* elflink.h (elf_fix_symbol_flags): Copy flags to weakdef using
[binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
73 Elf_Internal_Sym *));
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
78
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
80
81 #include "elf/i386.h"
82
83 static reloc_howto_type elf_howto_table[]=
84 {
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
118
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
125
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
139
140 /* Another gap. */
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 false, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 false),
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 false)
173
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
180 #else
181 #define TRACE(str)
182 #endif
183
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
238
239 /* The remaining relocs are a GNU extension. */
240 case BFD_RELOC_16:
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
243
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
247
248 case BFD_RELOC_8:
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
251
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
255
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
259 - R_386_vt_offset];
260
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
264 - R_386_vt_offset];
265
266 default:
267 break;
268 }
269
270 TRACE ("Unknown");
271 return 0;
272 }
273
274 static void
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
279 {
280 abort ();
281 }
282
283 static void
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
286 arelent *cache_ptr;
287 Elf32_Internal_Rel *dst;
288 {
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
290 unsigned int indx;
291
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
297 {
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
301 }
302 cache_ptr->howto = &elf_howto_table[indx];
303 }
304
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
310
311 static boolean
312 elf_i386_is_local_label_name (abfd, name)
313 bfd *abfd;
314 const char *name;
315 {
316 if (name[0] == '.' && name[1] == 'X')
317 return true;
318
319 return _bfd_elf_is_local_label_name (abfd, name);
320 }
321 \f
322 /* Support for core dump NOTE sections. */
323 static boolean
324 elf_i386_grok_prstatus (abfd, note)
325 bfd *abfd;
326 Elf_Internal_Note *note;
327 {
328 int offset;
329 size_t raw_size;
330
331 switch (note->descsz)
332 {
333 default:
334 return false;
335
336 case 144: /* Linux/i386 */
337 /* pr_cursig */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
339
340 /* pr_pid */
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
342
343 /* pr_reg */
344 offset = 72;
345 raw_size = 68;
346
347 break;
348 }
349
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
353 }
354
355 static boolean
356 elf_i386_grok_psinfo (abfd, note)
357 bfd *abfd;
358 Elf_Internal_Note *note;
359 {
360 switch (note->descsz)
361 {
362 default:
363 return false;
364
365 case 128: /* Linux/MIPS elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
370 }
371
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
375
376 {
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
379
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
382 }
383
384 return true;
385 }
386 \f
387 /* Functions for the i386 ELF linker.
388
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
391 following:
392
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
399
400
401 /* The name of the dynamic interpreter. This is put in the .interp
402 section. */
403
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
405
406 /* The size in bytes of an entry in the procedure linkage table. */
407
408 #define PLT_ENTRY_SIZE 16
409
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
412
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
414 {
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
420 };
421
422 /* Subsequent entries in an absolute procedure linkage table look like
423 this. */
424
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
426 {
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
433 };
434
435 /* The first entry in a PIC procedure linkage table look like this. */
436
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
438 {
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
442 };
443
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
445
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
447 {
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
454 };
455
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
461
462 struct elf_i386_dyn_relocs
463 {
464 struct elf_i386_dyn_relocs *next;
465
466 /* The input section of the reloc. */
467 asection *sec;
468
469 /* Total number of relocs copied for the input section. */
470 bfd_size_type count;
471
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
474 };
475
476 /* i386 ELF linker hash entry. */
477
478 struct elf_i386_link_hash_entry
479 {
480 struct elf_link_hash_entry elf;
481
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
484 };
485
486 /* i386 ELF linker hash table. */
487
488 struct elf_i386_link_hash_table
489 {
490 struct elf_link_hash_table elf;
491
492 /* Short-cuts to get to dynamic linker sections. */
493 asection *sgot;
494 asection *sgotplt;
495 asection *srelgot;
496 asection *splt;
497 asection *srelplt;
498 asection *sdynbss;
499 asection *srelbss;
500 };
501
502 /* Get the i386 ELF linker hash table from a link_info structure. */
503
504 #define elf_i386_hash_table(p) \
505 ((struct elf_i386_link_hash_table *) ((p)->hash))
506
507 /* Create an entry in an i386 ELF linker hash table. */
508
509 static struct bfd_hash_entry *
510 link_hash_newfunc (entry, table, string)
511 struct bfd_hash_entry *entry;
512 struct bfd_hash_table *table;
513 const char *string;
514 {
515 /* Allocate the structure if it has not already been allocated by a
516 subclass. */
517 if (entry == NULL)
518 {
519 entry = bfd_hash_allocate (table,
520 sizeof (struct elf_i386_link_hash_entry));
521 if (entry == NULL)
522 return entry;
523 }
524
525 /* Call the allocation method of the superclass. */
526 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
527 if (entry != NULL)
528 {
529 struct elf_i386_link_hash_entry *eh;
530
531 eh = (struct elf_i386_link_hash_entry *) entry;
532 eh->dyn_relocs = NULL;
533 }
534
535 return entry;
536 }
537
538 /* Create an i386 ELF linker hash table. */
539
540 static struct bfd_link_hash_table *
541 elf_i386_link_hash_table_create (abfd)
542 bfd *abfd;
543 {
544 struct elf_i386_link_hash_table *ret;
545 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
546
547 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
548 if (ret == NULL)
549 return NULL;
550
551 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
552 {
553 bfd_release (abfd, ret);
554 return NULL;
555 }
556
557 ret->sgot = NULL;
558 ret->sgotplt = NULL;
559 ret->srelgot = NULL;
560 ret->splt = NULL;
561 ret->srelplt = NULL;
562 ret->sdynbss = NULL;
563 ret->srelbss = NULL;
564
565 return &ret->elf.root;
566 }
567
568 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
569 shortcuts to them in our hash table. */
570
571 static boolean
572 create_got_section (dynobj, info)
573 bfd *dynobj;
574 struct bfd_link_info *info;
575 {
576 struct elf_i386_link_hash_table *htab;
577
578 if (! _bfd_elf_create_got_section (dynobj, info))
579 return false;
580
581 htab = elf_i386_hash_table (info);
582 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
583 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
584 if (!htab->sgot || !htab->sgotplt)
585 abort ();
586
587 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
588 if (htab->srelgot == NULL
589 || ! bfd_set_section_flags (dynobj, htab->srelgot,
590 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
591 | SEC_IN_MEMORY | SEC_LINKER_CREATED
592 | SEC_READONLY))
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
594 return false;
595 return true;
596 }
597
598 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
599 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
600 hash table. */
601
602 static boolean
603 elf_i386_create_dynamic_sections (dynobj, info)
604 bfd *dynobj;
605 struct bfd_link_info *info;
606 {
607 struct elf_i386_link_hash_table *htab;
608
609 htab = elf_i386_hash_table (info);
610 if (!htab->sgot && !create_got_section (dynobj, info))
