2000-12-05 Kazu Hirata <kazu@hxi.com>
[binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean elf_i386_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static boolean elf_i386_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static boolean elf_i386_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_relocate_section
46 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
47 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
48 static boolean elf_i386_finish_dynamic_symbol
49 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
50 Elf_Internal_Sym *));
51 static boolean elf_i386_finish_dynamic_sections
52 PARAMS ((bfd *, struct bfd_link_info *));
53
54 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
55
56 #include "elf/i386.h"
57
58 static reloc_howto_type elf_howto_table[]=
59 {
60 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_386_NONE",
62 true, 0x00000000, 0x00000000, false),
63 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_386_32",
65 true, 0xffffffff, 0xffffffff, false),
66 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_386_PC32",
68 true, 0xffffffff, 0xffffffff, true),
69 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
70 bfd_elf_generic_reloc, "R_386_GOT32",
71 true, 0xffffffff, 0xffffffff, false),
72 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_386_PLT32",
74 true, 0xffffffff, 0xffffffff, true),
75 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_386_COPY",
77 true, 0xffffffff, 0xffffffff, false),
78 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
80 true, 0xffffffff, 0xffffffff, false),
81 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_RELATIVE",
86 true, 0xffffffff, 0xffffffff, false),
87 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOTOFF",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_GOTPC",
92 true, 0xffffffff, 0xffffffff, true),
93
94 /* We have a gap in the reloc numbers here.
95 R_386_standard counts the number up to this point, and
96 R_386_ext_offset is the value to subtract from a reloc type of
97 R_386_16 thru R_386_PC8 to form an index into this table. */
98 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
99 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
100
101 /* The remaining relocs are a GNU extension. */
102 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_16",
104 true, 0xffff, 0xffff, false),
105 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_PC16",
107 true, 0xffff, 0xffff, true),
108 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_8",
110 true, 0xff, 0xff, false),
111 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_386_PC8",
113 true, 0xff, 0xff, true),
114
115 /* Another gap. */
116 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
117 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
118
119 /* GNU extension to record C++ vtable hierarchy. */
120 HOWTO (R_386_GNU_VTINHERIT, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 0, /* bitsize */
124 false, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_dont, /* complain_on_overflow */
127 NULL, /* special_function */
128 "R_386_GNU_VTINHERIT", /* name */
129 false, /* partial_inplace */
130 0, /* src_mask */
131 0, /* dst_mask */
132 false),
133
134 /* GNU extension to record C++ vtable member usage. */
135 HOWTO (R_386_GNU_VTENTRY, /* type */
136 0, /* rightshift */
137 2, /* size (0 = byte, 1 = short, 2 = long) */
138 0, /* bitsize */
139 false, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont, /* complain_on_overflow */
142 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
143 "R_386_GNU_VTENTRY", /* name */
144 false, /* partial_inplace */
145 0, /* src_mask */
146 0, /* dst_mask */
147 false)
148
149 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
150
151 };
152
153 #ifdef DEBUG_GEN_RELOC
154 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
155 #else
156 #define TRACE(str)
157 #endif
158
159 static reloc_howto_type *
160 elf_i386_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
163 {
164 switch (code)
165 {
166 case BFD_RELOC_NONE:
167 TRACE ("BFD_RELOC_NONE");
168 return &elf_howto_table[(unsigned int) R_386_NONE ];
169
170 case BFD_RELOC_32:
171 TRACE ("BFD_RELOC_32");
172 return &elf_howto_table[(unsigned int) R_386_32 ];
173
174 case BFD_RELOC_CTOR:
175 TRACE ("BFD_RELOC_CTOR");
176 return &elf_howto_table[(unsigned int) R_386_32 ];
177
178 case BFD_RELOC_32_PCREL:
179 TRACE ("BFD_RELOC_PC32");
180 return &elf_howto_table[(unsigned int) R_386_PC32 ];
181
182 case BFD_RELOC_386_GOT32:
183 TRACE ("BFD_RELOC_386_GOT32");
184 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
185
186 case BFD_RELOC_386_PLT32:
187 TRACE ("BFD_RELOC_386_PLT32");
188 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
189
190 case BFD_RELOC_386_COPY:
191 TRACE ("BFD_RELOC_386_COPY");
192 return &elf_howto_table[(unsigned int) R_386_COPY ];
193
194 case BFD_RELOC_386_GLOB_DAT:
195 TRACE ("BFD_RELOC_386_GLOB_DAT");
196 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
197
198 case BFD_RELOC_386_JUMP_SLOT:
199 TRACE ("BFD_RELOC_386_JUMP_SLOT");
200 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
201
202 case BFD_RELOC_386_RELATIVE:
203 TRACE ("BFD_RELOC_386_RELATIVE");
204 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
205
206 case BFD_RELOC_386_GOTOFF:
207 TRACE ("BFD_RELOC_386_GOTOFF");
208 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
209
210 case BFD_RELOC_386_GOTPC:
211 TRACE ("BFD_RELOC_386_GOTPC");
212 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
213
214 /* The remaining relocs are a GNU extension. */
215 case BFD_RELOC_16:
216 TRACE ("BFD_RELOC_16");
217 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
218
219 case BFD_RELOC_16_PCREL:
220 TRACE ("BFD_RELOC_16_PCREL");
221 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
222
223 case BFD_RELOC_8:
224 TRACE ("BFD_RELOC_8");
225 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
226
227 case BFD_RELOC_8_PCREL:
228 TRACE ("BFD_RELOC_8_PCREL");
229 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
230
231 case BFD_RELOC_VTABLE_INHERIT:
232 TRACE ("BFD_RELOC_VTABLE_INHERIT");
233 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
234 - R_386_vt_offset];
235
236 case BFD_RELOC_VTABLE_ENTRY:
237 TRACE ("BFD_RELOC_VTABLE_ENTRY");
238 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
239 - R_386_vt_offset];
240
241 default:
242 break;
243 }
244
245 TRACE ("Unknown");
246 return 0;
247 }
248
249 static void
250 elf_i386_info_to_howto (abfd, cache_ptr, dst)
251 bfd *abfd ATTRIBUTE_UNUSED;
252 arelent *cache_ptr ATTRIBUTE_UNUSED;
253 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
254 {
255 abort ();
256 }
257
258 static void
259 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
260 bfd *abfd ATTRIBUTE_UNUSED;
261 arelent *cache_ptr;
262 Elf32_Internal_Rel *dst;
263 {
264 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
265 unsigned int indx;
266
267 if ((indx = r_type) >= R_386_standard
268 && ((indx = r_type - R_386_ext_offset) - R_386_standard
269 >= R_386_ext - R_386_standard)
270 && ((indx = r_type - R_386_vt_offset) - R_386_ext
271 >= R_386_vt - R_386_ext))
272 {
273 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
274 bfd_get_filename (abfd), (int) r_type);
275 indx = (unsigned int) R_386_NONE;
276 }
277 cache_ptr->howto = &elf_howto_table[indx];
278 }
279
280 /* Return whether a symbol name implies a local label. The UnixWare
281 2.1 cc generates temporary symbols that start with .X, so we
282 recognize them here. FIXME: do other SVR4 compilers also use .X?.
