* som.c (som_fixup_formats): Improve handling of R_AUX_UNWIND,
[binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "bfdlink.h"
33 #include "genlink.h"
34 #include "elf-bfd.h"
35 #include "elf/mips.h"
36
37 /* Get the ECOFF swapping routines. */
38 #include "coff/sym.h"
39 #include "coff/symconst.h"
40 #include "coff/internal.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43 #define ECOFF_32
44 #include "ecoffswap.h"
45
46 /* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
48
49 struct mips_got_info
50 {
51 /* The global symbol in the GOT with the lowest index in the dynamic
52 symbol table. */
53 struct elf_link_hash_entry *global_gotsym;
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
60 };
61
62 /* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
64
65 struct mips_elf_link_hash_entry
66 {
67 struct elf_link_hash_entry root;
68
69 /* External symbol information. */
70 EXTR esym;
71
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
73 this symbol. */
74 unsigned int possibly_dynamic_relocs;
75
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
79
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
82 asection *fn_stub;
83
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
86 boolean need_fn_stub;
87
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
90 asection *call_stub;
91
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
95 };
96
97 static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
101 static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
103 static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
105 static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
107 static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109 static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
111 static void bfd_mips_elf_swap_msym_in
112 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
113 static void bfd_mips_elf_swap_msym_out
114 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
115 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
116 static boolean mips_elf_create_procedure_table
117 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
118 struct ecoff_debug_info *));
119 static INLINE int elf_mips_isa PARAMS ((flagword));
120 static INLINE int elf_mips_mach PARAMS ((flagword));
121 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
122 static boolean mips_elf_is_local_label_name
123 PARAMS ((bfd *, const char *));
124 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
125 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
126 static int gptab_compare PARAMS ((const void *, const void *));
127 static bfd_reloc_status_type mips16_jump_reloc
128 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
129 static bfd_reloc_status_type mips16_gprel_reloc
130 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
131 static boolean mips_elf_create_compact_rel_section
132 PARAMS ((bfd *, struct bfd_link_info *));
133 static boolean mips_elf_create_got_section
134 PARAMS ((bfd *, struct bfd_link_info *));
135 static bfd_reloc_status_type mips_elf_final_gp
136 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
137 static bfd_byte *elf32_mips_get_relocated_section_contents
138 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
139 bfd_byte *, boolean, asymbol **));
140 static asection *mips_elf_create_msym_section
141 PARAMS ((bfd *));
142 static void mips_elf_irix6_finish_dynamic_symbol
143 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
144 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
145 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
146 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
147 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
148 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
149 static bfd_vma mips_elf_global_got_index
150 PARAMS ((bfd *, struct elf_link_hash_entry *));
151 static bfd_vma mips_elf_local_got_index
152 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
153 static bfd_vma mips_elf_got_offset_from_index
154 PARAMS ((bfd *, bfd *, bfd_vma));
155 static boolean mips_elf_record_global_got_symbol
156 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
157 struct mips_got_info *));
158 static bfd_vma mips_elf_got_page
159 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
160 static const Elf_Internal_Rela *mips_elf_next_lo16_relocation
161 PARAMS ((const Elf_Internal_Rela *, const Elf_Internal_Rela *));
162 static bfd_reloc_status_type mips_elf_calculate_relocation
163 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
164 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
165 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
166 boolean *));
167 static bfd_vma mips_elf_obtain_contents
168 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
169 static boolean mips_elf_perform_relocation
170 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
171 const Elf_Internal_Rela *, bfd_vma,
172 bfd *, asection *, bfd_byte *, boolean));
173 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
174 static boolean mips_elf_sort_hash_table_f
175 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
176 static boolean mips_elf_sort_hash_table
177 PARAMS ((struct bfd_link_info *, unsigned long));
178 static asection * mips_elf_got_section PARAMS ((bfd *));
179 static struct mips_got_info *mips_elf_got_info
180 PARAMS ((bfd *, asection **));
181 static boolean mips_elf_local_relocation_p
182 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
183 static bfd_vma mips_elf_create_local_got_entry
184 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
185 static bfd_vma mips_elf_got16_entry
186 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
187 static boolean mips_elf_create_dynamic_relocation
188 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
189 struct mips_elf_link_hash_entry *, asection *,
190 bfd_vma, bfd_vma *, asection *));
191 static void mips_elf_allocate_dynamic_relocations
192 PARAMS ((bfd *, unsigned int));
193 static boolean mips_elf_stub_section_p
194 PARAMS ((bfd *, asection *));
195
196 /* The level of IRIX compatibility we're striving for. */
197
198 typedef enum {
199 ict_none,
200 ict_irix5,
201 ict_irix6
202 } irix_compat_t;
203
204 /* Nonzero if ABFD is using the N32 ABI. */
205
206 #define ABI_N32_P(abfd) \
207 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
208
209 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
210 true, yet. */
211 #define ABI_64_P(abfd) \
212 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
213
214 /* What version of Irix we are trying to be compatible with. FIXME:
215 At the moment, we never generate "normal" MIPS ELF ABI executables;
216 we always use some version of Irix. */
217
218 #define IRIX_COMPAT(abfd) \
219 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
220
221 /* Whether we are trying to be compatible with IRIX at all. */
222
223 #define SGI_COMPAT(abfd) \
224 (IRIX_COMPAT (abfd) != ict_none)
225
226 /* The name of the msym section. */
227 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
228
229 /* The name of the srdata section. */
230 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
231
232 /* The name of the options section. */
233 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
234 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
235
236 /* The name of the stub section. */
237 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
238 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
239
240 /* The name of the dynamic relocation section. */
241 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
242
243 /* The size of an external REL relocation. */
244 #define MIPS_ELF_REL_SIZE(abfd) \
245 (get_elf_backend_data (abfd)->s->sizeof_rel)
246
247 /* The size of an external dynamic table entry. */
248 #define MIPS_ELF_DYN_SIZE(abfd) \
249 (get_elf_backend_data (abfd)->s->sizeof_dyn)
250
251 /* The size of a GOT entry. */
252 #define MIPS_ELF_GOT_SIZE(abfd) \
253 (get_elf_backend_data (abfd)->s->arch_size / 8)
254
255 /* The size of a symbol-table entry. */
256 #define MIPS_ELF_SYM_SIZE(abfd) \
257 (get_elf_backend_data (abfd)->s->sizeof_sym)
258
259 /* The default alignment for sections, as a power of two. */
260 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
261 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
262
263 /* Get word-sized data. */
264 #define MIPS_ELF_GET_WORD(abfd, ptr) \
265 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
266
267 /* Put out word-sized data. */
268 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
269 (ABI_64_P (abfd) \
270 ? bfd_put_64 (abfd, val, ptr) \
271 : bfd_put_32 (abfd, val, ptr))
272
273 /* Add a dynamic symbol table-entry. */
274 #ifdef BFD64
275 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
276 (ABI_64_P (elf_hash_table (info)->dynobj) \
277 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
278 : bfd_elf32_add_dynamic_entry (info, tag, val))
279 #else
280 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
281 (ABI_64_P (elf_hash_table (info)->dynobj) \
282 ? (abort (), false) \
283 : bfd_elf32_add_dynamic_entry (info, tag, val))
284 #endif
285
286 /* The number of local .got entries we reserve. */
287 #define MIPS_RESERVED_GOTNO (2)
288
289 /* Instructions which appear in a stub. For some reason the stub is
290 slightly different on an SGI system. */
291 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
292 #define STUB_LW(abfd) \
293 (SGI_COMPAT (abfd) \
294 ? (ABI_64_P (abfd) \
295 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
296 : 0x8f998010) /* lw t9,0x8010(gp) */ \
297 : 0x8f998000) /* lw t9,0x8000(gp) */
298 #define STUB_MOVE 0x03e07825 /* move t7,ra */
299 #define STUB_JALR 0x0320f809 /* jal t9 */
300 #define STUB_LI16 0x34180000 /* ori t8,zero,0 */
301 #define MIPS_FUNCTION_STUB_SIZE (16)
302
303 #if 0
304 /* We no longer try to identify particular sections for the .dynsym
305 section. When we do, we wind up crashing if there are other random
306 sections with relocations. */
307
308 /* Names of sections which appear in the .dynsym section in an Irix 5
309 executable. */
310
311 static const char * const mips_elf_dynsym_sec_names[] =
312 {
313 ".text",
314 ".init",
315 ".fini",
316 ".data",
317 ".rodata",
318 ".sdata",
319 ".sbss",
320 ".bss",
321 NULL
322 };
323
324 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
325 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
326
327 /* The number of entries in mips_elf_dynsym_sec_names which go in the
328 text segment. */
329
330 #define MIPS_TEXT_DYNSYM_SECNO (3)
331
332 #endif /* 0 */
333
334 /* The names of the runtime procedure table symbols used on Irix 5. */
335
336 static const char * const mips_elf_dynsym_rtproc_names[] =
337 {
338 "_procedure_table",
339 "_procedure_string_table",
340 "_procedure_table_size",
341 NULL
342 };
343
344 /* These structures are used to generate the .compact_rel section on
345 Irix 5. */
346
347 typedef struct
348 {
349 unsigned long id1; /* Always one? */
350 unsigned long num; /* Number of compact relocation entries. */
351 unsigned long id2; /* Always two? */
352 unsigned long offset; /* The file offset of the first relocation. */
353 unsigned long reserved0; /* Zero? */
354 unsigned long reserved1; /* Zero? */
355 } Elf32_compact_rel;
356
357 typedef struct
358 {
359 bfd_byte id1[4];
360 bfd_byte num[4];
361 bfd_byte id2[4];
362 bfd_byte offset[4];
363 bfd_byte reserved0[4];
364 bfd_byte reserved1[4];
365 } Elf32_External_compact_rel;
366
367 typedef struct
368 {
369 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
370 unsigned int rtype : 4; /* Relocation types. See below. */
371 unsigned int dist2to : 8;
372 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
373 unsigned long konst; /* KONST field. See below. */
374 unsigned long vaddr; /* VADDR to be relocated. */
375 } Elf32_crinfo;
376
377 typedef struct
378 {
379 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
380 unsigned int rtype : 4; /* Relocation types. See below. */
381 unsigned int dist2to : 8;
382 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
383 unsigned long konst; /* KONST field. See below. */
384 } Elf32_crinfo2;
385
386 typedef struct
387 {
388 bfd_byte info[4];
389 bfd_byte konst[4];
390 bfd_byte vaddr[4];
391 } Elf32_External_crinfo;
392
393 typedef struct
394 {
395 bfd_byte info[4];
396 bfd_byte konst[4];
397 } Elf32_External_crinfo2;
398
399 /* These are the constants used to swap the bitfields in a crinfo. */
400
401 #define CRINFO_CTYPE (0x1)
402 #define CRINFO_CTYPE_SH (31)
403 #define CRINFO_RTYPE (0xf)
404 #define CRINFO_RTYPE_SH (27)
405 #define CRINFO_DIST2TO (0xff)
406 #define CRINFO_DIST2TO_SH (19)
407 #define CRINFO_RELVADDR (0x7ffff)
408 #define CRINFO_RELVADDR_SH (0)
409
410 /* A compact relocation info has long (3 words) or short (2 words)
411 formats. A short format doesn't have VADDR field and relvaddr
412 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
413 #define CRF_MIPS_LONG 1
414 #define CRF_MIPS_SHORT 0
415
416 /* There are 4 types of compact relocation at least. The value KONST
417 has different meaning for each type:
418
419 (type) (konst)
420 CT_MIPS_REL32 Address in data
421 CT_MIPS_WORD Address in word (XXX)
422 CT_MIPS_GPHI_LO GP - vaddr
423 CT_MIPS_JMPAD Address to jump
424 */
425
426 #define CRT_MIPS_REL32 0xa
427 #define CRT_MIPS_WORD 0xb
428 #define CRT_MIPS_GPHI_LO 0xc
429 #define CRT_MIPS_JMPAD 0xd
430
431 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
432 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
433 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
434 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
435
436 static void bfd_elf32_swap_compact_rel_out
437 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
438 static void bfd_elf32_swap_crinfo_out
439 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
440
441 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
442
443 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
444 from smaller values. Start with zero, widen, *then* decrement. */
445 #define MINUS_ONE (((bfd_vma)0) - 1)
446
447 static reloc_howto_type elf_mips_howto_table[] =
448 {
449 /* No relocation. */
450 HOWTO (R_MIPS_NONE, /* type */
451 0, /* rightshift */
452 0, /* size (0 = byte, 1 = short, 2 = long) */
453 0, /* bitsize */
454 false, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_dont, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 "R_MIPS_NONE", /* name */
459 false, /* partial_inplace */
460 0, /* src_mask */
461 0, /* dst_mask */
462 false), /* pcrel_offset */
463
464 /* 16 bit relocation. */
465 HOWTO (R_MIPS_16, /* type */
466 0, /* rightshift */
467 1, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 false, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_bitfield, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_MIPS_16", /* name */
474 true, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 false), /* pcrel_offset */
478
479 /* 32 bit relocation. */
480 HOWTO (R_MIPS_32, /* type */
481 0, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 32, /* bitsize */
484 false, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_bitfield, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_MIPS_32", /* name */
489 true, /* partial_inplace */
490 0xffffffff, /* src_mask */
491 0xffffffff, /* dst_mask */
492 false), /* pcrel_offset */
493
494 /* 32 bit symbol relative relocation. */
495 HOWTO (R_MIPS_REL32, /* type */
496 0, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 32, /* bitsize */
499 false, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_bitfield, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 "R_MIPS_REL32", /* name */
504 true, /* partial_inplace */
505 0xffffffff, /* src_mask */
506 0xffffffff, /* dst_mask */
507 false), /* pcrel_offset */
508
509 /* 26 bit branch address. */
510 HOWTO (R_MIPS_26, /* type */
511 2, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 26, /* bitsize */
514 false, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 /* This needs complex overflow
518 detection, because the upper four
519 bits must match the PC. */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_MIPS_26", /* name */
522 true, /* partial_inplace */
523 0x3ffffff, /* src_mask */
524 0x3ffffff, /* dst_mask */
525 false), /* pcrel_offset */
526
527 /* High 16 bits of symbol value. */
528 HOWTO (R_MIPS_HI16, /* type */
529 0, /* rightshift */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
531 16, /* bitsize */
532 false, /* pc_relative */
533 0, /* bitpos */
534 complain_overflow_dont, /* complain_on_overflow */
535 _bfd_mips_elf_hi16_reloc, /* special_function */
536 "R_MIPS_HI16", /* name */
537 true, /* partial_inplace */
538 0xffff, /* src_mask */
539 0xffff, /* dst_mask */
540 false), /* pcrel_offset */
541
542 /* Low 16 bits of symbol value. */
543 HOWTO (R_MIPS_LO16, /* type */
544 0, /* rightshift */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
546 16, /* bitsize */
547 false, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 _bfd_mips_elf_lo16_reloc, /* special_function */
551 "R_MIPS_LO16", /* name */
552 true, /* partial_inplace */
553 0xffff, /* src_mask */
554 0xffff, /* dst_mask */
555 false), /* pcrel_offset */
556
557 /* GP relative reference. */
558 HOWTO (R_MIPS_GPREL16, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 16, /* bitsize */
562 false, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_signed, /* complain_on_overflow */
565 _bfd_mips_elf_gprel16_reloc, /* special_function */
566 "R_MIPS_GPREL16", /* name */
567 true, /* partial_inplace */
568 0xffff, /* src_mask */
569 0xffff, /* dst_mask */
570 false), /* pcrel_offset */
571
572 /* Reference to literal section. */
573 HOWTO (R_MIPS_LITERAL, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 false, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_signed, /* complain_on_overflow */
580 _bfd_mips_elf_gprel16_reloc, /* special_function */
581 "R_MIPS_LITERAL", /* name */
582 true, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 false), /* pcrel_offset */
586
587 /* Reference to global offset table. */
588 HOWTO (R_MIPS_GOT16, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 16, /* bitsize */
592 false, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_signed, /* complain_on_overflow */
595 _bfd_mips_elf_got16_reloc, /* special_function */
596 "R_MIPS_GOT16", /* name */
597 false, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 false), /* pcrel_offset */
601
602 /* 16 bit PC relative reference. */
603 HOWTO (R_MIPS_PC16, /* type */
604 0, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 16, /* bitsize */
607 true, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 "R_MIPS_PC16", /* name */
612 true, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 false), /* pcrel_offset */
616
617 /* 16 bit call through global offset table. */
618 HOWTO (R_MIPS_CALL16, /* type */
619 0, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 16, /* bitsize */
622 false, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_signed, /* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "R_MIPS_CALL16", /* name */
627 false, /* partial_inplace */
628 0xffff, /* src_mask */
629 0xffff, /* dst_mask */
630 false), /* pcrel_offset */
631
632 /* 32 bit GP relative reference. */
633 HOWTO (R_MIPS_GPREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 false, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_bitfield, /* complain_on_overflow */
640 _bfd_mips_elf_gprel32_reloc, /* special_function */
641 "R_MIPS_GPREL32", /* name */
642 true, /* partial_inplace */
643 0xffffffff, /* src_mask */
644 0xffffffff, /* dst_mask */
645 false), /* pcrel_offset */
646
647 /* The remaining relocs are defined on Irix 5, although they are
648 not defined by the ABI. */
649 EMPTY_HOWTO (13),
650 EMPTY_HOWTO (14),
651 EMPTY_HOWTO (15),
652
653 /* A 5 bit shift field. */
654 HOWTO (R_MIPS_SHIFT5, /* type */
655 0, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 5, /* bitsize */
658 false, /* pc_relative */
659 6, /* bitpos */
660 complain_overflow_bitfield, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 "R_MIPS_SHIFT5", /* name */
663 true, /* partial_inplace */
664 0x000007c0, /* src_mask */
665 0x000007c0, /* dst_mask */
666 false), /* pcrel_offset */
667
668 /* A 6 bit shift field. */
669 /* FIXME: This is not handled correctly; a special function is
670 needed to put the most significant bit in the right place. */
671 HOWTO (R_MIPS_SHIFT6, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 6, /* bitsize */
675 false, /* pc_relative */
676 6, /* bitpos */
677 complain_overflow_bitfield, /* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_MIPS_SHIFT6", /* name */
680 true, /* partial_inplace */
681 0x000007c4, /* src_mask */
682 0x000007c4, /* dst_mask */
683 false), /* pcrel_offset */
684
685 /* A 64 bit relocation. */
686 HOWTO (R_MIPS_64, /* type */
687 0, /* rightshift */
688 4, /* size (0 = byte, 1 = short, 2 = long) */
689 64, /* bitsize */
690 false, /* pc_relative */
691 0, /* bitpos */
692 complain_overflow_bitfield, /* complain_on_overflow */
693 mips32_64bit_reloc, /* special_function */
694 "R_MIPS_64", /* name */
695 true, /* partial_inplace */
696 MINUS_ONE, /* src_mask */
697 MINUS_ONE, /* dst_mask */
698 false), /* pcrel_offset */
699
700 /* Displacement in the global offset table. */
701 HOWTO (R_MIPS_GOT_DISP, /* type */
702 0, /* rightshift */
703 2, /* size (0 = byte, 1 = short, 2 = long) */
704 16, /* bitsize */
705 false, /* pc_relative */
706 0, /* bitpos */
707 complain_overflow_bitfield, /* complain_on_overflow */
708 bfd_elf_generic_reloc, /* special_function */
709 "R_MIPS_GOT_DISP", /* name */
710 true, /* partial_inplace */
711 0x0000ffff, /* src_mask */
712 0x0000ffff, /* dst_mask */
713 false), /* pcrel_offset */
714
715 /* Displacement to page pointer in the global offset table. */
716 HOWTO (R_MIPS_GOT_PAGE, /* type */
717 0, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 16, /* bitsize */
720 false, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_bitfield, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 "R_MIPS_GOT_PAGE", /* name */
725 true, /* partial_inplace */
726 0x0000ffff, /* src_mask */
727 0x0000ffff, /* dst_mask */
728 false), /* pcrel_offset */
729
730 /* Offset from page pointer in the global offset table. */
731 HOWTO (R_MIPS_GOT_OFST, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 false, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_MIPS_GOT_OFST", /* name */
740 true, /* partial_inplace */
741 0x0000ffff, /* src_mask */
742 0x0000ffff, /* dst_mask */
743 false), /* pcrel_offset */
744
745 /* High 16 bits of displacement in global offset table. */
746 HOWTO (R_MIPS_GOT_HI16, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 false, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_MIPS_GOT_HI16", /* name */
755 true, /* partial_inplace */
756 0x0000ffff, /* src_mask */
757 0x0000ffff, /* dst_mask */
758 false), /* pcrel_offset */
759
760 /* Low 16 bits of displacement in global offset table. */
761 HOWTO (R_MIPS_GOT_LO16, /* type */
762 0, /* rightshift */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
764 16, /* bitsize */
765 false, /* pc_relative */
766 0, /* bitpos */
767 complain_overflow_dont, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
769 "R_MIPS_GOT_LO16", /* name */
770 true, /* partial_inplace */
771 0x0000ffff, /* src_mask */
772 0x0000ffff, /* dst_mask */
773 false), /* pcrel_offset */
774
775 /* 64 bit subtraction. Used in the N32 ABI. */
776 HOWTO (R_MIPS_SUB, /* type */
777 0, /* rightshift */
778 4, /* size (0 = byte, 1 = short, 2 = long) */
779 64, /* bitsize */
780 false, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_bitfield, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 "R_MIPS_SUB", /* name */
785 true, /* partial_inplace */
786 MINUS_ONE, /* src_mask */
787 MINUS_ONE, /* dst_mask */
788 false), /* pcrel_offset */
789
790 /* Used to cause the linker to insert and delete instructions? */
791 EMPTY_HOWTO (R_MIPS_INSERT_A),
792 EMPTY_HOWTO (R_MIPS_INSERT_B),
793 EMPTY_HOWTO (R_MIPS_DELETE),
794
795 /* Get the higher value of a 64 bit addend. */
796 HOWTO (R_MIPS_HIGHER, /* type */
797 0, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 false, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_MIPS_HIGHER", /* name */
805 true, /* partial_inplace */
806 0, /* src_mask */
807 0xffff, /* dst_mask */
808 false), /* pcrel_offset */
809
810 /* Get the highest value of a 64 bit addend. */
811 HOWTO (R_MIPS_HIGHEST, /* type */
812 0, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 false, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_MIPS_HIGHEST", /* name */
820 true, /* partial_inplace */
821 0, /* src_mask */
822 0xffff, /* dst_mask */
823 false), /* pcrel_offset */
824
825 /* High 16 bits of displacement in global offset table. */
826 HOWTO (R_MIPS_CALL_HI16, /* type */
827 0, /* rightshift */
828 2, /* size (0 = byte, 1 = short, 2 = long) */
829 16, /* bitsize */
830 false, /* pc_relative */
831 0, /* bitpos */
832 complain_overflow_dont, /* complain_on_overflow */
833 bfd_elf_generic_reloc, /* special_function */
834 "R_MIPS_CALL_HI16", /* name */
835 true, /* partial_inplace */
836 0x0000ffff, /* src_mask */
837 0x0000ffff, /* dst_mask */
838 false), /* pcrel_offset */
839
840 /* Low 16 bits of displacement in global offset table. */
841 HOWTO (R_MIPS_CALL_LO16, /* type */
842 0, /* rightshift */
843 2, /* size (0 = byte, 1 = short, 2 = long) */
844 16, /* bitsize */
845 false, /* pc_relative */
846 0, /* bitpos */
847 complain_overflow_dont, /* complain_on_overflow */
848 bfd_elf_generic_reloc, /* special_function */
849 "R_MIPS_CALL_LO16", /* name */
850 true, /* partial_inplace */
851 0x0000ffff, /* src_mask */
852 0x0000ffff, /* dst_mask */
853 false), /* pcrel_offset */
854
855 /* Section displacement. */
856 HOWTO (R_MIPS_SCN_DISP, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 false, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont, /* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_MIPS_SCN_DISP", /* name */
865 false, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 false), /* pcrel_offset */
869
870 EMPTY_HOWTO (R_MIPS_REL16),
871 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
872 EMPTY_HOWTO (R_MIPS_PJUMP),
873 EMPTY_HOWTO (R_MIPS_RELGOT),
874
875 /* Protected jump conversion. This is an optimization hint. No
876 relocation is required for correctness. */
877 HOWTO (R_MIPS_JALR, /* type */
878 0, /* rightshift */
879 0, /* size (0 = byte, 1 = short, 2 = long) */
880 0, /* bitsize */
881 false, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_MIPS_JALR", /* name */
886 false, /* partial_inplace */
887 0x00000000, /* src_mask */
888 0x00000000, /* dst_mask */
889 false), /* pcrel_offset */
890 };
891
892 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
893 is a hack to make the linker think that we need 64 bit values. */
894 static reloc_howto_type elf_mips_ctor64_howto =
895 HOWTO (R_MIPS_64, /* type */
896 0, /* rightshift */
897 4, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 false, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_signed, /* complain_on_overflow */
902 mips32_64bit_reloc, /* special_function */
903 "R_MIPS_64", /* name */
904 true, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 false); /* pcrel_offset */
908
909 /* The reloc used for the mips16 jump instruction. */
910 static reloc_howto_type elf_mips16_jump_howto =
911 HOWTO (R_MIPS16_26, /* type */
912 2, /* rightshift */
913 2, /* size (0 = byte, 1 = short, 2 = long) */
914 26, /* bitsize */
915 false, /* pc_relative */
916 0, /* bitpos */
917 complain_overflow_dont, /* complain_on_overflow */
918 /* This needs complex overflow
919 detection, because the upper four
920 bits must match the PC. */
921 mips16_jump_reloc, /* special_function */
922 "R_MIPS16_26", /* name */
923 true, /* partial_inplace */
924 0x3ffffff, /* src_mask */
925 0x3ffffff, /* dst_mask */
926 false); /* pcrel_offset */
927
928 /* The reloc used for the mips16 gprel instruction. */
929 static reloc_howto_type elf_mips16_gprel_howto =
930 HOWTO (R_MIPS16_GPREL, /* type */
931 0, /* rightshift */
932 2, /* size (0 = byte, 1 = short, 2 = long) */
933 16, /* bitsize */
934 false, /* pc_relative */
935 0, /* bitpos */
936 complain_overflow_signed, /* complain_on_overflow */
937 mips16_gprel_reloc, /* special_function */
938 "R_MIPS16_GPREL", /* name */
939 true, /* partial_inplace */
940 0x07ff001f, /* src_mask */
941 0x07ff001f, /* dst_mask */
942 false); /* pcrel_offset */
943
944
945 /* GNU extension to record C++ vtable hierarchy */
946 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
947 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 0, /* bitsize */
951 false, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont, /* complain_on_overflow */
954 NULL, /* special_function */
955 "R_MIPS_GNU_VTINHERIT", /* name */
956 false, /* partial_inplace */
957 0, /* src_mask */
958 0, /* dst_mask */
959 false); /* pcrel_offset */
960
961 /* GNU extension to record C++ vtable member usage */
962 static reloc_howto_type elf_mips_gnu_vtentry_howto =
963 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
964 0, /* rightshift */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
966 0, /* bitsize */
967 false, /* pc_relative */
968 0, /* bitpos */
969 complain_overflow_dont, /* complain_on_overflow */
970 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
971 "R_MIPS_GNU_VTENTRY", /* name */
972 false, /* partial_inplace */
973 0, /* src_mask */
974 0, /* dst_mask */
975 false); /* pcrel_offset */
976
977 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
978 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
979 the HI16. Here we just save the information we need; we do the
980 actual relocation when we see the LO16. MIPS ELF requires that the
981 LO16 immediately follow the HI16. As a GNU extension, we permit an
982 arbitrary number of HI16 relocs to be associated with a single LO16
983 reloc. This extension permits gcc to output the HI and LO relocs
984 itself. */
985
986 struct mips_hi16
987 {
988 struct mips_hi16 *next;
989 bfd_byte *addr;
990 bfd_vma addend;
991 };
992
993 /* FIXME: This should not be a static variable. */
994
995 static struct mips_hi16 *mips_hi16_list;
996
997 bfd_reloc_status_type
998 _bfd_mips_elf_hi16_reloc (abfd,
999 reloc_entry,
1000 symbol,
1001 data,
1002 input_section,
1003 output_bfd,
1004 error_message)
1005 bfd *abfd ATTRIBUTE_UNUSED;
1006 arelent *reloc_entry;
1007 asymbol *symbol;
1008 PTR data;
1009 asection *input_section;
1010 bfd *output_bfd;
1011 char **error_message;
1012 {
1013 bfd_reloc_status_type ret;
1014 bfd_vma relocation;
1015 struct mips_hi16 *n;
1016
1017 /* If we're relocating, and this an external symbol, we don't want
1018 to change anything. */
1019 if (output_bfd != (bfd *) NULL
1020 && (symbol->flags & BSF_SECTION_SYM) == 0
1021 && reloc_entry->addend == 0)
1022 {
1023 reloc_entry->address += input_section->output_offset;
1024 return bfd_reloc_ok;
1025 }
1026
1027 ret = bfd_reloc_ok;
1028
1029 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1030 {
1031 boolean relocateable;
1032 bfd_vma gp;
1033
1034 if (ret == bfd_reloc_undefined)
1035 abort ();
1036
1037 if (output_bfd != NULL)
1038 relocateable = true;
1039 else
1040 {
1041 relocateable = false;
1042 output_bfd = symbol->section->output_section->owner;
1043 }
1044
1045 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1046 error_message, &gp);
1047 if (ret != bfd_reloc_ok)
1048 return ret;
1049
1050 relocation = gp - reloc_entry->address;
1051 }
1052 else
1053 {
1054 if (bfd_is_und_section (symbol->section)
1055 && output_bfd == (bfd *) NULL)
1056 ret = bfd_reloc_undefined;
1057
1058 if (bfd_is_com_section (symbol->section))
1059 relocation = 0;
1060 else
1061 relocation = symbol->value;
1062 }
1063
1064 relocation += symbol->section->output_section->vma;
1065 relocation += symbol->section->output_offset;
1066 relocation += reloc_entry->addend;
1067
1068 if (reloc_entry->address > input_section->_cooked_size)
1069 return bfd_reloc_outofrange;
1070
1071 /* Save the information, and let LO16 do the actual relocation. */
1072 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1073 if (n == NULL)
1074 return bfd_reloc_outofrange;
1075 n->addr = (bfd_byte *) data + reloc_entry->address;
1076 n->addend = relocation;
1077 n->next = mips_hi16_list;
1078 mips_hi16_list = n;
1079
1080 if (output_bfd != (bfd *) NULL)
1081 reloc_entry->address += input_section->output_offset;
1082
1083 return ret;
1084 }
1085
1086 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1087 inplace relocation; this function exists in order to do the
1088 R_MIPS_HI16 relocation described above. */
1089
1090 bfd_reloc_status_type
1091 _bfd_mips_elf_lo16_reloc (abfd,
1092 reloc_entry,
1093 symbol,
1094 data,
1095 input_section,
1096 output_bfd,
1097 error_message)
1098 bfd *abfd;
1099 arelent *reloc_entry;
1100 asymbol *symbol;
1101 PTR data;
1102 asection *input_section;
1103 bfd *output_bfd;
1104 char **error_message;
1105 {
1106 arelent gp_disp_relent;
1107
1108 if (mips_hi16_list != NULL)
1109 {
1110 struct mips_hi16 *l;
1111
1112 l = mips_hi16_list;
1113 while (l != NULL)
1114 {
1115 unsigned long insn;
1116 unsigned long val;
1117 unsigned long vallo;
1118 struct mips_hi16 *next;
1119
1120 /* Do the HI16 relocation. Note that we actually don't need
1121 to know anything about the LO16 itself, except where to
1122 find the low 16 bits of the addend needed by the LO16. */
1123 insn = bfd_get_32 (abfd, l->addr);
1124 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1125 & 0xffff);
1126 val = ((insn & 0xffff) << 16) + vallo;
1127 val += l->addend;
1128
1129 /* The low order 16 bits are always treated as a signed
1130 value. Therefore, a negative value in the low order bits
1131 requires an adjustment in the high order bits. We need
1132 to make this adjustment in two ways: once for the bits we
1133 took from the data, and once for the bits we are putting
1134 back in to the data. */
1135 if ((vallo & 0x8000) != 0)
1136 val -= 0x10000;
1137 if ((val & 0x8000) != 0)
1138 val += 0x10000;
1139
1140 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1141 bfd_put_32 (abfd, insn, l->addr);
1142
1143 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1144 {
1145 gp_disp_relent = *reloc_entry;
1146 reloc_entry = &gp_disp_relent;
1147 reloc_entry->addend = l->addend;
1148 }
1149
1150 next = l->next;
1151 free (l);
1152 l = next;
1153 }
1154
1155 mips_hi16_list = NULL;
1156 }
1157 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1158 {
1159 bfd_reloc_status_type ret;
1160 bfd_vma gp, relocation;
1161
1162 /* FIXME: Does this case ever occur? */
1163
1164 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1165 if (ret != bfd_reloc_ok)
1166 return ret;
1167
1168 relocation = gp - reloc_entry->address;
1169 relocation += symbol->section->output_section->vma;
1170 relocation += symbol->section->output_offset;
1171 relocation += reloc_entry->addend;
1172
1173 if (reloc_entry->address > input_section->_cooked_size)
1174 return bfd_reloc_outofrange;
1175
1176 gp_disp_relent = *reloc_entry;
1177 reloc_entry = &gp_disp_relent;
1178 reloc_entry->addend = relocation - 4;
1179 }
1180
1181 /* Now do the LO16 reloc in the usual way. */
1182 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1183 input_section, output_bfd, error_message);
1184 }
1185
1186 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1187 table used for PIC code. If the symbol is an external symbol, the
1188 instruction is modified to contain the offset of the appropriate
1189 entry in the global offset table. If the symbol is a section
1190 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1191 addends are combined to form the real addend against the section
1192 symbol; the GOT16 is modified to contain the offset of an entry in
1193 the global offset table, and the LO16 is modified to offset it
1194 appropriately. Thus an offset larger than 16 bits requires a
1195 modified value in the global offset table.
