PR24225, nios2 buffer overflow
[binutils-gdb.git] / bfd / elf32-nios2.c
1 /* 32-bit ELF support for Nios II.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 /* This file handles Altera Nios II ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elf/nios2.h"
32 #include "opcode/nios2.h"
33 #include "elf32-nios2.h"
34 #include "libiberty.h"
35
36 /* Use RELA relocations. */
37 #ifndef USE_RELA
38 #define USE_RELA
39 #endif
40
41 #ifdef USE_REL
42 #undef USE_REL
43 #endif
44
45 /* Forward declarations. */
46 static bfd_reloc_status_type nios2_elf32_ignore_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type nios2_elf32_hi16_relocate
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type nios2_elf32_lo16_relocate
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type nios2_elf32_hiadj16_relocate
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type nios2_elf32_pcrel_lo16_relocate
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type nios2_elf32_pcrel_hiadj16_relocate
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_reloc_status_type nios2_elf32_pcrel16_relocate
59 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
60 static bfd_reloc_status_type nios2_elf32_call26_relocate
61 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
62 static bfd_reloc_status_type nios2_elf32_gprel_relocate
63 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
64 static bfd_reloc_status_type nios2_elf32_ujmp_relocate
65 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
66 static bfd_reloc_status_type nios2_elf32_cjmp_relocate
67 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
68 static bfd_reloc_status_type nios2_elf32_callr_relocate
69 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
70
71 /* Target vector. */
72 extern const bfd_target nios2_elf32_le_vec;
73 extern const bfd_target nios2_elf32_be_vec;
74
75 /* Offset of tp and dtp pointers from start of TLS block. */
76 #define TP_OFFSET 0x7000
77 #define DTP_OFFSET 0x8000
78
79 /* The relocation tables used for SHT_REL sections. There are separate
80 tables for R1 and R2 encodings. */
81 static reloc_howto_type elf_nios2_r1_howto_table_rel[] = {
82 /* No relocation. */
83 HOWTO (R_NIOS2_NONE, /* type */
84 0, /* rightshift */
85 3, /* size (0 = byte, 1 = short, 2 = long) */
86 0, /* bitsize */
87 FALSE, /* pc_relative */
88 0, /* bitpos */
89 complain_overflow_dont, /* complain_on_overflow */
90 bfd_elf_generic_reloc, /* special_function */
91 "R_NIOS2_NONE", /* name */
92 FALSE, /* partial_inplace */
93 0, /* src_mask */
94 0, /* dst_mask */
95 FALSE), /* pcrel_offset */
96
97 /* 16-bit signed immediate relocation. */
98 HOWTO (R_NIOS2_S16, /* type */
99 0, /* rightshift */
100 2, /* size (0 = byte, 1 = short, 2 = long) */
101 16, /* bitsize */
102 FALSE, /* pc_relative */
103 6, /* bitpos */
104 complain_overflow_signed, /* complain on overflow */
105 bfd_elf_generic_reloc, /* special function */
106 "R_NIOS2_S16", /* name */
107 FALSE, /* partial_inplace */
108 0x003fffc0, /* src_mask */
109 0x003fffc0, /* dest_mask */
110 FALSE), /* pcrel_offset */
111
112 /* 16-bit unsigned immediate relocation. */
113 HOWTO (R_NIOS2_U16, /* type */
114 0, /* rightshift */
115 2, /* size (0 = byte, 1 = short, 2 = long) */
116 16, /* bitsize */
117 FALSE, /* pc_relative */
118 6, /* bitpos */
119 complain_overflow_unsigned, /* complain on overflow */
120 bfd_elf_generic_reloc, /* special function */
121 "R_NIOS2_U16", /* name */
122 FALSE, /* partial_inplace */
123 0x003fffc0, /* src_mask */
124 0x003fffc0, /* dest_mask */
125 FALSE), /* pcrel_offset */
126
127 HOWTO (R_NIOS2_PCREL16, /* type */
128 0, /* rightshift */
129 2, /* size (0 = byte, 1 = short, 2 = long) */
130 16, /* bitsize */
131 TRUE, /* pc_relative */
132 6, /* bitpos */
133 complain_overflow_signed, /* complain on overflow */
134 nios2_elf32_pcrel16_relocate, /* special function */
135 "R_NIOS2_PCREL16", /* name */
136 FALSE, /* partial_inplace */
137 0x003fffc0, /* src_mask */
138 0x003fffc0, /* dest_mask */
139 TRUE), /* pcrel_offset */
140
141 HOWTO (R_NIOS2_CALL26, /* type */
142 2, /* rightshift */
143 2, /* size (0 = byte, 1 = short, 2 = long) */
144 26, /* bitsize */
145 FALSE, /* pc_relative */
146 6, /* bitpos */
147 complain_overflow_dont, /* complain on overflow */
148 nios2_elf32_call26_relocate, /* special function */
149 "R_NIOS2_CALL26", /* name */
150 FALSE, /* partial_inplace */
151 0xffffffc0, /* src_mask */
152 0xffffffc0, /* dst_mask */
153 FALSE), /* pcrel_offset */
154
155 HOWTO (R_NIOS2_IMM5,
156 0,
157 2,
158 5,
159 FALSE,
160 6,
161 complain_overflow_bitfield,
162 bfd_elf_generic_reloc,
163 "R_NIOS2_IMM5",
164 FALSE,
165 0x000007c0,
166 0x000007c0,
167 FALSE),
168
169 HOWTO (R_NIOS2_CACHE_OPX,
170 0,
171 2,
172 5,
173 FALSE,
174 22,
175 complain_overflow_bitfield,
176 bfd_elf_generic_reloc,
177 "R_NIOS2_CACHE_OPX",
178 FALSE,
179 0x07c00000,
180 0x07c00000,
181 FALSE),
182
183 HOWTO (R_NIOS2_IMM6,
184 0,
185 2,
186 6,
187 FALSE,
188 6,
189 complain_overflow_bitfield,
190 bfd_elf_generic_reloc,
191 "R_NIOS2_IMM6",
192 FALSE,
193 0x00000fc0,
194 0x00000fc0,
195 FALSE),
196
197 HOWTO (R_NIOS2_IMM8,
198 0,
199 2,
200 8,
201 FALSE,
202 6,
203 complain_overflow_bitfield,
204 bfd_elf_generic_reloc,
205 "R_NIOS2_IMM8",
206 FALSE,
207 0x00003fc0,
208 0x00003fc0,
209 FALSE),
210
211 HOWTO (R_NIOS2_HI16,
212 0,
213 2,
214 32,
215 FALSE,
216 6,
217 complain_overflow_dont,
218 nios2_elf32_hi16_relocate,
219 "R_NIOS2_HI16",
220 FALSE,
221 0x003fffc0,
222 0x003fffc0,
223 FALSE),
224
225 HOWTO (R_NIOS2_LO16,
226 0,
227 2,
228 32,
229 FALSE,
230 6,
231 complain_overflow_dont,
232 nios2_elf32_lo16_relocate,
233 "R_NIOS2_LO16",
234 FALSE,
235 0x003fffc0,
236 0x003fffc0,
237 FALSE),
238
239 HOWTO (R_NIOS2_HIADJ16,
240 0,
241 2,
242 32,
243 FALSE,
244 6,
245 complain_overflow_dont,
246 nios2_elf32_hiadj16_relocate,
247 "R_NIOS2_HIADJ16",
248 FALSE,
249 0x003fffc0,
250 0x003fffc0,
251 FALSE),
252
253 HOWTO (R_NIOS2_BFD_RELOC_32,
254 0,
255 2, /* long */
256 32,
257 FALSE,
258 0,
259 complain_overflow_dont,
260 bfd_elf_generic_reloc,
261 "R_NIOS2_BFD_RELOC32",
262 FALSE,
263 0xffffffff,
264 0xffffffff,
265 FALSE),
266
267 HOWTO (R_NIOS2_BFD_RELOC_16,
268 0,
269 1, /* short */
270 16,
271 FALSE,
272 0,
273 complain_overflow_bitfield,
274 bfd_elf_generic_reloc,
275 "R_NIOS2_BFD_RELOC16",
276 FALSE,
277 0x0000ffff,
278 0x0000ffff,
279 FALSE),
280
281 HOWTO (R_NIOS2_BFD_RELOC_8,
282 0,
283 0, /* byte */
284 8,
285 FALSE,
286 0,
287 complain_overflow_bitfield,
288 bfd_elf_generic_reloc,
289 "R_NIOS2_BFD_RELOC8",
290 FALSE,
291 0x000000ff,
292 0x000000ff,
293 FALSE),
294
295 HOWTO (R_NIOS2_GPREL,
296 0,
297 2,
298 32,
299 FALSE,
300 6,
301 complain_overflow_dont,
302 nios2_elf32_gprel_relocate,
303 "R_NIOS2_GPREL",
304 FALSE,
305 0x003fffc0,
306 0x003fffc0,
307 FALSE),
308
309 HOWTO (R_NIOS2_GNU_VTINHERIT,
310 0,
311 2, /* short */
312 0,
313 FALSE,
314 0,
315 complain_overflow_dont,
316 NULL,
317 "R_NIOS2_GNU_VTINHERIT",
318 FALSE,
319 0,
320 0,
321 FALSE),
322
323 HOWTO (R_NIOS2_GNU_VTENTRY,
324 0,
325 2, /* byte */
326 0,
327 FALSE,
328 0,
329 complain_overflow_dont,
330 _bfd_elf_rel_vtable_reloc_fn,
331 "R_NIOS2_GNU_VTENTRY",
332 FALSE,
333 0,
334 0,
335 FALSE),
336
337 HOWTO (R_NIOS2_UJMP,
338 0,
339 2,
340 32,
341 FALSE,
342 6,
343 complain_overflow_dont,
344 nios2_elf32_ujmp_relocate,
345 "R_NIOS2_UJMP",
346 FALSE,
347 0x003fffc0,
348 0x003fffc0,
349 FALSE),
350
351 HOWTO (R_NIOS2_CJMP,
352 0,
353 2,
354 32,
355 FALSE,
356 6,
357 complain_overflow_dont,
358 nios2_elf32_cjmp_relocate,
359 "R_NIOS2_CJMP",
360 FALSE,
361 0x003fffc0,
362 0x003fffc0,
363 FALSE),
364
365 HOWTO (R_NIOS2_CALLR,
366 0,
367 2,
368 32,
369 FALSE,
370 6,
371 complain_overflow_dont,
372 nios2_elf32_callr_relocate,
373 "R_NIOS2_CALLR",
374 FALSE,
375 0x003fffc0,
376 0x003fffc0,
377 FALSE),
378
379 HOWTO (R_NIOS2_ALIGN,
380 0,
381 2,
382 0,
383 FALSE,
384 0,
385 complain_overflow_dont,
386 nios2_elf32_ignore_reloc,
387 "R_NIOS2_ALIGN",
388 FALSE,
389 0,
390 0,
391 TRUE),
392
393
394 HOWTO (R_NIOS2_GOT16,
395 0,
396 2,
397 16,
398 FALSE,
399 6,
400 complain_overflow_bitfield,
401 bfd_elf_generic_reloc,
402 "R_NIOS2_GOT16",
403 FALSE,
404 0x003fffc0,
405 0x003fffc0,
406 FALSE),
407
408 HOWTO (R_NIOS2_CALL16,
409 0,
410 2,
411 16,
412 FALSE,
413 6,
414 complain_overflow_bitfield,
415 bfd_elf_generic_reloc,
416 "R_NIOS2_CALL16",
417 FALSE,
418 0x003fffc0,
419 0x003fffc0,
420 FALSE),
421
422 HOWTO (R_NIOS2_GOTOFF_LO,
423 0,
424 2,
425 16,
426 FALSE,
427 6,
428 complain_overflow_dont,
429 bfd_elf_generic_reloc,
430 "R_NIOS2_GOTOFF_LO",
431 FALSE,
432 0x003fffc0,
433 0x003fffc0,
434 FALSE),
435
436 HOWTO (R_NIOS2_GOTOFF_HA,
437 0,
438 2,
439 16,
440 FALSE,
441 6,
442 complain_overflow_dont,
443 bfd_elf_generic_reloc,
444 "R_NIOS2_GOTOFF_HA",
445 FALSE,
446 0x003fffc0,
447 0x003fffc0,
448 FALSE),
449
450 HOWTO (R_NIOS2_PCREL_LO,
451 0,
452 2,
453 16,
454 TRUE,
455 6,
456 complain_overflow_dont,
457 nios2_elf32_pcrel_lo16_relocate,
458 "R_NIOS2_PCREL_LO",
459 FALSE,
460 0x003fffc0,
461 0x003fffc0,
462 TRUE),
463
464 HOWTO (R_NIOS2_PCREL_HA,
465 0,
466 2,
467 16,
468 FALSE, /* This is a PC-relative relocation, but we need to subtract
469 PC ourselves before the HIADJ. */
470 6,
471 complain_overflow_dont,
472 nios2_elf32_pcrel_hiadj16_relocate,
473 "R_NIOS2_PCREL_HA",
474 FALSE,
475 0x003fffc0,
476 0x003fffc0,
477 TRUE),
478
479 HOWTO (R_NIOS2_TLS_GD16,
480 0,
481 2,
482 16,
483 FALSE,
484 6,
485 complain_overflow_bitfield,
486 bfd_elf_generic_reloc,
487 "R_NIOS2_TLS_GD16",
488 FALSE,
489 0x003fffc0,
490 0x003fffc0,
491 FALSE),
492
493 HOWTO (R_NIOS2_TLS_LDM16,
494 0,
495 2,
496 16,
497 FALSE,
498 6,
499 complain_overflow_bitfield,
500 bfd_elf_generic_reloc,
501 "R_NIOS2_TLS_LDM16",
502 FALSE,
503 0x003fffc0,
504 0x003fffc0,
505 FALSE),
506
507 HOWTO (R_NIOS2_TLS_LDO16,
508 0,
509 2,
510 16,
511 FALSE,
512 6,
513 complain_overflow_bitfield,
514 bfd_elf_generic_reloc,
515 "R_NIOS2_TLS_LDO16",
516 FALSE,
517 0x003fffc0,
518 0x003fffc0,
519 FALSE),
520
521 HOWTO (R_NIOS2_TLS_IE16,
522 0,
523 2,
524 16,
525 FALSE,
526 6,
527 complain_overflow_bitfield,
528 bfd_elf_generic_reloc,
529 "R_NIOS2_TLS_IE16",
530 FALSE,
531 0x003fffc0,
532 0x003fffc0,
533 FALSE),
534
535 HOWTO (R_NIOS2_TLS_LE16,
536 0,
537 2,
538 16,
539 FALSE,
540 6,
541 complain_overflow_bitfield,
542 bfd_elf_generic_reloc,
543 "R_NIOS2_TLS_LE16",
544 FALSE,
545 0x003fffc0,
546 0x003fffc0,
547 FALSE),
548
549 HOWTO (R_NIOS2_TLS_DTPMOD,
550 0,
551 2,
552 32,
553 FALSE,
554 0,
555 complain_overflow_dont,
556 bfd_elf_generic_reloc,
557 "R_NIOS2_TLS_DTPMOD",
558 FALSE,
559 0xffffffff,
560 0xffffffff,
561 FALSE),
562
563 HOWTO (R_NIOS2_TLS_DTPREL,
564 0,
565 2,
566 32,
567 FALSE,
568 0,
569 complain_overflow_dont,
570 bfd_elf_generic_reloc,
571 "R_NIOS2_TLS_DTPREL",
572 FALSE,
573 0xffffffff,
574 0xffffffff,
575 FALSE),
576
577 HOWTO (R_NIOS2_TLS_TPREL,
578 0,
579 2,
580 32,
581 FALSE,
582 0,
583 complain_overflow_dont,
584 bfd_elf_generic_reloc,
585 "R_NIOS2_TLS_TPREL",
586 FALSE,
587 0xffffffff,
588 0xffffffff,
589 FALSE),
590
591 HOWTO (R_NIOS2_COPY,
592 0,
593 2,
594 32,
595 FALSE,
596 0,
597 complain_overflow_dont,
598 bfd_elf_generic_reloc,
599 "R_NIOS2_COPY",
600 FALSE,
601 0,
602 0,
603 FALSE),
604
605 HOWTO (R_NIOS2_GLOB_DAT,
606 0,
607 2,
608 32,
609 FALSE,
610 0,
611 complain_overflow_dont,
612 bfd_elf_generic_reloc,
613 "R_NIOS2_GLOB_DAT",
614 FALSE,
615 0xffffffff,
616 0xffffffff,
617 FALSE),
618
619 HOWTO (R_NIOS2_JUMP_SLOT,
620 0,
621 2,
622 32,
623 FALSE,
624 0,
625 complain_overflow_dont,
626 bfd_elf_generic_reloc,
627 "R_NIOS2_JUMP_SLOT",
628 FALSE,
629 0xffffffff,
630 0xffffffff,
631 FALSE),
632
633 HOWTO (R_NIOS2_RELATIVE,
634 0,
635 2,
636 32,
637 FALSE,
638 0,
639 complain_overflow_dont,
640 bfd_elf_generic_reloc,
641 "R_NIOS2_RELATIVE",
642 FALSE,
643 0xffffffff,
644 0xffffffff,
645 FALSE),
646
647 HOWTO (R_NIOS2_GOTOFF,
648 0,
649 2,
650 32,
651 FALSE,
652 0,
653 complain_overflow_dont,
654 bfd_elf_generic_reloc,
655 "R_NIOS2_GOTOFF",
656 FALSE,
657 0xffffffff,
658 0xffffffff,
659 FALSE),
660
661 HOWTO (R_NIOS2_CALL26_NOAT, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 26, /* bitsize */
665 FALSE, /* pc_relative */
666 6, /* bitpos */
667 complain_overflow_dont, /* complain on overflow */
668 nios2_elf32_call26_relocate, /* special function */
669 "R_NIOS2_CALL26_NOAT", /* name */
670 FALSE, /* partial_inplace */
671 0xffffffc0, /* src_mask */
672 0xffffffc0, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 HOWTO (R_NIOS2_GOT_LO,
676 0,
677 2,
678 16,
679 FALSE,
680 6,
681 complain_overflow_dont,
682 bfd_elf_generic_reloc,
683 "R_NIOS2_GOT_LO",
684 FALSE,
685 0x003fffc0,
686 0x003fffc0,
687 FALSE),
688
689 HOWTO (R_NIOS2_GOT_HA,
690 0,
691 2,
692 16,
693 FALSE,
694 6,
695 complain_overflow_dont,
696 bfd_elf_generic_reloc,
697 "R_NIOS2_GOT_HA",
698 FALSE,
699 0x003fffc0,
700 0x003fffc0,
701 FALSE),
702
703 HOWTO (R_NIOS2_CALL_LO,
704 0,
705 2,
706 16,
707 FALSE,
708 6,
709 complain_overflow_dont,
710 bfd_elf_generic_reloc,
711 "R_NIOS2_CALL_LO",
712 FALSE,
713 0x003fffc0,
714 0x003fffc0,
715 FALSE),
716
717 HOWTO (R_NIOS2_CALL_HA,
718 0,
719 2,
720 16,
721 FALSE,
722 6,
723 complain_overflow_dont,
724 bfd_elf_generic_reloc,
725 "R_NIOS2_CALL_HA",
726 FALSE,
727 0x003fffc0,
728 0x003fffc0,
729 FALSE),
730
731 /* Add other relocations here. */
732 };
733
734 static reloc_howto_type elf_nios2_r2_howto_table_rel[] = {
735 /* No relocation. */
736 HOWTO (R_NIOS2_NONE, /* type */
737 0, /* rightshift */
738 0, /* size (0 = byte, 1 = short, 2 = long) */
739 0, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_NIOS2_NONE", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* 16-bit signed immediate relocation. */
751 HOWTO (R_NIOS2_S16, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 16, /* bitpos */
757 complain_overflow_signed, /* complain on overflow */
758 bfd_elf_generic_reloc, /* special function */
759 "R_NIOS2_S16", /* name */
760 FALSE, /* partial_inplace */
761 0xffff0000, /* src_mask */
762 0xffff0000, /* dest_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit unsigned immediate relocation. */
766 HOWTO (R_NIOS2_U16, /* type */
767 0, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 16, /* bitpos */
772 complain_overflow_unsigned, /* complain on overflow */
773 bfd_elf_generic_reloc, /* special function */
774 "R_NIOS2_U16", /* name */
775 FALSE, /* partial_inplace */
776 0xffff0000, /* src_mask */
777 0xffff0000, /* dest_mask */
778 FALSE), /* pcrel_offset */
779
780 HOWTO (R_NIOS2_PCREL16, /* type */
781 0, /* rightshift */
782 2, /* size (0 = byte, 1 = short, 2 = long) */
783 16, /* bitsize */
784 TRUE, /* pc_relative */
785 16, /* bitpos */
786 complain_overflow_signed, /* complain on overflow */
787 nios2_elf32_pcrel16_relocate, /* special function */
788 "R_NIOS2_PCREL16", /* name */
789 FALSE, /* partial_inplace */
790 0xffff0000, /* src_mask */
791 0xffff0000, /* dest_mask */
792 TRUE), /* pcrel_offset */
793
794 HOWTO (R_NIOS2_CALL26, /* type */
795 2, /* rightshift */
796 2, /* size (0 = byte, 1 = short, 2 = long) */
797 26, /* bitsize */
798 FALSE, /* pc_relative */
799 6, /* bitpos */
800 complain_overflow_dont, /* complain on overflow */
