b90178e519b0620040f7ce35be14be0b5a850bf3
[binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* The index of the first dynamic relocation (in the .rel.dyn
80 section) against this symbol. */
81 unsigned int min_dyn_reloc_index;
82
83 /* We must not create a stub for a symbol that has relocations
84 related to taking the function's address, i.e. any but
85 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
86 p. 4-20. */
87 boolean no_fn_stub;
88
89 /* If there is a stub that 32 bit functions should use to call this
90 16 bit function, this points to the section containing the stub. */
91 asection *fn_stub;
92
93 /* Whether we need the fn_stub; this is set if this symbol appears
94 in any relocs other than a 16 bit call. */
95 boolean need_fn_stub;
96
97 /* If there is a stub that 16 bit functions should use to call this
98 32 bit function, this points to the section containing the stub. */
99 asection *call_stub;
100
101 /* This is like the call_stub field, but it is used if the function
102 being called returns a floating point value. */
103 asection *call_fp_stub;
104 };
105
106 static bfd_reloc_status_type mips32_64bit_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
109 PARAMS ((bfd *, bfd_reloc_code_real_type));
110 static reloc_howto_type *mips_rtype_to_howto
111 PARAMS ((unsigned int));
112 static void mips_info_to_howto_rel
113 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
114 static void mips_info_to_howto_rela
115 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
116 static void bfd_mips_elf32_swap_gptab_in
117 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
118 static void bfd_mips_elf32_swap_gptab_out
119 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
120 #if 0
121 static void bfd_mips_elf_swap_msym_in
122 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
123 #endif
124 static void bfd_mips_elf_swap_msym_out
125 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
126 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
127 static boolean mips_elf_create_procedure_table
128 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
129 struct ecoff_debug_info *));
130 static INLINE int elf_mips_isa PARAMS ((flagword));
131 static INLINE int elf_mips_mach PARAMS ((flagword));
132 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
133 static boolean mips_elf_is_local_label_name
134 PARAMS ((bfd *, const char *));
135 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
136 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
137 static int gptab_compare PARAMS ((const void *, const void *));
138 static bfd_reloc_status_type mips16_jump_reloc
139 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
140 static bfd_reloc_status_type mips16_gprel_reloc
141 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
142 static boolean mips_elf_create_compact_rel_section
143 PARAMS ((bfd *, struct bfd_link_info *));
144 static boolean mips_elf_create_got_section
145 PARAMS ((bfd *, struct bfd_link_info *));
146 static bfd_reloc_status_type mips_elf_final_gp
147 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
148 static bfd_byte *elf32_mips_get_relocated_section_contents
149 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
150 bfd_byte *, boolean, asymbol **));
151 static asection *mips_elf_create_msym_section
152 PARAMS ((bfd *));
153 static void mips_elf_irix6_finish_dynamic_symbol
154 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
155 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
156 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
157 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
158 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
159 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
160 static bfd_vma mips_elf_global_got_index
161 PARAMS ((bfd *, struct elf_link_hash_entry *));
162 static bfd_vma mips_elf_local_got_index
163 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
164 static bfd_vma mips_elf_got_offset_from_index
165 PARAMS ((bfd *, bfd *, bfd_vma));
166 static boolean mips_elf_record_global_got_symbol
167 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
168 struct mips_got_info *));
169 static bfd_vma mips_elf_got_page
170 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
171 static const Elf_Internal_Rela *mips_elf_next_relocation
172 PARAMS ((unsigned int, const Elf_Internal_Rela *,
173 const Elf_Internal_Rela *));
174 static bfd_reloc_status_type mips_elf_calculate_relocation
175 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
176 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
177 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
178 boolean *));
179 static bfd_vma mips_elf_obtain_contents
180 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
181 static boolean mips_elf_perform_relocation
182 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
183 const Elf_Internal_Rela *, bfd_vma,
184 bfd *, asection *, bfd_byte *, boolean));
185 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
186 static boolean mips_elf_sort_hash_table_f
187 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
188 static boolean mips_elf_sort_hash_table
189 PARAMS ((struct bfd_link_info *, unsigned long));
190 static asection * mips_elf_got_section PARAMS ((bfd *));
191 static struct mips_got_info *mips_elf_got_info
192 PARAMS ((bfd *, asection **));
193 static boolean mips_elf_local_relocation_p
194 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
195 static bfd_vma mips_elf_create_local_got_entry
196 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
197 static bfd_vma mips_elf_got16_entry
198 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
199 static boolean mips_elf_create_dynamic_relocation
200 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
201 struct mips_elf_link_hash_entry *, asection *,
202 bfd_vma, bfd_vma *, asection *));
203 static void mips_elf_allocate_dynamic_relocations
204 PARAMS ((bfd *, unsigned int));
205 static boolean mips_elf_stub_section_p
206 PARAMS ((bfd *, asection *));
207 static int sort_dynamic_relocs
208 PARAMS ((const void *, const void *));
209
210 extern const bfd_target bfd_elf32_tradbigmips_vec;
211 extern const bfd_target bfd_elf32_tradlittlemips_vec;
212 extern const bfd_target bfd_elf64_tradbigmips_vec;
213 extern const bfd_target bfd_elf64_tradlittlemips_vec;
214
215 /* The level of IRIX compatibility we're striving for. */
216
217 typedef enum {
218 ict_none,
219 ict_irix5,
220 ict_irix6
221 } irix_compat_t;
222
223 /* This will be used when we sort the dynamic relocation records. */
224 static bfd *reldyn_sorting_bfd;
225
226 /* Nonzero if ABFD is using the N32 ABI. */
227
228 #define ABI_N32_P(abfd) \
229 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
230
231 /* Nonzero if ABFD is using the 64-bit ABI. */
232 #define ABI_64_P(abfd) \
233 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
234
235 /* Depending on the target vector we generate some version of Irix
236 executables or "normal" MIPS ELF ABI executables. */
237
238 #define IRIX_COMPAT(abfd) \
239 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
240 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
241 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
242 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
243 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
244
245 /* Whether we are trying to be compatible with IRIX at all. */
246
247 #define SGI_COMPAT(abfd) \
248 (IRIX_COMPAT (abfd) != ict_none)
249
250 /* The name of the msym section. */
251 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
252
253 /* The name of the srdata section. */
254 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
255
256 /* The name of the options section. */
257 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
258 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
259
260 /* The name of the stub section. */
261 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
262 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
263
264 /* The name of the dynamic relocation section. */
265 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
266
267 /* The size of an external REL relocation. */
268 #define MIPS_ELF_REL_SIZE(abfd) \
269 (get_elf_backend_data (abfd)->s->sizeof_rel)
270
271 /* The size of an external dynamic table entry. */
272 #define MIPS_ELF_DYN_SIZE(abfd) \
273 (get_elf_backend_data (abfd)->s->sizeof_dyn)
274
275 /* The size of a GOT entry. */
276 #define MIPS_ELF_GOT_SIZE(abfd) \
277 (get_elf_backend_data (abfd)->s->arch_size / 8)
278
279 /* The size of a symbol-table entry. */
280 #define MIPS_ELF_SYM_SIZE(abfd) \
281 (get_elf_backend_data (abfd)->s->sizeof_sym)
282
283 /* The default alignment for sections, as a power of two. */
284 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
285 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
286
287 /* Get word-sized data. */
288 #define MIPS_ELF_GET_WORD(abfd, ptr) \
289 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
290
291 /* Put out word-sized data. */
292 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
293 (ABI_64_P (abfd) \
294 ? bfd_put_64 (abfd, val, ptr) \
295 : bfd_put_32 (abfd, val, ptr))
296
297 /* Add a dynamic symbol table-entry. */
298 #ifdef BFD64
299 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
300 (ABI_64_P (elf_hash_table (info)->dynobj) \
301 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
302 : bfd_elf32_add_dynamic_entry (info, tag, val))
303 #else
304 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
305 (ABI_64_P (elf_hash_table (info)->dynobj) \
306 ? (abort (), false) \
307 : bfd_elf32_add_dynamic_entry (info, tag, val))
308 #endif
309
310 /* The number of local .got entries we reserve. */
311 #define MIPS_RESERVED_GOTNO (2)
312
313 /* Instructions which appear in a stub. For some reason the stub is
314 slightly different on an SGI system. */
315 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
316 #define STUB_LW(abfd) \
317 (SGI_COMPAT (abfd) \
318 ? (ABI_64_P (abfd) \
319 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
320 : 0x8f998010) /* lw t9,0x8010(gp) */ \
321 : 0x8f998010) /* lw t9,0x8000(gp) */
322 #define STUB_MOVE(abfd) \
323 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
324 #define STUB_JALR 0x0320f809 /* jal t9 */
325 #define STUB_LI16(abfd) \
326 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
327 #define MIPS_FUNCTION_STUB_SIZE (16)
328
329 #if 0
330 /* We no longer try to identify particular sections for the .dynsym
331 section. When we do, we wind up crashing if there are other random
332 sections with relocations. */
333
334 /* Names of sections which appear in the .dynsym section in an Irix 5
335 executable. */
336
337 static const char * const mips_elf_dynsym_sec_names[] =
338 {
339 ".text",
340 ".init",
341 ".fini",
342 ".data",
343 ".rodata",
344 ".sdata",
345 ".sbss",
346 ".bss",
347 NULL
348 };
349
350 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
351 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
352
353 /* The number of entries in mips_elf_dynsym_sec_names which go in the
354 text segment. */
355
356 #define MIPS_TEXT_DYNSYM_SECNO (3)
357
358 #endif /* 0 */
359
360 /* The names of the runtime procedure table symbols used on Irix 5. */
361
362 static const char * const mips_elf_dynsym_rtproc_names[] =
363 {
364 "_procedure_table",
365 "_procedure_string_table",
366 "_procedure_table_size",
367 NULL
368 };
369
370 /* These structures are used to generate the .compact_rel section on
371 Irix 5. */
372
373 typedef struct
374 {
375 unsigned long id1; /* Always one? */
376 unsigned long num; /* Number of compact relocation entries. */
377 unsigned long id2; /* Always two? */
378 unsigned long offset; /* The file offset of the first relocation. */
379 unsigned long reserved0; /* Zero? */
380 unsigned long reserved1; /* Zero? */
381 } Elf32_compact_rel;
382
383 typedef struct
384 {
385 bfd_byte id1[4];
386 bfd_byte num[4];
387 bfd_byte id2[4];
388 bfd_byte offset[4];
389 bfd_byte reserved0[4];
390 bfd_byte reserved1[4];
391 } Elf32_External_compact_rel;
392
393 typedef struct
394 {
395 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
396 unsigned int rtype : 4; /* Relocation types. See below. */
397 unsigned int dist2to : 8;
398 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
399 unsigned long konst; /* KONST field. See below. */
400 unsigned long vaddr; /* VADDR to be relocated. */
401 } Elf32_crinfo;
402
403 typedef struct
404 {
405 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
406 unsigned int rtype : 4; /* Relocation types. See below. */
407 unsigned int dist2to : 8;
408 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
409 unsigned long konst; /* KONST field. See below. */
410 } Elf32_crinfo2;
411
412 typedef struct
413 {
414 bfd_byte info[4];
415 bfd_byte konst[4];
416 bfd_byte vaddr[4];
417 } Elf32_External_crinfo;
418
419 typedef struct
420 {
421 bfd_byte info[4];
422 bfd_byte konst[4];
423 } Elf32_External_crinfo2;
424
425 /* These are the constants used to swap the bitfields in a crinfo. */
426
427 #define CRINFO_CTYPE (0x1)
428 #define CRINFO_CTYPE_SH (31)
429 #define CRINFO_RTYPE (0xf)
430 #define CRINFO_RTYPE_SH (27)
431 #define CRINFO_DIST2TO (0xff)
432 #define CRINFO_DIST2TO_SH (19)
433 #define CRINFO_RELVADDR (0x7ffff)
434 #define CRINFO_RELVADDR_SH (0)
435
436 /* A compact relocation info has long (3 words) or short (2 words)
437 formats. A short format doesn't have VADDR field and relvaddr
438 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
439 #define CRF_MIPS_LONG 1
440 #define CRF_MIPS_SHORT 0
441
442 /* There are 4 types of compact relocation at least. The value KONST
443 has different meaning for each type:
444
445 (type) (konst)
446 CT_MIPS_REL32 Address in data
447 CT_MIPS_WORD Address in word (XXX)
448 CT_MIPS_GPHI_LO GP - vaddr
449 CT_MIPS_JMPAD Address to jump
450 */
451
452 #define CRT_MIPS_REL32 0xa
453 #define CRT_MIPS_WORD 0xb
454 #define CRT_MIPS_GPHI_LO 0xc
455 #define CRT_MIPS_JMPAD 0xd
456
457 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
458 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
459 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
460 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
461
462 static void bfd_elf32_swap_compact_rel_out
463 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
464 static void bfd_elf32_swap_crinfo_out
465 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
466
467 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
468
469 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
470 from smaller values. Start with zero, widen, *then* decrement. */
471 #define MINUS_ONE (((bfd_vma)0) - 1)
472
473 static reloc_howto_type elf_mips_howto_table[] =
474 {
475 /* No relocation. */
476 HOWTO (R_MIPS_NONE, /* type */
477 0, /* rightshift */
478 0, /* size (0 = byte, 1 = short, 2 = long) */
479 0, /* bitsize */
480 false, /* pc_relative */
481 0, /* bitpos */
482 complain_overflow_dont, /* complain_on_overflow */
483 bfd_elf_generic_reloc, /* special_function */
484 "R_MIPS_NONE", /* name */
485 false, /* partial_inplace */
486 0, /* src_mask */
487 0, /* dst_mask */
488 false), /* pcrel_offset */
489
490 /* 16 bit relocation. */
491 HOWTO (R_MIPS_16, /* type */
492 0, /* rightshift */
493 1, /* size (0 = byte, 1 = short, 2 = long) */
494 16, /* bitsize */
495 false, /* pc_relative */
496 0, /* bitpos */
497 complain_overflow_bitfield, /* complain_on_overflow */
498 bfd_elf_generic_reloc, /* special_function */
499 "R_MIPS_16", /* name */
500 true, /* partial_inplace */
501 0xffff, /* src_mask */
502 0xffff, /* dst_mask */
503 false), /* pcrel_offset */
504
505 /* 32 bit relocation. */
506 HOWTO (R_MIPS_32, /* type */
507 0, /* rightshift */
508 2, /* size (0 = byte, 1 = short, 2 = long) */
509 32, /* bitsize */
510 false, /* pc_relative */
511 0, /* bitpos */
512 complain_overflow_bitfield, /* complain_on_overflow */
513 bfd_elf_generic_reloc, /* special_function */
514 "R_MIPS_32", /* name */
515 true, /* partial_inplace */
516 0xffffffff, /* src_mask */
517 0xffffffff, /* dst_mask */
518 false), /* pcrel_offset */
519
520 /* 32 bit symbol relative relocation. */
521 HOWTO (R_MIPS_REL32, /* type */
522 0, /* rightshift */
523 2, /* size (0 = byte, 1 = short, 2 = long) */
524 32, /* bitsize */
525 false, /* pc_relative */
526 0, /* bitpos */
527 complain_overflow_bitfield, /* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_MIPS_REL32", /* name */
530 true, /* partial_inplace */
531 0xffffffff, /* src_mask */
532 0xffffffff, /* dst_mask */
533 false), /* pcrel_offset */
534
535 /* 26 bit branch address. */
536 HOWTO (R_MIPS_26, /* type */
537 2, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 26, /* bitsize */
540 false, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont, /* complain_on_overflow */
543 /* This needs complex overflow
544 detection, because the upper four
545 bits must match the PC + 4. */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_MIPS_26", /* name */
548 true, /* partial_inplace */
549 0x3ffffff, /* src_mask */
550 0x3ffffff, /* dst_mask */
551 false), /* pcrel_offset */
552
553 /* High 16 bits of symbol value. */
554 HOWTO (R_MIPS_HI16, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 16, /* bitsize */
558 false, /* pc_relative */
559 0, /* bitpos */
560 complain_overflow_dont, /* complain_on_overflow */
561 _bfd_mips_elf_hi16_reloc, /* special_function */
562 "R_MIPS_HI16", /* name */
563 true, /* partial_inplace */
564 0xffff, /* src_mask */
565 0xffff, /* dst_mask */
566 false), /* pcrel_offset */
567
568 /* Low 16 bits of symbol value. */
569 HOWTO (R_MIPS_LO16, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 16, /* bitsize */
573 false, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_dont, /* complain_on_overflow */
576 _bfd_mips_elf_lo16_reloc, /* special_function */
577 "R_MIPS_LO16", /* name */
578 true, /* partial_inplace */
579 0xffff, /* src_mask */
580 0xffff, /* dst_mask */
581 false), /* pcrel_offset */
582
583 /* GP relative reference. */
584 HOWTO (R_MIPS_GPREL16, /* type */
585 0, /* rightshift */
586 2, /* size (0 = byte, 1 = short, 2 = long) */
587 16, /* bitsize */
588 false, /* pc_relative */
589 0, /* bitpos */
590 complain_overflow_signed, /* complain_on_overflow */
591 _bfd_mips_elf_gprel16_reloc, /* special_function */
592 "R_MIPS_GPREL16", /* name */
593 true, /* partial_inplace */
594 0xffff, /* src_mask */
595 0xffff, /* dst_mask */
596 false), /* pcrel_offset */
597
598 /* Reference to literal section. */
599 HOWTO (R_MIPS_LITERAL, /* type */
600 0, /* rightshift */
601 2, /* size (0 = byte, 1 = short, 2 = long) */
602 16, /* bitsize */
603 false, /* pc_relative */
604 0, /* bitpos */
605 complain_overflow_signed, /* complain_on_overflow */
606 _bfd_mips_elf_gprel16_reloc, /* special_function */
607 "R_MIPS_LITERAL", /* name */
608 true, /* partial_inplace */
609 0xffff, /* src_mask */
610 0xffff, /* dst_mask */
611 false), /* pcrel_offset */
612
613 /* Reference to global offset table. */
614 HOWTO (R_MIPS_GOT16, /* type */
615 0, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 16, /* bitsize */
618 false, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 _bfd_mips_elf_got16_reloc, /* special_function */
622 "R_MIPS_GOT16", /* name */
623 false, /* partial_inplace */
624 0xffff, /* src_mask */
625 0xffff, /* dst_mask */
626 false), /* pcrel_offset */
627
628 /* 16 bit PC relative reference. */
629 HOWTO (R_MIPS_PC16, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 16, /* bitsize */
633 true, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_MIPS_PC16", /* name */
638 true, /* partial_inplace */
639 0xffff, /* src_mask */
640 0xffff, /* dst_mask */
641 true), /* pcrel_offset */
642
643 /* 16 bit call through global offset table. */
644 HOWTO (R_MIPS_CALL16, /* type */
645 0, /* rightshift */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
647 16, /* bitsize */
648 false, /* pc_relative */
649 0, /* bitpos */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
652 "R_MIPS_CALL16", /* name */
653 false, /* partial_inplace */
654 0xffff, /* src_mask */
655 0xffff, /* dst_mask */
656 false), /* pcrel_offset */
657
658 /* 32 bit GP relative reference. */
659 HOWTO (R_MIPS_GPREL32, /* type */
660 0, /* rightshift */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
662 32, /* bitsize */
663 false, /* pc_relative */
664 0, /* bitpos */
665 complain_overflow_bitfield, /* complain_on_overflow */
666 _bfd_mips_elf_gprel32_reloc, /* special_function */
667 "R_MIPS_GPREL32", /* name */
668 true, /* partial_inplace */
669 0xffffffff, /* src_mask */
670 0xffffffff, /* dst_mask */
671 false), /* pcrel_offset */
672
673 /* The remaining relocs are defined on Irix 5, although they are
674 not defined by the ABI. */
675 EMPTY_HOWTO (13),
676 EMPTY_HOWTO (14),
677 EMPTY_HOWTO (15),
678
679 /* A 5 bit shift field. */
680 HOWTO (R_MIPS_SHIFT5, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 5, /* bitsize */
684 false, /* pc_relative */
685 6, /* bitpos */
686 complain_overflow_bitfield, /* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_MIPS_SHIFT5", /* name */
689 true, /* partial_inplace */
690 0x000007c0, /* src_mask */
691 0x000007c0, /* dst_mask */
692 false), /* pcrel_offset */
693
694 /* A 6 bit shift field. */
695 /* FIXME: This is not handled correctly; a special function is
696 needed to put the most significant bit in the right place. */
697 HOWTO (R_MIPS_SHIFT6, /* type */
698 0, /* rightshift */
699 2, /* size (0 = byte, 1 = short, 2 = long) */
700 6, /* bitsize */
701 false, /* pc_relative */
702 6, /* bitpos */
703 complain_overflow_bitfield, /* complain_on_overflow */
704 bfd_elf_generic_reloc, /* special_function */
705 "R_MIPS_SHIFT6", /* name */
706 true, /* partial_inplace */
707 0x000007c4, /* src_mask */
708 0x000007c4, /* dst_mask */
709 false), /* pcrel_offset */
710
711 /* A 64 bit relocation. */
712 HOWTO (R_MIPS_64, /* type */
713 0, /* rightshift */
714 4, /* size (0 = byte, 1 = short, 2 = long) */
715 64, /* bitsize */
716 false, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_bitfield, /* complain_on_overflow */
719 mips32_64bit_reloc, /* special_function */
720 "R_MIPS_64", /* name */
721 true, /* partial_inplace */
722 MINUS_ONE, /* src_mask */
723 MINUS_ONE, /* dst_mask */
724 false), /* pcrel_offset */
725
726 /* Displacement in the global offset table. */
727 HOWTO (R_MIPS_GOT_DISP, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 false, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield, /* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_MIPS_GOT_DISP", /* name */
736 true, /* partial_inplace */
737 0x0000ffff, /* src_mask */
738 0x0000ffff, /* dst_mask */
739 false), /* pcrel_offset */
740
741 /* Displacement to page pointer in the global offset table. */
742 HOWTO (R_MIPS_GOT_PAGE, /* type */
743 0, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 16, /* bitsize */
746 false, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_bitfield, /* complain_on_overflow */
749 bfd_elf_generic_reloc, /* special_function */
750 "R_MIPS_GOT_PAGE", /* name */
751 true, /* partial_inplace */
752 0x0000ffff, /* src_mask */
753 0x0000ffff, /* dst_mask */
754 false), /* pcrel_offset */
755
756 /* Offset from page pointer in the global offset table. */
757 HOWTO (R_MIPS_GOT_OFST, /* type */
758 0, /* rightshift */
759 2, /* size (0 = byte, 1 = short, 2 = long) */
760 16, /* bitsize */
761 false, /* pc_relative */
762 0, /* bitpos */
763 complain_overflow_bitfield, /* complain_on_overflow */
764 bfd_elf_generic_reloc, /* special_function */
765 "R_MIPS_GOT_OFST", /* name */
766 true, /* partial_inplace */
767 0x0000ffff, /* src_mask */
768 0x0000ffff, /* dst_mask */
769 false), /* pcrel_offset */
770
771 /* High 16 bits of displacement in global offset table. */
772 HOWTO (R_MIPS_GOT_HI16, /* type */
773 0, /* rightshift */
774 2, /* size (0 = byte, 1 = short, 2 = long) */
775 16, /* bitsize */
776 false, /* pc_relative */
777 0, /* bitpos */
778 complain_overflow_dont, /* complain_on_overflow */
779 bfd_elf_generic_reloc, /* special_function */
780 "R_MIPS_GOT_HI16", /* name */
781 true, /* partial_inplace */
782 0x0000ffff, /* src_mask */
783 0x0000ffff, /* dst_mask */
784 false), /* pcrel_offset */
785
786 /* Low 16 bits of displacement in global offset table. */
787 HOWTO (R_MIPS_GOT_LO16, /* type */
788 0, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 16, /* bitsize */
791 false, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_dont, /* complain_on_overflow */
794 bfd_elf_generic_reloc, /* special_function */
795 "R_MIPS_GOT_LO16", /* name */
796 true, /* partial_inplace */
797 0x0000ffff, /* src_mask */
798 0x0000ffff, /* dst_mask */
799 false), /* pcrel_offset */
800
801 /* 64 bit subtraction. Used in the N32 ABI. */
802 HOWTO (R_MIPS_SUB, /* type */
803 0, /* rightshift */
804 4, /* size (0 = byte, 1 = short, 2 = long) */
805 64, /* bitsize */
806 false, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_bitfield, /* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_MIPS_SUB", /* name */
811 true, /* partial_inplace */
812 MINUS_ONE, /* src_mask */
813 MINUS_ONE, /* dst_mask */
814 false), /* pcrel_offset */
815
816 /* Used to cause the linker to insert and delete instructions? */
817 EMPTY_HOWTO (R_MIPS_INSERT_A),
818 EMPTY_HOWTO (R_MIPS_INSERT_B),
819 EMPTY_HOWTO (R_MIPS_DELETE),
820
821 /* Get the higher value of a 64 bit addend. */
822 HOWTO (R_MIPS_HIGHER, /* type */
823 0, /* rightshift */
824 2, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 false, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 bfd_elf_generic_reloc, /* special_function */
830 "R_MIPS_HIGHER", /* name */
831 true, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 false), /* pcrel_offset */
835
836 /* Get the highest value of a 64 bit addend. */
837 HOWTO (R_MIPS_HIGHEST, /* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 16, /* bitsize */
841 false, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_MIPS_HIGHEST", /* name */
846 true, /* partial_inplace */
847 0, /* src_mask */
848 0xffff, /* dst_mask */
849 false), /* pcrel_offset */
850
851 /* High 16 bits of displacement in global offset table. */
852 HOWTO (R_MIPS_CALL_HI16, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 16, /* bitsize */
856 false, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_MIPS_CALL_HI16", /* name */
861 true, /* partial_inplace */
862 0x0000ffff, /* src_mask */
863 0x0000ffff, /* dst_mask */
864 false), /* pcrel_offset */
865
866 /* Low 16 bits of displacement in global offset table. */
867 HOWTO (R_MIPS_CALL_LO16, /* type */
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 16, /* bitsize */
871 false, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
875 "R_MIPS_CALL_LO16", /* name */
876 true, /* partial_inplace */
877 0x0000ffff, /* src_mask */
878 0x0000ffff, /* dst_mask */
879 false), /* pcrel_offset */
880
881 /* Section displacement. */
882 HOWTO (R_MIPS_SCN_DISP, /* type */
883 0, /* rightshift */
884 2, /* size (0 = byte, 1 = short, 2 = long) */
885 32, /* bitsize */
886 false, /* pc_relative */
887 0, /* bitpos */
888 complain_overflow_dont, /* complain_on_overflow */
889 bfd_elf_generic_reloc, /* special_function */
890 "R_MIPS_SCN_DISP", /* name */
891 false, /* partial_inplace */
892 0xffffffff, /* src_mask */
893 0xffffffff, /* dst_mask */
894 false), /* pcrel_offset */
895
896 EMPTY_HOWTO (R_MIPS_REL16),
897 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
898 EMPTY_HOWTO (R_MIPS_PJUMP),
899 EMPTY_HOWTO (R_MIPS_RELGOT),
900
901 /* Protected jump conversion. This is an optimization hint. No
902 relocation is required for correctness. */
903 HOWTO (R_MIPS_JALR, /* type */
904 0, /* rightshift */
905 0, /* size (0 = byte, 1 = short, 2 = long) */
906 0, /* bitsize */
907 false, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont, /* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 "R_MIPS_JALR", /* name */
912 false, /* partial_inplace */
913 0x00000000, /* src_mask */
914 0x00000000, /* dst_mask */
915 false), /* pcrel_offset */
916 };
917
918 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
919 is a hack to make the linker think that we need 64 bit values. */
920 static reloc_howto_type elf_mips_ctor64_howto =
921 HOWTO (R_MIPS_64, /* type */
922 0, /* rightshift */
923 4, /* size (0 = byte, 1 = short, 2 = long) */
924 32, /* bitsize */
925 false, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 mips32_64bit_reloc, /* special_function */
929 "R_MIPS_64", /* name */
930 true, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 false); /* pcrel_offset */
934
935 /* The reloc used for the mips16 jump instruction. */
936 static reloc_howto_type elf_mips16_jump_howto =
937 HOWTO (R_MIPS16_26, /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 26, /* bitsize */
941 false, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 /* This needs complex overflow
945 detection, because the upper four
946 bits must match the PC. */
947 mips16_jump_reloc, /* special_function */
948 "R_MIPS16_26", /* name */
949 true, /* partial_inplace */
950 0x3ffffff, /* src_mask */
951 0x3ffffff, /* dst_mask */
952 false); /* pcrel_offset */
953
954 /* The reloc used for the mips16 gprel instruction. */
955 static reloc_howto_type elf_mips16_gprel_howto =
956 HOWTO (R_MIPS16_GPREL, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 16, /* bitsize */
960 false, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_signed, /* complain_on_overflow */
963 mips16_gprel_reloc, /* special_function */
964 "R_MIPS16_GPREL", /* name */
965 true, /* partial_inplace */
966 0x07ff001f, /* src_mask */
967 0x07ff001f, /* dst_mask */
968 false); /* pcrel_offset */
969
970 /* GNU extensions for embedded-pic. */
971 /* High 16 bits of symbol value, pc-relative. */
972 static reloc_howto_type elf_mips_gnu_rel_hi16 =
973 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
974 0, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 16, /* bitsize */
977 true, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont, /* complain_on_overflow */
980 _bfd_mips_elf_hi16_reloc, /* special_function */
981 "R_MIPS_GNU_REL_HI16", /* name */
982 true, /* partial_inplace */
983 0xffff, /* src_mask */
984 0xffff, /* dst_mask */
985 true); /* pcrel_offset */
986
987 /* Low 16 bits of symbol value, pc-relative. */
988 static reloc_howto_type elf_mips_gnu_rel_lo16 =
989 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 16, /* bitsize */
993 true, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont, /* complain_on_overflow */
996 _bfd_mips_elf_lo16_reloc, /* special_function */
997 "R_MIPS_GNU_REL_LO16", /* name */
998 true, /* partial_inplace */
999 0xffff, /* src_mask */
1000 0xffff, /* dst_mask */
1001 true); /* pcrel_offset */
1002
1003 /* 16 bit offset for pc-relative branches. */
1004 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1005 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1006 2, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 16, /* bitsize */
1009 true, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_signed, /* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 "R_MIPS_GNU_REL16_S2", /* name */
1014 true, /* partial_inplace */
1015 0xffff, /* src_mask */
1016 0xffff, /* dst_mask */
1017 true); /* pcrel_offset */
1018
1019 /* 64 bit pc-relative. */
1020 static reloc_howto_type elf_mips_gnu_pcrel64 =
1021 HOWTO (R_MIPS_PC64, /* type */
1022 0, /* rightshift */
1023 4, /* size (0 = byte, 1 = short, 2 = long) */
1024 64, /* bitsize */
1025 true, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_signed, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_MIPS_PC64", /* name */
1030 true, /* partial_inplace */
1031 MINUS_ONE, /* src_mask */
1032 MINUS_ONE, /* dst_mask */
1033 true); /* pcrel_offset */
1034
1035 /* 32 bit pc-relative. */
1036 static reloc_howto_type elf_mips_gnu_pcrel32 =
1037 HOWTO (R_MIPS_PC32, /* type */
1038 0, /* rightshift */
1039 2, /* size (0 = byte, 1 = short, 2 = long) */
1040 32, /* bitsize */
1041 true, /* pc_relative */
1042 0, /* bitpos */
1043 complain_overflow_signed, /* complain_on_overflow */
1044 bfd_elf_generic_reloc, /* special_function */
1045 "R_MIPS_PC32", /* name */
1046 true, /* partial_inplace */
1047 0xffffffff, /* src_mask */
1048 0xffffffff, /* dst_mask */
1049 true); /* pcrel_offset */
1050
1051 /* GNU extension to record C++ vtable hierarchy */
1052 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1053 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1054 0, /* rightshift */
1055 2, /* size (0 = byte, 1 = short, 2 = long) */
1056 0, /* bitsize */
1057 false, /* pc_relative */
1058 0, /* bitpos */
1059 complain_overflow_dont, /* complain_on_overflow */
1060 NULL, /* special_function */
1061 "R_MIPS_GNU_VTINHERIT", /* name */
1062 false, /* partial_inplace */
1063 0, /* src_mask */
1064 0, /* dst_mask */
1065 false); /* pcrel_offset */
1066
1067 /* GNU extension to record C++ vtable member usage */
1068 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1069 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1070 0, /* rightshift */
1071 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 0, /* bitsize */
1073 false, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont, /* complain_on_overflow */
1076 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1077 "R_MIPS_GNU_VTENTRY", /* name */
1078 false, /* partial_inplace */
1079 0, /* src_mask */
1080 0, /* dst_mask */
1081 false); /* pcrel_offset */
1082
1083 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1084 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1085 the HI16. Here we just save the information we need; we do the
1086 actual relocation when we see the LO16. MIPS ELF requires that the
1087 LO16 immediately follow the HI16. As a GNU extension, we permit an
1088 arbitrary number of HI16 relocs to be associated with a single LO16
1089 reloc. This extension permits gcc to output the HI and LO relocs
1090 itself. */
1091
1092 struct mips_hi16
1093 {
1094 struct mips_hi16 *next;
1095 bfd_byte *addr;
1096 bfd_vma addend;
1097 };
1098
1099 /* FIXME: This should not be a static variable. */
1100
1101 static struct mips_hi16 *mips_hi16_list;
1102
1103 bfd_reloc_status_type
1104 _bfd_mips_elf_hi16_reloc (abfd,
1105 reloc_entry,
1106 symbol,
1107 data,
1108 input_section,
1109 output_bfd,
1110 error_message)
1111 bfd *abfd ATTRIBUTE_UNUSED;
1112 arelent *reloc_entry;
1113 asymbol *symbol;
1114 PTR data;
1115 asection *input_section;
1116 bfd *output_bfd;
1117 char **error_message;
1118 {
1119 bfd_reloc_status_type ret;
1120 bfd_vma relocation;
1121 struct mips_hi16 *n;
1122
1123 /* If we're relocating, and this an external symbol, we don't want
1124 to change anything. */
1125 if (output_bfd != (bfd *) NULL
1126 && (symbol->flags & BSF_SECTION_SYM) == 0
1127 && reloc_entry->addend == 0)
1128 {
1129 reloc_entry->address += input_section->output_offset;
1130 return bfd_reloc_ok;
1131 }
1132
1133 ret = bfd_reloc_ok;
1134
1135 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1136 {
1137 boolean relocateable;
1138 bfd_vma gp;
1139
1140 if (ret == bfd_reloc_undefined)
1141 abort ();
1142
1143 if (output_bfd != NULL)
1144 relocateable = true;
1145 else
1146 {
1147 relocateable = false;
1148 output_bfd = symbol->section->output_section->owner;
1149 }
1150
1151 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1152 error_message, &gp);
1153 if (ret != bfd_reloc_ok)
1154 return ret;
1155
1156 relocation = gp - reloc_entry->address;
1157 }
1158 else
1159 {
1160 if (bfd_is_und_section (symbol->section)
1161 && output_bfd == (bfd *) NULL)
1162 ret = bfd_reloc_undefined;
1163
1164 if (bfd_is_com_section (symbol->section))
1165 relocation = 0;
1166 else
1167 relocation = symbol->value;
1168 }
1169
1170 relocation += symbol->section->output_section->vma;
1171 relocation += symbol->section->output_offset;
1172 relocation += reloc_entry->addend;
1173
1174 if (reloc_entry->address > input_section->_cooked_size)
1175 return bfd_reloc_outofrange;
1176
1177 /* Save the information, and let LO16 do the actual relocation. */
1178 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1179 if (n == NULL)
1180 return bfd_reloc_outofrange;
1181 n->addr = (bfd_byte *) data + reloc_entry->address;
1182 n->addend = relocation;
1183 n->next = mips_hi16_list;
1184 mips_hi16_list = n;
1185
1186 if (output_bfd != (bfd *) NULL)
1187 reloc_entry->address += input_section->output_offset;
1188
1189 return ret;
1190 }
1191
1192 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1193 inplace relocation; this function exists in order to do the
1194 R_MIPS_HI16 relocation described above. */
1195
1196 bfd_reloc_status_type
1197 _bfd_mips_elf_lo16_reloc (abfd,
1198 reloc_entry,
1199 symbol,
1200 data,
1201 input_section,
1202 output_bfd,
1203 error_message)
1204 bfd *abfd;
1205 arelent *reloc_entry;
1206 asymbol *symbol;
1207 PTR data;
1208 asection *input_section;
1209 bfd *output_bfd;
1210 char **error_message;
1211 {
1212 arelent gp_disp_relent;
1213
1214 if (mips_hi16_list != NULL)
1215 {
1216 struct mips_hi16 *l;
1217
1218 l = mips_hi16_list;
1219 while (l != NULL)
1220 {
1221 unsigned long insn;
1222 unsigned long val;
1223 unsigned long vallo;
1224 struct mips_hi16 *next;
1225
1226 /* Do the HI16 relocation. Note that we actually don't need
1227 to know anything about the LO16 itself, except where to
1228 find the low 16 bits of the addend needed by the LO16. */
1229 insn = bfd_get_32 (abfd, l->addr);
1230 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1231 & 0xffff);
1232 val = ((insn & 0xffff) << 16) + vallo;
1233 val += l->addend;
1234
1235 /* The low order 16 bits are always treated as a signed
1236 value. Therefore, a negative value in the low order bits
1237 requires an adjustment in the high order bits. We need
1238 to make this adjustment in two ways: once for the bits we
1239 took from the data, and once for the bits we are putting
1240 back in to the data. */
1241 if ((vallo & 0x8000) != 0)
1242 val -= 0x10000;
1243 if ((val & 0x8000) != 0)
1244 val += 0x10000;
1245
1246 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1247 bfd_put_32 (abfd, insn, l->addr);
1248
1249 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1250 {
1251 gp_disp_relent = *reloc_entry;
1252 reloc_entry = &gp_disp_relent;
1253 reloc_entry->addend = l->addend;
1254 }
1255
1256 next = l->next;
1257 free (l);
1258 l = next;
1259 }
1260
1261 mips_hi16_list = NULL;
1262 }
1263 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1264 {
1265 bfd_reloc_status_type ret;
1266 bfd_vma gp, relocation;
1267
1268 /* FIXME: Does this case ever occur? */
1269
1270 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1271 if (ret != bfd_reloc_ok)
1272 return ret;
1273
1274 relocation = gp - reloc_entry->address;
1275 relocation += symbol->section->output_section->vma;
1276 relocation += symbol->section->output_offset;
1277 relocation += reloc_entry->addend;
1278
1279 if (reloc_entry->address > input_section->_cooked_size)
1280 return bfd_reloc_outofrange;
1281
1282 gp_disp_relent = *reloc_entry;
1283 reloc_entry = &gp_disp_relent;
1284 reloc_entry->addend = relocation - 4;
1285 }
1286
1287 /* Now do the LO16 reloc in the usual way. */
1288 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1289 input_section, output_bfd, error_message);
1290 }
1291
1292 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1293 table used for PIC code. If the symbol is an external symbol, the
1294 instruction is modified to contain the offset of the appropriate
1295 entry in the global offset table. If the symbol is a section
1296 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1297 addends are combined to form the real addend against the section
1298 symbol; the GOT16 is modified to contain the offset of an entry in
1299 the global offset table, and the LO16 is modified to offset it
1300 appropriately. Thus an offset larger than 16 bits requires a
1301 modified value in the global offset table.
