* elf32-i386.c (elf_i386_grok_prstatus): New function.
[binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
61 Elf_Internal_Sym *));
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((int));
67
68 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
69
70 #include "elf/i386.h"
71
72 static reloc_howto_type elf_howto_table[]=
73 {
74 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_386_NONE",
76 true, 0x00000000, 0x00000000, false),
77 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_386_32",
79 true, 0xffffffff, 0xffffffff, false),
80 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_386_PC32",
82 true, 0xffffffff, 0xffffffff, true),
83 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_386_GOT32",
85 true, 0xffffffff, 0xffffffff, false),
86 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_PLT32",
88 true, 0xffffffff, 0xffffffff, true),
89 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_COPY",
91 true, 0xffffffff, 0xffffffff, false),
92 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
94 true, 0xffffffff, 0xffffffff, false),
95 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
97 true, 0xffffffff, 0xffffffff, false),
98 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_386_RELATIVE",
100 true, 0xffffffff, 0xffffffff, false),
101 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_386_GOTOFF",
103 true, 0xffffffff, 0xffffffff, false),
104 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_386_GOTPC",
106 true, 0xffffffff, 0xffffffff, true),
107
108 /* We have a gap in the reloc numbers here.
109 R_386_standard counts the number up to this point, and
110 R_386_ext_offset is the value to subtract from a reloc type of
111 R_386_16 thru R_386_PC8 to form an index into this table. */
112 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
113 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
114
115 /* The remaining relocs are a GNU extension. */
116 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
117 bfd_elf_generic_reloc, "R_386_16",
118 true, 0xffff, 0xffff, false),
119 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
120 bfd_elf_generic_reloc, "R_386_PC16",
121 true, 0xffff, 0xffff, true),
122 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
123 bfd_elf_generic_reloc, "R_386_8",
124 true, 0xff, 0xff, false),
125 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_386_PC8",
127 true, 0xff, 0xff, true),
128
129 /* Another gap. */
130 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
131 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
132
133 /* GNU extension to record C++ vtable hierarchy. */
134 HOWTO (R_386_GNU_VTINHERIT, /* type */
135 0, /* rightshift */
136 2, /* size (0 = byte, 1 = short, 2 = long) */
137 0, /* bitsize */
138 false, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont, /* complain_on_overflow */
141 NULL, /* special_function */
142 "R_386_GNU_VTINHERIT", /* name */
143 false, /* partial_inplace */
144 0, /* src_mask */
145 0, /* dst_mask */
146 false),
147
148 /* GNU extension to record C++ vtable member usage. */
149 HOWTO (R_386_GNU_VTENTRY, /* type */
150 0, /* rightshift */
151 2, /* size (0 = byte, 1 = short, 2 = long) */
152 0, /* bitsize */
153 false, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_dont, /* complain_on_overflow */
156 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
157 "R_386_GNU_VTENTRY", /* name */
158 false, /* partial_inplace */
159 0, /* src_mask */
160 0, /* dst_mask */
161 false)
162
163 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
164
165 };
166
167 #ifdef DEBUG_GEN_RELOC
168 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
169 #else
170 #define TRACE(str)
171 #endif
172
173 static reloc_howto_type *
174 elf_i386_reloc_type_lookup (abfd, code)
175 bfd *abfd ATTRIBUTE_UNUSED;
176 bfd_reloc_code_real_type code;
177 {
178 switch (code)
179 {
180 case BFD_RELOC_NONE:
181 TRACE ("BFD_RELOC_NONE");
182 return &elf_howto_table[(unsigned int) R_386_NONE ];
183
184 case BFD_RELOC_32:
185 TRACE ("BFD_RELOC_32");
186 return &elf_howto_table[(unsigned int) R_386_32 ];
187
188 case BFD_RELOC_CTOR:
189 TRACE ("BFD_RELOC_CTOR");
190 return &elf_howto_table[(unsigned int) R_386_32 ];
191
192 case BFD_RELOC_32_PCREL:
193 TRACE ("BFD_RELOC_PC32");
194 return &elf_howto_table[(unsigned int) R_386_PC32 ];
195
196 case BFD_RELOC_386_GOT32:
197 TRACE ("BFD_RELOC_386_GOT32");
198 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
199
200 case BFD_RELOC_386_PLT32:
201 TRACE ("BFD_RELOC_386_PLT32");
202 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
203
204 case BFD_RELOC_386_COPY:
205 TRACE ("BFD_RELOC_386_COPY");
206 return &elf_howto_table[(unsigned int) R_386_COPY ];
207
208 case BFD_RELOC_386_GLOB_DAT:
209 TRACE ("BFD_RELOC_386_GLOB_DAT");
210 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
211
212 case BFD_RELOC_386_JUMP_SLOT:
213 TRACE ("BFD_RELOC_386_JUMP_SLOT");
214 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
215
216 case BFD_RELOC_386_RELATIVE:
217 TRACE ("BFD_RELOC_386_RELATIVE");
218 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
219
220 case BFD_RELOC_386_GOTOFF:
221 TRACE ("BFD_RELOC_386_GOTOFF");
222 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
223
224 case BFD_RELOC_386_GOTPC:
225 TRACE ("BFD_RELOC_386_GOTPC");
226 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
227
228 /* The remaining relocs are a GNU extension. */
229 case BFD_RELOC_16:
230 TRACE ("BFD_RELOC_16");
231 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
232
233 case BFD_RELOC_16_PCREL:
234 TRACE ("BFD_RELOC_16_PCREL");
235 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
236
237 case BFD_RELOC_8:
238 TRACE ("BFD_RELOC_8");
239 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
240
241 case BFD_RELOC_8_PCREL:
242 TRACE ("BFD_RELOC_8_PCREL");
243 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
244
245 case BFD_RELOC_VTABLE_INHERIT:
246 TRACE ("BFD_RELOC_VTABLE_INHERIT");
247 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
248 - R_386_vt_offset];
249
250 case BFD_RELOC_VTABLE_ENTRY:
251 TRACE ("BFD_RELOC_VTABLE_ENTRY");
252 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
253 - R_386_vt_offset];
254
255 default:
256 break;
257 }
258
259 TRACE ("Unknown");
260 return 0;
261 }
262
263 static void
264 elf_i386_info_to_howto (abfd, cache_ptr, dst)
265 bfd *abfd ATTRIBUTE_UNUSED;
266 arelent *cache_ptr ATTRIBUTE_UNUSED;
267 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
268 {
269 abort ();
270 }
271
272 static void
273 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
274 bfd *abfd ATTRIBUTE_UNUSED;
275 arelent *cache_ptr;
276 Elf32_Internal_Rel *dst;
277 {
278 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
279 unsigned int indx;
280
281 if ((indx = r_type) >= R_386_standard
282 && ((indx = r_type - R_386_ext_offset) - R_386_standard
283 >= R_386_ext - R_386_standard)
284 && ((indx = r_type - R_386_vt_offset) - R_386_ext
285 >= R_386_vt - R_386_ext))
286 {
287 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
288 bfd_get_filename (abfd), (int) r_type);
289 indx = (unsigned int) R_386_NONE;
290 }
291 cache_ptr->howto = &elf_howto_table[indx];
292 }
293
294 /* Return whether a symbol name implies a local label. The UnixWare
295 2.1 cc generates temporary symbols that start with .X, so we
296 recognize them here. FIXME: do other SVR4 compilers also use .X?.
297 If so, we should move the .X recognition into
298 _bfd_elf_is_local_label_name. */
299
300 static boolean
301 elf_i386_is_local_label_name (abfd, name)
302 bfd *abfd;
303 const char *name;
304 {
305 if (name[0] == '.' && name[1] == 'X')
306 return true;
307
308 return _bfd_elf_is_local_label_name (abfd, name);
309 }
310 \f
311 /* Functions for the i386 ELF linker. */
312
313 /* The name of the dynamic interpreter. This is put in the .interp
314 section. */
315
316 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
317
318 /* The size in bytes of an entry in the procedure linkage table. */
319
320 #define PLT_ENTRY_SIZE 16
321
322 /* The first entry in an absolute procedure linkage table looks like
323 this. See the SVR4 ABI i386 supplement to see how this works. */
324
325 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
326 {
327 0xff, 0x35, /* pushl contents of address */
328 0, 0, 0, 0, /* replaced with address of .got + 4. */
329 0xff, 0x25, /* jmp indirect */
330 0, 0, 0, 0, /* replaced with address of .got + 8. */
331 0, 0, 0, 0 /* pad out to 16 bytes. */
332 };
333
334 /* Subsequent entries in an absolute procedure linkage table look like
335 this. */
336
337 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
338 {
339 0xff, 0x25, /* jmp indirect */
340 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
341 0x68, /* pushl immediate */
342 0, 0, 0, 0, /* replaced with offset into relocation table. */
343 0xe9, /* jmp relative */
344 0, 0, 0, 0 /* replaced with offset to start of .plt. */
345 };
346
347 /* The first entry in a PIC procedure linkage table look like this. */
348
349 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
350 {
351 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
352 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
353 0, 0, 0, 0 /* pad out to 16 bytes. */
354 };
355
356 /* Subsequent entries in a PIC procedure linkage table look like this. */
357
358 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
359 {
360 0xff, 0xa3, /* jmp *offset(%ebx) */
361 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
362 0x68, /* pushl immediate */
363 0, 0, 0, 0, /* replaced with offset into relocation table. */
364 0xe9, /* jmp relative */
365 0, 0, 0, 0 /* replaced with offset to start of .plt. */
366 };
367
368 /* The i386 linker needs to keep track of the number of relocs that it
369 decides to copy as dynamic relocs in check_relocs for each symbol.