283 If so, we should move the .X recognition into
284 _bfd_elf_is_local_label_name. */
285
286 static boolean
287 elf_i386_is_local_label_name (abfd, name)
288 bfd *abfd;
289 const char *name;
290 {
291 if (name[0] == '.' && name[1] == 'X')
292 return true;
293
294 return _bfd_elf_is_local_label_name (abfd, name);
295 }
296 \f
297 /* Functions for the i386 ELF linker. */
298
299 /* The name of the dynamic interpreter. This is put in the .interp
300 section. */
301
302 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
303
304 /* The size in bytes of an entry in the procedure linkage table. */
305
306 #define PLT_ENTRY_SIZE 16
307
308 /* The first entry in an absolute procedure linkage table looks like
309 this. See the SVR4 ABI i386 supplement to see how this works. */
310
311 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
312 {
313 0xff, 0x35, /* pushl contents of address */
314 0, 0, 0, 0, /* replaced with address of .got + 4. */
315 0xff, 0x25, /* jmp indirect */
316 0, 0, 0, 0, /* replaced with address of .got + 8. */
317 0, 0, 0, 0 /* pad out to 16 bytes. */
318 };
319
320 /* Subsequent entries in an absolute procedure linkage table look like
321 this. */
322
323 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
324 {
325 0xff, 0x25, /* jmp indirect */
326 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
327 0x68, /* pushl immediate */
328 0, 0, 0, 0, /* replaced with offset into relocation table. */
329 0xe9, /* jmp relative */
330 0, 0, 0, 0 /* replaced with offset to start of .plt. */
331 };
332
333 /* The first entry in a PIC procedure linkage table look like this. */
334
335 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
336 {
337 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
338 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
339 0, 0, 0, 0 /* pad out to 16 bytes. */
340 };
341
342 /* Subsequent entries in a PIC procedure linkage table look like this. */
343
344 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
345 {
346 0xff, 0xa3, /* jmp *offset(%ebx) */
347 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
348 0x68, /* pushl immediate */
349 0, 0, 0, 0, /* replaced with offset into relocation table. */
350 0xe9, /* jmp relative */
351 0, 0, 0, 0 /* replaced with offset to start of .plt. */
352 };
353
354 /* The i386 linker needs to keep track of the number of relocs that it
355 decides to copy in check_relocs for each symbol. This is so that
356 it can discard PC relative relocs if it doesn't need them when
357 linking with -Bsymbolic. We store the information in a field
358 extending the regular ELF linker hash table. */
359
360 /* This structure keeps track of the number of PC relative relocs we
361 have copied for a given symbol. */
362
363 struct elf_i386_pcrel_relocs_copied
364 {
365 /* Next section. */
366 struct elf_i386_pcrel_relocs_copied *next;
367 /* A section in dynobj. */
368 asection *section;
369 /* Number of relocs copied in this section. */
370 bfd_size_type count;
371 };
372
373 /* i386 ELF linker hash entry. */
374
375 struct elf_i386_link_hash_entry
376 {
377 struct elf_link_hash_entry root;
378
379 /* Number of PC relative relocs copied for this symbol. */
380 struct elf_i386_pcrel_relocs_copied *pcrel_relocs_copied;
381 };
382
383 /* i386 ELF linker hash table. */
384
385 struct elf_i386_link_hash_table
386 {
387 struct elf_link_hash_table root;
388 };
389
390 /* Declare this now that the above structures are defined. */
391
392 static boolean elf_i386_discard_copies
393 PARAMS ((struct elf_i386_link_hash_entry *, PTR));
394
395 /* Traverse an i386 ELF linker hash table. */
396
397 #define elf_i386_link_hash_traverse(table, func, info) \
398 (elf_link_hash_traverse \
399 (&(table)->root, \
400 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
401 (info)))
402
403 /* Get the i386 ELF linker hash table from a link_info structure. */
404
405 #define elf_i386_hash_table(p) \
406 ((struct elf_i386_link_hash_table *) ((p)->hash))
407
408 /* Create an entry in an i386 ELF linker hash table. */
409
410 static struct bfd_hash_entry *
411 elf_i386_link_hash_newfunc (entry, table, string)
412 struct bfd_hash_entry *entry;
413 struct bfd_hash_table *table;
414 const char *string;
415 {
416 struct elf_i386_link_hash_entry *ret =
417 (struct elf_i386_link_hash_entry *) entry;
418
419 /* Allocate the structure if it has not already been allocated by a
420 subclass. */
421 if (ret == (struct elf_i386_link_hash_entry *) NULL)
422 ret = ((struct elf_i386_link_hash_entry *)
423 bfd_hash_allocate (table,
424 sizeof (struct elf_i386_link_hash_entry)));
425 if (ret == (struct elf_i386_link_hash_entry *) NULL)
426 return (struct bfd_hash_entry *) ret;
427
428 /* Call the allocation method of the superclass. */
429 ret = ((struct elf_i386_link_hash_entry *)
430 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
431 table, string));
432 if (ret != (struct elf_i386_link_hash_entry *) NULL)
433 {
434 ret->pcrel_relocs_copied = NULL;
435 }
436
437 return (struct bfd_hash_entry *) ret;
438 }
439
440 /* Create an i386 ELF linker hash table. */
441
442 static struct bfd_link_hash_table *
443 elf_i386_link_hash_table_create (abfd)
444 bfd *abfd;
445 {
446 struct elf_i386_link_hash_table *ret;
447
448 ret = ((struct elf_i386_link_hash_table *)
449 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
450 if (ret == (struct elf_i386_link_hash_table *) NULL)
451 return NULL;
452
453 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
454 elf_i386_link_hash_newfunc))
455 {
456 bfd_release (abfd, ret);
457 return NULL;
458 }
459
460 return &ret->root.root;
461 }
462
463 /* Look through the relocs for a section during the first phase, and
464 allocate space in the global offset table or procedure linkage
465 table. */
466
467 static boolean
468 elf_i386_check_relocs (abfd, info, sec, relocs)
469 bfd *abfd;
470 struct bfd_link_info *info;
471 asection *sec;
472 const Elf_Internal_Rela *relocs;
473 {
474 bfd *dynobj;
475 Elf_Internal_Shdr *symtab_hdr;
476 struct elf_link_hash_entry **sym_hashes;
477 bfd_signed_vma *local_got_refcounts;
478 const Elf_Internal_Rela *rel;
479 const Elf_Internal_Rela *rel_end;
480 asection *sgot;
481 asection *srelgot;
482 asection *sreloc;
483
484 if (info->relocateable)
485 return true;
486
487 dynobj = elf_hash_table (info)->dynobj;
488 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
489 sym_hashes = elf_sym_hashes (abfd);
490 local_got_refcounts = elf_local_got_refcounts (abfd);
491
492 sgot = NULL;
493 srelgot = NULL;
494 sreloc = NULL;
495
496 rel_end = relocs + sec->reloc_count;
497 for (rel = relocs; rel < rel_end; rel++)