1302
1303 This implementation suffices for the assembler, but the linker does
1304 not yet know how to create global offset tables. */
1305
1306 bfd_reloc_status_type
1307 _bfd_mips_elf_got16_reloc (abfd,
1308 reloc_entry,
1309 symbol,
1310 data,
1311 input_section,
1312 output_bfd,
1313 error_message)
1314 bfd *abfd;
1315 arelent *reloc_entry;
1316 asymbol *symbol;
1317 PTR data;
1318 asection *input_section;
1319 bfd *output_bfd;
1320 char **error_message;
1321 {
1322 /* If we're relocating, and this an external symbol, we don't want
1323 to change anything. */
1324 if (output_bfd != (bfd *) NULL
1325 && (symbol->flags & BSF_SECTION_SYM) == 0
1326 && reloc_entry->addend == 0)
1327 {
1328 reloc_entry->address += input_section->output_offset;
1329 return bfd_reloc_ok;
1330 }
1331
1332 /* If we're relocating, and this is a local symbol, we can handle it
1333 just like HI16. */
1334 if (output_bfd != (bfd *) NULL
1335 && (symbol->flags & BSF_SECTION_SYM) != 0)
1336 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1337 input_section, output_bfd, error_message);
1338
1339 abort ();
1340 }
1341
1342 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1343 dangerous relocation. */
1344
1345 static boolean
1346 mips_elf_assign_gp (output_bfd, pgp)
1347 bfd *output_bfd;
1348 bfd_vma *pgp;
1349 {
1350 unsigned int count;
1351 asymbol **sym;
1352 unsigned int i;
1353
1354 /* If we've already figured out what GP will be, just return it. */
1355 *pgp = _bfd_get_gp_value (output_bfd);
1356 if (*pgp)
1357 return true;
1358
1359 count = bfd_get_symcount (output_bfd);
1360 sym = bfd_get_outsymbols (output_bfd);
1361
1362 /* The linker script will have created a symbol named `_gp' with the
1363 appropriate value. */
1364 if (sym == (asymbol **) NULL)
1365 i = count;
1366 else
1367 {
1368 for (i = 0; i < count; i++, sym++)
1369 {
1370 register CONST char *name;
1371
1372 name = bfd_asymbol_name (*sym);
1373 if (*name == '_' && strcmp (name, "_gp") == 0)
1374 {
1375 *pgp = bfd_asymbol_value (*sym);
1376 _bfd_set_gp_value (output_bfd, *pgp);
1377 break;
1378 }
1379 }
1380 }
1381
1382 if (i >= count)
1383 {
1384 /* Only get the error once. */
1385 *pgp = 4;
1386 _bfd_set_gp_value (output_bfd, *pgp);
1387 return false;
1388 }
1389
1390 return true;
1391 }
1392
1393 /* We have to figure out the gp value, so that we can adjust the
1394 symbol value correctly. We look up the symbol _gp in the output
1395 BFD. If we can't find it, we're stuck. We cache it in the ELF
1396 target data. We don't need to adjust the symbol value for an
1397 external symbol if we are producing relocateable output. */
1398
1399 static bfd_reloc_status_type
1400 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1401 bfd *output_bfd;
1402 asymbol *symbol;
1403 boolean relocateable;
1404 char **error_message;
1405 bfd_vma *pgp;
1406 {
1407 if (bfd_is_und_section (symbol->section)
1408 && ! relocateable)
1409 {
1410 *pgp = 0;
1411 return bfd_reloc_undefined;
1412 }
1413
1414 *pgp = _bfd_get_gp_value (output_bfd);
1415 if (*pgp == 0
1416 && (! relocateable
1417 || (symbol->flags & BSF_SECTION_SYM) != 0))
1418 {
1419 if (relocateable)
1420 {
1421 /* Make up a value. */
1422 *pgp = symbol->section->output_section->vma + 0x4000;
1423 _bfd_set_gp_value (output_bfd, *pgp);
1424 }
1425 else if (!mips_elf_assign_gp (output_bfd, pgp))
1426 {
1427 *error_message =
1428 (char *) _("GP relative relocation when _gp not defined");
1429 return bfd_reloc_dangerous;
1430 }
1431 }
1432
1433 return bfd_reloc_ok;
1434 }
1435
1436 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1437 become the offset from the gp register. This function also handles
1438 R_MIPS_LITERAL relocations, although those can be handled more
1439 cleverly because the entries in the .lit8 and .lit4 sections can be
1440 merged. */
1441
1442 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1443 arelent *, asection *,
1444 boolean, PTR, bfd_vma));
1445
1446 bfd_reloc_status_type
1447 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1448 output_bfd, error_message)
1449 bfd *abfd;
1450 arelent *reloc_entry;
1451 asymbol *symbol;
1452 PTR data;
1453 asection *input_section;
1454 bfd *output_bfd;
1455 char **error_message;
1456 {
1457 boolean relocateable;
1458 bfd_reloc_status_type ret;
1459 bfd_vma gp;
1460
1461 /* If we're relocating, and this is an external symbol with no
1462 addend, we don't want to change anything. We will only have an
1463 addend if this is a newly created reloc, not read from an ELF
1464 file. */
1465 if (output_bfd != (bfd *) NULL
1466 && (symbol->flags & BSF_SECTION_SYM) == 0
1467 && reloc_entry->addend == 0)
1468 {
1469 reloc_entry->address += input_section->output_offset;
1470 return bfd_reloc_ok;
1471 }
1472
1473 if (output_bfd != (bfd *) NULL)
1474 relocateable = true;
1475 else
1476 {
1477 relocateable = false;
1478 output_bfd = symbol->section->output_section->owner;
1479 }
1480
1481 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1482 &gp);
1483 if (ret != bfd_reloc_ok)
1484 return ret;
1485
1486 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1487 relocateable, data, gp);
1488 }
1489
1490 static bfd_reloc_status_type
1491 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1492 gp)
1493 bfd *abfd;
1494 asymbol *symbol;
1495 arelent *reloc_entry;
1496 asection *input_section;
1497 boolean relocateable;
1498 PTR data;
1499 bfd_vma gp;
1500 {
1501 bfd_vma relocation;
1502 unsigned long insn;
1503 unsigned long val;
1504
1505 if (bfd_is_com_section (symbol->section))
1506 relocation = 0;
1507 else
1508 relocation = symbol->value;
1509
1510 relocation += symbol->section->output_section->vma;
1511 relocation += symbol->section->output_offset;
1512
1513 if (reloc_entry->address > input_section->_cooked_size)
1514 return bfd_reloc_outofrange;
1515
1516 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1517
1518 /* Set val to the offset into the section or symbol. */
1519 if (reloc_entry->howto->src_mask == 0)
1520 {
1521 /* This case occurs with the 64-bit MIPS ELF ABI. */
1522 val = reloc_entry->addend;
1523 }
1524 else
1525 {
1526 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1527 if (val & 0x8000)
1528 val -= 0x10000;
1529 }
1530
1531 /* Adjust val for the final section location and GP value. If we
1532 are producing relocateable output, we don't want to do this for
1533 an external symbol. */
1534 if (! relocateable
1535 || (symbol->flags & BSF_SECTION_SYM) != 0)
1536 val += relocation - gp;
1537
1538 insn = (insn & ~0xffff) | (val & 0xffff);
1539 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1540
1541 if (relocateable)
1542 reloc_entry->address += input_section->output_offset;
1543
1544 /* Make sure it fit in 16 bits. */
1545 if ((long) val >= 0x8000 || (long) val < -0x8000)
1546 return bfd_reloc_overflow;
1547
1548 return bfd_reloc_ok;
1549 }
1550
1551 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1552 from the gp register? XXX */
1553
1554 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1555 arelent *, asection *,
1556 boolean, PTR, bfd_vma));
1557
1558 bfd_reloc_status_type
1559 _bfd_mips_elf_gprel32_reloc (abfd,
1560 reloc_entry,
1561 symbol,
1562 data,
1563 input_section,
1564 output_bfd,
1565 error_message)
1566 bfd *abfd;
1567 arelent *reloc_entry;
1568 asymbol *symbol;
1569 PTR data;
1570 asection *input_section;
1571 bfd *output_bfd;
1572 char **error_message;
1573 {
1574 boolean relocateable;
1575 bfd_reloc_status_type ret;
1576 bfd_vma gp;
1577
1578 /* If we're relocating, and this is an external symbol with no
1579 addend, we don't want to change anything. We will only have an
1580 addend if this is a newly created reloc, not read from an ELF
1581 file. */
1582 if (output_bfd != (bfd *) NULL
1583 && (symbol->flags & BSF_SECTION_SYM) == 0
1584 && reloc_entry->addend == 0)
1585 {
1586 *error_message = (char *)
1587 _("32bits gp relative relocation occurs for an external symbol");
1588 return bfd_reloc_outofrange;
1589 }
1590
1591 if (output_bfd != (bfd *) NULL)
1592 {
1593 relocateable = true;
1594 gp = _bfd_get_gp_value (output_bfd);
1595 }
1596 else
1597 {
1598 relocateable = false;
1599 output_bfd = symbol->section->output_section->owner;
1600
1601 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1602 error_message, &gp);
1603 if (ret != bfd_reloc_ok)
1604 return ret;
1605 }
1606
1607 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1608 relocateable, data, gp);
1609 }
1610
1611 static bfd_reloc_status_type
1612 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1613 gp)
1614 bfd *abfd;
1615 asymbol *symbol;
1616 arelent *reloc_entry;
1617 asection *input_section;
1618 boolean relocateable;
1619 PTR data;
1620 bfd_vma gp;
1621 {
1622 bfd_vma relocation;
1623 unsigned long val;
1624
1625 if (bfd_is_com_section (symbol->section))
1626 relocation = 0;
1627 else
1628 relocation = symbol->value;
1629
1630 relocation += symbol->section->output_section->vma;
1631 relocation += symbol->section->output_offset;
1632
1633 if (reloc_entry->address > input_section->_cooked_size)
1634 return bfd_reloc_outofrange;
1635
1636 if (reloc_entry->howto->src_mask == 0)
1637 {
1638 /* This case arises with the 64-bit MIPS ELF ABI. */
1639 val = 0;
1640 }
1641 else
1642 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1643
1644 /* Set val to the offset into the section or symbol. */
1645 val += reloc_entry->addend;
1646
1647 /* Adjust val for the final section location and GP value. If we
1648 are producing relocateable output, we don't want to do this for
1649 an external symbol. */
1650 if (! relocateable
1651 || (symbol->flags & BSF_SECTION_SYM) != 0)
1652 val += relocation - gp;
1653
1654 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1655
1656 if (relocateable)
1657 reloc_entry->address += input_section->output_offset;
1658
1659 return bfd_reloc_ok;
1660 }
1661
1662 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1663 generated when addreses are 64 bits. The upper 32 bits are a simle
1664 sign extension. */
1665
1666 static bfd_reloc_status_type
1667 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1668 output_bfd, error_message)
1669 bfd *abfd;
1670 arelent *reloc_entry;
1671 asymbol *symbol;
1672 PTR data;
1673 asection *input_section;
1674 bfd *output_bfd;
1675 char **error_message;
1676 {
1677 bfd_reloc_status_type r;
1678 arelent reloc32;
1679 unsigned long val;
1680 bfd_size_type addr;
1681
1682 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1683 input_section, output_bfd, error_message);
1684 if (r != bfd_reloc_continue)
1685 return r;
1686
1687 /* Do a normal 32 bit relocation on the lower 32 bits. */
1688 reloc32 = *reloc_entry;
1689 if (bfd_big_endian (abfd))
1690 reloc32.address += 4;
1691 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1692 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1693 output_bfd, error_message);
1694
1695 /* Sign extend into the upper 32 bits. */
1696 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1697 if ((val & 0x80000000) != 0)
1698 val = 0xffffffff;
1699 else
1700 val = 0;
1701 addr = reloc_entry->address;
1702 if (bfd_little_endian (abfd))
1703 addr += 4;
1704 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1705
1706 return r;
1707 }
1708
1709 /* Handle a mips16 jump. */
1710
1711 static bfd_reloc_status_type
1712 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1713 output_bfd, error_message)
1714 bfd *abfd ATTRIBUTE_UNUSED;
1715 arelent *reloc_entry;
1716 asymbol *symbol;
1717 PTR data ATTRIBUTE_UNUSED;
1718 asection *input_section;
1719 bfd *output_bfd;
1720 char **error_message ATTRIBUTE_UNUSED;
1721 {
1722 if (output_bfd != (bfd *) NULL
1723 && (symbol->flags & BSF_SECTION_SYM) == 0
1724 && reloc_entry->addend == 0)
1725 {
1726 reloc_entry->address += input_section->output_offset;
1727 return bfd_reloc_ok;
1728 }
1729
1730 /* FIXME. */
1731 {
1732 static boolean warned;
1733
1734 if (! warned)
1735 (*_bfd_error_handler)
1736 (_("Linking mips16 objects into %s format is not supported"),
1737 bfd_get_target (input_section->output_section->owner));
1738 warned = true;
1739 }
1740
1741 return bfd_reloc_undefined;
1742 }
1743
1744 /* Handle a mips16 GP relative reloc. */
1745
1746 static bfd_reloc_status_type
1747 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1748 output_bfd, error_message)
1749 bfd *abfd;
1750 arelent *reloc_entry;
1751 asymbol *symbol;
1752 PTR data;
1753 asection *input_section;
1754 bfd *output_bfd;
1755 char **error_message;
1756 {
1757 boolean relocateable;
1758 bfd_reloc_status_type ret;
1759 bfd_vma gp;
1760 unsigned short extend, insn;
1761 unsigned long final;
1762
1763 /* If we're relocating, and this is an external symbol with no
1764 addend, we don't want to change anything. We will only have an
1765 addend if this is a newly created reloc, not read from an ELF
1766 file. */
1767 if (output_bfd != NULL
1768 && (symbol->flags & BSF_SECTION_SYM) == 0
1769 && reloc_entry->addend == 0)
1770 {
1771 reloc_entry->address += input_section->output_offset;
1772 return bfd_reloc_ok;
1773 }
1774
1775 if (output_bfd != NULL)
1776 relocateable = true;
1777 else
1778 {
1779 relocateable = false;
1780 output_bfd = symbol->section->output_section->owner;
1781 }
1782
1783 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1784 &gp);
1785 if (ret != bfd_reloc_ok)
1786 return ret;
1787
1788 if (reloc_entry->address > input_section->_cooked_size)
1789 return bfd_reloc_outofrange;
1790
1791 /* Pick up the mips16 extend instruction and the real instruction. */
1792 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1793 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1794
1795 /* Stuff the current addend back as a 32 bit value, do the usual
1796 relocation, and then clean up. */
1797 bfd_put_32 (abfd,
1798 (((extend & 0x1f) << 11)
1799 | (extend & 0x7e0)
1800 | (insn & 0x1f)),
1801 (bfd_byte *) data + reloc_entry->address);
1802
1803 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1804 relocateable, data, gp);
1805
1806 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1807 bfd_put_16 (abfd,
1808 ((extend & 0xf800)
1809 | ((final >> 11) & 0x1f)
1810 | (final & 0x7e0)),
1811 (bfd_byte *) data + reloc_entry->address);
1812 bfd_put_16 (abfd,
1813 ((insn & 0xffe0)
1814 | (final & 0x1f)),
1815 (bfd_byte *) data + reloc_entry->address + 2);
1816
1817 return ret;
1818 }
1819
1820 /* Return the ISA for a MIPS e_flags value. */
1821
1822 static INLINE int
1823 elf_mips_isa (flags)
1824 flagword flags;
1825 {
1826 switch (flags & EF_MIPS_ARCH)
1827 {
1828 case E_MIPS_ARCH_1:
1829 return 1;
1830 case E_MIPS_ARCH_2:
1831 return 2;
1832 case E_MIPS_ARCH_3:
1833 return 3;
1834 case E_MIPS_ARCH_4:
1835 return 4;
1836 case E_MIPS_ARCH_5:
1837 return 5;
1838 case E_MIPS_ARCH_32:
1839 return 32;
1840 case E_MIPS_ARCH_64:
1841 return 64;
1842 }
1843 return 4;
1844 }
1845
1846 /* Return the MACH for a MIPS e_flags value. */
1847
1848 static INLINE int
1849 elf_mips_mach (flags)
1850 flagword flags;
1851 {
1852 switch (flags & EF_MIPS_MACH)
1853 {
1854 case E_MIPS_MACH_3900:
1855 return bfd_mach_mips3900;
1856
1857 case E_MIPS_MACH_4010:
1858 return bfd_mach_mips4010;
1859
1860 case E_MIPS_MACH_4100:
1861 return bfd_mach_mips4100;
1862
1863 case E_MIPS_MACH_4111:
1864 return bfd_mach_mips4111;
1865
1866 case E_MIPS_MACH_4650:
1867 return bfd_mach_mips4650;
1868
1869 case E_MIPS_MACH_MIPS32_4K:
1870 return bfd_mach_mips32_4k;
1871
1872 case E_MIPS_MACH_SB1:
1873 return bfd_mach_mips_sb1;
1874
1875 default:
1876 switch (flags & EF_MIPS_ARCH)
1877 {
1878 default:
1879 case E_MIPS_ARCH_1:
1880 return bfd_mach_mips3000;
1881 break;
1882
1883 case E_MIPS_ARCH_2:
1884 return bfd_mach_mips6000;
1885 break;
1886
1887 case E_MIPS_ARCH_3:
1888 return bfd_mach_mips4000;
1889 break;
1890
1891 case E_MIPS_ARCH_4:
1892 return bfd_mach_mips8000;
1893 break;
1894
1895 case E_MIPS_ARCH_5:
1896 return bfd_mach_mips5;
1897 break;
1898
1899 case E_MIPS_ARCH_32:
1900 return bfd_mach_mips32;
1901 break;
1902
1903 case E_MIPS_ARCH_64:
1904 return bfd_mach_mips64;
1905 break;
1906 }
1907 }
1908
1909 return 0;
1910 }
1911
1912 /* Return printable name for ABI. */
1913
1914 static INLINE char *
1915 elf_mips_abi_name (abfd)
1916 bfd *abfd;
1917 {
1918 flagword flags;
1919
1920 if (ABI_N32_P (abfd))
1921 return "N32";
1922 else if (ABI_64_P (abfd))
1923 return "64";
1924
1925 flags = elf_elfheader (abfd)->e_flags;
1926 switch (flags & EF_MIPS_ABI)
1927 {
1928 case 0:
1929 return "none";
1930 case E_MIPS_ABI_O32:
1931 return "O32";
1932 case E_MIPS_ABI_O64:
1933 return "O64";
1934 case E_MIPS_ABI_EABI32:
1935 return "EABI32";
1936 case E_MIPS_ABI_EABI64:
1937 return "EABI64";
1938 default:
1939 return "unknown abi";
1940 }
1941 }
1942
1943 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1944
1945 struct elf_reloc_map {
1946 bfd_reloc_code_real_type bfd_reloc_val;
1947 enum elf_mips_reloc_type elf_reloc_val;
1948 };
1949
1950 static CONST struct elf_reloc_map mips_reloc_map[] =
1951 {
1952 { BFD_RELOC_NONE, R_MIPS_NONE, },
1953 { BFD_RELOC_16, R_MIPS_16 },
1954 { BFD_RELOC_32, R_MIPS_32 },
1955 { BFD_RELOC_64, R_MIPS_64 },
1956 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1957 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1958 { BFD_RELOC_LO16, R_MIPS_LO16 },
1959 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1960 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1961 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1962 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1963 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1964 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1965 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1966 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1967 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1968 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1969 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1970 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1971 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1972 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1973 };
1974
1975 /* Given a BFD reloc type, return a howto structure. */
1976
1977 static reloc_howto_type *
1978 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1979 bfd *abfd;
1980 bfd_reloc_code_real_type code;
1981 {
1982 unsigned int i;
1983
1984 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1985 {
1986 if (mips_reloc_map[i].bfd_reloc_val == code)
1987 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1988 }
1989
1990 switch (code)
1991 {
1992 default:
1993 bfd_set_error (bfd_error_bad_value);
1994 return NULL;
1995
1996 case BFD_RELOC_CTOR:
1997 /* We need to handle BFD_RELOC_CTOR specially.
1998 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1999 size of addresses on this architecture. */
2000 if (bfd_arch_bits_per_address (abfd) == 32)
2001 return &elf_mips_howto_table[(int) R_MIPS_32];
2002 else
2003 return &elf_mips_ctor64_howto;
2004
2005 case BFD_RELOC_MIPS16_JMP:
2006 return &elf_mips16_jump_howto;
2007 case BFD_RELOC_MIPS16_GPREL:
2008 return &elf_mips16_gprel_howto;
2009 case BFD_RELOC_VTABLE_INHERIT:
2010 return &elf_mips_gnu_vtinherit_howto;
2011 case BFD_RELOC_VTABLE_ENTRY:
2012 return &elf_mips_gnu_vtentry_howto;
2013 case BFD_RELOC_PCREL_HI16_S:
2014 return &elf_mips_gnu_rel_hi16;
2015 case BFD_RELOC_PCREL_LO16:
2016 return &elf_mips_gnu_rel_lo16;
2017 case BFD_RELOC_16_PCREL_S2:
2018 return &elf_mips_gnu_rel16_s2;
2019 case BFD_RELOC_64_PCREL:
2020 return &elf_mips_gnu_pcrel64;
2021 case BFD_RELOC_32_PCREL:
2022 return &elf_mips_gnu_pcrel32;
2023 }
2024 }
2025
2026 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2027
2028 static reloc_howto_type *
2029 mips_rtype_to_howto (r_type)
2030 unsigned int r_type;
2031 {
2032 switch (r_type)
2033 {
2034 case R_MIPS16_26:
2035 return &elf_mips16_jump_howto;
2036 break;
2037 case R_MIPS16_GPREL:
2038 return &elf_mips16_gprel_howto;
2039 break;
2040 case R_MIPS_GNU_VTINHERIT:
2041 return &elf_mips_gnu_vtinherit_howto;
2042 break;
2043 case R_MIPS_GNU_VTENTRY:
2044 return &elf_mips_gnu_vtentry_howto;
2045 break;
2046 case R_MIPS_GNU_REL_HI16:
2047 return &elf_mips_gnu_rel_hi16;
2048 break;
2049 case R_MIPS_GNU_REL_LO16:
2050 return &elf_mips_gnu_rel_lo16;
2051 break;
2052 case R_MIPS_GNU_REL16_S2:
2053 return &elf_mips_gnu_rel16_s2;
2054 break;
2055 case R_MIPS_PC64:
2056 return &elf_mips_gnu_pcrel64;
2057 break;
2058 case R_MIPS_PC32:
2059 return &elf_mips_gnu_pcrel32;
2060 break;
2061
2062 default:
2063 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2064 return &elf_mips_howto_table[r_type];
2065 break;
2066 }
2067 }
2068
2069 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2070
2071 static void
2072 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2073 bfd *abfd;
2074 arelent *cache_ptr;
2075 Elf32_Internal_Rel *dst;
2076 {
2077 unsigned int r_type;
2078
2079 r_type = ELF32_R_TYPE (dst->r_info);
2080 cache_ptr->howto = mips_rtype_to_howto (r_type);
2081
2082 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2083 value for the object file. We get the addend now, rather than
2084 when we do the relocation, because the symbol manipulations done
2085 by the linker may cause us to lose track of the input BFD. */
2086 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2087 && (r_type == (unsigned int) R_MIPS_GPREL16
2088 || r_type == (unsigned int) R_MIPS_LITERAL))
2089 cache_ptr->addend = elf_gp (abfd);
2090 }
2091
2092 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2093
2094 static void
2095 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2096 bfd *abfd;
2097 arelent *cache_ptr;
2098 Elf32_Internal_Rela *dst;
2099 {
2100 /* Since an Elf32_Internal_Rel is an initial prefix of an
2101 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2102 above. */
2103 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2104
2105 /* If we ever need to do any extra processing with dst->r_addend
2106 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2107 }
2108 \f
2109 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2110 routines swap this structure in and out. They are used outside of
2111 BFD, so they are globally visible. */
2112
2113 void
2114 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2115 bfd *abfd;
2116 const Elf32_External_RegInfo *ex;
2117 Elf32_RegInfo *in;
2118 {
2119 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2120 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2121 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2122 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2123 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2124 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2125 }
2126
2127 void
2128 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2129 bfd *abfd;
2130 const Elf32_RegInfo *in;
2131 Elf32_External_RegInfo *ex;
2132 {
2133 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2134 (bfd_byte *) ex->ri_gprmask);
2135 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2136 (bfd_byte *) ex->ri_cprmask[0]);
2137 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2138 (bfd_byte *) ex->ri_cprmask[1]);
2139 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2140 (bfd_byte *) ex->ri_cprmask[2]);
2141 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2142 (bfd_byte *) ex->ri_cprmask[3]);
2143 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2144 (bfd_byte *) ex->ri_gp_value);
2145 }
2146
2147 /* In the 64 bit ABI, the .MIPS.options section holds register
2148 information in an Elf64_Reginfo structure. These routines swap
2149 them in and out. They are globally visible because they are used
2150 outside of BFD. These routines are here so that gas can call them
2151 without worrying about whether the 64 bit ABI has been included. */
2152
2153 void
2154 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2155 bfd *abfd;
2156 const Elf64_External_RegInfo *ex;
2157 Elf64_Internal_RegInfo *in;
2158 {
2159 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2160 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2161 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2162 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2163 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2164 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2165 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2166 }
2167
2168 void
2169 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2170 bfd *abfd;
2171 const Elf64_Internal_RegInfo *in;
2172 Elf64_External_RegInfo *ex;
2173 {
2174 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2175 (bfd_byte *) ex->ri_gprmask);
2176 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2177 (bfd_byte *) ex->ri_pad);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2179 (bfd_byte *) ex->ri_cprmask[0]);
2180 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2181 (bfd_byte *) ex->ri_cprmask[1]);
2182 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2183 (bfd_byte *) ex->ri_cprmask[2]);
2184 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2185 (bfd_byte *) ex->ri_cprmask[3]);
2186 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2187 (bfd_byte *) ex->ri_gp_value);
2188 }
2189
2190 /* Swap an entry in a .gptab section. Note that these routines rely
2191 on the equivalence of the two elements of the union. */
2192
2193 static void
2194 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2195 bfd *abfd;
2196 const Elf32_External_gptab *ex;
2197 Elf32_gptab *in;
2198 {
2199 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2200 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2201 }
2202
2203 static void
2204 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2205 bfd *abfd;
2206 const Elf32_gptab *in;
2207 Elf32_External_gptab *ex;
2208 {
2209 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2210 ex->gt_entry.gt_g_value);
2211 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2212 ex->gt_entry.gt_bytes);
2213 }
2214
2215 static void
2216 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2217 bfd *abfd;
2218 const Elf32_compact_rel *in;
2219 Elf32_External_compact_rel *ex;
2220 {
2221 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2222 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2223 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2224 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2225 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2226 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2227 }
2228
2229 static void
2230 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2231 bfd *abfd;
2232 const Elf32_crinfo *in;
2233 Elf32_External_crinfo *ex;
2234 {
2235 unsigned long l;
2236
2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2242 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2243 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2244 }
2245
2246 /* Swap in an options header. */
2247
2248 void
2249 bfd_mips_elf_swap_options_in (abfd, ex, in)
2250 bfd *abfd;
2251 const Elf_External_Options *ex;
2252 Elf_Internal_Options *in;
2253 {
2254 in->kind = bfd_h_get_8 (abfd, ex->kind);
2255 in->size = bfd_h_get_8 (abfd, ex->size);
2256 in->section = bfd_h_get_16 (abfd, ex->section);
2257 in->info = bfd_h_get_32 (abfd, ex->info);
2258 }
2259
2260 /* Swap out an options header. */
2261
2262 void
2263 bfd_mips_elf_swap_options_out (abfd, in, ex)
2264 bfd *abfd;
2265 const Elf_Internal_Options *in;
2266 Elf_External_Options *ex;
2267 {
2268 bfd_h_put_8 (abfd, in->kind, ex->kind);
2269 bfd_h_put_8 (abfd, in->size, ex->size);
2270 bfd_h_put_16 (abfd, in->section, ex->section);
2271 bfd_h_put_32 (abfd, in->info, ex->info);
2272 }
2273 #if 0
2274 /* Swap in an MSYM entry. */
2275
2276 static void
2277 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2278 bfd *abfd;
2279 const Elf32_External_Msym *ex;
2280 Elf32_Internal_Msym *in;
2281 {
2282 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2283 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2284 }
2285 #endif
2286 /* Swap out an MSYM entry. */
2287
2288 static void
2289 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2290 bfd *abfd;
2291 const Elf32_Internal_Msym *in;
2292 Elf32_External_Msym *ex;
2293 {
2294 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2295 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2296 }
2297 \f
2298 /* Determine whether a symbol is global for the purposes of splitting
2299 the symbol table into global symbols and local symbols. At least
2300 on Irix 5, this split must be between section symbols and all other
2301 symbols. On most ELF targets the split is between static symbols
2302 and externally visible symbols. */
2303
2304 static boolean
2305 mips_elf_sym_is_global (abfd, sym)
2306 bfd *abfd ATTRIBUTE_UNUSED;
2307 asymbol *sym;
2308 {
2309 if (SGI_COMPAT(abfd))
2310 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2311 else
2312 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2313 || bfd_is_und_section (bfd_get_section (sym))
2314 || bfd_is_com_section (bfd_get_section (sym)));
2315 }
2316 \f
2317 /* Set the right machine number for a MIPS ELF file. This is used for
2318 both the 32-bit and the 64-bit ABI. */
2319
2320 boolean
2321 _bfd_mips_elf_object_p (abfd)
2322 bfd *abfd;
2323 {
2324 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2325 sorted correctly such that local symbols precede global symbols,
2326 and the sh_info field in the symbol table is not always right. */
2327 elf_bad_symtab (abfd) = true;
2328
2329 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2330 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2331 return true;
2332 }
2333
2334 /* The final processing done just before writing out a MIPS ELF object
2335 file. This gets the MIPS architecture right based on the machine
2336 number. This is used by both the 32-bit and the 64-bit ABI. */
2337
2338 void
2339 _bfd_mips_elf_final_write_processing (abfd, linker)
2340 bfd *abfd;
2341 boolean linker ATTRIBUTE_UNUSED;
2342 {
2343 unsigned long val;
2344 unsigned int i;
2345 Elf_Internal_Shdr **hdrpp;
2346 const char *name;
2347 asection *sec;
2348
2349 switch (bfd_get_mach (abfd))
2350 {
2351 default:
2352 case bfd_mach_mips3000:
2353 val = E_MIPS_ARCH_1;
2354 break;
2355
2356 case bfd_mach_mips3900:
2357 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2358 break;
2359
2360 case bfd_mach_mips6000:
2361 val = E_MIPS_ARCH_2;
2362 break;
2363
2364 case bfd_mach_mips4000:
2365 case bfd_mach_mips4300:
2366 val = E_MIPS_ARCH_3;
2367 break;
2368
2369 case bfd_mach_mips4010:
2370 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2371 break;
2372
2373 case bfd_mach_mips4100:
2374 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2375 break;
2376
2377 case bfd_mach_mips4111:
2378 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2379 break;
2380
2381 case bfd_mach_mips4650:
2382 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2383 break;
2384
2385 case bfd_mach_mips8000:
2386 val = E_MIPS_ARCH_4;
2387 break;
2388
2389 case bfd_mach_mips32:
2390 val = E_MIPS_ARCH_32;
2391 break;
2392
2393 case bfd_mach_mips32_4k:
2394 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2395 break;
2396
2397 case bfd_mach_mips5:
2398 val = E_MIPS_ARCH_5;
2399 break;
2400
2401 case bfd_mach_mips64:
2402 val = E_MIPS_ARCH_64;
2403 break;
2404
2405 case bfd_mach_mips_sb1:
2406 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2407 break;
2408 }
2409
2410 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2411 elf_elfheader (abfd)->e_flags |= val;
2412
2413 /* Set the sh_info field for .gptab sections and other appropriate
2414 info for each special section. */
2415 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2416 i < elf_elfheader (abfd)->e_shnum;
2417 i++, hdrpp++)
2418 {
2419 switch ((*hdrpp)->sh_type)
2420 {
2421 case SHT_MIPS_MSYM:
2422 case SHT_MIPS_LIBLIST:
2423 sec = bfd_get_section_by_name (abfd, ".dynstr");
2424 if (sec != NULL)
2425 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2426 break;
2427
2428 case SHT_MIPS_GPTAB:
2429 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2430 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2431 BFD_ASSERT (name != NULL
2432 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2433 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2434 BFD_ASSERT (sec != NULL);
2435 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2436 break;
2437
2438 case SHT_MIPS_CONTENT:
2439 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2440 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2441 BFD_ASSERT (name != NULL
2442 && strncmp (name, ".MIPS.content",
2443 sizeof ".MIPS.content" - 1) == 0);
2444 sec = bfd_get_section_by_name (abfd,
2445 name + sizeof ".MIPS.content" - 1);
2446 BFD_ASSERT (sec != NULL);
2447 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2448 break;
2449
2450 case SHT_MIPS_SYMBOL_LIB:
2451 sec = bfd_get_section_by_name (abfd, ".dynsym");
2452 if (sec != NULL)
2453 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2454 sec = bfd_get_section_by_name (abfd, ".liblist");
2455 if (sec != NULL)
2456 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2457 break;
2458
2459 case SHT_MIPS_EVENTS:
2460 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2461 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2462 BFD_ASSERT (name != NULL);
2463 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2464 sec = bfd_get_section_by_name (abfd,
2465 name + sizeof ".MIPS.events" - 1);
2466 else
2467 {
2468 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2469 sizeof ".MIPS.post_rel" - 1) == 0);
2470 sec = bfd_get_section_by_name (abfd,
2471 (name
2472 + sizeof ".MIPS.post_rel" - 1));
2473 }
2474 BFD_ASSERT (sec != NULL);
2475 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2476 break;
2477
2478 }
2479 }
2480 }
2481 \f
2482 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2483
2484 boolean
2485 _bfd_mips_elf_set_private_flags (abfd, flags)
2486 bfd *abfd;
2487 flagword flags;
2488 {
2489 BFD_ASSERT (!elf_flags_init (abfd)
2490 || elf_elfheader (abfd)->e_flags == flags);
2491
2492 elf_elfheader (abfd)->e_flags = flags;
2493 elf_flags_init (abfd) = true;
2494 return true;
2495 }
2496
2497 /* Copy backend specific data from one object module to another */
2498
2499 boolean
2500 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2501 bfd *ibfd;
2502 bfd *obfd;
2503 {
2504 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2505 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2506 return true;
2507
2508 BFD_ASSERT (!elf_flags_init (obfd)
2509 || (elf_elfheader (obfd)->e_flags
2510 == elf_elfheader (ibfd)->e_flags));
2511
2512 elf_gp (obfd) = elf_gp (ibfd);
2513 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2514 elf_flags_init (obfd) = true;
2515 return true;
2516 }
2517
2518 /* Merge backend specific data from an object file to the output
2519 object file when linking. */
2520
2521 boolean
2522 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2523 bfd *ibfd;
2524 bfd *obfd;
2525 {
2526 flagword old_flags;
2527 flagword new_flags;
2528 boolean ok;
2529 boolean null_input_bfd = true;
2530 asection *sec;
2531
2532 /* Check if we have the same endianess */
2533 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2534 return false;
2535
2536 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2537 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2538 return true;
2539
2540 new_flags = elf_elfheader (ibfd)->e_flags;
2541 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2542 old_flags = elf_elfheader (obfd)->e_flags;
2543
2544 if (! elf_flags_init (obfd))
2545 {
2546 elf_flags_init (obfd) = true;
2547 elf_elfheader (obfd)->e_flags = new_flags;
2548 elf_elfheader (obfd)->e_ident[EI_CLASS]
2549 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2550
2551 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2552 && bfd_get_arch_info (obfd)->the_default)
2553 {
2554 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2555 bfd_get_mach (ibfd)))
2556 return false;
2557 }
2558
2559 return true;
2560 }
2561
2562 /* Check flag compatibility. */
2563
2564 new_flags &= ~EF_MIPS_NOREORDER;
2565 old_flags &= ~EF_MIPS_NOREORDER;
2566
2567 if (new_flags == old_flags)
2568 return true;
2569
2570 /* Check to see if the input BFD actually contains any sections.
