Update copyright dates for last patch.
[binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean elf_i386_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static boolean elf_i386_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static boolean elf_i386_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_relocate_section
46 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
47 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
48 static boolean elf_i386_finish_dynamic_symbol
49 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
50 Elf_Internal_Sym *));
51 static boolean elf_i386_finish_dynamic_sections
52 PARAMS ((bfd *, struct bfd_link_info *));
53
54 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
55
56 #include "elf/i386.h"
57
58 static reloc_howto_type elf_howto_table[]=
59 {
60 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_386_NONE",
62 true, 0x00000000, 0x00000000, false),
63 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_386_32",
65 true, 0xffffffff, 0xffffffff, false),
66 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_386_PC32",
68 true, 0xffffffff, 0xffffffff, true),
69 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
70 bfd_elf_generic_reloc, "R_386_GOT32",
71 true, 0xffffffff, 0xffffffff, false),
72 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_386_PLT32",
74 true, 0xffffffff, 0xffffffff, true),
75 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_386_COPY",
77 true, 0xffffffff, 0xffffffff, false),
78 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
80 true, 0xffffffff, 0xffffffff, false),
81 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_RELATIVE",
86 true, 0xffffffff, 0xffffffff, false),
87 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOTOFF",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_GOTPC",
92 true, 0xffffffff, 0xffffffff, true),
93
94 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
95 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
96
97 /* The remaining relocs are a GNU extension. */
98 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_386_16",
100 true, 0xffff, 0xffff, false),
101 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_386_PC16",
103 true, 0xffff, 0xffff, true),
104 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_386_8",
106 true, 0xff, 0xff, false),
107 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_386_PC8",
109 true, 0xff, 0xff, true)
110 };
111
112 /* GNU extension to record C++ vtable hierarchy. */
113 static reloc_howto_type elf32_i386_vtinherit_howto =
114 HOWTO (R_386_GNU_VTINHERIT, /* type */
115 0, /* rightshift */
116 2, /* size (0 = byte, 1 = short, 2 = long) */
117 0, /* bitsize */
118 false, /* pc_relative */
119 0, /* bitpos */
120 complain_overflow_dont, /* complain_on_overflow */
121 NULL, /* special_function */
122 "R_386_GNU_VTINHERIT", /* name */
123 false, /* partial_inplace */
124 0, /* src_mask */
125 0, /* dst_mask */
126 false);
127
128 /* GNU extension to record C++ vtable member usage. */
129 static reloc_howto_type elf32_i386_vtentry_howto =
130 HOWTO (R_386_GNU_VTENTRY, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 0, /* bitsize */
134 false, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont, /* complain_on_overflow */
137 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
138 "R_386_GNU_VTENTRY", /* name */
139 false, /* partial_inplace */
140 0, /* src_mask */
141 0, /* dst_mask */
142 false);
143
144 #ifdef DEBUG_GEN_RELOC
145 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
146 #else
147 #define TRACE(str)
148 #endif
149
150 static reloc_howto_type *
151 elf_i386_reloc_type_lookup (abfd, code)
152 bfd *abfd ATTRIBUTE_UNUSED;
153 bfd_reloc_code_real_type code;
154 {
155 switch (code)
156 {
157 case BFD_RELOC_NONE:
158 TRACE ("BFD_RELOC_NONE");
159 return &elf_howto_table[(unsigned int) R_386_NONE ];
160
161 case BFD_RELOC_32:
162 TRACE ("BFD_RELOC_32");
163 return &elf_howto_table[(unsigned int) R_386_32 ];
164
165 case BFD_RELOC_CTOR:
166 TRACE ("BFD_RELOC_CTOR");
167 return &elf_howto_table[(unsigned int) R_386_32 ];
168
169 case BFD_RELOC_32_PCREL:
170 TRACE ("BFD_RELOC_PC32");
171 return &elf_howto_table[(unsigned int) R_386_PC32 ];
172
173 case BFD_RELOC_386_GOT32:
174 TRACE ("BFD_RELOC_386_GOT32");
175 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
176
177 case BFD_RELOC_386_PLT32:
178 TRACE ("BFD_RELOC_386_PLT32");
179 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
180
181 case BFD_RELOC_386_COPY:
182 TRACE ("BFD_RELOC_386_COPY");
183 return &elf_howto_table[(unsigned int) R_386_COPY ];
184
185 case BFD_RELOC_386_GLOB_DAT:
186 TRACE ("BFD_RELOC_386_GLOB_DAT");
187 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
188
189 case BFD_RELOC_386_JUMP_SLOT:
190 TRACE ("BFD_RELOC_386_JUMP_SLOT");
191 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
192
193 case BFD_RELOC_386_RELATIVE:
194 TRACE ("BFD_RELOC_386_RELATIVE");
195 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
196
197 case BFD_RELOC_386_GOTOFF:
198 TRACE ("BFD_RELOC_386_GOTOFF");
199 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
200
201 case BFD_RELOC_386_GOTPC:
202 TRACE ("BFD_RELOC_386_GOTPC");
203 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
204
205 /* The remaining relocs are a GNU extension. */
206 case BFD_RELOC_16:
207 TRACE ("BFD_RELOC_16");
208 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
209
210 case BFD_RELOC_16_PCREL:
211 TRACE ("BFD_RELOC_16_PCREL");
212 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
213
214 case BFD_RELOC_8:
215 TRACE ("BFD_RELOC_8");
216 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
217
218 case BFD_RELOC_8_PCREL:
219 TRACE ("BFD_RELOC_8_PCREL");
220 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
221
222 case BFD_RELOC_VTABLE_INHERIT:
223 TRACE ("BFD_RELOC_VTABLE_INHERIT");
224 return &elf32_i386_vtinherit_howto;
225
226 case BFD_RELOC_VTABLE_ENTRY:
227 TRACE ("BFD_RELOC_VTABLE_ENTRY");
228 return &elf32_i386_vtentry_howto;
229
230 default:
231 break;
232 }
233
234 TRACE ("Unknown");
235 return 0;
236 }
237
238 static void
239 elf_i386_info_to_howto (abfd, cache_ptr, dst)
240 bfd *abfd ATTRIBUTE_UNUSED;
241 arelent *cache_ptr ATTRIBUTE_UNUSED;
242 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
243 {
244 abort ();
245 }
246
247 static void
248 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
249 bfd *abfd ATTRIBUTE_UNUSED;
250 arelent *cache_ptr;
251 Elf32_Internal_Rel *dst;
252 {
253 enum elf_i386_reloc_type type;
254
255 type = (enum elf_i386_reloc_type) ELF32_R_TYPE (dst->r_info);
256 if (type == R_386_GNU_VTINHERIT)
257 cache_ptr->howto = &elf32_i386_vtinherit_howto;
258 else if (type == R_386_GNU_VTENTRY)
259 cache_ptr->howto = &elf32_i386_vtentry_howto;
260 else
261 {
262 unsigned int indx;
263
264 if ((indx = (unsigned int) type) >= R_386_standard
265 && ((indx = (unsigned int) type - R_386_ext_offset)
266 >= sizeof (elf_howto_table) / sizeof (elf_howto_table[0])))
267 {
268 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
269 bfd_get_filename (abfd), (int) type);
270 indx = (unsigned int) R_386_NONE;
271 }
272 cache_ptr->howto = &elf_howto_table[indx];
273 }
274 }
275
276 /* Return whether a symbol name implies a local label. The UnixWare
277 2.1 cc generates temporary symbols that start with .X, so we
278 recognize them here. FIXME: do other SVR4 compilers also use .X?.
