2002-01-16 Eric Christopher <echristo@redhat.com>
[binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108 };
109
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213 static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
215 static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218 static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220 static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
222 static boolean _bfd_elf32_mips_discard_info
223 PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *));
224 static boolean _bfd_elf32_mips_ignore_discarded_relocs
225 PARAMS ((asection *));
226 static boolean _bfd_elf32_mips_write_section
227 PARAMS ((bfd *, asection *, bfd_byte *));
228
229 extern const bfd_target bfd_elf32_tradbigmips_vec;
230 extern const bfd_target bfd_elf32_tradlittlemips_vec;
231 #ifdef BFD64
232 extern const bfd_target bfd_elf64_tradbigmips_vec;
233 extern const bfd_target bfd_elf64_tradlittlemips_vec;
234 #endif
235
236 /* The level of IRIX compatibility we're striving for. */
237
238 typedef enum {
239 ict_none,
240 ict_irix5,
241 ict_irix6
242 } irix_compat_t;
243
244 /* This will be used when we sort the dynamic relocation records. */
245 static bfd *reldyn_sorting_bfd;
246
247 /* Nonzero if ABFD is using the N32 ABI. */
248
249 #define ABI_N32_P(abfd) \
250 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
251
252 /* Nonzero if ABFD is using the 64-bit ABI. */
253 #define ABI_64_P(abfd) \
254 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
255
256 /* Depending on the target vector we generate some version of Irix
257 executables or "normal" MIPS ELF ABI executables. */
258 #ifdef BFD64
259 #define IRIX_COMPAT(abfd) \
260 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
261 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
263 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
264 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
265 #else
266 #define IRIX_COMPAT(abfd) \
267 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
268 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
269 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
270 #endif
271
272 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
273
274 /* Whether we are trying to be compatible with IRIX at all. */
275 #define SGI_COMPAT(abfd) \
276 (IRIX_COMPAT (abfd) != ict_none)
277
278 /* The name of the msym section. */
279 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
280
281 /* The name of the srdata section. */
282 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
283
284 /* The name of the options section. */
285 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
286 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
287
288 /* The name of the stub section. */
289 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
290 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
291
292 /* The name of the dynamic relocation section. */
293 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
294
295 /* The size of an external REL relocation. */
296 #define MIPS_ELF_REL_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->sizeof_rel)
298
299 /* The size of an external dynamic table entry. */
300 #define MIPS_ELF_DYN_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_dyn)
302
303 /* The size of a GOT entry. */
304 #define MIPS_ELF_GOT_SIZE(abfd) \
305 (get_elf_backend_data (abfd)->s->arch_size / 8)
306
307 /* The size of a symbol-table entry. */
308 #define MIPS_ELF_SYM_SIZE(abfd) \
309 (get_elf_backend_data (abfd)->s->sizeof_sym)
310
311 /* The default alignment for sections, as a power of two. */
312 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
313 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
314
315 /* Get word-sized data. */
316 #define MIPS_ELF_GET_WORD(abfd, ptr) \
317 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
318
319 /* Put out word-sized data. */
320 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
321 (ABI_64_P (abfd) \
322 ? bfd_put_64 (abfd, val, ptr) \
323 : bfd_put_32 (abfd, val, ptr))
324
325 /* Add a dynamic symbol table-entry. */
326 #ifdef BFD64
327 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
328 (ABI_64_P (elf_hash_table (info)->dynobj) \
329 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
330 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
331 #else
332 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
333 (ABI_64_P (elf_hash_table (info)->dynobj) \
334 ? (boolean) (abort (), false) \
335 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
336 #endif
337
338 /* The number of local .got entries we reserve. */
339 #define MIPS_RESERVED_GOTNO (2)
340
341 /* Instructions which appear in a stub. For some reason the stub is
342 slightly different on an SGI system. */
343 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
344 #define STUB_LW(abfd) \
345 (SGI_COMPAT (abfd) \
346 ? (ABI_64_P (abfd) \
347 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
348 : 0x8f998010) /* lw t9,0x8010(gp) */ \
349 : 0x8f998010) /* lw t9,0x8000(gp) */
350 #define STUB_MOVE(abfd) \
351 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
352 #define STUB_JALR 0x0320f809 /* jal t9 */
353 #define STUB_LI16(abfd) \
354 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
355 #define MIPS_FUNCTION_STUB_SIZE (16)
356
357 #if 0
358 /* We no longer try to identify particular sections for the .dynsym
359 section. When we do, we wind up crashing if there are other random
360 sections with relocations. */
361
362 /* Names of sections which appear in the .dynsym section in an Irix 5
363 executable. */
364
365 static const char * const mips_elf_dynsym_sec_names[] =
366 {
367 ".text",
368 ".init",
369 ".fini",
370 ".data",
371 ".rodata",
372 ".sdata",
373 ".sbss",
374 ".bss",
375 NULL
376 };
377
378 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
379 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
380
381 /* The number of entries in mips_elf_dynsym_sec_names which go in the
382 text segment. */
383
384 #define MIPS_TEXT_DYNSYM_SECNO (3)
385
386 #endif /* 0 */
387
388 /* The names of the runtime procedure table symbols used on Irix 5. */
389
390 static const char * const mips_elf_dynsym_rtproc_names[] =
391 {
392 "_procedure_table",
393 "_procedure_string_table",
394 "_procedure_table_size",
395 NULL
396 };
397
398 /* These structures are used to generate the .compact_rel section on
399 Irix 5. */
400
401 typedef struct
402 {
403 unsigned long id1; /* Always one? */
404 unsigned long num; /* Number of compact relocation entries. */
405 unsigned long id2; /* Always two? */
406 unsigned long offset; /* The file offset of the first relocation. */
407 unsigned long reserved0; /* Zero? */
408 unsigned long reserved1; /* Zero? */
409 } Elf32_compact_rel;
410
411 typedef struct
412 {
413 bfd_byte id1[4];
414 bfd_byte num[4];
415 bfd_byte id2[4];
416 bfd_byte offset[4];
417 bfd_byte reserved0[4];
418 bfd_byte reserved1[4];
419 } Elf32_External_compact_rel;
420
421 typedef struct
422 {
423 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
424 unsigned int rtype : 4; /* Relocation types. See below. */
425 unsigned int dist2to : 8;
426 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
427 unsigned long konst; /* KONST field. See below. */
428 unsigned long vaddr; /* VADDR to be relocated. */
429 } Elf32_crinfo;
430
431 typedef struct
432 {
433 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
434 unsigned int rtype : 4; /* Relocation types. See below. */
435 unsigned int dist2to : 8;
436 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
437 unsigned long konst; /* KONST field. See below. */
438 } Elf32_crinfo2;
439
440 typedef struct
441 {
442 bfd_byte info[4];
443 bfd_byte konst[4];
444 bfd_byte vaddr[4];
445 } Elf32_External_crinfo;
446
447 typedef struct
448 {
449 bfd_byte info[4];
450 bfd_byte konst[4];
451 } Elf32_External_crinfo2;
452
453 /* These are the constants used to swap the bitfields in a crinfo. */
454
455 #define CRINFO_CTYPE (0x1)
456 #define CRINFO_CTYPE_SH (31)
457 #define CRINFO_RTYPE (0xf)
458 #define CRINFO_RTYPE_SH (27)
459 #define CRINFO_DIST2TO (0xff)
460 #define CRINFO_DIST2TO_SH (19)
461 #define CRINFO_RELVADDR (0x7ffff)
462 #define CRINFO_RELVADDR_SH (0)
463
464 /* A compact relocation info has long (3 words) or short (2 words)
465 formats. A short format doesn't have VADDR field and relvaddr
466 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
467 #define CRF_MIPS_LONG 1
468 #define CRF_MIPS_SHORT 0
469
470 /* There are 4 types of compact relocation at least. The value KONST
471 has different meaning for each type:
472
473 (type) (konst)
474 CT_MIPS_REL32 Address in data
475 CT_MIPS_WORD Address in word (XXX)
476 CT_MIPS_GPHI_LO GP - vaddr
477 CT_MIPS_JMPAD Address to jump
478 */
479
480 #define CRT_MIPS_REL32 0xa
481 #define CRT_MIPS_WORD 0xb
482 #define CRT_MIPS_GPHI_LO 0xc
483 #define CRT_MIPS_JMPAD 0xd
484
485 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
486 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
487 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
488 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
489
490 static void bfd_elf32_swap_compact_rel_out
491 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
492 static void bfd_elf32_swap_crinfo_out
493 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
494
495 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
496 from smaller values. Start with zero, widen, *then* decrement. */
497 #define MINUS_ONE (((bfd_vma)0) - 1)
498
499 /* The relocation table used for SHT_REL sections. */
500
501 static reloc_howto_type elf_mips_howto_table_rel[] =
502 {
503 /* No relocation. */
504 HOWTO (R_MIPS_NONE, /* type */
505 0, /* rightshift */
506 0, /* size (0 = byte, 1 = short, 2 = long) */
507 0, /* bitsize */
508 false, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_dont, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 "R_MIPS_NONE", /* name */
513 false, /* partial_inplace */
514 0, /* src_mask */
515 0, /* dst_mask */
516 false), /* pcrel_offset */
517
518 /* 16 bit relocation. */
519 HOWTO (R_MIPS_16, /* type */
520 0, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 false, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 "R_MIPS_16", /* name */
528 true, /* partial_inplace */
529 0x0000ffff, /* src_mask */
530 0x0000ffff, /* dst_mask */
531 false), /* pcrel_offset */
532
533 /* 32 bit relocation. */
534 HOWTO (R_MIPS_32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 false, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_MIPS_32", /* name */
543 true, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 false), /* pcrel_offset */
547
548 /* 32 bit symbol relative relocation. */
549 HOWTO (R_MIPS_REL32, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 32, /* bitsize */
553 false, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_dont, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_MIPS_REL32", /* name */
558 true, /* partial_inplace */
559 0xffffffff, /* src_mask */
560 0xffffffff, /* dst_mask */
561 false), /* pcrel_offset */
562
563 /* 26 bit jump address. */
564 HOWTO (R_MIPS_26, /* type */
565 2, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 26, /* bitsize */
568 false, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 /* This needs complex overflow
572 detection, because the upper four
573 bits must match the PC + 4. */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_MIPS_26", /* name */
576 true, /* partial_inplace */
577 0x03ffffff, /* src_mask */
578 0x03ffffff, /* dst_mask */
579 false), /* pcrel_offset */
580
581 /* High 16 bits of symbol value. */
582 HOWTO (R_MIPS_HI16, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 16, /* bitsize */
586 false, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont, /* complain_on_overflow */
589 _bfd_mips_elf_hi16_reloc, /* special_function */
590 "R_MIPS_HI16", /* name */
591 true, /* partial_inplace */
592 0x0000ffff, /* src_mask */
593 0x0000ffff, /* dst_mask */
594 false), /* pcrel_offset */
595
596 /* Low 16 bits of symbol value. */
597 HOWTO (R_MIPS_LO16, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 16, /* bitsize */
601 false, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 _bfd_mips_elf_lo16_reloc, /* special_function */
605 "R_MIPS_LO16", /* name */
606 true, /* partial_inplace */
607 0x0000ffff, /* src_mask */
608 0x0000ffff, /* dst_mask */
609 false), /* pcrel_offset */
610
611 /* GP relative reference. */
612 HOWTO (R_MIPS_GPREL16, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 16, /* bitsize */
616 false, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_signed, /* complain_on_overflow */
619 _bfd_mips_elf_gprel16_reloc, /* special_function */
620 "R_MIPS_GPREL16", /* name */
621 true, /* partial_inplace */
622 0x0000ffff, /* src_mask */
623 0x0000ffff, /* dst_mask */
624 false), /* pcrel_offset */
625
626 /* Reference to literal section. */
627 HOWTO (R_MIPS_LITERAL, /* type */
628 0, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 false, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 _bfd_mips_elf_gprel16_reloc, /* special_function */
635 "R_MIPS_LITERAL", /* name */
636 true, /* partial_inplace */
637 0x0000ffff, /* src_mask */
638 0x0000ffff, /* dst_mask */
639 false), /* pcrel_offset */
640
641 /* Reference to global offset table. */
642 HOWTO (R_MIPS_GOT16, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 16, /* bitsize */
646 false, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 _bfd_mips_elf_got16_reloc, /* special_function */
650 "R_MIPS_GOT16", /* name */
651 true, /* partial_inplace */
652 0x0000ffff, /* src_mask */
653 0x0000ffff, /* dst_mask */
654 false), /* pcrel_offset */
655
656 /* 16 bit PC relative reference. */
657 HOWTO (R_MIPS_PC16, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 16, /* bitsize */
661 true, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_PC16", /* name */
666 true, /* partial_inplace */
667 0x0000ffff, /* src_mask */
668 0x0000ffff, /* dst_mask */
669 true), /* pcrel_offset */
670
671 /* 16 bit call through global offset table. */
672 HOWTO (R_MIPS_CALL16, /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 16, /* bitsize */
676 false, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 "R_MIPS_CALL16", /* name */
681 true, /* partial_inplace */
682 0x0000ffff, /* src_mask */
683 0x0000ffff, /* dst_mask */
684 false), /* pcrel_offset */
685
686 /* 32 bit GP relative reference. */
687 HOWTO (R_MIPS_GPREL32, /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 32, /* bitsize */
691 false, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_dont, /* complain_on_overflow */
694 _bfd_mips_elf_gprel32_reloc, /* special_function */
695 "R_MIPS_GPREL32", /* name */
696 true, /* partial_inplace */
697 0xffffffff, /* src_mask */
698 0xffffffff, /* dst_mask */
699 false), /* pcrel_offset */
700
701 /* The remaining relocs are defined on Irix 5, although they are
702 not defined by the ABI. */
703 EMPTY_HOWTO (13),
704 EMPTY_HOWTO (14),
705 EMPTY_HOWTO (15),
706
707 /* A 5 bit shift field. */
708 HOWTO (R_MIPS_SHIFT5, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 5, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT5", /* name */
717 true, /* partial_inplace */
718 0x000007c0, /* src_mask */
719 0x000007c0, /* dst_mask */
720 false), /* pcrel_offset */
721
722 /* A 6 bit shift field. */
723 /* FIXME: This is not handled correctly; a special function is
724 needed to put the most significant bit in the right place. */
725 HOWTO (R_MIPS_SHIFT6, /* type */
726 0, /* rightshift */
727 2, /* size (0 = byte, 1 = short, 2 = long) */
728 6, /* bitsize */
729 false, /* pc_relative */
730 6, /* bitpos */
731 complain_overflow_bitfield, /* complain_on_overflow */
732 bfd_elf_generic_reloc, /* special_function */
733 "R_MIPS_SHIFT6", /* name */
734 true, /* partial_inplace */
735 0x000007c4, /* src_mask */
736 0x000007c4, /* dst_mask */
737 false), /* pcrel_offset */
738
739 /* A 64 bit relocation. */
740 HOWTO (R_MIPS_64, /* type */
741 0, /* rightshift */
742 4, /* size (0 = byte, 1 = short, 2 = long) */
743 64, /* bitsize */
744 false, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_dont, /* complain_on_overflow */
747 mips32_64bit_reloc, /* special_function */
748 "R_MIPS_64", /* name */
749 true, /* partial_inplace */
750 MINUS_ONE, /* src_mask */
751 MINUS_ONE, /* dst_mask */
752 false), /* pcrel_offset */
753
754 /* Displacement in the global offset table. */
755 HOWTO (R_MIPS_GOT_DISP, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 false, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_MIPS_GOT_DISP", /* name */
764 true, /* partial_inplace */
765 0x0000ffff, /* src_mask */
766 0x0000ffff, /* dst_mask */
767 false), /* pcrel_offset */
768
769 /* Displacement to page pointer in the global offset table. */
770 HOWTO (R_MIPS_GOT_PAGE, /* type */
771 0, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 16, /* bitsize */
774 false, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 "R_MIPS_GOT_PAGE", /* name */
779 true, /* partial_inplace */
780 0x0000ffff, /* src_mask */
781 0x0000ffff, /* dst_mask */
782 false), /* pcrel_offset */
783
784 /* Offset from page pointer in the global offset table. */
785 HOWTO (R_MIPS_GOT_OFST, /* type */
786 0, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 16, /* bitsize */
789 false, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_signed, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_MIPS_GOT_OFST", /* name */
794 true, /* partial_inplace */
795 0x0000ffff, /* src_mask */
796 0x0000ffff, /* dst_mask */
797 false), /* pcrel_offset */
798
799 /* High 16 bits of displacement in global offset table. */
800 HOWTO (R_MIPS_GOT_HI16, /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 false, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_MIPS_GOT_HI16", /* name */
809 true, /* partial_inplace */
810 0x0000ffff, /* src_mask */
811 0x0000ffff, /* dst_mask */
812 false), /* pcrel_offset */
813
814 /* Low 16 bits of displacement in global offset table. */
815 HOWTO (R_MIPS_GOT_LO16, /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 16, /* bitsize */
819 false, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_MIPS_GOT_LO16", /* name */
824 true, /* partial_inplace */
825 0x0000ffff, /* src_mask */
826 0x0000ffff, /* dst_mask */
827 false), /* pcrel_offset */
828
829 /* 64 bit subtraction. Used in the N32 ABI. */
830 HOWTO (R_MIPS_SUB, /* type */
831 0, /* rightshift */
832 4, /* size (0 = byte, 1 = short, 2 = long) */
833 64, /* bitsize */
834 false, /* pc_relative */
835 0, /* bitpos */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_MIPS_SUB", /* name */
839 true, /* partial_inplace */
840 MINUS_ONE, /* src_mask */
841 MINUS_ONE, /* dst_mask */
842 false), /* pcrel_offset */
843
844 /* Used to cause the linker to insert and delete instructions? */
845 EMPTY_HOWTO (R_MIPS_INSERT_A),
846 EMPTY_HOWTO (R_MIPS_INSERT_B),
847 EMPTY_HOWTO (R_MIPS_DELETE),
848
849 /* Get the higher value of a 64 bit addend. */
850 HOWTO (R_MIPS_HIGHER, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 16, /* bitsize */
854 false, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_MIPS_HIGHER", /* name */
859 true, /* partial_inplace */
860 0x0000ffff, /* src_mask */
861 0x0000ffff, /* dst_mask */
862 false), /* pcrel_offset */
863
864 /* Get the highest value of a 64 bit addend. */
865 HOWTO (R_MIPS_HIGHEST, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 false, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_MIPS_HIGHEST", /* name */
874 true, /* partial_inplace */
875 0x0000ffff, /* src_mask */
876 0x0000ffff, /* dst_mask */
877 false), /* pcrel_offset */
878
879 /* High 16 bits of displacement in global offset table. */
880 HOWTO (R_MIPS_CALL_HI16, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 16, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_CALL_HI16", /* name */
889 true, /* partial_inplace */
890 0x0000ffff, /* src_mask */
891 0x0000ffff, /* dst_mask */
892 false), /* pcrel_offset */
893
894 /* Low 16 bits of displacement in global offset table. */
895 HOWTO (R_MIPS_CALL_LO16, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 false, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_MIPS_CALL_LO16", /* name */
904 true, /* partial_inplace */
905 0x0000ffff, /* src_mask */
906 0x0000ffff, /* dst_mask */
907 false), /* pcrel_offset */
908
909 /* Section displacement. */
910 HOWTO (R_MIPS_SCN_DISP, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_MIPS_SCN_DISP", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false), /* pcrel_offset */
923
924 EMPTY_HOWTO (R_MIPS_REL16),
925 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
926 EMPTY_HOWTO (R_MIPS_PJUMP),
927 EMPTY_HOWTO (R_MIPS_RELGOT),
928
929 /* Protected jump conversion. This is an optimization hint. No
930 relocation is required for correctness. */
931 HOWTO (R_MIPS_JALR, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 false, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_MIPS_JALR", /* name */
940 false, /* partial_inplace */
941 0x00000000, /* src_mask */
942 0x00000000, /* dst_mask */
943 false), /* pcrel_offset */
944 };
945
946 /* The relocation table used for SHT_RELA sections. */
947
948 static reloc_howto_type elf_mips_howto_table_rela[] =
949 {
950 /* No relocation. */
951 HOWTO (R_MIPS_NONE, /* type */
952 0, /* rightshift */
953 0, /* size (0 = byte, 1 = short, 2 = long) */
954 0, /* bitsize */
955 false, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_MIPS_NONE", /* name */
960 false, /* partial_inplace */
961 0, /* src_mask */
962 0, /* dst_mask */
963 false), /* pcrel_offset */
964
965 /* 16 bit relocation. */
966 HOWTO (R_MIPS_16, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 16, /* bitsize */
970 false, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_MIPS_16", /* name */
975 false, /* partial_inplace */
976 0, /* src_mask */
977 0x0000, /* dst_mask */
978 false), /* pcrel_offset */
979
980 /* 32 bit relocation. */
981 HOWTO (R_MIPS_32, /* type */
982 0, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 32, /* bitsize */
985 false, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 "R_MIPS_32", /* name */
990 false, /* partial_inplace */
991 0, /* src_mask */
992 0xffffffff, /* dst_mask */
993 false), /* pcrel_offset */
994
995 /* 32 bit symbol relative relocation. */
996 HOWTO (R_MIPS_REL32, /* type */
997 0, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 32, /* bitsize */
1000 false, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 "R_MIPS_REL32", /* name */
1005 false, /* partial_inplace */
1006 0, /* src_mask */
1007 0xffffffff, /* dst_mask */
1008 false), /* pcrel_offset */
1009
1010 /* 26 bit jump address. */
1011 HOWTO (R_MIPS_26, /* type */
1012 2, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 26, /* bitsize */
1015 false, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 /* This needs complex overflow
1019 detection, because the upper 36
1020 bits must match the PC + 4. */
1021 bfd_elf_generic_reloc, /* special_function */
1022 "R_MIPS_26", /* name */
1023 false, /* partial_inplace */
1024 0, /* src_mask */
1025 0x03ffffff, /* dst_mask */
1026 false), /* pcrel_offset */
1027
1028 /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */
1029 /* High 16 bits of symbol value. */
1030 HOWTO (R_MIPS_HI16, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 16, /* bitsize */
1034 false, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont, /* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_MIPS_HI16", /* name */
1039 false, /* partial_inplace */
1040 0, /* src_mask */
1041 0x0000ffff, /* dst_mask */
1042 false), /* pcrel_offset */
1043
1044 /* Low 16 bits of symbol value. */
1045 HOWTO (R_MIPS_LO16, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 16, /* bitsize */
1049 false, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont, /* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_MIPS_LO16", /* name */
1054 false, /* partial_inplace */
1055 0, /* src_mask */
1056 0x0000ffff, /* dst_mask */
1057 false), /* pcrel_offset */
1058
1059 /* GP relative reference. */
1060 HOWTO (R_MIPS_GPREL16, /* type */
1061 0, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 16, /* bitsize */
1064 false, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_signed, /* complain_on_overflow */
1067 _bfd_mips_elf_gprel16_reloc, /* special_function */
1068 "R_MIPS_GPREL16", /* name */
1069 false, /* partial_inplace */
1070 0, /* src_mask */
1071 0x0000ffff, /* dst_mask */
1072 false), /* pcrel_offset */
1073
1074 /* Reference to literal section. */
1075 HOWTO (R_MIPS_LITERAL, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 16, /* bitsize */
1079 false, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_signed, /* complain_on_overflow */
1082 _bfd_mips_elf_gprel16_reloc, /* special_function */
1083 "R_MIPS_LITERAL", /* name */
1084 false, /* partial_inplace */
1085 0, /* src_mask */
1086 0x0000ffff, /* dst_mask */
1087 false), /* pcrel_offset */
1088
1089 /* Reference to global offset table. */
1090 /* FIXME: This is not handled correctly. */
1091 HOWTO (R_MIPS_GOT16, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 16, /* bitsize */
1095 false, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_signed, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_MIPS_GOT16", /* name */
1100 false, /* partial_inplace */
1101 0, /* src_mask */
1102 0x0000ffff, /* dst_mask */
1103 false), /* pcrel_offset */
1104
1105 /* 16 bit PC relative reference. */
1106 HOWTO (R_MIPS_PC16, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 16, /* bitsize */
1110 true, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_signed, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_MIPS_PC16", /* name */
1115 false, /* partial_inplace */
1116 0, /* src_mask */
1117 0x0000ffff, /* dst_mask */
1118 true), /* pcrel_offset */
1119
1120 /* 16 bit call through global offset table. */
1121 /* FIXME: This is not handled correctly. */
1122 HOWTO (R_MIPS_CALL16, /* type */
1123 0, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 16, /* bitsize */
1126 false, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_signed, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 "R_MIPS_CALL16", /* name */
1131 false, /* partial_inplace */
1132 0, /* src_mask */
1133 0x0000ffff, /* dst_mask */
1134 false), /* pcrel_offset */
1135
1136 /* 32 bit GP relative reference. */
1137 HOWTO (R_MIPS_GPREL32, /* type */
1138 0, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 32, /* bitsize */
1141 false, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 _bfd_mips_elf_gprel32_reloc, /* special_function */
1145 "R_MIPS_GPREL32", /* name */
1146 false, /* partial_inplace */
1147 0, /* src_mask */
1148 0xffffffff, /* dst_mask */
1149 false), /* pcrel_offset */
1150
1151 EMPTY_HOWTO (13),
1152 EMPTY_HOWTO (14),
1153 EMPTY_HOWTO (15),
1154
1155 /* A 5 bit shift field. */
1156 HOWTO (R_MIPS_SHIFT5, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 5, /* bitsize */
1160 false, /* pc_relative */
1161 6, /* bitpos */
1162 complain_overflow_bitfield, /* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_MIPS_SHIFT5", /* name */
1165 false, /* partial_inplace */
1166 0, /* src_mask */
1167 0x000007c0, /* dst_mask */
1168 false), /* pcrel_offset */
1169
1170 /* A 6 bit shift field. */
1171 /* FIXME: Not handled correctly. */
1172 HOWTO (R_MIPS_SHIFT6, /* type */
1173 0, /* rightshift */
1174 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 6, /* bitsize */
1176 false, /* pc_relative */
1177 6, /* bitpos */
1178 complain_overflow_bitfield, /* complain_on_overflow */
1179 bfd_elf_generic_reloc, /* special_function */
1180 "R_MIPS_SHIFT6", /* name */
1181 false, /* partial_inplace */
1182 0, /* src_mask */
1183 0x000007c4, /* dst_mask */
1184 false), /* pcrel_offset */
1185
1186 /* 64 bit relocation. */
1187 HOWTO (R_MIPS_64, /* type */
1188 0, /* rightshift */
1189 4, /* size (0 = byte, 1 = short, 2 = long) */
1190 64, /* bitsize */
1191 false, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont, /* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_MIPS_64", /* name */
1196 false, /* partial_inplace */
1197 0, /* src_mask */
1198 MINUS_ONE, /* dst_mask */
1199 false), /* pcrel_offset */
1200
1201 /* Displacement in the global offset table. */
1202 /* FIXME: Not handled correctly. */
1203 HOWTO (R_MIPS_GOT_DISP, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 16, /* bitsize */
1207 false, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_signed, /* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_MIPS_GOT_DISP", /* name */
1212 false, /* partial_inplace */
1213 0, /* src_mask */
1214 0x0000ffff, /* dst_mask */
1215 false), /* pcrel_offset */
1216
1217 /* Displacement to page pointer in the global offset table. */
1218 /* FIXME: Not handled correctly. */
1219 HOWTO (R_MIPS_GOT_PAGE, /* type */
1220 0, /* rightshift */
1221 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 16, /* bitsize */
1223 false, /* pc_relative */
1224 0, /* bitpos */
1225 complain_overflow_signed, /* complain_on_overflow */
1226 bfd_elf_generic_reloc, /* special_function */
1227 "R_MIPS_GOT_PAGE", /* name */
1228 false, /* partial_inplace */
1229 0, /* src_mask */
1230 0x0000ffff, /* dst_mask */
1231 false), /* pcrel_offset */
1232
1233 /* Offset from page pointer in the global offset table. */
1234 /* FIXME: Not handled correctly. */
1235 HOWTO (R_MIPS_GOT_OFST, /* type */
1236 0, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 false, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_signed, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 "R_MIPS_GOT_OFST", /* name */
1244 false, /* partial_inplace */
1245 0, /* src_mask */
1246 0x0000ffff, /* dst_mask */
1247 false), /* pcrel_offset */
1248
1249 /* High 16 bits of displacement in global offset table. */
1250 /* FIXME: Not handled correctly. */
1251 HOWTO (R_MIPS_GOT_HI16, /* type */
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 16, /* bitsize */
1255 false, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_MIPS_GOT_HI16", /* name */
1260 false, /* partial_inplace */
1261 0, /* src_mask */
1262 0x0000ffff, /* dst_mask */
1263 false), /* pcrel_offset */
1264
1265 /* Low 16 bits of displacement in global offset table. */
1266 /* FIXME: Not handled correctly. */
1267 HOWTO (R_MIPS_GOT_LO16, /* type */
1268 0, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 16, /* bitsize */
1271 false, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 "R_MIPS_GOT_LO16", /* name */
1276 false, /* partial_inplace */
1277 0, /* src_mask */
1278 0x0000ffff, /* dst_mask */
1279 false), /* pcrel_offset */
1280
1281 /* 64 bit substraction. */
1282 /* FIXME: Not handled correctly. */
1283 HOWTO (R_MIPS_SUB, /* type */
1284 0, /* rightshift */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1286 64, /* bitsize */
1287 false, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_MIPS_SUB", /* name */
1292 false, /* partial_inplace */
1293 0, /* src_mask */
1294 MINUS_ONE, /* dst_mask */
1295 false), /* pcrel_offset */
1296
1297 /* Insert the addend as an instruction. */
1298 /* FIXME: Not handled correctly. */
1299 HOWTO (R_MIPS_INSERT_A, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 32, /* bitsize */
1303 false, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_MIPS_INSERT_A", /* name */
1308 false, /* partial_inplace */
1309 0, /* src_mask */
1310 0xffffffff, /* dst_mask */
1311 false), /* pcrel_offset */
1312
1313 /* Insert the addend as an instruction, and change all relocations
1314 to refer to the old instruction at the address. */
1315 /* FIXME: Not handled correctly. */
1316 HOWTO (R_MIPS_INSERT_B, /* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 32, /* bitsize */
1320 false, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont, /* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_MIPS_INSERT_B", /* name */
1325 false, /* partial_inplace */
1326 0, /* src_mask */
1327 0xffffffff, /* dst_mask */
1328 false), /* pcrel_offset */
1329
1330 /* Delete a 32 bit instruction. */
1331 /* FIXME: Not handled correctly. */
1332 HOWTO (R_MIPS_DELETE, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 32, /* bitsize */
1336 false, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_MIPS_DELETE", /* name */
1341 false, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffffffff, /* dst_mask */
1344 false), /* pcrel_offset */
1345
1346 /* Get the higher value of a 64 bit addend. */
1347 HOWTO (R_MIPS_HIGHER, /* type */
1348 0, /* rightshift */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 false, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 bfd_elf_generic_reloc, /* special_function */
1355 "R_MIPS_HIGHER", /* name */
1356 false, /* partial_inplace */
1357 0, /* src_mask */
1358 0x0000ffff, /* dst_mask */
1359 false), /* pcrel_offset */
1360
1361 /* Get the highest value of a 64 bit addend. */
1362 HOWTO (R_MIPS_HIGHEST, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 false, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_MIPS_HIGHEST", /* name */
1371 false, /* partial_inplace */
1372 0, /* src_mask */
1373 0x0000ffff, /* dst_mask */
1374 false), /* pcrel_offset */
1375
1376 /* High 16 bits of displacement in global offset table. */
1377 /* FIXME: Not handled correctly. */
1378 HOWTO (R_MIPS_CALL_HI16, /* type */
1379 0, /* rightshift */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 false, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_MIPS_CALL_HI16", /* name */
1387 false, /* partial_inplace */
1388 0, /* src_mask */
1389 0x0000ffff, /* dst_mask */
1390 false), /* pcrel_offset */
1391
1392 /* Low 16 bits of displacement in global offset table. */
1393 /* FIXME: Not handled correctly. */
1394 HOWTO (R_MIPS_CALL_LO16, /* type */
1395 0, /* rightshift */
1396 2, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 false, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_dont, /* complain_on_overflow */
1401 bfd_elf_generic_reloc, /* special_function */
1402 "R_MIPS_CALL_LO16", /* name */
1403 false, /* partial_inplace */
1404 0, /* src_mask */
1405 0x0000ffff, /* dst_mask */
1406 false), /* pcrel_offset */
1407
1408 /* Section displacement, used by an associated event location section. */
1409 /* FIXME: Not handled correctly. */
1410 HOWTO (R_MIPS_SCN_DISP, /* type */
1411 0, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 32, /* bitsize */
1414 false, /* pc_relative */
1415 0, /* bitpos */
1416 complain_overflow_dont, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 "R_MIPS_SCN_DISP", /* name */
1419 false, /* partial_inplace */
1420 0, /* src_mask */
1421 0xffffffff, /* dst_mask */
1422 false), /* pcrel_offset */
1423
1424 HOWTO (R_MIPS_REL16, /* type */
1425 0, /* rightshift */
1426 1, /* size (0 = byte, 1 = short, 2 = long) */
1427 16, /* bitsize */
1428 false, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_signed, /* complain_on_overflow */
1431 bfd_elf_generic_reloc, /* special_function */
1432 "R_MIPS_REL16", /* name */
1433 false, /* partial_inplace */
1434 0, /* src_mask */
1435 0xffff, /* dst_mask */
1436 false), /* pcrel_offset */
1437
1438 /* These two are obsolete. */
1439 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
1440 EMPTY_HOWTO (R_MIPS_PJUMP),
1441
1442 /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section.
