bfd/
[binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/m68k.h"
28 #include "opcode/m68k.h"
29
30 static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32 static void rtype_to_howto
33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
34 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
37 PARAMS ((bfd *));
38 static bfd_boolean elf_m68k_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static bfd_boolean elf_m68k_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static bfd_boolean elf_m68k_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static bfd_boolean elf_m68k_relocate_section
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
50 static bfd_boolean elf_m68k_finish_dynamic_symbol
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
52 Elf_Internal_Sym *));
53 static bfd_boolean elf_m68k_finish_dynamic_sections
54 PARAMS ((bfd *, struct bfd_link_info *));
55
56 static bfd_boolean elf32_m68k_set_private_flags
57 PARAMS ((bfd *, flagword));
58 static bfd_boolean elf32_m68k_merge_private_bfd_data
59 PARAMS ((bfd *, bfd *));
60 static bfd_boolean elf32_m68k_print_private_bfd_data
61 PARAMS ((bfd *, PTR));
62 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
63 PARAMS ((const Elf_Internal_Rela *));
64
65 static reloc_howto_type howto_table[] = {
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
89 /* GNU extension to record C++ vtable hierarchy. */
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
91 0, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 0, /* bitsize */
94 FALSE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
99 FALSE, /* partial_inplace */
100 0, /* src_mask */
101 0, /* dst_mask */
102 FALSE),
103 /* GNU extension to record C++ vtable member usage. */
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
113 FALSE, /* partial_inplace */
114 0, /* src_mask */
115 0, /* dst_mask */
116 FALSE),
117
118 /* TLS general dynamic variable reference. */
119 HOWTO (R_68K_TLS_GD32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 FALSE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_68K_TLS_GD32", /* name */
128 FALSE, /* partial_inplace */
129 0, /* src_mask */
130 0xffffffff, /* dst_mask */
131 FALSE), /* pcrel_offset */
132
133 HOWTO (R_68K_TLS_GD16, /* type */
134 0, /* rightshift */
135 1, /* size (0 = byte, 1 = short, 2 = long) */
136 16, /* bitsize */
137 FALSE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_signed, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_68K_TLS_GD16", /* name */
142 FALSE, /* partial_inplace */
143 0, /* src_mask */
144 0x0000ffff, /* dst_mask */
145 FALSE), /* pcrel_offset */
146
147 HOWTO (R_68K_TLS_GD8, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 FALSE, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 bfd_elf_generic_reloc, /* special_function */
155 "R_68K_TLS_GD8", /* name */
156 FALSE, /* partial_inplace */
157 0, /* src_mask */
158 0x000000ff, /* dst_mask */
159 FALSE), /* pcrel_offset */
160
161 /* TLS local dynamic variable reference. */
162 HOWTO (R_68K_TLS_LDM32, /* type */
163 0, /* rightshift */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
165 32, /* bitsize */
166 FALSE, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 bfd_elf_generic_reloc, /* special_function */
170 "R_68K_TLS_LDM32", /* name */
171 FALSE, /* partial_inplace */
172 0, /* src_mask */
173 0xffffffff, /* dst_mask */
174 FALSE), /* pcrel_offset */
175
176 HOWTO (R_68K_TLS_LDM16, /* type */
177 0, /* rightshift */
178 1, /* size (0 = byte, 1 = short, 2 = long) */
179 16, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_signed, /* complain_on_overflow */
183 bfd_elf_generic_reloc, /* special_function */
184 "R_68K_TLS_LDM16", /* name */
185 FALSE, /* partial_inplace */
186 0, /* src_mask */
187 0x0000ffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
189
190 HOWTO (R_68K_TLS_LDM8, /* type */
191 0, /* rightshift */
192 0, /* size (0 = byte, 1 = short, 2 = long) */
193 8, /* bitsize */
194 FALSE, /* pc_relative */
195 0, /* bitpos */
196 complain_overflow_signed, /* complain_on_overflow */
197 bfd_elf_generic_reloc, /* special_function */
198 "R_68K_TLS_LDM8", /* name */
199 FALSE, /* partial_inplace */
200 0, /* src_mask */
201 0x000000ff, /* dst_mask */
202 FALSE), /* pcrel_offset */
203
204 HOWTO (R_68K_TLS_LDO32, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_bitfield, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_68K_TLS_LDO32", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0xffffffff, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 HOWTO (R_68K_TLS_LDO16, /* type */
219 0, /* rightshift */
220 1, /* size (0 = byte, 1 = short, 2 = long) */
221 16, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_signed, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_68K_TLS_LDO16", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0x0000ffff, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 HOWTO (R_68K_TLS_LDO8, /* type */
233 0, /* rightshift */
234 0, /* size (0 = byte, 1 = short, 2 = long) */
235 8, /* bitsize */
236 FALSE, /* pc_relative */
237 0, /* bitpos */
238 complain_overflow_signed, /* complain_on_overflow */
239 bfd_elf_generic_reloc, /* special_function */
240 "R_68K_TLS_LDO8", /* name */
241 FALSE, /* partial_inplace */
242 0, /* src_mask */
243 0x000000ff, /* dst_mask */
244 FALSE), /* pcrel_offset */
245
246 /* TLS initial execution variable reference. */
247 HOWTO (R_68K_TLS_IE32, /* type */
248 0, /* rightshift */
249 2, /* size (0 = byte, 1 = short, 2 = long) */
250 32, /* bitsize */
251 FALSE, /* pc_relative */
252 0, /* bitpos */
253 complain_overflow_bitfield, /* complain_on_overflow */
254 bfd_elf_generic_reloc, /* special_function */
255 "R_68K_TLS_IE32", /* name */
256 FALSE, /* partial_inplace */
257 0, /* src_mask */
258 0xffffffff, /* dst_mask */
259 FALSE), /* pcrel_offset */
260
261 HOWTO (R_68K_TLS_IE16, /* type */
262 0, /* rightshift */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
264 16, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_signed, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_68K_TLS_IE16", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x0000ffff, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 HOWTO (R_68K_TLS_IE8, /* type */
276 0, /* rightshift */
277 0, /* size (0 = byte, 1 = short, 2 = long) */
278 8, /* bitsize */
279 FALSE, /* pc_relative */
280 0, /* bitpos */
281 complain_overflow_signed, /* complain_on_overflow */
282 bfd_elf_generic_reloc, /* special_function */
283 "R_68K_TLS_IE8", /* name */
284 FALSE, /* partial_inplace */
285 0, /* src_mask */
286 0x000000ff, /* dst_mask */
287 FALSE), /* pcrel_offset */
288
289 /* TLS local execution variable reference. */
290 HOWTO (R_68K_TLS_LE32, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 32, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_68K_TLS_LE32", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0xffffffff, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 HOWTO (R_68K_TLS_LE16, /* type */
305 0, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 16, /* bitsize */
308 FALSE, /* pc_relative */
309 0, /* bitpos */
310 complain_overflow_signed, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_68K_TLS_LE16", /* name */
313 FALSE, /* partial_inplace */
314 0, /* src_mask */
315 0x0000ffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317
318 HOWTO (R_68K_TLS_LE8, /* type */
319 0, /* rightshift */
320 0, /* size (0 = byte, 1 = short, 2 = long) */
321 8, /* bitsize */
322 FALSE, /* pc_relative */
323 0, /* bitpos */
324 complain_overflow_signed, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_68K_TLS_LE8", /* name */
327 FALSE, /* partial_inplace */
328 0, /* src_mask */
329 0x000000ff, /* dst_mask */
330 FALSE), /* pcrel_offset */
331
332 /* TLS GD/LD dynamic relocations. */
333 HOWTO (R_68K_TLS_DTPMOD32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_68K_TLS_DTPMOD32", /* name */
342 FALSE, /* partial_inplace */
343 0, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_68K_TLS_DTPREL32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_68K_TLS_DTPREL32", /* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 HOWTO (R_68K_TLS_TPREL32, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 32, /* bitsize */
365 FALSE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_68K_TLS_TPREL32", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
374 };
375
376 static void
377 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
378 {
379 unsigned int indx = ELF32_R_TYPE (dst->r_info);
380
381 if (indx >= (unsigned int) R_68K_max)
382 {
383 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
384 abfd, (int) indx);
385 indx = R_68K_NONE;
386 }
387 cache_ptr->howto = &howto_table[indx];
388 }
389
390 #define elf_info_to_howto rtype_to_howto
391
392 static const struct
393 {
394 bfd_reloc_code_real_type bfd_val;
395 int elf_val;
396 }
397 reloc_map[] =
398 {
399 { BFD_RELOC_NONE, R_68K_NONE },
400 { BFD_RELOC_32, R_68K_32 },
401 { BFD_RELOC_16, R_68K_16 },
402 { BFD_RELOC_8, R_68K_8 },
403 { BFD_RELOC_32_PCREL, R_68K_PC32 },
404 { BFD_RELOC_16_PCREL, R_68K_PC16 },
405 { BFD_RELOC_8_PCREL, R_68K_PC8 },
406 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
407 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
408 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
409 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
410 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
411 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
412 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
413 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
414 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
415 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
416 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
417 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
418 { BFD_RELOC_NONE, R_68K_COPY },
419 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
420 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
421 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
422 { BFD_RELOC_CTOR, R_68K_32 },
423 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
424 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
425 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
426 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
427 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
428 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
429 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
430 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
431 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
432 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
433 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
434 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
435 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
436 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
437 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
438 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
439 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
440 };
441
442 static reloc_howto_type *
443 reloc_type_lookup (abfd, code)
444 bfd *abfd ATTRIBUTE_UNUSED;
445 bfd_reloc_code_real_type code;
446 {
447 unsigned int i;
448 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
449 {
450 if (reloc_map[i].bfd_val == code)
451 return &howto_table[reloc_map[i].elf_val];
452 }
453 return 0;
454 }
455
456 static reloc_howto_type *
457 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
458 {
459 unsigned int i;
460
461 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
462 if (howto_table[i].name != NULL
463 && strcasecmp (howto_table[i].name, r_name) == 0)
464 return &howto_table[i];
465
466 return NULL;
467 }
468
469 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
470 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
471 #define ELF_ARCH bfd_arch_m68k
472 \f
473 /* Functions for the m68k ELF linker. */
474
475 /* The name of the dynamic interpreter. This is put in the .interp
476 section. */
477
478 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
479
480 /* Describes one of the various PLT styles. */
481
482 struct elf_m68k_plt_info
483 {
484 /* The size of each PLT entry. */
485 bfd_vma size;
486
487 /* The template for the first PLT entry. */
488 const bfd_byte *plt0_entry;
489
490 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
491 The comments by each member indicate the value that the relocation
492 is against. */
493 struct {
494 unsigned int got4; /* .got + 4 */
495 unsigned int got8; /* .got + 8 */
496 } plt0_relocs;
497
498 /* The template for a symbol's PLT entry. */
499 const bfd_byte *symbol_entry;
500
501 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
502 The comments by each member indicate the value that the relocation
503 is against. */
504 struct {
505 unsigned int got; /* the symbol's .got.plt entry */
506 unsigned int plt; /* .plt */
507 } symbol_relocs;
508
509 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
510 The stub starts with "move.l #relocoffset,%d0". */
511 bfd_vma symbol_resolve_entry;
512 };
513
514 /* The size in bytes of an entry in the procedure linkage table. */
515
516 #define PLT_ENTRY_SIZE 20
517
518 /* The first entry in a procedure linkage table looks like this. See
519 the SVR4 ABI m68k supplement to see how this works. */
520
521 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
522 {
523 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
524 0, 0, 0, 2, /* + (.got + 4) - . */
525 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
526 0, 0, 0, 2, /* + (.got + 8) - . */
527 0, 0, 0, 0 /* pad out to 20 bytes. */
528 };
529
530 /* Subsequent entries in a procedure linkage table look like this. */
531
532 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
533 {
534 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
535 0, 0, 0, 2, /* + (.got.plt entry) - . */
536 0x2f, 0x3c, /* move.l #offset,-(%sp) */
537 0, 0, 0, 0, /* + reloc index */
538 0x60, 0xff, /* bra.l .plt */
539 0, 0, 0, 0 /* + .plt - . */
540 };
541
542 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
543 PLT_ENTRY_SIZE,
544 elf_m68k_plt0_entry, { 4, 12 },
545 elf_m68k_plt_entry, { 4, 16 }, 8
546 };
547
548 #define ISAB_PLT_ENTRY_SIZE 24
549
550 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
551 {
552 0x20, 0x3c, /* move.l #offset,%d0 */
553 0, 0, 0, 0, /* + (.got + 4) - . */
554 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
555 0x20, 0x3c, /* move.l #offset,%d0 */
556 0, 0, 0, 0, /* + (.got + 8) - . */
557 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
558 0x4e, 0xd0, /* jmp (%a0) */
559 0x4e, 0x71 /* nop */
560 };
561
562 /* Subsequent entries in a procedure linkage table look like this. */
563
564 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
565 {
566 0x20, 0x3c, /* move.l #offset,%d0 */
567 0, 0, 0, 0, /* + (.got.plt entry) - . */
568 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
569 0x4e, 0xd0, /* jmp (%a0) */
570 0x2f, 0x3c, /* move.l #offset,-(%sp) */
571 0, 0, 0, 0, /* + reloc index */
572 0x60, 0xff, /* bra.l .plt */
573 0, 0, 0, 0 /* + .plt - . */
574 };
575
576 static const struct elf_m68k_plt_info elf_isab_plt_info = {
577 ISAB_PLT_ENTRY_SIZE,
578 elf_isab_plt0_entry, { 2, 12 },
579 elf_isab_plt_entry, { 2, 20 }, 12
580 };
581
582 #define ISAC_PLT_ENTRY_SIZE 24
583
584 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
585 {
586 0x20, 0x3c, /* move.l #offset,%d0 */
587 0, 0, 0, 0, /* replaced with .got + 4 - . */
588 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
589 0x20, 0x3c, /* move.l #offset,%d0 */
590 0, 0, 0, 0, /* replaced with .got + 8 - . */
591 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
592 0x4e, 0xd0, /* jmp (%a0) */
593 0x4e, 0x71 /* nop */
594 };
595
596 /* Subsequent entries in a procedure linkage table look like this. */
597
598 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
599 {
600 0x20, 0x3c, /* move.l #offset,%d0 */
601 0, 0, 0, 0, /* replaced with (.got entry) - . */
602 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
603 0x4e, 0xd0, /* jmp (%a0) */
604 0x2f, 0x3c, /* move.l #offset,-(%sp) */
605 0, 0, 0, 0, /* replaced with offset into relocation table */
606 0x61, 0xff, /* bsr.l .plt */
607 0, 0, 0, 0 /* replaced with .plt - . */
608 };
609
610 static const struct elf_m68k_plt_info elf_isac_plt_info = {
611 ISAC_PLT_ENTRY_SIZE,
612 elf_isac_plt0_entry, { 2, 12},
613 elf_isac_plt_entry, { 2, 20 }, 12
614 };
615
616 #define CPU32_PLT_ENTRY_SIZE 24
617 /* Procedure linkage table entries for the cpu32 */
618 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
619 {
620 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
621 0, 0, 0, 2, /* + (.got + 4) - . */
622 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
623 0, 0, 0, 2, /* + (.got + 8) - . */
624 0x4e, 0xd1, /* jmp %a1@ */
625 0, 0, 0, 0, /* pad out to 24 bytes. */
626 0, 0
627 };
628
629 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
630 {
631 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
632 0, 0, 0, 2, /* + (.got.plt entry) - . */
633 0x4e, 0xd1, /* jmp %a1@ */
634 0x2f, 0x3c, /* move.l #offset,-(%sp) */
635 0, 0, 0, 0, /* + reloc index */
636 0x60, 0xff, /* bra.l .plt */
637 0, 0, 0, 0, /* + .plt - . */
638 0, 0
639 };
640
641 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
642 CPU32_PLT_ENTRY_SIZE,
643 elf_cpu32_plt0_entry, { 4, 12 },
644 elf_cpu32_plt_entry, { 4, 18 }, 10
645 };
646
647 /* The m68k linker needs to keep track of the number of relocs that it
648 decides to copy in check_relocs for each symbol. This is so that it
649 can discard PC relative relocs if it doesn't need them when linking
650 with -Bsymbolic. We store the information in a field extending the
651 regular ELF linker hash table. */
652
653 /* This structure keeps track of the number of PC relative relocs we have
654 copied for a given symbol. */
655
656 struct elf_m68k_pcrel_relocs_copied
657 {
658 /* Next section. */
659 struct elf_m68k_pcrel_relocs_copied *next;
660 /* A section in dynobj. */
661 asection *section;
662 /* Number of relocs copied in this section. */
663 bfd_size_type count;
664 };
665
666 /* Forward declaration. */
667 struct elf_m68k_got_entry;
668
669 /* m68k ELF linker hash entry. */
670
671 struct elf_m68k_link_hash_entry
672 {
673 struct elf_link_hash_entry root;
674
675 /* Number of PC relative relocs copied for this symbol. */
676 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
677
678 /* Key to got_entries. */
679 unsigned long got_entry_key;
680
681 /* List of GOT entries for this symbol. This list is build during
682 offset finalization and is used within elf_m68k_finish_dynamic_symbol
683 to traverse all GOT entries for a particular symbol.
