Don't make symbols dynamic other than undef weak
[binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 (long) hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !bfd_link_pic (info))
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((bfd_link_pic (info)
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->hdh_next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->relative_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->relative_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Update the got and plt entry reference counts for the section being
1570 removed. */
1571
1572 static bfd_boolean
1573 elf32_hppa_gc_sweep_hook (bfd *abfd,
1574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1575 asection *sec,
1576 const Elf_Internal_Rela *relocs)
1577 {
1578 Elf_Internal_Shdr *symtab_hdr;
1579 struct elf_link_hash_entry **eh_syms;
1580 bfd_signed_vma *local_got_refcounts;
1581 bfd_signed_vma *local_plt_refcounts;
1582 const Elf_Internal_Rela *rela, *relend;
1583 struct elf32_hppa_link_hash_table *htab;
1584
1585 if (bfd_link_relocatable (info))
1586 return TRUE;
1587
1588 htab = hppa_link_hash_table (info);
1589 if (htab == NULL)
1590 return FALSE;
1591
1592 elf_section_data (sec)->local_dynrel = NULL;
1593
1594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1595 eh_syms = elf_sym_hashes (abfd);
1596 local_got_refcounts = elf_local_got_refcounts (abfd);
1597 local_plt_refcounts = local_got_refcounts;
1598 if (local_plt_refcounts != NULL)
1599 local_plt_refcounts += symtab_hdr->sh_info;
1600
1601 relend = relocs + sec->reloc_count;
1602 for (rela = relocs; rela < relend; rela++)
1603 {
1604 unsigned long r_symndx;
1605 unsigned int r_type;
1606 struct elf_link_hash_entry *eh = NULL;
1607
1608 r_symndx = ELF32_R_SYM (rela->r_info);
1609 if (r_symndx >= symtab_hdr->sh_info)
1610 {
1611 struct elf32_hppa_link_hash_entry *hh;
1612 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1613 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1614
1615 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1616 while (eh->root.type == bfd_link_hash_indirect
1617 || eh->root.type == bfd_link_hash_warning)
1618 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1619 hh = hppa_elf_hash_entry (eh);
1620
1621 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1622 if (hdh_p->sec == sec)
1623 {
1624 /* Everything must go for SEC. */
1625 *hdh_pp = hdh_p->hdh_next;
1626 break;
1627 }
1628 }
1629
1630 r_type = ELF32_R_TYPE (rela->r_info);
1631 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1632
1633 switch (r_type)
1634 {
1635 case R_PARISC_DLTIND14F:
1636 case R_PARISC_DLTIND14R:
1637 case R_PARISC_DLTIND21L:
1638 case R_PARISC_TLS_GD21L:
1639 case R_PARISC_TLS_GD14R:
1640 case R_PARISC_TLS_IE21L:
1641 case R_PARISC_TLS_IE14R:
1642 if (eh != NULL)
1643 {
1644 if (eh->got.refcount > 0)
1645 eh->got.refcount -= 1;
1646 }
1647 else if (local_got_refcounts != NULL)
1648 {
1649 if (local_got_refcounts[r_symndx] > 0)
1650 local_got_refcounts[r_symndx] -= 1;
1651 }
1652 break;
1653
1654 case R_PARISC_TLS_LDM21L:
1655 case R_PARISC_TLS_LDM14R:
1656 htab->tls_ldm_got.refcount -= 1;
1657 break;
1658
1659 case R_PARISC_PCREL12F:
1660 case R_PARISC_PCREL17C:
1661 case R_PARISC_PCREL17F:
1662 case R_PARISC_PCREL22F:
1663 if (eh != NULL)
1664 {
1665 if (eh->plt.refcount > 0)
1666 eh->plt.refcount -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_PLABEL14R:
1671 case R_PARISC_PLABEL21L:
1672 case R_PARISC_PLABEL32:
1673 if (eh != NULL)
1674 {
1675 if (eh->plt.refcount > 0)
1676 eh->plt.refcount -= 1;
1677 }
1678 else if (local_plt_refcounts != NULL)
1679 {
1680 if (local_plt_refcounts[r_symndx] > 0)
1681 local_plt_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TRUE;
1691 }
1692
1693 /* Support for core dump NOTE sections. */
1694
1695 static bfd_boolean
1696 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1697 {
1698 int offset;
1699 size_t size;
1700
1701 switch (note->descsz)
1702 {
1703 default:
1704 return FALSE;
1705
1706 case 396: /* Linux/hppa */
1707 /* pr_cursig */
1708 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1709
1710 /* pr_pid */
1711 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1712
1713 /* pr_reg */
1714 offset = 72;
1715 size = 320;
1716
1717 break;
1718 }
1719
1720 /* Make a ".reg/999" section. */
1721 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1722 size, note->descpos + offset);
1723 }
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 switch (note->descsz)
1729 {
1730 default:
1731 return FALSE;
1732
1733 case 124: /* Linux/hppa elf_prpsinfo. */
1734 elf_tdata (abfd)->core->program
1735 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1736 elf_tdata (abfd)->core->command
1737 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1738 }
1739
1740 /* Note that for some reason, a spurious space is tacked
1741 onto the end of the args in some (at least one anyway)
1742 implementations, so strip it off if it exists. */
1743 {
1744 char *command = elf_tdata (abfd)->core->command;
1745 int n = strlen (command);
1746
1747 if (0 < n && command[n - 1] == ' ')
1748 command[n - 1] = '\0';
1749 }
1750
1751 return TRUE;
1752 }
1753
1754 /* Our own version of hide_symbol, so that we can keep plt entries for
1755 plabels. */
1756
1757 static void
1758 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1759 struct elf_link_hash_entry *eh,
1760 bfd_boolean force_local)
1761 {
1762 if (force_local)
1763 {
1764 eh->forced_local = 1;
1765 if (eh->dynindx != -1)
1766 {
1767 eh->dynindx = -1;
1768 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1769 eh->dynstr_index);
1770 }
1771
1772 /* PR 16082: Remove version information from hidden symbol. */
1773 eh->verinfo.verdef = NULL;
1774 eh->verinfo.vertree = NULL;
1775 }
1776
1777 /* STT_GNU_IFUNC symbol must go through PLT. */
1778 if (! hppa_elf_hash_entry (eh)->plabel
1779 && eh->type != STT_GNU_IFUNC)
1780 {
1781 eh->needs_plt = 0;
1782 eh->plt = elf_hash_table (info)->init_plt_offset;
1783 }
1784 }
1785
1786 /* Adjust a symbol defined by a dynamic object and referenced by a
1787 regular object. The current definition is in some section of the
1788 dynamic object, but we're not including those sections. We have to
1789 change the definition to something the rest of the link can
1790 understand. */
1791
1792 static bfd_boolean
1793 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1794 struct elf_link_hash_entry *eh)
1795 {
1796 struct elf32_hppa_link_hash_table *htab;
1797 asection *sec, *srel;
1798
1799 /* If this is a function, put it in the procedure linkage table. We
1800 will fill in the contents of the procedure linkage table later. */
1801 if (eh->type == STT_FUNC
1802 || eh->needs_plt)
1803 {
1804 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1805 The refcounts are not reliable when it has been hidden since
1806 hide_symbol can be called before the plabel flag is set. */
1807 if (hppa_elf_hash_entry (eh)->plabel
1808 && eh->plt.refcount <= 0)
1809 eh->plt.refcount = 1;
1810
1811 if (eh->plt.refcount <= 0
1812 || (eh->def_regular
1813 && eh->root.type != bfd_link_hash_defweak
1814 && ! hppa_elf_hash_entry (eh)->plabel
1815 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1816 {
1817 /* The .plt entry is not needed when:
1818 a) Garbage collection has removed all references to the
1819 symbol, or
1820 b) We know for certain the symbol is defined in this
1821 object, and it's not a weak definition, nor is the symbol
1822 used by a plabel relocation. Either this object is the
1823 application or we are doing a shared symbolic link. */
1824
1825 eh->plt.offset = (bfd_vma) -1;
1826 eh->needs_plt = 0;
1827 }
1828
1829 return TRUE;
1830 }
1831 else
1832 eh->plt.offset = (bfd_vma) -1;
1833
1834 /* If this is a weak symbol, and there is a real definition, the
1835 processor independent code will have arranged for us to see the
1836 real definition first, and we can just use the same value. */
1837 if (eh->u.weakdef != NULL)
1838 {
1839 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1840 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1841 abort ();
1842 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1843 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1844 if (ELIMINATE_COPY_RELOCS)
1845 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1846 return TRUE;
1847 }
1848
1849 /* This is a reference to a symbol defined by a dynamic object which
1850 is not a function. */
1851
1852 /* If we are creating a shared library, we must presume that the
1853 only references to the symbol are via the global offset table.
1854 For such cases we need not do anything here; the relocations will
1855 be handled correctly by relocate_section. */
1856 if (bfd_link_pic (info))
1857 return TRUE;
1858
1859 /* If there are no references to this symbol that do not use the
1860 GOT, we don't need to generate a copy reloc. */
1861 if (!eh->non_got_ref)
1862 return TRUE;
1863
1864 if (ELIMINATE_COPY_RELOCS)
1865 {
1866 struct elf32_hppa_link_hash_entry *hh;
1867 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868
1869 hh = hppa_elf_hash_entry (eh);
1870 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 {
1872 sec = hdh_p->sec->output_section;
1873 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1874 break;
1875 }
1876
1877 /* If we didn't find any dynamic relocs in read-only sections, then
1878 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1879 if (hdh_p == NULL)
1880 {
1881 eh->non_got_ref = 0;
1882 return TRUE;
1883 }
1884 }
1885
1886 /* We must allocate the symbol in our .dynbss section, which will
1887 become part of the .bss section of the executable. There will be
1888 an entry for this symbol in the .dynsym section. The dynamic
1889 object will contain position independent code, so all references
1890 from the dynamic object to this symbol will go through the global
1891 offset table. The dynamic linker will use the .dynsym entry to
1892 determine the address it must put in the global offset table, so
1893 both the dynamic object and the regular object will refer to the
1894 same memory location for the variable. */
1895
1896 htab = hppa_link_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* We must generate a COPY reloc to tell the dynamic linker to
1901 copy the initial value out of the dynamic object and into the
1902 runtime process image. */
1903 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1904 {
1905 sec = htab->etab.sdynrelro;
1906 srel = htab->etab.sreldynrelro;
1907 }
1908 else
1909 {
1910 sec = htab->etab.sdynbss;
1911 srel = htab->etab.srelbss;
1912 }
1913 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1914 {
1915 srel->size += sizeof (Elf32_External_Rela);
1916 eh->needs_copy = 1;
1917 }
1918
1919 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1920 }
1921
1922 /* Make an undefined weak symbol dynamic. */
1923
1924 static bfd_boolean
1925 ensure_undef_weak_dynamic (struct bfd_link_info *info,
1926 struct elf_link_hash_entry *eh)
1927 {
1928 if (eh->dynindx == -1
1929 && !eh->forced_local
1930 && eh->type != STT_PARISC_MILLI
1931 && eh->root.type == bfd_link_hash_undefweak
1932 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1933 return bfd_elf_link_record_dynamic_symbol (info, eh);
1934 return TRUE;
1935 }
1936
1937 /* Allocate space in the .plt for entries that won't have relocations.
1938 ie. plabel entries. */
1939
1940 static bfd_boolean
1941 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1942 {
1943 struct bfd_link_info *info;
1944 struct elf32_hppa_link_hash_table *htab;
1945 struct elf32_hppa_link_hash_entry *hh;
1946 asection *sec;
1947
1948 if (eh->root.type == bfd_link_hash_indirect)
1949 return TRUE;
1950
1951 info = (struct bfd_link_info *) inf;
1952 hh = hppa_elf_hash_entry (eh);
1953 htab = hppa_link_hash_table (info);
1954 if (htab == NULL)
1955 return FALSE;
1956
1957 if (htab->etab.dynamic_sections_created
1958 && eh->plt.refcount > 0)
1959 {
1960 if (!ensure_undef_weak_dynamic (info, eh))
1961 return FALSE;
1962
1963 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1964 {
1965 /* Allocate these later. From this point on, h->plabel
1966 means that the plt entry is only used by a plabel.