2571 If not, its flags may not have been initialised either, but it cannot
2572 actually cause any incompatibility. */
2573 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2574 {
2575 /* Ignore synthetic sections and empty .text, .data and .bss sections
2576 which are automatically generated by gas. */
2577 if (strcmp (sec->name, ".reginfo")
2578 && strcmp (sec->name, ".mdebug")
2579 && ((!strcmp (sec->name, ".text")
2580 || !strcmp (sec->name, ".data")
2581 || !strcmp (sec->name, ".bss"))
2582 && sec->_raw_size != 0))
2583 {
2584 null_input_bfd = false;
2585 break;
2586 }
2587 }
2588 if (null_input_bfd)
2589 return true;
2590
2591 ok = true;
2592
2593 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2594 {
2595 new_flags &= ~EF_MIPS_PIC;
2596 old_flags &= ~EF_MIPS_PIC;
2597 (*_bfd_error_handler)
2598 (_("%s: linking PIC files with non-PIC files"),
2599 bfd_get_filename (ibfd));
2600 ok = false;
2601 }
2602
2603 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2604 {
2605 new_flags &= ~EF_MIPS_CPIC;
2606 old_flags &= ~EF_MIPS_CPIC;
2607 (*_bfd_error_handler)
2608 (_("%s: linking abicalls files with non-abicalls files"),
2609 bfd_get_filename (ibfd));
2610 ok = false;
2611 }
2612
2613 /* Compare the ISA's. */
2614 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2615 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2616 {
2617 int new_mach = new_flags & EF_MIPS_MACH;
2618 int old_mach = old_flags & EF_MIPS_MACH;
2619 int new_isa = elf_mips_isa (new_flags);
2620 int old_isa = elf_mips_isa (old_flags);
2621
2622 /* If either has no machine specified, just compare the general isa's.
2623 Some combinations of machines are ok, if the isa's match. */
2624 if (! new_mach
2625 || ! old_mach
2626 || new_mach == old_mach
2627 )
2628 {
2629 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2630 using 64-bit ISAs. They will normally use the same data sizes
2631 and calling conventions. */
2632
2633 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2634 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2635 {
2636 (*_bfd_error_handler)
2637 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2638 bfd_get_filename (ibfd), new_isa, old_isa);
2639 ok = false;
2640 }
2641 }
2642
2643 else
2644 {
2645 (*_bfd_error_handler)
2646 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2647 bfd_get_filename (ibfd),
2648 elf_mips_mach (new_flags),
2649 elf_mips_mach (old_flags));
2650 ok = false;
2651 }
2652
2653 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2654 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2655 }
2656
2657 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2658 does set EI_CLASS differently from any 32-bit ABI. */
2659 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2660 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2661 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2662 {
2663 /* Only error if both are set (to different values). */
2664 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2665 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2666 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2667 {
2668 (*_bfd_error_handler)
2669 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2670 bfd_get_filename (ibfd),
2671 elf_mips_abi_name (ibfd),
2672 elf_mips_abi_name (obfd));
2673 ok = false;
2674 }
2675 new_flags &= ~EF_MIPS_ABI;
2676 old_flags &= ~EF_MIPS_ABI;
2677 }
2678
2679 /* Warn about any other mismatches */
2680 if (new_flags != old_flags)
2681 {
2682 (*_bfd_error_handler)
2683 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2684 bfd_get_filename (ibfd), (unsigned long) new_flags,
2685 (unsigned long) old_flags);
2686 ok = false;
2687 }
2688
2689 if (! ok)
2690 {
2691 bfd_set_error (bfd_error_bad_value);
2692 return false;
2693 }
2694
2695 return true;
2696 }
2697 \f
2698 boolean
2699 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2700 bfd *abfd;
2701 PTR ptr;
2702 {
2703 FILE *file = (FILE *) ptr;
2704
2705 BFD_ASSERT (abfd != NULL && ptr != NULL);
2706
2707 /* Print normal ELF private data. */
2708 _bfd_elf_print_private_bfd_data (abfd, ptr);
2709
2710 /* xgettext:c-format */
2711 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2712
2713 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2714 fprintf (file, _(" [abi=O32]"));
2715 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2716 fprintf (file, _(" [abi=O64]"));
2717 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2718 fprintf (file, _(" [abi=EABI32]"));
2719 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2720 fprintf (file, _(" [abi=EABI64]"));
2721 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2722 fprintf (file, _(" [abi unknown]"));
2723 else if (ABI_N32_P (abfd))
2724 fprintf (file, _(" [abi=N32]"));
2725 else if (ABI_64_P (abfd))
2726 fprintf (file, _(" [abi=64]"));
2727 else
2728 fprintf (file, _(" [no abi set]"));
2729
2730 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2731 fprintf (file, _(" [mips1]"));
2732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2733 fprintf (file, _(" [mips2]"));
2734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2735 fprintf (file, _(" [mips3]"));
2736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2737 fprintf (file, _(" [mips4]"));
2738 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2739 fprintf (file, _ (" [mips5]"));
2740 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2741 fprintf (file, _ (" [mips32]"));
2742 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2743 fprintf (file, _ (" [mips64]"));
2744 else
2745 fprintf (file, _(" [unknown ISA]"));
2746
2747 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2748 fprintf (file, _(" [32bitmode]"));
2749 else
2750 fprintf (file, _(" [not 32bitmode]"));
2751
2752 fputc ('\n', file);
2753
2754 return true;
2755 }
2756 \f
2757 /* Handle a MIPS specific section when reading an object file. This
2758 is called when elfcode.h finds a section with an unknown type.
2759 This routine supports both the 32-bit and 64-bit ELF ABI.
2760
2761 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2762 how to. */
2763
2764 boolean
2765 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2766 bfd *abfd;
2767 Elf_Internal_Shdr *hdr;
2768 char *name;
2769 {
2770 flagword flags = 0;
2771
2772 /* There ought to be a place to keep ELF backend specific flags, but
2773 at the moment there isn't one. We just keep track of the
2774 sections by their name, instead. Fortunately, the ABI gives
2775 suggested names for all the MIPS specific sections, so we will
2776 probably get away with this. */
2777 switch (hdr->sh_type)
2778 {
2779 case SHT_MIPS_LIBLIST:
2780 if (strcmp (name, ".liblist") != 0)
2781 return false;
2782 break;
2783 case SHT_MIPS_MSYM:
2784 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2785 return false;
2786 break;
2787 case SHT_MIPS_CONFLICT:
2788 if (strcmp (name, ".conflict") != 0)
2789 return false;
2790 break;
2791 case SHT_MIPS_GPTAB:
2792 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2793 return false;
2794 break;
2795 case SHT_MIPS_UCODE:
2796 if (strcmp (name, ".ucode") != 0)
2797 return false;
2798 break;
2799 case SHT_MIPS_DEBUG:
2800 if (strcmp (name, ".mdebug") != 0)
2801 return false;
2802 flags = SEC_DEBUGGING;
2803 break;
2804 case SHT_MIPS_REGINFO:
2805 if (strcmp (name, ".reginfo") != 0
2806 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2807 return false;
2808 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2809 break;
2810 case SHT_MIPS_IFACE:
2811 if (strcmp (name, ".MIPS.interfaces") != 0)
2812 return false;
2813 break;
2814 case SHT_MIPS_CONTENT:
2815 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2816 return false;
2817 break;
2818 case SHT_MIPS_OPTIONS:
2819 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2820 return false;
2821 break;
2822 case SHT_MIPS_DWARF:
2823 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2824 return false;
2825 break;
2826 case SHT_MIPS_SYMBOL_LIB:
2827 if (strcmp (name, ".MIPS.symlib") != 0)
2828 return false;
2829 break;
2830 case SHT_MIPS_EVENTS:
2831 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2832 && strncmp (name, ".MIPS.post_rel",
2833 sizeof ".MIPS.post_rel" - 1) != 0)
2834 return false;
2835 break;
2836 default:
2837 return false;
2838 }
2839
2840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2841 return false;
2842
2843 if (flags)
2844 {
2845 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2846 (bfd_get_section_flags (abfd,
2847 hdr->bfd_section)
2848 | flags)))
2849 return false;
2850 }
2851
2852 /* FIXME: We should record sh_info for a .gptab section. */
2853
2854 /* For a .reginfo section, set the gp value in the tdata information
2855 from the contents of this section. We need the gp value while
2856 processing relocs, so we just get it now. The .reginfo section
2857 is not used in the 64-bit MIPS ELF ABI. */
2858 if (hdr->sh_type == SHT_MIPS_REGINFO)
2859 {
2860 Elf32_External_RegInfo ext;
2861 Elf32_RegInfo s;
2862
2863 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2864 (file_ptr) 0, sizeof ext))
2865 return false;
2866 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2867 elf_gp (abfd) = s.ri_gp_value;
2868 }
2869
2870 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2871 set the gp value based on what we find. We may see both
2872 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2873 they should agree. */
2874 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2875 {
2876 bfd_byte *contents, *l, *lend;
2877
2878 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2879 if (contents == NULL)
2880 return false;
2881 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2882 (file_ptr) 0, hdr->sh_size))
2883 {
2884 free (contents);
2885 return false;
2886 }
2887 l = contents;
2888 lend = contents + hdr->sh_size;
2889 while (l + sizeof (Elf_External_Options) <= lend)
2890 {
2891 Elf_Internal_Options intopt;
2892
2893 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2894 &intopt);
2895 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2896 {
2897 Elf64_Internal_RegInfo intreg;
2898
2899 bfd_mips_elf64_swap_reginfo_in
2900 (abfd,
2901 ((Elf64_External_RegInfo *)
2902 (l + sizeof (Elf_External_Options))),
2903 &intreg);
2904 elf_gp (abfd) = intreg.ri_gp_value;
2905 }
2906 else if (intopt.kind == ODK_REGINFO)
2907 {
2908 Elf32_RegInfo intreg;
2909
2910 bfd_mips_elf32_swap_reginfo_in
2911 (abfd,
2912 ((Elf32_External_RegInfo *)
2913 (l + sizeof (Elf_External_Options))),
2914 &intreg);
2915 elf_gp (abfd) = intreg.ri_gp_value;
2916 }
2917 l += intopt.size;
2918 }
2919 free (contents);
2920 }
2921
2922 return true;
2923 }
2924
2925 /* Set the correct type for a MIPS ELF section. We do this by the
2926 section name, which is a hack, but ought to work. This routine is
2927 used by both the 32-bit and the 64-bit ABI. */
2928
2929 boolean
2930 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2931 bfd *abfd;
2932 Elf32_Internal_Shdr *hdr;
2933 asection *sec;
2934 {
2935 register const char *name;
2936
2937 name = bfd_get_section_name (abfd, sec);
2938
2939 if (strcmp (name, ".liblist") == 0)
2940 {
2941 hdr->sh_type = SHT_MIPS_LIBLIST;
2942 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2943 /* The sh_link field is set in final_write_processing. */
2944 }
2945 else if (strcmp (name, ".conflict") == 0)
2946 hdr->sh_type = SHT_MIPS_CONFLICT;
2947 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2948 {
2949 hdr->sh_type = SHT_MIPS_GPTAB;
2950 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2951 /* The sh_info field is set in final_write_processing. */
2952 }
2953 else if (strcmp (name, ".ucode") == 0)
2954 hdr->sh_type = SHT_MIPS_UCODE;
2955 else if (strcmp (name, ".mdebug") == 0)
2956 {
2957 hdr->sh_type = SHT_MIPS_DEBUG;
2958 /* In a shared object on Irix 5.3, the .mdebug section has an
2959 entsize of 0. FIXME: Does this matter? */
2960 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2961 hdr->sh_entsize = 0;
2962 else
2963 hdr->sh_entsize = 1;
2964 }
2965 else if (strcmp (name, ".reginfo") == 0)
2966 {
2967 hdr->sh_type = SHT_MIPS_REGINFO;
2968 /* In a shared object on Irix 5.3, the .reginfo section has an
2969 entsize of 0x18. FIXME: Does this matter? */
2970 if (SGI_COMPAT (abfd))
2971 {
2972 if ((abfd->flags & DYNAMIC) != 0)
2973 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2974 else
2975 hdr->sh_entsize = 1;
2976 }
2977 else
2978 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2979 }
2980 else if (SGI_COMPAT (abfd)
2981 && (strcmp (name, ".hash") == 0
2982 || strcmp (name, ".dynamic") == 0
2983 || strcmp (name, ".dynstr") == 0))
2984 {
2985 if (SGI_COMPAT (abfd))
2986 hdr->sh_entsize = 0;
2987 #if 0
2988 /* This isn't how the Irix 6 linker behaves. */
2989 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2990 #endif
2991 }
2992 else if (strcmp (name, ".got") == 0
2993 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2994 || strcmp (name, ".sdata") == 0
2995 || strcmp (name, ".sbss") == 0
2996 || strcmp (name, ".lit4") == 0
2997 || strcmp (name, ".lit8") == 0)
2998 hdr->sh_flags |= SHF_MIPS_GPREL;
2999 else if (strcmp (name, ".MIPS.interfaces") == 0)
3000 {
3001 hdr->sh_type = SHT_MIPS_IFACE;
3002 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3003 }
3004 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3005 {
3006 hdr->sh_type = SHT_MIPS_CONTENT;
3007 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3008 /* The sh_info field is set in final_write_processing. */
3009 }
3010 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3011 {
3012 hdr->sh_type = SHT_MIPS_OPTIONS;
3013 hdr->sh_entsize = 1;
3014 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3015 }
3016 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3017 hdr->sh_type = SHT_MIPS_DWARF;
3018 else if (strcmp (name, ".MIPS.symlib") == 0)
3019 {
3020 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3021 /* The sh_link and sh_info fields are set in
3022 final_write_processing. */
3023 }
3024 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3025 || strncmp (name, ".MIPS.post_rel",
3026 sizeof ".MIPS.post_rel" - 1) == 0)
3027 {
3028 hdr->sh_type = SHT_MIPS_EVENTS;
3029 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3030 /* The sh_link field is set in final_write_processing. */
3031 }
3032 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3033 {
3034 hdr->sh_type = SHT_MIPS_MSYM;
3035 hdr->sh_flags |= SHF_ALLOC;
3036 hdr->sh_entsize = 8;
3037 }
3038
3039 /* The generic elf_fake_sections will set up REL_HDR using the
3040 default kind of relocations. But, we may actually need both
3041 kinds of relocations, so we set up the second header here. */
3042 if ((sec->flags & SEC_RELOC) != 0)
3043 {
3044 struct bfd_elf_section_data *esd;
3045
3046 esd = elf_section_data (sec);
3047 BFD_ASSERT (esd->rel_hdr2 == NULL);
3048 esd->rel_hdr2
3049 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3050 if (!esd->rel_hdr2)
3051 return false;
3052 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3053 !elf_section_data (sec)->use_rela_p);
3054 }
3055
3056 return true;
3057 }
3058
3059 /* Given a BFD section, try to locate the corresponding ELF section
3060 index. This is used by both the 32-bit and the 64-bit ABI.
3061 Actually, it's not clear to me that the 64-bit ABI supports these,
3062 but for non-PIC objects we will certainly want support for at least
3063 the .scommon section. */
3064
3065 boolean
3066 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3067 bfd *abfd ATTRIBUTE_UNUSED;
3068 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3069 asection *sec;
3070 int *retval;
3071 {
3072 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3073 {
3074 *retval = SHN_MIPS_SCOMMON;
3075 return true;
3076 }
3077 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3078 {
3079 *retval = SHN_MIPS_ACOMMON;
3080 return true;
3081 }
3082 return false;
3083 }
3084
3085 /* When are writing out the .options or .MIPS.options section,
3086 remember the bytes we are writing out, so that we can install the
3087 GP value in the section_processing routine. */
3088
3089 boolean
3090 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3091 bfd *abfd;
3092 sec_ptr section;
3093 PTR location;
3094 file_ptr offset;
3095 bfd_size_type count;
3096 {
3097 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3098 {
3099 bfd_byte *c;
3100
3101 if (elf_section_data (section) == NULL)
3102 {
3103 section->used_by_bfd =
3104 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3105 if (elf_section_data (section) == NULL)
3106 return false;
3107 }
3108 c = (bfd_byte *) elf_section_data (section)->tdata;
3109 if (c == NULL)
3110 {
3111 bfd_size_type size;
3112
3113 if (section->_cooked_size != 0)
3114 size = section->_cooked_size;
3115 else
3116 size = section->_raw_size;
3117 c = (bfd_byte *) bfd_zalloc (abfd, size);
3118 if (c == NULL)
3119 return false;
3120 elf_section_data (section)->tdata = (PTR) c;
3121 }
3122
3123 memcpy (c + offset, location, count);
3124 }
3125
3126 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3127 count);
3128 }
3129
3130 /* Work over a section just before writing it out. This routine is
3131 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3132 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3133 a better way. */
3134
3135 boolean
3136 _bfd_mips_elf_section_processing (abfd, hdr)
3137 bfd *abfd;
3138 Elf_Internal_Shdr *hdr;
3139 {
3140 if (hdr->sh_type == SHT_MIPS_REGINFO
3141 && hdr->sh_size > 0)
3142 {
3143 bfd_byte buf[4];
3144
3145 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3146 BFD_ASSERT (hdr->contents == NULL);
3147
3148 if (bfd_seek (abfd,
3149 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3150 SEEK_SET) == -1)
3151 return false;
3152 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3153 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3154 return false;
3155 }
3156
3157 if (hdr->sh_type == SHT_MIPS_OPTIONS
3158 && hdr->bfd_section != NULL
3159 && elf_section_data (hdr->bfd_section) != NULL
3160 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3161 {
3162 bfd_byte *contents, *l, *lend;
3163
3164 /* We stored the section contents in the elf_section_data tdata
3165 field in the set_section_contents routine. We save the
3166 section contents so that we don't have to read them again.
3167 At this point we know that elf_gp is set, so we can look
3168 through the section contents to see if there is an
3169 ODK_REGINFO structure. */
3170
3171 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3172 l = contents;
3173 lend = contents + hdr->sh_size;
3174 while (l + sizeof (Elf_External_Options) <= lend)
3175 {
3176 Elf_Internal_Options intopt;
3177
3178 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3179 &intopt);
3180 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3181 {
3182 bfd_byte buf[8];
3183
3184 if (bfd_seek (abfd,
3185 (hdr->sh_offset
3186 + (l - contents)
3187 + sizeof (Elf_External_Options)
3188 + (sizeof (Elf64_External_RegInfo) - 8)),
3189 SEEK_SET) == -1)
3190 return false;
3191 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3192 if (bfd_write (buf, 1, 8, abfd) != 8)
3193 return false;
3194 }
3195 else if (intopt.kind == ODK_REGINFO)
3196 {
3197 bfd_byte buf[4];
3198
3199 if (bfd_seek (abfd,
3200 (hdr->sh_offset
3201 + (l - contents)
3202 + sizeof (Elf_External_Options)
3203 + (sizeof (Elf32_External_RegInfo) - 4)),
3204 SEEK_SET) == -1)
3205 return false;
3206 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3207 if (bfd_write (buf, 1, 4, abfd) != 4)
3208 return false;
3209 }
3210 l += intopt.size;
3211 }
3212 }
3213
3214 if (hdr->bfd_section != NULL)
3215 {
3216 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3217
3218 if (strcmp (name, ".sdata") == 0
3219 || strcmp (name, ".lit8") == 0
3220 || strcmp (name, ".lit4") == 0)
3221 {
3222 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3223 hdr->sh_type = SHT_PROGBITS;
3224 }
3225 else if (strcmp (name, ".sbss") == 0)
3226 {
3227 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3228 hdr->sh_type = SHT_NOBITS;
3229 }
3230 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3231 {
3232 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3233 hdr->sh_type = SHT_PROGBITS;
3234 }
3235 else if (strcmp (name, ".compact_rel") == 0)
3236 {
3237 hdr->sh_flags = 0;
3238 hdr->sh_type = SHT_PROGBITS;
3239 }
3240 else if (strcmp (name, ".rtproc") == 0)
3241 {
3242 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3243 {
3244 unsigned int adjust;
3245
3246 adjust = hdr->sh_size % hdr->sh_addralign;
3247 if (adjust != 0)
3248 hdr->sh_size += hdr->sh_addralign - adjust;
3249 }
3250 }
3251 }
3252
3253 return true;
3254 }
3255 \f
3256 /* MIPS ELF uses two common sections. One is the usual one, and the
3257 other is for small objects. All the small objects are kept
3258 together, and then referenced via the gp pointer, which yields
3259 faster assembler code. This is what we use for the small common
3260 section. This approach is copied from ecoff.c. */
3261 static asection mips_elf_scom_section;
3262 static asymbol mips_elf_scom_symbol;
3263 static asymbol *mips_elf_scom_symbol_ptr;
3264
3265 /* MIPS ELF also uses an acommon section, which represents an
3266 allocated common symbol which may be overridden by a
3267 definition in a shared library. */
3268 static asection mips_elf_acom_section;
3269 static asymbol mips_elf_acom_symbol;
3270 static asymbol *mips_elf_acom_symbol_ptr;
3271
3272 /* Handle the special MIPS section numbers that a symbol may use.
3273 This is used for both the 32-bit and the 64-bit ABI. */
3274
3275 void
3276 _bfd_mips_elf_symbol_processing (abfd, asym)
3277 bfd *abfd;
3278 asymbol *asym;
3279 {
3280 elf_symbol_type *elfsym;
3281
3282 elfsym = (elf_symbol_type *) asym;
3283 switch (elfsym->internal_elf_sym.st_shndx)
3284 {
3285 case SHN_MIPS_ACOMMON:
3286 /* This section is used in a dynamically linked executable file.
3287 It is an allocated common section. The dynamic linker can
3288 either resolve these symbols to something in a shared
3289 library, or it can just leave them here. For our purposes,
3290 we can consider these symbols to be in a new section. */
3291 if (mips_elf_acom_section.name == NULL)
3292 {
3293 /* Initialize the acommon section. */
3294 mips_elf_acom_section.name = ".acommon";
3295 mips_elf_acom_section.flags = SEC_ALLOC;
3296 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3297 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3298 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3299 mips_elf_acom_symbol.name = ".acommon";
3300 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3301 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3302 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3303 }
3304 asym->section = &mips_elf_acom_section;
3305 break;
3306
3307 case SHN_COMMON:
3308 /* Common symbols less than the GP size are automatically
3309 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3310 if (asym->value > elf_gp_size (abfd)
3311 || IRIX_COMPAT (abfd) == ict_irix6)
3312 break;
3313 /* Fall through. */
3314 case SHN_MIPS_SCOMMON:
3315 if (mips_elf_scom_section.name == NULL)
3316 {
3317 /* Initialize the small common section. */
3318 mips_elf_scom_section.name = ".scommon";
3319 mips_elf_scom_section.flags = SEC_IS_COMMON;
3320 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3321 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3322 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3323 mips_elf_scom_symbol.name = ".scommon";
3324 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3325 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3326 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3327 }
3328 asym->section = &mips_elf_scom_section;
3329 asym->value = elfsym->internal_elf_sym.st_size;
3330 break;
3331
3332 case SHN_MIPS_SUNDEFINED:
3333 asym->section = bfd_und_section_ptr;
3334 break;
3335
3336 #if 0 /* for SGI_COMPAT */
3337 case SHN_MIPS_TEXT:
3338 asym->section = mips_elf_text_section_ptr;
3339 break;
3340
3341 case SHN_MIPS_DATA:
3342 asym->section = mips_elf_data_section_ptr;
3343 break;
3344 #endif
3345 }
3346 }
3347 \f
3348 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3349 segments. */
3350
3351 int
3352 _bfd_mips_elf_additional_program_headers (abfd)
3353 bfd *abfd;
3354 {
3355 asection *s;
3356 int ret = 0;
3357
3358 /* See if we need a PT_MIPS_REGINFO segment. */
3359 s = bfd_get_section_by_name (abfd, ".reginfo");
3360 if (s && (s->flags & SEC_LOAD))
3361 ++ret;
3362
3363 /* See if we need a PT_MIPS_OPTIONS segment. */
3364 if (IRIX_COMPAT (abfd) == ict_irix6
3365 && bfd_get_section_by_name (abfd,
3366 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3367 ++ret;
3368
3369 /* See if we need a PT_MIPS_RTPROC segment. */
3370 if (IRIX_COMPAT (abfd) == ict_irix5
3371 && bfd_get_section_by_name (abfd, ".dynamic")
3372 && bfd_get_section_by_name (abfd, ".mdebug"))
3373 ++ret;
3374
3375 return ret;
3376 }
3377
3378 /* Modify the segment map for an Irix 5 executable. */
3379
3380 boolean
3381 _bfd_mips_elf_modify_segment_map (abfd)
3382 bfd *abfd;
3383 {
3384 asection *s;
3385 struct elf_segment_map *m, **pm;
3386
3387 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3388 segment. */
3389 s = bfd_get_section_by_name (abfd, ".reginfo");
3390 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3391 {
3392 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3393 if (m->p_type == PT_MIPS_REGINFO)
3394 break;
3395 if (m == NULL)
3396 {
3397 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3398 if (m == NULL)
3399 return false;
3400
3401 m->p_type = PT_MIPS_REGINFO;
3402 m->count = 1;
3403 m->sections[0] = s;
3404
3405 /* We want to put it after the PHDR and INTERP segments. */
3406 pm = &elf_tdata (abfd)->segment_map;
3407 while (*pm != NULL
3408 && ((*pm)->p_type == PT_PHDR
3409 || (*pm)->p_type == PT_INTERP))
3410 pm = &(*pm)->next;
3411
3412 m->next = *pm;
3413 *pm = m;
3414 }
3415 }
3416
3417 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3418 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3419 PT_OPTIONS segement immediately following the program header
3420 table. */
3421 if (IRIX_COMPAT (abfd) == ict_irix6)
3422 {
3423 asection *s;
3424
3425 for (s = abfd->sections; s; s = s->next)
3426 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3427 break;
3428
3429 if (s)
3430 {
3431 struct elf_segment_map *options_segment;
3432
3433 /* Usually, there's a program header table. But, sometimes
3434 there's not (like when running the `ld' testsuite). So,
3435 if there's no program header table, we just put the
3436 options segement at the end. */
3437 for (pm = &elf_tdata (abfd)->segment_map;
3438 *pm != NULL;
3439 pm = &(*pm)->next)
3440 if ((*pm)->p_type == PT_PHDR)
3441 break;
3442
3443 options_segment = bfd_zalloc (abfd,
3444 sizeof (struct elf_segment_map));
3445 options_segment->next = *pm;
3446 options_segment->p_type = PT_MIPS_OPTIONS;
3447 options_segment->p_flags = PF_R;
3448 options_segment->p_flags_valid = true;
3449 options_segment->count = 1;
3450 options_segment->sections[0] = s;
3451 *pm = options_segment;
3452 }
3453 }
3454 else
3455 {
3456 if (IRIX_COMPAT (abfd) == ict_irix5)
3457 {
3458 /* If there are .dynamic and .mdebug sections, we make a room
3459 for the RTPROC header. FIXME: Rewrite without section names. */
3460 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3461 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3462 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3463 {
3464 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3465 if (m->p_type == PT_MIPS_RTPROC)
3466 break;
3467 if (m == NULL)
3468 {
3469 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3470 if (m == NULL)
3471 return false;
3472
3473 m->p_type = PT_MIPS_RTPROC;
3474
3475 s = bfd_get_section_by_name (abfd, ".rtproc");
3476 if (s == NULL)
3477 {
3478 m->count = 0;
3479 m->p_flags = 0;
3480 m->p_flags_valid = 1;
3481 }
3482 else
3483 {
3484 m->count = 1;
3485 m->sections[0] = s;
3486 }
3487
3488 /* We want to put it after the DYNAMIC segment. */
3489 pm = &elf_tdata (abfd)->segment_map;
3490 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3491 pm = &(*pm)->next;
3492 if (*pm != NULL)
3493 pm = &(*pm)->next;
3494
3495 m->next = *pm;
3496 *pm = m;
3497 }
3498 }
3499 }
3500 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3501 .dynstr, .dynsym, and .hash sections, and everything in
3502 between. */
3503 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3504 pm = &(*pm)->next)
3505 if ((*pm)->p_type == PT_DYNAMIC)
3506 break;
3507 m = *pm;
3508 if (IRIX_COMPAT (abfd) == ict_none)
3509 {
3510 /* For a normal mips executable the permissions for the PT_DYNAMIC
3511 segment are read, write and execute. We do that here since
3512 the code in elf.c sets only the read permission. This matters
3513 sometimes for the dynamic linker. */
3514 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3515 {
3516 m->p_flags = PF_R | PF_W | PF_X;
3517 m->p_flags_valid = 1;
3518 }
3519 }
3520 if (m != NULL
3521 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3522 {
3523 static const char *sec_names[] =
3524 {
3525 ".dynamic", ".dynstr", ".dynsym", ".hash"
3526 };
3527 bfd_vma low, high;
3528 unsigned int i, c;
3529 struct elf_segment_map *n;
3530
3531 low = 0xffffffff;
3532 high = 0;
3533 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3534 {
3535 s = bfd_get_section_by_name (abfd, sec_names[i]);
3536 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3537 {
3538 bfd_size_type sz;
3539
3540 if (low > s->vma)
3541 low = s->vma;
3542 sz = s->_cooked_size;
3543 if (sz == 0)
3544 sz = s->_raw_size;
3545 if (high < s->vma + sz)
3546 high = s->vma + sz;
3547 }
3548 }
3549
3550 c = 0;
3551 for (s = abfd->sections; s != NULL; s = s->next)
3552 if ((s->flags & SEC_LOAD) != 0
3553 && s->vma >= low
3554 && ((s->vma
3555 + (s->_cooked_size !=
3556 0 ? s->_cooked_size : s->_raw_size)) <= high))
3557 ++c;
3558
3559 n = ((struct elf_segment_map *)
3560 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3561 if (n == NULL)
3562 return false;
3563 *n = *m;
3564 n->count = c;
3565
3566 i = 0;
3567 for (s = abfd->sections; s != NULL; s = s->next)
3568 {
3569 if ((s->flags & SEC_LOAD) != 0
3570 && s->vma >= low
3571 && ((s->vma
3572 + (s->_cooked_size != 0 ?
