* elf-bfd.h (struct elf_link_local_dynamic_entry): Add init_refcount.
[binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
73 Elf_Internal_Sym *));
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
78
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
80
81 #include "elf/i386.h"
82
83 static reloc_howto_type elf_howto_table[]=
84 {
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
118
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
125
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
139
140 /* Another gap. */
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 false, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 false),
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 false)
173
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
180 #else
181 #define TRACE(str)
182 #endif
183
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
238
239 /* The remaining relocs are a GNU extension. */
240 case BFD_RELOC_16:
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
243
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
247
248 case BFD_RELOC_8:
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
251
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
255
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
259 - R_386_vt_offset];
260
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
264 - R_386_vt_offset];
265
266 default:
267 break;
268 }
269
270 TRACE ("Unknown");
271 return 0;
272 }
273
274 static void
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
279 {
280 abort ();
281 }
282
283 static void
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
286 arelent *cache_ptr;
287 Elf32_Internal_Rel *dst;
288 {
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
290 unsigned int indx;
291
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
297 {
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
301 }
302 cache_ptr->howto = &elf_howto_table[indx];
303 }
304
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
310
311 static boolean
312 elf_i386_is_local_label_name (abfd, name)
313 bfd *abfd;
314 const char *name;
315 {
316 if (name[0] == '.' && name[1] == 'X')
317 return true;
318
319 return _bfd_elf_is_local_label_name (abfd, name);
320 }
321 \f
322 /* Support for core dump NOTE sections. */
323 static boolean
324 elf_i386_grok_prstatus (abfd, note)
325 bfd *abfd;
326 Elf_Internal_Note *note;
327 {
328 int offset;
329 size_t raw_size;
330
331 switch (note->descsz)
332 {
333 default:
334 return false;
335
336 case 144: /* Linux/i386 */
337 /* pr_cursig */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
339
340 /* pr_pid */
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
342
343 /* pr_reg */
344 offset = 72;
345 raw_size = 68;
346
347 break;
348 }
349
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
353 }
354
355 static boolean
356 elf_i386_grok_psinfo (abfd, note)
357 bfd *abfd;
358 Elf_Internal_Note *note;
359 {
360 switch (note->descsz)
361 {
362 default:
363 return false;
364
365 case 128: /* Linux/MIPS elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
370 }
371
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
375
376 {
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
379
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
382 }
383
384 return true;
385 }
386 \f
387 /* Functions for the i386 ELF linker.
388
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
391 following:
392
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
399
400
401 /* The name of the dynamic interpreter. This is put in the .interp
402 section. */
403
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
405
406 /* The size in bytes of an entry in the procedure linkage table. */
407
408 #define PLT_ENTRY_SIZE 16
409
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
412
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
414 {
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
420 };
421
422 /* Subsequent entries in an absolute procedure linkage table look like
423 this. */
424
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
426 {
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
433 };
434
435 /* The first entry in a PIC procedure linkage table look like this. */
436
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
438 {
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
442 };
443
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
445
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
447 {
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
454 };
455
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
461
462 struct elf_i386_dyn_relocs
463 {
464 struct elf_i386_dyn_relocs *next;
465
466 /* The input section of the reloc. */
467 asection *sec;
468
469 /* Total number of relocs copied for the input section. */
470 bfd_size_type count;
471
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
474 };
475
476 /* i386 ELF linker hash entry. */
477
478 struct elf_i386_link_hash_entry
479 {
480 struct elf_link_hash_entry elf;
481
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
484 };
485
486 /* i386 ELF linker hash table. */
487
488 struct elf_i386_link_hash_table
489 {
490 struct elf_link_hash_table elf;
491
492 /* Short-cuts to get to dynamic linker sections. */
493 asection *sgot;
494 asection *sgotplt;
495 asection *srelgot;
496 asection *splt;
497 asection *srelplt;
498 asection *sdynbss;
499 asection *srelbss;
500 };
501
502 /* Get the i386 ELF linker hash table from a link_info structure. */
503
504 #define elf_i386_hash_table(p) \
505 ((struct elf_i386_link_hash_table *) ((p)->hash))
506
507 /* Create an entry in an i386 ELF linker hash table. */
508
509 static struct bfd_hash_entry *
510 link_hash_newfunc (entry, table, string)
511 struct bfd_hash_entry *entry;
512 struct bfd_hash_table *table;
513 const char *string;
514 {
515 /* Allocate the structure if it has not already been allocated by a
516 subclass. */
517 if (entry == NULL)
518 {
519 entry = bfd_hash_allocate (table,
520 sizeof (struct elf_i386_link_hash_entry));
521 if (entry == NULL)
522 return entry;
523 }
524
525 /* Call the allocation method of the superclass. */
526 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
527 if (entry != NULL)
528 {
529 struct elf_i386_link_hash_entry *eh;
530
531 eh = (struct elf_i386_link_hash_entry *) entry;
532 eh->dyn_relocs = NULL;
533 }
534
535 return entry;
536 }
537
538 /* Create an i386 ELF linker hash table. */
539
540 static struct bfd_link_hash_table *
541 elf_i386_link_hash_table_create (abfd)
542 bfd *abfd;
543 {
544 struct elf_i386_link_hash_table *ret;
545 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
546
547 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
548 if (ret == NULL)
549 return NULL;
550
551 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
552 {
553 bfd_release (abfd, ret);
554 return NULL;
555 }
556
557 ret->sgot = NULL;
558 ret->sgotplt = NULL;
559 ret->srelgot = NULL;
560 ret->splt = NULL;
561 ret->srelplt = NULL;
562 ret->sdynbss = NULL;
563 ret->srelbss = NULL;
564
565 return &ret->elf.root;
566 }
567
568 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
569 shortcuts to them in our hash table. */
570
571 static boolean
572 create_got_section (dynobj, info)
573 bfd *dynobj;
574 struct bfd_link_info *info;
575 {
576 struct elf_i386_link_hash_table *htab;
577
578 if (! _bfd_elf_create_got_section (dynobj, info))
579 return false;
580
581 htab = elf_i386_hash_table (info);
582 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
583 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
584 if (!htab->sgot || !htab->sgotplt)
585 abort ();
586
587 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
588 if (htab->srelgot == NULL
589 || ! bfd_set_section_flags (dynobj, htab->srelgot,
590 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
591 | SEC_IN_MEMORY | SEC_LINKER_CREATED
592 | SEC_READONLY))
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
594 return false;
595 return true;
596 }
597
598 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
599 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
600 hash table. */
601
602 static boolean
603 elf_i386_create_dynamic_sections (dynobj, info)
604 bfd *dynobj;
605 struct bfd_link_info *info;
606 {
607 struct elf_i386_link_hash_table *htab;
608
609 htab = elf_i386_hash_table (info);
610 if (!htab->sgot && !create_got_section (dynobj, info))