1196
1197 This implementation suffices for the assembler, but the linker does
1198 not yet know how to create global offset tables. */
1199
1200 bfd_reloc_status_type
1201 _bfd_mips_elf_got16_reloc (abfd,
1202 reloc_entry,
1203 symbol,
1204 data,
1205 input_section,
1206 output_bfd,
1207 error_message)
1208 bfd *abfd;
1209 arelent *reloc_entry;
1210 asymbol *symbol;
1211 PTR data;
1212 asection *input_section;
1213 bfd *output_bfd;
1214 char **error_message;
1215 {
1216 /* If we're relocating, and this an external symbol, we don't want
1217 to change anything. */
1218 if (output_bfd != (bfd *) NULL
1219 && (symbol->flags & BSF_SECTION_SYM) == 0
1220 && reloc_entry->addend == 0)
1221 {
1222 reloc_entry->address += input_section->output_offset;
1223 return bfd_reloc_ok;
1224 }
1225
1226 /* If we're relocating, and this is a local symbol, we can handle it
1227 just like HI16. */
1228 if (output_bfd != (bfd *) NULL
1229 && (symbol->flags & BSF_SECTION_SYM) != 0)
1230 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1231 input_section, output_bfd, error_message);
1232
1233 abort ();
1234 }
1235
1236 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1237 dangerous relocation. */
1238
1239 static boolean
1240 mips_elf_assign_gp (output_bfd, pgp)
1241 bfd *output_bfd;
1242 bfd_vma *pgp;
1243 {
1244 unsigned int count;
1245 asymbol **sym;
1246 unsigned int i;
1247
1248 /* If we've already figured out what GP will be, just return it. */
1249 *pgp = _bfd_get_gp_value (output_bfd);
1250 if (*pgp)
1251 return true;
1252
1253 count = bfd_get_symcount (output_bfd);
1254 sym = bfd_get_outsymbols (output_bfd);
1255
1256 /* The linker script will have created a symbol named `_gp' with the
1257 appropriate value. */
1258 if (sym == (asymbol **) NULL)
1259 i = count;
1260 else
1261 {
1262 for (i = 0; i < count; i++, sym++)
1263 {
1264 register CONST char *name;
1265
1266 name = bfd_asymbol_name (*sym);
1267 if (*name == '_' && strcmp (name, "_gp") == 0)
1268 {
1269 *pgp = bfd_asymbol_value (*sym);
1270 _bfd_set_gp_value (output_bfd, *pgp);
1271 break;
1272 }
1273 }
1274 }
1275
1276 if (i >= count)
1277 {
1278 /* Only get the error once. */
1279 *pgp = 4;
1280 _bfd_set_gp_value (output_bfd, *pgp);
1281 return false;
1282 }
1283
1284 return true;
1285 }
1286
1287 /* We have to figure out the gp value, so that we can adjust the
1288 symbol value correctly. We look up the symbol _gp in the output
1289 BFD. If we can't find it, we're stuck. We cache it in the ELF
1290 target data. We don't need to adjust the symbol value for an
1291 external symbol if we are producing relocateable output. */
1292
1293 static bfd_reloc_status_type
1294 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1295 bfd *output_bfd;
1296 asymbol *symbol;
1297 boolean relocateable;
1298 char **error_message;
1299 bfd_vma *pgp;
1300 {
1301 if (bfd_is_und_section (symbol->section)
1302 && ! relocateable)
1303 {
1304 *pgp = 0;
1305 return bfd_reloc_undefined;
1306 }
1307
1308 *pgp = _bfd_get_gp_value (output_bfd);
1309 if (*pgp == 0
1310 && (! relocateable
1311 || (symbol->flags & BSF_SECTION_SYM) != 0))
1312 {
1313 if (relocateable)
1314 {
1315 /* Make up a value. */
1316 *pgp = symbol->section->output_section->vma + 0x4000;
1317 _bfd_set_gp_value (output_bfd, *pgp);
1318 }
1319 else if (!mips_elf_assign_gp (output_bfd, pgp))
1320 {
1321 *error_message =
1322 (char *) _("GP relative relocation when _gp not defined");
1323 return bfd_reloc_dangerous;
1324 }
1325 }
1326
1327 return bfd_reloc_ok;
1328 }
1329
1330 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1331 become the offset from the gp register. This function also handles
1332 R_MIPS_LITERAL relocations, although those can be handled more
1333 cleverly because the entries in the .lit8 and .lit4 sections can be
1334 merged. */
1335
1336 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1337 arelent *, asection *,
1338 boolean, PTR, bfd_vma));
1339
1340 bfd_reloc_status_type
1341 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1342 output_bfd, error_message)
1343 bfd *abfd;
1344 arelent *reloc_entry;
1345 asymbol *symbol;
1346 PTR data;
1347 asection *input_section;
1348 bfd *output_bfd;
1349 char **error_message;
1350 {
1351 boolean relocateable;
1352 bfd_reloc_status_type ret;
1353 bfd_vma gp;
1354
1355 /* If we're relocating, and this is an external symbol with no
1356 addend, we don't want to change anything. We will only have an
1357 addend if this is a newly created reloc, not read from an ELF
1358 file. */
1359 if (output_bfd != (bfd *) NULL
1360 && (symbol->flags & BSF_SECTION_SYM) == 0
1361 && reloc_entry->addend == 0)
1362 {
1363 reloc_entry->address += input_section->output_offset;
1364 return bfd_reloc_ok;
1365 }
1366
1367 if (output_bfd != (bfd *) NULL)
1368 relocateable = true;
1369 else
1370 {
1371 relocateable = false;
1372 output_bfd = symbol->section->output_section->owner;
1373 }
1374
1375 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1376 &gp);
1377 if (ret != bfd_reloc_ok)
1378 return ret;
1379
1380 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1381 relocateable, data, gp);
1382 }
1383
1384 static bfd_reloc_status_type
1385 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1386 gp)
1387 bfd *abfd;
1388 asymbol *symbol;
1389 arelent *reloc_entry;
1390 asection *input_section;
1391 boolean relocateable;
1392 PTR data;
1393 bfd_vma gp;
1394 {
1395 bfd_vma relocation;
1396 unsigned long insn;
1397 unsigned long val;
1398
1399 if (bfd_is_com_section (symbol->section))
1400 relocation = 0;
1401 else
1402 relocation = symbol->value;
1403
1404 relocation += symbol->section->output_section->vma;
1405 relocation += symbol->section->output_offset;
1406
1407 if (reloc_entry->address > input_section->_cooked_size)
1408 return bfd_reloc_outofrange;
1409
1410 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1411
1412 /* Set val to the offset into the section or symbol. */
1413 if (reloc_entry->howto->src_mask == 0)
1414 {
1415 /* This case occurs with the 64-bit MIPS ELF ABI. */
1416 val = reloc_entry->addend;
1417 }
1418 else
1419 {
1420 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1421 if (val & 0x8000)
1422 val -= 0x10000;
1423 }
1424
1425 /* Adjust val for the final section location and GP value. If we
1426 are producing relocateable output, we don't want to do this for
1427 an external symbol. */
1428 if (! relocateable
1429 || (symbol->flags & BSF_SECTION_SYM) != 0)
1430 val += relocation - gp;
1431
1432 insn = (insn &~ 0xffff) | (val & 0xffff);
1433 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1434
1435 if (relocateable)
1436 reloc_entry->address += input_section->output_offset;
1437
1438 /* Make sure it fit in 16 bits. */
1439 if (val >= 0x8000 && val < 0xffff8000)
1440 return bfd_reloc_overflow;
1441
1442 return bfd_reloc_ok;
1443 }
1444
1445 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1446 from the gp register? XXX */
1447
1448 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1449 arelent *, asection *,
1450 boolean, PTR, bfd_vma));
1451
1452 bfd_reloc_status_type
1453 _bfd_mips_elf_gprel32_reloc (abfd,
1454 reloc_entry,
1455 symbol,
1456 data,
1457 input_section,
1458 output_bfd,
1459 error_message)
1460 bfd *abfd;
1461 arelent *reloc_entry;
1462 asymbol *symbol;
1463 PTR data;
1464 asection *input_section;
1465 bfd *output_bfd;
1466 char **error_message;
1467 {
1468 boolean relocateable;
1469 bfd_reloc_status_type ret;
1470 bfd_vma gp;
1471
1472 /* If we're relocating, and this is an external symbol with no
1473 addend, we don't want to change anything. We will only have an
1474 addend if this is a newly created reloc, not read from an ELF
1475 file. */
1476 if (output_bfd != (bfd *) NULL
1477 && (symbol->flags & BSF_SECTION_SYM) == 0
1478 && reloc_entry->addend == 0)
1479 {
1480 *error_message = (char *)
1481 _("32bits gp relative relocation occurs for an external symbol");
1482 return bfd_reloc_outofrange;
1483 }
1484
1485 if (output_bfd != (bfd *) NULL)
1486 {
1487 relocateable = true;
1488 gp = _bfd_get_gp_value (output_bfd);
1489 }
1490 else
1491 {
1492 relocateable = false;
1493 output_bfd = symbol->section->output_section->owner;
1494
1495 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1496 error_message, &gp);
1497 if (ret != bfd_reloc_ok)
1498 return ret;
1499 }
1500
1501 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1502 relocateable, data, gp);
1503 }
1504
1505 static bfd_reloc_status_type
1506 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1507 gp)
1508 bfd *abfd;
1509 asymbol *symbol;
1510 arelent *reloc_entry;
1511 asection *input_section;
1512 boolean relocateable;
1513 PTR data;
1514 bfd_vma gp;
1515 {
1516 bfd_vma relocation;
1517 unsigned long val;
1518
1519 if (bfd_is_com_section (symbol->section))
1520 relocation = 0;
1521 else
1522 relocation = symbol->value;
1523
1524 relocation += symbol->section->output_section->vma;
1525 relocation += symbol->section->output_offset;
1526
1527 if (reloc_entry->address > input_section->_cooked_size)
1528 return bfd_reloc_outofrange;
1529
1530 if (reloc_entry->howto->src_mask == 0)
1531 {
1532 /* This case arises with the 64-bit MIPS ELF ABI. */
1533 val = 0;
1534 }
1535 else
1536 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1537
1538 /* Set val to the offset into the section or symbol. */
1539 val += reloc_entry->addend;
1540
1541 /* Adjust val for the final section location and GP value. If we
1542 are producing relocateable output, we don't want to do this for
1543 an external symbol. */
1544 if (! relocateable
1545 || (symbol->flags & BSF_SECTION_SYM) != 0)
1546 val += relocation - gp;
1547
1548 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1549
1550 if (relocateable)
1551 reloc_entry->address += input_section->output_offset;
1552
1553 return bfd_reloc_ok;
1554 }
1555
1556 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1557 generated when addreses are 64 bits. The upper 32 bits are a simle
1558 sign extension. */
1559
1560 static bfd_reloc_status_type
1561 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1562 output_bfd, error_message)
1563 bfd *abfd;
1564 arelent *reloc_entry;
1565 asymbol *symbol;
1566 PTR data;
1567 asection *input_section;
1568 bfd *output_bfd;
1569 char **error_message;
1570 {
1571 bfd_reloc_status_type r;
1572 arelent reloc32;
1573 unsigned long val;
1574 bfd_size_type addr;
1575
1576 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1577 input_section, output_bfd, error_message);
1578 if (r != bfd_reloc_continue)
1579 return r;
1580
1581 /* Do a normal 32 bit relocation on the lower 32 bits. */
1582 reloc32 = *reloc_entry;
1583 if (bfd_big_endian (abfd))
1584 reloc32.address += 4;
1585 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1586 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1587 output_bfd, error_message);
1588
1589 /* Sign extend into the upper 32 bits. */
1590 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1591 if ((val & 0x80000000) != 0)
1592 val = 0xffffffff;
1593 else
1594 val = 0;
1595 addr = reloc_entry->address;
1596 if (bfd_little_endian (abfd))
1597 addr += 4;
1598 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1599
1600 return r;
1601 }
1602
1603 /* Handle a mips16 jump. */
1604
1605 static bfd_reloc_status_type
1606 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1607 output_bfd, error_message)
1608 bfd *abfd ATTRIBUTE_UNUSED;
1609 arelent *reloc_entry;
1610 asymbol *symbol;
1611 PTR data ATTRIBUTE_UNUSED;
1612 asection *input_section;
1613 bfd *output_bfd;
1614 char **error_message ATTRIBUTE_UNUSED;
1615 {
1616 if (output_bfd != (bfd *) NULL
1617 && (symbol->flags & BSF_SECTION_SYM) == 0
1618 && reloc_entry->addend == 0)
1619 {
1620 reloc_entry->address += input_section->output_offset;
1621 return bfd_reloc_ok;
1622 }
1623
1624 /* FIXME. */
1625 {
1626 static boolean warned;
1627
1628 if (! warned)
1629 (*_bfd_error_handler)
1630 (_("Linking mips16 objects into %s format is not supported"),
1631 bfd_get_target (input_section->output_section->owner));
1632 warned = true;
1633 }
1634
1635 return bfd_reloc_undefined;
1636 }
1637
1638 /* Handle a mips16 GP relative reloc. */
1639
1640 static bfd_reloc_status_type
1641 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1642 output_bfd, error_message)
1643 bfd *abfd;
1644 arelent *reloc_entry;
1645 asymbol *symbol;
1646 PTR data;
1647 asection *input_section;
1648 bfd *output_bfd;
1649 char **error_message;
1650 {
1651 boolean relocateable;
1652 bfd_reloc_status_type ret;
1653 bfd_vma gp;
1654 unsigned short extend, insn;
1655 unsigned long final;
1656
1657 /* If we're relocating, and this is an external symbol with no
1658 addend, we don't want to change anything. We will only have an
1659 addend if this is a newly created reloc, not read from an ELF
1660 file. */
1661 if (output_bfd != NULL
1662 && (symbol->flags & BSF_SECTION_SYM) == 0
1663 && reloc_entry->addend == 0)
1664 {
1665 reloc_entry->address += input_section->output_offset;
1666 return bfd_reloc_ok;
1667 }
1668
1669 if (output_bfd != NULL)
1670 relocateable = true;
1671 else
1672 {
1673 relocateable = false;
1674 output_bfd = symbol->section->output_section->owner;
1675 }
1676
1677 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1678 &gp);
1679 if (ret != bfd_reloc_ok)
1680 return ret;
1681
1682 if (reloc_entry->address > input_section->_cooked_size)
1683 return bfd_reloc_outofrange;
1684
1685 /* Pick up the mips16 extend instruction and the real instruction. */
1686 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1687 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1688
1689 /* Stuff the current addend back as a 32 bit value, do the usual
1690 relocation, and then clean up. */
1691 bfd_put_32 (abfd,
1692 (((extend & 0x1f) << 11)
1693 | (extend & 0x7e0)
1694 | (insn & 0x1f)),
1695 (bfd_byte *) data + reloc_entry->address);
1696
1697 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1698 relocateable, data, gp);
1699
1700 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1701 bfd_put_16 (abfd,
1702 ((extend & 0xf800)
1703 | ((final >> 11) & 0x1f)
1704 | (final & 0x7e0)),
1705 (bfd_byte *) data + reloc_entry->address);
1706 bfd_put_16 (abfd,
1707 ((insn & 0xffe0)
1708 | (final & 0x1f)),
1709 (bfd_byte *) data + reloc_entry->address + 2);
1710
1711 return ret;
1712 }
1713
1714 /* Return the ISA for a MIPS e_flags value. */
1715
1716 static INLINE int
1717 elf_mips_isa (flags)
1718 flagword flags;
1719 {
1720 switch (flags & EF_MIPS_ARCH)
1721 {
1722 case E_MIPS_ARCH_1:
1723 return 1;
1724 case E_MIPS_ARCH_2:
1725 return 2;
1726 case E_MIPS_ARCH_3:
1727 return 3;
1728 case E_MIPS_ARCH_4:
1729 return 4;
1730 }
1731 return 4;
1732 }
1733
1734 /* Return the MACH for a MIPS e_flags value. */
1735
1736 static INLINE int
1737 elf_mips_mach (flags)
1738 flagword flags;
1739 {
1740 switch (flags & EF_MIPS_MACH)
1741 {
1742 case E_MIPS_MACH_3900:
1743 return bfd_mach_mips3900;
1744
1745 case E_MIPS_MACH_4010:
1746 return bfd_mach_mips4010;
1747
1748 case E_MIPS_MACH_4100:
1749 return bfd_mach_mips4100;
1750
1751 case E_MIPS_MACH_4111:
1752 return bfd_mach_mips4111;
1753
1754 case E_MIPS_MACH_4650:
1755 return bfd_mach_mips4650;
1756
1757 default:
1758 switch (flags & EF_MIPS_ARCH)
1759 {
1760 default:
1761 case E_MIPS_ARCH_1:
1762 return bfd_mach_mips3000;
1763 break;
1764
1765 case E_MIPS_ARCH_2:
1766 return bfd_mach_mips6000;
1767 break;
1768
1769 case E_MIPS_ARCH_3:
1770 return bfd_mach_mips4000;
1771 break;
1772
1773 case E_MIPS_ARCH_4:
1774 return bfd_mach_mips8000;
1775 break;
1776 }
1777 }
1778
1779 return 0;
1780 }
1781
1782 /* Return printable name for ABI. */
1783
1784 static INLINE char*
1785 elf_mips_abi_name (abfd)
1786 bfd *abfd;
1787 {
1788 flagword flags;
1789
1790 if (ABI_N32_P (abfd))
1791 return "N32";
1792 else if (ABI_64_P (abfd))
1793 return "64";
1794
1795 flags = elf_elfheader (abfd)->e_flags;
1796 switch (flags & EF_MIPS_ABI)
1797 {
1798 case 0:
1799 return "none";
1800 case E_MIPS_ABI_O32:
1801 return "O32";
1802 case E_MIPS_ABI_O64:
1803 return "O64";
1804 case E_MIPS_ABI_EABI32:
1805 return "EABI32";
1806 case E_MIPS_ABI_EABI64:
1807 return "EABI64";
1808 default:
1809 return "unknown abi";
1810 }
1811 }
1812
1813 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1814
1815 struct elf_reloc_map {
1816 bfd_reloc_code_real_type bfd_reloc_val;
1817 enum elf_mips_reloc_type elf_reloc_val;
1818 };
1819
1820 static CONST struct elf_reloc_map mips_reloc_map[] =
1821 {
1822 { BFD_RELOC_NONE, R_MIPS_NONE, },
1823 { BFD_RELOC_16, R_MIPS_16 },
1824 { BFD_RELOC_32, R_MIPS_32 },
1825 { BFD_RELOC_64, R_MIPS_64 },
1826 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1827 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1828 { BFD_RELOC_LO16, R_MIPS_LO16 },
1829 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1830 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1831 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1832 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1833 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1834 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1835 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1836 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1837 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1838 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1839 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1840 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1841 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1842 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1843 };
1844
1845 /* Given a BFD reloc type, return a howto structure. */
1846
1847 static reloc_howto_type *
1848 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1849 bfd *abfd;
1850 bfd_reloc_code_real_type code;
1851 {
1852 unsigned int i;
1853
1854 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1855 {
1856 if (mips_reloc_map[i].bfd_reloc_val == code)
1857 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1858 }
1859
1860 switch (code)
1861 {
1862 default:
1863 bfd_set_error (bfd_error_bad_value);
1864 return NULL;
1865
1866 case BFD_RELOC_CTOR:
1867 /* We need to handle BFD_RELOC_CTOR specially.
1868 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1869 size of addresses on this architecture. */
1870 if (bfd_arch_bits_per_address (abfd) == 32)
1871 return &elf_mips_howto_table[(int) R_MIPS_32];
1872 else
1873 return &elf_mips_ctor64_howto;
1874
1875 case BFD_RELOC_MIPS16_JMP:
1876 return &elf_mips16_jump_howto;
1877 case BFD_RELOC_MIPS16_GPREL:
1878 return &elf_mips16_gprel_howto;
1879 case BFD_RELOC_VTABLE_INHERIT:
1880 return &elf_mips_gnu_vtinherit_howto;
1881 case BFD_RELOC_VTABLE_ENTRY:
1882 return &elf_mips_gnu_vtentry_howto;
1883 }
1884 }
1885
1886 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1887
1888 static reloc_howto_type *
1889 mips_rtype_to_howto (r_type)
1890 unsigned int r_type;
1891 {
1892 switch (r_type)
1893 {
1894 case R_MIPS16_26:
1895 return &elf_mips16_jump_howto;
1896 break;
1897 case R_MIPS16_GPREL:
1898 return &elf_mips16_gprel_howto;
1899 break;
1900 case R_MIPS_GNU_VTINHERIT:
1901 return &elf_mips_gnu_vtinherit_howto;
1902 break;
1903 case R_MIPS_GNU_VTENTRY:
1904 return &elf_mips_gnu_vtentry_howto;
1905 break;
1906
1907 default:
1908 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
1909 return &elf_mips_howto_table[r_type];
1910 break;
1911 }
1912 }
1913
1914 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1915
1916 static void
1917 mips_info_to_howto_rel (abfd, cache_ptr, dst)
1918 bfd *abfd;
1919 arelent *cache_ptr;
1920 Elf32_Internal_Rel *dst;
1921 {
1922 unsigned int r_type;
1923
1924 r_type = ELF32_R_TYPE (dst->r_info);
1925 cache_ptr->howto = mips_rtype_to_howto (r_type);
1926
1927 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
1928 value for the object file. We get the addend now, rather than
1929 when we do the relocation, because the symbol manipulations done
1930 by the linker may cause us to lose track of the input BFD. */
1931 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
1932 && (r_type == (unsigned int) R_MIPS_GPREL16
1933 || r_type == (unsigned int) R_MIPS_LITERAL))
1934 cache_ptr->addend = elf_gp (abfd);
1935 }
1936
1937 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
1938
1939 static void
1940 mips_info_to_howto_rela (abfd, cache_ptr, dst)
1941 bfd *abfd;
1942 arelent *cache_ptr;
1943 Elf32_Internal_Rela *dst;
1944 {
1945 /* Since an Elf32_Internal_Rel is an initial prefix of an
1946 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
1947 above. */
1948 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
1949
1950 /* If we ever need to do any extra processing with dst->r_addend
1951 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
1952 }
1953 \f
1954 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1955 routines swap this structure in and out. They are used outside of
1956 BFD, so they are globally visible. */
1957
1958 void
1959 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1960 bfd *abfd;
1961 const Elf32_External_RegInfo *ex;
1962 Elf32_RegInfo *in;
1963 {
1964 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
1965 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
1966 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
1967 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
1968 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
1969 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
1970 }
1971
1972 void
1973 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1974 bfd *abfd;
1975 const Elf32_RegInfo *in;
1976 Elf32_External_RegInfo *ex;
1977 {
1978 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
1979 (bfd_byte *) ex->ri_gprmask);
1980 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
1981 (bfd_byte *) ex->ri_cprmask[0]);
1982 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
1983 (bfd_byte *) ex->ri_cprmask[1]);
1984 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
1985 (bfd_byte *) ex->ri_cprmask[2]);
1986 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
1987 (bfd_byte *) ex->ri_cprmask[3]);
1988 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
1989 (bfd_byte *) ex->ri_gp_value);
1990 }
1991
1992 /* In the 64 bit ABI, the .MIPS.options section holds register
1993 information in an Elf64_Reginfo structure. These routines swap
1994 them in and out. They are globally visible because they are used
1995 outside of BFD. These routines are here so that gas can call them
1996 without worrying about whether the 64 bit ABI has been included. */
1997
1998 void
1999 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2000 bfd *abfd;
2001 const Elf64_External_RegInfo *ex;
2002 Elf64_Internal_RegInfo *in;
2003 {
2004 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2005 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2006 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2007 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2008 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2009 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2010 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2011 }
2012
2013 void
2014 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2015 bfd *abfd;
2016 const Elf64_Internal_RegInfo *in;
2017 Elf64_External_RegInfo *ex;
2018 {
2019 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2020 (bfd_byte *) ex->ri_gprmask);
2021 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2022 (bfd_byte *) ex->ri_pad);
2023 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2024 (bfd_byte *) ex->ri_cprmask[0]);
2025 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2026 (bfd_byte *) ex->ri_cprmask[1]);
2027 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2028 (bfd_byte *) ex->ri_cprmask[2]);
2029 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2030 (bfd_byte *) ex->ri_cprmask[3]);
2031 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2032 (bfd_byte *) ex->ri_gp_value);
2033 }
2034
2035 /* Swap an entry in a .gptab section. Note that these routines rely
2036 on the equivalence of the two elements of the union. */
2037
2038 static void
2039 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2040 bfd *abfd;
2041 const Elf32_External_gptab *ex;
2042 Elf32_gptab *in;
2043 {
2044 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2045 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2046 }
2047
2048 static void
2049 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2050 bfd *abfd;
2051 const Elf32_gptab *in;
2052 Elf32_External_gptab *ex;
2053 {
2054 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2055 ex->gt_entry.gt_g_value);
2056 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2057 ex->gt_entry.gt_bytes);
2058 }
2059
2060 static void
2061 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2062 bfd *abfd;
2063 const Elf32_compact_rel *in;
2064 Elf32_External_compact_rel *ex;
2065 {
2066 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2067 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2068 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2069 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2070 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2071 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2072 }
2073
2074 static void
2075 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2076 bfd *abfd;
2077 const Elf32_crinfo *in;
2078 Elf32_External_crinfo *ex;
2079 {
2080 unsigned long l;
2081
2082 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2083 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2084 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2085 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2086 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2087 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2088 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2089 }
2090
2091 /* Swap in an options header. */
2092
2093 void
2094 bfd_mips_elf_swap_options_in (abfd, ex, in)
2095 bfd *abfd;
2096 const Elf_External_Options *ex;
2097 Elf_Internal_Options *in;
2098 {
2099 in->kind = bfd_h_get_8 (abfd, ex->kind);
2100 in->size = bfd_h_get_8 (abfd, ex->size);
2101 in->section = bfd_h_get_16 (abfd, ex->section);
2102 in->info = bfd_h_get_32 (abfd, ex->info);
2103 }
2104
2105 /* Swap out an options header. */
2106
2107 void
2108 bfd_mips_elf_swap_options_out (abfd, in, ex)
2109 bfd *abfd;
2110 const Elf_Internal_Options *in;
2111 Elf_External_Options *ex;
2112 {
2113 bfd_h_put_8 (abfd, in->kind, ex->kind);
2114 bfd_h_put_8 (abfd, in->size, ex->size);
2115 bfd_h_put_16 (abfd, in->section, ex->section);
2116 bfd_h_put_32 (abfd, in->info, ex->info);
2117 }
2118
2119 /* Swap in an MSYM entry. */
2120
2121 static void
2122 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2123 bfd *abfd;
2124 const Elf32_External_Msym *ex;
2125 Elf32_Internal_Msym *in;
2126 {
2127 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2128 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2129 }
2130
2131 /* Swap out an MSYM entry. */
2132
2133 static void
2134 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2135 bfd *abfd;
2136 const Elf32_Internal_Msym *in;
2137 Elf32_External_Msym *ex;
2138 {
2139 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2140 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2141 }
2142
2143 \f
2144 /* Determine whether a symbol is global for the purposes of splitting
2145 the symbol table into global symbols and local symbols. At least
2146 on Irix 5, this split must be between section symbols and all other
2147 symbols. On most ELF targets the split is between static symbols
2148 and externally visible symbols. */
2149
2150 /*ARGSUSED*/
2151 static boolean
2152 mips_elf_sym_is_global (abfd, sym)
2153 bfd *abfd ATTRIBUTE_UNUSED;
2154 asymbol *sym;
2155 {
2156 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2157 }
2158 \f
2159 /* Set the right machine number for a MIPS ELF file. This is used for
2160 both the 32-bit and the 64-bit ABI. */
2161
2162 boolean
2163 _bfd_mips_elf_object_p (abfd)
2164 bfd *abfd;
2165 {
2166 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2167 sorted correctly such that local symbols precede global symbols,
2168 and the sh_info field in the symbol table is not always right. */
2169 elf_bad_symtab (abfd) = true;
2170
2171 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2172 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2173 return true;
2174 }
2175
2176 /* The final processing done just before writing out a MIPS ELF object
2177 file. This gets the MIPS architecture right based on the machine
2178 number. This is used by both the 32-bit and the 64-bit ABI. */
2179
2180 /*ARGSUSED*/
2181 void
2182 _bfd_mips_elf_final_write_processing (abfd, linker)
2183 bfd *abfd;
2184 boolean linker ATTRIBUTE_UNUSED;
2185 {
2186 unsigned long val;
2187 unsigned int i;
2188 Elf_Internal_Shdr **hdrpp;
2189 const char *name;
2190 asection *sec;
2191
2192 switch (bfd_get_mach (abfd))
2193 {
2194 default:
2195 case bfd_mach_mips3000:
2196 val = E_MIPS_ARCH_1;
2197 break;
2198
2199 case bfd_mach_mips3900:
2200 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2201 break;
2202
2203 case bfd_mach_mips6000:
2204 val = E_MIPS_ARCH_2;
2205 break;
2206
2207 case bfd_mach_mips4000:
2208 case bfd_mach_mips4300:
2209 val = E_MIPS_ARCH_3;
2210 break;
2211
2212 case bfd_mach_mips4010:
2213 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2214 break;
2215
2216 case bfd_mach_mips4100:
2217 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2218 break;
2219
2220 case bfd_mach_mips4111:
2221 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2222 break;
2223
2224 case bfd_mach_mips4650:
2225 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2226 break;
2227
2228 case bfd_mach_mips8000:
2229 val = E_MIPS_ARCH_4;
2230 break;
2231 }
2232
2233 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2234 elf_elfheader (abfd)->e_flags |= val;
2235
2236 /* Set the sh_info field for .gptab sections and other appropriate
2237 info for each special section. */
2238 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2239 i < elf_elfheader (abfd)->e_shnum;
2240 i++, hdrpp++)
2241 {
2242 switch ((*hdrpp)->sh_type)
2243 {
2244 case SHT_MIPS_MSYM:
2245 case SHT_MIPS_LIBLIST:
2246 sec = bfd_get_section_by_name (abfd, ".dynstr");
2247 if (sec != NULL)
2248 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2249 break;
2250
2251 case SHT_MIPS_GPTAB:
2252 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2253 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2254 BFD_ASSERT (name != NULL
2255 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2256 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2257 BFD_ASSERT (sec != NULL);
2258 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2259 break;
2260
2261 case SHT_MIPS_CONTENT:
2262 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2263 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2264 BFD_ASSERT (name != NULL
2265 && strncmp (name, ".MIPS.content",
2266 sizeof ".MIPS.content" - 1) == 0);
2267 sec = bfd_get_section_by_name (abfd,
2268 name + sizeof ".MIPS.content" - 1);
2269 BFD_ASSERT (sec != NULL);
2270 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2271 break;
2272
2273 case SHT_MIPS_SYMBOL_LIB:
2274 sec = bfd_get_section_by_name (abfd, ".dynsym");
2275 if (sec != NULL)
2276 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2277 sec = bfd_get_section_by_name (abfd, ".liblist");
2278 if (sec != NULL)
2279 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2280 break;
2281
2282 case SHT_MIPS_EVENTS:
2283 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2284 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2285 BFD_ASSERT (name != NULL);
2286 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2287 sec = bfd_get_section_by_name (abfd,
2288 name + sizeof ".MIPS.events" - 1);
2289 else
2290 {
2291 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2292 sizeof ".MIPS.post_rel" - 1) == 0);
2293 sec = bfd_get_section_by_name (abfd,
2294 (name
2295 + sizeof ".MIPS.post_rel" - 1));
2296 }
2297 BFD_ASSERT (sec != NULL);
2298 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2299 break;
2300
2301 }
2302 }
2303 }
2304 \f
2305 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2306
2307 boolean
2308 _bfd_mips_elf_set_private_flags (abfd, flags)
2309 bfd *abfd;
2310 flagword flags;
2311 {
2312 BFD_ASSERT (!elf_flags_init (abfd)
2313 || elf_elfheader (abfd)->e_flags == flags);
2314
2315 elf_elfheader (abfd)->e_flags = flags;
2316 elf_flags_init (abfd) = true;
2317 return true;
2318 }
2319
2320 /* Copy backend specific data from one object module to another */
2321
2322 boolean
2323 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2324 bfd *ibfd;
2325 bfd *obfd;
2326 {
2327 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2328 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2329 return true;
2330
2331 BFD_ASSERT (!elf_flags_init (obfd)
2332 || (elf_elfheader (obfd)->e_flags
2333 == elf_elfheader (ibfd)->e_flags));
2334
2335 elf_gp (obfd) = elf_gp (ibfd);
2336 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2337 elf_flags_init (obfd) = true;
2338 return true;
2339 }
2340
2341 /* Merge backend specific data from an object file to the output
2342 object file when linking. */
2343
2344 boolean
2345 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2346 bfd *ibfd;
2347 bfd *obfd;
2348 {
2349 flagword old_flags;
2350 flagword new_flags;
2351 boolean ok;
2352
2353 /* Check if we have the same endianess */
2354 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2355 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2356 {
2357 const char *msg;
2358
2359 if (bfd_big_endian (ibfd))
2360 msg = _("%s: compiled for a big endian system and target is little endian");
2361 else
2362 msg = _("%s: compiled for a little endian system and target is big endian");
2363
2364 (*_bfd_error_handler) (msg, bfd_get_filename (ibfd));
2365
2366 bfd_set_error (bfd_error_wrong_format);
2367 return false;
2368 }
2369
2370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2371 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2372 return true;
2373
2374 new_flags = elf_elfheader (ibfd)->e_flags;
2375 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2376 old_flags = elf_elfheader (obfd)->e_flags;
2377
2378 if (! elf_flags_init (obfd))
2379 {
2380 elf_flags_init (obfd) = true;
2381 elf_elfheader (obfd)->e_flags = new_flags;
2382 elf_elfheader (obfd)->e_ident[EI_CLASS]
2383 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2384
2385 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2386 && bfd_get_arch_info (obfd)->the_default)
2387 {
2388 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2389 bfd_get_mach (ibfd)))
2390 return false;
2391 }
2392
2393 return true;
2394 }
2395
2396 /* Check flag compatibility. */
2397
2398 new_flags &= ~EF_MIPS_NOREORDER;
2399 old_flags &= ~EF_MIPS_NOREORDER;
2400
2401 if (new_flags == old_flags)
2402 return true;
2403
2404 ok = true;
2405
2406 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2407 {
2408 new_flags &= ~EF_MIPS_PIC;
2409 old_flags &= ~EF_MIPS_PIC;
2410 (*_bfd_error_handler)
2411 (_("%s: linking PIC files with non-PIC files"),
2412 bfd_get_filename (ibfd));
2413 ok = false;
2414 }
2415
2416 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2417 {
2418 new_flags &= ~EF_MIPS_CPIC;
2419 old_flags &= ~EF_MIPS_CPIC;
2420 (*_bfd_error_handler)
2421 (_("%s: linking abicalls files with non-abicalls files"),
2422 bfd_get_filename (ibfd));
2423 ok = false;
2424 }
2425
2426 /* Compare the ISA's. */
2427 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2428 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2429 {
2430 int new_mach = new_flags & EF_MIPS_MACH;
2431 int old_mach = old_flags & EF_MIPS_MACH;
2432 int new_isa = elf_mips_isa (new_flags);
2433 int old_isa = elf_mips_isa (old_flags);
2434
2435 /* If either has no machine specified, just compare the general isa's.