279 If so, we should move the .X recognition into
280 _bfd_elf_is_local_label_name. */
281
282 static boolean
283 elf_i386_is_local_label_name (abfd, name)
284 bfd *abfd;
285 const char *name;
286 {
287 if (name[0] == '.' && name[1] == 'X')
288 return true;
289
290 return _bfd_elf_is_local_label_name (abfd, name);
291 }
292 \f
293 /* Functions for the i386 ELF linker. */
294
295 /* The name of the dynamic interpreter. This is put in the .interp
296 section. */
297
298 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
299
300 /* The size in bytes of an entry in the procedure linkage table. */
301
302 #define PLT_ENTRY_SIZE 16
303
304 /* The first entry in an absolute procedure linkage table looks like
305 this. See the SVR4 ABI i386 supplement to see how this works. */
306
307 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
308 {
309 0xff, 0x35, /* pushl contents of address */
310 0, 0, 0, 0, /* replaced with address of .got + 4. */
311 0xff, 0x25, /* jmp indirect */
312 0, 0, 0, 0, /* replaced with address of .got + 8. */
313 0, 0, 0, 0 /* pad out to 16 bytes. */
314 };
315
316 /* Subsequent entries in an absolute procedure linkage table look like
317 this. */
318
319 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
320 {
321 0xff, 0x25, /* jmp indirect */
322 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
323 0x68, /* pushl immediate */
324 0, 0, 0, 0, /* replaced with offset into relocation table. */
325 0xe9, /* jmp relative */
326 0, 0, 0, 0 /* replaced with offset to start of .plt. */
327 };
328
329 /* The first entry in a PIC procedure linkage table look like this. */
330
331 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
332 {
333 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
334 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
335 0, 0, 0, 0 /* pad out to 16 bytes. */
336 };
337
338 /* Subsequent entries in a PIC procedure linkage table look like this. */
339
340 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
341 {
342 0xff, 0xa3, /* jmp *offset(%ebx) */
343 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
344 0x68, /* pushl immediate */
345 0, 0, 0, 0, /* replaced with offset into relocation table. */
346 0xe9, /* jmp relative */
347 0, 0, 0, 0 /* replaced with offset to start of .plt. */
348 };
349
350 /* The i386 linker needs to keep track of the number of relocs that it
351 decides to copy in check_relocs for each symbol. This is so that
352 it can discard PC relative relocs if it doesn't need them when
353 linking with -Bsymbolic. We store the information in a field
354 extending the regular ELF linker hash table. */
355
356 /* This structure keeps track of the number of PC relative relocs we
357 have copied for a given symbol. */
358
359 struct elf_i386_pcrel_relocs_copied
360 {
361 /* Next section. */
362 struct elf_i386_pcrel_relocs_copied *next;
363 /* A section in dynobj. */
364 asection *section;
365 /* Number of relocs copied in this section. */
366 bfd_size_type count;
367 };
368
369 /* i386 ELF linker hash entry. */
370
371 struct elf_i386_link_hash_entry
372 {
373 struct elf_link_hash_entry root;
374
375 /* Number of PC relative relocs copied for this symbol. */
376 struct elf_i386_pcrel_relocs_copied *pcrel_relocs_copied;
377 };
378
379 /* i386 ELF linker hash table. */
380
381 struct elf_i386_link_hash_table
382 {
383 struct elf_link_hash_table root;
384 };
385
386 /* Declare this now that the above structures are defined. */
387
388 static boolean elf_i386_discard_copies
389 PARAMS ((struct elf_i386_link_hash_entry *, PTR));
390
391 /* Traverse an i386 ELF linker hash table. */
392
393 #define elf_i386_link_hash_traverse(table, func, info) \
394 (elf_link_hash_traverse \
395 (&(table)->root, \
396 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
397 (info)))
398
399 /* Get the i386 ELF linker hash table from a link_info structure. */
400
401 #define elf_i386_hash_table(p) \
402 ((struct elf_i386_link_hash_table *) ((p)->hash))
403
404 /* Create an entry in an i386 ELF linker hash table. */
405
406 static struct bfd_hash_entry *
407 elf_i386_link_hash_newfunc (entry, table, string)
408 struct bfd_hash_entry *entry;
409 struct bfd_hash_table *table;
410 const char *string;
411 {
412 struct elf_i386_link_hash_entry *ret =
413 (struct elf_i386_link_hash_entry *) entry;
414
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (ret == (struct elf_i386_link_hash_entry *) NULL)
418 ret = ((struct elf_i386_link_hash_entry *)
419 bfd_hash_allocate (table,
420 sizeof (struct elf_i386_link_hash_entry)));
421 if (ret == (struct elf_i386_link_hash_entry *) NULL)
422 return (struct bfd_hash_entry *) ret;
423
424 /* Call the allocation method of the superclass. */
425 ret = ((struct elf_i386_link_hash_entry *)
426 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
427 table, string));
428 if (ret != (struct elf_i386_link_hash_entry *) NULL)
429 {
430 ret->pcrel_relocs_copied = NULL;
431 }
432
433 return (struct bfd_hash_entry *) ret;
434 }
435
436 /* Create an i386 ELF linker hash table. */
437
438 static struct bfd_link_hash_table *
439 elf_i386_link_hash_table_create (abfd)
440 bfd *abfd;
441 {
442 struct elf_i386_link_hash_table *ret;
443
444 ret = ((struct elf_i386_link_hash_table *)
445 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
446 if (ret == (struct elf_i386_link_hash_table *) NULL)
447 return NULL;
448
449 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
450 elf_i386_link_hash_newfunc))
451 {
452 bfd_release (abfd, ret);
453 return NULL;
454 }
455
456 return &ret->root.root;
457 }
458
459 /* Look through the relocs for a section during the first phase, and
460 allocate space in the global offset table or procedure linkage
461 table. */
462
463 static boolean
464 elf_i386_check_relocs (abfd, info, sec, relocs)
465 bfd *abfd;
466 struct bfd_link_info *info;
467 asection *sec;
468 const Elf_Internal_Rela *relocs;
469 {
470 bfd *dynobj;
471 Elf_Internal_Shdr *symtab_hdr;
472 struct elf_link_hash_entry **sym_hashes;
473 bfd_signed_vma *local_got_refcounts;
474 const Elf_Internal_Rela *rel;
475 const Elf_Internal_Rela *rel_end;
476 asection *sgot;
477 asection *srelgot;
478 asection *sreloc;
479
480 if (info->relocateable)
481 return true;
482
483 dynobj = elf_hash_table (info)->dynobj;
484 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
485 sym_hashes = elf_sym_hashes (abfd);
486 local_got_refcounts = elf_local_got_refcounts (abfd);
487
488 sgot = NULL;
489 srelgot = NULL;
490 sreloc = NULL;
491
492 rel_end = relocs + sec->reloc_count;
493 for (rel = relocs; rel < rel_end; rel++)
494 {