370 This is so that it can later discard them if they are found to be
371 unnecessary. We store the information in a field extending the
372 regular ELF linker hash table. */
373
374 struct elf_i386_dyn_relocs
375 {
376 /* Next section. */
377 struct elf_i386_dyn_relocs *next;
378 /* A section in dynobj. */
379 asection *section;
380 /* Number of relocs copied in this section. */
381 bfd_size_type count;
382 };
383
384 /* i386 ELF linker hash entry. */
385
386 struct elf_i386_link_hash_entry
387 {
388 struct elf_link_hash_entry root;
389
390 /* Number of PC relative relocs copied for this symbol. */
391 struct elf_i386_dyn_relocs *dyn_relocs;
392 };
393
394 /* i386 ELF linker hash table. */
395
396 struct elf_i386_link_hash_table
397 {
398 struct elf_link_hash_table root;
399
400 /* Short-cuts to get to dynamic linker sections. */
401 asection *sgot;
402 asection *sgotplt;
403 asection *srelgot;
404 asection *splt;
405 asection *srelplt;
406 asection *sdynbss;
407 asection *srelbss;
408 };
409
410 /* Get the i386 ELF linker hash table from a link_info structure. */
411
412 #define elf_i386_hash_table(p) \
413 ((struct elf_i386_link_hash_table *) ((p)->hash))
414
415 /* Create an entry in an i386 ELF linker hash table. */
416
417 static struct bfd_hash_entry *
418 elf_i386_link_hash_newfunc (entry, table, string)
419 struct bfd_hash_entry *entry;
420 struct bfd_hash_table *table;
421 const char *string;
422 {
423 struct elf_i386_link_hash_entry *ret =
424 (struct elf_i386_link_hash_entry *) entry;
425
426 /* Allocate the structure if it has not already been allocated by a
427 subclass. */
428 if (ret == (struct elf_i386_link_hash_entry *) NULL)
429 ret = ((struct elf_i386_link_hash_entry *)
430 bfd_hash_allocate (table,
431 sizeof (struct elf_i386_link_hash_entry)));
432 if (ret == (struct elf_i386_link_hash_entry *) NULL)
433 return (struct bfd_hash_entry *) ret;
434
435 /* Call the allocation method of the superclass. */
436 ret = ((struct elf_i386_link_hash_entry *)
437 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
438 table, string));
439 if (ret != (struct elf_i386_link_hash_entry *) NULL)
440 {
441 ret->dyn_relocs = NULL;
442 }
443
444 return (struct bfd_hash_entry *) ret;
445 }
446
447 /* Create an i386 ELF linker hash table. */
448
449 static struct bfd_link_hash_table *
450 elf_i386_link_hash_table_create (abfd)
451 bfd *abfd;
452 {
453 struct elf_i386_link_hash_table *ret;
454
455 ret = ((struct elf_i386_link_hash_table *)
456 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
457 if (ret == (struct elf_i386_link_hash_table *) NULL)
458 return NULL;
459
460 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
461 elf_i386_link_hash_newfunc))
462 {
463 bfd_release (abfd, ret);
464 return NULL;
465 }
466
467 ret->sgot = NULL;
468 ret->sgotplt = NULL;
469 ret->srelgot = NULL;
470 ret->splt = NULL;
471 ret->srelplt = NULL;
472 ret->sdynbss = NULL;
473 ret->srelbss = NULL;
474
475 return &ret->root.root;
476 }
477
478 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
479 shortcuts to them in our hash table. */
480
481 static boolean
482 create_got_section (dynobj, info)
483 bfd *dynobj;
484 struct bfd_link_info *info;
485 {
486 struct elf_i386_link_hash_table *htab;
487
488 if (! _bfd_elf_create_got_section (dynobj, info))
489 return false;
490
491 htab = elf_i386_hash_table (info);
492 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
493 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
494 if (!htab->sgot || !htab->sgotplt)
495 abort ();
496
497 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
498 if (htab->srelgot == NULL
499 || ! bfd_set_section_flags (dynobj, htab->srelgot,
500 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
501 | SEC_IN_MEMORY | SEC_LINKER_CREATED
502 | SEC_READONLY))
503 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
504 return false;
505 return true;
506 }
507
508 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
509 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
510 hash table. */
511
512 static boolean
513 elf_i386_create_dynamic_sections (dynobj, info)
514 bfd *dynobj;
515 struct bfd_link_info *info;
516 {
517 struct elf_i386_link_hash_table *htab;
518
519 htab = elf_i386_hash_table (info);
520 if (!htab->sgot && !create_got_section (dynobj, info))
521 return false;
522
523 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
524 return false;
525
526 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
527 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
528 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
529 if (!info->shared)
530 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
531
532 if (!htab->splt || !htab->srelplt || !htab->sdynbss
533 || (!info->shared && !htab->srelbss))
534 abort ();
535
536 return true;
537 }
538
539 /* Look through the relocs for a section during the first phase, and
540 allocate space in the global offset table or procedure linkage
541 table. */
542
543 static boolean
544 elf_i386_check_relocs (abfd, info, sec, relocs)
545 bfd *abfd;
546 struct bfd_link_info *info;
547 asection *sec;
548 const Elf_Internal_Rela *relocs;
549 {
550 struct elf_i386_link_hash_table *htab;
551 bfd *dynobj;
552 Elf_Internal_Shdr *symtab_hdr;
553 struct elf_link_hash_entry **sym_hashes;
554 bfd_signed_vma *local_got_refcounts;
555 const Elf_Internal_Rela *rel;
556 const Elf_Internal_Rela *rel_end;
557 asection *sreloc;
558
559 if (info->relocateable)
560 return true;
561
562 htab = elf_i386_hash_table (info);
563 dynobj = htab->root.dynobj;
564 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
565 sym_hashes = elf_sym_hashes (abfd);
566 local_got_refcounts = elf_local_got_refcounts (abfd);
567
568 sreloc = NULL;
569
570 rel_end = relocs + sec->reloc_count;
571 for (rel = relocs; rel < rel_end; rel++)
572 {
573 unsigned long r_symndx;
574 struct elf_link_hash_entry *h;
575
576 r_symndx = ELF32_R_SYM (rel->r_info);
577
578 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
579 {
580 if (abfd->my_archive)
581 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
582 bfd_get_filename (abfd->my_archive),
583 bfd_get_filename (abfd),
584 r_symndx);
585 else
586 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
587 bfd_get_filename (abfd),
588 r_symndx);
589 return false;
590 }
591
592 if (r_symndx < symtab_hdr->sh_info)
593 h = NULL;
594 else
595 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
596
597 /* Some relocs require a global offset table. */
598 if (htab->sgot == NULL)
599 {
600 switch (ELF32_R_TYPE (rel->r_info))
601 {
602 case R_386_GOT32:
603 case R_386_GOTOFF:
604 case R_386_GOTPC:
605 if (dynobj == NULL)
606 htab->root.dynobj = dynobj = abfd;
607 if (!create_got_section (dynobj, info))
608 return false;
609 break;
610
611 default:
612 break;
613 }
614 }
615
616 switch (ELF32_R_TYPE (rel->r_info))
617 {
618 case R_386_GOT32:
619 /* This symbol requires a global offset table entry. */
620 if (h != NULL)
621 {
622 if (h->got.refcount == -1)
623 h->got.refcount = 1;
624 else
625 h->got.refcount += 1;
626 }
627 else
628 {
629 /* This is a global offset table entry for a local symbol. */
630 if (local_got_refcounts == NULL)
631 {
632 size_t size;
633
634 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
635 local_got_refcounts = ((bfd_signed_vma *)
636 bfd_alloc (abfd, size));
637 if (local_got_refcounts == NULL)
638 return false;
639 elf_local_got_refcounts (abfd) = local_got_refcounts;
640 memset (local_got_refcounts, -1, size);
641 }
642 if (local_got_refcounts[r_symndx] == -1)
643 local_got_refcounts[r_symndx] = 1;
644 else
645 local_got_refcounts[r_symndx] += 1;
646 }
647 break;
648
649 case R_386_PLT32:
650 /* This symbol requires a procedure linkage table entry. We
651 actually build the entry in adjust_dynamic_symbol,
652 because this might be a case of linking PIC code which is
653 never referenced by a dynamic object, in which case we
654 don't need to generate a procedure linkage table entry
655 after all. */
656
657 /* If this is a local symbol, we resolve it directly without
658 creating a procedure linkage table entry. */
659 if (h == NULL)
660 continue;
661
662 if (h->plt.refcount == -1)
663 {
664 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
665 h->plt.refcount = 1;
666 }
667 else
668 h->plt.refcount += 1;
669 break;
670
671 case R_386_32:
672 case R_386_PC32:
673 if (h != NULL && !info->shared)
674 {
675 /* If this reloc is in a read-only section, we might
676 need a copy reloc. */
677 if ((sec->flags & SEC_READONLY) != 0)
678 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
679
680 /* We may need a .plt entry if the function this reloc
681 refers to is in a shared lib. */
682 if (h->plt.refcount == -1)
683 h->plt.refcount = 1;
684 else
685 h->plt.refcount += 1;
686 }
687
688 /* If we are creating a shared library, and this is a reloc
689 against a global symbol, or a non PC relative reloc
690 against a local symbol, then we need to copy the reloc
691 into the shared library. However, if we are linking with
692 -Bsymbolic, we do not need to copy a reloc against a
693 global symbol which is defined in an object we are
694 including in the link (i.e., DEF_REGULAR is set). At
695 this point we have not seen all the input files, so it is
696 possible that DEF_REGULAR is not set now but will be set
697 later (it is never cleared). In case of a weak definition,
698 DEF_REGULAR may be cleared later by a strong definition in
699 a shared library. We account for that possibility below by
700 storing information in the relocs_copied field of the hash
701 table entry. A similar situation occurs when creating
702 shared libraries and symbol visibility changes render the
703 symbol local.