2436 Some combinations of machines are ok, if the isa's match. */
2437 if (! new_mach
2438 || ! old_mach
2439 || new_mach == old_mach
2440 )
2441 {
2442 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2443 and -mips4 code. They will normally use the same data sizes and
2444 calling conventions. */
2445
2446 if ((new_isa == 1 || new_isa == 2)
2447 ? (old_isa != 1 && old_isa != 2)
2448 : (old_isa == 1 || old_isa == 2))
2449 {
2450 (*_bfd_error_handler)
2451 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2452 bfd_get_filename (ibfd), new_isa, old_isa);
2453 ok = false;
2454 }
2455 }
2456
2457 else
2458 {
2459 (*_bfd_error_handler)
2460 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2461 bfd_get_filename (ibfd),
2462 elf_mips_mach (new_flags),
2463 elf_mips_mach (old_flags));
2464 ok = false;
2465 }
2466
2467 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2468 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2469 }
2470
2471 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2472 does set EI_CLASS differently from any 32-bit ABI. */
2473 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2474 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2475 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2476 {
2477 /* Only error if both are set (to different values). */
2478 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2479 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2480 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2481 {
2482 (*_bfd_error_handler)
2483 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2484 bfd_get_filename (ibfd),
2485 elf_mips_abi_name (ibfd),
2486 elf_mips_abi_name (obfd));
2487 ok = false;
2488 }
2489 new_flags &= ~EF_MIPS_ABI;
2490 old_flags &= ~EF_MIPS_ABI;
2491 }
2492
2493 /* Warn about any other mismatches */
2494 if (new_flags != old_flags)
2495 {
2496 (*_bfd_error_handler)
2497 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2498 bfd_get_filename (ibfd), (unsigned long) new_flags,
2499 (unsigned long) old_flags);
2500 ok = false;
2501 }
2502
2503 if (! ok)
2504 {
2505 bfd_set_error (bfd_error_bad_value);
2506 return false;
2507 }
2508
2509 return true;
2510 }
2511 \f
2512 boolean
2513 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2514 bfd *abfd;
2515 PTR ptr;
2516 {
2517 FILE *file = (FILE *) ptr;
2518
2519 BFD_ASSERT (abfd != NULL && ptr != NULL);
2520
2521 /* Print normal ELF private data. */
2522 _bfd_elf_print_private_bfd_data (abfd, ptr);
2523
2524 /* xgettext:c-format */
2525 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2526
2527 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2528 fprintf (file, _ (" [abi=O32]"));
2529 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2530 fprintf (file, _ (" [abi=O64]"));
2531 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2532 fprintf (file, _ (" [abi=EABI32]"));
2533 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2534 fprintf (file, _ (" [abi=EABI64]"));
2535 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2536 fprintf (file, _ (" [abi unknown]"));
2537 else if (ABI_N32_P (abfd))
2538 fprintf (file, _ (" [abi=N32]"));
2539 else if (ABI_64_P (abfd))
2540 fprintf (file, _ (" [abi=64]"));
2541 else
2542 fprintf (file, _ (" [no abi set]"));
2543
2544 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2545 fprintf (file, _ (" [mips1]"));
2546 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2547 fprintf (file, _ (" [mips2]"));
2548 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2549 fprintf (file, _ (" [mips3]"));
2550 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2551 fprintf (file, _ (" [mips4]"));
2552 else
2553 fprintf (file, _ (" [unknown ISA]"));
2554
2555 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2556 fprintf (file, _ (" [32bitmode]"));
2557 else
2558 fprintf (file, _ (" [not 32bitmode]"));
2559
2560 fputc ('\n', file);
2561
2562 return true;
2563 }
2564 \f
2565 /* Handle a MIPS specific section when reading an object file. This
2566 is called when elfcode.h finds a section with an unknown type.
2567 This routine supports both the 32-bit and 64-bit ELF ABI.
2568
2569 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2570 how to. */
2571
2572 boolean
2573 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2574 bfd *abfd;
2575 Elf_Internal_Shdr *hdr;
2576 char *name;
2577 {
2578 flagword flags = 0;
2579
2580 /* There ought to be a place to keep ELF backend specific flags, but
2581 at the moment there isn't one. We just keep track of the
2582 sections by their name, instead. Fortunately, the ABI gives
2583 suggested names for all the MIPS specific sections, so we will
2584 probably get away with this. */
2585 switch (hdr->sh_type)
2586 {
2587 case SHT_MIPS_LIBLIST:
2588 if (strcmp (name, ".liblist") != 0)
2589 return false;
2590 break;
2591 case SHT_MIPS_MSYM:
2592 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2593 return false;
2594 break;
2595 case SHT_MIPS_CONFLICT:
2596 if (strcmp (name, ".conflict") != 0)
2597 return false;
2598 break;
2599 case SHT_MIPS_GPTAB:
2600 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2601 return false;
2602 break;
2603 case SHT_MIPS_UCODE:
2604 if (strcmp (name, ".ucode") != 0)
2605 return false;
2606 break;
2607 case SHT_MIPS_DEBUG:
2608 if (strcmp (name, ".mdebug") != 0)
2609 return false;
2610 flags = SEC_DEBUGGING;
2611 break;
2612 case SHT_MIPS_REGINFO:
2613 if (strcmp (name, ".reginfo") != 0
2614 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2615 return false;
2616 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2617 break;
2618 case SHT_MIPS_IFACE:
2619 if (strcmp (name, ".MIPS.interfaces") != 0)
2620 return false;
2621 break;
2622 case SHT_MIPS_CONTENT:
2623 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2624 return false;
2625 break;
2626 case SHT_MIPS_OPTIONS:
2627 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2628 return false;
2629 break;
2630 case SHT_MIPS_DWARF:
2631 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2632 return false;
2633 break;
2634 case SHT_MIPS_SYMBOL_LIB:
2635 if (strcmp (name, ".MIPS.symlib") != 0)
2636 return false;
2637 break;
2638 case SHT_MIPS_EVENTS:
2639 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2640 && strncmp (name, ".MIPS.post_rel",
2641 sizeof ".MIPS.post_rel" - 1) != 0)
2642 return false;
2643 break;
2644 default:
2645 return false;
2646 }
2647
2648 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2649 return false;
2650
2651 if (flags)
2652 {
2653 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2654 (bfd_get_section_flags (abfd,
2655 hdr->bfd_section)
2656 | flags)))
2657 return false;
2658 }
2659
2660 /* FIXME: We should record sh_info for a .gptab section. */
2661
2662 /* For a .reginfo section, set the gp value in the tdata information
2663 from the contents of this section. We need the gp value while
2664 processing relocs, so we just get it now. The .reginfo section
2665 is not used in the 64-bit MIPS ELF ABI. */
2666 if (hdr->sh_type == SHT_MIPS_REGINFO)
2667 {
2668 Elf32_External_RegInfo ext;
2669 Elf32_RegInfo s;
2670
2671 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2672 (file_ptr) 0, sizeof ext))
2673 return false;
2674 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2675 elf_gp (abfd) = s.ri_gp_value;
2676 }
2677
2678 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2679 set the gp value based on what we find. We may see both
2680 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2681 they should agree. */
2682 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2683 {
2684 bfd_byte *contents, *l, *lend;
2685
2686 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2687 if (contents == NULL)
2688 return false;
2689 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2690 (file_ptr) 0, hdr->sh_size))
2691 {
2692 free (contents);
2693 return false;
2694 }
2695 l = contents;
2696 lend = contents + hdr->sh_size;
2697 while (l + sizeof (Elf_External_Options) <= lend)
2698 {
2699 Elf_Internal_Options intopt;
2700
2701 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2702 &intopt);
2703 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2704 {
2705 Elf64_Internal_RegInfo intreg;
2706
2707 bfd_mips_elf64_swap_reginfo_in
2708 (abfd,
2709 ((Elf64_External_RegInfo *)
2710 (l + sizeof (Elf_External_Options))),
2711 &intreg);
2712 elf_gp (abfd) = intreg.ri_gp_value;
2713 }
2714 else if (intopt.kind == ODK_REGINFO)
2715 {
2716 Elf32_RegInfo intreg;
2717
2718 bfd_mips_elf32_swap_reginfo_in
2719 (abfd,
2720 ((Elf32_External_RegInfo *)
2721 (l + sizeof (Elf_External_Options))),
2722 &intreg);
2723 elf_gp (abfd) = intreg.ri_gp_value;
2724 }
2725 l += intopt.size;
2726 }
2727 free (contents);
2728 }
2729
2730 return true;
2731 }
2732
2733 /* Set the correct type for a MIPS ELF section. We do this by the
2734 section name, which is a hack, but ought to work. This routine is
2735 used by both the 32-bit and the 64-bit ABI. */
2736
2737 boolean
2738 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2739 bfd *abfd;
2740 Elf32_Internal_Shdr *hdr;
2741 asection *sec;
2742 {
2743 register const char *name;
2744
2745 name = bfd_get_section_name (abfd, sec);
2746
2747 if (strcmp (name, ".liblist") == 0)
2748 {
2749 hdr->sh_type = SHT_MIPS_LIBLIST;
2750 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2751 /* The sh_link field is set in final_write_processing. */
2752 }
2753 else if (strcmp (name, ".conflict") == 0)
2754 hdr->sh_type = SHT_MIPS_CONFLICT;
2755 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2756 {
2757 hdr->sh_type = SHT_MIPS_GPTAB;
2758 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2759 /* The sh_info field is set in final_write_processing. */
2760 }
2761 else if (strcmp (name, ".ucode") == 0)
2762 hdr->sh_type = SHT_MIPS_UCODE;
2763 else if (strcmp (name, ".mdebug") == 0)
2764 {
2765 hdr->sh_type = SHT_MIPS_DEBUG;
2766 /* In a shared object on Irix 5.3, the .mdebug section has an
2767 entsize of 0. FIXME: Does this matter? */
2768 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2769 hdr->sh_entsize = 0;
2770 else
2771 hdr->sh_entsize = 1;
2772 }
2773 else if (strcmp (name, ".reginfo") == 0)
2774 {
2775 hdr->sh_type = SHT_MIPS_REGINFO;
2776 /* In a shared object on Irix 5.3, the .reginfo section has an
2777 entsize of 0x18. FIXME: Does this matter? */
2778 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2779 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2780 else
2781 hdr->sh_entsize = 1;
2782 }
2783 else if (SGI_COMPAT (abfd)
2784 && (strcmp (name, ".hash") == 0
2785 || strcmp (name, ".dynamic") == 0
2786 || strcmp (name, ".dynstr") == 0))
2787 {
2788 hdr->sh_entsize = 0;
2789 #if 0
2790 /* This isn't how the Irix 6 linker behaves. */
2791 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2792 #endif
2793 }
2794 else if (strcmp (name, ".got") == 0
2795 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2796 || strcmp (name, ".sdata") == 0
2797 || strcmp (name, ".sbss") == 0
2798 || strcmp (name, ".lit4") == 0
2799 || strcmp (name, ".lit8") == 0)
2800 hdr->sh_flags |= SHF_MIPS_GPREL;
2801 else if (strcmp (name, ".MIPS.interfaces") == 0)
2802 {
2803 hdr->sh_type = SHT_MIPS_IFACE;
2804 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2805 }
2806 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2807 {
2808 hdr->sh_type = SHT_MIPS_CONTENT;
2809 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2810 /* The sh_info field is set in final_write_processing. */
2811 }
2812 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2813 {
2814 hdr->sh_type = SHT_MIPS_OPTIONS;
2815 hdr->sh_entsize = 1;
2816 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2817 }
2818 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2819 hdr->sh_type = SHT_MIPS_DWARF;
2820 else if (strcmp (name, ".MIPS.symlib") == 0)
2821 {
2822 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2823 /* The sh_link and sh_info fields are set in
2824 final_write_processing. */
2825 }
2826 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2827 || strncmp (name, ".MIPS.post_rel",
2828 sizeof ".MIPS.post_rel" - 1) == 0)
2829 {
2830 hdr->sh_type = SHT_MIPS_EVENTS;
2831 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2832 /* The sh_link field is set in final_write_processing. */
2833 }
2834 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2835 {
2836 hdr->sh_type = SHT_MIPS_MSYM;
2837 hdr->sh_flags |= SHF_ALLOC;
2838 hdr->sh_entsize = 8;
2839 }
2840
2841 /* The generic elf_fake_sections will set up REL_HDR using the
2842 default kind of relocations. But, we may actually need both
2843 kinds of relocations, so we set up the second header here. */
2844 if ((sec->flags & SEC_RELOC) != 0)
2845 {
2846 struct bfd_elf_section_data *esd;
2847
2848 esd = elf_section_data (sec);
2849 BFD_ASSERT (esd->rel_hdr2 == NULL);
2850 esd->rel_hdr2
2851 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2852 if (!esd->rel_hdr2)
2853 return false;
2854 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2855 !elf_section_data (sec)->use_rela_p);
2856 }
2857
2858 return true;
2859 }
2860
2861 /* Given a BFD section, try to locate the corresponding ELF section
2862 index. This is used by both the 32-bit and the 64-bit ABI.
2863 Actually, it's not clear to me that the 64-bit ABI supports these,
2864 but for non-PIC objects we will certainly want support for at least
2865 the .scommon section. */
2866
2867 boolean
2868 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2869 bfd *abfd ATTRIBUTE_UNUSED;
2870 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2871 asection *sec;
2872 int *retval;
2873 {
2874 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2875 {
2876 *retval = SHN_MIPS_SCOMMON;
2877 return true;
2878 }
2879 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2880 {
2881 *retval = SHN_MIPS_ACOMMON;
2882 return true;
2883 }
2884 return false;
2885 }
2886
2887 /* When are writing out the .options or .MIPS.options section,
2888 remember the bytes we are writing out, so that we can install the
2889 GP value in the section_processing routine. */
2890
2891 boolean
2892 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2893 bfd *abfd;
2894 sec_ptr section;
2895 PTR location;
2896 file_ptr offset;
2897 bfd_size_type count;
2898 {
2899 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2900 {
2901 bfd_byte *c;
2902
2903 if (elf_section_data (section) == NULL)
2904 {
2905 section->used_by_bfd =
2906 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
2907 if (elf_section_data (section) == NULL)
2908 return false;
2909 }
2910 c = (bfd_byte *) elf_section_data (section)->tdata;
2911 if (c == NULL)
2912 {
2913 bfd_size_type size;
2914
2915 if (section->_cooked_size != 0)
2916 size = section->_cooked_size;
2917 else
2918 size = section->_raw_size;
2919 c = (bfd_byte *) bfd_zalloc (abfd, size);
2920 if (c == NULL)
2921 return false;
2922 elf_section_data (section)->tdata = (PTR) c;
2923 }
2924
2925 memcpy (c + offset, location, count);
2926 }
2927
2928 return _bfd_elf_set_section_contents (abfd, section, location, offset,
2929 count);
2930 }
2931
2932 /* Work over a section just before writing it out. This routine is
2933 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
2934 sections that need the SHF_MIPS_GPREL flag by name; there has to be
2935 a better way. */
2936
2937 boolean
2938 _bfd_mips_elf_section_processing (abfd, hdr)
2939 bfd *abfd;
2940 Elf_Internal_Shdr *hdr;
2941 {
2942 if (hdr->sh_type == SHT_MIPS_REGINFO
2943 && hdr->sh_size > 0)
2944 {
2945 bfd_byte buf[4];
2946
2947 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
2948 BFD_ASSERT (hdr->contents == NULL);
2949
2950 if (bfd_seek (abfd,
2951 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
2952 SEEK_SET) == -1)
2953 return false;
2954 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
2955 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
2956 return false;
2957 }
2958
2959 if (hdr->sh_type == SHT_MIPS_OPTIONS
2960 && hdr->bfd_section != NULL
2961 && elf_section_data (hdr->bfd_section) != NULL
2962 && elf_section_data (hdr->bfd_section)->tdata != NULL)
2963 {
2964 bfd_byte *contents, *l, *lend;
2965
2966 /* We stored the section contents in the elf_section_data tdata
2967 field in the set_section_contents routine. We save the
2968 section contents so that we don't have to read them again.
2969 At this point we know that elf_gp is set, so we can look
2970 through the section contents to see if there is an
2971 ODK_REGINFO structure. */
2972
2973 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
2974 l = contents;
2975 lend = contents + hdr->sh_size;
2976 while (l + sizeof (Elf_External_Options) <= lend)
2977 {
2978 Elf_Internal_Options intopt;
2979
2980 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2981 &intopt);
2982 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2983 {
2984 bfd_byte buf[8];
2985
2986 if (bfd_seek (abfd,
2987 (hdr->sh_offset
2988 + (l - contents)
2989 + sizeof (Elf_External_Options)
2990 + (sizeof (Elf64_External_RegInfo) - 8)),
2991 SEEK_SET) == -1)
2992 return false;
2993 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
2994 if (bfd_write (buf, 1, 8, abfd) != 8)
2995 return false;
2996 }
2997 else if (intopt.kind == ODK_REGINFO)
2998 {
2999 bfd_byte buf[4];
3000
3001 if (bfd_seek (abfd,
3002 (hdr->sh_offset
3003 + (l - contents)
3004 + sizeof (Elf_External_Options)
3005 + (sizeof (Elf32_External_RegInfo) - 4)),
3006 SEEK_SET) == -1)
3007 return false;
3008 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3009 if (bfd_write (buf, 1, 4, abfd) != 4)
3010 return false;
3011 }
3012 l += intopt.size;
3013 }
3014 }
3015
3016 if (hdr->bfd_section != NULL)
3017 {
3018 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3019
3020 if (strcmp (name, ".sdata") == 0
3021 || strcmp (name, ".lit8") == 0
3022 || strcmp (name, ".lit4") == 0)
3023 {
3024 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3025 hdr->sh_type = SHT_PROGBITS;
3026 }
3027 else if (strcmp (name, ".sbss") == 0)
3028 {
3029 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3030 hdr->sh_type = SHT_NOBITS;
3031 }
3032 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3033 {
3034 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3035 hdr->sh_type = SHT_PROGBITS;
3036 }
3037 else if (strcmp (name, ".compact_rel") == 0)
3038 {
3039 hdr->sh_flags = 0;
3040 hdr->sh_type = SHT_PROGBITS;
3041 }
3042 else if (strcmp (name, ".rtproc") == 0)
3043 {
3044 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3045 {
3046 unsigned int adjust;
3047
3048 adjust = hdr->sh_size % hdr->sh_addralign;
3049 if (adjust != 0)
3050 hdr->sh_size += hdr->sh_addralign - adjust;
3051 }
3052 }
3053 }
3054
3055 return true;
3056 }
3057
3058 \f
3059 /* MIPS ELF uses two common sections. One is the usual one, and the
3060 other is for small objects. All the small objects are kept
3061 together, and then referenced via the gp pointer, which yields
3062 faster assembler code. This is what we use for the small common
3063 section. This approach is copied from ecoff.c. */
3064 static asection mips_elf_scom_section;
3065 static asymbol mips_elf_scom_symbol;
3066 static asymbol *mips_elf_scom_symbol_ptr;
3067
3068 /* MIPS ELF also uses an acommon section, which represents an
3069 allocated common symbol which may be overridden by a
3070 definition in a shared library. */
3071 static asection mips_elf_acom_section;
3072 static asymbol mips_elf_acom_symbol;
3073 static asymbol *mips_elf_acom_symbol_ptr;
3074
3075 /* The Irix 5 support uses two virtual sections, which represent
3076 text/data symbols defined in dynamic objects. */
3077 static asection mips_elf_text_section;
3078 static asection *mips_elf_text_section_ptr;
3079 static asymbol mips_elf_text_symbol;
3080 static asymbol *mips_elf_text_symbol_ptr;
3081
3082 static asection mips_elf_data_section;
3083 static asection *mips_elf_data_section_ptr;
3084 static asymbol mips_elf_data_symbol;
3085 static asymbol *mips_elf_data_symbol_ptr;
3086
3087 /* Handle the special MIPS section numbers that a symbol may use.
3088 This is used for both the 32-bit and the 64-bit ABI. */
3089
3090 void
3091 _bfd_mips_elf_symbol_processing (abfd, asym)
3092 bfd *abfd;
3093 asymbol *asym;
3094 {
3095 elf_symbol_type *elfsym;
3096
3097 elfsym = (elf_symbol_type *) asym;
3098 switch (elfsym->internal_elf_sym.st_shndx)
3099 {
3100 case SHN_MIPS_ACOMMON:
3101 /* This section is used in a dynamically linked executable file.
3102 It is an allocated common section. The dynamic linker can
3103 either resolve these symbols to something in a shared
3104 library, or it can just leave them here. For our purposes,
3105 we can consider these symbols to be in a new section. */
3106 if (mips_elf_acom_section.name == NULL)
3107 {
3108 /* Initialize the acommon section. */
3109 mips_elf_acom_section.name = ".acommon";
3110 mips_elf_acom_section.flags = SEC_ALLOC;
3111 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3112 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3113 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3114 mips_elf_acom_symbol.name = ".acommon";
3115 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3116 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3117 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3118 }
3119 asym->section = &mips_elf_acom_section;
3120 break;
3121
3122 case SHN_COMMON:
3123 /* Common symbols less than the GP size are automatically
3124 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3125 if (asym->value > elf_gp_size (abfd)
3126 || IRIX_COMPAT (abfd) == ict_irix6)
3127 break;
3128 /* Fall through. */
3129 case SHN_MIPS_SCOMMON:
3130 if (mips_elf_scom_section.name == NULL)
3131 {
3132 /* Initialize the small common section. */
3133 mips_elf_scom_section.name = ".scommon";
3134 mips_elf_scom_section.flags = SEC_IS_COMMON;
3135 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3136 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3137 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3138 mips_elf_scom_symbol.name = ".scommon";
3139 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3140 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3141 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3142 }
3143 asym->section = &mips_elf_scom_section;
3144 asym->value = elfsym->internal_elf_sym.st_size;
3145 break;
3146
3147 case SHN_MIPS_SUNDEFINED:
3148 asym->section = bfd_und_section_ptr;
3149 break;
3150
3151 #if 0 /* for SGI_COMPAT */
3152 case SHN_MIPS_TEXT:
3153 asym->section = mips_elf_text_section_ptr;
3154 break;
3155
3156 case SHN_MIPS_DATA:
3157 asym->section = mips_elf_data_section_ptr;
3158 break;
3159 #endif
3160 }
3161 }
3162 \f
3163 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3164 segments. */
3165
3166 int
3167 _bfd_mips_elf_additional_program_headers (abfd)
3168 bfd *abfd;
3169 {
3170 asection *s;
3171 int ret = 0;
3172
3173 if (!SGI_COMPAT (abfd))
3174 return 0;
3175
3176 /* See if we need a PT_MIPS_REGINFO segment. */
3177 s = bfd_get_section_by_name (abfd, ".reginfo");
3178 if (s && (s->flags & SEC_LOAD))
3179 ++ret;
3180
3181 /* See if we need a PT_MIPS_OPTIONS segment. */
3182 if (IRIX_COMPAT (abfd) == ict_irix6
3183 && bfd_get_section_by_name (abfd,
3184 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3185 ++ret;
3186
3187 /* See if we need a PT_MIPS_RTPROC segment. */
3188 if (IRIX_COMPAT (abfd) == ict_irix5
3189 && bfd_get_section_by_name (abfd, ".dynamic")
3190 && bfd_get_section_by_name (abfd, ".mdebug"))
3191 ++ret;
3192
3193 return ret;
3194 }
3195
3196 /* Modify the segment map for an Irix 5 executable. */
3197
3198 boolean
3199 _bfd_mips_elf_modify_segment_map (abfd)
3200 bfd *abfd;
3201 {
3202 asection *s;
3203 struct elf_segment_map *m, **pm;
3204
3205 if (! SGI_COMPAT (abfd))
3206 return true;
3207
3208 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3209 segment. */
3210 s = bfd_get_section_by_name (abfd, ".reginfo");
3211 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3212 {
3213 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3214 if (m->p_type == PT_MIPS_REGINFO)
3215 break;
3216 if (m == NULL)
3217 {
3218 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3219 if (m == NULL)
3220 return false;
3221
3222 m->p_type = PT_MIPS_REGINFO;
3223 m->count = 1;
3224 m->sections[0] = s;
3225
3226 /* We want to put it after the PHDR and INTERP segments. */
3227 pm = &elf_tdata (abfd)->segment_map;
3228 while (*pm != NULL
3229 && ((*pm)->p_type == PT_PHDR
3230 || (*pm)->p_type == PT_INTERP))
3231 pm = &(*pm)->next;
3232
3233 m->next = *pm;
3234 *pm = m;
3235 }
3236 }
3237
3238 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3239 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3240 PT_OPTIONS segement immediately following the program header
3241 table. */
3242 if (IRIX_COMPAT (abfd) == ict_irix6)
3243 {
3244 asection *s;
3245
3246 for (s = abfd->sections; s; s = s->next)
3247 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3248 break;
3249
3250 if (s)
3251 {
3252 struct elf_segment_map *options_segment;
3253
3254 /* Usually, there's a program header table. But, sometimes
3255 there's not (like when running the `ld' testsuite). So,
3256 if there's no program header table, we just put the
3257 options segement at the end. */
3258 for (pm = &elf_tdata (abfd)->segment_map;
3259 *pm != NULL;
3260 pm = &(*pm)->next)
3261 if ((*pm)->p_type == PT_PHDR)
3262 break;
3263
3264 options_segment = bfd_zalloc (abfd,
3265 sizeof (struct elf_segment_map));
3266 options_segment->next = *pm;
3267 options_segment->p_type = PT_MIPS_OPTIONS;
3268 options_segment->p_flags = PF_R;
3269 options_segment->p_flags_valid = true;
3270 options_segment->count = 1;
3271 options_segment->sections[0] = s;
3272 *pm = options_segment;
3273 }
3274 }
3275 else
3276 {
3277 /* If there are .dynamic and .mdebug sections, we make a room
3278 for the RTPROC header. FIXME: Rewrite without section names. */
3279 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3280 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3281 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3282 {
3283 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3284 if (m->p_type == PT_MIPS_RTPROC)
3285 break;
3286 if (m == NULL)
3287 {
3288 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3289 if (m == NULL)
3290 return false;
3291
3292 m->p_type = PT_MIPS_RTPROC;
3293
3294 s = bfd_get_section_by_name (abfd, ".rtproc");
3295 if (s == NULL)
3296 {
3297 m->count = 0;
3298 m->p_flags = 0;
3299 m->p_flags_valid = 1;
3300 }
3301 else
3302 {
3303 m->count = 1;
3304 m->sections[0] = s;
3305 }
3306
3307 /* We want to put it after the DYNAMIC segment. */
3308 pm = &elf_tdata (abfd)->segment_map;
3309 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3310 pm = &(*pm)->next;
3311 if (*pm != NULL)
3312 pm = &(*pm)->next;
3313
3314 m->next = *pm;
3315 *pm = m;
3316 }
3317 }
3318
3319 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3320 .dynstr, .dynsym, and .hash sections, and everything in
3321 between. */
3322 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3323 if ((*pm)->p_type == PT_DYNAMIC)
3324 break;
3325 m = *pm;
3326 if (m != NULL
3327 && m->count == 1
3328 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3329 {
3330 static const char *sec_names[] =
3331 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3332 bfd_vma low, high;
3333 unsigned int i, c;
3334 struct elf_segment_map *n;
3335
3336 low = 0xffffffff;
3337 high = 0;
3338 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3339 {
3340 s = bfd_get_section_by_name (abfd, sec_names[i]);
3341 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3342 {
3343 bfd_size_type sz;
3344
3345 if (low > s->vma)
3346 low = s->vma;
3347 sz = s->_cooked_size;
3348 if (sz == 0)
3349 sz = s->_raw_size;
3350 if (high < s->vma + sz)
3351 high = s->vma + sz;
3352 }
3353 }
3354
3355 c = 0;
3356 for (s = abfd->sections; s != NULL; s = s->next)
3357 if ((s->flags & SEC_LOAD) != 0
3358 && s->vma >= low
3359 && ((s->vma
3360 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3361 <= high))
3362 ++c;
3363
3364 n = ((struct elf_segment_map *)
3365 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3366 if (n == NULL)
3367 return false;
3368 *n = *m;
3369 n->count = c;
3370
3371 i = 0;
3372 for (s = abfd->sections; s != NULL; s = s->next)
3373 {
3374 if ((s->flags & SEC_LOAD) != 0
3375 && s->vma >= low
3376 && ((s->vma
3377 + (s->_cooked_size != 0 ?