495 unsigned long r_symndx;
496 struct elf_link_hash_entry *h;
497
498 r_symndx = ELF32_R_SYM (rel->r_info);
499
500 if (r_symndx < symtab_hdr->sh_info)
501 h = NULL;
502 else
503 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
504
505 /* Some relocs require a global offset table. */
506 if (dynobj == NULL)
507 {
508 switch (ELF32_R_TYPE (rel->r_info))
509 {
510 case R_386_GOT32:
511 case R_386_GOTOFF:
512 case R_386_GOTPC:
513 elf_hash_table (info)->dynobj = dynobj = abfd;
514 if (! _bfd_elf_create_got_section (dynobj, info))
515 return false;
516 break;
517
518 default:
519 break;
520 }
521 }
522
523 switch (ELF32_R_TYPE (rel->r_info))
524 {
525 case R_386_GOT32:
526 /* This symbol requires a global offset table entry. */
527
528 if (sgot == NULL)
529 {
530 sgot = bfd_get_section_by_name (dynobj, ".got");
531 BFD_ASSERT (sgot != NULL);
532 }
533
534 if (srelgot == NULL
535 && (h != NULL || info->shared))
536 {
537 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
538 if (srelgot == NULL)
539 {
540 srelgot = bfd_make_section (dynobj, ".rel.got");
541 if (srelgot == NULL
542 || ! bfd_set_section_flags (dynobj, srelgot,
543 (SEC_ALLOC
544 | SEC_LOAD
545 | SEC_HAS_CONTENTS
546 | SEC_IN_MEMORY
547 | SEC_LINKER_CREATED
548 | SEC_READONLY))
549 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
550 return false;
551 }
552 }
553
554 if (h != NULL)
555 {
556 if (h->got.refcount == -1)
557 {
558 h->got.refcount = 1;
559
560 /* Make sure this symbol is output as a dynamic symbol. */
561 if (h->dynindx == -1)
562 {
563 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
564 return false;
565 }
566
567 sgot->_raw_size += 4;
568 srelgot->_raw_size += sizeof (Elf32_External_Rel);
569 }
570 else
571 h->got.refcount += 1;
572 }
573 else
574 {
575 /* This is a global offset table entry for a local symbol. */
576 if (local_got_refcounts == NULL)
577 {
578 size_t size;
579
580 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
581 local_got_refcounts = ((bfd_signed_vma *)
582 bfd_alloc (abfd, size));
583 if (local_got_refcounts == NULL)
584 return false;
585 elf_local_got_refcounts (abfd) = local_got_refcounts;
586 memset (local_got_refcounts, -1, size);
587 }
588 if (local_got_refcounts[r_symndx] == -1)
589 {
590 local_got_refcounts[r_symndx] = 1;
591
592 sgot->_raw_size += 4;
593 if (info->shared)
594 {
595 /* If we are generating a shared object, we need to
596 output a R_386_RELATIVE reloc so that the dynamic
597 linker can adjust this GOT entry. */
598 srelgot->_raw_size += sizeof (Elf32_External_Rel);
599 }
600 }
601 else
602 local_got_refcounts[r_symndx] += 1;
603 }
604 break;
605
606 case R_386_PLT32:
607 /* This symbol requires a procedure linkage table entry. We
608 actually build the entry in adjust_dynamic_symbol,
609 because this might be a case of linking PIC code which is
610 never referenced by a dynamic object, in which case we
611 don't need to generate a procedure linkage table entry
612 after all. */
613
614 /* If this is a local symbol, we resolve it directly without
615 creating a procedure linkage table entry. */
616 if (h == NULL)
617 continue;
618
619 if (h->plt.refcount == -1)
620 {
621 h->plt.refcount = 1;
622 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
623 }
624 else
625 h->plt.refcount += 1;
626 break;
627
628 case R_386_32:
629 case R_386_PC32:
630 if (h != NULL)
631 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
632
633 /* If we are creating a shared library, and this is a reloc
634 against a global symbol, or a non PC relative reloc
635 against a local symbol, then we need to copy the reloc
636 into the shared library. However, if we are linking with
637 -Bsymbolic, we do not need to copy a reloc against a
638 global symbol which is defined in an object we are
639 including in the link (i.e., DEF_REGULAR is set). At
640 this point we have not seen all the input files, so it is
641 possible that DEF_REGULAR is not set now but will be set
642 later (it is never cleared). We account for that
643 possibility below by storing information in the
644 pcrel_relocs_copied field of the hash table entry. */
645 if (info->shared
646 && (sec->flags & SEC_ALLOC) != 0
647 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
648 || (h != NULL
649 && (! info->symbolic
650 || (h->elf_link_hash_flags
651 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
652 {
653 /* When creating a shared object, we must copy these
654 reloc types into the output file. We create a reloc
655 section in dynobj and make room for this reloc. */
656 if (sreloc == NULL)
657 {
658 const char *name;
659
660 name = (bfd_elf_string_from_elf_section
661 (abfd,
662 elf_elfheader (abfd)->e_shstrndx,
663 elf_section_data (sec)->rel_hdr.sh_name));
664 if (name == NULL)
665 return false;
666
667 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
668 && strcmp (bfd_get_section_name (abfd, sec),
669 name + 4) == 0);
670
671 sreloc = bfd_get_section_by_name (dynobj, name);
672 if (sreloc == NULL)
673 {
674 flagword flags;
675
676 sreloc = bfd_make_section (dynobj, name);
677 flags = (SEC_HAS_CONTENTS | SEC_READONLY
678 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
679 if ((sec->flags & SEC_ALLOC) != 0)
680 flags |= SEC_ALLOC | SEC_LOAD;
681 if (sreloc == NULL
682 || ! bfd_set_section_flags (dynobj, sreloc, flags)
683 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
684 return false;
685 }
686 }
687
688 sreloc->_raw_size += sizeof (Elf32_External_Rel);
689
690 /* If we are linking with -Bsymbolic, and this is a
691 global symbol, we count the number of PC relative
692 relocations we have entered for this symbol, so that
693 we can discard them again if the symbol is later
694 defined by a regular object. Note that this function
695 is only called if we are using an elf_i386 linker
696 hash table, which means that h is really a pointer to
697 an elf_i386_link_hash_entry. */
698 if (h != NULL && info->symbolic
699 && ELF32_R_TYPE (rel->r_info) == R_386_PC32)
700 {
701 struct elf_i386_link_hash_entry *eh;
702 struct elf_i386_pcrel_relocs_copied *p;
703
704 eh = (struct elf_i386_link_hash_entry *) h;
705
706 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
707 if (p->section == sreloc)
708 break;
709
710 if (p == NULL)
711 {
712 p = ((struct elf_i386_pcrel_relocs_copied *)
713 bfd_alloc (dynobj, sizeof *p));
714 if (p == NULL)
715 return false;
716 p->next = eh->pcrel_relocs_copied;
717 eh->pcrel_relocs_copied = p;
718 p->section = sreloc;
719 p->count = 0;
720 }
721
722 ++p->count;
723 }
724 }
725
726 break;
727
728 /* This relocation describes the C++ object vtable hierarchy.