684
685 ??? We could've used root.got.glist field instead, but having
686 a separate field is cleaner. */
687 struct elf_m68k_got_entry *glist;
688 };
689
690 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
691
692 /* Key part of GOT entry in hashtable. */
693 struct elf_m68k_got_entry_key
694 {
695 /* BFD in which this symbol was defined. NULL for global symbols. */
696 const bfd *bfd;
697
698 /* Symbol index. Either local symbol index or h->got_entry_key. */
699 unsigned long symndx;
700
701 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
702 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
703
704 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
705 matters. That is, we distinguish between, say, R_68K_GOT16O
706 and R_68K_GOT32O when allocating offsets, but they are considered to be
707 the same when searching got->entries. */
708 enum elf_m68k_reloc_type type;
709 };
710
711 /* Size of the GOT offset suitable for relocation. */
712 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
713
714 /* Entry of the GOT. */
715 struct elf_m68k_got_entry
716 {
717 /* GOT entries are put into a got->entries hashtable. This is the key. */
718 struct elf_m68k_got_entry_key key_;
719
720 /* GOT entry data. We need s1 before offset finalization and s2 after. */
721 union
722 {
723 struct
724 {
725 /* Number of times this entry is referenced. It is used to
726 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
727 bfd_vma refcount;
728 } s1;
729
730 struct
731 {
732 /* Offset from the start of .got section. To calculate offset relative
733 to GOT pointer one should substract got->offset from this value. */
734 bfd_vma offset;
735
736 /* Pointer to the next GOT entry for this global symbol.
737 Symbols have at most one entry in one GOT, but might
738 have entries in more than one GOT.
739 Root of this list is h->glist.
740 NULL for local symbols. */
741 struct elf_m68k_got_entry *next;
742 } s2;
743 } u;
744 };
745
746 /* Return representative type for relocation R_TYPE.
747 This is used to avoid enumerating many relocations in comparisons,
748 switches etc. */
749
750 static enum elf_m68k_reloc_type
751 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
752 {
753 switch (r_type)
754 {
755 /* In most cases R_68K_GOTx relocations require the very same
756 handling as R_68K_GOT32O relocation. In cases when we need
757 to distinguish between the two, we use explicitly compare against
758 r_type. */
759 case R_68K_GOT32:
760 case R_68K_GOT16:
761 case R_68K_GOT8:
762 case R_68K_GOT32O:
763 case R_68K_GOT16O:
764 case R_68K_GOT8O:
765 return R_68K_GOT32O;
766
767 case R_68K_TLS_GD32:
768 case R_68K_TLS_GD16:
769 case R_68K_TLS_GD8:
770 return R_68K_TLS_GD32;
771
772 case R_68K_TLS_LDM32:
773 case R_68K_TLS_LDM16:
774 case R_68K_TLS_LDM8:
775 return R_68K_TLS_LDM32;
776
777 case R_68K_TLS_IE32:
778 case R_68K_TLS_IE16:
779 case R_68K_TLS_IE8:
780 return R_68K_TLS_IE32;
781
782 default:
783 BFD_ASSERT (FALSE);
784 return 0;
785 }
786 }
787
788 /* Return size of the GOT entry offset for relocation R_TYPE. */
789
790 static enum elf_m68k_got_offset_size
791 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
792 {
793 switch (r_type)
794 {
795 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
796 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
797 case R_68K_TLS_IE32:
798 return R_32;
799
800 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
801 case R_68K_TLS_IE16:
802 return R_16;
803
804 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
805 case R_68K_TLS_IE8:
806 return R_8;
807
808 default:
809 BFD_ASSERT (FALSE);
810 return 0;
811 }
812 }
813
814 /* Return number of GOT entries we need to allocate in GOT for
815 relocation R_TYPE. */
816
817 static bfd_vma
818 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
819 {
820 switch (elf_m68k_reloc_got_type (r_type))
821 {
822 case R_68K_GOT32O:
823 case R_68K_TLS_IE32:
824 return 1;
825
826 case R_68K_TLS_GD32:
827 case R_68K_TLS_LDM32:
828 return 2;
829
830 default:
831 BFD_ASSERT (FALSE);
832 return 0;
833 }
834 }
835
836 /* Return TRUE if relocation R_TYPE is a TLS one. */
837
838 static bfd_boolean
839 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
840 {
841 switch (r_type)
842 {
843 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
844 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
845 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
846 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
847 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
848 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
849 return TRUE;
850
851 default:
852 return FALSE;
853 }
854 }
855
856 /* Data structure representing a single GOT. */
857 struct elf_m68k_got
858 {
859 /* Hashtable of 'struct elf_m68k_got_entry's.
860 Starting size of this table is the maximum number of
861 R_68K_GOT8O entries. */
862 htab_t entries;
863
864 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
865 several GOT slots.
866
867 n_slots[R_8] is the count of R_8 slots in this GOT.
868 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
869 in this GOT.
870 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
871 in this GOT. This is the total number of slots. */
872 bfd_vma n_slots[R_LAST];
873
874 /* Number of local (entry->key_.h == NULL) slots in this GOT.
875 This is only used to properly calculate size of .rela.got section;
876 see elf_m68k_partition_multi_got. */
877 bfd_vma local_n_slots;
878
879 /* Offset of this GOT relative to beginning of .got section. */
880 bfd_vma offset;
881 };
882
883 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
884 struct elf_m68k_bfd2got_entry
885 {
886 /* BFD. */
887 const bfd *bfd;
888
889 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
890 GOT structure. After partitioning several BFD's might [and often do]
891 share a single GOT. */
892 struct elf_m68k_got *got;
893 };
894
895 /* The main data structure holding all the pieces. */
896 struct elf_m68k_multi_got
897 {
898 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
899 here, then it doesn't need a GOT (this includes the case of a BFD
900 having an empty GOT).
901
902 ??? This hashtable can be replaced by an array indexed by bfd->id. */
903 htab_t bfd2got;
904
905 /* Next symndx to assign a global symbol.
906 h->got_entry_key is initialized from this counter. */
907 unsigned long global_symndx;
908 };
909
910 /* m68k ELF linker hash table. */
911
912 struct elf_m68k_link_hash_table
913 {
914 struct elf_link_hash_table root;
915
916 /* Small local sym cache. */
917 struct sym_cache sym_cache;
918
919 /* The PLT format used by this link, or NULL if the format has not
920 yet been chosen. */
921 const struct elf_m68k_plt_info *plt_info;
922
923 /* True, if GP is loaded within each function which uses it.
924 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
925 bfd_boolean local_gp_p;
926
927 /* Switch controlling use of negative offsets to double the size of GOTs. */
928 bfd_boolean use_neg_got_offsets_p;
929
930 /* Switch controlling generation of multiple GOTs. */
931 bfd_boolean allow_multigot_p;
932
933 /* Multi-GOT data structure. */
934 struct elf_m68k_multi_got multi_got_;
935 };
936
937 /* Get the m68k ELF linker hash table from a link_info structure. */
938
939 #define elf_m68k_hash_table(p) \
940 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
941 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
942
943 /* Shortcut to multi-GOT data. */
944 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
945
946 /* Create an entry in an m68k ELF linker hash table. */
947
948 static struct bfd_hash_entry *
949 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
950 struct bfd_hash_table *table,
951 const char *string)
952 {
953 struct bfd_hash_entry *ret = entry;
954
955 /* Allocate the structure if it has not already been allocated by a
956 subclass. */
957 if (ret == NULL)
958 ret = bfd_hash_allocate (table,
959 sizeof (struct elf_m68k_link_hash_entry));
960 if (ret == NULL)
961 return ret;
962
963 /* Call the allocation method of the superclass. */
964 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
965 if (ret != NULL)
966 {
967 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
968 elf_m68k_hash_entry (ret)->got_entry_key = 0;
969 elf_m68k_hash_entry (ret)->glist = NULL;
970 }
971
972 return ret;
973 }
974
975 /* Create an m68k ELF linker hash table. */
976
977 static struct bfd_link_hash_table *
978 elf_m68k_link_hash_table_create (bfd *abfd)
979 {
980 struct elf_m68k_link_hash_table *ret;
981 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
982
983 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
984 if (ret == (struct elf_m68k_link_hash_table *) NULL)
985 return NULL;
986
987 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
988 elf_m68k_link_hash_newfunc,
989 sizeof (struct elf_m68k_link_hash_entry),
990 M68K_ELF_DATA))
991 {
992 free (ret);
993 return NULL;
994 }
995
996 ret->sym_cache.abfd = NULL;
997 ret->plt_info = NULL;
998 ret->local_gp_p = FALSE;
999 ret->use_neg_got_offsets_p = FALSE;
1000 ret->allow_multigot_p = FALSE;
1001 ret->multi_got_.bfd2got = NULL;
1002 ret->multi_got_.global_symndx = 1;
1003
1004 return &ret->root.root;
1005 }
1006
1007 /* Destruct local data. */
1008
1009 static void
1010 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
1011 {
1012 struct elf_m68k_link_hash_table *htab;
1013
1014 htab = (struct elf_m68k_link_hash_table *) _htab;
1015
1016 if (htab->multi_got_.bfd2got != NULL)
1017 {
1018 htab_delete (htab->multi_got_.bfd2got);
1019 htab->multi_got_.bfd2got = NULL;
1020 }
1021 }
1022
1023 /* Set the right machine number. */
1024
1025 static bfd_boolean
1026 elf32_m68k_object_p (bfd *abfd)
1027 {
1028 unsigned int mach = 0;
1029 unsigned features = 0;
1030 flagword eflags = elf_elfheader (abfd)->e_flags;
1031
1032 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1033 features |= m68000;
1034 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1035 features |= cpu32;
1036 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1037 features |= fido_a;
1038 else
1039 {
1040 switch (eflags & EF_M68K_CF_ISA_MASK)
1041 {
1042 case EF_M68K_CF_ISA_A_NODIV:
1043 features |= mcfisa_a;
1044 break;
1045 case EF_M68K_CF_ISA_A:
1046 features |= mcfisa_a|mcfhwdiv;
1047 break;
1048 case EF_M68K_CF_ISA_A_PLUS:
1049 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1050 break;
1051 case EF_M68K_CF_ISA_B_NOUSP:
1052 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1053 break;
1054 case EF_M68K_CF_ISA_B:
1055 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1056 break;
1057 case EF_M68K_CF_ISA_C:
1058 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1059 break;
1060 case EF_M68K_CF_ISA_C_NODIV:
1061 features |= mcfisa_a|mcfisa_c|mcfusp;
1062 break;
1063 }
1064 switch (eflags & EF_M68K_CF_MAC_MASK)
1065 {
1066 case EF_M68K_CF_MAC:
1067 features |= mcfmac;
1068 break;
1069 case EF_M68K_CF_EMAC:
1070 features |= mcfemac;
1071 break;
1072 }
1073 if (eflags & EF_M68K_CF_FLOAT)
1074 features |= cfloat;
1075 }
1076
1077 mach = bfd_m68k_features_to_mach (features);
1078 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1079
1080 return TRUE;
1081 }
1082
1083 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1084 field based on the machine number. */
1085
1086 static void
1087 elf_m68k_final_write_processing (bfd *abfd,
1088 bfd_boolean linker ATTRIBUTE_UNUSED)
1089 {
1090 int mach = bfd_get_mach (abfd);
1091 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1092
1093 if (!e_flags)
1094 {
1095 unsigned int arch_mask;
1096
1097 arch_mask = bfd_m68k_mach_to_features (mach);
1098
1099 if (arch_mask & m68000)
1100 e_flags = EF_M68K_M68000;
1101 else if (arch_mask & cpu32)
1102 e_flags = EF_M68K_CPU32;
1103 else if (arch_mask & fido_a)
1104 e_flags = EF_M68K_FIDO;
1105 else
1106 {
1107 switch (arch_mask
1108 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1109 {
1110 case mcfisa_a:
1111 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1112 break;
1113 case mcfisa_a | mcfhwdiv:
1114 e_flags |= EF_M68K_CF_ISA_A;
1115 break;
1116 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1117 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1118 break;
1119 case mcfisa_a | mcfisa_b | mcfhwdiv:
1120 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1121 break;
1122 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1123 e_flags |= EF_M68K_CF_ISA_B;
1124 break;
1125 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1126 e_flags |= EF_M68K_CF_ISA_C;
1127 break;
1128 case mcfisa_a | mcfisa_c | mcfusp:
1129 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1130 break;
1131 }
1132 if (arch_mask & mcfmac)
1133 e_flags |= EF_M68K_CF_MAC;
1134 else if (arch_mask & mcfemac)
1135 e_flags |= EF_M68K_CF_EMAC;
1136 if (arch_mask & cfloat)
1137 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1138 }
1139 elf_elfheader (abfd)->e_flags = e_flags;
1140 }
1141 }
1142
1143 /* Keep m68k-specific flags in the ELF header. */
1144
1145 static bfd_boolean
1146 elf32_m68k_set_private_flags (abfd, flags)
1147 bfd *abfd;
1148 flagword flags;
1149 {
1150 elf_elfheader (abfd)->e_flags = flags;
1151 elf_flags_init (abfd) = TRUE;
1152 return TRUE;
1153 }
1154
1155 /* Merge backend specific data from an object file to the output
1156 object file when linking. */
1157 static bfd_boolean
1158 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
1159 bfd *ibfd;
1160 bfd *obfd;
1161 {
1162 flagword out_flags;
1163 flagword in_flags;
1164 flagword out_isa;
1165 flagword in_isa;
1166 const bfd_arch_info_type *arch_info;
1167
1168 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1169 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1170 return FALSE;
1171
1172 /* Get the merged machine. This checks for incompatibility between
1173 Coldfire & non-Coldfire flags, incompability between different
1174 Coldfire ISAs, and incompability between different MAC types. */
1175 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1176 if (!arch_info)
1177 return FALSE;
1178
1179 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1180
1181 in_flags = elf_elfheader (ibfd)->e_flags;
1182 if (!elf_flags_init (obfd))
1183 {
1184 elf_flags_init (obfd) = TRUE;
1185 out_flags = in_flags;
1186 }
1187 else
1188 {
1189 out_flags = elf_elfheader (obfd)->e_flags;
1190 unsigned int variant_mask;
1191
1192 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1193 variant_mask = 0;
1194 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1195 variant_mask = 0;
1196 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1197 variant_mask = 0;
1198 else
1199 variant_mask = EF_M68K_CF_ISA_MASK;
1200
1201 in_isa = (in_flags & variant_mask);
1202 out_isa = (out_flags & variant_mask);
1203 if (in_isa > out_isa)
1204 out_flags ^= in_isa ^ out_isa;
1205 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1206 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1207 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1208 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1209 out_flags = EF_M68K_FIDO;
1210 else
1211 out_flags |= in_flags ^ in_isa;
1212 }
1213 elf_elfheader (obfd)->e_flags = out_flags;
1214
1215 return TRUE;
1216 }
1217
1218 /* Display the flags field. */
1219
1220 static bfd_boolean
1221 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1222 {
1223 FILE *file = (FILE *) ptr;
1224 flagword eflags = elf_elfheader (abfd)->e_flags;
1225
1226 BFD_ASSERT (abfd != NULL && ptr != NULL);
1227
1228 /* Print normal ELF private data. */
1229 _bfd_elf_print_private_bfd_data (abfd, ptr);
1230
1231 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1232
1233 /* xgettext:c-format */
1234 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1235
1236 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1237 fprintf (file, " [m68000]");
1238 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1239 fprintf (file, " [cpu32]");
1240 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1241 fprintf (file, " [fido]");
1242 else
1243 {
1244 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1245 fprintf (file, " [cfv4e]");
1246
1247 if (eflags & EF_M68K_CF_ISA_MASK)
1248 {
1249 char const *isa = _("unknown");
1250 char const *mac = _("unknown");
1251 char const *additional = "";
1252
1253 switch (eflags & EF_M68K_CF_ISA_MASK)
1254 {
1255 case EF_M68K_CF_ISA_A_NODIV:
1256 isa = "A";
1257 additional = " [nodiv]";
1258 break;
1259 case EF_M68K_CF_ISA_A:
1260 isa = "A";
1261 break;
1262 case EF_M68K_CF_ISA_A_PLUS:
1263 isa = "A+";
1264 break;
1265 case EF_M68K_CF_ISA_B_NOUSP:
1266 isa = "B";
1267 additional = " [nousp]";
1268 break;
1269 case EF_M68K_CF_ISA_B:
1270 isa = "B";
1271 break;
1272 case EF_M68K_CF_ISA_C:
1273 isa = "C";
1274 break;
1275 case EF_M68K_CF_ISA_C_NODIV:
1276 isa = "C";
1277 additional = " [nodiv]";
1278 break;
1279 }
1280 fprintf (file, " [isa %s]%s", isa, additional);
1281
1282 if (eflags & EF_M68K_CF_FLOAT)
1283 fprintf (file, " [float]");
1284
1285 switch (eflags & EF_M68K_CF_MAC_MASK)
1286 {
1287 case 0:
1288 mac = NULL;
1289 break;
1290 case EF_M68K_CF_MAC:
1291 mac = "mac";
1292 break;
1293 case EF_M68K_CF_EMAC:
1294 mac = "emac";
1295 break;
1296 }
1297 if (mac)
1298 fprintf (file, " [%s]", mac);
1299 }
1300 }
1301
1302 fputc ('\n', file);
1303
1304 return TRUE;
1305 }
1306
1307 /* Multi-GOT support implementation design:
1308
1309 Multi-GOT starts in check_relocs hook. There we scan all
1310 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1311 for it. If a single BFD appears to require too many GOT slots with
1312 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1313 to user.
1314 After check_relocs has been invoked for each input BFD, we have
1315 constructed a GOT for each input BFD.
1316
1317 To minimize total number of GOTs required for a particular output BFD
1318 (as some environments support only 1 GOT per output object) we try
1319 to merge some of the GOTs to share an offset space. Ideally [and in most
1320 cases] we end up with a single GOT. In cases when there are too many
1321 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1322 several GOTs, assuming the environment can handle them.