704 If on the other hand, we are creating an executable, we
705 may need to keep relocations for symbols satisfied by a
706 dynamic library if we manage to avoid copy relocs for the
707 symbol. */
708 if ((info->shared
709 && (sec->flags & SEC_ALLOC) != 0
710 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
711 || (h != NULL
712 && (! info->symbolic
713 || h->root.type == bfd_link_hash_defweak
714 || (h->elf_link_hash_flags
715 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
716 || (!info->shared
717 && (sec->flags & SEC_ALLOC) != 0
718 && h != NULL
719 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
720 && (h->root.type == bfd_link_hash_defweak
721 || (h->elf_link_hash_flags
722 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
723 {
724 /* We must copy these reloc types into the output file.
725 Create a reloc section in dynobj and make room for
726 this reloc. */
727 if (dynobj == NULL)
728 htab->root.dynobj = dynobj = abfd;
729
730 if (sreloc == NULL)
731 {
732 const char *name;
733
734 name = (bfd_elf_string_from_elf_section
735 (abfd,
736 elf_elfheader (abfd)->e_shstrndx,
737 elf_section_data (sec)->rel_hdr.sh_name));
738 if (name == NULL)
739 return false;
740
741 if (strncmp (name, ".rel", 4) != 0
742 || strcmp (bfd_get_section_name (abfd, sec),
743 name + 4) != 0)
744 {
745 if (abfd->my_archive)
746 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
747 bfd_get_filename (abfd->my_archive),
748 bfd_get_filename (abfd),
749 name);
750 else
751 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
752 bfd_get_filename (abfd),
753 name);
754 }
755
756 sreloc = bfd_get_section_by_name (dynobj, name);
757 if (sreloc == NULL)
758 {
759 flagword flags;
760
761 sreloc = bfd_make_section (dynobj, name);
762 flags = (SEC_HAS_CONTENTS | SEC_READONLY
763 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
764 if ((sec->flags & SEC_ALLOC) != 0)
765 flags |= SEC_ALLOC | SEC_LOAD;
766 if (sreloc == NULL
767 || ! bfd_set_section_flags (dynobj, sreloc, flags)
768 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
769 return false;
770 }
771 if (sec->flags & SEC_READONLY)
772 info->flags |= DF_TEXTREL;
773 }
774
775 sreloc->_raw_size += sizeof (Elf32_External_Rel);
776
777 /* If this is a global symbol, we count the number of PC
778 relative relocations we have entered for this symbol,
779 so that we can discard them later as necessary. Note
780 that this function is only called if we are using an
781 elf_i386 linker hash table, which means that h is
782 really a pointer to an elf_i386_link_hash_entry. */
783 if (!info->shared
784 || (h != NULL
785 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
786 {
787 struct elf_i386_link_hash_entry *eh;
788 struct elf_i386_dyn_relocs *p;
789
790 eh = (struct elf_i386_link_hash_entry *) h;
791
792 for (p = eh->dyn_relocs; p != NULL; p = p->next)
793 if (p->section == sreloc)
794 break;
795
796 if (p == NULL)
797 {
798 p = ((struct elf_i386_dyn_relocs *)
799 bfd_alloc (dynobj, sizeof *p));
800 if (p == NULL)
801 return false;
802 p->next = eh->dyn_relocs;
803 eh->dyn_relocs = p;
804 p->section = sreloc;
805 p->count = 0;
806 }
807
808 ++p->count;
809 }
810 }
811
812 break;
813
814 /* This relocation describes the C++ object vtable hierarchy.