1967 We'll be using a normal plt entry for this symbol, so
1968 clear the plabel indicator. */
1969
1970 hh->plabel = 0;
1971 }
1972 else if (hh->plabel)
1973 {
1974 /* Make an entry in the .plt section for plabel references
1975 that won't have a .plt entry for other reasons. */
1976 sec = htab->etab.splt;
1977 eh->plt.offset = sec->size;
1978 sec->size += PLT_ENTRY_SIZE;
1979 }
1980 else
1981 {
1982 /* No .plt entry needed. */
1983 eh->plt.offset = (bfd_vma) -1;
1984 eh->needs_plt = 0;
1985 }
1986 }
1987 else
1988 {
1989 eh->plt.offset = (bfd_vma) -1;
1990 eh->needs_plt = 0;
1991 }
1992
1993 return TRUE;
1994 }
1995
1996 /* Allocate space in .plt, .got and associated reloc sections for
1997 global syms. */
1998
1999 static bfd_boolean
2000 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2001 {
2002 struct bfd_link_info *info;
2003 struct elf32_hppa_link_hash_table *htab;
2004 asection *sec;
2005 struct elf32_hppa_link_hash_entry *hh;
2006 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2007
2008 if (eh->root.type == bfd_link_hash_indirect)
2009 return TRUE;
2010
2011 info = inf;
2012 htab = hppa_link_hash_table (info);
2013 if (htab == NULL)
2014 return FALSE;
2015
2016 hh = hppa_elf_hash_entry (eh);
2017
2018 if (htab->etab.dynamic_sections_created
2019 && eh->plt.offset != (bfd_vma) -1
2020 && !hh->plabel
2021 && eh->plt.refcount > 0)
2022 {
2023 /* Make an entry in the .plt section. */
2024 sec = htab->etab.splt;
2025 eh->plt.offset = sec->size;
2026 sec->size += PLT_ENTRY_SIZE;
2027
2028 /* We also need to make an entry in the .rela.plt section. */
2029 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
2030 htab->need_plt_stub = 1;
2031 }
2032
2033 if (eh->got.refcount > 0)
2034 {
2035 if (!ensure_undef_weak_dynamic (info, eh))
2036 return FALSE;
2037
2038 sec = htab->etab.sgot;
2039 eh->got.offset = sec->size;
2040 sec->size += GOT_ENTRY_SIZE;
2041 /* R_PARISC_TLS_GD* needs two GOT entries */
2042 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2043 sec->size += GOT_ENTRY_SIZE * 2;
2044 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2045 sec->size += GOT_ENTRY_SIZE;
2046 if (htab->etab.dynamic_sections_created
2047 && (bfd_link_pic (info)
2048 || (eh->dynindx != -1
2049 && !eh->forced_local)))
2050 {
2051 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2052 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2053 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
2054 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2055 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2056 }
2057 }
2058 else
2059 eh->got.offset = (bfd_vma) -1;
2060
2061 if (hh->dyn_relocs == NULL)
2062 return TRUE;
2063
2064 /* If this is a -Bsymbolic shared link, then we need to discard all
2065 space allocated for dynamic pc-relative relocs against symbols
2066 defined in a regular object. For the normal shared case, discard
2067 space for relocs that have become local due to symbol visibility
2068 changes. */
2069 if (bfd_link_pic (info))
2070 {
2071 #if RELATIVE_DYNRELOCS
2072 if (SYMBOL_CALLS_LOCAL (info, eh))
2073 {
2074 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2075
2076 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2077 {
2078 hdh_p->count -= hdh_p->relative_count;
2079 hdh_p->relative_count = 0;
2080 if (hdh_p->count == 0)
2081 *hdh_pp = hdh_p->hdh_next;
2082 else
2083 hdh_pp = &hdh_p->hdh_next;
2084 }
2085 }
2086 #endif
2087
2088 /* Also discard relocs on undefined weak syms with non-default
2089 visibility. */
2090 if (hh->dyn_relocs != NULL
2091 && eh->root.type == bfd_link_hash_undefweak)
2092 {
2093 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2094 hh->dyn_relocs = NULL;
2095
2096 else if (!ensure_undef_weak_dynamic (info, eh))
2097 return FALSE;
2098 }
2099 }
2100 else
2101 {
2102 /* For the non-shared case, discard space for relocs against
2103 symbols which turn out to need copy relocs or are not
2104 dynamic. */
2105
2106 if (!eh->non_got_ref
2107 && ((ELIMINATE_COPY_RELOCS
2108 && eh->def_dynamic
2109 && !eh->def_regular)
2110 || (htab->etab.dynamic_sections_created
2111 && (eh->root.type == bfd_link_hash_undefweak
2112 || eh->root.type == bfd_link_hash_undefined))))
2113 {
2114 if (!ensure_undef_weak_dynamic (info, eh))
2115 return FALSE;
2116
2117 /* If that succeeded, we know we'll be keeping all the
2118 relocs. */
2119 if (eh->dynindx != -1)
2120 goto keep;
2121 }
2122
2123 hh->dyn_relocs = NULL;
2124 return TRUE;
2125
2126 keep: ;
2127 }
2128
2129 /* Finally, allocate space. */
2130 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2131 {
2132 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2133 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2134 }
2135
2136 return TRUE;
2137 }
2138
2139 /* This function is called via elf_link_hash_traverse to force
2140 millicode symbols local so they do not end up as globals in the
2141 dynamic symbol table. We ought to be able to do this in
2142 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2143 for all dynamic symbols. Arguably, this is a bug in
2144 elf_adjust_dynamic_symbol. */
2145
2146 static bfd_boolean
2147 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2148 struct bfd_link_info *info)
2149 {
2150 if (eh->type == STT_PARISC_MILLI
2151 && !eh->forced_local)
2152 {
2153 elf32_hppa_hide_symbol (info, eh, TRUE);
2154 }
2155 return TRUE;
2156 }
2157
2158 /* Find any dynamic relocs that apply to read-only sections. */
2159
2160 static bfd_boolean
2161 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2162 {
2163 struct elf32_hppa_link_hash_entry *hh;
2164 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2165
2166 hh = hppa_elf_hash_entry (eh);
2167 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2168 {
2169 asection *sec = hdh_p->sec->output_section;
2170
2171 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2172 {
2173 struct bfd_link_info *info = inf;
2174
2175 info->flags |= DF_TEXTREL;
2176
2177 /* Not an error, just cut short the traversal. */
2178 return FALSE;
2179 }
2180 }
2181 return TRUE;
2182 }
2183
2184 /* Set the sizes of the dynamic sections. */
2185
2186 static bfd_boolean
2187 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2188 struct bfd_link_info *info)
2189 {
2190 struct elf32_hppa_link_hash_table *htab;
2191 bfd *dynobj;
2192 bfd *ibfd;
2193 asection *sec;
2194 bfd_boolean relocs;
2195
2196 htab = hppa_link_hash_table (info);
2197 if (htab == NULL)
2198 return FALSE;
2199
2200 dynobj = htab->etab.dynobj;
2201 if (dynobj == NULL)
2202 abort ();
2203
2204 if (htab->etab.dynamic_sections_created)
2205 {
2206 /* Set the contents of the .interp section to the interpreter. */
2207 if (bfd_link_executable (info) && !info->nointerp)
2208 {
2209 sec = bfd_get_linker_section (dynobj, ".interp");
2210 if (sec == NULL)
2211 abort ();
2212 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2213 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2214 }
2215
2216 /* Force millicode symbols local. */
2217 elf_link_hash_traverse (&htab->etab,
2218 clobber_millicode_symbols,
2219 info);
2220 }
2221
2222 /* Set up .got and .plt offsets for local syms, and space for local
2223 dynamic relocs. */
2224 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2225 {
2226 bfd_signed_vma *local_got;
2227 bfd_signed_vma *end_local_got;
2228 bfd_signed_vma *local_plt;
2229 bfd_signed_vma *end_local_plt;
2230 bfd_size_type locsymcount;
2231 Elf_Internal_Shdr *symtab_hdr;
2232 asection *srel;
2233 char *local_tls_type;
2234
2235 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2236 continue;
2237
2238 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2239 {
2240 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2241
2242 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2243 elf_section_data (sec)->local_dynrel);
2244 hdh_p != NULL;
2245 hdh_p = hdh_p->hdh_next)
2246 {
2247 if (!bfd_is_abs_section (hdh_p->sec)
2248 && bfd_is_abs_section (hdh_p->sec->output_section))
2249 {
2250 /* Input section has been discarded, either because
2251 it is a copy of a linkonce section or due to
2252 linker script /DISCARD/, so we'll be discarding
2253 the relocs too. */
2254 }
2255 else if (hdh_p->count != 0)
2256 {
2257 srel = elf_section_data (hdh_p->sec)->sreloc;
2258 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2259 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2260 info->flags |= DF_TEXTREL;
2261 }
2262 }
2263 }
2264
2265 local_got = elf_local_got_refcounts (ibfd);
2266 if (!local_got)
2267 continue;
2268
2269 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2270 locsymcount = symtab_hdr->sh_info;
2271 end_local_got = local_got + locsymcount;
2272 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2273 sec = htab->etab.sgot;
2274 srel = htab->etab.srelgot;
2275 for (; local_got < end_local_got; ++local_got)
2276 {
2277 if (*local_got > 0)
2278 {
2279 *local_got = sec->size;
2280 sec->size += GOT_ENTRY_SIZE;
2281 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2282 sec->size += 2 * GOT_ENTRY_SIZE;
2283 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2284 sec->size += GOT_ENTRY_SIZE;
2285 if (bfd_link_pic (info))
2286 {
2287 srel->size += sizeof (Elf32_External_Rela);
2288 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2289 srel->size += 2 * sizeof (Elf32_External_Rela);
2290 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2291 srel->size += sizeof (Elf32_External_Rela);
2292 }
2293 }
2294 else
2295 *local_got = (bfd_vma) -1;
2296
2297 ++local_tls_type;
2298 }
2299
2300 local_plt = end_local_got;
2301 end_local_plt = local_plt + locsymcount;
2302 if (! htab->etab.dynamic_sections_created)
2303 {
2304 /* Won't be used, but be safe. */
2305 for (; local_plt < end_local_plt; ++local_plt)
2306 *local_plt = (bfd_vma) -1;
2307 }
2308 else
2309 {
2310 sec = htab->etab.splt;
2311 srel = htab->etab.srelplt;
2312 for (; local_plt < end_local_plt; ++local_plt)
2313 {
2314 if (*local_plt > 0)
2315 {
2316 *local_plt = sec->size;
2317 sec->size += PLT_ENTRY_SIZE;
2318 if (bfd_link_pic (info))
2319 srel->size += sizeof (Elf32_External_Rela);
2320 }
2321 else
2322 *local_plt = (bfd_vma) -1;
2323 }
2324 }
2325 }
2326
2327 if (htab->tls_ldm_got.refcount > 0)
2328 {
2329 /* Allocate 2 got entries and 1 dynamic reloc for
2330 R_PARISC_TLS_DTPMOD32 relocs. */
2331 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2332 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2333 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2334 }
2335 else
2336 htab->tls_ldm_got.offset = -1;
2337
2338 /* Do all the .plt entries without relocs first. The dynamic linker
2339 uses the last .plt reloc to find the end of the .plt (and hence
2340 the start of the .got) for lazy linking. */
2341 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2342
2343 /* Allocate global sym .plt and .got entries, and space for global
2344 sym dynamic relocs. */
2345 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2346
2347 /* The check_relocs and adjust_dynamic_symbol entry points have
2348 determined the sizes of the various dynamic sections. Allocate
2349 memory for them. */
2350 relocs = FALSE;
2351 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2352 {
2353 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2354 continue;
2355
2356 if (sec == htab->etab.splt)
2357 {
2358 if (htab->need_plt_stub)
2359 {
2360 /* Make space for the plt stub at the end of the .plt
2361 section. We want this stub right at the end, up
2362 against the .got section. */
2363 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2364 int pltalign = bfd_section_alignment (dynobj, sec);
2365 bfd_size_type mask;
2366
2367 if (gotalign > pltalign)
2368 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2369 mask = ((bfd_size_type) 1 << gotalign) - 1;
2370 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2371 }
2372 }
2373 else if (sec == htab->etab.sgot
2374 || sec == htab->etab.sdynbss
2375 || sec == htab->etab.sdynrelro)
2376 ;
2377 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2378 {
2379 if (sec->size != 0)
2380 {
2381 /* Remember whether there are any reloc sections other
2382 than .rela.plt. */
2383 if (sec != htab->etab.srelplt)
2384 relocs = TRUE;
2385
2386 /* We use the reloc_count field as a counter if we need
2387 to copy relocs into the output file. */
2388 sec->reloc_count = 0;
2389 }
2390 }
2391 else
2392 {
2393 /* It's not one of our sections, so don't allocate space. */
2394 continue;
2395 }
2396
2397 if (sec->size == 0)
2398 {
2399 /* If we don't need this section, strip it from the