611 return false;
612
613 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
614 return false;
615
616 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
617 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
618 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
619 if (!info->shared)
620 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
621
622 if (!htab->splt || !htab->srelplt || !htab->sdynbss
623 || (!info->shared && !htab->srelbss))
624 abort ();
625
626 return true;
627 }
628
629 /* Copy the extra info we tack onto an elf_link_hash_entry. */
630
631 static void
632 elf_i386_copy_indirect_symbol (dir, ind)
633 struct elf_link_hash_entry *dir, *ind;
634 {
635 struct elf_i386_link_hash_entry *edir, *eind;
636
637 edir = (struct elf_i386_link_hash_entry *) dir;
638 eind = (struct elf_i386_link_hash_entry *) ind;
639
640 if (edir->dyn_relocs == NULL)
641 {
642 edir->dyn_relocs = eind->dyn_relocs;
643 eind->dyn_relocs = NULL;
644 }
645 else if (eind->dyn_relocs != NULL)
646 abort ();
647
648 _bfd_elf_link_hash_copy_indirect (dir, ind);
649 }
650
651 /* Look through the relocs for a section during the first phase, and
652 calculate needed space in the global offset table, procedure linkage
653 table, and dynamic reloc sections. */
654
655 static boolean
656 elf_i386_check_relocs (abfd, info, sec, relocs)
657 bfd *abfd;
658 struct bfd_link_info *info;
659 asection *sec;
660 const Elf_Internal_Rela *relocs;
661 {
662 struct elf_i386_link_hash_table *htab;
663 Elf_Internal_Shdr *symtab_hdr;
664 struct elf_link_hash_entry **sym_hashes;
665 const Elf_Internal_Rela *rel;
666 const Elf_Internal_Rela *rel_end;
667 asection *sreloc;
668
669 if (info->relocateable)
670 return true;
671
672 htab = elf_i386_hash_table (info);
673 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
674 sym_hashes = elf_sym_hashes (abfd);
675
676 sreloc = NULL;
677
678 rel_end = relocs + sec->reloc_count;
679 for (rel = relocs; rel < rel_end; rel++)
680 {
681 unsigned long r_symndx;
682 struct elf_link_hash_entry *h;
683
684 r_symndx = ELF32_R_SYM (rel->r_info);
685
686 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
687 {
688 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
689 bfd_archive_filename (abfd),
690 r_symndx);
691 return false;
692 }
693
694 if (r_symndx < symtab_hdr->sh_info)
695 h = NULL;
696 else
697 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
698
699 switch (ELF32_R_TYPE (rel->r_info))
700 {
701 case R_386_GOT32:
702 /* This symbol requires a global offset table entry. */
703 if (h != NULL)
704 {
705 h->got.refcount += 1;
706 }
707 else
708 {
709 bfd_signed_vma *local_got_refcounts;
710
711 /* This is a global offset table entry for a local symbol. */
712 local_got_refcounts = elf_local_got_refcounts (abfd);
713 if (local_got_refcounts == NULL)
714 {
715 bfd_size_type size;
716
717 size = symtab_hdr->sh_info;
718 size *= sizeof (bfd_signed_vma);
719 local_got_refcounts = ((bfd_signed_vma *)
720 bfd_zalloc (abfd, size));
721 if (local_got_refcounts == NULL)
722 return false;
723 elf_local_got_refcounts (abfd) = local_got_refcounts;
724 }
725 local_got_refcounts[r_symndx] += 1;
726 }
727 /* Fall through */
728
729 case R_386_GOTOFF:
730 case R_386_GOTPC:
731 if (htab->sgot == NULL)
732 {
733 if (htab->elf.dynobj == NULL)
734 htab->elf.dynobj = abfd;
735 if (!create_got_section (htab->elf.dynobj, info))
736 return false;
737 }
738 break;
739
740 case R_386_PLT32:
741 /* This symbol requires a procedure linkage table entry. We
742 actually build the entry in adjust_dynamic_symbol,
743 because this might be a case of linking PIC code which is
744 never referenced by a dynamic object, in which case we
745 don't need to generate a procedure linkage table entry
746 after all. */
747
748 /* If this is a local symbol, we resolve it directly without
749 creating a procedure linkage table entry. */
750 if (h == NULL)
751 continue;
752
753 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
754 h->plt.refcount += 1;
755 break;
756
757 case R_386_32:
758 case R_386_PC32:
759 if (h != NULL && !info->shared)
760 {
761 /* If this reloc is in a read-only section, we might
762 need a copy reloc. We can't check reliably at this
763 stage whether the section is read-only, as input
764 sections have not yet been mapped to output sections.
765 Tentatively set the flag for now, and correct in
766 adjust_dynamic_symbol. */
767 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
768
769 /* We may need a .plt entry if the function this reloc
770 refers to is in a shared lib. */
771 h->plt.refcount += 1;
772 }
773
774 /* If we are creating a shared library, and this is a reloc
775 against a global symbol, or a non PC relative reloc
776 against a local symbol, then we need to copy the reloc
777 into the shared library. However, if we are linking with
778 -Bsymbolic, we do not need to copy a reloc against a
779 global symbol which is defined in an object we are
780 including in the link (i.e., DEF_REGULAR is set). At
781 this point we have not seen all the input files, so it is
782 possible that DEF_REGULAR is not set now but will be set
783 later (it is never cleared). In case of a weak definition,
784 DEF_REGULAR may be cleared later by a strong definition in
785 a shared library. We account for that possibility below by
786 storing information in the relocs_copied field of the hash
787 table entry. A similar situation occurs when creating
788 shared libraries and symbol visibility changes render the
789 symbol local.
790
791 If on the other hand, we are creating an executable, we
792 may need to keep relocations for symbols satisfied by a
793 dynamic library if we manage to avoid copy relocs for the
794 symbol. */
795 if ((info->shared
796 && (sec->flags & SEC_ALLOC) != 0
797 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
798 || (h != NULL
799 && (! info->symbolic
800 || h->root.type == bfd_link_hash_defweak
801 || (h->elf_link_hash_flags
802 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
803 || (!info->shared
804 && (sec->flags & SEC_ALLOC) != 0
805 && h != NULL
806 && (h->root.type == bfd_link_hash_defweak
807 || (h->elf_link_hash_flags
808 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
809 {
810 /* We must copy these reloc types into the output file.
811 Create a reloc section in dynobj and make room for
812 this reloc. */
813 if (sreloc == NULL)
814 {
815 const char *name;
816 bfd *dynobj;
817
818 name = (bfd_elf_string_from_elf_section
819 (abfd,
820 elf_elfheader (abfd)->e_shstrndx,
821 elf_section_data (sec)->rel_hdr.sh_name));
822 if (name == NULL)
823 return false;
824
825 if (strncmp (name, ".rel", 4) != 0
826 || strcmp (bfd_get_section_name (abfd, sec),
827 name + 4) != 0)
828 {
829 (*_bfd_error_handler)
830 (_("%s: bad relocation section name `%s\'"),
831 bfd_archive_filename (abfd), name);
832 }
833
834 if (htab->elf.dynobj == NULL)
835 htab->elf.dynobj = abfd;
836
837 dynobj = htab->elf.dynobj;
838 sreloc = bfd_get_section_by_name (dynobj, name);
839 if (sreloc == NULL)
840 {
841 flagword flags;
842
843 sreloc = bfd_make_section (dynobj, name);
844 flags = (SEC_HAS_CONTENTS | SEC_READONLY
845 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
846 if ((sec->flags & SEC_ALLOC) != 0)
847 flags |= SEC_ALLOC | SEC_LOAD;
848 if (sreloc == NULL
849 || ! bfd_set_section_flags (dynobj, sreloc, flags)
850 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
851 return false;
852 }
853 elf_section_data (sec)->sreloc = sreloc;
854 }
855
856 /* If this is a global symbol, we count the number of
857 relocations we need for this symbol. */
858 if (h != NULL)
859 {
860 struct elf_i386_link_hash_entry *eh;
861 struct elf_i386_dyn_relocs *p;
862
863 eh = (struct elf_i386_link_hash_entry *) h;
864 p = eh->dyn_relocs;
865
866 if (p == NULL || p->sec != sec)
867 {
868 bfd_size_type amt = sizeof *p;
869 p = ((struct elf_i386_dyn_relocs *)
870 bfd_alloc (htab->elf.dynobj, amt));
871 if (p == NULL)
872 return false;
873 p->next = eh->dyn_relocs;
874 eh->dyn_relocs = p;
875 p->sec = sec;
876 p->count = 0;
877 p->pc_count = 0;
878 }
879
880 p->count += 1;
881 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
882 p->pc_count += 1;
883 }
884 else
885 {
886 /* Track dynamic relocs needed for local syms too. */
887 elf_section_data (sec)->local_dynrel += 1;
888 }
889 }
890 break;
891
892 /* This relocation describes the C++ object vtable hierarchy.