815 Reconstruct it for later use during GC. */
816 case R_386_GNU_VTINHERIT:
817 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
818 return false;
819 break;
820
821 /* This relocation describes which C++ vtable entries are actually
822 used. Record for later use during GC. */
823 case R_386_GNU_VTENTRY:
824 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
825 return false;
826 break;
827
828 default:
829 break;
830 }
831 }
832
833 return true;
834 }
835
836 /* Return the section that should be marked against GC for a given
837 relocation. */
838
839 static asection *
840 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
841 bfd *abfd;
842 struct bfd_link_info *info ATTRIBUTE_UNUSED;
843 Elf_Internal_Rela *rel;
844 struct elf_link_hash_entry *h;
845 Elf_Internal_Sym *sym;
846 {
847 if (h != NULL)
848 {
849 switch (ELF32_R_TYPE (rel->r_info))
850 {
851 case R_386_GNU_VTINHERIT:
852 case R_386_GNU_VTENTRY:
853 break;
854
855 default:
856 switch (h->root.type)
857 {
858 case bfd_link_hash_defined:
859 case bfd_link_hash_defweak:
860 return h->root.u.def.section;
861
862 case bfd_link_hash_common:
863 return h->root.u.c.p->section;
864
865 default:
866 break;
867 }
868 }
869 }
870 else
871 {
872 if (!(elf_bad_symtab (abfd)
873 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
874 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
875 && sym->st_shndx != SHN_COMMON))
876 {
877 return bfd_section_from_elf_index (abfd, sym->st_shndx);
878 }
879 }
880
881 return NULL;
882 }
883
884 /* Update the got entry reference counts for the section being removed. */
885
886 static boolean
887 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
888 bfd *abfd;
889 struct bfd_link_info *info;
890 asection *sec;
891 const Elf_Internal_Rela *relocs;
892 {
893 Elf_Internal_Shdr *symtab_hdr;
894 struct elf_link_hash_entry **sym_hashes;
895 bfd_signed_vma *local_got_refcounts;
896 const Elf_Internal_Rela *rel, *relend;
897 unsigned long r_symndx;
898 struct elf_link_hash_entry *h;
899 bfd *dynobj;
900
901 dynobj = elf_hash_table (info)->dynobj;
902 if (dynobj == NULL)
903 return true;
904
905 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
906 sym_hashes = elf_sym_hashes (abfd);
907 local_got_refcounts = elf_local_got_refcounts (abfd);
908
909 relend = relocs + sec->reloc_count;
910 for (rel = relocs; rel < relend; rel++)
911 switch (ELF32_R_TYPE (rel->r_info))
912 {
913 case R_386_GOT32:
914 case R_386_GOTOFF:
915 case R_386_GOTPC:
916 r_symndx = ELF32_R_SYM (rel->r_info);
917 if (r_symndx >= symtab_hdr->sh_info)
918 {
919 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
920 if (h->got.refcount > 0)
921 h->got.refcount -= 1;
922 }
923 else if (local_got_refcounts != NULL)
924 {
925 if (local_got_refcounts[r_symndx] > 0)
926 local_got_refcounts[r_symndx] -= 1;
927 }
928 break;
929
930 case R_386_32:
931 case R_386_PC32:
932 if (info->shared)
933 break;
934 /* Fall through. */
935
936 case R_386_PLT32:
937 r_symndx = ELF32_R_SYM (rel->r_info);
938 if (r_symndx >= symtab_hdr->sh_info)
939 {
940 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
941 if (h->plt.refcount > 0)
942 h->plt.refcount -= 1;
943 }
944 break;
945
946 default:
947 break;
948 }
949
950 return true;
951 }
952
953 /* Adjust a symbol defined by a dynamic object and referenced by a
954 regular object. The current definition is in some section of the
955 dynamic object, but we're not including those sections. We have to
956 change the definition to something the rest of the link can
957 understand. */
958
959 static boolean
960 elf_i386_adjust_dynamic_symbol (info, h)
961 struct bfd_link_info *info;
962 struct elf_link_hash_entry *h;
963 {
964 struct elf_i386_link_hash_table *htab;
965 bfd *dynobj;
966 asection *s;
967 unsigned int power_of_two;
968
969 htab = elf_i386_hash_table (info);
970 dynobj = htab->root.dynobj;
971
972 /* If this is a function, put it in the procedure linkage table. We
973 will fill in the contents of the procedure linkage table later,
974 when we know the address of the .got section. */
975 if (h->type == STT_FUNC
976 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
977 {
978 if (h->plt.refcount <= 0
979 || (! info->shared
980 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
981 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
982 {
983 /* This case can occur if we saw a PLT32 reloc in an input
984 file, but the symbol was never referred to by a dynamic
985 object, or if all references were garbage collected. In
986 such a case, we don't actually need to build a procedure
987 linkage table, and we can just do a PC32 reloc instead. */
988 h->plt.refcount = (bfd_vma) -1;
989 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
990 }
991
992 return true;
993 }
994 else
995 /* It's possible that we incorrectly decided a .plt reloc was
996 needed for an R_386_PC32 reloc to a non-function sym in
997 check_relocs. We can't decide accurately between function and
998 non-function syms in check-relocs; Objects loaded later in
999 the link may change h->type. So fix it now. */
1000 h->plt.refcount = (bfd_vma) -1;
1001
1002 /* If this is a weak symbol, and there is a real definition, the
1003 processor independent code will have arranged for us to see the
1004 real definition first, and we can just use the same value. */
1005 if (h->weakdef != NULL)
1006 {
1007 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1008 || h->weakdef->root.type == bfd_link_hash_defweak);
1009 h->root.u.def.section = h->weakdef->root.u.def.section;
1010 h->root.u.def.value = h->weakdef->root.u.def.value;
1011 return true;
1012 }
1013
1014 /* This is a reference to a symbol defined by a dynamic object which
1015 is not a function. */
1016
1017 /* If we are creating a shared library, we must presume that the
1018 only references to the symbol are via the global offset table.
1019 For such cases we need not do anything here; the relocations will
1020 be handled correctly by relocate_section. */
1021 if (info->shared)
1022 return true;
1023
1024 /* If there are no references to this symbol that do not use the
1025 GOT, we don't need to generate a copy reloc. */
1026 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1027 return true;
1028
1029 /* We must allocate the symbol in our .dynbss section, which will
1030 become part of the .bss section of the executable. There will be
1031 an entry for this symbol in the .dynsym section. The dynamic
1032 object will contain position independent code, so all references
1033 from the dynamic object to this symbol will go through the global
1034 offset table. The dynamic linker will use the .dynsym entry to
1035 determine the address it must put in the global offset table, so
1036 both the dynamic object and the regular object will refer to the
1037 same memory location for the variable. */
1038
1039 s = htab->sdynbss;
1040 if (s == NULL)
1041 abort ();
1042
1043 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1044 copy the initial value out of the dynamic object and into the
1045 runtime process image. We need to remember the offset into the
1046 .rel.bss section we are going to use. */
1047 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1048 {
1049 asection *srel;
1050
1051 srel = htab->srelbss;
1052 if (srel == NULL)
1053 abort ();
1054 srel->_raw_size += sizeof (Elf32_External_Rel);
1055 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1056 }
1057
1058 /* We need to figure out the alignment required for this symbol. I
1059 have no idea how ELF linkers handle this. */
1060 power_of_two = bfd_log2 (h->size);
1061 if (power_of_two > 3)
1062 power_of_two = 3;
1063
1064 /* Apply the required alignment. */
1065 s->_raw_size = BFD_ALIGN (s->_raw_size,
1066 (bfd_size_type) (1 << power_of_two));
1067 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1068 {
1069 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1070 return false;
1071 }
1072
1073 /* Define the symbol as being at this point in the section. */
1074 h->root.u.def.section = s;
1075 h->root.u.def.value = s->_raw_size;
1076
1077 /* Increment the section size to make room for the symbol. */
1078 s->_raw_size += h->size;
1079
1080 return true;
1081 }
1082
1083 /* This is the condition under which elf_i386_finish_dynamic_symbol
1084 will be called from elflink.h. If elflink.h doesn't call our
1085 finish_dynamic_symbol routine, we'll need to do something about
1086 initializing any .plt and .got entries in elf_i386_relocate_section. */
1087 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1088 ((DYN) \
1089 && ((INFO)->shared \
1090 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1091 && ((H)->dynindx != -1 \
1092 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1093
1094 /* Allocate space in .plt, .got and associated reloc sections for
1095 global syms. Also discards space allocated for relocs in the
1096 check_relocs function that we subsequently have found to be
1097 unneeded. */
1098
1099 static boolean
1100 allocate_plt_and_got_and_discard_relocs (h, inf)
1101 struct elf_link_hash_entry *h;
1102 PTR inf;
1103 {
1104 struct bfd_link_info *info;
1105 struct elf_i386_link_hash_table *htab;
1106 asection *s;
1107 struct elf_i386_link_hash_entry *eh;
1108
1109 if (h->root.type == bfd_link_hash_indirect
1110 || h->root.type == bfd_link_hash_warning)
1111 return true;
1112
1113 info = (struct bfd_link_info *) inf;
1114 htab = elf_i386_hash_table (info);
1115
1116 if (htab->root.dynamic_sections_created
1117 && h->plt.refcount > 0)
1118 {
1119 /* Make sure this symbol is output as a dynamic symbol.
1120 Undefined weak syms won't yet be marked as dynamic. */
1121 if (h->dynindx == -1
1122 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1123 {
1124 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1125 return false;
1126 }
1127
1128 s = htab->splt;
1129 if (s == NULL)
1130 abort ();
1131
1132 /* If this is the first .plt entry, make room for the special
1133 first entry. */
1134 if (s->_raw_size == 0)
1135 s->_raw_size += PLT_ENTRY_SIZE;
1136
1137 h->plt.offset = s->_raw_size;
1138
1139 /* If this symbol is not defined in a regular file, and we are
1140 not generating a shared library, then set the symbol to this
1141 location in the .plt. This is required to make function
1142 pointers compare as equal between the normal executable and
1143 the shared library. */
1144 if (! info->shared
1145 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1146 {
1147 h->root.u.def.section = s;
1148 h->root.u.def.value = h->plt.offset;
1149 }
1150
1151 /* Make room for this entry. */
1152 s->_raw_size += PLT_ENTRY_SIZE;
1153
1154 /* We also need to make an entry in the .got.plt section, which
1155 will be placed in the .got section by the linker script. */
1156 s = htab->sgotplt;
1157 if (s == NULL)
1158 abort ();
1159 s->_raw_size += 4;
1160
1161 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1162 {
1163 /* We also need to make an entry in the .rel.plt section. */
1164 s = htab->srelplt;
1165 if (s == NULL)
1166 abort ();
1167 s->_raw_size += sizeof (Elf32_External_Rel);
1168 }
1169 }
1170 else
1171 {
1172 h->plt.offset = (bfd_vma) -1;
1173 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1174 }
1175
1176 if (h->got.refcount > 0)
1177 {
1178 boolean dyn;
1179
1180 /* Make sure this symbol is output as a dynamic symbol.