498 {
499 unsigned long r_symndx;
500 struct elf_link_hash_entry *h;
501
502 r_symndx = ELF32_R_SYM (rel->r_info);
503
504 if (r_symndx < symtab_hdr->sh_info)
505 h = NULL;
506 else
507 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
508
509 /* Some relocs require a global offset table. */
510 if (dynobj == NULL)
511 {
512 switch (ELF32_R_TYPE (rel->r_info))
513 {
514 case R_386_GOT32:
515 case R_386_GOTOFF:
516 case R_386_GOTPC:
517 elf_hash_table (info)->dynobj = dynobj = abfd;
518 if (! _bfd_elf_create_got_section (dynobj, info))
519 return false;
520 break;
521
522 default:
523 break;
524 }
525 }
526
527 switch (ELF32_R_TYPE (rel->r_info))
528 {
529 case R_386_GOT32:
530 /* This symbol requires a global offset table entry. */
531
532 if (sgot == NULL)
533 {
534 sgot = bfd_get_section_by_name (dynobj, ".got");
535 BFD_ASSERT (sgot != NULL);
536 }
537
538 if (srelgot == NULL
539 && (h != NULL || info->shared))
540 {
541 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
542 if (srelgot == NULL)
543 {
544 srelgot = bfd_make_section (dynobj, ".rel.got");
545 if (srelgot == NULL
546 || ! bfd_set_section_flags (dynobj, srelgot,
547 (SEC_ALLOC
548 | SEC_LOAD
549 | SEC_HAS_CONTENTS
550 | SEC_IN_MEMORY
551 | SEC_LINKER_CREATED
552 | SEC_READONLY))
553 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
554 return false;
555 }
556 }
557
558 if (h != NULL)
559 {
560 if (h->got.refcount == -1)
561 {
562 h->got.refcount = 1;
563
564 /* Make sure this symbol is output as a dynamic symbol. */
565 if (h->dynindx == -1)
566 {
567 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
568 return false;
569 }
570
571 sgot->_raw_size += 4;
572 srelgot->_raw_size += sizeof (Elf32_External_Rel);
573 }
574 else
575 h->got.refcount += 1;
576 }
577 else
578 {
579 /* This is a global offset table entry for a local symbol. */
580 if (local_got_refcounts == NULL)
581 {
582 size_t size;
583
584 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
585 local_got_refcounts = ((bfd_signed_vma *)
586 bfd_alloc (abfd, size));
587 if (local_got_refcounts == NULL)
588 return false;
589 elf_local_got_refcounts (abfd) = local_got_refcounts;
590 memset (local_got_refcounts, -1, size);
591 }
592 if (local_got_refcounts[r_symndx] == -1)
593 {
594 local_got_refcounts[r_symndx] = 1;
595
596 sgot->_raw_size += 4;
597 if (info->shared)
598 {
599 /* If we are generating a shared object, we need to
600 output a R_386_RELATIVE reloc so that the dynamic
601 linker can adjust this GOT entry. */
602 srelgot->_raw_size += sizeof (Elf32_External_Rel);
603 }
604 }
605 else
606 local_got_refcounts[r_symndx] += 1;
607 }
608 break;
609
610 case R_386_PLT32:
611 /* This symbol requires a procedure linkage table entry. We
612 actually build the entry in adjust_dynamic_symbol,
613 because this might be a case of linking PIC code which is
614 never referenced by a dynamic object, in which case we
615 don't need to generate a procedure linkage table entry
616 after all. */
617
618 /* If this is a local symbol, we resolve it directly without
619 creating a procedure linkage table entry. */
620 if (h == NULL)
621 continue;
622
623 if (h->plt.refcount == -1)
624 {
625 h->plt.refcount = 1;
626 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
627 }
628 else
629 h->plt.refcount += 1;
630 break;
631
632 case R_386_32:
633 case R_386_PC32:
634 if (h != NULL)
635 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
636
637 /* If we are creating a shared library, and this is a reloc
638 against a global symbol, or a non PC relative reloc
639 against a local symbol, then we need to copy the reloc
640 into the shared library. However, if we are linking with
641 -Bsymbolic, we do not need to copy a reloc against a
642 global symbol which is defined in an object we are
643 including in the link (i.e., DEF_REGULAR is set). At
644 this point we have not seen all the input files, so it is
645 possible that DEF_REGULAR is not set now but will be set
646 later (it is never cleared). We account for that
647 possibility below by storing information in the
648 pcrel_relocs_copied field of the hash table entry.
649 A similar situation occurs when creating shared libraries
650 and symbol visibility changes render the symbol local. */
651 if (info->shared
652 && (sec->flags & SEC_ALLOC) != 0
653 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
654 || (h != NULL
655 && (! info->symbolic
656 || (h->elf_link_hash_flags
657 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
658 {
659 /* When creating a shared object, we must copy these
660 reloc types into the output file. We create a reloc
661 section in dynobj and make room for this reloc. */
662 if (sreloc == NULL)
663 {
664 const char *name;
665
666 name = (bfd_elf_string_from_elf_section
667 (abfd,
668 elf_elfheader (abfd)->e_shstrndx,
669 elf_section_data (sec)->rel_hdr.sh_name));
670 if (name == NULL)
671 return false;
672
673 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
674 && strcmp (bfd_get_section_name (abfd, sec),
675 name + 4) == 0);
676
677 sreloc = bfd_get_section_by_name (dynobj, name);
678 if (sreloc == NULL)
679 {
680 flagword flags;
681
682 sreloc = bfd_make_section (dynobj, name);
683 flags = (SEC_HAS_CONTENTS | SEC_READONLY
684 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
685 if ((sec->flags & SEC_ALLOC) != 0)
686 flags |= SEC_ALLOC | SEC_LOAD;
687 if (sreloc == NULL
688 || ! bfd_set_section_flags (dynobj, sreloc, flags)
689 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
690 return false;
691 }
692 }
693
694 sreloc->_raw_size += sizeof (Elf32_External_Rel);
695
696 /* If this is a global symbol, we count the number of PC
697 relative relocations we have entered for this symbol,
698 so that we can discard them later as necessary. Note
699 that this function is only called if we are using an
700 elf_i386 linker hash table, which means that h is
701 really a pointer to an elf_i386_link_hash_entry. */
702 if (h != NULL
703 && ELF32_R_TYPE (rel->r_info) == R_386_PC32)
704 {
705 struct elf_i386_link_hash_entry *eh;
706 struct elf_i386_pcrel_relocs_copied *p;
707
708 eh = (struct elf_i386_link_hash_entry *) h;
709
710 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
711 if (p->section == sreloc)
712 break;
713
714 if (p == NULL)
715 {
716 p = ((struct elf_i386_pcrel_relocs_copied *)
717 bfd_alloc (dynobj, sizeof *p));
718 if (p == NULL)
719 return false;
720 p->next = eh->pcrel_relocs_copied;
721 eh->pcrel_relocs_copied = p;
722 p->section = sreloc;
723 p->count = 0;
724 }
725
726 ++p->count;
727 }
728 }
729
730 break;
731
732 /* This relocation describes the C++ object vtable hierarchy.