2400 output file. This is mostly to handle .rela.bss and
2401 .rela.plt. We must create both sections in
2402 create_dynamic_sections, because they must be created
2403 before the linker maps input sections to output
2404 sections. The linker does that before
2405 adjust_dynamic_symbol is called, and it is that
2406 function which decides whether anything needs to go
2407 into these sections. */
2408 sec->flags |= SEC_EXCLUDE;
2409 continue;
2410 }
2411
2412 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2413 continue;
2414
2415 /* Allocate memory for the section contents. Zero it, because
2416 we may not fill in all the reloc sections. */
2417 sec->contents = bfd_zalloc (dynobj, sec->size);
2418 if (sec->contents == NULL)
2419 return FALSE;
2420 }
2421
2422 if (htab->etab.dynamic_sections_created)
2423 {
2424 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2425 actually has nothing to do with the PLT, it is how we
2426 communicate the LTP value of a load module to the dynamic
2427 linker. */
2428 #define add_dynamic_entry(TAG, VAL) \
2429 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2430
2431 if (!add_dynamic_entry (DT_PLTGOT, 0))
2432 return FALSE;
2433
2434 /* Add some entries to the .dynamic section. We fill in the
2435 values later, in elf32_hppa_finish_dynamic_sections, but we
2436 must add the entries now so that we get the correct size for
2437 the .dynamic section. The DT_DEBUG entry is filled in by the
2438 dynamic linker and used by the debugger. */
2439 if (bfd_link_executable (info))
2440 {
2441 if (!add_dynamic_entry (DT_DEBUG, 0))
2442 return FALSE;
2443 }
2444
2445 if (htab->etab.srelplt->size != 0)
2446 {
2447 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2448 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2449 || !add_dynamic_entry (DT_JMPREL, 0))
2450 return FALSE;
2451 }
2452
2453 if (relocs)
2454 {
2455 if (!add_dynamic_entry (DT_RELA, 0)
2456 || !add_dynamic_entry (DT_RELASZ, 0)
2457 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2458 return FALSE;
2459
2460 /* If any dynamic relocs apply to a read-only section,
2461 then we need a DT_TEXTREL entry. */
2462 if ((info->flags & DF_TEXTREL) == 0)
2463 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2464
2465 if ((info->flags & DF_TEXTREL) != 0)
2466 {
2467 if (!add_dynamic_entry (DT_TEXTREL, 0))
2468 return FALSE;
2469 }
2470 }
2471 }
2472 #undef add_dynamic_entry
2473
2474 return TRUE;
2475 }
2476
2477 /* External entry points for sizing and building linker stubs. */
2478
2479 /* Set up various things so that we can make a list of input sections
2480 for each output section included in the link. Returns -1 on error,
2481 0 when no stubs will be needed, and 1 on success. */
2482
2483 int
2484 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2485 {
2486 bfd *input_bfd;
2487 unsigned int bfd_count;
2488 unsigned int top_id, top_index;
2489 asection *section;
2490 asection **input_list, **list;
2491 bfd_size_type amt;
2492 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2493
2494 if (htab == NULL)
2495 return -1;
2496
2497 /* Count the number of input BFDs and find the top input section id. */
2498 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2499 input_bfd != NULL;
2500 input_bfd = input_bfd->link.next)
2501 {
2502 bfd_count += 1;
2503 for (section = input_bfd->sections;
2504 section != NULL;
2505 section = section->next)
2506 {
2507 if (top_id < section->id)
2508 top_id = section->id;
2509 }
2510 }
2511 htab->bfd_count = bfd_count;
2512
2513 amt = sizeof (struct map_stub) * (top_id + 1);
2514 htab->stub_group = bfd_zmalloc (amt);
2515 if (htab->stub_group == NULL)
2516 return -1;
2517
2518 /* We can't use output_bfd->section_count here to find the top output
2519 section index as some sections may have been removed, and
2520 strip_excluded_output_sections doesn't renumber the indices. */
2521 for (section = output_bfd->sections, top_index = 0;
2522 section != NULL;
2523 section = section->next)
2524 {
2525 if (top_index < section->index)
2526 top_index = section->index;
2527 }
2528
2529 htab->top_index = top_index;
2530 amt = sizeof (asection *) * (top_index + 1);
2531 input_list = bfd_malloc (amt);
2532 htab->input_list = input_list;
2533 if (input_list == NULL)
2534 return -1;
2535
2536 /* For sections we aren't interested in, mark their entries with a
2537 value we can check later. */
2538 list = input_list + top_index;
2539 do
2540 *list = bfd_abs_section_ptr;
2541 while (list-- != input_list);
2542
2543 for (section = output_bfd->sections;
2544 section != NULL;
2545 section = section->next)
2546 {
2547 if ((section->flags & SEC_CODE) != 0)
2548 input_list[section->index] = NULL;
2549 }
2550
2551 return 1;
2552 }
2553
2554 /* The linker repeatedly calls this function for each input section,
2555 in the order that input sections are linked into output sections.
2556 Build lists of input sections to determine groupings between which
2557 we may insert linker stubs. */
2558
2559 void
2560 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2561 {
2562 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2563
2564 if (htab == NULL)
2565 return;
2566
2567 if (isec->output_section->index <= htab->top_index)
2568 {
2569 asection **list = htab->input_list + isec->output_section->index;
2570 if (*list != bfd_abs_section_ptr)
2571 {
2572 /* Steal the link_sec pointer for our list. */
2573 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2574 /* This happens to make the list in reverse order,
2575 which is what we want. */
2576 PREV_SEC (isec) = *list;
2577 *list = isec;
2578 }
2579 }
2580 }
2581
2582 /* See whether we can group stub sections together. Grouping stub
2583 sections may result in fewer stubs. More importantly, we need to
2584 put all .init* and .fini* stubs at the beginning of the .init or
2585 .fini output sections respectively, because glibc splits the
2586 _init and _fini functions into multiple parts. Putting a stub in
2587 the middle of a function is not a good idea. */
2588
2589 static void
2590 group_sections (struct elf32_hppa_link_hash_table *htab,
2591 bfd_size_type stub_group_size,
2592 bfd_boolean stubs_always_before_branch)
2593 {
2594 asection **list = htab->input_list + htab->top_index;
2595 do
2596 {
2597 asection *tail = *list;
2598 if (tail == bfd_abs_section_ptr)
2599 continue;
2600 while (tail != NULL)
2601 {
2602 asection *curr;
2603 asection *prev;
2604 bfd_size_type total;
2605 bfd_boolean big_sec;
2606
2607 curr = tail;
2608 total = tail->size;
2609 big_sec = total >= stub_group_size;
2610
2611 while ((prev = PREV_SEC (curr)) != NULL
2612 && ((total += curr->output_offset - prev->output_offset)
2613 < stub_group_size))
2614 curr = prev;
2615
2616 /* OK, the size from the start of CURR to the end is less
2617 than 240000 bytes and thus can be handled by one stub
2618 section. (or the tail section is itself larger than
2619 240000 bytes, in which case we may be toast.)
2620 We should really be keeping track of the total size of
2621 stubs added here, as stubs contribute to the final output
2622 section size. That's a little tricky, and this way will
2623 only break if stubs added total more than 22144 bytes, or
2624 2768 long branch stubs. It seems unlikely for more than
2625 2768 different functions to be called, especially from
2626 code only 240000 bytes long. This limit used to be
2627 250000, but c++ code tends to generate lots of little
2628 functions, and sometimes violated the assumption. */
2629 do
2630 {
2631 prev = PREV_SEC (tail);
2632 /* Set up this stub group. */
2633 htab->stub_group[tail->id].link_sec = curr;
2634 }
2635 while (tail != curr && (tail = prev) != NULL);
2636
2637 /* But wait, there's more! Input sections up to 240000
2638 bytes before the stub section can be handled by it too.
2639 Don't do this if we have a really large section after the
2640 stubs, as adding more stubs increases the chance that
2641 branches may not reach into the stub section. */
2642 if (!stubs_always_before_branch && !big_sec)
2643 {
2644 total = 0;
2645 while (prev != NULL
2646 && ((total += tail->output_offset - prev->output_offset)
2647 < stub_group_size))
2648 {
2649 tail = prev;
2650 prev = PREV_SEC (tail);
2651 htab->stub_group[tail->id].link_sec = curr;
2652 }
2653 }
2654 tail = prev;
2655 }
2656 }
2657 while (list-- != htab->input_list);
2658 free (htab->input_list);
2659 #undef PREV_SEC
2660 }
2661
2662 /* Read in all local syms for all input bfds, and create hash entries
2663 for export stubs if we are building a multi-subspace shared lib.
2664 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2665
2666 static int
2667 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2668 {
2669 unsigned int bfd_indx;
2670 Elf_Internal_Sym *local_syms, **all_local_syms;
2671 int stub_changed = 0;
2672 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2673
2674 if (htab == NULL)
2675 return -1;
2676
2677 /* We want to read in symbol extension records only once. To do this
2678 we need to read in the local symbols in parallel and save them for
2679 later use; so hold pointers to the local symbols in an array. */
2680 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2681 all_local_syms = bfd_zmalloc (amt);
2682 htab->all_local_syms = all_local_syms;
2683 if (all_local_syms == NULL)
2684 return -1;
2685
2686 /* Walk over all the input BFDs, swapping in local symbols.
2687 If we are creating a shared library, create hash entries for the
2688 export stubs. */
2689 for (bfd_indx = 0;
2690 input_bfd != NULL;
2691 input_bfd = input_bfd->link.next, bfd_indx++)
2692 {
2693 Elf_Internal_Shdr *symtab_hdr;
2694
2695 /* We'll need the symbol table in a second. */
2696 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2697 if (symtab_hdr->sh_info == 0)
2698 continue;
2699
2700 /* We need an array of the local symbols attached to the input bfd. */
2701 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2702 if (local_syms == NULL)
2703 {
2704 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2705 symtab_hdr->sh_info, 0,
2706 NULL, NULL, NULL);
2707 /* Cache them for elf_link_input_bfd. */
2708 symtab_hdr->contents = (unsigned char *) local_syms;
2709 }
2710 if (local_syms == NULL)
2711 return -1;
2712
2713 all_local_syms[bfd_indx] = local_syms;
2714
2715 if (bfd_link_pic (info) && htab->multi_subspace)
2716 {
2717 struct elf_link_hash_entry **eh_syms;
2718 struct elf_link_hash_entry **eh_symend;
2719 unsigned int symcount;
2720
2721 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2722 - symtab_hdr->sh_info);
2723 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2724 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2725
2726 /* Look through the global syms for functions; We need to
2727 build export stubs for all globally visible functions. */
2728 for (; eh_syms < eh_symend; eh_syms++)
2729 {
2730 struct elf32_hppa_link_hash_entry *hh;
2731
2732 hh = hppa_elf_hash_entry (*eh_syms);
2733
2734 while (hh->eh.root.type == bfd_link_hash_indirect
2735 || hh->eh.root.type == bfd_link_hash_warning)
2736 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2737
2738 /* At this point in the link, undefined syms have been
2739 resolved, so we need to check that the symbol was
2740 defined in this BFD. */
2741 if ((hh->eh.root.type == bfd_link_hash_defined
2742 || hh->eh.root.type == bfd_link_hash_defweak)
2743 && hh->eh.type == STT_FUNC
2744 && hh->eh.root.u.def.section->output_section != NULL
2745 && (hh->eh.root.u.def.section->output_section->owner
2746 == output_bfd)
2747 && hh->eh.root.u.def.section->owner == input_bfd
2748 && hh->eh.def_regular
2749 && !hh->eh.forced_local
2750 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2751 {
2752 asection *sec;
2753 const char *stub_name;
2754 struct elf32_hppa_stub_hash_entry *hsh;
2755
2756 sec = hh->eh.root.u.def.section;
2757 stub_name = hh_name (hh);
2758 hsh = hppa_stub_hash_lookup (&htab->bstab,
2759 stub_name,
2760 FALSE, FALSE);
2761 if (hsh == NULL)
2762 {
2763 hsh = hppa_add_stub (stub_name, sec, htab);
2764 if (!hsh)
2765 return -1;
2766
2767 hsh->target_value = hh->eh.root.u.def.value;
2768 hsh->target_section = hh->eh.root.u.def.section;
2769 hsh->stub_type = hppa_stub_export;
2770 hsh->hh = hh;
2771 stub_changed = 1;
2772 }
2773 else
2774 {
2775 /* xgettext:c-format */
2776 _bfd_error_handler (_("%B: duplicate export stub %s"),
2777 input_bfd, stub_name);
2778 }
2779 }
2780 }
2781 }
2782 }
2783
2784 return stub_changed;
2785 }
2786
2787 /* Determine and set the size of the stub section for a final link.