1181 Undefined weak syms won't yet be marked as dynamic. */
1182 if (h->dynindx == -1
1183 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1184 {
1185 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1186 return false;
1187 }
1188
1189 s = htab->sgot;
1190 h->got.offset = s->_raw_size;
1191 s->_raw_size += 4;
1192 dyn = htab->root.dynamic_sections_created;
1193 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1194 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1195 }
1196 else
1197 h->got.offset = (bfd_vma) -1;
1198
1199 /* In the shared -Bsymbolic case, discard space allocated for
1200 dynamic relocs against symbols which turn out to be defined
1201 in regular objects. For the normal shared case, discard space
1202 for relocs that have become local due to symbol visibility
1203 changes. For the non-shared case, discard space for symbols
1204 which turn out to need copy relocs or are not dynamic. */
1205
1206 eh = (struct elf_i386_link_hash_entry *) h;
1207 if (eh->dyn_relocs == NULL)
1208 return true;
1209
1210 if (!info->shared
1211 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1212 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1213 || (htab->root.dynamic_sections_created
1214 && (h->root.type == bfd_link_hash_undefweak
1215 || h->root.type == bfd_link_hash_undefined))))
1216 {
1217 /* Make sure this symbol is output as a dynamic symbol.
1218 Undefined weak syms won't yet be marked as dynamic. */
1219 if (h->dynindx == -1
1220 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1221 {
1222 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1223 return false;
1224 }
1225
1226 /* If that succeeded, we know we'll be keeping all the relocs. */
1227 if (h->dynindx != -1)
1228 return true;
1229 }
1230
1231 if (!info->shared
1232 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1233 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1234 || info->symbolic)))
1235 {
1236 struct elf_i386_dyn_relocs *c;
1237
1238 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1239 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1240 }
1241
1242 return true;
1243 }
1244
1245 /* Set the sizes of the dynamic sections. */
1246
1247 static boolean
1248 elf_i386_size_dynamic_sections (output_bfd, info)
1249 bfd *output_bfd ATTRIBUTE_UNUSED;
1250 struct bfd_link_info *info;
1251 {
1252 struct elf_i386_link_hash_table *htab;
1253 bfd *dynobj;
1254 asection *s;
1255 boolean relocs;
1256 bfd *i;
1257
1258 htab = elf_i386_hash_table (info);
1259 dynobj = htab->root.dynobj;
1260 if (dynobj == NULL)
1261 abort ();
1262
1263 if (htab->root.dynamic_sections_created)
1264 {
1265 /* Set the contents of the .interp section to the interpreter. */
1266 if (! info->shared)
1267 {
1268 s = bfd_get_section_by_name (dynobj, ".interp");
1269 if (s == NULL)
1270 abort ();
1271 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1272 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1273 }
1274 }
1275
1276 /* Set up .got offsets for local syms. */
1277 for (i = info->input_bfds; i; i = i->link_next)
1278 {
1279 bfd_signed_vma *local_got;
1280 bfd_signed_vma *end_local_got;
1281 bfd_size_type locsymcount;
1282 Elf_Internal_Shdr *symtab_hdr;
1283 asection *srel;
1284
1285 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1286 continue;
1287
1288 local_got = elf_local_got_refcounts (i);
1289 if (!local_got)
1290 continue;
1291
1292 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1293 locsymcount = symtab_hdr->sh_info;
1294 end_local_got = local_got + locsymcount;
1295 s = htab->sgot;
1296 srel = htab->srelgot;
1297 for (; local_got < end_local_got; ++local_got)
1298 {
1299 if (*local_got > 0)
1300 {
1301 *local_got = s->_raw_size;
1302 s->_raw_size += 4;
1303 if (info->shared)
1304 srel->_raw_size += sizeof (Elf32_External_Rel);
1305 }
1306 else
1307 *local_got = (bfd_vma) -1;
1308 }
1309 }
1310
1311 /* Allocate global sym .plt and .got entries. Also discard all
1312 unneeded relocs. */
1313 elf_link_hash_traverse (&htab->root,
1314 allocate_plt_and_got_and_discard_relocs,
1315 (PTR) info);
1316
1317 /* We now have determined the sizes of the various dynamic sections.
1318 Allocate memory for them. */
1319 relocs = false;
1320 for (s = dynobj->sections; s != NULL; s = s->next)
1321 {
1322 if ((s->flags & SEC_LINKER_CREATED) == 0)
1323 continue;
1324
1325 if (s == htab->splt
1326 || s == htab->sgot
1327 || s == htab->sgotplt)
1328 {
1329 /* Strip this section if we don't need it; see the
1330 comment below. */
1331 }
1332 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1333 {
1334 if (s->_raw_size == 0)
1335 {
1336 /* If we don't need this section, strip it from the
1337 output file. This is mostly to handle .rel.bss and
1338 .rel.plt. We must create both sections in
1339 create_dynamic_sections, because they must be created
1340 before the linker maps input sections to output
1341 sections. The linker does that before
1342 adjust_dynamic_symbol is called, and it is that
1343 function which decides whether anything needs to go
1344 into these sections. */
1345 }
1346 else
1347 {
1348 if (s != htab->srelplt)
1349 relocs = true;
1350
1351 /* We use the reloc_count field as a counter if we need
1352 to copy relocs into the output file. */
1353 s->reloc_count = 0;
1354 }
1355 }
1356 else
1357 {
1358 /* It's not one of our sections, so don't allocate space. */
1359 continue;
1360 }
1361
1362 if (s->_raw_size == 0)
1363 {
1364 _bfd_strip_section_from_output (info, s);
1365 continue;
1366 }
1367
1368 /* Allocate memory for the section contents. We use bfd_zalloc
1369 here in case unused entries are not reclaimed before the
1370 section's contents are written out. This should not happen,
1371 but this way if it does, we get a R_386_NONE reloc instead
1372 of garbage. */
1373 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1374 if (s->contents == NULL)
1375 return false;
1376 }
1377
1378 if (htab->root.dynamic_sections_created)
1379 {
1380 /* Add some entries to the .dynamic section. We fill in the
1381 values later, in elf_i386_finish_dynamic_sections, but we
1382 must add the entries now so that we get the correct size for
1383 the .dynamic section. The DT_DEBUG entry is filled in by the
1384 dynamic linker and used by the debugger. */
1385 if (! info->shared)
1386 {
1387 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1388 return false;
1389 }
1390
1391 if (htab->splt->_raw_size != 0)
1392 {
1393 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1394 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1395 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1396 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1397 return false;
1398 }
1399
1400 if (relocs)
1401 {
1402 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1403 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1404 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1405 sizeof (Elf32_External_Rel)))
1406 return false;
1407 }
1408
1409 if ((info->flags & DF_TEXTREL) != 0)
1410 {
1411 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1412 return false;
1413 }
1414 }
1415
1416 return true;
1417 }
1418
1419 /* Relocate an i386 ELF section. */
1420
1421 static boolean
1422 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1423 contents, relocs, local_syms, local_sections)
1424 bfd *output_bfd;
1425 struct bfd_link_info *info;
1426 bfd *input_bfd;
1427 asection *input_section;
1428 bfd_byte *contents;
1429 Elf_Internal_Rela *relocs;
1430 Elf_Internal_Sym *local_syms;
1431 asection **local_sections;
1432 {
1433 struct elf_i386_link_hash_table *htab;
1434 bfd *dynobj;
1435 Elf_Internal_Shdr *symtab_hdr;
1436 struct elf_link_hash_entry **sym_hashes;
1437 bfd_vma *local_got_offsets;
1438 asection *sreloc;
1439 Elf_Internal_Rela *rel;
1440 Elf_Internal_Rela *relend;
1441
1442 htab = elf_i386_hash_table (info);
1443 dynobj = htab->root.dynobj;
1444 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1445 sym_hashes = elf_sym_hashes (input_bfd);
1446 local_got_offsets = elf_local_got_offsets (input_bfd);
1447
1448 sreloc = NULL;
1449 rel = relocs;
1450 relend = relocs + input_section->reloc_count;
1451 for (; rel < relend; rel++)
1452 {
1453 int r_type;
1454 reloc_howto_type *howto;
1455 unsigned long r_symndx;
1456 struct elf_link_hash_entry *h;
1457 Elf_Internal_Sym *sym;
1458 asection *sec;
1459 bfd_vma off;
1460 bfd_vma relocation;
1461 boolean unresolved_reloc;
1462 bfd_reloc_status_type r;
1463 unsigned int indx;
1464
1465 r_type = ELF32_R_TYPE (rel->r_info);
1466 if (r_type == (int) R_386_GNU_VTINHERIT
1467 || r_type == (int) R_386_GNU_VTENTRY)
1468 continue;
1469
1470 if ((indx = (unsigned) r_type) >= R_386_standard
1471 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1472 >= R_386_ext - R_386_standard))
1473 {
1474 bfd_set_error (bfd_error_bad_value);
1475 return false;
1476 }
1477 howto = elf_howto_table + indx;
1478
1479 r_symndx = ELF32_R_SYM (rel->r_info);
1480
1481 if (info->relocateable)
1482 {
1483 /* This is a relocateable link. We don't have to change
1484 anything, unless the reloc is against a section symbol,
1485 in which case we have to adjust according to where the