3378 s->_cooked_size : s->_raw_size))
3379 <= high))
3380 {
3381 n->sections[i] = s;
3382 ++i;
3383 }
3384 }
3385
3386 *pm = n;
3387 }
3388 }
3389
3390 return true;
3391 }
3392 \f
3393 /* The structure of the runtime procedure descriptor created by the
3394 loader for use by the static exception system. */
3395
3396 typedef struct runtime_pdr {
3397 bfd_vma adr; /* memory address of start of procedure */
3398 long regmask; /* save register mask */
3399 long regoffset; /* save register offset */
3400 long fregmask; /* save floating point register mask */
3401 long fregoffset; /* save floating point register offset */
3402 long frameoffset; /* frame size */
3403 short framereg; /* frame pointer register */
3404 short pcreg; /* offset or reg of return pc */
3405 long irpss; /* index into the runtime string table */
3406 long reserved;
3407 struct exception_info *exception_info;/* pointer to exception array */
3408 } RPDR, *pRPDR;
3409 #define cbRPDR sizeof(RPDR)
3410 #define rpdNil ((pRPDR) 0)
3411
3412 /* Swap RPDR (runtime procedure table entry) for output. */
3413
3414 static void ecoff_swap_rpdr_out
3415 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3416
3417 static void
3418 ecoff_swap_rpdr_out (abfd, in, ex)
3419 bfd *abfd;
3420 const RPDR *in;
3421 struct rpdr_ext *ex;
3422 {
3423 /* ecoff_put_off was defined in ecoffswap.h. */
3424 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3425 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3426 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3427 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3428 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3429 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3430
3431 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3432 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3433
3434 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3435 #if 0 /* FIXME */
3436 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3437 #endif
3438 }
3439 \f
3440 /* Read ECOFF debugging information from a .mdebug section into a
3441 ecoff_debug_info structure. */
3442
3443 boolean
3444 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3445 bfd *abfd;
3446 asection *section;
3447 struct ecoff_debug_info *debug;
3448 {
3449 HDRR *symhdr;
3450 const struct ecoff_debug_swap *swap;
3451 char *ext_hdr = NULL;
3452
3453 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3454 memset (debug, 0, sizeof(*debug));
3455
3456 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3457 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3458 goto error_return;
3459
3460 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3461 swap->external_hdr_size)
3462 == false)
3463 goto error_return;
3464
3465 symhdr = &debug->symbolic_header;
3466 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3467
3468 /* The symbolic header contains absolute file offsets and sizes to
3469 read. */
3470 #define READ(ptr, offset, count, size, type) \
3471 if (symhdr->count == 0) \
3472 debug->ptr = NULL; \
3473 else \
3474 { \
3475 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3476 if (debug->ptr == NULL) \
3477 goto error_return; \
3478 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3479 || (bfd_read (debug->ptr, size, symhdr->count, \
3480 abfd) != size * symhdr->count)) \
3481 goto error_return; \
3482 }
3483
3484 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3485 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3486 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3487 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3488 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3489 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3490 union aux_ext *);
3491 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3492 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3493 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3494 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3495 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3496 #undef READ
3497
3498 debug->fdr = NULL;
3499 debug->adjust = NULL;
3500
3501 return true;
3502
3503 error_return:
3504 if (ext_hdr != NULL)
3505 free (ext_hdr);
3506 if (debug->line != NULL)
3507 free (debug->line);
3508 if (debug->external_dnr != NULL)
3509 free (debug->external_dnr);
3510 if (debug->external_pdr != NULL)
3511 free (debug->external_pdr);
3512 if (debug->external_sym != NULL)
3513 free (debug->external_sym);
3514 if (debug->external_opt != NULL)
3515 free (debug->external_opt);
3516 if (debug->external_aux != NULL)
3517 free (debug->external_aux);
3518 if (debug->ss != NULL)
3519 free (debug->ss);
3520 if (debug->ssext != NULL)
3521 free (debug->ssext);
3522 if (debug->external_fdr != NULL)
3523 free (debug->external_fdr);
3524 if (debug->external_rfd != NULL)
3525 free (debug->external_rfd);
3526 if (debug->external_ext != NULL)
3527 free (debug->external_ext);
3528 return false;
3529 }
3530 \f
3531 /* MIPS ELF local labels start with '$', not 'L'. */
3532
3533 /*ARGSUSED*/
3534 static boolean
3535 mips_elf_is_local_label_name (abfd, name)
3536 bfd *abfd;
3537 const char *name;
3538 {
3539 if (name[0] == '$')
3540 return true;
3541
3542 /* On Irix 6, the labels go back to starting with '.', so we accept
3543 the generic ELF local label syntax as well. */
3544 return _bfd_elf_is_local_label_name (abfd, name);
3545 }
3546
3547 /* MIPS ELF uses a special find_nearest_line routine in order the
3548 handle the ECOFF debugging information. */
3549
3550 struct mips_elf_find_line
3551 {
3552 struct ecoff_debug_info d;
3553 struct ecoff_find_line i;
3554 };
3555
3556 boolean
3557 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3558 functionname_ptr, line_ptr)
3559 bfd *abfd;
3560 asection *section;
3561 asymbol **symbols;
3562 bfd_vma offset;
3563 const char **filename_ptr;
3564 const char **functionname_ptr;
3565 unsigned int *line_ptr;
3566 {
3567 asection *msec;
3568
3569 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3570 filename_ptr, functionname_ptr,
3571 line_ptr))
3572 return true;
3573
3574 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3575 filename_ptr, functionname_ptr,
3576 line_ptr,
3577 ABI_64_P (abfd) ? 8 : 0))
3578 return true;
3579
3580 msec = bfd_get_section_by_name (abfd, ".mdebug");
3581 if (msec != NULL)
3582 {
3583 flagword origflags;
3584 struct mips_elf_find_line *fi;
3585 const struct ecoff_debug_swap * const swap =
3586 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3587
3588 /* If we are called during a link, mips_elf_final_link may have
3589 cleared the SEC_HAS_CONTENTS field. We force it back on here
3590 if appropriate (which it normally will be). */
3591 origflags = msec->flags;
3592 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3593 msec->flags |= SEC_HAS_CONTENTS;
3594
3595 fi = elf_tdata (abfd)->find_line_info;
3596 if (fi == NULL)
3597 {
3598 bfd_size_type external_fdr_size;
3599 char *fraw_src;
3600 char *fraw_end;
3601 struct fdr *fdr_ptr;
3602
3603 fi = ((struct mips_elf_find_line *)
3604 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3605 if (fi == NULL)
3606 {
3607 msec->flags = origflags;
3608 return false;
3609 }
3610
3611 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3612 {
3613 msec->flags = origflags;
3614 return false;
3615 }
3616
3617 /* Swap in the FDR information. */
3618 fi->d.fdr = ((struct fdr *)
3619 bfd_alloc (abfd,
3620 (fi->d.symbolic_header.ifdMax *
3621 sizeof (struct fdr))));
3622 if (fi->d.fdr == NULL)
3623 {
3624 msec->flags = origflags;
3625 return false;
3626 }
3627 external_fdr_size = swap->external_fdr_size;
3628 fdr_ptr = fi->d.fdr;
3629 fraw_src = (char *) fi->d.external_fdr;
3630 fraw_end = (fraw_src
3631 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3632 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3633 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3634
3635 elf_tdata (abfd)->find_line_info = fi;
3636
3637 /* Note that we don't bother to ever free this information.
3638 find_nearest_line is either called all the time, as in
3639 objdump -l, so the information should be saved, or it is
3640 rarely called, as in ld error messages, so the memory
3641 wasted is unimportant. Still, it would probably be a
3642 good idea for free_cached_info to throw it away. */
3643 }
3644
3645 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3646 &fi->i, filename_ptr, functionname_ptr,
3647 line_ptr))
3648 {
3649 msec->flags = origflags;
3650 return true;
3651 }
3652
3653 msec->flags = origflags;
3654 }
3655
3656 /* Fall back on the generic ELF find_nearest_line routine. */
3657
3658 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3659 filename_ptr, functionname_ptr,
3660 line_ptr);
3661 }
3662 \f
3663 /* The mips16 compiler uses a couple of special sections to handle
3664 floating point arguments.
3665
3666 Section names that look like .mips16.fn.FNNAME contain stubs that
3667 copy floating point arguments from the fp regs to the gp regs and
3668 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3669 call should be redirected to the stub instead. If no 32 bit
3670 function calls FNNAME, the stub should be discarded. We need to
3671 consider any reference to the function, not just a call, because
3672 if the address of the function is taken we will need the stub,
3673 since the address might be passed to a 32 bit function.
3674
3675 Section names that look like .mips16.call.FNNAME contain stubs
3676 that copy floating point arguments from the gp regs to the fp
3677 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3678 then any 16 bit function that calls FNNAME should be redirected
3679 to the stub instead. If FNNAME is not a 32 bit function, the
3680 stub should be discarded.
3681
3682 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3683 which call FNNAME and then copy the return value from the fp regs
3684 to the gp regs. These stubs store the return value in $18 while
3685 calling FNNAME; any function which might call one of these stubs
3686 must arrange to save $18 around the call. (This case is not
3687 needed for 32 bit functions that call 16 bit functions, because
3688 16 bit functions always return floating point values in both
3689 $f0/$f1 and $2/$3.)
3690
3691 Note that in all cases FNNAME might be defined statically.
3692 Therefore, FNNAME is not used literally. Instead, the relocation
3693 information will indicate which symbol the section is for.
3694
3695 We record any stubs that we find in the symbol table. */
3696
3697 #define FN_STUB ".mips16.fn."
3698 #define CALL_STUB ".mips16.call."
3699 #define CALL_FP_STUB ".mips16.call.fp."
3700
3701 /* MIPS ELF linker hash table. */
3702
3703 struct mips_elf_link_hash_table
3704 {
3705 struct elf_link_hash_table root;
3706 #if 0
3707 /* We no longer use this. */
3708 /* String section indices for the dynamic section symbols. */
3709 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3710 #endif
3711 /* The number of .rtproc entries. */
3712 bfd_size_type procedure_count;
3713 /* The size of the .compact_rel section (if SGI_COMPAT). */
3714 bfd_size_type compact_rel_size;
3715 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3716 entry is set to the address of __rld_obj_head as in Irix 5. */
3717 boolean use_rld_obj_head;
3718 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3719 bfd_vma rld_value;
3720 /* This is set if we see any mips16 stub sections. */
3721 boolean mips16_stubs_seen;
3722 };
3723
3724 /* Look up an entry in a MIPS ELF linker hash table. */
3725
3726 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3727 ((struct mips_elf_link_hash_entry *) \
3728 elf_link_hash_lookup (&(table)->root, (string), (create), \
3729 (copy), (follow)))
3730
3731 /* Traverse a MIPS ELF linker hash table. */
3732
3733 #define mips_elf_link_hash_traverse(table, func, info) \
3734 (elf_link_hash_traverse \
3735 (&(table)->root, \
3736 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3737 (info)))
3738
3739 /* Get the MIPS ELF linker hash table from a link_info structure. */
3740
3741 #define mips_elf_hash_table(p) \
3742 ((struct mips_elf_link_hash_table *) ((p)->hash))
3743
3744 static boolean mips_elf_output_extsym
3745 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3746
3747 /* Create an entry in a MIPS ELF linker hash table. */
3748
3749 static struct bfd_hash_entry *
3750 mips_elf_link_hash_newfunc (entry, table, string)
3751 struct bfd_hash_entry *entry;
3752 struct bfd_hash_table *table;
3753 const char *string;
3754 {
3755 struct mips_elf_link_hash_entry *ret =
3756 (struct mips_elf_link_hash_entry *) entry;
3757
3758 /* Allocate the structure if it has not already been allocated by a
3759 subclass. */
3760 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3761 ret = ((struct mips_elf_link_hash_entry *)
3762 bfd_hash_allocate (table,
3763 sizeof (struct mips_elf_link_hash_entry)));
3764 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3765 return (struct bfd_hash_entry *) ret;
3766
3767 /* Call the allocation method of the superclass. */
3768 ret = ((struct mips_elf_link_hash_entry *)
3769 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3770 table, string));
3771 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3772 {
3773 /* Set local fields. */
3774 memset (&ret->esym, 0, sizeof (EXTR));
3775 /* We use -2 as a marker to indicate that the information has
3776 not been set. -1 means there is no associated ifd. */
3777 ret->esym.ifd = -2;
3778 ret->possibly_dynamic_relocs = 0;
3779 ret->min_dyn_reloc_index = 0;
3780 ret->fn_stub = NULL;
3781 ret->need_fn_stub = false;
3782 ret->call_stub = NULL;
3783 ret->call_fp_stub = NULL;
3784 }
3785
3786 return (struct bfd_hash_entry *) ret;
3787 }
3788
3789 /* Create a MIPS ELF linker hash table. */
3790
3791 struct bfd_link_hash_table *
3792 _bfd_mips_elf_link_hash_table_create (abfd)
3793 bfd *abfd;
3794 {
3795 struct mips_elf_link_hash_table *ret;
3796
3797 ret = ((struct mips_elf_link_hash_table *)
3798 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3799 if (ret == (struct mips_elf_link_hash_table *) NULL)
3800 return NULL;
3801
3802 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3803 mips_elf_link_hash_newfunc))
3804 {
3805 bfd_release (abfd, ret);
3806 return NULL;
3807 }
3808
3809 #if 0
3810 /* We no longer use this. */
3811 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3812 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3813 #endif
3814 ret->procedure_count = 0;
3815 ret->compact_rel_size = 0;
3816 ret->use_rld_obj_head = false;
3817 ret->rld_value = 0;
3818 ret->mips16_stubs_seen = false;
3819
3820 return &ret->root.root;
3821 }
3822
3823 /* Hook called by the linker routine which adds symbols from an object
3824 file. We must handle the special MIPS section numbers here. */
3825
3826 /*ARGSUSED*/
3827 boolean
3828 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3829 bfd *abfd;
3830 struct bfd_link_info *info;
3831 const Elf_Internal_Sym *sym;
3832 const char **namep;
3833 flagword *flagsp ATTRIBUTE_UNUSED;
3834 asection **secp;
3835 bfd_vma *valp;
3836 {
3837 if (SGI_COMPAT (abfd)
3838 && (abfd->flags & DYNAMIC) != 0
3839 && strcmp (*namep, "_rld_new_interface") == 0)
3840 {
3841 /* Skip Irix 5 rld entry name. */
3842 *namep = NULL;
3843 return true;
3844 }
3845
3846 switch (sym->st_shndx)
3847 {
3848 case SHN_COMMON:
3849 /* Common symbols less than the GP size are automatically
3850 treated as SHN_MIPS_SCOMMON symbols. */
3851 if (sym->st_size > elf_gp_size (abfd)
3852 || IRIX_COMPAT (abfd) == ict_irix6)
3853 break;
3854 /* Fall through. */
3855 case SHN_MIPS_SCOMMON:
3856 *secp = bfd_make_section_old_way (abfd, ".scommon");
3857 (*secp)->flags |= SEC_IS_COMMON;
3858 *valp = sym->st_size;
3859 break;
3860
3861 case SHN_MIPS_TEXT:
3862 /* This section is used in a shared object. */
3863 if (mips_elf_text_section_ptr == NULL)
3864 {
3865 /* Initialize the section. */
3866 mips_elf_text_section.name = ".text";
3867 mips_elf_text_section.flags = SEC_NO_FLAGS;
3868 mips_elf_text_section.output_section = NULL;
3869 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3870 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3871 mips_elf_text_symbol.name = ".text";
3872 mips_elf_text_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3873 mips_elf_text_symbol.section = &mips_elf_text_section;
3874 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3875 mips_elf_text_section_ptr = &mips_elf_text_section;
3876 }
3877 /* This code used to do *secp = bfd_und_section_ptr if
3878 info->shared. I don't know why, and that doesn't make sense,
3879 so I took it out. */
3880 *secp = mips_elf_text_section_ptr;
3881 break;
3882
3883 case SHN_MIPS_ACOMMON:
3884 /* Fall through. XXX Can we treat this as allocated data? */
3885 case SHN_MIPS_DATA:
3886 /* This section is used in a shared object. */
3887 if (mips_elf_data_section_ptr == NULL)
3888 {
3889 /* Initialize the section. */
3890 mips_elf_data_section.name = ".data";
3891 mips_elf_data_section.flags = SEC_NO_FLAGS;
3892 mips_elf_data_section.output_section = NULL;
3893 mips_elf_data_section.symbol = &mips_elf_data_symbol;
3894 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
3895 mips_elf_data_symbol.name = ".data";
3896 mips_elf_data_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3897 mips_elf_data_symbol.section = &mips_elf_data_section;
3898 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
3899 mips_elf_data_section_ptr = &mips_elf_data_section;
3900 }
3901 /* This code used to do *secp = bfd_und_section_ptr if
3902 info->shared. I don't know why, and that doesn't make sense,
3903 so I took it out. */
3904 *secp = mips_elf_data_section_ptr;
3905 break;
3906
3907 case SHN_MIPS_SUNDEFINED:
3908 *secp = bfd_und_section_ptr;
3909 break;
3910 }
3911
3912 if (SGI_COMPAT (abfd)
3913 && ! info->shared
3914 && info->hash->creator == abfd->xvec
3915 && strcmp (*namep, "__rld_obj_head") == 0)
3916 {
3917 struct elf_link_hash_entry *h;
3918
3919 /* Mark __rld_obj_head as dynamic. */
3920 h = NULL;
3921 if (! (_bfd_generic_link_add_one_symbol
3922 (info, abfd, *namep, BSF_GLOBAL, *secp,
3923 (bfd_vma) *valp, (const char *) NULL, false,
3924 get_elf_backend_data (abfd)->collect,
3925 (struct bfd_link_hash_entry **) &h)))
3926 return false;
3927 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
3928 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3929 h->type = STT_OBJECT;
3930
3931 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3932 return false;
3933
3934 mips_elf_hash_table (info)->use_rld_obj_head = true;
3935 }
3936
3937 /* If this is a mips16 text symbol, add 1 to the value to make it
3938 odd. This will cause something like .word SYM to come up with
3939 the right value when it is loaded into the PC. */
3940 if (sym->st_other == STO_MIPS16)
3941 ++*valp;
3942
3943 return true;
3944 }
3945
3946 /* Structure used to pass information to mips_elf_output_extsym. */
3947
3948 struct extsym_info
3949 {
3950 bfd *abfd;
3951 struct bfd_link_info *info;
3952 struct ecoff_debug_info *debug;
3953 const struct ecoff_debug_swap *swap;
3954 boolean failed;
3955 };
3956
3957 /* This routine is used to write out ECOFF debugging external symbol
3958 information. It is called via mips_elf_link_hash_traverse. The
3959 ECOFF external symbol information must match the ELF external
3960 symbol information. Unfortunately, at this point we don't know
3961 whether a symbol is required by reloc information, so the two
3962 tables may wind up being different. We must sort out the external
3963 symbol information before we can set the final size of the .mdebug
3964 section, and we must set the size of the .mdebug section before we
3965 can relocate any sections, and we can't know which symbols are
3966 required by relocation until we relocate the sections.
3967 Fortunately, it is relatively unlikely that any symbol will be
3968 stripped but required by a reloc. In particular, it can not happen
3969 when generating a final executable. */
3970
3971 static boolean
3972 mips_elf_output_extsym (h, data)
3973 struct mips_elf_link_hash_entry *h;
3974 PTR data;
3975 {
3976 struct extsym_info *einfo = (struct extsym_info *) data;
3977 boolean strip;
3978 asection *sec, *output_section;
3979
3980 if (h->root.indx == -2)
3981 strip = false;
3982 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3983 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
3984 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3985 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
3986 strip = true;
3987 else if (einfo->info->strip == strip_all
3988 || (einfo->info->strip == strip_some
3989 && bfd_hash_lookup (einfo->info->keep_hash,
3990 h->root.root.root.string,
3991 false, false) == NULL))
3992 strip = true;
3993 else
3994 strip = false;
3995
3996 if (strip)
3997 return true;
3998
3999 if (h->esym.ifd == -2)
4000 {
4001 h->esym.jmptbl = 0;
4002 h->esym.cobol_main = 0;
4003 h->esym.weakext = 0;
4004 h->esym.reserved = 0;
4005 h->esym.ifd = ifdNil;
4006 h->esym.asym.value = 0;
4007 h->esym.asym.st = stGlobal;
4008
4009 if (SGI_COMPAT (einfo->abfd)
4010 && (h->root.root.type == bfd_link_hash_undefined
4011 || h->root.root.type == bfd_link_hash_undefweak))
4012 {
4013 const char *name;
4014
4015 /* Use undefined class. Also, set class and type for some
4016 special symbols. */
4017 name = h->root.root.root.string;
4018 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4019 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4020 {
4021 h->esym.asym.sc = scData;
4022 h->esym.asym.st = stLabel;
4023 h->esym.asym.value = 0;
4024 }
4025 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4026 {
4027 h->esym.asym.sc = scAbs;
4028 h->esym.asym.st = stLabel;
4029 h->esym.asym.value =
4030 mips_elf_hash_table (einfo->info)->procedure_count;
4031 }
4032 else if (strcmp (name, "_gp_disp") == 0)
4033 {
4034 h->esym.asym.sc = scAbs;
4035 h->esym.asym.st = stLabel;
4036 h->esym.asym.value = elf_gp (einfo->abfd);
4037 }
4038 else
4039 h->esym.asym.sc = scUndefined;
4040 }
4041 else if (h->root.root.type != bfd_link_hash_defined
4042 && h->root.root.type != bfd_link_hash_defweak)
4043 h->esym.asym.sc = scAbs;
4044 else
4045 {
4046 const char *name;
4047
4048 sec = h->root.root.u.def.section;
4049 output_section = sec->output_section;
4050
4051 /* When making a shared library and symbol h is the one from
4052 the another shared library, OUTPUT_SECTION may be null. */
4053 if (output_section == NULL)
4054 h->esym.asym.sc = scUndefined;
4055 else
4056 {
4057 name = bfd_section_name (output_section->owner, output_section);
4058
4059 if (strcmp (name, ".text") == 0)
4060 h->esym.asym.sc = scText;
4061 else if (strcmp (name, ".data") == 0)
4062 h->esym.asym.sc = scData;
4063 else if (strcmp (name, ".sdata") == 0)
4064 h->esym.asym.sc = scSData;
4065 else if (strcmp (name, ".rodata") == 0
4066 || strcmp (name, ".rdata") == 0)
4067 h->esym.asym.sc = scRData;
4068 else if (strcmp (name, ".bss") == 0)
4069 h->esym.asym.sc = scBss;
4070 else if (strcmp (name, ".sbss") == 0)
4071 h->esym.asym.sc = scSBss;
4072 else if (strcmp (name, ".init") == 0)
4073 h->esym.asym.sc = scInit;
4074 else if (strcmp (name, ".fini") == 0)
4075 h->esym.asym.sc = scFini;
4076 else
4077 h->esym.asym.sc = scAbs;
4078 }
4079 }
4080
4081 h->esym.asym.reserved = 0;
4082 h->esym.asym.index = indexNil;
4083 }
4084
4085 if (h->root.root.type == bfd_link_hash_common)
4086 h->esym.asym.value = h->root.root.u.c.size;
4087 else if (h->root.root.type == bfd_link_hash_defined
4088 || h->root.root.type == bfd_link_hash_defweak)
4089 {
4090 if (h->esym.asym.sc == scCommon)
4091 h->esym.asym.sc = scBss;
4092 else if (h->esym.asym.sc == scSCommon)
4093 h->esym.asym.sc = scSBss;
4094
4095 sec = h->root.root.u.def.section;
4096 output_section = sec->output_section;
4097 if (output_section != NULL)
4098 h->esym.asym.value = (h->root.root.u.def.value
4099 + sec->output_offset
4100 + output_section->vma);
4101 else
4102 h->esym.asym.value = 0;
4103 }
4104 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4105 {
4106 /* Set type and value for a symbol with a function stub. */
4107 h->esym.asym.st = stProc;
4108 sec = h->root.root.u.def.section;
4109 if (sec == NULL)
4110 h->esym.asym.value = 0;
4111 else
4112 {
4113 output_section = sec->output_section;
4114 if (output_section != NULL)
4115 h->esym.asym.value = (h->root.plt.offset
4116 + sec->output_offset
4117 + output_section->vma);
4118 else
4119 h->esym.asym.value = 0;
4120 }
4121 #if 0 /* FIXME? */
4122 h->esym.ifd = 0;
4123 #endif
4124 }
4125
4126 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4127 h->root.root.root.string,
4128 &h->esym))
4129 {
4130 einfo->failed = true;
4131 return false;
4132 }
4133
4134 return true;
4135 }
4136
4137 /* Create a runtime procedure table from the .mdebug section. */
4138
4139 static boolean
4140 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4141 PTR handle;
4142 bfd *abfd;
4143 struct bfd_link_info *info;
4144 asection *s;
4145 struct ecoff_debug_info *debug;
4146 {
4147 const struct ecoff_debug_swap *swap;
4148 HDRR *hdr = &debug->symbolic_header;
4149 RPDR *rpdr, *rp;
4150 struct rpdr_ext *erp;
4151 PTR rtproc;
4152 struct pdr_ext *epdr;
4153 struct sym_ext *esym;
4154 char *ss, **sv;
4155 char *str;
4156 unsigned long size, count;
4157 unsigned long sindex;
4158 unsigned long i;
4159 PDR pdr;
4160 SYMR sym;
4161 const char *no_name_func = _("static procedure (no name)");
4162
4163 epdr = NULL;
4164 rpdr = NULL;
4165 esym = NULL;
4166 ss = NULL;
4167 sv = NULL;
4168
4169 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4170
4171 sindex = strlen (no_name_func) + 1;
4172 count = hdr->ipdMax;
4173 if (count > 0)
4174 {
4175 size = swap->external_pdr_size;
4176
4177 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4178 if (epdr == NULL)
4179 goto error_return;
4180
4181 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4182 goto error_return;
4183
4184 size = sizeof (RPDR);
4185 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4186 if (rpdr == NULL)
4187 goto error_return;
4188
4189 sv = (char **) bfd_malloc (sizeof (char *) * count);
4190 if (sv == NULL)
4191 goto error_return;
4192
4193 count = hdr->isymMax;
4194 size = swap->external_sym_size;
4195 esym = (struct sym_ext *) bfd_malloc (size * count);
4196 if (esym == NULL)
4197 goto error_return;
4198
4199 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4200 goto error_return;
4201
4202 count = hdr->issMax;
4203 ss = (char *) bfd_malloc (count);
4204 if (ss == NULL)
4205 goto error_return;
4206 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4207 goto error_return;
4208
4209 count = hdr->ipdMax;
4210 for (i = 0; i < count; i++, rp++)
4211 {
4212 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4213 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4214 rp->adr = sym.value;
4215 rp->regmask = pdr.regmask;
4216 rp->regoffset = pdr.regoffset;
4217 rp->fregmask = pdr.fregmask;
4218 rp->fregoffset = pdr.fregoffset;
4219 rp->frameoffset = pdr.frameoffset;
4220 rp->framereg = pdr.framereg;
4221 rp->pcreg = pdr.pcreg;
4222 rp->irpss = sindex;
4223 sv[i] = ss + sym.iss;
4224 sindex += strlen (sv[i]) + 1;
4225 }
4226 }
4227
4228 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4229 size = BFD_ALIGN (size, 16);
4230 rtproc = (PTR) bfd_alloc (abfd, size);
4231 if (rtproc == NULL)
4232 {
4233 mips_elf_hash_table (info)->procedure_count = 0;
4234 goto error_return;
4235 }
4236
4237 mips_elf_hash_table (info)->procedure_count = count + 2;
4238
4239 erp = (struct rpdr_ext *) rtproc;
4240 memset (erp, 0, sizeof (struct rpdr_ext));
4241 erp++;
4242 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4243 strcpy (str, no_name_func);
4244 str += strlen (no_name_func) + 1;
4245 for (i = 0; i < count; i++)
4246 {
4247 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4248 strcpy (str, sv[i]);
4249 str += strlen (sv[i]) + 1;
4250 }
4251 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4252
4253 /* Set the size and contents of .rtproc section. */
4254 s->_raw_size = size;
4255 s->contents = (bfd_byte *) rtproc;
4256
4257 /* Skip this section later on (I don't think this currently
4258 matters, but someday it might). */
4259 s->link_order_head = (struct bfd_link_order *) NULL;
4260
4261 if (epdr != NULL)
4262 free (epdr);
4263 if (rpdr != NULL)
4264 free (rpdr);
4265 if (esym != NULL)
4266 free (esym);
4267 if (ss != NULL)
4268 free (ss);
4269 if (sv != NULL)
4270 free (sv);
4271
4272 return true;
4273
4274 error_return:
4275 if (epdr != NULL)
4276 free (epdr);
4277 if (rpdr != NULL)
4278 free (rpdr);
4279 if (esym != NULL)
4280 free (esym);
4281 if (ss != NULL)
4282 free (ss);
4283 if (sv != NULL)
4284 free (sv);
4285 return false;
4286 }
4287
4288 /* A comparison routine used to sort .gptab entries. */
4289
4290 static int
4291 gptab_compare (p1, p2)
4292 const PTR p1;
4293 const PTR p2;
4294 {
4295 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4296 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4297
4298 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4299 }
4300
4301 /* We need to use a special link routine to handle the .reginfo and
4302 the .mdebug sections. We need to merge all instances of these
4303 sections together, not write them all out sequentially. */
4304
4305 boolean
4306 _bfd_mips_elf_final_link (abfd, info)
4307 bfd *abfd;
4308 struct bfd_link_info *info;
4309 {
4310 asection **secpp;
4311 asection *o;
4312 struct bfd_link_order *p;
4313 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4314 asection *rtproc_sec;
4315 Elf32_RegInfo reginfo;
4316 struct ecoff_debug_info debug;
4317 const struct ecoff_debug_swap *swap
4318 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4319 HDRR *symhdr = &debug.symbolic_header;
4320 PTR mdebug_handle = NULL;
4321
4322 /* If all the things we linked together were PIC, but we're
4323 producing an executable (rather than a shared object), then the
4324 resulting file is CPIC (i.e., it calls PIC code.) */
4325 if (!info->shared
4326 && !info->relocateable
4327 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4328 {
4329 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4330 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4331 }
4332
4333 /* We'd carefully arranged the dynamic symbol indices, and then the
4334 generic size_dynamic_sections renumbered them out from under us.
4335 Rather than trying somehow to prevent the renumbering, just do
4336 the sort again. */
4337 if (elf_hash_table (info)->dynamic_sections_created)
4338 {
4339 bfd *dynobj;
4340 asection *got;
4341 struct mips_got_info *g;
4342
4343 /* When we resort, we must tell mips_elf_sort_hash_table what
4344 the lowest index it may use is. That's the number of section
4345 symbols we're going to add. The generic ELF linker only
4346 adds these symbols when building a shared object. Note that
4347 we count the sections after (possibly) removing the .options
4348 section above. */
4349 if (!mips_elf_sort_hash_table (info, (info->shared
4350 ? bfd_count_sections (abfd) + 1
4351 : 1)))
4352 return false;
4353
4354 /* Make sure we didn't grow the global .got region. */
4355 dynobj = elf_hash_table (info)->dynobj;
4356 got = bfd_get_section_by_name (dynobj, ".got");
4357 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4358
4359 if (g->global_gotsym != NULL)
4360 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4361 - g->global_gotsym->dynindx)
4362 <= g->global_gotno);
4363 }
4364
4365 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4366 include it, even though we don't process it quite right. (Some
4367 entries are supposed to be merged.) Empirically, we seem to be
4368 better off including it then not. */
4369 if (IRIX_COMPAT (abfd) == ict_irix5)
4370 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4371 {
4372 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4373 {
4374 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4375 if (p->type == bfd_indirect_link_order)
4376 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4377 (*secpp)->link_order_head = NULL;
4378 *secpp = (*secpp)->next;
4379 --abfd->section_count;
4380
4381 break;
4382 }
4383 }
4384
4385 /* Get a value for the GP register. */
4386 if (elf_gp (abfd) == 0)
4387 {
4388 struct bfd_link_hash_entry *h;
4389
4390 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4391 if (h != (struct bfd_link_hash_entry *) NULL
4392 && h->type == bfd_link_hash_defined)
4393 elf_gp (abfd) = (h->u.def.value
4394 + h->u.def.section->output_section->vma
4395 + h->u.def.section->output_offset);
4396 else if (info->relocateable)
4397 {
4398 bfd_vma lo;
4399
4400 /* Find the GP-relative section with the lowest offset. */
4401 lo = (bfd_vma) -1;
4402 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4403 if (o->vma < lo
4404 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4405 lo = o->vma;
4406
4407 /* And calculate GP relative to that. */
4408 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4409 }
4410 else
4411 {
4412 /* If the relocate_section function needs to do a reloc
4413 involving the GP value, it should make a reloc_dangerous
4414 callback to warn that GP is not defined. */
4415 }
4416 }
4417
4418 /* Go through the sections and collect the .reginfo and .mdebug
4419 information. */
4420 reginfo_sec = NULL;
4421 mdebug_sec = NULL;
4422 gptab_data_sec = NULL;
4423 gptab_bss_sec = NULL;
4424 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4425 {
4426 if (strcmp (o->name, ".reginfo") == 0)
4427 {
4428 memset (&reginfo, 0, sizeof reginfo);
4429
4430 /* We have found the .reginfo section in the output file.
4431 Look through all the link_orders comprising it and merge
4432 the information together. */
4433 for (p = o->link_order_head;
4434 p != (struct bfd_link_order *) NULL;
4435 p = p->next)
4436 {
4437 asection *input_section;
4438 bfd *input_bfd;
4439 Elf32_External_RegInfo ext;
4440 Elf32_RegInfo sub;
4441
4442 if (p->type != bfd_indirect_link_order)
4443 {
4444 if (p->type == bfd_fill_link_order)
4445 continue;
4446 abort ();
4447 }
4448
4449 input_section = p->u.indirect.section;
4450 input_bfd = input_section->owner;
4451
4452 /* The linker emulation code has probably clobbered the
4453 size to be zero bytes. */
4454 if (input_section->_raw_size == 0)
4455 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4456
4457 if (! bfd_get_section_contents (input_bfd, input_section,
4458 (PTR) &ext,
4459 (file_ptr) 0,
4460 sizeof ext))
4461 return false;
4462
4463 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4464
4465 reginfo.ri_gprmask |= sub.ri_gprmask;
4466 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4467 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4468 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4469 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4470
4471 /* ri_gp_value is set by the function
4472 mips_elf32_section_processing when the section is
4473 finally written out. */
4474
4475 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4476 elf_link_input_bfd ignores this section. */
4477 input_section->flags &=~ SEC_HAS_CONTENTS;
4478 }
4479
4480 /* Size has been set in mips_elf_always_size_sections */
4481 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4482
4483 /* Skip this section later on (I don't think this currently
4484 matters, but someday it might). */
4485 o->link_order_head = (struct bfd_link_order *) NULL;
4486
4487 reginfo_sec = o;
4488 }
4489
4490 if (strcmp (o->name, ".mdebug") == 0)
4491 {
4492 struct extsym_info einfo;
4493
4494 /* We have found the .mdebug section in the output file.