2788
2789 The basic idea here is to examine all the relocations looking for
2790 PC-relative calls to a target that is unreachable with a "bl"
2791 instruction. */
2792
2793 bfd_boolean
2794 elf32_hppa_size_stubs
2795 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2796 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2797 asection * (*add_stub_section) (const char *, asection *),
2798 void (*layout_sections_again) (void))
2799 {
2800 bfd_size_type stub_group_size;
2801 bfd_boolean stubs_always_before_branch;
2802 bfd_boolean stub_changed;
2803 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2804
2805 if (htab == NULL)
2806 return FALSE;
2807
2808 /* Stash our params away. */
2809 htab->stub_bfd = stub_bfd;
2810 htab->multi_subspace = multi_subspace;
2811 htab->add_stub_section = add_stub_section;
2812 htab->layout_sections_again = layout_sections_again;
2813 stubs_always_before_branch = group_size < 0;
2814 if (group_size < 0)
2815 stub_group_size = -group_size;
2816 else
2817 stub_group_size = group_size;
2818 if (stub_group_size == 1)
2819 {
2820 /* Default values. */
2821 if (stubs_always_before_branch)
2822 {
2823 stub_group_size = 7680000;
2824 if (htab->has_17bit_branch || htab->multi_subspace)
2825 stub_group_size = 240000;
2826 if (htab->has_12bit_branch)
2827 stub_group_size = 7500;
2828 }
2829 else
2830 {
2831 stub_group_size = 6971392;
2832 if (htab->has_17bit_branch || htab->multi_subspace)
2833 stub_group_size = 217856;
2834 if (htab->has_12bit_branch)
2835 stub_group_size = 6808;
2836 }
2837 }
2838
2839 group_sections (htab, stub_group_size, stubs_always_before_branch);
2840
2841 switch (get_local_syms (output_bfd, info->input_bfds, info))
2842 {
2843 default:
2844 if (htab->all_local_syms)
2845 goto error_ret_free_local;
2846 return FALSE;
2847
2848 case 0:
2849 stub_changed = FALSE;
2850 break;
2851
2852 case 1:
2853 stub_changed = TRUE;
2854 break;
2855 }
2856
2857 while (1)
2858 {
2859 bfd *input_bfd;
2860 unsigned int bfd_indx;
2861 asection *stub_sec;
2862
2863 for (input_bfd = info->input_bfds, bfd_indx = 0;
2864 input_bfd != NULL;
2865 input_bfd = input_bfd->link.next, bfd_indx++)
2866 {
2867 Elf_Internal_Shdr *symtab_hdr;
2868 asection *section;
2869 Elf_Internal_Sym *local_syms;
2870
2871 /* We'll need the symbol table in a second. */
2872 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2873 if (symtab_hdr->sh_info == 0)
2874 continue;
2875
2876 local_syms = htab->all_local_syms[bfd_indx];
2877
2878 /* Walk over each section attached to the input bfd. */
2879 for (section = input_bfd->sections;
2880 section != NULL;
2881 section = section->next)
2882 {
2883 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2884
2885 /* If there aren't any relocs, then there's nothing more
2886 to do. */
2887 if ((section->flags & SEC_RELOC) == 0
2888 || section->reloc_count == 0)
2889 continue;
2890
2891 /* If this section is a link-once section that will be
2892 discarded, then don't create any stubs. */
2893 if (section->output_section == NULL
2894 || section->output_section->owner != output_bfd)
2895 continue;
2896
2897 /* Get the relocs. */
2898 internal_relocs
2899 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2900 info->keep_memory);
2901 if (internal_relocs == NULL)
2902 goto error_ret_free_local;
2903
2904 /* Now examine each relocation. */
2905 irela = internal_relocs;
2906 irelaend = irela + section->reloc_count;
2907 for (; irela < irelaend; irela++)
2908 {
2909 unsigned int r_type, r_indx;
2910 enum elf32_hppa_stub_type stub_type;
2911 struct elf32_hppa_stub_hash_entry *hsh;
2912 asection *sym_sec;
2913 bfd_vma sym_value;
2914 bfd_vma destination;
2915 struct elf32_hppa_link_hash_entry *hh;
2916 char *stub_name;
2917 const asection *id_sec;
2918
2919 r_type = ELF32_R_TYPE (irela->r_info);
2920 r_indx = ELF32_R_SYM (irela->r_info);
2921
2922 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2923 {
2924 bfd_set_error (bfd_error_bad_value);
2925 error_ret_free_internal:
2926 if (elf_section_data (section)->relocs == NULL)
2927 free (internal_relocs);
2928 goto error_ret_free_local;
2929 }
2930
2931 /* Only look for stubs on call instructions. */
2932 if (r_type != (unsigned int) R_PARISC_PCREL12F
2933 && r_type != (unsigned int) R_PARISC_PCREL17F
2934 && r_type != (unsigned int) R_PARISC_PCREL22F)
2935 continue;
2936
2937 /* Now determine the call target, its name, value,
2938 section. */
2939 sym_sec = NULL;
2940 sym_value = 0;
2941 destination = 0;
2942 hh = NULL;
2943 if (r_indx < symtab_hdr->sh_info)
2944 {
2945 /* It's a local symbol. */
2946 Elf_Internal_Sym *sym;
2947 Elf_Internal_Shdr *hdr;
2948 unsigned int shndx;
2949
2950 sym = local_syms + r_indx;
2951 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2952 sym_value = sym->st_value;
2953 shndx = sym->st_shndx;
2954 if (shndx < elf_numsections (input_bfd))
2955 {
2956 hdr = elf_elfsections (input_bfd)[shndx];
2957 sym_sec = hdr->bfd_section;
2958 destination = (sym_value + irela->r_addend
2959 + sym_sec->output_offset
2960 + sym_sec->output_section->vma);
2961 }
2962 }
2963 else
2964 {
2965 /* It's an external symbol. */
2966 int e_indx;
2967
2968 e_indx = r_indx - symtab_hdr->sh_info;
2969 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2970
2971 while (hh->eh.root.type == bfd_link_hash_indirect
2972 || hh->eh.root.type == bfd_link_hash_warning)
2973 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2974
2975 if (hh->eh.root.type == bfd_link_hash_defined
2976 || hh->eh.root.type == bfd_link_hash_defweak)
2977 {
2978 sym_sec = hh->eh.root.u.def.section;
2979 sym_value = hh->eh.root.u.def.value;
2980 if (sym_sec->output_section != NULL)
2981 destination = (sym_value + irela->r_addend
2982 + sym_sec->output_offset
2983 + sym_sec->output_section->vma);
2984 }
2985 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2986 {
2987 if (! bfd_link_pic (info))
2988 continue;
2989 }
2990 else if (hh->eh.root.type == bfd_link_hash_undefined)
2991 {
2992 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2993 && (ELF_ST_VISIBILITY (hh->eh.other)
2994 == STV_DEFAULT)
2995 && hh->eh.type != STT_PARISC_MILLI))
2996 continue;
2997 }
2998 else
2999 {
3000 bfd_set_error (bfd_error_bad_value);
3001 goto error_ret_free_internal;
3002 }
3003 }
3004
3005 /* Determine what (if any) linker stub is needed. */
3006 stub_type = hppa_type_of_stub (section, irela, hh,
3007 destination, info);
3008 if (stub_type == hppa_stub_none)
3009 continue;
3010
3011 /* Support for grouping stub sections. */
3012 id_sec = htab->stub_group[section->id].link_sec;
3013
3014 /* Get the name of this stub. */
3015 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3016 if (!stub_name)
3017 goto error_ret_free_internal;
3018
3019 hsh = hppa_stub_hash_lookup (&htab->bstab,
3020 stub_name,
3021 FALSE, FALSE);
3022 if (hsh != NULL)
3023 {
3024 /* The proper stub has already been created. */
3025 free (stub_name);
3026 continue;
3027 }
3028
3029 hsh = hppa_add_stub (stub_name, section, htab);
3030 if (hsh == NULL)
3031 {
3032 free (stub_name);
3033 goto error_ret_free_internal;
3034 }
3035
3036 hsh->target_value = sym_value;
3037 hsh->target_section = sym_sec;
3038 hsh->stub_type = stub_type;
3039 if (bfd_link_pic (info))
3040 {
3041 if (stub_type == hppa_stub_import)
3042 hsh->stub_type = hppa_stub_import_shared;
3043 else if (stub_type == hppa_stub_long_branch)
3044 hsh->stub_type = hppa_stub_long_branch_shared;
3045 }
3046 hsh->hh = hh;
3047 stub_changed = TRUE;
3048 }
3049
3050 /* We're done with the internal relocs, free them. */
3051 if (elf_section_data (section)->relocs == NULL)
3052 free (internal_relocs);
3053 }
3054 }
3055
3056 if (!stub_changed)
3057 break;
3058
3059 /* OK, we've added some stubs. Find out the new size of the
3060 stub sections. */
3061 for (stub_sec = htab->stub_bfd->sections;
3062 stub_sec != NULL;
3063 stub_sec = stub_sec->next)
3064 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3065 stub_sec->size = 0;
3066
3067 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3068
3069 /* Ask the linker to do its stuff. */
3070 (*htab->layout_sections_again) ();
3071 stub_changed = FALSE;
3072 }
3073
3074 free (htab->all_local_syms);
3075 return TRUE;
3076
3077 error_ret_free_local:
3078 free (htab->all_local_syms);
3079 return FALSE;
3080 }
3081
3082 /* For a final link, this function is called after we have sized the
3083 stubs to provide a value for __gp. */
3084
3085 bfd_boolean
3086 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3087 {
3088 struct bfd_link_hash_entry *h;
3089 asection *sec = NULL;
3090 bfd_vma gp_val = 0;
3091 struct elf32_hppa_link_hash_table *htab;
3092
3093 htab = hppa_link_hash_table (info);
3094 if (htab == NULL)
3095 return FALSE;
3096
3097 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3098
3099 if (h != NULL
3100 && (h->type == bfd_link_hash_defined
3101 || h->type == bfd_link_hash_defweak))
3102 {
3103 gp_val = h->u.def.value;
3104 sec = h->u.def.section;
3105 }
3106 else
3107 {
3108 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3109 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3110
3111 /* Choose to point our LTP at, in this order, one of .plt, .got,
3112 or .data, if these sections exist. In the case of choosing
3113 .plt try to make the LTP ideal for addressing anywhere in the
3114 .plt or .got with a 14 bit signed offset. Typically, the end
3115 of the .plt is the start of the .got, so choose .plt + 0x2000
3116 if either the .plt or .got is larger than 0x2000. If both
3117 the .plt and .got are smaller than 0x2000, choose the end of
3118 the .plt section. */
3119 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3120 ? NULL : splt;
3121 if (sec != NULL)
3122 {
3123 gp_val = sec->size;
3124 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3125 {
3126 gp_val = 0x2000;
3127 }
3128 }
3129 else
3130 {
3131 sec = sgot;
3132 if (sec != NULL)
3133 {
3134 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3135 {
3136 /* We know we don't have a .plt. If .got is large,
3137 offset our LTP. */
3138 if (sec->size > 0x2000)
3139 gp_val = 0x2000;
3140 }
3141 }
3142 else
3143 {
3144 /* No .plt or .got. Who cares what the LTP is? */
3145 sec = bfd_get_section_by_name (abfd, ".data");
3146 }
3147 }
3148
3149 if (h != NULL)
3150 {
3151 h->type = bfd_link_hash_defined;
3152 h->u.def.value = gp_val;
3153 if (sec != NULL)
3154 h->u.def.section = sec;
3155 else
3156 h->u.def.section = bfd_abs_section_ptr;
3157 }
3158 }
3159
3160 if (sec != NULL && sec->output_section != NULL)
3161 gp_val += sec->output_section->vma + sec->output_offset;
3162
3163 elf_gp (abfd) = gp_val;
3164 return TRUE;
3165 }
3166
3167 /* Build all the stubs associated with the current output file. The
3168 stubs are kept in a hash table attached to the main linker hash
3169 table. We also set up the .plt entries for statically linked PIC
3170 functions here. This function is called via hppaelf_finish in the
3171 linker. */
3172
3173 bfd_boolean
3174 elf32_hppa_build_stubs (struct bfd_link_info *info)
3175 {
3176 asection *stub_sec;
3177 struct bfd_hash_table *table;
3178 struct elf32_hppa_link_hash_table *htab;
3179
3180 htab = hppa_link_hash_table (info);
3181 if (htab == NULL)
3182 return FALSE;
3183
3184 for (stub_sec = htab->stub_bfd->sections;
3185 stub_sec != NULL;
3186 stub_sec = stub_sec->next)
3187 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3188 && stub_sec->size != 0)
3189 {
3190 /* Allocate memory to hold the linker stubs. */
3191 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3192 if (stub_sec->contents == NULL)
3193 return FALSE;
3194 stub_sec->size = 0;
3195 }
3196
3197 /* Build the stubs as directed by the stub hash table. */
3198 table = &htab->bstab;
3199 bfd_hash_traverse (table, hppa_build_one_stub, info);
3200
3201 return TRUE;
3202 }
3203
3204 /* Return the base vma address which should be subtracted from the real
3205 address when resolving a dtpoff relocation.