801 nios2_elf32_call26_relocate, /* special function */
802 "R_NIOS2_CALL26", /* name */
803 FALSE, /* partial_inplace */
804 0xffffffc0, /* src_mask */
805 0xffffffc0, /* dst_mask */
806 FALSE), /* pcrel_offset */
807
808 HOWTO (R_NIOS2_IMM5,
809 0,
810 2,
811 5,
812 FALSE,
813 21,
814 complain_overflow_bitfield,
815 bfd_elf_generic_reloc,
816 "R_NIOS2_IMM5",
817 FALSE,
818 0x03e00000,
819 0x03e00000,
820 FALSE),
821
822 HOWTO (R_NIOS2_CACHE_OPX,
823 0,
824 2,
825 5,
826 FALSE,
827 11,
828 complain_overflow_bitfield,
829 bfd_elf_generic_reloc,
830 "R_NIOS2_CACHE_OPX",
831 FALSE,
832 0x0000f800,
833 0x0000f800,
834 FALSE),
835
836 HOWTO (R_NIOS2_IMM6,
837 0,
838 2,
839 6,
840 FALSE,
841 26,
842 complain_overflow_bitfield,
843 bfd_elf_generic_reloc,
844 "R_NIOS2_IMM6",
845 FALSE,
846 0xfc000000,
847 0xfc000000,
848 FALSE),
849
850 HOWTO (R_NIOS2_IMM8,
851 0,
852 2,
853 8,
854 FALSE,
855 24,
856 complain_overflow_bitfield,
857 bfd_elf_generic_reloc,
858 "R_NIOS2_IMM8",
859 FALSE,
860 0xff000000,
861 0xff000000,
862 FALSE),
863
864 HOWTO (R_NIOS2_HI16,
865 0,
866 2,
867 32,
868 FALSE,
869 16,
870 complain_overflow_dont,
871 nios2_elf32_hi16_relocate,
872 "R_NIOS2_HI16",
873 FALSE,
874 0xffff0000,
875 0xffff0000,
876 FALSE),
877
878 HOWTO (R_NIOS2_LO16,
879 0,
880 2,
881 32,
882 FALSE,
883 16,
884 complain_overflow_dont,
885 nios2_elf32_lo16_relocate,
886 "R_NIOS2_LO16",
887 FALSE,
888 0xffff0000,
889 0xffff0000,
890 FALSE),
891
892 HOWTO (R_NIOS2_HIADJ16,
893 0,
894 2,
895 32,
896 FALSE,
897 16,
898 complain_overflow_dont,
899 nios2_elf32_hiadj16_relocate,
900 "R_NIOS2_HIADJ16",
901 FALSE,
902 0xffff0000,
903 0xffff0000,
904 FALSE),
905
906 HOWTO (R_NIOS2_BFD_RELOC_32,
907 0,
908 2, /* long */
909 32,
910 FALSE,
911 0,
912 complain_overflow_dont,
913 bfd_elf_generic_reloc,
914 "R_NIOS2_BFD_RELOC32",
915 FALSE,
916 0xffffffff,
917 0xffffffff,
918 FALSE),
919
920 HOWTO (R_NIOS2_BFD_RELOC_16,
921 0,
922 1, /* short */
923 16,
924 FALSE,
925 0,
926 complain_overflow_bitfield,
927 bfd_elf_generic_reloc,
928 "R_NIOS2_BFD_RELOC16",
929 FALSE,
930 0x0000ffff,
931 0x0000ffff,
932 FALSE),
933
934 HOWTO (R_NIOS2_BFD_RELOC_8,
935 0,
936 0, /* byte */
937 8,
938 FALSE,
939 0,
940 complain_overflow_bitfield,
941 bfd_elf_generic_reloc,
942 "R_NIOS2_BFD_RELOC8",
943 FALSE,
944 0x000000ff,
945 0x000000ff,
946 FALSE),
947
948 HOWTO (R_NIOS2_GPREL,
949 0,
950 2,
951 32,
952 FALSE,
953 16,
954 complain_overflow_dont,
955 nios2_elf32_gprel_relocate,
956 "R_NIOS2_GPREL",
957 FALSE,
958 0xffff0000,
959 0xffff0000,
960 FALSE),
961
962 HOWTO (R_NIOS2_GNU_VTINHERIT,
963 0,
964 2, /* short */
965 0,
966 FALSE,
967 0,
968 complain_overflow_dont,
969 NULL,
970 "R_NIOS2_GNU_VTINHERIT",
971 FALSE,
972 0,
973 0,
974 FALSE),
975
976 HOWTO (R_NIOS2_GNU_VTENTRY,
977 0,
978 2, /* byte */
979 0,
980 FALSE,
981 0,
982 complain_overflow_dont,
983 _bfd_elf_rel_vtable_reloc_fn,
984 "R_NIOS2_GNU_VTENTRY",
985 FALSE,
986 0,
987 0,
988 FALSE),
989
990 HOWTO (R_NIOS2_UJMP,
991 0,
992 2,
993 32,
994 FALSE,
995 16,
996 complain_overflow_dont,
997 nios2_elf32_ujmp_relocate,
998 "R_NIOS2_UJMP",
999 FALSE,
1000 0xffff0000,
1001 0xffff0000,
1002 FALSE),
1003
1004 HOWTO (R_NIOS2_CJMP,
1005 0,
1006 2,
1007 32,
1008 FALSE,
1009 16,
1010 complain_overflow_dont,
1011 nios2_elf32_cjmp_relocate,
1012 "R_NIOS2_CJMP",
1013 FALSE,
1014 0xffff0000,
1015 0xffff0000,
1016 FALSE),
1017
1018 HOWTO (R_NIOS2_CALLR,
1019 0,
1020 2,
1021 32,
1022 FALSE,
1023 16,
1024 complain_overflow_dont,
1025 nios2_elf32_callr_relocate,
1026 "R_NIOS2_CALLR",
1027 FALSE,
1028 0xffff0000,
1029 0xffff0000,
1030 FALSE),
1031
1032 HOWTO (R_NIOS2_ALIGN,
1033 0,
1034 2,
1035 0,
1036 FALSE,
1037 0,
1038 complain_overflow_dont,
1039 nios2_elf32_ignore_reloc,
1040 "R_NIOS2_ALIGN",
1041 FALSE,
1042 0,
1043 0,
1044 TRUE),
1045
1046 HOWTO (R_NIOS2_GOT16,
1047 0,
1048 2,
1049 16,
1050 FALSE,
1051 16,
1052 complain_overflow_bitfield,
1053 bfd_elf_generic_reloc,
1054 "R_NIOS2_GOT16",
1055 FALSE,
1056 0xffff0000,
1057 0xffff0000,
1058 FALSE),
1059
1060 HOWTO (R_NIOS2_CALL16,
1061 0,
1062 2,
1063 16,
1064 FALSE,
1065 16,
1066 complain_overflow_bitfield,
1067 bfd_elf_generic_reloc,
1068 "R_NIOS2_CALL16",
1069 FALSE,
1070 0xffff0000,
1071 0xffff0000,
1072 FALSE),
1073
1074 HOWTO (R_NIOS2_GOTOFF_LO,
1075 0,
1076 2,
1077 16,
1078 FALSE,
1079 16,
1080 complain_overflow_dont,
1081 bfd_elf_generic_reloc,
1082 "R_NIOS2_GOTOFF_LO",
1083 FALSE,
1084 0xffff0000,
1085 0xffff0000,
1086 FALSE),
1087
1088 HOWTO (R_NIOS2_GOTOFF_HA,
1089 0,
1090 2,
1091 16,
1092 FALSE,
1093 16,
1094 complain_overflow_dont,
1095 bfd_elf_generic_reloc,
1096 "R_NIOS2_GOTOFF_HA",
1097 FALSE,
1098 0xffff0000,
1099 0xffff0000,
1100 FALSE),
1101
1102 HOWTO (R_NIOS2_PCREL_LO,
1103 0,
1104 2,
1105 16,
1106 TRUE,
1107 16,
1108 complain_overflow_dont,
1109 nios2_elf32_pcrel_lo16_relocate,
1110 "R_NIOS2_PCREL_LO",
1111 FALSE,
1112 0xffff0000,
1113 0xffff0000,
1114 TRUE),
1115
1116 HOWTO (R_NIOS2_PCREL_HA,
1117 0,
1118 2,
1119 16,
1120 FALSE, /* This is a PC-relative relocation, but we need to subtract
1121 PC ourselves before the HIADJ. */
1122 16,
1123 complain_overflow_dont,
1124 nios2_elf32_pcrel_hiadj16_relocate,
1125 "R_NIOS2_PCREL_HA",
1126 FALSE,
1127 0xffff0000,
1128 0xffff0000,
1129 TRUE),
1130
1131 HOWTO (R_NIOS2_TLS_GD16,
1132 0,
1133 2,
1134 16,
1135 FALSE,
1136 16,
1137 complain_overflow_bitfield,
1138 bfd_elf_generic_reloc,
1139 "R_NIOS2_TLS_GD16",
1140 FALSE,
1141 0xffff0000,
1142 0xffff0000,
1143 FALSE),
1144
1145 HOWTO (R_NIOS2_TLS_LDM16,
1146 0,
1147 2,
1148 16,
1149 FALSE,
1150 16,
1151 complain_overflow_bitfield,
1152 bfd_elf_generic_reloc,
1153 "R_NIOS2_TLS_LDM16",
1154 FALSE,
1155 0xffff0000,
1156 0xffff0000,
1157 FALSE),
1158
1159 HOWTO (R_NIOS2_TLS_LDO16,
1160 0,
1161 2,
1162 16,
1163 FALSE,
1164 16,
1165 complain_overflow_bitfield,
1166 bfd_elf_generic_reloc,
1167 "R_NIOS2_TLS_LDO16",
1168 FALSE,
1169 0xffff0000,
1170 0xffff0000,
1171 FALSE),
1172
1173 HOWTO (R_NIOS2_TLS_IE16,
1174 0,
1175 2,
1176 16,
1177 FALSE,
1178 16,
1179 complain_overflow_bitfield,
1180 bfd_elf_generic_reloc,
1181 "R_NIOS2_TLS_IE16",
1182 FALSE,
1183 0xffff0000,
1184 0xffff0000,
1185 FALSE),
1186
1187 HOWTO (R_NIOS2_TLS_LE16,
1188 0,
1189 2,
1190 16,
1191 FALSE,
1192 16,
1193 complain_overflow_bitfield,
1194 bfd_elf_generic_reloc,
1195 "R_NIOS2_TLS_LE16",
1196 FALSE,
1197 0xffff0000,
1198 0xffff0000,
1199 FALSE),
1200
1201 HOWTO (R_NIOS2_TLS_DTPMOD,
1202 0,
1203 2,
1204 32,
1205 FALSE,
1206 0,
1207 complain_overflow_dont,
1208 bfd_elf_generic_reloc,
1209 "R_NIOS2_TLS_DTPMOD",
1210 FALSE,
1211 0xffffffff,
1212 0xffffffff,
1213 FALSE),
1214
1215 HOWTO (R_NIOS2_TLS_DTPREL,
1216 0,
1217 2,
1218 32,
1219 FALSE,
1220 0,
1221 complain_overflow_dont,
1222 bfd_elf_generic_reloc,
1223 "R_NIOS2_TLS_DTPREL",
1224 FALSE,
1225 0xffffffff,
1226 0xffffffff,
1227 FALSE),
1228
1229 HOWTO (R_NIOS2_TLS_TPREL,
1230 0,
1231 2,
1232 32,
1233 FALSE,
1234 0,
1235 complain_overflow_dont,
1236 bfd_elf_generic_reloc,
1237 "R_NIOS2_TLS_TPREL",
1238 FALSE,
1239 0xffffffff,
1240 0xffffffff,
1241 FALSE),
1242
1243 HOWTO (R_NIOS2_COPY,
1244 0,
1245 2,
1246 32,
1247 FALSE,
1248 0,
1249 complain_overflow_dont,
1250 bfd_elf_generic_reloc,
1251 "R_NIOS2_COPY",
1252 FALSE,
1253 0,
1254 0,
1255 FALSE),
1256
1257 HOWTO (R_NIOS2_GLOB_DAT,
1258 0,
1259 2,
1260 32,
1261 FALSE,
1262 0,
1263 complain_overflow_dont,
1264 bfd_elf_generic_reloc,
1265 "R_NIOS2_GLOB_DAT",
1266 FALSE,
1267 0xffffffff,
1268 0xffffffff,
1269 FALSE),
1270
1271 HOWTO (R_NIOS2_JUMP_SLOT,
1272 0,
1273 2,
1274 32,
1275 FALSE,
1276 0,
1277 complain_overflow_dont,
1278 bfd_elf_generic_reloc,
1279 "R_NIOS2_JUMP_SLOT",
1280 FALSE,
1281 0xffffffff,
1282 0xffffffff,
1283 FALSE),
1284
1285 HOWTO (R_NIOS2_RELATIVE,
1286 0,
1287 2,
1288 32,
1289 FALSE,
1290 0,
1291 complain_overflow_dont,
1292 bfd_elf_generic_reloc,
1293 "R_NIOS2_RELATIVE",
1294 FALSE,
1295 0xffffffff,
1296 0xffffffff,
1297 FALSE),
1298
1299 HOWTO (R_NIOS2_GOTOFF,
1300 0,
1301 2,
1302 32,
1303 FALSE,
1304 0,
1305 complain_overflow_dont,
1306 bfd_elf_generic_reloc,
1307 "R_NIOS2_GOTOFF",
1308 FALSE,
1309 0xffffffff,
1310 0xffffffff,
1311 FALSE),
1312
1313 HOWTO (R_NIOS2_CALL26_NOAT, /* type */
1314 2, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 26, /* bitsize */
1317 FALSE, /* pc_relative */
1318 6, /* bitpos */
1319 complain_overflow_dont, /* complain on overflow */
1320 nios2_elf32_call26_relocate, /* special function */
1321 "R_NIOS2_CALL26_NOAT", /* name */
1322 FALSE, /* partial_inplace */
1323 0xffffffc0, /* src_mask */
1324 0xffffffc0, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_NIOS2_GOT_LO,
1328 0,
1329 2,
1330 16,
1331 FALSE,
1332 16,
1333 complain_overflow_dont,
1334 bfd_elf_generic_reloc,
1335 "R_NIOS2_GOT_LO",
1336 FALSE,
1337 0xffff0000,
1338 0xffff0000,
1339 FALSE),
1340
1341 HOWTO (R_NIOS2_GOT_HA,
1342 0,
1343 2,
1344 16,
1345 FALSE,
1346 16,
1347 complain_overflow_dont,
1348 bfd_elf_generic_reloc,
1349 "R_NIOS2_GOT_HA",
1350 FALSE,
1351 0xffff0000,
1352 0xffff0000,
1353 FALSE),
1354
1355 HOWTO (R_NIOS2_CALL_LO,
1356 0,
1357 2,
1358 16,
1359 FALSE,
1360 16,
1361 complain_overflow_dont,
1362 bfd_elf_generic_reloc,
1363 "R_NIOS2_CALL_LO",
1364 FALSE,
1365 0xffff0000,
1366 0xffff0000,
1367 FALSE),
1368
1369 HOWTO (R_NIOS2_CALL_HA,
1370 0,
1371 2,
1372 16,
1373 FALSE,
1374 16,
1375 complain_overflow_dont,
1376 bfd_elf_generic_reloc,
1377 "R_NIOS2_CALL_HA",
1378 FALSE,
1379 0xffff0000,
1380 0xffff0000,
1381 FALSE),
1382
1383 HOWTO (R_NIOS2_R2_S12,
1384 0,
1385 2,
1386 12,
1387 FALSE,
1388 16,
1389 complain_overflow_signed,
1390 bfd_elf_generic_reloc,
1391 "R_NIOS2_R2_S12",
1392 FALSE,
1393 0x0fff0000,
1394 0x0fff0000,
1395 FALSE),
1396
1397 HOWTO (R_NIOS2_R2_I10_1_PCREL,
1398 1,
1399 1,
1400 10,
1401 TRUE,
1402 6,
1403 complain_overflow_signed,
1404 bfd_elf_generic_reloc, /* FIXME? */
1405 "R_NIOS2_R2_I10_1_PCREL",
1406 FALSE,
1407 0xffc0,
1408 0xffc0,
1409 TRUE),
1410
1411 HOWTO (R_NIOS2_R2_T1I7_1_PCREL,
1412 1,
1413 1,
1414 7,
1415 TRUE,
1416 9,
1417 complain_overflow_signed,
1418 bfd_elf_generic_reloc, /* FIXME? */
1419 "R_NIOS2_R2_T1I7_1_PCREL",
1420 FALSE,
1421 0xfe00,
1422 0xfe00,
1423 TRUE),
1424
1425 HOWTO (R_NIOS2_R2_T1I7_2,
1426 2,
1427 1,
1428 7,
1429 FALSE,
1430 9,
1431 complain_overflow_unsigned,
1432 bfd_elf_generic_reloc,
1433 "R_NIOS2_R2_T1I7_2",
1434 FALSE,
1435 0xfe00,
1436 0xfe00,
1437 FALSE),
1438
1439 HOWTO (R_NIOS2_R2_T2I4,
1440 0,
1441 1,
1442 4,
1443 FALSE,
1444 12,
1445 complain_overflow_unsigned,
1446 bfd_elf_generic_reloc,
1447 "R_NIOS2_R2_T2I4",
1448 FALSE,
1449 0xf000,
1450 0xf000,
1451 FALSE),
1452
1453 HOWTO (R_NIOS2_R2_T2I4_1,
1454 1,
1455 1,
1456 4,
1457 FALSE,
1458 12,
1459 complain_overflow_unsigned,
1460 bfd_elf_generic_reloc,
1461 "R_NIOS2_R2_T2I4_1",
1462 FALSE,
1463 0xf000,
1464 0xf000,
1465 FALSE),
1466
1467 HOWTO (R_NIOS2_R2_T2I4_2,
1468 2,
1469 1,
1470 4,
1471 FALSE,
1472 12,
1473 complain_overflow_unsigned,
1474 bfd_elf_generic_reloc,
1475 "R_NIOS2_R2_T2I4_2",
1476 FALSE,
1477 0xf000,
1478 0xf000,
1479 FALSE),
1480
1481 HOWTO (R_NIOS2_R2_X1I7_2,
1482 2,
1483 1,
1484 7,
1485 FALSE,
1486 6,
1487 complain_overflow_unsigned,
1488 bfd_elf_generic_reloc,
1489 "R_NIOS2_R2_X1I7_2",
1490 FALSE,
1491 0x1fc0,
1492 0x1fc0,
1493 FALSE),
1494
1495 HOWTO (R_NIOS2_R2_X2L5,
1496 0,
1497 1,
1498 5,
1499 FALSE,
1500 6,
1501 complain_overflow_unsigned,
1502 bfd_elf_generic_reloc,
1503 "R_NIOS2_R2_X2L5",
1504 FALSE,
1505 0x07c0,
1506 0x07c0,
1507 FALSE),
1508
1509 HOWTO (R_NIOS2_R2_F1I5_2,
1510 2,
1511 1,
1512 5,
1513 FALSE,
1514 6,
1515 complain_overflow_unsigned,
1516 bfd_elf_generic_reloc,
1517 "R_NIOS2_R2_F1L5_2",
1518 FALSE,
1519 0x07c0,
1520 0x07c0,
1521 FALSE),
1522
1523 HOWTO (R_NIOS2_R2_L5I4X1,
1524 2,
1525 1,
1526 4,
1527 FALSE,
1528 6,
1529 complain_overflow_unsigned,
1530 bfd_elf_generic_reloc,
1531 "R_NIOS2_R2_L5I4X1",
1532 FALSE,
1533 0x03c0,
1534 0x03c0,
1535 FALSE),
1536
1537 HOWTO (R_NIOS2_R2_T1X1I6,
1538 0,
1539 1,
1540 6,
1541 FALSE,
1542 9,
1543 complain_overflow_unsigned,
1544 bfd_elf_generic_reloc,
1545 "R_NIOS2_R2_T1X1I6",
1546 FALSE,
1547 0x7e00,
1548 0x7e00,
1549 FALSE),
1550
1551 HOWTO (R_NIOS2_R2_T1X1I6_2,
1552 2,
1553 2,
1554 6,
1555 FALSE,
1556 9,
1557 complain_overflow_unsigned,
1558 bfd_elf_generic_reloc,
1559 "R_NIOS2_R2_T1I1X6_2",
1560 FALSE,
1561 0x7e00,
1562 0x7e00,
1563 FALSE),
1564
1565 /* Add other relocations here. */
1566 };
1567
1568 static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1];
1569
1570
1571 /* Return true if producing output for a R2 BFD. */
1572 #define BFD_IS_R2(abfd) (bfd_get_mach (abfd) == bfd_mach_nios2r2)
1573
1574 /* Return the howto for relocation RTYPE. */
1575 static reloc_howto_type *
1576 lookup_howto (unsigned int rtype, bfd *abfd)
1577 {
1578 static int initialized = 0;
1579 int i;
1580 /* R2 relocations are a superset of R1, so use that for the lookup
1581 table. */
1582 int r1_howto_tbl_size = (int) ARRAY_SIZE (elf_nios2_r1_howto_table_rel);
1583 int r2_howto_tbl_size = (int) ARRAY_SIZE (elf_nios2_r2_howto_table_rel);
1584
1585 if (!initialized)
1586 {
1587 initialized = 1;
1588 memset (elf_code_to_howto_index, 0xff,
1589 sizeof (elf_code_to_howto_index));
1590 for (i = 0; i < r2_howto_tbl_size; i++)
1591 {
1592 elf_code_to_howto_index[elf_nios2_r2_howto_table_rel[i].type] = i;
1593 if (i < r1_howto_tbl_size)
1594 BFD_ASSERT (elf_nios2_r2_howto_table_rel[i].type
1595 == elf_nios2_r1_howto_table_rel[i].type);
1596 }
1597 }
1598
1599 if (rtype > R_NIOS2_ILLEGAL)
1600 return NULL;
1601 i = elf_code_to_howto_index[rtype];
1602 if (BFD_IS_R2 (abfd))
1603 {
1604 if (i >= r2_howto_tbl_size)
1605 return NULL;
1606 return elf_nios2_r2_howto_table_rel + i;
1607 }
1608 else
1609 {
1610 if (i >= r1_howto_tbl_size)
1611 return NULL;
1612 return elf_nios2_r1_howto_table_rel + i;
1613 }
1614 }
1615
1616 /* Map for converting BFD reloc types to Nios II reloc types. */
1617 struct elf_reloc_map
1618 {
1619 bfd_reloc_code_real_type bfd_val;
1620 enum elf_nios2_reloc_type elf_val;
1621 };
1622
1623 static const struct elf_reloc_map nios2_reloc_map[] =
1624 {
1625 {BFD_RELOC_NONE, R_NIOS2_NONE},
1626 {BFD_RELOC_NIOS2_S16, R_NIOS2_S16},
1627 {BFD_RELOC_NIOS2_U16, R_NIOS2_U16},
1628 {BFD_RELOC_16_PCREL, R_NIOS2_PCREL16},
1629 {BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26},
1630 {BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5},
1631 {BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX},
1632 {BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6},
1633 {BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8},
1634 {BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16},
1635 {BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16},
1636 {BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16},
1637 {BFD_RELOC_32, R_NIOS2_BFD_RELOC_32},
1638 {BFD_RELOC_16, R_NIOS2_BFD_RELOC_16},
1639 {BFD_RELOC_8, R_NIOS2_BFD_RELOC_8},
1640 {BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL},
1641 {BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT},
1642 {BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY},
1643 {BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP},
1644 {BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP},
1645 {BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR},
