;
4014
4015 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4016
4017 if (hplink->root.dynamic_sections_created)
4018 {
4019 Elf32_External_Dyn *dyncon, *dynconend;
4020
4021 BFD_ASSERT (sdyn != NULL);
4022
4023 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4024 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4025 for (; dyncon < dynconend; dyncon++)
4026 {
4027 Elf_Internal_Dyn dyn;
4028 asection *s;
4029
4030 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4031
4032 switch (dyn.d_tag)
4033 {
4034 default:
4035 break;
4036
4037 case DT_PLTGOT:
4038 /* Use PLTGOT to set the GOT register. */
4039 dyn.d_un.d_ptr = elf_gp (output_bfd);
4040 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4041 break;
4042
4043 case DT_JMPREL:
4044 s = hplink->srelplt;
4045 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4046 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4047 break;
4048
4049 case DT_PLTRELSZ:
4050 s = hplink->srelplt;
4051 if (s->_cooked_size != 0)
4052 dyn.d_un.d_val = s->_cooked_size;
4053 else
4054 dyn.d_un.d_val = s->_raw_size;
4055 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4056 break;
4057 }
4058 }
4059 }
4060
4061 if (hplink->sgot->_raw_size != 0)
4062 {
4063 /* Fill in the first entry in the global offset table.
4064 We use it to point to our dynamic section, if we have one. */
4065 bfd_put_32 (output_bfd,
4066 (sdyn != NULL
4067 ? sdyn->output_section->vma + sdyn->output_offset
4068 : (bfd_vma) 0),
4069 hplink->sgot->contents);
4070
4071 /* The second entry is reserved for use by the dynamic linker. */
4072 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4073
4074 /* Set .got entry size. */
4075 elf_section_data (hplink->sgot->output_section)
4076 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4077 }
4078
4079 if (hplink->splt->_raw_size != 0)
4080 {
4081 /* Set plt entry size. */
4082 elf_section_data (hplink->splt->output_section)
4083 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4084
4085 if (hplink->need_plt_stub)
4086 {
4087 /* Set up the .plt stub. */
4088 memcpy (hplink->splt->contents
4089 + hplink->splt->_raw_size - sizeof (plt_stub),
4090 plt_stub, sizeof (plt_stub));
4091
4092 if ((hplink->splt->output_offset
4093 + hplink->splt->output_section->vma
4094 + hplink->splt->_raw_size)
4095 != (hplink->sgot->output_offset
4096 + hplink->sgot->output_section->vma))
4097 {
4098 (*_bfd_error_handler)
4099 (_(".got section not immediately after .plt section"));
4100 return false;
4101 }
4102 }
4103 }
4104
4105 return true;
4106 }
4107
4108 /* Called when writing out an object file to decide the type of a
4109 symbol. */
4110 static int
4111 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4112 Elf_Internal_Sym *elf_sym;
4113 int type;
4114 {
4115 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4116 return STT_PARISC_MILLI;
4117 else
4118 return type;
4119 }
4120
4121 /* Misc BFD support code. */
4122 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4123 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4124 #define elf_info_to_howto elf_hppa_info_to_howto
4125 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4126
4127 /* Stuff for the BFD linker. */
4128 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
4129 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4130 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4131 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4132 #define elf_backend_check_relocs elf32_hppa_check_relocs
4133 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4134 #define elf_backend_fake_sections elf_hppa_fake_sections
4135 #define elf_backend_relocate_section elf32_hppa_relocate_section
4136 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4137 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4138 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4139 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4140 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4141 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4142 #define elf_backend_object_p elf32_hppa_object_p
4143 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4144 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4145
4146 #define elf_backend_can_gc_sections 1
4147 #define elf_backend_plt_alignment 2
4148 #define elf_backend_want_got_plt 0
4149 #define elf_backend_plt_readonly 0
4150 #define elf_backend_want_plt_sym 0
4151 #define elf_backend_got_header_size 8
4152
4153 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4154 #define TARGET_BIG_NAME "elf32-hppa"
4155 #define ELF_ARCH bfd_arch_hppa
4156 #define ELF_MACHINE_CODE EM_PARISC
4157 #define ELF_MAXPAGESIZE 0x1000
4158
4159 #include "elf32-target.h"