1323
1324 Partitioning is done in elf_m68k_partition_multi_got. We start with
1325 an empty GOT and traverse bfd2got hashtable putting got_entries from
1326 local GOTs to the new 'big' one. We do that by constructing an
1327 intermediate GOT holding all the entries the local GOT has and the big
1328 GOT lacks. Then we check if there is room in the big GOT to accomodate
1329 all the entries from diff. On success we add those entries to the big
1330 GOT; on failure we start the new 'big' GOT and retry the adding of
1331 entries from the local GOT. Note that this retry will always succeed as
1332 each local GOT doesn't overflow the limits. After partitioning we
1333 end up with each bfd assigned one of the big GOTs. GOT entries in the
1334 big GOTs are initialized with GOT offsets. Note that big GOTs are
1335 positioned consequently in program space and represent a single huge GOT
1336 to the outside world.
1337
1338 After that we get to elf_m68k_relocate_section. There we
1339 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1340 relocations to refer to appropriate [assigned to current input_bfd]
1341 big GOT.
1342
1343 Notes:
1344
1345 GOT entry type: We have several types of GOT entries.
1346 * R_8 type is used in entries for symbols that have at least one
1347 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1348 such entries in one GOT.
1349 * R_16 type is used in entries for symbols that have at least one
1350 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1351 We can have at most 0x4000 such entries in one GOT.
1352 * R_32 type is used in all other cases. We can have as many
1353 such entries in one GOT as we'd like.
1354 When counting relocations we have to include the count of the smaller
1355 ranged relocations in the counts of the larger ranged ones in order
1356 to correctly detect overflow.
1357
1358 Sorting the GOT: In each GOT starting offsets are assigned to
1359 R_8 entries, which are followed by R_16 entries, and
1360 R_32 entries go at the end. See finalize_got_offsets for details.
1361
1362 Negative GOT offsets: To double usable offset range of GOTs we use
1363 negative offsets. As we assign entries with GOT offsets relative to
1364 start of .got section, the offset values are positive. They become
1365 negative only in relocate_section where got->offset value is
1366 subtracted from them.
1367
1368 3 special GOT entries: There are 3 special GOT entries used internally
1369 by loader. These entries happen to be placed to .got.plt section,
1370 so we don't do anything about them in multi-GOT support.
1371
1372 Memory management: All data except for hashtables
1373 multi_got->bfd2got and got->entries are allocated on
1374 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1375 to most functions), so we don't need to care to free them. At the
1376 moment of allocation hashtables are being linked into main data
1377 structure (multi_got), all pieces of which are reachable from
1378 elf_m68k_multi_got (info). We deallocate them in
1379 elf_m68k_link_hash_table_free. */
1380
1381 /* Initialize GOT. */
1382
1383 static void
1384 elf_m68k_init_got (struct elf_m68k_got *got)
1385 {
1386 got->entries = NULL;
1387 got->n_slots[R_8] = 0;
1388 got->n_slots[R_16] = 0;
1389 got->n_slots[R_32] = 0;
1390 got->local_n_slots = 0;
1391 got->offset = (bfd_vma) -1;
1392 }
1393
1394 /* Destruct GOT. */
1395
1396 static void
1397 elf_m68k_clear_got (struct elf_m68k_got *got)
1398 {
1399 if (got->entries != NULL)
1400 {
1401 htab_delete (got->entries);
1402 got->entries = NULL;
1403 }
1404 }
1405
1406 /* Create and empty GOT structure. INFO is the context where memory
1407 should be allocated. */
1408
1409 static struct elf_m68k_got *
1410 elf_m68k_create_empty_got (struct bfd_link_info *info)
1411 {
1412 struct elf_m68k_got *got;
1413
1414 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1415 if (got == NULL)
1416 return NULL;
1417
1418 elf_m68k_init_got (got);
1419
1420 return got;
1421 }
1422
1423 /* Initialize KEY. */
1424
1425 static void
1426 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1427 struct elf_link_hash_entry *h,
1428 const bfd *abfd, unsigned long symndx,
1429 enum elf_m68k_reloc_type reloc_type)
1430 {
1431 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1432 /* All TLS_LDM relocations share a single GOT entry. */
1433 {
1434 key->bfd = NULL;
1435 key->symndx = 0;
1436 }
1437 else if (h != NULL)
1438 /* Global symbols are identified with their got_entry_key. */
1439 {
1440 key->bfd = NULL;
1441 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1442 BFD_ASSERT (key->symndx != 0);
1443 }
1444 else
1445 /* Local symbols are identified by BFD they appear in and symndx. */
1446 {
1447 key->bfd = abfd;
1448 key->symndx = symndx;
1449 }
1450
1451 key->type = reloc_type;
1452 }
1453
1454 /* Calculate hash of got_entry.
1455 ??? Is it good? */
1456
1457 static hashval_t
1458 elf_m68k_got_entry_hash (const void *_entry)
1459 {
1460 const struct elf_m68k_got_entry_key *key;
1461
1462 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1463
1464 return (key->symndx
1465 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1466 + elf_m68k_reloc_got_type (key->type));
1467 }
1468
1469 /* Check if two got entries are equal. */
1470
1471 static int
1472 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1473 {
1474 const struct elf_m68k_got_entry_key *key1;
1475 const struct elf_m68k_got_entry_key *key2;
1476
1477 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1478 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1479
1480 return (key1->bfd == key2->bfd
1481 && key1->symndx == key2->symndx
1482 && (elf_m68k_reloc_got_type (key1->type)
1483 == elf_m68k_reloc_got_type (key2->type)));
1484 }
1485
1486 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1487 and one extra R_32 slots to simplify handling of 2-slot entries during
1488 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1489
1490 /* Maximal number of R_8 slots in a single GOT. */
1491 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1492 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1493 ? (0x40 - 1) \
1494 : 0x20)
1495
1496 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1497 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1498 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1499 ? (0x4000 - 2) \
1500 : 0x2000)
1501
1502 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1503 the entry cannot be found.
1504 FIND_OR_CREATE - search for an existing entry, but create new if there's
1505 no such.
1506 MUST_FIND - search for an existing entry and assert that it exist.
1507 MUST_CREATE - assert that there's no such entry and create new one. */
1508 enum elf_m68k_get_entry_howto
1509 {
1510 SEARCH,
1511 FIND_OR_CREATE,
1512 MUST_FIND,
1513 MUST_CREATE
1514 };
1515
1516 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1517 INFO is context in which memory should be allocated (can be NULL if
1518 HOWTO is SEARCH or MUST_FIND). */
1519
1520 static struct elf_m68k_got_entry *
1521 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1522 const struct elf_m68k_got_entry_key *key,
1523 enum elf_m68k_get_entry_howto howto,
1524 struct bfd_link_info *info)
1525 {
1526 struct elf_m68k_got_entry entry_;
1527 struct elf_m68k_got_entry *entry;
1528 void **ptr;
1529
1530 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1531
1532 if (got->entries == NULL)
1533 /* This is the first entry in ABFD. Initialize hashtable. */
1534 {
1535 if (howto == SEARCH)
1536 return NULL;
1537
1538 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1539 (info),
1540 elf_m68k_got_entry_hash,
1541 elf_m68k_got_entry_eq, NULL);
1542 if (got->entries == NULL)
1543 {
1544 bfd_set_error (bfd_error_no_memory);
1545 return NULL;
1546 }
1547 }
1548
1549 entry_.key_ = *key;
1550 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1551 ? INSERT : NO_INSERT));
1552 if (ptr == NULL)
1553 {
1554 if (howto == SEARCH)
1555 /* Entry not found. */
1556 return NULL;
1557
1558 /* We're out of memory. */
1559 bfd_set_error (bfd_error_no_memory);
1560 return NULL;
1561 }
1562
1563 if (*ptr == NULL)
1564 /* We didn't find the entry and we're asked to create a new one. */
1565 {
1566 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1567
1568 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1569 if (entry == NULL)
1570 return NULL;
1571
1572 /* Initialize new entry. */
1573 entry->key_ = *key;
1574
1575 entry->u.s1.refcount = 0;
1576
1577 /* Mark the entry as not initialized. */
1578 entry->key_.type = R_68K_max;
1579
1580 *ptr = entry;
1581 }
1582 else
1583 /* We found the entry. */
1584 {
1585 BFD_ASSERT (howto != MUST_CREATE);
1586
1587 entry = *ptr;
1588 }
1589
1590 return entry;
1591 }
1592
1593 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1594 Return the value to which ENTRY's type should be set. */
1595
1596 static enum elf_m68k_reloc_type
1597 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1598 enum elf_m68k_reloc_type was,
1599 enum elf_m68k_reloc_type new_reloc)
1600 {
1601 enum elf_m68k_got_offset_size was_size;
1602 enum elf_m68k_got_offset_size new_size;
1603 bfd_vma n_slots;
1604
1605 if (was == R_68K_max)
1606 /* The type of the entry is not initialized yet. */
1607 {
1608 /* Update all got->n_slots counters, including n_slots[R_32]. */
1609 was_size = R_LAST;
1610
1611 was = new_reloc;
1612 }
1613 else
1614 {
1615 /* !!! We, probably, should emit an error rather then fail on assert
1616 in such a case. */
1617 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1618 == elf_m68k_reloc_got_type (new_reloc));
1619
1620 was_size = elf_m68k_reloc_got_offset_size (was);
1621 }
1622
1623 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1624 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1625
1626 while (was_size > new_size)
1627 {
1628 --was_size;
1629 got->n_slots[was_size] += n_slots;
1630 }
1631
1632 if (new_reloc > was)
1633 /* Relocations are ordered from bigger got offset size to lesser,
1634 so choose the relocation type with lesser offset size. */
1635 was = new_reloc;
1636
1637 return was;
1638 }
1639
1640 /* Update GOT counters when removing an entry of type TYPE. */
1641
1642 static void
1643 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1644 enum elf_m68k_reloc_type type)
1645 {
1646 enum elf_m68k_got_offset_size os;
1647 bfd_vma n_slots;
1648
1649 n_slots = elf_m68k_reloc_got_n_slots (type);
1650
1651 /* Decrese counter of slots with offset size corresponding to TYPE
1652 and all greater offset sizes. */
1653 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1654 {
1655 BFD_ASSERT (got->n_slots[os] >= n_slots);
1656
1657 got->n_slots[os] -= n_slots;
1658 }
1659 }
1660
1661 /* Add new or update existing entry to GOT.
1662 H, ABFD, TYPE and SYMNDX is data for the entry.
1663 INFO is a context where memory should be allocated. */
1664
1665 static struct elf_m68k_got_entry *
1666 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1667 struct elf_link_hash_entry *h,
1668 const bfd *abfd,
1669 enum elf_m68k_reloc_type reloc_type,
1670 unsigned long symndx,
1671 struct bfd_link_info *info)
1672 {
1673 struct elf_m68k_got_entry_key key_;
1674 struct elf_m68k_got_entry *entry;
1675
1676 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1677 elf_m68k_hash_entry (h)->got_entry_key
1678 = elf_m68k_multi_got (info)->global_symndx++;
1679
1680 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1681
1682 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1683 if (entry == NULL)
1684 return NULL;
1685
1686 /* Determine entry's type and update got->n_slots counters. */
1687 entry->key_.type = elf_m68k_update_got_entry_type (got,
1688 entry->key_.type,
1689 reloc_type);
1690
1691 /* Update refcount. */
1692 ++entry->u.s1.refcount;
1693
1694 if (entry->u.s1.refcount == 1)
1695 /* We see this entry for the first time. */
1696 {
1697 if (entry->key_.bfd != NULL)
1698 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1699 }
1700
1701 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1702
1703 if ((got->n_slots[R_8]
1704 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1705 || (got->n_slots[R_16]
1706 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1707 /* This BFD has too many relocation. */
1708 {
1709 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1710 (*_bfd_error_handler) (_("%B: GOT overflow: "
1711 "Number of relocations with 8-bit "
1712 "offset > %d"),
1713 abfd,
1714 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1715 else
1716 (*_bfd_error_handler) (_("%B: GOT overflow: "
1717 "Number of relocations with 8- or 16-bit "
1718 "offset > %d"),
1719 abfd,
1720 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1721
1722 return NULL;
1723 }
1724
1725 return entry;
1726 }
1727
1728 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1729
1730 static hashval_t
1731 elf_m68k_bfd2got_entry_hash (const void *entry)
1732 {
1733 const struct elf_m68k_bfd2got_entry *e;
1734
1735 e = (const struct elf_m68k_bfd2got_entry *) entry;
1736
1737 return e->bfd->id;
1738 }
1739
1740 /* Check whether two hash entries have the same bfd. */
1741
1742 static int
1743 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1744 {
1745 const struct elf_m68k_bfd2got_entry *e1;
1746 const struct elf_m68k_bfd2got_entry *e2;
1747
1748 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1749 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1750
1751 return e1->bfd == e2->bfd;
1752 }
1753
1754 /* Destruct a bfd2got entry. */
1755
1756 static void
1757 elf_m68k_bfd2got_entry_del (void *_entry)
1758 {
1759 struct elf_m68k_bfd2got_entry *entry;
1760
1761 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1762
1763 BFD_ASSERT (entry->got != NULL);
1764 elf_m68k_clear_got (entry->got);
1765 }
1766
1767 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1768 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1769 memory should be allocated. */
1770
1771 static struct elf_m68k_bfd2got_entry *
1772 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1773 const bfd *abfd,
1774 enum elf_m68k_get_entry_howto howto,
1775 struct bfd_link_info *info)
1776 {
1777 struct elf_m68k_bfd2got_entry entry_;
1778 void **ptr;
1779 struct elf_m68k_bfd2got_entry *entry;
1780
1781 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1782
1783 if (multi_got->bfd2got == NULL)
1784 /* This is the first GOT. Initialize bfd2got. */
1785 {
1786 if (howto == SEARCH)
1787 return NULL;
1788
1789 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1790 elf_m68k_bfd2got_entry_eq,
1791 elf_m68k_bfd2got_entry_del);
1792 if (multi_got->bfd2got == NULL)
1793 {
1794 bfd_set_error (bfd_error_no_memory);
1795 return NULL;
1796 }
1797 }
1798
1799 entry_.bfd = abfd;
1800 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1801 ? INSERT : NO_INSERT));
1802 if (ptr == NULL)
1803 {
1804 if (howto == SEARCH)
1805 /* Entry not found. */
1806 return NULL;
1807
1808 /* We're out of memory. */
1809 bfd_set_error (bfd_error_no_memory);
1810 return NULL;
1811 }
1812
1813 if (*ptr == NULL)
1814 /* Entry was not found. Create new one. */
1815 {
1816 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1817
1818 entry = ((struct elf_m68k_bfd2got_entry *)
1819 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1820 if (entry == NULL)
1821 return NULL;
1822
1823 entry->bfd = abfd;
1824
1825 entry->got = elf_m68k_create_empty_got (info);
1826 if (entry->got == NULL)
1827 return NULL;
1828
1829 *ptr = entry;
1830 }
1831 else
1832 {
1833 BFD_ASSERT (howto != MUST_CREATE);
1834
1835 /* Return existing entry. */
1836 entry = *ptr;
1837 }
1838
1839 return entry;
1840 }
1841
1842 struct elf_m68k_can_merge_gots_arg
1843 {
1844 /* A current_got that we constructing a DIFF against. */
1845 struct elf_m68k_got *big;
1846
1847 /* GOT holding entries not present or that should be changed in
1848 BIG. */
1849 struct elf_m68k_got *diff;
1850
1851 /* Context where to allocate memory. */
1852 struct bfd_link_info *info;
1853
1854 /* Error flag. */
1855 bfd_boolean error_p;
1856 };
1857
1858 /* Process a single entry from the small GOT to see if it should be added
1859 or updated in the big GOT. */
1860
1861 static int
1862 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1863 {
1864 const struct elf_m68k_got_entry *entry1;
1865 struct elf_m68k_can_merge_gots_arg *arg;
1866 const struct elf_m68k_got_entry *entry2;
1867 enum elf_m68k_reloc_type type;
1868
1869 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1870 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1871
1872 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1873
1874 if (entry2 != NULL)
1875 /* We found an existing entry. Check if we should update it. */
1876 {
1877 type = elf_m68k_update_got_entry_type (arg->diff,
1878 entry2->key_.type,
1879 entry1->key_.type);
1880
1881 if (type == entry2->key_.type)
1882 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1883 To skip creation of difference entry we use the type,
1884 which we won't see in GOT entries for sure. */
1885 type = R_68K_max;
1886 }
1887 else
1888 /* We didn't find the entry. Add entry1 to DIFF. */
1889 {
1890 BFD_ASSERT (entry1->key_.type != R_68K_max);
1891
1892 type = elf_m68k_update_got_entry_type (arg->diff,
1893 R_68K_max, entry1->key_.type);
1894
1895 if (entry1->key_.bfd != NULL)
1896 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1897 }
1898
1899 if (type != R_68K_max)
1900 /* Create an entry in DIFF. */
1901 {
1902 struct elf_m68k_got_entry *entry;
1903
1904 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1905 arg->info);
1906 if (entry == NULL)
1907 {
1908 arg->error_p = TRUE;
1909 return 0;
1910 }
1911
1912 entry->key_.type = type;
1913 }
1914
1915 return 1;
1916 }
1917
1918 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1919 Construct DIFF GOT holding the entries which should be added or updated
1920 in BIG GOT to accumulate information from SMALL.