1646 {BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN},
1647 {BFD_RELOC_NIOS2_GOT16, R_NIOS2_GOT16},
1648 {BFD_RELOC_NIOS2_CALL16, R_NIOS2_CALL16},
1649 {BFD_RELOC_NIOS2_GOTOFF_LO, R_NIOS2_GOTOFF_LO},
1650 {BFD_RELOC_NIOS2_GOTOFF_HA, R_NIOS2_GOTOFF_HA},
1651 {BFD_RELOC_NIOS2_PCREL_LO, R_NIOS2_PCREL_LO},
1652 {BFD_RELOC_NIOS2_PCREL_HA, R_NIOS2_PCREL_HA},
1653 {BFD_RELOC_NIOS2_TLS_GD16, R_NIOS2_TLS_GD16},
1654 {BFD_RELOC_NIOS2_TLS_LDM16, R_NIOS2_TLS_LDM16},
1655 {BFD_RELOC_NIOS2_TLS_LDO16, R_NIOS2_TLS_LDO16},
1656 {BFD_RELOC_NIOS2_TLS_IE16, R_NIOS2_TLS_IE16},
1657 {BFD_RELOC_NIOS2_TLS_LE16, R_NIOS2_TLS_LE16},
1658 {BFD_RELOC_NIOS2_TLS_DTPMOD, R_NIOS2_TLS_DTPMOD},
1659 {BFD_RELOC_NIOS2_TLS_DTPREL, R_NIOS2_TLS_DTPREL},
1660 {BFD_RELOC_NIOS2_TLS_TPREL, R_NIOS2_TLS_TPREL},
1661 {BFD_RELOC_NIOS2_COPY, R_NIOS2_COPY},
1662 {BFD_RELOC_NIOS2_GLOB_DAT, R_NIOS2_GLOB_DAT},
1663 {BFD_RELOC_NIOS2_JUMP_SLOT, R_NIOS2_JUMP_SLOT},
1664 {BFD_RELOC_NIOS2_RELATIVE, R_NIOS2_RELATIVE},
1665 {BFD_RELOC_NIOS2_GOTOFF, R_NIOS2_GOTOFF},
1666 {BFD_RELOC_NIOS2_CALL26_NOAT, R_NIOS2_CALL26_NOAT},
1667 {BFD_RELOC_NIOS2_GOT_LO, R_NIOS2_GOT_LO},
1668 {BFD_RELOC_NIOS2_GOT_HA, R_NIOS2_GOT_HA},
1669 {BFD_RELOC_NIOS2_CALL_LO, R_NIOS2_CALL_LO},
1670 {BFD_RELOC_NIOS2_CALL_HA, R_NIOS2_CALL_HA},
1671 {BFD_RELOC_NIOS2_R2_S12, R_NIOS2_R2_S12},
1672 {BFD_RELOC_NIOS2_R2_I10_1_PCREL, R_NIOS2_R2_I10_1_PCREL},
1673 {BFD_RELOC_NIOS2_R2_T1I7_1_PCREL, R_NIOS2_R2_T1I7_1_PCREL},
1674 {BFD_RELOC_NIOS2_R2_T1I7_2, R_NIOS2_R2_T1I7_2},
1675 {BFD_RELOC_NIOS2_R2_T2I4, R_NIOS2_R2_T2I4},
1676 {BFD_RELOC_NIOS2_R2_T2I4_1, R_NIOS2_R2_T2I4_1},
1677 {BFD_RELOC_NIOS2_R2_T2I4_2, R_NIOS2_R2_T2I4_2},
1678 {BFD_RELOC_NIOS2_R2_X1I7_2, R_NIOS2_R2_X1I7_2},
1679 {BFD_RELOC_NIOS2_R2_X2L5, R_NIOS2_R2_X2L5},
1680 {BFD_RELOC_NIOS2_R2_F1I5_2, R_NIOS2_R2_F1I5_2},
1681 {BFD_RELOC_NIOS2_R2_L5I4X1, R_NIOS2_R2_L5I4X1},
1682 {BFD_RELOC_NIOS2_R2_T1X1I6, R_NIOS2_R2_T1X1I6},
1683 {BFD_RELOC_NIOS2_R2_T1X1I6_2, R_NIOS2_R2_T1X1I6_2},
1684 };
1685
1686 enum elf32_nios2_stub_type
1687 {
1688 nios2_stub_call26_before,
1689 nios2_stub_call26_after,
1690 nios2_stub_none
1691 };
1692
1693 struct elf32_nios2_stub_hash_entry
1694 {
1695 /* Base hash table entry structure. */
1696 struct bfd_hash_entry bh_root;
1697
1698 /* The stub section. */
1699 asection *stub_sec;
1700
1701 /* Offset within stub_sec of the beginning of this stub. */
1702 bfd_vma stub_offset;
1703
1704 /* Given the symbol's value and its section we can determine its final
1705 value when building the stubs (so the stub knows where to jump. */
1706 bfd_vma target_value;
1707 asection *target_section;
1708
1709 enum elf32_nios2_stub_type stub_type;
1710
1711 /* The symbol table entry, if any, that this was derived from. */
1712 struct elf32_nios2_link_hash_entry *hh;
1713
1714 /* And the reloc addend that this was derived from. */
1715 bfd_vma addend;
1716
1717 /* Where this stub is being called from, or, in the case of combined
1718 stub sections, the first input section in the group. */
1719 asection *id_sec;
1720 };
1721
1722 #define nios2_stub_hash_entry(ent) \
1723 ((struct elf32_nios2_stub_hash_entry *)(ent))
1724
1725 #define nios2_stub_hash_lookup(table, string, create, copy) \
1726 ((struct elf32_nios2_stub_hash_entry *) \
1727 bfd_hash_lookup ((table), (string), (create), (copy)))
1728
1729
1730 /* Nios II ELF linker hash entry. */
1731
1732 struct elf32_nios2_link_hash_entry
1733 {
1734 struct elf_link_hash_entry root;
1735
1736 /* A pointer to the most recently used stub hash entry against this
1737 symbol. */
1738 struct elf32_nios2_stub_hash_entry *hsh_cache;
1739
1740 /* Track dynamic relocs copied for this symbol. */
1741 struct elf_dyn_relocs *dyn_relocs;
1742
1743 #define GOT_UNKNOWN 0
1744 #define GOT_NORMAL 1
1745 #define GOT_TLS_GD 2
1746 #define GOT_TLS_IE 4
1747 unsigned char tls_type;
1748
1749 /* We need to detect and take special action for symbols which are only
1750 referenced with %call() and not with %got(). Such symbols do not need
1751 a dynamic GOT reloc in shared objects, only a dynamic PLT reloc. Lazy
1752 linking will not work if the dynamic GOT reloc exists.
1753 To check for this condition efficiently, we compare got_types_used against
1754 CALL_USED, meaning
1755 (got_types_used & (GOT_USED | CALL_USED)) == CALL_USED.
1756 */
1757 #define GOT_USED 1
1758 #define CALL_USED 2
1759 unsigned char got_types_used;
1760 };
1761
1762 #define elf32_nios2_hash_entry(ent) \
1763 ((struct elf32_nios2_link_hash_entry *) (ent))
1764
1765 /* Get the Nios II elf linker hash table from a link_info structure. */
1766 #define elf32_nios2_hash_table(info) \
1767 ((struct elf32_nios2_link_hash_table *) ((info)->hash))
1768
1769 /* Nios II ELF linker hash table. */
1770 struct elf32_nios2_link_hash_table
1771 {
1772 /* The main hash table. */
1773 struct elf_link_hash_table root;
1774
1775 /* The stub hash table. */
1776 struct bfd_hash_table bstab;
1777
1778 /* Linker stub bfd. */
1779 bfd *stub_bfd;
1780
1781 /* Linker call-backs. */
1782 asection * (*add_stub_section) (const char *, asection *, bfd_boolean);
1783 void (*layout_sections_again) (void);
1784
1785 /* Array to keep track of which stub sections have been created, and
1786 information on stub grouping. */
1787 struct map_stub
1788 {
1789 /* These are the section to which stubs in the group will be
1790 attached. */
1791 asection *first_sec, *last_sec;
1792 /* The stub sections. There might be stubs inserted either before
1793 or after the real section.*/
1794 asection *first_stub_sec, *last_stub_sec;
1795 } *stub_group;
1796
1797 /* Assorted information used by nios2_elf32_size_stubs. */
1798 unsigned int bfd_count;
1799 unsigned int top_index;
1800 asection **input_list;
1801 Elf_Internal_Sym **all_local_syms;
1802
1803 /* Short-cuts to get to dynamic linker sections. */
1804 asection *sbss;
1805
1806 /* GOT pointer symbol _gp_got. */
1807 struct elf_link_hash_entry *h_gp_got;
1808
1809 union {
1810 bfd_signed_vma refcount;
1811 bfd_vma offset;
1812 } tls_ldm_got;
1813
1814 /* Small local sym cache. */
1815 struct sym_cache sym_cache;
1816
1817 bfd_vma res_n_size;
1818 };
1819
1820 struct nios2_elf32_obj_tdata
1821 {
1822 struct elf_obj_tdata root;
1823
1824 /* tls_type for each local got entry. */
1825 char *local_got_tls_type;
1826
1827 /* TRUE if TLS GD relocs have been seen for this object. */
1828 bfd_boolean has_tlsgd;
1829 };
1830
1831 #define elf32_nios2_tdata(abfd) \
1832 ((struct nios2_elf32_obj_tdata *) (abfd)->tdata.any)
1833
1834 #define elf32_nios2_local_got_tls_type(abfd) \
1835 (elf32_nios2_tdata (abfd)->local_got_tls_type)
1836
1837 /* The name of the dynamic interpreter. This is put in the .interp
1838 section. */
1839 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1840
1841 /* PLT implementation for position-dependent code. */
1842 static const bfd_vma nios2_plt_entry[] = { /* .PLTn: */
1843 0x03c00034, /* movhi r15, %hiadj(plt_got_slot_address) */
1844 0x7bc00017, /* ldw r15, %lo(plt_got_slot_address)(r15) */
1845 0x7800683a /* jmp r15 */
1846 };
1847
1848 static const bfd_vma nios2_plt0_entry[] = { /* .PLTresolve */
1849 0x03800034, /* movhi r14, %hiadj(res_0) */
1850 0x73800004, /* addi r14, r14, %lo(res_0) */
1851 0x7b9fc83a, /* sub r15, r15, r14 */
1852 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
1853 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
1854 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
1855 0x6800683a /* jmp r13 */
1856 };
1857
1858 /* PLT implementation for position-independent code. */
1859 static const bfd_vma nios2_so_plt_entry[] = { /* .PLTn */
1860 0x03c00034, /* movhi r15, %hiadj(index * 4) */
1861 0x7bc00004, /* addi r15, r15, %lo(index * 4) */
1862 0x00000006 /* br .PLTresolve */
1863 };
1864
1865 static const bfd_vma nios2_so_plt0_entry[] = { /* .PLTresolve */
1866 0x001ce03a, /* nextpc r14 */
1867 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
1868 0x6b9b883a, /* add r13, r13, r14 */
1869 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
1870 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
1871 0x6800683a /* jmp r13 */
1872 };
1873
1874 /* CALL26 stub. */
1875 static const bfd_vma nios2_call26_stub_entry[] = {
1876 0x00400034, /* orhi at, r0, %hiadj(dest) */
1877 0x08400004, /* addi at, at, %lo(dest) */
1878 0x0800683a /* jmp at */
1879 };
1880
1881 /* Install 16-bit immediate value VALUE at offset OFFSET into section SEC. */
1882 static void
1883 nios2_elf32_install_imm16 (asection *sec, bfd_vma offset, bfd_vma value)
1884 {
1885 bfd_vma word = bfd_get_32 (sec->owner, sec->contents + offset);
1886
1887 BFD_ASSERT (value <= 0xffff || ((bfd_signed_vma) value) >= -0xffff);
1888
1889 bfd_put_32 (sec->owner, word | ((value & 0xffff) << 6),
1890 sec->contents + offset);
1891 }
1892
1893 /* Install COUNT 32-bit values DATA starting at offset OFFSET into
1894 section SEC. */
1895 static void
1896 nios2_elf32_install_data (asection *sec, const bfd_vma *data, bfd_vma offset,
1897 int count)
1898 {
1899 while (count--)
1900 {
1901 bfd_put_32 (sec->owner, *data, sec->contents + offset);
1902 offset += 4;
1903 ++data;
1904 }
1905 }
1906
1907 /* The usual way of loading a 32-bit constant into a Nios II register is to
1908 load the high 16 bits in one instruction and then add the low 16 bits with
1909 a signed add. This means that the high halfword needs to be adjusted to
1910 compensate for the sign bit of the low halfword. This function returns the
1911 adjusted high halfword for a given 32-bit constant. */
1912 static
1913 bfd_vma hiadj (bfd_vma symbol_value)
1914 {
1915 return ((symbol_value + 0x8000) >> 16) & 0xffff;
1916 }
1917
1918 /* Implement elf_backend_grok_prstatus:
1919 Support for core dump NOTE sections. */
1920 static bfd_boolean
1921 nios2_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1922 {
1923 int offset;
1924 size_t size;
1925
1926 switch (note->descsz)
1927 {
1928 default:
1929 return FALSE;
1930
1931 case 212: /* Linux/Nios II */
1932 /* pr_cursig */
1933 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1934
1935 /* pr_pid */
1936 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24);
1937
1938 /* pr_reg */
1939 offset = 72;
1940 size = 136;
1941
1942 break;
1943 }
1944
1945 /* Make a ".reg/999" section. */
1946 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1947 size, note->descpos + offset);
1948 }
1949
1950 /* Implement elf_backend_grok_psinfo. */
1951 static bfd_boolean
1952 nios2_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1953 {
1954 switch (note->descsz)
1955 {
1956 default:
1957 return FALSE;
1958
1959 case 124: /* Linux/Nios II elf_prpsinfo */
1960 elf_tdata (abfd)->core->program
1961 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1962 elf_tdata (abfd)->core->command
1963 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1964 }
1965
1966 /* Note that for some reason, a spurious space is tacked
1967 onto the end of the args in some (at least one anyway)
1968 implementations, so strip it off if it exists. */
1969
1970 {
1971 char *command = elf_tdata (abfd)->core->command;
1972 int n = strlen (command);
1973
1974 if (0 < n && command[n - 1] == ' ')
1975 command[n - 1] = '\0';
1976 }
1977
1978 return TRUE;
1979 }
1980
1981 /* Assorted hash table functions. */
1982
1983 /* Initialize an entry in the stub hash table. */
1984 static struct bfd_hash_entry *
1985 stub_hash_newfunc (struct bfd_hash_entry *entry,
1986 struct bfd_hash_table *table,
1987 const char *string)
1988 {
1989 /* Allocate the structure if it has not already been allocated by a
1990 subclass. */
1991 if (entry == NULL)
1992 {
1993 entry = bfd_hash_allocate (table,
1994 sizeof (struct elf32_nios2_stub_hash_entry));
1995 if (entry == NULL)
1996 return entry;
1997 }
1998
1999 /* Call the allocation method of the superclass. */
2000 entry = bfd_hash_newfunc (entry, table, string);
2001 if (entry != NULL)
2002 {
2003 struct elf32_nios2_stub_hash_entry *hsh;
2004
2005 /* Initialize the local fields. */
2006 hsh = (struct elf32_nios2_stub_hash_entry *) entry;
2007 hsh->stub_sec = NULL;
2008 hsh->stub_offset = 0;
2009 hsh->target_value = 0;
2010 hsh->target_section = NULL;
2011 hsh->stub_type = nios2_stub_none;
2012 hsh->hh = NULL;
2013 hsh->id_sec = NULL;
2014 }
2015
2016 return entry;
2017 }
2018
2019 /* Create an entry in a Nios II ELF linker hash table. */
2020 static struct bfd_hash_entry *
2021 link_hash_newfunc (struct bfd_hash_entry *entry,
2022 struct bfd_hash_table *table, const char *string)
2023 {
2024 /* Allocate the structure if it has not already been allocated by a
2025 subclass. */
2026 if (entry == NULL)
2027 {
2028 entry = bfd_hash_allocate (table,
2029 sizeof (struct elf32_nios2_link_hash_entry));
2030 if (entry == NULL)
2031 return entry;
2032 }
2033
2034 /* Call the allocation method of the superclass. */
2035 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
2036 if (entry)
2037 {
2038 struct elf32_nios2_link_hash_entry *eh;
2039
2040 eh = (struct elf32_nios2_link_hash_entry *) entry;
2041 eh->hsh_cache = NULL;
2042 eh->dyn_relocs = NULL;
2043 eh->tls_type = GOT_UNKNOWN;
2044 eh->got_types_used = 0;
2045 }
2046
2047 return entry;
2048 }
2049
2050 /* Section name for stubs is the associated section name plus this
2051 string. */
2052 #define STUB_SUFFIX ".stub"
2053
2054 /* Build a name for an entry in the stub hash table. */
2055 static char *
2056 nios2_stub_name (const asection *input_section,
2057 const asection *sym_sec,
2058 const struct elf32_nios2_link_hash_entry *hh,
2059 const Elf_Internal_Rela *rel,
2060 enum elf32_nios2_stub_type stub_type)
2061 {
2062 char *stub_name;
2063 bfd_size_type len;
2064 char stubpos = (stub_type == nios2_stub_call26_before) ? 'b' : 'a';
2065
2066 if (hh)
2067 {
2068 len = 8 + 1 + 1 + 1+ strlen (hh->root.root.root.string) + 1 + 8 + 1;
2069 stub_name = bfd_malloc (len);
2070 if (stub_name != NULL)
2071 {
2072 sprintf (stub_name, "%08x_%c_%s+%x",
2073 input_section->id & 0xffffffff,
2074 stubpos,
2075 hh->root.root.root.string,
2076 (int) rel->r_addend & 0xffffffff);
2077 }
2078 }
2079 else
2080 {
2081 len = 8 + 1 + 1 + 1+ 8 + 1 + 8 + 1 + 8 + 1;
2082 stub_name = bfd_malloc (len);
2083 if (stub_name != NULL)
2084 {
2085 sprintf (stub_name, "%08x_%c_%x:%x+%x",
2086 input_section->id & 0xffffffff,
2087 stubpos,
2088 sym_sec->id & 0xffffffff,
2089 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2090 (int) rel->r_addend & 0xffffffff);
2091 }
2092 }
2093 return stub_name;
2094 }
2095
2096 /* Look up an entry in the stub hash. Stub entries are cached because
2097 creating the stub name takes a bit of time. */
2098 static struct elf32_nios2_stub_hash_entry *
2099 nios2_get_stub_entry (const asection *input_section,
2100 const asection *sym_sec,
2101 struct elf32_nios2_link_hash_entry *hh,
2102 const Elf_Internal_Rela *rel,
2103 struct elf32_nios2_link_hash_table *htab,
2104 enum elf32_nios2_stub_type stub_type)
2105 {
2106 struct elf32_nios2_stub_hash_entry *hsh;
2107 const asection *id_sec;
2108
2109 /* If this input section is part of a group of sections sharing one
2110 stub section, then use the id of the first/last section in the group,
2111 depending on the stub section placement relative to the group.