733 Reconstruct it for later use during GC. */
734 case R_386_GNU_VTINHERIT:
735 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
736 return false;
737 break;
738
739 /* This relocation describes which C++ vtable entries are actually
740 used. Record for later use during GC. */
741 case R_386_GNU_VTENTRY:
742 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
743 return false;
744 break;
745
746 default:
747 break;
748 }
749 }
750
751 return true;
752 }
753
754 /* Return the section that should be marked against GC for a given
755 relocation. */
756
757 static asection *
758 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
759 bfd *abfd;
760 struct bfd_link_info *info ATTRIBUTE_UNUSED;
761 Elf_Internal_Rela *rel;
762 struct elf_link_hash_entry *h;
763 Elf_Internal_Sym *sym;
764 {
765 if (h != NULL)
766 {
767 switch (ELF32_R_TYPE (rel->r_info))
768 {
769 case R_386_GNU_VTINHERIT:
770 case R_386_GNU_VTENTRY:
771 break;
772
773 default:
774 switch (h->root.type)
775 {
776 case bfd_link_hash_defined:
777 case bfd_link_hash_defweak:
778 return h->root.u.def.section;
779
780 case bfd_link_hash_common:
781 return h->root.u.c.p->section;
782
783 default:
784 break;
785 }
786 }
787 }
788 else
789 {
790 if (!(elf_bad_symtab (abfd)
791 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
792 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
793 && sym->st_shndx != SHN_COMMON))
794 {
795 return bfd_section_from_elf_index (abfd, sym->st_shndx);
796 }
797 }
798
799 return NULL;
800 }
801
802 /* Update the got entry reference counts for the section being removed. */
803
804 static boolean
805 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
806 bfd *abfd;
807 struct bfd_link_info *info ATTRIBUTE_UNUSED;
808 asection *sec;
809 const Elf_Internal_Rela *relocs;
810 {
811 Elf_Internal_Shdr *symtab_hdr;
812 struct elf_link_hash_entry **sym_hashes;
813 bfd_signed_vma *local_got_refcounts;
814 const Elf_Internal_Rela *rel, *relend;
815 unsigned long r_symndx;
816 struct elf_link_hash_entry *h;
817 bfd *dynobj;
818 asection *sgot;
819 asection *srelgot;
820
821 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
822 sym_hashes = elf_sym_hashes (abfd);
823 local_got_refcounts = elf_local_got_refcounts (abfd);
824
825 dynobj = elf_hash_table (info)->dynobj;
826 if (dynobj == NULL)
827 return true;
828
829 sgot = bfd_get_section_by_name (dynobj, ".got");
830 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
831
832 relend = relocs + sec->reloc_count;
833 for (rel = relocs; rel < relend; rel++)
834 switch (ELF32_R_TYPE (rel->r_info))
835 {
836 case R_386_GOT32:
837 case R_386_GOTOFF:
838 case R_386_GOTPC:
839 r_symndx = ELF32_R_SYM (rel->r_info);
840 if (r_symndx >= symtab_hdr->sh_info)
841 {
842 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
843 if (h->got.refcount > 0)
844 {
845 h->got.refcount -= 1;
846 if (h->got.refcount == 0)
847 {
848 sgot->_raw_size -= 4;
849 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
850 }
851 }
852 }
853 else if (local_got_refcounts != NULL)
854 {
855 if (local_got_refcounts[r_symndx] > 0)
856 {
857 local_got_refcounts[r_symndx] -= 1;
858 if (local_got_refcounts[r_symndx] == 0)
859 {
860 sgot->_raw_size -= 4;
861 if (info->shared)
862 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
863 }
864 }
865 }
866 break;
867
868 case R_386_PLT32:
869 r_symndx = ELF32_R_SYM (rel->r_info);
870 if (r_symndx >= symtab_hdr->sh_info)
871 {
872 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
873 if (h->plt.refcount > 0)
874 h->plt.refcount -= 1;
875 }
876 break;
877
878 default:
879 break;
880 }
881
882 return true;
883 }
884
885 /* Adjust a symbol defined by a dynamic object and referenced by a
886 regular object. The current definition is in some section of the
887 dynamic object, but we're not including those sections. We have to
888 change the definition to something the rest of the link can
889 understand. */
890
891 static boolean
892 elf_i386_adjust_dynamic_symbol (info, h)
893 struct bfd_link_info *info;
894 struct elf_link_hash_entry *h;
895 {
896 bfd *dynobj;
897 asection *s;
898 unsigned int power_of_two;
899
900 dynobj = elf_hash_table (info)->dynobj;
901
902 /* Make sure we know what is going on here. */
903 BFD_ASSERT (dynobj != NULL
904 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
905 || h->weakdef != NULL
906 || ((h->elf_link_hash_flags
907 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
908 && (h->elf_link_hash_flags
909 & ELF_LINK_HASH_REF_REGULAR) != 0
910 && (h->elf_link_hash_flags
911 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
912
913 /* If this is a function, put it in the procedure linkage table. We
914 will fill in the contents of the procedure linkage table later,
915 when we know the address of the .got section. */
916 if (h->type == STT_FUNC
917 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
918 {
919 if ((! info->shared
920 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
921 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
922 || (info->shared && h->plt.refcount <= 0))
923 {
924 /* This case can occur if we saw a PLT32 reloc in an input
925 file, but the symbol was never referred to by a dynamic
926 object, or if all references were garbage collected. In
927 such a case, we don't actually need to build a procedure
928 linkage table, and we can just do a PC32 reloc instead. */
929 h->plt.offset = (bfd_vma) -1;
930 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
931 return true;
932 }
933
934 /* Make sure this symbol is output as a dynamic symbol. */
935 if (h->dynindx == -1)
936 {
937 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
938 return false;
939 }
940
941 s = bfd_get_section_by_name (dynobj, ".plt");
942 BFD_ASSERT (s != NULL);
943
944 /* If this is the first .plt entry, make room for the special
945 first entry. */
946 if (s->_raw_size == 0)
947 s->_raw_size += PLT_ENTRY_SIZE;
948
949 /* If this symbol is not defined in a regular file, and we are
950 not generating a shared library, then set the symbol to this
951 location in the .plt. This is required to make function
952 pointers compare as equal between the normal executable and
953 the shared library. */
954 if (! info->shared
955 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
956 {
957 h->root.u.def.section = s;
958 h->root.u.def.value = s->_raw_size;
959 }
960
961 h->plt.offset = s->_raw_size;
962
963 /* Make room for this entry. */
964 s->_raw_size += PLT_ENTRY_SIZE;
965
966 /* We also need to make an entry in the .got.plt section, which
967 will be placed in the .got section by the linker script. */
968 s = bfd_get_section_by_name (dynobj, ".got.plt");
969 BFD_ASSERT (s != NULL);
970 s->_raw_size += 4;
971
972 /* We also need to make an entry in the .rel.plt section. */
973 s = bfd_get_section_by_name (dynobj, ".rel.plt");
974 BFD_ASSERT (s != NULL);
975 s->_raw_size += sizeof (Elf32_External_Rel);
976
977 return true;
978 }
979
980 /* If this is a weak symbol, and there is a real definition, the
981 processor independent code will have arranged for us to see the
982 real definition first, and we can just use the same value. */
983 if (h->weakdef != NULL)
984 {
985 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
986 || h->weakdef->root.type == bfd_link_hash_defweak);
987 h->root.u.def.section = h->weakdef->root.u.def.section;
988 h->root.u.def.value = h->weakdef->root.u.def.value;
989 return true;
990 }
991
992 /* This is a reference to a symbol defined by a dynamic object which
993 is not a function. */
994
995 /* If we are creating a shared library, we must presume that the
996 only references to the symbol are via the global offset table.
997 For such cases we need not do anything here; the relocations will
998 be handled correctly by relocate_section. */
999 if (info->shared)
1000 return true;
1001
1002 /* If there are no references to this symbol that do not use the
1003 GOT, we don't need to generate a copy reloc. */
1004 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1005 return true;
1006
1007 /* We must allocate the symbol in our .dynbss section, which will
1008 become part of the .bss section of the executable. There will be
1009 an entry for this symbol in the .dynsym section. The dynamic
1010 object will contain position independent code, so all references
1011 from the dynamic object to this symbol will go through the global
1012 offset table. The dynamic linker will use the .dynsym entry to
1013 determine the address it must put in the global offset table, so
1014 both the dynamic object and the regular object will refer to the
1015 same memory location for the variable. */
1016
1017 s = bfd_get_section_by_name (dynobj, ".dynbss");
1018 BFD_ASSERT (s != NULL);
1019
1020 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1021 copy the initial value out of the dynamic object and into the
1022 runtime process image. We need to remember the offset into the
1023 .rel.bss section we are going to use. */
1024 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1025 {
1026 asection *srel;
1027
1028 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
1029 BFD_ASSERT (srel != NULL);
1030 srel->_raw_size += sizeof (Elf32_External_Rel);
1031 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1032 }
1033
1034 /* We need to figure out the alignment required for this symbol. I
1035 have no idea how ELF linkers handle this. */
1036 power_of_two = bfd_log2 (h->size);
1037 if (power_of_two > 3)
1038 power_of_two = 3;
1039
1040 /* Apply the required alignment. */
1041 s->_raw_size = BFD_ALIGN (s->_raw_size,
1042 (bfd_size_type) (1 << power_of_two));
1043 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1044 {
1045 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1046 return false;
1047 }
1048
1049 /* Define the symbol as being at this point in the section. */
1050 h->root.u.def.section = s;
1051 h->root.u.def.value = s->_raw_size;
1052
1053 /* Increment the section size to make room for the symbol. */
1054 s->_raw_size += h->size;
1055
1056 return true;
1057 }
1058
1059 /* Set the sizes of the dynamic sections. */
1060
1061 static boolean
1062 elf_i386_size_dynamic_sections (output_bfd, info)
1063 bfd *output_bfd;
1064 struct bfd_link_info *info;
1065 {
1066 bfd *dynobj;
1067 asection *s;
1068 boolean plt;
1069 boolean relocs;
1070 boolean reltext;
1071
1072 dynobj = elf_hash_table (info)->dynobj;
1073 BFD_ASSERT (dynobj != NULL);
1074
1075 if (elf_hash_table (info)->dynamic_sections_created)
1076 {
1077 /* Set the contents of the .interp section to the interpreter. */
1078 if (! info->shared)
1079 {
1080 s = bfd_get_section_by_name (dynobj, ".interp");
1081 BFD_ASSERT (s != NULL);
1082 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1083 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1084 }
1085 }
1086 else
1087 {
1088 /* We may have created entries in the .rel.got section.