893 Reconstruct it for later use during GC. */
894 case R_386_GNU_VTINHERIT:
895 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
896 return false;
897 break;
898
899 /* This relocation describes which C++ vtable entries are actually
900 used. Record for later use during GC. */
901 case R_386_GNU_VTENTRY:
902 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
903 return false;
904 break;
905
906 default:
907 break;
908 }
909 }
910
911 return true;
912 }
913
914 /* Return the section that should be marked against GC for a given
915 relocation. */
916
917 static asection *
918 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
919 bfd *abfd;
920 struct bfd_link_info *info ATTRIBUTE_UNUSED;
921 Elf_Internal_Rela *rel;
922 struct elf_link_hash_entry *h;
923 Elf_Internal_Sym *sym;
924 {
925 if (h != NULL)
926 {
927 switch (ELF32_R_TYPE (rel->r_info))
928 {
929 case R_386_GNU_VTINHERIT:
930 case R_386_GNU_VTENTRY:
931 break;
932
933 default:
934 switch (h->root.type)
935 {
936 case bfd_link_hash_defined:
937 case bfd_link_hash_defweak:
938 return h->root.u.def.section;
939
940 case bfd_link_hash_common:
941 return h->root.u.c.p->section;
942
943 default:
944 break;
945 }
946 }
947 }
948 else
949 {
950 if (!(elf_bad_symtab (abfd)
951 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
952 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
953 && sym->st_shndx != SHN_COMMON))
954 {
955 return bfd_section_from_elf_index (abfd, sym->st_shndx);
956 }
957 }
958
959 return NULL;
960 }
961
962 /* Update the got entry reference counts for the section being removed. */
963
964 static boolean
965 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
966 bfd *abfd;
967 struct bfd_link_info *info;
968 asection *sec;
969 const Elf_Internal_Rela *relocs;
970 {
971 Elf_Internal_Shdr *symtab_hdr;
972 struct elf_link_hash_entry **sym_hashes;
973 bfd_signed_vma *local_got_refcounts;
974 const Elf_Internal_Rela *rel, *relend;
975 unsigned long r_symndx;
976 struct elf_link_hash_entry *h;
977 bfd *dynobj;
978
979 elf_section_data (sec)->local_dynrel = 0;
980
981 dynobj = elf_hash_table (info)->dynobj;
982 if (dynobj == NULL)
983 return true;
984
985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
986 sym_hashes = elf_sym_hashes (abfd);
987 local_got_refcounts = elf_local_got_refcounts (abfd);
988
989 relend = relocs + sec->reloc_count;
990 for (rel = relocs; rel < relend; rel++)
991 switch (ELF32_R_TYPE (rel->r_info))
992 {
993 case R_386_GOT32:
994 case R_386_GOTOFF:
995 case R_386_GOTPC:
996 r_symndx = ELF32_R_SYM (rel->r_info);
997 if (r_symndx >= symtab_hdr->sh_info)
998 {
999 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1000 if (h->got.refcount > 0)
1001 h->got.refcount -= 1;
1002 }
1003 else if (local_got_refcounts != NULL)
1004 {
1005 if (local_got_refcounts[r_symndx] > 0)
1006 local_got_refcounts[r_symndx] -= 1;
1007 }
1008 break;
1009
1010 case R_386_32:
1011 case R_386_PC32:
1012 r_symndx = ELF32_R_SYM (rel->r_info);
1013 if (r_symndx >= symtab_hdr->sh_info)
1014 {
1015 struct elf_i386_link_hash_entry *eh;
1016 struct elf_i386_dyn_relocs **pp;
1017 struct elf_i386_dyn_relocs *p;
1018
1019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1020
1021 if (!info->shared && h->plt.refcount > 0)
1022 h->plt.refcount -= 1;
1023
1024 eh = (struct elf_i386_link_hash_entry *) h;
1025
1026 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1027 if (p->sec == sec)
1028 {
1029 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1030 p->pc_count -= 1;
1031 p->count -= 1;
1032 if (p->count == 0)
1033 *pp = p->next;
1034 break;
1035 }
1036 }
1037 break;
1038
1039 case R_386_PLT32:
1040 r_symndx = ELF32_R_SYM (rel->r_info);
1041 if (r_symndx >= symtab_hdr->sh_info)
1042 {
1043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1044 if (h->plt.refcount > 0)
1045 h->plt.refcount -= 1;
1046 }
1047 break;
1048
1049 default:
1050 break;
1051 }
1052
1053 return true;
1054 }
1055
1056 /* Adjust a symbol defined by a dynamic object and referenced by a
1057 regular object. The current definition is in some section of the
1058 dynamic object, but we're not including those sections. We have to
1059 change the definition to something the rest of the link can
1060 understand. */
1061
1062 static boolean
1063 elf_i386_adjust_dynamic_symbol (info, h)
1064 struct bfd_link_info *info;
1065 struct elf_link_hash_entry *h;
1066 {
1067 struct elf_i386_link_hash_table *htab;
1068 struct elf_i386_link_hash_entry * eh;
1069 struct elf_i386_dyn_relocs *p;
1070 asection *s;
1071 unsigned int power_of_two;
1072
1073 /* If this is a function, put it in the procedure linkage table. We
1074 will fill in the contents of the procedure linkage table later,
1075 when we know the address of the .got section. */
1076 if (h->type == STT_FUNC
1077 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1078 {
1079 if (h->plt.refcount <= 0
1080 || (! info->shared
1081 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1082 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1083 {
1084 /* This case can occur if we saw a PLT32 reloc in an input
1085 file, but the symbol was never referred to by a dynamic
1086 object, or if all references were garbage collected. In
1087 such a case, we don't actually need to build a procedure
1088 linkage table, and we can just do a PC32 reloc instead. */
1089 h->plt.refcount = -1;
1090 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1091 }
1092
1093 return true;
1094 }
1095 else
1096 /* It's possible that we incorrectly decided a .plt reloc was
1097 needed for an R_386_PC32 reloc to a non-function sym in
1098 check_relocs. We can't decide accurately between function and
1099 non-function syms in check-relocs; Objects loaded later in
1100 the link may change h->type. So fix it now. */
1101 h->plt.refcount = -1;
1102
1103 /* If this is a weak symbol, and there is a real definition, the
1104 processor independent code will have arranged for us to see the
1105 real definition first, and we can just use the same value. */
1106 if (h->weakdef != NULL)
1107 {
1108 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1109 || h->weakdef->root.type == bfd_link_hash_defweak);
1110 h->root.u.def.section = h->weakdef->root.u.def.section;
1111 h->root.u.def.value = h->weakdef->root.u.def.value;
1112 }
1113
1114 /* This is a reference to a symbol defined by a dynamic object which
1115 is not a function. */
1116
1117 /* If we are creating a shared library, we must presume that the
1118 only references to the symbol are via the global offset table.