4495 Look through all the link_orders comprising it and merge
4496 the information together. */
4497 symhdr->magic = swap->sym_magic;
4498 /* FIXME: What should the version stamp be? */
4499 symhdr->vstamp = 0;
4500 symhdr->ilineMax = 0;
4501 symhdr->cbLine = 0;
4502 symhdr->idnMax = 0;
4503 symhdr->ipdMax = 0;
4504 symhdr->isymMax = 0;
4505 symhdr->ioptMax = 0;
4506 symhdr->iauxMax = 0;
4507 symhdr->issMax = 0;
4508 symhdr->issExtMax = 0;
4509 symhdr->ifdMax = 0;
4510 symhdr->crfd = 0;
4511 symhdr->iextMax = 0;
4512
4513 /* We accumulate the debugging information itself in the
4514 debug_info structure. */
4515 debug.line = NULL;
4516 debug.external_dnr = NULL;
4517 debug.external_pdr = NULL;
4518 debug.external_sym = NULL;
4519 debug.external_opt = NULL;
4520 debug.external_aux = NULL;
4521 debug.ss = NULL;
4522 debug.ssext = debug.ssext_end = NULL;
4523 debug.external_fdr = NULL;
4524 debug.external_rfd = NULL;
4525 debug.external_ext = debug.external_ext_end = NULL;
4526
4527 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4528 if (mdebug_handle == (PTR) NULL)
4529 return false;
4530
4531 if (SGI_COMPAT (abfd))
4532 {
4533 asection *s;
4534 EXTR esym;
4535 bfd_vma last;
4536 unsigned int i;
4537 static const char * const name[] =
4538 { ".text", ".init", ".fini", ".data",
4539 ".rodata", ".sdata", ".sbss", ".bss" };
4540 static const int sc[] = { scText, scInit, scFini, scData,
4541 scRData, scSData, scSBss, scBss };
4542
4543 esym.jmptbl = 0;
4544 esym.cobol_main = 0;
4545 esym.weakext = 0;
4546 esym.reserved = 0;
4547 esym.ifd = ifdNil;
4548 esym.asym.iss = issNil;
4549 esym.asym.st = stLocal;
4550 esym.asym.reserved = 0;
4551 esym.asym.index = indexNil;
4552 last = 0;
4553 for (i = 0; i < 8; i++)
4554 {
4555 esym.asym.sc = sc[i];
4556 s = bfd_get_section_by_name (abfd, name[i]);
4557 if (s != NULL)
4558 {
4559 esym.asym.value = s->vma;
4560 last = s->vma + s->_raw_size;
4561 }
4562 else
4563 esym.asym.value = last;
4564
4565 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4566 name[i], &esym))
4567 return false;
4568 }
4569 }
4570
4571 for (p = o->link_order_head;
4572 p != (struct bfd_link_order *) NULL;
4573 p = p->next)
4574 {
4575 asection *input_section;
4576 bfd *input_bfd;
4577 const struct ecoff_debug_swap *input_swap;
4578 struct ecoff_debug_info input_debug;
4579 char *eraw_src;
4580 char *eraw_end;
4581
4582 if (p->type != bfd_indirect_link_order)
4583 {
4584 if (p->type == bfd_fill_link_order)
4585 continue;
4586 abort ();
4587 }
4588
4589 input_section = p->u.indirect.section;
4590 input_bfd = input_section->owner;
4591
4592 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4593 || (get_elf_backend_data (input_bfd)
4594 ->elf_backend_ecoff_debug_swap) == NULL)
4595 {
4596 /* I don't know what a non MIPS ELF bfd would be
4597 doing with a .mdebug section, but I don't really
4598 want to deal with it. */
4599 continue;
4600 }
4601
4602 input_swap = (get_elf_backend_data (input_bfd)
4603 ->elf_backend_ecoff_debug_swap);
4604
4605 BFD_ASSERT (p->size == input_section->_raw_size);
4606
4607 /* The ECOFF linking code expects that we have already
4608 read in the debugging information and set up an
4609 ecoff_debug_info structure, so we do that now. */
4610 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4611 &input_debug))
4612 return false;
4613
4614 if (! (bfd_ecoff_debug_accumulate
4615 (mdebug_handle, abfd, &debug, swap, input_bfd,
4616 &input_debug, input_swap, info)))
4617 return false;
4618
4619 /* Loop through the external symbols. For each one with
4620 interesting information, try to find the symbol in
4621 the linker global hash table and save the information
4622 for the output external symbols. */
4623 eraw_src = input_debug.external_ext;
4624 eraw_end = (eraw_src
4625 + (input_debug.symbolic_header.iextMax
4626 * input_swap->external_ext_size));
4627 for (;
4628 eraw_src < eraw_end;
4629 eraw_src += input_swap->external_ext_size)
4630 {
4631 EXTR ext;
4632 const char *name;
4633 struct mips_elf_link_hash_entry *h;
4634
4635 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4636 if (ext.asym.sc == scNil
4637 || ext.asym.sc == scUndefined
4638 || ext.asym.sc == scSUndefined)
4639 continue;
4640
4641 name = input_debug.ssext + ext.asym.iss;
4642 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4643 name, false, false, true);
4644 if (h == NULL || h->esym.ifd != -2)
4645 continue;
4646
4647 if (ext.ifd != -1)
4648 {
4649 BFD_ASSERT (ext.ifd
4650 < input_debug.symbolic_header.ifdMax);
4651 ext.ifd = input_debug.ifdmap[ext.ifd];
4652 }
4653
4654 h->esym = ext;
4655 }
4656
4657 /* Free up the information we just read. */
4658 free (input_debug.line);
4659 free (input_debug.external_dnr);
4660 free (input_debug.external_pdr);
4661 free (input_debug.external_sym);
4662 free (input_debug.external_opt);
4663 free (input_debug.external_aux);
4664 free (input_debug.ss);
4665 free (input_debug.ssext);
4666 free (input_debug.external_fdr);
4667 free (input_debug.external_rfd);
4668 free (input_debug.external_ext);
4669
4670 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4671 elf_link_input_bfd ignores this section. */
4672 input_section->flags &=~ SEC_HAS_CONTENTS;
4673 }
4674
4675 if (SGI_COMPAT (abfd) && info->shared)
4676 {
4677 /* Create .rtproc section. */
4678 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4679 if (rtproc_sec == NULL)
4680 {
4681 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4682 | SEC_LINKER_CREATED | SEC_READONLY);
4683
4684 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4685 if (rtproc_sec == NULL
4686 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4687 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4688 return false;
4689 }
4690
4691 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4692 info, rtproc_sec, &debug))
4693 return false;
4694 }
4695
4696 /* Build the external symbol information. */
4697 einfo.abfd = abfd;
4698 einfo.info = info;
4699 einfo.debug = &debug;
4700 einfo.swap = swap;
4701 einfo.failed = false;
4702 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4703 mips_elf_output_extsym,
4704 (PTR) &einfo);
4705 if (einfo.failed)
4706 return false;
4707
4708 /* Set the size of the .mdebug section. */
4709 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4710
4711 /* Skip this section later on (I don't think this currently
4712 matters, but someday it might). */
4713 o->link_order_head = (struct bfd_link_order *) NULL;
4714
4715 mdebug_sec = o;
4716 }
4717
4718 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4719 {
4720 const char *subname;
4721 unsigned int c;
4722 Elf32_gptab *tab;
4723 Elf32_External_gptab *ext_tab;
4724 unsigned int i;
4725
4726 /* The .gptab.sdata and .gptab.sbss sections hold
4727 information describing how the small data area would
4728 change depending upon the -G switch. These sections
4729 not used in executables files. */
4730 if (! info->relocateable)
4731 {
4732 asection **secpp;
4733
4734 for (p = o->link_order_head;
4735 p != (struct bfd_link_order *) NULL;
4736 p = p->next)
4737 {
4738 asection *input_section;
4739
4740 if (p->type != bfd_indirect_link_order)
4741 {
4742 if (p->type == bfd_fill_link_order)
4743 continue;
4744 abort ();
4745 }
4746
4747 input_section = p->u.indirect.section;
4748
4749 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4750 elf_link_input_bfd ignores this section. */
4751 input_section->flags &=~ SEC_HAS_CONTENTS;
4752 }
4753
4754 /* Skip this section later on (I don't think this
4755 currently matters, but someday it might). */
4756 o->link_order_head = (struct bfd_link_order *) NULL;
4757
4758 /* Really remove the section. */
4759 for (secpp = &abfd->sections;
4760 *secpp != o;
4761 secpp = &(*secpp)->next)
4762 ;
4763 *secpp = (*secpp)->next;
4764 --abfd->section_count;
4765
4766 continue;
4767 }
4768
4769 /* There is one gptab for initialized data, and one for
4770 uninitialized data. */
4771 if (strcmp (o->name, ".gptab.sdata") == 0)
4772 gptab_data_sec = o;
4773 else if (strcmp (o->name, ".gptab.sbss") == 0)
4774 gptab_bss_sec = o;
4775 else
4776 {
4777 (*_bfd_error_handler)
4778 (_("%s: illegal section name `%s'"),
4779 bfd_get_filename (abfd), o->name);
4780 bfd_set_error (bfd_error_nonrepresentable_section);
4781 return false;
4782 }
4783
4784 /* The linker script always combines .gptab.data and
4785 .gptab.sdata into .gptab.sdata, and likewise for
4786 .gptab.bss and .gptab.sbss. It is possible that there is
4787 no .sdata or .sbss section in the output file, in which
4788 case we must change the name of the output section. */
4789 subname = o->name + sizeof ".gptab" - 1;
4790 if (bfd_get_section_by_name (abfd, subname) == NULL)
4791 {
4792 if (o == gptab_data_sec)
4793 o->name = ".gptab.data";
4794 else
4795 o->name = ".gptab.bss";
4796 subname = o->name + sizeof ".gptab" - 1;
4797 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4798 }
4799
4800 /* Set up the first entry. */
4801 c = 1;
4802 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4803 if (tab == NULL)
4804 return false;
4805 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4806 tab[0].gt_header.gt_unused = 0;
4807
4808 /* Combine the input sections. */
4809 for (p = o->link_order_head;
4810 p != (struct bfd_link_order *) NULL;
4811 p = p->next)
4812 {
4813 asection *input_section;
4814 bfd *input_bfd;
4815 bfd_size_type size;
4816 unsigned long last;
4817 bfd_size_type gpentry;
4818
4819 if (p->type != bfd_indirect_link_order)
4820 {
4821 if (p->type == bfd_fill_link_order)
4822 continue;
4823 abort ();
4824 }
4825
4826 input_section = p->u.indirect.section;
4827 input_bfd = input_section->owner;
4828
4829 /* Combine the gptab entries for this input section one
4830 by one. We know that the input gptab entries are
4831 sorted by ascending -G value. */
4832 size = bfd_section_size (input_bfd, input_section);
4833 last = 0;
4834 for (gpentry = sizeof (Elf32_External_gptab);
4835 gpentry < size;
4836 gpentry += sizeof (Elf32_External_gptab))
4837 {
4838 Elf32_External_gptab ext_gptab;
4839 Elf32_gptab int_gptab;
4840 unsigned long val;
4841 unsigned long add;
4842 boolean exact;
4843 unsigned int look;
4844
4845 if (! (bfd_get_section_contents
4846 (input_bfd, input_section, (PTR) &ext_gptab,
4847 gpentry, sizeof (Elf32_External_gptab))))
4848 {
4849 free (tab);
4850 return false;
4851 }
4852
4853 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4854 &int_gptab);
4855 val = int_gptab.gt_entry.gt_g_value;
4856 add = int_gptab.gt_entry.gt_bytes - last;
4857
4858 exact = false;
4859 for (look = 1; look < c; look++)
4860 {
4861 if (tab[look].gt_entry.gt_g_value >= val)
4862 tab[look].gt_entry.gt_bytes += add;
4863
4864 if (tab[look].gt_entry.gt_g_value == val)
4865 exact = true;
4866 }
4867
4868 if (! exact)
4869 {
4870 Elf32_gptab *new_tab;
4871 unsigned int max;
4872
4873 /* We need a new table entry. */
4874 new_tab = ((Elf32_gptab *)
4875 bfd_realloc ((PTR) tab,
4876 (c + 1) * sizeof (Elf32_gptab)));
4877 if (new_tab == NULL)
4878 {
4879 free (tab);
4880 return false;
4881 }
4882 tab = new_tab;
4883 tab[c].gt_entry.gt_g_value = val;
4884 tab[c].gt_entry.gt_bytes = add;
4885
4886 /* Merge in the size for the next smallest -G
4887 value, since that will be implied by this new
4888 value. */
4889 max = 0;
4890 for (look = 1; look < c; look++)
4891 {
4892 if (tab[look].gt_entry.gt_g_value < val
4893 && (max == 0
4894 || (tab[look].gt_entry.gt_g_value
4895 > tab[max].gt_entry.gt_g_value)))
4896 max = look;
4897 }
4898 if (max != 0)
4899 tab[c].gt_entry.gt_bytes +=
4900 tab[max].gt_entry.gt_bytes;
4901
4902 ++c;
4903 }
4904
4905 last = int_gptab.gt_entry.gt_bytes;
4906 }
4907
4908 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4909 elf_link_input_bfd ignores this section. */
4910 input_section->flags &=~ SEC_HAS_CONTENTS;
4911 }
4912
4913 /* The table must be sorted by -G value. */
4914 if (c > 2)
4915 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
4916
4917 /* Swap out the table. */
4918 ext_tab = ((Elf32_External_gptab *)
4919 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
4920 if (ext_tab == NULL)
4921 {
4922 free (tab);
4923 return false;
4924 }
4925
4926 for (i = 0; i < c; i++)
4927 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
4928 free (tab);
4929
4930 o->_raw_size = c * sizeof (Elf32_External_gptab);
4931 o->contents = (bfd_byte *) ext_tab;
4932
4933 /* Skip this section later on (I don't think this currently
4934 matters, but someday it might). */
4935 o->link_order_head = (struct bfd_link_order *) NULL;
4936 }
4937 }
4938
4939 /* Invoke the regular ELF backend linker to do all the work. */
4940 if (ABI_64_P (abfd))
4941 {
4942 #ifdef BFD64
4943 if (!bfd_elf64_bfd_final_link (abfd, info))
4944 return false;
4945 #else
4946 abort ();
4947 return false;
4948 #endif /* BFD64 */
4949 }
4950 else if (!bfd_elf32_bfd_final_link (abfd, info))
4951 return false;
4952
4953 /* Now write out the computed sections. */
4954
4955 if (reginfo_sec != (asection *) NULL)
4956 {
4957 Elf32_External_RegInfo ext;
4958
4959 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
4960 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
4961 (file_ptr) 0, sizeof ext))
4962 return false;
4963 }
4964
4965 if (mdebug_sec != (asection *) NULL)
4966 {
4967 BFD_ASSERT (abfd->output_has_begun);
4968 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
4969 swap, info,
4970 mdebug_sec->filepos))
4971 return false;
4972
4973 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
4974 }
4975
4976 if (gptab_data_sec != (asection *) NULL)
4977 {
4978 if (! bfd_set_section_contents (abfd, gptab_data_sec,
4979 gptab_data_sec->contents,
4980 (file_ptr) 0,
4981 gptab_data_sec->_raw_size))
4982 return false;
4983 }
4984
4985 if (gptab_bss_sec != (asection *) NULL)
4986 {
4987 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
4988 gptab_bss_sec->contents,
4989 (file_ptr) 0,
4990 gptab_bss_sec->_raw_size))
4991 return false;
4992 }
4993
4994 if (SGI_COMPAT (abfd))
4995 {
4996 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4997 if (rtproc_sec != NULL)
4998 {
4999 if (! bfd_set_section_contents (abfd, rtproc_sec,
5000 rtproc_sec->contents,
5001 (file_ptr) 0,
5002 rtproc_sec->_raw_size))
5003 return false;
5004 }
5005 }
5006
5007 return true;
5008 }
5009
5010 /* Returns the GOT section for ABFD. */
5011
5012 static asection *
5013 mips_elf_got_section (abfd)
5014 bfd *abfd;
5015 {
5016 return bfd_get_section_by_name (abfd, ".got");
5017 }
5018
5019 /* Returns the GOT information associated with the link indicated by
5020 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5021 section. */
5022
5023 static struct mips_got_info *
5024 mips_elf_got_info (abfd, sgotp)
5025 bfd *abfd;
5026 asection **sgotp;
5027 {
5028 asection *sgot;
5029 struct mips_got_info *g;
5030
5031 sgot = mips_elf_got_section (abfd);
5032 BFD_ASSERT (sgot != NULL);
5033 BFD_ASSERT (elf_section_data (sgot) != NULL);
5034 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5035 BFD_ASSERT (g != NULL);
5036
5037 if (sgotp)
5038 *sgotp = sgot;
5039 return g;
5040 }
5041
5042 /* Return whether a relocation is against a local symbol. */
5043
5044 static boolean
5045 mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5046 bfd *input_bfd;
5047 const Elf_Internal_Rela *relocation;
5048 asection **local_sections;
5049 {
5050 unsigned long r_symndx;
5051 Elf_Internal_Shdr *symtab_hdr;
5052
5053 r_symndx = ELF32_R_SYM (relocation->r_info);
5054 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5055 if (! elf_bad_symtab (input_bfd))
5056 return r_symndx < symtab_hdr->sh_info;
5057 else
5058 {
5059 /* The symbol table does not follow the rule that local symbols
5060 must come before globals. */
5061 return local_sections[r_symndx] != NULL;
5062 }
5063 }
5064
5065 /* Sign-extend VALUE, which has the indicated number of BITS. */
5066
5067 static bfd_vma
5068 mips_elf_sign_extend (value, bits)
5069 bfd_vma value;
5070 int bits;
5071 {
5072 if (value & ((bfd_vma)1 << (bits - 1)))
5073 /* VALUE is negative. */
5074 value |= ((bfd_vma) - 1) << bits;
5075
5076 return value;
5077 }
5078
5079 /* Return non-zero if the indicated VALUE has overflowed the maximum
5080 range expressable by a signed number with the indicated number of
5081 BITS. */
5082
5083 static boolean
5084 mips_elf_overflow_p (value, bits)
5085 bfd_vma value;
5086 int bits;
5087 {
5088 bfd_signed_vma svalue = (bfd_signed_vma) value;
5089
5090 if (svalue > (1 << (bits - 1)) - 1)
5091 /* The value is too big. */
5092 return true;
5093 else if (svalue < -(1 << (bits - 1)))
5094 /* The value is too small. */
5095 return true;
5096
5097 /* All is well. */
5098 return false;
5099 }
5100
5101 /* Calculate the %high function. */
5102
5103 static bfd_vma
5104 mips_elf_high (value)
5105 bfd_vma value;
5106 {
5107 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5108 }
5109
5110 /* Calculate the %higher function. */
5111
5112 static bfd_vma
5113 mips_elf_higher (value)
5114 bfd_vma value ATTRIBUTE_UNUSED;
5115 {
5116 #ifdef BFD64
5117 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5118 #else
5119 abort ();
5120 return (bfd_vma) -1;
5121 #endif
5122 }
5123
5124 /* Calculate the %highest function. */
5125
5126 static bfd_vma
5127 mips_elf_highest (value)
5128 bfd_vma value ATTRIBUTE_UNUSED;
5129 {
5130 #ifdef BFD64
5131 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5132 #else
5133 abort ();
5134 return (bfd_vma) -1;
5135 #endif
5136 }
5137
5138 /* Returns the GOT index for the global symbol indicated by H. */
5139
5140 static bfd_vma
5141 mips_elf_global_got_index (abfd, h)
5142 bfd *abfd;
5143 struct elf_link_hash_entry *h;
5144 {
5145 bfd_vma index;
5146 asection *sgot;
5147 struct mips_got_info *g;
5148
5149 g = mips_elf_got_info (abfd, &sgot);
5150
5151 /* Once we determine the global GOT entry with the lowest dynamic
5152 symbol table index, we must put all dynamic symbols with greater
5153 indices into the GOT. That makes it easy to calculate the GOT
5154 offset. */
5155 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5156 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5157 * MIPS_ELF_GOT_SIZE (abfd));
5158 BFD_ASSERT (index < sgot->_raw_size);
5159
5160 return index;
5161 }
5162
5163 /* Returns the offset for the entry at the INDEXth position
5164 in the GOT. */
5165
5166 static bfd_vma
5167 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5168 bfd *dynobj;
5169 bfd *output_bfd;
5170 bfd_vma index;
5171 {
5172 asection *sgot;
5173 bfd_vma gp;
5174
5175 sgot = mips_elf_got_section (dynobj);
5176 gp = _bfd_get_gp_value (output_bfd);
5177 return (sgot->output_section->vma + sgot->output_offset + index -
5178 gp);
5179 }
5180
5181 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5182 symbol table index lower than any we've seen to date, record it for
5183 posterity. */
5184
5185 static boolean
5186 mips_elf_record_global_got_symbol (h, info, g)
5187 struct elf_link_hash_entry *h;
5188 struct bfd_link_info *info;
5189 struct mips_got_info *g ATTRIBUTE_UNUSED;
5190 {
5191 /* A global symbol in the GOT must also be in the dynamic symbol
5192 table. */
5193 if (h->dynindx == -1
5194 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5195 return false;
5196
5197 /* If we've already marked this entry as need GOT space, we don't
5198 need to do it again. */
5199 if (h->got.offset != (bfd_vma) - 1)
5200 return true;
5201
5202 /* By setting this to a value other than -1, we are indicating that
5203 there needs to be a GOT entry for H. */
5204 h->got.offset = 0;
5205
5206 return true;
5207 }
5208
5209 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5210 the dynamic symbols. */
5211
5212 struct mips_elf_hash_sort_data
5213 {
5214 /* The symbol in the global GOT with the lowest dynamic symbol table
5215 index. */
5216 struct elf_link_hash_entry *low;
5217 /* The least dynamic symbol table index corresponding to a symbol
5218 with a GOT entry. */
5219 long min_got_dynindx;
5220 /* The greatest dynamic symbol table index not corresponding to a
5221 symbol without a GOT entry. */
5222 long max_non_got_dynindx;
5223 };
5224
5225 /* If H needs a GOT entry, assign it the highest available dynamic
5226 index. Otherwise, assign it the lowest available dynamic
5227 index. */
5228
5229 static boolean
5230 mips_elf_sort_hash_table_f (h, data)
5231 struct mips_elf_link_hash_entry *h;
5232 PTR data;
5233 {
5234 struct mips_elf_hash_sort_data *hsd
5235 = (struct mips_elf_hash_sort_data *) data;
5236
5237 /* Symbols without dynamic symbol table entries aren't interesting
5238 at all. */
5239 if (h->root.dynindx == -1)
5240 return true;
5241
5242 if (h->root.got.offset != 0)
5243 h->root.dynindx = hsd->max_non_got_dynindx++;
5244 else
5245 {
5246 h->root.dynindx = --hsd->min_got_dynindx;
5247 hsd->low = (struct elf_link_hash_entry *) h;
5248 }
5249
5250 return true;
5251 }
5252
5253 /* Sort the dynamic symbol table so that symbols that need GOT entries
5254 appear towards the end. This reduces the amount of GOT space
5255 required. MAX_LOCAL is used to set the number of local symbols
5256 known to be in the dynamic symbol table. During
5257 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5258 section symbols are added and the count is higher. */
5259
5260 static boolean
5261 mips_elf_sort_hash_table (info, max_local)
5262 struct bfd_link_info *info;
5263 unsigned long max_local;
5264 {
5265 struct mips_elf_hash_sort_data hsd;
5266 struct mips_got_info *g;
5267 bfd *dynobj;
5268
5269 dynobj = elf_hash_table (info)->dynobj;
5270
5271 hsd.low = NULL;
5272 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5273 hsd.max_non_got_dynindx = max_local;
5274 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5275 elf_hash_table (info)),
5276 mips_elf_sort_hash_table_f,
5277 &hsd);
5278
5279 /* There shoud have been enough room in the symbol table to
5280 accomodate both the GOT and non-GOT symbols. */
5281 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5282
5283 /* Now we know which dynamic symbol has the lowest dynamic symbol
5284 table index in the GOT. */
5285 g = mips_elf_got_info (dynobj, NULL);
5286 g->global_gotsym = hsd.low;
5287
5288 return true;
5289 }
5290
5291 /* Create a local GOT entry for VALUE. Return the index of the entry,
5292 or -1 if it could not be created. */
5293
5294 static bfd_vma
5295 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5296 bfd *abfd;
5297 struct mips_got_info *g;
5298 asection *sgot;
5299 bfd_vma value;
5300 {
5301 if (g->assigned_gotno >= g->local_gotno)
5302 {
5303 /* We didn't allocate enough space in the GOT. */
5304 (*_bfd_error_handler)
5305 (_("not enough GOT space for local GOT entries"));
5306 bfd_set_error (bfd_error_bad_value);
5307 return (bfd_vma) -1;
5308 }
5309
5310 MIPS_ELF_PUT_WORD (abfd, value,
5311 (sgot->contents
5312 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5313 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5314 }
5315
5316 /* Returns the GOT offset at which the indicated address can be found.
5317 If there is not yet a GOT entry for this value, create one. Returns
5318 -1 if no satisfactory GOT offset can be found. */
5319
5320 static bfd_vma
5321 mips_elf_local_got_index (abfd, info, value)
5322 bfd *abfd;
5323 struct bfd_link_info *info;
5324 bfd_vma value;
5325 {
5326 asection *sgot;
5327 struct mips_got_info *g;
5328 bfd_byte *entry;
5329
5330 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5331
5332 /* Look to see if we already have an appropriate entry. */
5333 for (entry = (sgot->contents
5334 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5335 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5336 entry += MIPS_ELF_GOT_SIZE (abfd))
5337 {
5338 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5339 if (address == value)
5340 return entry - sgot->contents;
5341 }
5342
5343 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5344 }
5345
5346 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5347 are supposed to be placed at small offsets in the GOT, i.e.,
5348 within 32KB of GP. Return the index into the GOT for this page,
5349 and store the offset from this entry to the desired address in
5350 OFFSETP, if it is non-NULL. */
5351
5352 static bfd_vma
5353 mips_elf_got_page (abfd, info, value, offsetp)
5354 bfd *abfd;
5355 struct bfd_link_info *info;
5356 bfd_vma value;
5357 bfd_vma *offsetp;
5358 {
5359 asection *sgot;
5360 struct mips_got_info *g;
5361 bfd_byte *entry;
5362 bfd_byte *last_entry;
5363 bfd_vma index;
5364 bfd_vma address;
5365
5366 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5367
5368 /* Look to see if we aleady have an appropriate entry. */
5369 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5370 for (entry = (sgot->contents
5371 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5372 entry != last_entry;
5373 entry += MIPS_ELF_GOT_SIZE (abfd))
5374 {
5375 address = MIPS_ELF_GET_WORD (abfd, entry);
5376
5377 if (!mips_elf_overflow_p (value - address, 16))
5378 {
5379 /* This entry will serve as the page pointer. We can add a
5380 16-bit number to it to get the actual address. */
5381 index = entry - sgot->contents;
5382 break;
5383 }
5384 }
5385
5386 /* If we didn't have an appropriate entry, we create one now. */
5387 if (entry == last_entry)
5388 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5389
5390 if (offsetp)
5391 {
5392 address = MIPS_ELF_GET_WORD (abfd, entry);
5393 *offsetp = value - address;
5394 }
5395
5396 return index;
5397 }
5398
5399 /* Find a GOT entry whose higher-order 16 bits are the same as those
5400 for value. Return the index into the GOT for this entry. */
5401
5402 static bfd_vma
5403 mips_elf_got16_entry (abfd, info, value)
5404 bfd *abfd;
5405 struct bfd_link_info *info;
5406 bfd_vma value;
5407 {
5408 asection *sgot;
5409 struct mips_got_info *g;
5410 bfd_byte *entry;
5411 bfd_byte *last_entry;
5412 bfd_vma index;
5413 bfd_vma address;
5414
5415 /* Although the ABI says that it is "the high-order 16 bits" that we
5416 want, it is really the %high value. The complete value is
5417 calculated with a `addiu' of a LO16 relocation, just as with a
5418 HI16/LO16 pair. */
5419 value = mips_elf_high (value) << 16;
5420 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5421
5422 /* Look to see if we already have an appropriate entry. */
5423 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5424 for (entry = (sgot->contents
5425 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5426 entry != last_entry;
5427 entry += MIPS_ELF_GOT_SIZE (abfd))
5428 {
5429 address = MIPS_ELF_GET_WORD (abfd, entry);
5430 if ((address & 0xffff0000) == value)
5431 {
5432 /* This entry has the right high-order 16 bits. */
5433 index = entry - sgot->contents;
5434 break;
5435 }
5436 }
5437
5438 /* If we didn't have an appropriate entry, we create one now. */
5439 if (entry == last_entry)
5440 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5441
5442 return index;
5443 }
5444
5445 /* Returns the first R_MIPS_LO16 relocation found, beginning with
5446 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5447
5448 static const Elf_Internal_Rela *
5449 mips_elf_next_lo16_relocation (relocation, relend)
5450 const Elf_Internal_Rela *relocation;
5451 const Elf_Internal_Rela *relend;
5452 {
5453 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5454 immediately following. However, for the IRIX6 ABI, the next
5455 relocation may be a composed relocation consisting of several
5456 relocations for the same address. In that case, the R_MIPS_LO16
5457 relocation may occur as one of these. We permit a similar
5458 extension in general, as that is useful for GCC. */
5459 while (relocation < relend)
5460 {
5461 if (ELF32_R_TYPE (relocation->r_info) == R_MIPS_LO16)
5462 return relocation;
5463
5464 ++relocation;
5465 }
5466
5467 /* We didn't find it. */
5468 bfd_set_error (bfd_error_bad_value);
5469 return NULL;
5470 }
5471
5472 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5473 is the original relocation, which is now being transformed into a
5474 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5475 caller should store the result in place of the original addend. */
5476
5477 static boolean
5478 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5479 symbol, addendp, input_section)
5480 bfd *output_bfd;
5481 struct bfd_link_info *info;
5482 const Elf_Internal_Rela *rel;
5483 struct mips_elf_link_hash_entry *h;
5484 asection *sec;
5485 bfd_vma symbol;
5486 bfd_vma *addendp;
5487 asection *input_section;
5488 {
5489 Elf_Internal_Rel outrel;
5490 boolean skip;
5491 asection *sreloc;
5492 bfd *dynobj;
5493 int r_type;
5494
5495 r_type = ELF32_R_TYPE (rel->r_info);
5496 dynobj = elf_hash_table (info)->dynobj;
5497 sreloc
5498 = bfd_get_section_by_name (dynobj,
5499 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5500 BFD_ASSERT (sreloc != NULL);
5501
5502 skip = false;
5503
5504 /* We begin by assuming that the offset for the dynamic relocation
5505 is the same as for the original relocation. We'll adjust this
5506 later to reflect the correct output offsets. */
5507 if (elf_section_data (input_section)->stab_info == NULL)
5508 outrel.r_offset = rel->r_offset;
5509 else
5510 {
5511 /* Except that in a stab section things are more complex.
5512 Because we compress stab information, the offset given in the
5513 relocation may not be the one we want; we must let the stabs
5514 machinery tell us the offset. */
5515 outrel.r_offset
5516 = (_bfd_stab_section_offset
5517 (output_bfd, &elf_hash_table (info)->stab_info,
5518 input_section,
5519 &elf_section_data (input_section)->stab_info,
5520 rel->r_offset));
5521 /* If we didn't need the relocation at all, this value will be
5522 -1. */
5523 if (outrel.r_offset == (bfd_vma) -1)
5524 skip = true;
5525 }
5526
5527 /* If we've decided to skip this relocation, just output an emtpy
5528 record. Note that R_MIPS_NONE == 0, so that this call to memset
5529 is a way of setting R_TYPE to R_MIPS_NONE. */
5530 if (skip)
5531 memset (&outrel, 0, sizeof (outrel));
5532 else
5533 {
5534 long indx;
5535 bfd_vma section_offset;
5536
5537 /* We must now calculate the dynamic symbol table index to use
5538 in the relocation. */
5539 if (h != NULL
5540 && (! info->symbolic || (h->root.elf_link_hash_flags
5541 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5542 {
5543 indx = h->root.dynindx;
5544 BFD_ASSERT (indx != -1);
5545 }
5546 else
5547 {
5548 if (sec != NULL && bfd_is_abs_section (sec))
5549 indx = 0;
5550 else if (sec == NULL || sec->owner == NULL)
5551 {
5552 bfd_set_error (bfd_error_bad_value);
5553 return false;
5554 }
5555 else
5556 {
5557 indx = elf_section_data (sec->output_section)->dynindx;
5558 if (indx == 0)
5559 abort ();
5560 }
5561
5562 /* Figure out how far the target of the relocation is from
5563 the beginning of its section. */
5564 section_offset = symbol - sec->output_section->vma;
5565 /* The relocation we're building is section-relative.
5566 Therefore, the original addend must be adjusted by the
5567 section offset. */
5568 *addendp += symbol - sec->output_section->vma;
5569 /* Now, the relocation is just against the section. */
5570 symbol = sec->output_section->vma;
5571 }
5572
5573 /* If the relocation was previously an absolute relocation, we
5574 must adjust it by the value we give it in the dynamic symbol
5575 table. */
5576 if (r_type != R_MIPS_REL32)
5577 *addendp += symbol;
5578
5579 /* The relocation is always an REL32 relocation because we don't
5580 know where the shared library will wind up at load-time. */
5581 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5582
5583 /* Adjust the output offset of the relocation to reference the
5584 correct location in the output file. */
5585 outrel.r_offset += (input_section->output_section->vma
5586 + input_section->output_offset);
5587 }
5588
5589 /* Put the relocation back out. We have to use the special
5590 relocation outputter in the 64-bit case since the 64-bit
5591 relocation format is non-standard. */
5592 if (ABI_64_P (output_bfd))
5593 {
5594 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5595 (output_bfd, &outrel,
5596 (sreloc->contents
5597 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5598 }
5599 else
5600 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5601 (((Elf32_External_Rel *)
5602 sreloc->contents)
5603 + sreloc->reloc_count));
5604
5605 /* Record the index of the first relocation referencing H. This
5606 information is later emitted in the .msym section. */
5607 if (h != NULL
5608 && (h->min_dyn_reloc_index == 0
5609 || sreloc->reloc_count < h->min_dyn_reloc_index))
5610 h->min_dyn_reloc_index = sreloc->reloc_count;
5611
5612 /* We've now added another relocation. */
5613 ++sreloc->reloc_count;
5614
5615 /* Make sure the output section is writable. The dynamic linker
5616 will be writing to it. */
5617 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5618 |= SHF_WRITE;
5619
5620 /* On IRIX5, make an entry of compact relocation info. */
5621 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5622 {
5623 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5624 bfd_byte *cr;
5625
5626 if (scpt)
5627 {
5628 Elf32_crinfo cptrel;
5629
5630 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5631 cptrel.vaddr = (rel->r_offset
5632 + input_section->output_section->vma
5633 + input_section->output_offset);
5634 if (r_type == R_MIPS_REL32)
5635 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5636 else
5637 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5638 mips_elf_set_cr_dist2to (cptrel, 0);
5639 cptrel.konst = *addendp;
5640
5641 cr = (scpt->contents
5642 + sizeof (Elf32_External_compact_rel));
5643 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5644 ((Elf32_External_crinfo *) cr
5645 + scpt->reloc_count));
5646 ++scpt->reloc_count;
5647 }
5648 }
5649
5650 return true;
5651 }
5652
5653 /* Calculate the value produced by the RELOCATION (which comes from
5654 the INPUT_BFD). The ADDEND is the addend to use for this
5655 RELOCATION; RELOCATION->R_ADDEND is ignored.
5656
5657 The result of the relocation calculation is stored in VALUEP.
5658 REQUIRE_JALXP indicates whether or not the opcode used with this
5659 relocation must be JALX.