1921 INFO is the context where memory should be allocated. */
1922
1923 static bfd_boolean
1924 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1925 const struct elf_m68k_got *small,
1926 struct bfd_link_info *info,
1927 struct elf_m68k_got *diff)
1928 {
1929 struct elf_m68k_can_merge_gots_arg arg_;
1930
1931 BFD_ASSERT (small->offset == (bfd_vma) -1);
1932
1933 arg_.big = big;
1934 arg_.diff = diff;
1935 arg_.info = info;
1936 arg_.error_p = FALSE;
1937 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1938 if (arg_.error_p)
1939 {
1940 diff->offset = 0;
1941 return FALSE;
1942 }
1943
1944 /* Check for overflow. */
1945 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1946 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1947 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1948 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1949 return FALSE;
1950
1951 return TRUE;
1952 }
1953
1954 struct elf_m68k_merge_gots_arg
1955 {
1956 /* The BIG got. */
1957 struct elf_m68k_got *big;
1958
1959 /* Context where memory should be allocated. */
1960 struct bfd_link_info *info;
1961
1962 /* Error flag. */
1963 bfd_boolean error_p;
1964 };
1965
1966 /* Process a single entry from DIFF got. Add or update corresponding
1967 entry in the BIG got. */
1968
1969 static int
1970 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1971 {
1972 const struct elf_m68k_got_entry *from;
1973 struct elf_m68k_merge_gots_arg *arg;
1974 struct elf_m68k_got_entry *to;
1975
1976 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1977 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1978
1979 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1980 arg->info);
1981 if (to == NULL)
1982 {
1983 arg->error_p = TRUE;
1984 return 0;
1985 }
1986
1987 BFD_ASSERT (to->u.s1.refcount == 0);
1988 /* All we need to merge is TYPE. */
1989 to->key_.type = from->key_.type;
1990
1991 return 1;
1992 }
1993
1994 /* Merge data from DIFF to BIG. INFO is context where memory should be
1995 allocated. */
1996
1997 static bfd_boolean
1998 elf_m68k_merge_gots (struct elf_m68k_got *big,
1999 struct elf_m68k_got *diff,
2000 struct bfd_link_info *info)
2001 {
2002 if (diff->entries != NULL)
2003 /* DIFF is not empty. Merge it into BIG GOT. */
2004 {
2005 struct elf_m68k_merge_gots_arg arg_;
2006
2007 /* Merge entries. */
2008 arg_.big = big;
2009 arg_.info = info;
2010 arg_.error_p = FALSE;
2011 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2012 if (arg_.error_p)
2013 return FALSE;
2014
2015 /* Merge counters. */
2016 big->n_slots[R_8] += diff->n_slots[R_8];
2017 big->n_slots[R_16] += diff->n_slots[R_16];
2018 big->n_slots[R_32] += diff->n_slots[R_32];
2019 big->local_n_slots += diff->local_n_slots;
2020 }
2021 else
2022 /* DIFF is empty. */
2023 {
2024 BFD_ASSERT (diff->n_slots[R_8] == 0);
2025 BFD_ASSERT (diff->n_slots[R_16] == 0);
2026 BFD_ASSERT (diff->n_slots[R_32] == 0);
2027 BFD_ASSERT (diff->local_n_slots == 0);
2028 }
2029
2030 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2031 || ((big->n_slots[R_8]
2032 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2033 && (big->n_slots[R_16]
2034 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2035
2036 return TRUE;
2037 }
2038
2039 struct elf_m68k_finalize_got_offsets_arg
2040 {
2041 /* Ranges of the offsets for GOT entries.
2042 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2043 R_x is R_8, R_16 and R_32. */
2044 bfd_vma *offset1;
2045 bfd_vma *offset2;
2046
2047 /* Mapping from global symndx to global symbols.
2048 This is used to build lists of got entries for global symbols. */
2049 struct elf_m68k_link_hash_entry **symndx2h;
2050
2051 bfd_vma n_ldm_entries;
2052 };
2053
2054 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2055 along the way. */
2056
2057 static int
2058 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2059 {
2060 struct elf_m68k_got_entry *entry;
2061 struct elf_m68k_finalize_got_offsets_arg *arg;
2062
2063 enum elf_m68k_got_offset_size got_offset_size;
2064 bfd_vma entry_size;
2065
2066 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2067 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2068
2069 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2070 BFD_ASSERT (entry->u.s1.refcount == 0);
2071
2072 /* Get GOT offset size for the entry . */
2073 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2074
2075 /* Calculate entry size in bytes. */
2076 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2077
2078 /* Check if we should switch to negative range of the offsets. */
2079 if (arg->offset1[got_offset_size] + entry_size
2080 > arg->offset2[got_offset_size])
2081 {
2082 /* Verify that this is the only switch to negative range for
2083 got_offset_size. If this assertion fails, then we've miscalculated
2084 range for got_offset_size entries in
2085 elf_m68k_finalize_got_offsets. */
2086 BFD_ASSERT (arg->offset2[got_offset_size]
2087 != arg->offset2[-(int) got_offset_size - 1]);
2088
2089 /* Switch. */
2090 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2091 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2092
2093 /* Verify that now we have enough room for the entry. */
2094 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2095 <= arg->offset2[got_offset_size]);
2096 }
2097
2098 /* Assign offset to entry. */
2099 entry->u.s2.offset = arg->offset1[got_offset_size];
2100 arg->offset1[got_offset_size] += entry_size;
2101
2102 if (entry->key_.bfd == NULL)
2103 /* Hook up this entry into the list of got_entries of H. */
2104 {
2105 struct elf_m68k_link_hash_entry *h;
2106
2107 h = arg->symndx2h[entry->key_.symndx];
2108 if (h != NULL)
2109 {
2110 entry->u.s2.next = h->glist;
2111 h->glist = entry;
2112 }
2113 else
2114 /* This should be the entry for TLS_LDM relocation then. */
2115 {
2116 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2117 == R_68K_TLS_LDM32)
2118 && entry->key_.symndx == 0);
2119
2120 ++arg->n_ldm_entries;
2121 }
2122 }
2123 else
2124 /* This entry is for local symbol. */
2125 entry->u.s2.next = NULL;
2126
2127 return 1;
2128 }
2129
2130 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2131 should use negative offsets.
2132 Build list of GOT entries for global symbols along the way.
2133 SYMNDX2H is mapping from global symbol indices to actual
2134 global symbols.
2135 Return offset at which next GOT should start. */
2136
2137 static void
2138 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2139 bfd_boolean use_neg_got_offsets_p,
2140 struct elf_m68k_link_hash_entry **symndx2h,
2141 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2142 {
2143 struct elf_m68k_finalize_got_offsets_arg arg_;
2144 bfd_vma offset1_[2 * R_LAST];
2145 bfd_vma offset2_[2 * R_LAST];
2146 int i;
2147 bfd_vma start_offset;
2148
2149 BFD_ASSERT (got->offset != (bfd_vma) -1);
2150
2151 /* We set entry offsets relative to the .got section (and not the
2152 start of a particular GOT), so that we can use them in
2153 finish_dynamic_symbol without needing to know the GOT which they come
2154 from. */
2155
2156 /* Put offset1 in the middle of offset1_, same for offset2. */
2157 arg_.offset1 = offset1_ + R_LAST;
2158 arg_.offset2 = offset2_ + R_LAST;
2159
2160 start_offset = got->offset;
2161
2162 if (use_neg_got_offsets_p)
2163 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2164 i = -(int) R_32 - 1;
2165 else
2166 /* Setup positives ranges for R_8, R_16 and R_32. */
2167 i = (int) R_8;
2168
2169 for (; i <= (int) R_32; ++i)
2170 {
2171 int j;
2172 size_t n;
2173
2174 /* Set beginning of the range of offsets I. */
2175 arg_.offset1[i] = start_offset;
2176
2177 /* Calculate number of slots that require I offsets. */
2178 j = (i >= 0) ? i : -i - 1;
2179 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2180 n = got->n_slots[j] - n;
2181
2182 if (use_neg_got_offsets_p && n != 0)
2183 {
2184 if (i < 0)
2185 /* We first fill the positive side of the range, so we might
2186 end up with one empty slot at that side when we can't fit
2187 whole 2-slot entry. Account for that at negative side of
2188 the interval with one additional entry. */
2189 n = n / 2 + 1;
2190 else
2191 /* When the number of slots is odd, make positive side of the
2192 range one entry bigger. */
2193 n = (n + 1) / 2;
2194 }
2195
2196 /* N is the number of slots that require I offsets.
2197 Calculate length of the range for I offsets. */
2198 n = 4 * n;
2199
2200 /* Set end of the range. */
2201 arg_.offset2[i] = start_offset + n;
2202
2203 start_offset = arg_.offset2[i];
2204 }
2205
2206 if (!use_neg_got_offsets_p)
2207 /* Make sure that if we try to switch to negative offsets in
2208 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2209 the bug. */
2210 for (i = R_8; i <= R_32; ++i)
2211 arg_.offset2[-i - 1] = arg_.offset2[i];
2212
2213 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2214 beginning of GOT depending on use_neg_got_offsets_p. */
2215 got->offset = arg_.offset1[R_8];
2216
2217 arg_.symndx2h = symndx2h;
2218 arg_.n_ldm_entries = 0;
2219
2220 /* Assign offsets. */
2221 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2222
2223 /* Check offset ranges we have actually assigned. */
2224 for (i = (int) R_8; i <= (int) R_32; ++i)
2225 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2226
2227 *final_offset = start_offset;
2228 *n_ldm_entries = arg_.n_ldm_entries;
2229 }
2230
2231 struct elf_m68k_partition_multi_got_arg
2232 {
2233 /* The GOT we are adding entries to. Aka big got. */
2234 struct elf_m68k_got *current_got;
2235
2236 /* Offset to assign the next CURRENT_GOT. */
2237 bfd_vma offset;
2238
2239 /* Context where memory should be allocated. */
2240 struct bfd_link_info *info;
2241
2242 /* Total number of slots in the .got section.
2243 This is used to calculate size of the .got and .rela.got sections. */
2244 bfd_vma n_slots;
2245
2246 /* Difference in numbers of allocated slots in the .got section
2247 and necessary relocations in the .rela.got section.
2248 This is used to calculate size of the .rela.got section. */
2249 bfd_vma slots_relas_diff;
2250
2251 /* Error flag. */
2252 bfd_boolean error_p;
2253
2254 /* Mapping from global symndx to global symbols.
2255 This is used to build lists of got entries for global symbols. */
2256 struct elf_m68k_link_hash_entry **symndx2h;
2257 };
2258
2259 static void
2260 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2261 {
2262 bfd_vma n_ldm_entries;
2263
2264 elf_m68k_finalize_got_offsets (arg->current_got,
2265 (elf_m68k_hash_table (arg->info)
2266 ->use_neg_got_offsets_p),
2267 arg->symndx2h,
2268 &arg->offset, &n_ldm_entries);
2269
2270 arg->n_slots += arg->current_got->n_slots[R_32];
2271
2272 if (!arg->info->shared)
2273 /* If we are generating a shared object, we need to
2274 output a R_68K_RELATIVE reloc so that the dynamic
2275 linker can adjust this GOT entry. Overwise we
2276 don't need space in .rela.got for local symbols. */
2277 arg->slots_relas_diff += arg->current_got->local_n_slots;
2278
2279 /* @LDM relocations require a 2-slot GOT entry, but only
2280 one relocation. Account for that. */
2281 arg->slots_relas_diff += n_ldm_entries;
2282
2283 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2284 }
2285
2286
2287 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2288 or start a new CURRENT_GOT. */
2289
2290 static int
2291 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2292 {
2293 struct elf_m68k_bfd2got_entry *entry;
2294 struct elf_m68k_partition_multi_got_arg *arg;
2295 struct elf_m68k_got *got;
2296 struct elf_m68k_got diff_;
2297 struct elf_m68k_got *diff;
2298
2299 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2300 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2301
2302 got = entry->got;
2303 BFD_ASSERT (got != NULL);
2304 BFD_ASSERT (got->offset == (bfd_vma) -1);
2305
2306 diff = NULL;
2307
2308 if (arg->current_got != NULL)
2309 /* Construct diff. */
2310 {
2311 diff = &diff_;
2312 elf_m68k_init_got (diff);
2313
2314 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2315 {
2316 if (diff->offset == 0)
2317 /* Offset set to 0 in the diff_ indicates an error. */
2318 {
2319 arg->error_p = TRUE;
2320 goto final_return;
2321 }
2322
2323 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2324 {
2325 elf_m68k_clear_got (diff);
2326 /* Schedule to finish up current_got and start new one. */
2327 diff = NULL;
2328 }
2329 /* else
2330 Merge GOTs no matter what. If big GOT overflows,
2331 we'll fail in relocate_section due to truncated relocations.
2332
2333 ??? May be fail earlier? E.g., in can_merge_gots. */
2334 }
2335 }
2336 else
2337 /* Diff of got against empty current_got is got itself. */
2338 {
2339 /* Create empty current_got to put subsequent GOTs to. */
2340 arg->current_got = elf_m68k_create_empty_got (arg->info);
2341 if (arg->current_got == NULL)
2342 {
2343 arg->error_p = TRUE;
2344 goto final_return;
2345 }
2346
2347 arg->current_got->offset = arg->offset;
2348
2349 diff = got;
2350 }
2351
2352 if (diff != NULL)
2353 {
2354 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2355 {
2356 arg->error_p = TRUE;
2357 goto final_return;
2358 }
2359
2360 /* Now we can free GOT. */
2361 elf_m68k_clear_got (got);
2362
2363 entry->got = arg->current_got;
2364 }
2365 else
2366 {
2367 /* Finish up current_got. */
2368 elf_m68k_partition_multi_got_2 (arg);
2369
2370 /* Schedule to start a new current_got. */
2371 arg->current_got = NULL;
2372
2373 /* Retry. */
2374 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2375 {
2376 BFD_ASSERT (arg->error_p);
2377 goto final_return;
2378 }
2379 }
2380
2381 final_return:
2382 if (diff != NULL)
2383 elf_m68k_clear_got (diff);
2384
2385 return arg->error_p == FALSE ? 1 : 0;
2386 }
2387
2388 /* Helper function to build symndx2h mapping. */
2389
2390 static bfd_boolean
2391 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2392 void *_arg)
2393 {
2394 struct elf_m68k_link_hash_entry *h;
2395
2396 h = elf_m68k_hash_entry (_h);
2397
2398 if (h->got_entry_key != 0)
2399 /* H has at least one entry in the GOT. */
2400 {
2401 struct elf_m68k_partition_multi_got_arg *arg;
2402
2403 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2404
2405 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2406 arg->symndx2h[h->got_entry_key] = h;
2407 }
2408
2409 return TRUE;
2410 }
2411
2412 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2413 lists of GOT entries for global symbols.
2414 Calculate sizes of .got and .rela.got sections. */
2415
2416 static bfd_boolean
2417 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2418 {
2419 struct elf_m68k_multi_got *multi_got;
2420 struct elf_m68k_partition_multi_got_arg arg_;
2421
2422 multi_got = elf_m68k_multi_got (info);
2423
2424 arg_.current_got = NULL;
2425 arg_.offset = 0;
2426 arg_.info = info;
2427 arg_.n_slots = 0;
2428 arg_.slots_relas_diff = 0;
2429 arg_.error_p = FALSE;
2430
2431 if (multi_got->bfd2got != NULL)
2432 {
2433 /* Initialize symndx2h mapping. */
2434 {
2435 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2436 * sizeof (*arg_.symndx2h));
2437 if (arg_.symndx2h == NULL)
2438 return FALSE;
2439
2440 elf_link_hash_traverse (elf_hash_table (info),
2441 elf_m68k_init_symndx2h_1, &arg_);
2442 }
2443
2444 /* Partition. */
2445 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2446 &arg_);
2447 if (arg_.error_p)
2448 {
2449 free (arg_.symndx2h);
2450 arg_.symndx2h = NULL;
2451
2452 return FALSE;
2453 }
2454
2455 /* Finish up last current_got. */
2456 elf_m68k_partition_multi_got_2 (&arg_);
2457
2458 free (arg_.symndx2h);
2459 }
2460
2461 if (elf_hash_table (info)->dynobj != NULL)
2462 /* Set sizes of .got and .rela.got sections. */
2463 {
2464 asection *s;
2465
2466 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2467 if (s != NULL)
2468 s->size = arg_.offset;
2469 else
2470 BFD_ASSERT (arg_.offset == 0);
2471
2472 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2473 arg_.n_slots -= arg_.slots_relas_diff;
2474
2475 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2476 if (s != NULL)
2477 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2478 else
2479 BFD_ASSERT (arg_.n_slots == 0);
2480 }
2481 else
2482 BFD_ASSERT (multi_got->bfd2got == NULL);
2483
2484 return TRUE;
2485 }
2486
2487 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2488 to hashtable slot, thus allowing removal of entry via
2489 elf_m68k_remove_got_entry. */
2490
2491 static struct elf_m68k_got_entry **
2492 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2493 struct elf_m68k_got_entry_key *key)
2494 {
2495 void **ptr;
2496 struct elf_m68k_got_entry entry_;
2497 struct elf_m68k_got_entry **entry_ptr;
2498
2499 entry_.key_ = *key;
2500 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2501 BFD_ASSERT (ptr != NULL);
2502
2503 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2504
2505 return entry_ptr;
2506 }
2507
2508 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2509
2510 static void
2511 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2512 struct elf_m68k_got_entry **entry_ptr)
2513 {
2514 struct elf_m68k_got_entry *entry;
2515
2516 entry = *entry_ptr;
2517
2518 /* Check that offsets have not been finalized yet. */
2519 BFD_ASSERT (got->offset == (bfd_vma) -1);
2520 /* Check that this entry is indeed unused. */
2521 BFD_ASSERT (entry->u.s1.refcount == 0);
2522
2523 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2524
2525 if (entry->key_.bfd != NULL)
2526 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2527
2528 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2529
2530 htab_clear_slot (got->entries, (void **) entry_ptr);
2531 }
2532
2533 /* Copy any information related to dynamic linking from a pre-existing
2534 symbol to a newly created symbol. Also called to copy flags and
2535 other back-end info to a weakdef, in which case the symbol is not
2536 newly created and plt/got refcounts and dynamic indices should not
2537 be copied. */
2538
2539 static void
2540 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2541 struct elf_link_hash_entry *_dir,
2542 struct elf_link_hash_entry *_ind)
2543 {
2544 struct elf_m68k_link_hash_entry *dir;
2545 struct elf_m68k_link_hash_entry *ind;
2546
2547 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2548
2549 if (_ind->root.type != bfd_link_hash_indirect)
2550 return;
2551
2552 dir = elf_m68k_hash_entry (_dir);
2553 ind = elf_m68k_hash_entry (_ind);
2554
2555 /* Any absolute non-dynamic relocations against an indirect or weak
2556 definition will be against the target symbol. */
2557 _dir->non_got_ref |= _ind->non_got_ref;
2558
2559 /* We might have a direct symbol already having entries in the GOTs.