1119 For such cases we need not do anything here; the relocations will
1120 be handled correctly by relocate_section. */
1121 if (info->shared)
1122 return true;
1123
1124 /* If there are no references to this symbol that do not use the
1125 GOT, we don't need to generate a copy reloc. */
1126 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1127 return true;
1128
1129 eh = (struct elf_i386_link_hash_entry *) h;
1130 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1131 {
1132 s = p->sec->output_section;
1133 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1134 break;
1135 }
1136
1137 /* If we didn't find any dynamic relocs in read-only sections, then
1138 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1139 if (p == NULL)
1140 {
1141 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1142 return true;
1143 }
1144
1145 /* We must allocate the symbol in our .dynbss section, which will
1146 become part of the .bss section of the executable. There will be
1147 an entry for this symbol in the .dynsym section. The dynamic
1148 object will contain position independent code, so all references
1149 from the dynamic object to this symbol will go through the global
1150 offset table. The dynamic linker will use the .dynsym entry to
1151 determine the address it must put in the global offset table, so
1152 both the dynamic object and the regular object will refer to the
1153 same memory location for the variable. */
1154
1155 htab = elf_i386_hash_table (info);
1156
1157 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1158 copy the initial value out of the dynamic object and into the
1159 runtime process image. */
1160 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1161 {
1162 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1163 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1164 }
1165
1166 /* We need to figure out the alignment required for this symbol. I
1167 have no idea how ELF linkers handle this. */
1168 power_of_two = bfd_log2 (h->size);
1169 if (power_of_two > 3)
1170 power_of_two = 3;
1171
1172 /* Apply the required alignment. */
1173 s = htab->sdynbss;
1174 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1175 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1176 {
1177 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1178 return false;
1179 }
1180
1181 /* Define the symbol as being at this point in the section. */
1182 h->root.u.def.section = s;
1183 h->root.u.def.value = s->_raw_size;
1184
1185 /* Increment the section size to make room for the symbol. */
1186 s->_raw_size += h->size;
1187
1188 return true;
1189 }
1190
1191 /* This is the condition under which elf_i386_finish_dynamic_symbol
1192 will be called from elflink.h. If elflink.h doesn't call our
1193 finish_dynamic_symbol routine, we'll need to do something about
1194 initializing any .plt and .got entries in elf_i386_relocate_section. */
1195 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1196 ((DYN) \
1197 && ((INFO)->shared \
1198 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1199 && ((H)->dynindx != -1 \
1200 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1201
1202 /* Allocate space in .plt, .got and associated reloc sections for
1203 dynamic relocs. */
1204
1205 static boolean
1206 allocate_dynrelocs (h, inf)
1207 struct elf_link_hash_entry *h;
1208 PTR inf;
1209 {
1210 struct bfd_link_info *info;
1211 struct elf_i386_link_hash_table *htab;
1212 struct elf_i386_link_hash_entry *eh;
1213 struct elf_i386_dyn_relocs *p;
1214
1215 if (h->root.type == bfd_link_hash_indirect
1216 || h->root.type == bfd_link_hash_warning)
1217 return true;
1218
1219 info = (struct bfd_link_info *) inf;
1220 htab = elf_i386_hash_table (info);
1221
1222 if (htab->elf.dynamic_sections_created
1223 && h->plt.refcount > 0)
1224 {
1225 /* Make sure this symbol is output as a dynamic symbol.
1226 Undefined weak syms won't yet be marked as dynamic. */
1227 if (h->dynindx == -1
1228 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1229 {
1230 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1231 return false;
1232 }
1233
1234 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1235 {
1236 asection *s = htab->splt;
1237
1238 /* If this is the first .plt entry, make room for the special
1239 first entry. */
1240 if (s->_raw_size == 0)
1241 s->_raw_size += PLT_ENTRY_SIZE;
1242
1243 h->plt.offset = s->_raw_size;
1244
1245 /* If this symbol is not defined in a regular file, and we are
1246 not generating a shared library, then set the symbol to this
1247 location in the .plt. This is required to make function
1248 pointers compare as equal between the normal executable and
1249 the shared library. */
1250 if (! info->shared
1251 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1252 {
1253 h->root.u.def.section = s;
1254 h->root.u.def.value = h->plt.offset;
1255 }
1256
1257 /* Make room for this entry. */
1258 s->_raw_size += PLT_ENTRY_SIZE;
1259
1260 /* We also need to make an entry in the .got.plt section, which
1261 will be placed in the .got section by the linker script. */
1262 htab->sgotplt->_raw_size += 4;
1263
1264 /* We also need to make an entry in the .rel.plt section. */
1265 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1266 }
1267 else
1268 {
1269 h->plt.offset = (bfd_vma) -1;
1270 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1271 }
1272 }
1273 else
1274 {
1275 h->plt.offset = (bfd_vma) -1;
1276 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1277 }
1278
1279 if (h->got.refcount > 0)
1280 {
1281 asection *s;
1282 boolean dyn;
1283
1284 /* Make sure this symbol is output as a dynamic symbol.
1285 Undefined weak syms won't yet be marked as dynamic. */
1286 if (h->dynindx == -1
1287 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1288 {
1289 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1290 return false;
1291 }
1292
1293 s = htab->sgot;
1294 h->got.offset = s->_raw_size;
1295 s->_raw_size += 4;
1296 dyn = htab->elf.dynamic_sections_created;
1297 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1298 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1299 }
1300 else
1301 h->got.offset = (bfd_vma) -1;
1302
1303 eh = (struct elf_i386_link_hash_entry *) h;
1304 if (eh->dyn_relocs == NULL)
1305 return true;
1306
1307 /* In the shared -Bsymbolic case, discard space allocated for
1308 dynamic pc-relative relocs against symbols which turn out to be
1309 defined in regular objects. For the normal shared case, discard
1310 space for pc-relative relocs that have become local due to symbol
1311 visibility changes. */
1312
1313 if (info->shared)
1314 {
1315 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1316 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1317 || info->symbolic))
1318 {
1319 struct elf_i386_dyn_relocs **pp;
1320
1321 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1322 {
1323 p->count -= p->pc_count;
1324 p->pc_count = 0;
1325 if (p->count == 0)
1326 *pp = p->next;
1327 else
1328 pp = &p->next;
1329 }
1330 }
1331 }
1332 else
1333 {
1334 /* For the non-shared case, discard space for relocs against
1335 symbols which turn out to need copy relocs or are not
1336 dynamic. */
1337
1338 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1339 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1340 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1341 || (htab->elf.dynamic_sections_created
1342 && (h->root.type == bfd_link_hash_undefweak
1343 || h->root.type == bfd_link_hash_undefined))))
1344 {
1345 /* Make sure this symbol is output as a dynamic symbol.