3573 s->_cooked_size : s->_raw_size)) <= high))
3574 {
3575 n->sections[i] = s;
3576 ++i;
3577 }
3578 }
3579
3580 *pm = n;
3581 }
3582 }
3583
3584 return true;
3585 }
3586 \f
3587 /* The structure of the runtime procedure descriptor created by the
3588 loader for use by the static exception system. */
3589
3590 typedef struct runtime_pdr {
3591 bfd_vma adr; /* memory address of start of procedure */
3592 long regmask; /* save register mask */
3593 long regoffset; /* save register offset */
3594 long fregmask; /* save floating point register mask */
3595 long fregoffset; /* save floating point register offset */
3596 long frameoffset; /* frame size */
3597 short framereg; /* frame pointer register */
3598 short pcreg; /* offset or reg of return pc */
3599 long irpss; /* index into the runtime string table */
3600 long reserved;
3601 struct exception_info *exception_info;/* pointer to exception array */
3602 } RPDR, *pRPDR;
3603 #define cbRPDR sizeof (RPDR)
3604 #define rpdNil ((pRPDR) 0)
3605
3606 /* Swap RPDR (runtime procedure table entry) for output. */
3607
3608 static void ecoff_swap_rpdr_out
3609 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3610
3611 static void
3612 ecoff_swap_rpdr_out (abfd, in, ex)
3613 bfd *abfd;
3614 const RPDR *in;
3615 struct rpdr_ext *ex;
3616 {
3617 /* ecoff_put_off was defined in ecoffswap.h. */
3618 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3619 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3620 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3621 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3622 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3623 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3624
3625 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3626 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3627
3628 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3629 #if 0 /* FIXME */
3630 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3631 #endif
3632 }
3633 \f
3634 /* Read ECOFF debugging information from a .mdebug section into a
3635 ecoff_debug_info structure. */
3636
3637 boolean
3638 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3639 bfd *abfd;
3640 asection *section;
3641 struct ecoff_debug_info *debug;
3642 {
3643 HDRR *symhdr;
3644 const struct ecoff_debug_swap *swap;
3645 char *ext_hdr = NULL;
3646
3647 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3648 memset (debug, 0, sizeof (*debug));
3649
3650 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3651 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3652 goto error_return;
3653
3654 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3655 swap->external_hdr_size)
3656 == false)
3657 goto error_return;
3658
3659 symhdr = &debug->symbolic_header;
3660 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3661
3662 /* The symbolic header contains absolute file offsets and sizes to
3663 read. */
3664 #define READ(ptr, offset, count, size, type) \
3665 if (symhdr->count == 0) \
3666 debug->ptr = NULL; \
3667 else \
3668 { \
3669 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3670 if (debug->ptr == NULL) \
3671 goto error_return; \
3672 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3673 || (bfd_read (debug->ptr, size, symhdr->count, \
3674 abfd) != size * symhdr->count)) \
3675 goto error_return; \
3676 }
3677
3678 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3679 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3680 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3681 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3682 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3683 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3684 union aux_ext *);
3685 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3686 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3687 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3688 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3689 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3690 #undef READ
3691
3692 debug->fdr = NULL;
3693 debug->adjust = NULL;
3694
3695 return true;
3696
3697 error_return:
3698 if (ext_hdr != NULL)
3699 free (ext_hdr);
3700 if (debug->line != NULL)
3701 free (debug->line);
3702 if (debug->external_dnr != NULL)
3703 free (debug->external_dnr);
3704 if (debug->external_pdr != NULL)
3705 free (debug->external_pdr);
3706 if (debug->external_sym != NULL)
3707 free (debug->external_sym);
3708 if (debug->external_opt != NULL)
3709 free (debug->external_opt);
3710 if (debug->external_aux != NULL)
3711 free (debug->external_aux);
3712 if (debug->ss != NULL)
3713 free (debug->ss);
3714 if (debug->ssext != NULL)
3715 free (debug->ssext);
3716 if (debug->external_fdr != NULL)
3717 free (debug->external_fdr);
3718 if (debug->external_rfd != NULL)
3719 free (debug->external_rfd);
3720 if (debug->external_ext != NULL)
3721 free (debug->external_ext);
3722 return false;
3723 }
3724 \f
3725 /* MIPS ELF local labels start with '$', not 'L'. */
3726
3727 static boolean
3728 mips_elf_is_local_label_name (abfd, name)
3729 bfd *abfd;
3730 const char *name;
3731 {
3732 if (name[0] == '$')
3733 return true;
3734
3735 /* On Irix 6, the labels go back to starting with '.', so we accept
3736 the generic ELF local label syntax as well. */
3737 return _bfd_elf_is_local_label_name (abfd, name);
3738 }
3739
3740 /* MIPS ELF uses a special find_nearest_line routine in order the
3741 handle the ECOFF debugging information. */
3742
3743 struct mips_elf_find_line
3744 {
3745 struct ecoff_debug_info d;
3746 struct ecoff_find_line i;
3747 };
3748
3749 boolean
3750 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3751 functionname_ptr, line_ptr)
3752 bfd *abfd;
3753 asection *section;
3754 asymbol **symbols;
3755 bfd_vma offset;
3756 const char **filename_ptr;
3757 const char **functionname_ptr;
3758 unsigned int *line_ptr;
3759 {
3760 asection *msec;
3761
3762 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3763 filename_ptr, functionname_ptr,
3764 line_ptr))
3765 return true;
3766
3767 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3768 filename_ptr, functionname_ptr,
3769 line_ptr,
3770 ABI_64_P (abfd) ? 8 : 0,
3771 &elf_tdata (abfd)->dwarf2_find_line_info))
3772 return true;
3773
3774 msec = bfd_get_section_by_name (abfd, ".mdebug");
3775 if (msec != NULL)
3776 {
3777 flagword origflags;
3778 struct mips_elf_find_line *fi;
3779 const struct ecoff_debug_swap * const swap =
3780 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3781
3782 /* If we are called during a link, mips_elf_final_link may have
3783 cleared the SEC_HAS_CONTENTS field. We force it back on here
3784 if appropriate (which it normally will be). */
3785 origflags = msec->flags;
3786 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3787 msec->flags |= SEC_HAS_CONTENTS;
3788
3789 fi = elf_tdata (abfd)->find_line_info;
3790 if (fi == NULL)
3791 {
3792 bfd_size_type external_fdr_size;
3793 char *fraw_src;
3794 char *fraw_end;
3795 struct fdr *fdr_ptr;
3796
3797 fi = ((struct mips_elf_find_line *)
3798 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3799 if (fi == NULL)
3800 {
3801 msec->flags = origflags;
3802 return false;
3803 }
3804
3805 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3806 {
3807 msec->flags = origflags;
3808 return false;
3809 }
3810
3811 /* Swap in the FDR information. */
3812 fi->d.fdr = ((struct fdr *)
3813 bfd_alloc (abfd,
3814 (fi->d.symbolic_header.ifdMax *
3815 sizeof (struct fdr))));
3816 if (fi->d.fdr == NULL)
3817 {
3818 msec->flags = origflags;
3819 return false;
3820 }
3821 external_fdr_size = swap->external_fdr_size;
3822 fdr_ptr = fi->d.fdr;
3823 fraw_src = (char *) fi->d.external_fdr;
3824 fraw_end = (fraw_src
3825 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3826 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3827 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3828
3829 elf_tdata (abfd)->find_line_info = fi;
3830
3831 /* Note that we don't bother to ever free this information.
3832 find_nearest_line is either called all the time, as in
3833 objdump -l, so the information should be saved, or it is
3834 rarely called, as in ld error messages, so the memory
3835 wasted is unimportant. Still, it would probably be a
3836 good idea for free_cached_info to throw it away. */
3837 }
3838
3839 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3840 &fi->i, filename_ptr, functionname_ptr,
3841 line_ptr))
3842 {
3843 msec->flags = origflags;
3844 return true;
3845 }
3846
3847 msec->flags = origflags;
3848 }
3849
3850 /* Fall back on the generic ELF find_nearest_line routine. */
3851
3852 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3853 filename_ptr, functionname_ptr,
3854 line_ptr);
3855 }
3856 \f
3857 /* The mips16 compiler uses a couple of special sections to handle
3858 floating point arguments.
3859
3860 Section names that look like .mips16.fn.FNNAME contain stubs that
3861 copy floating point arguments from the fp regs to the gp regs and
3862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3863 call should be redirected to the stub instead. If no 32 bit
3864 function calls FNNAME, the stub should be discarded. We need to
3865 consider any reference to the function, not just a call, because
3866 if the address of the function is taken we will need the stub,
3867 since the address might be passed to a 32 bit function.
3868
3869 Section names that look like .mips16.call.FNNAME contain stubs
3870 that copy floating point arguments from the gp regs to the fp
3871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3872 then any 16 bit function that calls FNNAME should be redirected
3873 to the stub instead. If FNNAME is not a 32 bit function, the
3874 stub should be discarded.
3875
3876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3877 which call FNNAME and then copy the return value from the fp regs
3878 to the gp regs. These stubs store the return value in $18 while
3879 calling FNNAME; any function which might call one of these stubs
3880 must arrange to save $18 around the call. (This case is not
3881 needed for 32 bit functions that call 16 bit functions, because
3882 16 bit functions always return floating point values in both
3883 $f0/$f1 and $2/$3.)
3884
3885 Note that in all cases FNNAME might be defined statically.
3886 Therefore, FNNAME is not used literally. Instead, the relocation
3887 information will indicate which symbol the section is for.
3888
3889 We record any stubs that we find in the symbol table. */
3890
3891 #define FN_STUB ".mips16.fn."
3892 #define CALL_STUB ".mips16.call."
3893 #define CALL_FP_STUB ".mips16.call.fp."
3894
3895 /* MIPS ELF linker hash table. */
3896
3897 struct mips_elf_link_hash_table
3898 {
3899 struct elf_link_hash_table root;
3900 #if 0
3901 /* We no longer use this. */
3902 /* String section indices for the dynamic section symbols. */
3903 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3904 #endif
3905 /* The number of .rtproc entries. */
3906 bfd_size_type procedure_count;
3907 /* The size of the .compact_rel section (if SGI_COMPAT). */
3908 bfd_size_type compact_rel_size;
3909 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3910 entry is set to the address of __rld_obj_head as in Irix 5. */
3911 boolean use_rld_obj_head;
3912 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3913 bfd_vma rld_value;
3914 /* This is set if we see any mips16 stub sections. */
3915 boolean mips16_stubs_seen;
3916 };
3917
3918 /* Look up an entry in a MIPS ELF linker hash table. */
3919
3920 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3921 ((struct mips_elf_link_hash_entry *) \
3922 elf_link_hash_lookup (&(table)->root, (string), (create), \
3923 (copy), (follow)))
3924
3925 /* Traverse a MIPS ELF linker hash table. */
3926
3927 #define mips_elf_link_hash_traverse(table, func, info) \
3928 (elf_link_hash_traverse \
3929 (&(table)->root, \
3930 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3931 (info)))
3932
3933 /* Get the MIPS ELF linker hash table from a link_info structure. */
3934
3935 #define mips_elf_hash_table(p) \
3936 ((struct mips_elf_link_hash_table *) ((p)->hash))
3937
3938 static boolean mips_elf_output_extsym
3939 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3940
3941 /* Create an entry in a MIPS ELF linker hash table. */
3942
3943 static struct bfd_hash_entry *
3944 mips_elf_link_hash_newfunc (entry, table, string)
3945 struct bfd_hash_entry *entry;
3946 struct bfd_hash_table *table;
3947 const char *string;
3948 {
3949 struct mips_elf_link_hash_entry *ret =
3950 (struct mips_elf_link_hash_entry *) entry;
3951
3952 /* Allocate the structure if it has not already been allocated by a
3953 subclass. */
3954 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3955 ret = ((struct mips_elf_link_hash_entry *)
3956 bfd_hash_allocate (table,
3957 sizeof (struct mips_elf_link_hash_entry)));
3958 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3959 return (struct bfd_hash_entry *) ret;
3960
3961 /* Call the allocation method of the superclass. */
3962 ret = ((struct mips_elf_link_hash_entry *)
3963 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3964 table, string));
3965 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3966 {
3967 /* Set local fields. */
3968 memset (&ret->esym, 0, sizeof (EXTR));
3969 /* We use -2 as a marker to indicate that the information has
3970 not been set. -1 means there is no associated ifd. */
3971 ret->esym.ifd = -2;
3972 ret->possibly_dynamic_relocs = 0;
3973 ret->min_dyn_reloc_index = 0;
3974 ret->no_fn_stub = false;
3975 ret->fn_stub = NULL;
3976 ret->need_fn_stub = false;
3977 ret->call_stub = NULL;
3978 ret->call_fp_stub = NULL;
3979 }
3980
3981 return (struct bfd_hash_entry *) ret;
3982 }
3983
3984 void
3985 _bfd_mips_elf_hide_symbol (info, h)
3986 struct bfd_link_info *info;
3987 struct mips_elf_link_hash_entry *h;
3988 {
3989 bfd *dynobj;
3990 asection *got;
3991 struct mips_got_info *g;
3992 dynobj = elf_hash_table (info)->dynobj;
3993 got = bfd_get_section_by_name (dynobj, ".got");
3994 g = (struct mips_got_info *) elf_section_data (got)->tdata;
3995
3996 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3997 h->root.plt.offset = (bfd_vma) -1;
3998 h->root.dynindx = -1;
3999
4000 /* FIXME: Do we allocate too much GOT space here? */
4001 g->local_gotno++;
4002 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4003 }
4004
4005 /* Create a MIPS ELF linker hash table. */
4006
4007 struct bfd_link_hash_table *
4008 _bfd_mips_elf_link_hash_table_create (abfd)
4009 bfd *abfd;
4010 {
4011 struct mips_elf_link_hash_table *ret;
4012
4013 ret = ((struct mips_elf_link_hash_table *)
4014 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
4015 if (ret == (struct mips_elf_link_hash_table *) NULL)
4016 return NULL;
4017
4018 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4019 mips_elf_link_hash_newfunc))
4020 {
4021 bfd_release (abfd, ret);
4022 return NULL;
4023 }
4024
4025 #if 0
4026 /* We no longer use this. */
4027 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4028 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4029 #endif
4030 ret->procedure_count = 0;
4031 ret->compact_rel_size = 0;
4032 ret->use_rld_obj_head = false;
4033 ret->rld_value = 0;
4034 ret->mips16_stubs_seen = false;
4035
4036 return &ret->root.root;
4037 }
4038
4039 /* Hook called by the linker routine which adds symbols from an object
4040 file. We must handle the special MIPS section numbers here. */
4041
4042 boolean
4043 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4044 bfd *abfd;
4045 struct bfd_link_info *info;
4046 const Elf_Internal_Sym *sym;
4047 const char **namep;
4048 flagword *flagsp ATTRIBUTE_UNUSED;
4049 asection **secp;
4050 bfd_vma *valp;
4051 {
4052 if (SGI_COMPAT (abfd)
4053 && (abfd->flags & DYNAMIC) != 0
4054 && strcmp (*namep, "_rld_new_interface") == 0)
4055 {
4056 /* Skip Irix 5 rld entry name. */
4057 *namep = NULL;
4058 return true;
4059 }
4060
4061 switch (sym->st_shndx)
4062 {
4063 case SHN_COMMON:
4064 /* Common symbols less than the GP size are automatically
4065 treated as SHN_MIPS_SCOMMON symbols. */
4066 if (sym->st_size > elf_gp_size (abfd)
4067 || IRIX_COMPAT (abfd) == ict_irix6)
4068 break;
4069 /* Fall through. */
4070 case SHN_MIPS_SCOMMON:
4071 *secp = bfd_make_section_old_way (abfd, ".scommon");
4072 (*secp)->flags |= SEC_IS_COMMON;
4073 *valp = sym->st_size;
4074 break;
4075
4076 case SHN_MIPS_TEXT:
4077 /* This section is used in a shared object. */
4078 if (elf_tdata (abfd)->elf_text_section == NULL)
4079 {
4080 asymbol *elf_text_symbol;
4081 asection *elf_text_section;
4082
4083 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4084 if (elf_text_section == NULL)
4085 return false;
4086
4087 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4088 if (elf_text_symbol == NULL)
4089 return false;
4090
4091 /* Initialize the section. */
4092
4093 elf_tdata (abfd)->elf_text_section = elf_text_section;
4094 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4095
4096 elf_text_section->symbol = elf_text_symbol;
4097 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4098
4099 elf_text_section->name = ".text";
4100 elf_text_section->flags = SEC_NO_FLAGS;
4101 elf_text_section->output_section = NULL;
4102 elf_text_section->owner = abfd;
4103 elf_text_symbol->name = ".text";
4104 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4105 elf_text_symbol->section = elf_text_section;
4106 }
4107 /* This code used to do *secp = bfd_und_section_ptr if
4108 info->shared. I don't know why, and that doesn't make sense,
4109 so I took it out. */
4110 *secp = elf_tdata (abfd)->elf_text_section;
4111 break;
4112
4113 case SHN_MIPS_ACOMMON:
4114 /* Fall through. XXX Can we treat this as allocated data? */
4115 case SHN_MIPS_DATA:
4116 /* This section is used in a shared object. */
4117 if (elf_tdata (abfd)->elf_data_section == NULL)
4118 {
4119 asymbol *elf_data_symbol;
4120 asection *elf_data_section;
4121
4122 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4123 if (elf_data_section == NULL)
4124 return false;
4125
4126 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4127 if (elf_data_symbol == NULL)
4128 return false;
4129
4130 /* Initialize the section. */
4131
4132 elf_tdata (abfd)->elf_data_section = elf_data_section;
4133 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4134
4135 elf_data_section->symbol = elf_data_symbol;
4136 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4137
4138 elf_data_section->name = ".data";
4139 elf_data_section->flags = SEC_NO_FLAGS;
4140 elf_data_section->output_section = NULL;
4141 elf_data_section->owner = abfd;
4142 elf_data_symbol->name = ".data";
4143 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4144 elf_data_symbol->section = elf_data_section;
4145 }
4146 /* This code used to do *secp = bfd_und_section_ptr if
4147 info->shared. I don't know why, and that doesn't make sense,
4148 so I took it out. */
4149 *secp = elf_tdata (abfd)->elf_data_section;
4150 break;
4151
4152 case SHN_MIPS_SUNDEFINED:
4153 *secp = bfd_und_section_ptr;
4154 break;
4155 }
4156
4157 if (SGI_COMPAT (abfd)
4158 && ! info->shared
4159 && info->hash->creator == abfd->xvec
4160 && strcmp (*namep, "__rld_obj_head") == 0)
4161 {
4162 struct elf_link_hash_entry *h;
4163
4164 /* Mark __rld_obj_head as dynamic. */
4165 h = NULL;
4166 if (! (_bfd_generic_link_add_one_symbol
4167 (info, abfd, *namep, BSF_GLOBAL, *secp,
4168 (bfd_vma) *valp, (const char *) NULL, false,
4169 get_elf_backend_data (abfd)->collect,
4170 (struct bfd_link_hash_entry **) &h)))
4171 return false;
4172 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4173 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4174 h->type = STT_OBJECT;
4175
4176 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4177 return false;
4178
4179 mips_elf_hash_table (info)->use_rld_obj_head = true;
4180 }
4181
4182 /* If this is a mips16 text symbol, add 1 to the value to make it
4183 odd. This will cause something like .word SYM to come up with
4184 the right value when it is loaded into the PC. */
4185 if (sym->st_other == STO_MIPS16)
4186 ++*valp;
4187
4188 return true;
4189 }
4190
4191 /* Structure used to pass information to mips_elf_output_extsym. */
4192
4193 struct extsym_info
4194 {
4195 bfd *abfd;
4196 struct bfd_link_info *info;
4197 struct ecoff_debug_info *debug;
4198 const struct ecoff_debug_swap *swap;
4199 boolean failed;
4200 };
4201
4202 /* This routine is used to write out ECOFF debugging external symbol
4203 information. It is called via mips_elf_link_hash_traverse. The
4204 ECOFF external symbol information must match the ELF external
4205 symbol information. Unfortunately, at this point we don't know
4206 whether a symbol is required by reloc information, so the two
4207 tables may wind up being different. We must sort out the external
4208 symbol information before we can set the final size of the .mdebug
4209 section, and we must set the size of the .mdebug section before we
4210 can relocate any sections, and we can't know which symbols are
4211 required by relocation until we relocate the sections.
4212 Fortunately, it is relatively unlikely that any symbol will be
4213 stripped but required by a reloc. In particular, it can not happen
4214 when generating a final executable. */
4215
4216 static boolean
4217 mips_elf_output_extsym (h, data)
4218 struct mips_elf_link_hash_entry *h;
4219 PTR data;
4220 {
4221 struct extsym_info *einfo = (struct extsym_info *) data;
4222 boolean strip;
4223 asection *sec, *output_section;
4224
4225 if (h->root.indx == -2)
4226 strip = false;
4227 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4228 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4229 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4230 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4231 strip = true;
4232 else if (einfo->info->strip == strip_all
4233 || (einfo->info->strip == strip_some
4234 && bfd_hash_lookup (einfo->info->keep_hash,
4235 h->root.root.root.string,
4236 false, false) == NULL))
4237 strip = true;
4238 else
4239 strip = false;
4240
4241 if (strip)
4242 return true;
4243
4244 if (h->esym.ifd == -2)
4245 {
4246 h->esym.jmptbl = 0;
4247 h->esym.cobol_main = 0;
4248 h->esym.weakext = 0;
4249 h->esym.reserved = 0;
4250 h->esym.ifd = ifdNil;
4251 h->esym.asym.value = 0;
4252 h->esym.asym.st = stGlobal;
4253
4254 if (h->root.root.type == bfd_link_hash_undefined
4255 || h->root.root.type == bfd_link_hash_undefweak)
4256 {
4257 const char *name;
4258
4259 /* Use undefined class. Also, set class and type for some
4260 special symbols. */
4261 name = h->root.root.root.string;
4262 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4263 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4264 {
4265 h->esym.asym.sc = scData;
4266 h->esym.asym.st = stLabel;
4267 h->esym.asym.value = 0;
4268 }
4269 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4270 {
4271 h->esym.asym.sc = scAbs;
4272 h->esym.asym.st = stLabel;
4273 h->esym.asym.value =
4274 mips_elf_hash_table (einfo->info)->procedure_count;
4275 }
4276 else if (strcmp (name, "_gp_disp") == 0)
4277 {
4278 h->esym.asym.sc = scAbs;
4279 h->esym.asym.st = stLabel;
4280 h->esym.asym.value = elf_gp (einfo->abfd);
4281 }
4282 else
4283 h->esym.asym.sc = scUndefined;
4284 }
4285 else if (h->root.root.type != bfd_link_hash_defined
4286 && h->root.root.type != bfd_link_hash_defweak)
4287 h->esym.asym.sc = scAbs;
4288 else
4289 {
4290 const char *name;
4291
4292 sec = h->root.root.u.def.section;
4293 output_section = sec->output_section;
4294
4295 /* When making a shared library and symbol h is the one from
4296 the another shared library, OUTPUT_SECTION may be null. */
4297 if (output_section == NULL)
4298 h->esym.asym.sc = scUndefined;
4299 else
4300 {
4301 name = bfd_section_name (output_section->owner, output_section);
4302
4303 if (strcmp (name, ".text") == 0)
4304 h->esym.asym.sc = scText;
4305 else if (strcmp (name, ".data") == 0)
4306 h->esym.asym.sc = scData;
4307 else if (strcmp (name, ".sdata") == 0)
4308 h->esym.asym.sc = scSData;
4309 else if (strcmp (name, ".rodata") == 0
4310 || strcmp (name, ".rdata") == 0)
4311 h->esym.asym.sc = scRData;
4312 else if (strcmp (name, ".bss") == 0)
4313 h->esym.asym.sc = scBss;
4314 else if (strcmp (name, ".sbss") == 0)
4315 h->esym.asym.sc = scSBss;
4316 else if (strcmp (name, ".init") == 0)
4317 h->esym.asym.sc = scInit;
4318 else if (strcmp (name, ".fini") == 0)
4319 h->esym.asym.sc = scFini;
4320 else
4321 h->esym.asym.sc = scAbs;
4322 }
4323 }
4324
4325 h->esym.asym.reserved = 0;
4326 h->esym.asym.index = indexNil;
4327 }
4328
4329 if (h->root.root.type == bfd_link_hash_common)
4330 h->esym.asym.value = h->root.root.u.c.size;
4331 else if (h->root.root.type == bfd_link_hash_defined
4332 || h->root.root.type == bfd_link_hash_defweak)
4333 {
4334 if (h->esym.asym.sc == scCommon)
4335 h->esym.asym.sc = scBss;
4336 else if (h->esym.asym.sc == scSCommon)
4337 h->esym.asym.sc = scSBss;
4338
4339 sec = h->root.root.u.def.section;
4340 output_section = sec->output_section;
4341 if (output_section != NULL)
4342 h->esym.asym.value = (h->root.root.u.def.value
4343 + sec->output_offset
4344 + output_section->vma);
4345 else
4346 h->esym.asym.value = 0;
4347 }
4348 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4349 {
4350 struct mips_elf_link_hash_entry *hd = h;
4351 boolean no_fn_stub = h->no_fn_stub;
4352
4353 while (hd->root.root.type == bfd_link_hash_indirect)
4354 {
4355 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4356 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4357 }
4358
4359 if (!no_fn_stub)
4360 {
4361 /* Set type and value for a symbol with a function stub. */
4362 h->esym.asym.st = stProc;
4363 sec = hd->root.root.u.def.section;
4364 if (sec == NULL)
4365 h->esym.asym.value = 0;
4366 else
4367 {
4368 output_section = sec->output_section;
4369 if (output_section != NULL)
4370 h->esym.asym.value = (hd->root.plt.offset
4371 + sec->output_offset
4372 + output_section->vma);
4373 else
4374 h->esym.asym.value = 0;
4375 }
4376 #if 0 /* FIXME? */
4377 h->esym.ifd = 0;
4378 #endif
4379 }
4380 }
4381
4382 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4383 h->root.root.root.string,
4384 &h->esym))
4385 {
4386 einfo->failed = true;
4387 return false;
4388 }
4389
4390 return true;
4391 }
4392
4393 /* Create a runtime procedure table from the .mdebug section. */
4394
4395 static boolean
4396 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4397 PTR handle;
4398 bfd *abfd;
4399 struct bfd_link_info *info;
4400 asection *s;
4401 struct ecoff_debug_info *debug;
4402 {
4403 const struct ecoff_debug_swap *swap;
4404 HDRR *hdr = &debug->symbolic_header;
4405 RPDR *rpdr, *rp;
4406 struct rpdr_ext *erp;
4407 PTR rtproc;
4408 struct pdr_ext *epdr;
4409 struct sym_ext *esym;
4410 char *ss, **sv;
4411 char *str;
4412 unsigned long size, count;
4413 unsigned long sindex;
4414 unsigned long i;
4415 PDR pdr;
4416 SYMR sym;
4417 const char *no_name_func = _("static procedure (no name)");
4418
4419 epdr = NULL;
4420 rpdr = NULL;
4421 esym = NULL;
4422 ss = NULL;
4423 sv = NULL;
4424
4425 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4426
4427 sindex = strlen (no_name_func) + 1;
4428 count = hdr->ipdMax;
4429 if (count > 0)
4430 {
4431 size = swap->external_pdr_size;
4432
4433 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4434 if (epdr == NULL)
4435 goto error_return;
4436
4437 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4438 goto error_return;
4439
4440 size = sizeof (RPDR);
4441 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4442 if (rpdr == NULL)
4443 goto error_return;
4444
4445 sv = (char **) bfd_malloc (sizeof (char *) * count);
4446 if (sv == NULL)
4447 goto error_return;
4448
4449 count = hdr->isymMax;
4450 size = swap->external_sym_size;
4451 esym = (struct sym_ext *) bfd_malloc (size * count);
4452 if (esym == NULL)
4453 goto error_return;
4454
4455 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4456 goto error_return;
4457
4458 count = hdr->issMax;
4459 ss = (char *) bfd_malloc (count);
4460 if (ss == NULL)
4461 goto error_return;
4462 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4463 goto error_return;
4464
4465 count = hdr->ipdMax;
4466 for (i = 0; i < count; i++, rp++)
4467 {
4468 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4469 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4470 rp->adr = sym.value;
4471 rp->regmask = pdr.regmask;
4472 rp->regoffset = pdr.regoffset;
4473 rp->fregmask = pdr.fregmask;
4474 rp->fregoffset = pdr.fregoffset;
4475 rp->frameoffset = pdr.frameoffset;
4476 rp->framereg = pdr.framereg;
4477 rp->pcreg = pdr.pcreg;
4478 rp->irpss = sindex;
4479 sv[i] = ss + sym.iss;
4480 sindex += strlen (sv[i]) + 1;
4481 }
4482 }
4483
4484 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4485 size = BFD_ALIGN (size, 16);
4486 rtproc = (PTR) bfd_alloc (abfd, size);
4487 if (rtproc == NULL)
4488 {
4489 mips_elf_hash_table (info)->procedure_count = 0;
4490 goto error_return;
4491 }
4492
4493 mips_elf_hash_table (info)->procedure_count = count + 2;
4494
4495 erp = (struct rpdr_ext *) rtproc;
4496 memset (erp, 0, sizeof (struct rpdr_ext));
4497 erp++;
4498 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4499 strcpy (str, no_name_func);
4500 str += strlen (no_name_func) + 1;
4501 for (i = 0; i < count; i++)
4502 {
4503 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4504 strcpy (str, sv[i]);
4505 str += strlen (sv[i]) + 1;
4506 }
4507 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4508
4509 /* Set the size and contents of .rtproc section. */
4510 s->_raw_size = size;
4511 s->contents = (bfd_byte *) rtproc;
4512
4513 /* Skip this section later on (I don't think this currently
4514 matters, but someday it might). */
4515 s->link_order_head = (struct bfd_link_order *) NULL;
4516
4517 if (epdr != NULL)
4518 free (epdr);
4519 if (rpdr != NULL)
4520 free (rpdr);
4521 if (esym != NULL)
4522 free (esym);
4523 if (ss != NULL)
4524 free (ss);
4525 if (sv != NULL)
4526 free (sv);
4527
4528 return true;
4529
4530 error_return:
4531 if (epdr != NULL)
4532 free (epdr);
4533 if (rpdr != NULL)
4534 free (rpdr);
4535 if (esym != NULL)
4536 free (esym);
4537 if (ss != NULL)
4538 free (ss);
4539 if (sv != NULL)
4540 free (sv);
4541 return false;
4542 }
4543
4544 /* A comparison routine used to sort .gptab entries. */
4545
4546 static int
4547 gptab_compare (p1, p2)
4548 const PTR p1;
4549 const PTR p2;
4550 {
4551 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4552 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4553
4554 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4555 }
4556
4557 /* We need to use a special link routine to handle the .reginfo and
4558 the .mdebug sections. We need to merge all instances of these
4559 sections together, not write them all out sequentially. */
4560
4561 boolean
4562 _bfd_mips_elf_final_link (abfd, info)
4563 bfd *abfd;
4564 struct bfd_link_info *info;
4565 {
4566 asection **secpp;
4567 asection *o;
4568 struct bfd_link_order *p;
4569 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4570 asection *rtproc_sec;
4571 Elf32_RegInfo reginfo;
4572 struct ecoff_debug_info debug;
4573 const struct ecoff_debug_swap *swap
4574 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4575 HDRR *symhdr = &debug.symbolic_header;
4576 PTR mdebug_handle = NULL;
4577 asection *s;
4578 EXTR esym;
4579 bfd_vma last;
4580 unsigned int i;
4581 static const char * const name[] =
4582 {
4583 ".text", ".init", ".fini", ".data",
4584 ".rodata", ".sdata", ".sbss", ".bss"
4585 };
4586 static const int sc[] =
4587 {
4588 scText, scInit, scFini, scData,
4589 scRData, scSData, scSBss, scBss
4590 };
4591
4592 /* If all the things we linked together were PIC, but we're
4593 producing an executable (rather than a shared object), then the
4594 resulting file is CPIC (i.e., it calls PIC code.) */
4595 if (!info->shared
4596 && !info->relocateable
4597 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4598 {
4599 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4600 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4601 }
4602
4603 /* We'd carefully arranged the dynamic symbol indices, and then the
4604 generic size_dynamic_sections renumbered them out from under us.
4605 Rather than trying somehow to prevent the renumbering, just do
4606 the sort again. */
4607 if (elf_hash_table (info)->dynamic_sections_created)
4608 {
4609 bfd *dynobj;
4610 asection *got;
4611 struct mips_got_info *g;
4612
4613 /* When we resort, we must tell mips_elf_sort_hash_table what
4614 the lowest index it may use is. That's the number of section
4615 symbols we're going to add. The generic ELF linker only
4616 adds these symbols when building a shared object. Note that
4617 we count the sections after (possibly) removing the .options
4618 section above. */
4619 if (!mips_elf_sort_hash_table (info, (info->shared
4620 ? bfd_count_sections (abfd) + 1
4621 : 1)))
4622 return false;
4623
4624 /* Make sure we didn't grow the global .got region. */
4625 dynobj = elf_hash_table (info)->dynobj;
4626 got = bfd_get_section_by_name (dynobj, ".got");
4627 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4628
4629 if (g->global_gotsym != NULL)
4630 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4631 - g->global_gotsym->dynindx)
4632 <= g->global_gotno);
4633 }
4634
4635 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4636 include it, even though we don't process it quite right. (Some
4637 entries are supposed to be merged.) Empirically, we seem to be
4638 better off including it then not. */
4639 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4640 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4641 {
4642 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4643 {
4644 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4645 if (p->type == bfd_indirect_link_order)
4646 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4647 (*secpp)->link_order_head = NULL;
4648 *secpp = (*secpp)->next;
4649 --abfd->section_count;
4650
4651 break;
4652 }
4653 }
4654
4655 /* Get a value for the GP register. */
4656 if (elf_gp (abfd) == 0)
4657 {
4658 struct bfd_link_hash_entry *h;
4659
4660 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4661 if (h != (struct bfd_link_hash_entry *) NULL
4662 && h->type == bfd_link_hash_defined)
4663 elf_gp (abfd) = (h->u.def.value
4664 + h->u.def.section->output_section->vma
4665 + h->u.def.section->output_offset);
4666 else if (info->relocateable)
4667 {
4668 bfd_vma lo;
4669
4670 /* Find the GP-relative section with the lowest offset. */
4671 lo = (bfd_vma) -1;
4672 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4673 if (o->vma < lo
4674 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4675 lo = o->vma;
4676
4677 /* And calculate GP relative to that. */
4678 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4679 }
4680 else
4681 {
4682 /* If the relocate_section function needs to do a reloc
4683 involving the GP value, it should make a reloc_dangerous
4684 callback to warn that GP is not defined. */
4685 }
4686 }
4687
4688 /* Go through the sections and collect the .reginfo and .mdebug
4689 information. */
4690 reginfo_sec = NULL;
4691 mdebug_sec = NULL;
4692 gptab_data_sec = NULL;
4693 gptab_bss_sec = NULL;
4694 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4695 {
4696 if (strcmp (o->name, ".reginfo") == 0)
4697 {
4698 memset (&reginfo, 0, sizeof reginfo);
4699
4700 /* We have found the .reginfo section in the output file.
4701 Look through all the link_orders comprising it and merge
4702 the information together. */
4703 for (p = o->link_order_head;
4704 p != (struct bfd_link_order *) NULL;
4705 p = p->next)
4706 {
4707 asection *input_section;
4708 bfd *input_bfd;
4709 Elf32_External_RegInfo ext;
4710 Elf32_RegInfo sub;
4711
4712 if (p->type != bfd_indirect_link_order)
4713 {
4714 if (p->type == bfd_fill_link_order)
4715 continue;
4716 abort ();
4717 }
4718
4719 input_section = p->u.indirect.section;
4720 input_bfd = input_section->owner;
4721
4722 /* The linker emulation code has probably clobbered the
4723 size to be zero bytes. */
4724 if (input_section->_raw_size == 0)
4725 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4726
4727 if (! bfd_get_section_contents (input_bfd, input_section,
4728 (PTR) &ext,
4729 (file_ptr) 0,
4730 sizeof ext))
4731 return false;
4732
4733 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4734
4735 reginfo.ri_gprmask |= sub.ri_gprmask;
4736 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4737 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4738 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4739 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4740
4741 /* ri_gp_value is set by the function
4742 mips_elf32_section_processing when the section is
4743 finally written out. */
4744
4745 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4746 elf_link_input_bfd ignores this section. */
4747 input_section->flags &= ~SEC_HAS_CONTENTS;
4748 }
4749
4750 /* Size has been set in mips_elf_always_size_sections */
4751 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4752
4753 /* Skip this section later on (I don't think this currently
4754 matters, but someday it might). */
4755 o->link_order_head = (struct bfd_link_order *) NULL;
4756
4757 reginfo_sec = o;
4758 }
4759
4760 if (strcmp (o->name, ".mdebug") == 0)
4761 {
4762 struct extsym_info einfo;
4763
4764 /* We have found the .mdebug section in the output file.