3206 This is PT_TLS segment p_vaddr. */
3207
3208 static bfd_vma
3209 dtpoff_base (struct bfd_link_info *info)
3210 {
3211 /* If tls_sec is NULL, we should have signalled an error already. */
3212 if (elf_hash_table (info)->tls_sec == NULL)
3213 return 0;
3214 return elf_hash_table (info)->tls_sec->vma;
3215 }
3216
3217 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3218
3219 static bfd_vma
3220 tpoff (struct bfd_link_info *info, bfd_vma address)
3221 {
3222 struct elf_link_hash_table *htab = elf_hash_table (info);
3223
3224 /* If tls_sec is NULL, we should have signalled an error already. */
3225 if (htab->tls_sec == NULL)
3226 return 0;
3227 /* hppa TLS ABI is variant I and static TLS block start just after
3228 tcbhead structure which has 2 pointer fields. */
3229 return (address - htab->tls_sec->vma
3230 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3231 }
3232
3233 /* Perform a final link. */
3234
3235 static bfd_boolean
3236 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3237 {
3238 struct stat buf;
3239
3240 /* Invoke the regular ELF linker to do all the work. */
3241 if (!bfd_elf_final_link (abfd, info))
3242 return FALSE;
3243
3244 /* If we're producing a final executable, sort the contents of the
3245 unwind section. */
3246 if (bfd_link_relocatable (info))
3247 return TRUE;
3248
3249 /* Do not attempt to sort non-regular files. This is here
3250 especially for configure scripts and kernel builds which run
3251 tests with "ld [...] -o /dev/null". */
3252 if (stat (abfd->filename, &buf) != 0
3253 || !S_ISREG(buf.st_mode))
3254 return TRUE;
3255
3256 return elf_hppa_sort_unwind (abfd);
3257 }
3258
3259 /* Record the lowest address for the data and text segments. */
3260
3261 static void
3262 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3263 {
3264 struct elf32_hppa_link_hash_table *htab;
3265
3266 htab = (struct elf32_hppa_link_hash_table*) data;
3267 if (htab == NULL)
3268 return;
3269
3270 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3271 {
3272 bfd_vma value;
3273 Elf_Internal_Phdr *p;
3274
3275 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3276 BFD_ASSERT (p != NULL);
3277 value = p->p_vaddr;
3278
3279 if ((section->flags & SEC_READONLY) != 0)
3280 {
3281 if (value < htab->text_segment_base)
3282 htab->text_segment_base = value;
3283 }
3284 else
3285 {
3286 if (value < htab->data_segment_base)
3287 htab->data_segment_base = value;
3288 }
3289 }
3290 }
3291
3292 /* Perform a relocation as part of a final link. */
3293
3294 static bfd_reloc_status_type
3295 final_link_relocate (asection *input_section,
3296 bfd_byte *contents,
3297 const Elf_Internal_Rela *rela,
3298 bfd_vma value,
3299 struct elf32_hppa_link_hash_table *htab,
3300 asection *sym_sec,
3301 struct elf32_hppa_link_hash_entry *hh,
3302 struct bfd_link_info *info)
3303 {
3304 int insn;
3305 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3306 unsigned int orig_r_type = r_type;
3307 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3308 int r_format = howto->bitsize;
3309 enum hppa_reloc_field_selector_type_alt r_field;
3310 bfd *input_bfd = input_section->owner;
3311 bfd_vma offset = rela->r_offset;
3312 bfd_vma max_branch_offset = 0;
3313 bfd_byte *hit_data = contents + offset;
3314 bfd_signed_vma addend = rela->r_addend;
3315 bfd_vma location;
3316 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3317 int val;
3318
3319 if (r_type == R_PARISC_NONE)
3320 return bfd_reloc_ok;
3321
3322 insn = bfd_get_32 (input_bfd, hit_data);
3323
3324 /* Find out where we are and where we're going. */
3325 location = (offset +
3326 input_section->output_offset +
3327 input_section->output_section->vma);
3328
3329 /* If we are not building a shared library, convert DLTIND relocs to
3330 DPREL relocs. */
3331 if (!bfd_link_pic (info))
3332 {
3333 switch (r_type)
3334 {
3335 case R_PARISC_DLTIND21L:
3336 case R_PARISC_TLS_GD21L:
3337 case R_PARISC_TLS_LDM21L:
3338 case R_PARISC_TLS_IE21L:
3339 r_type = R_PARISC_DPREL21L;
3340 break;
3341
3342 case R_PARISC_DLTIND14R:
3343 case R_PARISC_TLS_GD14R:
3344 case R_PARISC_TLS_LDM14R:
3345 case R_PARISC_TLS_IE14R:
3346 r_type = R_PARISC_DPREL14R;
3347 break;
3348
3349 case R_PARISC_DLTIND14F:
3350 r_type = R_PARISC_DPREL14F;
3351 break;
3352 }
3353 }
3354
3355 switch (r_type)
3356 {
3357 case R_PARISC_PCREL12F:
3358 case R_PARISC_PCREL17F:
3359 case R_PARISC_PCREL22F:
3360 /* If this call should go via the plt, find the import stub in
3361 the stub hash. */
3362 if (sym_sec == NULL
3363 || sym_sec->output_section == NULL
3364 || (hh != NULL
3365 && hh->eh.plt.offset != (bfd_vma) -1
3366 && hh->eh.dynindx != -1
3367 && !hh->plabel
3368 && (bfd_link_pic (info)
3369 || !hh->eh.def_regular
3370 || hh->eh.root.type == bfd_link_hash_defweak)))
3371 {
3372 hsh = hppa_get_stub_entry (input_section, sym_sec,
3373 hh, rela, htab);
3374 if (hsh != NULL)
3375 {
3376 value = (hsh->stub_offset
3377 + hsh->stub_sec->output_offset
3378 + hsh->stub_sec->output_section->vma);
3379 addend = 0;
3380 }
3381 else if (sym_sec == NULL && hh != NULL
3382 && hh->eh.root.type == bfd_link_hash_undefweak)
3383 {
3384 /* It's OK if undefined weak. Calls to undefined weak
3385 symbols behave as if the "called" function
3386 immediately returns. We can thus call to a weak
3387 function without first checking whether the function
3388 is defined. */
3389 value = location;
3390 addend = 8;
3391 }
3392 else
3393 return bfd_reloc_undefined;
3394 }
3395 /* Fall thru. */
3396
3397 case R_PARISC_PCREL21L:
3398 case R_PARISC_PCREL17C:
3399 case R_PARISC_PCREL17R:
3400 case R_PARISC_PCREL14R:
3401 case R_PARISC_PCREL14F:
3402 case R_PARISC_PCREL32:
3403 /* Make it a pc relative offset. */
3404 value -= location;
3405 addend -= 8;
3406 break;
3407
3408 case R_PARISC_DPREL21L:
3409 case R_PARISC_DPREL14R:
3410 case R_PARISC_DPREL14F:
3411 /* Convert instructions that use the linkage table pointer (r19) to
3412 instructions that use the global data pointer (dp). This is the
3413 most efficient way of using PIC code in an incomplete executable,
3414 but the user must follow the standard runtime conventions for
3415 accessing data for this to work. */
3416 if (orig_r_type != r_type)
3417 {
3418 if (r_type == R_PARISC_DPREL21L)
3419 {
3420 /* GCC sometimes uses a register other than r19 for the
3421 operation, so we must convert any addil instruction
3422 that uses this relocation. */
3423 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3424 insn = ADDIL_DP;
3425 else
3426 /* We must have a ldil instruction. It's too hard to find
3427 and convert the associated add instruction, so issue an
3428 error. */
3429 _bfd_error_handler
3430 /* xgettext:c-format */
3431 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3432 input_bfd,
3433 input_section,
3434 (long) offset,
3435 howto->name,
3436 insn);
3437 }
3438 else if (r_type == R_PARISC_DPREL14F)
3439 {
3440 /* This must be a format 1 load/store. Change the base
3441 register to dp. */
3442 insn = (insn & 0xfc1ffff) | (27 << 21);
3443 }
3444 }
3445
3446 /* For all the DP relative relocations, we need to examine the symbol's
3447 section. If it has no section or if it's a code section, then
3448 "data pointer relative" makes no sense. In that case we don't
3449 adjust the "value", and for 21 bit addil instructions, we change the
3450 source addend register from %dp to %r0. This situation commonly
3451 arises for undefined weak symbols and when a variable's "constness"
3452 is declared differently from the way the variable is defined. For
3453 instance: "extern int foo" with foo defined as "const int foo". */
3454 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3455 {
3456 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3457 == (((int) OP_ADDIL << 26) | (27 << 21)))
3458 {
3459 insn &= ~ (0x1f << 21);
3460 }
3461 /* Now try to make things easy for the dynamic linker. */
3462
3463 break;
3464 }
3465 /* Fall thru. */
3466
3467 case R_PARISC_DLTIND21L:
3468 case R_PARISC_DLTIND14R:
3469 case R_PARISC_DLTIND14F:
3470 case R_PARISC_TLS_GD21L:
3471 case R_PARISC_TLS_LDM21L:
3472 case R_PARISC_TLS_IE21L:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM14R:
3475 case R_PARISC_TLS_IE14R:
3476 value -= elf_gp (input_section->output_section->owner);
3477 break;
3478
3479 case R_PARISC_SEGREL32:
3480 if ((sym_sec->flags & SEC_CODE) != 0)
3481 value -= htab->text_segment_base;
3482 else
3483 value -= htab->data_segment_base;
3484 break;
3485
3486 default:
3487 break;
3488 }
3489
3490 switch (r_type)
3491 {
3492 case R_PARISC_DIR32:
3493 case R_PARISC_DIR14F:
3494 case R_PARISC_DIR17F:
3495 case R_PARISC_PCREL17C:
3496 case R_PARISC_PCREL14F:
3497 case R_PARISC_PCREL32:
3498 case R_PARISC_DPREL14F:
3499 case R_PARISC_PLABEL32:
3500 case R_PARISC_DLTIND14F:
3501 case R_PARISC_SEGBASE:
3502 case R_PARISC_SEGREL32:
3503 case R_PARISC_TLS_DTPMOD32:
3504 case R_PARISC_TLS_DTPOFF32:
3505 case R_PARISC_TLS_TPREL32:
3506 r_field = e_fsel;
3507 break;
3508
3509 case R_PARISC_DLTIND21L:
3510 case R_PARISC_PCREL21L:
3511 case R_PARISC_PLABEL21L:
3512 r_field = e_lsel;
3513 break;
3514
3515 case R_PARISC_DIR21L:
3516 case R_PARISC_DPREL21L:
3517 case R_PARISC_TLS_GD21L:
3518 case R_PARISC_TLS_LDM21L:
3519 case R_PARISC_TLS_LDO21L:
3520 case R_PARISC_TLS_IE21L:
3521 case R_PARISC_TLS_LE21L:
3522 r_field = e_lrsel;
3523 break;
3524
3525 case R_PARISC_PCREL17R:
3526 case R_PARISC_PCREL14R:
3527 case R_PARISC_PLABEL14R:
3528 case R_PARISC_DLTIND14R:
3529 r_field = e_rsel;
3530 break;
3531
3532 case R_PARISC_DIR17R:
3533 case R_PARISC_DIR14R:
3534 case R_PARISC_DPREL14R:
3535 case R_PARISC_TLS_GD14R:
3536 case R_PARISC_TLS_LDM14R:
3537 case R_PARISC_TLS_LDO14R:
3538 case R_PARISC_TLS_IE14R:
3539 case R_PARISC_TLS_LE14R:
3540 r_field = e_rrsel;
3541 break;
3542
3543 case R_PARISC_PCREL12F:
3544 case R_PARISC_PCREL17F:
3545 case R_PARISC_PCREL22F:
3546 r_field = e_fsel;
3547
3548 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3549 {
3550 max_branch_offset = (1 << (17-1)) << 2;
3551 }
3552 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3553 {
3554 max_branch_offset = (1 << (12-1)) << 2;
3555 }
3556 else
3557 {
3558 max_branch_offset = (1 << (22-1)) << 2;
3559 }
3560