1089 However, if we are not creating the dynamic sections, we will
1090 not actually use these entries. Reset the size of .rel.got,
1091 which will cause it to get stripped from the output file
1092 below. */
1093 s = bfd_get_section_by_name (dynobj, ".rel.got");
1094 if (s != NULL)
1095 s->_raw_size = 0;
1096 }
1097
1098 /* If this is a -Bsymbolic shared link, then we need to discard all
1099 PC relative relocs against symbols defined in a regular object.
1100 We allocated space for them in the check_relocs routine, but we
1101 will not fill them in in the relocate_section routine. */
1102 if (info->shared)
1103 elf_i386_link_hash_traverse (elf_i386_hash_table (info),
1104 elf_i386_discard_copies,
1105 (PTR) info);
1106
1107 /* The check_relocs and adjust_dynamic_symbol entry points have
1108 determined the sizes of the various dynamic sections. Allocate
1109 memory for them. */
1110 plt = false;
1111 relocs = false;
1112 reltext = false;
1113 for (s = dynobj->sections; s != NULL; s = s->next)
1114 {
1115 const char *name;
1116 boolean strip;
1117
1118 if ((s->flags & SEC_LINKER_CREATED) == 0)
1119 continue;
1120
1121 /* It's OK to base decisions on the section name, because none
1122 of the dynobj section names depend upon the input files. */
1123 name = bfd_get_section_name (dynobj, s);
1124
1125 strip = false;
1126
1127 if (strcmp (name, ".plt") == 0)
1128 {
1129 if (s->_raw_size == 0)
1130 {
1131 /* Strip this section if we don't need it; see the
1132 comment below. */
1133 strip = true;
1134 }
1135 else
1136 {
1137 /* Remember whether there is a PLT. */
1138 plt = true;
1139 }
1140 }
1141 else if (strncmp (name, ".rel", 4) == 0)
1142 {
1143 if (s->_raw_size == 0)
1144 {
1145 /* If we don't need this section, strip it from the
1146 output file. This is mostly to handle .rel.bss and
1147 .rel.plt. We must create both sections in
1148 create_dynamic_sections, because they must be created
1149 before the linker maps input sections to output
1150 sections. The linker does that before
1151 adjust_dynamic_symbol is called, and it is that
1152 function which decides whether anything needs to go
1153 into these sections. */
1154 strip = true;
1155 }
1156 else
1157 {
1158 asection *target;
1159
1160 /* Remember whether there are any reloc sections other
1161 than .rel.plt. */
1162 if (strcmp (name, ".rel.plt") != 0)
1163 {
1164 const char *outname;
1165
1166 relocs = true;
1167
1168 /* If this relocation section applies to a read only
1169 section, then we probably need a DT_TEXTREL
1170 entry. The entries in the .rel.plt section
1171 really apply to the .got section, which we
1172 created ourselves and so know is not readonly. */
1173 outname = bfd_get_section_name (output_bfd,
1174 s->output_section);
1175 target = bfd_get_section_by_name (output_bfd, outname + 4);
1176 if (target != NULL
1177 && (target->flags & SEC_READONLY) != 0
1178 && (target->flags & SEC_ALLOC) != 0)
1179 reltext = true;
1180 }
1181
1182 /* We use the reloc_count field as a counter if we need
1183 to copy relocs into the output file. */
1184 s->reloc_count = 0;
1185 }
1186 }
1187 else if (strncmp (name, ".got", 4) != 0)
1188 {
1189 /* It's not one of our sections, so don't allocate space. */
1190 continue;
1191 }
1192
1193 if (strip)
1194 {
1195 _bfd_strip_section_from_output (info, s);
1196 continue;
1197 }
1198
1199 /* Allocate memory for the section contents. We use bfd_zalloc
1200 here in case unused entries are not reclaimed before the
1201 section's contents are written out. This should not happen,
1202 but this way if it does, we get a R_386_NONE reloc instead
1203 of garbage. */
1204 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1205 if (s->contents == NULL && s->_raw_size != 0)
1206 return false;
1207 }
1208
1209 if (elf_hash_table (info)->dynamic_sections_created)
1210 {
1211 /* Add some entries to the .dynamic section. We fill in the
1212 values later, in elf_i386_finish_dynamic_sections, but we
1213 must add the entries now so that we get the correct size for
1214 the .dynamic section. The DT_DEBUG entry is filled in by the
1215 dynamic linker and used by the debugger. */
1216 if (! info->shared)
1217 {
1218 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1219 return false;
1220 }
1221
1222 if (plt)
1223 {
1224 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1225 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1226 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1227 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1228 return false;
1229 }
1230
1231 if (relocs)
1232 {
1233 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1234 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1235 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1236 sizeof (Elf32_External_Rel)))
1237 return false;
1238 }
1239
1240 if (reltext)
1241 {
1242 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1243 return false;
1244 info->flags |= DF_TEXTREL;
1245 }
1246 }
1247
1248 return true;
1249 }
1250
1251 /* This function is called via elf_i386_link_hash_traverse if we are
1252 creating a shared object. In the -Bsymbolic case, it discards the
1253 space allocated to copy PC relative relocs against symbols which
1254 are defined in regular objects. For the normal non-symbolic case,
1255 we also discard space for relocs that have become local due to
1256 symbol visibility changes. We allocated space for them in the
1257 check_relocs routine, but we won't fill them in in the
1258 relocate_section routine. */
1259
1260 /*ARGSUSED*/
1261 static boolean
1262 elf_i386_discard_copies (h, inf)
1263 struct elf_i386_link_hash_entry *h;
1264 PTR inf;
1265 {
1266 struct elf_i386_pcrel_relocs_copied *s;
1267 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1268
1269 /* If a symbol has been forced local or we have found a regular
1270 definition for the symbolic link case, then we won't be needing
1271 any relocs. */
1272 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1273 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1274 || info->symbolic))
1275 {
1276 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1277 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
1278 }
1279
1280 return true;