1443 It must be used for multigot GOT's (and only there). */
1444 HOWTO (R_MIPS_RELGOT, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 false, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_MIPS_RELGOT", /* name */
1453 false, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 false), /* pcrel_offset */
1457
1458 /* Protected jump conversion. This is an optimization hint. No
1459 relocation is required for correctness. */
1460 HOWTO (R_MIPS_JALR, /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 32, /* bitsize */
1464 false, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_MIPS_JALR", /* name */
1469 false, /* partial_inplace */
1470 0, /* src_mask */
1471 0xffffffff, /* dst_mask */
1472 false), /* pcrel_offset */
1473 };
1474
1475 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
1476 is a hack to make the linker think that we need 64 bit values. */
1477 static reloc_howto_type elf_mips_ctor64_howto =
1478 HOWTO (R_MIPS_64, /* type */
1479 0, /* rightshift */
1480 4, /* size (0 = byte, 1 = short, 2 = long) */
1481 32, /* bitsize */
1482 false, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 mips32_64bit_reloc, /* special_function */
1486 "R_MIPS_64", /* name */
1487 true, /* partial_inplace */
1488 0xffffffff, /* src_mask */
1489 0xffffffff, /* dst_mask */
1490 false); /* pcrel_offset */
1491
1492 /* The reloc used for the mips16 jump instruction. */
1493 static reloc_howto_type elf_mips16_jump_howto =
1494 HOWTO (R_MIPS16_26, /* type */
1495 2, /* rightshift */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 26, /* bitsize */
1498 false, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 /* This needs complex overflow
1502 detection, because the upper four
1503 bits must match the PC. */
1504 mips16_jump_reloc, /* special_function */
1505 "R_MIPS16_26", /* name */
1506 true, /* partial_inplace */
1507 0x3ffffff, /* src_mask */
1508 0x3ffffff, /* dst_mask */
1509 false); /* pcrel_offset */
1510
1511 /* The reloc used for the mips16 gprel instruction. */
1512 static reloc_howto_type elf_mips16_gprel_howto =
1513 HOWTO (R_MIPS16_GPREL, /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 false, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 mips16_gprel_reloc, /* special_function */
1521 "R_MIPS16_GPREL", /* name */
1522 true, /* partial_inplace */
1523 0x07ff001f, /* src_mask */
1524 0x07ff001f, /* dst_mask */
1525 false); /* pcrel_offset */
1526
1527 /* GNU extensions for embedded-pic. */
1528 /* High 16 bits of symbol value, pc-relative. */
1529 static reloc_howto_type elf_mips_gnu_rel_hi16 =
1530 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
1531 0, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 true, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 _bfd_mips_elf_hi16_reloc, /* special_function */
1538 "R_MIPS_GNU_REL_HI16", /* name */
1539 true, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 true); /* pcrel_offset */
1543
1544 /* Low 16 bits of symbol value, pc-relative. */
1545 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1546 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 16, /* bitsize */
1550 true, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_dont, /* complain_on_overflow */
1553 _bfd_mips_elf_lo16_reloc, /* special_function */
1554 "R_MIPS_GNU_REL_LO16", /* name */
1555 true, /* partial_inplace */
1556 0xffff, /* src_mask */
1557 0xffff, /* dst_mask */
1558 true); /* pcrel_offset */
1559
1560 /* 16 bit offset for pc-relative branches. */
1561 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1562 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1563 2, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 true, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_signed, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 "R_MIPS_GNU_REL16_S2", /* name */
1571 true, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 true); /* pcrel_offset */
1575
1576 /* 64 bit pc-relative. */
1577 static reloc_howto_type elf_mips_gnu_pcrel64 =
1578 HOWTO (R_MIPS_PC64, /* type */
1579 0, /* rightshift */
1580 4, /* size (0 = byte, 1 = short, 2 = long) */
1581 64, /* bitsize */
1582 true, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_signed, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 "R_MIPS_PC64", /* name */
1587 true, /* partial_inplace */
1588 MINUS_ONE, /* src_mask */
1589 MINUS_ONE, /* dst_mask */
1590 true); /* pcrel_offset */
1591
1592 /* 32 bit pc-relative. */
1593 static reloc_howto_type elf_mips_gnu_pcrel32 =
1594 HOWTO (R_MIPS_PC32, /* type */
1595 0, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 32, /* bitsize */
1598 true, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_signed, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 "R_MIPS_PC32", /* name */
1603 true, /* partial_inplace */
1604 0xffffffff, /* src_mask */
1605 0xffffffff, /* dst_mask */
1606 true); /* pcrel_offset */
1607
1608 /* GNU extension to record C++ vtable hierarchy */
1609 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1610 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1611 0, /* rightshift */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 false, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 NULL, /* special_function */
1618 "R_MIPS_GNU_VTINHERIT", /* name */
1619 false, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 false); /* pcrel_offset */
1623
1624 /* GNU extension to record C++ vtable member usage */
1625 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1626 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 false, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont, /* complain_on_overflow */
1633 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1634 "R_MIPS_GNU_VTENTRY", /* name */
1635 false, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 false); /* pcrel_offset */
1639
1640 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1641 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1642 the HI16. Here we just save the information we need; we do the
1643 actual relocation when we see the LO16. MIPS ELF requires that the
1644 LO16 immediately follow the HI16. As a GNU extension, we permit an
1645 arbitrary number of HI16 relocs to be associated with a single LO16
1646 reloc. This extension permits gcc to output the HI and LO relocs
1647 itself. */
1648
1649 struct mips_hi16
1650 {
1651 struct mips_hi16 *next;
1652 bfd_byte *addr;
1653 bfd_vma addend;
1654 };
1655
1656 /* FIXME: This should not be a static variable. */
1657
1658 static struct mips_hi16 *mips_hi16_list;
1659
1660 bfd_reloc_status_type
1661 _bfd_mips_elf_hi16_reloc (abfd,
1662 reloc_entry,
1663 symbol,
1664 data,
1665 input_section,
1666 output_bfd,
1667 error_message)
1668 bfd *abfd ATTRIBUTE_UNUSED;
1669 arelent *reloc_entry;
1670 asymbol *symbol;
1671 PTR data;
1672 asection *input_section;
1673 bfd *output_bfd;
1674 char **error_message;
1675 {
1676 bfd_reloc_status_type ret;
1677 bfd_vma relocation;
1678 struct mips_hi16 *n;
1679
1680 /* If we're relocating, and this an external symbol, we don't want
1681 to change anything. */
1682 if (output_bfd != (bfd *) NULL
1683 && (symbol->flags & BSF_SECTION_SYM) == 0
1684 && reloc_entry->addend == 0)
1685 {
1686 reloc_entry->address += input_section->output_offset;
1687 return bfd_reloc_ok;
1688 }
1689
1690 ret = bfd_reloc_ok;
1691
1692 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1693 {
1694 boolean relocateable;
1695 bfd_vma gp;
1696
1697 if (ret == bfd_reloc_undefined)
1698 abort ();
1699
1700 if (output_bfd != NULL)
1701 relocateable = true;
1702 else
1703 {
1704 relocateable = false;
1705 output_bfd = symbol->section->output_section->owner;
1706 }
1707
1708 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1709 error_message, &gp);
1710 if (ret != bfd_reloc_ok)
1711 return ret;
1712
1713 relocation = gp - reloc_entry->address;
1714 }
1715 else
1716 {
1717 if (bfd_is_und_section (symbol->section)
1718 && output_bfd == (bfd *) NULL)
1719 ret = bfd_reloc_undefined;
1720
1721 if (bfd_is_com_section (symbol->section))
1722 relocation = 0;
1723 else
1724 relocation = symbol->value;
1725 }
1726
1727 relocation += symbol->section->output_section->vma;
1728 relocation += symbol->section->output_offset;
1729 relocation += reloc_entry->addend;
1730 if (reloc_entry->howto->pc_relative)
1731 relocation -= reloc_entry->address;
1732
1733 if (reloc_entry->address > input_section->_cooked_size)
1734 return bfd_reloc_outofrange;
1735
1736 /* Save the information, and let LO16 do the actual relocation. */
1737 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
1738 if (n == NULL)
1739 return bfd_reloc_outofrange;
1740 n->addr = (bfd_byte *) data + reloc_entry->address;
1741 n->addend = relocation;
1742 n->next = mips_hi16_list;
1743 mips_hi16_list = n;
1744
1745 if (output_bfd != (bfd *) NULL)
1746 reloc_entry->address += input_section->output_offset;
1747
1748 return ret;
1749 }
1750
1751 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1752 inplace relocation; this function exists in order to do the
1753 R_MIPS_HI16 relocation described above. */
1754
1755 bfd_reloc_status_type
1756 _bfd_mips_elf_lo16_reloc (abfd,
1757 reloc_entry,
1758 symbol,
1759 data,
1760 input_section,
1761 output_bfd,
1762 error_message)
1763 bfd *abfd;
1764 arelent *reloc_entry;
1765 asymbol *symbol;
1766 PTR data;
1767 asection *input_section;
1768 bfd *output_bfd;
1769 char **error_message;
1770 {
1771 arelent gp_disp_relent;
1772
1773 if (mips_hi16_list != NULL)
1774 {
1775 struct mips_hi16 *l;
1776
1777 l = mips_hi16_list;
1778 while (l != NULL)
1779 {
1780 unsigned long insn;
1781 unsigned long val;
1782 unsigned long vallo;
1783 struct mips_hi16 *next;
1784
1785 /* Do the HI16 relocation. Note that we actually don't need
1786 to know anything about the LO16 itself, except where to
1787 find the low 16 bits of the addend needed by the LO16. */
1788 insn = bfd_get_32 (abfd, l->addr);
1789 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1790
1791 /* The low order 16 bits are always treated as a signed
1792 value. */
1793 vallo = ((vallo & 0xffff) ^ 0x8000) - 0x8000;
1794 val = ((insn & 0xffff) << 16) + vallo;
1795 val += l->addend;
1796
1797 /* At this point, "val" has the value of the combined HI/LO
1798 pair. If the low order 16 bits (which will be used for
1799 the LO16 insn) are negative, then we will need an
1800 adjustment for the high order 16 bits. */
1801 val += 0x8000;
1802 val = (val >> 16) & 0xffff;
1803
1804 insn &= ~ (bfd_vma) 0xffff;
1805 insn |= val;
1806 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1807
1808 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1809 {
1810 gp_disp_relent = *reloc_entry;
1811 reloc_entry = &gp_disp_relent;
1812 reloc_entry->addend = l->addend;
1813 }
1814
1815 next = l->next;
1816 free (l);
1817 l = next;
1818 }
1819
1820 mips_hi16_list = NULL;
1821 }
1822 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1823 {
1824 bfd_reloc_status_type ret;
1825 bfd_vma gp, relocation;
1826
1827 /* FIXME: Does this case ever occur? */
1828
1829 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1830 if (ret != bfd_reloc_ok)
1831 return ret;
1832
1833 relocation = gp - reloc_entry->address;
1834 relocation += symbol->section->output_section->vma;
1835 relocation += symbol->section->output_offset;
1836 relocation += reloc_entry->addend;
1837
1838 if (reloc_entry->address > input_section->_cooked_size)
1839 return bfd_reloc_outofrange;
1840
1841 gp_disp_relent = *reloc_entry;
1842 reloc_entry = &gp_disp_relent;
1843 reloc_entry->addend = relocation - 4;
1844 }
1845
1846 /* Now do the LO16 reloc in the usual way. */
1847 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1848 input_section, output_bfd, error_message);
1849 }
1850
1851 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1852 table used for PIC code. If the symbol is an external symbol, the
1853 instruction is modified to contain the offset of the appropriate
1854 entry in the global offset table. If the symbol is a section
1855 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1856 addends are combined to form the real addend against the section
1857 symbol; the GOT16 is modified to contain the offset of an entry in
1858 the global offset table, and the LO16 is modified to offset it
1859 appropriately. Thus an offset larger than 16 bits requires a
1860 modified value in the global offset table.
1861
1862 This implementation suffices for the assembler, but the linker does
1863 not yet know how to create global offset tables. */
1864
1865 bfd_reloc_status_type
1866 _bfd_mips_elf_got16_reloc (abfd,
1867 reloc_entry,
1868 symbol,
1869 data,
1870 input_section,
1871 output_bfd,
1872 error_message)
1873 bfd *abfd;
1874 arelent *reloc_entry;
1875 asymbol *symbol;
1876 PTR data;
1877 asection *input_section;
1878 bfd *output_bfd;
1879 char **error_message;
1880 {
1881 /* If we're relocating, and this an external symbol, we don't want
1882 to change anything. */
1883 if (output_bfd != (bfd *) NULL
1884 && (symbol->flags & BSF_SECTION_SYM) == 0
1885 && reloc_entry->addend == 0)
1886 {
1887 reloc_entry->address += input_section->output_offset;
1888 return bfd_reloc_ok;
1889 }
1890
1891 /* If we're relocating, and this is a local symbol, we can handle it
1892 just like HI16. */
1893 if (output_bfd != (bfd *) NULL
1894 && (symbol->flags & BSF_SECTION_SYM) != 0)
1895 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1896 input_section, output_bfd, error_message);
1897
1898 abort ();
1899 }
1900
1901 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1902 dangerous relocation. */
1903
1904 static boolean
1905 mips_elf_assign_gp (output_bfd, pgp)
1906 bfd *output_bfd;
1907 bfd_vma *pgp;
1908 {
1909 unsigned int count;
1910 asymbol **sym;
1911 unsigned int i;
1912
1913 /* If we've already figured out what GP will be, just return it. */
1914 *pgp = _bfd_get_gp_value (output_bfd);
1915 if (*pgp)
1916 return true;
1917
1918 count = bfd_get_symcount (output_bfd);
1919 sym = bfd_get_outsymbols (output_bfd);
1920
1921 /* The linker script will have created a symbol named `_gp' with the
1922 appropriate value. */
1923 if (sym == (asymbol **) NULL)
1924 i = count;
1925 else
1926 {
1927 for (i = 0; i < count; i++, sym++)
1928 {
1929 register const char *name;
1930
1931 name = bfd_asymbol_name (*sym);
1932 if (*name == '_' && strcmp (name, "_gp") == 0)
1933 {
1934 *pgp = bfd_asymbol_value (*sym);
1935 _bfd_set_gp_value (output_bfd, *pgp);
1936 break;
1937 }
1938 }
1939 }
1940
1941 if (i >= count)
1942 {
1943 /* Only get the error once. */
1944 *pgp = 4;
1945 _bfd_set_gp_value (output_bfd, *pgp);
1946 return false;
1947 }
1948
1949 return true;
1950 }
1951
1952 /* We have to figure out the gp value, so that we can adjust the
1953 symbol value correctly. We look up the symbol _gp in the output
1954 BFD. If we can't find it, we're stuck. We cache it in the ELF
1955 target data. We don't need to adjust the symbol value for an
1956 external symbol if we are producing relocateable output. */
1957
1958 static bfd_reloc_status_type
1959 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1960 bfd *output_bfd;
1961 asymbol *symbol;
1962 boolean relocateable;
1963 char **error_message;
1964 bfd_vma *pgp;
1965 {
1966 if (bfd_is_und_section (symbol->section)
1967 && ! relocateable)
1968 {
1969 *pgp = 0;
1970 return bfd_reloc_undefined;
1971 }
1972
1973 *pgp = _bfd_get_gp_value (output_bfd);
1974 if (*pgp == 0
1975 && (! relocateable
1976 || (symbol->flags & BSF_SECTION_SYM) != 0))
1977 {
1978 if (relocateable)
1979 {
1980 /* Make up a value. */
1981 *pgp = symbol->section->output_section->vma + 0x4000;
1982 _bfd_set_gp_value (output_bfd, *pgp);
1983 }
1984 else if (!mips_elf_assign_gp (output_bfd, pgp))
1985 {
1986 *error_message =
1987 (char *) _("GP relative relocation when _gp not defined");
1988 return bfd_reloc_dangerous;
1989 }
1990 }
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1996 become the offset from the gp register. This function also handles
1997 R_MIPS_LITERAL relocations, although those can be handled more
1998 cleverly because the entries in the .lit8 and .lit4 sections can be
1999 merged. */
2000
2001 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
2002 arelent *, asection *,
2003 boolean, PTR, bfd_vma));
2004
2005 bfd_reloc_status_type
2006 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
2007 output_bfd, error_message)
2008 bfd *abfd;
2009 arelent *reloc_entry;
2010 asymbol *symbol;
2011 PTR data;
2012 asection *input_section;
2013 bfd *output_bfd;
2014 char **error_message;
2015 {
2016 boolean relocateable;
2017 bfd_reloc_status_type ret;
2018 bfd_vma gp;
2019
2020 /* If we're relocating, and this is an external symbol with no
2021 addend, we don't want to change anything. We will only have an
2022 addend if this is a newly created reloc, not read from an ELF
2023 file. */
2024 if (output_bfd != (bfd *) NULL
2025 && (symbol->flags & BSF_SECTION_SYM) == 0
2026 && reloc_entry->addend == 0)
2027 {
2028 reloc_entry->address += input_section->output_offset;
2029 return bfd_reloc_ok;
2030 }
2031
2032 if (output_bfd != (bfd *) NULL)
2033 relocateable = true;
2034 else
2035 {
2036 relocateable = false;
2037 output_bfd = symbol->section->output_section->owner;
2038 }
2039
2040 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2041 &gp);
2042 if (ret != bfd_reloc_ok)
2043 return ret;
2044
2045 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2046 relocateable, data, gp);
2047 }
2048
2049 static bfd_reloc_status_type
2050 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2051 gp)
2052 bfd *abfd;
2053 asymbol *symbol;
2054 arelent *reloc_entry;
2055 asection *input_section;
2056 boolean relocateable;
2057 PTR data;
2058 bfd_vma gp;
2059 {
2060 bfd_vma relocation;
2061 unsigned long insn;
2062 unsigned long val;
2063
2064 if (bfd_is_com_section (symbol->section))
2065 relocation = 0;
2066 else
2067 relocation = symbol->value;
2068
2069 relocation += symbol->section->output_section->vma;
2070 relocation += symbol->section->output_offset;
2071
2072 if (reloc_entry->address > input_section->_cooked_size)
2073 return bfd_reloc_outofrange;
2074
2075 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2076
2077 /* Set val to the offset into the section or symbol. */
2078 if (reloc_entry->howto->src_mask == 0)
2079 {
2080 /* This case occurs with the 64-bit MIPS ELF ABI. */
2081 val = reloc_entry->addend;
2082 }
2083 else
2084 {
2085 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
2086 if (val & 0x8000)
2087 val -= 0x10000;
2088 }
2089
2090 /* Adjust val for the final section location and GP value. If we
2091 are producing relocateable output, we don't want to do this for
2092 an external symbol. */
2093 if (! relocateable
2094 || (symbol->flags & BSF_SECTION_SYM) != 0)
2095 val += relocation - gp;
2096
2097 insn = (insn & ~0xffff) | (val & 0xffff);
2098 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
2099
2100 if (relocateable)
2101 reloc_entry->address += input_section->output_offset;
2102
2103 /* Make sure it fit in 16 bits. */
2104 if ((long) val >= 0x8000 || (long) val < -0x8000)
2105 return bfd_reloc_overflow;
2106
2107 return bfd_reloc_ok;
2108 }
2109
2110 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
2111 from the gp register? XXX */
2112
2113 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
2114 arelent *, asection *,
2115 boolean, PTR, bfd_vma));
2116
2117 bfd_reloc_status_type
2118 _bfd_mips_elf_gprel32_reloc (abfd,
2119 reloc_entry,
2120 symbol,
2121 data,
2122 input_section,
2123 output_bfd,
2124 error_message)
2125 bfd *abfd;
2126 arelent *reloc_entry;
2127 asymbol *symbol;
2128 PTR data;
2129 asection *input_section;
2130 bfd *output_bfd;
2131 char **error_message;
2132 {
2133 boolean relocateable;
2134 bfd_reloc_status_type ret;
2135 bfd_vma gp;
2136
2137 /* If we're relocating, and this is an external symbol with no
2138 addend, we don't want to change anything. We will only have an
2139 addend if this is a newly created reloc, not read from an ELF
2140 file. */
2141 if (output_bfd != (bfd *) NULL
2142 && (symbol->flags & BSF_SECTION_SYM) == 0
2143 && reloc_entry->addend == 0)
2144 {
2145 *error_message = (char *)
2146 _("32bits gp relative relocation occurs for an external symbol");
2147 return bfd_reloc_outofrange;
2148 }
2149
2150 if (output_bfd != (bfd *) NULL)
2151 {
2152 relocateable = true;
2153 gp = _bfd_get_gp_value (output_bfd);
2154 }
2155 else
2156 {
2157 relocateable = false;
2158 output_bfd = symbol->section->output_section->owner;
2159
2160 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
2161 error_message, &gp);
2162 if (ret != bfd_reloc_ok)
2163 return ret;
2164 }
2165
2166 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
2167 relocateable, data, gp);
2168 }
2169
2170 static bfd_reloc_status_type
2171 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2172 gp)
2173 bfd *abfd;
2174 asymbol *symbol;
2175 arelent *reloc_entry;
2176 asection *input_section;
2177 boolean relocateable;
2178 PTR data;
2179 bfd_vma gp;
2180 {
2181 bfd_vma relocation;
2182 unsigned long val;
2183
2184 if (bfd_is_com_section (symbol->section))
2185 relocation = 0;
2186 else
2187 relocation = symbol->value;
2188
2189 relocation += symbol->section->output_section->vma;
2190 relocation += symbol->section->output_offset;
2191
2192 if (reloc_entry->address > input_section->_cooked_size)
2193 return bfd_reloc_outofrange;
2194
2195 if (reloc_entry->howto->src_mask == 0)
2196 {
2197 /* This case arises with the 64-bit MIPS ELF ABI. */
2198 val = 0;
2199 }
2200 else
2201 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2202
2203 /* Set val to the offset into the section or symbol. */
2204 val += reloc_entry->addend;
2205
2206 /* Adjust val for the final section location and GP value. If we
2207 are producing relocateable output, we don't want to do this for
2208 an external symbol. */
2209 if (! relocateable
2210 || (symbol->flags & BSF_SECTION_SYM) != 0)
2211 val += relocation - gp;
2212
2213 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
2214
2215 if (relocateable)
2216 reloc_entry->address += input_section->output_offset;
2217
2218 return bfd_reloc_ok;
2219 }
2220
2221 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
2222 generated when addresses are 64 bits. The upper 32 bits are a simple
2223 sign extension. */
2224
2225 static bfd_reloc_status_type
2226 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
2227 output_bfd, error_message)
2228 bfd *abfd;
2229 arelent *reloc_entry;
2230 asymbol *symbol;
2231 PTR data;
2232 asection *input_section;
2233 bfd *output_bfd;
2234 char **error_message;
2235 {
2236 bfd_reloc_status_type r;
2237 arelent reloc32;
2238 unsigned long val;
2239 bfd_size_type addr;
2240
2241 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2242 input_section, output_bfd, error_message);
2243 if (r != bfd_reloc_continue)
2244 return r;
2245
2246 /* Do a normal 32 bit relocation on the lower 32 bits. */
2247 reloc32 = *reloc_entry;
2248 if (bfd_big_endian (abfd))
2249 reloc32.address += 4;
2250 reloc32.howto = &elf_mips_howto_table_rel[R_MIPS_32];
2251 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
2252 output_bfd, error_message);
2253
2254 /* Sign extend into the upper 32 bits. */
2255 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
2256 if ((val & 0x80000000) != 0)
2257 val = 0xffffffff;
2258 else
2259 val = 0;
2260 addr = reloc_entry->address;
2261 if (bfd_little_endian (abfd))
2262 addr += 4;
2263 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
2264
2265 return r;
2266 }
2267
2268 /* Handle a mips16 jump. */
2269
2270 static bfd_reloc_status_type
2271 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
2272 output_bfd, error_message)
2273 bfd *abfd ATTRIBUTE_UNUSED;
2274 arelent *reloc_entry;
2275 asymbol *symbol;
2276 PTR data ATTRIBUTE_UNUSED;
2277 asection *input_section;
2278 bfd *output_bfd;
2279 char **error_message ATTRIBUTE_UNUSED;
2280 {
2281 if (output_bfd != (bfd *) NULL
2282 && (symbol->flags & BSF_SECTION_SYM) == 0
2283 && reloc_entry->addend == 0)
2284 {
2285 reloc_entry->address += input_section->output_offset;
2286 return bfd_reloc_ok;
2287 }
2288
2289 /* FIXME. */
2290 {
2291 static boolean warned;
2292
2293 if (! warned)
2294 (*_bfd_error_handler)
2295 (_("Linking mips16 objects into %s format is not supported"),
2296 bfd_get_target (input_section->output_section->owner));
2297 warned = true;
2298 }
2299
2300 return bfd_reloc_undefined;
2301 }
2302
2303 /* Handle a mips16 GP relative reloc. */
2304
2305 static bfd_reloc_status_type
2306 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
2307 output_bfd, error_message)
2308 bfd *abfd;
2309 arelent *reloc_entry;
2310 asymbol *symbol;
2311 PTR data;
2312 asection *input_section;
2313 bfd *output_bfd;
2314 char **error_message;
2315 {
2316 boolean relocateable;
2317 bfd_reloc_status_type ret;
2318 bfd_vma gp;
2319 unsigned short extend, insn;
2320 unsigned long final;
2321
2322 /* If we're relocating, and this is an external symbol with no
2323 addend, we don't want to change anything. We will only have an
2324 addend if this is a newly created reloc, not read from an ELF
2325 file. */
2326 if (output_bfd != NULL
2327 && (symbol->flags & BSF_SECTION_SYM) == 0
2328 && reloc_entry->addend == 0)
2329 {
2330 reloc_entry->address += input_section->output_offset;
2331 return bfd_reloc_ok;
2332 }
2333
2334 if (output_bfd != NULL)
2335 relocateable = true;
2336 else
2337 {
2338 relocateable = false;
2339 output_bfd = symbol->section->output_section->owner;
2340 }
2341
2342 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2343 &gp);
2344 if (ret != bfd_reloc_ok)
2345 return ret;
2346
2347 if (reloc_entry->address > input_section->_cooked_size)
2348 return bfd_reloc_outofrange;
2349
2350 /* Pick up the mips16 extend instruction and the real instruction. */
2351 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
2352 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
2353
2354 /* Stuff the current addend back as a 32 bit value, do the usual
2355 relocation, and then clean up. */
2356 bfd_put_32 (abfd,
2357 (bfd_vma) (((extend & 0x1f) << 11)
2358 | (extend & 0x7e0)
2359 | (insn & 0x1f)),
2360 (bfd_byte *) data + reloc_entry->address);
2361
2362 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2363 relocateable, data, gp);
2364
2365 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2366 bfd_put_16 (abfd,
2367 (bfd_vma) ((extend & 0xf800)
2368 | ((final >> 11) & 0x1f)
2369 | (final & 0x7e0)),
2370 (bfd_byte *) data + reloc_entry->address);
2371 bfd_put_16 (abfd,
2372 (bfd_vma) ((insn & 0xffe0)
2373 | (final & 0x1f)),
2374 (bfd_byte *) data + reloc_entry->address + 2);
2375
2376 return ret;
2377 }
2378
2379 /* Return the ISA for a MIPS e_flags value. */
2380
2381 static INLINE int
2382 elf_mips_isa (flags)
2383 flagword flags;
2384 {
2385 switch (flags & EF_MIPS_ARCH)
2386 {
2387 case E_MIPS_ARCH_1:
2388 return 1;
2389 case E_MIPS_ARCH_2:
2390 return 2;
2391 case E_MIPS_ARCH_3:
2392 return 3;
2393 case E_MIPS_ARCH_4:
2394 return 4;
2395 case E_MIPS_ARCH_5:
2396 return 5;
2397 case E_MIPS_ARCH_32:
2398 return 32;
2399 case E_MIPS_ARCH_64:
2400 return 64;
2401 }
2402 return 4;
2403 }
2404
2405 /* Return the MACH for a MIPS e_flags value. */
2406
2407 static INLINE unsigned long
2408 elf_mips_mach (flags)
2409 flagword flags;
2410 {
2411 switch (flags & EF_MIPS_MACH)
2412 {
2413 case E_MIPS_MACH_3900:
2414 return bfd_mach_mips3900;
2415
2416 case E_MIPS_MACH_4010:
2417 return bfd_mach_mips4010;
2418
2419 case E_MIPS_MACH_4100:
2420 return bfd_mach_mips4100;
2421
2422 case E_MIPS_MACH_4111:
2423 return bfd_mach_mips4111;
2424
2425 case E_MIPS_MACH_4650:
2426 return bfd_mach_mips4650;
2427
2428 case E_MIPS_MACH_SB1:
2429 return bfd_mach_mips_sb1;
2430
2431 default:
2432 switch (flags & EF_MIPS_ARCH)
2433 {
2434 default:
2435 case E_MIPS_ARCH_1:
2436 return bfd_mach_mips3000;
2437 break;
2438
2439 case E_MIPS_ARCH_2:
2440 return bfd_mach_mips6000;
2441 break;
2442
2443 case E_MIPS_ARCH_3:
2444 return bfd_mach_mips4000;
2445 break;
2446
2447 case E_MIPS_ARCH_4:
2448 return bfd_mach_mips8000;
2449 break;
2450
2451 case E_MIPS_ARCH_5:
2452 return bfd_mach_mips5;
2453 break;
2454
2455 case E_MIPS_ARCH_32:
2456 return bfd_mach_mipsisa32;
2457 break;
2458
2459 case E_MIPS_ARCH_64:
2460 return bfd_mach_mipsisa64;
2461 break;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 /* Return printable name for ABI. */
2469
2470 static INLINE char *
2471 elf_mips_abi_name (abfd)
2472 bfd *abfd;
2473 {
2474 flagword flags;
2475
2476 flags = elf_elfheader (abfd)->e_flags;
2477 switch (flags & EF_MIPS_ABI)
2478 {
2479 case 0:
2480 if (ABI_N32_P (abfd))
2481 return "N32";
2482 else if (ABI_64_P (abfd))
2483 return "64";
2484 else
2485 return "none";
2486 case E_MIPS_ABI_O32:
2487 return "O32";
2488 case E_MIPS_ABI_O64:
2489 return "O64";
2490 case E_MIPS_ABI_EABI32:
2491 return "EABI32";
2492 case E_MIPS_ABI_EABI64:
2493 return "EABI64";
2494 default:
2495 return "unknown abi";
2496 }
2497 }
2498
2499 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
2500
2501 struct elf_reloc_map {
2502 bfd_reloc_code_real_type bfd_reloc_val;
2503 enum elf_mips_reloc_type elf_reloc_val;
2504 };
2505
2506 static const struct elf_reloc_map mips_reloc_map[] =
2507 {
2508 { BFD_RELOC_NONE, R_MIPS_NONE, },
2509 { BFD_RELOC_16, R_MIPS_16 },
2510 { BFD_RELOC_32, R_MIPS_32 },
2511 { BFD_RELOC_64, R_MIPS_64 },
2512 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
2513 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
2514 { BFD_RELOC_LO16, R_MIPS_LO16 },
2515 { BFD_RELOC_GPREL16, R_MIPS_GPREL16 },
2516 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
2517 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
2518 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
2519 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
2520 { BFD_RELOC_GPREL32, R_MIPS_GPREL32 },
2521 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
2522 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
2523 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
2524 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
2525 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
2526 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
2527 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
2528 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
2529 };
2530
2531 /* Given a BFD reloc type, return a howto structure. */
2532
2533 static reloc_howto_type *
2534 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
2535 bfd *abfd;
2536 bfd_reloc_code_real_type code;
2537 {
2538 unsigned int i;
2539
2540 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2541 {
2542 if (mips_reloc_map[i].bfd_reloc_val == code)
2543 return &elf_mips_howto_table_rel[(int) mips_reloc_map[i].elf_reloc_val];
2544 }
2545
2546 switch (code)
2547 {
2548 default:
2549 bfd_set_error (bfd_error_bad_value);
2550 return NULL;
2551
2552 case BFD_RELOC_CTOR:
2553 /* We need to handle BFD_RELOC_CTOR specially.
2554 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2555 size of addresses on this architecture. */
2556 if (bfd_arch_bits_per_address (abfd) == 32)
2557 return &elf_mips_howto_table_rel[(int) R_MIPS_32];
2558 else
2559 return &elf_mips_ctor64_howto;
2560
2561 case BFD_RELOC_MIPS16_JMP:
2562 return &elf_mips16_jump_howto;
2563 case BFD_RELOC_MIPS16_GPREL:
2564 return &elf_mips16_gprel_howto;
2565 case BFD_RELOC_VTABLE_INHERIT:
2566 return &elf_mips_gnu_vtinherit_howto;
2567 case BFD_RELOC_VTABLE_ENTRY:
2568 return &elf_mips_gnu_vtentry_howto;
2569 case BFD_RELOC_PCREL_HI16_S:
2570 return &elf_mips_gnu_rel_hi16;
2571 case BFD_RELOC_PCREL_LO16:
2572 return &elf_mips_gnu_rel_lo16;
2573 case BFD_RELOC_16_PCREL_S2:
2574 return &elf_mips_gnu_rel16_s2;
2575 case BFD_RELOC_64_PCREL:
2576 return &elf_mips_gnu_pcrel64;
2577 case BFD_RELOC_32_PCREL:
2578 return &elf_mips_gnu_pcrel32;
2579 }
2580 }
2581
2582 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2583
2584 static reloc_howto_type *
2585 mips_rtype_to_howto (r_type)
2586 unsigned int r_type;
2587 {
2588 switch (r_type)
2589 {
2590 case R_MIPS16_26:
2591 return &elf_mips16_jump_howto;
2592 break;
2593 case R_MIPS16_GPREL:
2594 return &elf_mips16_gprel_howto;
2595 break;
2596 case R_MIPS_GNU_VTINHERIT:
2597 return &elf_mips_gnu_vtinherit_howto;
2598 break;
2599 case R_MIPS_GNU_VTENTRY:
2600 return &elf_mips_gnu_vtentry_howto;
2601 break;
2602 case R_MIPS_GNU_REL_HI16:
2603 return &elf_mips_gnu_rel_hi16;
2604 break;
2605 case R_MIPS_GNU_REL_LO16:
2606 return &elf_mips_gnu_rel_lo16;
2607 break;
2608 case R_MIPS_GNU_REL16_S2:
2609 return &elf_mips_gnu_rel16_s2;
2610 break;
2611 case R_MIPS_PC64:
2612 return &elf_mips_gnu_pcrel64;
2613 break;
2614 case R_MIPS_PC32:
2615 return &elf_mips_gnu_pcrel32;
2616 break;
2617
2618 default:
2619 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2620 return &elf_mips_howto_table_rel[r_type];
2621 break;
2622 }
2623 }
2624
2625 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2626
2627 static void
2628 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2629 bfd *abfd;
2630 arelent *cache_ptr;
2631 Elf32_Internal_Rel *dst;
2632 {
2633 unsigned int r_type;
2634
2635 r_type = ELF32_R_TYPE (dst->r_info);
2636 cache_ptr->howto = mips_rtype_to_howto (r_type);
2637
2638 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2639 value for the object file. We get the addend now, rather than
2640 when we do the relocation, because the symbol manipulations done
2641 by the linker may cause us to lose track of the input BFD. */
2642 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2643 && (r_type == (unsigned int) R_MIPS_GPREL16
2644 || r_type == (unsigned int) R_MIPS_LITERAL))
2645 cache_ptr->addend = elf_gp (abfd);
2646 }
2647
2648 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2649
2650 static void
2651 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2652 bfd *abfd;
2653 arelent *cache_ptr;
2654 Elf32_Internal_Rela *dst;
2655 {
2656 /* Since an Elf32_Internal_Rel is an initial prefix of an
2657 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2658 above. */
2659 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2660
2661 /* If we ever need to do any extra processing with dst->r_addend
2662 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2663 }
2664 \f
2665 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2666 routines swap this structure in and out. They are used outside of
2667 BFD, so they are globally visible. */
2668
2669 void
2670 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2671 bfd *abfd;
2672 const Elf32_External_RegInfo *ex;
2673 Elf32_RegInfo *in;
2674 {
2675 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2676 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2677 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2678 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2679 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2680 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2681 }
2682
2683 void
2684 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2685 bfd *abfd;
2686 const Elf32_RegInfo *in;
2687 Elf32_External_RegInfo *ex;
2688 {
2689 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2690 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2691 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2692 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2693 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2694 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2695 }
2696
2697 /* In the 64 bit ABI, the .MIPS.options section holds register
2698 information in an Elf64_Reginfo structure. These routines swap
2699 them in and out. They are globally visible because they are used
2700 outside of BFD. These routines are here so that gas can call them
2701 without worrying about whether the 64 bit ABI has been included. */
2702
2703 void
2704 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2705 bfd *abfd;
2706 const Elf64_External_RegInfo *ex;
2707 Elf64_Internal_RegInfo *in;
2708 {
2709 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2710 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2711 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2712 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2713 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2714 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2715 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2716 }
2717
2718 void
2719 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2720 bfd *abfd;
2721 const Elf64_Internal_RegInfo *in;
2722 Elf64_External_RegInfo *ex;
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2726 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2727 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2728 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2729 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2730 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2731 }
2732
2733 /* Swap an entry in a .gptab section. Note that these routines rely
2734 on the equivalence of the two elements of the union. */
2735
2736 static void
2737 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2738 bfd *abfd;
2739 const Elf32_External_gptab *ex;
2740 Elf32_gptab *in;
2741 {
2742 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2743 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2744 }
2745
2746 static void
2747 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2748 bfd *abfd;
2749 const Elf32_gptab *in;
2750 Elf32_External_gptab *ex;
2751 {
2752 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2753 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2754 }
2755
2756 static void
2757 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2758 bfd *abfd;
2759 const Elf32_compact_rel *in;
2760 Elf32_External_compact_rel *ex;
2761 {
2762 H_PUT_32 (abfd, in->id1, ex->id1);
2763 H_PUT_32 (abfd, in->num, ex->num);
2764 H_PUT_32 (abfd, in->id2, ex->id2);
2765 H_PUT_32 (abfd, in->offset, ex->offset);
2766 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2767 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2768 }
2769
2770 static void
2771 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2772 bfd *abfd;
2773 const Elf32_crinfo *in;
2774 Elf32_External_crinfo *ex;
2775 {
2776 unsigned long l;
2777
2778 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2779 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2780 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2781 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2782 H_PUT_32 (abfd, l, ex->info);
2783 H_PUT_32 (abfd, in->konst, ex->konst);
2784 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2785 }
2786
2787 /* Swap in an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_in (abfd, ex, in)
2791 bfd *abfd;
2792 const Elf_External_Options *ex;
2793 Elf_Internal_Options *in;
2794 {
2795 in->kind = H_GET_8 (abfd, ex->kind);
2796 in->size = H_GET_8 (abfd, ex->size);
2797 in->section = H_GET_16 (abfd, ex->section);
2798 in->info = H_GET_32 (abfd, ex->info);
2799 }
2800
2801 /* Swap out an options header. */
2802
2803 void
2804 bfd_mips_elf_swap_options_out (abfd, in, ex)
2805 bfd *abfd;
2806 const Elf_Internal_Options *in;
2807 Elf_External_Options *ex;
2808 {
2809 H_PUT_8 (abfd, in->kind, ex->kind);
2810 H_PUT_8 (abfd, in->size, ex->size);
2811 H_PUT_16 (abfd, in->section, ex->section);
2812 H_PUT_32 (abfd, in->info, ex->info);
2813 }
2814 #if 0
2815 /* Swap in an MSYM entry. */
2816
2817 static void
2818 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2819 bfd *abfd;
2820 const Elf32_External_Msym *ex;
2821 Elf32_Internal_Msym *in;
2822 {
2823 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2824 in->ms_info = H_GET_32 (abfd, ex->ms_info);
2825 }
2826 #endif
2827 /* Swap out an MSYM entry. */
2828
2829 static void
2830 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2831 bfd *abfd;
2832 const Elf32_Internal_Msym *in;
2833 Elf32_External_Msym *ex;
2834 {
2835 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2836 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
2837 }
2838 \f
2839 /* Determine whether a symbol is global for the purposes of splitting
2840 the symbol table into global symbols and local symbols. At least
2841 on Irix 5, this split must be between section symbols and all other
2842 symbols. On most ELF targets the split is between static symbols
2843 and externally visible symbols. */
2844
2845 static boolean
2846 mips_elf_sym_is_global (abfd, sym)
2847 bfd *abfd ATTRIBUTE_UNUSED;
2848 asymbol *sym;
2849 {
2850 if (SGI_COMPAT (abfd))
2851 return (sym->flags & BSF_SECTION_SYM) == 0;
2852 else
2853 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2854 || bfd_is_und_section (bfd_get_section (sym))
2855 || bfd_is_com_section (bfd_get_section (sym)));
2856 }
2857 \f
2858 /* Set the right machine number for a MIPS ELF file. This is used for
2859 both the 32-bit and the 64-bit ABI. */
2860
2861 boolean
2862 _bfd_mips_elf_object_p (abfd)
2863 bfd *abfd;
2864 {
2865 /* Irix 5 and 6 are broken. Object file symbol tables are not always
2866 sorted correctly such that local symbols precede global symbols,
2867 and the sh_info field in the symbol table is not always right. */
2868 if (SGI_COMPAT(abfd))
2869 elf_bad_symtab (abfd) = true;
2870
2871 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2872 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2873 return true;
2874 }
2875
2876 /* The final processing done just before writing out a MIPS ELF object
2877 file. This gets the MIPS architecture right based on the machine
2878 number. This is used by both the 32-bit and the 64-bit ABI. */
2879
2880 void
2881 _bfd_mips_elf_final_write_processing (abfd, linker)
2882 bfd *abfd;
2883 boolean linker ATTRIBUTE_UNUSED;
2884 {
2885 unsigned long val;
2886 unsigned int i;
2887 Elf_Internal_Shdr **hdrpp;
2888 const char *name;
2889 asection *sec;
2890
2891 switch (bfd_get_mach (abfd))
2892 {
2893 default:
2894 case bfd_mach_mips3000:
2895 val = E_MIPS_ARCH_1;
2896 break;
2897
2898 case bfd_mach_mips3900:
2899 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2900 break;
2901
2902 case bfd_mach_mips6000:
2903 val = E_MIPS_ARCH_2;
2904 break;
2905
2906 case bfd_mach_mips4000:
2907 case bfd_mach_mips4300:
2908 case bfd_mach_mips4400:
2909 case bfd_mach_mips4600:
2910 val = E_MIPS_ARCH_3;
2911 break;
2912
2913 case bfd_mach_mips4010:
2914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2915 break;
2916
2917 case bfd_mach_mips4100:
2918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2919 break;
2920
2921 case bfd_mach_mips4111:
2922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2923 break;
2924
2925 case bfd_mach_mips4650:
2926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2927 break;
2928
2929 case bfd_mach_mips5000:
2930 case bfd_mach_mips8000:
2931 case bfd_mach_mips10000:
2932 case bfd_mach_mips12000:
2933 val = E_MIPS_ARCH_4;
2934 break;
2935
2936 case bfd_mach_mips5:
2937 val = E_MIPS_ARCH_5;
2938 break;
2939
2940 case bfd_mach_mips_sb1:
2941 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2942 break;
2943
2944 case bfd_mach_mipsisa32:
2945 val = E_MIPS_ARCH_32;
2946 break;
2947
2948 case bfd_mach_mipsisa64:
2949 val = E_MIPS_ARCH_64;
2950 }
2951
2952 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2953 elf_elfheader (abfd)->e_flags |= val;
2954
2955 /* Set the sh_info field for .gptab sections and other appropriate
2956 info for each special section. */
2957 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2958 i < elf_numsections (abfd);
2959 i++, hdrpp++)
2960 {
2961 switch ((*hdrpp)->sh_type)
2962 {
2963 case SHT_MIPS_MSYM:
2964 case SHT_MIPS_LIBLIST:
2965 sec = bfd_get_section_by_name (abfd, ".dynstr");
2966 if (sec != NULL)
2967 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2968 break;
2969
2970 case SHT_MIPS_GPTAB:
2971 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2972 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2973 BFD_ASSERT (name != NULL
2974 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2975 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2976 BFD_ASSERT (sec != NULL);
2977 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2978 break;
2979
2980 case SHT_MIPS_CONTENT:
2981 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2982 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2983 BFD_ASSERT (name != NULL
2984 && strncmp (name, ".MIPS.content",
2985 sizeof ".MIPS.content" - 1) == 0);
2986 sec = bfd_get_section_by_name (abfd,
2987 name + sizeof ".MIPS.content" - 1);
2988 BFD_ASSERT (sec != NULL);
2989 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2990 break;
2991
2992 case SHT_MIPS_SYMBOL_LIB:
2993 sec = bfd_get_section_by_name (abfd, ".dynsym");
2994 if (sec != NULL)
2995 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2996 sec = bfd_get_section_by_name (abfd, ".liblist");
2997 if (sec != NULL)
2998 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2999 break;
3000
3001 case SHT_MIPS_EVENTS:
3002 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
3003 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
3004 BFD_ASSERT (name != NULL);
3005 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
3006 sec = bfd_get_section_by_name (abfd,
3007 name + sizeof ".MIPS.events" - 1);
3008 else
3009 {
3010 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
3011 sizeof ".MIPS.post_rel" - 1) == 0);
3012 sec = bfd_get_section_by_name (abfd,
3013 (name
3014 + sizeof ".MIPS.post_rel" - 1));
3015 }
3016 BFD_ASSERT (sec != NULL);
3017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3018 break;
3019
3020 }
3021 }
3022 }
3023 \f
3024 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
3025
3026 boolean
3027 _bfd_mips_elf_set_private_flags (abfd, flags)
3028 bfd *abfd;
3029 flagword flags;
3030 {
3031 BFD_ASSERT (!elf_flags_init (abfd)
3032 || elf_elfheader (abfd)->e_flags == flags);
3033
3034 elf_elfheader (abfd)->e_flags = flags;
3035 elf_flags_init (abfd) = true;
3036 return true;
3037 }
3038
3039 /* Merge backend specific data from an object file to the output
3040 object file when linking. */
3041
3042 boolean
3043 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
3044 bfd *ibfd;
3045 bfd *obfd;
3046 {
3047 flagword old_flags;
3048 flagword new_flags;
3049 boolean ok;
3050 boolean null_input_bfd = true;
3051 asection *sec;
3052
3053 /* Check if we have the same endianess */
3054 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
3055 return false;
3056
3057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3059 return true;
3060
3061 new_flags = elf_elfheader (ibfd)->e_flags;
3062 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
3063 old_flags = elf_elfheader (obfd)->e_flags;
3064
3065 if (! elf_flags_init (obfd))
3066 {
3067 elf_flags_init (obfd) = true;
3068 elf_elfheader (obfd)->e_flags = new_flags;
3069 elf_elfheader (obfd)->e_ident[EI_CLASS]
3070 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
3071
3072 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3073 && bfd_get_arch_info (obfd)->the_default)
3074 {
3075 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3076 bfd_get_mach (ibfd)))
3077 return false;
3078 }
3079
3080 return true;
3081 }
3082
3083 /* Check flag compatibility. */
3084
3085 new_flags &= ~EF_MIPS_NOREORDER;
3086 old_flags &= ~EF_MIPS_NOREORDER;
3087
3088 if (new_flags == old_flags)
3089 return true;
3090
3091 /* Check to see if the input BFD actually contains any sections.