2560 Update its key only in case indirect symbol has GOT entries and
2561 assert that both indirect and direct symbols don't have GOT entries
2562 at the same time. */
2563 if (ind->got_entry_key != 0)
2564 {
2565 BFD_ASSERT (dir->got_entry_key == 0);
2566 /* Assert that GOTs aren't partioned yet. */
2567 BFD_ASSERT (ind->glist == NULL);
2568
2569 dir->got_entry_key = ind->got_entry_key;
2570 ind->got_entry_key = 0;
2571 }
2572 }
2573
2574 /* Look through the relocs for a section during the first phase, and
2575 allocate space in the global offset table or procedure linkage
2576 table. */
2577
2578 static bfd_boolean
2579 elf_m68k_check_relocs (abfd, info, sec, relocs)
2580 bfd *abfd;
2581 struct bfd_link_info *info;
2582 asection *sec;
2583 const Elf_Internal_Rela *relocs;
2584 {
2585 bfd *dynobj;
2586 Elf_Internal_Shdr *symtab_hdr;
2587 struct elf_link_hash_entry **sym_hashes;
2588 const Elf_Internal_Rela *rel;
2589 const Elf_Internal_Rela *rel_end;
2590 asection *sgot;
2591 asection *srelgot;
2592 asection *sreloc;
2593 struct elf_m68k_got *got;
2594
2595 if (info->relocatable)
2596 return TRUE;
2597
2598 dynobj = elf_hash_table (info)->dynobj;
2599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2600 sym_hashes = elf_sym_hashes (abfd);
2601
2602 sgot = NULL;
2603 srelgot = NULL;
2604 sreloc = NULL;
2605
2606 got = NULL;
2607
2608 rel_end = relocs + sec->reloc_count;
2609 for (rel = relocs; rel < rel_end; rel++)
2610 {
2611 unsigned long r_symndx;
2612 struct elf_link_hash_entry *h;
2613
2614 r_symndx = ELF32_R_SYM (rel->r_info);
2615
2616 if (r_symndx < symtab_hdr->sh_info)
2617 h = NULL;
2618 else
2619 {
2620 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2621 while (h->root.type == bfd_link_hash_indirect
2622 || h->root.type == bfd_link_hash_warning)
2623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2624 }
2625
2626 switch (ELF32_R_TYPE (rel->r_info))
2627 {
2628 case R_68K_GOT8:
2629 case R_68K_GOT16:
2630 case R_68K_GOT32:
2631 if (h != NULL
2632 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2633 break;
2634 /* Fall through. */
2635
2636 /* Relative GOT relocations. */
2637 case R_68K_GOT8O:
2638 case R_68K_GOT16O:
2639 case R_68K_GOT32O:
2640 /* Fall through. */
2641
2642 /* TLS relocations. */
2643 case R_68K_TLS_GD8:
2644 case R_68K_TLS_GD16:
2645 case R_68K_TLS_GD32:
2646 case R_68K_TLS_LDM8:
2647 case R_68K_TLS_LDM16:
2648 case R_68K_TLS_LDM32:
2649 case R_68K_TLS_IE8:
2650 case R_68K_TLS_IE16:
2651 case R_68K_TLS_IE32:
2652
2653 case R_68K_TLS_TPREL32:
2654 case R_68K_TLS_DTPREL32:
2655
2656 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2657 && info->shared)
2658 /* Do the special chorus for libraries with static TLS. */
2659 info->flags |= DF_STATIC_TLS;
2660
2661 /* This symbol requires a global offset table entry. */
2662
2663 if (dynobj == NULL)
2664 {
2665 /* Create the .got section. */
2666 elf_hash_table (info)->dynobj = dynobj = abfd;
2667 if (!_bfd_elf_create_got_section (dynobj, info))
2668 return FALSE;
2669 }
2670
2671 if (sgot == NULL)
2672 {
2673 sgot = bfd_get_section_by_name (dynobj, ".got");
2674 BFD_ASSERT (sgot != NULL);
2675 }
2676
2677 if (srelgot == NULL
2678 && (h != NULL || info->shared))
2679 {
2680 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2681 if (srelgot == NULL)
2682 {
2683 srelgot = bfd_make_section_with_flags (dynobj,
2684 ".rela.got",
2685 (SEC_ALLOC
2686 | SEC_LOAD
2687 | SEC_HAS_CONTENTS
2688 | SEC_IN_MEMORY
2689 | SEC_LINKER_CREATED
2690 | SEC_READONLY));
2691 if (srelgot == NULL
2692 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2693 return FALSE;
2694 }
2695 }
2696
2697 if (got == NULL)
2698 {
2699 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2700
2701 bfd2got_entry
2702 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2703 abfd, FIND_OR_CREATE, info);
2704 if (bfd2got_entry == NULL)
2705 return FALSE;
2706
2707 got = bfd2got_entry->got;
2708 BFD_ASSERT (got != NULL);
2709 }
2710
2711 {
2712 struct elf_m68k_got_entry *got_entry;
2713
2714 /* Add entry to got. */
2715 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2716 ELF32_R_TYPE (rel->r_info),
2717 r_symndx, info);
2718 if (got_entry == NULL)
2719 return FALSE;
2720
2721 if (got_entry->u.s1.refcount == 1)
2722 {
2723 /* Make sure this symbol is output as a dynamic symbol. */
2724 if (h != NULL
2725 && h->dynindx == -1
2726 && !h->forced_local)
2727 {
2728 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2729 return FALSE;
2730 }
2731 }
2732 }
2733
2734 break;
2735
2736 case R_68K_PLT8:
2737 case R_68K_PLT16:
2738 case R_68K_PLT32:
2739 /* This symbol requires a procedure linkage table entry. We
2740 actually build the entry in adjust_dynamic_symbol,
2741 because this might be a case of linking PIC code which is
2742 never referenced by a dynamic object, in which case we
2743 don't need to generate a procedure linkage table entry
2744 after all. */
2745
2746 /* If this is a local symbol, we resolve it directly without
2747 creating a procedure linkage table entry. */
2748 if (h == NULL)
2749 continue;
2750
2751 h->needs_plt = 1;
2752 h->plt.refcount++;
2753 break;
2754
2755 case R_68K_PLT8O:
2756 case R_68K_PLT16O:
2757 case R_68K_PLT32O:
2758 /* This symbol requires a procedure linkage table entry. */
2759
2760 if (h == NULL)
2761 {
2762 /* It does not make sense to have this relocation for a
2763 local symbol. FIXME: does it? How to handle it if
2764 it does make sense? */
2765 bfd_set_error (bfd_error_bad_value);
2766 return FALSE;
2767 }
2768
2769 /* Make sure this symbol is output as a dynamic symbol. */
2770 if (h->dynindx == -1
2771 && !h->forced_local)
2772 {
2773 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2774 return FALSE;
2775 }
2776
2777 h->needs_plt = 1;
2778 h->plt.refcount++;
2779 break;
2780
2781 case R_68K_PC8:
2782 case R_68K_PC16:
2783 case R_68K_PC32:
2784 /* If we are creating a shared library and this is not a local
2785 symbol, we need to copy the reloc into the shared library.
2786 However when linking with -Bsymbolic and this is a global
2787 symbol which is defined in an object we are including in the
2788 link (i.e., DEF_REGULAR is set), then we can resolve the
2789 reloc directly. At this point we have not seen all the input
2790 files, so it is possible that DEF_REGULAR is not set now but
2791 will be set later (it is never cleared). We account for that
2792 possibility below by storing information in the
2793 pcrel_relocs_copied field of the hash table entry. */
2794 if (!(info->shared
2795 && (sec->flags & SEC_ALLOC) != 0
2796 && h != NULL
2797 && (!info->symbolic
2798 || h->root.type == bfd_link_hash_defweak
2799 || !h->def_regular)))
2800 {
2801 if (h != NULL)
2802 {
2803 /* Make sure a plt entry is created for this symbol if
2804 it turns out to be a function defined by a dynamic
2805 object. */
2806 h->plt.refcount++;
2807 }
2808 break;
2809 }
2810 /* Fall through. */
2811 case R_68K_8:
2812 case R_68K_16:
2813 case R_68K_32:
2814 if (h != NULL)
2815 {
2816 /* Make sure a plt entry is created for this symbol if it
2817 turns out to be a function defined by a dynamic object. */
2818 h->plt.refcount++;
2819
2820 if (!info->shared)
2821 /* This symbol needs a non-GOT reference. */
2822 h->non_got_ref = 1;
2823 }
2824
2825 /* If we are creating a shared library, we need to copy the
2826 reloc into the shared library. */
2827 if (info->shared
2828 && (sec->flags & SEC_ALLOC) != 0)
2829 {
2830 /* When creating a shared object, we must copy these
2831 reloc types into the output file. We create a reloc
2832 section in dynobj and make room for this reloc. */
2833 if (sreloc == NULL)
2834 {
2835 sreloc = _bfd_elf_make_dynamic_reloc_section
2836 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2837
2838 if (sreloc == NULL)
2839 return FALSE;
2840 }
2841
2842 if (sec->flags & SEC_READONLY
2843 /* Don't set DF_TEXTREL yet for PC relative
2844 relocations, they might be discarded later. */
2845 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2846 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2847 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2848 info->flags |= DF_TEXTREL;
2849
2850 sreloc->size += sizeof (Elf32_External_Rela);
2851
2852 /* We count the number of PC relative relocations we have
2853 entered for this symbol, so that we can discard them
2854 again if, in the -Bsymbolic case, the symbol is later
2855 defined by a regular object, or, in the normal shared
2856 case, the symbol is forced to be local. Note that this
2857 function is only called if we are using an m68kelf linker
2858 hash table, which means that h is really a pointer to an
2859 elf_m68k_link_hash_entry. */
2860 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2861 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2862 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2863 {
2864 struct elf_m68k_pcrel_relocs_copied *p;
2865 struct elf_m68k_pcrel_relocs_copied **head;
2866
2867 if (h != NULL)
2868 {
2869 struct elf_m68k_link_hash_entry *eh
2870 = elf_m68k_hash_entry (h);
2871 head = &eh->pcrel_relocs_copied;
2872 }
2873 else
2874 {
2875 asection *s;
2876 void *vpp;
2877 Elf_Internal_Sym *isym;
2878
2879 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2880 abfd, r_symndx);
2881 if (isym == NULL)
2882 return FALSE;
2883
2884 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2885 if (s == NULL)
2886 s = sec;
2887
2888 vpp = &elf_section_data (s)->local_dynrel;
2889 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2890 }
2891
2892 for (p = *head; p != NULL; p = p->next)
2893 if (p->section == sreloc)
2894 break;
2895
2896 if (p == NULL)
2897 {
2898 p = ((struct elf_m68k_pcrel_relocs_copied *)
2899 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2900 if (p == NULL)
2901 return FALSE;
2902 p->next = *head;
2903 *head = p;
2904 p->section = sreloc;
2905 p->count = 0;
2906 }
2907
2908 ++p->count;
2909 }
2910 }
2911
2912 break;
2913
2914 /* This relocation describes the C++ object vtable hierarchy.
2915 Reconstruct it for later use during GC. */
2916 case R_68K_GNU_VTINHERIT:
2917 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2918 return FALSE;
2919 break;
2920
2921 /* This relocation describes which C++ vtable entries are actually
2922 used. Record for later use during GC. */
2923 case R_68K_GNU_VTENTRY:
2924 BFD_ASSERT (h != NULL);
2925 if (h != NULL
2926 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2927 return FALSE;
2928 break;
2929
2930 default:
2931 break;
2932 }
2933 }
2934
2935 return TRUE;
2936 }
2937
2938 /* Return the section that should be marked against GC for a given
2939 relocation. */
2940
2941 static asection *
2942 elf_m68k_gc_mark_hook (asection *sec,
2943 struct bfd_link_info *info,
2944 Elf_Internal_Rela *rel,
2945 struct elf_link_hash_entry *h,
2946 Elf_Internal_Sym *sym)
2947 {
2948 if (h != NULL)
2949 switch (ELF32_R_TYPE (rel->r_info))
2950 {
2951 case R_68K_GNU_VTINHERIT:
2952 case R_68K_GNU_VTENTRY:
2953 return NULL;
2954 }
2955
2956 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2957 }
2958
2959 /* Update the got entry reference counts for the section being removed. */
2960
2961 static bfd_boolean
2962 elf_m68k_gc_sweep_hook (bfd *abfd,
2963 struct bfd_link_info *info,
2964 asection *sec,
2965 const Elf_Internal_Rela *relocs)
2966 {
2967 Elf_Internal_Shdr *symtab_hdr;
2968 struct elf_link_hash_entry **sym_hashes;
2969 const Elf_Internal_Rela *rel, *relend;
2970 bfd *dynobj;
2971 struct elf_m68k_got *got;
2972
2973 if (info->relocatable)
2974 return TRUE;
2975
2976 dynobj = elf_hash_table (info)->dynobj;
2977 if (dynobj == NULL)
2978 return TRUE;
2979
2980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2981 sym_hashes = elf_sym_hashes (abfd);
2982 got = NULL;
2983
2984 relend = relocs + sec->reloc_count;
2985 for (rel = relocs; rel < relend; rel++)
2986 {
2987 unsigned long r_symndx;
2988 struct elf_link_hash_entry *h = NULL;
2989
2990 r_symndx = ELF32_R_SYM (rel->r_info);
2991 if (r_symndx >= symtab_hdr->sh_info)
2992 {
2993 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2994 while (h->root.type == bfd_link_hash_indirect
2995 || h->root.type == bfd_link_hash_warning)
2996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2997 }
2998
2999 switch (ELF32_R_TYPE (rel->r_info))
3000 {
3001 case R_68K_GOT8:
3002 case R_68K_GOT16:
3003 case R_68K_GOT32:
3004 if (h != NULL
3005 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3006 break;
3007
3008 /* FALLTHRU */
3009 case R_68K_GOT8O:
3010 case R_68K_GOT16O:
3011 case R_68K_GOT32O:
3012 /* Fall through. */
3013
3014 /* TLS relocations. */
3015 case R_68K_TLS_GD8:
3016 case R_68K_TLS_GD16:
3017 case R_68K_TLS_GD32:
3018 case R_68K_TLS_LDM8:
3019 case R_68K_TLS_LDM16:
3020 case R_68K_TLS_LDM32:
3021 case R_68K_TLS_IE8:
3022 case R_68K_TLS_IE16:
3023 case R_68K_TLS_IE32:
3024
3025 case R_68K_TLS_TPREL32:
3026 case R_68K_TLS_DTPREL32:
3027
3028 if (got == NULL)
3029 {
3030 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3031 abfd, MUST_FIND, NULL)->got;
3032 BFD_ASSERT (got != NULL);
3033 }
3034
3035 {
3036 struct elf_m68k_got_entry_key key_;
3037 struct elf_m68k_got_entry **got_entry_ptr;
3038 struct elf_m68k_got_entry *got_entry;
3039
3040 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
3041 ELF32_R_TYPE (rel->r_info));
3042 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
3043
3044 got_entry = *got_entry_ptr;
3045
3046 if (got_entry->u.s1.refcount > 0)
3047 {
3048 --got_entry->u.s1.refcount;
3049
3050 if (got_entry->u.s1.refcount == 0)
3051 /* We don't need the .got entry any more. */
3052 elf_m68k_remove_got_entry (got, got_entry_ptr);
3053 }
3054 }
3055 break;
3056
3057 case R_68K_PLT8:
3058 case R_68K_PLT16:
3059 case R_68K_PLT32:
3060 case R_68K_PLT8O:
3061 case R_68K_PLT16O:
3062 case R_68K_PLT32O:
3063 case R_68K_PC8:
3064 case R_68K_PC16:
3065 case R_68K_PC32:
3066 case R_68K_8:
3067 case R_68K_16:
3068 case R_68K_32:
3069 if (h != NULL)
3070 {
3071 if (h->plt.refcount > 0)
3072 --h->plt.refcount;
3073 }
3074 break;
3075
3076 default:
3077 break;
3078 }
3079 }
3080
3081 return TRUE;
3082 }
3083 \f
3084 /* Return the type of PLT associated with OUTPUT_BFD. */
3085
3086 static const struct elf_m68k_plt_info *
3087 elf_m68k_get_plt_info (bfd *output_bfd)
3088 {
3089 unsigned int features;
3090
3091 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3092 if (features & cpu32)
3093 return &elf_cpu32_plt_info;
3094 if (features & mcfisa_b)
3095 return &elf_isab_plt_info;
3096 if (features & mcfisa_c)
3097 return &elf_isac_plt_info;
3098 return &elf_m68k_plt_info;
3099 }
3100
3101 /* This function is called after all the input files have been read,
3102 and the input sections have been assigned to output sections.