3561 /* sym_sec is NULL on undefined weak syms or when shared on
3562 undefined syms. We've already checked for a stub for the
3563 shared undefined case. */
3564 if (sym_sec == NULL)
3565 break;
3566
3567 /* If the branch is out of reach, then redirect the
3568 call to the local stub for this function. */
3569 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3570 {
3571 hsh = hppa_get_stub_entry (input_section, sym_sec,
3572 hh, rela, htab);
3573 if (hsh == NULL)
3574 return bfd_reloc_undefined;
3575
3576 /* Munge up the value and addend so that we call the stub
3577 rather than the procedure directly. */
3578 value = (hsh->stub_offset
3579 + hsh->stub_sec->output_offset
3580 + hsh->stub_sec->output_section->vma
3581 - location);
3582 addend = -8;
3583 }
3584 break;
3585
3586 /* Something we don't know how to handle. */
3587 default:
3588 return bfd_reloc_notsupported;
3589 }
3590
3591 /* Make sure we can reach the stub. */
3592 if (max_branch_offset != 0
3593 && value + addend + max_branch_offset >= 2*max_branch_offset)
3594 {
3595 _bfd_error_handler
3596 /* xgettext:c-format */
3597 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3598 input_bfd,
3599 input_section,
3600 (long) offset,
3601 hsh->bh_root.string);
3602 bfd_set_error (bfd_error_bad_value);
3603 return bfd_reloc_notsupported;
3604 }
3605
3606 val = hppa_field_adjust (value, addend, r_field);
3607
3608 switch (r_type)
3609 {
3610 case R_PARISC_PCREL12F:
3611 case R_PARISC_PCREL17C:
3612 case R_PARISC_PCREL17F:
3613 case R_PARISC_PCREL17R:
3614 case R_PARISC_PCREL22F:
3615 case R_PARISC_DIR17F:
3616 case R_PARISC_DIR17R:
3617 /* This is a branch. Divide the offset by four.
3618 Note that we need to decide whether it's a branch or
3619 otherwise by inspecting the reloc. Inspecting insn won't
3620 work as insn might be from a .word directive. */
3621 val >>= 2;
3622 break;
3623
3624 default:
3625 break;
3626 }
3627
3628 insn = hppa_rebuild_insn (insn, val, r_format);
3629
3630 /* Update the instruction word. */
3631 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3632 return bfd_reloc_ok;
3633 }
3634
3635 /* Relocate an HPPA ELF section. */
3636
3637 static bfd_boolean
3638 elf32_hppa_relocate_section (bfd *output_bfd,
3639 struct bfd_link_info *info,
3640 bfd *input_bfd,
3641 asection *input_section,
3642 bfd_byte *contents,
3643 Elf_Internal_Rela *relocs,
3644 Elf_Internal_Sym *local_syms,
3645 asection **local_sections)
3646 {
3647 bfd_vma *local_got_offsets;
3648 struct elf32_hppa_link_hash_table *htab;
3649 Elf_Internal_Shdr *symtab_hdr;
3650 Elf_Internal_Rela *rela;
3651 Elf_Internal_Rela *relend;
3652
3653 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3654
3655 htab = hppa_link_hash_table (info);
3656 if (htab == NULL)
3657 return FALSE;
3658
3659 local_got_offsets = elf_local_got_offsets (input_bfd);
3660
3661 rela = relocs;
3662 relend = relocs + input_section->reloc_count;
3663 for (; rela < relend; rela++)
3664 {
3665 unsigned int r_type;
3666 reloc_howto_type *howto;
3667 unsigned int r_symndx;
3668 struct elf32_hppa_link_hash_entry *hh;
3669 Elf_Internal_Sym *sym;
3670 asection *sym_sec;
3671 bfd_vma relocation;
3672 bfd_reloc_status_type rstatus;
3673 const char *sym_name;
3674 bfd_boolean plabel;
3675 bfd_boolean warned_undef;
3676
3677 r_type = ELF32_R_TYPE (rela->r_info);
3678 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3679 {
3680 bfd_set_error (bfd_error_bad_value);
3681 return FALSE;
3682 }
3683 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3684 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3685 continue;
3686
3687 r_symndx = ELF32_R_SYM (rela->r_info);
3688 hh = NULL;
3689 sym = NULL;
3690 sym_sec = NULL;
3691 warned_undef = FALSE;
3692 if (r_symndx < symtab_hdr->sh_info)
3693 {
3694 /* This is a local symbol, h defaults to NULL. */
3695 sym = local_syms + r_symndx;
3696 sym_sec = local_sections[r_symndx];
3697 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3698 }
3699 else
3700 {
3701 struct elf_link_hash_entry *eh;
3702 bfd_boolean unresolved_reloc, ignored;
3703 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3704
3705 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3706 r_symndx, symtab_hdr, sym_hashes,
3707 eh, sym_sec, relocation,
3708 unresolved_reloc, warned_undef,
3709 ignored);
3710
3711 if (!bfd_link_relocatable (info)
3712 && relocation == 0
3713 && eh->root.type != bfd_link_hash_defined
3714 && eh->root.type != bfd_link_hash_defweak
3715 && eh->root.type != bfd_link_hash_undefweak)
3716 {
3717 if (info->unresolved_syms_in_objects == RM_IGNORE
3718 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3719 && eh->type == STT_PARISC_MILLI)
3720 {
3721 (*info->callbacks->undefined_symbol)
3722 (info, eh_name (eh), input_bfd,
3723 input_section, rela->r_offset, FALSE);
3724 warned_undef = TRUE;
3725 }
3726 }
3727 hh = hppa_elf_hash_entry (eh);
3728 }
3729
3730 if (sym_sec != NULL && discarded_section (sym_sec))
3731 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3732 rela, 1, relend,
3733 elf_hppa_howto_table + r_type, 0,
3734 contents);
3735
3736 if (bfd_link_relocatable (info))
3737 continue;
3738
3739 /* Do any required modifications to the relocation value, and
3740 determine what types of dynamic info we need to output, if
3741 any. */
3742 plabel = 0;
3743 switch (r_type)
3744 {
3745 case R_PARISC_DLTIND14F:
3746 case R_PARISC_DLTIND14R:
3747 case R_PARISC_DLTIND21L:
3748 {
3749 bfd_vma off;
3750 bfd_boolean do_got = 0;
3751
3752 /* Relocation is to the entry for this symbol in the
3753 global offset table. */
3754 if (hh != NULL)
3755 {
3756 bfd_boolean dyn;
3757
3758 off = hh->eh.got.offset;
3759 dyn = htab->etab.dynamic_sections_created;
3760 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3761 bfd_link_pic (info),
3762 &hh->eh))
3763 {
3764 /* If we aren't going to call finish_dynamic_symbol,
3765 then we need to handle initialisation of the .got
3766 entry and create needed relocs here. Since the
3767 offset must always be a multiple of 4, we use the
3768 least significant bit to record whether we have
3769 initialised it already. */
3770 if ((off & 1) != 0)
3771 off &= ~1;
3772 else
3773 {
3774 hh->eh.got.offset |= 1;
3775 do_got = 1;
3776 }
3777 }
3778 }
3779 else
3780 {
3781 /* Local symbol case. */
3782 if (local_got_offsets == NULL)
3783 abort ();
3784
3785 off = local_got_offsets[r_symndx];
3786
3787 /* The offset must always be a multiple of 4. We use
3788 the least significant bit to record whether we have
3789 already generated the necessary reloc. */
3790 if ((off & 1) != 0)
3791 off &= ~1;
3792 else
3793 {
3794 local_got_offsets[r_symndx] |= 1;
3795 do_got = 1;
3796 }
3797 }
3798
3799 if (do_got)
3800 {
3801 if (bfd_link_pic (info))
3802 {
3803 /* Output a dynamic relocation for this GOT entry.
3804 In this case it is relative to the base of the
3805 object because the symbol index is zero. */
3806 Elf_Internal_Rela outrel;
3807 bfd_byte *loc;
3808 asection *sec = htab->etab.srelgot;
3809
3810 outrel.r_offset = (off
3811 + htab->etab.sgot->output_offset
3812 + htab->etab.sgot->output_section->vma);
3813 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3814 outrel.r_addend = relocation;
3815 loc = sec->contents;
3816 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3817 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818 }
3819 else
3820 bfd_put_32 (output_bfd, relocation,
3821 htab->etab.sgot->contents + off);
3822 }
3823
3824 if (off >= (bfd_vma) -2)
3825 abort ();
3826
3827 /* Add the base of the GOT to the relocation value. */
3828 relocation = (off
3829 + htab->etab.sgot->output_offset
3830 + htab->etab.sgot->output_section->vma);
3831 }
3832 break;
3833
3834 case R_PARISC_SEGREL32:
3835 /* If this is the first SEGREL relocation, then initialize
3836 the segment base values. */
3837 if (htab->text_segment_base == (bfd_vma) -1)
3838 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3839 break;
3840
3841 case R_PARISC_PLABEL14R:
3842 case R_PARISC_PLABEL21L:
3843 case R_PARISC_PLABEL32:
3844 if (htab->etab.dynamic_sections_created)
3845 {
3846 bfd_vma off;
3847 bfd_boolean do_plt = 0;
3848 /* If we have a global symbol with a PLT slot, then
3849 redirect this relocation to it. */
3850 if (hh != NULL)
3851 {
3852 off = hh->eh.plt.offset;
3853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3854 bfd_link_pic (info),
3855 &hh->eh))
3856 {
3857 /* In a non-shared link, adjust_dynamic_symbols
3858 isn't called for symbols forced local. We
3859 need to write out the plt entry here. */
3860 if ((off & 1) != 0)
3861 off &= ~1;
3862 else
3863 {
3864 hh->eh.plt.offset |= 1;
3865 do_plt = 1;
3866 }
3867 }
3868 }
3869 else
3870 {
3871 bfd_vma *local_plt_offsets;
3872
3873 if (local_got_offsets == NULL)
3874 abort ();
3875
3876 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3877 off = local_plt_offsets[r_symndx];
3878
3879 /* As for the local .got entry case, we use the last
3880 bit to record whether we've already initialised
3881 this local .plt entry. */
3882 if ((off & 1) != 0)
3883 off &= ~1;
3884 else
3885 {
3886 local_plt_offsets[r_symndx] |= 1;
3887 do_plt = 1;
3888 }
3889 }
3890
3891 if (do_plt)
3892 {
3893 if (bfd_link_pic (info))
3894 {
3895 /* Output a dynamic IPLT relocation for this
3896 PLT entry. */
3897 Elf_Internal_Rela outrel;
3898 bfd_byte *loc;
3899 asection *s = htab->etab.srelplt;
3900
3901 outrel.r_offset = (off
3902 + htab->etab.splt->output_offset
3903 + htab->etab.splt->output_section->vma);
3904 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3905 outrel.r_addend = relocation;
3906 loc = s->contents;
3907 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3908 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3909 }
3910 else
3911 {
3912 bfd_put_32 (output_bfd,
3913 relocation,
3914 htab->etab.splt->contents + off);
3915 bfd_put_32 (output_bfd,
3916 elf_gp (htab->etab.splt->output_section->owner),
3917 htab->etab.splt->contents + off + 4);
3918 }
3919 }
3920
3921 if (off >= (bfd_vma) -2)
3922 abort ();
3923
3924 /* PLABELs contain function pointers. Relocation is to
3925 the entry for the function in the .plt. The magic +2
3926 offset signals to $$dyncall that the function pointer
3927 is in the .plt and thus has a gp pointer too.