3092 If not, its flags may not have been initialised either, but it cannot
3093 actually cause any incompatibility. */
3094 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3095 {
3096 /* Ignore synthetic sections and empty .text, .data and .bss sections
3097 which are automatically generated by gas. */
3098 if (strcmp (sec->name, ".reginfo")
3099 && strcmp (sec->name, ".mdebug")
3100 && ((!strcmp (sec->name, ".text")
3101 || !strcmp (sec->name, ".data")
3102 || !strcmp (sec->name, ".bss"))
3103 && sec->_raw_size != 0))
3104 {
3105 null_input_bfd = false;
3106 break;
3107 }
3108 }
3109 if (null_input_bfd)
3110 return true;
3111
3112 ok = true;
3113
3114 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
3115 {
3116 new_flags &= ~EF_MIPS_PIC;
3117 old_flags &= ~EF_MIPS_PIC;
3118 (*_bfd_error_handler)
3119 (_("%s: linking PIC files with non-PIC files"),
3120 bfd_archive_filename (ibfd));
3121 ok = false;
3122 }
3123
3124 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
3125 {
3126 new_flags &= ~EF_MIPS_CPIC;
3127 old_flags &= ~EF_MIPS_CPIC;
3128 (*_bfd_error_handler)
3129 (_("%s: linking abicalls files with non-abicalls files"),
3130 bfd_archive_filename (ibfd));
3131 ok = false;
3132 }
3133
3134 /* Compare the ISA's. */
3135 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
3136 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
3137 {
3138 int new_mach = new_flags & EF_MIPS_MACH;
3139 int old_mach = old_flags & EF_MIPS_MACH;
3140 int new_isa = elf_mips_isa (new_flags);
3141 int old_isa = elf_mips_isa (old_flags);
3142
3143 /* If either has no machine specified, just compare the general isa's.
3144 Some combinations of machines are ok, if the isa's match. */
3145 if (! new_mach
3146 || ! old_mach
3147 || new_mach == old_mach
3148 )
3149 {
3150 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
3151 using 64-bit ISAs. They will normally use the same data sizes
3152 and calling conventions. */
3153
3154 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
3155 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
3156 {
3157 (*_bfd_error_handler)
3158 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
3159 bfd_archive_filename (ibfd), new_isa, old_isa);
3160 ok = false;
3161 }
3162 }
3163
3164 else
3165 {
3166 (*_bfd_error_handler)
3167 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
3168 bfd_archive_filename (ibfd),
3169 elf_mips_mach (new_flags),
3170 elf_mips_mach (old_flags));
3171 ok = false;
3172 }
3173
3174 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3175 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3176 }
3177
3178 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
3179 does set EI_CLASS differently from any 32-bit ABI. */
3180 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
3181 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3182 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3183 {
3184 /* Only error if both are set (to different values). */
3185 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
3186 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3187 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3188 {
3189 (*_bfd_error_handler)
3190 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
3191 bfd_archive_filename (ibfd),
3192 elf_mips_abi_name (ibfd),
3193 elf_mips_abi_name (obfd));
3194 ok = false;
3195 }
3196 new_flags &= ~EF_MIPS_ABI;
3197 old_flags &= ~EF_MIPS_ABI;
3198 }
3199
3200 /* Warn about any other mismatches */
3201 if (new_flags != old_flags)
3202 {
3203 (*_bfd_error_handler)
3204 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3205 bfd_archive_filename (ibfd), (unsigned long) new_flags,
3206 (unsigned long) old_flags);
3207 ok = false;
3208 }
3209
3210 if (! ok)
3211 {
3212 bfd_set_error (bfd_error_bad_value);
3213 return false;
3214 }
3215
3216 return true;
3217 }
3218 \f
3219 boolean
3220 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
3221 bfd *abfd;
3222 PTR ptr;
3223 {
3224 FILE *file = (FILE *) ptr;
3225
3226 BFD_ASSERT (abfd != NULL && ptr != NULL);
3227
3228 /* Print normal ELF private data. */
3229 _bfd_elf_print_private_bfd_data (abfd, ptr);
3230
3231 /* xgettext:c-format */
3232 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
3233
3234 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
3235 fprintf (file, _(" [abi=O32]"));
3236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
3237 fprintf (file, _(" [abi=O64]"));
3238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
3239 fprintf (file, _(" [abi=EABI32]"));
3240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
3241 fprintf (file, _(" [abi=EABI64]"));
3242 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
3243 fprintf (file, _(" [abi unknown]"));
3244 else if (ABI_N32_P (abfd))
3245 fprintf (file, _(" [abi=N32]"));
3246 else if (ABI_64_P (abfd))
3247 fprintf (file, _(" [abi=64]"));
3248 else
3249 fprintf (file, _(" [no abi set]"));
3250
3251 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
3252 fprintf (file, _(" [mips1]"));
3253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
3254 fprintf (file, _(" [mips2]"));
3255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
3256 fprintf (file, _(" [mips3]"));
3257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
3258 fprintf (file, _(" [mips4]"));
3259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
3260 fprintf (file, _ (" [mips5]"));
3261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
3262 fprintf (file, _ (" [mips32]"));
3263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
3264 fprintf (file, _ (" [mips64]"));
3265 else
3266 fprintf (file, _(" [unknown ISA]"));
3267
3268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
3269 fprintf (file, _(" [32bitmode]"));
3270 else
3271 fprintf (file, _(" [not 32bitmode]"));
3272
3273 fputc ('\n', file);
3274
3275 return true;
3276 }
3277 \f
3278 /* Handle a MIPS specific section when reading an object file. This
3279 is called when elfcode.h finds a section with an unknown type.
3280 This routine supports both the 32-bit and 64-bit ELF ABI.
3281
3282 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3283 how to. */
3284
3285 boolean
3286 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3287 bfd *abfd;
3288 Elf_Internal_Shdr *hdr;
3289 char *name;
3290 {
3291 flagword flags = 0;
3292
3293 /* There ought to be a place to keep ELF backend specific flags, but
3294 at the moment there isn't one. We just keep track of the
3295 sections by their name, instead. Fortunately, the ABI gives
3296 suggested names for all the MIPS specific sections, so we will
3297 probably get away with this. */
3298 switch (hdr->sh_type)
3299 {
3300 case SHT_MIPS_LIBLIST:
3301 if (strcmp (name, ".liblist") != 0)
3302 return false;
3303 break;
3304 case SHT_MIPS_MSYM:
3305 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
3306 return false;
3307 break;
3308 case SHT_MIPS_CONFLICT:
3309 if (strcmp (name, ".conflict") != 0)
3310 return false;
3311 break;
3312 case SHT_MIPS_GPTAB:
3313 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3314 return false;
3315 break;
3316 case SHT_MIPS_UCODE:
3317 if (strcmp (name, ".ucode") != 0)
3318 return false;
3319 break;
3320 case SHT_MIPS_DEBUG:
3321 if (strcmp (name, ".mdebug") != 0)
3322 return false;
3323 flags = SEC_DEBUGGING;
3324 break;
3325 case SHT_MIPS_REGINFO:
3326 if (strcmp (name, ".reginfo") != 0
3327 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3328 return false;
3329 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3330 break;
3331 case SHT_MIPS_IFACE:
3332 if (strcmp (name, ".MIPS.interfaces") != 0)
3333 return false;
3334 break;
3335 case SHT_MIPS_CONTENT:
3336 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3337 return false;
3338 break;
3339 case SHT_MIPS_OPTIONS:
3340 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3341 return false;
3342 break;
3343 case SHT_MIPS_DWARF:
3344 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3345 return false;
3346 break;
3347 case SHT_MIPS_SYMBOL_LIB:
3348 if (strcmp (name, ".MIPS.symlib") != 0)
3349 return false;
3350 break;
3351 case SHT_MIPS_EVENTS:
3352 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3353 && strncmp (name, ".MIPS.post_rel",
3354 sizeof ".MIPS.post_rel" - 1) != 0)
3355 return false;
3356 break;
3357 default:
3358 return false;
3359 }
3360
3361 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3362 return false;
3363
3364 if (flags)
3365 {
3366 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3367 (bfd_get_section_flags (abfd,
3368 hdr->bfd_section)
3369 | flags)))
3370 return false;
3371 }
3372
3373 /* FIXME: We should record sh_info for a .gptab section. */
3374
3375 /* For a .reginfo section, set the gp value in the tdata information
3376 from the contents of this section. We need the gp value while
3377 processing relocs, so we just get it now. The .reginfo section
3378 is not used in the 64-bit MIPS ELF ABI. */
3379 if (hdr->sh_type == SHT_MIPS_REGINFO)
3380 {
3381 Elf32_External_RegInfo ext;
3382 Elf32_RegInfo s;
3383
3384 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3385 (file_ptr) 0,
3386 (bfd_size_type) sizeof ext))
3387 return false;
3388 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3389 elf_gp (abfd) = s.ri_gp_value;
3390 }
3391
3392 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3393 set the gp value based on what we find. We may see both
3394 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3395 they should agree. */
3396 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3397 {
3398 bfd_byte *contents, *l, *lend;
3399
3400 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3401 if (contents == NULL)
3402 return false;
3403 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3404 (file_ptr) 0, hdr->sh_size))
3405 {
3406 free (contents);
3407 return false;
3408 }
3409 l = contents;
3410 lend = contents + hdr->sh_size;
3411 while (l + sizeof (Elf_External_Options) <= lend)
3412 {
3413 Elf_Internal_Options intopt;
3414
3415 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3416 &intopt);
3417 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3418 {
3419 Elf64_Internal_RegInfo intreg;
3420
3421 bfd_mips_elf64_swap_reginfo_in
3422 (abfd,
3423 ((Elf64_External_RegInfo *)
3424 (l + sizeof (Elf_External_Options))),
3425 &intreg);
3426 elf_gp (abfd) = intreg.ri_gp_value;
3427 }
3428 else if (intopt.kind == ODK_REGINFO)
3429 {
3430 Elf32_RegInfo intreg;
3431
3432 bfd_mips_elf32_swap_reginfo_in
3433 (abfd,
3434 ((Elf32_External_RegInfo *)
3435 (l + sizeof (Elf_External_Options))),
3436 &intreg);
3437 elf_gp (abfd) = intreg.ri_gp_value;
3438 }
3439 l += intopt.size;
3440 }
3441 free (contents);
3442 }
3443
3444 return true;
3445 }
3446
3447 /* Set the correct type for a MIPS ELF section. We do this by the
3448 section name, which is a hack, but ought to work. This routine is
3449 used by both the 32-bit and the 64-bit ABI. */
3450
3451 boolean
3452 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
3453 bfd *abfd;
3454 Elf32_Internal_Shdr *hdr;
3455 asection *sec;
3456 {
3457 register const char *name;
3458
3459 name = bfd_get_section_name (abfd, sec);
3460
3461 if (strcmp (name, ".liblist") == 0)
3462 {
3463 hdr->sh_type = SHT_MIPS_LIBLIST;
3464 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3465 /* The sh_link field is set in final_write_processing. */
3466 }
3467 else if (strcmp (name, ".conflict") == 0)
3468 hdr->sh_type = SHT_MIPS_CONFLICT;
3469 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3470 {
3471 hdr->sh_type = SHT_MIPS_GPTAB;
3472 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3473 /* The sh_info field is set in final_write_processing. */
3474 }
3475 else if (strcmp (name, ".ucode") == 0)
3476 hdr->sh_type = SHT_MIPS_UCODE;
3477 else if (strcmp (name, ".mdebug") == 0)
3478 {
3479 hdr->sh_type = SHT_MIPS_DEBUG;
3480 /* In a shared object on Irix 5.3, the .mdebug section has an
3481 entsize of 0. FIXME: Does this matter? */
3482 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3483 hdr->sh_entsize = 0;
3484 else
3485 hdr->sh_entsize = 1;
3486 }
3487 else if (strcmp (name, ".reginfo") == 0)
3488 {
3489 hdr->sh_type = SHT_MIPS_REGINFO;
3490 /* In a shared object on Irix 5.3, the .reginfo section has an
3491 entsize of 0x18. FIXME: Does this matter? */
3492 if (SGI_COMPAT (abfd))
3493 {
3494 if ((abfd->flags & DYNAMIC) != 0)
3495 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3496 else
3497 hdr->sh_entsize = 1;
3498 }
3499 else
3500 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3501 }
3502 else if (SGI_COMPAT (abfd)
3503 && (strcmp (name, ".hash") == 0
3504 || strcmp (name, ".dynamic") == 0
3505 || strcmp (name, ".dynstr") == 0))
3506 {
3507 if (SGI_COMPAT (abfd))
3508 hdr->sh_entsize = 0;
3509 #if 0
3510 /* This isn't how the Irix 6 linker behaves. */
3511 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3512 #endif
3513 }
3514 else if (strcmp (name, ".got") == 0
3515 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3516 || strcmp (name, ".sdata") == 0
3517 || strcmp (name, ".sbss") == 0
3518 || strcmp (name, ".lit4") == 0
3519 || strcmp (name, ".lit8") == 0)
3520 hdr->sh_flags |= SHF_MIPS_GPREL;
3521 else if (strcmp (name, ".MIPS.interfaces") == 0)
3522 {
3523 hdr->sh_type = SHT_MIPS_IFACE;
3524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3525 }
3526 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3527 {
3528 hdr->sh_type = SHT_MIPS_CONTENT;
3529 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3530 /* The sh_info field is set in final_write_processing. */
3531 }
3532 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3533 {
3534 hdr->sh_type = SHT_MIPS_OPTIONS;
3535 hdr->sh_entsize = 1;
3536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3537 }
3538 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3539 hdr->sh_type = SHT_MIPS_DWARF;
3540 else if (strcmp (name, ".MIPS.symlib") == 0)
3541 {
3542 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3543 /* The sh_link and sh_info fields are set in
3544 final_write_processing. */
3545 }
3546 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3547 || strncmp (name, ".MIPS.post_rel",
3548 sizeof ".MIPS.post_rel" - 1) == 0)
3549 {
3550 hdr->sh_type = SHT_MIPS_EVENTS;
3551 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3552 /* The sh_link field is set in final_write_processing. */
3553 }
3554 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3555 {
3556 hdr->sh_type = SHT_MIPS_MSYM;
3557 hdr->sh_flags |= SHF_ALLOC;
3558 hdr->sh_entsize = 8;
3559 }
3560
3561 /* The generic elf_fake_sections will set up REL_HDR using the
3562 default kind of relocations. But, we may actually need both
3563 kinds of relocations, so we set up the second header here. */
3564 if ((sec->flags & SEC_RELOC) != 0)
3565 {
3566 struct bfd_elf_section_data *esd;
3567 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3568
3569 esd = elf_section_data (sec);
3570 BFD_ASSERT (esd->rel_hdr2 == NULL);
3571 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3572 if (!esd->rel_hdr2)
3573 return false;
3574 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3575 !elf_section_data (sec)->use_rela_p);
3576 }
3577
3578 return true;
3579 }
3580
3581 /* Given a BFD section, try to locate the corresponding ELF section
3582 index. This is used by both the 32-bit and the 64-bit ABI.
3583 Actually, it's not clear to me that the 64-bit ABI supports these,
3584 but for non-PIC objects we will certainly want support for at least
3585 the .scommon section. */
3586
3587 boolean
3588 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3589 bfd *abfd ATTRIBUTE_UNUSED;
3590 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3591 asection *sec;
3592 int *retval;
3593 {
3594 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3595 {
3596 *retval = SHN_MIPS_SCOMMON;
3597 return true;
3598 }
3599 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3600 {
3601 *retval = SHN_MIPS_ACOMMON;
3602 return true;
3603 }
3604 return false;
3605 }
3606
3607 /* When are writing out the .options or .MIPS.options section,
3608 remember the bytes we are writing out, so that we can install the
3609 GP value in the section_processing routine. */
3610
3611 boolean
3612 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3613 bfd *abfd;
3614 sec_ptr section;
3615 PTR location;
3616 file_ptr offset;
3617 bfd_size_type count;
3618 {
3619 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3620 {
3621 bfd_byte *c;
3622
3623 if (elf_section_data (section) == NULL)
3624 {
3625 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3626 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
3627 if (elf_section_data (section) == NULL)
3628 return false;
3629 }
3630 c = (bfd_byte *) elf_section_data (section)->tdata;
3631 if (c == NULL)
3632 {
3633 bfd_size_type size;
3634
3635 if (section->_cooked_size != 0)
3636 size = section->_cooked_size;
3637 else
3638 size = section->_raw_size;
3639 c = (bfd_byte *) bfd_zalloc (abfd, size);
3640 if (c == NULL)
3641 return false;
3642 elf_section_data (section)->tdata = (PTR) c;
3643 }
3644
3645 memcpy (c + offset, location, (size_t) count);
3646 }
3647
3648 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3649 count);
3650 }
3651
3652 /* Work over a section just before writing it out. This routine is
3653 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3654 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3655 a better way. */
3656
3657 boolean
3658 _bfd_mips_elf_section_processing (abfd, hdr)
3659 bfd *abfd;
3660 Elf_Internal_Shdr *hdr;
3661 {
3662 if (hdr->sh_type == SHT_MIPS_REGINFO
3663 && hdr->sh_size > 0)
3664 {
3665 bfd_byte buf[4];
3666
3667 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3668 BFD_ASSERT (hdr->contents == NULL);
3669
3670 if (bfd_seek (abfd,
3671 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3672 SEEK_SET) != 0)
3673 return false;
3674 H_PUT_32 (abfd, elf_gp (abfd), buf);
3675 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3676 return false;
3677 }
3678
3679 if (hdr->sh_type == SHT_MIPS_OPTIONS
3680 && hdr->bfd_section != NULL
3681 && elf_section_data (hdr->bfd_section) != NULL
3682 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3683 {
3684 bfd_byte *contents, *l, *lend;
3685
3686 /* We stored the section contents in the elf_section_data tdata
3687 field in the set_section_contents routine. We save the
3688 section contents so that we don't have to read them again.
3689 At this point we know that elf_gp is set, so we can look
3690 through the section contents to see if there is an
3691 ODK_REGINFO structure. */
3692
3693 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3694 l = contents;
3695 lend = contents + hdr->sh_size;
3696 while (l + sizeof (Elf_External_Options) <= lend)
3697 {
3698 Elf_Internal_Options intopt;
3699
3700 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3701 &intopt);
3702 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3703 {
3704 bfd_byte buf[8];
3705
3706 if (bfd_seek (abfd,
3707 (hdr->sh_offset
3708 + (l - contents)
3709 + sizeof (Elf_External_Options)
3710 + (sizeof (Elf64_External_RegInfo) - 8)),
3711 SEEK_SET) != 0)
3712 return false;
3713 H_PUT_64 (abfd, elf_gp (abfd), buf);
3714 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3715 return false;
3716 }
3717 else if (intopt.kind == ODK_REGINFO)
3718 {
3719 bfd_byte buf[4];
3720
3721 if (bfd_seek (abfd,
3722 (hdr->sh_offset
3723 + (l - contents)
3724 + sizeof (Elf_External_Options)
3725 + (sizeof (Elf32_External_RegInfo) - 4)),
3726 SEEK_SET) != 0)
3727 return false;
3728 H_PUT_32 (abfd, elf_gp (abfd), buf);
3729 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3730 return false;
3731 }
3732 l += intopt.size;
3733 }
3734 }
3735
3736 if (hdr->bfd_section != NULL)
3737 {
3738 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3739
3740 if (strcmp (name, ".sdata") == 0
3741 || strcmp (name, ".lit8") == 0
3742 || strcmp (name, ".lit4") == 0)
3743 {
3744 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3745 hdr->sh_type = SHT_PROGBITS;
3746 }
3747 else if (strcmp (name, ".sbss") == 0)
3748 {
3749 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3750 hdr->sh_type = SHT_NOBITS;
3751 }
3752 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3753 {
3754 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3755 hdr->sh_type = SHT_PROGBITS;
3756 }
3757 else if (strcmp (name, ".compact_rel") == 0)
3758 {
3759 hdr->sh_flags = 0;
3760 hdr->sh_type = SHT_PROGBITS;
3761 }
3762 else if (strcmp (name, ".rtproc") == 0)
3763 {
3764 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3765 {
3766 unsigned int adjust;
3767
3768 adjust = hdr->sh_size % hdr->sh_addralign;
3769 if (adjust != 0)
3770 hdr->sh_size += hdr->sh_addralign - adjust;
3771 }
3772 }
3773 }
3774
3775 return true;
3776 }
3777 \f
3778 /* MIPS ELF uses two common sections. One is the usual one, and the
3779 other is for small objects. All the small objects are kept
3780 together, and then referenced via the gp pointer, which yields
3781 faster assembler code. This is what we use for the small common
3782 section. This approach is copied from ecoff.c. */
3783 static asection mips_elf_scom_section;
3784 static asymbol mips_elf_scom_symbol;
3785 static asymbol *mips_elf_scom_symbol_ptr;
3786
3787 /* MIPS ELF also uses an acommon section, which represents an
3788 allocated common symbol which may be overridden by a
3789 definition in a shared library. */
3790 static asection mips_elf_acom_section;
3791 static asymbol mips_elf_acom_symbol;
3792 static asymbol *mips_elf_acom_symbol_ptr;
3793
3794 /* Handle the special MIPS section numbers that a symbol may use.
3795 This is used for both the 32-bit and the 64-bit ABI. */
3796
3797 void
3798 _bfd_mips_elf_symbol_processing (abfd, asym)
3799 bfd *abfd;
3800 asymbol *asym;
3801 {
3802 elf_symbol_type *elfsym;
3803
3804 elfsym = (elf_symbol_type *) asym;
3805 switch (elfsym->internal_elf_sym.st_shndx)
3806 {
3807 case SHN_MIPS_ACOMMON:
3808 /* This section is used in a dynamically linked executable file.
3809 It is an allocated common section. The dynamic linker can
3810 either resolve these symbols to something in a shared
3811 library, or it can just leave them here. For our purposes,
3812 we can consider these symbols to be in a new section. */
3813 if (mips_elf_acom_section.name == NULL)
3814 {
3815 /* Initialize the acommon section. */
3816 mips_elf_acom_section.name = ".acommon";
3817 mips_elf_acom_section.flags = SEC_ALLOC;
3818 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3819 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3820 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3821 mips_elf_acom_symbol.name = ".acommon";
3822 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3823 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3824 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3825 }
3826 asym->section = &mips_elf_acom_section;
3827 break;
3828
3829 case SHN_COMMON:
3830 /* Common symbols less than the GP size are automatically
3831 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3832 if (asym->value > elf_gp_size (abfd)
3833 || IRIX_COMPAT (abfd) == ict_irix6)
3834 break;
3835 /* Fall through. */
3836 case SHN_MIPS_SCOMMON:
3837 if (mips_elf_scom_section.name == NULL)
3838 {
3839 /* Initialize the small common section. */
3840 mips_elf_scom_section.name = ".scommon";
3841 mips_elf_scom_section.flags = SEC_IS_COMMON;
3842 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3843 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3844 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3845 mips_elf_scom_symbol.name = ".scommon";
3846 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3847 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3848 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3849 }
3850 asym->section = &mips_elf_scom_section;
3851 asym->value = elfsym->internal_elf_sym.st_size;
3852 break;
3853
3854 case SHN_MIPS_SUNDEFINED:
3855 asym->section = bfd_und_section_ptr;
3856 break;
3857
3858 #if 0 /* for SGI_COMPAT */
3859 case SHN_MIPS_TEXT:
3860 asym->section = mips_elf_text_section_ptr;
3861 break;
3862
3863 case SHN_MIPS_DATA:
3864 asym->section = mips_elf_data_section_ptr;
3865 break;
3866 #endif
3867 }
3868 }
3869 \f
3870 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3871 segments. */
3872
3873 int
3874 _bfd_mips_elf_additional_program_headers (abfd)
3875 bfd *abfd;
3876 {
3877 asection *s;
3878 int ret = 0;
3879
3880 /* See if we need a PT_MIPS_REGINFO segment. */
3881 s = bfd_get_section_by_name (abfd, ".reginfo");
3882 if (s && (s->flags & SEC_LOAD))
3883 ++ret;
3884
3885 /* See if we need a PT_MIPS_OPTIONS segment. */
3886 if (IRIX_COMPAT (abfd) == ict_irix6
3887 && bfd_get_section_by_name (abfd,
3888 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3889 ++ret;
3890
3891 /* See if we need a PT_MIPS_RTPROC segment. */
3892 if (IRIX_COMPAT (abfd) == ict_irix5
3893 && bfd_get_section_by_name (abfd, ".dynamic")
3894 && bfd_get_section_by_name (abfd, ".mdebug"))
3895 ++ret;
3896
3897 return ret;
3898 }
3899
3900 /* Modify the segment map for an Irix 5 executable. */
3901
3902 boolean
3903 _bfd_mips_elf_modify_segment_map (abfd)
3904 bfd *abfd;
3905 {
3906 asection *s;
3907 struct elf_segment_map *m, **pm;
3908 bfd_size_type amt;
3909
3910 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3911 segment. */
3912 s = bfd_get_section_by_name (abfd, ".reginfo");
3913 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3914 {
3915 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3916 if (m->p_type == PT_MIPS_REGINFO)
3917 break;
3918 if (m == NULL)
3919 {
3920 amt = sizeof *m;
3921 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3922 if (m == NULL)
3923 return false;
3924
3925 m->p_type = PT_MIPS_REGINFO;
3926 m->count = 1;
3927 m->sections[0] = s;
3928
3929 /* We want to put it after the PHDR and INTERP segments. */
3930 pm = &elf_tdata (abfd)->segment_map;
3931 while (*pm != NULL
3932 && ((*pm)->p_type == PT_PHDR
3933 || (*pm)->p_type == PT_INTERP))
3934 pm = &(*pm)->next;
3935
3936 m->next = *pm;
3937 *pm = m;
3938 }
3939 }
3940
3941 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3942 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3943 PT_OPTIONS segement immediately following the program header
3944 table. */
3945 if (IRIX_COMPAT (abfd) == ict_irix6)
3946 {
3947 for (s = abfd->sections; s; s = s->next)
3948 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3949 break;
3950
3951 if (s)
3952 {
3953 struct elf_segment_map *options_segment;
3954
3955 /* Usually, there's a program header table. But, sometimes
3956 there's not (like when running the `ld' testsuite). So,
3957 if there's no program header table, we just put the
3958 options segement at the end. */
3959 for (pm = &elf_tdata (abfd)->segment_map;
3960 *pm != NULL;
3961 pm = &(*pm)->next)
3962 if ((*pm)->p_type == PT_PHDR)
3963 break;
3964
3965 amt = sizeof (struct elf_segment_map);
3966 options_segment = bfd_zalloc (abfd, amt);
3967 options_segment->next = *pm;
3968 options_segment->p_type = PT_MIPS_OPTIONS;
3969 options_segment->p_flags = PF_R;
3970 options_segment->p_flags_valid = true;
3971 options_segment->count = 1;
3972 options_segment->sections[0] = s;
3973 *pm = options_segment;
3974 }
3975 }
3976 else
3977 {
3978 if (IRIX_COMPAT (abfd) == ict_irix5)
3979 {
3980 /* If there are .dynamic and .mdebug sections, we make a room
3981 for the RTPROC header. FIXME: Rewrite without section names. */
3982 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3983 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3984 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3985 {
3986 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3987 if (m->p_type == PT_MIPS_RTPROC)
3988 break;
3989 if (m == NULL)
3990 {
3991 amt = sizeof *m;
3992 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3993 if (m == NULL)
3994 return false;
3995
3996 m->p_type = PT_MIPS_RTPROC;
3997
3998 s = bfd_get_section_by_name (abfd, ".rtproc");
3999 if (s == NULL)
4000 {
4001 m->count = 0;
4002 m->p_flags = 0;
4003 m->p_flags_valid = 1;
4004 }
4005 else
4006 {
4007 m->count = 1;
4008 m->sections[0] = s;
4009 }
4010
4011 /* We want to put it after the DYNAMIC segment. */
4012 pm = &elf_tdata (abfd)->segment_map;
4013 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
4014 pm = &(*pm)->next;
4015 if (*pm != NULL)
4016 pm = &(*pm)->next;
4017
4018 m->next = *pm;
4019 *pm = m;
4020 }
4021 }
4022 }
4023 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
4024 .dynstr, .dynsym, and .hash sections, and everything in
4025 between. */
4026 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
4027 pm = &(*pm)->next)
4028 if ((*pm)->p_type == PT_DYNAMIC)
4029 break;
4030 m = *pm;
4031 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
4032 {
4033 /* For a normal mips executable the permissions for the PT_DYNAMIC
4034 segment are read, write and execute. We do that here since
4035 the code in elf.c sets only the read permission. This matters
4036 sometimes for the dynamic linker. */
4037 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4038 {
4039 m->p_flags = PF_R | PF_W | PF_X;
4040 m->p_flags_valid = 1;
4041 }
4042 }
4043 if (m != NULL
4044 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
4045 {
4046 static const char *sec_names[] =
4047 {
4048 ".dynamic", ".dynstr", ".dynsym", ".hash"
4049 };
4050 bfd_vma low, high;
4051 unsigned int i, c;
4052 struct elf_segment_map *n;
4053
4054 low = 0xffffffff;
4055 high = 0;
4056 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
4057 {
4058 s = bfd_get_section_by_name (abfd, sec_names[i]);
4059 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4060 {
4061 bfd_size_type sz;
4062
4063 if (low > s->vma)
4064 low = s->vma;
4065 sz = s->_cooked_size;
4066 if (sz == 0)
4067 sz = s->_raw_size;
4068 if (high < s->vma + sz)
4069 high = s->vma + sz;
4070 }
4071 }
4072
4073 c = 0;
4074 for (s = abfd->sections; s != NULL; s = s->next)
4075 if ((s->flags & SEC_LOAD) != 0
4076 && s->vma >= low
4077 && ((s->vma
4078 + (s->_cooked_size !=
4079 0 ? s->_cooked_size : s->_raw_size)) <= high))
4080 ++c;
4081
4082 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
4083 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4084 if (n == NULL)
4085 return false;
4086 *n = *m;
4087 n->count = c;
4088
4089 i = 0;
4090 for (s = abfd->sections; s != NULL; s = s->next)
4091 {
4092 if ((s->flags & SEC_LOAD) != 0
4093 && s->vma >= low
4094 && ((s->vma
4095 + (s->_cooked_size != 0 ?