1346 Undefined weak syms won't yet be marked as dynamic. */
1347 if (h->dynindx == -1
1348 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1349 {
1350 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1351 return false;
1352 }
1353
1354 /* If that succeeded, we know we'll be keeping all the
1355 relocs. */
1356 if (h->dynindx != -1)
1357 goto keep;
1358 }
1359
1360 eh->dyn_relocs = NULL;
1361
1362 keep:
1363 }
1364
1365 /* Finally, allocate space. */
1366 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1367 {
1368 asection *sreloc = elf_section_data (p->sec)->sreloc;
1369 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1370 }
1371
1372 return true;
1373 }
1374
1375 /* Find any dynamic relocs that apply to read-only sections. */
1376
1377 static boolean
1378 readonly_dynrelocs (h, inf)
1379 struct elf_link_hash_entry *h;
1380 PTR inf;
1381 {
1382 struct elf_i386_link_hash_entry *eh;
1383 struct elf_i386_dyn_relocs *p;
1384
1385 eh = (struct elf_i386_link_hash_entry *) h;
1386 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1387 {
1388 asection *s = p->sec->output_section;
1389
1390 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1391 {
1392 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1393
1394 info->flags |= DF_TEXTREL;
1395
1396 /* Not an error, just cut short the traversal. */
1397 return false;
1398 }
1399 }
1400 return true;
1401 }
1402
1403 /* Set the sizes of the dynamic sections. */
1404
1405 static boolean
1406 elf_i386_size_dynamic_sections (output_bfd, info)
1407 bfd *output_bfd ATTRIBUTE_UNUSED;
1408 struct bfd_link_info *info;
1409 {
1410 struct elf_i386_link_hash_table *htab;
1411 bfd *dynobj;
1412 asection *s;
1413 boolean relocs;
1414 bfd *ibfd;
1415
1416 htab = elf_i386_hash_table (info);
1417 dynobj = htab->elf.dynobj;
1418 if (dynobj == NULL)
1419 abort ();
1420
1421 if (htab->elf.dynamic_sections_created)
1422 {
1423 /* Set the contents of the .interp section to the interpreter. */
1424 if (! info->shared)
1425 {
1426 s = bfd_get_section_by_name (dynobj, ".interp");
1427 if (s == NULL)
1428 abort ();
1429 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1430 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1431 }
1432 }
1433
1434 /* Set up .got offsets for local syms, and space for local dynamic
1435 relocs. */
1436 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1437 {
1438 bfd_signed_vma *local_got;
1439 bfd_signed_vma *end_local_got;
1440 bfd_size_type locsymcount;
1441 Elf_Internal_Shdr *symtab_hdr;
1442 asection *srel;
1443
1444 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1445 continue;
1446
1447 for (s = ibfd->sections; s != NULL; s = s->next)
1448 {
1449 bfd_size_type count = elf_section_data (s)->local_dynrel;
1450
1451 if (count != 0)
1452 {
1453 srel = elf_section_data (s)->sreloc;
1454 srel->_raw_size += count * sizeof (Elf32_External_Rel);
1455 }
1456 }
1457
1458 local_got = elf_local_got_refcounts (ibfd);
1459 if (!local_got)
1460 continue;
1461
1462 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1463 locsymcount = symtab_hdr->sh_info;
1464 end_local_got = local_got + locsymcount;
1465 s = htab->sgot;
1466 srel = htab->srelgot;
1467 for (; local_got < end_local_got; ++local_got)
1468 {
1469 if (*local_got > 0)
1470 {
1471 *local_got = s->_raw_size;
1472 s->_raw_size += 4;
1473 if (info->shared)
1474 srel->_raw_size += sizeof (Elf32_External_Rel);
1475 }
1476 else
1477 *local_got = (bfd_vma) -1;
1478 }
1479 }
1480
1481 /* Allocate global sym .plt and .got entries, and space for global
1482 sym dynamic relocs. */
1483 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1484
1485 /* We now have determined the sizes of the various dynamic sections.
1486 Allocate memory for them. */
1487 relocs = false;
1488 for (s = dynobj->sections; s != NULL; s = s->next)
1489 {
1490 if ((s->flags & SEC_LINKER_CREATED) == 0)
1491 continue;
1492
1493 if (s == htab->splt
1494 || s == htab->sgot
1495 || s == htab->sgotplt)
1496 {
1497 /* Strip this section if we don't need it; see the
1498 comment below. */
1499 }
1500 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1501 {
1502 if (s->_raw_size != 0 && s != htab->srelplt)
1503 relocs = true;
1504
1505 /* We use the reloc_count field as a counter if we need
1506 to copy relocs into the output file. */
1507 s->reloc_count = 0;
1508 }
1509 else
1510 {
1511 /* It's not one of our sections, so don't allocate space. */
1512 continue;
1513 }
1514
1515 if (s->_raw_size == 0)
1516 {
1517 /* If we don't need this section, strip it from the
1518 output file. This is mostly to handle .rel.bss and
1519 .rel.plt. We must create both sections in
1520 create_dynamic_sections, because they must be created
1521 before the linker maps input sections to output
1522 sections. The linker does that before
1523 adjust_dynamic_symbol is called, and it is that
1524 function which decides whether anything needs to go
1525 into these sections. */
1526
1527 _bfd_strip_section_from_output (info, s);
1528 continue;
1529 }
1530
1531 /* Allocate memory for the section contents. We use bfd_zalloc
1532 here in case unused entries are not reclaimed before the
1533 section's contents are written out. This should not happen,
1534 but this way if it does, we get a R_386_NONE reloc instead
1535 of garbage. */
1536 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1537 if (s->contents == NULL)
1538 return false;
1539 }
1540
1541 if (htab->elf.dynamic_sections_created)
1542 {
1543 /* Add some entries to the .dynamic section. We fill in the
1544 values later, in elf_i386_finish_dynamic_sections, but we
1545 must add the entries now so that we get the correct size for
1546 the .dynamic section. The DT_DEBUG entry is filled in by the
1547 dynamic linker and used by the debugger. */
1548 #define add_dynamic_entry(TAG, VAL) \
1549 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1550
1551 if (! info->shared)
1552 {
1553 if (!add_dynamic_entry (DT_DEBUG, 0))
1554 return false;
1555 }
1556
1557 if (htab->splt->_raw_size != 0)
1558 {
1559 if (!add_dynamic_entry (DT_PLTGOT, 0)
1560 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1561 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1562 || !add_dynamic_entry (DT_JMPREL, 0))
1563 return false;
1564 }
1565
1566 if (relocs)
1567 {
1568 if (!add_dynamic_entry (DT_REL, 0)
1569 || !add_dynamic_entry (DT_RELSZ, 0)
1570 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1571 return false;
1572
1573 /* If any dynamic relocs apply to a read-only section,
1574 then we need a DT_TEXTREL entry. */
1575 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1576
1577 if ((info->flags & DF_TEXTREL) != 0)
1578 {
1579 if (!add_dynamic_entry (DT_TEXTREL, 0))
1580 return false;
1581 }
1582 }
1583 }
1584 #undef add_dynamic_entry
1585
1586 return true;
1587 }
1588
1589 /* Set the correct type for an x86 ELF section. We do this by the
1590 section name, which is a hack, but ought to work. */
1591
1592 static boolean
1593 elf_i386_fake_sections (abfd, hdr, sec)
1594 bfd *abfd ATTRIBUTE_UNUSED;
1595 Elf32_Internal_Shdr *hdr;
1596 asection *sec;
1597 {
1598 register const char *name;
1599
1600 name = bfd_get_section_name (abfd, sec);
1601
1602 /* This is an ugly, but unfortunately necessary hack that is
1603 needed when producing EFI binaries on x86. It tells
1604 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1605 containing ELF relocation info. We need this hack in order to
1606 be able to generate ELF binaries that can be translated into
1607 EFI applications (which are essentially COFF objects). Those
1608 files contain a COFF ".reloc" section inside an ELFNN object,
1609 which would normally cause BFD to segfault because it would
1610 attempt to interpret this section as containing relocation
1611 entries for section "oc". With this hack enabled, ".reloc"
1612 will be treated as a normal data section, which will avoid the
1613 segfault. However, you won't be able to create an ELFNN binary