1486 section symbol winds up in the output section. */
1487 if (r_symndx < symtab_hdr->sh_info)
1488 {
1489 sym = local_syms + r_symndx;
1490 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1491 {
1492 bfd_vma val;
1493
1494 sec = local_sections[r_symndx];
1495 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1496 val += sec->output_offset + sym->st_value;
1497 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1498 }
1499 }
1500
1501 continue;
1502 }
1503
1504 /* This is a final link. */
1505 h = NULL;
1506 sym = NULL;
1507 sec = NULL;
1508 unresolved_reloc = false;
1509 if (r_symndx < symtab_hdr->sh_info)
1510 {
1511 sym = local_syms + r_symndx;
1512 sec = local_sections[r_symndx];
1513 relocation = (sec->output_section->vma
1514 + sec->output_offset
1515 + sym->st_value);
1516 }
1517 else
1518 {
1519 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1520 while (h->root.type == bfd_link_hash_indirect
1521 || h->root.type == bfd_link_hash_warning)
1522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1523
1524 relocation = 0;
1525 if (h->root.type == bfd_link_hash_defined
1526 || h->root.type == bfd_link_hash_defweak)
1527 {
1528 sec = h->root.u.def.section;
1529 if (sec->output_section == NULL)
1530 /* Set a flag that will be cleared later if we find a
1531 relocation value for this symbol. output_section
1532 is typically NULL for symbols satisfied by a shared
1533 library. */
1534 unresolved_reloc = true;
1535 else
1536 relocation = (h->root.u.def.value
1537 + sec->output_section->vma
1538 + sec->output_offset);
1539 }
1540 else if (h->root.type == bfd_link_hash_undefweak)
1541 ;
1542 else if (info->shared && !info->symbolic
1543 && !info->no_undefined
1544 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1545 ;
1546 else
1547 {
1548 if (! ((*info->callbacks->undefined_symbol)
1549 (info, h->root.root.string, input_bfd,
1550 input_section, rel->r_offset,
1551 (!info->shared || info->no_undefined
1552 || ELF_ST_VISIBILITY (h->other)))))
1553 return false;
1554 }
1555 }
1556
1557 switch (r_type)
1558 {
1559 case R_386_GOT32:
1560 /* Relocation is to the entry for this symbol in the global
1561 offset table. */
1562 if (htab->sgot == NULL)
1563 abort ();
1564
1565 if (h != NULL)
1566 {
1567 boolean dyn;
1568
1569 off = h->got.offset;
1570 dyn = htab->root.dynamic_sections_created;
1571 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1572 || (info->shared
1573 && (info->symbolic
1574 || h->dynindx == -1
1575 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1576 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1577 {
1578 /* This is actually a static link, or it is a
1579 -Bsymbolic link and the symbol is defined
1580 locally, or the symbol was forced to be local
1581 because of a version file. We must initialize
1582 this entry in the global offset table. Since the
1583 offset must always be a multiple of 4, we use the
1584 least significant bit to record whether we have
1585 initialized it already.
1586
1587 When doing a dynamic link, we create a .rel.got
1588 relocation entry to initialize the value. This
1589 is done in the finish_dynamic_symbol routine. */
1590 if ((off & 1) != 0)
1591 off &= ~1;
1592 else
1593 {
1594 bfd_put_32 (output_bfd, relocation,
1595 htab->sgot->contents + off);
1596 h->got.offset |= 1;
1597 }
1598 }
1599 else
1600 unresolved_reloc = false;
1601 }
1602 else
1603 {
1604 if (local_got_offsets == NULL)
1605 abort ();
1606
1607 off = local_got_offsets[r_symndx];
1608
1609 /* The offset must always be a multiple of 4. We use
1610 the least significant bit to record whether we have
1611 already generated the necessary reloc. */
1612 if ((off & 1) != 0)
1613 off &= ~1;
1614 else
1615 {
1616 bfd_put_32 (output_bfd, relocation,
1617 htab->sgot->contents + off);
1618
1619 if (info->shared)
1620 {
1621 asection *srelgot;
1622 Elf_Internal_Rel outrel;
1623
1624 srelgot = htab->srelgot;
1625 if (srelgot == NULL)
1626 abort ();
1627
1628 outrel.r_offset = (htab->sgot->output_section->vma
1629 + htab->sgot->output_offset
1630 + off);
1631 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1632 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1633 (((Elf32_External_Rel *)
1634 srelgot->contents)
1635 + srelgot->reloc_count));
1636 ++srelgot->reloc_count;
1637 }
1638
1639 local_got_offsets[r_symndx] |= 1;
1640 }
1641 }
1642
1643 if (off >= (bfd_vma) -2)
1644 abort ();
1645
1646 relocation = htab->sgot->output_offset + off;
1647 break;
1648
1649 case R_386_GOTOFF:
1650 /* Relocation is relative to the start of the global offset
1651 table. */
1652
1653 /* Note that sgot->output_offset is not involved in this
1654 calculation. We always want the start of .got. If we
1655 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1656 permitted by the ABI, we might have to change this
1657 calculation. */
1658 relocation -= htab->sgot->output_section->vma;
1659 break;
1660
1661 case R_386_GOTPC:
1662 /* Use global offset table as symbol value. */
1663 relocation = htab->sgot->output_section->vma;
1664 unresolved_reloc = false;
1665 break;
1666
1667 case R_386_PLT32:
1668 /* Relocation is to the entry for this symbol in the
1669 procedure linkage table. */
1670
1671 /* Resolve a PLT32 reloc against a local symbol directly,
1672 without using the procedure linkage table. */
1673 if (h == NULL)
1674 break;
1675
1676 if (h->plt.offset == (bfd_vma) -1
1677 || htab->splt == NULL)
1678 {
1679 /* We didn't make a PLT entry for this symbol. This
1680 happens when statically linking PIC code, or when
1681 using -Bsymbolic. */
1682 break;
1683 }
1684
1685 relocation = (htab->splt->output_section->vma
1686 + htab->splt->output_offset
1687 + h->plt.offset);
1688 unresolved_reloc = false;
1689 break;
1690
1691 case R_386_32:
1692 case R_386_PC32:
1693 if ((info->shared
1694 && (input_section->flags & SEC_ALLOC) != 0
1695 && (r_type != R_386_PC32
1696 || (h != NULL
1697 && h->dynindx != -1
1698 && (! info->symbolic
1699 || (h->elf_link_hash_flags
1700 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1701 || (!info->shared
1702 && (input_section->flags & SEC_ALLOC) != 0
1703 && h != NULL
1704 && h->dynindx != -1
1705 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1706 && ((h->elf_link_hash_flags
1707 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1708 || h->root.type == bfd_link_hash_undefweak
1709 || h->root.type == bfd_link_hash_undefined)))
1710 {
1711 Elf_Internal_Rel outrel;
1712 boolean skip, relocate;
1713
1714 /* When generating a shared object, these relocations
1715 are copied into the output file to be resolved at run
1716 time. */
1717
1718 if (sreloc == NULL)
1719 {
1720 const char *name;
1721
1722 name = (bfd_elf_string_from_elf_section
1723 (input_bfd,
1724 elf_elfheader (input_bfd)->e_shstrndx,
1725 elf_section_data (input_section)->rel_hdr.sh_name));
1726 if (name == NULL)
1727 return false;
1728
1729 if (strncmp (name, ".rel", 4) != 0
1730 || strcmp (bfd_get_section_name (input_bfd,
1731 input_section),
1732 name + 4) != 0)
1733 {
1734 if (input_bfd->my_archive)
1735 (*_bfd_error_handler)\
1736 (_("%s(%s): bad relocation section name `%s\'"),
1737 bfd_get_filename (input_bfd->my_archive),
1738 bfd_get_filename (input_bfd),
1739 name);
1740 else
1741 (*_bfd_error_handler)
1742 (_("%s: bad relocation section name `%s\'"),
1743 bfd_get_filename (input_bfd),
1744 name);
1745 return false;
1746 }
1747
1748 sreloc = bfd_get_section_by_name (dynobj, name);
1749 if (sreloc == NULL)
1750 abort ();
1751 }
1752
1753 skip = false;
1754
1755 if (elf_section_data (input_section)->stab_info == NULL)
1756 outrel.r_offset = rel->r_offset;
1757 else
1758 {
1759 bfd_vma off;
1760
1761 off = (_bfd_stab_section_offset
1762 (output_bfd, htab->root.stab_info, input_section,
1763 &elf_section_data (input_section)->stab_info,
1764 rel->r_offset));
1765 if (off == (bfd_vma) -1)
1766 skip = true;
1767 outrel.r_offset = off;
1768 }
1769
1770 outrel.r_offset += (input_section->output_section->vma
1771 + input_section->output_offset);
1772
1773 if (skip)
1774 {
1775 memset (&outrel, 0, sizeof outrel);
1776 relocate = false;
1777 }
1778 else if (h != NULL
1779 && h->dynindx != -1
1780 && (r_type == R_386_PC32
1781 || !info->shared
1782 || !info->symbolic
1783 || (h->elf_link_hash_flags
1784 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1785
1786 {
1787 relocate = false;
1788 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1789 }
1790 else
1791 {
1792 /* This symbol is local, or marked to become local. */
1793 relocate = true;
1794 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1795 }
1796
1797 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1798 (((Elf32_External_Rel *)
1799 sreloc->contents)
1800 + sreloc->reloc_count));
1801 ++sreloc->reloc_count;
1802
1803 /* If this reloc is against an external symbol, we do
1804 not want to fiddle with the addend. Otherwise, we
1805 need to include the symbol value so that it becomes
1806 an addend for the dynamic reloc. */
1807 if (! relocate)
1808 continue;
1809 }
1810
1811 break;
1812
1813 default:
1814 break;
1815 }
1816
1817 /* FIXME: Why do we allow debugging sections to escape this error?