611 return false;
612
613 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
614 return false;
615
616 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
617 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
618 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
619 if (!info->shared)
620 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
621
622 if (!htab->splt || !htab->srelplt || !htab->sdynbss
623 || (!info->shared && !htab->srelbss))
624 abort ();
625
626 return true;
627 }
628
629 /* Copy the extra info we tack onto an elf_link_hash_entry. */
630
631 static void
632 elf_i386_copy_indirect_symbol (dir, ind)
633 struct elf_link_hash_entry *dir, *ind;
634 {
635 struct elf_i386_link_hash_entry *edir, *eind;
636
637 edir = (struct elf_i386_link_hash_entry *) dir;
638 eind = (struct elf_i386_link_hash_entry *) ind;
639
640 if (edir->dyn_relocs == NULL)
641 {
642 edir->dyn_relocs = eind->dyn_relocs;
643 eind->dyn_relocs = NULL;
644 }
645 else if (eind->dyn_relocs != NULL)
646 abort ();
647
648 _bfd_elf_link_hash_copy_indirect (dir, ind);
649 }
650
651 /* Look through the relocs for a section during the first phase, and
652 calculate needed space in the global offset table, procedure linkage
653 table, and dynamic reloc sections. */
654
655 static boolean
656 elf_i386_check_relocs (abfd, info, sec, relocs)
657 bfd *abfd;
658 struct bfd_link_info *info;
659 asection *sec;
660 const Elf_Internal_Rela *relocs;
661 {
662 struct elf_i386_link_hash_table *htab;
663 Elf_Internal_Shdr *symtab_hdr;
664 struct elf_link_hash_entry **sym_hashes;
665 const Elf_Internal_Rela *rel;
666 const Elf_Internal_Rela *rel_end;
667 asection *sreloc;
668
669 if (info->relocateable)
670 return true;
671
672 htab = elf_i386_hash_table (info);
673 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
674 sym_hashes = elf_sym_hashes (abfd);
675
676 sreloc = NULL;
677
678 rel_end = relocs + sec->reloc_count;
679 for (rel = relocs; rel < rel_end; rel++)
680 {
681 unsigned long r_symndx;
682 struct elf_link_hash_entry *h;
683
684 r_symndx = ELF32_R_SYM (rel->r_info);
685
686 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
687 {
688 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
689 bfd_archive_filename (abfd),
690 r_symndx);
691 return false;
692 }
693
694 if (r_symndx < symtab_hdr->sh_info)
695 h = NULL;
696 else
697 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
698
699 switch (ELF32_R_TYPE (rel->r_info))
700 {
701 case R_386_GOT32:
702 /* This symbol requires a global offset table entry. */
703 if (h != NULL)
704 {
705 h->got.refcount += 1;
706 }
707 else
708 {
709 bfd_signed_vma *local_got_refcounts;
710
711 /* This is a global offset table entry for a local symbol. */
712 local_got_refcounts = elf_local_got_refcounts (abfd);
713 if (local_got_refcounts == NULL)
714 {
715 bfd_size_type size;
716
717 size = symtab_hdr->sh_info;
718 size *= sizeof (bfd_signed_vma);
719 local_got_refcounts = ((bfd_signed_vma *)
720 bfd_zalloc (abfd, size));
721 if (local_got_refcounts == NULL)
722 return false;
723 elf_local_got_refcounts (abfd) = local_got_refcounts;
724 }
725 local_got_refcounts[r_symndx] += 1;
726 }
727 /* Fall through */
728
729 case R_386_GOTOFF:
730 case R_386_GOTPC:
731 if (htab->sgot == NULL)
732 {
733 if (htab->elf.dynobj == NULL)
734 htab->elf.dynobj = abfd;
735 if (!create_got_section (htab->elf.dynobj, info))
736 return false;
737 }
738 break;
739
740 case R_386_PLT32:
741 /* This symbol requires a procedure linkage table entry. We
742 actually build the entry in adjust_dynamic_symbol,
743 because this might be a case of linking PIC code which is
744 never referenced by a dynamic object, in which case we
745 don't need to generate a procedure linkage table entry
746 after all. */
747
748 /* If this is a local symbol, we resolve it directly without
749 creating a procedure linkage table entry. */
750 if (h == NULL)
751 continue;
752
753 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
754 h->plt.refcount += 1;
755 break;
756
757 case R_386_32:
758 case R_386_PC32:
759 if (h != NULL && !info->shared)
760 {
761 /* If this reloc is in a read-only section, we might
762 need a copy reloc. We can't check reliably at this
763 stage whether the section is read-only, as input
764 sections have not yet been mapped to output sections.
765 Tentatively set the flag for now, and correct in
766 adjust_dynamic_symbol. */
767 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
768
769 /* We may need a .plt entry if the function this reloc
770 refers to is in a shared lib. */
771 h->plt.refcount += 1;
772 }
773
774 /* If we are creating a shared library, and this is a reloc
775 against a global symbol, or a non PC relative reloc
776 against a local symbol, then we need to copy the reloc
777 into the shared library. However, if we are linking with
778 -Bsymbolic, we do not need to copy a reloc against a
779 global symbol which is defined in an object we are
780 including in the link (i.e., DEF_REGULAR is set). At
781 this point we have not seen all the input files, so it is
782 possible that DEF_REGULAR is not set now but will be set
783 later (it is never cleared). In case of a weak definition,
784 DEF_REGULAR may be cleared later by a strong definition in
785 a shared library. We account for that possibility below by
786 storing information in the relocs_copied field of the hash
787 table entry. A similar situation occurs when creating
788 shared libraries and symbol visibility changes render the
789 symbol local.
790
791 If on the other hand, we are creating an executable, we
792 may need to keep relocations for symbols satisfied by a
793 dynamic library if we manage to avoid copy relocs for the
794 symbol. */
795 if ((info->shared
796 && (sec->flags & SEC_ALLOC) != 0
797 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
798 || (h != NULL
799 && (! info->symbolic
800 || h->root.type == bfd_link_hash_defweak
801 || (h->elf_link_hash_flags
802 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
803 || (!info->shared
804 && (sec->flags & SEC_ALLOC) != 0
805 && h != NULL
806 && (h->root.type == bfd_link_hash_defweak
807 || (h->elf_link_hash_flags
808 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
809 {
810 /* We must copy these reloc types into the output file.
811 Create a reloc section in dynobj and make room for
812 this reloc. */
813 if (sreloc == NULL)
814 {
815 const char *name;
816 bfd *dynobj;
817
818 name = (bfd_elf_string_from_elf_section
819 (abfd,
820 elf_elfheader (abfd)->e_shstrndx,
821 elf_section_data (sec)->rel_hdr.sh_name));
822 if (name == NULL)
823 return false;
824
825 if (strncmp (name, ".rel", 4) != 0
826 || strcmp (bfd_get_section_name (abfd, sec),
827 name + 4) != 0)
828 {
829 (*_bfd_error_handler)
830 (_("%s: bad relocation section name `%s\'"),
831 bfd_archive_filename (abfd), name);
832 }
833
834 if (htab->elf.dynobj == NULL)
835 htab->elf.dynobj = abfd;
836
837 dynobj = htab->elf.dynobj;
838 sreloc = bfd_get_section_by_name (dynobj, name);
839 if (sreloc == NULL)
840 {
841 flagword flags;
842
843 sreloc = bfd_make_section (dynobj, name);
844 flags = (SEC_HAS_CONTENTS | SEC_READONLY
845 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
846 if ((sec->flags & SEC_ALLOC) != 0)
847 flags |= SEC_ALLOC | SEC_LOAD;
848 if (sreloc == NULL
849 || ! bfd_set_section_flags (dynobj, sreloc, flags)
850 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
851 return false;
852 }
853 elf_section_data (sec)->sreloc = sreloc;
854 }
855
856 /* If this is a global symbol, we count the number of
857 relocations we need for this symbol. */
858 if (h != NULL)
859 {
860 struct elf_i386_link_hash_entry *eh;
861 struct elf_i386_dyn_relocs *p;
862
863 eh = (struct elf_i386_link_hash_entry *) h;
864 p = eh->dyn_relocs;
865
866 if (p == NULL || p->sec != sec)
867 {
868 bfd_size_type amt = sizeof *p;
869 p = ((struct elf_i386_dyn_relocs *)
870 bfd_alloc (htab->elf.dynobj, amt));
871 if (p == NULL)
872 return false;
873 p->next = eh->dyn_relocs;
874 eh->dyn_relocs = p;
875 p->sec = sec;
876 p->count = 0;
877 p->pc_count = 0;
878 }
879
880 p->count += 1;
881 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
882 p->pc_count += 1;
883 }
884 else
885 {
886 /* Track dynamic relocs needed for local syms too. */
887 elf_section_data (sec)->local_dynrel += 1;
888 }
889 }
890 break;
891
892 /* This relocation describes the C++ object vtable hierarchy.