5660
5661 This function returns bfd_reloc_continue if the caller need take no
5662 further action regarding this relocation, bfd_reloc_notsupported if
5663 something goes dramatically wrong, bfd_reloc_overflow if an
5664 overflow occurs, and bfd_reloc_ok to indicate success. */
5665
5666 static bfd_reloc_status_type
5667 mips_elf_calculate_relocation (abfd,
5668 input_bfd,
5669 input_section,
5670 info,
5671 relocation,
5672 addend,
5673 howto,
5674 local_syms,
5675 local_sections,
5676 valuep,
5677 namep,
5678 require_jalxp)
5679 bfd *abfd;
5680 bfd *input_bfd;
5681 asection *input_section;
5682 struct bfd_link_info *info;
5683 const Elf_Internal_Rela *relocation;
5684 bfd_vma addend;
5685 reloc_howto_type *howto;
5686 Elf_Internal_Sym *local_syms;
5687 asection **local_sections;
5688 bfd_vma *valuep;
5689 const char **namep;
5690 boolean *require_jalxp;
5691 {
5692 /* The eventual value we will return. */
5693 bfd_vma value;
5694 /* The address of the symbol against which the relocation is
5695 occurring. */
5696 bfd_vma symbol = 0;
5697 /* The final GP value to be used for the relocatable, executable, or
5698 shared object file being produced. */
5699 bfd_vma gp = (bfd_vma) - 1;
5700 /* The place (section offset or address) of the storage unit being
5701 relocated. */
5702 bfd_vma p;
5703 /* The value of GP used to create the relocatable object. */
5704 bfd_vma gp0 = (bfd_vma) - 1;
5705 /* The offset into the global offset table at which the address of
5706 the relocation entry symbol, adjusted by the addend, resides
5707 during execution. */
5708 bfd_vma g = (bfd_vma) - 1;
5709 /* The section in which the symbol referenced by the relocation is
5710 located. */
5711 asection *sec = NULL;
5712 struct mips_elf_link_hash_entry* h = NULL;
5713 /* True if the symbol referred to by this relocation is a local
5714 symbol. */
5715 boolean local_p;
5716 /* True if the symbol referred to by this relocation is "_gp_disp". */
5717 boolean gp_disp_p = false;
5718 Elf_Internal_Shdr *symtab_hdr;
5719 size_t extsymoff;
5720 unsigned long r_symndx;
5721 int r_type;
5722 /* True if overflow occurred during the calculation of the
5723 relocation value. */
5724 boolean overflowed_p;
5725 /* True if this relocation refers to a MIPS16 function. */
5726 boolean target_is_16_bit_code_p = false;
5727
5728 /* Parse the relocation. */
5729 r_symndx = ELF32_R_SYM (relocation->r_info);
5730 r_type = ELF32_R_TYPE (relocation->r_info);
5731 p = (input_section->output_section->vma
5732 + input_section->output_offset
5733 + relocation->r_offset);
5734
5735 /* Assume that there will be no overflow. */
5736 overflowed_p = false;
5737
5738 /* Figure out whether or not the symbol is local, and get the offset
5739 used in the array of hash table entries. */
5740 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5741 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5742 local_sections);
5743 if (! elf_bad_symtab (input_bfd))
5744 extsymoff = symtab_hdr->sh_info;
5745 else
5746 {
5747 /* The symbol table does not follow the rule that local symbols
5748 must come before globals. */
5749 extsymoff = 0;
5750 }
5751
5752 /* Figure out the value of the symbol. */
5753 if (local_p)
5754 {
5755 Elf_Internal_Sym *sym;
5756
5757 sym = local_syms + r_symndx;
5758 sec = local_sections[r_symndx];
5759
5760 symbol = sec->output_section->vma + sec->output_offset;
5761 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5762 symbol += sym->st_value;
5763
5764 /* MIPS16 text labels should be treated as odd. */
5765 if (sym->st_other == STO_MIPS16)
5766 ++symbol;
5767
5768 /* Record the name of this symbol, for our caller. */
5769 *namep = bfd_elf_string_from_elf_section (input_bfd,
5770 symtab_hdr->sh_link,
5771 sym->st_name);
5772 if (*namep == '\0')
5773 *namep = bfd_section_name (input_bfd, sec);
5774
5775 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5776 }
5777 else
5778 {
5779 /* For global symbols we look up the symbol in the hash-table. */
5780 h = ((struct mips_elf_link_hash_entry *)
5781 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5782 /* Find the real hash-table entry for this symbol. */
5783 while (h->root.type == bfd_link_hash_indirect
5784 || h->root.type == bfd_link_hash_warning)
5785 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5786
5787 /* Record the name of this symbol, for our caller. */
5788 *namep = h->root.root.root.string;
5789
5790 /* See if this is the special _gp_disp symbol. Note that such a
5791 symbol must always be a global symbol. */
5792 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5793 {
5794 /* Relocations against _gp_disp are permitted only with
5795 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5796 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5797 return bfd_reloc_notsupported;
5798
5799 gp_disp_p = true;
5800 }
5801 /* If this symbol is defined, calculate its address. Note that
5802 _gp_disp is a magic symbol, always implicitly defined by the
5803 linker, so it's inappropriate to check to see whether or not
5804 its defined. */
5805 else if ((h->root.root.type == bfd_link_hash_defined
5806 || h->root.root.type == bfd_link_hash_defweak)
5807 && h->root.root.u.def.section)
5808 {
5809 sec = h->root.root.u.def.section;
5810 if (sec->output_section)
5811 symbol = (h->root.root.u.def.value
5812 + sec->output_section->vma
5813 + sec->output_offset);
5814 else
5815 symbol = h->root.root.u.def.value;
5816 }
5817 else if (h->root.root.type == bfd_link_hash_undefweak)
5818 /* We allow relocations against undefined weak symbols, giving
5819 it the value zero, so that you can undefined weak functions
5820 and check to see if they exist by looking at their
5821 addresses. */
5822 symbol = 0;
5823 else if (info->shared && !info->symbolic && !info->no_undefined)
5824 symbol = 0;
5825 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5826 {
5827 /* If this is a dynamic link, we should have created a
5828 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5829 Otherwise, we should define the symbol with a value of 0.
5830 FIXME: It should probably get into the symbol table
5831 somehow as well. */
5832 BFD_ASSERT (! info->shared);
5833 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5834 symbol = 0;
5835 }
5836 else
5837 {
5838 (*info->callbacks->undefined_symbol)
5839 (info, h->root.root.root.string, input_bfd,
5840 input_section, relocation->r_offset);
5841 return bfd_reloc_undefined;
5842 }
5843
5844 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5845 }
5846
5847 /* If this is a 32-bit call to a 16-bit function with a stub, we
5848 need to redirect the call to the stub, unless we're already *in*
5849 a stub. */
5850 if (r_type != R_MIPS16_26 && !info->relocateable
5851 && ((h != NULL && h->fn_stub != NULL)
5852 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5853 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5854 && !mips_elf_stub_section_p (input_bfd, input_section))
5855 {
5856 /* This is a 32-bit call to a 16-bit function. We should
5857 have already noticed that we were going to need the
5858 stub. */
5859 if (local_p)
5860 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5861 else
5862 {
5863 BFD_ASSERT (h->need_fn_stub);
5864 sec = h->fn_stub;
5865 }
5866
5867 symbol = sec->output_section->vma + sec->output_offset;
5868 }
5869 /* If this is a 16-bit call to a 32-bit function with a stub, we
5870 need to redirect the call to the stub. */
5871 else if (r_type == R_MIPS16_26 && !info->relocateable
5872 && h != NULL
5873 && (h->call_stub != NULL || h->call_fp_stub != NULL)
5874 && !target_is_16_bit_code_p)
5875 {
5876 /* If both call_stub and call_fp_stub are defined, we can figure
5877 out which one to use by seeing which one appears in the input
5878 file. */
5879 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5880 {
5881 asection *o;
5882
5883 sec = NULL;
5884 for (o = input_bfd->sections; o != NULL; o = o->next)
5885 {
5886 if (strncmp (bfd_get_section_name (input_bfd, o),
5887 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5888 {
5889 sec = h->call_fp_stub;
5890 break;
5891 }
5892 }
5893 if (sec == NULL)
5894 sec = h->call_stub;
5895 }
5896 else if (h->call_stub != NULL)
5897 sec = h->call_stub;
5898 else
5899 sec = h->call_fp_stub;
5900
5901 BFD_ASSERT (sec->_raw_size > 0);
5902 symbol = sec->output_section->vma + sec->output_offset;
5903 }
5904
5905 /* Calls from 16-bit code to 32-bit code and vice versa require the
5906 special jalx instruction. */
5907 *require_jalxp = (!info->relocateable
5908 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
5909
5910 /* If we haven't already determined the GOT offset, or the GP value,
5911 and we're going to need it, get it now. */
5912 switch (r_type)
5913 {
5914 case R_MIPS_CALL16:
5915 case R_MIPS_GOT16:
5916 case R_MIPS_GOT_DISP:
5917 case R_MIPS_GOT_HI16:
5918 case R_MIPS_CALL_HI16:
5919 case R_MIPS_GOT_LO16:
5920 case R_MIPS_CALL_LO16:
5921 /* Find the index into the GOT where this value is located. */
5922 if (!local_p)
5923 {
5924 BFD_ASSERT (addend == 0);
5925 g = mips_elf_global_got_index
5926 (elf_hash_table (info)->dynobj,
5927 (struct elf_link_hash_entry*) h);
5928 }
5929 else if (r_type == R_MIPS_GOT16)
5930 /* There's no need to create a local GOT entry here; the
5931 calculation for a local GOT16 entry does not involve G. */
5932 break;
5933 else
5934 {
5935 g = mips_elf_local_got_index (abfd, info, symbol + addend);
5936 if (g == (bfd_vma) -1)
5937 return false;
5938 }
5939
5940 /* Convert GOT indices to actual offsets. */
5941 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
5942 abfd, g);
5943 break;
5944
5945 case R_MIPS_HI16:
5946 case R_MIPS_LO16:
5947 case R_MIPS_GPREL16:
5948 case R_MIPS_GPREL32:
5949 case R_MIPS_LITERAL:
5950 gp0 = _bfd_get_gp_value (input_bfd);
5951 gp = _bfd_get_gp_value (abfd);
5952 break;
5953
5954 default:
5955 break;
5956 }
5957
5958 /* Figure out what kind of relocation is being performed. */
5959 switch (r_type)
5960 {
5961 case R_MIPS_NONE:
5962 return bfd_reloc_continue;
5963
5964 case R_MIPS_16:
5965 value = symbol + mips_elf_sign_extend (addend, 16);
5966 overflowed_p = mips_elf_overflow_p (value, 16);
5967 break;
5968
5969 case R_MIPS_32:
5970 case R_MIPS_REL32:
5971 case R_MIPS_64:
5972 if ((info->shared
5973 || (elf_hash_table (info)->dynamic_sections_created
5974 && h != NULL
5975 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5976 == 0)))
5977 && (input_section->flags & SEC_ALLOC) != 0)
5978 {
5979 /* If we're creating a shared library, or this relocation is
5980 against a symbol in a shared library, then we can't know
5981 where the symbol will end up. So, we create a relocation
5982 record in the output, and leave the job up to the dynamic
5983 linker. */
5984 value = addend;
5985 if (!mips_elf_create_dynamic_relocation (abfd,
5986 info,
5987 relocation,
5988 h,
5989 sec,
5990 symbol,
5991 &value,
5992 input_section))
5993 return false;
5994 }
5995 else
5996 {
5997 if (r_type != R_MIPS_REL32)
5998 value = symbol + addend;
5999 else
6000 value = addend;
6001 }
6002 value &= howto->dst_mask;
6003 break;
6004
6005 case R_MIPS16_26:
6006 /* The calculation for R_MIPS_26 is just the same as for an
6007 R_MIPS_26. It's only the storage of the relocated field into
6008 the output file that's different. That's handled in
6009 mips_elf_perform_relocation. So, we just fall through to the
6010 R_MIPS_26 case here. */
6011 case R_MIPS_26:
6012 if (local_p)
6013 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6014 else
6015 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6016 value &= howto->dst_mask;
6017 break;
6018
6019 case R_MIPS_HI16:
6020 if (!gp_disp_p)
6021 {
6022 value = mips_elf_high (addend + symbol);
6023 value &= howto->dst_mask;
6024 }
6025 else
6026 {
6027 value = mips_elf_high (addend + gp - p);
6028 overflowed_p = mips_elf_overflow_p (value, 16);
6029 }
6030 break;
6031
6032 case R_MIPS_LO16:
6033 if (!gp_disp_p)
6034 value = (symbol + addend) & howto->dst_mask;
6035 else
6036 {
6037 value = addend + gp - p + 4;
6038 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6039 for overflow. But, on, say, Irix 5, relocations against
6040 _gp_disp are normally generated from the .cpload
6041 pseudo-op. It generates code that normally looks like
6042 this:
6043
6044 lui $gp,%hi(_gp_disp)
6045 addiu $gp,$gp,%lo(_gp_disp)
6046 addu $gp,$gp,$t9
6047
6048 Here $t9 holds the address of the function being called,
6049 as required by the MIPS ELF ABI. The R_MIPS_LO16
6050 relocation can easily overflow in this situation, but the
6051 R_MIPS_HI16 relocation will handle the overflow.
6052 Therefore, we consider this a bug in the MIPS ABI, and do
6053 not check for overflow here. */
6054 }
6055 break;
6056
6057 case R_MIPS_LITERAL:
6058 /* Because we don't merge literal sections, we can handle this
6059 just like R_MIPS_GPREL16. In the long run, we should merge
6060 shared literals, and then we will need to additional work
6061 here. */
6062
6063 /* Fall through. */
6064
6065 case R_MIPS16_GPREL:
6066 /* The R_MIPS16_GPREL performs the same calculation as
6067 R_MIPS_GPREL16, but stores the relocated bits in a different
6068 order. We don't need to do anything special here; the
6069 differences are handled in mips_elf_perform_relocation. */
6070 case R_MIPS_GPREL16:
6071 if (local_p)
6072 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6073 else
6074 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6075 overflowed_p = mips_elf_overflow_p (value, 16);
6076 break;
6077
6078 case R_MIPS_GOT16:
6079 if (local_p)
6080 {
6081 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6082 if (value == (bfd_vma) -1)
6083 return false;
6084 value
6085 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6086 abfd,
6087 value);
6088 overflowed_p = mips_elf_overflow_p (value, 16);
6089 break;
6090 }
6091
6092 /* Fall through. */
6093
6094 case R_MIPS_CALL16:
6095 case R_MIPS_GOT_DISP:
6096 value = g;
6097 overflowed_p = mips_elf_overflow_p (value, 16);
6098 break;
6099
6100 case R_MIPS_GPREL32:
6101 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_PC16:
6105 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6106 overflowed_p = mips_elf_overflow_p (value, 16);
6107 break;
6108
6109 case R_MIPS_GOT_HI16:
6110 case R_MIPS_CALL_HI16:
6111 /* We're allowed to handle these two relocations identically.
6112 The dynamic linker is allowed to handle the CALL relocations
6113 differently by creating a lazy evaluation stub. */
6114 value = g;
6115 value = mips_elf_high (value);
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_GOT_LO16:
6120 case R_MIPS_CALL_LO16:
6121 value = g & howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_GOT_PAGE:
6125 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6126 if (value == (bfd_vma) -1)
6127 return false;
6128 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6129 abfd,
6130 value);
6131 overflowed_p = mips_elf_overflow_p (value, 16);
6132 break;
6133
6134 case R_MIPS_GOT_OFST:
6135 mips_elf_got_page (abfd, info, symbol + addend, &value);
6136 overflowed_p = mips_elf_overflow_p (value, 16);
6137 break;
6138
6139 case R_MIPS_SUB:
6140 value = symbol - addend;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_HIGHER:
6145 value = mips_elf_higher (addend + symbol);
6146 value &= howto->dst_mask;
6147 break;
6148
6149 case R_MIPS_HIGHEST:
6150 value = mips_elf_highest (addend + symbol);
6151 value &= howto->dst_mask;
6152 break;
6153
6154 case R_MIPS_SCN_DISP:
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MIPS_PJUMP:
6160 case R_MIPS_JALR:
6161 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6162 hint; we could improve performance by honoring that hint. */
6163 return bfd_reloc_continue;
6164
6165 case R_MIPS_GNU_VTINHERIT:
6166 case R_MIPS_GNU_VTENTRY:
6167 /* We don't do anything with these at present. */
6168 return bfd_reloc_continue;
6169
6170 default:
6171 /* An unrecognized relocation type. */
6172 return bfd_reloc_notsupported;
6173 }
6174
6175 /* Store the VALUE for our caller. */
6176 *valuep = value;
6177 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6178 }
6179
6180 /* Obtain the field relocated by RELOCATION. */
6181
6182 static bfd_vma
6183 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6184 reloc_howto_type *howto;
6185 const Elf_Internal_Rela *relocation;
6186 bfd *input_bfd;
6187 bfd_byte *contents;
6188 {
6189 bfd_vma x;
6190 bfd_byte *location = contents + relocation->r_offset;
6191
6192 /* Obtain the bytes. */
6193 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6194
6195 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6196 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6197 && bfd_little_endian (input_bfd))
6198 /* The two 16-bit words will be reversed on a little-endian
6199 system. See mips_elf_perform_relocation for more details. */
6200 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6201
6202 return x;
6203 }
6204
6205 /* It has been determined that the result of the RELOCATION is the
6206 VALUE. Use HOWTO to place VALUE into the output file at the
6207 appropriate position. The SECTION is the section to which the
6208 relocation applies. If REQUIRE_JALX is true, then the opcode used
6209 for the relocation must be either JAL or JALX, and it is
6210 unconditionally converted to JALX.
6211
6212 Returns false if anything goes wrong. */
6213
6214 static boolean
6215 mips_elf_perform_relocation (info, howto, relocation, value,
6216 input_bfd, input_section,
6217 contents, require_jalx)
6218 struct bfd_link_info *info;
6219 reloc_howto_type *howto;
6220 const Elf_Internal_Rela *relocation;
6221 bfd_vma value;
6222 bfd *input_bfd;
6223 asection *input_section;
6224 bfd_byte *contents;
6225 boolean require_jalx;
6226 {
6227 bfd_vma x;
6228 bfd_byte *location;
6229 int r_type = ELF32_R_TYPE (relocation->r_info);
6230
6231 /* Figure out where the relocation is occurring. */
6232 location = contents + relocation->r_offset;
6233
6234 /* Obtain the current value. */
6235 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6236
6237 /* Clear the field we are setting. */
6238 x &= ~howto->dst_mask;
6239
6240 /* If this is the R_MIPS16_26 relocation, we must store the
6241 value in a funny way. */
6242 if (r_type == R_MIPS16_26)
6243 {
6244 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6245 Most mips16 instructions are 16 bits, but these instructions
6246 are 32 bits.
6247
6248 The format of these instructions is:
6249
6250 +--------------+--------------------------------+
6251 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6252 +--------------+--------------------------------+
6253 ! Immediate 15:0 !
6254 +-----------------------------------------------+
6255
6256 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6257 Note that the immediate value in the first word is swapped.
6258
6259 When producing a relocateable object file, R_MIPS16_26 is
6260 handled mostly like R_MIPS_26. In particular, the addend is
6261 stored as a straight 26-bit value in a 32-bit instruction.
6262 (gas makes life simpler for itself by never adjusting a
6263 R_MIPS16_26 reloc to be against a section, so the addend is
6264 always zero). However, the 32 bit instruction is stored as 2
6265 16-bit values, rather than a single 32-bit value. In a
6266 big-endian file, the result is the same; in a little-endian
6267 file, the two 16-bit halves of the 32 bit value are swapped.
6268 This is so that a disassembler can recognize the jal
6269 instruction.
6270
6271 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6272 instruction stored as two 16-bit values. The addend A is the
6273 contents of the targ26 field. The calculation is the same as
6274 R_MIPS_26. When storing the calculated value, reorder the
6275 immediate value as shown above, and don't forget to store the
6276 value as two 16-bit values.
6277
6278 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6279 defined as
6280
6281 big-endian:
6282 +--------+----------------------+
6283 | | |
6284 | | targ26-16 |
6285 |31 26|25 0|
6286 +--------+----------------------+
6287
6288 little-endian:
6289 +----------+------+-------------+
6290 | | | |
6291 | sub1 | | sub2 |
6292 |0 9|10 15|16 31|
6293 +----------+--------------------+
6294 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6295 ((sub1 << 16) | sub2)).
6296
6297 When producing a relocateable object file, the calculation is
6298 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6299 When producing a fully linked file, the calculation is
6300 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6301 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6302
6303 if (!info->relocateable)
6304 /* Shuffle the bits according to the formula above. */
6305 value = (((value & 0x1f0000) << 5)
6306 | ((value & 0x3e00000) >> 5)
6307 | (value & 0xffff));
6308
6309 }
6310 else if (r_type == R_MIPS16_GPREL)
6311 {
6312 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6313 mode. A typical instruction will have a format like this:
6314
6315 +--------------+--------------------------------+
6316 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6317 +--------------+--------------------------------+
6318 ! Major ! rx ! ry ! Imm 4:0 !
6319 +--------------+--------------------------------+
6320
6321 EXTEND is the five bit value 11110. Major is the instruction
6322 opcode.
6323
6324 This is handled exactly like R_MIPS_GPREL16, except that the
6325 addend is retrieved and stored as shown in this diagram; that
6326 is, the Imm fields above replace the V-rel16 field.
6327
6328 All we need to do here is shuffle the bits appropriately. As
6329 above, the two 16-bit halves must be swapped on a
6330 little-endian system. */
6331 value = (((value & 0x7e0) << 16)
6332 | ((value & 0xf800) << 5)
6333 | (value & 0x1f));
6334 }
6335
6336 /* Set the field. */
6337 x |= (value & howto->dst_mask);
6338
6339 /* If required, turn JAL into JALX. */
6340 if (require_jalx)
6341 {
6342 boolean ok;
6343 bfd_vma opcode = x >> 26;
6344 bfd_vma jalx_opcode;
6345
6346 /* Check to see if the opcode is already JAL or JALX. */
6347 if (r_type == R_MIPS16_26)
6348 {
6349 ok = ((opcode == 0x6) || (opcode == 0x7));
6350 jalx_opcode = 0x7;
6351 }
6352 else
6353 {
6354 ok = ((opcode == 0x3) || (opcode == 0x1d));
6355 jalx_opcode = 0x1d;
6356 }
6357
6358 /* If the opcode is not JAL or JALX, there's a problem. */
6359 if (!ok)
6360 {
6361 (*_bfd_error_handler)
6362 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6363 bfd_get_filename (input_bfd),
6364 input_section->name,
6365 (unsigned long) relocation->r_offset);
6366 bfd_set_error (bfd_error_bad_value);
6367 return false;
6368 }
6369
6370 /* Make this the JALX opcode. */
6371 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6372 }
6373
6374 /* Swap the high- and low-order 16 bits on little-endian systems
6375 when doing a MIPS16 relocation. */
6376 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6377 && bfd_little_endian (input_bfd))
6378 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6379
6380 /* Put the value into the output. */
6381 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6382 return true;
6383 }
6384
6385 /* Returns true if SECTION is a MIPS16 stub section. */
6386
6387 static boolean
6388 mips_elf_stub_section_p (abfd, section)
6389 bfd *abfd ATTRIBUTE_UNUSED;
6390 asection *section;
6391 {
6392 const char *name = bfd_get_section_name (abfd, section);
6393
6394 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6395 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6396 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6397 }
6398
6399 /* Relocate a MIPS ELF section. */
6400
6401 boolean
6402 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6403 contents, relocs, local_syms, local_sections)
6404 bfd *output_bfd;
6405 struct bfd_link_info *info;
6406 bfd *input_bfd;
6407 asection *input_section;
6408 bfd_byte *contents;
6409 Elf_Internal_Rela *relocs;
6410 Elf_Internal_Sym *local_syms;
6411 asection **local_sections;
6412 {
6413 Elf_Internal_Rela *rel;
6414 const Elf_Internal_Rela *relend;
6415 bfd_vma addend;
6416 boolean use_saved_addend_p = false;
6417 struct elf_backend_data *bed;
6418
6419 bed = get_elf_backend_data (output_bfd);
6420 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6421 for (rel = relocs; rel < relend; ++rel)
6422 {
6423 const char *name;
6424 bfd_vma value;
6425 reloc_howto_type *howto;
6426 boolean require_jalx;
6427 /* True if the relocation is a RELA relocation, rather than a
6428 REL relocation. */
6429 boolean rela_relocation_p = true;
6430 int r_type = ELF32_R_TYPE (rel->r_info);
6431
6432 /* Find the relocation howto for this relocation. */
6433 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6434 {
6435 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6436 64-bit code, but make sure all their addresses are in the
6437 lowermost or uppermost 32-bit section of the 64-bit address
6438 space. Thus, when they use an R_MIPS_64 they mean what is
6439 usually meant by R_MIPS_32, with the exception that the
6440 stored value is sign-extended to 64 bits. */
6441 howto = elf_mips_howto_table + R_MIPS_32;
6442
6443 /* On big-endian systems, we need to lie about the position
6444 of the reloc. */
6445 if (bfd_big_endian (input_bfd))
6446 rel->r_offset += 4;
6447 }
6448 else
6449 howto = mips_rtype_to_howto (r_type);
6450
6451 if (!use_saved_addend_p)
6452 {
6453 Elf_Internal_Shdr *rel_hdr;
6454
6455 /* If these relocations were originally of the REL variety,
6456 we must pull the addend out of the field that will be
6457 relocated. Otherwise, we simply use the contents of the
6458 RELA relocation. To determine which flavor or relocation
6459 this is, we depend on the fact that the INPUT_SECTION's
6460 REL_HDR is read before its REL_HDR2. */
6461 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6462 if ((size_t) (rel - relocs)
6463 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6464 * bed->s->int_rels_per_ext_rel))
6465 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6466 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6467 {
6468 /* Note that this is a REL relocation. */
6469 rela_relocation_p = false;
6470
6471 /* Get the addend, which is stored in the input file. */
6472 addend = mips_elf_obtain_contents (howto,
6473 rel,
6474 input_bfd,
6475 contents);
6476 addend &= howto->src_mask;
6477
6478 /* For some kinds of relocations, the ADDEND is a
6479 combination of the addend stored in two different
6480 relocations. */
6481 if (r_type == R_MIPS_HI16
6482 || (r_type == R_MIPS_GOT16
6483 && mips_elf_local_relocation_p (input_bfd, rel,
6484 local_sections)))
6485 {
6486 bfd_vma l;
6487 const Elf_Internal_Rela *lo16_relocation;
6488 reloc_howto_type *lo16_howto;
6489
6490 /* The combined value is the sum of the HI16 addend,
6491 left-shifted by sixteen bits, and the LO16
6492 addend, sign extended. (Usually, the code does
6493 a `lui' of the HI16 value, and then an `addiu' of
6494 the LO16 value.)
6495
6496 Scan ahead to find a matching R_MIPS_LO16
6497 relocation. */
6498 lo16_relocation
6499 = mips_elf_next_lo16_relocation (rel, relend);
6500 if (lo16_relocation == NULL)
6501 return false;
6502
6503 /* Obtain the addend kept there. */
6504 lo16_howto = mips_rtype_to_howto (R_MIPS_LO16);
6505 l = mips_elf_obtain_contents (lo16_howto,
6506 lo16_relocation,
6507 input_bfd, contents);
6508 l &= lo16_howto->src_mask;
6509 l = mips_elf_sign_extend (l, 16);
6510
6511 addend <<= 16;
6512
6513 /* Compute the combined addend. */
6514 addend += l;
6515 }
6516 else if (r_type == R_MIPS16_GPREL)
6517 {
6518 /* The addend is scrambled in the object file. See
6519 mips_elf_perform_relocation for details on the
6520 format. */
6521 addend = (((addend & 0x1f0000) >> 5)
6522 | ((addend & 0x7e00000) >> 16)
6523 | (addend & 0x1f));
6524 }
6525 }
6526 else
6527 addend = rel->r_addend;
6528 }
6529
6530 if (info->relocateable)
6531 {
6532 Elf_Internal_Sym *sym;
6533 unsigned long r_symndx;
6534
6535 /* Since we're just relocating, all we need to do is copy
6536 the relocations back out to the object file, unless
6537 they're against a section symbol, in which case we need
6538 to adjust by the section offset, or unless they're GP
6539 relative in which case we need to adjust by the amount
6540 that we're adjusting GP in this relocateable object. */
6541
6542 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
6543 /* There's nothing to do for non-local relocations. */
6544 continue;
6545
6546 if (r_type == R_MIPS16_GPREL
6547 || r_type == R_MIPS_GPREL16
6548 || r_type == R_MIPS_GPREL32
6549 || r_type == R_MIPS_LITERAL)
6550 addend -= (_bfd_get_gp_value (output_bfd)
6551 - _bfd_get_gp_value (input_bfd));
6552 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26)
6553 /* The addend is stored without its two least
6554 significant bits (which are always zero.) In a
6555 non-relocateable link, calculate_relocation will do
6556 this shift; here, we must do it ourselves. */
6557 addend <<= 2;
6558
6559 r_symndx = ELF32_R_SYM (rel->r_info);
6560 sym = local_syms + r_symndx;
6561 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6562 /* Adjust the addend appropriately. */
6563 addend += local_sections[r_symndx]->output_offset;
6564
6565 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6566 then we only want to write out the high-order 16 bits.
6567 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6568 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16)
6569 addend = mips_elf_high (addend);
6570 /* If the relocation is for an R_MIPS_26 relocation, then
6571 the two low-order bits are not stored in the object file;
6572 they are implicitly zero. */
6573 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26)
6574 addend >>= 2;
6575
6576 if (rela_relocation_p)
6577 /* If this is a RELA relocation, just update the addend.