1818 More importantly, why do we not emit dynamic relocs for
1819 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1820 If we had emitted the dynamic reloc, we could remove the
1821 fudge here. */
1822 if (unresolved_reloc
1823 && !(info->shared
1824 && (input_section->flags & SEC_DEBUGGING) != 0
1825 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1826 (*_bfd_error_handler)
1827 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1828 bfd_get_filename (input_bfd),
1829 bfd_get_section_name (input_bfd, input_section),
1830 (long) rel->r_offset,
1831 h->root.root.string);
1832
1833 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1834 contents, rel->r_offset,
1835 relocation, (bfd_vma) 0);
1836
1837 switch (r)
1838 {
1839 case bfd_reloc_ok:
1840 break;
1841
1842 case bfd_reloc_overflow:
1843 {
1844 const char *name;
1845
1846 if (h != NULL)
1847 name = h->root.root.string;
1848 else
1849 {
1850 name = bfd_elf_string_from_elf_section (input_bfd,
1851 symtab_hdr->sh_link,
1852 sym->st_name);
1853 if (name == NULL)
1854 return false;
1855 if (*name == '\0')
1856 name = bfd_section_name (input_bfd, sec);
1857 }
1858 if (! ((*info->callbacks->reloc_overflow)
1859 (info, name, howto->name, (bfd_vma) 0,
1860 input_bfd, input_section, rel->r_offset)))
1861 return false;
1862 }
1863 break;
1864
1865 default:
1866 case bfd_reloc_outofrange:
1867 abort ();
1868 break;
1869 }
1870 }
1871
1872 return true;
1873 }
1874
1875 /* Finish up dynamic symbol handling. We set the contents of various
1876 dynamic sections here. */
1877
1878 static boolean
1879 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1880 bfd *output_bfd;
1881 struct bfd_link_info *info;
1882 struct elf_link_hash_entry *h;
1883 Elf_Internal_Sym *sym;
1884 {
1885 struct elf_i386_link_hash_table *htab;
1886 bfd *dynobj;
1887
1888 htab = elf_i386_hash_table (info);
1889 dynobj = htab->root.dynobj;
1890
1891 if (h->plt.offset != (bfd_vma) -1)
1892 {
1893 bfd_vma plt_index;
1894 bfd_vma got_offset;
1895 Elf_Internal_Rel rel;
1896
1897 /* This symbol has an entry in the procedure linkage table. Set
1898 it up. */
1899
1900 if (h->dynindx == -1
1901 || htab->splt == NULL
1902 || htab->sgotplt == NULL
1903 || htab->srelplt == NULL)
1904 abort ();
1905
1906 /* Get the index in the procedure linkage table which
1907 corresponds to this symbol. This is the index of this symbol
1908 in all the symbols for which we are making plt entries. The
1909 first entry in the procedure linkage table is reserved. */
1910 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1911
1912 /* Get the offset into the .got table of the entry that
1913 corresponds to this function. Each .got entry is 4 bytes.
1914 The first three are reserved. */
1915 got_offset = (plt_index + 3) * 4;
1916
1917 /* Fill in the entry in the procedure linkage table. */
1918 if (! info->shared)
1919 {
1920 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1921 PLT_ENTRY_SIZE);
1922 bfd_put_32 (output_bfd,
1923 (htab->sgotplt->output_section->vma
1924 + htab->sgotplt->output_offset
1925 + got_offset),
1926 htab->splt->contents + h->plt.offset + 2);
1927 }
1928 else
1929 {
1930 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1931 PLT_ENTRY_SIZE);
1932 bfd_put_32 (output_bfd, got_offset,
1933 htab->splt->contents + h->plt.offset + 2);
1934 }
1935
1936 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1937 htab->splt->contents + h->plt.offset + 7);
1938 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1939 htab->splt->contents + h->plt.offset + 12);
1940
1941 /* Fill in the entry in the global offset table. */
1942 bfd_put_32 (output_bfd,
1943 (htab->splt->output_section->vma
1944 + htab->splt->output_offset
1945 + h->plt.offset
1946 + 6),
1947 htab->sgotplt->contents + got_offset);
1948
1949 /* Fill in the entry in the .rel.plt section. */
1950 rel.r_offset = (htab->sgotplt->output_section->vma
1951 + htab->sgotplt->output_offset
1952 + got_offset);
1953 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1954 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1955 ((Elf32_External_Rel *) htab->srelplt->contents
1956 + plt_index));
1957
1958 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1959 {
1960 /* Mark the symbol as undefined, rather than as defined in
1961 the .plt section. Leave the value alone. */
1962 sym->st_shndx = SHN_UNDEF;
1963 }
1964 }
1965
1966 if (h->got.offset != (bfd_vma) -1)
1967 {
1968 Elf_Internal_Rel rel;
1969
1970 /* This symbol has an entry in the global offset table. Set it
1971 up. */
1972
1973 if (htab->sgot == NULL || htab->srelgot == NULL)
1974 abort ();
1975
1976 rel.r_offset = (htab->sgot->output_section->vma
1977 + htab->sgot->output_offset
1978 + (h->got.offset &~ 1));
1979
1980 /* If this is a static link, or it is a -Bsymbolic link and the
1981 symbol is defined locally or was forced to be local because
1982 of a version file, we just want to emit a RELATIVE reloc.