893 Reconstruct it for later use during GC. */
894 case R_386_GNU_VTINHERIT:
895 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
896 return false;
897 break;
898
899 /* This relocation describes which C++ vtable entries are actually
900 used. Record for later use during GC. */
901 case R_386_GNU_VTENTRY:
902 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
903 return false;
904 break;
905
906 default:
907 break;
908 }
909 }
910
911 return true;
912 }
913
914 /* Return the section that should be marked against GC for a given
915 relocation. */
916
917 static asection *
918 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
919 bfd *abfd;
920 struct bfd_link_info *info ATTRIBUTE_UNUSED;
921 Elf_Internal_Rela *rel;
922 struct elf_link_hash_entry *h;
923 Elf_Internal_Sym *sym;
924 {
925 if (h != NULL)
926 {
927 switch (ELF32_R_TYPE (rel->r_info))
928 {
929 case R_386_GNU_VTINHERIT:
930 case R_386_GNU_VTENTRY:
931 break;
932
933 default:
934 switch (h->root.type)
935 {
936 case bfd_link_hash_defined:
937 case bfd_link_hash_defweak:
938 return h->root.u.def.section;
939
940 case bfd_link_hash_common:
941 return h->root.u.c.p->section;
942
943 default:
944 break;
945 }
946 }
947 }
948 else
949 {
950 if (!(elf_bad_symtab (abfd)
951 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
952 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
953 && sym->st_shndx != SHN_COMMON))
954 {
955 return bfd_section_from_elf_index (abfd, sym->st_shndx);
956 }
957 }
958
959 return NULL;
960 }
961
962 /* Update the got entry reference counts for the section being removed. */
963
964 static boolean
965 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
966 bfd *abfd;
967 struct bfd_link_info *info;
968 asection *sec;
969 const Elf_Internal_Rela *relocs;
970 {
971 Elf_Internal_Shdr *symtab_hdr;
972 struct elf_link_hash_entry **sym_hashes;
973 bfd_signed_vma *local_got_refcounts;
974 const Elf_Internal_Rela *rel, *relend;
975 unsigned long r_symndx;
976 struct elf_link_hash_entry *h;
977 bfd *dynobj;
978
979 elf_section_data (sec)->local_dynrel = 0;
980
981 dynobj = elf_hash_table (info)->dynobj;
982 if (dynobj == NULL)
983 return true;
984
985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
986 sym_hashes = elf_sym_hashes (abfd);
987 local_got_refcounts = elf_local_got_refcounts (abfd);
988
989 relend = relocs + sec->reloc_count;
990 for (rel = relocs; rel < relend; rel++)
991 switch (ELF32_R_TYPE (rel->r_info))
992 {
993 case R_386_GOT32:
994 case R_386_GOTOFF:
995 case R_386_GOTPC:
996 r_symndx = ELF32_R_SYM (rel->r_info);
997 if (r_symndx >= symtab_hdr->sh_info)
998 {
999 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1000 if (h->got.refcount > 0)
1001 h->got.refcount -= 1;
1002 }
1003 else if (local_got_refcounts != NULL)
1004 {
1005 if (local_got_refcounts[r_symndx] > 0)
1006 local_got_refcounts[r_symndx] -= 1;
1007 }
1008 break;
1009
1010 case R_386_32:
1011 case R_386_PC32:
1012 r_symndx = ELF32_R_SYM (rel->r_info);
1013 if (r_symndx >= symtab_hdr->sh_info)
1014 {
1015 struct elf_i386_link_hash_entry *eh;
1016 struct elf_i386_dyn_relocs **pp;
1017 struct elf_i386_dyn_relocs *p;
1018
1019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1020
1021 if (!info->shared && h->plt.refcount > 0)
1022 h->plt.refcount -= 1;
1023
1024 eh = (struct elf_i386_link_hash_entry *) h;
1025
1026 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1027 if (p->sec == sec)
1028 {
1029 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1030 p->pc_count -= 1;
1031 p->count -= 1;
1032 if (p->count == 0)
1033 *pp = p->next;
1034 break;
1035 }
1036 }
1037 break;
1038
1039 case R_386_PLT32:
1040 r_symndx = ELF32_R_SYM (rel->r_info);
1041 if (r_symndx >= symtab_hdr->sh_info)
1042 {
1043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1044 if (h->plt.refcount > 0)
1045 h->plt.refcount -= 1;
1046 }
1047 break;
1048
1049 default:
1050 break;
1051 }
1052
1053 return true;
1054 }
1055
1056 /* Adjust a symbol defined by a dynamic object and referenced by a
1057 regular object. The current definition is in some section of the
1058 dynamic object, but we're not including those sections. We have to
1059 change the definition to something the rest of the link can
1060 understand. */
1061
1062 static boolean
1063 elf_i386_adjust_dynamic_symbol (info, h)
1064 struct bfd_link_info *info;
1065 struct elf_link_hash_entry *h;
1066 {
1067 struct elf_i386_link_hash_table *htab;
1068 struct elf_i386_link_hash_entry * eh;
1069 struct elf_i386_dyn_relocs *p;
1070 asection *s;
1071 unsigned int power_of_two;
1072
1073 /* If this is a function, put it in the procedure linkage table. We
1074 will fill in the contents of the procedure linkage table later,
1075 when we know the address of the .got section. */
1076 if (h->type == STT_FUNC
1077 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1078 {
1079 if (h->plt.refcount <= 0
1080 || (! info->shared
1081 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1082 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1083 {
1084 /* This case can occur if we saw a PLT32 reloc in an input
1085 file, but the symbol was never referred to by a dynamic
1086 object, or if all references were garbage collected. In
1087 such a case, we don't actually need to build a procedure
1088 linkage table, and we can just do a PC32 reloc instead. */
1089 h->plt.refcount = -1;
1090 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1091 }
1092
1093 return true;
1094 }
1095 else
1096 /* It's possible that we incorrectly decided a .plt reloc was
1097 needed for an R_386_PC32 reloc to a non-function sym in
1098 check_relocs. We can't decide accurately between function and
1099 non-function syms in check-relocs; Objects loaded later in
1100 the link may change h->type. So fix it now. */
1101 h->plt.refcount = -1;
1102
1103 /* If this is a weak symbol, and there is a real definition, the
1104 processor independent code will have arranged for us to see the
1105 real definition first, and we can just use the same value. */
1106 if (h->weakdef != NULL)
1107 {
1108 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1109 || h->weakdef->root.type == bfd_link_hash_defweak);
1110 h->root.u.def.section = h->weakdef->root.u.def.section;
1111 h->root.u.def.value = h->weakdef->root.u.def.value;
1112 return true;
1113 }
1114
1115 /* This is a reference to a symbol defined by a dynamic object which
1116 is not a function. */
1117
1118 /* If we are creating a shared library, we must presume that the
1119 only references to the symbol are via the global offset table.