4096 s->_cooked_size : s->_raw_size)) <= high))
4097 {
4098 n->sections[i] = s;
4099 ++i;
4100 }
4101 }
4102
4103 *pm = n;
4104 }
4105 }
4106
4107 return true;
4108 }
4109 \f
4110 /* The structure of the runtime procedure descriptor created by the
4111 loader for use by the static exception system. */
4112
4113 typedef struct runtime_pdr {
4114 bfd_vma adr; /* memory address of start of procedure */
4115 long regmask; /* save register mask */
4116 long regoffset; /* save register offset */
4117 long fregmask; /* save floating point register mask */
4118 long fregoffset; /* save floating point register offset */
4119 long frameoffset; /* frame size */
4120 short framereg; /* frame pointer register */
4121 short pcreg; /* offset or reg of return pc */
4122 long irpss; /* index into the runtime string table */
4123 long reserved;
4124 struct exception_info *exception_info;/* pointer to exception array */
4125 } RPDR, *pRPDR;
4126 #define cbRPDR sizeof (RPDR)
4127 #define rpdNil ((pRPDR) 0)
4128
4129 /* Swap RPDR (runtime procedure table entry) for output. */
4130
4131 static void ecoff_swap_rpdr_out
4132 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
4133
4134 static void
4135 ecoff_swap_rpdr_out (abfd, in, ex)
4136 bfd *abfd;
4137 const RPDR *in;
4138 struct rpdr_ext *ex;
4139 {
4140 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
4141 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
4142 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
4143 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
4144 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
4145 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
4146 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
4147
4148 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
4149 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
4150
4151 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
4152 #if 0 /* FIXME */
4153 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
4154 #endif
4155 }
4156 \f
4157 /* Read ECOFF debugging information from a .mdebug section into a
4158 ecoff_debug_info structure. */
4159
4160 boolean
4161 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
4162 bfd *abfd;
4163 asection *section;
4164 struct ecoff_debug_info *debug;
4165 {
4166 HDRR *symhdr;
4167 const struct ecoff_debug_swap *swap;
4168 char *ext_hdr = NULL;
4169
4170 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4171 memset (debug, 0, sizeof (*debug));
4172
4173 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
4174 if (ext_hdr == NULL && swap->external_hdr_size != 0)
4175 goto error_return;
4176
4177 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
4178 swap->external_hdr_size)
4179 == false)
4180 goto error_return;
4181
4182 symhdr = &debug->symbolic_header;
4183 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
4184
4185 /* The symbolic header contains absolute file offsets and sizes to
4186 read. */
4187 #define READ(ptr, offset, count, size, type) \
4188 if (symhdr->count == 0) \
4189 debug->ptr = NULL; \
4190 else \
4191 { \
4192 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
4193 debug->ptr = (type) bfd_malloc (amt); \
4194 if (debug->ptr == NULL) \
4195 goto error_return; \
4196 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
4197 || bfd_bread (debug->ptr, amt, abfd) != amt) \
4198 goto error_return; \
4199 }
4200
4201 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
4202 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
4203 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
4204 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
4205 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
4206 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
4207 union aux_ext *);
4208 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
4209 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
4210 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
4211 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
4212 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
4213 #undef READ
4214
4215 debug->fdr = NULL;
4216 debug->adjust = NULL;
4217
4218 return true;
4219
4220 error_return:
4221 if (ext_hdr != NULL)
4222 free (ext_hdr);
4223 if (debug->line != NULL)
4224 free (debug->line);
4225 if (debug->external_dnr != NULL)
4226 free (debug->external_dnr);
4227 if (debug->external_pdr != NULL)
4228 free (debug->external_pdr);
4229 if (debug->external_sym != NULL)
4230 free (debug->external_sym);
4231 if (debug->external_opt != NULL)
4232 free (debug->external_opt);
4233 if (debug->external_aux != NULL)
4234 free (debug->external_aux);
4235 if (debug->ss != NULL)
4236 free (debug->ss);
4237 if (debug->ssext != NULL)
4238 free (debug->ssext);
4239 if (debug->external_fdr != NULL)
4240 free (debug->external_fdr);
4241 if (debug->external_rfd != NULL)
4242 free (debug->external_rfd);
4243 if (debug->external_ext != NULL)
4244 free (debug->external_ext);
4245 return false;
4246 }
4247 \f
4248 /* MIPS ELF local labels start with '$', not 'L'. */
4249
4250 static boolean
4251 mips_elf_is_local_label_name (abfd, name)
4252 bfd *abfd;
4253 const char *name;
4254 {
4255 if (name[0] == '$')
4256 return true;
4257
4258 /* On Irix 6, the labels go back to starting with '.', so we accept
4259 the generic ELF local label syntax as well. */
4260 return _bfd_elf_is_local_label_name (abfd, name);
4261 }
4262
4263 /* MIPS ELF uses a special find_nearest_line routine in order the
4264 handle the ECOFF debugging information. */
4265
4266 struct mips_elf_find_line
4267 {
4268 struct ecoff_debug_info d;
4269 struct ecoff_find_line i;
4270 };
4271
4272 boolean
4273 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4274 functionname_ptr, line_ptr)
4275 bfd *abfd;
4276 asection *section;
4277 asymbol **symbols;
4278 bfd_vma offset;
4279 const char **filename_ptr;
4280 const char **functionname_ptr;
4281 unsigned int *line_ptr;
4282 {
4283 asection *msec;
4284
4285 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
4286 filename_ptr, functionname_ptr,
4287 line_ptr))
4288 return true;
4289
4290 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
4291 filename_ptr, functionname_ptr,
4292 line_ptr,
4293 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
4294 &elf_tdata (abfd)->dwarf2_find_line_info))
4295 return true;
4296
4297 msec = bfd_get_section_by_name (abfd, ".mdebug");
4298 if (msec != NULL)
4299 {
4300 flagword origflags;
4301 struct mips_elf_find_line *fi;
4302 const struct ecoff_debug_swap * const swap =
4303 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4304
4305 /* If we are called during a link, mips_elf_final_link may have
4306 cleared the SEC_HAS_CONTENTS field. We force it back on here
4307 if appropriate (which it normally will be). */
4308 origflags = msec->flags;
4309 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
4310 msec->flags |= SEC_HAS_CONTENTS;
4311
4312 fi = elf_tdata (abfd)->find_line_info;
4313 if (fi == NULL)
4314 {
4315 bfd_size_type external_fdr_size;
4316 char *fraw_src;
4317 char *fraw_end;
4318 struct fdr *fdr_ptr;
4319 bfd_size_type amt = sizeof (struct mips_elf_find_line);
4320
4321 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
4322 if (fi == NULL)
4323 {
4324 msec->flags = origflags;
4325 return false;
4326 }
4327
4328 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
4329 {
4330 msec->flags = origflags;
4331 return false;
4332 }
4333
4334 /* Swap in the FDR information. */
4335 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
4336 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
4337 if (fi->d.fdr == NULL)
4338 {
4339 msec->flags = origflags;
4340 return false;
4341 }
4342 external_fdr_size = swap->external_fdr_size;
4343 fdr_ptr = fi->d.fdr;
4344 fraw_src = (char *) fi->d.external_fdr;
4345 fraw_end = (fraw_src
4346 + fi->d.symbolic_header.ifdMax * external_fdr_size);
4347 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
4348 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
4349
4350 elf_tdata (abfd)->find_line_info = fi;
4351
4352 /* Note that we don't bother to ever free this information.
4353 find_nearest_line is either called all the time, as in
4354 objdump -l, so the information should be saved, or it is
4355 rarely called, as in ld error messages, so the memory
4356 wasted is unimportant. Still, it would probably be a
4357 good idea for free_cached_info to throw it away. */
4358 }
4359
4360 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
4361 &fi->i, filename_ptr, functionname_ptr,
4362 line_ptr))
4363 {
4364 msec->flags = origflags;
4365 return true;
4366 }
4367
4368 msec->flags = origflags;
4369 }
4370
4371 /* Fall back on the generic ELF find_nearest_line routine. */
4372
4373 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
4374 filename_ptr, functionname_ptr,
4375 line_ptr);
4376 }
4377 \f
4378 /* The mips16 compiler uses a couple of special sections to handle
4379 floating point arguments.
4380
4381 Section names that look like .mips16.fn.FNNAME contain stubs that
4382 copy floating point arguments from the fp regs to the gp regs and
4383 then jump to FNNAME. If any 32 bit function calls FNNAME, the
4384 call should be redirected to the stub instead. If no 32 bit
4385 function calls FNNAME, the stub should be discarded. We need to
4386 consider any reference to the function, not just a call, because
4387 if the address of the function is taken we will need the stub,
4388 since the address might be passed to a 32 bit function.
4389
4390 Section names that look like .mips16.call.FNNAME contain stubs
4391 that copy floating point arguments from the gp regs to the fp
4392 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
4393 then any 16 bit function that calls FNNAME should be redirected
4394 to the stub instead. If FNNAME is not a 32 bit function, the
4395 stub should be discarded.
4396
4397 .mips16.call.fp.FNNAME sections are similar, but contain stubs
4398 which call FNNAME and then copy the return value from the fp regs
4399 to the gp regs. These stubs store the return value in $18 while
4400 calling FNNAME; any function which might call one of these stubs
4401 must arrange to save $18 around the call. (This case is not
4402 needed for 32 bit functions that call 16 bit functions, because
4403 16 bit functions always return floating point values in both
4404 $f0/$f1 and $2/$3.)
4405
4406 Note that in all cases FNNAME might be defined statically.
4407 Therefore, FNNAME is not used literally. Instead, the relocation
4408 information will indicate which symbol the section is for.
4409
4410 We record any stubs that we find in the symbol table. */
4411
4412 #define FN_STUB ".mips16.fn."
4413 #define CALL_STUB ".mips16.call."
4414 #define CALL_FP_STUB ".mips16.call.fp."
4415
4416 /* MIPS ELF linker hash table. */
4417
4418 struct mips_elf_link_hash_table
4419 {
4420 struct elf_link_hash_table root;
4421 #if 0
4422 /* We no longer use this. */
4423 /* String section indices for the dynamic section symbols. */
4424 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
4425 #endif
4426 /* The number of .rtproc entries. */
4427 bfd_size_type procedure_count;
4428 /* The size of the .compact_rel section (if SGI_COMPAT). */
4429 bfd_size_type compact_rel_size;
4430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
4431 entry is set to the address of __rld_obj_head as in Irix 5. */
4432 boolean use_rld_obj_head;
4433 /* This is the value of the __rld_map or __rld_obj_head symbol. */
4434 bfd_vma rld_value;
4435 /* This is set if we see any mips16 stub sections. */
4436 boolean mips16_stubs_seen;
4437 };
4438
4439 /* Look up an entry in a MIPS ELF linker hash table. */
4440
4441 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
4442 ((struct mips_elf_link_hash_entry *) \
4443 elf_link_hash_lookup (&(table)->root, (string), (create), \
4444 (copy), (follow)))
4445
4446 /* Traverse a MIPS ELF linker hash table. */
4447
4448 #define mips_elf_link_hash_traverse(table, func, info) \
4449 (elf_link_hash_traverse \
4450 (&(table)->root, \
4451 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
4452 (info)))
4453
4454 /* Get the MIPS ELF linker hash table from a link_info structure. */
4455
4456 #define mips_elf_hash_table(p) \
4457 ((struct mips_elf_link_hash_table *) ((p)->hash))
4458
4459 static boolean mips_elf_output_extsym
4460 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
4461
4462 /* Create an entry in a MIPS ELF linker hash table. */
4463
4464 static struct bfd_hash_entry *
4465 mips_elf_link_hash_newfunc (entry, table, string)
4466 struct bfd_hash_entry *entry;
4467 struct bfd_hash_table *table;
4468 const char *string;
4469 {
4470 struct mips_elf_link_hash_entry *ret =
4471 (struct mips_elf_link_hash_entry *) entry;
4472
4473 /* Allocate the structure if it has not already been allocated by a
4474 subclass. */
4475 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4476 ret = ((struct mips_elf_link_hash_entry *)
4477 bfd_hash_allocate (table,
4478 sizeof (struct mips_elf_link_hash_entry)));
4479 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4480 return (struct bfd_hash_entry *) ret;
4481
4482 /* Call the allocation method of the superclass. */
4483 ret = ((struct mips_elf_link_hash_entry *)
4484 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4485 table, string));
4486 if (ret != (struct mips_elf_link_hash_entry *) NULL)
4487 {
4488 /* Set local fields. */
4489 memset (&ret->esym, 0, sizeof (EXTR));
4490 /* We use -2 as a marker to indicate that the information has
4491 not been set. -1 means there is no associated ifd. */
4492 ret->esym.ifd = -2;
4493 ret->possibly_dynamic_relocs = 0;
4494 ret->readonly_reloc = false;
4495 ret->min_dyn_reloc_index = 0;
4496 ret->no_fn_stub = false;
4497 ret->fn_stub = NULL;
4498 ret->need_fn_stub = false;
4499 ret->call_stub = NULL;
4500 ret->call_fp_stub = NULL;
4501 }
4502
4503 return (struct bfd_hash_entry *) ret;
4504 }
4505
4506 static void
4507 _bfd_mips_elf_hide_symbol (info, entry)
4508 struct bfd_link_info *info;
4509 struct elf_link_hash_entry *entry;
4510 {
4511 bfd *dynobj;
4512 asection *got;
4513 struct mips_got_info *g;
4514 struct mips_elf_link_hash_entry *h;
4515 h = (struct mips_elf_link_hash_entry *) entry;
4516 dynobj = elf_hash_table (info)->dynobj;
4517 got = bfd_get_section_by_name (dynobj, ".got");
4518 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4519
4520 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4521 h->root.plt.offset = (bfd_vma) -1;
4522 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4523 h->root.dynindx = -1;
4524
4525 /* FIXME: Do we allocate too much GOT space here? */
4526 g->local_gotno++;
4527 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4528 }
4529
4530 /* Create a MIPS ELF linker hash table. */
4531
4532 struct bfd_link_hash_table *
4533 _bfd_mips_elf_link_hash_table_create (abfd)
4534 bfd *abfd;
4535 {
4536 struct mips_elf_link_hash_table *ret;
4537 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
4538
4539 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
4540 if (ret == (struct mips_elf_link_hash_table *) NULL)
4541 return NULL;
4542
4543 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4544 mips_elf_link_hash_newfunc))
4545 {
4546 bfd_release (abfd, ret);
4547 return NULL;
4548 }
4549
4550 #if 0
4551 /* We no longer use this. */
4552 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4553 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4554 #endif
4555 ret->procedure_count = 0;
4556 ret->compact_rel_size = 0;
4557 ret->use_rld_obj_head = false;
4558 ret->rld_value = 0;
4559 ret->mips16_stubs_seen = false;
4560
4561 return &ret->root.root;
4562 }
4563
4564 /* Hook called by the linker routine which adds symbols from an object
4565 file. We must handle the special MIPS section numbers here. */
4566
4567 boolean
4568 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4569 bfd *abfd;
4570 struct bfd_link_info *info;
4571 const Elf_Internal_Sym *sym;
4572 const char **namep;
4573 flagword *flagsp ATTRIBUTE_UNUSED;
4574 asection **secp;
4575 bfd_vma *valp;
4576 {
4577 if (SGI_COMPAT (abfd)
4578 && (abfd->flags & DYNAMIC) != 0
4579 && strcmp (*namep, "_rld_new_interface") == 0)
4580 {
4581 /* Skip Irix 5 rld entry name. */
4582 *namep = NULL;
4583 return true;
4584 }
4585
4586 switch (sym->st_shndx)
4587 {
4588 case SHN_COMMON:
4589 /* Common symbols less than the GP size are automatically
4590 treated as SHN_MIPS_SCOMMON symbols. */
4591 if (sym->st_size > elf_gp_size (abfd)
4592 || IRIX_COMPAT (abfd) == ict_irix6)
4593 break;
4594 /* Fall through. */
4595 case SHN_MIPS_SCOMMON:
4596 *secp = bfd_make_section_old_way (abfd, ".scommon");
4597 (*secp)->flags |= SEC_IS_COMMON;
4598 *valp = sym->st_size;
4599 break;
4600
4601 case SHN_MIPS_TEXT:
4602 /* This section is used in a shared object. */
4603 if (elf_tdata (abfd)->elf_text_section == NULL)
4604 {
4605 asymbol *elf_text_symbol;
4606 asection *elf_text_section;
4607 bfd_size_type amt = sizeof (asection);
4608
4609 elf_text_section = bfd_zalloc (abfd, amt);
4610 if (elf_text_section == NULL)
4611 return false;
4612
4613 amt = sizeof (asymbol);
4614 elf_text_symbol = bfd_zalloc (abfd, amt);
4615 if (elf_text_symbol == NULL)
4616 return false;
4617
4618 /* Initialize the section. */
4619
4620 elf_tdata (abfd)->elf_text_section = elf_text_section;
4621 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4622
4623 elf_text_section->symbol = elf_text_symbol;
4624 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4625
4626 elf_text_section->name = ".text";
4627 elf_text_section->flags = SEC_NO_FLAGS;
4628 elf_text_section->output_section = NULL;
4629 elf_text_section->owner = abfd;
4630 elf_text_symbol->name = ".text";
4631 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4632 elf_text_symbol->section = elf_text_section;
4633 }
4634 /* This code used to do *secp = bfd_und_section_ptr if
4635 info->shared. I don't know why, and that doesn't make sense,
4636 so I took it out. */
4637 *secp = elf_tdata (abfd)->elf_text_section;
4638 break;
4639
4640 case SHN_MIPS_ACOMMON:
4641 /* Fall through. XXX Can we treat this as allocated data? */
4642 case SHN_MIPS_DATA:
4643 /* This section is used in a shared object. */
4644 if (elf_tdata (abfd)->elf_data_section == NULL)
4645 {
4646 asymbol *elf_data_symbol;
4647 asection *elf_data_section;
4648 bfd_size_type amt = sizeof (asection);
4649
4650 elf_data_section = bfd_zalloc (abfd, amt);
4651 if (elf_data_section == NULL)
4652 return false;
4653
4654 amt = sizeof (asymbol);
4655 elf_data_symbol = bfd_zalloc (abfd, amt);
4656 if (elf_data_symbol == NULL)
4657 return false;
4658
4659 /* Initialize the section. */
4660
4661 elf_tdata (abfd)->elf_data_section = elf_data_section;
4662 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4663
4664 elf_data_section->symbol = elf_data_symbol;
4665 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4666
4667 elf_data_section->name = ".data";
4668 elf_data_section->flags = SEC_NO_FLAGS;
4669 elf_data_section->output_section = NULL;
4670 elf_data_section->owner = abfd;
4671 elf_data_symbol->name = ".data";
4672 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4673 elf_data_symbol->section = elf_data_section;
4674 }
4675 /* This code used to do *secp = bfd_und_section_ptr if
4676 info->shared. I don't know why, and that doesn't make sense,
4677 so I took it out. */
4678 *secp = elf_tdata (abfd)->elf_data_section;
4679 break;
4680
4681 case SHN_MIPS_SUNDEFINED:
4682 *secp = bfd_und_section_ptr;
4683 break;
4684 }
4685
4686 if (SGI_COMPAT (abfd)
4687 && ! info->shared
4688 && info->hash->creator == abfd->xvec
4689 && strcmp (*namep, "__rld_obj_head") == 0)
4690 {
4691 struct elf_link_hash_entry *h;
4692
4693 /* Mark __rld_obj_head as dynamic. */
4694 h = NULL;
4695 if (! (_bfd_generic_link_add_one_symbol
4696 (info, abfd, *namep, BSF_GLOBAL, *secp,
4697 (bfd_vma) *valp, (const char *) NULL, false,
4698 get_elf_backend_data (abfd)->collect,
4699 (struct bfd_link_hash_entry **) &h)))
4700 return false;
4701 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4702 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4703 h->type = STT_OBJECT;
4704
4705 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4706 return false;
4707
4708 mips_elf_hash_table (info)->use_rld_obj_head = true;
4709 }
4710
4711 /* If this is a mips16 text symbol, add 1 to the value to make it
4712 odd. This will cause something like .word SYM to come up with
4713 the right value when it is loaded into the PC. */
4714 if (sym->st_other == STO_MIPS16)
4715 ++*valp;
4716
4717 return true;
4718 }
4719
4720 /* Structure used to pass information to mips_elf_output_extsym. */
4721
4722 struct extsym_info
4723 {
4724 bfd *abfd;
4725 struct bfd_link_info *info;
4726 struct ecoff_debug_info *debug;
4727 const struct ecoff_debug_swap *swap;
4728 boolean failed;
4729 };
4730
4731 /* This routine is used to write out ECOFF debugging external symbol
4732 information. It is called via mips_elf_link_hash_traverse. The
4733 ECOFF external symbol information must match the ELF external
4734 symbol information. Unfortunately, at this point we don't know
4735 whether a symbol is required by reloc information, so the two
4736 tables may wind up being different. We must sort out the external
4737 symbol information before we can set the final size of the .mdebug
4738 section, and we must set the size of the .mdebug section before we
4739 can relocate any sections, and we can't know which symbols are
4740 required by relocation until we relocate the sections.
4741 Fortunately, it is relatively unlikely that any symbol will be
4742 stripped but required by a reloc. In particular, it can not happen
4743 when generating a final executable. */
4744
4745 static boolean
4746 mips_elf_output_extsym (h, data)
4747 struct mips_elf_link_hash_entry *h;
4748 PTR data;
4749 {
4750 struct extsym_info *einfo = (struct extsym_info *) data;
4751 boolean strip;
4752 asection *sec, *output_section;
4753
4754 if (h->root.indx == -2)
4755 strip = false;
4756 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4757 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4758 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4759 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4760 strip = true;
4761 else if (einfo->info->strip == strip_all
4762 || (einfo->info->strip == strip_some
4763 && bfd_hash_lookup (einfo->info->keep_hash,
4764 h->root.root.root.string,
4765 false, false) == NULL))
4766 strip = true;
4767 else
4768 strip = false;
4769
4770 if (strip)
4771 return true;
4772
4773 if (h->esym.ifd == -2)
4774 {
4775 h->esym.jmptbl = 0;
4776 h->esym.cobol_main = 0;
4777 h->esym.weakext = 0;
4778 h->esym.reserved = 0;
4779 h->esym.ifd = ifdNil;
4780 h->esym.asym.value = 0;
4781 h->esym.asym.st = stGlobal;
4782
4783 if (h->root.root.type == bfd_link_hash_undefined
4784 || h->root.root.type == bfd_link_hash_undefweak)
4785 {
4786 const char *name;
4787
4788 /* Use undefined class. Also, set class and type for some
4789 special symbols. */
4790 name = h->root.root.root.string;
4791 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4792 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4793 {
4794 h->esym.asym.sc = scData;
4795 h->esym.asym.st = stLabel;
4796 h->esym.asym.value = 0;
4797 }
4798 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4799 {
4800 h->esym.asym.sc = scAbs;
4801 h->esym.asym.st = stLabel;
4802 h->esym.asym.value =
4803 mips_elf_hash_table (einfo->info)->procedure_count;
4804 }
4805 else if (strcmp (name, "_gp_disp") == 0)
4806 {
4807 h->esym.asym.sc = scAbs;
4808 h->esym.asym.st = stLabel;
4809 h->esym.asym.value = elf_gp (einfo->abfd);
4810 }
4811 else
4812 h->esym.asym.sc = scUndefined;
4813 }
4814 else if (h->root.root.type != bfd_link_hash_defined
4815 && h->root.root.type != bfd_link_hash_defweak)
4816 h->esym.asym.sc = scAbs;
4817 else
4818 {
4819 const char *name;
4820
4821 sec = h->root.root.u.def.section;
4822 output_section = sec->output_section;
4823
4824 /* When making a shared library and symbol h is the one from
4825 the another shared library, OUTPUT_SECTION may be null. */
4826 if (output_section == NULL)
4827 h->esym.asym.sc = scUndefined;
4828 else
4829 {
4830 name = bfd_section_name (output_section->owner, output_section);
4831
4832 if (strcmp (name, ".text") == 0)
4833 h->esym.asym.sc = scText;
4834 else if (strcmp (name, ".data") == 0)
4835 h->esym.asym.sc = scData;
4836 else if (strcmp (name, ".sdata") == 0)
4837 h->esym.asym.sc = scSData;
4838 else if (strcmp (name, ".rodata") == 0
4839 || strcmp (name, ".rdata") == 0)
4840 h->esym.asym.sc = scRData;
4841 else if (strcmp (name, ".bss") == 0)
4842 h->esym.asym.sc = scBss;
4843 else if (strcmp (name, ".sbss") == 0)
4844 h->esym.asym.sc = scSBss;
4845 else if (strcmp (name, ".init") == 0)
4846 h->esym.asym.sc = scInit;
4847 else if (strcmp (name, ".fini") == 0)
4848 h->esym.asym.sc = scFini;
4849 else
4850 h->esym.asym.sc = scAbs;
4851 }
4852 }
4853
4854 h->esym.asym.reserved = 0;
4855 h->esym.asym.index = indexNil;
4856 }
4857
4858 if (h->root.root.type == bfd_link_hash_common)
4859 h->esym.asym.value = h->root.root.u.c.size;
4860 else if (h->root.root.type == bfd_link_hash_defined
4861 || h->root.root.type == bfd_link_hash_defweak)
4862 {
4863 if (h->esym.asym.sc == scCommon)
4864 h->esym.asym.sc = scBss;
4865 else if (h->esym.asym.sc == scSCommon)
4866 h->esym.asym.sc = scSBss;
4867
4868 sec = h->root.root.u.def.section;
4869 output_section = sec->output_section;
4870 if (output_section != NULL)
4871 h->esym.asym.value = (h->root.root.u.def.value
4872 + sec->output_offset
4873 + output_section->vma);
4874 else
4875 h->esym.asym.value = 0;
4876 }
4877 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4878 {
4879 struct mips_elf_link_hash_entry *hd = h;
4880 boolean no_fn_stub = h->no_fn_stub;
4881
4882 while (hd->root.root.type == bfd_link_hash_indirect)
4883 {
4884 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4885 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4886 }
4887
4888 if (!no_fn_stub)
4889 {
4890 /* Set type and value for a symbol with a function stub. */
4891 h->esym.asym.st = stProc;
4892 sec = hd->root.root.u.def.section;
4893 if (sec == NULL)
4894 h->esym.asym.value = 0;
4895 else
4896 {
4897 output_section = sec->output_section;
4898 if (output_section != NULL)
4899 h->esym.asym.value = (hd->root.plt.offset
4900 + sec->output_offset
4901 + output_section->vma);
4902 else
4903 h->esym.asym.value = 0;
4904 }
4905 #if 0 /* FIXME? */
4906 h->esym.ifd = 0;
4907 #endif
4908 }
4909 }
4910
4911 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4912 h->root.root.root.string,
4913 &h->esym))
4914 {
4915 einfo->failed = true;
4916 return false;
4917 }
4918
4919 return true;
4920 }
4921
4922 /* Create a runtime procedure table from the .mdebug section. */
4923
4924 static boolean
4925 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4926 PTR handle;
4927 bfd *abfd;
4928 struct bfd_link_info *info;
4929 asection *s;
4930 struct ecoff_debug_info *debug;
4931 {
4932 const struct ecoff_debug_swap *swap;
4933 HDRR *hdr = &debug->symbolic_header;
4934 RPDR *rpdr, *rp;
4935 struct rpdr_ext *erp;
4936 PTR rtproc;
4937 struct pdr_ext *epdr;
4938 struct sym_ext *esym;
4939 char *ss, **sv;
4940 char *str;
4941 bfd_size_type size;
4942 bfd_size_type count;
4943 unsigned long sindex;
4944 unsigned long i;
4945 PDR pdr;
4946 SYMR sym;
4947 const char *no_name_func = _("static procedure (no name)");
4948
4949 epdr = NULL;
4950 rpdr = NULL;
4951 esym = NULL;
4952 ss = NULL;
4953 sv = NULL;
4954
4955 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4956
4957 sindex = strlen (no_name_func) + 1;
4958 count = hdr->ipdMax;
4959 if (count > 0)
4960 {
4961 size = swap->external_pdr_size;
4962
4963 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4964 if (epdr == NULL)
4965 goto error_return;
4966
4967 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4968 goto error_return;
4969
4970 size = sizeof (RPDR);
4971 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4972 if (rpdr == NULL)
4973 goto error_return;
4974
4975 size = sizeof (char *);
4976 sv = (char **) bfd_malloc (size * count);
4977 if (sv == NULL)
4978 goto error_return;
4979
4980 count = hdr->isymMax;
4981 size = swap->external_sym_size;
4982 esym = (struct sym_ext *) bfd_malloc (size * count);
4983 if (esym == NULL)
4984 goto error_return;
4985
4986 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4987 goto error_return;
4988
4989 count = hdr->issMax;
4990 ss = (char *) bfd_malloc (count);
4991 if (ss == NULL)
4992 goto error_return;
4993 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4994 goto error_return;
4995
4996 count = hdr->ipdMax;
4997 for (i = 0; i < (unsigned long) count; i++, rp++)
4998 {
4999 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
5000 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
5001 rp->adr = sym.value;
5002 rp->regmask = pdr.regmask;
5003 rp->regoffset = pdr.regoffset;
5004 rp->fregmask = pdr.fregmask;
5005 rp->fregoffset = pdr.fregoffset;
5006 rp->frameoffset = pdr.frameoffset;
5007 rp->framereg = pdr.framereg;
5008 rp->pcreg = pdr.pcreg;
5009 rp->irpss = sindex;
5010 sv[i] = ss + sym.iss;
5011 sindex += strlen (sv[i]) + 1;
5012 }
5013 }
5014
5015 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
5016 size = BFD_ALIGN (size, 16);
5017 rtproc = (PTR) bfd_alloc (abfd, size);
5018 if (rtproc == NULL)
5019 {
5020 mips_elf_hash_table (info)->procedure_count = 0;
5021 goto error_return;
5022 }
5023
5024 mips_elf_hash_table (info)->procedure_count = count + 2;
5025
5026 erp = (struct rpdr_ext *) rtproc;
5027 memset (erp, 0, sizeof (struct rpdr_ext));
5028 erp++;
5029 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
5030 strcpy (str, no_name_func);
5031 str += strlen (no_name_func) + 1;
5032 for (i = 0; i < count; i++)
5033 {
5034 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
5035 strcpy (str, sv[i]);
5036 str += strlen (sv[i]) + 1;
5037 }
5038 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
5039
5040 /* Set the size and contents of .rtproc section. */
5041 s->_raw_size = size;
5042 s->contents = (bfd_byte *) rtproc;
5043
5044 /* Skip this section later on (I don't think this currently
5045 matters, but someday it might). */
5046 s->link_order_head = (struct bfd_link_order *) NULL;
5047
5048 if (epdr != NULL)
5049 free (epdr);
5050 if (rpdr != NULL)
5051 free (rpdr);
5052 if (esym != NULL)
5053 free (esym);
5054 if (ss != NULL)
5055 free (ss);
5056 if (sv != NULL)
5057 free (sv);
5058
5059 return true;
5060
5061 error_return:
5062 if (epdr != NULL)
5063 free (epdr);
5064 if (rpdr != NULL)
5065 free (rpdr);
5066 if (esym != NULL)
5067 free (esym);
5068 if (ss != NULL)
5069 free (ss);
5070 if (sv != NULL)
5071 free (sv);
5072 return false;
5073 }
5074
5075 /* A comparison routine used to sort .gptab entries. */
5076
5077 static int
5078 gptab_compare (p1, p2)
5079 const PTR p1;
5080 const PTR p2;
5081 {
5082 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
5083 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
5084
5085 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
5086 }
5087
5088 /* We need to use a special link routine to handle the .reginfo and
5089 the .mdebug sections. We need to merge all instances of these
5090 sections together, not write them all out sequentially. */
5091
5092 boolean
5093 _bfd_mips_elf_final_link (abfd, info)
5094 bfd *abfd;
5095 struct bfd_link_info *info;
5096 {
5097 asection **secpp;
5098 asection *o;
5099 struct bfd_link_order *p;
5100 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
5101 asection *rtproc_sec;
5102 Elf32_RegInfo reginfo;
5103 struct ecoff_debug_info debug;
5104 const struct ecoff_debug_swap *swap
5105 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5106 HDRR *symhdr = &debug.symbolic_header;
5107 PTR mdebug_handle = NULL;
5108 asection *s;
5109 EXTR esym;
5110 unsigned int i;
5111 bfd_size_type amt;
5112
5113 static const char * const secname[] =
5114 {
5115 ".text", ".init", ".fini", ".data",
5116 ".rodata", ".sdata", ".sbss", ".bss"
5117 };
5118 static const int sc[] =
5119 {
5120 scText, scInit, scFini, scData,
5121 scRData, scSData, scSBss, scBss
5122 };
5123
5124 /* If all the things we linked together were PIC, but we're
5125 producing an executable (rather than a shared object), then the
5126 resulting file is CPIC (i.e., it calls PIC code.) */
5127 if (!info->shared
5128 && !info->relocateable
5129 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
5130 {
5131 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
5132 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
5133 }
5134
5135 /* We'd carefully arranged the dynamic symbol indices, and then the
5136 generic size_dynamic_sections renumbered them out from under us.
5137 Rather than trying somehow to prevent the renumbering, just do
5138 the sort again. */
5139 if (elf_hash_table (info)->dynamic_sections_created)
5140 {
5141 bfd *dynobj;
5142 asection *got;
5143 struct mips_got_info *g;
5144
5145 /* When we resort, we must tell mips_elf_sort_hash_table what
5146 the lowest index it may use is. That's the number of section
5147 symbols we're going to add. The generic ELF linker only
5148 adds these symbols when building a shared object. Note that
5149 we count the sections after (possibly) removing the .options
5150 section above. */
5151 if (!mips_elf_sort_hash_table (info, (info->shared
5152 ? bfd_count_sections (abfd) + 1
5153 : 1)))
5154 return false;
5155
5156 /* Make sure we didn't grow the global .got region. */
5157 dynobj = elf_hash_table (info)->dynobj;
5158 got = bfd_get_section_by_name (dynobj, ".got");
5159 g = (struct mips_got_info *) elf_section_data (got)->tdata;
5160
5161 if (g->global_gotsym != NULL)
5162 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
5163 - g->global_gotsym->dynindx)
5164 <= g->global_gotno);
5165 }
5166
5167 /* On IRIX5, we omit the .options section. On IRIX6, however, we
5168 include it, even though we don't process it quite right. (Some
5169 entries are supposed to be merged.) Empirically, we seem to be
5170 better off including it then not. */
5171 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5172 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
5173 {
5174 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
5175 {
5176 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
5177 if (p->type == bfd_indirect_link_order)
5178 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
5179 (*secpp)->link_order_head = NULL;
5180 bfd_section_list_remove (abfd, secpp);
5181 --abfd->section_count;
5182
5183 break;
5184 }
5185 }
5186
5187 /* Get a value for the GP register. */
5188 if (elf_gp (abfd) == 0)
5189 {
5190 struct bfd_link_hash_entry *h;
5191
5192 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
5193 if (h != (struct bfd_link_hash_entry *) NULL
5194 && h->type == bfd_link_hash_defined)
5195 elf_gp (abfd) = (h->u.def.value
5196 + h->u.def.section->output_section->vma
5197 + h->u.def.section->output_offset);
5198 else if (info->relocateable)
5199 {
5200 bfd_vma lo;
5201
5202 /* Find the GP-relative section with the lowest offset. */
5203 lo = (bfd_vma) -1;
5204 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5205 if (o->vma < lo
5206 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
5207 lo = o->vma;
5208
5209 /* And calculate GP relative to that. */
5210 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
5211 }
5212 else
5213 {
5214 /* If the relocate_section function needs to do a reloc
5215 involving the GP value, it should make a reloc_dangerous
5216 callback to warn that GP is not defined. */
5217 }
5218 }
5219
5220 /* Go through the sections and collect the .reginfo and .mdebug
5221 information. */
5222 reginfo_sec = NULL;
5223 mdebug_sec = NULL;
5224 gptab_data_sec = NULL;
5225 gptab_bss_sec = NULL;
5226 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5227 {
5228 if (strcmp (o->name, ".reginfo") == 0)
5229 {
5230 memset (&reginfo, 0, sizeof reginfo);
5231
5232 /* We have found the .reginfo section in the output file.
5233 Look through all the link_orders comprising it and merge
5234 the information together. */
5235 for (p = o->link_order_head;
5236 p != (struct bfd_link_order *) NULL;
5237 p = p->next)
5238 {
5239 asection *input_section;
5240 bfd *input_bfd;
5241 Elf32_External_RegInfo ext;
5242 Elf32_RegInfo sub;
5243
5244 if (p->type != bfd_indirect_link_order)
5245 {
5246 if (p->type == bfd_fill_link_order)
5247 continue;
5248 abort ();
5249 }
5250
5251 input_section = p->u.indirect.section;
5252 input_bfd = input_section->owner;
5253
5254 /* The linker emulation code has probably clobbered the
5255 size to be zero bytes. */
5256 if (input_section->_raw_size == 0)
5257 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
5258
5259 if (! bfd_get_section_contents (input_bfd, input_section,
5260 (PTR) &ext,
5261 (file_ptr) 0,
5262 (bfd_size_type) sizeof ext))
5263 return false;
5264
5265 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
5266
5267 reginfo.ri_gprmask |= sub.ri_gprmask;
5268 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
5269 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
5270 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
5271 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
5272
5273 /* ri_gp_value is set by the function
5274 mips_elf32_section_processing when the section is
5275 finally written out. */
5276
5277 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5278 elf_link_input_bfd ignores this section. */
5279 input_section->flags &= ~SEC_HAS_CONTENTS;
5280 }
5281
5282 /* Size has been set in mips_elf_always_size_sections */
5283 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
5284
5285 /* Skip this section later on (I don't think this currently
5286 matters, but someday it might). */
5287 o->link_order_head = (struct bfd_link_order *) NULL;
5288
5289 reginfo_sec = o;
5290 }
5291
5292 if (strcmp (o->name, ".mdebug") == 0)
5293 {
5294 struct extsym_info einfo;
5295 bfd_vma last;
5296
5297 /* We have found the .mdebug section in the output file.