1281 }
1282
1283 /* Relocate an i386 ELF section. */
1284
1285 static boolean
1286 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1287 contents, relocs, local_syms, local_sections)
1288 bfd *output_bfd;
1289 struct bfd_link_info *info;
1290 bfd *input_bfd;
1291 asection *input_section;
1292 bfd_byte *contents;
1293 Elf_Internal_Rela *relocs;
1294 Elf_Internal_Sym *local_syms;
1295 asection **local_sections;
1296 {
1297 bfd *dynobj;
1298 Elf_Internal_Shdr *symtab_hdr;
1299 struct elf_link_hash_entry **sym_hashes;
1300 bfd_vma *local_got_offsets;
1301 asection *sgot;
1302 asection *splt;
1303 asection *sreloc;
1304 Elf_Internal_Rela *rel;
1305 Elf_Internal_Rela *relend;
1306
1307 dynobj = elf_hash_table (info)->dynobj;
1308 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1309 sym_hashes = elf_sym_hashes (input_bfd);
1310 local_got_offsets = elf_local_got_offsets (input_bfd);
1311
1312 sreloc = NULL;
1313 splt = NULL;
1314 sgot = NULL;
1315 if (dynobj != NULL)
1316 {
1317 splt = bfd_get_section_by_name (dynobj, ".plt");
1318 sgot = bfd_get_section_by_name (dynobj, ".got");
1319 }
1320
1321 rel = relocs;
1322 relend = relocs + input_section->reloc_count;
1323 for (; rel < relend; rel++)
1324 {
1325 int r_type;
1326 reloc_howto_type *howto;
1327 unsigned long r_symndx;
1328 struct elf_link_hash_entry *h;
1329 Elf_Internal_Sym *sym;
1330 asection *sec;
1331 bfd_vma relocation;
1332 bfd_reloc_status_type r;
1333 unsigned int indx;
1334
1335 r_type = ELF32_R_TYPE (rel->r_info);
1336 if (r_type == (int) R_386_GNU_VTINHERIT
1337 || r_type == (int) R_386_GNU_VTENTRY)
1338 continue;
1339
1340 if ((indx = (unsigned) r_type) >= R_386_standard
1341 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1342 >= R_386_ext - R_386_standard))
1343 {
1344 bfd_set_error (bfd_error_bad_value);
1345 return false;
1346 }
1347 howto = elf_howto_table + indx;
1348
1349 r_symndx = ELF32_R_SYM (rel->r_info);
1350
1351 if (info->relocateable)
1352 {
1353 /* This is a relocateable link. We don't have to change
1354 anything, unless the reloc is against a section symbol,
1355 in which case we have to adjust according to where the
1356 section symbol winds up in the output section. */
1357 if (r_symndx < symtab_hdr->sh_info)
1358 {
1359 sym = local_syms + r_symndx;
1360 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1361 {
1362 bfd_vma val;
1363
1364 sec = local_sections[r_symndx];
1365 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1366 val += sec->output_offset + sym->st_value;
1367 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1368 }
1369 }
1370
1371 continue;
1372 }
1373
1374 /* This is a final link. */
1375 h = NULL;
1376 sym = NULL;
1377 sec = NULL;
1378 if (r_symndx < symtab_hdr->sh_info)
1379 {
1380 sym = local_syms + r_symndx;
1381 sec = local_sections[r_symndx];
1382 relocation = (sec->output_section->vma
1383 + sec->output_offset
1384 + sym->st_value);
1385 }
1386 else
1387 {
1388 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1389 while (h->root.type == bfd_link_hash_indirect
1390 || h->root.type == bfd_link_hash_warning)
1391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1392 if (h->root.type == bfd_link_hash_defined
1393 || h->root.type == bfd_link_hash_defweak)
1394 {
1395 sec = h->root.u.def.section;
1396 if (r_type == R_386_GOTPC
1397 || (r_type == R_386_PLT32
1398 && splt != NULL
1399 && h->plt.offset != (bfd_vma) -1)
1400 || (r_type == R_386_GOT32
1401 && elf_hash_table (info)->dynamic_sections_created
1402 && (! info->shared
1403 || (! info->symbolic && h->dynindx != -1)
1404 || (h->elf_link_hash_flags
1405 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1406 || (info->shared
1407 && ((! info->symbolic && h->dynindx != -1)
1408 || (h->elf_link_hash_flags
1409 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1410 && (r_type == R_386_32
1411 || r_type == R_386_PC32)
1412 && ((input_section->flags & SEC_ALLOC) != 0
1413 /* DWARF will emit R_386_32 relocations in its
1414 sections against symbols defined externally
1415 in shared libraries. We can't do anything
1416 with them here. */
1417 || ((input_section->flags & SEC_DEBUGGING) != 0
1418 && (h->elf_link_hash_flags
1419 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1420 {
1421 /* In these cases, we don't need the relocation
1422 value. We check specially because in some
1423 obscure cases sec->output_section will be NULL. */
1424 relocation = 0;
1425 }
1426 else if (sec->output_section == NULL)
1427 {
1428 (*_bfd_error_handler)
1429 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1430 bfd_get_filename (input_bfd), h->root.root.string,
1431 bfd_get_section_name (input_bfd, input_section));
1432 relocation = 0;
1433 }
1434 else
1435 relocation = (h->root.u.def.value
1436 + sec->output_section->vma
1437 + sec->output_offset);
1438 }
1439 else if (h->root.type == bfd_link_hash_undefweak)
1440 relocation = 0;
1441 else if (info->shared && !info->symbolic
1442 && !info->no_undefined
1443 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1444 relocation = 0;
1445 else
1446 {
1447 if (! ((*info->callbacks->undefined_symbol)
1448 (info, h->root.root.string, input_bfd,
1449 input_section, rel->r_offset,
1450 (!info->shared || info->no_undefined
1451 || ELF_ST_VISIBILITY (h->other)))))
1452 return false;
1453 relocation = 0;
1454 }
1455 }
1456
1457 switch (r_type)
1458 {
1459 case R_386_GOT32:
1460 /* Relocation is to the entry for this symbol in the global
1461 offset table. */
1462 BFD_ASSERT (sgot != NULL);
1463
1464 if (h != NULL)
1465 {
1466 bfd_vma off;
1467
1468 off = h->got.offset;
1469 BFD_ASSERT (off != (bfd_vma) -1);
1470
1471 if (! elf_hash_table (info)->dynamic_sections_created
1472 || (info->shared
1473 && (info->symbolic || h->dynindx == -1)
1474 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1475 {
1476 /* This is actually a static link, or it is a
1477 -Bsymbolic link and the symbol is defined
1478 locally, or the symbol was forced to be local
1479 because of a version file. We must initialize
1480 this entry in the global offset table. Since the
1481 offset must always be a multiple of 4, we use the
1482 least significant bit to record whether we have
1483 initialized it already.