1120 For such cases we need not do anything here; the relocations will
1121 be handled correctly by relocate_section. */
1122 if (info->shared)
1123 return true;
1124
1125 /* If there are no references to this symbol that do not use the
1126 GOT, we don't need to generate a copy reloc. */
1127 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1128 return true;
1129
1130 eh = (struct elf_i386_link_hash_entry *) h;
1131 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1132 {
1133 s = p->sec->output_section;
1134 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1135 break;
1136 }
1137
1138 /* If we didn't find any dynamic relocs in read-only sections, then
1139 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1140 if (p == NULL)
1141 {
1142 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1143 return true;
1144 }
1145
1146 /* We must allocate the symbol in our .dynbss section, which will
1147 become part of the .bss section of the executable. There will be
1148 an entry for this symbol in the .dynsym section. The dynamic
1149 object will contain position independent code, so all references
1150 from the dynamic object to this symbol will go through the global
1151 offset table. The dynamic linker will use the .dynsym entry to
1152 determine the address it must put in the global offset table, so
1153 both the dynamic object and the regular object will refer to the
1154 same memory location for the variable. */
1155
1156 htab = elf_i386_hash_table (info);
1157
1158 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1159 copy the initial value out of the dynamic object and into the
1160 runtime process image. */
1161 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1162 {
1163 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1164 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1165 }
1166
1167 /* We need to figure out the alignment required for this symbol. I
1168 have no idea how ELF linkers handle this. */
1169 power_of_two = bfd_log2 (h->size);
1170 if (power_of_two > 3)
1171 power_of_two = 3;
1172
1173 /* Apply the required alignment. */
1174 s = htab->sdynbss;
1175 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1176 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1177 {
1178 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1179 return false;
1180 }
1181
1182 /* Define the symbol as being at this point in the section. */
1183 h->root.u.def.section = s;
1184 h->root.u.def.value = s->_raw_size;
1185
1186 /* Increment the section size to make room for the symbol. */
1187 s->_raw_size += h->size;
1188
1189 return true;
1190 }
1191
1192 /* This is the condition under which elf_i386_finish_dynamic_symbol
1193 will be called from elflink.h. If elflink.h doesn't call our
1194 finish_dynamic_symbol routine, we'll need to do something about
1195 initializing any .plt and .got entries in elf_i386_relocate_section. */
1196 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1197 ((DYN) \
1198 && ((INFO)->shared \
1199 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1200 && ((H)->dynindx != -1 \
1201 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1202
1203 /* Allocate space in .plt, .got and associated reloc sections for
1204 dynamic relocs. */
1205
1206 static boolean
1207 allocate_dynrelocs (h, inf)
1208 struct elf_link_hash_entry *h;
1209 PTR inf;
1210 {
1211 struct bfd_link_info *info;
1212 struct elf_i386_link_hash_table *htab;
1213 struct elf_i386_link_hash_entry *eh;
1214 struct elf_i386_dyn_relocs *p;
1215
1216 if (h->root.type == bfd_link_hash_indirect
1217 || h->root.type == bfd_link_hash_warning)
1218 return true;
1219
1220 info = (struct bfd_link_info *) inf;
1221 htab = elf_i386_hash_table (info);
1222
1223 if (htab->elf.dynamic_sections_created
1224 && h->plt.refcount > 0)
1225 {
1226 /* Make sure this symbol is output as a dynamic symbol.
1227 Undefined weak syms won't yet be marked as dynamic. */
1228 if (h->dynindx == -1
1229 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1230 {
1231 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1232 return false;
1233 }
1234
1235 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1236 {
1237 asection *s = htab->splt;
1238
1239 /* If this is the first .plt entry, make room for the special
1240 first entry. */
1241 if (s->_raw_size == 0)
1242 s->_raw_size += PLT_ENTRY_SIZE;
1243
1244 h->plt.offset = s->_raw_size;
1245
1246 /* If this symbol is not defined in a regular file, and we are
1247 not generating a shared library, then set the symbol to this
1248 location in the .plt. This is required to make function
1249 pointers compare as equal between the normal executable and
1250 the shared library. */
1251 if (! info->shared
1252 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1253 {
1254 h->root.u.def.section = s;
1255 h->root.u.def.value = h->plt.offset;
1256 }
1257
1258 /* Make room for this entry. */
1259 s->_raw_size += PLT_ENTRY_SIZE;
1260
1261 /* We also need to make an entry in the .got.plt section, which
1262 will be placed in the .got section by the linker script. */
1263 htab->sgotplt->_raw_size += 4;
1264
1265 /* We also need to make an entry in the .rel.plt section. */
1266 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1267 }
1268 else
1269 {
1270 h->plt.offset = (bfd_vma) -1;
1271 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1272 }
1273 }
1274 else
1275 {
1276 h->plt.offset = (bfd_vma) -1;
1277 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1278 }
1279
1280 if (h->got.refcount > 0)
1281 {
1282 asection *s;
1283 boolean dyn;
1284
1285 /* Make sure this symbol is output as a dynamic symbol.
1286 Undefined weak syms won't yet be marked as dynamic. */
1287 if (h->dynindx == -1
1288 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1289 {
1290 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1291 return false;
1292 }
1293
1294 s = htab->sgot;
1295 h->got.offset = s->_raw_size;
1296 s->_raw_size += 4;
1297 dyn = htab->elf.dynamic_sections_created;
1298 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1299 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1300 }
1301 else
1302 h->got.offset = (bfd_vma) -1;
1303
1304 eh = (struct elf_i386_link_hash_entry *) h;
1305 if (eh->dyn_relocs == NULL)
1306 return true;
1307
1308 /* In the shared -Bsymbolic case, discard space allocated for
1309 dynamic pc-relative relocs against symbols which turn out to be
1310 defined in regular objects. For the normal shared case, discard
1311 space for pc-relative relocs that have become local due to symbol
1312 visibility changes. */
1313
1314 if (info->shared)
1315 {
1316 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1317 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1318 || info->symbolic))
1319 {
1320 struct elf_i386_dyn_relocs **pp;
1321
1322 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1323 {
1324 p->count -= p->pc_count;
1325 p->pc_count = 0;
1326 if (p->count == 0)
1327 *pp = p->next;
1328 else
1329 pp = &p->next;
1330 }
1331 }
1332 }
1333 else
1334 {
1335 /* For the non-shared case, discard space for relocs against
1336 symbols which turn out to need copy relocs or are not
1337 dynamic. */
1338
1339 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1340 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1341 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1342 || (htab->elf.dynamic_sections_created
1343 && (h->root.type == bfd_link_hash_undefweak
1344 || h->root.type == bfd_link_hash_undefined))))
1345 {
1346 /* Make sure this symbol is output as a dynamic symbol.