729 Reconstruct it for later use during GC. */
730 case R_386_GNU_VTINHERIT:
731 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
732 return false;
733 break;
734
735 /* This relocation describes which C++ vtable entries are actually
736 used. Record for later use during GC. */
737 case R_386_GNU_VTENTRY:
738 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
739 return false;
740 break;
741
742 default:
743 break;
744 }
745 }
746
747 return true;
748 }
749
750 /* Return the section that should be marked against GC for a given
751 relocation. */
752
753 static asection *
754 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
755 bfd *abfd;
756 struct bfd_link_info *info ATTRIBUTE_UNUSED;
757 Elf_Internal_Rela *rel;
758 struct elf_link_hash_entry *h;
759 Elf_Internal_Sym *sym;
760 {
761 if (h != NULL)
762 {
763 switch (ELF32_R_TYPE (rel->r_info))
764 {
765 case R_386_GNU_VTINHERIT:
766 case R_386_GNU_VTENTRY:
767 break;
768
769 default:
770 switch (h->root.type)
771 {
772 case bfd_link_hash_defined:
773 case bfd_link_hash_defweak:
774 return h->root.u.def.section;
775
776 case bfd_link_hash_common:
777 return h->root.u.c.p->section;
778
779 default:
780 break;
781 }
782 }
783 }
784 else
785 {
786 if (!(elf_bad_symtab (abfd)
787 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
788 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
789 && sym->st_shndx != SHN_COMMON))
790 {
791 return bfd_section_from_elf_index (abfd, sym->st_shndx);
792 }
793 }
794
795 return NULL;
796 }
797
798 /* Update the got entry reference counts for the section being removed. */
799
800 static boolean
801 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
802 bfd *abfd;
803 struct bfd_link_info *info ATTRIBUTE_UNUSED;
804 asection *sec;
805 const Elf_Internal_Rela *relocs;
806 {
807 Elf_Internal_Shdr *symtab_hdr;
808 struct elf_link_hash_entry **sym_hashes;
809 bfd_signed_vma *local_got_refcounts;
810 const Elf_Internal_Rela *rel, *relend;
811 unsigned long r_symndx;
812 struct elf_link_hash_entry *h;
813 bfd *dynobj;
814 asection *sgot;
815 asection *srelgot;
816
817 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
818 sym_hashes = elf_sym_hashes (abfd);
819 local_got_refcounts = elf_local_got_refcounts (abfd);
820
821 dynobj = elf_hash_table (info)->dynobj;
822 if (dynobj == NULL)
823 return true;
824
825 sgot = bfd_get_section_by_name (dynobj, ".got");
826 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
827
828 relend = relocs + sec->reloc_count;
829 for (rel = relocs; rel < relend; rel++)
830 switch (ELF32_R_TYPE (rel->r_info))
831 {
832 case R_386_GOT32:
833 case R_386_GOTOFF:
834 case R_386_GOTPC:
835 r_symndx = ELF32_R_SYM (rel->r_info);
836 if (r_symndx >= symtab_hdr->sh_info)
837 {
838 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
839 if (h->got.refcount > 0)
840 {
841 h->got.refcount -= 1;
842 if (h->got.refcount == 0)
843 {
844 sgot->_raw_size -= 4;
845 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
846 }
847 }
848 }
849 else if (local_got_refcounts != NULL)
850 {
851 if (local_got_refcounts[r_symndx] > 0)
852 {
853 local_got_refcounts[r_symndx] -= 1;
854 if (local_got_refcounts[r_symndx] == 0)
855 {
856 sgot->_raw_size -= 4;
857 if (info->shared)
858 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
859 }
860 }
861 }
862 break;
863
864 case R_386_PLT32:
865 r_symndx = ELF32_R_SYM (rel->r_info);
866 if (r_symndx >= symtab_hdr->sh_info)
867 {
868 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
869 if (h->plt.refcount > 0)
870 h->plt.refcount -= 1;
871 }
872 break;
873
874 default:
875 break;
876 }
877
878 return true;
879 }
880
881 /* Adjust a symbol defined by a dynamic object and referenced by a
882 regular object. The current definition is in some section of the
883 dynamic object, but we're not including those sections. We have to
884 change the definition to something the rest of the link can
885 understand. */
886
887 static boolean
888 elf_i386_adjust_dynamic_symbol (info, h)
889 struct bfd_link_info *info;
890 struct elf_link_hash_entry *h;
891 {
892 bfd *dynobj;
893 asection *s;
894 unsigned int power_of_two;
895
896 dynobj = elf_hash_table (info)->dynobj;
897
898 /* Make sure we know what is going on here. */
899 BFD_ASSERT (dynobj != NULL
900 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
901 || h->weakdef != NULL
902 || ((h->elf_link_hash_flags
903 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
904 && (h->elf_link_hash_flags
905 & ELF_LINK_HASH_REF_REGULAR) != 0
906 && (h->elf_link_hash_flags
907 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
908
909 /* If this is a function, put it in the procedure linkage table. We
910 will fill in the contents of the procedure linkage table later,
911 when we know the address of the .got section. */
912 if (h->type == STT_FUNC
913 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
914 {
915 if ((! info->shared
916 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
917 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
918 || (info->shared && h->plt.refcount <= 0))
919 {
920 /* This case can occur if we saw a PLT32 reloc in an input
921 file, but the symbol was never referred to by a dynamic
922 object, or if all references were garbage collected. In
923 such a case, we don't actually need to build a procedure
924 linkage table, and we can just do a PC32 reloc instead. */
925 h->plt.offset = (bfd_vma) -1;
926 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
927 return true;
928 }
929
930 /* Make sure this symbol is output as a dynamic symbol. */
931 if (h->dynindx == -1)
932 {
933 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
934 return false;
935 }
936
937 s = bfd_get_section_by_name (dynobj, ".plt");
938 BFD_ASSERT (s != NULL);
939
940 /* If this is the first .plt entry, make room for the special
941 first entry. */
942 if (s->_raw_size == 0)
943 s->_raw_size += PLT_ENTRY_SIZE;
944
945 /* If this symbol is not defined in a regular file, and we are
946 not generating a shared library, then set the symbol to this
947 location in the .plt. This is required to make function
948 pointers compare as equal between the normal executable and
949 the shared library. */
950 if (! info->shared
951 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
952 {
953 h->root.u.def.section = s;
954 h->root.u.def.value = s->_raw_size;
955 }
956
957 h->plt.offset = s->_raw_size;
958
959 /* Make room for this entry. */
960 s->_raw_size += PLT_ENTRY_SIZE;
961
962 /* We also need to make an entry in the .got.plt section, which
963 will be placed in the .got section by the linker script. */
964 s = bfd_get_section_by_name (dynobj, ".got.plt");
965 BFD_ASSERT (s != NULL);
966 s->_raw_size += 4;
967
968 /* We also need to make an entry in the .rel.plt section. */
969 s = bfd_get_section_by_name (dynobj, ".rel.plt");
970 BFD_ASSERT (s != NULL);
971 s->_raw_size += sizeof (Elf32_External_Rel);
972
973 return true;
974 }
975
976 /* If this is a weak symbol, and there is a real definition, the
977 processor independent code will have arranged for us to see the
978 real definition first, and we can just use the same value. */
979 if (h->weakdef != NULL)
980 {
981 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
982 || h->weakdef->root.type == bfd_link_hash_defweak);
983 h->root.u.def.section = h->weakdef->root.u.def.section;
984 h->root.u.def.value = h->weakdef->root.u.def.value;
985 return true;
986 }
987
988 /* This is a reference to a symbol defined by a dynamic object which
989 is not a function. */
990
991 /* If we are creating a shared library, we must presume that the
992 only references to the symbol are via the global offset table.
993 For such cases we need not do anything here; the relocations will
994 be handled correctly by relocate_section. */
995 if (info->shared)
996 return true;
997
998 /* If there are no references to this symbol that do not use the
999 GOT, we don't need to generate a copy reloc. */
1000 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1001 return true;
1002
1003 /* We must allocate the symbol in our .dynbss section, which will
1004 become part of the .bss section of the executable. There will be
1005 an entry for this symbol in the .dynsym section. The dynamic
1006 object will contain position independent code, so all references
1007 from the dynamic object to this symbol will go through the global
1008 offset table. The dynamic linker will use the .dynsym entry to
1009 determine the address it must put in the global offset table, so
1010 both the dynamic object and the regular object will refer to the
1011 same memory location for the variable. */
1012
1013 s = bfd_get_section_by_name (dynobj, ".dynbss");
1014 BFD_ASSERT (s != NULL);
1015
1016 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1017 copy the initial value out of the dynamic object and into the
1018 runtime process image. We need to remember the offset into the
1019 .rel.bss section we are going to use. */
1020 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1021 {
1022 asection *srel;
1023
1024 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
1025 BFD_ASSERT (srel != NULL);
1026 srel->_raw_size += sizeof (Elf32_External_Rel);
1027 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1028 }
1029
1030 /* We need to figure out the alignment required for this symbol. I
1031 have no idea how ELF linkers handle this. */
1032 power_of_two = bfd_log2 (h->size);
1033 if (power_of_two > 3)
1034 power_of_two = 3;
1035
1036 /* Apply the required alignment. */
1037 s->_raw_size = BFD_ALIGN (s->_raw_size,
1038 (bfd_size_type) (1 << power_of_two));
1039 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1040 {
1041 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1042 return false;
1043 }
1044
1045 /* Define the symbol as being at this point in the section. */
1046 h->root.u.def.section = s;
1047 h->root.u.def.value = s->_raw_size;
1048
1049 /* Increment the section size to make room for the symbol. */
1050 s->_raw_size += h->size;
1051
1052 return true;
1053 }
1054
1055 /* Set the sizes of the dynamic sections. */
1056
1057 static boolean
1058 elf_i386_size_dynamic_sections (output_bfd, info)
1059 bfd *output_bfd;
1060 struct bfd_link_info *info;
1061 {
1062 bfd *dynobj;
1063 asection *s;
1064 boolean plt;
1065 boolean relocs;
1066 boolean reltext;
1067
1068 dynobj = elf_hash_table (info)->dynobj;
1069 BFD_ASSERT (dynobj != NULL);
1070
1071 if (elf_hash_table (info)->dynamic_sections_created)
1072 {
1073 /* Set the contents of the .interp section to the interpreter. */
1074 if (! info->shared)
1075 {
1076 s = bfd_get_section_by_name (dynobj, ".interp");
1077 BFD_ASSERT (s != NULL);
1078 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1079 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1080 }
1081 }
1082 else
1083 {
1084 /* We may have created entries in the .rel.got section.