6578 We have to cast away constness for REL. */
6579 rel->r_addend = addend;
6580 else
6581 {
6582 /* Otherwise, we have to write the value back out. Note
6583 that we use the source mask, rather than the
6584 destination mask because the place to which we are
6585 writing will be source of the addend in the final
6586 link. */
6587 addend &= howto->src_mask;
6588 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6589 input_bfd, input_section,
6590 contents, false))
6591 return false;
6592 }
6593
6594 /* Go on to the next relocation. */
6595 continue;
6596 }
6597
6598 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6599 relocations for the same offset. In that case we are
6600 supposed to treat the output of each relocation as the addend
6601 for the next. */
6602 if (rel + 1 < relend
6603 && rel->r_offset == rel[1].r_offset
6604 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6605 use_saved_addend_p = true;
6606 else
6607 use_saved_addend_p = false;
6608
6609 /* Figure out what value we are supposed to relocate. */
6610 switch (mips_elf_calculate_relocation (output_bfd,
6611 input_bfd,
6612 input_section,
6613 info,
6614 rel,
6615 addend,
6616 howto,
6617 local_syms,
6618 local_sections,
6619 &value,
6620 &name,
6621 &require_jalx))
6622 {
6623 case bfd_reloc_continue:
6624 /* There's nothing to do. */
6625 continue;
6626
6627 case bfd_reloc_undefined:
6628 /* mips_elf_calculate_relocation already called the
6629 undefined_symbol callback. There's no real point in
6630 trying to perform the relocation at this point, so we
6631 just skip ahead to the next relocation. */
6632 continue;
6633
6634 case bfd_reloc_notsupported:
6635 abort ();
6636 break;
6637
6638 case bfd_reloc_overflow:
6639 if (use_saved_addend_p)
6640 /* Ignore overflow until we reach the last relocation for
6641 a given location. */
6642 ;
6643 else
6644 {
6645 BFD_ASSERT (name != NULL);
6646 if (! ((*info->callbacks->reloc_overflow)
6647 (info, name, howto->name, (bfd_vma) 0,
6648 input_bfd, input_section, rel->r_offset)))
6649 return false;
6650 }
6651 break;
6652
6653 case bfd_reloc_ok:
6654 break;
6655
6656 default:
6657 abort ();
6658 break;
6659 }
6660
6661 /* If we've got another relocation for the address, keep going
6662 until we reach the last one. */
6663 if (use_saved_addend_p)
6664 {
6665 addend = value;
6666 continue;
6667 }
6668
6669 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6670 /* See the comment above about using R_MIPS_64 in the 32-bit
6671 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6672 that calculated the right value. Now, however, we
6673 sign-extend the 32-bit result to 64-bits, and store it as a
6674 64-bit value. We are especially generous here in that we
6675 go to extreme lengths to support this usage on systems with
6676 only a 32-bit VMA. */
6677 {
6678 bfd_vma sign_bits;
6679 bfd_vma low_bits;
6680 bfd_vma high_bits;
6681
6682 if (value & 0x80000000)
6683 sign_bits = 0xffffffff;
6684 else
6685 sign_bits = 0;
6686
6687 /* If only a 32-bit VMA is available do two separate
6688 stores. */
6689 if (bfd_big_endian (input_bfd))
6690 {
6691 /* Undo what we did above. */
6692 rel->r_offset -= 4;
6693 /* Store the sign-bits (which are most significant)
6694 first. */
6695 low_bits = sign_bits;
6696 high_bits = value;
6697 }
6698 else
6699 {
6700 low_bits = value;
6701 high_bits = sign_bits;
6702 }
6703 bfd_put_32 (input_bfd, low_bits,
6704 contents + rel->r_offset);
6705 bfd_put_32 (input_bfd, high_bits,
6706 contents + rel->r_offset + 4);
6707 continue;
6708 }
6709
6710 /* Actually perform the relocation. */
6711 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6712 input_section, contents,
6713 require_jalx))
6714 return false;
6715 }
6716
6717 return true;
6718 }
6719
6720 /* This hook function is called before the linker writes out a global
6721 symbol. We mark symbols as small common if appropriate. This is
6722 also where we undo the increment of the value for a mips16 symbol. */
6723
6724 /*ARGSIGNORED*/
6725 boolean
6726 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
6727 bfd *abfd ATTRIBUTE_UNUSED;
6728 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6729 const char *name ATTRIBUTE_UNUSED;
6730 Elf_Internal_Sym *sym;
6731 asection *input_sec;
6732 {
6733 /* If we see a common symbol, which implies a relocatable link, then
6734 if a symbol was small common in an input file, mark it as small
6735 common in the output file. */
6736 if (sym->st_shndx == SHN_COMMON
6737 && strcmp (input_sec->name, ".scommon") == 0)
6738 sym->st_shndx = SHN_MIPS_SCOMMON;
6739
6740 if (sym->st_other == STO_MIPS16
6741 && (sym->st_value & 1) != 0)
6742 --sym->st_value;
6743
6744 return true;
6745 }
6746 \f
6747 /* Functions for the dynamic linker. */
6748
6749 /* The name of the dynamic interpreter. This is put in the .interp
6750 section. */
6751
6752 #define ELF_DYNAMIC_INTERPRETER(abfd) \
6753 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6754 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6755 : "/usr/lib/libc.so.1")
6756
6757 /* Create dynamic sections when linking against a dynamic object. */
6758
6759 boolean
6760 _bfd_mips_elf_create_dynamic_sections (abfd, info)
6761 bfd *abfd;
6762 struct bfd_link_info *info;
6763 {
6764 struct elf_link_hash_entry *h;
6765 flagword flags;
6766 register asection *s;
6767 const char * const *namep;
6768
6769 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6770 | SEC_LINKER_CREATED | SEC_READONLY);
6771
6772 /* Mips ABI requests the .dynamic section to be read only. */
6773 s = bfd_get_section_by_name (abfd, ".dynamic");
6774 if (s != NULL)
6775 {
6776 if (! bfd_set_section_flags (abfd, s, flags))
6777 return false;
6778 }
6779
6780 /* We need to create .got section. */
6781 if (! mips_elf_create_got_section (abfd, info))
6782 return false;
6783
6784 /* Create the .msym section on IRIX6. It is used by the dynamic
6785 linker to speed up dynamic relocations, and to avoid computing
6786 the ELF hash for symbols. */
6787 if (IRIX_COMPAT (abfd) == ict_irix6
6788 && !mips_elf_create_msym_section (abfd))
6789 return false;
6790
6791 /* Create .stub section. */
6792 if (bfd_get_section_by_name (abfd,
6793 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6794 {
6795 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
6796 if (s == NULL
6797 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
6798 || ! bfd_set_section_alignment (abfd, s,
6799 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6800 return false;
6801 }
6802
6803 if (IRIX_COMPAT (abfd) == ict_irix5
6804 && !info->shared
6805 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6806 {
6807 s = bfd_make_section (abfd, ".rld_map");
6808 if (s == NULL
6809 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
6810 || ! bfd_set_section_alignment (abfd, s,
6811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6812 return false;
6813 }
6814
6815 /* On IRIX5, we adjust add some additional symbols and change the
6816 alignments of several sections. There is no ABI documentation
6817 indicating that this is necessary on IRIX6, nor any evidence that
6818 the linker takes such action. */
6819 if (IRIX_COMPAT (abfd) == ict_irix5)
6820 {
6821 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6822 {
6823 h = NULL;
6824 if (! (_bfd_generic_link_add_one_symbol
6825 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
6826 (bfd_vma) 0, (const char *) NULL, false,
6827 get_elf_backend_data (abfd)->collect,
6828 (struct bfd_link_hash_entry **) &h)))
6829 return false;
6830 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6831 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6832 h->type = STT_SECTION;
6833
6834 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6835 return false;
6836 }
6837
6838 /* We need to create a .compact_rel section. */
6839 if (! mips_elf_create_compact_rel_section (abfd, info))
6840 return false;
6841
6842 /* Change aligments of some sections. */
6843 s = bfd_get_section_by_name (abfd, ".hash");
6844 if (s != NULL)
6845 bfd_set_section_alignment (abfd, s, 4);
6846 s = bfd_get_section_by_name (abfd, ".dynsym");
6847 if (s != NULL)
6848 bfd_set_section_alignment (abfd, s, 4);
6849 s = bfd_get_section_by_name (abfd, ".dynstr");
6850 if (s != NULL)
6851 bfd_set_section_alignment (abfd, s, 4);
6852 s = bfd_get_section_by_name (abfd, ".reginfo");
6853 if (s != NULL)
6854 bfd_set_section_alignment (abfd, s, 4);
6855 s = bfd_get_section_by_name (abfd, ".dynamic");
6856 if (s != NULL)
6857 bfd_set_section_alignment (abfd, s, 4);
6858 }
6859
6860 if (!info->shared)
6861 {
6862 h = NULL;
6863 if (! (_bfd_generic_link_add_one_symbol
6864 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
6865 (bfd_vma) 0, (const char *) NULL, false,
6866 get_elf_backend_data (abfd)->collect,
6867 (struct bfd_link_hash_entry **) &h)))
6868 return false;
6869 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6870 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6871 h->type = STT_SECTION;
6872
6873 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6874 return false;
6875
6876 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6877 {
6878 /* __rld_map is a four byte word located in the .data section
6879 and is filled in by the rtld to contain a pointer to
6880 the _r_debug structure. Its symbol value will be set in
6881 mips_elf_finish_dynamic_symbol. */
6882 s = bfd_get_section_by_name (abfd, ".rld_map");
6883 BFD_ASSERT (s != NULL);
6884
6885 h = NULL;
6886 if (! (_bfd_generic_link_add_one_symbol
6887 (info, abfd, "__rld_map", BSF_GLOBAL, s,
6888 (bfd_vma) 0, (const char *) NULL, false,
6889 get_elf_backend_data (abfd)->collect,
6890 (struct bfd_link_hash_entry **) &h)))
6891 return false;
6892 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6894 h->type = STT_OBJECT;
6895
6896 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6897 return false;
6898 }
6899 }
6900
6901 return true;
6902 }
6903
6904 /* Create the .compact_rel section. */
6905
6906 static boolean
6907 mips_elf_create_compact_rel_section (abfd, info)
6908 bfd *abfd;
6909 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6910 {
6911 flagword flags;
6912 register asection *s;
6913
6914 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
6915 {
6916 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
6917 | SEC_READONLY);
6918
6919 s = bfd_make_section (abfd, ".compact_rel");
6920 if (s == NULL
6921 || ! bfd_set_section_flags (abfd, s, flags)
6922 || ! bfd_set_section_alignment (abfd, s,
6923 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6924 return false;
6925
6926 s->_raw_size = sizeof (Elf32_External_compact_rel);
6927 }
6928
6929 return true;
6930 }
6931
6932 /* Create the .got section to hold the global offset table. */
6933
6934 static boolean
6935 mips_elf_create_got_section (abfd, info)
6936 bfd *abfd;
6937 struct bfd_link_info *info;
6938 {
6939 flagword flags;
6940 register asection *s;
6941 struct elf_link_hash_entry *h;
6942 struct mips_got_info *g;
6943
6944 /* This function may be called more than once. */
6945 if (mips_elf_got_section (abfd))
6946 return true;
6947
6948 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6949 | SEC_LINKER_CREATED);
6950
6951 s = bfd_make_section (abfd, ".got");
6952 if (s == NULL
6953 || ! bfd_set_section_flags (abfd, s, flags)
6954 || ! bfd_set_section_alignment (abfd, s, 4))
6955 return false;
6956
6957 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
6958 linker script because we don't want to define the symbol if we
6959 are not creating a global offset table. */
6960 h = NULL;
6961 if (! (_bfd_generic_link_add_one_symbol
6962 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
6963 (bfd_vma) 0, (const char *) NULL, false,
6964 get_elf_backend_data (abfd)->collect,
6965 (struct bfd_link_hash_entry **) &h)))
6966 return false;
6967 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6968 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6969 h->type = STT_OBJECT;
6970
6971 if (info->shared
6972 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
6973 return false;
6974
6975 /* The first several global offset table entries are reserved. */
6976 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
6977
6978 g = (struct mips_got_info *) bfd_alloc (abfd,
6979 sizeof (struct mips_got_info));
6980 if (g == NULL)
6981 return false;
6982 g->global_gotsym = NULL;
6983 g->local_gotno = MIPS_RESERVED_GOTNO;
6984 g->assigned_gotno = MIPS_RESERVED_GOTNO;
6985 if (elf_section_data (s) == NULL)
6986 {
6987 s->used_by_bfd =
6988 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
6989 if (elf_section_data (s) == NULL)
6990 return false;
6991 }
6992 elf_section_data (s)->tdata = (PTR) g;
6993 elf_section_data (s)->this_hdr.sh_flags
6994 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6995
6996 return true;
6997 }
6998
6999 /* Returns the .msym section for ABFD, creating it if it does not
7000 already exist. Returns NULL to indicate error. */
7001
7002 static asection *
7003 mips_elf_create_msym_section (abfd)
7004 bfd *abfd;
7005 {
7006 asection *s;
7007
7008 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7009 if (!s)
7010 {
7011 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7012 if (!s
7013 || !bfd_set_section_flags (abfd, s,
7014 SEC_ALLOC
7015 | SEC_LOAD
7016 | SEC_HAS_CONTENTS
7017 | SEC_LINKER_CREATED
7018 | SEC_READONLY)
7019 || !bfd_set_section_alignment (abfd, s,
7020 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7021 return NULL;
7022 }
7023
7024 return s;
7025 }
7026
7027 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7028
7029 static void
7030 mips_elf_allocate_dynamic_relocations (abfd, n)
7031 bfd *abfd;
7032 unsigned int n;
7033 {
7034 asection *s;
7035
7036 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7037 BFD_ASSERT (s != NULL);
7038
7039 if (s->_raw_size == 0)
7040 {
7041 /* Make room for a null element. */
7042 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7043 ++s->reloc_count;
7044 }
7045 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7046 }
7047
7048 /* Look through the relocs for a section during the first phase, and
7049 allocate space in the global offset table. */
7050
7051 boolean
7052 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7053 bfd *abfd;
7054 struct bfd_link_info *info;
7055 asection *sec;
7056 const Elf_Internal_Rela *relocs;
7057 {
7058 const char *name;
7059 bfd *dynobj;
7060 Elf_Internal_Shdr *symtab_hdr;
7061 struct elf_link_hash_entry **sym_hashes;
7062 struct mips_got_info *g;
7063 size_t extsymoff;
7064 const Elf_Internal_Rela *rel;
7065 const Elf_Internal_Rela *rel_end;
7066 asection *sgot;
7067 asection *sreloc;
7068 struct elf_backend_data *bed;
7069
7070 if (info->relocateable)
7071 return true;
7072
7073 dynobj = elf_hash_table (info)->dynobj;
7074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7075 sym_hashes = elf_sym_hashes (abfd);
7076 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7077
7078 /* Check for the mips16 stub sections. */
7079
7080 name = bfd_get_section_name (abfd, sec);
7081 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7082 {
7083 unsigned long r_symndx;
7084
7085 /* Look at the relocation information to figure out which symbol
7086 this is for. */
7087
7088 r_symndx = ELF32_R_SYM (relocs->r_info);
7089
7090 if (r_symndx < extsymoff
7091 || sym_hashes[r_symndx - extsymoff] == NULL)
7092 {
7093 asection *o;
7094
7095 /* This stub is for a local symbol. This stub will only be
7096 needed if there is some relocation in this BFD, other
7097 than a 16 bit function call, which refers to this symbol. */
7098 for (o = abfd->sections; o != NULL; o = o->next)
7099 {
7100 Elf_Internal_Rela *sec_relocs;
7101 const Elf_Internal_Rela *r, *rend;
7102
7103 /* We can ignore stub sections when looking for relocs. */
7104 if ((o->flags & SEC_RELOC) == 0
7105 || o->reloc_count == 0
7106 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7107 sizeof FN_STUB - 1) == 0
7108 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7109 sizeof CALL_STUB - 1) == 0
7110 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7111 sizeof CALL_FP_STUB - 1) == 0)
7112 continue;
7113
7114 sec_relocs = (_bfd_elf32_link_read_relocs
7115 (abfd, o, (PTR) NULL,
7116 (Elf_Internal_Rela *) NULL,
7117 info->keep_memory));
7118 if (sec_relocs == NULL)
7119 return false;
7120
7121 rend = sec_relocs + o->reloc_count;
7122 for (r = sec_relocs; r < rend; r++)
7123 if (ELF32_R_SYM (r->r_info) == r_symndx
7124 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7125 break;
7126
7127 if (! info->keep_memory)
7128 free (sec_relocs);
7129
7130 if (r < rend)
7131 break;
7132 }
7133
7134 if (o == NULL)
7135 {
7136 /* There is no non-call reloc for this stub, so we do
7137 not need it. Since this function is called before
7138 the linker maps input sections to output sections, we
7139 can easily discard it by setting the SEC_EXCLUDE
7140 flag. */
7141 sec->flags |= SEC_EXCLUDE;
7142 return true;
7143 }
7144
7145 /* Record this stub in an array of local symbol stubs for
7146 this BFD. */
7147 if (elf_tdata (abfd)->local_stubs == NULL)
7148 {
7149 unsigned long symcount;
7150 asection **n;
7151
7152 if (elf_bad_symtab (abfd))
7153 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7154 else
7155 symcount = symtab_hdr->sh_info;
7156 n = (asection **) bfd_zalloc (abfd,
7157 symcount * sizeof (asection *));
7158 if (n == NULL)
7159 return false;
7160 elf_tdata (abfd)->local_stubs = n;
7161 }
7162
7163 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7164
7165 /* We don't need to set mips16_stubs_seen in this case.
7166 That flag is used to see whether we need to look through
7167 the global symbol table for stubs. We don't need to set
7168 it here, because we just have a local stub. */
7169 }
7170 else
7171 {
7172 struct mips_elf_link_hash_entry *h;
7173
7174 h = ((struct mips_elf_link_hash_entry *)
7175 sym_hashes[r_symndx - extsymoff]);
7176
7177 /* H is the symbol this stub is for. */
7178
7179 h->fn_stub = sec;
7180 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7181 }
7182 }
7183 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7184 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7185 {
7186 unsigned long r_symndx;
7187 struct mips_elf_link_hash_entry *h;
7188 asection **loc;
7189
7190 /* Look at the relocation information to figure out which symbol
7191 this is for. */
7192
7193 r_symndx = ELF32_R_SYM (relocs->r_info);
7194
7195 if (r_symndx < extsymoff
7196 || sym_hashes[r_symndx - extsymoff] == NULL)
7197 {
7198 /* This stub was actually built for a static symbol defined
7199 in the same file. We assume that all static symbols in
7200 mips16 code are themselves mips16, so we can simply
7201 discard this stub. Since this function is called before
7202 the linker maps input sections to output sections, we can
7203 easily discard it by setting the SEC_EXCLUDE flag. */
7204 sec->flags |= SEC_EXCLUDE;
7205 return true;
7206 }
7207
7208 h = ((struct mips_elf_link_hash_entry *)
7209 sym_hashes[r_symndx - extsymoff]);
7210
7211 /* H is the symbol this stub is for. */
7212
7213 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7214 loc = &h->call_fp_stub;
7215 else
7216 loc = &h->call_stub;
7217
7218 /* If we already have an appropriate stub for this function, we
7219 don't need another one, so we can discard this one. Since
7220 this function is called before the linker maps input sections
7221 to output sections, we can easily discard it by setting the
7222 SEC_EXCLUDE flag. We can also discard this section if we
7223 happen to already know that this is a mips16 function; it is
7224 not necessary to check this here, as it is checked later, but
7225 it is slightly faster to check now. */
7226 if (*loc != NULL || h->root.other == STO_MIPS16)
7227 {
7228 sec->flags |= SEC_EXCLUDE;
7229 return true;
7230 }
7231
7232 *loc = sec;
7233 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7234 }
7235
7236 if (dynobj == NULL)
7237 {
7238 sgot = NULL;
7239 g = NULL;
7240 }
7241 else
7242 {
7243 sgot = mips_elf_got_section (dynobj);
7244 if (sgot == NULL)
7245 g = NULL;
7246 else
7247 {
7248 BFD_ASSERT (elf_section_data (sgot) != NULL);
7249 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7250 BFD_ASSERT (g != NULL);
7251 }
7252 }
7253
7254 sreloc = NULL;
7255 bed = get_elf_backend_data (abfd);
7256 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7257 for (rel = relocs; rel < rel_end; ++rel)
7258 {
7259 unsigned long r_symndx;
7260 int r_type;
7261 struct elf_link_hash_entry *h;
7262
7263 r_symndx = ELF32_R_SYM (rel->r_info);
7264 r_type = ELF32_R_TYPE (rel->r_info);
7265
7266 if (r_symndx < extsymoff)
7267 h = NULL;
7268 else
7269 {
7270 h = sym_hashes[r_symndx - extsymoff];
7271
7272 /* This may be an indirect symbol created because of a version. */
7273 if (h != NULL)
7274 {
7275 while (h->root.type == bfd_link_hash_indirect)
7276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7277 }
7278 }
7279
7280 /* Some relocs require a global offset table. */
7281 if (dynobj == NULL || sgot == NULL)
7282 {
7283 switch (r_type)
7284 {
7285 case R_MIPS_GOT16:
7286 case R_MIPS_CALL16:
7287 case R_MIPS_CALL_HI16:
7288 case R_MIPS_CALL_LO16:
7289 case R_MIPS_GOT_HI16:
7290 case R_MIPS_GOT_LO16:
7291 case R_MIPS_GOT_PAGE:
7292 case R_MIPS_GOT_OFST:
7293 case R_MIPS_GOT_DISP:
7294 if (dynobj == NULL)
7295 elf_hash_table (info)->dynobj = dynobj = abfd;
7296 if (! mips_elf_create_got_section (dynobj, info))
7297 return false;
7298 g = mips_elf_got_info (dynobj, &sgot);
7299 break;
7300
7301 case R_MIPS_32:
7302 case R_MIPS_REL32:
7303 case R_MIPS_64:
7304 if (dynobj == NULL
7305 && (info->shared || h != NULL)
7306 && (sec->flags & SEC_ALLOC) != 0)
7307 elf_hash_table (info)->dynobj = dynobj = abfd;
7308 break;
7309
7310 default:
7311 break;
7312 }
7313 }
7314
7315 if (!h && (r_type == R_MIPS_CALL_LO16
7316 || r_type == R_MIPS_GOT_LO16
7317 || r_type == R_MIPS_GOT_DISP))
7318 {
7319 /* We may need a local GOT entry for this relocation. We
7320 don't count R_MIPS_GOT_PAGE because we can estimate the
7321 maximum number of pages needed by looking at the size of
7322 the segment. Similar comments apply to R_MIPS_GOT16. We
7323 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7324 these are always followed by an R_MIPS_GOT_LO16 or
7325 R_MIPS_CALL_LO16.
7326
7327 This estimation is very conservative since we can merge
7328 duplicate entries in the GOT. In order to be less
7329 conservative, we could actually build the GOT here,
7330 rather than in relocate_section. */
7331 g->local_gotno++;
7332 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7333 }
7334
7335 switch (r_type)
7336 {
7337 case R_MIPS_CALL16:
7338 if (h == NULL)
7339 {
7340 (*_bfd_error_handler)
7341 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7342 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7343 bfd_set_error (bfd_error_bad_value);
7344 return false;
7345 }
7346 /* Fall through. */
7347
7348 case R_MIPS_CALL_HI16:
7349 case R_MIPS_CALL_LO16:
7350 if (h != NULL)
7351 {
7352 /* This symbol requires a global offset table entry. */
7353 if (!mips_elf_record_global_got_symbol (h, info, g))
7354 return false;
7355
7356 /* We need a stub, not a plt entry for the undefined
7357 function. But we record it as if it needs plt. See
7358 elf_adjust_dynamic_symbol in elflink.h. */
7359 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7360 h->type = STT_FUNC;
7361 }
7362 break;
7363
7364 case R_MIPS_GOT16:
7365 case R_MIPS_GOT_HI16:
7366 case R_MIPS_GOT_LO16:
7367 case R_MIPS_GOT_DISP:
7368 /* This symbol requires a global offset table entry. */
7369 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7370 return false;
7371 break;
7372
7373 case R_MIPS_32:
7374 case R_MIPS_REL32:
7375 case R_MIPS_64:
7376 if ((info->shared || h != NULL)
7377 && (sec->flags & SEC_ALLOC) != 0)
7378 {
7379 if (sreloc == NULL)
7380 {
7381 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7382
7383 sreloc = bfd_get_section_by_name (dynobj, name);
7384 if (sreloc == NULL)
7385 {
7386 sreloc = bfd_make_section (dynobj, name);
7387 if (sreloc == NULL
7388 || ! bfd_set_section_flags (dynobj, sreloc,
7389 (SEC_ALLOC
7390 | SEC_LOAD
7391 | SEC_HAS_CONTENTS
7392 | SEC_IN_MEMORY
7393 | SEC_LINKER_CREATED
7394 | SEC_READONLY))
7395 || ! bfd_set_section_alignment (dynobj, sreloc,
7396 4))
7397 return false;
7398 }
7399 }
7400 if (info->shared)
7401 /* When creating a shared object, we must copy these
7402 reloc types into the output file as R_MIPS_REL32
7403 relocs. We make room for this reloc in the
7404 .rel.dyn reloc section. */
7405 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7406 else
7407 {
7408 struct mips_elf_link_hash_entry *hmips;
7409
7410 /* We only need to copy this reloc if the symbol is
7411 defined in a dynamic object. */
7412 hmips = (struct mips_elf_link_hash_entry *) h;
7413 ++hmips->possibly_dynamic_relocs;
7414 }
7415
7416 /* Even though we don't directly need a GOT entry for
7417 this symbol, a symbol must have a dynamic symbol
7418 table index greater that DT_MIPS_GOTSYM if there are
7419 dynamic relocations against it. */
7420 if (h != NULL
7421 && !mips_elf_record_global_got_symbol (h, info, g))
7422 return false;
7423 }
7424
7425 if (SGI_COMPAT (dynobj))
7426 mips_elf_hash_table (info)->compact_rel_size +=
7427 sizeof (Elf32_External_crinfo);
7428 break;
7429
7430 case R_MIPS_26:
7431 case R_MIPS_GPREL16:
7432 case R_MIPS_LITERAL:
7433 case R_MIPS_GPREL32:
7434 if (SGI_COMPAT (dynobj))
7435 mips_elf_hash_table (info)->compact_rel_size +=
7436 sizeof (Elf32_External_crinfo);
7437 break;
7438
7439 /* This relocation describes the C++ object vtable hierarchy.
7440 Reconstruct it for later use during GC. */
7441 case R_MIPS_GNU_VTINHERIT:
7442 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7443 return false;
7444 break;
7445
7446 /* This relocation describes which C++ vtable entries are actually
7447 used. Record for later use during GC. */
7448 case R_MIPS_GNU_VTENTRY:
7449 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7450 return false;
7451 break;
7452
7453 default:
7454 break;
7455 }
7456
7457 /* If this reloc is not a 16 bit call, and it has a global
7458 symbol, then we will need the fn_stub if there is one.
7459 References from a stub section do not count. */
7460 if (h != NULL
7461 && r_type != R_MIPS16_26
7462 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7463 sizeof FN_STUB - 1) != 0
7464 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7465 sizeof CALL_STUB - 1) != 0
7466 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7467 sizeof CALL_FP_STUB - 1) != 0)
7468 {
7469 struct mips_elf_link_hash_entry *mh;
7470
7471 mh = (struct mips_elf_link_hash_entry *) h;
7472 mh->need_fn_stub = true;
7473 }
7474 }
7475
7476 return true;
7477 }
7478
7479 /* Return the section that should be marked against GC for a given
7480 relocation. */
7481
7482 asection *
7483 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7484 bfd *abfd;
7485 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7486 Elf_Internal_Rela *rel;
7487 struct elf_link_hash_entry *h;
7488 Elf_Internal_Sym *sym;
7489 {
7490 /* ??? Do mips16 stub sections need to be handled special? */
7491
7492 if (h != NULL)
7493 {
7494 switch (ELF32_R_TYPE (rel->r_info))
7495 {
7496 case R_MIPS_GNU_VTINHERIT:
7497 case R_MIPS_GNU_VTENTRY:
7498 break;
7499
7500 default:
7501 switch (h->root.type)
7502 {
7503 case bfd_link_hash_defined:
7504 case bfd_link_hash_defweak:
7505 return h->root.u.def.section;
7506
7507 case bfd_link_hash_common:
7508 return h->root.u.c.p->section;
7509
7510 default:
7511 break;
7512 }
7513 }
7514 }
7515 else
7516 {
7517 if (!(elf_bad_symtab (abfd)
7518 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7519 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7520 && sym->st_shndx != SHN_COMMON))
7521 {
7522 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7523 }
7524 }
7525
7526 return NULL;
7527 }
7528
7529 /* Update the got entry reference counts for the section being removed. */
7530
7531 boolean
7532 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7533 bfd *abfd ATTRIBUTE_UNUSED;
7534 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7535 asection *sec ATTRIBUTE_UNUSED;
7536 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7537 {
7538 #if 0
7539 Elf_Internal_Shdr *symtab_hdr;
7540 struct elf_link_hash_entry **sym_hashes;
7541 bfd_signed_vma *local_got_refcounts;
7542 const Elf_Internal_Rela *rel, *relend;
7543 unsigned long r_symndx;
7544 struct elf_link_hash_entry *h;
7545
7546 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7547 sym_hashes = elf_sym_hashes (abfd);
7548 local_got_refcounts = elf_local_got_refcounts (abfd);
7549
7550 relend = relocs + sec->reloc_count;
7551 for (rel = relocs; rel < relend; rel++)
7552 switch (ELF32_R_TYPE (rel->r_info))
7553 {
7554 case R_MIPS_GOT16:
7555 case R_MIPS_CALL16:
7556 case R_MIPS_CALL_HI16:
7557 case R_MIPS_CALL_LO16:
7558 case R_MIPS_GOT_HI16:
7559 case R_MIPS_GOT_LO16:
7560 /* ??? It would seem that the existing MIPS code does no sort
7561 of reference counting or whatnot on its GOT and PLT entries,
7562 so it is not possible to garbage collect them at this time. */
7563 break;
7564
7565 default:
7566 break;
7567 }
7568 #endif
7569
7570 return true;
7571 }
7572
7573
7574 /* Adjust a symbol defined by a dynamic object and referenced by a
7575 regular object. The current definition is in some section of the
7576 dynamic object, but we're not including those sections. We have to
7577 change the definition to something the rest of the link can
7578 understand. */
7579
7580 boolean
7581 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7582 struct bfd_link_info *info;
7583 struct elf_link_hash_entry *h;
7584 {
7585 bfd *dynobj;
7586 struct mips_elf_link_hash_entry *hmips;
7587 asection *s;
7588
7589 dynobj = elf_hash_table (info)->dynobj;
7590
7591 /* Make sure we know what is going on here. */
7592 BFD_ASSERT (dynobj != NULL
7593 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7594 || h->weakdef != NULL
7595 || ((h->elf_link_hash_flags
7596 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7597 && (h->elf_link_hash_flags
7598 & ELF_LINK_HASH_REF_REGULAR) != 0
7599 && (h->elf_link_hash_flags
7600 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7601
7602 /* If this symbol is defined in a dynamic object, we need to copy
7603 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7604 file. */
7605 hmips = (struct mips_elf_link_hash_entry *) h;
7606 if (! info->relocateable
7607 && hmips->possibly_dynamic_relocs != 0
7608 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7609 mips_elf_allocate_dynamic_relocations (dynobj,
7610 hmips->possibly_dynamic_relocs);
7611
7612 /* For a function, create a stub, if needed. */
7613 if (h->type == STT_FUNC
7614 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7615 {
7616 if (! elf_hash_table (info)->dynamic_sections_created)
7617 return true;
7618
7619 /* If this symbol is not defined in a regular file, then set
7620 the symbol to the stub location. This is required to make
7621 function pointers compare as equal between the normal
7622 executable and the shared library. */
7623 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7624 {
7625 /* We need .stub section. */
7626 s = bfd_get_section_by_name (dynobj,
7627 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7628 BFD_ASSERT (s != NULL);
7629
7630 h->root.u.def.section = s;
7631 h->root.u.def.value = s->_raw_size;
7632
7633 /* XXX Write this stub address somewhere. */
7634 h->plt.offset = s->_raw_size;
7635
7636 /* Make room for this stub code. */
7637 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7638
7639 /* The last half word of the stub will be filled with the index
7640 of this symbol in .dynsym section. */
7641 return true;
7642 }
7643 }
7644
7645 /* If this is a weak symbol, and there is a real definition, the
7646 processor independent code will have arranged for us to see the
7647 real definition first, and we can just use the same value. */
7648 if (h->weakdef != NULL)
7649 {
7650 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7651 || h->weakdef->root.type == bfd_link_hash_defweak);
7652 h->root.u.def.section = h->weakdef->root.u.def.section;
7653 h->root.u.def.value = h->weakdef->root.u.def.value;
7654 return true;
7655 }
7656
7657 /* This is a reference to a symbol defined by a dynamic object which
7658 is not a function. */
7659
7660 return true;
7661 }
7662
7663 /* This function is called after all the input files have been read,
7664 and the input sections have been assigned to output sections. We
7665 check for any mips16 stub sections that we can discard. */
7666
7667 static boolean mips_elf_check_mips16_stubs
7668 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7669
7670 boolean
7671 _bfd_mips_elf_always_size_sections (output_bfd, info)
7672 bfd *output_bfd;
7673 struct bfd_link_info *info;
7674 {
7675 asection *ri;
7676
7677 /* The .reginfo section has a fixed size. */
7678 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7679 if (ri != NULL)
7680 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7681
7682 if (info->relocateable
7683 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7684 return true;
7685
7686 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7687 mips_elf_check_mips16_stubs,
7688 (PTR) NULL);
7689
7690 return true;
7691 }
7692
7693 /* Check the mips16 stubs for a particular symbol, and see if we can
7694 discard them. */
7695
7696 /*ARGSUSED*/
7697 static boolean
7698 mips_elf_check_mips16_stubs (h, data)
7699 struct mips_elf_link_hash_entry *h;
7700 PTR data ATTRIBUTE_UNUSED;
7701 {
7702 if (h->fn_stub != NULL
7703 && ! h->need_fn_stub)
7704 {
7705 /* We don't need the fn_stub; the only references to this symbol
7706 are 16 bit calls. Clobber the size to 0 to prevent it from
7707 being included in the link. */
7708 h->fn_stub->_raw_size = 0;
7709 h->fn_stub->_cooked_size = 0;
7710 h->fn_stub->flags &= ~ SEC_RELOC;
7711 h->fn_stub->reloc_count = 0;
7712 h->fn_stub->flags |= SEC_EXCLUDE;
7713 }
7714
7715 if (h->call_stub != NULL
7716 && h->root.other == STO_MIPS16)
7717 {
7718 /* We don't need the call_stub; this is a 16 bit function, so
7719 calls from other 16 bit functions are OK. Clobber the size
7720 to 0 to prevent it from being included in the link. */
7721 h->call_stub->_raw_size = 0;
7722 h->call_stub->_cooked_size = 0;
7723 h->call_stub->flags &= ~ SEC_RELOC;
7724 h->call_stub->reloc_count = 0;
7725 h->call_stub->flags |= SEC_EXCLUDE;
7726 }
7727
7728 if (h->call_fp_stub != NULL
7729 && h->root.other == STO_MIPS16)
7730 {
7731 /* We don't need the call_stub; this is a 16 bit function, so
7732 calls from other 16 bit functions are OK. Clobber the size
7733 to 0 to prevent it from being included in the link. */
7734 h->call_fp_stub->_raw_size = 0;
7735 h->call_fp_stub->_cooked_size = 0;
7736 h->call_fp_stub->flags &= ~ SEC_RELOC;
7737 h->call_fp_stub->reloc_count = 0;
7738 h->call_fp_stub->flags |= SEC_EXCLUDE;
7739 }
7740
7741 return true;
7742 }
7743
7744 /* Set the sizes of the dynamic sections. */
7745
7746 boolean
7747 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
7748 bfd *output_bfd;
7749 struct bfd_link_info *info;
7750 {
7751 bfd *dynobj;
7752 asection *s;
7753 boolean reltext;
7754 struct mips_got_info *g = NULL;
7755
7756 dynobj = elf_hash_table (info)->dynobj;
7757 BFD_ASSERT (dynobj != NULL);
7758
7759 if (elf_hash_table (info)->dynamic_sections_created)
7760 {
7761 /* Set the contents of the .interp section to the interpreter. */
7762 if (! info->shared)
7763 {
7764 s = bfd_get_section_by_name (dynobj, ".interp");
7765 BFD_ASSERT (s != NULL);
7766 s->_raw_size
7767 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7768 s->contents
7769 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7770 }
7771 }
7772
7773 /* The check_relocs and adjust_dynamic_symbol entry points have
7774 determined the sizes of the various dynamic sections. Allocate
7775 memory for them. */
7776 reltext = false;
7777 for (s = dynobj->sections; s != NULL; s = s->next)
7778 {
7779 const char *name;
7780 boolean strip;
7781
7782 /* It's OK to base decisions on the section name, because none
7783 of the dynobj section names depend upon the input files. */
7784 name = bfd_get_section_name (dynobj, s);
7785
7786 if ((s->flags & SEC_LINKER_CREATED) == 0)
7787 continue;
7788
7789 strip = false;
7790
7791 if (strncmp (name, ".rel", 4) == 0)
7792 {
7793 if (s->_raw_size == 0)
7794 {
7795 /* We only strip the section if the output section name
7796 has the same name. Otherwise, there might be several
7797 input sections for this output section. FIXME: This
7798 code is probably not needed these days anyhow, since
7799 the linker now does not create empty output sections. */
7800 if (s->output_section != NULL
7801 && strcmp (name,
7802 bfd_get_section_name (s->output_section->owner,
7803 s->output_section)) == 0)
7804 strip = true;
7805 }
7806 else
7807 {
7808 const char *outname;
7809 asection *target;
7810
7811 /* If this relocation section applies to a read only
7812 section, then we probably need a DT_TEXTREL entry.