5298 Look through all the link_orders comprising it and merge
5299 the information together. */
5300 symhdr->magic = swap->sym_magic;
5301 /* FIXME: What should the version stamp be? */
5302 symhdr->vstamp = 0;
5303 symhdr->ilineMax = 0;
5304 symhdr->cbLine = 0;
5305 symhdr->idnMax = 0;
5306 symhdr->ipdMax = 0;
5307 symhdr->isymMax = 0;
5308 symhdr->ioptMax = 0;
5309 symhdr->iauxMax = 0;
5310 symhdr->issMax = 0;
5311 symhdr->issExtMax = 0;
5312 symhdr->ifdMax = 0;
5313 symhdr->crfd = 0;
5314 symhdr->iextMax = 0;
5315
5316 /* We accumulate the debugging information itself in the
5317 debug_info structure. */
5318 debug.line = NULL;
5319 debug.external_dnr = NULL;
5320 debug.external_pdr = NULL;
5321 debug.external_sym = NULL;
5322 debug.external_opt = NULL;
5323 debug.external_aux = NULL;
5324 debug.ss = NULL;
5325 debug.ssext = debug.ssext_end = NULL;
5326 debug.external_fdr = NULL;
5327 debug.external_rfd = NULL;
5328 debug.external_ext = debug.external_ext_end = NULL;
5329
5330 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5331 if (mdebug_handle == (PTR) NULL)
5332 return false;
5333
5334 esym.jmptbl = 0;
5335 esym.cobol_main = 0;
5336 esym.weakext = 0;
5337 esym.reserved = 0;
5338 esym.ifd = ifdNil;
5339 esym.asym.iss = issNil;
5340 esym.asym.st = stLocal;
5341 esym.asym.reserved = 0;
5342 esym.asym.index = indexNil;
5343 last = 0;
5344 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
5345 {
5346 esym.asym.sc = sc[i];
5347 s = bfd_get_section_by_name (abfd, secname[i]);
5348 if (s != NULL)
5349 {
5350 esym.asym.value = s->vma;
5351 last = s->vma + s->_raw_size;
5352 }
5353 else
5354 esym.asym.value = last;
5355 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
5356 secname[i], &esym))
5357 return false;
5358 }
5359
5360 for (p = o->link_order_head;
5361 p != (struct bfd_link_order *) NULL;
5362 p = p->next)
5363 {
5364 asection *input_section;
5365 bfd *input_bfd;
5366 const struct ecoff_debug_swap *input_swap;
5367 struct ecoff_debug_info input_debug;
5368 char *eraw_src;
5369 char *eraw_end;
5370
5371 if (p->type != bfd_indirect_link_order)
5372 {
5373 if (p->type == bfd_fill_link_order)
5374 continue;
5375 abort ();
5376 }
5377
5378 input_section = p->u.indirect.section;
5379 input_bfd = input_section->owner;
5380
5381 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
5382 || (get_elf_backend_data (input_bfd)
5383 ->elf_backend_ecoff_debug_swap) == NULL)
5384 {
5385 /* I don't know what a non MIPS ELF bfd would be
5386 doing with a .mdebug section, but I don't really
5387 want to deal with it. */
5388 continue;
5389 }
5390
5391 input_swap = (get_elf_backend_data (input_bfd)
5392 ->elf_backend_ecoff_debug_swap);
5393
5394 BFD_ASSERT (p->size == input_section->_raw_size);
5395
5396 /* The ECOFF linking code expects that we have already
5397 read in the debugging information and set up an
5398 ecoff_debug_info structure, so we do that now. */
5399 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
5400 &input_debug))
5401 return false;
5402
5403 if (! (bfd_ecoff_debug_accumulate
5404 (mdebug_handle, abfd, &debug, swap, input_bfd,
5405 &input_debug, input_swap, info)))
5406 return false;
5407
5408 /* Loop through the external symbols. For each one with
5409 interesting information, try to find the symbol in
5410 the linker global hash table and save the information
5411 for the output external symbols. */
5412 eraw_src = input_debug.external_ext;
5413 eraw_end = (eraw_src
5414 + (input_debug.symbolic_header.iextMax
5415 * input_swap->external_ext_size));
5416 for (;
5417 eraw_src < eraw_end;
5418 eraw_src += input_swap->external_ext_size)
5419 {
5420 EXTR ext;
5421 const char *name;
5422 struct mips_elf_link_hash_entry *h;
5423
5424 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5425 if (ext.asym.sc == scNil
5426 || ext.asym.sc == scUndefined
5427 || ext.asym.sc == scSUndefined)
5428 continue;
5429
5430 name = input_debug.ssext + ext.asym.iss;
5431 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
5432 name, false, false, true);
5433 if (h == NULL || h->esym.ifd != -2)
5434 continue;
5435
5436 if (ext.ifd != -1)
5437 {
5438 BFD_ASSERT (ext.ifd
5439 < input_debug.symbolic_header.ifdMax);
5440 ext.ifd = input_debug.ifdmap[ext.ifd];
5441 }
5442
5443 h->esym = ext;
5444 }
5445
5446 /* Free up the information we just read. */
5447 free (input_debug.line);
5448 free (input_debug.external_dnr);
5449 free (input_debug.external_pdr);
5450 free (input_debug.external_sym);
5451 free (input_debug.external_opt);
5452 free (input_debug.external_aux);
5453 free (input_debug.ss);
5454 free (input_debug.ssext);
5455 free (input_debug.external_fdr);
5456 free (input_debug.external_rfd);
5457 free (input_debug.external_ext);
5458
5459 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5460 elf_link_input_bfd ignores this section. */
5461 input_section->flags &= ~SEC_HAS_CONTENTS;
5462 }
5463
5464 if (SGI_COMPAT (abfd) && info->shared)
5465 {
5466 /* Create .rtproc section. */
5467 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5468 if (rtproc_sec == NULL)
5469 {
5470 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
5471 | SEC_LINKER_CREATED | SEC_READONLY);
5472
5473 rtproc_sec = bfd_make_section (abfd, ".rtproc");
5474 if (rtproc_sec == NULL
5475 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
5476 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
5477 return false;
5478 }
5479
5480 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
5481 info, rtproc_sec, &debug))
5482 return false;
5483 }
5484
5485 /* Build the external symbol information. */
5486 einfo.abfd = abfd;
5487 einfo.info = info;
5488 einfo.debug = &debug;
5489 einfo.swap = swap;
5490 einfo.failed = false;
5491 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5492 mips_elf_output_extsym,
5493 (PTR) &einfo);
5494 if (einfo.failed)
5495 return false;
5496
5497 /* Set the size of the .mdebug section. */
5498 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
5499
5500 /* Skip this section later on (I don't think this currently
5501 matters, but someday it might). */
5502 o->link_order_head = (struct bfd_link_order *) NULL;
5503
5504 mdebug_sec = o;
5505 }
5506
5507 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
5508 {
5509 const char *subname;
5510 unsigned int c;
5511 Elf32_gptab *tab;
5512 Elf32_External_gptab *ext_tab;
5513 unsigned int j;
5514
5515 /* The .gptab.sdata and .gptab.sbss sections hold
5516 information describing how the small data area would
5517 change depending upon the -G switch. These sections
5518 not used in executables files. */
5519 if (! info->relocateable)
5520 {
5521 for (p = o->link_order_head;
5522 p != (struct bfd_link_order *) NULL;
5523 p = p->next)
5524 {
5525 asection *input_section;
5526
5527 if (p->type != bfd_indirect_link_order)
5528 {
5529 if (p->type == bfd_fill_link_order)
5530 continue;
5531 abort ();
5532 }
5533
5534 input_section = p->u.indirect.section;
5535
5536 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5537 elf_link_input_bfd ignores this section. */
5538 input_section->flags &= ~SEC_HAS_CONTENTS;
5539 }
5540
5541 /* Skip this section later on (I don't think this
5542 currently matters, but someday it might). */
5543 o->link_order_head = (struct bfd_link_order *) NULL;
5544
5545 /* Really remove the section. */
5546 for (secpp = &abfd->sections;
5547 *secpp != o;
5548 secpp = &(*secpp)->next)
5549 ;
5550 bfd_section_list_remove (abfd, secpp);
5551 --abfd->section_count;
5552
5553 continue;
5554 }
5555
5556 /* There is one gptab for initialized data, and one for
5557 uninitialized data. */
5558 if (strcmp (o->name, ".gptab.sdata") == 0)
5559 gptab_data_sec = o;
5560 else if (strcmp (o->name, ".gptab.sbss") == 0)
5561 gptab_bss_sec = o;
5562 else
5563 {
5564 (*_bfd_error_handler)
5565 (_("%s: illegal section name `%s'"),
5566 bfd_get_filename (abfd), o->name);
5567 bfd_set_error (bfd_error_nonrepresentable_section);
5568 return false;
5569 }
5570
5571 /* The linker script always combines .gptab.data and
5572 .gptab.sdata into .gptab.sdata, and likewise for
5573 .gptab.bss and .gptab.sbss. It is possible that there is
5574 no .sdata or .sbss section in the output file, in which
5575 case we must change the name of the output section. */
5576 subname = o->name + sizeof ".gptab" - 1;
5577 if (bfd_get_section_by_name (abfd, subname) == NULL)
5578 {
5579 if (o == gptab_data_sec)
5580 o->name = ".gptab.data";
5581 else
5582 o->name = ".gptab.bss";
5583 subname = o->name + sizeof ".gptab" - 1;
5584 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5585 }
5586
5587 /* Set up the first entry. */
5588 c = 1;
5589 amt = c * sizeof (Elf32_gptab);
5590 tab = (Elf32_gptab *) bfd_malloc (amt);
5591 if (tab == NULL)
5592 return false;
5593 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5594 tab[0].gt_header.gt_unused = 0;
5595
5596 /* Combine the input sections. */
5597 for (p = o->link_order_head;
5598 p != (struct bfd_link_order *) NULL;
5599 p = p->next)
5600 {
5601 asection *input_section;
5602 bfd *input_bfd;
5603 bfd_size_type size;
5604 unsigned long last;
5605 bfd_size_type gpentry;
5606
5607 if (p->type != bfd_indirect_link_order)
5608 {
5609 if (p->type == bfd_fill_link_order)
5610 continue;
5611 abort ();
5612 }
5613
5614 input_section = p->u.indirect.section;
5615 input_bfd = input_section->owner;
5616
5617 /* Combine the gptab entries for this input section one
5618 by one. We know that the input gptab entries are
5619 sorted by ascending -G value. */
5620 size = bfd_section_size (input_bfd, input_section);
5621 last = 0;
5622 for (gpentry = sizeof (Elf32_External_gptab);
5623 gpentry < size;
5624 gpentry += sizeof (Elf32_External_gptab))
5625 {
5626 Elf32_External_gptab ext_gptab;
5627 Elf32_gptab int_gptab;
5628 unsigned long val;
5629 unsigned long add;
5630 boolean exact;
5631 unsigned int look;
5632
5633 if (! (bfd_get_section_contents
5634 (input_bfd, input_section, (PTR) &ext_gptab,
5635 (file_ptr) gpentry,
5636 (bfd_size_type) sizeof (Elf32_External_gptab))))
5637 {
5638 free (tab);
5639 return false;
5640 }
5641
5642 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5643 &int_gptab);
5644 val = int_gptab.gt_entry.gt_g_value;
5645 add = int_gptab.gt_entry.gt_bytes - last;
5646
5647 exact = false;
5648 for (look = 1; look < c; look++)
5649 {
5650 if (tab[look].gt_entry.gt_g_value >= val)
5651 tab[look].gt_entry.gt_bytes += add;
5652
5653 if (tab[look].gt_entry.gt_g_value == val)
5654 exact = true;
5655 }
5656
5657 if (! exact)
5658 {
5659 Elf32_gptab *new_tab;
5660 unsigned int max;
5661
5662 /* We need a new table entry. */
5663 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5664 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
5665 if (new_tab == NULL)
5666 {
5667 free (tab);
5668 return false;
5669 }
5670 tab = new_tab;
5671 tab[c].gt_entry.gt_g_value = val;
5672 tab[c].gt_entry.gt_bytes = add;
5673
5674 /* Merge in the size for the next smallest -G
5675 value, since that will be implied by this new
5676 value. */
5677 max = 0;
5678 for (look = 1; look < c; look++)
5679 {
5680 if (tab[look].gt_entry.gt_g_value < val
5681 && (max == 0
5682 || (tab[look].gt_entry.gt_g_value
5683 > tab[max].gt_entry.gt_g_value)))
5684 max = look;
5685 }
5686 if (max != 0)
5687 tab[c].gt_entry.gt_bytes +=
5688 tab[max].gt_entry.gt_bytes;
5689
5690 ++c;
5691 }
5692
5693 last = int_gptab.gt_entry.gt_bytes;
5694 }
5695
5696 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5697 elf_link_input_bfd ignores this section. */
5698 input_section->flags &= ~SEC_HAS_CONTENTS;
5699 }
5700
5701 /* The table must be sorted by -G value. */
5702 if (c > 2)
5703 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5704
5705 /* Swap out the table. */
5706 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5707 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
5708 if (ext_tab == NULL)
5709 {
5710 free (tab);
5711 return false;
5712 }
5713
5714 for (j = 0; j < c; j++)
5715 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
5716 free (tab);
5717
5718 o->_raw_size = c * sizeof (Elf32_External_gptab);
5719 o->contents = (bfd_byte *) ext_tab;
5720
5721 /* Skip this section later on (I don't think this currently
5722 matters, but someday it might). */
5723 o->link_order_head = (struct bfd_link_order *) NULL;
5724 }
5725 }
5726
5727 /* Invoke the regular ELF backend linker to do all the work. */
5728 if (ABI_64_P (abfd))
5729 {
5730 #ifdef BFD64
5731 if (!bfd_elf64_bfd_final_link (abfd, info))
5732 return false;
5733 #else
5734 abort ();
5735 return false;
5736 #endif /* BFD64 */
5737 }
5738 else if (!bfd_elf32_bfd_final_link (abfd, info))
5739 return false;
5740
5741 /* Now write out the computed sections. */
5742
5743 if (reginfo_sec != (asection *) NULL)
5744 {
5745 Elf32_External_RegInfo ext;
5746
5747 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5748 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5749 (file_ptr) 0, (bfd_size_type) sizeof ext))
5750 return false;
5751 }
5752
5753 if (mdebug_sec != (asection *) NULL)
5754 {
5755 BFD_ASSERT (abfd->output_has_begun);
5756 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5757 swap, info,
5758 mdebug_sec->filepos))
5759 return false;
5760
5761 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5762 }
5763
5764 if (gptab_data_sec != (asection *) NULL)
5765 {
5766 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5767 gptab_data_sec->contents,
5768 (file_ptr) 0,
5769 gptab_data_sec->_raw_size))
5770 return false;
5771 }
5772
5773 if (gptab_bss_sec != (asection *) NULL)
5774 {
5775 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5776 gptab_bss_sec->contents,
5777 (file_ptr) 0,
5778 gptab_bss_sec->_raw_size))
5779 return false;
5780 }
5781
5782 if (SGI_COMPAT (abfd))
5783 {
5784 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5785 if (rtproc_sec != NULL)
5786 {
5787 if (! bfd_set_section_contents (abfd, rtproc_sec,
5788 rtproc_sec->contents,
5789 (file_ptr) 0,
5790 rtproc_sec->_raw_size))
5791 return false;
5792 }
5793 }
5794
5795 return true;
5796 }
5797
5798 /* This function is called via qsort() to sort the dynamic relocation
5799 entries by increasing r_symndx value. */
5800
5801 static int
5802 sort_dynamic_relocs (arg1, arg2)
5803 const PTR arg1;
5804 const PTR arg2;
5805 {
5806 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5807 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5808
5809 Elf_Internal_Rel int_reloc1;
5810 Elf_Internal_Rel int_reloc2;
5811
5812 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5813 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5814
5815 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5816 }
5817
5818 /* Returns the GOT section for ABFD. */
5819
5820 static asection *
5821 mips_elf_got_section (abfd)
5822 bfd *abfd;
5823 {
5824 return bfd_get_section_by_name (abfd, ".got");
5825 }
5826
5827 /* Returns the GOT information associated with the link indicated by
5828 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5829 section. */
5830
5831 static struct mips_got_info *
5832 mips_elf_got_info (abfd, sgotp)
5833 bfd *abfd;
5834 asection **sgotp;
5835 {
5836 asection *sgot;
5837 struct mips_got_info *g;
5838
5839 sgot = mips_elf_got_section (abfd);
5840 BFD_ASSERT (sgot != NULL);
5841 BFD_ASSERT (elf_section_data (sgot) != NULL);
5842 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5843 BFD_ASSERT (g != NULL);
5844
5845 if (sgotp)
5846 *sgotp = sgot;
5847 return g;
5848 }
5849
5850 /* Return whether a relocation is against a local symbol. */
5851
5852 static boolean
5853 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5854 check_forced)
5855 bfd *input_bfd;
5856 const Elf_Internal_Rela *relocation;
5857 asection **local_sections;
5858 boolean check_forced;
5859 {
5860 unsigned long r_symndx;
5861 Elf_Internal_Shdr *symtab_hdr;
5862 struct mips_elf_link_hash_entry *h;
5863 size_t extsymoff;
5864
5865 r_symndx = ELF32_R_SYM (relocation->r_info);
5866 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5867 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5868
5869 if (r_symndx < extsymoff)
5870 return true;
5871 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5872 return true;
5873
5874 if (check_forced)
5875 {
5876 /* Look up the hash table to check whether the symbol
5877 was forced local. */
5878 h = (struct mips_elf_link_hash_entry *)
5879 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5880 /* Find the real hash-table entry for this symbol. */
5881 while (h->root.root.type == bfd_link_hash_indirect
5882 || h->root.root.type == bfd_link_hash_warning)
5883 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5884 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5885 return true;
5886 }
5887
5888 return false;
5889 }
5890
5891 /* Sign-extend VALUE, which has the indicated number of BITS. */
5892
5893 static bfd_vma
5894 mips_elf_sign_extend (value, bits)
5895 bfd_vma value;
5896 int bits;
5897 {
5898 if (value & ((bfd_vma) 1 << (bits - 1)))
5899 /* VALUE is negative. */
5900 value |= ((bfd_vma) - 1) << bits;
5901
5902 return value;
5903 }
5904
5905 /* Return non-zero if the indicated VALUE has overflowed the maximum
5906 range expressable by a signed number with the indicated number of
5907 BITS. */
5908
5909 static boolean
5910 mips_elf_overflow_p (value, bits)
5911 bfd_vma value;
5912 int bits;
5913 {
5914 bfd_signed_vma svalue = (bfd_signed_vma) value;
5915
5916 if (svalue > (1 << (bits - 1)) - 1)
5917 /* The value is too big. */
5918 return true;
5919 else if (svalue < -(1 << (bits - 1)))
5920 /* The value is too small. */
5921 return true;
5922
5923 /* All is well. */
5924 return false;
5925 }
5926
5927 /* Calculate the %high function. */
5928
5929 static bfd_vma
5930 mips_elf_high (value)
5931 bfd_vma value;
5932 {
5933 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5934 }
5935
5936 /* Calculate the %higher function. */
5937
5938 static bfd_vma
5939 mips_elf_higher (value)
5940 bfd_vma value ATTRIBUTE_UNUSED;
5941 {
5942 #ifdef BFD64
5943 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5944 #else
5945 abort ();
5946 return (bfd_vma) -1;
5947 #endif
5948 }
5949
5950 /* Calculate the %highest function. */
5951
5952 static bfd_vma
5953 mips_elf_highest (value)
5954 bfd_vma value ATTRIBUTE_UNUSED;
5955 {
5956 #ifdef BFD64
5957 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5958 #else
5959 abort ();
5960 return (bfd_vma) -1;
5961 #endif
5962 }
5963
5964 /* Returns the GOT index for the global symbol indicated by H. */
5965
5966 static bfd_vma
5967 mips_elf_global_got_index (abfd, h)
5968 bfd *abfd;
5969 struct elf_link_hash_entry *h;
5970 {
5971 bfd_vma index;
5972 asection *sgot;
5973 struct mips_got_info *g;
5974
5975 g = mips_elf_got_info (abfd, &sgot);
5976
5977 /* Once we determine the global GOT entry with the lowest dynamic
5978 symbol table index, we must put all dynamic symbols with greater
5979 indices into the GOT. That makes it easy to calculate the GOT
5980 offset. */
5981 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5982 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5983 * MIPS_ELF_GOT_SIZE (abfd));
5984 BFD_ASSERT (index < sgot->_raw_size);
5985
5986 return index;
5987 }
5988
5989 /* Returns the offset for the entry at the INDEXth position
5990 in the GOT. */
5991
5992 static bfd_vma
5993 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5994 bfd *dynobj;
5995 bfd *output_bfd;
5996 bfd_vma index;
5997 {
5998 asection *sgot;
5999 bfd_vma gp;
6000
6001 sgot = mips_elf_got_section (dynobj);
6002 gp = _bfd_get_gp_value (output_bfd);
6003 return (sgot->output_section->vma + sgot->output_offset + index -
6004 gp);
6005 }
6006
6007 /* If H is a symbol that needs a global GOT entry, but has a dynamic
6008 symbol table index lower than any we've seen to date, record it for
6009 posterity. */
6010
6011 static boolean
6012 mips_elf_record_global_got_symbol (h, info, g)
6013 struct elf_link_hash_entry *h;
6014 struct bfd_link_info *info;
6015 struct mips_got_info *g ATTRIBUTE_UNUSED;
6016 {
6017 /* A global symbol in the GOT must also be in the dynamic symbol
6018 table. */
6019 if (h->dynindx == -1
6020 && !bfd_elf32_link_record_dynamic_symbol (info, h))
6021 return false;
6022
6023 /* If we've already marked this entry as needing GOT space, we don't
6024 need to do it again. */
6025 if (h->got.offset != (bfd_vma) -1)
6026 return true;
6027
6028 /* By setting this to a value other than -1, we are indicating that
6029 there needs to be a GOT entry for H. Avoid using zero, as the
6030 generic ELF copy_indirect_symbol tests for <= 0. */
6031 h->got.offset = 1;
6032
6033 return true;
6034 }
6035
6036 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
6037 the dynamic symbols. */
6038
6039 struct mips_elf_hash_sort_data
6040 {
6041 /* The symbol in the global GOT with the lowest dynamic symbol table
6042 index. */
6043 struct elf_link_hash_entry *low;
6044 /* The least dynamic symbol table index corresponding to a symbol
6045 with a GOT entry. */
6046 long min_got_dynindx;
6047 /* The greatest dynamic symbol table index not corresponding to a
6048 symbol without a GOT entry. */
6049 long max_non_got_dynindx;
6050 };
6051
6052 /* If H needs a GOT entry, assign it the highest available dynamic
6053 index. Otherwise, assign it the lowest available dynamic
6054 index. */
6055
6056 static boolean
6057 mips_elf_sort_hash_table_f (h, data)
6058 struct mips_elf_link_hash_entry *h;
6059 PTR data;
6060 {
6061 struct mips_elf_hash_sort_data *hsd
6062 = (struct mips_elf_hash_sort_data *) data;
6063
6064 /* Symbols without dynamic symbol table entries aren't interesting
6065 at all. */
6066 if (h->root.dynindx == -1)
6067 return true;
6068
6069 if (h->root.got.offset != 1)
6070 h->root.dynindx = hsd->max_non_got_dynindx++;
6071 else
6072 {
6073 h->root.dynindx = --hsd->min_got_dynindx;
6074 hsd->low = (struct elf_link_hash_entry *) h;
6075 }
6076
6077 return true;
6078 }
6079
6080 /* Sort the dynamic symbol table so that symbols that need GOT entries
6081 appear towards the end. This reduces the amount of GOT space
6082 required. MAX_LOCAL is used to set the number of local symbols
6083 known to be in the dynamic symbol table. During
6084 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
6085 section symbols are added and the count is higher. */
6086
6087 static boolean
6088 mips_elf_sort_hash_table (info, max_local)
6089 struct bfd_link_info *info;
6090 unsigned long max_local;
6091 {
6092 struct mips_elf_hash_sort_data hsd;
6093 struct mips_got_info *g;
6094 bfd *dynobj;
6095
6096 dynobj = elf_hash_table (info)->dynobj;
6097
6098 hsd.low = NULL;
6099 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
6100 hsd.max_non_got_dynindx = max_local;
6101 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
6102 elf_hash_table (info)),
6103 mips_elf_sort_hash_table_f,
6104 &hsd);
6105
6106 /* There should have been enough room in the symbol table to
6107 accomodate both the GOT and non-GOT symbols. */
6108 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
6109
6110 /* Now we know which dynamic symbol has the lowest dynamic symbol
6111 table index in the GOT. */
6112 g = mips_elf_got_info (dynobj, NULL);
6113 g->global_gotsym = hsd.low;
6114
6115 return true;
6116 }
6117
6118 /* Create a local GOT entry for VALUE. Return the index of the entry,
6119 or -1 if it could not be created. */
6120
6121 static bfd_vma
6122 mips_elf_create_local_got_entry (abfd, g, sgot, value)
6123 bfd *abfd;
6124 struct mips_got_info *g;
6125 asection *sgot;
6126 bfd_vma value;
6127 {
6128 if (g->assigned_gotno >= g->local_gotno)
6129 {
6130 /* We didn't allocate enough space in the GOT. */
6131 (*_bfd_error_handler)
6132 (_("not enough GOT space for local GOT entries"));
6133 bfd_set_error (bfd_error_bad_value);
6134 return (bfd_vma) -1;
6135 }
6136
6137 MIPS_ELF_PUT_WORD (abfd, value,
6138 (sgot->contents
6139 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
6140 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
6141 }
6142
6143 /* Returns the GOT offset at which the indicated address can be found.
6144 If there is not yet a GOT entry for this value, create one. Returns
6145 -1 if no satisfactory GOT offset can be found. */
6146
6147 static bfd_vma
6148 mips_elf_local_got_index (abfd, info, value)
6149 bfd *abfd;
6150 struct bfd_link_info *info;
6151 bfd_vma value;
6152 {
6153 asection *sgot;
6154 struct mips_got_info *g;
6155 bfd_byte *entry;
6156
6157 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6158
6159 /* Look to see if we already have an appropriate entry. */
6160 for (entry = (sgot->contents
6161 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6162 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6163 entry += MIPS_ELF_GOT_SIZE (abfd))
6164 {
6165 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
6166 if (address == value)
6167 return entry - sgot->contents;
6168 }
6169
6170 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
6171 }
6172
6173 /* Find a GOT entry that is within 32KB of the VALUE. These entries
6174 are supposed to be placed at small offsets in the GOT, i.e.,
6175 within 32KB of GP. Return the index into the GOT for this page,
6176 and store the offset from this entry to the desired address in
6177 OFFSETP, if it is non-NULL. */
6178
6179 static bfd_vma
6180 mips_elf_got_page (abfd, info, value, offsetp)
6181 bfd *abfd;
6182 struct bfd_link_info *info;
6183 bfd_vma value;
6184 bfd_vma *offsetp;
6185 {
6186 asection *sgot;
6187 struct mips_got_info *g;
6188 bfd_byte *entry;
6189 bfd_byte *last_entry;
6190 bfd_vma index = 0;
6191 bfd_vma address;
6192
6193 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6194
6195 /* Look to see if we aleady have an appropriate entry. */
6196 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6197 for (entry = (sgot->contents
6198 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6199 entry != last_entry;
6200 entry += MIPS_ELF_GOT_SIZE (abfd))
6201 {
6202 address = MIPS_ELF_GET_WORD (abfd, entry);
6203
6204 if (!mips_elf_overflow_p (value - address, 16))
6205 {
6206 /* This entry will serve as the page pointer. We can add a
6207 16-bit number to it to get the actual address. */
6208 index = entry - sgot->contents;
6209 break;
6210 }
6211 }
6212
6213 /* If we didn't have an appropriate entry, we create one now. */
6214 if (entry == last_entry)
6215 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6216
6217 if (offsetp)
6218 {
6219 address = MIPS_ELF_GET_WORD (abfd, entry);
6220 *offsetp = value - address;
6221 }
6222
6223 return index;
6224 }
6225
6226 /* Find a GOT entry whose higher-order 16 bits are the same as those
6227 for value. Return the index into the GOT for this entry. */
6228
6229 static bfd_vma
6230 mips_elf_got16_entry (abfd, info, value, external)
6231 bfd *abfd;
6232 struct bfd_link_info *info;
6233 bfd_vma value;
6234 boolean external;
6235 {
6236 asection *sgot;
6237 struct mips_got_info *g;
6238 bfd_byte *entry;
6239 bfd_byte *last_entry;
6240 bfd_vma index = 0;
6241 bfd_vma address;
6242
6243 if (! external)
6244 {
6245 /* Although the ABI says that it is "the high-order 16 bits" that we
6246 want, it is really the %high value. The complete value is
6247 calculated with a `addiu' of a LO16 relocation, just as with a
6248 HI16/LO16 pair. */
6249 value = mips_elf_high (value) << 16;
6250 }
6251
6252 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6253
6254 /* Look to see if we already have an appropriate entry. */
6255 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6256 for (entry = (sgot->contents
6257 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6258 entry != last_entry;
6259 entry += MIPS_ELF_GOT_SIZE (abfd))
6260 {
6261 address = MIPS_ELF_GET_WORD (abfd, entry);
6262 if (address == value)
6263 {
6264 /* This entry has the right high-order 16 bits, and the low-order
6265 16 bits are set to zero. */
6266 index = entry - sgot->contents;
6267 break;
6268 }
6269 }
6270
6271 /* If we didn't have an appropriate entry, we create one now. */
6272 if (entry == last_entry)
6273 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6274
6275 return index;
6276 }
6277
6278 /* Returns the first relocation of type r_type found, beginning with
6279 RELOCATION. RELEND is one-past-the-end of the relocation table. */
6280
6281 static const Elf_Internal_Rela *
6282 mips_elf_next_relocation (r_type, relocation, relend)
6283 unsigned int r_type;
6284 const Elf_Internal_Rela *relocation;
6285 const Elf_Internal_Rela *relend;
6286 {
6287 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
6288 immediately following. However, for the IRIX6 ABI, the next
6289 relocation may be a composed relocation consisting of several
6290 relocations for the same address. In that case, the R_MIPS_LO16
6291 relocation may occur as one of these. We permit a similar
6292 extension in general, as that is useful for GCC. */
6293 while (relocation < relend)
6294 {
6295 if (ELF32_R_TYPE (relocation->r_info) == r_type)
6296 return relocation;
6297
6298 ++relocation;
6299 }
6300
6301 /* We didn't find it. */
6302 bfd_set_error (bfd_error_bad_value);
6303 return NULL;
6304 }
6305
6306 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6307 is the original relocation, which is now being transformed into a
6308 dynamic relocation. The ADDENDP is adjusted if necessary; the
6309 caller should store the result in place of the original addend. */
6310
6311 static boolean
6312 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
6313 symbol, addendp, input_section)
6314 bfd *output_bfd;
6315 struct bfd_link_info *info;
6316 const Elf_Internal_Rela *rel;
6317 struct mips_elf_link_hash_entry *h;
6318 asection *sec;
6319 bfd_vma symbol;
6320 bfd_vma *addendp;
6321 asection *input_section;
6322 {
6323 Elf_Internal_Rel outrel;
6324 boolean skip;
6325 asection *sreloc;
6326 bfd *dynobj;
6327 int r_type;
6328
6329 r_type = ELF32_R_TYPE (rel->r_info);
6330 dynobj = elf_hash_table (info)->dynobj;
6331 sreloc
6332 = bfd_get_section_by_name (dynobj,
6333 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
6334 BFD_ASSERT (sreloc != NULL);
6335 BFD_ASSERT (sreloc->contents != NULL);
6336 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6337 < sreloc->_raw_size);
6338
6339 skip = false;
6340 outrel.r_offset =
6341 _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset);
6342 if (outrel.r_offset == (bfd_vma) -1)
6343 skip = true;
6344
6345 /* If we've decided to skip this relocation, just output an empty
6346 record. Note that R_MIPS_NONE == 0, so that this call to memset
6347 is a way of setting R_TYPE to R_MIPS_NONE. */
6348 if (skip)
6349 memset (&outrel, 0, sizeof (outrel));
6350 else
6351 {
6352 long indx;
6353 bfd_vma section_offset;
6354
6355 /* We must now calculate the dynamic symbol table index to use
6356 in the relocation. */
6357 if (h != NULL
6358 && (! info->symbolic || (h->root.elf_link_hash_flags
6359 & ELF_LINK_HASH_DEF_REGULAR) == 0))
6360 {
6361 indx = h->root.dynindx;
6362 /* h->root.dynindx may be -1 if this symbol was marked to
6363 become local. */
6364 if (indx == -1)
6365 indx = 0;
6366 }
6367 else
6368 {
6369 if (sec != NULL && bfd_is_abs_section (sec))
6370 indx = 0;
6371 else if (sec == NULL || sec->owner == NULL)
6372 {
6373 bfd_set_error (bfd_error_bad_value);
6374 return false;
6375 }
6376 else
6377 {
6378 indx = elf_section_data (sec->output_section)->dynindx;
6379 if (indx == 0)
6380 abort ();
6381 }
6382
6383 /* Figure out how far the target of the relocation is from
6384 the beginning of its section. */
6385 section_offset = symbol - sec->output_section->vma;
6386 /* The relocation we're building is section-relative.
6387 Therefore, the original addend must be adjusted by the
6388 section offset. */
6389 *addendp += section_offset;
6390 /* Now, the relocation is just against the section. */
6391 symbol = sec->output_section->vma;
6392 }
6393
6394 /* If the relocation was previously an absolute relocation and
6395 this symbol will not be referred to by the relocation, we must
6396 adjust it by the value we give it in the dynamic symbol table.
6397 Otherwise leave the job up to the dynamic linker. */
6398 if (!indx && r_type != R_MIPS_REL32)
6399 *addendp += symbol;
6400
6401 /* The relocation is always an REL32 relocation because we don't
6402 know where the shared library will wind up at load-time. */
6403 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
6404
6405 /* Adjust the output offset of the relocation to reference the
6406 correct location in the output file. */
6407 outrel.r_offset += (input_section->output_section->vma
6408 + input_section->output_offset);
6409 }
6410
6411 /* Put the relocation back out. We have to use the special
6412 relocation outputter in the 64-bit case since the 64-bit
6413 relocation format is non-standard. */
6414 if (ABI_64_P (output_bfd))
6415 {
6416 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6417 (output_bfd, &outrel,
6418 (sreloc->contents
6419 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6420 }
6421 else
6422 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
6423 (((Elf32_External_Rel *)
6424 sreloc->contents)
6425 + sreloc->reloc_count));
6426
6427 /* Record the index of the first relocation referencing H. This
6428 information is later emitted in the .msym section. */
6429 if (h != NULL
6430 && (h->min_dyn_reloc_index == 0
6431 || sreloc->reloc_count < h->min_dyn_reloc_index))
6432 h->min_dyn_reloc_index = sreloc->reloc_count;
6433
6434 /* We've now added another relocation. */
6435 ++sreloc->reloc_count;
6436
6437 /* Make sure the output section is writable. The dynamic linker
6438 will be writing to it. */
6439 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6440 |= SHF_WRITE;
6441
6442 /* On IRIX5, make an entry of compact relocation info. */
6443 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
6444 {
6445 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6446 bfd_byte *cr;
6447
6448 if (scpt)
6449 {
6450 Elf32_crinfo cptrel;
6451
6452 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6453 cptrel.vaddr = (rel->r_offset
6454 + input_section->output_section->vma
6455 + input_section->output_offset);
6456 if (r_type == R_MIPS_REL32)
6457 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6458 else
6459 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6460 mips_elf_set_cr_dist2to (cptrel, 0);
6461 cptrel.konst = *addendp;
6462
6463 cr = (scpt->contents
6464 + sizeof (Elf32_External_compact_rel));
6465 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6466 ((Elf32_External_crinfo *) cr
6467 + scpt->reloc_count));
6468 ++scpt->reloc_count;
6469 }
6470 }
6471
6472 return true;
6473 }
6474
6475 /* Calculate the value produced by the RELOCATION (which comes from
6476 the INPUT_BFD). The ADDEND is the addend to use for this
6477 RELOCATION; RELOCATION->R_ADDEND is ignored.
6478
6479 The result of the relocation calculation is stored in VALUEP.
6480 REQUIRE_JALXP indicates whether or not the opcode used with this
6481 relocation must be JALX.