1484
1485 When doing a dynamic link, we create a .rel.got
1486 relocation entry to initialize the value. This
1487 is done in the finish_dynamic_symbol routine. */
1488 if ((off & 1) != 0)
1489 off &= ~1;
1490 else
1491 {
1492 bfd_put_32 (output_bfd, relocation,
1493 sgot->contents + off);
1494 h->got.offset |= 1;
1495 }
1496 }
1497
1498 relocation = sgot->output_offset + off;
1499 }
1500 else
1501 {
1502 bfd_vma off;
1503
1504 BFD_ASSERT (local_got_offsets != NULL
1505 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1506
1507 off = local_got_offsets[r_symndx];
1508
1509 /* The offset must always be a multiple of 4. We use
1510 the least significant bit to record whether we have
1511 already generated the necessary reloc. */
1512 if ((off & 1) != 0)
1513 off &= ~1;
1514 else
1515 {
1516 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1517
1518 if (info->shared)
1519 {
1520 asection *srelgot;
1521 Elf_Internal_Rel outrel;
1522
1523 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1524 BFD_ASSERT (srelgot != NULL);
1525
1526 outrel.r_offset = (sgot->output_section->vma
1527 + sgot->output_offset
1528 + off);
1529 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1530 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1531 (((Elf32_External_Rel *)
1532 srelgot->contents)
1533 + srelgot->reloc_count));
1534 ++srelgot->reloc_count;
1535 }
1536
1537 local_got_offsets[r_symndx] |= 1;
1538 }
1539
1540 relocation = sgot->output_offset + off;
1541 }
1542
1543 break;
1544
1545 case R_386_GOTOFF:
1546 /* Relocation is relative to the start of the global offset
1547 table. */
1548
1549 if (sgot == NULL)
1550 {
1551 sgot = bfd_get_section_by_name (dynobj, ".got");
1552 BFD_ASSERT (sgot != NULL);
1553 }
1554
1555 /* Note that sgot->output_offset is not involved in this
1556 calculation. We always want the start of .got. If we
1557 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1558 permitted by the ABI, we might have to change this
1559 calculation. */
1560 relocation -= sgot->output_section->vma;
1561
1562 break;
1563
1564 case R_386_GOTPC:
1565 /* Use global offset table as symbol value. */
1566
1567 if (sgot == NULL)
1568 {
1569 sgot = bfd_get_section_by_name (dynobj, ".got");
1570 BFD_ASSERT (sgot != NULL);
1571 }
1572
1573 relocation = sgot->output_section->vma;
1574
1575 break;
1576
1577 case R_386_PLT32:
1578 /* Relocation is to the entry for this symbol in the
1579 procedure linkage table. */
1580
1581 /* Resolve a PLT32 reloc against a local symbol directly,
1582 without using the procedure linkage table. */
1583 if (h == NULL)
1584 break;
1585
1586 if (h->plt.offset == (bfd_vma) -1
1587 || splt == NULL)
1588 {
1589 /* We didn't make a PLT entry for this symbol. This
1590 happens when statically linking PIC code, or when
1591 using -Bsymbolic. */
1592 break;
1593 }
1594
1595 relocation = (splt->output_section->vma
1596 + splt->output_offset
1597 + h->plt.offset);
1598
1599 break;
1600
1601 case R_386_32:
1602 case R_386_PC32:
1603 if (info->shared
1604 && (input_section->flags & SEC_ALLOC) != 0
1605 && (r_type != R_386_PC32
1606 || (h != NULL
1607 && h->dynindx != -1
1608 && (! info->symbolic
1609 || (h->elf_link_hash_flags
1610 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1611 {
1612 Elf_Internal_Rel outrel;
1613 boolean skip, relocate;
1614
1615 /* When generating a shared object, these relocations
1616 are copied into the output file to be resolved at run
1617 time. */
1618
1619 if (sreloc == NULL)
1620 {
1621 const char *name;
1622
1623 name = (bfd_elf_string_from_elf_section
1624 (input_bfd,
1625 elf_elfheader (input_bfd)->e_shstrndx,
1626 elf_section_data (input_section)->rel_hdr.sh_name));
1627 if (name == NULL)
1628 return false;
1629
1630 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1631 && strcmp (bfd_get_section_name (input_bfd,
1632 input_section),
1633 name + 4) == 0);
1634
1635 sreloc = bfd_get_section_by_name (dynobj, name);
1636 BFD_ASSERT (sreloc != NULL);
1637 }
1638
1639 skip = false;
1640
1641 if (elf_section_data (input_section)->stab_info == NULL)
1642 outrel.r_offset = rel->r_offset;
1643 else
1644 {
1645 bfd_vma off;
1646
1647 off = (_bfd_stab_section_offset
1648 (output_bfd, &elf_hash_table (info)->stab_info,
1649 input_section,
1650 &elf_section_data (input_section)->stab_info,
1651 rel->r_offset));
1652 if (off == (bfd_vma) -1)
1653 skip = true;
1654 outrel.r_offset = off;
1655 }
1656
1657 outrel.r_offset += (input_section->output_section->vma
1658 + input_section->output_offset);
1659
1660 if (skip)
1661 {
1662 memset (&outrel, 0, sizeof outrel);
1663 relocate = false;
1664 }
1665 else if (r_type == R_386_PC32)
1666 {
1667 BFD_ASSERT (h != NULL && h->dynindx != -1);
1668 relocate = false;
1669 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
1670 }
1671 else
1672 {
1673 /* h->dynindx may be -1 if this symbol was marked to
1674 become local. */
1675 if (h == NULL
1676 || ((info->symbolic || h->dynindx == -1)
1677 && (h->elf_link_hash_flags
1678 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1679 {
1680 relocate = true;
1681 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1682 }
1683 else
1684 {
1685 BFD_ASSERT (h->dynindx != -1);
1686 relocate = false;
1687 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
1688 }
1689 }
1690
1691 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1692 (((Elf32_External_Rel *)
1693 sreloc->contents)
1694 + sreloc->reloc_count));
1695 ++sreloc->reloc_count;
1696
1697 /* If this reloc is against an external symbol, we do
1698 not want to fiddle with the addend. Otherwise, we
1699 need to include the symbol value so that it becomes
1700 an addend for the dynamic reloc. */
1701 if (! relocate)
1702 continue;
1703 }
1704
1705 break;
1706
1707 default:
1708 break;
1709 }
1710
1711 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1712 contents, rel->r_offset,
1713 relocation, (bfd_vma) 0);
1714
1715 if (r != bfd_reloc_ok)
1716 {
1717 switch (r)
1718 {
1719 default:
1720 case bfd_reloc_outofrange:
1721 abort ();
1722 case bfd_reloc_overflow:
1723 {
1724 const char *name;
1725
1726 if (h != NULL)
1727 name = h->root.root.string;
1728 else
1729 {
1730 name = bfd_elf_string_from_elf_section (input_bfd,
1731 symtab_hdr->sh_link,
1732 sym->st_name);
1733 if (name == NULL)
1734 return false;
1735 if (*name == '\0')
1736 name = bfd_section_name (input_bfd, sec);
1737 }
1738 if (! ((*info->callbacks->reloc_overflow)
1739 (info, name, howto->name, (bfd_vma) 0,
1740 input_bfd, input_section, rel->r_offset)))
1741 return false;
1742 }
1743 break;
1744 }
1745 }
1746 }
1747
1748 return true;
1749 }
1750
1751 /* Finish up dynamic symbol handling. We set the contents of various
1752 dynamic sections here. */
1753
1754 static boolean
1755 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1756 bfd *output_bfd;
1757 struct bfd_link_info *info;
1758 struct elf_link_hash_entry *h;
1759 Elf_Internal_Sym *sym;
1760 {
1761 bfd *dynobj;
1762
1763 dynobj = elf_hash_table (info)->dynobj;
1764
1765 if (h->plt.offset != (bfd_vma) -1)
1766 {
1767 asection *splt;
1768 asection *sgot;
1769 asection *srel;
1770 bfd_vma plt_index;
1771 bfd_vma got_offset;
1772 Elf_Internal_Rel rel;
1773
1774 /* This symbol has an entry in the procedure linkage table. Set
1775 it up. */
1776
1777 BFD_ASSERT (h->dynindx != -1);
1778
1779 splt = bfd_get_section_by_name (dynobj, ".plt");
1780 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1781 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
1782 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1783
1784 /* Get the index in the procedure linkage table which
1785 corresponds to this symbol. This is the index of this symbol
1786 in all the symbols for which we are making plt entries. The
1787 first entry in the procedure linkage table is reserved. */
1788 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1789
1790 /* Get the offset into the .got table of the entry that
1791 corresponds to this function. Each .got entry is 4 bytes.