3103 It's a convenient place to determine the PLT style. */
3104
3105 static bfd_boolean
3106 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3107 {
3108 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3109 sections. */
3110 if (!elf_m68k_partition_multi_got (info))
3111 return FALSE;
3112
3113 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3114 return TRUE;
3115 }
3116
3117 /* Adjust a symbol defined by a dynamic object and referenced by a
3118 regular object. The current definition is in some section of the
3119 dynamic object, but we're not including those sections. We have to
3120 change the definition to something the rest of the link can
3121 understand. */
3122
3123 static bfd_boolean
3124 elf_m68k_adjust_dynamic_symbol (info, h)
3125 struct bfd_link_info *info;
3126 struct elf_link_hash_entry *h;
3127 {
3128 struct elf_m68k_link_hash_table *htab;
3129 bfd *dynobj;
3130 asection *s;
3131
3132 htab = elf_m68k_hash_table (info);
3133 dynobj = elf_hash_table (info)->dynobj;
3134
3135 /* Make sure we know what is going on here. */
3136 BFD_ASSERT (dynobj != NULL
3137 && (h->needs_plt
3138 || h->u.weakdef != NULL
3139 || (h->def_dynamic
3140 && h->ref_regular
3141 && !h->def_regular)));
3142
3143 /* If this is a function, put it in the procedure linkage table. We
3144 will fill in the contents of the procedure linkage table later,
3145 when we know the address of the .got section. */
3146 if (h->type == STT_FUNC
3147 || h->needs_plt)
3148 {
3149 if ((h->plt.refcount <= 0
3150 || SYMBOL_CALLS_LOCAL (info, h)
3151 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3152 && h->root.type == bfd_link_hash_undefweak))
3153 /* We must always create the plt entry if it was referenced
3154 by a PLTxxO relocation. In this case we already recorded
3155 it as a dynamic symbol. */
3156 && h->dynindx == -1)
3157 {
3158 /* This case can occur if we saw a PLTxx reloc in an input
3159 file, but the symbol was never referred to by a dynamic
3160 object, or if all references were garbage collected. In
3161 such a case, we don't actually need to build a procedure
3162 linkage table, and we can just do a PCxx reloc instead. */
3163 h->plt.offset = (bfd_vma) -1;
3164 h->needs_plt = 0;
3165 return TRUE;
3166 }
3167
3168 /* Make sure this symbol is output as a dynamic symbol. */
3169 if (h->dynindx == -1
3170 && !h->forced_local)
3171 {
3172 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3173 return FALSE;
3174 }
3175
3176 s = bfd_get_section_by_name (dynobj, ".plt");
3177 BFD_ASSERT (s != NULL);
3178
3179 /* If this is the first .plt entry, make room for the special
3180 first entry. */
3181 if (s->size == 0)
3182 s->size = htab->plt_info->size;
3183
3184 /* If this symbol is not defined in a regular file, and we are
3185 not generating a shared library, then set the symbol to this
3186 location in the .plt. This is required to make function
3187 pointers compare as equal between the normal executable and
3188 the shared library. */
3189 if (!info->shared
3190 && !h->def_regular)
3191 {
3192 h->root.u.def.section = s;
3193 h->root.u.def.value = s->size;
3194 }
3195
3196 h->plt.offset = s->size;
3197
3198 /* Make room for this entry. */
3199 s->size += htab->plt_info->size;
3200
3201 /* We also need to make an entry in the .got.plt section, which
3202 will be placed in the .got section by the linker script. */
3203 s = bfd_get_section_by_name (dynobj, ".got.plt");
3204 BFD_ASSERT (s != NULL);
3205 s->size += 4;
3206
3207 /* We also need to make an entry in the .rela.plt section. */
3208 s = bfd_get_section_by_name (dynobj, ".rela.plt");
3209 BFD_ASSERT (s != NULL);
3210 s->size += sizeof (Elf32_External_Rela);
3211
3212 return TRUE;
3213 }
3214
3215 /* Reinitialize the plt offset now that it is not used as a reference
3216 count any more. */
3217 h->plt.offset = (bfd_vma) -1;
3218
3219 /* If this is a weak symbol, and there is a real definition, the
3220 processor independent code will have arranged for us to see the
3221 real definition first, and we can just use the same value. */
3222 if (h->u.weakdef != NULL)
3223 {
3224 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3225 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3226 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3227 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3228 return TRUE;
3229 }
3230
3231 /* This is a reference to a symbol defined by a dynamic object which
3232 is not a function. */
3233
3234 /* If we are creating a shared library, we must presume that the
3235 only references to the symbol are via the global offset table.
3236 For such cases we need not do anything here; the relocations will
3237 be handled correctly by relocate_section. */
3238 if (info->shared)
3239 return TRUE;
3240
3241 /* If there are no references to this symbol that do not use the
3242 GOT, we don't need to generate a copy reloc. */
3243 if (!h->non_got_ref)
3244 return TRUE;
3245
3246 if (h->size == 0)
3247 {
3248 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
3249 h->root.root.string);
3250 return TRUE;
3251 }
3252
3253 /* We must allocate the symbol in our .dynbss section, which will
3254 become part of the .bss section of the executable. There will be
3255 an entry for this symbol in the .dynsym section. The dynamic
3256 object will contain position independent code, so all references
3257 from the dynamic object to this symbol will go through the global
3258 offset table. The dynamic linker will use the .dynsym entry to
3259 determine the address it must put in the global offset table, so
3260 both the dynamic object and the regular object will refer to the
3261 same memory location for the variable. */
3262
3263 s = bfd_get_section_by_name (dynobj, ".dynbss");
3264 BFD_ASSERT (s != NULL);
3265
3266 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3267 copy the initial value out of the dynamic object and into the
3268 runtime process image. We need to remember the offset into the
3269 .rela.bss section we are going to use. */
3270 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3271 {
3272 asection *srel;
3273
3274 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
3275 BFD_ASSERT (srel != NULL);
3276 srel->size += sizeof (Elf32_External_Rela);
3277 h->needs_copy = 1;
3278 }
3279
3280 return _bfd_elf_adjust_dynamic_copy (h, s);
3281 }
3282
3283 /* Set the sizes of the dynamic sections. */
3284
3285 static bfd_boolean
3286 elf_m68k_size_dynamic_sections (output_bfd, info)
3287 bfd *output_bfd ATTRIBUTE_UNUSED;
3288 struct bfd_link_info *info;
3289 {
3290 bfd *dynobj;
3291 asection *s;
3292 bfd_boolean plt;
3293 bfd_boolean relocs;
3294
3295 dynobj = elf_hash_table (info)->dynobj;
3296 BFD_ASSERT (dynobj != NULL);
3297
3298 if (elf_hash_table (info)->dynamic_sections_created)
3299 {
3300 /* Set the contents of the .interp section to the interpreter. */
3301 if (info->executable)
3302 {
3303 s = bfd_get_section_by_name (dynobj, ".interp");
3304 BFD_ASSERT (s != NULL);
3305 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3306 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3307 }
3308 }
3309 else
3310 {
3311 /* We may have created entries in the .rela.got section.
3312 However, if we are not creating the dynamic sections, we will
3313 not actually use these entries. Reset the size of .rela.got,
3314 which will cause it to get stripped from the output file
3315 below. */
3316 s = bfd_get_section_by_name (dynobj, ".rela.got");
3317 if (s != NULL)
3318 s->size = 0;
3319 }
3320
3321 /* If this is a -Bsymbolic shared link, then we need to discard all
3322 PC relative relocs against symbols defined in a regular object.
3323 For the normal shared case we discard the PC relative relocs
3324 against symbols that have become local due to visibility changes.
3325 We allocated space for them in the check_relocs routine, but we
3326 will not fill them in in the relocate_section routine. */
3327 if (info->shared)
3328 elf_link_hash_traverse (elf_hash_table (info),
3329 elf_m68k_discard_copies,
3330 (PTR) info);
3331
3332 /* The check_relocs and adjust_dynamic_symbol entry points have
3333 determined the sizes of the various dynamic sections. Allocate
3334 memory for them. */
3335 plt = FALSE;
3336 relocs = FALSE;
3337 for (s = dynobj->sections; s != NULL; s = s->next)
3338 {
3339 const char *name;
3340
3341 if ((s->flags & SEC_LINKER_CREATED) == 0)
3342 continue;
3343
3344 /* It's OK to base decisions on the section name, because none
3345 of the dynobj section names depend upon the input files. */
3346 name = bfd_get_section_name (dynobj, s);
3347
3348 if (strcmp (name, ".plt") == 0)
3349 {
3350 /* Remember whether there is a PLT. */
3351 plt = s->size != 0;
3352 }
3353 else if (CONST_STRNEQ (name, ".rela"))
3354 {
3355 if (s->size != 0)
3356 {
3357 relocs = TRUE;
3358
3359 /* We use the reloc_count field as a counter if we need
3360 to copy relocs into the output file. */
3361 s->reloc_count = 0;
3362 }
3363 }
3364 else if (! CONST_STRNEQ (name, ".got")
3365 && strcmp (name, ".dynbss") != 0)
3366 {
3367 /* It's not one of our sections, so don't allocate space. */
3368 continue;
3369 }
3370
3371 if (s->size == 0)
3372 {
3373 /* If we don't need this section, strip it from the
3374 output file. This is mostly to handle .rela.bss and
3375 .rela.plt. We must create both sections in
3376 create_dynamic_sections, because they must be created
3377 before the linker maps input sections to output
3378 sections. The linker does that before
3379 adjust_dynamic_symbol is called, and it is that
3380 function which decides whether anything needs to go
3381 into these sections. */
3382 s->flags |= SEC_EXCLUDE;
3383 continue;
3384 }
3385
3386 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3387 continue;
3388
3389 /* Allocate memory for the section contents. */
3390 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3391 Unused entries should be reclaimed before the section's contents
3392 are written out, but at the moment this does not happen. Thus in
3393 order to prevent writing out garbage, we initialise the section's
3394 contents to zero. */
3395 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3396 if (s->contents == NULL)
3397 return FALSE;
3398 }
3399
3400 if (elf_hash_table (info)->dynamic_sections_created)
3401 {
3402 /* Add some entries to the .dynamic section. We fill in the
3403 values later, in elf_m68k_finish_dynamic_sections, but we
3404 must add the entries now so that we get the correct size for
3405 the .dynamic section. The DT_DEBUG entry is filled in by the
3406 dynamic linker and used by the debugger. */
3407 #define add_dynamic_entry(TAG, VAL) \
3408 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3409
3410 if (!info->shared)
3411 {
3412 if (!add_dynamic_entry (DT_DEBUG, 0))
3413 return FALSE;
3414 }
3415
3416 if (plt)
3417 {
3418 if (!add_dynamic_entry (DT_PLTGOT, 0)
3419 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3420 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3421 || !add_dynamic_entry (DT_JMPREL, 0))
3422 return FALSE;
3423 }
3424
3425 if (relocs)
3426 {
3427 if (!add_dynamic_entry (DT_RELA, 0)
3428 || !add_dynamic_entry (DT_RELASZ, 0)
3429 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3430 return FALSE;
3431 }
3432
3433 if ((info->flags & DF_TEXTREL) != 0)
3434 {
3435 if (!add_dynamic_entry (DT_TEXTREL, 0))
3436 return FALSE;
3437 }
3438 }
3439 #undef add_dynamic_entry
3440
3441 return TRUE;
3442 }
3443
3444 /* This function is called via elf_link_hash_traverse if we are
3445 creating a shared object. In the -Bsymbolic case it discards the
3446 space allocated to copy PC relative relocs against symbols which
3447 are defined in regular objects. For the normal shared case, it
3448 discards space for pc-relative relocs that have become local due to
3449 symbol visibility changes. We allocated space for them in the
3450 check_relocs routine, but we won't fill them in in the
3451 relocate_section routine.
3452
3453 We also check whether any of the remaining relocations apply
3454 against a readonly section, and set the DF_TEXTREL flag in this
3455 case. */
3456
3457 static bfd_boolean
3458 elf_m68k_discard_copies (h, inf)
3459 struct elf_link_hash_entry *h;
3460 PTR inf;
3461 {
3462 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3463 struct elf_m68k_pcrel_relocs_copied *s;
3464
3465 if (h->root.type == bfd_link_hash_warning)
3466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3467
3468 if (!SYMBOL_CALLS_LOCAL (info, h))
3469 {
3470 if ((info->flags & DF_TEXTREL) == 0)
3471 {
3472 /* Look for relocations against read-only sections. */
3473 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3474 s != NULL;
3475 s = s->next)
3476 if ((s->section->flags & SEC_READONLY) != 0)
3477 {
3478 info->flags |= DF_TEXTREL;
3479 break;
3480 }
3481 }
3482
3483 return TRUE;
3484 }
3485
3486 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3487 s != NULL;
3488 s = s->next)
3489 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3490
3491 return TRUE;
3492 }
3493
3494
3495 /* Install relocation RELA. */
3496
3497 static void
3498 elf_m68k_install_rela (bfd *output_bfd,
3499 asection *srela,
3500 Elf_Internal_Rela *rela)
3501 {
3502 bfd_byte *loc;
3503
3504 loc = srela->contents;
3505 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3506 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3507 }
3508
3509 /* Find the base offsets for thread-local storage in this object,
3510 for GD/LD and IE/LE respectively. */
3511
3512 #define DTP_OFFSET 0x8000
3513 #define TP_OFFSET 0x7000
3514
3515 static bfd_vma
3516 dtpoff_base (struct bfd_link_info *info)
3517 {
3518 /* If tls_sec is NULL, we should have signalled an error already. */
3519 if (elf_hash_table (info)->tls_sec == NULL)
3520 return 0;
3521 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3522 }
3523
3524 static bfd_vma
3525 tpoff_base (struct bfd_link_info *info)
3526 {
3527 /* If tls_sec is NULL, we should have signalled an error already. */
3528 if (elf_hash_table (info)->tls_sec == NULL)
3529 return 0;
3530 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3531 }
3532
3533 /* Output necessary relocation to handle a symbol during static link.
3534 This function is called from elf_m68k_relocate_section. */
3535
3536 static void
3537 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3538 bfd *output_bfd,
3539 enum elf_m68k_reloc_type r_type,
3540 asection *sgot,
3541 bfd_vma got_entry_offset,
3542 bfd_vma relocation)
3543 {
3544 switch (elf_m68k_reloc_got_type (r_type))
3545 {
3546 case R_68K_GOT32O:
3547 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3548 break;
3549
3550 case R_68K_TLS_GD32:
3551 /* We know the offset within the module,
3552 put it into the second GOT slot. */
3553 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3554 sgot->contents + got_entry_offset + 4);
3555 /* FALLTHRU */
3556
3557 case R_68K_TLS_LDM32:
3558 /* Mark it as belonging to module 1, the executable. */
3559 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3560 break;
3561
3562 case R_68K_TLS_IE32:
3563 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3564 sgot->contents + got_entry_offset);
3565 break;
3566
3567 default:
3568 BFD_ASSERT (FALSE);
3569 }
3570 }
3571
3572 /* Output necessary relocation to handle a local symbol
3573 during dynamic link.
3574 This function is called either from elf_m68k_relocate_section
3575 or from elf_m68k_finish_dynamic_symbol. */
3576
3577 static void
3578 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3579 bfd *output_bfd,
3580 enum elf_m68k_reloc_type r_type,
3581 asection *sgot,
3582 bfd_vma got_entry_offset,
3583 bfd_vma relocation,
3584 asection *srela)
3585 {
3586 Elf_Internal_Rela outrel;
3587
3588 switch (elf_m68k_reloc_got_type (r_type))
3589 {
3590 case R_68K_GOT32O:
3591 /* Emit RELATIVE relocation to initialize GOT slot
3592 at run-time. */
3593 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3594 outrel.r_addend = relocation;
3595 break;
3596
3597 case R_68K_TLS_GD32:
3598 /* We know the offset within the module,
3599 put it into the second GOT slot. */
3600 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3601 sgot->contents + got_entry_offset + 4);
3602 /* FALLTHRU */
3603
3604 case R_68K_TLS_LDM32:
3605 /* We don't know the module number,
3606 create a relocation for it. */
3607 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3608 outrel.r_addend = 0;
3609 break;
3610
3611 case R_68K_TLS_IE32:
3612 /* Emit TPREL relocation to initialize GOT slot
3613 at run-time. */
3614 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3615 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3616 break;
3617
3618 default:
3619 BFD_ASSERT (FALSE);
3620 }
3621
3622 /* Offset of the GOT entry. */
3623 outrel.r_offset = (sgot->output_section->vma
3624 + sgot->output_offset
3625 + got_entry_offset);
3626
3627 /* Install one of the above relocations. */
3628 elf_m68k_install_rela (output_bfd, srela, &outrel);
3629
3630 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3631 }
3632
3633 /* Relocate an M68K ELF section. */
3634
3635 static bfd_boolean
3636 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3637 contents, relocs, local_syms, local_sections)
3638 bfd *output_bfd;
3639 struct bfd_link_info *info;
3640 bfd *input_bfd;
3641 asection *input_section;
3642 bfd_byte *contents;
3643 Elf_Internal_Rela *relocs;
3644 Elf_Internal_Sym *local_syms;
3645 asection **local_sections;
3646 {
3647 bfd *dynobj;
3648 Elf_Internal_Shdr *symtab_hdr;
3649 struct elf_link_hash_entry **sym_hashes;
3650 asection *sgot;
3651 asection *splt;
3652 asection *sreloc;
3653 asection *srela;
3654 struct elf_m68k_got *got;
3655 Elf_Internal_Rela *rel;
3656 Elf_Internal_Rela *relend;
3657
3658 dynobj = elf_hash_table (info)->dynobj;
3659 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3660 sym_hashes = elf_sym_hashes (input_bfd);
3661
3662 sgot = NULL;
3663 splt = NULL;
3664 sreloc = NULL;
3665 srela = NULL;
3666
3667 got = NULL;
3668
3669 rel = relocs;
3670 relend = relocs + input_section->reloc_count;
3671 for (; rel < relend; rel++)
3672 {
3673 int r_type;
3674 reloc_howto_type *howto;
3675 unsigned long r_symndx;
3676 struct elf_link_hash_entry *h;
3677 Elf_Internal_Sym *sym;
3678 asection *sec;
3679 bfd_vma relocation;
3680 bfd_boolean unresolved_reloc;
3681 bfd_reloc_status_type r;
3682
3683 r_type = ELF32_R_TYPE (rel->r_info);
3684 if (r_type < 0 || r_type >= (int) R_68K_max)
3685 {
3686 bfd_set_error (bfd_error_bad_value);
3687 return FALSE;
3688 }
3689 howto = howto_table + r_type;
3690
3691 r_symndx = ELF32_R_SYM (rel->r_info);
3692
3693 h = NULL;
3694 sym = NULL;
3695 sec = NULL;
3696 unresolved_reloc = FALSE;
3697
3698 if (r_symndx < symtab_hdr->sh_info)
3699 {
3700 sym = local_syms + r_symndx;
3701 sec = local_sections[r_symndx];
3702 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3703 }
3704 else
3705 {
3706 bfd_boolean warned;
3707
3708 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3709 r_symndx, symtab_hdr, sym_hashes,
3710 h, sec, relocation,
3711 unresolved_reloc, warned);
3712 }
3713
3714 if (sec != NULL && elf_discarded_section (sec))
3715 {
3716 /* For relocs against symbols from removed linkonce sections,
3717 or sections discarded by a linker script, we just want the
3718 section contents zeroed. Avoid any special processing. */
3719 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3720 rel->r_info = 0;
3721 rel->r_addend = 0;
3722 continue;
3723 }
3724
3725 if (info->relocatable)
3726 continue;
3727
3728 switch (r_type)
3729 {
3730 case R_68K_GOT8:
3731 case R_68K_GOT16:
3732 case R_68K_GOT32:
3733 /* Relocation is to the address of the entry for this symbol
3734 in the global offset table. */
3735 if (h != NULL
3736 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3737 {
3738 if (elf_m68k_hash_table (info)->local_gp_p)
3739 {
3740 bfd_vma sgot_output_offset;
3741 bfd_vma got_offset;
3742
3743 if (sgot == NULL)
3744 {
3745 sgot = bfd_get_section_by_name (dynobj, ".got");
3746
3747 if (sgot != NULL)
3748 sgot_output_offset = sgot->output_offset;
3749 else
3750 /* In this case we have a reference to
3751 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3752 empty.