4765 Look through all the link_orders comprising it and merge
4766 the information together. */
4767 symhdr->magic = swap->sym_magic;
4768 /* FIXME: What should the version stamp be? */
4769 symhdr->vstamp = 0;
4770 symhdr->ilineMax = 0;
4771 symhdr->cbLine = 0;
4772 symhdr->idnMax = 0;
4773 symhdr->ipdMax = 0;
4774 symhdr->isymMax = 0;
4775 symhdr->ioptMax = 0;
4776 symhdr->iauxMax = 0;
4777 symhdr->issMax = 0;
4778 symhdr->issExtMax = 0;
4779 symhdr->ifdMax = 0;
4780 symhdr->crfd = 0;
4781 symhdr->iextMax = 0;
4782
4783 /* We accumulate the debugging information itself in the
4784 debug_info structure. */
4785 debug.line = NULL;
4786 debug.external_dnr = NULL;
4787 debug.external_pdr = NULL;
4788 debug.external_sym = NULL;
4789 debug.external_opt = NULL;
4790 debug.external_aux = NULL;
4791 debug.ss = NULL;
4792 debug.ssext = debug.ssext_end = NULL;
4793 debug.external_fdr = NULL;
4794 debug.external_rfd = NULL;
4795 debug.external_ext = debug.external_ext_end = NULL;
4796
4797 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4798 if (mdebug_handle == (PTR) NULL)
4799 return false;
4800
4801 esym.jmptbl = 0;
4802 esym.cobol_main = 0;
4803 esym.weakext = 0;
4804 esym.reserved = 0;
4805 esym.ifd = ifdNil;
4806 esym.asym.iss = issNil;
4807 esym.asym.st = stLocal;
4808 esym.asym.reserved = 0;
4809 esym.asym.index = indexNil;
4810 last = 0;
4811 for (i = 0; i < 8; i++)
4812 {
4813 esym.asym.sc = sc[i];
4814 s = bfd_get_section_by_name (abfd, name[i]);
4815 if (s != NULL)
4816 {
4817 esym.asym.value = s->vma;
4818 last = s->vma + s->_raw_size;
4819 }
4820 else
4821 esym.asym.value = last;
4822 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4823 name[i], &esym))
4824 return false;
4825 }
4826
4827 for (p = o->link_order_head;
4828 p != (struct bfd_link_order *) NULL;
4829 p = p->next)
4830 {
4831 asection *input_section;
4832 bfd *input_bfd;
4833 const struct ecoff_debug_swap *input_swap;
4834 struct ecoff_debug_info input_debug;
4835 char *eraw_src;
4836 char *eraw_end;
4837
4838 if (p->type != bfd_indirect_link_order)
4839 {
4840 if (p->type == bfd_fill_link_order)
4841 continue;
4842 abort ();
4843 }
4844
4845 input_section = p->u.indirect.section;
4846 input_bfd = input_section->owner;
4847
4848 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4849 || (get_elf_backend_data (input_bfd)
4850 ->elf_backend_ecoff_debug_swap) == NULL)
4851 {
4852 /* I don't know what a non MIPS ELF bfd would be
4853 doing with a .mdebug section, but I don't really
4854 want to deal with it. */
4855 continue;
4856 }
4857
4858 input_swap = (get_elf_backend_data (input_bfd)
4859 ->elf_backend_ecoff_debug_swap);
4860
4861 BFD_ASSERT (p->size == input_section->_raw_size);
4862
4863 /* The ECOFF linking code expects that we have already
4864 read in the debugging information and set up an
4865 ecoff_debug_info structure, so we do that now. */
4866 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4867 &input_debug))
4868 return false;
4869
4870 if (! (bfd_ecoff_debug_accumulate
4871 (mdebug_handle, abfd, &debug, swap, input_bfd,
4872 &input_debug, input_swap, info)))
4873 return false;
4874
4875 /* Loop through the external symbols. For each one with
4876 interesting information, try to find the symbol in
4877 the linker global hash table and save the information
4878 for the output external symbols. */
4879 eraw_src = input_debug.external_ext;
4880 eraw_end = (eraw_src
4881 + (input_debug.symbolic_header.iextMax
4882 * input_swap->external_ext_size));
4883 for (;
4884 eraw_src < eraw_end;
4885 eraw_src += input_swap->external_ext_size)
4886 {
4887 EXTR ext;
4888 const char *name;
4889 struct mips_elf_link_hash_entry *h;
4890
4891 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4892 if (ext.asym.sc == scNil
4893 || ext.asym.sc == scUndefined
4894 || ext.asym.sc == scSUndefined)
4895 continue;
4896
4897 name = input_debug.ssext + ext.asym.iss;
4898 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4899 name, false, false, true);
4900 if (h == NULL || h->esym.ifd != -2)
4901 continue;
4902
4903 if (ext.ifd != -1)
4904 {
4905 BFD_ASSERT (ext.ifd
4906 < input_debug.symbolic_header.ifdMax);
4907 ext.ifd = input_debug.ifdmap[ext.ifd];
4908 }
4909
4910 h->esym = ext;
4911 }
4912
4913 /* Free up the information we just read. */
4914 free (input_debug.line);
4915 free (input_debug.external_dnr);
4916 free (input_debug.external_pdr);
4917 free (input_debug.external_sym);
4918 free (input_debug.external_opt);
4919 free (input_debug.external_aux);
4920 free (input_debug.ss);
4921 free (input_debug.ssext);
4922 free (input_debug.external_fdr);
4923 free (input_debug.external_rfd);
4924 free (input_debug.external_ext);
4925
4926 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4927 elf_link_input_bfd ignores this section. */
4928 input_section->flags &= ~SEC_HAS_CONTENTS;
4929 }
4930
4931 if (SGI_COMPAT (abfd) && info->shared)
4932 {
4933 /* Create .rtproc section. */
4934 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4935 if (rtproc_sec == NULL)
4936 {
4937 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4938 | SEC_LINKER_CREATED | SEC_READONLY);
4939
4940 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4941 if (rtproc_sec == NULL
4942 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4943 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4944 return false;
4945 }
4946
4947 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4948 info, rtproc_sec, &debug))
4949 return false;
4950 }
4951
4952 /* Build the external symbol information. */
4953 einfo.abfd = abfd;
4954 einfo.info = info;
4955 einfo.debug = &debug;
4956 einfo.swap = swap;
4957 einfo.failed = false;
4958 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4959 mips_elf_output_extsym,
4960 (PTR) &einfo);
4961 if (einfo.failed)
4962 return false;
4963
4964 /* Set the size of the .mdebug section. */
4965 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4966
4967 /* Skip this section later on (I don't think this currently
4968 matters, but someday it might). */
4969 o->link_order_head = (struct bfd_link_order *) NULL;
4970
4971 mdebug_sec = o;
4972 }
4973
4974 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4975 {
4976 const char *subname;
4977 unsigned int c;
4978 Elf32_gptab *tab;
4979 Elf32_External_gptab *ext_tab;
4980 unsigned int i;
4981
4982 /* The .gptab.sdata and .gptab.sbss sections hold
4983 information describing how the small data area would
4984 change depending upon the -G switch. These sections
4985 not used in executables files. */
4986 if (! info->relocateable)
4987 {
4988 asection **secpp;
4989
4990 for (p = o->link_order_head;
4991 p != (struct bfd_link_order *) NULL;
4992 p = p->next)
4993 {
4994 asection *input_section;
4995
4996 if (p->type != bfd_indirect_link_order)
4997 {
4998 if (p->type == bfd_fill_link_order)
4999 continue;
5000 abort ();
5001 }
5002
5003 input_section = p->u.indirect.section;
5004
5005 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5006 elf_link_input_bfd ignores this section. */
5007 input_section->flags &= ~SEC_HAS_CONTENTS;
5008 }
5009
5010 /* Skip this section later on (I don't think this
5011 currently matters, but someday it might). */
5012 o->link_order_head = (struct bfd_link_order *) NULL;
5013
5014 /* Really remove the section. */
5015 for (secpp = &abfd->sections;
5016 *secpp != o;
5017 secpp = &(*secpp)->next)
5018 ;
5019 *secpp = (*secpp)->next;
5020 --abfd->section_count;
5021
5022 continue;
5023 }
5024
5025 /* There is one gptab for initialized data, and one for
5026 uninitialized data. */
5027 if (strcmp (o->name, ".gptab.sdata") == 0)
5028 gptab_data_sec = o;
5029 else if (strcmp (o->name, ".gptab.sbss") == 0)
5030 gptab_bss_sec = o;
5031 else
5032 {
5033 (*_bfd_error_handler)
5034 (_("%s: illegal section name `%s'"),
5035 bfd_get_filename (abfd), o->name);
5036 bfd_set_error (bfd_error_nonrepresentable_section);
5037 return false;
5038 }
5039
5040 /* The linker script always combines .gptab.data and
5041 .gptab.sdata into .gptab.sdata, and likewise for
5042 .gptab.bss and .gptab.sbss. It is possible that there is
5043 no .sdata or .sbss section in the output file, in which
5044 case we must change the name of the output section. */
5045 subname = o->name + sizeof ".gptab" - 1;
5046 if (bfd_get_section_by_name (abfd, subname) == NULL)
5047 {
5048 if (o == gptab_data_sec)
5049 o->name = ".gptab.data";
5050 else
5051 o->name = ".gptab.bss";
5052 subname = o->name + sizeof ".gptab" - 1;
5053 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5054 }
5055
5056 /* Set up the first entry. */
5057 c = 1;
5058 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
5059 if (tab == NULL)
5060 return false;
5061 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5062 tab[0].gt_header.gt_unused = 0;
5063
5064 /* Combine the input sections. */
5065 for (p = o->link_order_head;
5066 p != (struct bfd_link_order *) NULL;
5067 p = p->next)
5068 {
5069 asection *input_section;
5070 bfd *input_bfd;
5071 bfd_size_type size;
5072 unsigned long last;
5073 bfd_size_type gpentry;
5074
5075 if (p->type != bfd_indirect_link_order)
5076 {
5077 if (p->type == bfd_fill_link_order)
5078 continue;
5079 abort ();
5080 }
5081
5082 input_section = p->u.indirect.section;
5083 input_bfd = input_section->owner;
5084
5085 /* Combine the gptab entries for this input section one
5086 by one. We know that the input gptab entries are
5087 sorted by ascending -G value. */
5088 size = bfd_section_size (input_bfd, input_section);
5089 last = 0;
5090 for (gpentry = sizeof (Elf32_External_gptab);
5091 gpentry < size;
5092 gpentry += sizeof (Elf32_External_gptab))
5093 {
5094 Elf32_External_gptab ext_gptab;
5095 Elf32_gptab int_gptab;
5096 unsigned long val;
5097 unsigned long add;
5098 boolean exact;
5099 unsigned int look;
5100
5101 if (! (bfd_get_section_contents
5102 (input_bfd, input_section, (PTR) &ext_gptab,
5103 gpentry, sizeof (Elf32_External_gptab))))
5104 {
5105 free (tab);
5106 return false;
5107 }
5108
5109 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5110 &int_gptab);
5111 val = int_gptab.gt_entry.gt_g_value;
5112 add = int_gptab.gt_entry.gt_bytes - last;
5113
5114 exact = false;
5115 for (look = 1; look < c; look++)
5116 {
5117 if (tab[look].gt_entry.gt_g_value >= val)
5118 tab[look].gt_entry.gt_bytes += add;
5119
5120 if (tab[look].gt_entry.gt_g_value == val)
5121 exact = true;
5122 }
5123
5124 if (! exact)
5125 {
5126 Elf32_gptab *new_tab;
5127 unsigned int max;
5128
5129 /* We need a new table entry. */
5130 new_tab = ((Elf32_gptab *)
5131 bfd_realloc ((PTR) tab,
5132 (c + 1) * sizeof (Elf32_gptab)));
5133 if (new_tab == NULL)
5134 {
5135 free (tab);
5136 return false;
5137 }
5138 tab = new_tab;
5139 tab[c].gt_entry.gt_g_value = val;
5140 tab[c].gt_entry.gt_bytes = add;
5141
5142 /* Merge in the size for the next smallest -G
5143 value, since that will be implied by this new
5144 value. */
5145 max = 0;
5146 for (look = 1; look < c; look++)
5147 {
5148 if (tab[look].gt_entry.gt_g_value < val
5149 && (max == 0
5150 || (tab[look].gt_entry.gt_g_value
5151 > tab[max].gt_entry.gt_g_value)))
5152 max = look;
5153 }
5154 if (max != 0)
5155 tab[c].gt_entry.gt_bytes +=
5156 tab[max].gt_entry.gt_bytes;
5157
5158 ++c;
5159 }
5160
5161 last = int_gptab.gt_entry.gt_bytes;
5162 }
5163
5164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5165 elf_link_input_bfd ignores this section. */
5166 input_section->flags &= ~SEC_HAS_CONTENTS;
5167 }
5168
5169 /* The table must be sorted by -G value. */
5170 if (c > 2)
5171 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5172
5173 /* Swap out the table. */
5174 ext_tab = ((Elf32_External_gptab *)
5175 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5176 if (ext_tab == NULL)
5177 {
5178 free (tab);
5179 return false;
5180 }
5181
5182 for (i = 0; i < c; i++)
5183 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5184 free (tab);
5185
5186 o->_raw_size = c * sizeof (Elf32_External_gptab);
5187 o->contents = (bfd_byte *) ext_tab;
5188
5189 /* Skip this section later on (I don't think this currently
5190 matters, but someday it might). */
5191 o->link_order_head = (struct bfd_link_order *) NULL;
5192 }
5193 }
5194
5195 /* Invoke the regular ELF backend linker to do all the work. */
5196 if (ABI_64_P (abfd))
5197 {
5198 #ifdef BFD64
5199 if (!bfd_elf64_bfd_final_link (abfd, info))
5200 return false;
5201 #else
5202 abort ();
5203 return false;
5204 #endif /* BFD64 */
5205 }
5206 else if (!bfd_elf32_bfd_final_link (abfd, info))
5207 return false;
5208
5209 /* Now write out the computed sections. */
5210
5211 if (reginfo_sec != (asection *) NULL)
5212 {
5213 Elf32_External_RegInfo ext;
5214
5215 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5216 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5217 (file_ptr) 0, sizeof ext))
5218 return false;
5219 }
5220
5221 if (mdebug_sec != (asection *) NULL)
5222 {
5223 BFD_ASSERT (abfd->output_has_begun);
5224 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5225 swap, info,
5226 mdebug_sec->filepos))
5227 return false;
5228
5229 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5230 }
5231
5232 if (gptab_data_sec != (asection *) NULL)
5233 {
5234 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5235 gptab_data_sec->contents,
5236 (file_ptr) 0,
5237 gptab_data_sec->_raw_size))
5238 return false;
5239 }
5240
5241 if (gptab_bss_sec != (asection *) NULL)
5242 {
5243 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5244 gptab_bss_sec->contents,
5245 (file_ptr) 0,
5246 gptab_bss_sec->_raw_size))
5247 return false;
5248 }
5249
5250 if (SGI_COMPAT (abfd))
5251 {
5252 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5253 if (rtproc_sec != NULL)
5254 {
5255 if (! bfd_set_section_contents (abfd, rtproc_sec,
5256 rtproc_sec->contents,
5257 (file_ptr) 0,
5258 rtproc_sec->_raw_size))
5259 return false;
5260 }
5261 }
5262
5263 return true;
5264 }
5265
5266 /* This function is called via qsort() to sort the dynamic relocation
5267 entries by increasing r_symndx value. */
5268
5269 static int
5270 sort_dynamic_relocs (arg1, arg2)
5271 const PTR arg1;
5272 const PTR arg2;
5273 {
5274 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5275 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5276
5277 Elf_Internal_Rel int_reloc1;
5278 Elf_Internal_Rel int_reloc2;
5279
5280 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5281 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5282
5283 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5284 }
5285
5286 /* Returns the GOT section for ABFD. */
5287
5288 static asection *
5289 mips_elf_got_section (abfd)
5290 bfd *abfd;
5291 {
5292 return bfd_get_section_by_name (abfd, ".got");
5293 }
5294
5295 /* Returns the GOT information associated with the link indicated by
5296 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5297 section. */
5298
5299 static struct mips_got_info *
5300 mips_elf_got_info (abfd, sgotp)
5301 bfd *abfd;
5302 asection **sgotp;
5303 {
5304 asection *sgot;
5305 struct mips_got_info *g;
5306
5307 sgot = mips_elf_got_section (abfd);
5308 BFD_ASSERT (sgot != NULL);
5309 BFD_ASSERT (elf_section_data (sgot) != NULL);
5310 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5311 BFD_ASSERT (g != NULL);
5312
5313 if (sgotp)
5314 *sgotp = sgot;
5315 return g;
5316 }
5317
5318 /* Return whether a relocation is against a local symbol. */
5319
5320 static boolean
5321 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5322 check_forced)
5323 bfd *input_bfd;
5324 const Elf_Internal_Rela *relocation;
5325 asection **local_sections;
5326 boolean check_forced;
5327 {
5328 unsigned long r_symndx;
5329 Elf_Internal_Shdr *symtab_hdr;
5330 struct mips_elf_link_hash_entry *h;
5331 size_t extsymoff;
5332
5333 r_symndx = ELF32_R_SYM (relocation->r_info);
5334 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5335 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5336
5337 if (r_symndx < extsymoff)
5338 return true;
5339 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5340 return true;
5341
5342 if (check_forced)
5343 {
5344 /* Look up the hash table to check whether the symbol
5345 was forced local. */
5346 h = (struct mips_elf_link_hash_entry *)
5347 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5348 /* Find the real hash-table entry for this symbol. */
5349 while (h->root.root.type == bfd_link_hash_indirect
5350 || h->root.root.type == bfd_link_hash_warning)
5351 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5352 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5353 return true;
5354 }
5355
5356 return false;
5357 }
5358
5359 /* Sign-extend VALUE, which has the indicated number of BITS. */
5360
5361 static bfd_vma
5362 mips_elf_sign_extend (value, bits)
5363 bfd_vma value;
5364 int bits;
5365 {
5366 if (value & ((bfd_vma) 1 << (bits - 1)))
5367 /* VALUE is negative. */
5368 value |= ((bfd_vma) - 1) << bits;
5369
5370 return value;
5371 }
5372
5373 /* Return non-zero if the indicated VALUE has overflowed the maximum
5374 range expressable by a signed number with the indicated number of
5375 BITS. */
5376
5377 static boolean
5378 mips_elf_overflow_p (value, bits)
5379 bfd_vma value;
5380 int bits;
5381 {
5382 bfd_signed_vma svalue = (bfd_signed_vma) value;
5383
5384 if (svalue > (1 << (bits - 1)) - 1)
5385 /* The value is too big. */
5386 return true;
5387 else if (svalue < -(1 << (bits - 1)))
5388 /* The value is too small. */
5389 return true;
5390
5391 /* All is well. */
5392 return false;
5393 }
5394
5395 /* Calculate the %high function. */
5396
5397 static bfd_vma
5398 mips_elf_high (value)
5399 bfd_vma value;
5400 {
5401 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5402 }
5403
5404 /* Calculate the %higher function. */
5405
5406 static bfd_vma
5407 mips_elf_higher (value)
5408 bfd_vma value ATTRIBUTE_UNUSED;
5409 {
5410 #ifdef BFD64
5411 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5412 #else
5413 abort ();
5414 return (bfd_vma) -1;
5415 #endif
5416 }
5417
5418 /* Calculate the %highest function. */
5419
5420 static bfd_vma
5421 mips_elf_highest (value)
5422 bfd_vma value ATTRIBUTE_UNUSED;
5423 {
5424 #ifdef BFD64
5425 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5426 #else
5427 abort ();
5428 return (bfd_vma) -1;
5429 #endif
5430 }
5431
5432 /* Returns the GOT index for the global symbol indicated by H. */
5433
5434 static bfd_vma
5435 mips_elf_global_got_index (abfd, h)
5436 bfd *abfd;
5437 struct elf_link_hash_entry *h;
5438 {
5439 bfd_vma index;
5440 asection *sgot;
5441 struct mips_got_info *g;
5442
5443 g = mips_elf_got_info (abfd, &sgot);
5444
5445 /* Once we determine the global GOT entry with the lowest dynamic
5446 symbol table index, we must put all dynamic symbols with greater
5447 indices into the GOT. That makes it easy to calculate the GOT
5448 offset. */
5449 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5450 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5451 * MIPS_ELF_GOT_SIZE (abfd));
5452 BFD_ASSERT (index < sgot->_raw_size);
5453
5454 return index;
5455 }
5456
5457 /* Returns the offset for the entry at the INDEXth position
5458 in the GOT. */
5459
5460 static bfd_vma
5461 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5462 bfd *dynobj;
5463 bfd *output_bfd;
5464 bfd_vma index;
5465 {
5466 asection *sgot;
5467 bfd_vma gp;
5468
5469 sgot = mips_elf_got_section (dynobj);
5470 gp = _bfd_get_gp_value (output_bfd);
5471 return (sgot->output_section->vma + sgot->output_offset + index -
5472 gp);
5473 }
5474
5475 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5476 symbol table index lower than any we've seen to date, record it for
5477 posterity. */
5478
5479 static boolean
5480 mips_elf_record_global_got_symbol (h, info, g)
5481 struct elf_link_hash_entry *h;
5482 struct bfd_link_info *info;
5483 struct mips_got_info *g ATTRIBUTE_UNUSED;
5484 {
5485 /* A global symbol in the GOT must also be in the dynamic symbol
5486 table. */
5487 if (h->dynindx == -1
5488 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5489 return false;
5490
5491 /* If we've already marked this entry as need GOT space, we don't
5492 need to do it again. */
5493 if (h->got.offset != (bfd_vma) - 1)
5494 return true;
5495
5496 /* By setting this to a value other than -1, we are indicating that
5497 there needs to be a GOT entry for H. */
5498 h->got.offset = 0;
5499
5500 return true;
5501 }
5502
5503 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5504 the dynamic symbols. */
5505
5506 struct mips_elf_hash_sort_data
5507 {
5508 /* The symbol in the global GOT with the lowest dynamic symbol table
5509 index. */
5510 struct elf_link_hash_entry *low;
5511 /* The least dynamic symbol table index corresponding to a symbol
5512 with a GOT entry. */
5513 long min_got_dynindx;
5514 /* The greatest dynamic symbol table index not corresponding to a
5515 symbol without a GOT entry. */
5516 long max_non_got_dynindx;
5517 };
5518
5519 /* If H needs a GOT entry, assign it the highest available dynamic
5520 index. Otherwise, assign it the lowest available dynamic
5521 index. */
5522
5523 static boolean
5524 mips_elf_sort_hash_table_f (h, data)
5525 struct mips_elf_link_hash_entry *h;
5526 PTR data;
5527 {
5528 struct mips_elf_hash_sort_data *hsd
5529 = (struct mips_elf_hash_sort_data *) data;
5530
5531 /* Symbols without dynamic symbol table entries aren't interesting
5532 at all. */
5533 if (h->root.dynindx == -1)
5534 return true;
5535
5536 if (h->root.got.offset != 0)
5537 h->root.dynindx = hsd->max_non_got_dynindx++;
5538 else
5539 {
5540 h->root.dynindx = --hsd->min_got_dynindx;
5541 hsd->low = (struct elf_link_hash_entry *) h;
5542 }
5543
5544 return true;
5545 }
5546
5547 /* Sort the dynamic symbol table so that symbols that need GOT entries
5548 appear towards the end. This reduces the amount of GOT space
5549 required. MAX_LOCAL is used to set the number of local symbols
5550 known to be in the dynamic symbol table. During
5551 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5552 section symbols are added and the count is higher. */
5553
5554 static boolean
5555 mips_elf_sort_hash_table (info, max_local)
5556 struct bfd_link_info *info;
5557 unsigned long max_local;
5558 {
5559 struct mips_elf_hash_sort_data hsd;
5560 struct mips_got_info *g;
5561 bfd *dynobj;
5562
5563 dynobj = elf_hash_table (info)->dynobj;
5564
5565 hsd.low = NULL;
5566 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5567 hsd.max_non_got_dynindx = max_local;
5568 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5569 elf_hash_table (info)),
5570 mips_elf_sort_hash_table_f,
5571 &hsd);
5572
5573 /* There shoud have been enough room in the symbol table to
5574 accomodate both the GOT and non-GOT symbols. */
5575 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5576
5577 /* Now we know which dynamic symbol has the lowest dynamic symbol
5578 table index in the GOT. */
5579 g = mips_elf_got_info (dynobj, NULL);
5580 g->global_gotsym = hsd.low;
5581
5582 return true;
5583 }
5584
5585 /* Create a local GOT entry for VALUE. Return the index of the entry,
5586 or -1 if it could not be created. */
5587
5588 static bfd_vma
5589 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5590 bfd *abfd;
5591 struct mips_got_info *g;
5592 asection *sgot;
5593 bfd_vma value;
5594 {
5595 if (g->assigned_gotno >= g->local_gotno)
5596 {
5597 /* We didn't allocate enough space in the GOT. */
5598 (*_bfd_error_handler)
5599 (_("not enough GOT space for local GOT entries"));
5600 bfd_set_error (bfd_error_bad_value);
5601 return (bfd_vma) -1;
5602 }
5603
5604 MIPS_ELF_PUT_WORD (abfd, value,
5605 (sgot->contents
5606 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5607 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5608 }
5609
5610 /* Returns the GOT offset at which the indicated address can be found.
5611 If there is not yet a GOT entry for this value, create one. Returns
5612 -1 if no satisfactory GOT offset can be found. */
5613
5614 static bfd_vma
5615 mips_elf_local_got_index (abfd, info, value)
5616 bfd *abfd;
5617 struct bfd_link_info *info;
5618 bfd_vma value;
5619 {
5620 asection *sgot;
5621 struct mips_got_info *g;
5622 bfd_byte *entry;
5623
5624 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5625
5626 /* Look to see if we already have an appropriate entry. */
5627 for (entry = (sgot->contents
5628 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5629 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5630 entry += MIPS_ELF_GOT_SIZE (abfd))
5631 {
5632 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5633 if (address == value)
5634 return entry - sgot->contents;
5635 }
5636
5637 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5638 }
5639
5640 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5641 are supposed to be placed at small offsets in the GOT, i.e.,
5642 within 32KB of GP. Return the index into the GOT for this page,
5643 and store the offset from this entry to the desired address in
5644 OFFSETP, if it is non-NULL. */
5645
5646 static bfd_vma
5647 mips_elf_got_page (abfd, info, value, offsetp)
5648 bfd *abfd;
5649 struct bfd_link_info *info;
5650 bfd_vma value;
5651 bfd_vma *offsetp;
5652 {
5653 asection *sgot;
5654 struct mips_got_info *g;
5655 bfd_byte *entry;
5656 bfd_byte *last_entry;
5657 bfd_vma index = 0;
5658 bfd_vma address;
5659
5660 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5661
5662 /* Look to see if we aleady have an appropriate entry. */
5663 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5664 for (entry = (sgot->contents
5665 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5666 entry != last_entry;
5667 entry += MIPS_ELF_GOT_SIZE (abfd))
5668 {
5669 address = MIPS_ELF_GET_WORD (abfd, entry);
5670
5671 if (!mips_elf_overflow_p (value - address, 16))
5672 {
5673 /* This entry will serve as the page pointer. We can add a
5674 16-bit number to it to get the actual address. */
5675 index = entry - sgot->contents;
5676 break;
5677 }
5678 }
5679
5680 /* If we didn't have an appropriate entry, we create one now. */
5681 if (entry == last_entry)
5682 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5683
5684 if (offsetp)
5685 {
5686 address = MIPS_ELF_GET_WORD (abfd, entry);
5687 *offsetp = value - address;
5688 }
5689
5690 return index;
5691 }
5692
5693 /* Find a GOT entry whose higher-order 16 bits are the same as those
5694 for value. Return the index into the GOT for this entry. */
5695
5696 static bfd_vma
5697 mips_elf_got16_entry (abfd, info, value, external)
5698 bfd *abfd;
5699 struct bfd_link_info *info;
5700 bfd_vma value;
5701 boolean external;
5702 {
5703 asection *sgot;
5704 struct mips_got_info *g;
5705 bfd_byte *entry;
5706 bfd_byte *last_entry;
5707 bfd_vma index = 0;
5708 bfd_vma address;
5709
5710 if (! external)
5711 {
5712 /* Although the ABI says that it is "the high-order 16 bits" that we
5713 want, it is really the %high value. The complete value is
5714 calculated with a `addiu' of a LO16 relocation, just as with a
5715 HI16/LO16 pair. */
5716 value = mips_elf_high (value) << 16;
5717 }
5718
5719 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5720
5721 /* Look to see if we already have an appropriate entry. */
5722 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5723 for (entry = (sgot->contents
5724 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5725 entry != last_entry;
5726 entry += MIPS_ELF_GOT_SIZE (abfd))
5727 {
5728 address = MIPS_ELF_GET_WORD (abfd, entry);
5729 if (address == value)
5730 {
5731 /* This entry has the right high-order 16 bits, and the low-order
5732 16 bits are set to zero. */
5733 index = entry - sgot->contents;
5734 break;
5735 }
5736 }
5737
5738 /* If we didn't have an appropriate entry, we create one now. */
5739 if (entry == last_entry)
5740 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5741
5742 return index;
5743 }
5744
5745 /* Returns the first relocation of type r_type found, beginning with
5746 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5747
5748 static const Elf_Internal_Rela *
5749 mips_elf_next_relocation (r_type, relocation, relend)
5750 unsigned int r_type;
5751 const Elf_Internal_Rela *relocation;
5752 const Elf_Internal_Rela *relend;
5753 {
5754 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5755 immediately following. However, for the IRIX6 ABI, the next
5756 relocation may be a composed relocation consisting of several
5757 relocations for the same address. In that case, the R_MIPS_LO16
5758 relocation may occur as one of these. We permit a similar
5759 extension in general, as that is useful for GCC. */
5760 while (relocation < relend)
5761 {
5762 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5763 return relocation;
5764
5765 ++relocation;
5766 }
5767
5768 /* We didn't find it. */
5769 bfd_set_error (bfd_error_bad_value);
5770 return NULL;
5771 }
5772
5773 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5774 is the original relocation, which is now being transformed into a
5775 dynamic relocation. The ADDENDP is adjusted if necessary; the
5776 caller should store the result in place of the original addend. */
5777
5778 static boolean
5779 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5780 symbol, addendp, input_section)
5781 bfd *output_bfd;
5782 struct bfd_link_info *info;
5783 const Elf_Internal_Rela *rel;
5784 struct mips_elf_link_hash_entry *h;
5785 asection *sec;
5786 bfd_vma symbol;
5787 bfd_vma *addendp;
5788 asection *input_section;
5789 {
5790 Elf_Internal_Rel outrel;
5791 boolean skip;
5792 asection *sreloc;
5793 bfd *dynobj;
5794 int r_type;
5795
5796 r_type = ELF32_R_TYPE (rel->r_info);
5797 dynobj = elf_hash_table (info)->dynobj;
5798 sreloc
5799 = bfd_get_section_by_name (dynobj,
5800 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5801 BFD_ASSERT (sreloc != NULL);
5802 BFD_ASSERT (sreloc->contents != NULL);
5803
5804 skip = false;
5805
5806 /* We begin by assuming that the offset for the dynamic relocation
5807 is the same as for the original relocation. We'll adjust this
5808 later to reflect the correct output offsets. */
5809 if (elf_section_data (input_section)->stab_info == NULL)
5810 outrel.r_offset = rel->r_offset;
5811 else
5812 {
5813 /* Except that in a stab section things are more complex.
5814 Because we compress stab information, the offset given in the
5815 relocation may not be the one we want; we must let the stabs
5816 machinery tell us the offset. */
5817 outrel.r_offset
5818 = (_bfd_stab_section_offset
5819 (output_bfd, &elf_hash_table (info)->stab_info,
5820 input_section,
5821 &elf_section_data (input_section)->stab_info,
5822 rel->r_offset));
5823 /* If we didn't need the relocation at all, this value will be
5824 -1. */
5825 if (outrel.r_offset == (bfd_vma) -1)
5826 skip = true;
5827 }
5828
5829 /* If we've decided to skip this relocation, just output an empty
5830 record. Note that R_MIPS_NONE == 0, so that this call to memset
5831 is a way of setting R_TYPE to R_MIPS_NONE. */
5832 if (skip)
5833 memset (&outrel, 0, sizeof (outrel));
5834 else
5835 {
5836 long indx;
5837 bfd_vma section_offset;
5838
5839 /* We must now calculate the dynamic symbol table index to use
5840 in the relocation. */
5841 if (h != NULL
5842 && (! info->symbolic || (h->root.elf_link_hash_flags
5843 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5844 {
5845 indx = h->root.dynindx;
5846 /* h->root.dynindx may be -1 if this symbol was marked to
5847 become local. */
5848 if (indx == -1)
5849 indx = 0;
5850 }
5851 else
5852 {
5853 if (sec != NULL && bfd_is_abs_section (sec))
5854 indx = 0;
5855 else if (sec == NULL || sec->owner == NULL)
5856 {
5857 bfd_set_error (bfd_error_bad_value);
5858 return false;
5859 }
5860 else
5861 {
5862 indx = elf_section_data (sec->output_section)->dynindx;
5863 if (indx == 0)
5864 abort ();
5865 }
5866
5867 /* Figure out how far the target of the relocation is from
5868 the beginning of its section. */
5869 section_offset = symbol - sec->output_section->vma;
5870 /* The relocation we're building is section-relative.
5871 Therefore, the original addend must be adjusted by the
5872 section offset. */
5873 *addendp += section_offset;
5874 /* Now, the relocation is just against the section. */
5875 symbol = sec->output_section->vma;
5876 }
5877
5878 /* If the relocation was previously an absolute relocation and
5879 this symbol will not be referred to by the relocation, we must
5880 adjust it by the value we give it in the dynamic symbol table.
5881 Otherwise leave the job up to the dynamic linker. */
5882 if (!indx && r_type != R_MIPS_REL32)
5883 *addendp += symbol;
5884
5885 /* The relocation is always an REL32 relocation because we don't
5886 know where the shared library will wind up at load-time. */
5887 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5888
5889 /* Adjust the output offset of the relocation to reference the
5890 correct location in the output file. */
5891 outrel.r_offset += (input_section->output_section->vma
5892 + input_section->output_offset);
5893 }
5894
5895 /* Put the relocation back out. We have to use the special
5896 relocation outputter in the 64-bit case since the 64-bit
5897 relocation format is non-standard. */
5898 if (ABI_64_P (output_bfd))
5899 {
5900 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5901 (output_bfd, &outrel,
5902 (sreloc->contents
5903 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5904 }
5905 else
5906 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5907 (((Elf32_External_Rel *)
5908 sreloc->contents)
5909 + sreloc->reloc_count));
5910
5911 /* Record the index of the first relocation referencing H. This
5912 information is later emitted in the .msym section. */
5913 if (h != NULL
5914 && (h->min_dyn_reloc_index == 0
5915 || sreloc->reloc_count < h->min_dyn_reloc_index))
5916 h->min_dyn_reloc_index = sreloc->reloc_count;
5917
5918 /* We've now added another relocation. */
5919 ++sreloc->reloc_count;
5920
5921 /* Make sure the output section is writable. The dynamic linker
5922 will be writing to it. */
5923 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5924 |= SHF_WRITE;
5925
5926 /* On IRIX5, make an entry of compact relocation info. */
5927 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5928 {
5929 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5930 bfd_byte *cr;
5931
5932 if (scpt)
5933 {
5934 Elf32_crinfo cptrel;
5935
5936 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5937 cptrel.vaddr = (rel->r_offset
5938 + input_section->output_section->vma
5939 + input_section->output_offset);
5940 if (r_type == R_MIPS_REL32)
5941 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5942 else
5943 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5944 mips_elf_set_cr_dist2to (cptrel, 0);
5945 cptrel.konst = *addendp;
5946
5947 cr = (scpt->contents
5948 + sizeof (Elf32_External_compact_rel));
5949 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5950 ((Elf32_External_crinfo *) cr
5951 + scpt->reloc_count));
5952 ++scpt->reloc_count;
5953 }
5954 }
5955
5956 return true;
5957 }
5958
5959 /* Calculate the value produced by the RELOCATION (which comes from
5960 the INPUT_BFD). The ADDEND is the addend to use for this
5961 RELOCATION; RELOCATION->R_ADDEND is ignored.
5962
5963 The result of the relocation calculation is stored in VALUEP.
5964 REQUIRE_JALXP indicates whether or not the opcode used with this
5965 relocation must be JALX.