1792 The first three are reserved. */
1793 got_offset = (plt_index + 3) * 4;
1794
1795 /* Fill in the entry in the procedure linkage table. */
1796 if (! info->shared)
1797 {
1798 memcpy (splt->contents + h->plt.offset, elf_i386_plt_entry,
1799 PLT_ENTRY_SIZE);
1800 bfd_put_32 (output_bfd,
1801 (sgot->output_section->vma
1802 + sgot->output_offset
1803 + got_offset),
1804 splt->contents + h->plt.offset + 2);
1805 }
1806 else
1807 {
1808 memcpy (splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1809 PLT_ENTRY_SIZE);
1810 bfd_put_32 (output_bfd, got_offset,
1811 splt->contents + h->plt.offset + 2);
1812 }
1813
1814 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1815 splt->contents + h->plt.offset + 7);
1816 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1817 splt->contents + h->plt.offset + 12);
1818
1819 /* Fill in the entry in the global offset table. */
1820 bfd_put_32 (output_bfd,
1821 (splt->output_section->vma
1822 + splt->output_offset
1823 + h->plt.offset
1824 + 6),
1825 sgot->contents + got_offset);
1826
1827 /* Fill in the entry in the .rel.plt section. */
1828 rel.r_offset = (sgot->output_section->vma
1829 + sgot->output_offset
1830 + got_offset);
1831 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1832 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1833 ((Elf32_External_Rel *) srel->contents
1834 + plt_index));
1835
1836 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1837 {
1838 /* Mark the symbol as undefined, rather than as defined in
1839 the .plt section. Leave the value alone. */
1840 sym->st_shndx = SHN_UNDEF;
1841 }
1842 }
1843
1844 if (h->got.offset != (bfd_vma) -1)
1845 {
1846 asection *sgot;
1847 asection *srel;
1848 Elf_Internal_Rel rel;
1849
1850 /* This symbol has an entry in the global offset table. Set it
1851 up. */
1852
1853 sgot = bfd_get_section_by_name (dynobj, ".got");
1854 srel = bfd_get_section_by_name (dynobj, ".rel.got");
1855 BFD_ASSERT (sgot != NULL && srel != NULL);
1856
1857 rel.r_offset = (sgot->output_section->vma
1858 + sgot->output_offset
1859 + (h->got.offset &~ 1));
1860
1861 /* If this is a static link, or it is a -Bsymbolic link and the
1862 symbol is defined locally or was forced to be local because
1863 of a version file, we just want to emit a RELATIVE reloc.
1864 The entry in the global offset table will already have been
1865 initialized in the relocate_section function. */
1866 if (! elf_hash_table (info)->dynamic_sections_created
1867 || (info->shared
1868 && (info->symbolic || h->dynindx == -1)
1869 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1870 {
1871 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1872 }
1873 else
1874 {
1875 BFD_ASSERT((h->got.offset & 1) == 0);
1876 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1877 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
1878 }
1879
1880 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1881 ((Elf32_External_Rel *) srel->contents
1882 + srel->reloc_count));
1883 ++srel->reloc_count;
1884 }
1885
1886 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1887 {
1888 asection *s;
1889 Elf_Internal_Rel rel;
1890
1891 /* This symbol needs a copy reloc. Set it up. */
1892
1893 BFD_ASSERT (h->dynindx != -1
1894 && (h->root.type == bfd_link_hash_defined
1895 || h->root.type == bfd_link_hash_defweak));
1896
1897 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1898 ".rel.bss");
1899 BFD_ASSERT (s != NULL);
1900
1901 rel.r_offset = (h->root.u.def.value
1902 + h->root.u.def.section->output_section->vma
1903 + h->root.u.def.section->output_offset);
1904 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
1905 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1906 ((Elf32_External_Rel *) s->contents
1907 + s->reloc_count));
1908 ++s->reloc_count;
1909 }
1910
1911 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1912 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1913 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1914 sym->st_shndx = SHN_ABS;
1915
1916 return true;
1917 }
1918
1919 /* Finish up the dynamic sections. */
1920
1921 static boolean
1922 elf_i386_finish_dynamic_sections (output_bfd, info)
1923 bfd *output_bfd;
1924 struct bfd_link_info *info;
1925 {
1926 bfd *dynobj;
1927 asection *sgot;
1928 asection *sdyn;
1929
1930 dynobj = elf_hash_table (info)->dynobj;
1931
1932 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1933 BFD_ASSERT (sgot != NULL);
1934 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1935
1936 if (elf_hash_table (info)->dynamic_sections_created)
1937 {
1938 asection *splt;
1939 Elf32_External_Dyn *dyncon, *dynconend;
1940
1941 BFD_ASSERT (sdyn != NULL);
1942
1943 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1944 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1945 for (; dyncon < dynconend; dyncon++)
1946 {
1947 Elf_Internal_Dyn dyn;
1948 const char *name;
1949 asection *s;
1950
1951 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1952
1953 switch (dyn.d_tag)
1954 {
1955 default:
1956 break;
1957
1958 case DT_PLTGOT:
1959 name = ".got";
1960 goto get_vma;
1961 case DT_JMPREL:
1962 name = ".rel.plt";
1963 get_vma:
1964 s = bfd_get_section_by_name (output_bfd, name);
1965 BFD_ASSERT (s != NULL);
1966 dyn.d_un.d_ptr = s->vma;
1967 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1968 break;
1969
1970 case DT_PLTRELSZ:
1971 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1972 BFD_ASSERT (s != NULL);
1973 if (s->_cooked_size != 0)
1974 dyn.d_un.d_val = s->_cooked_size;
1975 else
1976 dyn.d_un.d_val = s->_raw_size;
1977 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1978 break;
1979
1980 case DT_RELSZ:
1981 /* My reading of the SVR4 ABI indicates that the
1982 procedure linkage table relocs (DT_JMPREL) should be
1983 included in the overall relocs (DT_REL). This is
1984 what Solaris does. However, UnixWare can not handle
1985 that case. Therefore, we override the DT_RELSZ entry
1986 here to make it not include the JMPREL relocs. Since
1987 the linker script arranges for .rel.plt to follow all
1988 other relocation sections, we don't have to worry
1989 about changing the DT_REL entry. */
1990 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1991 if (s != NULL)
1992 {
1993 if (s->_cooked_size != 0)
1994 dyn.d_un.d_val -= s->_cooked_size;
1995 else
1996 dyn.d_un.d_val -= s->_raw_size;
1997 }
1998 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1999 break;
2000 }
2001 }
2002
2003 /* Fill in the first entry in the procedure linkage table. */
2004 splt = bfd_get_section_by_name (dynobj, ".plt");
2005 if (splt && splt->_raw_size > 0)
2006 {
2007 if (info->shared)
2008 memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2009 else
2010 {
2011 memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2012 bfd_put_32 (output_bfd,
2013 sgot->output_section->vma + sgot->output_offset + 4,
2014 splt->contents + 2);
2015 bfd_put_32 (output_bfd,
2016 sgot->output_section->vma + sgot->output_offset + 8,
2017 splt->contents + 8);
2018 }
2019
2020 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2021 really seem like the right value. */
2022 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2023 }
2024 }
2025
2026 /* Fill in the first three entries in the global offset table. */
2027 if (sgot->_raw_size > 0)
2028 {
2029 if (sdyn == NULL)
2030 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2031 else
2032 bfd_put_32 (output_bfd,
2033 sdyn->output_section->vma + sdyn->output_offset,
2034 sgot->contents);
2035 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2036 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2037 }
2038
2039 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2040
2041 return true;
2042 }
2043
2044 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2045 #define TARGET_LITTLE_NAME "elf32-i386"
2046 #define ELF_ARCH bfd_arch_i386
2047 #define ELF_MACHINE_CODE EM_386
2048 #define ELF_MAXPAGESIZE 0x1000
2049
2050 #define elf_backend_can_gc_sections 1
2051 #define elf_backend_want_got_plt 1
2052 #define elf_backend_plt_readonly 1
2053 #define elf_backend_want_plt_sym 0
2054 #define elf_backend_got_header_size 12
2055 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2056
2057 #define elf_info_to_howto elf_i386_info_to_howto
2058 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2059
2060 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2061 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2062 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2063 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2064
2065 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2066 #define elf_backend_check_relocs elf_i386_check_relocs
2067 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2068 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2069 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2070 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2071 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2072 #define elf_backend_relocate_section elf_i386_relocate_section
2073 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2074
2075 #include "elf32-target.h"