1614 with a section named "oc" that needs relocations, but that's
1615 the kind of ugly side-effects you get when detecting section
1616 types based on their names... In practice, this limitation is
1617 unlikely to bite. */
1618 if (strcmp (name, ".reloc") == 0)
1619 hdr->sh_type = SHT_PROGBITS;
1620
1621 return true;
1622 }
1623
1624 /* Relocate an i386 ELF section. */
1625
1626 static boolean
1627 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1628 contents, relocs, local_syms, local_sections)
1629 bfd *output_bfd;
1630 struct bfd_link_info *info;
1631 bfd *input_bfd;
1632 asection *input_section;
1633 bfd_byte *contents;
1634 Elf_Internal_Rela *relocs;
1635 Elf_Internal_Sym *local_syms;
1636 asection **local_sections;
1637 {
1638 struct elf_i386_link_hash_table *htab;
1639 Elf_Internal_Shdr *symtab_hdr;
1640 struct elf_link_hash_entry **sym_hashes;
1641 bfd_vma *local_got_offsets;
1642 Elf_Internal_Rela *rel;
1643 Elf_Internal_Rela *relend;
1644
1645 htab = elf_i386_hash_table (info);
1646 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1647 sym_hashes = elf_sym_hashes (input_bfd);
1648 local_got_offsets = elf_local_got_offsets (input_bfd);
1649
1650 rel = relocs;
1651 relend = relocs + input_section->reloc_count;
1652 for (; rel < relend; rel++)
1653 {
1654 int r_type;
1655 reloc_howto_type *howto;
1656 unsigned long r_symndx;
1657 struct elf_link_hash_entry *h;
1658 Elf_Internal_Sym *sym;
1659 asection *sec;
1660 bfd_vma off;
1661 bfd_vma relocation;
1662 boolean unresolved_reloc;
1663 bfd_reloc_status_type r;
1664 unsigned int indx;
1665
1666 r_type = ELF32_R_TYPE (rel->r_info);
1667 if (r_type == (int) R_386_GNU_VTINHERIT
1668 || r_type == (int) R_386_GNU_VTENTRY)
1669 continue;
1670
1671 if ((indx = (unsigned) r_type) >= R_386_standard
1672 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1673 >= R_386_ext - R_386_standard))
1674 {
1675 bfd_set_error (bfd_error_bad_value);
1676 return false;
1677 }
1678 howto = elf_howto_table + indx;
1679
1680 r_symndx = ELF32_R_SYM (rel->r_info);
1681
1682 if (info->relocateable)
1683 {
1684 /* This is a relocatable link. We don't have to change
1685 anything, unless the reloc is against a section symbol,
1686 in which case we have to adjust according to where the
1687 section symbol winds up in the output section. */
1688 if (r_symndx < symtab_hdr->sh_info)
1689 {
1690 sym = local_syms + r_symndx;
1691 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1692 {
1693 bfd_vma val;
1694
1695 sec = local_sections[r_symndx];
1696 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1697 val += sec->output_offset + sym->st_value;
1698 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1699 }
1700 }
1701 continue;
1702 }
1703
1704 /* This is a final link. */
1705 h = NULL;
1706 sym = NULL;
1707 sec = NULL;
1708 unresolved_reloc = false;
1709 if (r_symndx < symtab_hdr->sh_info)
1710 {
1711 sym = local_syms + r_symndx;
1712 sec = local_sections[r_symndx];
1713 relocation = (sec->output_section->vma
1714 + sec->output_offset
1715 + sym->st_value);
1716 }
1717 else
1718 {
1719 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1720 while (h->root.type == bfd_link_hash_indirect
1721 || h->root.type == bfd_link_hash_warning)
1722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1723
1724 relocation = 0;
1725 if (h->root.type == bfd_link_hash_defined
1726 || h->root.type == bfd_link_hash_defweak)
1727 {
1728 sec = h->root.u.def.section;
1729 if (sec->output_section == NULL)
1730 /* Set a flag that will be cleared later if we find a
1731 relocation value for this symbol. output_section
1732 is typically NULL for symbols satisfied by a shared
1733 library. */
1734 unresolved_reloc = true;
1735 else
1736 relocation = (h->root.u.def.value
1737 + sec->output_section->vma
1738 + sec->output_offset);
1739 }
1740 else if (h->root.type == bfd_link_hash_undefweak)
1741 ;
1742 else if (info->shared
1743 && (!info->symbolic || info->allow_shlib_undefined)
1744 && !info->no_undefined
1745 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1746 ;
1747 else
1748 {
1749 if (! ((*info->callbacks->undefined_symbol)
1750 (info, h->root.root.string, input_bfd,
1751 input_section, rel->r_offset,
1752 (!info->shared || info->no_undefined
1753 || ELF_ST_VISIBILITY (h->other)))))
1754 return false;
1755 }
1756 }
1757
1758 switch (r_type)
1759 {
1760 case R_386_GOT32:
1761 /* Relocation is to the entry for this symbol in the global
1762 offset table. */
1763 if (htab->sgot == NULL)
1764 abort ();
1765
1766 if (h != NULL)
1767 {
1768 boolean dyn;
1769
1770 off = h->got.offset;
1771 dyn = htab->elf.dynamic_sections_created;
1772 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1773 || (info->shared
1774 && (info->symbolic
1775 || h->dynindx == -1
1776 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1777 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1778 {
1779 /* This is actually a static link, or it is a
1780 -Bsymbolic link and the symbol is defined
1781 locally, or the symbol was forced to be local
1782 because of a version file. We must initialize
1783 this entry in the global offset table. Since the
1784 offset must always be a multiple of 4, we use the
1785 least significant bit to record whether we have
1786 initialized it already.
1787
1788 When doing a dynamic link, we create a .rel.got
1789 relocation entry to initialize the value. This
1790 is done in the finish_dynamic_symbol routine. */
1791 if ((off & 1) != 0)
1792 off &= ~1;
1793 else
1794 {
1795 bfd_put_32 (output_bfd, relocation,
1796 htab->sgot->contents + off);
1797 h->got.offset |= 1;
1798 }
1799 }
1800 else
1801 unresolved_reloc = false;
1802 }
1803 else
1804 {
1805 if (local_got_offsets == NULL)
1806 abort ();
1807
1808 off = local_got_offsets[r_symndx];
1809
1810 /* The offset must always be a multiple of 4. We use
1811 the least significant bit to record whether we have
1812 already generated the necessary reloc. */
1813 if ((off & 1) != 0)
1814 off &= ~1;
1815 else
1816 {
1817 bfd_put_32 (output_bfd, relocation,
1818 htab->sgot->contents + off);
1819
1820 if (info->shared)
1821 {
1822 asection *srelgot;
1823 Elf_Internal_Rel outrel;
1824 Elf32_External_Rel *loc;
1825
1826 srelgot = htab->srelgot;
1827 if (srelgot == NULL)
1828 abort ();
1829
1830 outrel.r_offset = (htab->sgot->output_section->vma
1831 + htab->sgot->output_offset
1832 + off);
1833 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1834 loc = (Elf32_External_Rel *) srelgot->contents;
1835 loc += srelgot->reloc_count++;
1836 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1837 }
1838
1839 local_got_offsets[r_symndx] |= 1;
1840 }
1841 }
1842
1843 if (off >= (bfd_vma) -2)
1844 abort ();
1845
1846 relocation = htab->sgot->output_offset + off;
1847 break;
1848
1849 case R_386_GOTOFF:
1850 /* Relocation is relative to the start of the global offset
1851 table. */
1852
1853 /* Note that sgot->output_offset is not involved in this
1854 calculation. We always want the start of .got. If we
1855 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1856 permitted by the ABI, we might have to change this
1857 calculation. */
1858 relocation -= htab->sgot->output_section->vma;
1859 break;
1860
1861 case R_386_GOTPC:
1862 /* Use global offset table as symbol value. */
1863 relocation = htab->sgot->output_section->vma;
1864 unresolved_reloc = false;
1865 break;
1866
1867 case R_386_PLT32:
1868 /* Relocation is to the entry for this symbol in the
1869 procedure linkage table. */
1870
1871 /* Resolve a PLT32 reloc against a local symbol directly,
1872 without using the procedure linkage table. */
1873 if (h == NULL)
1874 break;
1875
1876 if (h->plt.offset == (bfd_vma) -1
1877 || htab->splt == NULL)
1878 {
1879 /* We didn't make a PLT entry for this symbol. This
1880 happens when statically linking PIC code, or when
1881 using -Bsymbolic. */
1882 break;
1883 }
1884