5966
5967 This function returns bfd_reloc_continue if the caller need take no
5968 further action regarding this relocation, bfd_reloc_notsupported if
5969 something goes dramatically wrong, bfd_reloc_overflow if an
5970 overflow occurs, and bfd_reloc_ok to indicate success. */
5971
5972 static bfd_reloc_status_type
5973 mips_elf_calculate_relocation (abfd,
5974 input_bfd,
5975 input_section,
5976 info,
5977 relocation,
5978 addend,
5979 howto,
5980 local_syms,
5981 local_sections,
5982 valuep,
5983 namep,
5984 require_jalxp)
5985 bfd *abfd;
5986 bfd *input_bfd;
5987 asection *input_section;
5988 struct bfd_link_info *info;
5989 const Elf_Internal_Rela *relocation;
5990 bfd_vma addend;
5991 reloc_howto_type *howto;
5992 Elf_Internal_Sym *local_syms;
5993 asection **local_sections;
5994 bfd_vma *valuep;
5995 const char **namep;
5996 boolean *require_jalxp;
5997 {
5998 /* The eventual value we will return. */
5999 bfd_vma value;
6000 /* The address of the symbol against which the relocation is
6001 occurring. */
6002 bfd_vma symbol = 0;
6003 /* The final GP value to be used for the relocatable, executable, or
6004 shared object file being produced. */
6005 bfd_vma gp = (bfd_vma) - 1;
6006 /* The place (section offset or address) of the storage unit being
6007 relocated. */
6008 bfd_vma p;
6009 /* The value of GP used to create the relocatable object. */
6010 bfd_vma gp0 = (bfd_vma) - 1;
6011 /* The offset into the global offset table at which the address of
6012 the relocation entry symbol, adjusted by the addend, resides
6013 during execution. */
6014 bfd_vma g = (bfd_vma) - 1;
6015 /* The section in which the symbol referenced by the relocation is
6016 located. */
6017 asection *sec = NULL;
6018 struct mips_elf_link_hash_entry *h = NULL;
6019 /* True if the symbol referred to by this relocation is a local
6020 symbol. */
6021 boolean local_p;
6022 /* True if the symbol referred to by this relocation is "_gp_disp". */
6023 boolean gp_disp_p = false;
6024 Elf_Internal_Shdr *symtab_hdr;
6025 size_t extsymoff;
6026 unsigned long r_symndx;
6027 int r_type;
6028 /* True if overflow occurred during the calculation of the
6029 relocation value. */
6030 boolean overflowed_p;
6031 /* True if this relocation refers to a MIPS16 function. */
6032 boolean target_is_16_bit_code_p = false;
6033
6034 /* Parse the relocation. */
6035 r_symndx = ELF32_R_SYM (relocation->r_info);
6036 r_type = ELF32_R_TYPE (relocation->r_info);
6037 p = (input_section->output_section->vma
6038 + input_section->output_offset
6039 + relocation->r_offset);
6040
6041 /* Assume that there will be no overflow. */
6042 overflowed_p = false;
6043
6044 /* Figure out whether or not the symbol is local, and get the offset
6045 used in the array of hash table entries. */
6046 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6047 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6048 local_sections, false);
6049 if (! elf_bad_symtab (input_bfd))
6050 extsymoff = symtab_hdr->sh_info;
6051 else
6052 {
6053 /* The symbol table does not follow the rule that local symbols
6054 must come before globals. */
6055 extsymoff = 0;
6056 }
6057
6058 /* Figure out the value of the symbol. */
6059 if (local_p)
6060 {
6061 Elf_Internal_Sym *sym;
6062
6063 sym = local_syms + r_symndx;
6064 sec = local_sections[r_symndx];
6065
6066 symbol = sec->output_section->vma + sec->output_offset;
6067 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6068 symbol += sym->st_value;
6069
6070 /* MIPS16 text labels should be treated as odd. */
6071 if (sym->st_other == STO_MIPS16)
6072 ++symbol;
6073
6074 /* Record the name of this symbol, for our caller. */
6075 *namep = bfd_elf_string_from_elf_section (input_bfd,
6076 symtab_hdr->sh_link,
6077 sym->st_name);
6078 if (*namep == '\0')
6079 *namep = bfd_section_name (input_bfd, sec);
6080
6081 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6082 }
6083 else
6084 {
6085 /* For global symbols we look up the symbol in the hash-table. */
6086 h = ((struct mips_elf_link_hash_entry *)
6087 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6088 /* Find the real hash-table entry for this symbol. */
6089 while (h->root.root.type == bfd_link_hash_indirect
6090 || h->root.root.type == bfd_link_hash_warning)
6091 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6092
6093 /* Record the name of this symbol, for our caller. */
6094 *namep = h->root.root.root.string;
6095
6096 /* See if this is the special _gp_disp symbol. Note that such a
6097 symbol must always be a global symbol. */
6098 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6099 {
6100 /* Relocations against _gp_disp are permitted only with
6101 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6102 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6103 return bfd_reloc_notsupported;
6104
6105 gp_disp_p = true;
6106 }
6107 /* If this symbol is defined, calculate its address. Note that
6108 _gp_disp is a magic symbol, always implicitly defined by the
6109 linker, so it's inappropriate to check to see whether or not
6110 its defined. */
6111 else if ((h->root.root.type == bfd_link_hash_defined
6112 || h->root.root.type == bfd_link_hash_defweak)
6113 && h->root.root.u.def.section)
6114 {
6115 sec = h->root.root.u.def.section;
6116 if (sec->output_section)
6117 symbol = (h->root.root.u.def.value
6118 + sec->output_section->vma
6119 + sec->output_offset);
6120 else
6121 symbol = h->root.root.u.def.value;
6122 }
6123 else if (h->root.root.type == bfd_link_hash_undefweak)
6124 /* We allow relocations against undefined weak symbols, giving
6125 it the value zero, so that you can undefined weak functions
6126 and check to see if they exist by looking at their
6127 addresses. */
6128 symbol = 0;
6129 else if (info->shared && !info->symbolic && !info->no_undefined
6130 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6131 symbol = 0;
6132 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6133 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6134 {
6135 /* If this is a dynamic link, we should have created a
6136 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6137 in in mips_elf_create_dynamic_sections.
6138 Otherwise, we should define the symbol with a value of 0.
6139 FIXME: It should probably get into the symbol table
6140 somehow as well. */
6141 BFD_ASSERT (! info->shared);
6142 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6143 symbol = 0;
6144 }
6145 else
6146 {
6147 if (! ((*info->callbacks->undefined_symbol)
6148 (info, h->root.root.root.string, input_bfd,
6149 input_section, relocation->r_offset,
6150 (!info->shared || info->no_undefined
6151 || ELF_ST_VISIBILITY (h->root.other)))))
6152 return bfd_reloc_undefined;
6153 symbol = 0;
6154 }
6155
6156 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6157 }
6158
6159 /* If this is a 32-bit call to a 16-bit function with a stub, we
6160 need to redirect the call to the stub, unless we're already *in*
6161 a stub. */
6162 if (r_type != R_MIPS16_26 && !info->relocateable
6163 && ((h != NULL && h->fn_stub != NULL)
6164 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6165 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6166 && !mips_elf_stub_section_p (input_bfd, input_section))
6167 {
6168 /* This is a 32-bit call to a 16-bit function. We should
6169 have already noticed that we were going to need the
6170 stub. */
6171 if (local_p)
6172 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6173 else
6174 {
6175 BFD_ASSERT (h->need_fn_stub);
6176 sec = h->fn_stub;
6177 }
6178
6179 symbol = sec->output_section->vma + sec->output_offset;
6180 }
6181 /* If this is a 16-bit call to a 32-bit function with a stub, we
6182 need to redirect the call to the stub. */
6183 else if (r_type == R_MIPS16_26 && !info->relocateable
6184 && h != NULL
6185 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6186 && !target_is_16_bit_code_p)
6187 {
6188 /* If both call_stub and call_fp_stub are defined, we can figure
6189 out which one to use by seeing which one appears in the input
6190 file. */
6191 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6192 {
6193 asection *o;
6194
6195 sec = NULL;
6196 for (o = input_bfd->sections; o != NULL; o = o->next)
6197 {
6198 if (strncmp (bfd_get_section_name (input_bfd, o),
6199 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6200 {
6201 sec = h->call_fp_stub;
6202 break;
6203 }
6204 }
6205 if (sec == NULL)
6206 sec = h->call_stub;
6207 }
6208 else if (h->call_stub != NULL)
6209 sec = h->call_stub;
6210 else
6211 sec = h->call_fp_stub;
6212
6213 BFD_ASSERT (sec->_raw_size > 0);
6214 symbol = sec->output_section->vma + sec->output_offset;
6215 }
6216
6217 /* Calls from 16-bit code to 32-bit code and vice versa require the
6218 special jalx instruction. */
6219 *require_jalxp = (!info->relocateable
6220 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6221
6222 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6223 local_sections, true);
6224
6225 /* If we haven't already determined the GOT offset, or the GP value,
6226 and we're going to need it, get it now. */
6227 switch (r_type)
6228 {
6229 case R_MIPS_CALL16:
6230 case R_MIPS_GOT16:
6231 case R_MIPS_GOT_DISP:
6232 case R_MIPS_GOT_HI16:
6233 case R_MIPS_CALL_HI16:
6234 case R_MIPS_GOT_LO16:
6235 case R_MIPS_CALL_LO16:
6236 /* Find the index into the GOT where this value is located. */
6237 if (!local_p)
6238 {
6239 BFD_ASSERT (addend == 0);
6240 g = mips_elf_global_got_index
6241 (elf_hash_table (info)->dynobj,
6242 (struct elf_link_hash_entry *) h);
6243 if (! elf_hash_table(info)->dynamic_sections_created
6244 || (info->shared
6245 && (info->symbolic || h->root.dynindx == -1)
6246 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6247 {
6248 /* This is a static link or a -Bsymbolic link. The
6249 symbol is defined locally, or was forced to be local.
6250 We must initialize this entry in the GOT. */
6251 asection *sgot = mips_elf_got_section(elf_hash_table
6252 (info)->dynobj);
6253 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6254 symbol + addend, sgot->contents + g);
6255 }
6256 }
6257 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6258 /* There's no need to create a local GOT entry here; the
6259 calculation for a local GOT16 entry does not involve G. */
6260 break;
6261 else
6262 {
6263 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6264 if (g == (bfd_vma) -1)
6265 return false;
6266 }
6267
6268 /* Convert GOT indices to actual offsets. */
6269 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6270 abfd, g);
6271 break;
6272
6273 case R_MIPS_HI16:
6274 case R_MIPS_LO16:
6275 case R_MIPS_GPREL16:
6276 case R_MIPS_GPREL32:
6277 case R_MIPS_LITERAL:
6278 gp0 = _bfd_get_gp_value (input_bfd);
6279 gp = _bfd_get_gp_value (abfd);
6280 break;
6281
6282 default:
6283 break;
6284 }
6285
6286 /* Figure out what kind of relocation is being performed. */
6287 switch (r_type)
6288 {
6289 case R_MIPS_NONE:
6290 return bfd_reloc_continue;
6291
6292 case R_MIPS_16:
6293 value = symbol + mips_elf_sign_extend (addend, 16);
6294 overflowed_p = mips_elf_overflow_p (value, 16);
6295 break;
6296
6297 case R_MIPS_32:
6298 case R_MIPS_REL32:
6299 case R_MIPS_64:
6300 if ((info->shared
6301 || (elf_hash_table (info)->dynamic_sections_created
6302 && h != NULL
6303 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6304 != 0)))
6305 && (input_section->flags & SEC_ALLOC) != 0)
6306 {
6307 /* If we're creating a shared library, or this relocation is
6308 against a symbol in a shared library, then we can't know
6309 where the symbol will end up. So, we create a relocation
6310 record in the output, and leave the job up to the dynamic
6311 linker. */
6312 value = addend;
6313 if (!mips_elf_create_dynamic_relocation (abfd,
6314 info,
6315 relocation,
6316 h,
6317 sec,
6318 symbol,
6319 &value,
6320 input_section))
6321 return false;
6322 }
6323 else
6324 {
6325 if (r_type != R_MIPS_REL32)
6326 value = symbol + addend;
6327 else
6328 value = addend;
6329 }
6330 value &= howto->dst_mask;
6331 break;
6332
6333 case R_MIPS_PC32:
6334 case R_MIPS_PC64:
6335 case R_MIPS_GNU_REL_LO16:
6336 value = symbol + addend - p;
6337 value &= howto->dst_mask;
6338 break;
6339
6340 case R_MIPS_GNU_REL16_S2:
6341 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6342 overflowed_p = mips_elf_overflow_p (value, 18);
6343 value = (value >> 2) & howto->dst_mask;
6344 break;
6345
6346 case R_MIPS_GNU_REL_HI16:
6347 value = mips_elf_high (addend + symbol - p);
6348 value &= howto->dst_mask;
6349 break;
6350
6351 case R_MIPS16_26:
6352 /* The calculation for R_MIPS16_26 is just the same as for an
6353 R_MIPS_26. It's only the storage of the relocated field into
6354 the output file that's different. That's handled in
6355 mips_elf_perform_relocation. So, we just fall through to the
6356 R_MIPS_26 case here. */
6357 case R_MIPS_26:
6358 if (local_p)
6359 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6360 else
6361 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6362 value &= howto->dst_mask;
6363 break;
6364
6365 case R_MIPS_HI16:
6366 if (!gp_disp_p)
6367 {
6368 value = mips_elf_high (addend + symbol);
6369 value &= howto->dst_mask;
6370 }
6371 else
6372 {
6373 value = mips_elf_high (addend + gp - p);
6374 overflowed_p = mips_elf_overflow_p (value, 16);
6375 }
6376 break;
6377
6378 case R_MIPS_LO16:
6379 if (!gp_disp_p)
6380 value = (symbol + addend) & howto->dst_mask;
6381 else
6382 {
6383 value = addend + gp - p + 4;
6384 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6385 for overflow. But, on, say, Irix 5, relocations against
6386 _gp_disp are normally generated from the .cpload
6387 pseudo-op. It generates code that normally looks like
6388 this:
6389
6390 lui $gp,%hi(_gp_disp)
6391 addiu $gp,$gp,%lo(_gp_disp)
6392 addu $gp,$gp,$t9
6393
6394 Here $t9 holds the address of the function being called,
6395 as required by the MIPS ELF ABI. The R_MIPS_LO16
6396 relocation can easily overflow in this situation, but the
6397 R_MIPS_HI16 relocation will handle the overflow.
6398 Therefore, we consider this a bug in the MIPS ABI, and do
6399 not check for overflow here. */
6400 }
6401 break;
6402
6403 case R_MIPS_LITERAL:
6404 /* Because we don't merge literal sections, we can handle this
6405 just like R_MIPS_GPREL16. In the long run, we should merge
6406 shared literals, and then we will need to additional work
6407 here. */
6408
6409 /* Fall through. */
6410
6411 case R_MIPS16_GPREL:
6412 /* The R_MIPS16_GPREL performs the same calculation as
6413 R_MIPS_GPREL16, but stores the relocated bits in a different
6414 order. We don't need to do anything special here; the
6415 differences are handled in mips_elf_perform_relocation. */
6416 case R_MIPS_GPREL16:
6417 if (local_p)
6418 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6419 else
6420 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6421 overflowed_p = mips_elf_overflow_p (value, 16);
6422 break;
6423
6424 case R_MIPS_GOT16:
6425 case R_MIPS_CALL16:
6426 if (local_p)
6427 {
6428 boolean forced;
6429
6430 /* The special case is when the symbol is forced to be local. We
6431 need the full address in the GOT since no R_MIPS_LO16 relocation
6432 follows. */
6433 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6434 local_sections, false);
6435 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6436 if (value == (bfd_vma) -1)
6437 return false;
6438 value
6439 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6440 abfd,
6441 value);
6442 overflowed_p = mips_elf_overflow_p (value, 16);
6443 break;
6444 }
6445
6446 /* Fall through. */
6447
6448 case R_MIPS_GOT_DISP:
6449 value = g;
6450 overflowed_p = mips_elf_overflow_p (value, 16);
6451 break;
6452
6453 case R_MIPS_GPREL32:
6454 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6455 break;
6456
6457 case R_MIPS_PC16:
6458 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6459 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6460 overflowed_p = mips_elf_overflow_p (value, 16);
6461 break;
6462
6463 case R_MIPS_GOT_HI16:
6464 case R_MIPS_CALL_HI16:
6465 /* We're allowed to handle these two relocations identically.
6466 The dynamic linker is allowed to handle the CALL relocations
6467 differently by creating a lazy evaluation stub. */
6468 value = g;
6469 value = mips_elf_high (value);
6470 value &= howto->dst_mask;
6471 break;
6472
6473 case R_MIPS_GOT_LO16:
6474 case R_MIPS_CALL_LO16:
6475 value = g & howto->dst_mask;
6476 break;
6477
6478 case R_MIPS_GOT_PAGE:
6479 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6480 if (value == (bfd_vma) -1)
6481 return false;
6482 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6483 abfd,
6484 value);
6485 overflowed_p = mips_elf_overflow_p (value, 16);
6486 break;
6487
6488 case R_MIPS_GOT_OFST:
6489 mips_elf_got_page (abfd, info, symbol + addend, &value);
6490 overflowed_p = mips_elf_overflow_p (value, 16);
6491 break;
6492
6493 case R_MIPS_SUB:
6494 value = symbol - addend;
6495 value &= howto->dst_mask;
6496 break;
6497
6498 case R_MIPS_HIGHER:
6499 value = mips_elf_higher (addend + symbol);
6500 value &= howto->dst_mask;
6501 break;
6502
6503 case R_MIPS_HIGHEST:
6504 value = mips_elf_highest (addend + symbol);
6505 value &= howto->dst_mask;
6506 break;
6507
6508 case R_MIPS_SCN_DISP:
6509 value = symbol + addend - sec->output_offset;
6510 value &= howto->dst_mask;
6511 break;
6512
6513 case R_MIPS_PJUMP:
6514 case R_MIPS_JALR:
6515 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6516 hint; we could improve performance by honoring that hint. */
6517 return bfd_reloc_continue;
6518
6519 case R_MIPS_GNU_VTINHERIT:
6520 case R_MIPS_GNU_VTENTRY:
6521 /* We don't do anything with these at present. */
6522 return bfd_reloc_continue;
6523
6524 default:
6525 /* An unrecognized relocation type. */
6526 return bfd_reloc_notsupported;
6527 }
6528
6529 /* Store the VALUE for our caller. */
6530 *valuep = value;
6531 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6532 }
6533
6534 /* Obtain the field relocated by RELOCATION. */
6535
6536 static bfd_vma
6537 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6538 reloc_howto_type *howto;
6539 const Elf_Internal_Rela *relocation;
6540 bfd *input_bfd;
6541 bfd_byte *contents;
6542 {
6543 bfd_vma x;
6544 bfd_byte *location = contents + relocation->r_offset;
6545
6546 /* Obtain the bytes. */
6547 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6548
6549 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6550 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6551 && bfd_little_endian (input_bfd))
6552 /* The two 16-bit words will be reversed on a little-endian
6553 system. See mips_elf_perform_relocation for more details. */
6554 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6555
6556 return x;
6557 }
6558
6559 /* It has been determined that the result of the RELOCATION is the
6560 VALUE. Use HOWTO to place VALUE into the output file at the
6561 appropriate position. The SECTION is the section to which the
6562 relocation applies. If REQUIRE_JALX is true, then the opcode used
6563 for the relocation must be either JAL or JALX, and it is
6564 unconditionally converted to JALX.
6565
6566 Returns false if anything goes wrong. */
6567
6568 static boolean
6569 mips_elf_perform_relocation (info, howto, relocation, value,
6570 input_bfd, input_section,
6571 contents, require_jalx)
6572 struct bfd_link_info *info;
6573 reloc_howto_type *howto;
6574 const Elf_Internal_Rela *relocation;
6575 bfd_vma value;
6576 bfd *input_bfd;
6577 asection *input_section;
6578 bfd_byte *contents;
6579 boolean require_jalx;
6580 {
6581 bfd_vma x;
6582 bfd_byte *location;
6583 int r_type = ELF32_R_TYPE (relocation->r_info);
6584
6585 /* Figure out where the relocation is occurring. */
6586 location = contents + relocation->r_offset;
6587
6588 /* Obtain the current value. */
6589 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6590
6591 /* Clear the field we are setting. */
6592 x &= ~howto->dst_mask;
6593
6594 /* If this is the R_MIPS16_26 relocation, we must store the
6595 value in a funny way. */
6596 if (r_type == R_MIPS16_26)
6597 {
6598 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6599 Most mips16 instructions are 16 bits, but these instructions
6600 are 32 bits.
6601
6602 The format of these instructions is:
6603
6604 +--------------+--------------------------------+
6605 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6606 +--------------+--------------------------------+
6607 ! Immediate 15:0 !
6608 +-----------------------------------------------+
6609
6610 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6611 Note that the immediate value in the first word is swapped.
6612
6613 When producing a relocateable object file, R_MIPS16_26 is
6614 handled mostly like R_MIPS_26. In particular, the addend is
6615 stored as a straight 26-bit value in a 32-bit instruction.
6616 (gas makes life simpler for itself by never adjusting a
6617 R_MIPS16_26 reloc to be against a section, so the addend is
6618 always zero). However, the 32 bit instruction is stored as 2
6619 16-bit values, rather than a single 32-bit value. In a
6620 big-endian file, the result is the same; in a little-endian
6621 file, the two 16-bit halves of the 32 bit value are swapped.
6622 This is so that a disassembler can recognize the jal
6623 instruction.
6624
6625 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6626 instruction stored as two 16-bit values. The addend A is the
6627 contents of the targ26 field. The calculation is the same as
6628 R_MIPS_26. When storing the calculated value, reorder the
6629 immediate value as shown above, and don't forget to store the
6630 value as two 16-bit values.
6631
6632 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6633 defined as
6634
6635 big-endian:
6636 +--------+----------------------+
6637 | | |
6638 | | targ26-16 |
6639 |31 26|25 0|
6640 +--------+----------------------+
6641
6642 little-endian:
6643 +----------+------+-------------+
6644 | | | |
6645 | sub1 | | sub2 |
6646 |0 9|10 15|16 31|
6647 +----------+--------------------+
6648 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6649 ((sub1 << 16) | sub2)).
6650
6651 When producing a relocateable object file, the calculation is
6652 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6653 When producing a fully linked file, the calculation is
6654 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6655 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6656
6657 if (!info->relocateable)
6658 /* Shuffle the bits according to the formula above. */
6659 value = (((value & 0x1f0000) << 5)
6660 | ((value & 0x3e00000) >> 5)
6661 | (value & 0xffff));
6662 }
6663 else if (r_type == R_MIPS16_GPREL)
6664 {
6665 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6666 mode. A typical instruction will have a format like this:
6667
6668 +--------------+--------------------------------+
6669 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6670 +--------------+--------------------------------+
6671 ! Major ! rx ! ry ! Imm 4:0 !
6672 +--------------+--------------------------------+
6673
6674 EXTEND is the five bit value 11110. Major is the instruction
6675 opcode.
6676
6677 This is handled exactly like R_MIPS_GPREL16, except that the
6678 addend is retrieved and stored as shown in this diagram; that
6679 is, the Imm fields above replace the V-rel16 field.
6680
6681 All we need to do here is shuffle the bits appropriately. As
6682 above, the two 16-bit halves must be swapped on a
6683 little-endian system. */
6684 value = (((value & 0x7e0) << 16)
6685 | ((value & 0xf800) << 5)
6686 | (value & 0x1f));
6687 }
6688
6689 /* Set the field. */
6690 x |= (value & howto->dst_mask);
6691
6692 /* If required, turn JAL into JALX. */
6693 if (require_jalx)
6694 {
6695 boolean ok;
6696 bfd_vma opcode = x >> 26;
6697 bfd_vma jalx_opcode;
6698
6699 /* Check to see if the opcode is already JAL or JALX. */
6700 if (r_type == R_MIPS16_26)
6701 {
6702 ok = ((opcode == 0x6) || (opcode == 0x7));
6703 jalx_opcode = 0x7;
6704 }
6705 else
6706 {
6707 ok = ((opcode == 0x3) || (opcode == 0x1d));
6708 jalx_opcode = 0x1d;
6709 }
6710
6711 /* If the opcode is not JAL or JALX, there's a problem. */
6712 if (!ok)
6713 {
6714 (*_bfd_error_handler)
6715 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6716 bfd_get_filename (input_bfd),
6717 input_section->name,
6718 (unsigned long) relocation->r_offset);
6719 bfd_set_error (bfd_error_bad_value);
6720 return false;
6721 }
6722
6723 /* Make this the JALX opcode. */
6724 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6725 }
6726
6727 /* Swap the high- and low-order 16 bits on little-endian systems
6728 when doing a MIPS16 relocation. */
6729 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6730 && bfd_little_endian (input_bfd))
6731 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6732
6733 /* Put the value into the output. */
6734 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6735 return true;
6736 }
6737
6738 /* Returns true if SECTION is a MIPS16 stub section. */
6739
6740 static boolean
6741 mips_elf_stub_section_p (abfd, section)
6742 bfd *abfd ATTRIBUTE_UNUSED;
6743 asection *section;
6744 {
6745 const char *name = bfd_get_section_name (abfd, section);
6746
6747 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6748 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6749 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6750 }
6751
6752 /* Relocate a MIPS ELF section. */
6753
6754 boolean
6755 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6756 contents, relocs, local_syms, local_sections)
6757 bfd *output_bfd;
6758 struct bfd_link_info *info;
6759 bfd *input_bfd;
6760 asection *input_section;
6761 bfd_byte *contents;
6762 Elf_Internal_Rela *relocs;
6763 Elf_Internal_Sym *local_syms;
6764 asection **local_sections;
6765 {
6766 Elf_Internal_Rela *rel;
6767 const Elf_Internal_Rela *relend;
6768 bfd_vma addend = 0;
6769 boolean use_saved_addend_p = false;
6770 struct elf_backend_data *bed;
6771
6772 bed = get_elf_backend_data (output_bfd);
6773 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6774 for (rel = relocs; rel < relend; ++rel)
6775 {
6776 const char *name;
6777 bfd_vma value;
6778 reloc_howto_type *howto;
6779 boolean require_jalx;
6780 /* True if the relocation is a RELA relocation, rather than a
6781 REL relocation. */
6782 boolean rela_relocation_p = true;
6783 int r_type = ELF32_R_TYPE (rel->r_info);
6784 const char * msg = (const char *) NULL;
6785
6786 /* Find the relocation howto for this relocation. */
6787 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6788 {
6789 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6790 64-bit code, but make sure all their addresses are in the
6791 lowermost or uppermost 32-bit section of the 64-bit address
6792 space. Thus, when they use an R_MIPS_64 they mean what is
6793 usually meant by R_MIPS_32, with the exception that the
6794 stored value is sign-extended to 64 bits. */
6795 howto = elf_mips_howto_table + R_MIPS_32;
6796
6797 /* On big-endian systems, we need to lie about the position
6798 of the reloc. */
6799 if (bfd_big_endian (input_bfd))
6800 rel->r_offset += 4;
6801 }
6802 else
6803 howto = mips_rtype_to_howto (r_type);
6804
6805 if (!use_saved_addend_p)
6806 {
6807 Elf_Internal_Shdr *rel_hdr;
6808
6809 /* If these relocations were originally of the REL variety,
6810 we must pull the addend out of the field that will be
6811 relocated. Otherwise, we simply use the contents of the
6812 RELA relocation. To determine which flavor or relocation
6813 this is, we depend on the fact that the INPUT_SECTION's
6814 REL_HDR is read before its REL_HDR2. */
6815 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6816 if ((size_t) (rel - relocs)
6817 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6818 * bed->s->int_rels_per_ext_rel))
6819 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6820 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6821 {
6822 /* Note that this is a REL relocation. */
6823 rela_relocation_p = false;
6824
6825 /* Get the addend, which is stored in the input file. */
6826 addend = mips_elf_obtain_contents (howto,
6827 rel,
6828 input_bfd,
6829 contents);
6830 addend &= howto->src_mask;
6831
6832 /* For some kinds of relocations, the ADDEND is a
6833 combination of the addend stored in two different
6834 relocations. */
6835 if (r_type == R_MIPS_HI16
6836 || r_type == R_MIPS_GNU_REL_HI16
6837 || (r_type == R_MIPS_GOT16
6838 && mips_elf_local_relocation_p (input_bfd, rel,
6839 local_sections, false)))
6840 {
6841 bfd_vma l;
6842 const Elf_Internal_Rela *lo16_relocation;
6843 reloc_howto_type *lo16_howto;
6844 int lo;
6845
6846 /* The combined value is the sum of the HI16 addend,
6847 left-shifted by sixteen bits, and the LO16
6848 addend, sign extended. (Usually, the code does
6849 a `lui' of the HI16 value, and then an `addiu' of
6850 the LO16 value.)
6851
6852 Scan ahead to find a matching LO16 relocation. */
6853 if (r_type == R_MIPS_GNU_REL_HI16)
6854 lo = R_MIPS_GNU_REL_LO16;
6855 else
6856 lo = R_MIPS_LO16;
6857 lo16_relocation
6858 = mips_elf_next_relocation (lo, rel, relend);
6859 if (lo16_relocation == NULL)
6860 return false;
6861
6862 /* Obtain the addend kept there. */
6863 lo16_howto = mips_rtype_to_howto (lo);
6864 l = mips_elf_obtain_contents (lo16_howto,
6865 lo16_relocation,
6866 input_bfd, contents);
6867 l &= lo16_howto->src_mask;
6868 l = mips_elf_sign_extend (l, 16);
6869
6870 addend <<= 16;
6871
6872 /* Compute the combined addend. */
6873 addend += l;
6874 }
6875 else if (r_type == R_MIPS16_GPREL)
6876 {
6877 /* The addend is scrambled in the object file. See
6878 mips_elf_perform_relocation for details on the
6879 format. */
6880 addend = (((addend & 0x1f0000) >> 5)
6881 | ((addend & 0x7e00000) >> 16)
6882 | (addend & 0x1f));
6883 }
6884 }
6885 else
6886 addend = rel->r_addend;
6887 }
6888
6889 if (info->relocateable)
6890 {
6891 Elf_Internal_Sym *sym;
6892 unsigned long r_symndx;
6893
6894 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6895 && bfd_big_endian (input_bfd))
6896 rel->r_offset -= 4;
6897
6898 /* Since we're just relocating, all we need to do is copy
6899 the relocations back out to the object file, unless
6900 they're against a section symbol, in which case we need
6901 to adjust by the section offset, or unless they're GP
6902 relative in which case we need to adjust by the amount
6903 that we're adjusting GP in this relocateable object. */
6904
6905 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6906 false))
6907 /* There's nothing to do for non-local relocations. */
6908 continue;
6909
6910 if (r_type == R_MIPS16_GPREL
6911 || r_type == R_MIPS_GPREL16
6912 || r_type == R_MIPS_GPREL32
6913 || r_type == R_MIPS_LITERAL)
6914 addend -= (_bfd_get_gp_value (output_bfd)
6915 - _bfd_get_gp_value (input_bfd));
6916 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6917 || r_type == R_MIPS_GNU_REL16_S2)
6918 /* The addend is stored without its two least
6919 significant bits (which are always zero.) In a
6920 non-relocateable link, calculate_relocation will do
6921 this shift; here, we must do it ourselves. */
6922 addend <<= 2;
6923
6924 r_symndx = ELF32_R_SYM (rel->r_info);
6925 sym = local_syms + r_symndx;
6926 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6927 /* Adjust the addend appropriately. */
6928 addend += local_sections[r_symndx]->output_offset;
6929
6930 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6931 then we only want to write out the high-order 16 bits.
6932 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6933 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6934 || r_type == R_MIPS_GNU_REL_HI16)
6935 addend = mips_elf_high (addend);
6936 /* If the relocation is for an R_MIPS_26 relocation, then
6937 the two low-order bits are not stored in the object file;
6938 they are implicitly zero. */
6939 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6940 || r_type == R_MIPS_GNU_REL16_S2)
6941 addend >>= 2;
6942
6943 if (rela_relocation_p)
6944 /* If this is a RELA relocation, just update the addend.