2112 Stub names need to include a section id, as there may well be
2113 more than one stub used to reach say, printf, and we need to
2114 distinguish between them. */
2115 if (stub_type == nios2_stub_call26_before)
2116 id_sec = htab->stub_group[input_section->id].first_sec;
2117 else
2118 id_sec = htab->stub_group[input_section->id].last_sec;
2119
2120 if (hh != NULL && hh->hsh_cache != NULL
2121 && hh->hsh_cache->hh == hh
2122 && hh->hsh_cache->id_sec == id_sec
2123 && hh->hsh_cache->stub_type == stub_type)
2124 {
2125 hsh = hh->hsh_cache;
2126 }
2127 else
2128 {
2129 char *stub_name;
2130
2131 stub_name = nios2_stub_name (id_sec, sym_sec, hh, rel, stub_type);
2132 if (stub_name == NULL)
2133 return NULL;
2134
2135 hsh = nios2_stub_hash_lookup (&htab->bstab,
2136 stub_name, FALSE, FALSE);
2137
2138 if (hh != NULL)
2139 hh->hsh_cache = hsh;
2140
2141 free (stub_name);
2142 }
2143
2144 return hsh;
2145 }
2146
2147 /* Add a new stub entry to the stub hash. Not all fields of the new
2148 stub entry are initialised. */
2149 static struct elf32_nios2_stub_hash_entry *
2150 nios2_add_stub (const char *stub_name,
2151 asection *section,
2152 struct elf32_nios2_link_hash_table *htab,
2153 enum elf32_nios2_stub_type stub_type)
2154 {
2155 asection *link_sec;
2156 asection *stub_sec;
2157 asection **secptr, **linkptr;
2158 struct elf32_nios2_stub_hash_entry *hsh;
2159 bfd_boolean afterp;
2160
2161 if (stub_type == nios2_stub_call26_before)
2162 {
2163 link_sec = htab->stub_group[section->id].first_sec;
2164 secptr = &(htab->stub_group[section->id].first_stub_sec);
2165 linkptr = &(htab->stub_group[link_sec->id].first_stub_sec);
2166 afterp = FALSE;
2167 }
2168 else
2169 {
2170 link_sec = htab->stub_group[section->id].last_sec;
2171 secptr = &(htab->stub_group[section->id].last_stub_sec);
2172 linkptr = &(htab->stub_group[link_sec->id].last_stub_sec);
2173 afterp = TRUE;
2174 }
2175 stub_sec = *secptr;
2176 if (stub_sec == NULL)
2177 {
2178 stub_sec = *linkptr;
2179 if (stub_sec == NULL)
2180 {
2181 size_t namelen;
2182 bfd_size_type len;
2183 char *s_name;
2184
2185 namelen = strlen (link_sec->name);
2186 len = namelen + sizeof (STUB_SUFFIX);
2187 s_name = bfd_alloc (htab->stub_bfd, len);
2188 if (s_name == NULL)
2189 return NULL;
2190
2191 memcpy (s_name, link_sec->name, namelen);
2192 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2193
2194 stub_sec = (*htab->add_stub_section) (s_name, link_sec, afterp);
2195 if (stub_sec == NULL)
2196 return NULL;
2197 *linkptr = stub_sec;
2198 }
2199 *secptr = stub_sec;
2200 }
2201
2202 /* Enter this entry into the linker stub hash table. */
2203 hsh = nios2_stub_hash_lookup (&htab->bstab, stub_name,
2204 TRUE, FALSE);
2205 if (hsh == NULL)
2206 {
2207 /* xgettext:c-format */
2208 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
2209 section->owner,
2210 stub_name);
2211 return NULL;
2212 }
2213
2214 hsh->stub_sec = stub_sec;
2215 hsh->stub_offset = 0;
2216 hsh->id_sec = link_sec;
2217 return hsh;
2218 }
2219
2220 /* Set up various things so that we can make a list of input sections
2221 for each output section included in the link. Returns -1 on error,
2222 0 when no stubs will be needed, and 1 on success. */
2223 int
2224 nios2_elf32_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2225 {
2226 bfd *input_bfd;
2227 unsigned int bfd_count;
2228 unsigned int top_id, top_index;
2229 asection *section;
2230 asection **input_list, **list;
2231 bfd_size_type amt;
2232 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2233
2234 /* Count the number of input BFDs and find the top input section id. */
2235 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2236 input_bfd != NULL;
2237 input_bfd = input_bfd->link.next)
2238 {
2239 bfd_count += 1;
2240 for (section = input_bfd->sections;
2241 section != NULL;
2242 section = section->next)
2243 {
2244 if (top_id < section->id)
2245 top_id = section->id;
2246 }
2247 }
2248
2249 htab->bfd_count = bfd_count;
2250
2251 amt = sizeof (struct map_stub) * (top_id + 1);
2252 htab->stub_group = bfd_zmalloc (amt);
2253 if (htab->stub_group == NULL)
2254 return -1;
2255
2256 /* We can't use output_bfd->section_count here to find the top output
2257 section index as some sections may have been removed, and
2258 strip_excluded_output_sections doesn't renumber the indices. */
2259 for (section = output_bfd->sections, top_index = 0;
2260 section != NULL;
2261 section = section->next)
2262 {
2263 if (top_index < section->index)
2264 top_index = section->index;
2265 }
2266
2267 htab->top_index = top_index;
2268 amt = sizeof (asection *) * (top_index + 1);
2269 input_list = bfd_malloc (amt);
2270 htab->input_list = input_list;
2271 if (input_list == NULL)
2272 return -1;
2273
2274 /* For sections we aren't interested in, mark their entries with a
2275 value we can check later. */
2276 list = input_list + top_index;
2277 do
2278 *list = bfd_abs_section_ptr;
2279 while (list-- != input_list);
2280
2281 for (section = output_bfd->sections;
2282 section != NULL;
2283 section = section->next)
2284 {
2285 /* FIXME: This is a bit of hack. Currently our .ctors and .dtors
2286 * have PC relative relocs in them but no code flag set. */
2287 if (((section->flags & SEC_CODE) != 0) ||
2288 strcmp(".ctors", section->name) ||
2289 strcmp(".dtors", section->name))
2290 input_list[section->index] = NULL;
2291 }
2292
2293 return 1;
2294 }
2295
2296 /* The linker repeatedly calls this function for each input section,
2297 in the order that input sections are linked into output sections.
2298 Build lists of input sections to determine groupings between which
2299 we may insert linker stubs. */
2300 void
2301 nios2_elf32_next_input_section (struct bfd_link_info *info, asection *isec)
2302 {
2303 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2304
2305 if (isec->output_section->index <= htab->top_index)
2306 {
2307 asection **list = htab->input_list + isec->output_section->index;
2308 if (*list != bfd_abs_section_ptr)
2309 {
2310 /* Steal the last_sec pointer for our list.
2311 This happens to make the list in reverse order,
2312 which is what we want. */
2313 htab->stub_group[isec->id].last_sec = *list;
2314 *list = isec;
2315 }
2316 }
2317 }
2318
2319 /* Segment mask for CALL26 relocation relaxation. */
2320 #define CALL26_SEGMENT(x) ((x) & 0xf0000000)
2321
2322 /* Fudge factor for approximate maximum size of all stubs that might
2323 be inserted by the linker. This does not actually limit the number
2324 of stubs that might be inserted, and only affects strategy for grouping
2325 and placement of stubs. Perhaps this should be computed based on number
2326 of relocations seen, or be specifiable on the command line. */
2327 #define MAX_STUB_SECTION_SIZE 0xffff
2328
2329 /* See whether we can group stub sections together. Grouping stub
2330 sections may result in fewer stubs. More importantly, we need to
2331 put all .init* and .fini* stubs at the end of the .init or
2332 .fini output sections respectively, because glibc splits the
2333 _init and _fini functions into multiple parts. Putting a stub in
2334 the middle of a function is not a good idea.
2335 Rather than computing groups of a maximum fixed size, for Nios II
2336 CALL26 relaxation it makes more sense to compute the groups based on
2337 sections that fit within a 256MB address segment. Also do not allow
2338 a group to span more than one output section, since different output
2339 sections might correspond to different memory banks on a bare-metal
2340 target, etc. */
2341 static void
2342 group_sections (struct elf32_nios2_link_hash_table *htab)
2343 {
2344 asection **list = htab->input_list + htab->top_index;
2345 do
2346 {
2347 /* The list is in reverse order so we'll search backwards looking
2348 for the first section that begins in the same memory segment,
2349 marking sections along the way to point at the tail for this
2350 group. */
2351 asection *tail = *list;
2352 if (tail == bfd_abs_section_ptr)
2353 continue;
2354 while (tail != NULL)
2355 {
2356 bfd_vma start = tail->output_section->vma + tail->output_offset;
2357 bfd_vma end = start + tail->size;
2358 bfd_vma segment = CALL26_SEGMENT (end);
2359 asection *prev;
2360
2361 if (segment != CALL26_SEGMENT (start)
2362 || segment != CALL26_SEGMENT (end + MAX_STUB_SECTION_SIZE))
2363 /* This section spans more than one memory segment, or is
2364 close enough to the end of the segment that adding stub
2365 sections before it might cause it to move so that it
2366 spans memory segments, or that stubs added at the end of
2367 this group might overflow into the next memory segment.
2368 Put it in a group by itself to localize the effects. */
2369 {
2370 prev = htab->stub_group[tail->id].last_sec;
2371 htab->stub_group[tail->id].last_sec = tail;
2372 htab->stub_group[tail->id].first_sec = tail;
2373 }
2374 else
2375 /* Collect more sections for this group. */
2376 {
2377 asection *curr, *first;
2378 for (curr = tail; ; curr = prev)
2379 {
2380 prev = htab->stub_group[curr->id].last_sec;
2381 if (!prev
2382 || tail->output_section != prev->output_section
2383 || (CALL26_SEGMENT (prev->output_section->vma
2384 + prev->output_offset)
2385 != segment))
2386 break;
2387 }
2388 first = curr;
2389 for (curr = tail; ; curr = prev)
2390 {
2391 prev = htab->stub_group[curr->id].last_sec;
2392 htab->stub_group[curr->id].last_sec = tail;
2393 htab->stub_group[curr->id].first_sec = first;
2394 if (curr == first)
2395 break;
2396 }
2397 }
2398
2399 /* Reset tail for the next group. */
2400 tail = prev;
2401 }
2402 }
2403 while (list-- != htab->input_list);
2404 free (htab->input_list);
2405 }
2406
2407 /* Determine the type of stub needed, if any, for a call. */
2408 static enum elf32_nios2_stub_type
2409 nios2_type_of_stub (asection *input_sec,
2410 const Elf_Internal_Rela *rel,
2411 struct elf32_nios2_link_hash_entry *hh,
2412 struct elf32_nios2_link_hash_table *htab,
2413 bfd_vma destination,
2414 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2415 {
2416 bfd_vma location, segment, start, end;
2417 asection *s0, *s1, *s;
2418
2419 if (hh != NULL &&
2420 !(hh->root.root.type == bfd_link_hash_defined
2421 || hh->root.root.type == bfd_link_hash_defweak))
2422 return nios2_stub_none;
2423
2424 /* Determine where the call point is. */
2425 location = (input_sec->output_section->vma
2426 + input_sec->output_offset + rel->r_offset);
2427 segment = CALL26_SEGMENT (location);
2428
2429 /* Nios II CALL and JMPI instructions can transfer control to addresses
2430 within the same 256MB segment as the PC. */
2431 if (segment == CALL26_SEGMENT (destination))
2432 return nios2_stub_none;
2433
2434 /* Find the start and end addresses of the stub group. Also account for
2435 any already-created stub sections for this group. Note that for stubs
2436 in the end section, only the first instruction of the last stub
2437 (12 bytes long) needs to be within range. */
2438 s0 = htab->stub_group[input_sec->id].first_sec;
2439 s = htab->stub_group[s0->id].first_stub_sec;
2440 if (s != NULL && s->size > 0)
2441 start = s->output_section->vma + s->output_offset;
2442 else
2443 start = s0->output_section->vma + s0->output_offset;
2444
2445 s1 = htab->stub_group[input_sec->id].last_sec;
2446 s = htab->stub_group[s1->id].last_stub_sec;
2447 if (s != NULL && s->size > 0)
2448 end = s->output_section->vma + s->output_offset + s->size - 8;
2449 else
2450 end = s1->output_section->vma + s1->output_offset + s1->size;
2451
2452 BFD_ASSERT (start < end);
2453 BFD_ASSERT (start <= location);
2454 BFD_ASSERT (location < end);
2455
2456 /* Put stubs at the end of the group unless that is not a valid
2457 location and the beginning of the group is. It might be that
2458 neither the beginning nor end works if we have an input section
2459 so large that it spans multiple segment boundaries. In that
2460 case, punt; the end result will be a relocation overflow error no
2461 matter what we do here.
2462
2463 Note that adding stubs pushes up the addresses of all subsequent
2464 sections, so that stubs allocated on one pass through the
2465 relaxation loop may not be valid on the next pass. (E.g., we may
2466 allocate a stub at the beginning of the section on one pass and
2467 find that the call site has been bumped into the next memory
2468 segment on the next pass.) The important thing to note is that
2469 we never try to reclaim the space allocated to such unused stubs,
2470 so code size and section addresses can only increase with each
2471 iteration. Accounting for the start and end addresses of the
2472 already-created stub sections ensures that when the algorithm
2473 converges, it converges accurately, with the entire appropriate
2474 stub section accessible from the call site and not just the
2475 address at the start or end of the stub group proper. */
2476
2477 if (segment == CALL26_SEGMENT (end))
2478 return nios2_stub_call26_after;
2479 else if (segment == CALL26_SEGMENT (start))
2480 return nios2_stub_call26_before;
2481 else
2482 /* Perhaps this should be a dedicated error code. */
2483 return nios2_stub_none;
2484 }
2485
2486 static bfd_boolean
2487 nios2_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
2488 {
2489 struct elf32_nios2_stub_hash_entry *hsh
2490 = (struct elf32_nios2_stub_hash_entry *) gen_entry;
2491 asection *stub_sec = hsh->stub_sec;
2492 bfd_vma sym_value;
2493
2494 /* Make a note of the offset within the stubs for this entry. */
2495 hsh->stub_offset = stub_sec->size;
2496
2497 switch (hsh->stub_type)
2498 {
2499 case nios2_stub_call26_before:
2500 case nios2_stub_call26_after:
2501 /* A call26 stub looks like:
2502 orhi at, %hiadj(dest)
2503 addi at, at, %lo(dest)
2504 jmp at
2505 Note that call/jmpi instructions can't be used in PIC code
2506 so there is no reason for the stub to be PIC, either. */
2507 sym_value = (hsh->target_value
2508 + hsh->target_section->output_offset
2509 + hsh->target_section->output_section->vma
2510 + hsh->addend);
2511
2512 nios2_elf32_install_data (stub_sec, nios2_call26_stub_entry,
2513 hsh->stub_offset, 3);
2514 nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset,
2515 hiadj (sym_value));
2516 nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset + 4,
2517 (sym_value & 0xffff));
2518 stub_sec->size += 12;
2519 break;
2520 default:
2521 BFD_FAIL ();
2522 return FALSE;
2523 }
2524
2525 return TRUE;
2526 }
2527
2528 /* As above, but don't actually build the stub. Just bump offset so
2529 we know stub section sizes. */
2530 static bfd_boolean
2531 nios2_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
2532 {
2533 struct elf32_nios2_stub_hash_entry *hsh
2534 = (struct elf32_nios2_stub_hash_entry *) gen_entry;
2535
2536 switch (hsh->stub_type)
2537 {
2538 case nios2_stub_call26_before:
2539 case nios2_stub_call26_after:
2540 hsh->stub_sec->size += 12;
2541 break;
2542 default:
2543 BFD_FAIL ();
2544 return FALSE;
2545 }
2546 return TRUE;
2547 }
2548
2549 /* Read in all local syms for all input bfds.