1347 Undefined weak syms won't yet be marked as dynamic. */
1348 if (h->dynindx == -1
1349 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1350 {
1351 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1352 return false;
1353 }
1354
1355 /* If that succeeded, we know we'll be keeping all the
1356 relocs. */
1357 if (h->dynindx != -1)
1358 goto keep;
1359 }
1360
1361 eh->dyn_relocs = NULL;
1362
1363 keep:
1364 }
1365
1366 /* Finally, allocate space. */
1367 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1368 {
1369 asection *sreloc = elf_section_data (p->sec)->sreloc;
1370 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1371 }
1372
1373 return true;
1374 }
1375
1376 /* Find any dynamic relocs that apply to read-only sections. */
1377
1378 static boolean
1379 readonly_dynrelocs (h, inf)
1380 struct elf_link_hash_entry *h;
1381 PTR inf;
1382 {
1383 struct elf_i386_link_hash_entry *eh;
1384 struct elf_i386_dyn_relocs *p;
1385
1386 eh = (struct elf_i386_link_hash_entry *) h;
1387 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1388 {
1389 asection *s = p->sec->output_section;
1390
1391 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1392 {
1393 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1394
1395 info->flags |= DF_TEXTREL;
1396
1397 /* Not an error, just cut short the traversal. */
1398 return false;
1399 }
1400 }
1401 return true;
1402 }
1403
1404 /* Set the sizes of the dynamic sections. */
1405
1406 static boolean
1407 elf_i386_size_dynamic_sections (output_bfd, info)
1408 bfd *output_bfd ATTRIBUTE_UNUSED;
1409 struct bfd_link_info *info;
1410 {
1411 struct elf_i386_link_hash_table *htab;
1412 bfd *dynobj;
1413 asection *s;
1414 boolean relocs;
1415 bfd *ibfd;
1416
1417 htab = elf_i386_hash_table (info);
1418 dynobj = htab->elf.dynobj;
1419 if (dynobj == NULL)
1420 abort ();
1421
1422 if (htab->elf.dynamic_sections_created)
1423 {
1424 /* Set the contents of the .interp section to the interpreter. */
1425 if (! info->shared)
1426 {
1427 s = bfd_get_section_by_name (dynobj, ".interp");
1428 if (s == NULL)
1429 abort ();
1430 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1431 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1432 }
1433 }
1434
1435 /* Set up .got offsets for local syms, and space for local dynamic
1436 relocs. */
1437 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1438 {
1439 bfd_signed_vma *local_got;
1440 bfd_signed_vma *end_local_got;
1441 bfd_size_type locsymcount;
1442 Elf_Internal_Shdr *symtab_hdr;
1443 asection *srel;
1444
1445 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1446 continue;
1447
1448 for (s = ibfd->sections; s != NULL; s = s->next)
1449 {
1450 bfd_size_type count = elf_section_data (s)->local_dynrel;
1451
1452 if (count != 0)
1453 {
1454 srel = elf_section_data (s)->sreloc;
1455 srel->_raw_size += count * sizeof (Elf32_External_Rel);
1456 }
1457 }
1458
1459 local_got = elf_local_got_refcounts (ibfd);
1460 if (!local_got)
1461 continue;
1462
1463 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1464 locsymcount = symtab_hdr->sh_info;
1465 end_local_got = local_got + locsymcount;
1466 s = htab->sgot;
1467 srel = htab->srelgot;
1468 for (; local_got < end_local_got; ++local_got)
1469 {
1470 if (*local_got > 0)
1471 {
1472 *local_got = s->_raw_size;
1473 s->_raw_size += 4;
1474 if (info->shared)
1475 srel->_raw_size += sizeof (Elf32_External_Rel);
1476 }
1477 else
1478 *local_got = (bfd_vma) -1;
1479 }
1480 }
1481
1482 /* Allocate global sym .plt and .got entries, and space for global
1483 sym dynamic relocs. */
1484 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1485
1486 /* We now have determined the sizes of the various dynamic sections.
1487 Allocate memory for them. */
1488 relocs = false;
1489 for (s = dynobj->sections; s != NULL; s = s->next)
1490 {
1491 if ((s->flags & SEC_LINKER_CREATED) == 0)
1492 continue;
1493
1494 if (s == htab->splt
1495 || s == htab->sgot
1496 || s == htab->sgotplt)
1497 {
1498 /* Strip this section if we don't need it; see the
1499 comment below. */
1500 }
1501 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1502 {
1503 if (s->_raw_size != 0 && s != htab->srelplt)
1504 relocs = true;
1505
1506 /* We use the reloc_count field as a counter if we need
1507 to copy relocs into the output file. */
1508 s->reloc_count = 0;
1509 }
1510 else
1511 {
1512 /* It's not one of our sections, so don't allocate space. */
1513 continue;
1514 }
1515
1516 if (s->_raw_size == 0)
1517 {
1518 /* If we don't need this section, strip it from the
1519 output file. This is mostly to handle .rel.bss and
1520 .rel.plt. We must create both sections in
1521 create_dynamic_sections, because they must be created
1522 before the linker maps input sections to output
1523 sections. The linker does that before
1524 adjust_dynamic_symbol is called, and it is that
1525 function which decides whether anything needs to go
1526 into these sections. */
1527
1528 _bfd_strip_section_from_output (info, s);
1529 continue;
1530 }
1531
1532 /* Allocate memory for the section contents. We use bfd_zalloc
1533 here in case unused entries are not reclaimed before the
1534 section's contents are written out. This should not happen,
1535 but this way if it does, we get a R_386_NONE reloc instead
1536 of garbage. */
1537 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1538 if (s->contents == NULL)
1539 return false;
1540 }
1541
1542 if (htab->elf.dynamic_sections_created)
1543 {
1544 /* Add some entries to the .dynamic section. We fill in the
1545 values later, in elf_i386_finish_dynamic_sections, but we
1546 must add the entries now so that we get the correct size for
1547 the .dynamic section. The DT_DEBUG entry is filled in by the
1548 dynamic linker and used by the debugger. */
1549 #define add_dynamic_entry(TAG, VAL) \
1550 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1551
1552 if (! info->shared)
1553 {
1554 if (!add_dynamic_entry (DT_DEBUG, 0))
1555 return false;
1556 }
1557
1558 if (htab->splt->_raw_size != 0)
1559 {
1560 if (!add_dynamic_entry (DT_PLTGOT, 0)
1561 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1562 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1563 || !add_dynamic_entry (DT_JMPREL, 0))
1564 return false;
1565 }
1566
1567 if (relocs)
1568 {
1569 if (!add_dynamic_entry (DT_REL, 0)
1570 || !add_dynamic_entry (DT_RELSZ, 0)
1571 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1572 return false;
1573
1574 /* If any dynamic relocs apply to a read-only section,
1575 then we need a DT_TEXTREL entry. */
1576 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1577
1578 if ((info->flags & DF_TEXTREL) != 0)
1579 {
1580 if (!add_dynamic_entry (DT_TEXTREL, 0))
1581 return false;
1582 }
1583 }
1584 }
1585 #undef add_dynamic_entry
1586
1587 return true;
1588 }
1589
1590 /* Set the correct type for an x86 ELF section. We do this by the
1591 section name, which is a hack, but ought to work. */
1592
1593 static boolean
1594 elf_i386_fake_sections (abfd, hdr, sec)
1595 bfd *abfd ATTRIBUTE_UNUSED;
1596 Elf32_Internal_Shdr *hdr;
1597 asection *sec;
1598 {
1599 register const char *name;
1600
1601 name = bfd_get_section_name (abfd, sec);
1602
1603 /* This is an ugly, but unfortunately necessary hack that is
1604 needed when producing EFI binaries on x86. It tells
1605 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1606 containing ELF relocation info. We need this hack in order to
1607 be able to generate ELF binaries that can be translated into
1608 EFI applications (which are essentially COFF objects). Those
1609 files contain a COFF ".reloc" section inside an ELFNN object,
1610 which would normally cause BFD to segfault because it would
1611 attempt to interpret this section as containing relocation
1612 entries for section "oc". With this hack enabled, ".reloc"
1613 will be treated as a normal data section, which will avoid the
1614 segfault. However, you won't be able to create an ELFNN binary