1085 However, if we are not creating the dynamic sections, we will
1086 not actually use these entries. Reset the size of .rel.got,
1087 which will cause it to get stripped from the output file
1088 below. */
1089 s = bfd_get_section_by_name (dynobj, ".rel.got");
1090 if (s != NULL)
1091 s->_raw_size = 0;
1092 }
1093
1094 /* If this is a -Bsymbolic shared link, then we need to discard all
1095 PC relative relocs against symbols defined in a regular object.
1096 We allocated space for them in the check_relocs routine, but we
1097 will not fill them in in the relocate_section routine. */
1098 if (info->shared && info->symbolic)
1099 elf_i386_link_hash_traverse (elf_i386_hash_table (info),
1100 elf_i386_discard_copies,
1101 (PTR) NULL);
1102
1103 /* The check_relocs and adjust_dynamic_symbol entry points have
1104 determined the sizes of the various dynamic sections. Allocate
1105 memory for them. */
1106 plt = false;
1107 relocs = false;
1108 reltext = false;
1109 for (s = dynobj->sections; s != NULL; s = s->next)
1110 {
1111 const char *name;
1112 boolean strip;
1113
1114 if ((s->flags & SEC_LINKER_CREATED) == 0)
1115 continue;
1116
1117 /* It's OK to base decisions on the section name, because none
1118 of the dynobj section names depend upon the input files. */
1119 name = bfd_get_section_name (dynobj, s);
1120
1121 strip = false;
1122
1123 if (strcmp (name, ".plt") == 0)
1124 {
1125 if (s->_raw_size == 0)
1126 {
1127 /* Strip this section if we don't need it; see the
1128 comment below. */
1129 strip = true;
1130 }
1131 else
1132 {
1133 /* Remember whether there is a PLT. */
1134 plt = true;
1135 }
1136 }
1137 else if (strncmp (name, ".rel", 4) == 0)
1138 {
1139 if (s->_raw_size == 0)
1140 {
1141 /* If we don't need this section, strip it from the
1142 output file. This is mostly to handle .rel.bss and
1143 .rel.plt. We must create both sections in
1144 create_dynamic_sections, because they must be created
1145 before the linker maps input sections to output
1146 sections. The linker does that before
1147 adjust_dynamic_symbol is called, and it is that
1148 function which decides whether anything needs to go
1149 into these sections. */
1150 strip = true;
1151 }
1152 else
1153 {
1154 asection *target;
1155
1156 /* Remember whether there are any reloc sections other
1157 than .rel.plt. */
1158 if (strcmp (name, ".rel.plt") != 0)
1159 {
1160 const char *outname;
1161
1162 relocs = true;
1163
1164 /* If this relocation section applies to a read only
1165 section, then we probably need a DT_TEXTREL
1166 entry. The entries in the .rel.plt section
1167 really apply to the .got section, which we
1168 created ourselves and so know is not readonly. */
1169 outname = bfd_get_section_name (output_bfd,
1170 s->output_section);
1171 target = bfd_get_section_by_name (output_bfd, outname + 4);
1172 if (target != NULL
1173 && (target->flags & SEC_READONLY) != 0
1174 && (target->flags & SEC_ALLOC) != 0)
1175 reltext = true;
1176 }
1177
1178 /* We use the reloc_count field as a counter if we need
1179 to copy relocs into the output file. */
1180 s->reloc_count = 0;
1181 }
1182 }
1183 else if (strncmp (name, ".got", 4) != 0)
1184 {
1185 /* It's not one of our sections, so don't allocate space. */
1186 continue;
1187 }
1188
1189 if (strip)
1190 {
1191 _bfd_strip_section_from_output (info, s);
1192 continue;
1193 }
1194
1195 /* Allocate memory for the section contents. */
1196 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1197 if (s->contents == NULL && s->_raw_size != 0)
1198 return false;
1199 }
1200
1201 if (elf_hash_table (info)->dynamic_sections_created)
1202 {
1203 /* Add some entries to the .dynamic section. We fill in the
1204 values later, in elf_i386_finish_dynamic_sections, but we
1205 must add the entries now so that we get the correct size for
1206 the .dynamic section. The DT_DEBUG entry is filled in by the
1207 dynamic linker and used by the debugger. */
1208 if (! info->shared)
1209 {
1210 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1211 return false;
1212 }
1213
1214 if (plt)
1215 {
1216 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1217 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1218 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1219 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1220 return false;
1221 }
1222
1223 if (relocs)
1224 {
1225 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1226 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1227 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1228 sizeof (Elf32_External_Rel)))
1229 return false;
1230 }
1231
1232 if (reltext)
1233 {
1234 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1235 return false;
1236 }
1237 }
1238
1239 return true;
1240 }
1241
1242 /* This function is called via elf_i386_link_hash_traverse if we are
1243 creating a shared object with -Bsymbolic. It discards the space
1244 allocated to copy PC relative relocs against symbols which are
1245 defined in regular objects. We allocated space for them in the
1246 check_relocs routine, but we won't fill them in in the
1247 relocate_section routine. */
1248
1249 /*ARGSUSED*/
1250 static boolean
1251 elf_i386_discard_copies (h, ignore)
1252 struct elf_i386_link_hash_entry *h;
1253 PTR ignore ATTRIBUTE_UNUSED;
1254 {
1255 struct elf_i386_pcrel_relocs_copied *s;
1256
1257 /* We only discard relocs for symbols defined in a regular object. */
1258 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1259 return true;
1260
1261 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1262 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
1263
1264 return true;
1265 }
1266
1267 /* Relocate an i386 ELF section. */
1268
1269 static boolean
1270 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1271 contents, relocs, local_syms, local_sections)
1272 bfd *output_bfd;
1273 struct bfd_link_info *info;
1274 bfd *input_bfd;
1275 asection *input_section;