6482
6483 This function returns bfd_reloc_continue if the caller need take no
6484 further action regarding this relocation, bfd_reloc_notsupported if
6485 something goes dramatically wrong, bfd_reloc_overflow if an
6486 overflow occurs, and bfd_reloc_ok to indicate success. */
6487
6488 static bfd_reloc_status_type
6489 mips_elf_calculate_relocation (abfd,
6490 input_bfd,
6491 input_section,
6492 info,
6493 relocation,
6494 addend,
6495 howto,
6496 local_syms,
6497 local_sections,
6498 valuep,
6499 namep,
6500 require_jalxp)
6501 bfd *abfd;
6502 bfd *input_bfd;
6503 asection *input_section;
6504 struct bfd_link_info *info;
6505 const Elf_Internal_Rela *relocation;
6506 bfd_vma addend;
6507 reloc_howto_type *howto;
6508 Elf_Internal_Sym *local_syms;
6509 asection **local_sections;
6510 bfd_vma *valuep;
6511 const char **namep;
6512 boolean *require_jalxp;
6513 {
6514 /* The eventual value we will return. */
6515 bfd_vma value;
6516 /* The address of the symbol against which the relocation is
6517 occurring. */
6518 bfd_vma symbol = 0;
6519 /* The final GP value to be used for the relocatable, executable, or
6520 shared object file being produced. */
6521 bfd_vma gp = (bfd_vma) - 1;
6522 /* The place (section offset or address) of the storage unit being
6523 relocated. */
6524 bfd_vma p;
6525 /* The value of GP used to create the relocatable object. */
6526 bfd_vma gp0 = (bfd_vma) - 1;
6527 /* The offset into the global offset table at which the address of
6528 the relocation entry symbol, adjusted by the addend, resides
6529 during execution. */
6530 bfd_vma g = (bfd_vma) - 1;
6531 /* The section in which the symbol referenced by the relocation is
6532 located. */
6533 asection *sec = NULL;
6534 struct mips_elf_link_hash_entry *h = NULL;
6535 /* True if the symbol referred to by this relocation is a local
6536 symbol. */
6537 boolean local_p;
6538 /* True if the symbol referred to by this relocation is "_gp_disp". */
6539 boolean gp_disp_p = false;
6540 Elf_Internal_Shdr *symtab_hdr;
6541 size_t extsymoff;
6542 unsigned long r_symndx;
6543 int r_type;
6544 /* True if overflow occurred during the calculation of the
6545 relocation value. */
6546 boolean overflowed_p;
6547 /* True if this relocation refers to a MIPS16 function. */
6548 boolean target_is_16_bit_code_p = false;
6549
6550 /* Parse the relocation. */
6551 r_symndx = ELF32_R_SYM (relocation->r_info);
6552 r_type = ELF32_R_TYPE (relocation->r_info);
6553 p = (input_section->output_section->vma
6554 + input_section->output_offset
6555 + relocation->r_offset);
6556
6557 /* Assume that there will be no overflow. */
6558 overflowed_p = false;
6559
6560 /* Figure out whether or not the symbol is local, and get the offset
6561 used in the array of hash table entries. */
6562 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6563 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6564 local_sections, false);
6565 if (! elf_bad_symtab (input_bfd))
6566 extsymoff = symtab_hdr->sh_info;
6567 else
6568 {
6569 /* The symbol table does not follow the rule that local symbols
6570 must come before globals. */
6571 extsymoff = 0;
6572 }
6573
6574 /* Figure out the value of the symbol. */
6575 if (local_p)
6576 {
6577 Elf_Internal_Sym *sym;
6578
6579 sym = local_syms + r_symndx;
6580 sec = local_sections[r_symndx];
6581
6582 symbol = sec->output_section->vma + sec->output_offset;
6583 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6584 symbol += sym->st_value;
6585
6586 /* MIPS16 text labels should be treated as odd. */
6587 if (sym->st_other == STO_MIPS16)
6588 ++symbol;
6589
6590 /* Record the name of this symbol, for our caller. */
6591 *namep = bfd_elf_string_from_elf_section (input_bfd,
6592 symtab_hdr->sh_link,
6593 sym->st_name);
6594 if (*namep == '\0')
6595 *namep = bfd_section_name (input_bfd, sec);
6596
6597 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6598 }
6599 else
6600 {
6601 /* For global symbols we look up the symbol in the hash-table. */
6602 h = ((struct mips_elf_link_hash_entry *)
6603 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6604 /* Find the real hash-table entry for this symbol. */
6605 while (h->root.root.type == bfd_link_hash_indirect
6606 || h->root.root.type == bfd_link_hash_warning)
6607 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6608
6609 /* Record the name of this symbol, for our caller. */
6610 *namep = h->root.root.root.string;
6611
6612 /* See if this is the special _gp_disp symbol. Note that such a
6613 symbol must always be a global symbol. */
6614 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6615 {
6616 /* Relocations against _gp_disp are permitted only with
6617 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6618 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6619 return bfd_reloc_notsupported;
6620
6621 gp_disp_p = true;
6622 }
6623 /* If this symbol is defined, calculate its address. Note that
6624 _gp_disp is a magic symbol, always implicitly defined by the
6625 linker, so it's inappropriate to check to see whether or not
6626 its defined. */
6627 else if ((h->root.root.type == bfd_link_hash_defined
6628 || h->root.root.type == bfd_link_hash_defweak)
6629 && h->root.root.u.def.section)
6630 {
6631 sec = h->root.root.u.def.section;
6632 if (sec->output_section)
6633 symbol = (h->root.root.u.def.value
6634 + sec->output_section->vma
6635 + sec->output_offset);
6636 else
6637 symbol = h->root.root.u.def.value;
6638 }
6639 else if (h->root.root.type == bfd_link_hash_undefweak)
6640 /* We allow relocations against undefined weak symbols, giving
6641 it the value zero, so that you can undefined weak functions
6642 and check to see if they exist by looking at their
6643 addresses. */
6644 symbol = 0;
6645 else if (info->shared
6646 && (!info->symbolic || info->allow_shlib_undefined)
6647 && !info->no_undefined
6648 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6649 symbol = 0;
6650 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6651 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6652 {
6653 /* If this is a dynamic link, we should have created a
6654 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6655 in in mips_elf_create_dynamic_sections.
6656 Otherwise, we should define the symbol with a value of 0.
6657 FIXME: It should probably get into the symbol table
6658 somehow as well. */
6659 BFD_ASSERT (! info->shared);
6660 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6661 symbol = 0;
6662 }
6663 else
6664 {
6665 if (! ((*info->callbacks->undefined_symbol)
6666 (info, h->root.root.root.string, input_bfd,
6667 input_section, relocation->r_offset,
6668 (!info->shared || info->no_undefined
6669 || ELF_ST_VISIBILITY (h->root.other)))))
6670 return bfd_reloc_undefined;
6671 symbol = 0;
6672 }
6673
6674 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6675 }
6676
6677 /* If this is a 32-bit call to a 16-bit function with a stub, we
6678 need to redirect the call to the stub, unless we're already *in*
6679 a stub. */
6680 if (r_type != R_MIPS16_26 && !info->relocateable
6681 && ((h != NULL && h->fn_stub != NULL)
6682 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6683 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6684 && !mips_elf_stub_section_p (input_bfd, input_section))
6685 {
6686 /* This is a 32-bit call to a 16-bit function. We should
6687 have already noticed that we were going to need the
6688 stub. */
6689 if (local_p)
6690 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6691 else
6692 {
6693 BFD_ASSERT (h->need_fn_stub);
6694 sec = h->fn_stub;
6695 }
6696
6697 symbol = sec->output_section->vma + sec->output_offset;
6698 }
6699 /* If this is a 16-bit call to a 32-bit function with a stub, we
6700 need to redirect the call to the stub. */
6701 else if (r_type == R_MIPS16_26 && !info->relocateable
6702 && h != NULL
6703 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6704 && !target_is_16_bit_code_p)
6705 {
6706 /* If both call_stub and call_fp_stub are defined, we can figure
6707 out which one to use by seeing which one appears in the input
6708 file. */
6709 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6710 {
6711 asection *o;
6712
6713 sec = NULL;
6714 for (o = input_bfd->sections; o != NULL; o = o->next)
6715 {
6716 if (strncmp (bfd_get_section_name (input_bfd, o),
6717 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6718 {
6719 sec = h->call_fp_stub;
6720 break;
6721 }
6722 }
6723 if (sec == NULL)
6724 sec = h->call_stub;
6725 }
6726 else if (h->call_stub != NULL)
6727 sec = h->call_stub;
6728 else
6729 sec = h->call_fp_stub;
6730
6731 BFD_ASSERT (sec->_raw_size > 0);
6732 symbol = sec->output_section->vma + sec->output_offset;
6733 }
6734
6735 /* Calls from 16-bit code to 32-bit code and vice versa require the
6736 special jalx instruction. */
6737 *require_jalxp = (!info->relocateable
6738 && (((r_type == R_MIPS16_26) != target_is_16_bit_code_p
6739 || ((r_type == R_MIPS_26) == target_is_16_bit_code_p))));
6740
6741 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6742 local_sections, true);
6743
6744 /* If we haven't already determined the GOT offset, or the GP value,
6745 and we're going to need it, get it now. */
6746 switch (r_type)
6747 {
6748 case R_MIPS_CALL16:
6749 case R_MIPS_GOT16:
6750 case R_MIPS_GOT_DISP:
6751 case R_MIPS_GOT_HI16:
6752 case R_MIPS_CALL_HI16:
6753 case R_MIPS_GOT_LO16:
6754 case R_MIPS_CALL_LO16:
6755 /* Find the index into the GOT where this value is located. */
6756 if (!local_p)
6757 {
6758 BFD_ASSERT (addend == 0);
6759 g = mips_elf_global_got_index
6760 (elf_hash_table (info)->dynobj,
6761 (struct elf_link_hash_entry *) h);
6762 if (! elf_hash_table(info)->dynamic_sections_created
6763 || (info->shared
6764 && (info->symbolic || h->root.dynindx == -1)
6765 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6766 {
6767 /* This is a static link or a -Bsymbolic link. The
6768 symbol is defined locally, or was forced to be local.
6769 We must initialize this entry in the GOT. */
6770 asection *sgot = mips_elf_got_section(elf_hash_table
6771 (info)->dynobj);
6772 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6773 symbol + addend, sgot->contents + g);
6774 }
6775 }
6776 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6777 /* There's no need to create a local GOT entry here; the
6778 calculation for a local GOT16 entry does not involve G. */
6779 break;
6780 else
6781 {
6782 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6783 if (g == (bfd_vma) -1)
6784 return false;
6785 }
6786
6787 /* Convert GOT indices to actual offsets. */
6788 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6789 abfd, g);
6790 break;
6791
6792 case R_MIPS_HI16:
6793 case R_MIPS_LO16:
6794 case R_MIPS16_GPREL:
6795 case R_MIPS_GPREL16:
6796 case R_MIPS_GPREL32:
6797 case R_MIPS_LITERAL:
6798 gp0 = _bfd_get_gp_value (input_bfd);
6799 gp = _bfd_get_gp_value (abfd);
6800 break;
6801
6802 default:
6803 break;
6804 }
6805
6806 /* Figure out what kind of relocation is being performed. */
6807 switch (r_type)
6808 {
6809 case R_MIPS_NONE:
6810 return bfd_reloc_continue;
6811
6812 case R_MIPS_16:
6813 value = symbol + mips_elf_sign_extend (addend, 16);
6814 overflowed_p = mips_elf_overflow_p (value, 16);
6815 break;
6816
6817 case R_MIPS_32:
6818 case R_MIPS_REL32:
6819 case R_MIPS_64:
6820 if ((info->shared
6821 || (elf_hash_table (info)->dynamic_sections_created
6822 && h != NULL
6823 && ((h->root.elf_link_hash_flags
6824 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6825 && ((h->root.elf_link_hash_flags
6826 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6827 && r_symndx != 0
6828 && (input_section->flags & SEC_ALLOC) != 0)
6829 {
6830 /* If we're creating a shared library, or this relocation is
6831 against a symbol in a shared library, then we can't know
6832 where the symbol will end up. So, we create a relocation
6833 record in the output, and leave the job up to the dynamic
6834 linker. */
6835 value = addend;
6836 if (!mips_elf_create_dynamic_relocation (abfd,
6837 info,
6838 relocation,
6839 h,
6840 sec,
6841 symbol,
6842 &value,
6843 input_section))
6844 return false;
6845 }
6846 else
6847 {
6848 if (r_type != R_MIPS_REL32)
6849 value = symbol + addend;
6850 else
6851 value = addend;
6852 }
6853 value &= howto->dst_mask;
6854 break;
6855
6856 case R_MIPS_PC32:
6857 case R_MIPS_PC64:
6858 case R_MIPS_GNU_REL_LO16:
6859 value = symbol + addend - p;
6860 value &= howto->dst_mask;
6861 break;
6862
6863 case R_MIPS_GNU_REL16_S2:
6864 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6865 overflowed_p = mips_elf_overflow_p (value, 18);
6866 value = (value >> 2) & howto->dst_mask;
6867 break;
6868
6869 case R_MIPS_GNU_REL_HI16:
6870 value = mips_elf_high (addend + symbol - p);
6871 value &= howto->dst_mask;
6872 break;
6873
6874 case R_MIPS16_26:
6875 /* The calculation for R_MIPS16_26 is just the same as for an
6876 R_MIPS_26. It's only the storage of the relocated field into
6877 the output file that's different. That's handled in
6878 mips_elf_perform_relocation. So, we just fall through to the
6879 R_MIPS_26 case here. */
6880 case R_MIPS_26:
6881 if (local_p)
6882 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6883 else
6884 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6885 value &= howto->dst_mask;
6886 break;
6887
6888 case R_MIPS_HI16:
6889 if (!gp_disp_p)
6890 {
6891 value = mips_elf_high (addend + symbol);
6892 value &= howto->dst_mask;
6893 }
6894 else
6895 {
6896 value = mips_elf_high (addend + gp - p);
6897 overflowed_p = mips_elf_overflow_p (value, 16);
6898 }
6899 break;
6900
6901 case R_MIPS_LO16:
6902 if (!gp_disp_p)
6903 value = (symbol + addend) & howto->dst_mask;
6904 else
6905 {
6906 value = addend + gp - p + 4;
6907 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6908 for overflow. But, on, say, Irix 5, relocations against
6909 _gp_disp are normally generated from the .cpload
6910 pseudo-op. It generates code that normally looks like
6911 this:
6912
6913 lui $gp,%hi(_gp_disp)
6914 addiu $gp,$gp,%lo(_gp_disp)
6915 addu $gp,$gp,$t9
6916
6917 Here $t9 holds the address of the function being called,
6918 as required by the MIPS ELF ABI. The R_MIPS_LO16
6919 relocation can easily overflow in this situation, but the
6920 R_MIPS_HI16 relocation will handle the overflow.
6921 Therefore, we consider this a bug in the MIPS ABI, and do
6922 not check for overflow here. */
6923 }
6924 break;
6925
6926 case R_MIPS_LITERAL:
6927 /* Because we don't merge literal sections, we can handle this
6928 just like R_MIPS_GPREL16. In the long run, we should merge
6929 shared literals, and then we will need to additional work
6930 here. */
6931
6932 /* Fall through. */
6933
6934 case R_MIPS16_GPREL:
6935 /* The R_MIPS16_GPREL performs the same calculation as
6936 R_MIPS_GPREL16, but stores the relocated bits in a different
6937 order. We don't need to do anything special here; the
6938 differences are handled in mips_elf_perform_relocation. */
6939 case R_MIPS_GPREL16:
6940 if (local_p)
6941 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6942 else
6943 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6944 overflowed_p = mips_elf_overflow_p (value, 16);
6945 break;
6946
6947 case R_MIPS_GOT16:
6948 case R_MIPS_CALL16:
6949 if (local_p)
6950 {
6951 boolean forced;
6952
6953 /* The special case is when the symbol is forced to be local. We
6954 need the full address in the GOT since no R_MIPS_LO16 relocation
6955 follows. */
6956 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6957 local_sections, false);
6958 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6959 if (value == (bfd_vma) -1)
6960 return false;
6961 value
6962 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6963 abfd,
6964 value);
6965 overflowed_p = mips_elf_overflow_p (value, 16);
6966 break;
6967 }
6968
6969 /* Fall through. */
6970
6971 case R_MIPS_GOT_DISP:
6972 value = g;
6973 overflowed_p = mips_elf_overflow_p (value, 16);
6974 break;
6975
6976 case R_MIPS_GPREL32:
6977 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6978 break;
6979
6980 case R_MIPS_PC16:
6981 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6982 overflowed_p = mips_elf_overflow_p (value, 16);
6983 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6984 break;
6985
6986 case R_MIPS_GOT_HI16:
6987 case R_MIPS_CALL_HI16:
6988 /* We're allowed to handle these two relocations identically.
6989 The dynamic linker is allowed to handle the CALL relocations
6990 differently by creating a lazy evaluation stub. */
6991 value = g;
6992 value = mips_elf_high (value);
6993 value &= howto->dst_mask;
6994 break;
6995
6996 case R_MIPS_GOT_LO16:
6997 case R_MIPS_CALL_LO16:
6998 value = g & howto->dst_mask;
6999 break;
7000
7001 case R_MIPS_GOT_PAGE:
7002 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
7003 if (value == (bfd_vma) -1)
7004 return false;
7005 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
7006 abfd,
7007 value);
7008 overflowed_p = mips_elf_overflow_p (value, 16);
7009 break;
7010
7011 case R_MIPS_GOT_OFST:
7012 mips_elf_got_page (abfd, info, symbol + addend, &value);
7013 overflowed_p = mips_elf_overflow_p (value, 16);
7014 break;
7015
7016 case R_MIPS_SUB:
7017 value = symbol - addend;
7018 value &= howto->dst_mask;
7019 break;
7020
7021 case R_MIPS_HIGHER:
7022 value = mips_elf_higher (addend + symbol);
7023 value &= howto->dst_mask;
7024 break;
7025
7026 case R_MIPS_HIGHEST:
7027 value = mips_elf_highest (addend + symbol);
7028 value &= howto->dst_mask;
7029 break;
7030
7031 case R_MIPS_SCN_DISP:
7032 value = symbol + addend - sec->output_offset;
7033 value &= howto->dst_mask;
7034 break;
7035
7036 case R_MIPS_PJUMP:
7037 case R_MIPS_JALR:
7038 /* Both of these may be ignored. R_MIPS_JALR is an optimization
7039 hint; we could improve performance by honoring that hint. */
7040 return bfd_reloc_continue;
7041
7042 case R_MIPS_GNU_VTINHERIT:
7043 case R_MIPS_GNU_VTENTRY:
7044 /* We don't do anything with these at present. */
7045 return bfd_reloc_continue;
7046
7047 default:
7048 /* An unrecognized relocation type. */
7049 return bfd_reloc_notsupported;
7050 }
7051
7052 /* Store the VALUE for our caller. */
7053 *valuep = value;
7054 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
7055 }
7056
7057 /* Obtain the field relocated by RELOCATION. */
7058
7059 static bfd_vma
7060 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
7061 reloc_howto_type *howto;
7062 const Elf_Internal_Rela *relocation;
7063 bfd *input_bfd;
7064 bfd_byte *contents;
7065 {
7066 bfd_vma x;
7067 bfd_byte *location = contents + relocation->r_offset;
7068
7069 /* Obtain the bytes. */
7070 x = bfd_get (((bfd_vma)(8 * bfd_get_reloc_size (howto))), input_bfd, location);
7071
7072 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
7073 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
7074 && bfd_little_endian (input_bfd))
7075 /* The two 16-bit words will be reversed on a little-endian
7076 system. See mips_elf_perform_relocation for more details. */
7077 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7078
7079 return x;
7080 }
7081
7082 /* It has been determined that the result of the RELOCATION is the
7083 VALUE. Use HOWTO to place VALUE into the output file at the
7084 appropriate position. The SECTION is the section to which the
7085 relocation applies. If REQUIRE_JALX is true, then the opcode used
7086 for the relocation must be either JAL or JALX, and it is
7087 unconditionally converted to JALX.
7088
7089 Returns false if anything goes wrong. */
7090
7091 static boolean
7092 mips_elf_perform_relocation (info, howto, relocation, value,
7093 input_bfd, input_section,
7094 contents, require_jalx)
7095 struct bfd_link_info *info;
7096 reloc_howto_type *howto;
7097 const Elf_Internal_Rela *relocation;
7098 bfd_vma value;
7099 bfd *input_bfd;
7100 asection *input_section;
7101 bfd_byte *contents;
7102 boolean require_jalx;
7103 {
7104 bfd_vma x;
7105 bfd_byte *location;
7106 int r_type = ELF32_R_TYPE (relocation->r_info);
7107
7108 /* Figure out where the relocation is occurring. */
7109 location = contents + relocation->r_offset;
7110
7111 /* Obtain the current value. */
7112 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
7113
7114 /* Clear the field we are setting. */
7115 x &= ~howto->dst_mask;
7116
7117 /* If this is the R_MIPS16_26 relocation, we must store the
7118 value in a funny way. */
7119 if (r_type == R_MIPS16_26)
7120 {
7121 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
7122 Most mips16 instructions are 16 bits, but these instructions
7123 are 32 bits.
7124
7125 The format of these instructions is:
7126
7127 +--------------+--------------------------------+
7128 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
7129 +--------------+--------------------------------+
7130 ! Immediate 15:0 !
7131 +-----------------------------------------------+
7132
7133 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
7134 Note that the immediate value in the first word is swapped.
7135
7136 When producing a relocateable object file, R_MIPS16_26 is
7137 handled mostly like R_MIPS_26. In particular, the addend is
7138 stored as a straight 26-bit value in a 32-bit instruction.
7139 (gas makes life simpler for itself by never adjusting a
7140 R_MIPS16_26 reloc to be against a section, so the addend is
7141 always zero). However, the 32 bit instruction is stored as 2
7142 16-bit values, rather than a single 32-bit value. In a
7143 big-endian file, the result is the same; in a little-endian
7144 file, the two 16-bit halves of the 32 bit value are swapped.
7145 This is so that a disassembler can recognize the jal
7146 instruction.
7147
7148 When doing a final link, R_MIPS16_26 is treated as a 32 bit
7149 instruction stored as two 16-bit values. The addend A is the
7150 contents of the targ26 field. The calculation is the same as
7151 R_MIPS_26. When storing the calculated value, reorder the
7152 immediate value as shown above, and don't forget to store the
7153 value as two 16-bit values.
7154
7155 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
7156 defined as
7157
7158 big-endian:
7159 +--------+----------------------+
7160 | | |
7161 | | targ26-16 |
7162 |31 26|25 0|
7163 +--------+----------------------+
7164
7165 little-endian:
7166 +----------+------+-------------+
7167 | | | |
7168 | sub1 | | sub2 |
7169 |0 9|10 15|16 31|
7170 +----------+--------------------+
7171 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
7172 ((sub1 << 16) | sub2)).
7173
7174 When producing a relocateable object file, the calculation is
7175 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7176 When producing a fully linked file, the calculation is
7177 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7178 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
7179
7180 if (!info->relocateable)
7181 /* Shuffle the bits according to the formula above. */
7182 value = (((value & 0x1f0000) << 5)
7183 | ((value & 0x3e00000) >> 5)
7184 | (value & 0xffff));
7185 }
7186 else if (r_type == R_MIPS16_GPREL)
7187 {
7188 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
7189 mode. A typical instruction will have a format like this:
7190
7191 +--------------+--------------------------------+
7192 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
7193 +--------------+--------------------------------+
7194 ! Major ! rx ! ry ! Imm 4:0 !
7195 +--------------+--------------------------------+
7196
7197 EXTEND is the five bit value 11110. Major is the instruction
7198 opcode.
7199
7200 This is handled exactly like R_MIPS_GPREL16, except that the
7201 addend is retrieved and stored as shown in this diagram; that
7202 is, the Imm fields above replace the V-rel16 field.
7203
7204 All we need to do here is shuffle the bits appropriately. As
7205 above, the two 16-bit halves must be swapped on a
7206 little-endian system. */
7207 value = (((value & 0x7e0) << 16)
7208 | ((value & 0xf800) << 5)
7209 | (value & 0x1f));
7210 }
7211
7212 /* Set the field. */
7213 x |= (value & howto->dst_mask);
7214
7215 /* If required, turn JAL into JALX. */
7216 if (require_jalx)
7217 {
7218 boolean ok;
7219 bfd_vma opcode = x >> 26;
7220 bfd_vma jalx_opcode;
7221
7222 /* Check to see if the opcode is already JAL or JALX. */
7223 if (r_type == R_MIPS16_26)
7224 {
7225 ok = ((opcode == 0x6) || (opcode == 0x7));
7226 jalx_opcode = 0x7;
7227 }
7228 else
7229 {
7230 ok = ((opcode == 0x3) || (opcode == 0x1d));
7231 jalx_opcode = 0x1d;
7232 }
7233
7234 /* If the opcode is not JAL or JALX, there's a problem. */
7235 if (!ok)
7236 {
7237 (*_bfd_error_handler)
7238 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
7239 bfd_archive_filename (input_bfd),
7240 input_section->name,
7241 (unsigned long) relocation->r_offset);
7242 bfd_set_error (bfd_error_bad_value);
7243 return false;
7244 }
7245
7246 /* Make this the JALX opcode. */
7247 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
7248 }
7249
7250 /* Swap the high- and low-order 16 bits on little-endian systems
7251 when doing a MIPS16 relocation. */
7252 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
7253 && bfd_little_endian (input_bfd))
7254 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7255
7256 /* Put the value into the output. */
7257 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
7258 return true;
7259 }
7260
7261 /* Returns true if SECTION is a MIPS16 stub section. */
7262
7263 static boolean
7264 mips_elf_stub_section_p (abfd, section)
7265 bfd *abfd ATTRIBUTE_UNUSED;
7266 asection *section;
7267 {
7268 const char *name = bfd_get_section_name (abfd, section);
7269
7270 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
7271 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7272 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7273 }
7274
7275 /* Relocate a MIPS ELF section. */
7276
7277 boolean
7278 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
7279 contents, relocs, local_syms, local_sections)
7280 bfd *output_bfd;
7281 struct bfd_link_info *info;
7282 bfd *input_bfd;
7283 asection *input_section;
7284 bfd_byte *contents;
7285 Elf_Internal_Rela *relocs;
7286 Elf_Internal_Sym *local_syms;
7287 asection **local_sections;
7288 {
7289 Elf_Internal_Rela *rel;
7290 const Elf_Internal_Rela *relend;
7291 bfd_vma addend = 0;
7292 boolean use_saved_addend_p = false;
7293 struct elf_backend_data *bed;
7294
7295 bed = get_elf_backend_data (output_bfd);
7296 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7297 for (rel = relocs; rel < relend; ++rel)
7298 {
7299 const char *name;
7300 bfd_vma value;
7301 reloc_howto_type *howto;
7302 boolean require_jalx;
7303 /* True if the relocation is a RELA relocation, rather than a
7304 REL relocation. */
7305 boolean rela_relocation_p = true;
7306 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7307 const char * msg = (const char *) NULL;
7308
7309 /* Find the relocation howto for this relocation. */
7310 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7311 {
7312 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7313 64-bit code, but make sure all their addresses are in the
7314 lowermost or uppermost 32-bit section of the 64-bit address
7315 space. Thus, when they use an R_MIPS_64 they mean what is
7316 usually meant by R_MIPS_32, with the exception that the
7317 stored value is sign-extended to 64 bits. */
7318 howto = elf_mips_howto_table_rel + R_MIPS_32;
7319
7320 /* On big-endian systems, we need to lie about the position
7321 of the reloc. */
7322 if (bfd_big_endian (input_bfd))
7323 rel->r_offset += 4;
7324 }
7325 else
7326 howto = mips_rtype_to_howto (r_type);
7327
7328 if (!use_saved_addend_p)
7329 {
7330 Elf_Internal_Shdr *rel_hdr;
7331
7332 /* If these relocations were originally of the REL variety,
7333 we must pull the addend out of the field that will be
7334 relocated. Otherwise, we simply use the contents of the
7335 RELA relocation. To determine which flavor or relocation
7336 this is, we depend on the fact that the INPUT_SECTION's
7337 REL_HDR is read before its REL_HDR2. */
7338 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7339 if ((size_t) (rel - relocs)
7340 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7341 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7342 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7343 {
7344 /* Note that this is a REL relocation. */
7345 rela_relocation_p = false;
7346
7347 /* Get the addend, which is stored in the input file. */
7348 addend = mips_elf_obtain_contents (howto,
7349 rel,
7350 input_bfd,
7351 contents);
7352 addend &= howto->src_mask;
7353
7354 /* For some kinds of relocations, the ADDEND is a
7355 combination of the addend stored in two different
7356 relocations. */
7357 if (r_type == R_MIPS_HI16
7358 || r_type == R_MIPS_GNU_REL_HI16
7359 || (r_type == R_MIPS_GOT16
7360 && mips_elf_local_relocation_p (input_bfd, rel,
7361 local_sections, false)))
7362 {
7363 bfd_vma l;
7364 const Elf_Internal_Rela *lo16_relocation;
7365 reloc_howto_type *lo16_howto;
7366 unsigned int lo;
7367
7368 /* The combined value is the sum of the HI16 addend,
7369 left-shifted by sixteen bits, and the LO16
7370 addend, sign extended. (Usually, the code does
7371 a `lui' of the HI16 value, and then an `addiu' of
7372 the LO16 value.)
7373
7374 Scan ahead to find a matching LO16 relocation. */
7375 if (r_type == R_MIPS_GNU_REL_HI16)
7376 lo = R_MIPS_GNU_REL_LO16;
7377 else
7378 lo = R_MIPS_LO16;
7379 lo16_relocation
7380 = mips_elf_next_relocation (lo, rel, relend);
7381 if (lo16_relocation == NULL)
7382 return false;
7383
7384 /* Obtain the addend kept there. */
7385 lo16_howto = mips_rtype_to_howto (lo);
7386 l = mips_elf_obtain_contents (lo16_howto,
7387 lo16_relocation,
7388 input_bfd, contents);
7389 l &= lo16_howto->src_mask;
7390 l = mips_elf_sign_extend (l, 16);
7391
7392 addend <<= 16;
7393
7394 /* Compute the combined addend. */
7395 addend += l;
7396 }
7397 else if (r_type == R_MIPS16_GPREL)
7398 {
7399 /* The addend is scrambled in the object file. See
7400 mips_elf_perform_relocation for details on the
7401 format. */
7402 addend = (((addend & 0x1f0000) >> 5)
7403 | ((addend & 0x7e00000) >> 16)
7404 | (addend & 0x1f));
7405 }
7406 }
7407 else
7408 addend = rel->r_addend;
7409 }
7410
7411 if (info->relocateable)
7412 {
7413 Elf_Internal_Sym *sym;
7414 unsigned long r_symndx;
7415
7416 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
7417 && bfd_big_endian (input_bfd))
7418 rel->r_offset -= 4;
7419
7420 /* Since we're just relocating, all we need to do is copy
7421 the relocations back out to the object file, unless
7422 they're against a section symbol, in which case we need
7423 to adjust by the section offset, or unless they're GP
7424 relative in which case we need to adjust by the amount
7425 that we're adjusting GP in this relocateable object. */
7426
7427 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7428 false))
7429 /* There's nothing to do for non-local relocations. */
7430 continue;
7431
7432 if (r_type == R_MIPS16_GPREL
7433 || r_type == R_MIPS_GPREL16
7434 || r_type == R_MIPS_GPREL32
7435 || r_type == R_MIPS_LITERAL)
7436 addend -= (_bfd_get_gp_value (output_bfd)
7437 - _bfd_get_gp_value (input_bfd));
7438 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7439 || r_type == R_MIPS_GNU_REL16_S2)
7440 /* The addend is stored without its two least
7441 significant bits (which are always zero.) In a
7442 non-relocateable link, calculate_relocation will do
7443 this shift; here, we must do it ourselves. */
7444 addend <<= 2;
7445
7446 r_symndx = ELF32_R_SYM (rel->r_info);
7447 sym = local_syms + r_symndx;
7448 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7449 /* Adjust the addend appropriately. */
7450 addend += local_sections[r_symndx]->output_offset;
7451
7452 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
7453 then we only want to write out the high-order 16 bits.
7454 The subsequent R_MIPS_LO16 will handle the low-order bits. */
7455 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
7456 || r_type == R_MIPS_GNU_REL_HI16)
7457 addend = mips_elf_high (addend);
7458 /* If the relocation is for an R_MIPS_26 relocation, then
7459 the two low-order bits are not stored in the object file;
7460 they are implicitly zero. */
7461 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7462 || r_type == R_MIPS_GNU_REL16_S2)
7463 addend >>= 2;
7464
7465 if (rela_relocation_p)
7466 /* If this is a RELA relocation, just update the addend.