3928 Exception: Undefined PLABELs should have a value of
3929 zero. */
3930 if (hh == NULL
3931 || (hh->eh.root.type != bfd_link_hash_undefweak
3932 && hh->eh.root.type != bfd_link_hash_undefined))
3933 {
3934 relocation = (off
3935 + htab->etab.splt->output_offset
3936 + htab->etab.splt->output_section->vma
3937 + 2);
3938 }
3939 plabel = 1;
3940 }
3941 /* Fall through. */
3942
3943 case R_PARISC_DIR17F:
3944 case R_PARISC_DIR17R:
3945 case R_PARISC_DIR14F:
3946 case R_PARISC_DIR14R:
3947 case R_PARISC_DIR21L:
3948 case R_PARISC_DPREL14F:
3949 case R_PARISC_DPREL14R:
3950 case R_PARISC_DPREL21L:
3951 case R_PARISC_DIR32:
3952 if ((input_section->flags & SEC_ALLOC) == 0)
3953 break;
3954
3955 /* The reloc types handled here and this conditional
3956 expression must match the code in ..check_relocs and
3957 allocate_dynrelocs. ie. We need exactly the same condition
3958 as in ..check_relocs, with some extra conditions (dynindx
3959 test in this case) to cater for relocs removed by
3960 allocate_dynrelocs. If you squint, the non-shared test
3961 here does indeed match the one in ..check_relocs, the
3962 difference being that here we test DEF_DYNAMIC as well as
3963 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3964 which is why we can't use just that test here.
3965 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3966 there all files have not been loaded. */
3967 if ((bfd_link_pic (info)
3968 && (hh == NULL
3969 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3970 || hh->eh.root.type != bfd_link_hash_undefweak)
3971 && (IS_ABSOLUTE_RELOC (r_type)
3972 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3973 || (!bfd_link_pic (info)
3974 && hh != NULL
3975 && hh->eh.dynindx != -1
3976 && !hh->eh.non_got_ref
3977 && ((ELIMINATE_COPY_RELOCS
3978 && hh->eh.def_dynamic
3979 && !hh->eh.def_regular)
3980 || hh->eh.root.type == bfd_link_hash_undefweak
3981 || hh->eh.root.type == bfd_link_hash_undefined)))
3982 {
3983 Elf_Internal_Rela outrel;
3984 bfd_boolean skip;
3985 asection *sreloc;
3986 bfd_byte *loc;
3987
3988 /* When generating a shared object, these relocations
3989 are copied into the output file to be resolved at run
3990 time. */
3991
3992 outrel.r_addend = rela->r_addend;
3993 outrel.r_offset =
3994 _bfd_elf_section_offset (output_bfd, info, input_section,
3995 rela->r_offset);
3996 skip = (outrel.r_offset == (bfd_vma) -1
3997 || outrel.r_offset == (bfd_vma) -2);
3998 outrel.r_offset += (input_section->output_offset
3999 + input_section->output_section->vma);
4000
4001 if (skip)
4002 {
4003 memset (&outrel, 0, sizeof (outrel));
4004 }
4005 else if (hh != NULL
4006 && hh->eh.dynindx != -1
4007 && (plabel
4008 || !IS_ABSOLUTE_RELOC (r_type)
4009 || !bfd_link_pic (info)
4010 || !SYMBOLIC_BIND (info, &hh->eh)
4011 || !hh->eh.def_regular))
4012 {
4013 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4014 }
4015 else /* It's a local symbol, or one marked to become local. */
4016 {
4017 int indx = 0;
4018
4019 /* Add the absolute offset of the symbol. */
4020 outrel.r_addend += relocation;
4021
4022 /* Global plabels need to be processed by the
4023 dynamic linker so that functions have at most one
4024 fptr. For this reason, we need to differentiate
4025 between global and local plabels, which we do by
4026 providing the function symbol for a global plabel
4027 reloc, and no symbol for local plabels. */
4028 if (! plabel
4029 && sym_sec != NULL
4030 && sym_sec->output_section != NULL
4031 && ! bfd_is_abs_section (sym_sec))
4032 {
4033 asection *osec;
4034
4035 osec = sym_sec->output_section;
4036 indx = elf_section_data (osec)->dynindx;
4037 if (indx == 0)
4038 {
4039 osec = htab->etab.text_index_section;
4040 indx = elf_section_data (osec)->dynindx;
4041 }
4042 BFD_ASSERT (indx != 0);
4043
4044 /* We are turning this relocation into one
4045 against a section symbol, so subtract out the
4046 output section's address but not the offset
4047 of the input section in the output section. */
4048 outrel.r_addend -= osec->vma;
4049 }
4050
4051 outrel.r_info = ELF32_R_INFO (indx, r_type);
4052 }
4053 sreloc = elf_section_data (input_section)->sreloc;
4054 if (sreloc == NULL)
4055 abort ();
4056
4057 loc = sreloc->contents;
4058 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4059 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4060 }
4061 break;
4062
4063 case R_PARISC_TLS_LDM21L:
4064 case R_PARISC_TLS_LDM14R:
4065 {
4066 bfd_vma off;
4067
4068 off = htab->tls_ldm_got.offset;
4069 if (off & 1)
4070 off &= ~1;
4071 else
4072 {
4073 Elf_Internal_Rela outrel;
4074 bfd_byte *loc;
4075
4076 outrel.r_offset = (off
4077 + htab->etab.sgot->output_section->vma
4078 + htab->etab.sgot->output_offset);
4079 outrel.r_addend = 0;
4080 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4081 loc = htab->etab.srelgot->contents;
4082 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4083
4084 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4085 htab->tls_ldm_got.offset |= 1;
4086 }
4087
4088 /* Add the base of the GOT to the relocation value. */
4089 relocation = (off
4090 + htab->etab.sgot->output_offset
4091 + htab->etab.sgot->output_section->vma);
4092
4093 break;
4094 }
4095
4096 case R_PARISC_TLS_LDO21L:
4097 case R_PARISC_TLS_LDO14R:
4098 relocation -= dtpoff_base (info);
4099 break;
4100
4101 case R_PARISC_TLS_GD21L:
4102 case R_PARISC_TLS_GD14R:
4103 case R_PARISC_TLS_IE21L:
4104 case R_PARISC_TLS_IE14R:
4105 {
4106 bfd_vma off;
4107 int indx;
4108 char tls_type;
4109
4110 indx = 0;
4111 if (hh != NULL)
4112 {
4113 bfd_boolean dyn;
4114 dyn = htab->etab.dynamic_sections_created;
4115
4116 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4117 bfd_link_pic (info),
4118 &hh->eh)
4119 && (!bfd_link_pic (info)
4120 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4121 {
4122 indx = hh->eh.dynindx;
4123 }
4124 off = hh->eh.got.offset;
4125 tls_type = hh->tls_type;
4126 }
4127 else
4128 {
4129 off = local_got_offsets[r_symndx];
4130 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4131 }
4132
4133 if (tls_type == GOT_UNKNOWN)
4134 abort ();
4135
4136 if ((off & 1) != 0)
4137 off &= ~1;
4138 else
4139 {
4140 bfd_boolean need_relocs = FALSE;
4141 Elf_Internal_Rela outrel;
4142 bfd_byte *loc = NULL;
4143 int cur_off = off;
4144
4145 /* The GOT entries have not been initialized yet. Do it
4146 now, and emit any relocations. If both an IE GOT and a
4147 GD GOT are necessary, we emit the GD first. */
4148
4149 if ((bfd_link_pic (info) || indx != 0)
4150 && (hh == NULL
4151 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4152 || hh->eh.root.type != bfd_link_hash_undefweak))
4153 {
4154 need_relocs = TRUE;
4155 loc = htab->etab.srelgot->contents;
4156 /* FIXME (CAO): Should this be reloc_count++ ? */
4157 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4158 }
4159
4160 if (tls_type & GOT_TLS_GD)
4161 {
4162 if (need_relocs)
4163 {
4164 outrel.r_offset = (cur_off
4165 + htab->etab.sgot->output_section->vma
4166 + htab->etab.sgot->output_offset);
4167 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4168 outrel.r_addend = 0;
4169 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4170 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4171 htab->etab.srelgot->reloc_count++;
4172 loc += sizeof (Elf32_External_Rela);
4173
4174 if (indx == 0)
4175 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4176 htab->etab.sgot->contents + cur_off + 4);
4177 else
4178 {
4179 bfd_put_32 (output_bfd, 0,
4180 htab->etab.sgot->contents + cur_off + 4);
4181 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4182 outrel.r_offset += 4;
4183 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4184 htab->etab.srelgot->reloc_count++;
4185 loc += sizeof (Elf32_External_Rela);
4186 }
4187 }
4188 else
4189 {
4190 /* If we are not emitting relocations for a
4191 general dynamic reference, then we must be in a
4192 static link or an executable link with the
4193 symbol binding locally. Mark it as belonging
4194 to module 1, the executable. */
4195 bfd_put_32 (output_bfd, 1,
4196 htab->etab.sgot->contents + cur_off);
4197 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4198 htab->etab.sgot->contents + cur_off + 4);
4199 }
4200
4201
4202 cur_off += 8;
4203 }
4204
4205 if (tls_type & GOT_TLS_IE)
4206 {
4207 if (need_relocs)
4208 {
4209 outrel.r_offset = (cur_off
4210 + htab->etab.sgot->output_section->vma
4211 + htab->etab.sgot->output_offset);
4212 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4213
4214 if (indx == 0)
4215 outrel.r_addend = relocation - dtpoff_base (info);
4216 else
4217 outrel.r_addend = 0;
4218
4219 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4220 htab->etab.srelgot->reloc_count++;
4221 loc += sizeof (Elf32_External_Rela);
4222 }
4223 else
4224 bfd_put_32 (output_bfd, tpoff (info, relocation),
4225 htab->etab.sgot->contents + cur_off);
4226
4227 cur_off += 4;
4228 }
4229
4230 if (hh != NULL)
4231 hh->eh.got.offset |= 1;
4232 else
4233 local_got_offsets[r_symndx] |= 1;
4234 }
4235
4236 if ((tls_type & GOT_TLS_GD)
4237 && r_type != R_PARISC_TLS_GD21L
4238 && r_type != R_PARISC_TLS_GD14R)
4239 off += 2 * GOT_ENTRY_SIZE;
4240
4241 /* Add the base of the GOT to the relocation value. */
4242 relocation = (off
4243 + htab->etab.sgot->output_offset
4244 + htab->etab.sgot->output_section->vma);
4245
4246 break;
4247 }
4248
4249 case R_PARISC_TLS_LE21L:
4250 case R_PARISC_TLS_LE14R:
4251 {
4252 relocation = tpoff (info, relocation);
4253 break;
4254 }
4255 break;
4256
4257 default:
4258 break;
4259 }
4260
4261 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4262 htab, sym_sec, hh, info);
4263
4264 if (rstatus == bfd_reloc_ok)
4265 continue;
4266
4267 if (hh != NULL)
4268 sym_name = hh_name (hh);
4269 else
4270 {
4271 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4272 symtab_hdr->sh_link,
4273 sym->st_name);
4274 if (sym_name == NULL)
4275 return FALSE;
4276 if (*sym_name == '\0')
4277 sym_name = bfd_section_name (input_bfd, sym_sec);
4278 }
4279
4280 howto = elf_hppa_howto_table + r_type;
4281
4282 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4283 {
4284 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4285 {
4286 _bfd_error_handler
4287 /* xgettext:c-format */
4288 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4289 input_bfd,
4290 input_section,
4291 (long) rela->r_offset,
4292 howto->name,
4293 sym_name);
4294 bfd_set_error (bfd_error_bad_value);
4295 return FALSE;
4296 }
4297 }
4298 else
4299 (*info->callbacks->reloc_overflow)
4300 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4301 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4302 }
4303
4304 return TRUE;
4305 }
4306
4307 /* Finish up dynamic symbol handling. We set the contents of various
4308 dynamic sections here. */
4309
4310 static bfd_boolean
4311 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4312 struct bfd_link_info *info,
4313 struct elf_link_hash_entry *eh,
4314 Elf_Internal_Sym *sym)
4315 {
4316 struct elf32_hppa_link_hash_table *htab;
4317 Elf_Internal_Rela rela;
4318 bfd_byte *loc;
4319
4320 htab = hppa_link_hash_table (info);
4321 if (htab == NULL)
4322 return FALSE;
4323
4324 if (eh->plt.offset != (bfd_vma) -1)
4325 {
4326 bfd_vma value;
4327
4328 if (eh->plt.offset & 1)
4329 abort ();
4330
4331 /* This symbol has an entry in the procedure linkage table. Set
4332 it up.