1276 bfd_byte *contents;
1277 Elf_Internal_Rela *relocs;
1278 Elf_Internal_Sym *local_syms;
1279 asection **local_sections;
1280 {
1281 bfd *dynobj;
1282 Elf_Internal_Shdr *symtab_hdr;
1283 struct elf_link_hash_entry **sym_hashes;
1284 bfd_vma *local_got_offsets;
1285 asection *sgot;
1286 asection *splt;
1287 asection *sreloc;
1288 Elf_Internal_Rela *rel;
1289 Elf_Internal_Rela *relend;
1290
1291 dynobj = elf_hash_table (info)->dynobj;
1292 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1293 sym_hashes = elf_sym_hashes (input_bfd);
1294 local_got_offsets = elf_local_got_offsets (input_bfd);
1295
1296 sreloc = NULL;
1297 splt = NULL;
1298 sgot = NULL;
1299 if (dynobj != NULL)
1300 {
1301 splt = bfd_get_section_by_name (dynobj, ".plt");
1302 sgot = bfd_get_section_by_name (dynobj, ".got");
1303 }
1304
1305 rel = relocs;
1306 relend = relocs + input_section->reloc_count;
1307 for (; rel < relend; rel++)
1308 {
1309 int r_type;
1310 reloc_howto_type *howto;
1311 unsigned long r_symndx;
1312 struct elf_link_hash_entry *h;
1313 Elf_Internal_Sym *sym;
1314 asection *sec;
1315 bfd_vma relocation;
1316 bfd_reloc_status_type r;
1317 unsigned int indx;
1318
1319 r_type = ELF32_R_TYPE (rel->r_info);
1320 if (r_type == R_386_GNU_VTINHERIT
1321 || r_type == R_386_GNU_VTENTRY)
1322 continue;
1323 if ((indx = (unsigned) r_type) >= R_386_standard
1324 && ((indx = (unsigned) r_type - R_386_ext_offset)
1325 >= sizeof (elf_howto_table) / sizeof (elf_howto_table[0])))
1326 {
1327 bfd_set_error (bfd_error_bad_value);
1328 return false;
1329 }
1330 howto = elf_howto_table + indx;
1331
1332 r_symndx = ELF32_R_SYM (rel->r_info);
1333
1334 if (info->relocateable)
1335 {
1336 /* This is a relocateable link. We don't have to change
1337 anything, unless the reloc is against a section symbol,
1338 in which case we have to adjust according to where the
1339 section symbol winds up in the output section. */
1340 if (r_symndx < symtab_hdr->sh_info)
1341 {
1342 sym = local_syms + r_symndx;
1343 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1344 {
1345 bfd_vma val;
1346
1347 sec = local_sections[r_symndx];
1348 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1349 val += sec->output_offset + sym->st_value;
1350 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1351 }
1352 }
1353
1354 continue;
1355 }
1356
1357 /* This is a final link. */
1358 h = NULL;
1359 sym = NULL;
1360 sec = NULL;
1361 if (r_symndx < symtab_hdr->sh_info)
1362 {
1363 sym = local_syms + r_symndx;
1364 sec = local_sections[r_symndx];
1365 relocation = (sec->output_section->vma
1366 + sec->output_offset
1367 + sym->st_value);
1368 }
1369 else
1370 {
1371 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1372 while (h->root.type == bfd_link_hash_indirect
1373 || h->root.type == bfd_link_hash_warning)
1374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1375 if (h->root.type == bfd_link_hash_defined
1376 || h->root.type == bfd_link_hash_defweak)
1377 {
1378 sec = h->root.u.def.section;
1379 if (r_type == R_386_GOTPC
1380 || (r_type == R_386_PLT32
1381 && splt != NULL
1382 && h->plt.offset != (bfd_vma) -1)
1383 || (r_type == R_386_GOT32
1384 && elf_hash_table (info)->dynamic_sections_created
1385 && (! info->shared
1386 || (! info->symbolic && h->dynindx != -1)
1387 || (h->elf_link_hash_flags
1388 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1389 || (info->shared
1390 && ((! info->symbolic && h->dynindx != -1)
1391 || (h->elf_link_hash_flags
1392 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1393 && (r_type == R_386_32
1394 || r_type == R_386_PC32)
1395 && ((input_section->flags & SEC_ALLOC) != 0
1396 /* DWARF will emit R_386_32 relocations in its
1397 sections against symbols defined externally
1398 in shared libraries. We can't do anything
1399 with them here. */
1400 || ((input_section->flags & SEC_DEBUGGING) != 0
1401 && (h->elf_link_hash_flags
1402 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1403 {
1404 /* In these cases, we don't need the relocation
1405 value. We check specially because in some
1406 obscure cases sec->output_section will be NULL. */
1407 relocation = 0;
1408 }
1409 else if (sec->output_section == NULL)
1410 {
1411 (*_bfd_error_handler)
1412 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1413 bfd_get_filename (input_bfd), h->root.root.string,
1414 bfd_get_section_name (input_bfd, input_section));
1415 relocation = 0;
1416 }
1417 else
1418 relocation = (h->root.u.def.value
1419 + sec->output_section->vma
1420 + sec->output_offset);
1421 }
1422 else if (h->root.type == bfd_link_hash_undefweak)
1423 relocation = 0;
1424 else if (info->shared && !info->symbolic
1425 && !info->no_undefined
1426 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1427 relocation = 0;
1428 else
1429 {
1430 if (! ((*info->callbacks->undefined_symbol)
1431 (info, h->root.root.string, input_bfd,
1432 input_section, rel->r_offset,
1433 (!info->shared || info->no_undefined
1434 || ELF_ST_VISIBILITY (h->other)))))
1435 return false;
1436 relocation = 0;
1437 }
1438 }
1439
1440 switch (r_type)
1441 {
1442 case R_386_GOT32:
1443 /* Relocation is to the entry for this symbol in the global
1444 offset table. */
1445 BFD_ASSERT (sgot != NULL);
1446
1447 if (h != NULL)
1448 {
1449 bfd_vma off;
1450
1451 off = h->got.offset;
1452 BFD_ASSERT (off != (bfd_vma) -1);
1453
1454 if (! elf_hash_table (info)->dynamic_sections_created
1455 || (info->shared
1456 && (info->symbolic || h->dynindx == -1)
1457 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1458 {
1459 /* This is actually a static link, or it is a
1460 -Bsymbolic link and the symbol is defined
1461 locally, or the symbol was forced to be local
1462 because of a version file. We must initialize
1463 this entry in the global offset table. Since the
1464 offset must always be a multiple of 4, we use the
1465 least significant bit to record whether we have
1466 initialized it already.