7467 We have to cast away constness for REL. */
7468 rel->r_addend = addend;
7469 else
7470 {
7471 /* Otherwise, we have to write the value back out. Note
7472 that we use the source mask, rather than the
7473 destination mask because the place to which we are
7474 writing will be source of the addend in the final
7475 link. */
7476 addend &= howto->src_mask;
7477
7478 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7479 /* See the comment above about using R_MIPS_64 in the 32-bit
7480 ABI. Here, we need to update the addend. It would be
7481 possible to get away with just using the R_MIPS_32 reloc
7482 but for endianness. */
7483 {
7484 bfd_vma sign_bits;
7485 bfd_vma low_bits;
7486 bfd_vma high_bits;
7487
7488 if (addend & ((bfd_vma) 1 << 31))
7489 #ifdef BFD64
7490 sign_bits = ((bfd_vma) 1 << 32) - 1;
7491 #else
7492 sign_bits = -1;
7493 #endif
7494 else
7495 sign_bits = 0;
7496
7497 /* If we don't know that we have a 64-bit type,
7498 do two separate stores. */
7499 if (bfd_big_endian (input_bfd))
7500 {
7501 /* Store the sign-bits (which are most significant)
7502 first. */
7503 low_bits = sign_bits;
7504 high_bits = addend;
7505 }
7506 else
7507 {
7508 low_bits = addend;
7509 high_bits = sign_bits;
7510 }
7511 bfd_put_32 (input_bfd, low_bits,
7512 contents + rel->r_offset);
7513 bfd_put_32 (input_bfd, high_bits,
7514 contents + rel->r_offset + 4);
7515 continue;
7516 }
7517
7518 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7519 input_bfd, input_section,
7520 contents, false))
7521 return false;
7522 }
7523
7524 /* Go on to the next relocation. */
7525 continue;
7526 }
7527
7528 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7529 relocations for the same offset. In that case we are
7530 supposed to treat the output of each relocation as the addend
7531 for the next. */
7532 if (rel + 1 < relend
7533 && rel->r_offset == rel[1].r_offset
7534 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7535 use_saved_addend_p = true;
7536 else
7537 use_saved_addend_p = false;
7538
7539 /* Figure out what value we are supposed to relocate. */
7540 switch (mips_elf_calculate_relocation (output_bfd,
7541 input_bfd,
7542 input_section,
7543 info,
7544 rel,
7545 addend,
7546 howto,
7547 local_syms,
7548 local_sections,
7549 &value,
7550 &name,
7551 &require_jalx))
7552 {
7553 case bfd_reloc_continue:
7554 /* There's nothing to do. */
7555 continue;
7556
7557 case bfd_reloc_undefined:
7558 /* mips_elf_calculate_relocation already called the
7559 undefined_symbol callback. There's no real point in
7560 trying to perform the relocation at this point, so we
7561 just skip ahead to the next relocation. */
7562 continue;
7563
7564 case bfd_reloc_notsupported:
7565 msg = _("internal error: unsupported relocation error");
7566 info->callbacks->warning
7567 (info, msg, name, input_bfd, input_section, rel->r_offset);
7568 return false;
7569
7570 case bfd_reloc_overflow:
7571 if (use_saved_addend_p)
7572 /* Ignore overflow until we reach the last relocation for
7573 a given location. */
7574 ;
7575 else
7576 {
7577 BFD_ASSERT (name != NULL);
7578 if (! ((*info->callbacks->reloc_overflow)
7579 (info, name, howto->name, (bfd_vma) 0,
7580 input_bfd, input_section, rel->r_offset)))
7581 return false;
7582 }
7583 break;
7584
7585 case bfd_reloc_ok:
7586 break;
7587
7588 default:
7589 abort ();
7590 break;
7591 }
7592
7593 /* If we've got another relocation for the address, keep going
7594 until we reach the last one. */
7595 if (use_saved_addend_p)
7596 {
7597 addend = value;
7598 continue;
7599 }
7600
7601 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7602 /* See the comment above about using R_MIPS_64 in the 32-bit
7603 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7604 that calculated the right value. Now, however, we
7605 sign-extend the 32-bit result to 64-bits, and store it as a
7606 64-bit value. We are especially generous here in that we
7607 go to extreme lengths to support this usage on systems with
7608 only a 32-bit VMA. */
7609 {
7610 bfd_vma sign_bits;
7611 bfd_vma low_bits;
7612 bfd_vma high_bits;
7613
7614 if (value & ((bfd_vma) 1 << 31))
7615 #ifdef BFD64
7616 sign_bits = ((bfd_vma) 1 << 32) - 1;
7617 #else
7618 sign_bits = -1;
7619 #endif
7620 else
7621 sign_bits = 0;
7622
7623 /* If we don't know that we have a 64-bit type,
7624 do two separate stores. */
7625 if (bfd_big_endian (input_bfd))
7626 {
7627 /* Undo what we did above. */
7628 rel->r_offset -= 4;
7629 /* Store the sign-bits (which are most significant)
7630 first. */
7631 low_bits = sign_bits;
7632 high_bits = value;
7633 }
7634 else
7635 {
7636 low_bits = value;
7637 high_bits = sign_bits;
7638 }
7639 bfd_put_32 (input_bfd, low_bits,
7640 contents + rel->r_offset);
7641 bfd_put_32 (input_bfd, high_bits,
7642 contents + rel->r_offset + 4);
7643 continue;
7644 }
7645
7646 /* Actually perform the relocation. */
7647 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7648 input_section, contents,
7649 require_jalx))
7650 return false;
7651 }
7652
7653 return true;
7654 }
7655
7656 /* This hook function is called before the linker writes out a global
7657 symbol. We mark symbols as small common if appropriate. This is
7658 also where we undo the increment of the value for a mips16 symbol. */
7659
7660 boolean
7661 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7662 bfd *abfd ATTRIBUTE_UNUSED;
7663 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7664 const char *name ATTRIBUTE_UNUSED;
7665 Elf_Internal_Sym *sym;
7666 asection *input_sec;
7667 {
7668 /* If we see a common symbol, which implies a relocatable link, then
7669 if a symbol was small common in an input file, mark it as small
7670 common in the output file. */
7671 if (sym->st_shndx == SHN_COMMON
7672 && strcmp (input_sec->name, ".scommon") == 0)
7673 sym->st_shndx = SHN_MIPS_SCOMMON;
7674
7675 if (sym->st_other == STO_MIPS16
7676 && (sym->st_value & 1) != 0)
7677 --sym->st_value;
7678
7679 return true;
7680 }
7681 \f
7682 /* Functions for the dynamic linker. */
7683
7684 /* The name of the dynamic interpreter. This is put in the .interp
7685 section. */
7686
7687 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7688 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7689 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7690 : "/usr/lib/libc.so.1")
7691
7692 /* Create dynamic sections when linking against a dynamic object. */
7693
7694 boolean
7695 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7696 bfd *abfd;
7697 struct bfd_link_info *info;
7698 {
7699 struct elf_link_hash_entry *h;
7700 flagword flags;
7701 register asection *s;
7702 const char * const *namep;
7703
7704 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7705 | SEC_LINKER_CREATED | SEC_READONLY);
7706
7707 /* Mips ABI requests the .dynamic section to be read only. */
7708 s = bfd_get_section_by_name (abfd, ".dynamic");
7709 if (s != NULL)
7710 {
7711 if (! bfd_set_section_flags (abfd, s, flags))
7712 return false;
7713 }
7714
7715 /* We need to create .got section. */
7716 if (! mips_elf_create_got_section (abfd, info))
7717 return false;
7718
7719 /* Create the .msym section on IRIX6. It is used by the dynamic
7720 linker to speed up dynamic relocations, and to avoid computing
7721 the ELF hash for symbols. */
7722 if (IRIX_COMPAT (abfd) == ict_irix6
7723 && !mips_elf_create_msym_section (abfd))
7724 return false;
7725
7726 /* Create .stub section. */
7727 if (bfd_get_section_by_name (abfd,
7728 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7729 {
7730 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7731 if (s == NULL
7732 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7733 || ! bfd_set_section_alignment (abfd, s,
7734 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7735 return false;
7736 }
7737
7738 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7739 && !info->shared
7740 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7741 {
7742 s = bfd_make_section (abfd, ".rld_map");
7743 if (s == NULL
7744 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
7745 || ! bfd_set_section_alignment (abfd, s,
7746 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7747 return false;
7748 }
7749
7750 /* On IRIX5, we adjust add some additional symbols and change the
7751 alignments of several sections. There is no ABI documentation
7752 indicating that this is necessary on IRIX6, nor any evidence that
7753 the linker takes such action. */
7754 if (IRIX_COMPAT (abfd) == ict_irix5)
7755 {
7756 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7757 {
7758 h = NULL;
7759 if (! (_bfd_generic_link_add_one_symbol
7760 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7761 (bfd_vma) 0, (const char *) NULL, false,
7762 get_elf_backend_data (abfd)->collect,
7763 (struct bfd_link_hash_entry **) &h)))
7764 return false;
7765 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7766 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7767 h->type = STT_SECTION;
7768
7769 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7770 return false;
7771 }
7772
7773 /* We need to create a .compact_rel section. */
7774 if (SGI_COMPAT (abfd))
7775 {
7776 if (!mips_elf_create_compact_rel_section (abfd, info))
7777 return false;
7778 }
7779
7780 /* Change aligments of some sections. */
7781 s = bfd_get_section_by_name (abfd, ".hash");
7782 if (s != NULL)
7783 bfd_set_section_alignment (abfd, s, 4);
7784 s = bfd_get_section_by_name (abfd, ".dynsym");
7785 if (s != NULL)
7786 bfd_set_section_alignment (abfd, s, 4);
7787 s = bfd_get_section_by_name (abfd, ".dynstr");
7788 if (s != NULL)
7789 bfd_set_section_alignment (abfd, s, 4);
7790 s = bfd_get_section_by_name (abfd, ".reginfo");
7791 if (s != NULL)
7792 bfd_set_section_alignment (abfd, s, 4);
7793 s = bfd_get_section_by_name (abfd, ".dynamic");
7794 if (s != NULL)
7795 bfd_set_section_alignment (abfd, s, 4);
7796 }
7797
7798 if (!info->shared)
7799 {
7800 h = NULL;
7801 if (SGI_COMPAT (abfd))
7802 {
7803 if (!(_bfd_generic_link_add_one_symbol
7804 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7805 (bfd_vma) 0, (const char *) NULL, false,
7806 get_elf_backend_data (abfd)->collect,
7807 (struct bfd_link_hash_entry **) &h)))
7808 return false;
7809 }
7810 else
7811 {
7812 /* For normal mips it is _DYNAMIC_LINKING. */
7813 if (!(_bfd_generic_link_add_one_symbol
7814 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7815 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7816 get_elf_backend_data (abfd)->collect,
7817 (struct bfd_link_hash_entry **) &h)))
7818 return false;
7819 }
7820 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7821 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7822 h->type = STT_SECTION;
7823
7824 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7825 return false;
7826
7827 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7828 {
7829 /* __rld_map is a four byte word located in the .data section
7830 and is filled in by the rtld to contain a pointer to
7831 the _r_debug structure. Its symbol value will be set in
7832 mips_elf_finish_dynamic_symbol. */
7833 s = bfd_get_section_by_name (abfd, ".rld_map");
7834 BFD_ASSERT (s != NULL);
7835
7836 h = NULL;
7837 if (SGI_COMPAT (abfd))
7838 {
7839 if (!(_bfd_generic_link_add_one_symbol
7840 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7841 (bfd_vma) 0, (const char *) NULL, false,
7842 get_elf_backend_data (abfd)->collect,
7843 (struct bfd_link_hash_entry **) &h)))
7844 return false;
7845 }
7846 else
7847 {
7848 /* For normal mips the symbol is __RLD_MAP. */
7849 if (!(_bfd_generic_link_add_one_symbol
7850 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7851 (bfd_vma) 0, (const char *) NULL, false,
7852 get_elf_backend_data (abfd)->collect,
7853 (struct bfd_link_hash_entry **) &h)))
7854 return false;
7855 }
7856 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7857 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7858 h->type = STT_OBJECT;
7859
7860 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7861 return false;
7862 }
7863 }
7864
7865 return true;
7866 }
7867
7868 /* Create the .compact_rel section. */
7869
7870 static boolean
7871 mips_elf_create_compact_rel_section (abfd, info)
7872 bfd *abfd;
7873 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7874 {
7875 flagword flags;
7876 register asection *s;
7877
7878 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7879 {
7880 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7881 | SEC_READONLY);
7882
7883 s = bfd_make_section (abfd, ".compact_rel");
7884 if (s == NULL
7885 || ! bfd_set_section_flags (abfd, s, flags)
7886 || ! bfd_set_section_alignment (abfd, s,
7887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7888 return false;
7889
7890 s->_raw_size = sizeof (Elf32_External_compact_rel);
7891 }
7892
7893 return true;
7894 }
7895
7896 /* Create the .got section to hold the global offset table. */
7897
7898 static boolean
7899 mips_elf_create_got_section (abfd, info)
7900 bfd *abfd;
7901 struct bfd_link_info *info;
7902 {
7903 flagword flags;
7904 register asection *s;
7905 struct elf_link_hash_entry *h;
7906 struct mips_got_info *g;
7907 bfd_size_type amt;
7908
7909 /* This function may be called more than once. */
7910 if (mips_elf_got_section (abfd))
7911 return true;
7912
7913 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7914 | SEC_LINKER_CREATED);
7915
7916 s = bfd_make_section (abfd, ".got");
7917 if (s == NULL
7918 || ! bfd_set_section_flags (abfd, s, flags)
7919 || ! bfd_set_section_alignment (abfd, s, 4))
7920 return false;
7921
7922 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7923 linker script because we don't want to define the symbol if we
7924 are not creating a global offset table. */
7925 h = NULL;
7926 if (! (_bfd_generic_link_add_one_symbol
7927 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7928 (bfd_vma) 0, (const char *) NULL, false,
7929 get_elf_backend_data (abfd)->collect,
7930 (struct bfd_link_hash_entry **) &h)))
7931 return false;
7932 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7933 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7934 h->type = STT_OBJECT;
7935
7936 if (info->shared
7937 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7938 return false;
7939
7940 /* The first several global offset table entries are reserved. */
7941 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7942
7943 amt = sizeof (struct mips_got_info);
7944 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
7945 if (g == NULL)
7946 return false;
7947 g->global_gotsym = NULL;
7948 g->local_gotno = MIPS_RESERVED_GOTNO;
7949 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7950 if (elf_section_data (s) == NULL)
7951 {
7952 amt = sizeof (struct bfd_elf_section_data);
7953 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7954 if (elf_section_data (s) == NULL)
7955 return false;
7956 }
7957 elf_section_data (s)->tdata = (PTR) g;
7958 elf_section_data (s)->this_hdr.sh_flags
7959 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7960
7961 return true;
7962 }
7963
7964 /* Returns the .msym section for ABFD, creating it if it does not
7965 already exist. Returns NULL to indicate error. */
7966
7967 static asection *
7968 mips_elf_create_msym_section (abfd)
7969 bfd *abfd;
7970 {
7971 asection *s;
7972
7973 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7974 if (!s)
7975 {
7976 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7977 if (!s
7978 || !bfd_set_section_flags (abfd, s,
7979 SEC_ALLOC
7980 | SEC_LOAD
7981 | SEC_HAS_CONTENTS
7982 | SEC_LINKER_CREATED
7983 | SEC_READONLY)
7984 || !bfd_set_section_alignment (abfd, s,
7985 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7986 return NULL;
7987 }
7988
7989 return s;
7990 }
7991
7992 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7993
7994 static void
7995 mips_elf_allocate_dynamic_relocations (abfd, n)
7996 bfd *abfd;
7997 unsigned int n;
7998 {
7999 asection *s;
8000
8001 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
8002 BFD_ASSERT (s != NULL);
8003
8004 if (s->_raw_size == 0)
8005 {
8006 /* Make room for a null element. */
8007 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
8008 ++s->reloc_count;
8009 }
8010 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
8011 }
8012
8013 /* Look through the relocs for a section during the first phase, and
8014 allocate space in the global offset table. */
8015
8016 boolean
8017 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
8018 bfd *abfd;
8019 struct bfd_link_info *info;
8020 asection *sec;
8021 const Elf_Internal_Rela *relocs;
8022 {
8023 const char *name;
8024 bfd *dynobj;
8025 Elf_Internal_Shdr *symtab_hdr;
8026 struct elf_link_hash_entry **sym_hashes;
8027 struct mips_got_info *g;
8028 size_t extsymoff;
8029 const Elf_Internal_Rela *rel;
8030 const Elf_Internal_Rela *rel_end;
8031 asection *sgot;
8032 asection *sreloc;
8033 struct elf_backend_data *bed;
8034
8035 if (info->relocateable)
8036 return true;
8037
8038 dynobj = elf_hash_table (info)->dynobj;
8039 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8040 sym_hashes = elf_sym_hashes (abfd);
8041 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8042
8043 /* Check for the mips16 stub sections. */
8044
8045 name = bfd_get_section_name (abfd, sec);
8046 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
8047 {
8048 unsigned long r_symndx;
8049
8050 /* Look at the relocation information to figure out which symbol
8051 this is for. */
8052
8053 r_symndx = ELF32_R_SYM (relocs->r_info);
8054
8055 if (r_symndx < extsymoff
8056 || sym_hashes[r_symndx - extsymoff] == NULL)
8057 {
8058 asection *o;
8059
8060 /* This stub is for a local symbol. This stub will only be
8061 needed if there is some relocation in this BFD, other
8062 than a 16 bit function call, which refers to this symbol. */
8063 for (o = abfd->sections; o != NULL; o = o->next)
8064 {
8065 Elf_Internal_Rela *sec_relocs;
8066 const Elf_Internal_Rela *r, *rend;
8067
8068 /* We can ignore stub sections when looking for relocs. */
8069 if ((o->flags & SEC_RELOC) == 0
8070 || o->reloc_count == 0
8071 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
8072 sizeof FN_STUB - 1) == 0
8073 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
8074 sizeof CALL_STUB - 1) == 0
8075 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
8076 sizeof CALL_FP_STUB - 1) == 0)
8077 continue;
8078
8079 sec_relocs = (_bfd_elf32_link_read_relocs
8080 (abfd, o, (PTR) NULL,
8081 (Elf_Internal_Rela *) NULL,
8082 info->keep_memory));
8083 if (sec_relocs == NULL)
8084 return false;
8085
8086 rend = sec_relocs + o->reloc_count;
8087 for (r = sec_relocs; r < rend; r++)
8088 if (ELF32_R_SYM (r->r_info) == r_symndx
8089 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
8090 break;
8091
8092 if (! info->keep_memory)
8093 free (sec_relocs);
8094
8095 if (r < rend)
8096 break;
8097 }
8098
8099 if (o == NULL)
8100 {
8101 /* There is no non-call reloc for this stub, so we do
8102 not need it. Since this function is called before
8103 the linker maps input sections to output sections, we
8104 can easily discard it by setting the SEC_EXCLUDE
8105 flag. */
8106 sec->flags |= SEC_EXCLUDE;
8107 return true;
8108 }
8109
8110 /* Record this stub in an array of local symbol stubs for
8111 this BFD. */
8112 if (elf_tdata (abfd)->local_stubs == NULL)
8113 {
8114 unsigned long symcount;
8115 asection **n;
8116 bfd_size_type amt;
8117
8118 if (elf_bad_symtab (abfd))
8119 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8120 else
8121 symcount = symtab_hdr->sh_info;
8122 amt = symcount * sizeof (asection *);
8123 n = (asection **) bfd_zalloc (abfd, amt);
8124 if (n == NULL)
8125 return false;
8126 elf_tdata (abfd)->local_stubs = n;
8127 }
8128
8129 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8130
8131 /* We don't need to set mips16_stubs_seen in this case.
8132 That flag is used to see whether we need to look through
8133 the global symbol table for stubs. We don't need to set
8134 it here, because we just have a local stub. */
8135 }
8136 else
8137 {
8138 struct mips_elf_link_hash_entry *h;
8139
8140 h = ((struct mips_elf_link_hash_entry *)
8141 sym_hashes[r_symndx - extsymoff]);
8142
8143 /* H is the symbol this stub is for. */
8144
8145 h->fn_stub = sec;
8146 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8147 }
8148 }
8149 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
8150 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8151 {
8152 unsigned long r_symndx;
8153 struct mips_elf_link_hash_entry *h;
8154 asection **loc;
8155
8156 /* Look at the relocation information to figure out which symbol
8157 this is for. */
8158
8159 r_symndx = ELF32_R_SYM (relocs->r_info);
8160
8161 if (r_symndx < extsymoff
8162 || sym_hashes[r_symndx - extsymoff] == NULL)
8163 {
8164 /* This stub was actually built for a static symbol defined
8165 in the same file. We assume that all static symbols in
8166 mips16 code are themselves mips16, so we can simply
8167 discard this stub. Since this function is called before
8168 the linker maps input sections to output sections, we can
8169 easily discard it by setting the SEC_EXCLUDE flag. */
8170 sec->flags |= SEC_EXCLUDE;
8171 return true;
8172 }
8173
8174 h = ((struct mips_elf_link_hash_entry *)
8175 sym_hashes[r_symndx - extsymoff]);
8176
8177 /* H is the symbol this stub is for. */
8178
8179 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8180 loc = &h->call_fp_stub;
8181 else
8182 loc = &h->call_stub;
8183
8184 /* If we already have an appropriate stub for this function, we
8185 don't need another one, so we can discard this one. Since
8186 this function is called before the linker maps input sections
8187 to output sections, we can easily discard it by setting the
8188 SEC_EXCLUDE flag. We can also discard this section if we
8189 happen to already know that this is a mips16 function; it is
8190 not necessary to check this here, as it is checked later, but
8191 it is slightly faster to check now. */
8192 if (*loc != NULL || h->root.other == STO_MIPS16)
8193 {
8194 sec->flags |= SEC_EXCLUDE;
8195 return true;
8196 }
8197
8198 *loc = sec;
8199 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8200 }
8201
8202 if (dynobj == NULL)
8203 {
8204 sgot = NULL;
8205 g = NULL;
8206 }
8207 else
8208 {
8209 sgot = mips_elf_got_section (dynobj);
8210 if (sgot == NULL)
8211 g = NULL;
8212 else
8213 {
8214 BFD_ASSERT (elf_section_data (sgot) != NULL);
8215 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8216 BFD_ASSERT (g != NULL);
8217 }
8218 }
8219
8220 sreloc = NULL;
8221 bed = get_elf_backend_data (abfd);
8222 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8223 for (rel = relocs; rel < rel_end; ++rel)
8224 {
8225 unsigned long r_symndx;
8226 unsigned int r_type;
8227 struct elf_link_hash_entry *h;
8228
8229 r_symndx = ELF32_R_SYM (rel->r_info);
8230 r_type = ELF32_R_TYPE (rel->r_info);
8231
8232 if (r_symndx < extsymoff)
8233 h = NULL;
8234 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8235 {
8236 (*_bfd_error_handler)
8237 (_("%s: Malformed reloc detected for section %s"),
8238 bfd_archive_filename (abfd), name);
8239 bfd_set_error (bfd_error_bad_value);
8240 return false;
8241 }
8242 else
8243 {
8244 h = sym_hashes[r_symndx - extsymoff];
8245
8246 /* This may be an indirect symbol created because of a version. */
8247 if (h != NULL)
8248 {
8249 while (h->root.type == bfd_link_hash_indirect)
8250 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8251 }
8252 }
8253
8254 /* Some relocs require a global offset table. */
8255 if (dynobj == NULL || sgot == NULL)
8256 {
8257 switch (r_type)
8258 {
8259 case R_MIPS_GOT16:
8260 case R_MIPS_CALL16:
8261 case R_MIPS_CALL_HI16:
8262 case R_MIPS_CALL_LO16:
8263 case R_MIPS_GOT_HI16:
8264 case R_MIPS_GOT_LO16:
8265 case R_MIPS_GOT_PAGE:
8266 case R_MIPS_GOT_OFST:
8267 case R_MIPS_GOT_DISP:
8268 if (dynobj == NULL)
8269 elf_hash_table (info)->dynobj = dynobj = abfd;
8270 if (! mips_elf_create_got_section (dynobj, info))
8271 return false;
8272 g = mips_elf_got_info (dynobj, &sgot);
8273 break;
8274
8275 case R_MIPS_32:
8276 case R_MIPS_REL32:
8277 case R_MIPS_64:
8278 if (dynobj == NULL
8279 && (info->shared || h != NULL)
8280 && (sec->flags & SEC_ALLOC) != 0)
8281 elf_hash_table (info)->dynobj = dynobj = abfd;
8282 break;
8283
8284 default:
8285 break;
8286 }
8287 }
8288
8289 if (!h && (r_type == R_MIPS_CALL_LO16
8290 || r_type == R_MIPS_GOT_LO16
8291 || r_type == R_MIPS_GOT_DISP))
8292 {
8293 /* We may need a local GOT entry for this relocation. We
8294 don't count R_MIPS_GOT_PAGE because we can estimate the
8295 maximum number of pages needed by looking at the size of
8296 the segment. Similar comments apply to R_MIPS_GOT16 and
8297 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
8298 R_MIPS_CALL_HI16 because these are always followed by an
8299 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8300
8301 This estimation is very conservative since we can merge
8302 duplicate entries in the GOT. In order to be less
8303 conservative, we could actually build the GOT here,
8304 rather than in relocate_section. */
8305 g->local_gotno++;
8306 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
8307 }
8308
8309 switch (r_type)
8310 {
8311 case R_MIPS_CALL16:
8312 if (h == NULL)
8313 {
8314 (*_bfd_error_handler)
8315 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8316 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
8317 bfd_set_error (bfd_error_bad_value);
8318 return false;
8319 }
8320 /* Fall through. */
8321
8322 case R_MIPS_CALL_HI16:
8323 case R_MIPS_CALL_LO16:
8324 if (h != NULL)
8325 {
8326 /* This symbol requires a global offset table entry. */
8327 if (!mips_elf_record_global_got_symbol (h, info, g))
8328 return false;
8329
8330 /* We need a stub, not a plt entry for the undefined
8331 function. But we record it as if it needs plt. See
8332 elf_adjust_dynamic_symbol in elflink.h. */
8333 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
8334 h->type = STT_FUNC;
8335 }
8336 break;
8337
8338 case R_MIPS_GOT16:
8339 case R_MIPS_GOT_HI16:
8340 case R_MIPS_GOT_LO16:
8341 case R_MIPS_GOT_DISP:
8342 /* This symbol requires a global offset table entry. */
8343 if (h && !mips_elf_record_global_got_symbol (h, info, g))
8344 return false;
8345 break;
8346
8347 case R_MIPS_32:
8348 case R_MIPS_REL32:
8349 case R_MIPS_64:
8350 if ((info->shared || h != NULL)
8351 && (sec->flags & SEC_ALLOC) != 0)
8352 {
8353 if (sreloc == NULL)
8354 {
8355 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
8356
8357 sreloc = bfd_get_section_by_name (dynobj, dname);
8358 if (sreloc == NULL)
8359 {
8360 sreloc = bfd_make_section (dynobj, dname);
8361 if (sreloc == NULL
8362 || ! bfd_set_section_flags (dynobj, sreloc,
8363 (SEC_ALLOC
8364 | SEC_LOAD
8365 | SEC_HAS_CONTENTS
8366 | SEC_IN_MEMORY
8367 | SEC_LINKER_CREATED
8368 | SEC_READONLY))
8369 || ! bfd_set_section_alignment (dynobj, sreloc,
8370 4))
8371 return false;
8372 }
8373 }
8374 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
8375 if (info->shared)
8376 {
8377 /* When creating a shared object, we must copy these
8378 reloc types into the output file as R_MIPS_REL32
8379 relocs. We make room for this reloc in the
8380 .rel.dyn reloc section. */
8381 mips_elf_allocate_dynamic_relocations (dynobj, 1);
8382 if ((sec->flags & MIPS_READONLY_SECTION)
8383 == MIPS_READONLY_SECTION)
8384 /* We tell the dynamic linker that there are
8385 relocations against the text segment. */
8386 info->flags |= DF_TEXTREL;
8387 }
8388 else
8389 {
8390 struct mips_elf_link_hash_entry *hmips;
8391
8392 /* We only need to copy this reloc if the symbol is
8393 defined in a dynamic object. */
8394 hmips = (struct mips_elf_link_hash_entry *) h;
8395 ++hmips->possibly_dynamic_relocs;
8396 if ((sec->flags & MIPS_READONLY_SECTION)
8397 == MIPS_READONLY_SECTION)
8398 /* We need it to tell the dynamic linker if there
8399 are relocations against the text segment. */
8400 hmips->readonly_reloc = true;
8401 }
8402
8403 /* Even though we don't directly need a GOT entry for
8404 this symbol, a symbol must have a dynamic symbol
8405 table index greater that DT_MIPS_GOTSYM if there are
8406 dynamic relocations against it. */
8407 if (h != NULL
8408 && !mips_elf_record_global_got_symbol (h, info, g))
8409 return false;
8410 }
8411
8412 if (SGI_COMPAT (abfd))
8413 mips_elf_hash_table (info)->compact_rel_size +=
8414 sizeof (Elf32_External_crinfo);
8415 break;
8416
8417 case R_MIPS_26:
8418 case R_MIPS_GPREL16:
8419 case R_MIPS_LITERAL:
8420 case R_MIPS_GPREL32:
8421 if (SGI_COMPAT (abfd))
8422 mips_elf_hash_table (info)->compact_rel_size +=
8423 sizeof (Elf32_External_crinfo);
8424 break;
8425
8426 /* This relocation describes the C++ object vtable hierarchy.
8427 Reconstruct it for later use during GC. */
8428 case R_MIPS_GNU_VTINHERIT:
8429 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8430 return false;
8431 break;
8432
8433 /* This relocation describes which C++ vtable entries are actually
8434 used. Record for later use during GC. */
8435 case R_MIPS_GNU_VTENTRY:
8436 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8437 return false;
8438 break;
8439
8440 default:
8441 break;
8442 }
8443
8444 /* We must not create a stub for a symbol that has relocations
8445 related to taking the function's address. */
8446 switch (r_type)
8447 {
8448 default:
8449 if (h != NULL)
8450 {
8451 struct mips_elf_link_hash_entry *mh;
8452
8453 mh = (struct mips_elf_link_hash_entry *) h;
8454 mh->no_fn_stub = true;
8455 }
8456 break;
8457 case R_MIPS_CALL16:
8458 case R_MIPS_CALL_HI16:
8459 case R_MIPS_CALL_LO16:
8460 break;
8461 }
8462
8463 /* If this reloc is not a 16 bit call, and it has a global
8464 symbol, then we will need the fn_stub if there is one.
8465 References from a stub section do not count. */
8466 if (h != NULL
8467 && r_type != R_MIPS16_26
8468 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
8469 sizeof FN_STUB - 1) != 0
8470 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
8471 sizeof CALL_STUB - 1) != 0
8472 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
8473 sizeof CALL_FP_STUB - 1) != 0)
8474 {
8475 struct mips_elf_link_hash_entry *mh;
8476
8477 mh = (struct mips_elf_link_hash_entry *) h;
8478 mh->need_fn_stub = true;
8479 }
8480 }
8481
8482 return true;
8483 }
8484
8485 /* Return the section that should be marked against GC for a given
8486 relocation. */
8487
8488 asection *
8489 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
8490 bfd *abfd;
8491 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8492 Elf_Internal_Rela *rel;
8493 struct elf_link_hash_entry *h;
8494 Elf_Internal_Sym *sym;
8495 {
8496 /* ??? Do mips16 stub sections need to be handled special? */
8497
8498 if (h != NULL)
8499 {
8500 switch (ELF32_R_TYPE (rel->r_info))
8501 {
8502 case R_MIPS_GNU_VTINHERIT:
8503 case R_MIPS_GNU_VTENTRY:
8504 break;
8505
8506 default:
8507 switch (h->root.type)
8508 {
8509 case bfd_link_hash_defined:
8510 case bfd_link_hash_defweak:
8511 return h->root.u.def.section;
8512
8513 case bfd_link_hash_common:
8514 return h->root.u.c.p->section;
8515
8516 default:
8517 break;
8518 }
8519 }
8520 }
8521 else
8522 {
8523 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8524 }
8525
8526 return NULL;
8527 }
8528
8529 /* Update the got entry reference counts for the section being removed. */
8530
8531 boolean
8532 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8533 bfd *abfd ATTRIBUTE_UNUSED;
8534 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8535 asection *sec ATTRIBUTE_UNUSED;
8536 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8537 {
8538 #if 0
8539 Elf_Internal_Shdr *symtab_hdr;
8540 struct elf_link_hash_entry **sym_hashes;
8541 bfd_signed_vma *local_got_refcounts;
8542 const Elf_Internal_Rela *rel, *relend;
8543 unsigned long r_symndx;
8544 struct elf_link_hash_entry *h;
8545
8546 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8547 sym_hashes = elf_sym_hashes (abfd);
8548 local_got_refcounts = elf_local_got_refcounts (abfd);
8549
8550 relend = relocs + sec->reloc_count;
8551 for (rel = relocs; rel < relend; rel++)
8552 switch (ELF32_R_TYPE (rel->r_info))
8553 {
8554 case R_MIPS_GOT16:
8555 case R_MIPS_CALL16:
8556 case R_MIPS_CALL_HI16:
8557 case R_MIPS_CALL_LO16:
8558 case R_MIPS_GOT_HI16:
8559 case R_MIPS_GOT_LO16:
8560 /* ??? It would seem that the existing MIPS code does no sort
8561 of reference counting or whatnot on its GOT and PLT entries,
8562 so it is not possible to garbage collect them at this time. */
8563 break;
8564
8565 default:
8566 break;
8567 }
8568 #endif
8569
8570 return true;
8571 }
8572
8573 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8574 hiding the old indirect symbol. Process additional relocation
8575 information. Also called for weakdefs, in which case we just let
8576 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8577
8578 static void
8579 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8580 struct elf_link_hash_entry *dir, *ind;
8581 {
8582 struct mips_elf_link_hash_entry *dirmips, *indmips;
8583
8584 _bfd_elf_link_hash_copy_indirect (dir, ind);
8585
8586 if (ind->root.type != bfd_link_hash_indirect)
8587 return;
8588
8589 dirmips = (struct mips_elf_link_hash_entry *) dir;
8590 indmips = (struct mips_elf_link_hash_entry *) ind;
8591 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8592 if (indmips->readonly_reloc)
8593 dirmips->readonly_reloc = true;
8594 if (dirmips->min_dyn_reloc_index == 0
8595 || (indmips->min_dyn_reloc_index != 0
8596 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8597 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8598 if (indmips->no_fn_stub)
8599 dirmips->no_fn_stub = true;
8600 }
8601
8602 /* Adjust a symbol defined by a dynamic object and referenced by a
8603 regular object. The current definition is in some section of the
8604 dynamic object, but we're not including those sections. We have to
8605 change the definition to something the rest of the link can
8606 understand. */
8607
8608 boolean
8609 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8610 struct bfd_link_info *info;
8611 struct elf_link_hash_entry *h;
8612 {
8613 bfd *dynobj;
8614 struct mips_elf_link_hash_entry *hmips;
8615 asection *s;
8616
8617 dynobj = elf_hash_table (info)->dynobj;
8618
8619 /* Make sure we know what is going on here. */
8620 BFD_ASSERT (dynobj != NULL
8621 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8622 || h->weakdef != NULL
8623 || ((h->elf_link_hash_flags
8624 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8625 && (h->elf_link_hash_flags
8626 & ELF_LINK_HASH_REF_REGULAR) != 0
8627 && (h->elf_link_hash_flags
8628 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8629
8630 /* If this symbol is defined in a dynamic object, we need to copy
8631 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8632 file. */
8633 hmips = (struct mips_elf_link_hash_entry *) h;
8634 if (! info->relocateable
8635 && hmips->possibly_dynamic_relocs != 0
8636 && (h->root.type == bfd_link_hash_defweak
8637 || (h->elf_link_hash_flags
8638 & ELF_LINK_HASH_DEF_REGULAR) == 0))
8639 {
8640 mips_elf_allocate_dynamic_relocations (dynobj,
8641 hmips->possibly_dynamic_relocs);
8642 if (hmips->readonly_reloc)
8643 /* We tell the dynamic linker that there are relocations
8644 against the text segment. */
8645 info->flags |= DF_TEXTREL;
8646 }
8647
8648 /* For a function, create a stub, if allowed. */
8649 if (! hmips->no_fn_stub
8650 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8651 {
8652 if (! elf_hash_table (info)->dynamic_sections_created)
8653 return true;
8654
8655 /* If this symbol is not defined in a regular file, then set
8656 the symbol to the stub location. This is required to make
8657 function pointers compare as equal between the normal
8658 executable and the shared library. */
8659 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8660 {
8661 /* We need .stub section. */
8662 s = bfd_get_section_by_name (dynobj,
8663 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8664 BFD_ASSERT (s != NULL);
8665
8666 h->root.u.def.section = s;
8667 h->root.u.def.value = s->_raw_size;
8668
8669 /* XXX Write this stub address somewhere. */
8670 h->plt.offset = s->_raw_size;
8671
8672 /* Make room for this stub code. */
8673 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8674
8675 /* The last half word of the stub will be filled with the index
8676 of this symbol in .dynsym section. */
8677 return true;
8678 }
8679 }
8680 else if ((h->type == STT_FUNC)
8681 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8682 {
8683 /* This will set the entry for this symbol in the GOT to 0, and
8684 the dynamic linker will take care of this. */
8685 h->root.u.def.value = 0;
8686 return true;
8687 }
8688
8689 /* If this is a weak symbol, and there is a real definition, the
8690 processor independent code will have arranged for us to see the
8691 real definition first, and we can just use the same value. */
8692 if (h->weakdef != NULL)
8693 {
8694 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8695 || h->weakdef->root.type == bfd_link_hash_defweak);
8696 h->root.u.def.section = h->weakdef->root.u.def.section;
8697 h->root.u.def.value = h->weakdef->root.u.def.value;
8698 return true;
8699 }
8700
8701 /* This is a reference to a symbol defined by a dynamic object which
8702 is not a function. */
8703
8704 return true;
8705 }
8706
8707 /* This function is called after all the input files have been read,
8708 and the input sections have been assigned to output sections. We
8709 check for any mips16 stub sections that we can discard. */
8710
8711 static boolean mips_elf_check_mips16_stubs
8712 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8713
8714 boolean
8715 _bfd_mips_elf_always_size_sections (output_bfd, info)
8716 bfd *output_bfd;
8717 struct bfd_link_info *info;
8718 {
8719 asection *ri;
8720
8721 /* The .reginfo section has a fixed size. */
8722 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8723 if (ri != NULL)
8724 bfd_set_section_size (output_bfd, ri,
8725 (bfd_size_type) sizeof (Elf32_External_RegInfo));
8726
8727 if (info->relocateable
8728 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8729 return true;
8730
8731 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8732 mips_elf_check_mips16_stubs,
8733 (PTR) NULL);
8734
8735 return true;
8736 }
8737
8738 /* Check the mips16 stubs for a particular symbol, and see if we can
8739 discard them. */
8740
8741 static boolean
8742 mips_elf_check_mips16_stubs (h, data)
8743 struct mips_elf_link_hash_entry *h;
8744 PTR data ATTRIBUTE_UNUSED;
8745 {
8746 if (h->fn_stub != NULL
8747 && ! h->need_fn_stub)
8748 {
8749 /* We don't need the fn_stub; the only references to this symbol
8750 are 16 bit calls. Clobber the size to 0 to prevent it from
8751 being included in the link. */
8752 h->fn_stub->_raw_size = 0;
8753 h->fn_stub->_cooked_size = 0;
8754 h->fn_stub->flags &= ~SEC_RELOC;
8755 h->fn_stub->reloc_count = 0;
8756 h->fn_stub->flags |= SEC_EXCLUDE;
8757 }
8758
8759 if (h->call_stub != NULL
8760 && h->root.other == STO_MIPS16)
8761 {
8762 /* We don't need the call_stub; this is a 16 bit function, so
8763 calls from other 16 bit functions are OK. Clobber the size
8764 to 0 to prevent it from being included in the link. */
8765 h->call_stub->_raw_size = 0;
8766 h->call_stub->_cooked_size = 0;
8767 h->call_stub->flags &= ~SEC_RELOC;
8768 h->call_stub->reloc_count = 0;
8769 h->call_stub->flags |= SEC_EXCLUDE;
8770 }
8771
8772 if (h->call_fp_stub != NULL
8773 && h->root.other == STO_MIPS16)
8774 {
8775 /* We don't need the call_stub; this is a 16 bit function, so
8776 calls from other 16 bit functions are OK. Clobber the size
8777 to 0 to prevent it from being included in the link. */
8778 h->call_fp_stub->_raw_size = 0;
8779 h->call_fp_stub->_cooked_size = 0;
8780 h->call_fp_stub->flags &= ~SEC_RELOC;
8781 h->call_fp_stub->reloc_count = 0;
8782 h->call_fp_stub->flags |= SEC_EXCLUDE;
8783 }
8784
8785 return true;
8786 }
8787
8788 /* Set the sizes of the dynamic sections. */
8789
8790 boolean
8791 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8792 bfd *output_bfd;
8793 struct bfd_link_info *info;
8794 {
8795 bfd *dynobj;
8796 asection *s;
8797 boolean reltext;
8798 struct mips_got_info *g = NULL;
8799
8800 dynobj = elf_hash_table (info)->dynobj;
8801 BFD_ASSERT (dynobj != NULL);
8802
8803 if (elf_hash_table (info)->dynamic_sections_created)
8804 {
8805 /* Set the contents of the .interp section to the interpreter. */
8806 if (! info->shared)
8807 {
8808 s = bfd_get_section_by_name (dynobj, ".interp");
8809 BFD_ASSERT (s != NULL);
8810 s->_raw_size
8811 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8812 s->contents
8813 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8814 }
8815 }
8816
8817 /* The check_relocs and adjust_dynamic_symbol entry points have
8818 determined the sizes of the various dynamic sections. Allocate
8819 memory for them. */
8820 reltext = false;
8821 for (s = dynobj->sections; s != NULL; s = s->next)
8822 {
8823 const char *name;
8824 boolean strip;
8825
8826 /* It's OK to base decisions on the section name, because none
8827 of the dynobj section names depend upon the input files. */
8828 name = bfd_get_section_name (dynobj, s);
8829
8830 if ((s->flags & SEC_LINKER_CREATED) == 0)
8831 continue;
8832
8833 strip = false;
8834
8835 if (strncmp (name, ".rel", 4) == 0)
8836 {
8837 if (s->_raw_size == 0)
8838 {
8839 /* We only strip the section if the output section name
8840 has the same name. Otherwise, there might be several
8841 input sections for this output section. FIXME: This
8842 code is probably not needed these days anyhow, since
8843 the linker now does not create empty output sections. */
8844 if (s->output_section != NULL
8845 && strcmp (name,
8846 bfd_get_section_name (s->output_section->owner,
8847 s->output_section)) == 0)
8848 strip = true;
8849 }
8850 else
8851 {
8852 const char *outname;
8853 asection *target;
8854
8855 /* If this relocation section applies to a read only
8856 section, then we probably need a DT_TEXTREL entry.