2550 Returns -1 on error, 0 otherwise. */
2551
2552 static int
2553 get_local_syms (bfd *output_bfd ATTRIBUTE_UNUSED, bfd *input_bfd,
2554 struct bfd_link_info *info)
2555 {
2556 unsigned int bfd_indx;
2557 Elf_Internal_Sym *local_syms, **all_local_syms;
2558 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2559
2560 /* We want to read in symbol extension records only once. To do this
2561 we need to read in the local symbols in parallel and save them for
2562 later use; so hold pointers to the local symbols in an array. */
2563 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2564 all_local_syms = bfd_zmalloc (amt);
2565 htab->all_local_syms = all_local_syms;
2566 if (all_local_syms == NULL)
2567 return -1;
2568
2569 /* Walk over all the input BFDs, swapping in local symbols. */
2570 for (bfd_indx = 0;
2571 input_bfd != NULL;
2572 input_bfd = input_bfd->link.next, bfd_indx++)
2573 {
2574 Elf_Internal_Shdr *symtab_hdr;
2575
2576 /* We'll need the symbol table in a second. */
2577 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2578 if (symtab_hdr->sh_info == 0)
2579 continue;
2580
2581 /* We need an array of the local symbols attached to the input bfd. */
2582 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2583 if (local_syms == NULL)
2584 {
2585 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2586 symtab_hdr->sh_info, 0,
2587 NULL, NULL, NULL);
2588 /* Cache them for elf_link_input_bfd. */
2589 symtab_hdr->contents = (unsigned char *) local_syms;
2590 }
2591 if (local_syms == NULL)
2592 return -1;
2593
2594 all_local_syms[bfd_indx] = local_syms;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /* Determine and set the size of the stub section for a final link. */
2601 bfd_boolean
2602 nios2_elf32_size_stubs (bfd *output_bfd, bfd *stub_bfd,
2603 struct bfd_link_info *info,
2604 asection *(*add_stub_section) (const char *,
2605 asection *, bfd_boolean),
2606 void (*layout_sections_again) (void))
2607 {
2608 bfd_boolean stub_changed = FALSE;
2609 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2610
2611 /* Stash our params away. */
2612 htab->stub_bfd = stub_bfd;
2613 htab->add_stub_section = add_stub_section;
2614 htab->layout_sections_again = layout_sections_again;
2615
2616 /* FIXME: We only compute the section groups once. This could cause
2617 problems if adding a large stub section causes following sections,
2618 or parts of them, to move into another segment. However, this seems
2619 to be consistent with the way other back ends handle this.... */
2620 group_sections (htab);
2621
2622 if (get_local_syms (output_bfd, info->input_bfds, info))
2623 {
2624 if (htab->all_local_syms)
2625 goto error_ret_free_local;
2626 return FALSE;
2627 }
2628
2629 while (1)
2630 {
2631 bfd *input_bfd;
2632 unsigned int bfd_indx;
2633 asection *stub_sec;
2634
2635 for (input_bfd = info->input_bfds, bfd_indx = 0;
2636 input_bfd != NULL;
2637 input_bfd = input_bfd->link.next, bfd_indx++)
2638 {
2639 Elf_Internal_Shdr *symtab_hdr;
2640 asection *section;
2641 Elf_Internal_Sym *local_syms;
2642
2643 /* We'll need the symbol table in a second. */
2644 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2645 if (symtab_hdr->sh_info == 0)
2646 continue;
2647
2648 local_syms = htab->all_local_syms[bfd_indx];
2649
2650 /* Walk over each section attached to the input bfd. */
2651 for (section = input_bfd->sections;
2652 section != NULL;
2653 section = section->next)
2654 {
2655 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2656
2657 /* If there aren't any relocs, then there's nothing more
2658 to do. */
2659 if ((section->flags & SEC_RELOC) == 0
2660 || section->reloc_count == 0)
2661 continue;
2662
2663 /* If this section is a link-once section that will be
2664 discarded, then don't create any stubs. */
2665 if (section->output_section == NULL
2666 || section->output_section->owner != output_bfd)
2667 continue;
2668
2669 /* Get the relocs. */
2670 internal_relocs
2671 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2672 info->keep_memory);
2673 if (internal_relocs == NULL)
2674 goto error_ret_free_local;
2675
2676 /* Now examine each relocation. */
2677 irela = internal_relocs;
2678 irelaend = irela + section->reloc_count;
2679 for (; irela < irelaend; irela++)
2680 {
2681 unsigned int r_type, r_indx;
2682 enum elf32_nios2_stub_type stub_type;
2683 struct elf32_nios2_stub_hash_entry *hsh;
2684 asection *sym_sec;
2685 bfd_vma sym_value;
2686 bfd_vma destination;
2687 struct elf32_nios2_link_hash_entry *hh;
2688 char *stub_name;
2689 const asection *id_sec;
2690
2691 r_type = ELF32_R_TYPE (irela->r_info);
2692 r_indx = ELF32_R_SYM (irela->r_info);
2693
2694 if (r_type >= (unsigned int) R_NIOS2_ILLEGAL)
2695 {
2696 bfd_set_error (bfd_error_bad_value);
2697 error_ret_free_internal:
2698 if (elf_section_data (section)->relocs == NULL)
2699 free (internal_relocs);
2700 goto error_ret_free_local;
2701 }
2702
2703 /* Only look for stubs on CALL and JMPI instructions. */
2704 if (r_type != (unsigned int) R_NIOS2_CALL26)
2705 continue;
2706
2707 /* Now determine the call target, its name, value,
2708 section. */
2709 sym_sec = NULL;
2710 sym_value = 0;
2711 destination = 0;
2712 hh = NULL;
2713 if (r_indx < symtab_hdr->sh_info)
2714 {
2715 /* It's a local symbol. */
2716 Elf_Internal_Sym *sym;
2717 Elf_Internal_Shdr *hdr;
2718 unsigned int shndx;
2719
2720 sym = local_syms + r_indx;
2721 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2722 sym_value = sym->st_value;
2723 shndx = sym->st_shndx;
2724 if (shndx < elf_numsections (input_bfd))
2725 {
2726 hdr = elf_elfsections (input_bfd)[shndx];
2727 sym_sec = hdr->bfd_section;
2728 destination = (sym_value + irela->r_addend
2729 + sym_sec->output_offset
2730 + sym_sec->output_section->vma);
2731 }
2732 }
2733 else
2734 {
2735 /* It's an external symbol. */
2736 int e_indx;
2737
2738 e_indx = r_indx - symtab_hdr->sh_info;
2739 hh = ((struct elf32_nios2_link_hash_entry *)
2740 elf_sym_hashes (input_bfd)[e_indx]);
2741
2742 while (hh->root.root.type == bfd_link_hash_indirect
2743 || hh->root.root.type == bfd_link_hash_warning)
2744 hh = ((struct elf32_nios2_link_hash_entry *)
2745 hh->root.root.u.i.link);
2746
2747 if (hh->root.root.type == bfd_link_hash_defined
2748 || hh->root.root.type == bfd_link_hash_defweak)
2749 {
2750 sym_sec = hh->root.root.u.def.section;
2751 sym_value = hh->root.root.u.def.value;
2752
2753 if (sym_sec->output_section != NULL)
2754 destination = (sym_value + irela->r_addend
2755 + sym_sec->output_offset
2756 + sym_sec->output_section->vma);
2757 else
2758 continue;
2759 }
2760 else if (hh->root.root.type == bfd_link_hash_undefweak)
2761 {
2762 if (! bfd_link_pic (info))
2763 continue;
2764 }
2765 else if (hh->root.root.type == bfd_link_hash_undefined)
2766 {
2767 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2768 && (ELF_ST_VISIBILITY (hh->root.other)
2769 == STV_DEFAULT)))
2770 continue;
2771 }
2772 else
2773 {
2774 bfd_set_error (bfd_error_bad_value);
2775 goto error_ret_free_internal;
2776 }
2777 }
2778
2779 /* Determine what (if any) linker stub is needed. */
2780 stub_type = nios2_type_of_stub (section, irela, hh, htab,
2781 destination, info);
2782 if (stub_type == nios2_stub_none)
2783 continue;
2784
2785 /* Support for grouping stub sections. */
2786 if (stub_type == nios2_stub_call26_before)
2787 id_sec = htab->stub_group[section->id].first_sec;
2788 else
2789 id_sec = htab->stub_group[section->id].last_sec;
2790
2791 /* Get the name of this stub. */
2792 stub_name = nios2_stub_name (id_sec, sym_sec, hh, irela,
2793 stub_type);
2794 if (!stub_name)
2795 goto error_ret_free_internal;
2796
2797 hsh = nios2_stub_hash_lookup (&htab->bstab,
2798 stub_name,
2799 FALSE, FALSE);
2800 if (hsh != NULL)
2801 {
2802 /* The proper stub has already been created. */
2803 free (stub_name);
2804 continue;
2805 }
2806
2807 hsh = nios2_add_stub (stub_name, section, htab, stub_type);
2808 if (hsh == NULL)
2809 {
2810 free (stub_name);
2811 goto error_ret_free_internal;
2812 }
2813 hsh->target_value = sym_value;
2814 hsh->target_section = sym_sec;
2815 hsh->stub_type = stub_type;
2816 hsh->hh = hh;
2817 hsh->addend = irela->r_addend;
2818 stub_changed = TRUE;
2819 }
2820
2821 /* We're done with the internal relocs, free them. */
2822 if (elf_section_data (section)->relocs == NULL)
2823 free (internal_relocs);
2824 }
2825 }
2826
2827 if (!stub_changed)
2828 break;
2829
2830 /* OK, we've added some stubs. Find out the new size of the
2831 stub sections. */
2832 for (stub_sec = htab->stub_bfd->sections;
2833 stub_sec != NULL;
2834 stub_sec = stub_sec->next)
2835 stub_sec->size = 0;
2836
2837 bfd_hash_traverse (&htab->bstab, nios2_size_one_stub, htab);
2838
2839 /* Ask the linker to do its stuff. */
2840 (*htab->layout_sections_again) ();
2841 stub_changed = FALSE;
2842 }
2843
2844 free (htab->all_local_syms);
2845 return TRUE;
2846
2847 error_ret_free_local:
2848 free (htab->all_local_syms);
2849 return FALSE;
2850 }
2851
2852 /* Build all the stubs associated with the current output file. The
2853 stubs are kept in a hash table attached to the main linker hash
2854 table. This function is called via nios2elf_finish in the linker. */
2855 bfd_boolean
2856 nios2_elf32_build_stubs (struct bfd_link_info *info)
2857 {
2858 asection *stub_sec;
2859 struct bfd_hash_table *table;
2860 struct elf32_nios2_link_hash_table *htab;
2861
2862 htab = elf32_nios2_hash_table (info);
2863
2864 for (stub_sec = htab->stub_bfd->sections;
2865 stub_sec != NULL;
2866 stub_sec = stub_sec->next)
2867 /* The stub_bfd may contain non-stub sections if it is also the
2868 dynobj. Any such non-stub sections are created with the
2869 SEC_LINKER_CREATED flag set, while stub sections do not
2870 have that flag. Ignore any non-stub sections here. */
2871 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2872 {
2873 bfd_size_type size;
2874
2875 /* Allocate memory to hold the linker stubs. */
2876 size = stub_sec->size;
2877 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2878 if (stub_sec->contents == NULL && size != 0)
2879 return FALSE;
2880 stub_sec->size = 0;
2881 }
2882
2883 /* Build the stubs as directed by the stub hash table. */
2884 table = &htab->bstab;
2885 bfd_hash_traverse (table, nios2_build_one_stub, info);
2886
2887 return TRUE;
2888 }
2889
2890
2891 #define is_nios2_elf(bfd) \
2892 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2893 && elf_object_id (bfd) == NIOS2_ELF_DATA)
2894
2895 /* Merge backend specific data from an object file to the output
2896 object file when linking. */
2897
2898 static bfd_boolean
2899 nios2_elf32_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2900 {
2901 bfd *obfd = info->output_bfd;
2902 flagword old_flags;
2903 flagword new_flags;
2904
2905 if (!is_nios2_elf (ibfd) || !is_nios2_elf (obfd))
2906 return TRUE;
2907
2908 /* Check if we have the same endianness. */
2909 if (! _bfd_generic_verify_endian_match (ibfd, info))
2910 return FALSE;
2911
2912 new_flags = elf_elfheader (ibfd)->e_flags;
2913 old_flags = elf_elfheader (obfd)->e_flags;
2914 if (!elf_flags_init (obfd))
2915 {
2916 /* First call, no flags set. */
2917 elf_flags_init (obfd) = TRUE;
2918 elf_elfheader (obfd)->e_flags = new_flags;
2919
2920 switch (new_flags)
2921 {
2922 default:
2923 case EF_NIOS2_ARCH_R1:
2924 bfd_default_set_arch_mach (obfd, bfd_arch_nios2, bfd_mach_nios2r1);
2925 break;
2926 case EF_NIOS2_ARCH_R2:
2927 if (bfd_big_endian (ibfd))
2928 {
2929 _bfd_error_handler
2930 (_("error: %pB: big-endian R2 is not supported"), ibfd);
2931 bfd_set_error (bfd_error_bad_value);
2932 return FALSE;
2933 }
2934 bfd_default_set_arch_mach (obfd, bfd_arch_nios2, bfd_mach_nios2r2);
2935 break;
2936 }
2937 }
2938
2939 /* Incompatible flags. */
2940 else if (new_flags != old_flags)
2941 {
2942 /* So far, the only incompatible flags denote incompatible
2943 architectures. */
2944 _bfd_error_handler
2945 /* xgettext:c-format */
2946 (_("error: %pB: conflicting CPU architectures %d/%d"),
2947 ibfd, new_flags, old_flags);
2948 bfd_set_error (bfd_error_bad_value);
2949 return FALSE;
2950 }
2951
2952 /* Merge Tag_compatibility attributes and any common GNU ones. */
2953 _bfd_elf_merge_object_attributes (ibfd, info);
2954
2955 return TRUE;
2956 }
2957
2958 /* Implement bfd_elf32_bfd_reloc_type_lookup:
2959 Given a BFD reloc type, return a howto structure. */
2960
2961 static reloc_howto_type *
2962 nios2_elf32_bfd_reloc_type_lookup (bfd *abfd,
2963 bfd_reloc_code_real_type code)
2964 {
2965 int i;
2966
2967 for (i = 0; i < (int) ARRAY_SIZE (nios2_reloc_map); ++i)
2968 if (nios2_reloc_map[i].bfd_val == code)
2969 return lookup_howto (nios2_reloc_map[i].elf_val, abfd);
2970 return NULL;
2971 }
2972
2973 /* Implement bfd_elf32_bfd_reloc_name_lookup:
2974 Given a reloc name, return a howto structure. */
2975
2976 static reloc_howto_type *
2977 nios2_elf32_bfd_reloc_name_lookup (bfd *abfd,
2978 const char *r_name)
2979 {
2980 int i;
2981 reloc_howto_type *howto_tbl;
2982 int howto_tbl_size;
2983
2984 if (BFD_IS_R2 (abfd))
2985 {
2986 howto_tbl = elf_nios2_r2_howto_table_rel;
2987 howto_tbl_size = (int) ARRAY_SIZE (elf_nios2_r2_howto_table_rel);
2988 }
2989 else
2990 {
2991 howto_tbl = elf_nios2_r1_howto_table_rel;
2992 howto_tbl_size = (int) ARRAY_SIZE (elf_nios2_r1_howto_table_rel);
2993 }
2994
2995 for (i = 0; i < howto_tbl_size; i++)
2996 if (howto_tbl[i].name && strcasecmp (howto_tbl[i].name, r_name) == 0)
2997 return howto_tbl + i;
2998
2999 return NULL;
3000 }
3001
3002 /* Implement elf_info_to_howto:
3003 Given a ELF32 relocation, fill in a arelent structure. */
3004
3005 static bfd_boolean
3006 nios2_elf32_info_to_howto (bfd *abfd, arelent *cache_ptr,
3007 Elf_Internal_Rela *dst)
3008 {
3009 unsigned int r_type;
3010
3011 r_type = ELF32_R_TYPE (dst->r_info);
3012 if ((cache_ptr->howto = lookup_howto (r_type, abfd)) == NULL)
3013 {
3014 /* xgettext:c-format */
3015 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
3016 abfd, r_type);
3017 bfd_set_error (bfd_error_bad_value);
3018 return FALSE;
3019 }
3020 return TRUE;
3021 }
3022
3023 /* Return the base VMA address which should be subtracted from real addresses
3024 when resolving @dtpoff relocation.
3025 This is PT_TLS segment p_vaddr. */
3026 static bfd_vma
3027 dtpoff_base (struct bfd_link_info *info)
3028 {
3029 /* If tls_sec is NULL, we should have signalled an error already. */
3030 if (elf_hash_table (info)->tls_sec == NULL)
3031 return 0;
3032 return elf_hash_table (info)->tls_sec->vma;
3033 }
3034
3035 /* Return the relocation value for @tpoff relocation
3036 if STT_TLS virtual address is ADDRESS. */
3037 static bfd_vma
3038 tpoff (struct bfd_link_info *info, bfd_vma address)
3039 {
3040 struct elf_link_hash_table *htab = elf_hash_table (info);
3041
3042 /* If tls_sec is NULL, we should have signalled an error already. */
3043 if (htab->tls_sec == NULL)
3044 return 0;
3045 return address - htab->tls_sec->vma;
3046 }
3047
3048 /* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a
3049 dangerous relocation. */
3050 static bfd_boolean
3051 nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info)
3052 {
3053
3054 bfd_boolean gp_found;
3055 struct bfd_hash_entry *h;
3056 struct bfd_link_hash_entry *lh;
3057
3058 /* If we've already figured out what GP will be, just return it. */
3059 *pgp = _bfd_get_gp_value (output_bfd);
3060 if (*pgp)
3061 return TRUE;
3062
3063 h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE);
3064 lh = (struct bfd_link_hash_entry *) h;
3065 lookup:
3066 if (lh)
3067 {
3068 switch (lh->type)
3069 {
3070 case bfd_link_hash_undefined:
3071 case bfd_link_hash_undefweak:
3072 case bfd_link_hash_common:
3073 gp_found = FALSE;
3074 break;
3075 case bfd_link_hash_defined:
3076 case bfd_link_hash_defweak:
3077 gp_found = TRUE;
3078 {
3079 asection *sym_sec = lh->u.def.section;
3080 bfd_vma sym_value = lh->u.def.value;
3081
3082 if (sym_sec->output_section)
3083 sym_value = (sym_value + sym_sec->output_offset
3084 + sym_sec->output_section->vma);
3085 *pgp = sym_value;
3086 }
3087 break;
3088 case bfd_link_hash_indirect:
3089 case bfd_link_hash_warning:
3090 lh = lh->u.i.link;
3091 /* @@FIXME ignoring warning for now */
3092 goto lookup;
3093 case bfd_link_hash_new:
3094 default:
3095 abort ();
3096 }
3097 }
3098 else
3099 gp_found = FALSE;
3100
3101 if (!gp_found)
3102 {
3103 /* Only get the error once. */
3104 *pgp = 4;
3105 _bfd_set_gp_value (output_bfd, *pgp);
3106 return FALSE;
3107 }
3108
3109 _bfd_set_gp_value (output_bfd, *pgp);
3110
3111 return TRUE;
3112 }
3113
3114 /* Retrieve the previously cached _gp pointer, returning bfd_reloc_dangerous
3115 if it's not available as we don't have a link_info pointer available here
3116 to look it up in the output symbol table. We don't need to adjust the
3117 symbol value for an external symbol if we are producing relocatable
3118 output. */
3119 static bfd_reloc_status_type
3120 nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable,
3121 char **error_message, bfd_vma *pgp)
3122 {
3123 if (bfd_is_und_section (symbol->section) && !relocatable)
3124 {
3125 *pgp = 0;
3126 return bfd_reloc_undefined;
3127 }
3128
3129 *pgp = _bfd_get_gp_value (output_bfd);
3130 if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0))
3131 {
3132 if (relocatable)
3133 {
3134 /* Make up a value. */
3135 *pgp = symbol->section->output_section->vma + 0x4000;
3136 _bfd_set_gp_value (output_bfd, *pgp);
3137 }
3138 else
3139 {
3140 *error_message
3141 = (char *) _("global pointer relative relocation when _gp not defined");
3142 return bfd_reloc_dangerous;
3143 }
3144 }
3145
3146 return bfd_reloc_ok;
3147 }
3148
3149 /* Do the relocations that require special handling. */
3150 static bfd_reloc_status_type
3151 nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto,
3152 asection *input_section,
3153 bfd_byte *data, bfd_vma offset,
3154 bfd_vma symbol_value, bfd_vma addend)
3155 {
3156 symbol_value = symbol_value + addend;
3157 addend = 0;
3158 symbol_value = (symbol_value >> 16) & 0xffff;
3159 return _bfd_final_link_relocate (howto, abfd, input_section,
3160 data, offset, symbol_value, addend);
3161 }
3162
3163 static bfd_reloc_status_type
3164 nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
3165 asection *input_section,
3166 bfd_byte *data, bfd_vma offset,
3167 bfd_vma symbol_value, bfd_vma addend)
3168 {
3169 symbol_value = symbol_value + addend;
3170 addend = 0;
3171 symbol_value = symbol_value & 0xffff;
3172 return _bfd_final_link_relocate (howto, abfd, input_section,
3173 data, offset, symbol_value, addend);
3174 }
3175
3176 static bfd_reloc_status_type
3177 nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
3178 asection *input_section,
3179 bfd_byte *data, bfd_vma offset,
3180 bfd_vma symbol_value, bfd_vma addend)
3181 {
3182 symbol_value = symbol_value + addend;
3183 addend = 0;
3184 symbol_value = hiadj(symbol_value);
3185 return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
3186 symbol_value, addend);
3187 }
3188
3189 static bfd_reloc_status_type
3190 nios2_elf32_do_pcrel_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
3191 asection *input_section,
3192 bfd_byte *data, bfd_vma offset,
3193 bfd_vma symbol_value, bfd_vma addend)
3194 {
3195 symbol_value = symbol_value + addend;
3196 addend = 0;
3197 symbol_value = symbol_value & 0xffff;
3198 return _bfd_final_link_relocate (howto, abfd, input_section,
3199 data, offset, symbol_value, addend);
3200 }
3201
3202 static bfd_reloc_status_type
3203 nios2_elf32_do_pcrel_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
3204 asection *input_section,
3205 bfd_byte *data, bfd_vma offset,
3206 bfd_vma symbol_value, bfd_vma addend)
3207 {
3208 symbol_value = symbol_value + addend;
3209 symbol_value -= (input_section->output_section->vma
3210 + input_section->output_offset);
3211 symbol_value -= offset;
3212 addend = 0;
3213 symbol_value = hiadj(symbol_value);
3214 return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
3215 symbol_value, addend);
3216 }
3217
3218 static bfd_reloc_status_type
3219 nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto,
3220 asection *input_section,
3221 bfd_byte *data, bfd_vma offset,
3222 bfd_vma symbol_value, bfd_vma addend)
3223 {
3224 /* NIOS2 pc relative relocations are relative to the next 32-bit instruction
3225 so we need to subtract 4 before doing a final_link_relocate. */
3226 symbol_value = symbol_value + addend - 4;
3227 addend = 0;
3228 return _bfd_final_link_relocate (howto, abfd, input_section,
3229 data, offset, symbol_value, addend);
3230 }
3231
3232 static bfd_reloc_status_type
3233 nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto,
3234 asection *input_section,
3235 bfd_byte *data, bfd_vma offset,
3236 bfd_vma symbol_value, bfd_vma addend)
3237 {
3238 /* Check that the relocation is in the same page as the current address. */
3239 if (CALL26_SEGMENT (symbol_value + addend)