3753 ??? Issue a warning? */
3754 sgot_output_offset = 0;
3755 }
3756 else
3757 sgot_output_offset = sgot->output_offset;
3758
3759 if (got == NULL)
3760 {
3761 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3762
3763 bfd2got_entry
3764 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3765 input_bfd, SEARCH, NULL);
3766
3767 if (bfd2got_entry != NULL)
3768 {
3769 got = bfd2got_entry->got;
3770 BFD_ASSERT (got != NULL);
3771
3772 got_offset = got->offset;
3773 }
3774 else
3775 /* In this case we have a reference to
3776 _GLOBAL_OFFSET_TABLE_, but no other references
3777 accessing any GOT entries.
3778 ??? Issue a warning? */
3779 got_offset = 0;
3780 }
3781 else
3782 got_offset = got->offset;
3783
3784 /* Adjust GOT pointer to point to the GOT
3785 assigned to input_bfd. */
3786 rel->r_addend += sgot_output_offset + got_offset;
3787 }
3788 else
3789 BFD_ASSERT (got == NULL || got->offset == 0);
3790
3791 break;
3792 }
3793 /* Fall through. */
3794 case R_68K_GOT8O:
3795 case R_68K_GOT16O:
3796 case R_68K_GOT32O:
3797
3798 case R_68K_TLS_LDM32:
3799 case R_68K_TLS_LDM16:
3800 case R_68K_TLS_LDM8:
3801
3802 case R_68K_TLS_GD8:
3803 case R_68K_TLS_GD16:
3804 case R_68K_TLS_GD32:
3805
3806 case R_68K_TLS_IE8:
3807 case R_68K_TLS_IE16:
3808 case R_68K_TLS_IE32:
3809
3810 /* Relocation is the offset of the entry for this symbol in
3811 the global offset table. */
3812
3813 {
3814 struct elf_m68k_got_entry_key key_;
3815 bfd_vma *off_ptr;
3816 bfd_vma off;
3817
3818 if (sgot == NULL)
3819 {
3820 sgot = bfd_get_section_by_name (dynobj, ".got");
3821 BFD_ASSERT (sgot != NULL);
3822 }
3823
3824 if (got == NULL)
3825 {
3826 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3827 input_bfd, MUST_FIND,
3828 NULL)->got;
3829 BFD_ASSERT (got != NULL);
3830 }
3831
3832 /* Get GOT offset for this symbol. */
3833 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3834 r_type);
3835 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3836 NULL)->u.s2.offset;
3837 off = *off_ptr;
3838
3839 /* The offset must always be a multiple of 4. We use
3840 the least significant bit to record whether we have
3841 already generated the necessary reloc. */
3842 if ((off & 1) != 0)
3843 off &= ~1;
3844 else
3845 {
3846 if (h != NULL
3847 /* @TLSLDM relocations are bounded to the module, in
3848 which the symbol is defined -- not to the symbol
3849 itself. */
3850 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3851 {
3852 bfd_boolean dyn;
3853
3854 dyn = elf_hash_table (info)->dynamic_sections_created;
3855 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3856 || (info->shared
3857 && SYMBOL_REFERENCES_LOCAL (info, h))
3858 || (ELF_ST_VISIBILITY (h->other)
3859 && h->root.type == bfd_link_hash_undefweak))
3860 {
3861 /* This is actually a static link, or it is a
3862 -Bsymbolic link and the symbol is defined
3863 locally, or the symbol was forced to be local
3864 because of a version file. We must initialize
3865 this entry in the global offset table. Since
3866 the offset must always be a multiple of 4, we
3867 use the least significant bit to record whether
3868 we have initialized it already.
3869
3870 When doing a dynamic link, we create a .rela.got
3871 relocation entry to initialize the value. This
3872 is done in the finish_dynamic_symbol routine. */
3873
3874 elf_m68k_init_got_entry_static (info,
3875 output_bfd,
3876 r_type,
3877 sgot,
3878 off,
3879 relocation);
3880
3881 *off_ptr |= 1;
3882 }
3883 else
3884 unresolved_reloc = FALSE;
3885 }
3886 else if (info->shared) /* && h == NULL */
3887 /* Process local symbol during dynamic link. */
3888 {
3889 if (srela == NULL)
3890 {
3891 srela = bfd_get_section_by_name (dynobj, ".rela.got");
3892 BFD_ASSERT (srela != NULL);
3893 }
3894
3895 elf_m68k_init_got_entry_local_shared (info,
3896 output_bfd,
3897 r_type,
3898 sgot,
3899 off,
3900 relocation,
3901 srela);
3902
3903 *off_ptr |= 1;
3904 }
3905 else /* h == NULL && !info->shared */
3906 {
3907 elf_m68k_init_got_entry_static (info,
3908 output_bfd,
3909 r_type,
3910 sgot,
3911 off,
3912 relocation);
3913
3914 *off_ptr |= 1;
3915 }
3916 }
3917
3918 /* We don't use elf_m68k_reloc_got_type in the condition below
3919 because this is the only place where difference between
3920 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3921 if (r_type == R_68K_GOT32O
3922 || r_type == R_68K_GOT16O
3923 || r_type == R_68K_GOT8O
3924 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3925 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3926 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3927 {
3928 /* GOT pointer is adjusted to point to the start/middle
3929 of local GOT. Adjust the offset accordingly. */
3930 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3931 || off >= got->offset);
3932
3933 if (elf_m68k_hash_table (info)->local_gp_p)
3934 relocation = off - got->offset;
3935 else
3936 {
3937 BFD_ASSERT (got->offset == 0);
3938 relocation = sgot->output_offset + off;
3939 }
3940
3941 /* This relocation does not use the addend. */
3942 rel->r_addend = 0;
3943 }
3944 else
3945 relocation = (sgot->output_section->vma + sgot->output_offset
3946 + off);
3947 }
3948 break;
3949
3950 case R_68K_TLS_LDO32:
3951 case R_68K_TLS_LDO16:
3952 case R_68K_TLS_LDO8:
3953 relocation -= dtpoff_base (info);
3954 break;
3955
3956 case R_68K_TLS_LE32:
3957 case R_68K_TLS_LE16:
3958 case R_68K_TLS_LE8:
3959 if (info->shared)
3960 {
3961 (*_bfd_error_handler)
3962 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3963 "in shared object"),
3964 input_bfd, input_section, (long) rel->r_offset, howto->name);
3965
3966 return FALSE;
3967 }
3968 else
3969 relocation -= tpoff_base (info);
3970
3971 break;
3972
3973 case R_68K_PLT8:
3974 case R_68K_PLT16:
3975 case R_68K_PLT32:
3976 /* Relocation is to the entry for this symbol in the
3977 procedure linkage table. */
3978
3979 /* Resolve a PLTxx reloc against a local symbol directly,
3980 without using the procedure linkage table. */
3981 if (h == NULL)
3982 break;
3983
3984 if (h->plt.offset == (bfd_vma) -1
3985 || !elf_hash_table (info)->dynamic_sections_created)
3986 {
3987 /* We didn't make a PLT entry for this symbol. This
3988 happens when statically linking PIC code, or when
3989 using -Bsymbolic. */
3990 break;
3991 }
3992
3993 if (splt == NULL)
3994 {
3995 splt = bfd_get_section_by_name (dynobj, ".plt");
3996 BFD_ASSERT (splt != NULL);
3997 }
3998
3999 relocation = (splt->output_section->vma
4000 + splt->output_offset
4001 + h->plt.offset);
4002 unresolved_reloc = FALSE;
4003 break;
4004
4005 case R_68K_PLT8O:
4006 case R_68K_PLT16O:
4007 case R_68K_PLT32O:
4008 /* Relocation is the offset of the entry for this symbol in
4009 the procedure linkage table. */
4010 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
4011
4012 if (splt == NULL)
4013 {
4014 splt = bfd_get_section_by_name (dynobj, ".plt");
4015 BFD_ASSERT (splt != NULL);
4016 }
4017
4018 relocation = h->plt.offset;
4019 unresolved_reloc = FALSE;
4020
4021 /* This relocation does not use the addend. */
4022 rel->r_addend = 0;
4023
4024 break;
4025
4026 case R_68K_8:
4027 case R_68K_16:
4028 case R_68K_32:
4029 case R_68K_PC8:
4030 case R_68K_PC16:
4031 case R_68K_PC32:
4032 if (info->shared
4033 && r_symndx != 0
4034 && (input_section->flags & SEC_ALLOC) != 0
4035 && (h == NULL
4036 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4037 || h->root.type != bfd_link_hash_undefweak)
4038 && ((r_type != R_68K_PC8
4039 && r_type != R_68K_PC16
4040 && r_type != R_68K_PC32)
4041 || !SYMBOL_CALLS_LOCAL (info, h)))
4042 {
4043 Elf_Internal_Rela outrel;
4044 bfd_byte *loc;
4045 bfd_boolean skip, relocate;
4046
4047 /* When generating a shared object, these relocations
4048 are copied into the output file to be resolved at run
4049 time. */
4050
4051 skip = FALSE;
4052 relocate = FALSE;
4053
4054 outrel.r_offset =
4055 _bfd_elf_section_offset (output_bfd, info, input_section,
4056 rel->r_offset);
4057 if (outrel.r_offset == (bfd_vma) -1)
4058 skip = TRUE;
4059 else if (outrel.r_offset == (bfd_vma) -2)
4060 skip = TRUE, relocate = TRUE;
4061 outrel.r_offset += (input_section->output_section->vma
4062 + input_section->output_offset);
4063
4064 if (skip)
4065 memset (&outrel, 0, sizeof outrel);
4066 else if (h != NULL
4067 && h->dynindx != -1
4068 && (r_type == R_68K_PC8
4069 || r_type == R_68K_PC16
4070 || r_type == R_68K_PC32
4071 || !info->shared
4072 || !info->symbolic
4073 || !h->def_regular))
4074 {
4075 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4076 outrel.r_addend = rel->r_addend;
4077 }
4078 else
4079 {
4080 /* This symbol is local, or marked to become local. */
4081 outrel.r_addend = relocation + rel->r_addend;
4082
4083 if (r_type == R_68K_32)
4084 {
4085 relocate = TRUE;
4086 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4087 }
4088 else
4089 {
4090 long indx;
4091
4092 if (bfd_is_abs_section (sec))
4093 indx = 0;
4094 else if (sec == NULL || sec->owner == NULL)
4095 {
4096 bfd_set_error (bfd_error_bad_value);
4097 return FALSE;
4098 }
4099 else
4100 {
4101 asection *osec;
4102
4103 /* We are turning this relocation into one
4104 against a section symbol. It would be
4105 proper to subtract the symbol's value,
4106 osec->vma, from the emitted reloc addend,
4107 but ld.so expects buggy relocs. */
4108 osec = sec->output_section;
4109 indx = elf_section_data (osec)->dynindx;
4110 if (indx == 0)
4111 {
4112 struct elf_link_hash_table *htab;
4113 htab = elf_hash_table (info);
4114 osec = htab->text_index_section;
4115 indx = elf_section_data (osec)->dynindx;
4116 }
4117 BFD_ASSERT (indx != 0);
4118 }
4119
4120 outrel.r_info = ELF32_R_INFO (indx, r_type);
4121 }
4122 }
4123
4124 sreloc = elf_section_data (input_section)->sreloc;
4125 if (sreloc == NULL)
4126 abort ();
4127
4128 loc = sreloc->contents;
4129 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4130 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4131
4132 /* This reloc will be computed at runtime, so there's no
4133 need to do anything now, except for R_68K_32
4134 relocations that have been turned into
4135 R_68K_RELATIVE. */
4136 if (!relocate)
4137 continue;
4138 }
4139
4140 break;
4141
4142 case R_68K_GNU_VTINHERIT:
4143 case R_68K_GNU_VTENTRY:
4144 /* These are no-ops in the end. */
4145 continue;
4146
4147 default:
4148 break;
4149 }
4150
4151 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4152 because such sections are not SEC_ALLOC and thus ld.so will
4153 not process them. */
4154 if (unresolved_reloc
4155 && !((input_section->flags & SEC_DEBUGGING) != 0
4156 && h->def_dynamic))
4157 {
4158 (*_bfd_error_handler)
4159 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4160 input_bfd,
4161 input_section,
4162 (long) rel->r_offset,
4163 howto->name,
4164 h->root.root.string);
4165 return FALSE;
4166 }
4167
4168 if (r_symndx != 0
4169 && r_type != R_68K_NONE
4170 && (h == NULL
4171 || h->root.type == bfd_link_hash_defined
4172 || h->root.type == bfd_link_hash_defweak))
4173 {
4174 char sym_type;
4175
4176 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4177
4178 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4179 {
4180 const char *name;
4181
4182 if (h != NULL)
4183 name = h->root.root.string;
4184 else
4185 {
4186 name = (bfd_elf_string_from_elf_section
4187 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4188 if (name == NULL || *name == '\0')
4189 name = bfd_section_name (input_bfd, sec);
4190 }
4191
4192 (*_bfd_error_handler)
4193 ((sym_type == STT_TLS
4194 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4195 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4196 input_bfd,
4197 input_section,
4198 (long) rel->r_offset,
4199 howto->name,
4200 name);
4201 }
4202 }
4203
4204 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4205 contents, rel->r_offset,
4206 relocation, rel->r_addend);
4207
4208 if (r != bfd_reloc_ok)
4209 {
4210 const char *name;
4211
4212 if (h != NULL)
4213 name = h->root.root.string;
4214 else
4215 {
4216 name = bfd_elf_string_from_elf_section (input_bfd,
4217 symtab_hdr->sh_link,
4218 sym->st_name);
4219 if (name == NULL)
4220 return FALSE;
4221 if (*name == '\0')
4222 name = bfd_section_name (input_bfd, sec);
4223 }
4224
4225 if (r == bfd_reloc_overflow)
4226 {
4227 if (!(info->callbacks->reloc_overflow
4228 (info, (h ? &h->root : NULL), name, howto->name,
4229 (bfd_vma) 0, input_bfd, input_section,
4230 rel->r_offset)))
4231 return FALSE;
4232 }
4233 else
4234 {
4235 (*_bfd_error_handler)
4236 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4237 input_bfd, input_section,
4238 (long) rel->r_offset, name, (int) r);
4239 return FALSE;
4240 }
4241 }
4242 }
4243
4244 return TRUE;
4245 }
4246
4247 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4248 into section SEC. */
4249
4250 static void
4251 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4252 {
4253 /* Make VALUE PC-relative. */
4254 value -= sec->output_section->vma + offset;
4255
4256 /* Apply any in-place addend. */
4257 value += bfd_get_32 (sec->owner, sec->contents + offset);
4258
4259 bfd_put_32 (sec->owner, value, sec->contents + offset);
4260 }
4261
4262 /* Finish up dynamic symbol handling. We set the contents of various
4263 dynamic sections here. */
4264
4265 static bfd_boolean
4266 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
4267 bfd *output_bfd;
4268 struct bfd_link_info *info;
4269 struct elf_link_hash_entry *h;
4270 Elf_Internal_Sym *sym;
4271 {
4272 bfd *dynobj;
4273
4274 dynobj = elf_hash_table (info)->dynobj;
4275
4276 if (h->plt.offset != (bfd_vma) -1)
4277 {
4278 const struct elf_m68k_plt_info *plt_info;
4279 asection *splt;
4280 asection *sgot;
4281 asection *srela;
4282 bfd_vma plt_index;
4283 bfd_vma got_offset;
4284 Elf_Internal_Rela rela;
4285 bfd_byte *loc;
4286
4287 /* This symbol has an entry in the procedure linkage table. Set
4288 it up. */
4289
4290 BFD_ASSERT (h->dynindx != -1);
4291
4292 plt_info = elf_m68k_hash_table (info)->plt_info;
4293 splt = bfd_get_section_by_name (dynobj, ".plt");
4294 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4295 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
4296 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4297
4298 /* Get the index in the procedure linkage table which
4299 corresponds to this symbol. This is the index of this symbol
4300 in all the symbols for which we are making plt entries. The
4301 first entry in the procedure linkage table is reserved. */
4302 plt_index = (h->plt.offset / plt_info->size) - 1;
4303
4304 /* Get the offset into the .got table of the entry that
4305 corresponds to this function. Each .got entry is 4 bytes.