1467
1468 When doing a dynamic link, we create a .rel.got
1469 relocation entry to initialize the value. This
1470 is done in the finish_dynamic_symbol routine. */
1471 if ((off & 1) != 0)
1472 off &= ~1;
1473 else
1474 {
1475 bfd_put_32 (output_bfd, relocation,
1476 sgot->contents + off);
1477 h->got.offset |= 1;
1478 }
1479 }
1480
1481 relocation = sgot->output_offset + off;
1482 }
1483 else
1484 {
1485 bfd_vma off;
1486
1487 BFD_ASSERT (local_got_offsets != NULL
1488 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1489
1490 off = local_got_offsets[r_symndx];
1491
1492 /* The offset must always be a multiple of 4. We use
1493 the least significant bit to record whether we have
1494 already generated the necessary reloc. */
1495 if ((off & 1) != 0)
1496 off &= ~1;
1497 else
1498 {
1499 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1500
1501 if (info->shared)
1502 {
1503 asection *srelgot;
1504 Elf_Internal_Rel outrel;
1505
1506 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1507 BFD_ASSERT (srelgot != NULL);
1508
1509 outrel.r_offset = (sgot->output_section->vma
1510 + sgot->output_offset
1511 + off);
1512 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1513 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1514 (((Elf32_External_Rel *)
1515 srelgot->contents)
1516 + srelgot->reloc_count));
1517 ++srelgot->reloc_count;
1518 }
1519
1520 local_got_offsets[r_symndx] |= 1;
1521 }
1522
1523 relocation = sgot->output_offset + off;
1524 }
1525
1526 break;
1527
1528 case R_386_GOTOFF:
1529 /* Relocation is relative to the start of the global offset
1530 table. */
1531
1532 if (sgot == NULL)
1533 {
1534 sgot = bfd_get_section_by_name (dynobj, ".got");
1535 BFD_ASSERT (sgot != NULL);
1536 }
1537
1538 /* Note that sgot->output_offset is not involved in this
1539 calculation. We always want the start of .got. If we
1540 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1541 permitted by the ABI, we might have to change this
1542 calculation. */
1543 relocation -= sgot->output_section->vma;
1544
1545 break;
1546
1547 case R_386_GOTPC:
1548 /* Use global offset table as symbol value. */
1549
1550 if (sgot == NULL)
1551 {
1552 sgot = bfd_get_section_by_name (dynobj, ".got");
1553 BFD_ASSERT (sgot != NULL);
1554 }
1555
1556 relocation = sgot->output_section->vma;
1557
1558 break;
1559
1560 case R_386_PLT32:
1561 /* Relocation is to the entry for this symbol in the
1562 procedure linkage table. */
1563
1564 /* Resolve a PLT32 reloc against a local symbol directly,
1565 without using the procedure linkage table. */
1566 if (h == NULL)
1567 break;
1568
1569 if (h->plt.offset == (bfd_vma) -1
1570 || splt == NULL)
1571 {
1572 /* We didn't make a PLT entry for this symbol. This
1573 happens when statically linking PIC code, or when
1574 using -Bsymbolic. */
1575 break;
1576 }
1577
1578 relocation = (splt->output_section->vma
1579 + splt->output_offset
1580 + h->plt.offset);
1581
1582 break;
1583
1584 case R_386_32:
1585 case R_386_PC32:
1586 if (info->shared
1587 && (input_section->flags & SEC_ALLOC) != 0
1588 && (r_type != R_386_PC32
1589 || (h != NULL
1590 && h->dynindx != -1
1591 && (! info->symbolic
1592 || (h->elf_link_hash_flags
1593 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1594 {
1595 Elf_Internal_Rel outrel;
1596 boolean skip, relocate;
1597
1598 /* When generating a shared object, these relocations
1599 are copied into the output file to be resolved at run
1600 time. */
1601
1602 if (sreloc == NULL)
1603 {
1604 const char *name;
1605
1606 name = (bfd_elf_string_from_elf_section
1607 (input_bfd,
1608 elf_elfheader (input_bfd)->e_shstrndx,
1609 elf_section_data (input_section)->rel_hdr.sh_name));
1610 if (name == NULL)
1611 return false;
1612
1613 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1614 && strcmp (bfd_get_section_name (input_bfd,
1615 input_section),
1616 name + 4) == 0);
1617
1618 sreloc = bfd_get_section_by_name (dynobj, name);
1619 BFD_ASSERT (sreloc != NULL);
1620 }
1621
1622 skip = false;
1623
1624 if (elf_section_data (input_section)->stab_info == NULL)
1625 outrel.r_offset = rel->r_offset;
1626 else
1627 {
1628 bfd_vma off;
1629
1630 off = (_bfd_stab_section_offset
1631 (output_bfd, &elf_hash_table (info)->stab_info,
1632 input_section,
1633 &elf_section_data (input_section)->stab_info,
1634 rel->r_offset));
1635 if (off == (bfd_vma) -1)
1636 skip = true;
1637 outrel.r_offset = off;
1638 }
1639
1640 outrel.r_offset += (input_section->output_section->vma
1641 + input_section->output_offset);
1642
1643 if (skip)
1644 {
1645 memset (&outrel, 0, sizeof outrel);
1646 relocate = false;
1647 }
1648 else if (r_type == R_386_PC32)
1649 {
1650 BFD_ASSERT (h != NULL && h->dynindx != -1);
1651 relocate = false;
1652 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
1653 }
1654 else
1655 {
1656 /* h->dynindx may be -1 if this symbol was marked to
1657 become local. */
1658 if (h == NULL
1659 || ((info->symbolic || h->dynindx == -1)
1660 && (h->elf_link_hash_flags
1661 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1662 {
1663 relocate = true;
1664 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1665 }
1666 else
1667 {
1668 BFD_ASSERT (h->dynindx != -1);
1669 relocate = false;
1670 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
1671 }
1672 }
1673
1674 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1675 (((Elf32_External_Rel *)
1676 sreloc->contents)
1677 + sreloc->reloc_count));
1678 ++sreloc->reloc_count;
1679
1680 /* If this reloc is against an external symbol, we do
1681 not want to fiddle with the addend. Otherwise, we
1682 need to include the symbol value so that it becomes
1683 an addend for the dynamic reloc. */
1684 if (! relocate)
1685 continue;
1686 }
1687
1688 break;
1689
1690 default:
1691 break;
1692 }
1693
1694 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1695 contents, rel->r_offset,
1696 relocation, (bfd_vma) 0);
1697
1698 if (r != bfd_reloc_ok)
1699 {
1700 switch (r)
1701 {
1702 default:
1703 case bfd_reloc_outofrange:
1704 abort ();
1705 case bfd_reloc_overflow:
1706 {
1707 const char *name;
1708
1709 if (h != NULL)
1710 name = h->root.root.string;
1711 else
1712 {
1713 name = bfd_elf_string_from_elf_section (input_bfd,
1714 symtab_hdr->sh_link,
1715 sym->st_name);
1716 if (name == NULL)
1717 return false;
1718 if (*name == '\0')
1719 name = bfd_section_name (input_bfd, sec);
1720 }
1721 if (! ((*info->callbacks->reloc_overflow)
1722 (info, name, howto->name, (bfd_vma) 0,
1723 input_bfd, input_section, rel->r_offset)))
1724 return false;
1725 }
1726 break;
1727 }
1728 }
1729 }
1730
1731 return true;
1732 }
1733
1734 /* Finish up dynamic symbol handling. We set the contents of various
1735 dynamic sections here. */
1736
1737 static boolean
1738 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1739 bfd *output_bfd;
1740 struct bfd_link_info *info;
1741 struct elf_link_hash_entry *h;
1742 Elf_Internal_Sym *sym;
1743 {
1744 bfd *dynobj;
1745
1746 dynobj = elf_hash_table (info)->dynobj;
1747
1748 if (h->plt.offset != (bfd_vma) -1)
1749 {
1750 asection *splt;
1751 asection *sgot;
1752 asection *srel;
1753 bfd_vma plt_index;
1754 bfd_vma got_offset;
1755 Elf_Internal_Rel rel;
1756
1757 /* This symbol has an entry in the procedure linkage table. Set
1758 it up. */
1759
1760 BFD_ASSERT (h->dynindx != -1);
1761
1762 splt = bfd_get_section_by_name (dynobj, ".plt");
1763 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1764 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
1765 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1766
1767 /* Get the index in the procedure linkage table which
1768 corresponds to this symbol. This is the index of this symbol
1769 in all the symbols for which we are making plt entries. The
1770 first entry in the procedure linkage table is reserved. */
1771 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1772
1773 /* Get the offset into the .got table of the entry that
1774 corresponds to this function. Each .got entry is 4 bytes.