6945 We have to cast away constness for REL. */
6946 rel->r_addend = addend;
6947 else
6948 {
6949 /* Otherwise, we have to write the value back out. Note
6950 that we use the source mask, rather than the
6951 destination mask because the place to which we are
6952 writing will be source of the addend in the final
6953 link. */
6954 addend &= howto->src_mask;
6955
6956 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6957 /* See the comment above about using R_MIPS_64 in the 32-bit
6958 ABI. Here, we need to update the addend. It would be
6959 possible to get away with just using the R_MIPS_32 reloc
6960 but for endianness. */
6961 {
6962 bfd_vma sign_bits;
6963 bfd_vma low_bits;
6964 bfd_vma high_bits;
6965
6966 if (addend & ((bfd_vma) 1 << 31))
6967 sign_bits = ((bfd_vma) 1 << 32) - 1;
6968 else
6969 sign_bits = 0;
6970
6971 /* If we don't know that we have a 64-bit type,
6972 do two separate stores. */
6973 if (bfd_big_endian (input_bfd))
6974 {
6975 /* Store the sign-bits (which are most significant)
6976 first. */
6977 low_bits = sign_bits;
6978 high_bits = addend;
6979 }
6980 else
6981 {
6982 low_bits = addend;
6983 high_bits = sign_bits;
6984 }
6985 bfd_put_32 (input_bfd, low_bits,
6986 contents + rel->r_offset);
6987 bfd_put_32 (input_bfd, high_bits,
6988 contents + rel->r_offset + 4);
6989 continue;
6990 }
6991
6992 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6993 input_bfd, input_section,
6994 contents, false))
6995 return false;
6996 }
6997
6998 /* Go on to the next relocation. */
6999 continue;
7000 }
7001
7002 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7003 relocations for the same offset. In that case we are
7004 supposed to treat the output of each relocation as the addend
7005 for the next. */
7006 if (rel + 1 < relend
7007 && rel->r_offset == rel[1].r_offset
7008 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7009 use_saved_addend_p = true;
7010 else
7011 use_saved_addend_p = false;
7012
7013 /* Figure out what value we are supposed to relocate. */
7014 switch (mips_elf_calculate_relocation (output_bfd,
7015 input_bfd,
7016 input_section,
7017 info,
7018 rel,
7019 addend,
7020 howto,
7021 local_syms,
7022 local_sections,
7023 &value,
7024 &name,
7025 &require_jalx))
7026 {
7027 case bfd_reloc_continue:
7028 /* There's nothing to do. */
7029 continue;
7030
7031 case bfd_reloc_undefined:
7032 /* mips_elf_calculate_relocation already called the
7033 undefined_symbol callback. There's no real point in
7034 trying to perform the relocation at this point, so we
7035 just skip ahead to the next relocation. */
7036 continue;
7037
7038 case bfd_reloc_notsupported:
7039 msg = _("internal error: unsupported relocation error");
7040 info->callbacks->warning
7041 (info, msg, name, input_bfd, input_section, rel->r_offset);
7042 return false;
7043
7044 case bfd_reloc_overflow:
7045 if (use_saved_addend_p)
7046 /* Ignore overflow until we reach the last relocation for
7047 a given location. */
7048 ;
7049 else
7050 {
7051 BFD_ASSERT (name != NULL);
7052 if (! ((*info->callbacks->reloc_overflow)
7053 (info, name, howto->name, (bfd_vma) 0,
7054 input_bfd, input_section, rel->r_offset)))
7055 return false;
7056 }
7057 break;
7058
7059 case bfd_reloc_ok:
7060 break;
7061
7062 default:
7063 abort ();
7064 break;
7065 }
7066
7067 /* If we've got another relocation for the address, keep going
7068 until we reach the last one. */
7069 if (use_saved_addend_p)
7070 {
7071 addend = value;
7072 continue;
7073 }
7074
7075 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7076 /* See the comment above about using R_MIPS_64 in the 32-bit
7077 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7078 that calculated the right value. Now, however, we
7079 sign-extend the 32-bit result to 64-bits, and store it as a
7080 64-bit value. We are especially generous here in that we
7081 go to extreme lengths to support this usage on systems with
7082 only a 32-bit VMA. */
7083 {
7084 bfd_vma sign_bits;
7085 bfd_vma low_bits;
7086 bfd_vma high_bits;
7087
7088 if (value & ((bfd_vma) 1 << 31))
7089 sign_bits = ((bfd_vma) 1 << 32) - 1;
7090 else
7091 sign_bits = 0;
7092
7093 /* If we don't know that we have a 64-bit type,
7094 do two separate stores. */
7095 if (bfd_big_endian (input_bfd))
7096 {
7097 /* Undo what we did above. */
7098 rel->r_offset -= 4;
7099 /* Store the sign-bits (which are most significant)
7100 first. */
7101 low_bits = sign_bits;
7102 high_bits = value;
7103 }
7104 else
7105 {
7106 low_bits = value;
7107 high_bits = sign_bits;
7108 }
7109 bfd_put_32 (input_bfd, low_bits,
7110 contents + rel->r_offset);
7111 bfd_put_32 (input_bfd, high_bits,
7112 contents + rel->r_offset + 4);
7113 continue;
7114 }
7115
7116 /* Actually perform the relocation. */
7117 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7118 input_section, contents,
7119 require_jalx))
7120 return false;
7121 }
7122
7123 return true;
7124 }
7125
7126 /* This hook function is called before the linker writes out a global
7127 symbol. We mark symbols as small common if appropriate. This is
7128 also where we undo the increment of the value for a mips16 symbol. */
7129
7130 boolean
7131 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7132 bfd *abfd ATTRIBUTE_UNUSED;
7133 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7134 const char *name ATTRIBUTE_UNUSED;
7135 Elf_Internal_Sym *sym;
7136 asection *input_sec;
7137 {
7138 /* If we see a common symbol, which implies a relocatable link, then
7139 if a symbol was small common in an input file, mark it as small
7140 common in the output file. */
7141 if (sym->st_shndx == SHN_COMMON
7142 && strcmp (input_sec->name, ".scommon") == 0)
7143 sym->st_shndx = SHN_MIPS_SCOMMON;
7144
7145 if (sym->st_other == STO_MIPS16
7146 && (sym->st_value & 1) != 0)
7147 --sym->st_value;
7148
7149 return true;
7150 }
7151 \f
7152 /* Functions for the dynamic linker. */
7153
7154 /* The name of the dynamic interpreter. This is put in the .interp
7155 section. */
7156
7157 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7158 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7159 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7160 : "/usr/lib/libc.so.1")
7161
7162 /* Create dynamic sections when linking against a dynamic object. */
7163
7164 boolean
7165 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7166 bfd *abfd;
7167 struct bfd_link_info *info;
7168 {
7169 struct elf_link_hash_entry *h;
7170 flagword flags;
7171 register asection *s;
7172 const char * const *namep;
7173
7174 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7175 | SEC_LINKER_CREATED | SEC_READONLY);
7176
7177 /* Mips ABI requests the .dynamic section to be read only. */
7178 s = bfd_get_section_by_name (abfd, ".dynamic");
7179 if (s != NULL)
7180 {
7181 if (! bfd_set_section_flags (abfd, s, flags))
7182 return false;
7183 }
7184
7185 /* We need to create .got section. */
7186 if (! mips_elf_create_got_section (abfd, info))
7187 return false;
7188
7189 /* Create the .msym section on IRIX6. It is used by the dynamic
7190 linker to speed up dynamic relocations, and to avoid computing
7191 the ELF hash for symbols. */
7192 if (IRIX_COMPAT (abfd) == ict_irix6
7193 && !mips_elf_create_msym_section (abfd))
7194 return false;
7195
7196 /* Create .stub section. */
7197 if (bfd_get_section_by_name (abfd,
7198 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7199 {
7200 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7201 if (s == NULL
7202 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7203 || ! bfd_set_section_alignment (abfd, s,
7204 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7205 return false;
7206 }
7207
7208 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7209 && !info->shared
7210 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7211 {
7212 s = bfd_make_section (abfd, ".rld_map");
7213 if (s == NULL
7214 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7215 || ! bfd_set_section_alignment (abfd, s,
7216 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7217 return false;
7218 }
7219
7220 /* On IRIX5, we adjust add some additional symbols and change the
7221 alignments of several sections. There is no ABI documentation
7222 indicating that this is necessary on IRIX6, nor any evidence that
7223 the linker takes such action. */
7224 if (IRIX_COMPAT (abfd) == ict_irix5)
7225 {
7226 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7227 {
7228 h = NULL;
7229 if (! (_bfd_generic_link_add_one_symbol
7230 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7231 (bfd_vma) 0, (const char *) NULL, false,
7232 get_elf_backend_data (abfd)->collect,
7233 (struct bfd_link_hash_entry **) &h)))
7234 return false;
7235 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7236 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7237 h->type = STT_SECTION;
7238
7239 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7240 return false;
7241 }
7242
7243 /* We need to create a .compact_rel section. */
7244 if (SGI_COMPAT (abfd))
7245 {
7246 if (!mips_elf_create_compact_rel_section (abfd, info))
7247 return false;
7248 }
7249
7250 /* Change aligments of some sections. */
7251 s = bfd_get_section_by_name (abfd, ".hash");
7252 if (s != NULL)
7253 bfd_set_section_alignment (abfd, s, 4);
7254 s = bfd_get_section_by_name (abfd, ".dynsym");
7255 if (s != NULL)
7256 bfd_set_section_alignment (abfd, s, 4);
7257 s = bfd_get_section_by_name (abfd, ".dynstr");
7258 if (s != NULL)
7259 bfd_set_section_alignment (abfd, s, 4);
7260 s = bfd_get_section_by_name (abfd, ".reginfo");
7261 if (s != NULL)
7262 bfd_set_section_alignment (abfd, s, 4);
7263 s = bfd_get_section_by_name (abfd, ".dynamic");
7264 if (s != NULL)
7265 bfd_set_section_alignment (abfd, s, 4);
7266 }
7267
7268 if (!info->shared)
7269 {
7270 h = NULL;
7271 if (SGI_COMPAT (abfd))
7272 {
7273 if (!(_bfd_generic_link_add_one_symbol
7274 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7275 (bfd_vma) 0, (const char *) NULL, false,
7276 get_elf_backend_data (abfd)->collect,
7277 (struct bfd_link_hash_entry **) &h)))
7278 return false;
7279 }
7280 else
7281 {
7282 /* For normal mips it is _DYNAMIC_LINKING. */
7283 if (!(_bfd_generic_link_add_one_symbol
7284 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7285 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7286 get_elf_backend_data (abfd)->collect,
7287 (struct bfd_link_hash_entry **) &h)))
7288 return false;
7289 }
7290 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7291 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7292 h->type = STT_SECTION;
7293
7294 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7295 return false;
7296
7297 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7298 {
7299 /* __rld_map is a four byte word located in the .data section
7300 and is filled in by the rtld to contain a pointer to
7301 the _r_debug structure. Its symbol value will be set in
7302 mips_elf_finish_dynamic_symbol. */
7303 s = bfd_get_section_by_name (abfd, ".rld_map");
7304 BFD_ASSERT (s != NULL);
7305
7306 h = NULL;
7307 if (SGI_COMPAT (abfd))
7308 {
7309 if (!(_bfd_generic_link_add_one_symbol
7310 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7311 (bfd_vma) 0, (const char *) NULL, false,
7312 get_elf_backend_data (abfd)->collect,
7313 (struct bfd_link_hash_entry **) &h)))
7314 return false;
7315 }
7316 else
7317 {
7318 /* For normal mips the symbol is __RLD_MAP. */
7319 if (!(_bfd_generic_link_add_one_symbol
7320 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7321 (bfd_vma) 0, (const char *) NULL, false,
7322 get_elf_backend_data (abfd)->collect,
7323 (struct bfd_link_hash_entry **) &h)))
7324 return false;
7325 }
7326 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7327 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7328 h->type = STT_OBJECT;
7329
7330 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7331 return false;
7332 }
7333 }
7334
7335 return true;
7336 }
7337
7338 /* Create the .compact_rel section. */
7339
7340 static boolean
7341 mips_elf_create_compact_rel_section (abfd, info)
7342 bfd *abfd;
7343 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7344 {
7345 flagword flags;
7346 register asection *s;
7347
7348 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7349 {
7350 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7351 | SEC_READONLY);
7352
7353 s = bfd_make_section (abfd, ".compact_rel");
7354 if (s == NULL
7355 || ! bfd_set_section_flags (abfd, s, flags)
7356 || ! bfd_set_section_alignment (abfd, s,
7357 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7358 return false;
7359
7360 s->_raw_size = sizeof (Elf32_External_compact_rel);
7361 }
7362
7363 return true;
7364 }
7365
7366 /* Create the .got section to hold the global offset table. */
7367
7368 static boolean
7369 mips_elf_create_got_section (abfd, info)
7370 bfd *abfd;
7371 struct bfd_link_info *info;
7372 {
7373 flagword flags;
7374 register asection *s;
7375 struct elf_link_hash_entry *h;
7376 struct mips_got_info *g;
7377
7378 /* This function may be called more than once. */
7379 if (mips_elf_got_section (abfd))
7380 return true;
7381
7382 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7383 | SEC_LINKER_CREATED);
7384
7385 s = bfd_make_section (abfd, ".got");
7386 if (s == NULL
7387 || ! bfd_set_section_flags (abfd, s, flags)
7388 || ! bfd_set_section_alignment (abfd, s, 4))
7389 return false;
7390
7391 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7392 linker script because we don't want to define the symbol if we
7393 are not creating a global offset table. */
7394 h = NULL;
7395 if (! (_bfd_generic_link_add_one_symbol
7396 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7397 (bfd_vma) 0, (const char *) NULL, false,
7398 get_elf_backend_data (abfd)->collect,
7399 (struct bfd_link_hash_entry **) &h)))
7400 return false;
7401 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7402 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7403 h->type = STT_OBJECT;
7404
7405 if (info->shared
7406 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7407 return false;
7408
7409 /* The first several global offset table entries are reserved. */
7410 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7411
7412 g = (struct mips_got_info *) bfd_alloc (abfd,
7413 sizeof (struct mips_got_info));
7414 if (g == NULL)
7415 return false;
7416 g->global_gotsym = NULL;
7417 g->local_gotno = MIPS_RESERVED_GOTNO;
7418 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7419 if (elf_section_data (s) == NULL)
7420 {
7421 s->used_by_bfd =
7422 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7423 if (elf_section_data (s) == NULL)
7424 return false;
7425 }
7426 elf_section_data (s)->tdata = (PTR) g;
7427 elf_section_data (s)->this_hdr.sh_flags
7428 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7429
7430 return true;
7431 }
7432
7433 /* Returns the .msym section for ABFD, creating it if it does not
7434 already exist. Returns NULL to indicate error. */
7435
7436 static asection *
7437 mips_elf_create_msym_section (abfd)
7438 bfd *abfd;
7439 {
7440 asection *s;
7441
7442 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7443 if (!s)
7444 {
7445 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7446 if (!s
7447 || !bfd_set_section_flags (abfd, s,
7448 SEC_ALLOC
7449 | SEC_LOAD
7450 | SEC_HAS_CONTENTS
7451 | SEC_LINKER_CREATED
7452 | SEC_READONLY)
7453 || !bfd_set_section_alignment (abfd, s,
7454 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7455 return NULL;
7456 }
7457
7458 return s;
7459 }
7460
7461 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7462
7463 static void
7464 mips_elf_allocate_dynamic_relocations (abfd, n)
7465 bfd *abfd;
7466 unsigned int n;
7467 {
7468 asection *s;
7469
7470 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7471 BFD_ASSERT (s != NULL);
7472
7473 if (s->_raw_size == 0)
7474 {
7475 /* Make room for a null element. */
7476 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7477 ++s->reloc_count;
7478 }
7479 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7480 }
7481
7482 /* Look through the relocs for a section during the first phase, and
7483 allocate space in the global offset table. */
7484
7485 boolean
7486 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7487 bfd *abfd;
7488 struct bfd_link_info *info;
7489 asection *sec;
7490 const Elf_Internal_Rela *relocs;
7491 {
7492 const char *name;
7493 bfd *dynobj;
7494 Elf_Internal_Shdr *symtab_hdr;
7495 struct elf_link_hash_entry **sym_hashes;
7496 struct mips_got_info *g;
7497 size_t extsymoff;
7498 const Elf_Internal_Rela *rel;
7499 const Elf_Internal_Rela *rel_end;
7500 asection *sgot;
7501 asection *sreloc;
7502 struct elf_backend_data *bed;
7503
7504 if (info->relocateable)
7505 return true;
7506
7507 dynobj = elf_hash_table (info)->dynobj;
7508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7509 sym_hashes = elf_sym_hashes (abfd);
7510 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7511
7512 /* Check for the mips16 stub sections. */
7513
7514 name = bfd_get_section_name (abfd, sec);
7515 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7516 {
7517 unsigned long r_symndx;
7518
7519 /* Look at the relocation information to figure out which symbol
7520 this is for. */
7521
7522 r_symndx = ELF32_R_SYM (relocs->r_info);
7523
7524 if (r_symndx < extsymoff
7525 || sym_hashes[r_symndx - extsymoff] == NULL)
7526 {
7527 asection *o;
7528
7529 /* This stub is for a local symbol. This stub will only be
7530 needed if there is some relocation in this BFD, other
7531 than a 16 bit function call, which refers to this symbol. */
7532 for (o = abfd->sections; o != NULL; o = o->next)
7533 {
7534 Elf_Internal_Rela *sec_relocs;
7535 const Elf_Internal_Rela *r, *rend;
7536
7537 /* We can ignore stub sections when looking for relocs. */
7538 if ((o->flags & SEC_RELOC) == 0
7539 || o->reloc_count == 0
7540 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7541 sizeof FN_STUB - 1) == 0
7542 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7543 sizeof CALL_STUB - 1) == 0
7544 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7545 sizeof CALL_FP_STUB - 1) == 0)
7546 continue;
7547
7548 sec_relocs = (_bfd_elf32_link_read_relocs
7549 (abfd, o, (PTR) NULL,
7550 (Elf_Internal_Rela *) NULL,
7551 info->keep_memory));
7552 if (sec_relocs == NULL)
7553 return false;
7554
7555 rend = sec_relocs + o->reloc_count;
7556 for (r = sec_relocs; r < rend; r++)
7557 if (ELF32_R_SYM (r->r_info) == r_symndx
7558 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7559 break;
7560
7561 if (! info->keep_memory)
7562 free (sec_relocs);
7563
7564 if (r < rend)
7565 break;
7566 }
7567
7568 if (o == NULL)
7569 {
7570 /* There is no non-call reloc for this stub, so we do
7571 not need it. Since this function is called before
7572 the linker maps input sections to output sections, we
7573 can easily discard it by setting the SEC_EXCLUDE
7574 flag. */
7575 sec->flags |= SEC_EXCLUDE;
7576 return true;
7577 }
7578
7579 /* Record this stub in an array of local symbol stubs for
7580 this BFD. */
7581 if (elf_tdata (abfd)->local_stubs == NULL)
7582 {
7583 unsigned long symcount;
7584 asection **n;
7585
7586 if (elf_bad_symtab (abfd))
7587 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7588 else
7589 symcount = symtab_hdr->sh_info;
7590 n = (asection **) bfd_zalloc (abfd,
7591 symcount * sizeof (asection *));
7592 if (n == NULL)
7593 return false;
7594 elf_tdata (abfd)->local_stubs = n;
7595 }
7596
7597 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7598
7599 /* We don't need to set mips16_stubs_seen in this case.
7600 That flag is used to see whether we need to look through
7601 the global symbol table for stubs. We don't need to set
7602 it here, because we just have a local stub. */
7603 }
7604 else
7605 {
7606 struct mips_elf_link_hash_entry *h;
7607
7608 h = ((struct mips_elf_link_hash_entry *)
7609 sym_hashes[r_symndx - extsymoff]);
7610
7611 /* H is the symbol this stub is for. */
7612
7613 h->fn_stub = sec;
7614 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7615 }
7616 }
7617 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7618 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7619 {
7620 unsigned long r_symndx;
7621 struct mips_elf_link_hash_entry *h;
7622 asection **loc;
7623
7624 /* Look at the relocation information to figure out which symbol
7625 this is for. */
7626
7627 r_symndx = ELF32_R_SYM (relocs->r_info);
7628
7629 if (r_symndx < extsymoff
7630 || sym_hashes[r_symndx - extsymoff] == NULL)
7631 {
7632 /* This stub was actually built for a static symbol defined
7633 in the same file. We assume that all static symbols in
7634 mips16 code are themselves mips16, so we can simply
7635 discard this stub. Since this function is called before
7636 the linker maps input sections to output sections, we can
7637 easily discard it by setting the SEC_EXCLUDE flag. */
7638 sec->flags |= SEC_EXCLUDE;
7639 return true;
7640 }
7641
7642 h = ((struct mips_elf_link_hash_entry *)
7643 sym_hashes[r_symndx - extsymoff]);
7644
7645 /* H is the symbol this stub is for. */
7646
7647 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7648 loc = &h->call_fp_stub;
7649 else
7650 loc = &h->call_stub;
7651
7652 /* If we already have an appropriate stub for this function, we
7653 don't need another one, so we can discard this one. Since
7654 this function is called before the linker maps input sections
7655 to output sections, we can easily discard it by setting the
7656 SEC_EXCLUDE flag. We can also discard this section if we
7657 happen to already know that this is a mips16 function; it is
7658 not necessary to check this here, as it is checked later, but
7659 it is slightly faster to check now. */
7660 if (*loc != NULL || h->root.other == STO_MIPS16)
7661 {
7662 sec->flags |= SEC_EXCLUDE;
7663 return true;
7664 }
7665
7666 *loc = sec;
7667 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7668 }
7669
7670 if (dynobj == NULL)
7671 {
7672 sgot = NULL;
7673 g = NULL;
7674 }
7675 else
7676 {
7677 sgot = mips_elf_got_section (dynobj);
7678 if (sgot == NULL)
7679 g = NULL;
7680 else
7681 {
7682 BFD_ASSERT (elf_section_data (sgot) != NULL);
7683 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7684 BFD_ASSERT (g != NULL);
7685 }
7686 }
7687
7688 sreloc = NULL;
7689 bed = get_elf_backend_data (abfd);
7690 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7691 for (rel = relocs; rel < rel_end; ++rel)
7692 {
7693 unsigned long r_symndx;
7694 int r_type;
7695 struct elf_link_hash_entry *h;
7696
7697 r_symndx = ELF32_R_SYM (rel->r_info);
7698 r_type = ELF32_R_TYPE (rel->r_info);
7699
7700 if (r_symndx < extsymoff)
7701 h = NULL;
7702 else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize))
7703 {
7704 (*_bfd_error_handler)
7705 (_("Malformed reloc detected for section %s"), name);
7706 bfd_set_error (bfd_error_bad_value);
7707 return false;
7708 }
7709 else
7710 {
7711 h = sym_hashes[r_symndx - extsymoff];
7712
7713 /* This may be an indirect symbol created because of a version. */
7714 if (h != NULL)
7715 {
7716 while (h->root.type == bfd_link_hash_indirect)
7717 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7718 }
7719 }
7720
7721 /* Some relocs require a global offset table. */
7722 if (dynobj == NULL || sgot == NULL)
7723 {
7724 switch (r_type)
7725 {
7726 case R_MIPS_GOT16:
7727 case R_MIPS_CALL16:
7728 case R_MIPS_CALL_HI16:
7729 case R_MIPS_CALL_LO16:
7730 case R_MIPS_GOT_HI16:
7731 case R_MIPS_GOT_LO16:
7732 case R_MIPS_GOT_PAGE:
7733 case R_MIPS_GOT_OFST:
7734 case R_MIPS_GOT_DISP:
7735 if (dynobj == NULL)
7736 elf_hash_table (info)->dynobj = dynobj = abfd;
7737 if (! mips_elf_create_got_section (dynobj, info))
7738 return false;
7739 g = mips_elf_got_info (dynobj, &sgot);
7740 break;
7741
7742 case R_MIPS_32:
7743 case R_MIPS_REL32:
7744 case R_MIPS_64:
7745 if (dynobj == NULL
7746 && (info->shared || h != NULL)
7747 && (sec->flags & SEC_ALLOC) != 0)
7748 elf_hash_table (info)->dynobj = dynobj = abfd;
7749 break;
7750
7751 default:
7752 break;
7753 }
7754 }
7755
7756 if (!h && (r_type == R_MIPS_CALL_LO16
7757 || r_type == R_MIPS_GOT_LO16
7758 || r_type == R_MIPS_GOT_DISP))
7759 {
7760 /* We may need a local GOT entry for this relocation. We
7761 don't count R_MIPS_GOT_PAGE because we can estimate the
7762 maximum number of pages needed by looking at the size of
7763 the segment. Similar comments apply to R_MIPS_GOT16 and
7764 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7765 R_MIPS_CALL_HI16 because these are always followed by an
7766 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7767
7768 This estimation is very conservative since we can merge
7769 duplicate entries in the GOT. In order to be less
7770 conservative, we could actually build the GOT here,
7771 rather than in relocate_section. */
7772 g->local_gotno++;
7773 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7774 }
7775
7776 switch (r_type)
7777 {
7778 case R_MIPS_CALL16:
7779 if (h == NULL)
7780 {
7781 (*_bfd_error_handler)
7782 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7783 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7784 bfd_set_error (bfd_error_bad_value);
7785 return false;
7786 }
7787 /* Fall through. */
7788
7789 case R_MIPS_CALL_HI16:
7790 case R_MIPS_CALL_LO16:
7791 if (h != NULL)
7792 {
7793 /* This symbol requires a global offset table entry. */
7794 if (!mips_elf_record_global_got_symbol (h, info, g))
7795 return false;
7796
7797 /* We need a stub, not a plt entry for the undefined
7798 function. But we record it as if it needs plt. See
7799 elf_adjust_dynamic_symbol in elflink.h. */
7800 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7801 h->type = STT_FUNC;
7802 }
7803 break;
7804
7805 case R_MIPS_GOT16:
7806 case R_MIPS_GOT_HI16:
7807 case R_MIPS_GOT_LO16:
7808 case R_MIPS_GOT_DISP:
7809 /* This symbol requires a global offset table entry. */
7810 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7811 return false;
7812 break;
7813
7814 case R_MIPS_32:
7815 case R_MIPS_REL32:
7816 case R_MIPS_64:
7817 if ((info->shared || h != NULL)
7818 && (sec->flags & SEC_ALLOC) != 0)
7819 {
7820 if (sreloc == NULL)
7821 {
7822 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7823
7824 sreloc = bfd_get_section_by_name (dynobj, name);
7825 if (sreloc == NULL)
7826 {
7827 sreloc = bfd_make_section (dynobj, name);
7828 if (sreloc == NULL
7829 || ! bfd_set_section_flags (dynobj, sreloc,
7830 (SEC_ALLOC
7831 | SEC_LOAD
7832 | SEC_HAS_CONTENTS
7833 | SEC_IN_MEMORY
7834 | SEC_LINKER_CREATED
7835 | SEC_READONLY))
7836 || ! bfd_set_section_alignment (dynobj, sreloc,
7837 4))
7838 return false;
7839 }
7840 }
7841 if (info->shared)
7842 /* When creating a shared object, we must copy these
7843 reloc types into the output file as R_MIPS_REL32
7844 relocs. We make room for this reloc in the
7845 .rel.dyn reloc section. */
7846 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7847 else
7848 {
7849 struct mips_elf_link_hash_entry *hmips;
7850
7851 /* We only need to copy this reloc if the symbol is
7852 defined in a dynamic object. */
7853 hmips = (struct mips_elf_link_hash_entry *) h;
7854 ++hmips->possibly_dynamic_relocs;
7855 }
7856
7857 /* Even though we don't directly need a GOT entry for
7858 this symbol, a symbol must have a dynamic symbol
7859 table index greater that DT_MIPS_GOTSYM if there are
7860 dynamic relocations against it. */
7861 if (h != NULL
7862 && !mips_elf_record_global_got_symbol (h, info, g))
7863 return false;
7864 }
7865
7866 if (SGI_COMPAT (abfd))
7867 mips_elf_hash_table (info)->compact_rel_size +=
7868 sizeof (Elf32_External_crinfo);
7869 break;
7870
7871 case R_MIPS_26:
7872 case R_MIPS_GPREL16:
7873 case R_MIPS_LITERAL:
7874 case R_MIPS_GPREL32:
7875 if (SGI_COMPAT (abfd))
7876 mips_elf_hash_table (info)->compact_rel_size +=
7877 sizeof (Elf32_External_crinfo);
7878 break;
7879
7880 /* This relocation describes the C++ object vtable hierarchy.
7881 Reconstruct it for later use during GC. */
7882 case R_MIPS_GNU_VTINHERIT:
7883 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7884 return false;
7885 break;
7886
7887 /* This relocation describes which C++ vtable entries are actually
7888 used. Record for later use during GC. */
7889 case R_MIPS_GNU_VTENTRY:
7890 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7891 return false;
7892 break;
7893
7894 default:
7895 break;
7896 }
7897
7898 /* We must not create a stub for a symbol that has relocations
7899 related to taking the function's address. */
7900 switch (r_type)
7901 {
7902 default:
7903 if (h != NULL)
7904 {
7905 struct mips_elf_link_hash_entry *mh;
7906
7907 mh = (struct mips_elf_link_hash_entry *) h;
7908 mh->no_fn_stub = true;
7909 }
7910 break;
7911 case R_MIPS_CALL16:
7912 case R_MIPS_CALL_HI16:
7913 case R_MIPS_CALL_LO16:
7914 break;
7915 }
7916
7917 /* If this reloc is not a 16 bit call, and it has a global
7918 symbol, then we will need the fn_stub if there is one.
7919 References from a stub section do not count. */
7920 if (h != NULL
7921 && r_type != R_MIPS16_26
7922 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7923 sizeof FN_STUB - 1) != 0
7924 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7925 sizeof CALL_STUB - 1) != 0
7926 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7927 sizeof CALL_FP_STUB - 1) != 0)
7928 {
7929 struct mips_elf_link_hash_entry *mh;
7930
7931 mh = (struct mips_elf_link_hash_entry *) h;
7932 mh->need_fn_stub = true;
7933 }
7934 }
7935
7936 return true;
7937 }
7938
7939 /* Return the section that should be marked against GC for a given
7940 relocation. */
7941
7942 asection *
7943 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7944 bfd *abfd;
7945 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7946 Elf_Internal_Rela *rel;
7947 struct elf_link_hash_entry *h;
7948 Elf_Internal_Sym *sym;
7949 {
7950 /* ??? Do mips16 stub sections need to be handled special? */
7951
7952 if (h != NULL)
7953 {
7954 switch (ELF32_R_TYPE (rel->r_info))
7955 {
7956 case R_MIPS_GNU_VTINHERIT:
7957 case R_MIPS_GNU_VTENTRY:
7958 break;
7959
7960 default:
7961 switch (h->root.type)
7962 {
7963 case bfd_link_hash_defined:
7964 case bfd_link_hash_defweak:
7965 return h->root.u.def.section;
7966
7967 case bfd_link_hash_common:
7968 return h->root.u.c.p->section;
7969
7970 default:
7971 break;
7972 }
7973 }
7974 }
7975 else
7976 {
7977 if (!(elf_bad_symtab (abfd)
7978 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7979 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7980 && sym->st_shndx != SHN_COMMON))
7981 {
7982 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7983 }
7984 }
7985
7986 return NULL;
7987 }
7988
7989 /* Update the got entry reference counts for the section being removed. */
7990
7991 boolean
7992 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7993 bfd *abfd ATTRIBUTE_UNUSED;
7994 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7995 asection *sec ATTRIBUTE_UNUSED;
7996 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7997 {
7998 #if 0
7999 Elf_Internal_Shdr *symtab_hdr;
8000 struct elf_link_hash_entry **sym_hashes;
8001 bfd_signed_vma *local_got_refcounts;
8002 const Elf_Internal_Rela *rel, *relend;
8003 unsigned long r_symndx;
8004 struct elf_link_hash_entry *h;
8005
8006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8007 sym_hashes = elf_sym_hashes (abfd);
8008 local_got_refcounts = elf_local_got_refcounts (abfd);
8009
8010 relend = relocs + sec->reloc_count;
8011 for (rel = relocs; rel < relend; rel++)
8012 switch (ELF32_R_TYPE (rel->r_info))
8013 {
8014 case R_MIPS_GOT16:
8015 case R_MIPS_CALL16:
8016 case R_MIPS_CALL_HI16:
8017 case R_MIPS_CALL_LO16:
8018 case R_MIPS_GOT_HI16:
8019 case R_MIPS_GOT_LO16:
8020 /* ??? It would seem that the existing MIPS code does no sort
8021 of reference counting or whatnot on its GOT and PLT entries,
8022 so it is not possible to garbage collect them at this time. */
8023 break;
8024
8025 default:
8026 break;
8027 }
8028 #endif
8029
8030 return true;
8031 }
8032
8033 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8034 hiding the old indirect symbol. Process additional relocation
8035 information. */
8036
8037 void
8038 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8039 struct elf_link_hash_entry *dir, *ind;
8040 {
8041 struct mips_elf_link_hash_entry *dirmips, *indmips;
8042
8043 _bfd_elf_link_hash_copy_indirect (dir, ind);
8044
8045 dirmips = (struct mips_elf_link_hash_entry *) dir;
8046 indmips = (struct mips_elf_link_hash_entry *) ind;
8047 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8048 if (dirmips->min_dyn_reloc_index == 0
8049 || (indmips->min_dyn_reloc_index != 0
8050 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8051 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8052 if (indmips->no_fn_stub)
8053 dirmips->no_fn_stub = true;
8054 }
8055
8056 /* Adjust a symbol defined by a dynamic object and referenced by a
8057 regular object. The current definition is in some section of the
8058 dynamic object, but we're not including those sections. We have to
8059 change the definition to something the rest of the link can
8060 understand. */
8061
8062 boolean
8063 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8064 struct bfd_link_info *info;
8065 struct elf_link_hash_entry *h;
8066 {
8067 bfd *dynobj;
8068 struct mips_elf_link_hash_entry *hmips;
8069 asection *s;
8070
8071 dynobj = elf_hash_table (info)->dynobj;
8072
8073 /* Make sure we know what is going on here. */
8074 BFD_ASSERT (dynobj != NULL
8075 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8076 || h->weakdef != NULL
8077 || ((h->elf_link_hash_flags
8078 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8079 && (h->elf_link_hash_flags
8080 & ELF_LINK_HASH_REF_REGULAR) != 0
8081 && (h->elf_link_hash_flags
8082 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8083
8084 /* If this symbol is defined in a dynamic object, we need to copy
8085 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8086 file. */
8087 hmips = (struct mips_elf_link_hash_entry *) h;
8088 if (! info->relocateable
8089 && hmips->possibly_dynamic_relocs != 0
8090 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8091 mips_elf_allocate_dynamic_relocations (dynobj,
8092 hmips->possibly_dynamic_relocs);
8093
8094 /* For a function, create a stub, if allowed. */
8095 if (! hmips->no_fn_stub
8096 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8097 {
8098 if (! elf_hash_table (info)->dynamic_sections_created)
8099 return true;
8100
8101 /* If this symbol is not defined in a regular file, then set
8102 the symbol to the stub location. This is required to make
8103 function pointers compare as equal between the normal
8104 executable and the shared library. */
8105 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8106 {
8107 /* We need .stub section. */
8108 s = bfd_get_section_by_name (dynobj,
8109 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8110 BFD_ASSERT (s != NULL);
8111
8112 h->root.u.def.section = s;
8113 h->root.u.def.value = s->_raw_size;
8114
8115 /* XXX Write this stub address somewhere. */
8116 h->plt.offset = s->_raw_size;
8117
8118 /* Make room for this stub code. */
8119 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8120
8121 /* The last half word of the stub will be filled with the index
8122 of this symbol in .dynsym section. */
8123 return true;
8124 }
8125 }
8126 else if ((h->type == STT_FUNC)
8127 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8128 {
8129 /* This will set the entry for this symbol in the GOT to 0, and
8130 the dynamic linker will take care of this. */
8131 h->root.u.def.value = 0;
8132 return true;
8133 }
8134
8135 /* If this is a weak symbol, and there is a real definition, the
8136 processor independent code will have arranged for us to see the
8137 real definition first, and we can just use the same value. */
8138 if (h->weakdef != NULL)
8139 {
8140 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8141 || h->weakdef->root.type == bfd_link_hash_defweak);
8142 h->root.u.def.section = h->weakdef->root.u.def.section;
8143 h->root.u.def.value = h->weakdef->root.u.def.value;
8144 return true;
8145 }
8146
8147 /* This is a reference to a symbol defined by a dynamic object which
8148 is not a function. */
8149
8150 return true;
8151 }
8152
8153 /* This function is called after all the input files have been read,
8154 and the input sections have been assigned to output sections. We
8155 check for any mips16 stub sections that we can discard. */
8156
8157 static boolean mips_elf_check_mips16_stubs
8158 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8159
8160 boolean
8161 _bfd_mips_elf_always_size_sections (output_bfd, info)
8162 bfd *output_bfd;
8163 struct bfd_link_info *info;
8164 {
8165 asection *ri;
8166
8167 /* The .reginfo section has a fixed size. */
8168 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8169 if (ri != NULL)
8170 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8171
8172 if (info->relocateable
8173 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8174 return true;
8175
8176 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8177 mips_elf_check_mips16_stubs,
8178 (PTR) NULL);
8179
8180 return true;
8181 }
8182
8183 /* Check the mips16 stubs for a particular symbol, and see if we can
8184 discard them. */
8185
8186 static boolean
8187 mips_elf_check_mips16_stubs (h, data)
8188 struct mips_elf_link_hash_entry *h;
8189 PTR data ATTRIBUTE_UNUSED;
8190 {
8191 if (h->fn_stub != NULL
8192 && ! h->need_fn_stub)
8193 {
8194 /* We don't need the fn_stub; the only references to this symbol
8195 are 16 bit calls. Clobber the size to 0 to prevent it from
8196 being included in the link. */
8197 h->fn_stub->_raw_size = 0;
8198 h->fn_stub->_cooked_size = 0;
8199 h->fn_stub->flags &= ~SEC_RELOC;
8200 h->fn_stub->reloc_count = 0;
8201 h->fn_stub->flags |= SEC_EXCLUDE;
8202 }
8203
8204 if (h->call_stub != NULL
8205 && h->root.other == STO_MIPS16)
8206 {
8207 /* We don't need the call_stub; this is a 16 bit function, so
8208 calls from other 16 bit functions are OK. Clobber the size
8209 to 0 to prevent it from being included in the link. */
8210 h->call_stub->_raw_size = 0;
8211 h->call_stub->_cooked_size = 0;
8212 h->call_stub->flags &= ~SEC_RELOC;
8213 h->call_stub->reloc_count = 0;
8214 h->call_stub->flags |= SEC_EXCLUDE;
8215 }
8216
8217 if (h->call_fp_stub != NULL
8218 && h->root.other == STO_MIPS16)
8219 {
8220 /* We don't need the call_stub; this is a 16 bit function, so
8221 calls from other 16 bit functions are OK. Clobber the size
8222 to 0 to prevent it from being included in the link. */
8223 h->call_fp_stub->_raw_size = 0;
8224 h->call_fp_stub->_cooked_size = 0;
8225 h->call_fp_stub->flags &= ~SEC_RELOC;
8226 h->call_fp_stub->reloc_count = 0;
8227 h->call_fp_stub->flags |= SEC_EXCLUDE;
8228 }
8229
8230 return true;
8231 }
8232
8233 /* Set the sizes of the dynamic sections. */
8234
8235 boolean
8236 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8237 bfd *output_bfd;
8238 struct bfd_link_info *info;
8239 {
8240 bfd *dynobj;
8241 asection *s;
8242 boolean reltext;
8243 struct mips_got_info *g = NULL;
8244
8245 dynobj = elf_hash_table (info)->dynobj;
8246 BFD_ASSERT (dynobj != NULL);
8247
8248 if (elf_hash_table (info)->dynamic_sections_created)
8249 {
8250 /* Set the contents of the .interp section to the interpreter. */
8251 if (! info->shared)
8252 {
8253 s = bfd_get_section_by_name (dynobj, ".interp");
8254 BFD_ASSERT (s != NULL);
8255 s->_raw_size
8256 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8257 s->contents
8258 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8259 }
8260 }
8261
8262 /* The check_relocs and adjust_dynamic_symbol entry points have
8263 determined the sizes of the various dynamic sections. Allocate
8264 memory for them. */
8265 reltext = false;
8266 for (s = dynobj->sections; s != NULL; s = s->next)
8267 {
8268 const char *name;
8269 boolean strip;
8270
8271 /* It's OK to base decisions on the section name, because none
8272 of the dynobj section names depend upon the input files. */
8273 name = bfd_get_section_name (dynobj, s);
8274
8275 if ((s->flags & SEC_LINKER_CREATED) == 0)
8276 continue;
8277
8278 strip = false;
8279
8280 if (strncmp (name, ".rel", 4) == 0)
8281 {
8282 if (s->_raw_size == 0)
8283 {
8284 /* We only strip the section if the output section name
8285 has the same name. Otherwise, there might be several
8286 input sections for this output section. FIXME: This
8287 code is probably not needed these days anyhow, since
8288 the linker now does not create empty output sections. */
8289 if (s->output_section != NULL
8290 && strcmp (name,
8291 bfd_get_section_name (s->output_section->owner,
8292 s->output_section)) == 0)
8293 strip = true;
8294 }
8295 else
8296 {
8297 const char *outname;
8298 asection *target;
8299
8300 /* If this relocation section applies to a read only
8301 section, then we probably need a DT_TEXTREL entry.