1615 with a section named "oc" that needs relocations, but that's
1616 the kind of ugly side-effects you get when detecting section
1617 types based on their names... In practice, this limitation is
1618 unlikely to bite. */
1619 if (strcmp (name, ".reloc") == 0)
1620 hdr->sh_type = SHT_PROGBITS;
1621
1622 return true;
1623 }
1624
1625 /* Relocate an i386 ELF section. */
1626
1627 static boolean
1628 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1629 contents, relocs, local_syms, local_sections)
1630 bfd *output_bfd;
1631 struct bfd_link_info *info;
1632 bfd *input_bfd;
1633 asection *input_section;
1634 bfd_byte *contents;
1635 Elf_Internal_Rela *relocs;
1636 Elf_Internal_Sym *local_syms;
1637 asection **local_sections;
1638 {
1639 struct elf_i386_link_hash_table *htab;
1640 Elf_Internal_Shdr *symtab_hdr;
1641 struct elf_link_hash_entry **sym_hashes;
1642 bfd_vma *local_got_offsets;
1643 Elf_Internal_Rela *rel;
1644 Elf_Internal_Rela *relend;
1645
1646 htab = elf_i386_hash_table (info);
1647 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1648 sym_hashes = elf_sym_hashes (input_bfd);
1649 local_got_offsets = elf_local_got_offsets (input_bfd);
1650
1651 rel = relocs;
1652 relend = relocs + input_section->reloc_count;
1653 for (; rel < relend; rel++)
1654 {
1655 int r_type;
1656 reloc_howto_type *howto;
1657 unsigned long r_symndx;
1658 struct elf_link_hash_entry *h;
1659 Elf_Internal_Sym *sym;
1660 asection *sec;
1661 bfd_vma off;
1662 bfd_vma relocation;
1663 boolean unresolved_reloc;
1664 bfd_reloc_status_type r;
1665 unsigned int indx;
1666
1667 r_type = ELF32_R_TYPE (rel->r_info);
1668 if (r_type == (int) R_386_GNU_VTINHERIT
1669 || r_type == (int) R_386_GNU_VTENTRY)
1670 continue;
1671
1672 if ((indx = (unsigned) r_type) >= R_386_standard
1673 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1674 >= R_386_ext - R_386_standard))
1675 {
1676 bfd_set_error (bfd_error_bad_value);
1677 return false;
1678 }
1679 howto = elf_howto_table + indx;
1680
1681 r_symndx = ELF32_R_SYM (rel->r_info);
1682
1683 if (info->relocateable)
1684 {
1685 /* This is a relocatable link. We don't have to change
1686 anything, unless the reloc is against a section symbol,
1687 in which case we have to adjust according to where the
1688 section symbol winds up in the output section. */
1689 if (r_symndx < symtab_hdr->sh_info)
1690 {
1691 sym = local_syms + r_symndx;
1692 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1693 {
1694 bfd_vma val;
1695
1696 sec = local_sections[r_symndx];
1697 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1698 val += sec->output_offset + sym->st_value;
1699 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1700 }
1701 }
1702 continue;
1703 }
1704
1705 /* This is a final link. */
1706 h = NULL;
1707 sym = NULL;
1708 sec = NULL;
1709 unresolved_reloc = false;
1710 if (r_symndx < symtab_hdr->sh_info)
1711 {
1712 sym = local_syms + r_symndx;
1713 sec = local_sections[r_symndx];
1714 relocation = (sec->output_section->vma
1715 + sec->output_offset
1716 + sym->st_value);
1717 }
1718 else
1719 {
1720 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1721 while (h->root.type == bfd_link_hash_indirect
1722 || h->root.type == bfd_link_hash_warning)
1723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1724
1725 relocation = 0;
1726 if (h->root.type == bfd_link_hash_defined
1727 || h->root.type == bfd_link_hash_defweak)
1728 {
1729 sec = h->root.u.def.section;
1730 if (sec->output_section == NULL)
1731 /* Set a flag that will be cleared later if we find a
1732 relocation value for this symbol. output_section
1733 is typically NULL for symbols satisfied by a shared
1734 library. */
1735 unresolved_reloc = true;
1736 else
1737 relocation = (h->root.u.def.value
1738 + sec->output_section->vma
1739 + sec->output_offset);
1740 }
1741 else if (h->root.type == bfd_link_hash_undefweak)
1742 ;
1743 else if (info->shared
1744 && (!info->symbolic || info->allow_shlib_undefined)
1745 && !info->no_undefined
1746 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1747 ;
1748 else
1749 {
1750 if (! ((*info->callbacks->undefined_symbol)
1751 (info, h->root.root.string, input_bfd,
1752 input_section, rel->r_offset,
1753 (!info->shared || info->no_undefined
1754 || ELF_ST_VISIBILITY (h->other)))))
1755 return false;
1756 }
1757 }
1758
1759 switch (r_type)
1760 {
1761 case R_386_GOT32:
1762 /* Relocation is to the entry for this symbol in the global
1763 offset table. */
1764 if (htab->sgot == NULL)
1765 abort ();
1766
1767 if (h != NULL)
1768 {
1769 boolean dyn;
1770
1771 off = h->got.offset;
1772 dyn = htab->elf.dynamic_sections_created;
1773 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1774 || (info->shared
1775 && (info->symbolic
1776 || h->dynindx == -1
1777 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1778 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1779 {
1780 /* This is actually a static link, or it is a
1781 -Bsymbolic link and the symbol is defined
1782 locally, or the symbol was forced to be local
1783 because of a version file. We must initialize
1784 this entry in the global offset table. Since the
1785 offset must always be a multiple of 4, we use the
1786 least significant bit to record whether we have
1787 initialized it already.
1788
1789 When doing a dynamic link, we create a .rel.got
1790 relocation entry to initialize the value. This
1791 is done in the finish_dynamic_symbol routine. */
1792 if ((off & 1) != 0)
1793 off &= ~1;
1794 else
1795 {
1796 bfd_put_32 (output_bfd, relocation,
1797 htab->sgot->contents + off);
1798 h->got.offset |= 1;
1799 }
1800 }
1801 else
1802 unresolved_reloc = false;
1803 }
1804 else
1805 {
1806 if (local_got_offsets == NULL)
1807 abort ();
1808
1809 off = local_got_offsets[r_symndx];
1810
1811 /* The offset must always be a multiple of 4. We use
1812 the least significant bit to record whether we have
1813 already generated the necessary reloc. */
1814 if ((off & 1) != 0)
1815 off &= ~1;
1816 else
1817 {
1818 bfd_put_32 (output_bfd, relocation,
1819 htab->sgot->contents + off);
1820
1821 if (info->shared)
1822 {
1823 asection *srelgot;
1824 Elf_Internal_Rel outrel;
1825 Elf32_External_Rel *loc;
1826
1827 srelgot = htab->srelgot;
1828 if (srelgot == NULL)
1829 abort ();
1830
1831 outrel.r_offset = (htab->sgot->output_section->vma
1832 + htab->sgot->output_offset
1833 + off);
1834 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1835 loc = (Elf32_External_Rel *) srelgot->contents;
1836 loc += srelgot->reloc_count++;
1837 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1838 }
1839
1840 local_got_offsets[r_symndx] |= 1;
1841 }
1842 }
1843
1844 if (off >= (bfd_vma) -2)
1845 abort ();
1846
1847 relocation = htab->sgot->output_offset + off;
1848 break;
1849
1850 case R_386_GOTOFF:
1851 /* Relocation is relative to the start of the global offset
1852 table. */
1853
1854 /* Note that sgot->output_offset is not involved in this
1855 calculation. We always want the start of .got. If we
1856 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1857 permitted by the ABI, we might have to change this
1858 calculation. */
1859 relocation -= htab->sgot->output_section->vma;
1860 break;
1861
1862 case R_386_GOTPC:
1863 /* Use global offset table as symbol value. */
1864 relocation = htab->sgot->output_section->vma;
1865 unresolved_reloc = false;
1866 break;
1867
1868 case R_386_PLT32:
1869 /* Relocation is to the entry for this symbol in the
1870 procedure linkage table. */
1871
1872 /* Resolve a PLT32 reloc against a local symbol directly,
1873 without using the procedure linkage table. */
1874 if (h == NULL)
1875 break;
1876
1877 if (h->plt.offset == (bfd_vma) -1
1878 || htab->splt == NULL)
1879 {
1880 /* We didn't make a PLT entry for this symbol. This
1881 happens when statically linking PIC code, or when
1882 using -Bsymbolic. */
1883 break;
1884 }
1885