7813 If the relocation section is .rel.dyn, we always
7814 assert a DT_TEXTREL entry rather than testing whether
7815 there exists a relocation to a read only section or
7816 not. */
7817 outname = bfd_get_section_name (output_bfd,
7818 s->output_section);
7819 target = bfd_get_section_by_name (output_bfd, outname + 4);
7820 if ((target != NULL
7821 && (target->flags & SEC_READONLY) != 0
7822 && (target->flags & SEC_ALLOC) != 0)
7823 || strcmp (outname,
7824 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
7825 reltext = true;
7826
7827 /* We use the reloc_count field as a counter if we need
7828 to copy relocs into the output file. */
7829 if (strcmp (name,
7830 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
7831 s->reloc_count = 0;
7832 }
7833 }
7834 else if (strncmp (name, ".got", 4) == 0)
7835 {
7836 int i;
7837 bfd_size_type loadable_size = 0;
7838 bfd_size_type local_gotno;
7839 struct _bfd *sub;
7840
7841 BFD_ASSERT (elf_section_data (s) != NULL);
7842 g = (struct mips_got_info *) elf_section_data (s)->tdata;
7843 BFD_ASSERT (g != NULL);
7844
7845 /* Calculate the total loadable size of the output. That
7846 will give us the maximum number of GOT_PAGE entries
7847 required. */
7848 for (sub = info->input_bfds; sub; sub = sub->link_next)
7849 {
7850 asection *subsection;
7851
7852 for (subsection = sub->sections;
7853 subsection;
7854 subsection = subsection->next)
7855 {
7856 if ((subsection->flags & SEC_ALLOC) == 0)
7857 continue;
7858 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
7859 }
7860 }
7861 loadable_size += MIPS_FUNCTION_STUB_SIZE;
7862
7863 /* Assume there are two loadable segments consisting of
7864 contiguous sections. Is 5 enough? */
7865 local_gotno = (loadable_size >> 16) + 5;
7866 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7867 /* It's possible we will need GOT_PAGE entries as well as
7868 GOT16 entries. Often, these will be able to share GOT
7869 entries, but not always. */
7870 local_gotno *= 2;
7871
7872 g->local_gotno += local_gotno;
7873 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7874
7875 /* There has to be a global GOT entry for every symbol with
7876 a dynamic symbol table index of DT_MIPS_GOTSYM or
7877 higher. Therefore, it make sense to put those symbols
7878 that need GOT entries at the end of the symbol table. We
7879 do that here. */
7880 if (!mips_elf_sort_hash_table (info, 1))
7881 return false;
7882
7883 if (g->global_gotsym != NULL)
7884 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7885 else
7886 /* If there are no global symbols, or none requiring
7887 relocations, then GLOBAL_GOTSYM will be NULL. */
7888 i = 0;
7889 g->global_gotno = i;
7890 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
7891 }
7892 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7893 {
7894 /* Irix rld assumes that the function stub isn't at the end
7895 of .text section. So put a dummy. XXX */
7896 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7897 }
7898 else if (! info->shared
7899 && ! mips_elf_hash_table (info)->use_rld_obj_head
7900 && strncmp (name, ".rld_map", 8) == 0)
7901 {
7902 /* We add a room for __rld_map. It will be filled in by the
7903 rtld to contain a pointer to the _r_debug structure. */
7904 s->_raw_size += 4;
7905 }
7906 else if (SGI_COMPAT (output_bfd)
7907 && strncmp (name, ".compact_rel", 12) == 0)
7908 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
7909 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
7910 == 0)
7911 s->_raw_size = (sizeof (Elf32_External_Msym)
7912 * (elf_hash_table (info)->dynsymcount
7913 + bfd_count_sections (output_bfd)));
7914 else if (strncmp (name, ".init", 5) != 0)
7915 {
7916 /* It's not one of our sections, so don't allocate space. */
7917 continue;
7918 }
7919
7920 if (strip)
7921 {
7922 _bfd_strip_section_from_output (s);
7923 continue;
7924 }
7925
7926 /* Allocate memory for the section contents. */
7927 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
7928 if (s->contents == NULL && s->_raw_size != 0)
7929 {
7930 bfd_set_error (bfd_error_no_memory);
7931 return false;
7932 }
7933 }
7934
7935 if (elf_hash_table (info)->dynamic_sections_created)
7936 {
7937 /* Add some entries to the .dynamic section. We fill in the
7938 values later, in elf_mips_finish_dynamic_sections, but we
7939 must add the entries now so that we get the correct size for
7940 the .dynamic section. The DT_DEBUG entry is filled in by the
7941 dynamic linker and used by the debugger. */
7942 if (! info->shared)
7943 {
7944 if (SGI_COMPAT (output_bfd))
7945 {
7946 /* SGI object has the equivalence of DT_DEBUG in the
7947 DT_MIPS_RLD_MAP entry. */
7948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7949 return false;
7950 }
7951 else
7952 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7953 return false;
7954 }
7955
7956 if (reltext)
7957 {
7958 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7959 return false;
7960 }
7961
7962 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7963 return false;
7964
7965 if (bfd_get_section_by_name (dynobj,
7966 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
7967 {
7968 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7969 return false;
7970
7971 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7972 return false;
7973
7974 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7975 return false;
7976 }
7977
7978 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
7979 return false;
7980
7981 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
7982 return false;
7983
7984 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
7985 {
7986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
7987 return false;
7988
7989 s = bfd_get_section_by_name (dynobj, ".liblist");
7990 BFD_ASSERT (s != NULL);
7991
7992 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
7993 return false;
7994 }
7995
7996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7997 return false;
7998
7999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8000 return false;
8001
8002 #if 0
8003 /* Time stamps in executable files are a bad idea. */
8004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8005 return false;
8006 #endif
8007
8008 #if 0 /* FIXME */
8009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8010 return false;
8011 #endif
8012
8013 #if 0 /* FIXME */
8014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8015 return false;
8016 #endif
8017
8018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8019 return false;
8020
8021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8022 return false;
8023
8024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8025 return false;
8026
8027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8028 return false;
8029
8030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8031 return false;
8032
8033 if (IRIX_COMPAT (dynobj) == ict_irix5
8034 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8035 return false;
8036
8037 if (IRIX_COMPAT (dynobj) == ict_irix6
8038 && (bfd_get_section_by_name
8039 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8040 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8041 return false;
8042
8043 if (bfd_get_section_by_name (dynobj,
8044 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8045 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8046 return false;
8047 }
8048
8049 return true;
8050 }
8051
8052 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8053 adjust it appropriately now. */
8054
8055 static void
8056 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8057 bfd *abfd ATTRIBUTE_UNUSED;
8058 const char *name;
8059 Elf_Internal_Sym *sym;
8060 {
8061 /* The linker script takes care of providing names and values for
8062 these, but we must place them into the right sections. */
8063 static const char* const text_section_symbols[] = {
8064 "_ftext",
8065 "_etext",
8066 "__dso_displacement",
8067 "__elf_header",
8068 "__program_header_table",
8069 NULL
8070 };
8071
8072 static const char* const data_section_symbols[] = {
8073 "_fdata",
8074 "_edata",
8075 "_end",
8076 "_fbss",
8077 NULL
8078 };
8079
8080 const char* const *p;
8081 int i;
8082
8083 for (i = 0; i < 2; ++i)
8084 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8085 *p;
8086 ++p)
8087 if (strcmp (*p, name) == 0)
8088 {
8089 /* All of these symbols are given type STT_SECTION by the
8090 IRIX6 linker. */
8091 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8092
8093 /* The IRIX linker puts these symbols in special sections. */
8094 if (i == 0)
8095 sym->st_shndx = SHN_MIPS_TEXT;
8096 else
8097 sym->st_shndx = SHN_MIPS_DATA;
8098
8099 break;
8100 }
8101 }
8102
8103 /* Finish up dynamic symbol handling. We set the contents of various
8104 dynamic sections here. */
8105
8106 boolean
8107 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8108 bfd *output_bfd;
8109 struct bfd_link_info *info;
8110 struct elf_link_hash_entry *h;
8111 Elf_Internal_Sym *sym;
8112 {
8113 bfd *dynobj;
8114 bfd_vma gval;
8115 asection *sgot;
8116 asection *smsym;
8117 struct mips_got_info *g;
8118 const char *name;
8119 struct mips_elf_link_hash_entry *mh;
8120
8121 dynobj = elf_hash_table (info)->dynobj;
8122 gval = sym->st_value;
8123 mh = (struct mips_elf_link_hash_entry *) h;
8124
8125 if (h->plt.offset != (bfd_vma) -1)
8126 {
8127 asection *s;
8128 bfd_byte *p;
8129 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8130
8131 /* This symbol has a stub. Set it up. */
8132
8133 BFD_ASSERT (h->dynindx != -1);
8134
8135 s = bfd_get_section_by_name (dynobj,
8136 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8137 BFD_ASSERT (s != NULL);
8138
8139 /* Fill the stub. */
8140 p = stub;
8141 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8142 p += 4;
8143 bfd_put_32 (output_bfd, STUB_MOVE, p);
8144 p += 4;
8145
8146 /* FIXME: Can h->dynindex be more than 64K? */
8147 if (h->dynindx & 0xffff0000)
8148 return false;
8149
8150 bfd_put_32 (output_bfd, STUB_JALR, p);
8151 p += 4;
8152 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8153
8154 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8155 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8156
8157 /* Mark the symbol as undefined. plt.offset != -1 occurs
8158 only for the referenced symbol. */
8159 sym->st_shndx = SHN_UNDEF;
8160
8161 /* The run-time linker uses the st_value field of the symbol
8162 to reset the global offset table entry for this external
8163 to its stub address when unlinking a shared object. */
8164 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8165 sym->st_value = gval;
8166 }
8167
8168 BFD_ASSERT (h->dynindx != -1);
8169
8170 sgot = mips_elf_got_section (dynobj);
8171 BFD_ASSERT (sgot != NULL);
8172 BFD_ASSERT (elf_section_data (sgot) != NULL);
8173 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8174 BFD_ASSERT (g != NULL);
8175
8176 /* Run through the global symbol table, creating GOT entries for all
8177 the symbols that need them. */
8178 if (g->global_gotsym != NULL
8179 && h->dynindx >= g->global_gotsym->dynindx)
8180 {
8181 bfd_vma offset;
8182 bfd_vma value;
8183
8184 if (sym->st_value)
8185 value = sym->st_value;
8186 else
8187 /* For an entity defined in a shared object, this will be
8188 NULL. (For functions in shared objects for
8189 which we have created stubs, ST_VALUE will be non-NULL.
8190 That's because such the functions are now no longer defined
8191 in a shared object.) */
8192 value = h->root.u.def.value;
8193
8194 offset = mips_elf_global_got_index (dynobj, h);
8195 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8196 }
8197
8198 /* Create a .msym entry, if appropriate. */
8199 smsym = bfd_get_section_by_name (dynobj,
8200 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8201 if (smsym)
8202 {
8203 Elf32_Internal_Msym msym;
8204
8205 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8206 /* It is undocumented what the `1' indicates, but IRIX6 uses
8207 this value. */
8208 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8209 bfd_mips_elf_swap_msym_out
8210 (dynobj, &msym,
8211 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8212 }
8213
8214 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8215 name = h->root.root.string;
8216 if (strcmp (name, "_DYNAMIC") == 0
8217 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8218 sym->st_shndx = SHN_ABS;
8219 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8220 {
8221 sym->st_shndx = SHN_ABS;
8222 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8223 sym->st_value = 1;
8224 }
8225 else if (SGI_COMPAT (output_bfd))
8226 {
8227 if (strcmp (name, "_gp_disp") == 0)
8228 {
8229 sym->st_shndx = SHN_ABS;
8230 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8231 sym->st_value = elf_gp (output_bfd);
8232 }
8233 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8234 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8235 {
8236 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8237 sym->st_other = STO_PROTECTED;
8238 sym->st_value = 0;
8239 sym->st_shndx = SHN_MIPS_DATA;
8240 }
8241 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8242 {
8243 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8244 sym->st_other = STO_PROTECTED;
8245 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8246 sym->st_shndx = SHN_ABS;
8247 }
8248 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8249 {
8250 if (h->type == STT_FUNC)
8251 sym->st_shndx = SHN_MIPS_TEXT;
8252 else if (h->type == STT_OBJECT)
8253 sym->st_shndx = SHN_MIPS_DATA;
8254 }
8255 }
8256
8257 /* Handle the IRIX6-specific symbols. */
8258 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8259 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8260
8261 if (SGI_COMPAT (output_bfd)
8262 && ! info->shared)
8263 {
8264 if (! mips_elf_hash_table (info)->use_rld_obj_head
8265 && strcmp (name, "__rld_map") == 0)
8266 {
8267 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8268 BFD_ASSERT (s != NULL);
8269 sym->st_value = s->output_section->vma + s->output_offset;
8270 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8271 if (mips_elf_hash_table (info)->rld_value == 0)
8272 mips_elf_hash_table (info)->rld_value = sym->st_value;
8273 }
8274 else if (mips_elf_hash_table (info)->use_rld_obj_head
8275 && strcmp (name, "__rld_obj_head") == 0)
8276 {
8277 /* IRIX6 does not use a .rld_map section. */
8278 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8279 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8280 != NULL);
8281 mips_elf_hash_table (info)->rld_value = sym->st_value;
8282 }
8283 }
8284
8285 /* If this is a mips16 symbol, force the value to be even. */
8286 if (sym->st_other == STO_MIPS16
8287 && (sym->st_value & 1) != 0)
8288 --sym->st_value;
8289
8290 return true;
8291 }
8292
8293 /* Finish up the dynamic sections. */
8294
8295 boolean
8296 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8297 bfd *output_bfd;
8298 struct bfd_link_info *info;
8299 {
8300 bfd *dynobj;
8301 asection *sdyn;
8302 asection *sgot;
8303 struct mips_got_info *g;
8304
8305 dynobj = elf_hash_table (info)->dynobj;
8306
8307 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8308
8309 sgot = mips_elf_got_section (dynobj);
8310 if (sgot == NULL)
8311 g = NULL;
8312 else
8313 {
8314 BFD_ASSERT (elf_section_data (sgot) != NULL);
8315 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8316 BFD_ASSERT (g != NULL);
8317 }
8318
8319 if (elf_hash_table (info)->dynamic_sections_created)
8320 {
8321 bfd_byte *b;
8322
8323 BFD_ASSERT (sdyn != NULL);
8324 BFD_ASSERT (g != NULL);
8325
8326 for (b = sdyn->contents;
8327 b < sdyn->contents + sdyn->_raw_size;
8328 b += MIPS_ELF_DYN_SIZE (dynobj))
8329 {
8330 Elf_Internal_Dyn dyn;
8331 const char *name;
8332 size_t elemsize;
8333 asection *s;
8334 boolean swap_out_p;
8335
8336 /* Read in the current dynamic entry. */
8337 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8338
8339 /* Assume that we're going to modify it and write it out. */
8340 swap_out_p = true;
8341
8342 switch (dyn.d_tag)
8343 {
8344 case DT_RELENT:
8345 s = (bfd_get_section_by_name
8346 (dynobj,
8347 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8348 BFD_ASSERT (s != NULL);
8349 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8350 break;
8351
8352 case DT_STRSZ:
8353 /* Rewrite DT_STRSZ. */
8354 dyn.d_un.d_val =
8355 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8356 break;
8357
8358 case DT_PLTGOT:
8359 name = ".got";
8360 goto get_vma;
8361 case DT_MIPS_CONFLICT:
8362 name = ".conflict";
8363 goto get_vma;
8364 case DT_MIPS_LIBLIST:
8365 name = ".liblist";
8366 get_vma:
8367 s = bfd_get_section_by_name (output_bfd, name);
8368 BFD_ASSERT (s != NULL);
8369 dyn.d_un.d_ptr = s->vma;
8370 break;
8371
8372 case DT_MIPS_RLD_VERSION:
8373 dyn.d_un.d_val = 1; /* XXX */
8374 break;
8375
8376 case DT_MIPS_FLAGS:
8377 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8378 break;
8379
8380 case DT_MIPS_CONFLICTNO:
8381 name = ".conflict";
8382 elemsize = sizeof (Elf32_Conflict);
8383 goto set_elemno;
8384
8385 case DT_MIPS_LIBLISTNO:
8386 name = ".liblist";
8387 elemsize = sizeof (Elf32_Lib);
8388 set_elemno:
8389 s = bfd_get_section_by_name (output_bfd, name);
8390 if (s != NULL)
8391 {
8392 if (s->_cooked_size != 0)
8393 dyn.d_un.d_val = s->_cooked_size / elemsize;
8394 else
8395 dyn.d_un.d_val = s->_raw_size / elemsize;
8396 }
8397 else
8398 dyn.d_un.d_val = 0;
8399 break;
8400
8401 case DT_MIPS_TIME_STAMP:
8402 time ((time_t *) &dyn.d_un.d_val);
8403 break;
8404
8405 case DT_MIPS_ICHECKSUM:
8406 /* XXX FIXME: */
8407 swap_out_p = false;
8408 break;
8409
8410 case DT_MIPS_IVERSION:
8411 /* XXX FIXME: */
8412 swap_out_p = false;
8413 break;
8414
8415 case DT_MIPS_BASE_ADDRESS:
8416 s = output_bfd->sections;
8417 BFD_ASSERT (s != NULL);
8418 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8419 break;
8420
8421 case DT_MIPS_LOCAL_GOTNO:
8422 dyn.d_un.d_val = g->local_gotno;
8423 break;
8424
8425 case DT_MIPS_UNREFEXTNO:
8426 /* The index into the dynamic symbol table which is the
8427 entry of the first external symbol that is not
8428 referenced within the same object. */
8429 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8430 break;
8431
8432 case DT_MIPS_GOTSYM:
8433 if (g->global_gotsym)
8434 {
8435 dyn.d_un.d_val = g->global_gotsym->dynindx;
8436 break;
8437 }
8438 /* In case if we don't have global got symbols we default
8439 to setting DT_MIPS_GOTSYM to the same value as
8440 DT_MIPS_SYMTABNO, so we just fall through. */
8441
8442 case DT_MIPS_SYMTABNO:
8443 name = ".dynsym";
8444 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8445 s = bfd_get_section_by_name (output_bfd, name);
8446 BFD_ASSERT (s != NULL);
8447
8448 if (s->_cooked_size != 0)
8449 dyn.d_un.d_val = s->_cooked_size / elemsize;
8450 else
8451 dyn.d_un.d_val = s->_raw_size / elemsize;
8452 break;
8453
8454 case DT_MIPS_HIPAGENO:
8455 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8456 break;
8457
8458 case DT_MIPS_RLD_MAP:
8459 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8460 break;
8461
8462 case DT_MIPS_OPTIONS:
8463 s = (bfd_get_section_by_name
8464 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8465 dyn.d_un.d_ptr = s->vma;
8466 break;
8467
8468 case DT_MIPS_MSYM:
8469 s = (bfd_get_section_by_name
8470 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8471 dyn.d_un.d_ptr = s->vma;
8472 break;
8473
8474 default:
8475 swap_out_p = false;
8476 break;
8477 }
8478
8479 if (swap_out_p)
8480 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8481 (dynobj, &dyn, b);
8482 }
8483 }
8484
8485 /* The first entry of the global offset table will be filled at
8486 runtime. The second entry will be used by some runtime loaders.
8487 This isn't the case of Irix rld. */
8488 if (sgot != NULL && sgot->_raw_size > 0)
8489 {
8490 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8491 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8492 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8493 }
8494
8495 if (sgot != NULL)
8496 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8497 = MIPS_ELF_GOT_SIZE (output_bfd);
8498
8499 {
8500 asection *smsym;
8501 asection *s;
8502 Elf32_compact_rel cpt;
8503
8504 /* ??? The section symbols for the output sections were set up in
8505 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8506 symbols. Should we do so? */
8507
8508 smsym = bfd_get_section_by_name (dynobj,
8509 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8510 if (smsym != NULL)
8511 {
8512 Elf32_Internal_Msym msym;
8513
8514 msym.ms_hash_value = 0;
8515 msym.ms_info = ELF32_MS_INFO (0, 1);
8516
8517 for (s = output_bfd->sections; s != NULL; s = s->next)
8518 {
8519 long dynindx = elf_section_data (s)->dynindx;
8520
8521 bfd_mips_elf_swap_msym_out
8522 (output_bfd, &msym,
8523 (((Elf32_External_Msym *) smsym->contents)
8524 + dynindx));
8525 }
8526 }
8527
8528 if (SGI_COMPAT (output_bfd))
8529 {
8530 /* Write .compact_rel section out. */
8531 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8532 if (s != NULL)
8533 {
8534 cpt.id1 = 1;
8535 cpt.num = s->reloc_count;
8536 cpt.id2 = 2;
8537 cpt.offset = (s->output_section->filepos
8538 + sizeof (Elf32_External_compact_rel));
8539 cpt.reserved0 = 0;
8540 cpt.reserved1 = 0;
8541 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8542 ((Elf32_External_compact_rel *)
8543 s->contents));
8544
8545 /* Clean up a dummy stub function entry in .text. */
8546 s = bfd_get_section_by_name (dynobj,
8547 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8548 if (s != NULL)
8549 {
8550 file_ptr dummy_offset;
8551
8552 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8553 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8554 memset (s->contents + dummy_offset, 0,
8555 MIPS_FUNCTION_STUB_SIZE);
8556 }
8557 }
8558 }
8559
8560 /* Clean up a first relocation in .rel.dyn. */
8561 s = bfd_get_section_by_name (dynobj,
8562 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8563 if (s != NULL && s->_raw_size > 0)
8564 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8565 }
8566
8567 return true;
8568 }
8569 \f
8570 /* This is almost identical to bfd_generic_get_... except that some
8571 MIPS relocations need to be handled specially. Sigh. */
8572
8573 static bfd_byte *
8574 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8575 relocateable, symbols)
8576 bfd *abfd;
8577 struct bfd_link_info *link_info;
8578 struct bfd_link_order *link_order;
8579 bfd_byte *data;
8580 boolean relocateable;
8581 asymbol **symbols;
8582 {
8583 /* Get enough memory to hold the stuff */
8584 bfd *input_bfd = link_order->u.indirect.section->owner;
8585 asection *input_section = link_order->u.indirect.section;
8586
8587 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8588 arelent **reloc_vector = NULL;
8589 long reloc_count;
8590
8591 if (reloc_size < 0)
8592 goto error_return;
8593
8594 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8595 if (reloc_vector == NULL && reloc_size != 0)
8596 goto error_return;
8597
8598 /* read in the section */
8599 if (!bfd_get_section_contents (input_bfd,
8600 input_section,
8601 (PTR) data,
8602 0,
8603 input_section->_raw_size))
8604 goto error_return;
8605
8606 /* We're not relaxing the section, so just copy the size info */
8607 input_section->_cooked_size = input_section->_raw_size;
8608 input_section->reloc_done = true;
8609
8610 reloc_count = bfd_canonicalize_reloc (input_bfd,
8611 input_section,
8612 reloc_vector,
8613 symbols);
8614 if (reloc_count < 0)
8615 goto error_return;
8616
8617 if (reloc_count > 0)
8618 {
8619 arelent **parent;
8620 /* for mips */
8621 int gp_found;
8622 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8623
8624 {
8625 struct bfd_hash_entry *h;
8626 struct bfd_link_hash_entry *lh;
8627 /* Skip all this stuff if we aren't mixing formats. */
8628 if (abfd && input_bfd
8629 && abfd->xvec == input_bfd->xvec)
8630 lh = 0;
8631 else
8632 {
8633 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8634 lh = (struct bfd_link_hash_entry *) h;
8635 }
8636 lookup:
8637 if (lh)
8638 {
8639 switch (lh->type)
8640 {
8641 case bfd_link_hash_undefined:
8642 case bfd_link_hash_undefweak:
8643 case bfd_link_hash_common:
8644 gp_found = 0;
8645 break;
8646 case bfd_link_hash_defined:
8647 case bfd_link_hash_defweak:
8648 gp_found = 1;
8649 gp = lh->u.def.value;
8650 break;
8651 case bfd_link_hash_indirect:
8652 case bfd_link_hash_warning:
8653 lh = lh->u.i.link;
8654 /* @@FIXME ignoring warning for now */
8655 goto lookup;
8656 case bfd_link_hash_new:
8657 default:
8658 abort ();
8659 }
8660 }
8661 else
8662 gp_found = 0;
8663 }
8664 /* end mips */
8665 for (parent = reloc_vector; *parent != (arelent *) NULL;
8666 parent++)
8667 {
8668 char *error_message = (char *) NULL;
8669 bfd_reloc_status_type r;
8670
8671 /* Specific to MIPS: Deal with relocation types that require
8672 knowing the gp of the output bfd. */
8673 asymbol *sym = *(*parent)->sym_ptr_ptr;
8674 if (bfd_is_abs_section (sym->section) && abfd)
8675 {
8676 /* The special_function wouldn't get called anyways. */
8677 }
8678 else if (!gp_found)
8679 {
8680 /* The gp isn't there; let the special function code
8681 fall over on its own. */
8682 }
8683 else if ((*parent)->howto->special_function
8684 == _bfd_mips_elf_gprel16_reloc)
8685 {
8686 /* bypass special_function call */
8687 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8688 relocateable, (PTR) data, gp);
8689 goto skip_bfd_perform_relocation;
8690 }
8691 /* end mips specific stuff */
8692
8693 r = bfd_perform_relocation (input_bfd,
8694 *parent,
8695 (PTR) data,
8696 input_section,
8697 relocateable ? abfd : (bfd *) NULL,
8698 &error_message);
8699 skip_bfd_perform_relocation:
8700
8701 if (relocateable)
8702 {
8703 asection *os = input_section->output_section;
8704
8705 /* A partial link, so keep the relocs */
8706 os->orelocation[os->reloc_count] = *parent;
8707 os->reloc_count++;
8708 }
8709
8710 if (r != bfd_reloc_ok)
8711 {
8712 switch (r)
8713 {
8714 case bfd_reloc_undefined:
8715 if (!((*link_info->callbacks->undefined_symbol)
8716 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8717 input_bfd, input_section, (*parent)->address)))
8718 goto error_return;
8719 break;
8720 case bfd_reloc_dangerous:
8721 BFD_ASSERT (error_message != (char *) NULL);
8722 if (!((*link_info->callbacks->reloc_dangerous)
8723 (link_info, error_message, input_bfd, input_section,
8724 (*parent)->address)))
8725 goto error_return;
8726 break;
8727 case bfd_reloc_overflow:
8728 if (!((*link_info->callbacks->reloc_overflow)
8729 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8730 (*parent)->howto->name, (*parent)->addend,
8731 input_bfd, input_section, (*parent)->address)))
8732 goto error_return;
8733 break;
8734 case bfd_reloc_outofrange:
8735 default:
8736 abort ();
8737 break;
8738 }
8739
8740 }
8741 }
8742 }
8743 if (reloc_vector != NULL)
8744 free (reloc_vector);
8745 return data;
8746
8747 error_return:
8748 if (reloc_vector != NULL)
8749 free (reloc_vector);
8750 return NULL;
8751 }
8752 #define bfd_elf32_bfd_get_relocated_section_contents \
8753 elf32_mips_get_relocated_section_contents
8754 \f
8755 /* ECOFF swapping routines. These are used when dealing with the
8756 .mdebug section, which is in the ECOFF debugging format. */
8757 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8758 {
8759 /* Symbol table magic number. */
8760 magicSym,
8761 /* Alignment of debugging information. E.g., 4. */
8762 4,
8763 /* Sizes of external symbolic information. */
8764 sizeof (struct hdr_ext),
8765 sizeof (struct dnr_ext),
8766 sizeof (struct pdr_ext),
8767 sizeof (struct sym_ext),
8768 sizeof (struct opt_ext),
8769 sizeof (struct fdr_ext),
8770 sizeof (struct rfd_ext),
8771 sizeof (struct ext_ext),
8772 /* Functions to swap in external symbolic data. */
8773 ecoff_swap_hdr_in,
8774 ecoff_swap_dnr_in,
8775 ecoff_swap_pdr_in,
8776 ecoff_swap_sym_in,
8777 ecoff_swap_opt_in,
8778 ecoff_swap_fdr_in,
8779 ecoff_swap_rfd_in,
8780 ecoff_swap_ext_in,
8781 _bfd_ecoff_swap_tir_in,
8782 _bfd_ecoff_swap_rndx_in,
8783 /* Functions to swap out external symbolic data. */
8784 ecoff_swap_hdr_out,
8785 ecoff_swap_dnr_out,
8786 ecoff_swap_pdr_out,
8787 ecoff_swap_sym_out,
8788 ecoff_swap_opt_out,
8789 ecoff_swap_fdr_out,
8790 ecoff_swap_rfd_out,
8791 ecoff_swap_ext_out,
8792 _bfd_ecoff_swap_tir_out,
8793 _bfd_ecoff_swap_rndx_out,
8794 /* Function to read in symbolic data. */
8795 _bfd_mips_elf_read_ecoff_info
8796 };
8797 \f
8798 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8799 #define TARGET_LITTLE_NAME "elf32-littlemips"
8800 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8801 #define TARGET_BIG_NAME "elf32-bigmips"
8802 #define ELF_ARCH bfd_arch_mips
8803 #define ELF_MACHINE_CODE EM_MIPS
8804
8805 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8806 a value of 0x1000, and we are compatible. */
8807 #define ELF_MAXPAGESIZE 0x1000
8808
8809 #define elf_backend_collect true
8810 #define elf_backend_type_change_ok true
8811 #define elf_backend_can_gc_sections true
8812 #define elf_info_to_howto mips_info_to_howto_rela
8813 #define elf_info_to_howto_rel mips_info_to_howto_rel
8814 #define elf_backend_sym_is_global mips_elf_sym_is_global
8815 #define elf_backend_object_p _bfd_mips_elf_object_p
8816 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
8817 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8818 #define elf_backend_section_from_bfd_section \
8819 _bfd_mips_elf_section_from_bfd_section
8820 #define elf_backend_section_processing _bfd_mips_elf_section_processing
8821 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8822 #define elf_backend_additional_program_headers \
8823 _bfd_mips_elf_additional_program_headers
8824 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
8825 #define elf_backend_final_write_processing \
8826 _bfd_mips_elf_final_write_processing
8827 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
8828 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
8829 #define elf_backend_create_dynamic_sections \
8830 _bfd_mips_elf_create_dynamic_sections
8831 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
8832 #define elf_backend_adjust_dynamic_symbol \
8833 _bfd_mips_elf_adjust_dynamic_symbol
8834 #define elf_backend_always_size_sections \
8835 _bfd_mips_elf_always_size_sections
8836 #define elf_backend_size_dynamic_sections \
8837 _bfd_mips_elf_size_dynamic_sections
8838 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
8839 #define elf_backend_link_output_symbol_hook \
8840 _bfd_mips_elf_link_output_symbol_hook
8841 #define elf_backend_finish_dynamic_symbol \
8842 _bfd_mips_elf_finish_dynamic_symbol
8843 #define elf_backend_finish_dynamic_sections \
8844 _bfd_mips_elf_finish_dynamic_sections
8845 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
8846 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
8847
8848 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
8849 #define elf_backend_plt_header_size 0
8850
8851 #define bfd_elf32_bfd_is_local_label_name \
8852 mips_elf_is_local_label_name
8853 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
8854 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
8855 #define bfd_elf32_bfd_link_hash_table_create \
8856 _bfd_mips_elf_link_hash_table_create
8857 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
8858 #define bfd_elf32_bfd_copy_private_bfd_data \
8859 _bfd_mips_elf_copy_private_bfd_data
8860 #define bfd_elf32_bfd_merge_private_bfd_data \
8861 _bfd_mips_elf_merge_private_bfd_data
8862 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
8863 #define bfd_elf32_bfd_print_private_bfd_data \
8864 _bfd_mips_elf_print_private_bfd_data
8865 #include "elf32-target.h"