1775 The first three are reserved. */
1776 got_offset = (plt_index + 3) * 4;
1777
1778 /* Fill in the entry in the procedure linkage table. */
1779 if (! info->shared)
1780 {
1781 memcpy (splt->contents + h->plt.offset, elf_i386_plt_entry,
1782 PLT_ENTRY_SIZE);
1783 bfd_put_32 (output_bfd,
1784 (sgot->output_section->vma
1785 + sgot->output_offset
1786 + got_offset),
1787 splt->contents + h->plt.offset + 2);
1788 }
1789 else
1790 {
1791 memcpy (splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1792 PLT_ENTRY_SIZE);
1793 bfd_put_32 (output_bfd, got_offset,
1794 splt->contents + h->plt.offset + 2);
1795 }
1796
1797 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1798 splt->contents + h->plt.offset + 7);
1799 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1800 splt->contents + h->plt.offset + 12);
1801
1802 /* Fill in the entry in the global offset table. */
1803 bfd_put_32 (output_bfd,
1804 (splt->output_section->vma
1805 + splt->output_offset
1806 + h->plt.offset
1807 + 6),
1808 sgot->contents + got_offset);
1809
1810 /* Fill in the entry in the .rel.plt section. */
1811 rel.r_offset = (sgot->output_section->vma
1812 + sgot->output_offset
1813 + got_offset);
1814 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1815 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1816 ((Elf32_External_Rel *) srel->contents
1817 + plt_index));
1818
1819 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1820 {
1821 /* Mark the symbol as undefined, rather than as defined in
1822 the .plt section. Leave the value alone. */
1823 sym->st_shndx = SHN_UNDEF;
1824 }
1825 }
1826
1827 if (h->got.offset != (bfd_vma) -1)
1828 {
1829 asection *sgot;
1830 asection *srel;
1831 Elf_Internal_Rel rel;
1832
1833 /* This symbol has an entry in the global offset table. Set it
1834 up. */
1835
1836 sgot = bfd_get_section_by_name (dynobj, ".got");
1837 srel = bfd_get_section_by_name (dynobj, ".rel.got");
1838 BFD_ASSERT (sgot != NULL && srel != NULL);
1839
1840 rel.r_offset = (sgot->output_section->vma
1841 + sgot->output_offset
1842 + (h->got.offset &~ 1));
1843
1844 /* If this is a static link, or it is a -Bsymbolic link and the
1845 symbol is defined locally or was forced to be local because
1846 of a version file, we just want to emit a RELATIVE reloc.
1847 The entry in the global offset table will already have been
1848 initialized in the relocate_section function. */
1849 if (! elf_hash_table (info)->dynamic_sections_created
1850 || (info->shared
1851 && (info->symbolic || h->dynindx == -1)
1852 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1853 {
1854 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1855 }
1856 else
1857 {
1858 BFD_ASSERT((h->got.offset & 1) == 0);
1859 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1860 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
1861 }
1862
1863 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1864 ((Elf32_External_Rel *) srel->contents
1865 + srel->reloc_count));
1866 ++srel->reloc_count;
1867 }
1868
1869 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1870 {
1871 asection *s;
1872 Elf_Internal_Rel rel;
1873
1874 /* This symbol needs a copy reloc. Set it up. */
1875
1876 BFD_ASSERT (h->dynindx != -1
1877 && (h->root.type == bfd_link_hash_defined
1878 || h->root.type == bfd_link_hash_defweak));
1879
1880 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1881 ".rel.bss");
1882 BFD_ASSERT (s != NULL);
1883
1884 rel.r_offset = (h->root.u.def.value
1885 + h->root.u.def.section->output_section->vma
1886 + h->root.u.def.section->output_offset);
1887 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
1888 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1889 ((Elf32_External_Rel *) s->contents
1890 + s->reloc_count));
1891 ++s->reloc_count;
1892 }
1893
1894 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1895 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1896 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1897 sym->st_shndx = SHN_ABS;
1898
1899 return true;
1900 }
1901
1902 /* Finish up the dynamic sections. */
1903
1904 static boolean
1905 elf_i386_finish_dynamic_sections (output_bfd, info)
1906 bfd *output_bfd;
1907 struct bfd_link_info *info;
1908 {
1909 bfd *dynobj;
1910 asection *sgot;
1911 asection *sdyn;
1912
1913 dynobj = elf_hash_table (info)->dynobj;
1914
1915 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1916 BFD_ASSERT (sgot != NULL);
1917 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1918
1919 if (elf_hash_table (info)->dynamic_sections_created)
1920 {
1921 asection *splt;
1922 Elf32_External_Dyn *dyncon, *dynconend;
1923
1924 BFD_ASSERT (sdyn != NULL);
1925
1926 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1927 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1928 for (; dyncon < dynconend; dyncon++)
1929 {
1930 Elf_Internal_Dyn dyn;
1931 const char *name;
1932 asection *s;
1933
1934 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1935
1936 switch (dyn.d_tag)
1937 {
1938 default:
1939 break;
1940
1941 case DT_PLTGOT:
1942 name = ".got";
1943 goto get_vma;
1944 case DT_JMPREL:
1945 name = ".rel.plt";
1946 get_vma:
1947 s = bfd_get_section_by_name (output_bfd, name);
1948 BFD_ASSERT (s != NULL);
1949 dyn.d_un.d_ptr = s->vma;
1950 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1951 break;
1952
1953 case DT_PLTRELSZ:
1954 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1955 BFD_ASSERT (s != NULL);
1956 if (s->_cooked_size != 0)
1957 dyn.d_un.d_val = s->_cooked_size;
1958 else
1959 dyn.d_un.d_val = s->_raw_size;
1960 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1961 break;
1962
1963 case DT_RELSZ:
1964 /* My reading of the SVR4 ABI indicates that the
1965 procedure linkage table relocs (DT_JMPREL) should be
1966 included in the overall relocs (DT_REL). This is
1967 what Solaris does. However, UnixWare can not handle
1968 that case. Therefore, we override the DT_RELSZ entry
1969 here to make it not include the JMPREL relocs. Since
1970 the linker script arranges for .rel.plt to follow all
1971 other relocation sections, we don't have to worry
1972 about changing the DT_REL entry. */
1973 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1974 if (s != NULL)
1975 {
1976 if (s->_cooked_size != 0)
1977 dyn.d_un.d_val -= s->_cooked_size;
1978 else
1979 dyn.d_un.d_val -= s->_raw_size;
1980 }
1981 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1982 break;
1983 }
1984 }
1985
1986 /* Fill in the first entry in the procedure linkage table. */
1987 splt = bfd_get_section_by_name (dynobj, ".plt");
1988 if (splt && splt->_raw_size > 0)
1989 {
1990 if (info->shared)
1991 memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
1992 else
1993 {
1994 memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
1995 bfd_put_32 (output_bfd,
1996 sgot->output_section->vma + sgot->output_offset + 4,
1997 splt->contents + 2);
1998 bfd_put_32 (output_bfd,
1999 sgot->output_section->vma + sgot->output_offset + 8,
2000 splt->contents + 8);
2001 }
2002
2003 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2004 really seem like the right value. */
2005 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2006 }
2007 }
2008
2009 /* Fill in the first three entries in the global offset table. */
2010 if (sgot->_raw_size > 0)
2011 {
2012 if (sdyn == NULL)
2013 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2014 else
2015 bfd_put_32 (output_bfd,
2016 sdyn->output_section->vma + sdyn->output_offset,
2017 sgot->contents);
2018 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2019 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2020 }
2021
2022 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2023
2024 return true;
2025 }
2026
2027 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2028 #define TARGET_LITTLE_NAME "elf32-i386"
2029 #define ELF_ARCH bfd_arch_i386
2030 #define ELF_MACHINE_CODE EM_386
2031 #define ELF_MAXPAGESIZE 0x1000
2032
2033 #define elf_backend_can_gc_sections 1
2034 #define elf_backend_want_got_plt 1
2035 #define elf_backend_plt_readonly 1
2036 #define elf_backend_want_plt_sym 0
2037 #define elf_backend_got_header_size 12
2038 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2039
2040 #define elf_info_to_howto elf_i386_info_to_howto
2041 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2042
2043 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2044 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2045 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2046 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2047
2048 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2049 #define elf_backend_check_relocs elf_i386_check_relocs
2050 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2051 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2052 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2053 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2054 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2055 #define elf_backend_relocate_section elf_i386_relocate_section
2056 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2057
2058 #include "elf32-target.h"