1886 relocation = (htab->splt->output_section->vma
1887 + htab->splt->output_offset
1888 + h->plt.offset);
1889 unresolved_reloc = false;
1890 break;
1891
1892 case R_386_32:
1893 case R_386_PC32:
1894 if ((info->shared
1895 && (input_section->flags & SEC_ALLOC) != 0
1896 && (r_type != R_386_PC32
1897 || (h != NULL
1898 && h->dynindx != -1
1899 && (! info->symbolic
1900 || (h->elf_link_hash_flags
1901 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1902 || (!info->shared
1903 && (input_section->flags & SEC_ALLOC) != 0
1904 && h != NULL
1905 && h->dynindx != -1
1906 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1907 && (((h->elf_link_hash_flags
1908 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1909 && (h->elf_link_hash_flags
1910 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1911 || h->root.type == bfd_link_hash_undefweak
1912 || h->root.type == bfd_link_hash_undefined)))
1913 {
1914 Elf_Internal_Rel outrel;
1915 boolean skip, relocate;
1916 asection *sreloc;
1917 Elf32_External_Rel *loc;
1918
1919 /* When generating a shared object, these relocations
1920 are copied into the output file to be resolved at run
1921 time. */
1922
1923 skip = false;
1924
1925 if (elf_section_data (input_section)->stab_info == NULL)
1926 outrel.r_offset = rel->r_offset;
1927 else
1928 {
1929 off = (_bfd_stab_section_offset
1930 (output_bfd, htab->elf.stab_info, input_section,
1931 &elf_section_data (input_section)->stab_info,
1932 rel->r_offset));
1933 if (off == (bfd_vma) -1)
1934 skip = true;
1935 outrel.r_offset = off;
1936 }
1937
1938 outrel.r_offset += (input_section->output_section->vma
1939 + input_section->output_offset);
1940
1941 if (skip)
1942 {
1943 memset (&outrel, 0, sizeof outrel);
1944 relocate = false;
1945 }
1946 else if (h != NULL
1947 && h->dynindx != -1
1948 && (r_type == R_386_PC32
1949 || !info->shared
1950 || !info->symbolic
1951 || (h->elf_link_hash_flags
1952 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1953
1954 {
1955 relocate = false;
1956 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1957 }
1958 else
1959 {
1960 /* This symbol is local, or marked to become local. */
1961 relocate = true;
1962 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1963 }
1964
1965 sreloc = elf_section_data (input_section)->sreloc;
1966 if (sreloc == NULL)
1967 abort ();
1968
1969 loc = (Elf32_External_Rel *) sreloc->contents;
1970 loc += sreloc->reloc_count++;
1971 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1972
1973 /* If this reloc is against an external symbol, we do
1974 not want to fiddle with the addend. Otherwise, we
1975 need to include the symbol value so that it becomes
1976 an addend for the dynamic reloc. */
1977 if (! relocate)
1978 continue;
1979 }
1980
1981 break;
1982
1983 default:
1984 break;
1985 }
1986
1987 /* FIXME: Why do we allow debugging sections to escape this error?
1988 More importantly, why do we not emit dynamic relocs for
1989 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1990 If we had emitted the dynamic reloc, we could remove the
1991 fudge here. */
1992 if (unresolved_reloc
1993 && !(info->shared
1994 && (input_section->flags & SEC_DEBUGGING) != 0
1995 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1996 (*_bfd_error_handler)
1997 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1998 bfd_archive_filename (input_bfd),
1999 bfd_get_section_name (input_bfd, input_section),
2000 (long) rel->r_offset,
2001 h->root.root.string);
2002
2003 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2004 contents, rel->r_offset,
2005 relocation, (bfd_vma) 0);
2006
2007 switch (r)
2008 {
2009 case bfd_reloc_ok:
2010 break;
2011
2012 case bfd_reloc_overflow:
2013 {
2014 const char *name;
2015
2016 if (h != NULL)
2017 name = h->root.root.string;
2018 else
2019 {
2020 name = bfd_elf_string_from_elf_section (input_bfd,
2021 symtab_hdr->sh_link,
2022 sym->st_name);
2023 if (name == NULL)
2024 return false;
2025 if (*name == '\0')
2026 name = bfd_section_name (input_bfd, sec);
2027 }
2028 if (! ((*info->callbacks->reloc_overflow)
2029 (info, name, howto->name, (bfd_vma) 0,
2030 input_bfd, input_section, rel->r_offset)))
2031 return false;
2032 }
2033 break;
2034
2035 default:
2036 case bfd_reloc_outofrange:
2037 abort ();
2038 break;
2039 }
2040 }
2041
2042 return true;
2043 }
2044
2045 /* Finish up dynamic symbol handling. We set the contents of various
2046 dynamic sections here. */
2047
2048 static boolean
2049 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2050 bfd *output_bfd;
2051 struct bfd_link_info *info;
2052 struct elf_link_hash_entry *h;
2053 Elf_Internal_Sym *sym;
2054 {
2055 struct elf_i386_link_hash_table *htab;
2056
2057 htab = elf_i386_hash_table (info);
2058
2059 if (h->plt.offset != (bfd_vma) -1)
2060 {
2061 bfd_vma plt_index;
2062 bfd_vma got_offset;
2063 Elf_Internal_Rel rel;
2064 Elf32_External_Rel *loc;
2065
2066 /* This symbol has an entry in the procedure linkage table. Set
2067 it up. */
2068
2069 if (h->dynindx == -1
2070 || htab->splt == NULL
2071 || htab->sgotplt == NULL
2072 || htab->srelplt == NULL)
2073 abort ();
2074
2075 /* Get the index in the procedure linkage table which
2076 corresponds to this symbol. This is the index of this symbol
2077 in all the symbols for which we are making plt entries. The
2078 first entry in the procedure linkage table is reserved. */
2079 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2080
2081 /* Get the offset into the .got table of the entry that
2082 corresponds to this function. Each .got entry is 4 bytes.
2083 The first three are reserved. */
2084 got_offset = (plt_index + 3) * 4;
2085
2086 /* Fill in the entry in the procedure linkage table. */
2087 if (! info->shared)
2088 {
2089 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2090 PLT_ENTRY_SIZE);
2091 bfd_put_32 (output_bfd,
2092 (htab->sgotplt->output_section->vma
2093 + htab->sgotplt->output_offset
2094 + got_offset),
2095 htab->splt->contents + h->plt.offset + 2);
2096 }
2097 else
2098 {
2099 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2100 PLT_ENTRY_SIZE);
2101 bfd_put_32 (output_bfd, got_offset,
2102 htab->splt->contents + h->plt.offset + 2);
2103 }
2104
2105 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2106 htab->splt->contents + h->plt.offset + 7);
2107 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2108 htab->splt->contents + h->plt.offset + 12);
2109
2110 /* Fill in the entry in the global offset table. */
2111 bfd_put_32 (output_bfd,
2112 (htab->splt->output_section->vma
2113 + htab->splt->output_offset
2114 + h->plt.offset
2115 + 6),
2116 htab->sgotplt->contents + got_offset);
2117
2118 /* Fill in the entry in the .rel.plt section. */
2119 rel.r_offset = (htab->sgotplt->output_section->vma
2120 + htab->sgotplt->output_offset
2121 + got_offset);
2122 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2123 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2124 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2125
2126 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2127 {
2128 /* Mark the symbol as undefined, rather than as defined in
2129 the .plt section. Leave the value alone. This is a clue
2130 for the dynamic linker, to make function pointer
2131 comparisons work between an application and shared
2132 library. */
2133 sym->st_shndx = SHN_UNDEF;
2134 }
2135 }
2136
2137 if (h->got.offset != (bfd_vma) -1)
2138 {
2139 Elf_Internal_Rel rel;
2140 Elf32_External_Rel *loc;
2141
2142 /* This symbol has an entry in the global offset table. Set it
2143 up. */
2144
2145 if (htab->sgot == NULL || htab->srelgot == NULL)
2146 abort ();
2147
2148 rel.r_offset = (htab->sgot->output_section->vma
2149 + htab->sgot->output_offset
2150 + (h->got.offset & ~(bfd_vma) 1));
2151
2152 /* If this is a static link, or it is a -Bsymbolic link and the
2153 symbol is defined locally or was forced to be local because
2154 of a version file, we just want to emit a RELATIVE reloc.