3240 != CALL26_SEGMENT (input_section->output_section->vma
3241 + input_section->output_offset
3242 + offset))
3243 return bfd_reloc_overflow;
3244
3245 /* Check that the target address is correctly aligned on a 4-byte
3246 boundary. */
3247 if ((symbol_value + addend) & 0x3)
3248 return bfd_reloc_overflow;
3249
3250 return _bfd_final_link_relocate (howto, abfd, input_section,
3251 data, offset, symbol_value, addend);
3252 }
3253
3254 static bfd_reloc_status_type
3255 nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto,
3256 asection *input_section,
3257 bfd_byte *data, bfd_vma offset,
3258 bfd_vma symbol_value, bfd_vma addend)
3259 {
3260 /* Because we need the output_bfd, the special handling is done
3261 in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate. */
3262 return _bfd_final_link_relocate (howto, abfd, input_section,
3263 data, offset, symbol_value, addend);
3264 }
3265
3266 static bfd_reloc_status_type
3267 nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto,
3268 asection *input_section,
3269 bfd_byte *data, bfd_vma offset,
3270 bfd_vma symbol_value, bfd_vma addend)
3271 {
3272 bfd_vma symbol_lo16, symbol_hi16;
3273 bfd_reloc_status_type r;
3274 symbol_value = symbol_value + addend;
3275 addend = 0;
3276 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3277 symbol_lo16 = symbol_value & 0xffff;
3278
3279 r = _bfd_final_link_relocate (howto, abfd, input_section,
3280 data, offset, symbol_hi16, addend);
3281
3282 if (r == bfd_reloc_ok)
3283 return _bfd_final_link_relocate (howto, abfd, input_section,
3284 data, offset + 4, symbol_lo16, addend);
3285
3286 return r;
3287 }
3288
3289 static bfd_reloc_status_type
3290 nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto,
3291 asection *input_section,
3292 bfd_byte *data, bfd_vma offset,
3293 bfd_vma symbol_value, bfd_vma addend)
3294 {
3295 bfd_vma symbol_lo16, symbol_hi16;
3296 bfd_reloc_status_type r;
3297 symbol_value = symbol_value + addend;
3298 addend = 0;
3299 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3300 symbol_lo16 = symbol_value & 0xffff;
3301
3302 r = _bfd_final_link_relocate (howto, abfd, input_section,
3303 data, offset, symbol_hi16, addend);
3304
3305 if (r == bfd_reloc_ok)
3306 return _bfd_final_link_relocate (howto, abfd, input_section,
3307 data, offset + 4, symbol_lo16, addend);
3308
3309 return r;
3310 }
3311
3312 static bfd_reloc_status_type
3313 nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto,
3314 asection *input_section,
3315 bfd_byte *data, bfd_vma offset,
3316 bfd_vma symbol_value, bfd_vma addend)
3317 {
3318 bfd_vma symbol_lo16, symbol_hi16;
3319 bfd_reloc_status_type r;
3320 symbol_value = symbol_value + addend;
3321 addend = 0;
3322 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3323 symbol_lo16 = symbol_value & 0xffff;
3324
3325 r = _bfd_final_link_relocate (howto, abfd, input_section,
3326 data, offset, symbol_hi16, addend);
3327
3328 if (r == bfd_reloc_ok)
3329 return _bfd_final_link_relocate (howto, abfd, input_section,
3330 data, offset + 4, symbol_lo16, addend);
3331
3332 return r;
3333 }
3334
3335 /* HOWTO handlers for relocations that require special handling. */
3336
3337 /* This is for relocations used only when relaxing to ensure
3338 changes in size of section don't screw up .align. */
3339 static bfd_reloc_status_type
3340 nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
3341 asymbol *symbol ATTRIBUTE_UNUSED,
3342 void *data ATTRIBUTE_UNUSED, asection *input_section,
3343 bfd *output_bfd,
3344 char **error_message ATTRIBUTE_UNUSED)
3345 {
3346 if (output_bfd != NULL)
3347 reloc_entry->address += input_section->output_offset;
3348 return bfd_reloc_ok;
3349 }
3350
3351 static bfd_reloc_status_type
3352 nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3353 void *data, asection *input_section,
3354 bfd *output_bfd,
3355 char **error_message ATTRIBUTE_UNUSED)
3356 {
3357 /* This part is from bfd_elf_generic_reloc. */
3358 if (output_bfd != NULL
3359 && (symbol->flags & BSF_SECTION_SYM) == 0
3360 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3361 {
3362 reloc_entry->address += input_section->output_offset;
3363 return bfd_reloc_ok;
3364 }
3365
3366 if (output_bfd != NULL)
3367 /* FIXME: See bfd_perform_relocation. Is this right? */
3368 return bfd_reloc_continue;
3369
3370 return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto,
3371 input_section,
3372 data, reloc_entry->address,
3373 (symbol->value
3374 + symbol->section->output_section->vma
3375 + symbol->section->output_offset),
3376 reloc_entry->addend);
3377 }
3378
3379 static bfd_reloc_status_type
3380 nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3381 void *data, asection *input_section,
3382 bfd *output_bfd,
3383 char **error_message ATTRIBUTE_UNUSED)
3384 {
3385 /* This part is from bfd_elf_generic_reloc. */
3386 if (output_bfd != NULL
3387 && (symbol->flags & BSF_SECTION_SYM) == 0
3388 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3389 {
3390 reloc_entry->address += input_section->output_offset;
3391 return bfd_reloc_ok;
3392 }
3393
3394 if (output_bfd != NULL)
3395 /* FIXME: See bfd_perform_relocation. Is this right? */
3396 return bfd_reloc_continue;
3397
3398 return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto,
3399 input_section,
3400 data, reloc_entry->address,
3401 (symbol->value
3402 + symbol->section->output_section->vma
3403 + symbol->section->output_offset),
3404 reloc_entry->addend);
3405 }
3406
3407 static bfd_reloc_status_type
3408 nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3409 void *data, asection *input_section,
3410 bfd *output_bfd,
3411 char **error_message ATTRIBUTE_UNUSED)
3412 {
3413 /* This part is from bfd_elf_generic_reloc. */
3414 if (output_bfd != NULL
3415 && (symbol->flags & BSF_SECTION_SYM) == 0
3416 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3417 {
3418 reloc_entry->address += input_section->output_offset;
3419 return bfd_reloc_ok;
3420 }
3421
3422 if (output_bfd != NULL)
3423 /* FIXME: See bfd_perform_relocation. Is this right? */
3424 return bfd_reloc_continue;
3425
3426 return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto,
3427 input_section,
3428 data, reloc_entry->address,
3429 (symbol->value
3430 + symbol->section->output_section->vma
3431 + symbol->section->output_offset),
3432 reloc_entry->addend);
3433 }
3434
3435 static bfd_reloc_status_type
3436 nios2_elf32_pcrel_lo16_relocate (bfd *abfd, arelent *reloc_entry,
3437 asymbol *symbol, void *data,
3438 asection *input_section, bfd *output_bfd,
3439 char **error_message ATTRIBUTE_UNUSED)
3440 {
3441 /* This part is from bfd_elf_generic_reloc. */
3442 if (output_bfd != NULL
3443 && (symbol->flags & BSF_SECTION_SYM) == 0
3444 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3445 {
3446 reloc_entry->address += input_section->output_offset;
3447 return bfd_reloc_ok;
3448 }
3449
3450 if (output_bfd != NULL)
3451 /* FIXME: See bfd_perform_relocation. Is this right? */
3452 return bfd_reloc_continue;
3453
3454 return nios2_elf32_do_pcrel_lo16_relocate (
3455 abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
3456 (symbol->value + symbol->section->output_section->vma
3457 + symbol->section->output_offset),
3458 reloc_entry->addend);
3459 }
3460
3461 static bfd_reloc_status_type
3462 nios2_elf32_pcrel_hiadj16_relocate (bfd *abfd, arelent *reloc_entry,
3463 asymbol *symbol, void *data,
3464 asection *input_section, bfd *output_bfd,
3465 char **error_message ATTRIBUTE_UNUSED)
3466 {
3467 /* This part is from bfd_elf_generic_reloc. */
3468 if (output_bfd != NULL
3469 && (symbol->flags & BSF_SECTION_SYM) == 0
3470 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3471 {
3472 reloc_entry->address += input_section->output_offset;
3473 return bfd_reloc_ok;
3474 }
3475
3476 if (output_bfd != NULL)
3477 /* FIXME: See bfd_perform_relocation. Is this right? */
3478 return bfd_reloc_continue;
3479
3480 return nios2_elf32_do_pcrel_hiadj16_relocate (
3481 abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
3482 (symbol->value + symbol->section->output_section->vma
3483 + symbol->section->output_offset),
3484 reloc_entry->addend);
3485 }
3486
3487 static bfd_reloc_status_type
3488 nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3489 void *data, asection *input_section,
3490 bfd *output_bfd,
3491 char **error_message ATTRIBUTE_UNUSED)
3492 {
3493 /* This part is from bfd_elf_generic_reloc. */
3494 if (output_bfd != NULL
3495 && (symbol->flags & BSF_SECTION_SYM) == 0
3496 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3497 {
3498 reloc_entry->address += input_section->output_offset;
3499 return bfd_reloc_ok;
3500 }
3501
3502 if (output_bfd != NULL)
3503 /* FIXME: See bfd_perform_relocation. Is this right? */
3504 return bfd_reloc_continue;
3505
3506 return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto,
3507 input_section,
3508 data, reloc_entry->address,
3509 (symbol->value
3510 + symbol->section->output_section->vma
3511 + symbol->section->output_offset),
3512 reloc_entry->addend);
3513 }
3514
3515 static bfd_reloc_status_type
3516 nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3517 void *data, asection *input_section,
3518 bfd *output_bfd,
3519 char **error_message ATTRIBUTE_UNUSED)
3520 {
3521 /* This part is from bfd_elf_generic_reloc. */
3522 if (output_bfd != NULL
3523 && (symbol->flags & BSF_SECTION_SYM) == 0
3524 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3525 {
3526 reloc_entry->address += input_section->output_offset;
3527 return bfd_reloc_ok;
3528 }
3529
3530 if (output_bfd != NULL)
3531 /* FIXME: See bfd_perform_relocation. Is this right? */
3532 return bfd_reloc_continue;
3533
3534 return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto,
3535 input_section,
3536 data, reloc_entry->address,
3537 (symbol->value
3538 + symbol->section->output_section->vma
3539 + symbol->section->output_offset),
3540 reloc_entry->addend);
3541 }
3542
3543 static bfd_reloc_status_type
3544 nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3545 void *data, asection *input_section,
3546 bfd *output_bfd, char **msg)
3547 {
3548 bfd_vma relocation;
3549 bfd_vma gp;
3550 bfd_reloc_status_type r;
3551
3552
3553 /* This part is from bfd_elf_generic_reloc. */
3554 if (output_bfd != NULL
3555 && (symbol->flags & BSF_SECTION_SYM) == 0
3556 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3557 {
3558 reloc_entry->address += input_section->output_offset;
3559 return bfd_reloc_ok;
3560 }
3561
3562 if (output_bfd != NULL)
3563 /* FIXME: See bfd_perform_relocation. Is this right? */
3564 return bfd_reloc_continue;
3565
3566 relocation = (symbol->value
3567 + symbol->section->output_section->vma
3568 + symbol->section->output_offset);
3569
3570 /* This assumes we've already cached the _gp symbol. */
3571 r = nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp);
3572 if (r == bfd_reloc_ok)
3573 {
3574 relocation = relocation + reloc_entry->addend - gp;
3575 reloc_entry->addend = 0;
3576 if ((signed) relocation < -32768 || (signed) relocation > 32767)
3577 {
3578 *msg = _("global pointer relative address out of range");
3579 r = bfd_reloc_outofrange;
3580 }
3581 else
3582 r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto,
3583 input_section,
3584 data, reloc_entry->address,
3585 relocation, reloc_entry->addend);
3586 }
3587
3588 return r;
3589 }
3590
3591 static bfd_reloc_status_type
3592 nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3593 void *data, asection *input_section,
3594 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3595 {
3596 /* This part is from bfd_elf_generic_reloc. */
3597 if (output_bfd != NULL
3598 && (symbol->flags & BSF_SECTION_SYM) == 0
3599 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3600 {
3601 reloc_entry->address += input_section->output_offset;
3602 return bfd_reloc_ok;
3603 }
3604
3605 if (output_bfd != NULL)
3606 /* FIXME: See bfd_perform_relocation. Is this right? */
3607 return bfd_reloc_continue;
3608
3609 return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto,
3610 input_section,
3611 data, reloc_entry->address,
3612 (symbol->value
3613 + symbol->section->output_section->vma
3614 + symbol->section->output_offset),
3615 reloc_entry->addend);
3616 }
3617
3618 static bfd_reloc_status_type
3619 nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3620 void *data, asection *input_section,
3621 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3622 {
3623 /* This part is from bfd_elf_generic_reloc. */
3624 if (output_bfd != NULL
3625 && (symbol->flags & BSF_SECTION_SYM) == 0
3626 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3627 {
3628 reloc_entry->address += input_section->output_offset;
3629 return bfd_reloc_ok;
3630 }
3631
3632 if (output_bfd != NULL)
3633 /* FIXME: See bfd_perform_relocation. Is this right? */
3634 return bfd_reloc_continue;
3635
3636 return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto,
3637 input_section,
3638 data, reloc_entry->address,
3639 (symbol->value
3640 + symbol->section->output_section->vma
3641 + symbol->section->output_offset),
3642 reloc_entry->addend);
3643 }
3644
3645 static bfd_reloc_status_type
3646 nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3647 void *data, asection *input_section,
3648 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3649 {
3650 /* This part is from bfd_elf_generic_reloc. */
3651 if (output_bfd != NULL
3652 && (symbol->flags & BSF_SECTION_SYM) == 0
3653 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3654 {
3655 reloc_entry->address += input_section->output_offset;
3656 return bfd_reloc_ok;
3657 }
3658
3659 if (output_bfd != NULL)
3660 /* FIXME: See bfd_perform_relocation. Is this right? */
3661 return bfd_reloc_continue;
3662
3663 return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto,
3664 input_section,
3665 data, reloc_entry->address,
3666 (symbol->value
3667 + symbol->section->output_section->vma
3668 + symbol->section->output_offset),
3669 reloc_entry->addend);
3670 }
3671
3672
3673 /* Implement elf_backend_relocate_section. */
3674 static bfd_boolean
3675 nios2_elf32_relocate_section (bfd *output_bfd,
3676 struct bfd_link_info *info,
3677 bfd *input_bfd,
3678 asection *input_section,
3679 bfd_byte *contents,
3680 Elf_Internal_Rela *relocs,
3681 Elf_Internal_Sym *local_syms,
3682 asection **local_sections)
3683 {
3684 Elf_Internal_Shdr *symtab_hdr;
3685 struct elf_link_hash_entry **sym_hashes;
3686 Elf_Internal_Rela *rel;
3687 Elf_Internal_Rela *relend;
3688 struct elf32_nios2_link_hash_table *htab;
3689 asection *sgot;
3690 asection *splt;
3691 asection *sreloc = NULL;
3692 bfd_vma *local_got_offsets;
3693 bfd_vma got_base;
3694
3695 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3696 sym_hashes = elf_sym_hashes (input_bfd);
3697 relend = relocs + input_section->reloc_count;
3698
3699 htab = elf32_nios2_hash_table (info);
3700 sgot = htab->root.sgot;
3701 splt = htab->root.splt;
3702 local_got_offsets = elf_local_got_offsets (input_bfd);
3703
3704 if (htab->h_gp_got == NULL)
3705 got_base = 0;
3706 else
3707 got_base = htab->h_gp_got->root.u.def.value;
3708
3709 for (rel = relocs; rel < relend; rel++)
3710 {
3711 reloc_howto_type *howto;
3712 unsigned long r_symndx;
3713 Elf_Internal_Sym *sym;
3714 asection *sec;
3715 struct elf_link_hash_entry *h;
3716 struct elf32_nios2_link_hash_entry *eh;
3717 bfd_vma relocation;
3718 bfd_vma gp;
3719 bfd_reloc_status_type r = bfd_reloc_ok;
3720 const char *name = NULL;
3721 int r_type;
3722 const char *format;
3723 char *msgbuf = NULL;
3724 char *msg = NULL;
3725 bfd_boolean unresolved_reloc;
3726 bfd_vma off;
3727 int use_plt;
3728
3729 r_type = ELF32_R_TYPE (rel->r_info);
3730 r_symndx = ELF32_R_SYM (rel->r_info);
3731
3732 howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info), output_bfd);
3733 h = NULL;
3734 sym = NULL;
3735 sec = NULL;
3736
3737 if (r_symndx < symtab_hdr->sh_info)
3738 {
3739 sym = local_syms + r_symndx;
3740 sec = local_sections[r_symndx];
3741 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3742 }
3743 else
3744 {
3745 bfd_boolean warned, ignored;
3746
3747 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3748 r_symndx, symtab_hdr, sym_hashes,
3749 h, sec, relocation,
3750 unresolved_reloc, warned, ignored);
3751 }
3752
3753 if (sec && discarded_section (sec))
3754 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3755 rel, 1, relend, howto, 0, contents);
3756
3757 /* Nothing more to do unless this is a final link. */
3758 if (bfd_link_relocatable (info))
3759 continue;
3760
3761 if (howto)
3762 {
3763 bfd_boolean resolved_to_zero;
3764
3765 resolved_to_zero = (h != NULL
3766 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3767 switch (howto->type)
3768 {
3769 case R_NIOS2_HI16:
3770 r = nios2_elf32_do_hi16_relocate (input_bfd, howto,
3771 input_section,
3772 contents, rel->r_offset,
3773 relocation, rel->r_addend);
3774 break;
3775 case R_NIOS2_LO16:
3776 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
3777 input_section,
3778 contents, rel->r_offset,
3779 relocation, rel->r_addend);
3780 break;
3781 case R_NIOS2_PCREL_LO:
3782 r = nios2_elf32_do_pcrel_lo16_relocate (input_bfd, howto,
3783 input_section,
3784 contents,
3785 rel->r_offset,
3786 relocation,
3787 rel->r_addend);
3788 break;
3789 case R_NIOS2_HIADJ16:
3790 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
3791 input_section, contents,
3792 rel->r_offset, relocation,
3793 rel->r_addend);
3794 break;
3795 case R_NIOS2_PCREL_HA:
3796 r = nios2_elf32_do_pcrel_hiadj16_relocate (input_bfd, howto,
3797 input_section,
3798 contents,
3799 rel->r_offset,
3800 relocation,
3801 rel->r_addend);
3802 break;
3803 case R_NIOS2_PCREL16:
3804 r = nios2_elf32_do_pcrel16_relocate (input_bfd, howto,
3805 input_section, contents,
3806 rel->r_offset, relocation,
3807 rel->r_addend);
3808 break;
3809 case R_NIOS2_GPREL:
3810 /* Turns an absolute address into a gp-relative address. */
3811 if (!nios2_elf_assign_gp (output_bfd, &gp, info))
3812 {
3813 bfd_vma reloc_address;
3814
3815 if (sec && sec->output_section)
3816 reloc_address = (sec->output_section->vma
3817 + sec->output_offset
3818 + rel->r_offset);
3819 else
3820 reloc_address = 0;
3821
3822 format = _("global pointer relative relocation at address "
3823 "%#" PRIx64 " when _gp not defined\n");
3824 asprintf (&msgbuf, format, (uint64_t) reloc_address);
3825 msg = msgbuf;
3826 r = bfd_reloc_dangerous;
3827 }
3828 else
3829 {
3830 bfd_vma symbol_address = rel->r_addend + relocation;
3831 relocation = symbol_address - gp;
3832 rel->r_addend = 0;
3833 if (((signed) relocation < -32768
3834 || (signed) relocation > 32767)
3835 && (!h
3836 || h->root.type == bfd_link_hash_defined
3837 || h->root.type == bfd_link_hash_defweak))
3838 {
3839 if (h)
3840 name = h->root.root.string;
3841 else
3842 {
3843 name = (bfd_elf_string_from_elf_section
3844 (input_bfd, symtab_hdr->sh_link,
3845 sym->st_name));
3846 if (name == NULL || *name == '\0')
3847 name = bfd_section_name (input_bfd, sec);
3848 }
3849 /* xgettext:c-format */
3850 format = _("unable to reach %s (at %#" PRIx64 ") from "
3851 "the global pointer (at %#" PRIx64 ") "
3852 "because the offset (%" PRId64 ") is out of "
3853 "the allowed range, -32678 to 32767\n" );
3854 asprintf (&msgbuf, format, name,
3855 (uint64_t) symbol_address, (uint64_t) gp,
3856 (int64_t) relocation);
3857 msg = msgbuf;
3858 r = bfd_reloc_outofrange;
3859 }
3860 else
3861 r = _bfd_final_link_relocate (howto, input_bfd,
3862 input_section, contents,
3863 rel->r_offset, relocation,
3864 rel->r_addend);
3865 }
3866 break;
3867 case R_NIOS2_UJMP:
3868 r = nios2_elf32_do_ujmp_relocate (input_bfd, howto,
3869 input_section,
3870 contents, rel->r_offset,
3871 relocation, rel->r_addend);
3872 break;
3873 case R_NIOS2_CJMP:
3874 r = nios2_elf32_do_cjmp_relocate (input_bfd, howto,
3875 input_section,
3876 contents, rel->r_offset,
3877 relocation, rel->r_addend);
3878 break;
3879 case R_NIOS2_CALLR:
3880 r = nios2_elf32_do_callr_relocate (input_bfd, howto,
3881 input_section, contents,
3882 rel->r_offset, relocation,
3883 rel->r_addend);
3884 break;
3885 case R_NIOS2_CALL26:
3886 case R_NIOS2_CALL26_NOAT:
3887 /* If we have a call to an undefined weak symbol, we just want
3888 to stuff a zero in the bits of the call instruction and
3889 bypass the normal call26 relocation handling, because it'll
3890 diagnose an overflow error if address 0 isn't in the same
3891 256MB segment as the call site. Presumably the call
3892 should be guarded by a null check anyway. */
3893 if (h != NULL && h->root.type == bfd_link_hash_undefweak)
3894 {
3895 BFD_ASSERT (relocation == 0 && rel->r_addend == 0);
3896 r = _bfd_final_link_relocate (howto, input_bfd,
3897 input_section, contents,
3898 rel->r_offset, relocation,
3899 rel->r_addend);
3900 break;
3901 }
3902 /* Handle relocations which should use the PLT entry.