1885 relocation = (htab->splt->output_section->vma
1886 + htab->splt->output_offset
1887 + h->plt.offset);
1888 unresolved_reloc = false;
1889 break;
1890
1891 case R_386_32:
1892 case R_386_PC32:
1893 if ((info->shared
1894 && (input_section->flags & SEC_ALLOC) != 0
1895 && (r_type != R_386_PC32
1896 || (h != NULL
1897 && h->dynindx != -1
1898 && (! info->symbolic
1899 || (h->elf_link_hash_flags
1900 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1901 || (!info->shared
1902 && (input_section->flags & SEC_ALLOC) != 0
1903 && h != NULL
1904 && h->dynindx != -1
1905 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1906 && (((h->elf_link_hash_flags
1907 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1908 && (h->elf_link_hash_flags
1909 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1910 || h->root.type == bfd_link_hash_undefweak
1911 || h->root.type == bfd_link_hash_undefined)))
1912 {
1913 Elf_Internal_Rel outrel;
1914 boolean skip, relocate;
1915 asection *sreloc;
1916 Elf32_External_Rel *loc;
1917
1918 /* When generating a shared object, these relocations
1919 are copied into the output file to be resolved at run
1920 time. */
1921
1922 skip = false;
1923
1924 if (elf_section_data (input_section)->stab_info == NULL)
1925 outrel.r_offset = rel->r_offset;
1926 else
1927 {
1928 off = (_bfd_stab_section_offset
1929 (output_bfd, htab->elf.stab_info, input_section,
1930 &elf_section_data (input_section)->stab_info,
1931 rel->r_offset));
1932 if (off == (bfd_vma) -1)
1933 skip = true;
1934 outrel.r_offset = off;
1935 }
1936
1937 outrel.r_offset += (input_section->output_section->vma
1938 + input_section->output_offset);
1939
1940 if (skip)
1941 {
1942 memset (&outrel, 0, sizeof outrel);
1943 relocate = false;
1944 }
1945 else if (h != NULL
1946 && h->dynindx != -1
1947 && (r_type == R_386_PC32
1948 || !info->shared
1949 || !info->symbolic
1950 || (h->elf_link_hash_flags
1951 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1952
1953 {
1954 relocate = false;
1955 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1956 }
1957 else
1958 {
1959 /* This symbol is local, or marked to become local. */
1960 relocate = true;
1961 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1962 }
1963
1964 sreloc = elf_section_data (input_section)->sreloc;
1965 if (sreloc == NULL)
1966 abort ();
1967
1968 loc = (Elf32_External_Rel *) sreloc->contents;
1969 loc += sreloc->reloc_count++;
1970 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1971
1972 /* If this reloc is against an external symbol, we do
1973 not want to fiddle with the addend. Otherwise, we
1974 need to include the symbol value so that it becomes
1975 an addend for the dynamic reloc. */
1976 if (! relocate)
1977 continue;
1978 }
1979
1980 break;
1981
1982 default:
1983 break;
1984 }
1985
1986 /* FIXME: Why do we allow debugging sections to escape this error?
1987 More importantly, why do we not emit dynamic relocs for
1988 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1989 If we had emitted the dynamic reloc, we could remove the
1990 fudge here. */
1991 if (unresolved_reloc
1992 && !(info->shared
1993 && (input_section->flags & SEC_DEBUGGING) != 0
1994 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1995 (*_bfd_error_handler)
1996 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1997 bfd_archive_filename (input_bfd),
1998 bfd_get_section_name (input_bfd, input_section),
1999 (long) rel->r_offset,
2000 h->root.root.string);
2001
2002 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2003 contents, rel->r_offset,
2004 relocation, (bfd_vma) 0);
2005
2006 switch (r)
2007 {
2008 case bfd_reloc_ok:
2009 break;
2010
2011 case bfd_reloc_overflow:
2012 {
2013 const char *name;
2014
2015 if (h != NULL)
2016 name = h->root.root.string;
2017 else
2018 {
2019 name = bfd_elf_string_from_elf_section (input_bfd,
2020 symtab_hdr->sh_link,
2021 sym->st_name);
2022 if (name == NULL)
2023 return false;
2024 if (*name == '\0')
2025 name = bfd_section_name (input_bfd, sec);
2026 }
2027 if (! ((*info->callbacks->reloc_overflow)
2028 (info, name, howto->name, (bfd_vma) 0,
2029 input_bfd, input_section, rel->r_offset)))
2030 return false;
2031 }
2032 break;
2033
2034 default:
2035 case bfd_reloc_outofrange:
2036 abort ();
2037 break;
2038 }
2039 }
2040
2041 return true;
2042 }
2043
2044 /* Finish up dynamic symbol handling. We set the contents of various
2045 dynamic sections here. */
2046
2047 static boolean
2048 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2049 bfd *output_bfd;
2050 struct bfd_link_info *info;
2051 struct elf_link_hash_entry *h;
2052 Elf_Internal_Sym *sym;
2053 {
2054 struct elf_i386_link_hash_table *htab;
2055
2056 htab = elf_i386_hash_table (info);
2057
2058 if (h->plt.offset != (bfd_vma) -1)
2059 {
2060 bfd_vma plt_index;
2061 bfd_vma got_offset;
2062 Elf_Internal_Rel rel;
2063 Elf32_External_Rel *loc;
2064
2065 /* This symbol has an entry in the procedure linkage table. Set
2066 it up. */
2067
2068 if (h->dynindx == -1
2069 || htab->splt == NULL
2070 || htab->sgotplt == NULL
2071 || htab->srelplt == NULL)
2072 abort ();
2073
2074 /* Get the index in the procedure linkage table which
2075 corresponds to this symbol. This is the index of this symbol
2076 in all the symbols for which we are making plt entries. The
2077 first entry in the procedure linkage table is reserved. */
2078 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2079
2080 /* Get the offset into the .got table of the entry that
2081 corresponds to this function. Each .got entry is 4 bytes.
2082 The first three are reserved. */
2083 got_offset = (plt_index + 3) * 4;
2084
2085 /* Fill in the entry in the procedure linkage table. */
2086 if (! info->shared)
2087 {
2088 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2089 PLT_ENTRY_SIZE);
2090 bfd_put_32 (output_bfd,
2091 (htab->sgotplt->output_section->vma
2092 + htab->sgotplt->output_offset
2093 + got_offset),
2094 htab->splt->contents + h->plt.offset + 2);
2095 }
2096 else
2097 {
2098 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2099 PLT_ENTRY_SIZE);
2100 bfd_put_32 (output_bfd, got_offset,
2101 htab->splt->contents + h->plt.offset + 2);
2102 }
2103
2104 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2105 htab->splt->contents + h->plt.offset + 7);
2106 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2107 htab->splt->contents + h->plt.offset + 12);
2108
2109 /* Fill in the entry in the global offset table. */
2110 bfd_put_32 (output_bfd,
2111 (htab->splt->output_section->vma
2112 + htab->splt->output_offset
2113 + h->plt.offset
2114 + 6),
2115 htab->sgotplt->contents + got_offset);
2116
2117 /* Fill in the entry in the .rel.plt section. */
2118 rel.r_offset = (htab->sgotplt->output_section->vma
2119 + htab->sgotplt->output_offset
2120 + got_offset);
2121 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2122 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2123 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2124
2125 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2126 {
2127 /* Mark the symbol as undefined, rather than as defined in
2128 the .plt section. Leave the value alone. This is a clue
2129 for the dynamic linker, to make function pointer
2130 comparisons work between an application and shared
2131 library. */
2132 sym->st_shndx = SHN_UNDEF;
2133 }
2134 }
2135
2136 if (h->got.offset != (bfd_vma) -1)
2137 {
2138 Elf_Internal_Rel rel;
2139 Elf32_External_Rel *loc;
2140
2141 /* This symbol has an entry in the global offset table. Set it
2142 up. */
2143
2144 if (htab->sgot == NULL || htab->srelgot == NULL)
2145 abort ();
2146
2147 rel.r_offset = (htab->sgot->output_section->vma
2148 + htab->sgot->output_offset
2149 + (h->got.offset & ~(bfd_vma) 1));
2150
2151 /* If this is a static link, or it is a -Bsymbolic link and the
2152 symbol is defined locally or was forced to be local because
2153 of a version file, we just want to emit a RELATIVE reloc.