8302 If the relocation section is .rel.dyn, we always
8303 assert a DT_TEXTREL entry rather than testing whether
8304 there exists a relocation to a read only section or
8305 not. */
8306 outname = bfd_get_section_name (output_bfd,
8307 s->output_section);
8308 target = bfd_get_section_by_name (output_bfd, outname + 4);
8309 if ((target != NULL
8310 && (target->flags & SEC_READONLY) != 0
8311 && (target->flags & SEC_ALLOC) != 0)
8312 || strcmp (outname,
8313 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8314 reltext = true;
8315
8316 /* We use the reloc_count field as a counter if we need
8317 to copy relocs into the output file. */
8318 if (strcmp (name,
8319 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8320 s->reloc_count = 0;
8321 }
8322 }
8323 else if (strncmp (name, ".got", 4) == 0)
8324 {
8325 int i;
8326 bfd_size_type loadable_size = 0;
8327 bfd_size_type local_gotno;
8328 struct _bfd *sub;
8329
8330 BFD_ASSERT (elf_section_data (s) != NULL);
8331 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8332 BFD_ASSERT (g != NULL);
8333
8334 /* Calculate the total loadable size of the output. That
8335 will give us the maximum number of GOT_PAGE entries
8336 required. */
8337 for (sub = info->input_bfds; sub; sub = sub->link_next)
8338 {
8339 asection *subsection;
8340
8341 for (subsection = sub->sections;
8342 subsection;
8343 subsection = subsection->next)
8344 {
8345 if ((subsection->flags & SEC_ALLOC) == 0)
8346 continue;
8347 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8348 }
8349 }
8350 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8351
8352 /* Assume there are two loadable segments consisting of
8353 contiguous sections. Is 5 enough? */
8354 local_gotno = (loadable_size >> 16) + 5;
8355 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8356 /* It's possible we will need GOT_PAGE entries as well as
8357 GOT16 entries. Often, these will be able to share GOT
8358 entries, but not always. */
8359 local_gotno *= 2;
8360
8361 g->local_gotno += local_gotno;
8362 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8363
8364 /* There has to be a global GOT entry for every symbol with
8365 a dynamic symbol table index of DT_MIPS_GOTSYM or
8366 higher. Therefore, it make sense to put those symbols
8367 that need GOT entries at the end of the symbol table. We
8368 do that here. */
8369 if (!mips_elf_sort_hash_table (info, 1))
8370 return false;
8371
8372 if (g->global_gotsym != NULL)
8373 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8374 else
8375 /* If there are no global symbols, or none requiring
8376 relocations, then GLOBAL_GOTSYM will be NULL. */
8377 i = 0;
8378 g->global_gotno = i;
8379 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8380 }
8381 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8382 {
8383 /* Irix rld assumes that the function stub isn't at the end
8384 of .text section. So put a dummy. XXX */
8385 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8386 }
8387 else if (! info->shared
8388 && ! mips_elf_hash_table (info)->use_rld_obj_head
8389 && strncmp (name, ".rld_map", 8) == 0)
8390 {
8391 /* We add a room for __rld_map. It will be filled in by the
8392 rtld to contain a pointer to the _r_debug structure. */
8393 s->_raw_size += 4;
8394 }
8395 else if (SGI_COMPAT (output_bfd)
8396 && strncmp (name, ".compact_rel", 12) == 0)
8397 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8398 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8399 == 0)
8400 s->_raw_size = (sizeof (Elf32_External_Msym)
8401 * (elf_hash_table (info)->dynsymcount
8402 + bfd_count_sections (output_bfd)));
8403 else if (strncmp (name, ".init", 5) != 0)
8404 {
8405 /* It's not one of our sections, so don't allocate space. */
8406 continue;
8407 }
8408
8409 if (strip)
8410 {
8411 _bfd_strip_section_from_output (info, s);
8412 continue;
8413 }
8414
8415 /* Allocate memory for the section contents. */
8416 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8417 if (s->contents == NULL && s->_raw_size != 0)
8418 {
8419 bfd_set_error (bfd_error_no_memory);
8420 return false;
8421 }
8422 }
8423
8424 if (elf_hash_table (info)->dynamic_sections_created)
8425 {
8426 /* Add some entries to the .dynamic section. We fill in the
8427 values later, in elf_mips_finish_dynamic_sections, but we
8428 must add the entries now so that we get the correct size for
8429 the .dynamic section. The DT_DEBUG entry is filled in by the
8430 dynamic linker and used by the debugger. */
8431 if (! info->shared)
8432 {
8433 /* SGI object has the equivalence of DT_DEBUG in the
8434 DT_MIPS_RLD_MAP entry. */
8435 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8436 return false;
8437 if (!SGI_COMPAT (output_bfd))
8438 {
8439 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8440 return false;
8441 }
8442 }
8443 else
8444 {
8445 /* Shared libraries on traditional mips have DT_DEBUG. */
8446 if (!SGI_COMPAT (output_bfd))
8447 {
8448 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8449 return false;
8450 }
8451 }
8452 if (reltext && SGI_COMPAT (output_bfd))
8453 {
8454 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8455 return false;
8456 info->flags |= DF_TEXTREL;
8457 }
8458
8459 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8460 return false;
8461
8462 if (bfd_get_section_by_name (dynobj,
8463 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8464 {
8465 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8466 return false;
8467
8468 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8469 return false;
8470
8471 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8472 return false;
8473 }
8474
8475 if (SGI_COMPAT (output_bfd))
8476 {
8477 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8478 return false;
8479 }
8480
8481 if (SGI_COMPAT (output_bfd))
8482 {
8483 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8484 return false;
8485 }
8486
8487 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8488 {
8489 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8490 return false;
8491
8492 s = bfd_get_section_by_name (dynobj, ".liblist");
8493 BFD_ASSERT (s != NULL);
8494
8495 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8496 return false;
8497 }
8498
8499 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8500 return false;
8501
8502 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8503 return false;
8504
8505 #if 0
8506 /* Time stamps in executable files are a bad idea. */
8507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8508 return false;
8509 #endif
8510
8511 #if 0 /* FIXME */
8512 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8513 return false;
8514 #endif
8515
8516 #if 0 /* FIXME */
8517 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8518 return false;
8519 #endif
8520
8521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8522 return false;
8523
8524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8525 return false;
8526
8527 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8528 return false;
8529
8530 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8531 return false;
8532
8533 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8534 return false;
8535
8536 if (IRIX_COMPAT (dynobj) == ict_irix5
8537 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8538 return false;
8539
8540 if (IRIX_COMPAT (dynobj) == ict_irix6
8541 && (bfd_get_section_by_name
8542 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8543 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8544 return false;
8545
8546 if (bfd_get_section_by_name (dynobj,
8547 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8548 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8549 return false;
8550 }
8551
8552 return true;
8553 }
8554
8555 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8556 adjust it appropriately now. */
8557
8558 static void
8559 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8560 bfd *abfd ATTRIBUTE_UNUSED;
8561 const char *name;
8562 Elf_Internal_Sym *sym;
8563 {
8564 /* The linker script takes care of providing names and values for
8565 these, but we must place them into the right sections. */
8566 static const char* const text_section_symbols[] = {
8567 "_ftext",
8568 "_etext",
8569 "__dso_displacement",
8570 "__elf_header",
8571 "__program_header_table",
8572 NULL
8573 };
8574
8575 static const char* const data_section_symbols[] = {
8576 "_fdata",
8577 "_edata",
8578 "_end",
8579 "_fbss",
8580 NULL
8581 };
8582
8583 const char* const *p;
8584 int i;
8585
8586 for (i = 0; i < 2; ++i)
8587 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8588 *p;
8589 ++p)
8590 if (strcmp (*p, name) == 0)
8591 {
8592 /* All of these symbols are given type STT_SECTION by the
8593 IRIX6 linker. */
8594 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8595
8596 /* The IRIX linker puts these symbols in special sections. */
8597 if (i == 0)
8598 sym->st_shndx = SHN_MIPS_TEXT;
8599 else
8600 sym->st_shndx = SHN_MIPS_DATA;
8601
8602 break;
8603 }
8604 }
8605
8606 /* Finish up dynamic symbol handling. We set the contents of various
8607 dynamic sections here. */
8608
8609 boolean
8610 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8611 bfd *output_bfd;
8612 struct bfd_link_info *info;
8613 struct elf_link_hash_entry *h;
8614 Elf_Internal_Sym *sym;
8615 {
8616 bfd *dynobj;
8617 bfd_vma gval;
8618 asection *sgot;
8619 asection *smsym;
8620 struct mips_got_info *g;
8621 const char *name;
8622 struct mips_elf_link_hash_entry *mh;
8623
8624 dynobj = elf_hash_table (info)->dynobj;
8625 gval = sym->st_value;
8626 mh = (struct mips_elf_link_hash_entry *) h;
8627
8628 if (h->plt.offset != (bfd_vma) -1)
8629 {
8630 asection *s;
8631 bfd_byte *p;
8632 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8633
8634 /* This symbol has a stub. Set it up. */
8635
8636 BFD_ASSERT (h->dynindx != -1);
8637
8638 s = bfd_get_section_by_name (dynobj,
8639 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8640 BFD_ASSERT (s != NULL);
8641
8642 /* Fill the stub. */
8643 p = stub;
8644 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8645 p += 4;
8646 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8647 p += 4;
8648
8649 /* FIXME: Can h->dynindex be more than 64K? */
8650 if (h->dynindx & 0xffff0000)
8651 return false;
8652
8653 bfd_put_32 (output_bfd, STUB_JALR, p);
8654 p += 4;
8655 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8656
8657 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8658 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8659
8660 /* Mark the symbol as undefined. plt.offset != -1 occurs
8661 only for the referenced symbol. */
8662 sym->st_shndx = SHN_UNDEF;
8663
8664 /* The run-time linker uses the st_value field of the symbol
8665 to reset the global offset table entry for this external
8666 to its stub address when unlinking a shared object. */
8667 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8668 sym->st_value = gval;
8669 }
8670
8671 BFD_ASSERT (h->dynindx != -1
8672 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8673
8674 sgot = mips_elf_got_section (dynobj);
8675 BFD_ASSERT (sgot != NULL);
8676 BFD_ASSERT (elf_section_data (sgot) != NULL);
8677 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8678 BFD_ASSERT (g != NULL);
8679
8680 /* Run through the global symbol table, creating GOT entries for all
8681 the symbols that need them. */
8682 if (g->global_gotsym != NULL
8683 && h->dynindx >= g->global_gotsym->dynindx)
8684 {
8685 bfd_vma offset;
8686 bfd_vma value;
8687
8688 if (sym->st_value)
8689 value = sym->st_value;
8690 else
8691 {
8692 /* For an entity defined in a shared object, this will be
8693 NULL. (For functions in shared objects for
8694 which we have created stubs, ST_VALUE will be non-NULL.
8695 That's because such the functions are now no longer defined
8696 in a shared object.) */
8697
8698 if (info->shared && h->root.type == bfd_link_hash_undefined)
8699 value = 0;
8700 else
8701 value = h->root.u.def.value;
8702 }
8703 offset = mips_elf_global_got_index (dynobj, h);
8704 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8705 }
8706
8707 /* Create a .msym entry, if appropriate. */
8708 smsym = bfd_get_section_by_name (dynobj,
8709 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8710 if (smsym)
8711 {
8712 Elf32_Internal_Msym msym;
8713
8714 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8715 /* It is undocumented what the `1' indicates, but IRIX6 uses
8716 this value. */
8717 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8718 bfd_mips_elf_swap_msym_out
8719 (dynobj, &msym,
8720 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8721 }
8722
8723 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8724 name = h->root.root.string;
8725 if (strcmp (name, "_DYNAMIC") == 0
8726 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8727 sym->st_shndx = SHN_ABS;
8728 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8729 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8730 {
8731 sym->st_shndx = SHN_ABS;
8732 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8733 sym->st_value = 1;
8734 }
8735 else if (strcmp (name, "_gp_disp") == 0)
8736 {
8737 sym->st_shndx = SHN_ABS;
8738 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8739 sym->st_value = elf_gp (output_bfd);
8740 }
8741 else if (SGI_COMPAT (output_bfd))
8742 {
8743 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8744 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8745 {
8746 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8747 sym->st_other = STO_PROTECTED;
8748 sym->st_value = 0;
8749 sym->st_shndx = SHN_MIPS_DATA;
8750 }
8751 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8752 {
8753 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8754 sym->st_other = STO_PROTECTED;
8755 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8756 sym->st_shndx = SHN_ABS;
8757 }
8758 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8759 {
8760 if (h->type == STT_FUNC)
8761 sym->st_shndx = SHN_MIPS_TEXT;
8762 else if (h->type == STT_OBJECT)
8763 sym->st_shndx = SHN_MIPS_DATA;
8764 }
8765 }
8766
8767 /* Handle the IRIX6-specific symbols. */
8768 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8769 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8770
8771 if (! info->shared)
8772 {
8773 if (! mips_elf_hash_table (info)->use_rld_obj_head
8774 && (strcmp (name, "__rld_map") == 0
8775 || strcmp (name, "__RLD_MAP") == 0))
8776 {
8777 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8778 BFD_ASSERT (s != NULL);
8779 sym->st_value = s->output_section->vma + s->output_offset;
8780 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8781 if (mips_elf_hash_table (info)->rld_value == 0)
8782 mips_elf_hash_table (info)->rld_value = sym->st_value;
8783 }
8784 else if (mips_elf_hash_table (info)->use_rld_obj_head
8785 && strcmp (name, "__rld_obj_head") == 0)
8786 {
8787 /* IRIX6 does not use a .rld_map section. */
8788 if (IRIX_COMPAT (output_bfd) == ict_irix5
8789 || IRIX_COMPAT (output_bfd) == ict_none)
8790 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8791 != NULL);
8792 mips_elf_hash_table (info)->rld_value = sym->st_value;
8793 }
8794 }
8795
8796 /* If this is a mips16 symbol, force the value to be even. */
8797 if (sym->st_other == STO_MIPS16
8798 && (sym->st_value & 1) != 0)
8799 --sym->st_value;
8800
8801 return true;
8802 }
8803
8804 /* Finish up the dynamic sections. */
8805
8806 boolean
8807 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8808 bfd *output_bfd;
8809 struct bfd_link_info *info;
8810 {
8811 bfd *dynobj;
8812 asection *sdyn;
8813 asection *sgot;
8814 struct mips_got_info *g;
8815
8816 dynobj = elf_hash_table (info)->dynobj;
8817
8818 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8819
8820 sgot = mips_elf_got_section (dynobj);
8821 if (sgot == NULL)
8822 g = NULL;
8823 else
8824 {
8825 BFD_ASSERT (elf_section_data (sgot) != NULL);
8826 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8827 BFD_ASSERT (g != NULL);
8828 }
8829
8830 if (elf_hash_table (info)->dynamic_sections_created)
8831 {
8832 bfd_byte *b;
8833
8834 BFD_ASSERT (sdyn != NULL);
8835 BFD_ASSERT (g != NULL);
8836
8837 for (b = sdyn->contents;
8838 b < sdyn->contents + sdyn->_raw_size;
8839 b += MIPS_ELF_DYN_SIZE (dynobj))
8840 {
8841 Elf_Internal_Dyn dyn;
8842 const char *name;
8843 size_t elemsize;
8844 asection *s;
8845 boolean swap_out_p;
8846
8847 /* Read in the current dynamic entry. */
8848 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8849
8850 /* Assume that we're going to modify it and write it out. */
8851 swap_out_p = true;
8852
8853 switch (dyn.d_tag)
8854 {
8855 case DT_RELENT:
8856 s = (bfd_get_section_by_name
8857 (dynobj,
8858 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8859 BFD_ASSERT (s != NULL);
8860 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8861 break;
8862
8863 case DT_STRSZ:
8864 /* Rewrite DT_STRSZ. */
8865 dyn.d_un.d_val =
8866 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8867 break;
8868
8869 case DT_PLTGOT:
8870 name = ".got";
8871 goto get_vma;
8872 case DT_MIPS_CONFLICT:
8873 name = ".conflict";
8874 goto get_vma;
8875 case DT_MIPS_LIBLIST:
8876 name = ".liblist";
8877 get_vma:
8878 s = bfd_get_section_by_name (output_bfd, name);
8879 BFD_ASSERT (s != NULL);
8880 dyn.d_un.d_ptr = s->vma;
8881 break;
8882
8883 case DT_MIPS_RLD_VERSION:
8884 dyn.d_un.d_val = 1; /* XXX */
8885 break;
8886
8887 case DT_MIPS_FLAGS:
8888 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8889 break;
8890
8891 case DT_MIPS_CONFLICTNO:
8892 name = ".conflict";
8893 elemsize = sizeof (Elf32_Conflict);
8894 goto set_elemno;
8895
8896 case DT_MIPS_LIBLISTNO:
8897 name = ".liblist";
8898 elemsize = sizeof (Elf32_Lib);
8899 set_elemno:
8900 s = bfd_get_section_by_name (output_bfd, name);
8901 if (s != NULL)
8902 {
8903 if (s->_cooked_size != 0)
8904 dyn.d_un.d_val = s->_cooked_size / elemsize;
8905 else
8906 dyn.d_un.d_val = s->_raw_size / elemsize;
8907 }
8908 else
8909 dyn.d_un.d_val = 0;
8910 break;
8911
8912 case DT_MIPS_TIME_STAMP:
8913 time ((time_t *) &dyn.d_un.d_val);
8914 break;
8915
8916 case DT_MIPS_ICHECKSUM:
8917 /* XXX FIXME: */
8918 swap_out_p = false;
8919 break;
8920
8921 case DT_MIPS_IVERSION:
8922 /* XXX FIXME: */
8923 swap_out_p = false;
8924 break;
8925
8926 case DT_MIPS_BASE_ADDRESS:
8927 s = output_bfd->sections;
8928 BFD_ASSERT (s != NULL);
8929 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8930 break;
8931
8932 case DT_MIPS_LOCAL_GOTNO:
8933 dyn.d_un.d_val = g->local_gotno;
8934 break;
8935
8936 case DT_MIPS_UNREFEXTNO:
8937 /* The index into the dynamic symbol table which is the
8938 entry of the first external symbol that is not
8939 referenced within the same object. */
8940 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8941 break;
8942
8943 case DT_MIPS_GOTSYM:
8944 if (g->global_gotsym)
8945 {
8946 dyn.d_un.d_val = g->global_gotsym->dynindx;
8947 break;
8948 }
8949 /* In case if we don't have global got symbols we default
8950 to setting DT_MIPS_GOTSYM to the same value as
8951 DT_MIPS_SYMTABNO, so we just fall through. */
8952
8953 case DT_MIPS_SYMTABNO:
8954 name = ".dynsym";
8955 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8956 s = bfd_get_section_by_name (output_bfd, name);
8957 BFD_ASSERT (s != NULL);
8958
8959 if (s->_cooked_size != 0)
8960 dyn.d_un.d_val = s->_cooked_size / elemsize;
8961 else
8962 dyn.d_un.d_val = s->_raw_size / elemsize;
8963 break;
8964
8965 case DT_MIPS_HIPAGENO:
8966 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8967 break;
8968
8969 case DT_MIPS_RLD_MAP:
8970 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8971 break;
8972
8973 case DT_MIPS_OPTIONS:
8974 s = (bfd_get_section_by_name
8975 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8976 dyn.d_un.d_ptr = s->vma;
8977 break;
8978
8979 case DT_MIPS_MSYM:
8980 s = (bfd_get_section_by_name
8981 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8982 dyn.d_un.d_ptr = s->vma;
8983 break;
8984
8985 default:
8986 swap_out_p = false;
8987 break;
8988 }
8989
8990 if (swap_out_p)
8991 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8992 (dynobj, &dyn, b);
8993 }
8994 }
8995
8996 /* The first entry of the global offset table will be filled at
8997 runtime. The second entry will be used by some runtime loaders.
8998 This isn't the case of Irix rld. */
8999 if (sgot != NULL && sgot->_raw_size > 0)
9000 {
9001 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9002 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9003 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9004 }
9005
9006 if (sgot != NULL)
9007 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9008 = MIPS_ELF_GOT_SIZE (output_bfd);
9009
9010 {
9011 asection *smsym;
9012 asection *s;
9013 Elf32_compact_rel cpt;
9014
9015 /* ??? The section symbols for the output sections were set up in
9016 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9017 symbols. Should we do so? */
9018
9019 smsym = bfd_get_section_by_name (dynobj,
9020 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9021 if (smsym != NULL)
9022 {
9023 Elf32_Internal_Msym msym;
9024
9025 msym.ms_hash_value = 0;
9026 msym.ms_info = ELF32_MS_INFO (0, 1);
9027
9028 for (s = output_bfd->sections; s != NULL; s = s->next)
9029 {
9030 long dynindx = elf_section_data (s)->dynindx;
9031
9032 bfd_mips_elf_swap_msym_out
9033 (output_bfd, &msym,
9034 (((Elf32_External_Msym *) smsym->contents)
9035 + dynindx));
9036 }
9037 }
9038
9039 if (SGI_COMPAT (output_bfd))
9040 {
9041 /* Write .compact_rel section out. */
9042 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9043 if (s != NULL)
9044 {
9045 cpt.id1 = 1;
9046 cpt.num = s->reloc_count;
9047 cpt.id2 = 2;
9048 cpt.offset = (s->output_section->filepos
9049 + sizeof (Elf32_External_compact_rel));
9050 cpt.reserved0 = 0;
9051 cpt.reserved1 = 0;
9052 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9053 ((Elf32_External_compact_rel *)
9054 s->contents));
9055
9056 /* Clean up a dummy stub function entry in .text. */
9057 s = bfd_get_section_by_name (dynobj,
9058 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9059 if (s != NULL)
9060 {
9061 file_ptr dummy_offset;
9062
9063 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9064 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9065 memset (s->contents + dummy_offset, 0,
9066 MIPS_FUNCTION_STUB_SIZE);
9067 }
9068 }
9069 }
9070
9071 /* We need to sort the entries of the dynamic relocation section. */
9072
9073 if (!ABI_64_P (output_bfd))
9074 {
9075 asection *reldyn;
9076
9077 reldyn = bfd_get_section_by_name (dynobj,
9078 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9079 if (reldyn != NULL && reldyn->reloc_count > 2)
9080 {
9081 reldyn_sorting_bfd = output_bfd;
9082 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9083 (size_t) reldyn->reloc_count - 1,
9084 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9085 }
9086 }
9087
9088 /* Clean up a first relocation in .rel.dyn. */
9089 s = bfd_get_section_by_name (dynobj,
9090 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9091 if (s != NULL && s->_raw_size > 0)
9092 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9093 }
9094
9095 return true;
9096 }
9097 \f
9098 /* This is almost identical to bfd_generic_get_... except that some
9099 MIPS relocations need to be handled specially. Sigh. */
9100
9101 static bfd_byte *
9102 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9103 relocateable, symbols)
9104 bfd *abfd;
9105 struct bfd_link_info *link_info;
9106 struct bfd_link_order *link_order;
9107 bfd_byte *data;
9108 boolean relocateable;
9109 asymbol **symbols;
9110 {
9111 /* Get enough memory to hold the stuff */
9112 bfd *input_bfd = link_order->u.indirect.section->owner;
9113 asection *input_section = link_order->u.indirect.section;
9114
9115 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9116 arelent **reloc_vector = NULL;
9117 long reloc_count;
9118
9119 if (reloc_size < 0)
9120 goto error_return;
9121
9122 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9123 if (reloc_vector == NULL && reloc_size != 0)
9124 goto error_return;
9125
9126 /* read in the section */
9127 if (!bfd_get_section_contents (input_bfd,
9128 input_section,
9129 (PTR) data,
9130 0,
9131 input_section->_raw_size))
9132 goto error_return;
9133
9134 /* We're not relaxing the section, so just copy the size info */
9135 input_section->_cooked_size = input_section->_raw_size;
9136 input_section->reloc_done = true;
9137
9138 reloc_count = bfd_canonicalize_reloc (input_bfd,
9139 input_section,
9140 reloc_vector,
9141 symbols);
9142 if (reloc_count < 0)
9143 goto error_return;
9144
9145 if (reloc_count > 0)
9146 {
9147 arelent **parent;
9148 /* for mips */
9149 int gp_found;
9150 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9151
9152 {
9153 struct bfd_hash_entry *h;
9154 struct bfd_link_hash_entry *lh;
9155 /* Skip all this stuff if we aren't mixing formats. */
9156 if (abfd && input_bfd
9157 && abfd->xvec == input_bfd->xvec)
9158 lh = 0;
9159 else
9160 {
9161 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9162 lh = (struct bfd_link_hash_entry *) h;
9163 }
9164 lookup:
9165 if (lh)
9166 {
9167 switch (lh->type)
9168 {
9169 case bfd_link_hash_undefined:
9170 case bfd_link_hash_undefweak:
9171 case bfd_link_hash_common:
9172 gp_found = 0;
9173 break;
9174 case bfd_link_hash_defined:
9175 case bfd_link_hash_defweak:
9176 gp_found = 1;
9177 gp = lh->u.def.value;
9178 break;
9179 case bfd_link_hash_indirect:
9180 case bfd_link_hash_warning:
9181 lh = lh->u.i.link;
9182 /* @@FIXME ignoring warning for now */
9183 goto lookup;
9184 case bfd_link_hash_new:
9185 default:
9186 abort ();
9187 }
9188 }
9189 else
9190 gp_found = 0;
9191 }
9192 /* end mips */
9193 for (parent = reloc_vector; *parent != (arelent *) NULL;
9194 parent++)
9195 {
9196 char *error_message = (char *) NULL;
9197 bfd_reloc_status_type r;
9198
9199 /* Specific to MIPS: Deal with relocation types that require
9200 knowing the gp of the output bfd. */
9201 asymbol *sym = *(*parent)->sym_ptr_ptr;
9202 if (bfd_is_abs_section (sym->section) && abfd)
9203 {
9204 /* The special_function wouldn't get called anyways. */
9205 }
9206 else if (!gp_found)
9207 {
9208 /* The gp isn't there; let the special function code
9209 fall over on its own. */
9210 }
9211 else if ((*parent)->howto->special_function
9212 == _bfd_mips_elf_gprel16_reloc)
9213 {
9214 /* bypass special_function call */
9215 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9216 relocateable, (PTR) data, gp);
9217 goto skip_bfd_perform_relocation;
9218 }
9219 /* end mips specific stuff */
9220
9221 r = bfd_perform_relocation (input_bfd,
9222 *parent,
9223 (PTR) data,
9224 input_section,
9225 relocateable ? abfd : (bfd *) NULL,
9226 &error_message);
9227 skip_bfd_perform_relocation:
9228
9229 if (relocateable)
9230 {
9231 asection *os = input_section->output_section;
9232
9233 /* A partial link, so keep the relocs */
9234 os->orelocation[os->reloc_count] = *parent;
9235 os->reloc_count++;
9236 }
9237
9238 if (r != bfd_reloc_ok)
9239 {
9240 switch (r)
9241 {
9242 case bfd_reloc_undefined:
9243 if (!((*link_info->callbacks->undefined_symbol)
9244 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9245 input_bfd, input_section, (*parent)->address,
9246 true)))
9247 goto error_return;
9248 break;
9249 case bfd_reloc_dangerous:
9250 BFD_ASSERT (error_message != (char *) NULL);
9251 if (!((*link_info->callbacks->reloc_dangerous)
9252 (link_info, error_message, input_bfd, input_section,
9253 (*parent)->address)))
9254 goto error_return;
9255 break;
9256 case bfd_reloc_overflow:
9257 if (!((*link_info->callbacks->reloc_overflow)
9258 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9259 (*parent)->howto->name, (*parent)->addend,
9260 input_bfd, input_section, (*parent)->address)))
9261 goto error_return;
9262 break;
9263 case bfd_reloc_outofrange:
9264 default:
9265 abort ();
9266 break;
9267 }
9268
9269 }
9270 }
9271 }
9272 if (reloc_vector != NULL)
9273 free (reloc_vector);
9274 return data;
9275
9276 error_return:
9277 if (reloc_vector != NULL)
9278 free (reloc_vector);
9279 return NULL;
9280 }
9281
9282 #define bfd_elf32_bfd_get_relocated_section_contents \
9283 elf32_mips_get_relocated_section_contents
9284 \f
9285 /* ECOFF swapping routines. These are used when dealing with the
9286 .mdebug section, which is in the ECOFF debugging format. */
9287 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9288 /* Symbol table magic number. */
9289 magicSym,
9290 /* Alignment of debugging information. E.g., 4. */
9291 4,
9292 /* Sizes of external symbolic information. */
9293 sizeof (struct hdr_ext),
9294 sizeof (struct dnr_ext),
9295 sizeof (struct pdr_ext),
9296 sizeof (struct sym_ext),
9297 sizeof (struct opt_ext),
9298 sizeof (struct fdr_ext),
9299 sizeof (struct rfd_ext),
9300 sizeof (struct ext_ext),
9301 /* Functions to swap in external symbolic data. */
9302 ecoff_swap_hdr_in,
9303 ecoff_swap_dnr_in,
9304 ecoff_swap_pdr_in,
9305 ecoff_swap_sym_in,
9306 ecoff_swap_opt_in,
9307 ecoff_swap_fdr_in,
9308 ecoff_swap_rfd_in,
9309 ecoff_swap_ext_in,
9310 _bfd_ecoff_swap_tir_in,
9311 _bfd_ecoff_swap_rndx_in,
9312 /* Functions to swap out external symbolic data. */
9313 ecoff_swap_hdr_out,
9314 ecoff_swap_dnr_out,
9315 ecoff_swap_pdr_out,
9316 ecoff_swap_sym_out,
9317 ecoff_swap_opt_out,
9318 ecoff_swap_fdr_out,
9319 ecoff_swap_rfd_out,
9320 ecoff_swap_ext_out,
9321 _bfd_ecoff_swap_tir_out,
9322 _bfd_ecoff_swap_rndx_out,
9323 /* Function to read in symbolic data. */
9324 _bfd_mips_elf_read_ecoff_info
9325 };
9326 \f
9327 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9328 #define TARGET_LITTLE_NAME "elf32-littlemips"
9329 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9330 #define TARGET_BIG_NAME "elf32-bigmips"
9331 #define ELF_ARCH bfd_arch_mips
9332 #define ELF_MACHINE_CODE EM_MIPS
9333
9334 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9335 a value of 0x1000, and we are compatible. */
9336 #define ELF_MAXPAGESIZE 0x1000
9337
9338 #define elf_backend_collect true
9339 #define elf_backend_type_change_ok true
9340 #define elf_backend_can_gc_sections true
9341 #define elf_backend_sign_extend_vma true
9342 #define elf_info_to_howto mips_info_to_howto_rela
9343 #define elf_info_to_howto_rel mips_info_to_howto_rel
9344 #define elf_backend_sym_is_global mips_elf_sym_is_global
9345 #define elf_backend_object_p _bfd_mips_elf_object_p
9346 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9347 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9348 #define elf_backend_section_from_bfd_section \
9349 _bfd_mips_elf_section_from_bfd_section
9350 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9351 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9352 #define elf_backend_additional_program_headers \
9353 _bfd_mips_elf_additional_program_headers
9354 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9355 #define elf_backend_final_write_processing \
9356 _bfd_mips_elf_final_write_processing
9357 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9358 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9359 #define elf_backend_create_dynamic_sections \
9360 _bfd_mips_elf_create_dynamic_sections
9361 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9362 #define elf_backend_adjust_dynamic_symbol \
9363 _bfd_mips_elf_adjust_dynamic_symbol
9364 #define elf_backend_always_size_sections \
9365 _bfd_mips_elf_always_size_sections
9366 #define elf_backend_size_dynamic_sections \
9367 _bfd_mips_elf_size_dynamic_sections
9368 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9369 #define elf_backend_link_output_symbol_hook \
9370 _bfd_mips_elf_link_output_symbol_hook
9371 #define elf_backend_finish_dynamic_symbol \
9372 _bfd_mips_elf_finish_dynamic_symbol
9373 #define elf_backend_finish_dynamic_sections \
9374 _bfd_mips_elf_finish_dynamic_sections
9375 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9376 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9377
9378 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9379 #define elf_backend_plt_header_size 0
9380
9381 #define elf_backend_copy_indirect_symbol \
9382 _bfd_mips_elf_copy_indirect_symbol
9383
9384 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9385
9386 #define bfd_elf32_bfd_is_local_label_name \
9387 mips_elf_is_local_label_name
9388 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9389 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9390 #define bfd_elf32_bfd_link_hash_table_create \
9391 _bfd_mips_elf_link_hash_table_create
9392 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9393 #define bfd_elf32_bfd_copy_private_bfd_data \
9394 _bfd_mips_elf_copy_private_bfd_data
9395 #define bfd_elf32_bfd_merge_private_bfd_data \
9396 _bfd_mips_elf_merge_private_bfd_data
9397 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9398 #define bfd_elf32_bfd_print_private_bfd_data \
9399 _bfd_mips_elf_print_private_bfd_data
9400 #include "elf32-target.h"
9401
9402 /* Support for traditional mips targets */
9403
9404 #define INCLUDED_TARGET_FILE /* More a type of flag */
9405
9406 #undef TARGET_LITTLE_SYM
9407 #undef TARGET_LITTLE_NAME
9408 #undef TARGET_BIG_SYM
9409 #undef TARGET_BIG_NAME
9410
9411 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9412 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9413 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9414 #define TARGET_BIG_NAME "elf32-tradbigmips"
9415
9416 /* Include the target file again for this target */
9417 #include "elf32-target.h"