3903 NIOS2_BFD_RELOC_32 relocations will use the symbol's value,
3904 which may point to a PLT entry, but we don't need to handle
3905 that here. If we created a PLT entry, all branches in this
3906 object should go to it. */
3907 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
3908 {
3909 /* If we've created a .plt section, and assigned a PLT entry
3910 to this function, it should not be known to bind locally.
3911 If it were, we would have cleared the PLT entry. */
3912 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
3913
3914 relocation = (splt->output_section->vma
3915 + splt->output_offset
3916 + h->plt.offset);
3917
3918 unresolved_reloc = FALSE;
3919 }
3920 /* Detect R_NIOS2_CALL26 relocations that would overflow the
3921 256MB segment. Replace the target with a reference to a
3922 trampoline instead.
3923 Note that htab->stub_group is null if relaxation has been
3924 disabled by the --no-relax linker command-line option, so
3925 we can use that to skip this processing entirely. */
3926 if (howto->type == R_NIOS2_CALL26 && htab->stub_group)
3927 {
3928 bfd_vma dest = relocation + rel->r_addend;
3929 enum elf32_nios2_stub_type stub_type;
3930
3931 eh = (struct elf32_nios2_link_hash_entry *)h;
3932 stub_type = nios2_type_of_stub (input_section, rel, eh,
3933 htab, dest, NULL);
3934
3935 if (stub_type != nios2_stub_none)
3936 {
3937 struct elf32_nios2_stub_hash_entry *hsh;
3938
3939 hsh = nios2_get_stub_entry (input_section, sec,
3940 eh, rel, htab, stub_type);
3941 if (hsh == NULL)
3942 {
3943 r = bfd_reloc_undefined;
3944 break;
3945 }
3946
3947 dest = (hsh->stub_offset
3948 + hsh->stub_sec->output_offset
3949 + hsh->stub_sec->output_section->vma);
3950 r = nios2_elf32_do_call26_relocate (input_bfd, howto,
3951 input_section,
3952 contents,
3953 rel->r_offset,
3954 dest, 0);
3955 break;
3956 }
3957 }
3958
3959 /* Normal case. */
3960 r = nios2_elf32_do_call26_relocate (input_bfd, howto,
3961 input_section, contents,
3962 rel->r_offset, relocation,
3963 rel->r_addend);
3964 break;
3965 case R_NIOS2_ALIGN:
3966 r = bfd_reloc_ok;
3967 /* For symmetry this would be
3968 r = nios2_elf32_do_ignore_reloc (input_bfd, howto,
3969 input_section, contents,
3970 rel->r_offset, relocation,
3971 rel->r_addend);
3972 but do_ignore_reloc would do no more than return
3973 bfd_reloc_ok. */
3974 break;
3975
3976 case R_NIOS2_GOT16:
3977 case R_NIOS2_CALL16:
3978 case R_NIOS2_GOT_LO:
3979 case R_NIOS2_GOT_HA:
3980 case R_NIOS2_CALL_LO:
3981 case R_NIOS2_CALL_HA:
3982 /* Relocation is to the entry for this symbol in the
3983 global offset table. */
3984 if (sgot == NULL)
3985 {
3986 r = bfd_reloc_notsupported;
3987 break;
3988 }
3989
3990 use_plt = 0;
3991
3992 if (h != NULL)
3993 {
3994 bfd_boolean dyn;
3995
3996 eh = (struct elf32_nios2_link_hash_entry *)h;
3997 use_plt = (eh->got_types_used == CALL_USED
3998 && h->plt.offset != (bfd_vma) -1);
3999
4000 off = h->got.offset;
4001 BFD_ASSERT (off != (bfd_vma) -1);
4002 dyn = htab->root.dynamic_sections_created;
4003 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4004 bfd_link_pic (info),
4005 h)
4006 || (bfd_link_pic (info)
4007 && SYMBOL_REFERENCES_LOCAL (info, h))
4008 || ((ELF_ST_VISIBILITY (h->other)
4009 || resolved_to_zero)
4010 && h->root.type == bfd_link_hash_undefweak))
4011 {
4012 /* This is actually a static link, or it is a -Bsymbolic
4013 link and the symbol is defined locally. We must
4014 initialize this entry in the global offset table.
4015 Since the offset must always be a multiple of 4, we
4016 use the least significant bit to record whether we
4017 have initialized it already.
4018
4019 When doing a dynamic link, we create a .rela.got
4020 relocation entry to initialize the value. This is
4021 done in the finish_dynamic_symbol routine. */
4022 if ((off & 1) != 0)
4023 off &= ~1;
4024 else
4025 {
4026 bfd_put_32 (output_bfd, relocation,
4027 sgot->contents + off);
4028 h->got.offset |= 1;
4029 }
4030 }
4031 else
4032 unresolved_reloc = FALSE;
4033 }
4034 else
4035 {
4036 BFD_ASSERT (local_got_offsets != NULL
4037 && local_got_offsets[r_symndx] != (bfd_vma) -1);
4038
4039 off = local_got_offsets[r_symndx];
4040
4041 /* The offset must always be a multiple of 4. We use the
4042 least significant bit to record whether we have already
4043 generated the necessary reloc. */
4044 if ((off & 1) != 0)
4045 off &= ~1;
4046 else
4047 {
4048 bfd_put_32 (output_bfd, relocation,
4049 sgot->contents + off);
4050
4051 if (bfd_link_pic (info))
4052 {
4053 asection *srelgot;
4054 Elf_Internal_Rela outrel;
4055 bfd_byte *loc;
4056
4057 srelgot = htab->root.srelgot;
4058 BFD_ASSERT (srelgot != NULL);
4059
4060 outrel.r_addend = relocation;
4061 outrel.r_offset = (sgot->output_section->vma
4062 + sgot->output_offset
4063 + off);
4064 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
4065 loc = srelgot->contents;
4066 loc += (srelgot->reloc_count++ *
4067 sizeof (Elf32_External_Rela));
4068 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4069 }
4070
4071 local_got_offsets[r_symndx] |= 1;
4072 }
4073 }
4074
4075 if (use_plt && bfd_link_pic (info))
4076 {
4077 off = ((h->plt.offset - 24) / 12 + 3) * 4;
4078 relocation = (htab->root.sgotplt->output_offset + off
4079 - got_base);
4080 }
4081 else
4082 relocation = sgot->output_offset + off - got_base;
4083
4084 /* This relocation does not use the addend. */
4085 rel->r_addend = 0;
4086
4087 switch (howto->type)
4088 {
4089 case R_NIOS2_GOT_LO:
4090 case R_NIOS2_CALL_LO:
4091 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
4092 input_section, contents,
4093 rel->r_offset, relocation,
4094 rel->r_addend);
4095 break;
4096 case R_NIOS2_GOT_HA:
4097 case R_NIOS2_CALL_HA:
4098 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
4099 input_section, contents,
4100 rel->r_offset,
4101 relocation,
4102 rel->r_addend);
4103 break;
4104 default:
4105 r = _bfd_final_link_relocate (howto, input_bfd,
4106 input_section, contents,
4107 rel->r_offset, relocation,
4108 rel->r_addend);
4109 break;
4110 }
4111 break;
4112
4113 case R_NIOS2_GOTOFF_LO:
4114 case R_NIOS2_GOTOFF_HA:
4115 case R_NIOS2_GOTOFF:
4116 /* Relocation is relative to the global offset table pointer. */
4117
4118 BFD_ASSERT (sgot != NULL);
4119 if (sgot == NULL)
4120 {
4121 r = bfd_reloc_notsupported;
4122 break;
4123 }
4124
4125 /* Note that sgot->output_offset is not involved in this
4126 calculation. We always want the start of .got. */
4127 relocation -= sgot->output_section->vma;
4128
4129 /* Now we adjust the relocation to be relative to the GOT pointer
4130 (the _gp_got symbol), which possibly contains the 0x8000 bias. */
4131 relocation -= got_base;
4132
4133 switch (howto->type)
4134 {
4135 case R_NIOS2_GOTOFF_LO:
4136 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
4137 input_section, contents,
4138 rel->r_offset, relocation,
4139 rel->r_addend);
4140 break;
4141 case R_NIOS2_GOTOFF_HA:
4142 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
4143 input_section, contents,
4144 rel->r_offset,
4145 relocation,
4146 rel->r_addend);
4147 break;
4148 default:
4149 r = _bfd_final_link_relocate (howto, input_bfd,
4150 input_section, contents,
4151 rel->r_offset, relocation,
4152 rel->r_addend);
4153 break;
4154 }
4155 break;
4156
4157 case R_NIOS2_TLS_LDO16:
4158 relocation -= dtpoff_base (info) + DTP_OFFSET;
4159
4160 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4161 contents, rel->r_offset,
4162 relocation, rel->r_addend);
4163 break;
4164 case R_NIOS2_TLS_LDM16:
4165 if (htab->root.sgot == NULL)
4166 abort ();
4167
4168 off = htab->tls_ldm_got.offset;
4169
4170 if ((off & 1) != 0)
4171 off &= ~1;
4172 else
4173 {
4174 /* If we don't know the module number, create a relocation
4175 for it. */
4176 if (bfd_link_pic (info))
4177 {
4178 Elf_Internal_Rela outrel;
4179 bfd_byte *loc;
4180
4181 if (htab->root.srelgot == NULL)
4182 abort ();
4183
4184 outrel.r_addend = 0;
4185 outrel.r_offset = (htab->root.sgot->output_section->vma
4186 + htab->root.sgot->output_offset
4187 + off);
4188 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_TLS_DTPMOD);
4189
4190 loc = htab->root.srelgot->contents;
4191 loc += (htab->root.srelgot->reloc_count++
4192 * sizeof (Elf32_External_Rela));
4193 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4194 }
4195 else
4196 bfd_put_32 (output_bfd, 1,
4197 htab->root.sgot->contents + off);
4198
4199 htab->tls_ldm_got.offset |= 1;
4200 }
4201
4202 relocation = htab->root.sgot->output_offset + off - got_base;
4203
4204 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4205 contents, rel->r_offset,
4206 relocation, rel->r_addend);
4207
4208 break;
4209 case R_NIOS2_TLS_GD16:
4210 case R_NIOS2_TLS_IE16:
4211 {
4212 int indx;
4213 char tls_type;
4214
4215 if (htab->root.sgot == NULL)
4216 abort ();
4217
4218 indx = 0;
4219 if (h != NULL)
4220 {
4221 bfd_boolean dyn;
4222 dyn = htab->root.dynamic_sections_created;
4223 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4224 bfd_link_pic (info),
4225 h)
4226 && (!bfd_link_pic (info)
4227 || !SYMBOL_REFERENCES_LOCAL (info, h)))
4228 {
4229 unresolved_reloc = FALSE;
4230 indx = h->dynindx;
4231 }
4232 off = h->got.offset;
4233 tls_type = (((struct elf32_nios2_link_hash_entry *) h)
4234 ->tls_type);
4235 }
4236 else
4237 {
4238 if (local_got_offsets == NULL)
4239 abort ();
4240 off = local_got_offsets[r_symndx];
4241 tls_type = (elf32_nios2_local_got_tls_type (input_bfd)
4242 [r_symndx]);
4243 }
4244
4245 if (tls_type == GOT_UNKNOWN)
4246 abort ();
4247
4248 if ((off & 1) != 0)
4249 off &= ~1;
4250 else
4251 {
4252 bfd_boolean need_relocs = FALSE;
4253 Elf_Internal_Rela outrel;
4254 bfd_byte *loc = NULL;
4255 int cur_off = off;
4256
4257 /* The GOT entries have not been initialized yet. Do it
4258 now, and emit any relocations. If both an IE GOT and a
4259 GD GOT are necessary, we emit the GD first. */
4260
4261 if ((bfd_link_pic (info) || indx != 0)
4262 && (h == NULL
4263 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4264 && !resolved_to_zero)
4265 || h->root.type != bfd_link_hash_undefweak))
4266 {
4267 need_relocs = TRUE;
4268 if (htab->root.srelgot == NULL)
4269 abort ();
4270 loc = htab->root.srelgot->contents;
4271 loc += (htab->root.srelgot->reloc_count *
4272 sizeof (Elf32_External_Rela));
4273 }
4274
4275 if (tls_type & GOT_TLS_GD)
4276 {
4277 if (need_relocs)
4278 {
4279 outrel.r_addend = 0;
4280 outrel.r_offset = (htab->root.sgot->output_section->vma
4281 + htab->root.sgot->output_offset
4282 + cur_off);
4283 outrel.r_info = ELF32_R_INFO (indx,
4284 R_NIOS2_TLS_DTPMOD);
4285
4286 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4287 loc);
4288 htab->root.srelgot->reloc_count++;
4289 loc += sizeof (Elf32_External_Rela);
4290
4291 if (indx == 0)
4292 bfd_put_32 (output_bfd,
4293 (relocation - dtpoff_base (info) -
4294 DTP_OFFSET),
4295 htab->root.sgot->contents + cur_off + 4);
4296 else
4297 {
4298 outrel.r_addend = 0;
4299 outrel.r_info = ELF32_R_INFO (indx,
4300 R_NIOS2_TLS_DTPREL);
4301 outrel.r_offset += 4;
4302
4303 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4304 loc);
4305 htab->root.srelgot->reloc_count++;
4306 loc += sizeof (Elf32_External_Rela);
4307 }
4308 }
4309 else
4310 {
4311 /* If we are not emitting relocations for a
4312 general dynamic reference, then we must be in a
4313 static link or an executable link with the
4314 symbol binding locally. Mark it as belonging
4315 to module 1, the executable. */
4316 bfd_put_32 (output_bfd, 1,
4317 htab->root.sgot->contents + cur_off);
4318 bfd_put_32 (output_bfd, (relocation -
4319 dtpoff_base (info) -
4320 DTP_OFFSET),
4321 htab->root.sgot->contents + cur_off + 4);
4322 }
4323
4324 cur_off += 8;
4325 }
4326
4327 if (tls_type & GOT_TLS_IE)
4328 {
4329 if (need_relocs)
4330 {
4331 if (indx == 0)
4332 outrel.r_addend = (relocation -
4333 dtpoff_base (info));
4334 else
4335 outrel.r_addend = 0;
4336 outrel.r_offset = (htab->root.sgot->output_section->vma
4337 + htab->root.sgot->output_offset
4338 + cur_off);
4339 outrel.r_info = ELF32_R_INFO (indx,
4340 R_NIOS2_TLS_TPREL);
4341
4342 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4343 loc);
4344 htab->root.srelgot->reloc_count++;
4345 loc += sizeof (Elf32_External_Rela);
4346 }
4347 else
4348 bfd_put_32 (output_bfd, (tpoff (info, relocation)
4349 - TP_OFFSET),
4350 htab->root.sgot->contents + cur_off);
4351 cur_off += 4;
4352 }
4353
4354 if (h != NULL)
4355 h->got.offset |= 1;
4356 else
4357 local_got_offsets[r_symndx] |= 1;
4358 }
4359
4360 if ((tls_type & GOT_TLS_GD) && r_type != R_NIOS2_TLS_GD16)
4361 off += 8;
4362 relocation = htab->root.sgot->output_offset + off - got_base;
4363
4364 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4365 contents, rel->r_offset,
4366 relocation, rel->r_addend);
4367 }
4368
4369 break;
4370 case R_NIOS2_TLS_LE16:
4371 if (bfd_link_dll (info))
4372 {
4373 _bfd_error_handler
4374 /* xgettext:c-format */
4375 (_("%pB(%pA+%#" PRIx64 "): %s relocation not "
4376 "permitted in shared object"),
4377 input_bfd, input_section,
4378 (uint64_t) rel->r_offset, howto->name);
4379 return FALSE;
4380 }
4381 else
4382 relocation = tpoff (info, relocation) - TP_OFFSET;
4383
4384 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4385 contents, rel->r_offset,
4386 relocation, rel->r_addend);
4387 break;
4388
4389 case R_NIOS2_BFD_RELOC_32:
4390 if (bfd_link_pic (info)
4391 && (input_section->flags & SEC_ALLOC) != 0
4392 && (h == NULL
4393 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4394 && !resolved_to_zero)
4395 || h->root.type != bfd_link_hash_undefweak))
4396 {
4397 Elf_Internal_Rela outrel;
4398 bfd_byte *loc;
4399 bfd_boolean skip, relocate;
4400
4401 /* When generating a shared object, these relocations
4402 are copied into the output file to be resolved at run
4403 time. */
4404
4405 skip = FALSE;
4406 relocate = FALSE;
4407
4408 outrel.r_offset
4409 = _bfd_elf_section_offset (output_bfd, info,
4410 input_section, rel->r_offset);
4411 if (outrel.r_offset == (bfd_vma) -1)
4412 skip = TRUE;
4413 else if (outrel.r_offset == (bfd_vma) -2)
4414 skip = TRUE, relocate = TRUE;
4415 outrel.r_offset += (input_section->output_section->vma
4416 + input_section->output_offset);
4417
4418 if (skip)
4419 memset (&outrel, 0, sizeof outrel);
4420 else if (h != NULL
4421 && h->dynindx != -1
4422 && (!bfd_link_pic (info)
4423 || !SYMBOLIC_BIND (info, h)
4424 || !h->def_regular))
4425 {
4426 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4427 outrel.r_addend = rel->r_addend;
4428 }
4429 else
4430 {
4431 /* This symbol is local, or marked to become local. */
4432 outrel.r_addend = relocation + rel->r_addend;
4433 relocate = TRUE;
4434 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
4435 }
4436
4437 sreloc = elf_section_data (input_section)->sreloc;
4438 if (sreloc == NULL)
4439 abort ();
4440
4441 loc = sreloc->contents;
4442 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4443 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4444
4445 /* This reloc will be computed at runtime, so there's no
4446 need to do anything now, except for R_NIOS2_BFD_RELOC_32
4447 relocations that have been turned into
4448 R_NIOS2_RELATIVE. */
4449 if (!relocate)
4450 break;
4451 }
4452
4453 r = _bfd_final_link_relocate (howto, input_bfd,
4454 input_section, contents,
4455 rel->r_offset, relocation,
4456 rel->r_addend);
4457 break;
4458
4459 case R_NIOS2_TLS_DTPREL:
4460 relocation -= dtpoff_base (info);
4461 /* Fall through. */
4462
4463 default:
4464 r = _bfd_final_link_relocate (howto, input_bfd,
4465 input_section, contents,
4466 rel->r_offset, relocation,
4467 rel->r_addend);
4468 break;
4469 }
4470 }
4471 else
4472 r = bfd_reloc_notsupported;
4473
4474 if (r != bfd_reloc_ok)
4475 {
4476 if (h != NULL)
4477 name = h->root.root.string;
4478 else
4479 {
4480 name = bfd_elf_string_from_elf_section (input_bfd,
4481 symtab_hdr->sh_link,
4482 sym->st_name);
4483 if (name == NULL || *name == '\0')
4484 name = bfd_section_name (input_bfd, sec);
4485 }
4486
4487 switch (r)
4488 {
4489 case bfd_reloc_overflow:
4490 (*info->callbacks->reloc_overflow) (info, NULL, name,
4491 howto->name, (bfd_vma) 0,
4492 input_bfd, input_section,
4493 rel->r_offset);
4494 break;
4495
4496 case bfd_reloc_undefined:
4497 (*info->callbacks->undefined_symbol) (info, name, input_bfd,
4498 input_section,
4499 rel->r_offset, TRUE);
4500 break;
4501
4502 case bfd_reloc_outofrange:
4503 if (msg == NULL)
4504 msg = _("relocation out of range");
4505 break;
4506
4507 case bfd_reloc_notsupported:
4508 if (msg == NULL)
4509 msg = _("unsupported relocation");
4510 break;
4511
4512 case bfd_reloc_dangerous:
4513 if (msg == NULL)
4514 msg = _("dangerous relocation");
4515 break;
4516
4517 default:
4518 if (msg == NULL)
4519 msg = _("unknown error");
4520 break;
4521 }
4522
4523 if (msg)
4524 {
4525 (*info->callbacks->warning) (info, msg, name, input_bfd,
4526 input_section, rel->r_offset);
4527 if (msgbuf)
4528 free (msgbuf);
4529 return FALSE;
4530 }
4531 }
4532 }
4533 return TRUE;
4534 }
4535
4536 /* Implement elf-backend_section_flags:
4537 Convert NIOS2 specific section flags to bfd internal section flags. */
4538 static bfd_boolean
4539 nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
4540 {
4541 if (hdr->sh_flags & SHF_NIOS2_GPREL)
4542 *flags |= SEC_SMALL_DATA;
4543
4544 return TRUE;
4545 }
4546
4547 /* Implement elf_backend_fake_sections:
4548 Set the correct type for an NIOS2 ELF section. We do this by the
4549 section name, which is a hack, but ought to work. */
4550 static bfd_boolean
4551 nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
4552 Elf_Internal_Shdr *hdr, asection *sec)