4333
4334 The format of a plt entry is
4335 <funcaddr>
4336 <__gp>
4337 */
4338 value = 0;
4339 if (eh->root.type == bfd_link_hash_defined
4340 || eh->root.type == bfd_link_hash_defweak)
4341 {
4342 value = eh->root.u.def.value;
4343 if (eh->root.u.def.section->output_section != NULL)
4344 value += (eh->root.u.def.section->output_offset
4345 + eh->root.u.def.section->output_section->vma);
4346 }
4347
4348 /* Create a dynamic IPLT relocation for this entry. */
4349 rela.r_offset = (eh->plt.offset
4350 + htab->etab.splt->output_offset
4351 + htab->etab.splt->output_section->vma);
4352 if (eh->dynindx != -1)
4353 {
4354 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4355 rela.r_addend = 0;
4356 }
4357 else
4358 {
4359 /* This symbol has been marked to become local, and is
4360 used by a plabel so must be kept in the .plt. */
4361 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4362 rela.r_addend = value;
4363 }
4364
4365 loc = htab->etab.srelplt->contents;
4366 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4367 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4368
4369 if (!eh->def_regular)
4370 {
4371 /* Mark the symbol as undefined, rather than as defined in
4372 the .plt section. Leave the value alone. */
4373 sym->st_shndx = SHN_UNDEF;
4374 }
4375 }
4376
4377 if (eh->got.offset != (bfd_vma) -1
4378 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4379 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4380 {
4381 /* This symbol has an entry in the global offset table. Set it
4382 up. */
4383
4384 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4385 + htab->etab.sgot->output_offset
4386 + htab->etab.sgot->output_section->vma);
4387
4388 /* If this is a -Bsymbolic link and the symbol is defined
4389 locally or was forced to be local because of a version file,
4390 we just want to emit a RELATIVE reloc. The entry in the
4391 global offset table will already have been initialized in the
4392 relocate_section function. */
4393 if (bfd_link_pic (info)
4394 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4395 && eh->def_regular)
4396 {
4397 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4398 rela.r_addend = (eh->root.u.def.value
4399 + eh->root.u.def.section->output_offset
4400 + eh->root.u.def.section->output_section->vma);
4401 }
4402 else
4403 {
4404 if ((eh->got.offset & 1) != 0)
4405 abort ();
4406
4407 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + (eh->got.offset & ~1));
4408 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4409 rela.r_addend = 0;
4410 }
4411
4412 loc = htab->etab.srelgot->contents;
4413 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4414 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4415 }
4416
4417 if (eh->needs_copy)
4418 {
4419 asection *sec;
4420
4421 /* This symbol needs a copy reloc. Set it up. */
4422
4423 if (! (eh->dynindx != -1
4424 && (eh->root.type == bfd_link_hash_defined
4425 || eh->root.type == bfd_link_hash_defweak)))
4426 abort ();
4427
4428 rela.r_offset = (eh->root.u.def.value
4429 + eh->root.u.def.section->output_offset
4430 + eh->root.u.def.section->output_section->vma);
4431 rela.r_addend = 0;
4432 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4433 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
4434 sec = htab->etab.sreldynrelro;
4435 else
4436 sec = htab->etab.srelbss;
4437 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4438 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4439 }
4440
4441 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4442 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4443 {
4444 sym->st_shndx = SHN_ABS;
4445 }
4446
4447 return TRUE;
4448 }
4449
4450 /* Used to decide how to sort relocs in an optimal manner for the
4451 dynamic linker, before writing them out. */
4452
4453 static enum elf_reloc_type_class
4454 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4455 const asection *rel_sec ATTRIBUTE_UNUSED,
4456 const Elf_Internal_Rela *rela)
4457 {
4458 /* Handle TLS relocs first; we don't want them to be marked
4459 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4460 check below. */
4461 switch ((int) ELF32_R_TYPE (rela->r_info))
4462 {
4463 case R_PARISC_TLS_DTPMOD32:
4464 case R_PARISC_TLS_DTPOFF32:
4465 case R_PARISC_TLS_TPREL32:
4466 return reloc_class_normal;
4467 }
4468
4469 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4470 return reloc_class_relative;
4471
4472 switch ((int) ELF32_R_TYPE (rela->r_info))
4473 {
4474 case R_PARISC_IPLT:
4475 return reloc_class_plt;
4476 case R_PARISC_COPY:
4477 return reloc_class_copy;
4478 default:
4479 return reloc_class_normal;
4480 }
4481 }
4482
4483 /* Finish up the dynamic sections. */
4484
4485 static bfd_boolean
4486 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4487 struct bfd_link_info *info)
4488 {
4489 bfd *dynobj;
4490 struct elf32_hppa_link_hash_table *htab;
4491 asection *sdyn;
4492 asection * sgot;
4493
4494 htab = hppa_link_hash_table (info);
4495 if (htab == NULL)
4496 return FALSE;
4497
4498 dynobj = htab->etab.dynobj;
4499
4500 sgot = htab->etab.sgot;
4501 /* A broken linker script might have discarded the dynamic sections.
4502 Catch this here so that we do not seg-fault later on. */
4503 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4504 return FALSE;
4505
4506 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4507
4508 if (htab->etab.dynamic_sections_created)
4509 {
4510 Elf32_External_Dyn *dyncon, *dynconend;
4511
4512 if (sdyn == NULL)
4513 abort ();
4514
4515 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4516 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4517 for (; dyncon < dynconend; dyncon++)
4518 {
4519 Elf_Internal_Dyn dyn;
4520 asection *s;
4521
4522 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4523
4524 switch (dyn.d_tag)
4525 {
4526 default:
4527 continue;
4528
4529 case DT_PLTGOT:
4530 /* Use PLTGOT to set the GOT register. */
4531 dyn.d_un.d_ptr = elf_gp (output_bfd);
4532 break;
4533
4534 case DT_JMPREL:
4535 s = htab->etab.srelplt;
4536 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4537 break;
4538
4539 case DT_PLTRELSZ:
4540 s = htab->etab.srelplt;
4541 dyn.d_un.d_val = s->size;
4542 break;
4543 }
4544
4545 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4546 }
4547 }
4548
4549 if (sgot != NULL && sgot->size != 0)
4550 {
4551 /* Fill in the first entry in the global offset table.
4552 We use it to point to our dynamic section, if we have one. */
4553 bfd_put_32 (output_bfd,
4554 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4555 sgot->contents);
4556
4557 /* The second entry is reserved for use by the dynamic linker. */
4558 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4559
4560 /* Set .got entry size. */
4561 elf_section_data (sgot->output_section)
4562 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4563 }
4564
4565 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4566 {
4567 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4568 plt stubs and as such the section does not hold a table of fixed-size
4569 entries. */
4570 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4571
4572 if (htab->need_plt_stub)
4573 {
4574 /* Set up the .plt stub. */
4575 memcpy (htab->etab.splt->contents
4576 + htab->etab.splt->size - sizeof (plt_stub),
4577 plt_stub, sizeof (plt_stub));
4578
4579 if ((htab->etab.splt->output_offset
4580 + htab->etab.splt->output_section->vma
4581 + htab->etab.splt->size)
4582 != (sgot->output_offset
4583 + sgot->output_section->vma))
4584 {
4585 _bfd_error_handler
4586 (_(".got section not immediately after .plt section"));
4587 return FALSE;
4588 }
4589 }
4590 }
4591
4592 return TRUE;
4593 }
4594
4595 /* Called when writing out an object file to decide the type of a
4596 symbol. */
4597 static int
4598 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4599 {
4600 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4601 return STT_PARISC_MILLI;
4602 else
4603 return type;
4604 }
4605
4606 /* Misc BFD support code. */
4607 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4608 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4609 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4610 #define elf_info_to_howto elf_hppa_info_to_howto
4611 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4612
4613 /* Stuff for the BFD linker. */
4614 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4615 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4616 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4617 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4618 #define elf_backend_check_relocs elf32_hppa_check_relocs
4619 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4620 #define elf_backend_fake_sections elf_hppa_fake_sections
4621 #define elf_backend_relocate_section elf32_hppa_relocate_section
4622 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4623 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4624 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4625 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4626 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4627 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4628 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4629 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4630 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4631 #define elf_backend_object_p elf32_hppa_object_p
4632 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4633 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4634 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4635 #define elf_backend_action_discarded elf_hppa_action_discarded
4636
4637 #define elf_backend_can_gc_sections 1
4638 #define elf_backend_can_refcount 1
4639 #define elf_backend_plt_alignment 2
4640 #define elf_backend_want_got_plt 0
4641 #define elf_backend_plt_readonly 0
4642 #define elf_backend_want_plt_sym 0
4643 #define elf_backend_got_header_size 8
4644 #define elf_backend_want_dynrelro 1
4645 #define elf_backend_rela_normal 1
4646 #define elf_backend_dtrel_excludes_plt 1
4647
4648 #define TARGET_BIG_SYM hppa_elf32_vec
4649 #define TARGET_BIG_NAME "elf32-hppa"
4650 #define ELF_ARCH bfd_arch_hppa
4651 #define ELF_TARGET_ID HPPA32_ELF_DATA
4652 #define ELF_MACHINE_CODE EM_PARISC
4653 #define ELF_MAXPAGESIZE 0x1000
4654 #define ELF_OSABI ELFOSABI_HPUX
4655 #define elf32_bed elf32_hppa_hpux_bed
4656
4657 #include "elf32-target.h"
4658
4659 #undef TARGET_BIG_SYM
4660 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4661 #undef TARGET_BIG_NAME
4662 #define TARGET_BIG_NAME "elf32-hppa-linux"
4663 #undef ELF_OSABI
4664 #define ELF_OSABI ELFOSABI_GNU
4665 #undef elf32_bed
4666 #define elf32_bed elf32_hppa_linux_bed
4667
4668 #include "elf32-target.h"
4669
4670 #undef TARGET_BIG_SYM
4671 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4672 #undef TARGET_BIG_NAME
4673 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4674 #undef ELF_OSABI
4675 #define ELF_OSABI ELFOSABI_NETBSD
4676 #undef elf32_bed
4677 #define elf32_bed elf32_hppa_netbsd_bed
4678
4679 #include "elf32-target.h"