2155 The entry in the global offset table will already have been
2156 initialized in the relocate_section function. */
2157 if (info->shared
2158 && (info->symbolic
2159 || h->dynindx == -1
2160 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2161 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2162 {
2163 BFD_ASSERT((h->got.offset & 1) != 0);
2164 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2165 }
2166 else
2167 {
2168 BFD_ASSERT((h->got.offset & 1) == 0);
2169 bfd_put_32 (output_bfd, (bfd_vma) 0,
2170 htab->sgot->contents + h->got.offset);
2171 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2172 }
2173
2174 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2175 loc += htab->srelgot->reloc_count++;
2176 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2177 }
2178
2179 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2180 {
2181 Elf_Internal_Rel rel;
2182 Elf32_External_Rel *loc;
2183
2184 /* This symbol needs a copy reloc. Set it up. */
2185
2186 if (h->dynindx == -1
2187 || (h->root.type != bfd_link_hash_defined
2188 && h->root.type != bfd_link_hash_defweak)
2189 || htab->srelbss == NULL)
2190 abort ();
2191
2192 rel.r_offset = (h->root.u.def.value
2193 + h->root.u.def.section->output_section->vma
2194 + h->root.u.def.section->output_offset);
2195 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2196 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2197 loc += htab->srelbss->reloc_count++;
2198 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2199 }
2200
2201 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2202 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2203 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2204 sym->st_shndx = SHN_ABS;
2205
2206 return true;
2207 }
2208
2209 /* Used to decide how to sort relocs in an optimal manner for the
2210 dynamic linker, before writing them out. */
2211
2212 static enum elf_reloc_type_class
2213 elf_i386_reloc_type_class (rela)
2214 const Elf_Internal_Rela *rela;
2215 {
2216 switch ((int) ELF32_R_TYPE (rela->r_info))
2217 {
2218 case R_386_RELATIVE:
2219 return reloc_class_relative;
2220 case R_386_JUMP_SLOT:
2221 return reloc_class_plt;
2222 case R_386_COPY:
2223 return reloc_class_copy;
2224 default:
2225 return reloc_class_normal;
2226 }
2227 }
2228
2229 /* Finish up the dynamic sections. */
2230
2231 static boolean
2232 elf_i386_finish_dynamic_sections (output_bfd, info)
2233 bfd *output_bfd;
2234 struct bfd_link_info *info;
2235 {
2236 struct elf_i386_link_hash_table *htab;
2237 bfd *dynobj;
2238 asection *sdyn;
2239
2240 htab = elf_i386_hash_table (info);
2241 dynobj = htab->elf.dynobj;
2242 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2243
2244 if (htab->elf.dynamic_sections_created)
2245 {
2246 Elf32_External_Dyn *dyncon, *dynconend;
2247
2248 if (sdyn == NULL || htab->sgot == NULL)
2249 abort ();
2250
2251 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2252 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2253 for (; dyncon < dynconend; dyncon++)
2254 {
2255 Elf_Internal_Dyn dyn;
2256 asection *s;
2257
2258 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2259
2260 switch (dyn.d_tag)
2261 {
2262 default:
2263 continue;
2264
2265 case DT_PLTGOT:
2266 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2267 break;
2268
2269 case DT_JMPREL:
2270 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2271 break;
2272
2273 case DT_PLTRELSZ:
2274 s = htab->srelplt->output_section;
2275 if (s->_cooked_size != 0)
2276 dyn.d_un.d_val = s->_cooked_size;
2277 else
2278 dyn.d_un.d_val = s->_raw_size;
2279 break;
2280
2281 case DT_RELSZ:
2282 /* My reading of the SVR4 ABI indicates that the
2283 procedure linkage table relocs (DT_JMPREL) should be
2284 included in the overall relocs (DT_REL). This is
2285 what Solaris does. However, UnixWare can not handle
2286 that case. Therefore, we override the DT_RELSZ entry
2287 here to make it not include the JMPREL relocs. Since
2288 the linker script arranges for .rel.plt to follow all
2289 other relocation sections, we don't have to worry
2290 about changing the DT_REL entry. */
2291 if (htab->srelplt != NULL)
2292 {
2293 s = htab->srelplt->output_section;
2294 if (s->_cooked_size != 0)
2295 dyn.d_un.d_val -= s->_cooked_size;
2296 else
2297 dyn.d_un.d_val -= s->_raw_size;
2298 }
2299 break;
2300 }
2301
2302 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2303 }
2304
2305 /* Fill in the first entry in the procedure linkage table. */
2306 if (htab->splt && htab->splt->_raw_size > 0)
2307 {
2308 if (info->shared)
2309 memcpy (htab->splt->contents,
2310 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2311 else
2312 {
2313 memcpy (htab->splt->contents,
2314 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2315 bfd_put_32 (output_bfd,
2316 (htab->sgotplt->output_section->vma
2317 + htab->sgotplt->output_offset
2318 + 4),
2319 htab->splt->contents + 2);
2320 bfd_put_32 (output_bfd,
2321 (htab->sgotplt->output_section->vma
2322 + htab->sgotplt->output_offset
2323 + 8),
2324 htab->splt->contents + 8);
2325 }
2326
2327 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2328 really seem like the right value. */
2329 elf_section_data (htab->splt->output_section)
2330 ->this_hdr.sh_entsize = 4;
2331 }
2332 }
2333
2334 if (htab->sgotplt)
2335 {
2336 /* Fill in the first three entries in the global offset table. */
2337 if (htab->sgotplt->_raw_size > 0)
2338 {
2339 bfd_put_32 (output_bfd,
2340 (sdyn == NULL ? (bfd_vma) 0
2341 : sdyn->output_section->vma + sdyn->output_offset),
2342 htab->sgotplt->contents);
2343 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2344 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2345 }
2346
2347 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2348 }
2349 return true;
2350 }
2351
2352 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2353 #define TARGET_LITTLE_NAME "elf32-i386"
2354 #define ELF_ARCH bfd_arch_i386
2355 #define ELF_MACHINE_CODE EM_386
2356 #define ELF_MAXPAGESIZE 0x1000
2357
2358 #define elf_backend_can_gc_sections 1
2359 #define elf_backend_can_refcount 1
2360 #define elf_backend_want_got_plt 1
2361 #define elf_backend_plt_readonly 1
2362 #define elf_backend_want_plt_sym 0
2363 #define elf_backend_got_header_size 12
2364 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2365
2366 #define elf_info_to_howto elf_i386_info_to_howto
2367 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2368
2369 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2370 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2371 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2372
2373 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2374 #define elf_backend_check_relocs elf_i386_check_relocs
2375 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2376 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2377 #define elf_backend_fake_sections elf_i386_fake_sections
2378 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2379 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2380 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2381 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2382 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2383 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2384 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2385 #define elf_backend_relocate_section elf_i386_relocate_section
2386 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2387
2388 #include "elf32-target.h"