1983 The entry in the global offset table will already have been
1984 initialized in the relocate_section function. */
1985 if (info->shared
1986 && (info->symbolic
1987 || h->dynindx == -1
1988 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1989 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1990 {
1991 BFD_ASSERT((h->got.offset & 1) != 0);
1992 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1993 }
1994 else
1995 {
1996 BFD_ASSERT((h->got.offset & 1) == 0);
1997 bfd_put_32 (output_bfd, (bfd_vma) 0,
1998 htab->sgot->contents + h->got.offset);
1999 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2000 }
2001
2002 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2003 ((Elf32_External_Rel *) htab->srelgot->contents
2004 + htab->srelgot->reloc_count));
2005 ++htab->srelgot->reloc_count;
2006 }
2007
2008 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2009 {
2010 Elf_Internal_Rel rel;
2011
2012 /* This symbol needs a copy reloc. Set it up. */
2013
2014 if (h->dynindx == -1
2015 || (h->root.type != bfd_link_hash_defined
2016 && h->root.type != bfd_link_hash_defweak)
2017 || htab->srelbss == NULL)
2018 abort ();
2019
2020 rel.r_offset = (h->root.u.def.value
2021 + h->root.u.def.section->output_section->vma
2022 + h->root.u.def.section->output_offset);
2023 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2024 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2025 ((Elf32_External_Rel *) htab->srelbss->contents
2026 + htab->srelbss->reloc_count));
2027 ++htab->srelbss->reloc_count;
2028 }
2029
2030 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2031 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2032 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2033 sym->st_shndx = SHN_ABS;
2034
2035 return true;
2036 }
2037
2038 /* Finish up the dynamic sections. */
2039
2040 static boolean
2041 elf_i386_finish_dynamic_sections (output_bfd, info)
2042 bfd *output_bfd;
2043 struct bfd_link_info *info;
2044 {
2045 struct elf_i386_link_hash_table *htab;
2046 bfd *dynobj;
2047 asection *sdyn;
2048
2049 htab = elf_i386_hash_table (info);
2050 dynobj = htab->root.dynobj;
2051 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2052
2053 if (htab->root.dynamic_sections_created)
2054 {
2055 Elf32_External_Dyn *dyncon, *dynconend;
2056
2057 if (sdyn == NULL || htab->sgot == NULL)
2058 abort ();
2059
2060 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2061 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2062 for (; dyncon < dynconend; dyncon++)
2063 {
2064 Elf_Internal_Dyn dyn;
2065
2066 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2067
2068 switch (dyn.d_tag)
2069 {
2070 default:
2071 break;
2072
2073 case DT_PLTGOT:
2074 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2075 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2076 break;
2077
2078 case DT_JMPREL:
2079 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2080 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2081 break;
2082
2083 case DT_PLTRELSZ:
2084 if (htab->srelplt->output_section->_cooked_size != 0)
2085 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2086 else
2087 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2088 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2089 break;
2090
2091 case DT_RELSZ:
2092 /* My reading of the SVR4 ABI indicates that the
2093 procedure linkage table relocs (DT_JMPREL) should be
2094 included in the overall relocs (DT_REL). This is
2095 what Solaris does. However, UnixWare can not handle
2096 that case. Therefore, we override the DT_RELSZ entry
2097 here to make it not include the JMPREL relocs. Since
2098 the linker script arranges for .rel.plt to follow all
2099 other relocation sections, we don't have to worry
2100 about changing the DT_REL entry. */
2101 if (htab->srelplt != NULL)
2102 {
2103 if (htab->srelplt->output_section->_cooked_size != 0)
2104 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2105 else
2106 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2107 }
2108 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2109 break;
2110 }
2111 }
2112
2113 /* Fill in the first entry in the procedure linkage table. */
2114 if (htab->splt && htab->splt->_raw_size > 0)
2115 {
2116 if (info->shared)
2117 memcpy (htab->splt->contents,
2118 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2119 else
2120 {
2121 memcpy (htab->splt->contents,
2122 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2123 bfd_put_32 (output_bfd,
2124 (htab->sgotplt->output_section->vma
2125 + htab->sgotplt->output_offset
2126 + 4),
2127 htab->splt->contents + 2);
2128 bfd_put_32 (output_bfd,
2129 (htab->sgotplt->output_section->vma
2130 + htab->sgotplt->output_offset
2131 + 8),
2132 htab->splt->contents + 8);
2133 }
2134
2135 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2136 really seem like the right value. */
2137 elf_section_data (htab->splt->output_section)
2138 ->this_hdr.sh_entsize = 4;
2139 }
2140 }
2141
2142 if (htab->sgotplt)
2143 {
2144 /* Fill in the first three entries in the global offset table. */
2145 if (htab->sgotplt->_raw_size > 0)
2146 {
2147 bfd_put_32 (output_bfd,
2148 (sdyn == NULL ? (bfd_vma) 0
2149 : sdyn->output_section->vma + sdyn->output_offset),
2150 htab->sgotplt->contents);
2151 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2152 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2153 }
2154
2155 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2156 }
2157 return true;
2158 }
2159
2160 /* Set the correct type for an x86 ELF section. We do this by the
2161 section name, which is a hack, but ought to work. */
2162
2163 static boolean
2164 elf_i386_fake_sections (abfd, hdr, sec)
2165 bfd *abfd ATTRIBUTE_UNUSED;
2166 Elf32_Internal_Shdr *hdr;
2167 asection *sec;
2168 {
2169 register const char *name;
2170
2171 name = bfd_get_section_name (abfd, sec);
2172
2173 if (strcmp (name, ".reloc") == 0)
2174 /*
2175 * This is an ugly, but unfortunately necessary hack that is
2176 * needed when producing EFI binaries on x86. It tells
2177 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2178 * containing ELF relocation info. We need this hack in order to
2179 * be able to generate ELF binaries that can be translated into
2180 * EFI applications (which are essentially COFF objects). Those
2181 * files contain a COFF ".reloc" section inside an ELFNN object,
2182 * which would normally cause BFD to segfault because it would
2183 * attempt to interpret this section as containing relocation
2184 * entries for section "oc". With this hack enabled, ".reloc"
2185 * will be treated as a normal data section, which will avoid the
2186 * segfault. However, you won't be able to create an ELFNN binary
2187 * with a section named "oc" that needs relocations, but that's
2188 * the kind of ugly side-effects you get when detecting section
2189 * types based on their names... In practice, this limitation is
2190 * unlikely to bite.
2191 */
2192 hdr->sh_type = SHT_PROGBITS;
2193
2194 return true;
2195 }
2196
2197 static enum elf_reloc_type_class
2198 elf_i386_reloc_type_class (type)
2199 int type;
2200 {
2201 switch (type)
2202 {
2203 case R_386_RELATIVE:
2204 return reloc_class_relative;
2205 case R_386_JUMP_SLOT:
2206 return reloc_class_plt;
2207 case R_386_COPY:
2208 return reloc_class_copy;
2209 default:
2210 return reloc_class_normal;
2211 }
2212 }
2213
2214 /* Support for core dump NOTE sections */
2215 static boolean
2216 elf_i386_grok_prstatus (abfd, note)
2217 bfd *abfd;
2218 Elf_Internal_Note *note;
2219 {
2220 int offset;
2221 int raw_size;
2222
2223 switch (note->descsz)
2224 {
2225 default:
2226 return false;
2227
2228 case 144: /* Linux/i386 */
2229 /* pr_cursig */
2230 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2231
2232 /* pr_pid */
2233 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2234
2235 /* pr_reg */
2236 offset = 72;
2237 raw_size = 68;
2238
2239 break;
2240 }
2241
2242 /* Make a ".reg/999" section. */
2243 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2244 raw_size, note->descpos + offset);
2245 }
2246
2247 static boolean
2248 elf_i386_grok_psinfo (abfd, note)
2249 bfd *abfd;
2250 Elf_Internal_Note *note;
2251 {
2252 switch (note->descsz)
2253 {
2254 default:
2255 return false;
2256
2257 case 128: /* Linux/MIPS elf_prpsinfo */
2258 elf_tdata (abfd)->core_program
2259 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2260 elf_tdata (abfd)->core_command
2261 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2262 }
2263
2264 /* Note that for some reason, a spurious space is tacked
2265 onto the end of the args in some (at least one anyway)
2266 implementations, so strip it off if it exists. */
2267
2268 {
2269 char *command = elf_tdata (abfd)->core_command;
2270 int n = strlen (command);
2271
2272 if (0 < n && command[n - 1] == ' ')
2273 command[n - 1] = '\0';
2274 }
2275
2276 return true;
2277 }
2278
2279 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2280 #define TARGET_LITTLE_NAME "elf32-i386"
2281 #define ELF_ARCH bfd_arch_i386
2282 #define ELF_MACHINE_CODE EM_386
2283 #define ELF_MAXPAGESIZE 0x1000
2284
2285 #define elf_backend_can_gc_sections 1
2286 #define elf_backend_want_got_plt 1
2287 #define elf_backend_plt_readonly 1
2288 #define elf_backend_want_plt_sym 0
2289 #define elf_backend_got_header_size 12
2290 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2291
2292 #define elf_info_to_howto elf_i386_info_to_howto
2293 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2294
2295 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2296 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2297 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2298
2299 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2300 #define elf_backend_check_relocs elf_i386_check_relocs
2301 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2302 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2303 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2304 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2305 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2306 #define elf_backend_relocate_section elf_i386_relocate_section
2307 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2308 #define elf_backend_fake_sections elf_i386_fake_sections
2309 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2310 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2311 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2312
2313 #include "elf32-target.h"