8857 If the relocation section is .rel.dyn, we always
8858 assert a DT_TEXTREL entry rather than testing whether
8859 there exists a relocation to a read only section or
8860 not. */
8861 outname = bfd_get_section_name (output_bfd,
8862 s->output_section);
8863 target = bfd_get_section_by_name (output_bfd, outname + 4);
8864 if ((target != NULL
8865 && (target->flags & SEC_READONLY) != 0
8866 && (target->flags & SEC_ALLOC) != 0)
8867 || strcmp (outname,
8868 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8869 reltext = true;
8870
8871 /* We use the reloc_count field as a counter if we need
8872 to copy relocs into the output file. */
8873 if (strcmp (name,
8874 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8875 s->reloc_count = 0;
8876 }
8877 }
8878 else if (strncmp (name, ".got", 4) == 0)
8879 {
8880 int i;
8881 bfd_size_type loadable_size = 0;
8882 bfd_size_type local_gotno;
8883 bfd *sub;
8884
8885 BFD_ASSERT (elf_section_data (s) != NULL);
8886 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8887 BFD_ASSERT (g != NULL);
8888
8889 /* Calculate the total loadable size of the output. That
8890 will give us the maximum number of GOT_PAGE entries
8891 required. */
8892 for (sub = info->input_bfds; sub; sub = sub->link_next)
8893 {
8894 asection *subsection;
8895
8896 for (subsection = sub->sections;
8897 subsection;
8898 subsection = subsection->next)
8899 {
8900 if ((subsection->flags & SEC_ALLOC) == 0)
8901 continue;
8902 loadable_size += ((subsection->_raw_size + 0xf)
8903 &~ (bfd_size_type) 0xf);
8904 }
8905 }
8906 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8907
8908 /* Assume there are two loadable segments consisting of
8909 contiguous sections. Is 5 enough? */
8910 local_gotno = (loadable_size >> 16) + 5;
8911 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8912 /* It's possible we will need GOT_PAGE entries as well as
8913 GOT16 entries. Often, these will be able to share GOT
8914 entries, but not always. */
8915 local_gotno *= 2;
8916
8917 g->local_gotno += local_gotno;
8918 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8919
8920 /* There has to be a global GOT entry for every symbol with
8921 a dynamic symbol table index of DT_MIPS_GOTSYM or
8922 higher. Therefore, it make sense to put those symbols
8923 that need GOT entries at the end of the symbol table. We
8924 do that here. */
8925 if (!mips_elf_sort_hash_table (info, 1))
8926 return false;
8927
8928 if (g->global_gotsym != NULL)
8929 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8930 else
8931 /* If there are no global symbols, or none requiring
8932 relocations, then GLOBAL_GOTSYM will be NULL. */
8933 i = 0;
8934 g->global_gotno = i;
8935 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8936 }
8937 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8938 {
8939 /* Irix rld assumes that the function stub isn't at the end
8940 of .text section. So put a dummy. XXX */
8941 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8942 }
8943 else if (! info->shared
8944 && ! mips_elf_hash_table (info)->use_rld_obj_head
8945 && strncmp (name, ".rld_map", 8) == 0)
8946 {
8947 /* We add a room for __rld_map. It will be filled in by the
8948 rtld to contain a pointer to the _r_debug structure. */
8949 s->_raw_size += 4;
8950 }
8951 else if (SGI_COMPAT (output_bfd)
8952 && strncmp (name, ".compact_rel", 12) == 0)
8953 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8954 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8955 == 0)
8956 s->_raw_size = (sizeof (Elf32_External_Msym)
8957 * (elf_hash_table (info)->dynsymcount
8958 + bfd_count_sections (output_bfd)));
8959 else if (strncmp (name, ".init", 5) != 0)
8960 {
8961 /* It's not one of our sections, so don't allocate space. */
8962 continue;
8963 }
8964
8965 if (strip)
8966 {
8967 _bfd_strip_section_from_output (info, s);
8968 continue;
8969 }
8970
8971 /* Allocate memory for the section contents. */
8972 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8973 if (s->contents == NULL && s->_raw_size != 0)
8974 {
8975 bfd_set_error (bfd_error_no_memory);
8976 return false;
8977 }
8978 }
8979
8980 if (elf_hash_table (info)->dynamic_sections_created)
8981 {
8982 /* Add some entries to the .dynamic section. We fill in the
8983 values later, in elf_mips_finish_dynamic_sections, but we
8984 must add the entries now so that we get the correct size for
8985 the .dynamic section. The DT_DEBUG entry is filled in by the
8986 dynamic linker and used by the debugger. */
8987 if (! info->shared)
8988 {
8989 /* SGI object has the equivalence of DT_DEBUG in the
8990 DT_MIPS_RLD_MAP entry. */
8991 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8992 return false;
8993 if (!SGI_COMPAT (output_bfd))
8994 {
8995 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8996 return false;
8997 }
8998 }
8999 else
9000 {
9001 /* Shared libraries on traditional mips have DT_DEBUG. */
9002 if (!SGI_COMPAT (output_bfd))
9003 {
9004 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9005 return false;
9006 }
9007 }
9008
9009 if (reltext && SGI_COMPAT (output_bfd))
9010 info->flags |= DF_TEXTREL;
9011
9012 if ((info->flags & DF_TEXTREL) != 0)
9013 {
9014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9015 return false;
9016 }
9017
9018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9019 return false;
9020
9021 if (bfd_get_section_by_name (dynobj,
9022 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
9023 {
9024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9025 return false;
9026
9027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9028 return false;
9029
9030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9031 return false;
9032 }
9033
9034 if (SGI_COMPAT (output_bfd))
9035 {
9036 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
9037 return false;
9038 }
9039
9040 if (SGI_COMPAT (output_bfd))
9041 {
9042 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
9043 return false;
9044 }
9045
9046 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
9047 {
9048 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
9049 return false;
9050
9051 s = bfd_get_section_by_name (dynobj, ".liblist");
9052 BFD_ASSERT (s != NULL);
9053
9054 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
9055 return false;
9056 }
9057
9058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9059 return false;
9060
9061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9062 return false;
9063
9064 #if 0
9065 /* Time stamps in executable files are a bad idea. */
9066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
9067 return false;
9068 #endif
9069
9070 #if 0 /* FIXME */
9071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
9072 return false;
9073 #endif
9074
9075 #if 0 /* FIXME */
9076 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
9077 return false;
9078 #endif
9079
9080 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9081 return false;
9082
9083 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9084 return false;
9085
9086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9087 return false;
9088
9089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9090 return false;
9091
9092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9093 return false;
9094
9095 if (IRIX_COMPAT (dynobj) == ict_irix5
9096 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9097 return false;
9098
9099 if (IRIX_COMPAT (dynobj) == ict_irix6
9100 && (bfd_get_section_by_name
9101 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9102 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9103 return false;
9104
9105 if (bfd_get_section_by_name (dynobj,
9106 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
9107 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
9108 return false;
9109 }
9110
9111 return true;
9112 }
9113
9114 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9115 adjust it appropriately now. */
9116
9117 static void
9118 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
9119 bfd *abfd ATTRIBUTE_UNUSED;
9120 const char *name;
9121 Elf_Internal_Sym *sym;
9122 {
9123 /* The linker script takes care of providing names and values for
9124 these, but we must place them into the right sections. */
9125 static const char* const text_section_symbols[] = {
9126 "_ftext",
9127 "_etext",
9128 "__dso_displacement",
9129 "__elf_header",
9130 "__program_header_table",
9131 NULL
9132 };
9133
9134 static const char* const data_section_symbols[] = {
9135 "_fdata",
9136 "_edata",
9137 "_end",
9138 "_fbss",
9139 NULL
9140 };
9141
9142 const char* const *p;
9143 int i;
9144
9145 for (i = 0; i < 2; ++i)
9146 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9147 *p;
9148 ++p)
9149 if (strcmp (*p, name) == 0)
9150 {
9151 /* All of these symbols are given type STT_SECTION by the
9152 IRIX6 linker. */
9153 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9154
9155 /* The IRIX linker puts these symbols in special sections. */
9156 if (i == 0)
9157 sym->st_shndx = SHN_MIPS_TEXT;
9158 else
9159 sym->st_shndx = SHN_MIPS_DATA;
9160
9161 break;
9162 }
9163 }
9164
9165 /* Finish up dynamic symbol handling. We set the contents of various
9166 dynamic sections here. */
9167
9168 boolean
9169 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
9170 bfd *output_bfd;
9171 struct bfd_link_info *info;
9172 struct elf_link_hash_entry *h;
9173 Elf_Internal_Sym *sym;
9174 {
9175 bfd *dynobj;
9176 bfd_vma gval;
9177 asection *sgot;
9178 asection *smsym;
9179 struct mips_got_info *g;
9180 const char *name;
9181 struct mips_elf_link_hash_entry *mh;
9182
9183 dynobj = elf_hash_table (info)->dynobj;
9184 gval = sym->st_value;
9185 mh = (struct mips_elf_link_hash_entry *) h;
9186
9187 if (h->plt.offset != (bfd_vma) -1)
9188 {
9189 asection *s;
9190 bfd_byte *p;
9191 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
9192
9193 /* This symbol has a stub. Set it up. */
9194
9195 BFD_ASSERT (h->dynindx != -1);
9196
9197 s = bfd_get_section_by_name (dynobj,
9198 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9199 BFD_ASSERT (s != NULL);
9200
9201 /* Fill the stub. */
9202 p = stub;
9203 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
9204 p += 4;
9205 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
9206 p += 4;
9207
9208 /* FIXME: Can h->dynindex be more than 64K? */
9209 if (h->dynindx & 0xffff0000)
9210 return false;
9211
9212 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
9213 p += 4;
9214 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
9215
9216 BFD_ASSERT (h->plt.offset <= s->_raw_size);
9217 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
9218
9219 /* Mark the symbol as undefined. plt.offset != -1 occurs
9220 only for the referenced symbol. */
9221 sym->st_shndx = SHN_UNDEF;
9222
9223 /* The run-time linker uses the st_value field of the symbol
9224 to reset the global offset table entry for this external
9225 to its stub address when unlinking a shared object. */
9226 gval = s->output_section->vma + s->output_offset + h->plt.offset;
9227 sym->st_value = gval;
9228 }
9229
9230 BFD_ASSERT (h->dynindx != -1
9231 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
9232
9233 sgot = mips_elf_got_section (dynobj);
9234 BFD_ASSERT (sgot != NULL);
9235 BFD_ASSERT (elf_section_data (sgot) != NULL);
9236 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9237 BFD_ASSERT (g != NULL);
9238
9239 /* Run through the global symbol table, creating GOT entries for all
9240 the symbols that need them. */
9241 if (g->global_gotsym != NULL
9242 && h->dynindx >= g->global_gotsym->dynindx)
9243 {
9244 bfd_vma offset;
9245 bfd_vma value;
9246
9247 if (sym->st_value)
9248 value = sym->st_value;
9249 else
9250 {
9251 /* For an entity defined in a shared object, this will be
9252 NULL. (For functions in shared objects for
9253 which we have created stubs, ST_VALUE will be non-NULL.
9254 That's because such the functions are now no longer defined
9255 in a shared object.) */
9256
9257 if (info->shared && h->root.type == bfd_link_hash_undefined)
9258 value = 0;
9259 else
9260 value = h->root.u.def.value;
9261 }
9262 offset = mips_elf_global_got_index (dynobj, h);
9263 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9264 }
9265
9266 /* Create a .msym entry, if appropriate. */
9267 smsym = bfd_get_section_by_name (dynobj,
9268 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9269 if (smsym)
9270 {
9271 Elf32_Internal_Msym msym;
9272
9273 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
9274 /* It is undocumented what the `1' indicates, but IRIX6 uses
9275 this value. */
9276 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
9277 bfd_mips_elf_swap_msym_out
9278 (dynobj, &msym,
9279 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
9280 }
9281
9282 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9283 name = h->root.root.string;
9284 if (strcmp (name, "_DYNAMIC") == 0
9285 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
9286 sym->st_shndx = SHN_ABS;
9287 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9288 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9289 {
9290 sym->st_shndx = SHN_ABS;
9291 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9292 sym->st_value = 1;
9293 }
9294 else if (strcmp (name, "_gp_disp") == 0)
9295 {
9296 sym->st_shndx = SHN_ABS;
9297 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9298 sym->st_value = elf_gp (output_bfd);
9299 }
9300 else if (SGI_COMPAT (output_bfd))
9301 {
9302 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9303 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9304 {
9305 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9306 sym->st_other = STO_PROTECTED;
9307 sym->st_value = 0;
9308 sym->st_shndx = SHN_MIPS_DATA;
9309 }
9310 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9311 {
9312 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9313 sym->st_other = STO_PROTECTED;
9314 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9315 sym->st_shndx = SHN_ABS;
9316 }
9317 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9318 {
9319 if (h->type == STT_FUNC)
9320 sym->st_shndx = SHN_MIPS_TEXT;
9321 else if (h->type == STT_OBJECT)
9322 sym->st_shndx = SHN_MIPS_DATA;
9323 }
9324 }
9325
9326 /* Handle the IRIX6-specific symbols. */
9327 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9328 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9329
9330 if (! info->shared)
9331 {
9332 if (! mips_elf_hash_table (info)->use_rld_obj_head
9333 && (strcmp (name, "__rld_map") == 0
9334 || strcmp (name, "__RLD_MAP") == 0))
9335 {
9336 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9337 BFD_ASSERT (s != NULL);
9338 sym->st_value = s->output_section->vma + s->output_offset;
9339 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
9340 if (mips_elf_hash_table (info)->rld_value == 0)
9341 mips_elf_hash_table (info)->rld_value = sym->st_value;
9342 }
9343 else if (mips_elf_hash_table (info)->use_rld_obj_head
9344 && strcmp (name, "__rld_obj_head") == 0)
9345 {
9346 /* IRIX6 does not use a .rld_map section. */
9347 if (IRIX_COMPAT (output_bfd) == ict_irix5
9348 || IRIX_COMPAT (output_bfd) == ict_none)
9349 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9350 != NULL);
9351 mips_elf_hash_table (info)->rld_value = sym->st_value;
9352 }
9353 }
9354
9355 /* If this is a mips16 symbol, force the value to be even. */
9356 if (sym->st_other == STO_MIPS16
9357 && (sym->st_value & 1) != 0)
9358 --sym->st_value;
9359
9360 return true;
9361 }
9362
9363 /* Finish up the dynamic sections. */
9364
9365 boolean
9366 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
9367 bfd *output_bfd;
9368 struct bfd_link_info *info;
9369 {
9370 bfd *dynobj;
9371 asection *sdyn;
9372 asection *sgot;
9373 struct mips_got_info *g;
9374
9375 dynobj = elf_hash_table (info)->dynobj;
9376
9377 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9378
9379 sgot = mips_elf_got_section (dynobj);
9380 if (sgot == NULL)
9381 g = NULL;
9382 else
9383 {
9384 BFD_ASSERT (elf_section_data (sgot) != NULL);
9385 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9386 BFD_ASSERT (g != NULL);
9387 }
9388
9389 if (elf_hash_table (info)->dynamic_sections_created)
9390 {
9391 bfd_byte *b;
9392
9393 BFD_ASSERT (sdyn != NULL);
9394 BFD_ASSERT (g != NULL);
9395
9396 for (b = sdyn->contents;
9397 b < sdyn->contents + sdyn->_raw_size;
9398 b += MIPS_ELF_DYN_SIZE (dynobj))
9399 {
9400 Elf_Internal_Dyn dyn;
9401 const char *name;
9402 size_t elemsize;
9403 asection *s;
9404 boolean swap_out_p;
9405
9406 /* Read in the current dynamic entry. */
9407 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9408
9409 /* Assume that we're going to modify it and write it out. */
9410 swap_out_p = true;
9411
9412 switch (dyn.d_tag)
9413 {
9414 case DT_RELENT:
9415 s = (bfd_get_section_by_name
9416 (dynobj,
9417 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
9418 BFD_ASSERT (s != NULL);
9419 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9420 break;
9421
9422 case DT_STRSZ:
9423 /* Rewrite DT_STRSZ. */
9424 dyn.d_un.d_val =
9425 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9426 break;
9427
9428 case DT_PLTGOT:
9429 name = ".got";
9430 goto get_vma;
9431 case DT_MIPS_CONFLICT:
9432 name = ".conflict";
9433 goto get_vma;
9434 case DT_MIPS_LIBLIST:
9435 name = ".liblist";
9436 get_vma:
9437 s = bfd_get_section_by_name (output_bfd, name);
9438 BFD_ASSERT (s != NULL);
9439 dyn.d_un.d_ptr = s->vma;
9440 break;
9441
9442 case DT_MIPS_RLD_VERSION:
9443 dyn.d_un.d_val = 1; /* XXX */
9444 break;
9445
9446 case DT_MIPS_FLAGS:
9447 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9448 break;
9449
9450 case DT_MIPS_CONFLICTNO:
9451 name = ".conflict";
9452 elemsize = sizeof (Elf32_Conflict);
9453 goto set_elemno;
9454
9455 case DT_MIPS_LIBLISTNO:
9456 name = ".liblist";
9457 elemsize = sizeof (Elf32_Lib);
9458 set_elemno:
9459 s = bfd_get_section_by_name (output_bfd, name);
9460 if (s != NULL)
9461 {
9462 if (s->_cooked_size != 0)
9463 dyn.d_un.d_val = s->_cooked_size / elemsize;
9464 else
9465 dyn.d_un.d_val = s->_raw_size / elemsize;
9466 }
9467 else
9468 dyn.d_un.d_val = 0;
9469 break;
9470
9471 case DT_MIPS_TIME_STAMP:
9472 time ((time_t *) &dyn.d_un.d_val);
9473 break;
9474
9475 case DT_MIPS_ICHECKSUM:
9476 /* XXX FIXME: */
9477 swap_out_p = false;
9478 break;
9479
9480 case DT_MIPS_IVERSION:
9481 /* XXX FIXME: */
9482 swap_out_p = false;
9483 break;
9484
9485 case DT_MIPS_BASE_ADDRESS:
9486 s = output_bfd->sections;
9487 BFD_ASSERT (s != NULL);
9488 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9489 break;
9490
9491 case DT_MIPS_LOCAL_GOTNO:
9492 dyn.d_un.d_val = g->local_gotno;
9493 break;
9494
9495 case DT_MIPS_UNREFEXTNO:
9496 /* The index into the dynamic symbol table which is the
9497 entry of the first external symbol that is not
9498 referenced within the same object. */
9499 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9500 break;
9501
9502 case DT_MIPS_GOTSYM:
9503 if (g->global_gotsym)
9504 {
9505 dyn.d_un.d_val = g->global_gotsym->dynindx;
9506 break;
9507 }
9508 /* In case if we don't have global got symbols we default
9509 to setting DT_MIPS_GOTSYM to the same value as
9510 DT_MIPS_SYMTABNO, so we just fall through. */
9511
9512 case DT_MIPS_SYMTABNO:
9513 name = ".dynsym";
9514 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9515 s = bfd_get_section_by_name (output_bfd, name);
9516 BFD_ASSERT (s != NULL);
9517
9518 if (s->_cooked_size != 0)
9519 dyn.d_un.d_val = s->_cooked_size / elemsize;
9520 else
9521 dyn.d_un.d_val = s->_raw_size / elemsize;
9522 break;
9523
9524 case DT_MIPS_HIPAGENO:
9525 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9526 break;
9527
9528 case DT_MIPS_RLD_MAP:
9529 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9530 break;
9531
9532 case DT_MIPS_OPTIONS:
9533 s = (bfd_get_section_by_name
9534 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9535 dyn.d_un.d_ptr = s->vma;
9536 break;
9537
9538 case DT_MIPS_MSYM:
9539 s = (bfd_get_section_by_name
9540 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9541 dyn.d_un.d_ptr = s->vma;
9542 break;
9543
9544 default:
9545 swap_out_p = false;
9546 break;
9547 }
9548
9549 if (swap_out_p)
9550 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9551 (dynobj, &dyn, b);
9552 }
9553 }
9554
9555 /* The first entry of the global offset table will be filled at
9556 runtime. The second entry will be used by some runtime loaders.
9557 This isn't the case of Irix rld. */
9558 if (sgot != NULL && sgot->_raw_size > 0)
9559 {
9560 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9561 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9562 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9563 }
9564
9565 if (sgot != NULL)
9566 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9567 = MIPS_ELF_GOT_SIZE (output_bfd);
9568
9569 {
9570 asection *smsym;
9571 asection *s;
9572 Elf32_compact_rel cpt;
9573
9574 /* ??? The section symbols for the output sections were set up in
9575 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9576 symbols. Should we do so? */
9577
9578 smsym = bfd_get_section_by_name (dynobj,
9579 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9580 if (smsym != NULL)
9581 {
9582 Elf32_Internal_Msym msym;
9583
9584 msym.ms_hash_value = 0;
9585 msym.ms_info = ELF32_MS_INFO (0, 1);
9586
9587 for (s = output_bfd->sections; s != NULL; s = s->next)
9588 {
9589 long dynindx = elf_section_data (s)->dynindx;
9590
9591 bfd_mips_elf_swap_msym_out
9592 (output_bfd, &msym,
9593 (((Elf32_External_Msym *) smsym->contents)
9594 + dynindx));
9595 }
9596 }
9597
9598 if (SGI_COMPAT (output_bfd))
9599 {
9600 /* Write .compact_rel section out. */
9601 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9602 if (s != NULL)
9603 {
9604 cpt.id1 = 1;
9605 cpt.num = s->reloc_count;
9606 cpt.id2 = 2;
9607 cpt.offset = (s->output_section->filepos
9608 + sizeof (Elf32_External_compact_rel));
9609 cpt.reserved0 = 0;
9610 cpt.reserved1 = 0;
9611 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9612 ((Elf32_External_compact_rel *)
9613 s->contents));
9614
9615 /* Clean up a dummy stub function entry in .text. */
9616 s = bfd_get_section_by_name (dynobj,
9617 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9618 if (s != NULL)
9619 {
9620 file_ptr dummy_offset;
9621
9622 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9623 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9624 memset (s->contents + dummy_offset, 0,
9625 MIPS_FUNCTION_STUB_SIZE);
9626 }
9627 }
9628 }
9629
9630 /* We need to sort the entries of the dynamic relocation section. */
9631
9632 if (!ABI_64_P (output_bfd))
9633 {
9634 asection *reldyn;
9635
9636 reldyn = bfd_get_section_by_name (dynobj,
9637 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9638 if (reldyn != NULL && reldyn->reloc_count > 2)
9639 {
9640 reldyn_sorting_bfd = output_bfd;
9641 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9642 (size_t) reldyn->reloc_count - 1,
9643 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9644 }
9645 }
9646
9647 /* Clean up a first relocation in .rel.dyn. */
9648 s = bfd_get_section_by_name (dynobj,
9649 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9650 if (s != NULL && s->_raw_size > 0)
9651 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9652 }
9653
9654 return true;
9655 }
9656 \f
9657 /* Support for core dump NOTE sections */
9658 static boolean
9659 _bfd_elf32_mips_grok_prstatus (abfd, note)
9660 bfd *abfd;
9661 Elf_Internal_Note *note;
9662 {
9663 int offset;
9664 unsigned int raw_size;
9665
9666 switch (note->descsz)
9667 {
9668 default:
9669 return false;
9670
9671 case 256: /* Linux/MIPS */
9672 /* pr_cursig */
9673 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9674
9675 /* pr_pid */
9676 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9677
9678 /* pr_reg */
9679 offset = 72;
9680 raw_size = 180;
9681
9682 break;
9683 }
9684
9685 /* Make a ".reg/999" section. */
9686 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9687 raw_size, note->descpos + offset);
9688 }
9689
9690 static boolean
9691 _bfd_elf32_mips_grok_psinfo (abfd, note)
9692 bfd *abfd;
9693 Elf_Internal_Note *note;
9694 {
9695 switch (note->descsz)
9696 {
9697 default:
9698 return false;
9699
9700 case 128: /* Linux/MIPS elf_prpsinfo */
9701 elf_tdata (abfd)->core_program
9702 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9703 elf_tdata (abfd)->core_command
9704 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9705 }
9706
9707 /* Note that for some reason, a spurious space is tacked
9708 onto the end of the args in some (at least one anyway)
9709 implementations, so strip it off if it exists. */
9710
9711 {
9712 char *command = elf_tdata (abfd)->core_command;
9713 int n = strlen (command);
9714
9715 if (0 < n && command[n - 1] == ' ')
9716 command[n - 1] = '\0';
9717 }
9718
9719 return true;
9720 }
9721 \f
9722 #define PDR_SIZE 32
9723
9724 static boolean
9725 _bfd_elf32_mips_discard_info (abfd, cookie, info)
9726 bfd *abfd;
9727 struct elf_reloc_cookie *cookie;
9728 struct bfd_link_info *info;
9729 {
9730 asection *o;
9731 struct elf_backend_data *bed = get_elf_backend_data (abfd);
9732 boolean ret = false;
9733 unsigned char *tdata;
9734 size_t i, skip;
9735
9736 o = bfd_get_section_by_name (abfd, ".pdr");
9737 if (! o)
9738 return false;
9739 if (o->_raw_size == 0)
9740 return false;
9741 if (o->_raw_size % PDR_SIZE != 0)
9742 return false;
9743 if (o->output_section != NULL
9744 && bfd_is_abs_section (o->output_section))
9745 return false;
9746
9747 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
9748 if (! tdata)
9749 return false;
9750
9751 cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL,
9752 (Elf_Internal_Rela *) NULL,
9753 info->keep_memory);
9754 if (!cookie->rels)
9755 {
9756 free (tdata);
9757 return false;
9758 }
9759
9760 cookie->rel = cookie->rels;
9761 cookie->relend =
9762 cookie->rels + o->reloc_count * bed->s->int_rels_per_ext_rel;
9763
9764 for (i = 0, skip = 0; i < o->_raw_size; i ++)
9765 {
9766 if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9767 {
9768 tdata[i] = 1;
9769 skip ++;
9770 }
9771 }
9772
9773 if (skip != 0)
9774 {
9775 elf_section_data (o)->tdata = tdata;
9776 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
9777 ret = true;
9778 }
9779 else
9780 free (tdata);
9781
9782 if (! info->keep_memory)
9783 free (cookie->rels);
9784
9785 return ret;
9786 }
9787
9788 static boolean
9789 _bfd_elf32_mips_ignore_discarded_relocs (sec)
9790 asection *sec;
9791 {
9792 if (strcmp (sec->name, ".pdr") == 0)
9793 return true;
9794 return false;
9795 }
9796
9797 static boolean
9798 _bfd_elf32_mips_write_section (output_bfd, sec, contents)
9799 bfd *output_bfd;
9800 asection *sec;
9801 bfd_byte *contents;
9802 {
9803 bfd_byte *to, *from, *end;
9804 int i;
9805
9806 if (strcmp (sec->name, ".pdr") != 0)
9807 return false;
9808
9809 if (elf_section_data (sec)->tdata == NULL)
9810 return false;
9811
9812 to = contents;
9813 end = contents + sec->_raw_size;
9814 for (from = contents, i = 0;
9815 from < end;
9816 from += PDR_SIZE, i++)
9817 {
9818 if (((unsigned char *)elf_section_data (sec)->tdata)[i] == 1)
9819 continue;
9820 if (to != from)
9821 memcpy (to, from, PDR_SIZE);
9822 to += PDR_SIZE;
9823 }
9824 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9825 (file_ptr) sec->output_offset,
9826 sec->_cooked_size);
9827 return true;
9828 }
9829 \f
9830 /* This is almost identical to bfd_generic_get_... except that some
9831 MIPS relocations need to be handled specially. Sigh. */
9832
9833 static bfd_byte *
9834 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9835 relocateable, symbols)
9836 bfd *abfd;
9837 struct bfd_link_info *link_info;
9838 struct bfd_link_order *link_order;
9839 bfd_byte *data;
9840 boolean relocateable;
9841 asymbol **symbols;
9842 {
9843 /* Get enough memory to hold the stuff */
9844 bfd *input_bfd = link_order->u.indirect.section->owner;
9845 asection *input_section = link_order->u.indirect.section;
9846
9847 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9848 arelent **reloc_vector = NULL;
9849 long reloc_count;
9850
9851 if (reloc_size < 0)
9852 goto error_return;
9853
9854 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
9855 if (reloc_vector == NULL && reloc_size != 0)
9856 goto error_return;
9857
9858 /* read in the section */
9859 if (!bfd_get_section_contents (input_bfd,
9860 input_section,
9861 (PTR) data,
9862 (file_ptr) 0,
9863 input_section->_raw_size))
9864 goto error_return;
9865
9866 /* We're not relaxing the section, so just copy the size info */
9867 input_section->_cooked_size = input_section->_raw_size;
9868 input_section->reloc_done = true;
9869
9870 reloc_count = bfd_canonicalize_reloc (input_bfd,
9871 input_section,
9872 reloc_vector,
9873 symbols);
9874 if (reloc_count < 0)
9875 goto error_return;
9876
9877 if (reloc_count > 0)
9878 {
9879 arelent **parent;
9880 /* for mips */
9881 int gp_found;
9882 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9883
9884 {
9885 struct bfd_hash_entry *h;
9886 struct bfd_link_hash_entry *lh;
9887 /* Skip all this stuff if we aren't mixing formats. */
9888 if (abfd && input_bfd
9889 && abfd->xvec == input_bfd->xvec)
9890 lh = 0;
9891 else
9892 {
9893 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9894 lh = (struct bfd_link_hash_entry *) h;
9895 }
9896 lookup:
9897 if (lh)
9898 {
9899 switch (lh->type)
9900 {
9901 case bfd_link_hash_undefined:
9902 case bfd_link_hash_undefweak:
9903 case bfd_link_hash_common:
9904 gp_found = 0;
9905 break;
9906 case bfd_link_hash_defined:
9907 case bfd_link_hash_defweak:
9908 gp_found = 1;
9909 gp = lh->u.def.value;
9910 break;
9911 case bfd_link_hash_indirect:
9912 case bfd_link_hash_warning:
9913 lh = lh->u.i.link;
9914 /* @@FIXME ignoring warning for now */
9915 goto lookup;
9916 case bfd_link_hash_new:
9917 default:
9918 abort ();
9919 }
9920 }
9921 else
9922 gp_found = 0;
9923 }
9924 /* end mips */
9925 for (parent = reloc_vector; *parent != (arelent *) NULL;
9926 parent++)
9927 {
9928 char *error_message = (char *) NULL;
9929 bfd_reloc_status_type r;
9930
9931 /* Specific to MIPS: Deal with relocation types that require
9932 knowing the gp of the output bfd. */
9933 asymbol *sym = *(*parent)->sym_ptr_ptr;
9934 if (bfd_is_abs_section (sym->section) && abfd)
9935 {
9936 /* The special_function wouldn't get called anyways. */
9937 }
9938 else if (!gp_found)
9939 {
9940 /* The gp isn't there; let the special function code
9941 fall over on its own. */
9942 }
9943 else if ((*parent)->howto->special_function
9944 == _bfd_mips_elf_gprel16_reloc)
9945 {
9946 /* bypass special_function call */
9947 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9948 relocateable, (PTR) data, gp);
9949 goto skip_bfd_perform_relocation;
9950 }
9951 /* end mips specific stuff */
9952
9953 r = bfd_perform_relocation (input_bfd,
9954 *parent,
9955 (PTR) data,
9956 input_section,
9957 relocateable ? abfd : (bfd *) NULL,
9958 &error_message);
9959 skip_bfd_perform_relocation:
9960
9961 if (relocateable)
9962 {
9963 asection *os = input_section->output_section;
9964
9965 /* A partial link, so keep the relocs */
9966 os->orelocation[os->reloc_count] = *parent;
9967 os->reloc_count++;
9968 }
9969
9970 if (r != bfd_reloc_ok)
9971 {
9972 switch (r)
9973 {
9974 case bfd_reloc_undefined:
9975 if (!((*link_info->callbacks->undefined_symbol)
9976 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9977 input_bfd, input_section, (*parent)->address,
9978 true)))
9979 goto error_return;
9980 break;
9981 case bfd_reloc_dangerous:
9982 BFD_ASSERT (error_message != (char *) NULL);
9983 if (!((*link_info->callbacks->reloc_dangerous)
9984 (link_info, error_message, input_bfd, input_section,
9985 (*parent)->address)))
9986 goto error_return;
9987 break;
9988 case bfd_reloc_overflow:
9989 if (!((*link_info->callbacks->reloc_overflow)
9990 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9991 (*parent)->howto->name, (*parent)->addend,
9992 input_bfd, input_section, (*parent)->address)))
9993 goto error_return;
9994 break;
9995 case bfd_reloc_outofrange:
9996 default:
9997 abort ();
9998 break;
9999 }
10000
10001 }
10002 }
10003 }
10004 if (reloc_vector != NULL)
10005 free (reloc_vector);
10006 return data;
10007
10008 error_return:
10009 if (reloc_vector != NULL)
10010 free (reloc_vector);
10011 return NULL;
10012 }
10013
10014 #define bfd_elf32_bfd_get_relocated_section_contents \
10015 elf32_mips_get_relocated_section_contents
10016 \f
10017 /* ECOFF swapping routines. These are used when dealing with the
10018 .mdebug section, which is in the ECOFF debugging format. */
10019 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
10020 /* Symbol table magic number. */
10021 magicSym,
10022 /* Alignment of debugging information. E.g., 4. */
10023 4,
10024 /* Sizes of external symbolic information. */
10025 sizeof (struct hdr_ext),
10026 sizeof (struct dnr_ext),
10027 sizeof (struct pdr_ext),
10028 sizeof (struct sym_ext),
10029 sizeof (struct opt_ext),
10030 sizeof (struct fdr_ext),
10031 sizeof (struct rfd_ext),
10032 sizeof (struct ext_ext),
10033 /* Functions to swap in external symbolic data. */
10034 ecoff_swap_hdr_in,
10035 ecoff_swap_dnr_in,
10036 ecoff_swap_pdr_in,
10037 ecoff_swap_sym_in,
10038 ecoff_swap_opt_in,
10039 ecoff_swap_fdr_in,
10040 ecoff_swap_rfd_in,
10041 ecoff_swap_ext_in,
10042 _bfd_ecoff_swap_tir_in,
10043 _bfd_ecoff_swap_rndx_in,
10044 /* Functions to swap out external symbolic data. */
10045 ecoff_swap_hdr_out,
10046 ecoff_swap_dnr_out,
10047 ecoff_swap_pdr_out,
10048 ecoff_swap_sym_out,
10049 ecoff_swap_opt_out,
10050 ecoff_swap_fdr_out,
10051 ecoff_swap_rfd_out,
10052 ecoff_swap_ext_out,
10053 _bfd_ecoff_swap_tir_out,
10054 _bfd_ecoff_swap_rndx_out,
10055 /* Function to read in symbolic data. */
10056 _bfd_mips_elf_read_ecoff_info
10057 };
10058 \f
10059 #define ELF_ARCH bfd_arch_mips
10060 #define ELF_MACHINE_CODE EM_MIPS
10061
10062 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
10063 a value of 0x1000, and we are compatible. */
10064 #define ELF_MAXPAGESIZE 0x1000
10065
10066 #define elf_backend_collect true
10067 #define elf_backend_type_change_ok true
10068 #define elf_backend_can_gc_sections true
10069 #define elf_info_to_howto mips_info_to_howto_rela
10070 #define elf_info_to_howto_rel mips_info_to_howto_rel
10071 #define elf_backend_sym_is_global mips_elf_sym_is_global
10072 #define elf_backend_object_p _bfd_mips_elf_object_p
10073 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
10074 #define elf_backend_section_processing _bfd_mips_elf_section_processing
10075 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
10076 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
10077 #define elf_backend_section_from_bfd_section \
10078 _bfd_mips_elf_section_from_bfd_section
10079 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
10080 #define elf_backend_link_output_symbol_hook \
10081 _bfd_mips_elf_link_output_symbol_hook
10082 #define elf_backend_create_dynamic_sections \
10083 _bfd_mips_elf_create_dynamic_sections
10084 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
10085 #define elf_backend_adjust_dynamic_symbol \
10086 _bfd_mips_elf_adjust_dynamic_symbol
10087 #define elf_backend_always_size_sections \
10088 _bfd_mips_elf_always_size_sections
10089 #define elf_backend_size_dynamic_sections \
10090 _bfd_mips_elf_size_dynamic_sections
10091 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
10092 #define elf_backend_finish_dynamic_symbol \
10093 _bfd_mips_elf_finish_dynamic_symbol
10094 #define elf_backend_finish_dynamic_sections \
10095 _bfd_mips_elf_finish_dynamic_sections
10096 #define elf_backend_final_write_processing \
10097 _bfd_mips_elf_final_write_processing
10098 #define elf_backend_additional_program_headers \
10099 _bfd_mips_elf_additional_program_headers
10100 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
10101 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
10102 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
10103 #define elf_backend_copy_indirect_symbol \
10104 _bfd_mips_elf_copy_indirect_symbol
10105 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
10106 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
10107 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
10108 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
10109
10110 #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO)
10111 #define elf_backend_plt_header_size 0
10112 #define elf_backend_may_use_rel_p 1
10113 #define elf_backend_may_use_rela_p 0
10114 #define elf_backend_default_use_rela_p 0
10115 #define elf_backend_sign_extend_vma true
10116
10117 #define elf_backend_discard_info _bfd_elf32_mips_discard_info
10118 #define elf_backend_ignore_discarded_relocs \
10119 _bfd_elf32_mips_ignore_discarded_relocs
10120 #define elf_backend_write_section _bfd_elf32_mips_write_section
10121
10122 #define bfd_elf32_bfd_is_local_label_name \
10123 mips_elf_is_local_label_name
10124 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
10125 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
10126 #define bfd_elf32_bfd_link_hash_table_create \
10127 _bfd_mips_elf_link_hash_table_create
10128 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
10129 #define bfd_elf32_bfd_merge_private_bfd_data \
10130 _bfd_mips_elf_merge_private_bfd_data
10131 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
10132 #define bfd_elf32_bfd_print_private_bfd_data \
10133 _bfd_mips_elf_print_private_bfd_data
10134
10135 /* Support for SGI-ish mips targets. */
10136 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
10137 #define TARGET_LITTLE_NAME "elf32-littlemips"
10138 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
10139 #define TARGET_BIG_NAME "elf32-bigmips"
10140
10141 #include "elf32-target.h"
10142
10143 /* Support for traditional mips targets. */
10144 #define INCLUDED_TARGET_FILE /* More a type of flag. */
10145
10146 #undef TARGET_LITTLE_SYM
10147 #undef TARGET_LITTLE_NAME
10148 #undef TARGET_BIG_SYM
10149 #undef TARGET_BIG_NAME
10150
10151 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
10152 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
10153 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
10154 #define TARGET_BIG_NAME "elf32-tradbigmips"
10155
10156 /* Include the target file again for this target */
10157 #include "elf32-target.h"