4306 The first three are reserved. */
4307 got_offset = (plt_index + 3) * 4;
4308
4309 memcpy (splt->contents + h->plt.offset,
4310 plt_info->symbol_entry,
4311 plt_info->size);
4312
4313 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4314 (sgot->output_section->vma
4315 + sgot->output_offset
4316 + got_offset));
4317
4318 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4319 splt->contents
4320 + h->plt.offset
4321 + plt_info->symbol_resolve_entry + 2);
4322
4323 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4324 splt->output_section->vma);
4325
4326 /* Fill in the entry in the global offset table. */
4327 bfd_put_32 (output_bfd,
4328 (splt->output_section->vma
4329 + splt->output_offset
4330 + h->plt.offset
4331 + plt_info->symbol_resolve_entry),
4332 sgot->contents + got_offset);
4333
4334 /* Fill in the entry in the .rela.plt section. */
4335 rela.r_offset = (sgot->output_section->vma
4336 + sgot->output_offset
4337 + got_offset);
4338 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4339 rela.r_addend = 0;
4340 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4341 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4342
4343 if (!h->def_regular)
4344 {
4345 /* Mark the symbol as undefined, rather than as defined in
4346 the .plt section. Leave the value alone. */
4347 sym->st_shndx = SHN_UNDEF;
4348 }
4349 }
4350
4351 if (elf_m68k_hash_entry (h)->glist != NULL)
4352 {
4353 asection *sgot;
4354 asection *srela;
4355 struct elf_m68k_got_entry *got_entry;
4356
4357 /* This symbol has an entry in the global offset table. Set it
4358 up. */
4359
4360 sgot = bfd_get_section_by_name (dynobj, ".got");
4361 srela = bfd_get_section_by_name (dynobj, ".rela.got");
4362 BFD_ASSERT (sgot != NULL && srela != NULL);
4363
4364 got_entry = elf_m68k_hash_entry (h)->glist;
4365
4366 while (got_entry != NULL)
4367 {
4368 enum elf_m68k_reloc_type r_type;
4369 bfd_vma got_entry_offset;
4370
4371 r_type = got_entry->key_.type;
4372 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4373
4374 /* If this is a -Bsymbolic link, and the symbol is defined
4375 locally, we just want to emit a RELATIVE reloc. Likewise if
4376 the symbol was forced to be local because of a version file.
4377 The entry in the global offset table already have been
4378 initialized in the relocate_section function. */
4379 if (info->shared
4380 && SYMBOL_REFERENCES_LOCAL (info, h))
4381 {
4382 bfd_vma relocation;
4383
4384 relocation = bfd_get_signed_32 (output_bfd,
4385 (sgot->contents
4386 + got_entry_offset));
4387
4388 /* Undo TP bias. */
4389 switch (elf_m68k_reloc_got_type (r_type))
4390 {
4391 case R_68K_GOT32O:
4392 case R_68K_TLS_LDM32:
4393 break;
4394
4395 case R_68K_TLS_GD32:
4396 relocation += dtpoff_base (info);
4397 break;
4398
4399 case R_68K_TLS_IE32:
4400 relocation += tpoff_base (info);
4401 break;
4402
4403 default:
4404 BFD_ASSERT (FALSE);
4405 }
4406
4407 elf_m68k_init_got_entry_local_shared (info,
4408 output_bfd,
4409 r_type,
4410 sgot,
4411 got_entry_offset,
4412 relocation,
4413 srela);
4414 }
4415 else
4416 {
4417 Elf_Internal_Rela rela;
4418
4419 /* Put zeros to GOT slots that will be initialized
4420 at run-time. */
4421 {
4422 bfd_vma n_slots;
4423
4424 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4425 while (n_slots--)
4426 bfd_put_32 (output_bfd, (bfd_vma) 0,
4427 (sgot->contents + got_entry_offset
4428 + 4 * n_slots));
4429 }
4430
4431 rela.r_addend = 0;
4432 rela.r_offset = (sgot->output_section->vma
4433 + sgot->output_offset
4434 + got_entry_offset);
4435
4436 switch (elf_m68k_reloc_got_type (r_type))
4437 {
4438 case R_68K_GOT32O:
4439 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4440 elf_m68k_install_rela (output_bfd, srela, &rela);
4441 break;
4442
4443 case R_68K_TLS_GD32:
4444 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4445 elf_m68k_install_rela (output_bfd, srela, &rela);
4446
4447 rela.r_offset += 4;
4448 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4449 elf_m68k_install_rela (output_bfd, srela, &rela);
4450 break;
4451
4452 case R_68K_TLS_IE32:
4453 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4454 elf_m68k_install_rela (output_bfd, srela, &rela);
4455 break;
4456
4457 default:
4458 BFD_ASSERT (FALSE);
4459 break;
4460 }
4461 }
4462
4463 got_entry = got_entry->u.s2.next;
4464 }
4465 }
4466
4467 if (h->needs_copy)
4468 {
4469 asection *s;
4470 Elf_Internal_Rela rela;
4471 bfd_byte *loc;
4472
4473 /* This symbol needs a copy reloc. Set it up. */
4474
4475 BFD_ASSERT (h->dynindx != -1
4476 && (h->root.type == bfd_link_hash_defined
4477 || h->root.type == bfd_link_hash_defweak));
4478
4479 s = bfd_get_section_by_name (h->root.u.def.section->owner,
4480 ".rela.bss");
4481 BFD_ASSERT (s != NULL);
4482
4483 rela.r_offset = (h->root.u.def.value
4484 + h->root.u.def.section->output_section->vma
4485 + h->root.u.def.section->output_offset);
4486 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4487 rela.r_addend = 0;
4488 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4489 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4490 }
4491
4492 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4493 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4494 || h == elf_hash_table (info)->hgot)
4495 sym->st_shndx = SHN_ABS;
4496
4497 return TRUE;
4498 }
4499
4500 /* Finish up the dynamic sections. */
4501
4502 static bfd_boolean
4503 elf_m68k_finish_dynamic_sections (output_bfd, info)
4504 bfd *output_bfd;
4505 struct bfd_link_info *info;
4506 {
4507 bfd *dynobj;
4508 asection *sgot;
4509 asection *sdyn;
4510
4511 dynobj = elf_hash_table (info)->dynobj;
4512
4513 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4514 BFD_ASSERT (sgot != NULL);
4515 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4516
4517 if (elf_hash_table (info)->dynamic_sections_created)
4518 {
4519 asection *splt;
4520 Elf32_External_Dyn *dyncon, *dynconend;
4521
4522 splt = bfd_get_section_by_name (dynobj, ".plt");
4523 BFD_ASSERT (splt != NULL && sdyn != NULL);
4524
4525 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4526 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4527 for (; dyncon < dynconend; dyncon++)
4528 {
4529 Elf_Internal_Dyn dyn;
4530 const char *name;
4531 asection *s;
4532
4533 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4534
4535 switch (dyn.d_tag)
4536 {
4537 default:
4538 break;
4539
4540 case DT_PLTGOT:
4541 name = ".got";
4542 goto get_vma;
4543 case DT_JMPREL:
4544 name = ".rela.plt";
4545 get_vma:
4546 s = bfd_get_section_by_name (output_bfd, name);
4547 BFD_ASSERT (s != NULL);
4548 dyn.d_un.d_ptr = s->vma;
4549 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4550 break;
4551
4552 case DT_PLTRELSZ:
4553 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4554 BFD_ASSERT (s != NULL);
4555 dyn.d_un.d_val = s->size;
4556 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4557 break;
4558
4559 case DT_RELASZ:
4560 /* The procedure linkage table relocs (DT_JMPREL) should
4561 not be included in the overall relocs (DT_RELA).
4562 Therefore, we override the DT_RELASZ entry here to
4563 make it not include the JMPREL relocs. Since the
4564 linker script arranges for .rela.plt to follow all
4565 other relocation sections, we don't have to worry
4566 about changing the DT_RELA entry. */
4567 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4568 if (s != NULL)
4569 dyn.d_un.d_val -= s->size;
4570 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4571 break;
4572 }
4573 }
4574
4575 /* Fill in the first entry in the procedure linkage table. */
4576 if (splt->size > 0)
4577 {
4578 const struct elf_m68k_plt_info *plt_info;
4579
4580 plt_info = elf_m68k_hash_table (info)->plt_info;
4581 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4582
4583 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4584 (sgot->output_section->vma
4585 + sgot->output_offset
4586 + 4));
4587
4588 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4589 (sgot->output_section->vma
4590 + sgot->output_offset
4591 + 8));
4592
4593 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4594 = plt_info->size;
4595 }
4596 }
4597
4598 /* Fill in the first three entries in the global offset table. */
4599 if (sgot->size > 0)
4600 {
4601 if (sdyn == NULL)
4602 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4603 else
4604 bfd_put_32 (output_bfd,
4605 sdyn->output_section->vma + sdyn->output_offset,
4606 sgot->contents);
4607 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4608 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4609 }
4610
4611 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4612
4613 return TRUE;
4614 }
4615
4616 /* Given a .data section and a .emreloc in-memory section, store
4617 relocation information into the .emreloc section which can be
4618 used at runtime to relocate the section. This is called by the
4619 linker when the --embedded-relocs switch is used. This is called
4620 after the add_symbols entry point has been called for all the
4621 objects, and before the final_link entry point is called. */
4622
4623 bfd_boolean
4624 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4625 bfd *abfd;
4626 struct bfd_link_info *info;
4627 asection *datasec;
4628 asection *relsec;
4629 char **errmsg;
4630 {
4631 Elf_Internal_Shdr *symtab_hdr;
4632 Elf_Internal_Sym *isymbuf = NULL;
4633 Elf_Internal_Rela *internal_relocs = NULL;
4634 Elf_Internal_Rela *irel, *irelend;
4635 bfd_byte *p;
4636 bfd_size_type amt;
4637
4638 BFD_ASSERT (! info->relocatable);
4639
4640 *errmsg = NULL;
4641
4642 if (datasec->reloc_count == 0)
4643 return TRUE;
4644
4645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4646
4647 /* Get a copy of the native relocations. */
4648 internal_relocs = (_bfd_elf_link_read_relocs
4649 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
4650 info->keep_memory));
4651 if (internal_relocs == NULL)
4652 goto error_return;
4653
4654 amt = (bfd_size_type) datasec->reloc_count * 12;
4655 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4656 if (relsec->contents == NULL)
4657 goto error_return;
4658
4659 p = relsec->contents;
4660
4661 irelend = internal_relocs + datasec->reloc_count;
4662 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4663 {
4664 asection *targetsec;
4665
4666 /* We are going to write a four byte longword into the runtime
4667 reloc section. The longword will be the address in the data
4668 section which must be relocated. It is followed by the name
4669 of the target section NUL-padded or truncated to 8
4670 characters. */
4671
4672 /* We can only relocate absolute longword relocs at run time. */
4673 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4674 {
4675 *errmsg = _("unsupported reloc type");
4676 bfd_set_error (bfd_error_bad_value);
4677 goto error_return;
4678 }
4679
4680 /* Get the target section referred to by the reloc. */
4681 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4682 {
4683 /* A local symbol. */
4684 Elf_Internal_Sym *isym;
4685
4686 /* Read this BFD's local symbols if we haven't done so already. */
4687 if (isymbuf == NULL)
4688 {
4689 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4690 if (isymbuf == NULL)
4691 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4692 symtab_hdr->sh_info, 0,
4693 NULL, NULL, NULL);
4694 if (isymbuf == NULL)
4695 goto error_return;
4696 }
4697
4698 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4699 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4700 }
4701 else
4702 {
4703 unsigned long indx;
4704 struct elf_link_hash_entry *h;
4705
4706 /* An external symbol. */
4707 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4708 h = elf_sym_hashes (abfd)[indx];
4709 BFD_ASSERT (h != NULL);
4710 if (h->root.type == bfd_link_hash_defined
4711 || h->root.type == bfd_link_hash_defweak)
4712 targetsec = h->root.u.def.section;
4713 else
4714 targetsec = NULL;
4715 }
4716
4717 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4718 memset (p + 4, 0, 8);
4719 if (targetsec != NULL)
4720 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4721 }
4722
4723 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4724 free (isymbuf);
4725 if (internal_relocs != NULL
4726 && elf_section_data (datasec)->relocs != internal_relocs)
4727 free (internal_relocs);
4728 return TRUE;
4729
4730 error_return:
4731 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4732 free (isymbuf);
4733 if (internal_relocs != NULL
4734 && elf_section_data (datasec)->relocs != internal_relocs)
4735 free (internal_relocs);
4736 return FALSE;
4737 }
4738
4739 /* Set target options. */
4740
4741 void
4742 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4743 {
4744 struct elf_m68k_link_hash_table *htab;
4745
4746 htab = elf_m68k_hash_table (info);
4747
4748 switch (got_handling)
4749 {
4750 case 0:
4751 /* --got=single. */
4752 htab->local_gp_p = FALSE;
4753 htab->use_neg_got_offsets_p = FALSE;
4754 htab->allow_multigot_p = FALSE;
4755 break;
4756
4757 case 1:
4758 /* --got=negative. */
4759 htab->local_gp_p = TRUE;
4760 htab->use_neg_got_offsets_p = TRUE;
4761 htab->allow_multigot_p = FALSE;
4762 break;
4763
4764 case 2:
4765 /* --got=multigot. */
4766 htab->local_gp_p = TRUE;
4767 htab->use_neg_got_offsets_p = TRUE;
4768 htab->allow_multigot_p = TRUE;
4769 break;
4770
4771 default:
4772 BFD_ASSERT (FALSE);
4773 }
4774 }
4775
4776 static enum elf_reloc_type_class
4777 elf32_m68k_reloc_type_class (rela)
4778 const Elf_Internal_Rela *rela;
4779 {
4780 switch ((int) ELF32_R_TYPE (rela->r_info))
4781 {
4782 case R_68K_RELATIVE:
4783 return reloc_class_relative;
4784 case R_68K_JMP_SLOT:
4785 return reloc_class_plt;
4786 case R_68K_COPY:
4787 return reloc_class_copy;
4788 default:
4789 return reloc_class_normal;
4790 }
4791 }
4792
4793 /* Return address for Ith PLT stub in section PLT, for relocation REL
4794 or (bfd_vma) -1 if it should not be included. */
4795
4796 static bfd_vma
4797 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4798 const arelent *rel ATTRIBUTE_UNUSED)
4799 {
4800 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4801 }
4802
4803 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
4804 #define TARGET_BIG_NAME "elf32-m68k"
4805 #define ELF_MACHINE_CODE EM_68K
4806 #define ELF_MAXPAGESIZE 0x2000
4807 #define elf_backend_create_dynamic_sections \
4808 _bfd_elf_create_dynamic_sections
4809 #define bfd_elf32_bfd_link_hash_table_create \
4810 elf_m68k_link_hash_table_create
4811 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
4812 #define bfd_elf32_bfd_link_hash_table_free \
4813 elf_m68k_link_hash_table_free
4814 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4815
4816 #define elf_backend_check_relocs elf_m68k_check_relocs
4817 #define elf_backend_always_size_sections \
4818 elf_m68k_always_size_sections
4819 #define elf_backend_adjust_dynamic_symbol \
4820 elf_m68k_adjust_dynamic_symbol
4821 #define elf_backend_size_dynamic_sections \
4822 elf_m68k_size_dynamic_sections
4823 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4824 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4825 #define elf_backend_relocate_section elf_m68k_relocate_section
4826 #define elf_backend_finish_dynamic_symbol \
4827 elf_m68k_finish_dynamic_symbol
4828 #define elf_backend_finish_dynamic_sections \
4829 elf_m68k_finish_dynamic_sections
4830 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4831 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4832 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4833 #define bfd_elf32_bfd_merge_private_bfd_data \
4834 elf32_m68k_merge_private_bfd_data
4835 #define bfd_elf32_bfd_set_private_flags \
4836 elf32_m68k_set_private_flags
4837 #define bfd_elf32_bfd_print_private_bfd_data \
4838 elf32_m68k_print_private_bfd_data
4839 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4840 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4841 #define elf_backend_object_p elf32_m68k_object_p
4842
4843 #define elf_backend_can_gc_sections 1
4844 #define elf_backend_can_refcount 1
4845 #define elf_backend_want_got_plt 1
4846 #define elf_backend_plt_readonly 1
4847 #define elf_backend_want_plt_sym 0
4848 #define elf_backend_got_header_size 12
4849 #define elf_backend_rela_normal 1
4850
4851 #include "elf32-target.h"