2154 The entry in the global offset table will already have been
2155 initialized in the relocate_section function. */
2156 if (info->shared
2157 && (info->symbolic
2158 || h->dynindx == -1
2159 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2160 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2161 {
2162 BFD_ASSERT((h->got.offset & 1) != 0);
2163 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2164 }
2165 else
2166 {
2167 BFD_ASSERT((h->got.offset & 1) == 0);
2168 bfd_put_32 (output_bfd, (bfd_vma) 0,
2169 htab->sgot->contents + h->got.offset);
2170 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2171 }
2172
2173 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2174 loc += htab->srelgot->reloc_count++;
2175 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2176 }
2177
2178 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2179 {
2180 Elf_Internal_Rel rel;
2181 Elf32_External_Rel *loc;
2182
2183 /* This symbol needs a copy reloc. Set it up. */
2184
2185 if (h->dynindx == -1
2186 || (h->root.type != bfd_link_hash_defined
2187 && h->root.type != bfd_link_hash_defweak)
2188 || htab->srelbss == NULL)
2189 abort ();
2190
2191 rel.r_offset = (h->root.u.def.value
2192 + h->root.u.def.section->output_section->vma
2193 + h->root.u.def.section->output_offset);
2194 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2195 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2196 loc += htab->srelbss->reloc_count++;
2197 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2198 }
2199
2200 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2201 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2202 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2203 sym->st_shndx = SHN_ABS;
2204
2205 return true;
2206 }
2207
2208 /* Used to decide how to sort relocs in an optimal manner for the
2209 dynamic linker, before writing them out. */
2210
2211 static enum elf_reloc_type_class
2212 elf_i386_reloc_type_class (rela)
2213 const Elf_Internal_Rela *rela;
2214 {
2215 switch ((int) ELF32_R_TYPE (rela->r_info))
2216 {
2217 case R_386_RELATIVE:
2218 return reloc_class_relative;
2219 case R_386_JUMP_SLOT:
2220 return reloc_class_plt;
2221 case R_386_COPY:
2222 return reloc_class_copy;
2223 default:
2224 return reloc_class_normal;
2225 }
2226 }
2227
2228 /* Finish up the dynamic sections. */
2229
2230 static boolean
2231 elf_i386_finish_dynamic_sections (output_bfd, info)
2232 bfd *output_bfd;
2233 struct bfd_link_info *info;
2234 {
2235 struct elf_i386_link_hash_table *htab;
2236 bfd *dynobj;
2237 asection *sdyn;
2238
2239 htab = elf_i386_hash_table (info);
2240 dynobj = htab->elf.dynobj;
2241 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2242
2243 if (htab->elf.dynamic_sections_created)
2244 {
2245 Elf32_External_Dyn *dyncon, *dynconend;
2246
2247 if (sdyn == NULL || htab->sgot == NULL)
2248 abort ();
2249
2250 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2251 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2252 for (; dyncon < dynconend; dyncon++)
2253 {
2254 Elf_Internal_Dyn dyn;
2255 asection *s;
2256
2257 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2258
2259 switch (dyn.d_tag)
2260 {
2261 default:
2262 continue;
2263
2264 case DT_PLTGOT:
2265 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2266 break;
2267
2268 case DT_JMPREL:
2269 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2270 break;
2271
2272 case DT_PLTRELSZ:
2273 s = htab->srelplt->output_section;
2274 if (s->_cooked_size != 0)
2275 dyn.d_un.d_val = s->_cooked_size;
2276 else
2277 dyn.d_un.d_val = s->_raw_size;
2278 break;
2279
2280 case DT_RELSZ:
2281 /* My reading of the SVR4 ABI indicates that the
2282 procedure linkage table relocs (DT_JMPREL) should be
2283 included in the overall relocs (DT_REL). This is
2284 what Solaris does. However, UnixWare can not handle
2285 that case. Therefore, we override the DT_RELSZ entry
2286 here to make it not include the JMPREL relocs. Since
2287 the linker script arranges for .rel.plt to follow all
2288 other relocation sections, we don't have to worry
2289 about changing the DT_REL entry. */
2290 if (htab->srelplt != NULL)
2291 {
2292 s = htab->srelplt->output_section;
2293 if (s->_cooked_size != 0)
2294 dyn.d_un.d_val -= s->_cooked_size;
2295 else
2296 dyn.d_un.d_val -= s->_raw_size;
2297 }
2298 break;
2299 }
2300
2301 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2302 }
2303
2304 /* Fill in the first entry in the procedure linkage table. */
2305 if (htab->splt && htab->splt->_raw_size > 0)
2306 {
2307 if (info->shared)
2308 memcpy (htab->splt->contents,
2309 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2310 else
2311 {
2312 memcpy (htab->splt->contents,
2313 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2314 bfd_put_32 (output_bfd,
2315 (htab->sgotplt->output_section->vma
2316 + htab->sgotplt->output_offset
2317 + 4),
2318 htab->splt->contents + 2);
2319 bfd_put_32 (output_bfd,
2320 (htab->sgotplt->output_section->vma
2321 + htab->sgotplt->output_offset
2322 + 8),
2323 htab->splt->contents + 8);
2324 }
2325
2326 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2327 really seem like the right value. */
2328 elf_section_data (htab->splt->output_section)
2329 ->this_hdr.sh_entsize = 4;
2330 }
2331 }
2332
2333 if (htab->sgotplt)
2334 {
2335 /* Fill in the first three entries in the global offset table. */
2336 if (htab->sgotplt->_raw_size > 0)
2337 {
2338 bfd_put_32 (output_bfd,
2339 (sdyn == NULL ? (bfd_vma) 0
2340 : sdyn->output_section->vma + sdyn->output_offset),
2341 htab->sgotplt->contents);
2342 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2343 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2344 }
2345
2346 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2347 }
2348 return true;
2349 }
2350
2351 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2352 #define TARGET_LITTLE_NAME "elf32-i386"
2353 #define ELF_ARCH bfd_arch_i386
2354 #define ELF_MACHINE_CODE EM_386
2355 #define ELF_MAXPAGESIZE 0x1000
2356
2357 #define elf_backend_can_gc_sections 1
2358 #define elf_backend_can_refcount 1
2359 #define elf_backend_want_got_plt 1
2360 #define elf_backend_plt_readonly 1
2361 #define elf_backend_want_plt_sym 0
2362 #define elf_backend_got_header_size 12
2363 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2364
2365 #define elf_info_to_howto elf_i386_info_to_howto
2366 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2367
2368 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2369 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2370 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2371
2372 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2373 #define elf_backend_check_relocs elf_i386_check_relocs
2374 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2375 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2376 #define elf_backend_fake_sections elf_i386_fake_sections
2377 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2378 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2379 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2380 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2381 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2382 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2383 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2384 #define elf_backend_relocate_section elf_i386_relocate_section
2385 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2386
2387 #include "elf32-target.h"