4553 {
4554 register const char *name = bfd_get_section_name (abfd, sec);
4555
4556 if ((sec->flags & SEC_SMALL_DATA)
4557 || strcmp (name, ".sdata") == 0
4558 || strcmp (name, ".sbss") == 0
4559 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0)
4560 hdr->sh_flags |= SHF_NIOS2_GPREL;
4561
4562 return TRUE;
4563 }
4564
4565 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
4566 shortcuts to them in our hash table. */
4567 static bfd_boolean
4568 create_got_section (bfd *dynobj, struct bfd_link_info *info)
4569 {
4570 struct elf32_nios2_link_hash_table *htab;
4571 struct elf_link_hash_entry *h;
4572
4573 htab = elf32_nios2_hash_table (info);
4574
4575 if (! _bfd_elf_create_got_section (dynobj, info))
4576 return FALSE;
4577
4578 /* In order for the two loads in .PLTresolve to share the same %hiadj,
4579 _GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary. */
4580 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt, 4))
4581 return FALSE;
4582
4583 /* The Nios II ABI specifies that GOT-relative relocations are relative
4584 to the linker-created symbol _gp_got, rather than using
4585 _GLOBAL_OFFSET_TABLE_ directly. In particular, the latter always
4586 points to the base of the GOT while _gp_got may include a bias. */
4587 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.sgotplt,
4588 "_gp_got");
4589 htab->h_gp_got = h;
4590 if (h == NULL)
4591 return FALSE;
4592
4593 return TRUE;
4594 }
4595
4596 /* Implement elf_backend_create_dynamic_sections:
4597 Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
4598 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
4599 hash table. */
4600 static bfd_boolean
4601 nios2_elf32_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4602 {
4603 struct elf32_nios2_link_hash_table *htab;
4604
4605 htab = elf32_nios2_hash_table (info);
4606 if (!htab->root.sgot && !create_got_section (dynobj, info))
4607 return FALSE;
4608
4609 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4610 return FALSE;
4611
4612 /* In order for the two loads in a shared object .PLTresolve to share the
4613 same %hiadj, the start of the PLT (as well as the GOT) must be aligned
4614 to a 16-byte boundary. This is because the addresses for these loads
4615 include the -(.plt+4) PIC correction. */
4616 return bfd_set_section_alignment (dynobj, htab->root.splt, 4);
4617 }
4618
4619 /* Implement elf_backend_copy_indirect_symbol:
4620 Copy the extra info we tack onto an elf_link_hash_entry. */
4621 static void
4622 nios2_elf32_copy_indirect_symbol (struct bfd_link_info *info,
4623 struct elf_link_hash_entry *dir,
4624 struct elf_link_hash_entry *ind)
4625 {
4626 struct elf32_nios2_link_hash_entry *edir, *eind;
4627
4628 edir = (struct elf32_nios2_link_hash_entry *) dir;
4629 eind = (struct elf32_nios2_link_hash_entry *) ind;
4630
4631 if (eind->dyn_relocs != NULL)
4632 {
4633 if (edir->dyn_relocs != NULL)
4634 {
4635 struct elf_dyn_relocs **pp;
4636 struct elf_dyn_relocs *p;
4637
4638 /* Add reloc counts against the indirect sym to the direct sym
4639 list. Merge any entries against the same section. */
4640 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4641 {
4642 struct elf_dyn_relocs *q;
4643
4644 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4645 if (q->sec == p->sec)
4646 {
4647 q->pc_count += p->pc_count;
4648 q->count += p->count;
4649 *pp = p->next;
4650 break;
4651 }
4652 if (q == NULL)
4653 pp = &p->next;
4654 }
4655 *pp = edir->dyn_relocs;
4656 }
4657
4658 edir->dyn_relocs = eind->dyn_relocs;
4659 eind->dyn_relocs = NULL;
4660 }
4661
4662 if (ind->root.type == bfd_link_hash_indirect
4663 && dir->got.refcount <= 0)
4664 {
4665 edir->tls_type = eind->tls_type;
4666 eind->tls_type = GOT_UNKNOWN;
4667 }
4668
4669 edir->got_types_used |= eind->got_types_used;
4670
4671 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4672 }
4673
4674 /* Set the right machine number for a NIOS2 ELF file. */
4675
4676 static bfd_boolean
4677 nios2_elf32_object_p (bfd *abfd)
4678 {
4679 unsigned long mach;
4680
4681 mach = elf_elfheader (abfd)->e_flags;
4682
4683 switch (mach)
4684 {
4685 default:
4686 case EF_NIOS2_ARCH_R1:
4687 bfd_default_set_arch_mach (abfd, bfd_arch_nios2, bfd_mach_nios2r1);
4688 break;
4689 case EF_NIOS2_ARCH_R2:
4690 bfd_default_set_arch_mach (abfd, bfd_arch_nios2, bfd_mach_nios2r2);
4691 break;
4692 }
4693
4694 return TRUE;
4695 }
4696
4697 /* Implement elf_backend_check_relocs:
4698 Look through the relocs for a section during the first phase. */
4699 static bfd_boolean
4700 nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info,
4701 asection *sec, const Elf_Internal_Rela *relocs)
4702 {
4703 Elf_Internal_Shdr *symtab_hdr;
4704 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4705 const Elf_Internal_Rela *rel;
4706 const Elf_Internal_Rela *rel_end;
4707 struct elf32_nios2_link_hash_table *htab;
4708 asection *sreloc = NULL;
4709 bfd_signed_vma *local_got_refcounts;
4710
4711 if (bfd_link_relocatable (info))
4712 return TRUE;
4713
4714 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4715 sym_hashes = elf_sym_hashes (abfd);
4716 sym_hashes_end = (sym_hashes
4717 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
4718 if (!elf_bad_symtab (abfd))
4719 sym_hashes_end -= symtab_hdr->sh_info;
4720 local_got_refcounts = elf_local_got_refcounts (abfd);
4721
4722 htab = elf32_nios2_hash_table (info);
4723
4724 rel_end = relocs + sec->reloc_count;
4725 for (rel = relocs; rel < rel_end; rel++)
4726 {
4727 unsigned int r_type;
4728 struct elf_link_hash_entry *h;
4729 unsigned long r_symndx;
4730
4731 r_symndx = ELF32_R_SYM (rel->r_info);
4732 if (r_symndx < symtab_hdr->sh_info)
4733 h = NULL;
4734 else
4735 {
4736 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4737 while (h->root.type == bfd_link_hash_indirect
4738 || h->root.type == bfd_link_hash_warning)
4739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4740 }
4741
4742 r_type = ELF32_R_TYPE (rel->r_info);
4743
4744 switch (r_type)
4745 {
4746 case R_NIOS2_GOT16:
4747 case R_NIOS2_GOT_LO:
4748 case R_NIOS2_GOT_HA:
4749 case R_NIOS2_CALL16:
4750 case R_NIOS2_CALL_LO:
4751 case R_NIOS2_CALL_HA:
4752 case R_NIOS2_TLS_GD16:
4753 case R_NIOS2_TLS_IE16:
4754 /* This symbol requires a global offset table entry. */
4755 {
4756 int tls_type, old_tls_type;
4757
4758 switch (r_type)
4759 {
4760 default:
4761 case R_NIOS2_GOT16:
4762 case R_NIOS2_GOT_LO:
4763 case R_NIOS2_GOT_HA:
4764 case R_NIOS2_CALL16:
4765 case R_NIOS2_CALL_LO:
4766 case R_NIOS2_CALL_HA:
4767 tls_type = GOT_NORMAL;
4768 break;
4769 case R_NIOS2_TLS_GD16:
4770 tls_type = GOT_TLS_GD;
4771 break;
4772 case R_NIOS2_TLS_IE16:
4773 tls_type = GOT_TLS_IE;
4774 break;
4775 }
4776
4777 if (h != NULL)
4778 {
4779 struct elf32_nios2_link_hash_entry *eh
4780 = (struct elf32_nios2_link_hash_entry *)h;
4781 h->got.refcount++;
4782 old_tls_type = elf32_nios2_hash_entry(h)->tls_type;
4783 if (r_type == R_NIOS2_CALL16
4784 || r_type == R_NIOS2_CALL_LO
4785 || r_type == R_NIOS2_CALL_HA)
4786 {
4787 /* Make sure a plt entry is created for this symbol if
4788 it turns out to be a function defined by a dynamic
4789 object. */
4790 h->plt.refcount++;
4791 h->needs_plt = 1;
4792 h->type = STT_FUNC;
4793 eh->got_types_used |= CALL_USED;
4794 }
4795 else
4796 eh->got_types_used |= GOT_USED;
4797 }
4798 else
4799 {
4800 /* This is a global offset table entry for a local symbol. */
4801 if (local_got_refcounts == NULL)
4802 {
4803 bfd_size_type size;
4804
4805 size = symtab_hdr->sh_info;
4806 size *= (sizeof (bfd_signed_vma) + sizeof (char));
4807 local_got_refcounts
4808 = ((bfd_signed_vma *) bfd_zalloc (abfd, size));
4809 if (local_got_refcounts == NULL)
4810 return FALSE;
4811 elf_local_got_refcounts (abfd) = local_got_refcounts;
4812 elf32_nios2_local_got_tls_type (abfd)
4813 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
4814 }
4815 local_got_refcounts[r_symndx]++;
4816 old_tls_type = elf32_nios2_local_got_tls_type (abfd) [r_symndx];
4817 }
4818
4819 /* We will already have issued an error message if there is a
4820 TLS / non-TLS mismatch, based on the symbol type. We don't
4821 support any linker relaxations. So just combine any TLS
4822 types needed. */
4823 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
4824 && tls_type != GOT_NORMAL)
4825 tls_type |= old_tls_type;
4826
4827 if (old_tls_type != tls_type)
4828 {
4829 if (h != NULL)
4830 elf32_nios2_hash_entry (h)->tls_type = tls_type;
4831 else
4832 elf32_nios2_local_got_tls_type (abfd) [r_symndx] = tls_type;
4833 }
4834 }
4835 make_got:
4836 if (htab->root.sgot == NULL)
4837 {
4838 if (htab->root.dynobj == NULL)
4839 htab->root.dynobj = abfd;
4840 if (!create_got_section (htab->root.dynobj, info))
4841 return FALSE;
4842 }
4843 break;
4844
4845 case R_NIOS2_TLS_LDM16:
4846 htab->tls_ldm_got.refcount++;
4847 goto make_got;
4848
4849 /* This relocation describes the C++ object vtable hierarchy.
4850 Reconstruct it for later use during GC. */
4851 case R_NIOS2_GNU_VTINHERIT:
4852 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4853 return FALSE;
4854 break;
4855
4856 /* This relocation describes which C++ vtable entries are actually
4857 used. Record for later use during GC. */
4858 case R_NIOS2_GNU_VTENTRY:
4859 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4860 return FALSE;
4861 break;
4862
4863 case R_NIOS2_BFD_RELOC_32:
4864 case R_NIOS2_CALL26:
4865 case R_NIOS2_CALL26_NOAT:
4866 case R_NIOS2_HIADJ16:
4867 case R_NIOS2_LO16:
4868
4869 if (h != NULL)
4870 {
4871 /* If this reloc is in a read-only section, we might
4872 need a copy reloc. We can't check reliably at this
4873 stage whether the section is read-only, as input
4874 sections have not yet been mapped to output sections.
4875 Tentatively set the flag for now, and correct in
4876 adjust_dynamic_symbol. */
4877 if (!bfd_link_pic (info))
4878 h->non_got_ref = 1;
4879
4880 /* Make sure a plt entry is created for this symbol if it
4881 turns out to be a function defined by a dynamic object. */
4882 h->plt.refcount++;
4883
4884 if (r_type == R_NIOS2_CALL26 || r_type == R_NIOS2_CALL26_NOAT)
4885 h->needs_plt = 1;
4886 }
4887
4888 /* If we are creating a shared library, we need to copy the
4889 reloc into the shared library. */
4890 if (bfd_link_pic (info)
4891 && (sec->flags & SEC_ALLOC) != 0
4892 && (r_type == R_NIOS2_BFD_RELOC_32
4893 || (h != NULL && ! h->needs_plt
4894 && (! SYMBOLIC_BIND (info, h) || ! h->def_regular))))
4895 {
4896 struct elf_dyn_relocs *p;
4897 struct elf_dyn_relocs **head;
4898
4899 /* When creating a shared object, we must copy these
4900 reloc types into the output file. We create a reloc
4901 section in dynobj and make room for this reloc. */
4902 if (sreloc == NULL)
4903 {
4904 if (htab->root.dynobj == NULL)
4905 htab->root.dynobj = abfd;
4906
4907 sreloc = _bfd_elf_make_dynamic_reloc_section
4908 (sec, htab->root.dynobj, 2, abfd, TRUE);
4909 if (sreloc == NULL)
4910 return FALSE;
4911 }
4912
4913 /* If this is a global symbol, we count the number of
4914 relocations we need for this symbol. */
4915 if (h != NULL)
4916 head = &((struct elf32_nios2_link_hash_entry *) h)->dyn_relocs;
4917 else
4918 {
4919 /* Track dynamic relocs needed for local syms too.
4920 We really need local syms available to do this
4921 easily. Oh well. */
4922
4923 asection *s;
4924 void *vpp;
4925 Elf_Internal_Sym *isym;
4926
4927 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4928 abfd, r_symndx);
4929 if (isym == NULL)
4930 return FALSE;
4931
4932 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
4933 if (s == NULL)
4934 s = sec;
4935
4936 vpp = &elf_section_data (s)->local_dynrel;
4937 head = (struct elf_dyn_relocs **) vpp;
4938 }
4939
4940 p = *head;
4941 if (p == NULL || p->sec != sec)
4942 {
4943 bfd_size_type amt = sizeof *p;
4944 p = ((struct elf_dyn_relocs *)
4945 bfd_alloc (htab->root.dynobj, amt));
4946 if (p == NULL)
4947 return FALSE;
4948 p->next = *head;
4949 *head = p;
4950 p->sec = sec;
4951 p->count = 0;
4952 p->pc_count = 0;
4953 }
4954
4955 p->count += 1;
4956
4957 }
4958 break;
4959 }
4960 }
4961
4962 return TRUE;
4963 }
4964
4965
4966 /* Implement elf_backend_gc_mark_hook:
4967 Return the section that should be marked against GC for a given
4968 relocation. */
4969 static asection *
4970 nios2_elf32_gc_mark_hook (asection *sec,
4971 struct bfd_link_info *info,
4972 Elf_Internal_Rela *rel,
4973 struct elf_link_hash_entry *h,
4974 Elf_Internal_Sym *sym)
4975 {
4976 if (h != NULL)
4977 switch (ELF32_R_TYPE (rel->r_info))
4978 {
4979 case R_NIOS2_GNU_VTINHERIT:
4980 case R_NIOS2_GNU_VTENTRY:
4981 return NULL;
4982 }
4983 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
4984 }
4985
4986 /* Implement elf_backend_finish_dynamic_symbols:
4987 Finish up dynamic symbol handling. We set the contents of various
4988 dynamic sections here. */
4989 static bfd_boolean
4990 nios2_elf32_finish_dynamic_symbol (bfd *output_bfd,
4991 struct bfd_link_info *info,
4992 struct elf_link_hash_entry *h,
4993 Elf_Internal_Sym *sym)
4994 {
4995 struct elf32_nios2_link_hash_table *htab;
4996 struct elf32_nios2_link_hash_entry *eh
4997 = (struct elf32_nios2_link_hash_entry *)h;
4998 int use_plt;
4999
5000 htab = elf32_nios2_hash_table (info);
5001
5002 if (h->plt.offset != (bfd_vma) -1)
5003 {
5004 asection *splt;
5005 asection *sgotplt;
5006 asection *srela;
5007 bfd_vma plt_index;
5008 bfd_vma got_offset;
5009 Elf_Internal_Rela rela;
5010 bfd_byte *loc;
5011 bfd_vma got_address;
5012
5013 /* This symbol has an entry in the procedure linkage table. Set
5014 it up. */
5015 BFD_ASSERT (h->dynindx != -1);
5016 splt = htab->root.splt;
5017 sgotplt = htab->root.sgotplt;
5018 srela = htab->root.srelplt;
5019 BFD_ASSERT (splt != NULL && sgotplt != NULL && srela != NULL);
5020
5021 /* Emit the PLT entry. */
5022 if (bfd_link_pic (info))
5023 {
5024 nios2_elf32_install_data (splt, nios2_so_plt_entry, h->plt.offset,
5025 3);
5026 plt_index = (h->plt.offset - 24) / 12;
5027 got_offset = (plt_index + 3) * 4;
5028 nios2_elf32_install_imm16 (splt, h->plt.offset,
5029 hiadj(plt_index * 4));
5030 nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
5031 (plt_index * 4) & 0xffff);
5032 nios2_elf32_install_imm16 (splt, h->plt.offset + 8,
5033 0xfff4 - h->plt.offset);
5034 got_address = (sgotplt->output_section->vma + sgotplt->output_offset
5035 + got_offset);
5036
5037 /* Fill in the entry in the global offset table. There are no
5038 res_n slots for a shared object PLT, instead the .got.plt entries
5039 point to the PLT entries. */
5040 bfd_put_32 (output_bfd,
5041 splt->output_section->vma + splt->output_offset
5042 + h->plt.offset, sgotplt->contents + got_offset);
5043 }
5044 else
5045 {
5046 plt_index = (h->plt.offset - 28 - htab->res_n_size) / 12;
5047 got_offset = (plt_index + 3) * 4;
5048
5049 nios2_elf32_install_data (splt, nios2_plt_entry, h->plt.offset, 3);
5050 got_address = (sgotplt->output_section->vma + sgotplt->output_offset
5051 + got_offset);
5052 nios2_elf32_install_imm16 (splt, h->plt.offset, hiadj(got_address));
5053 nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
5054 got_address & 0xffff);
5055
5056 /* Fill in the entry in the global offset table. */
5057 bfd_put_32 (output_bfd,
5058 splt->output_section->vma + splt->output_offset
5059 + plt_index * 4, sgotplt->contents + got_offset);
5060 }
5061
5062 /* Fill in the entry in the .rela.plt section. */
5063 rela.r_offset = got_address;
5064 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_JUMP_SLOT);
5065 rela.r_addend = 0;
5066 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
5067 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5068
5069 if (!h->def_regular)
5070 {
5071 /* Mark the symbol as undefined, rather than as defined in
5072 the .plt section. Leave the value alone. */
5073 sym->st_shndx = SHN_UNDEF;
5074 /* If the symbol is weak, we do need to clear the value.
5075 Otherwise, the PLT entry would provide a definition for
5076 the symbol even if the symbol wasn't defined anywhere,
5077 and so the symbol would never be NULL. */
5078 if (!h->ref_regular_nonweak)
5079 sym->st_value = 0;
5080 }
5081 }
5082
5083 use_plt = (eh->got_types_used == CALL_USED
5084 && h->plt.offset != (bfd_vma) -1);
5085
5086 if (!use_plt && h->got.offset != (bfd_vma) -1
5087 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
5088 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
5089 {
5090 asection *sgot;
5091 asection *srela;
5092 Elf_Internal_Rela rela;
5093 bfd_byte *loc;
5094 bfd_vma offset;
5095
5096 /* This symbol has an entry in the global offset table. Set it
5097 up. */
5098 sgot = htab->root.sgot;
5099 srela = htab->root.srelgot;
5100 BFD_ASSERT (sgot != NULL && srela != NULL);
5101
5102 offset = (h->got.offset & ~(bfd_vma) 1);
5103 rela.r_offset = (sgot->output_section->vma
5104 + sgot->output_offset + offset);
5105
5106 /* If this is a -Bsymbolic link, and the symbol is defined
5107 locally, we just want to emit a RELATIVE reloc. Likewise if
5108 the symbol was forced to be local because of a version file.
5109 The entry in the global offset table will already have been
5110 initialized in the relocate_section function. */
5111
5112 if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
5113 {
5114 rela.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
5115 rela.r_addend = bfd_get_signed_32 (output_bfd,
5116 (sgot->contents + offset));
5117 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
5118 }
5119 else
5120 {
5121 bfd_put_32 (output_bfd, (bfd_vma) 0,
5122 sgot->contents + offset);
5123 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_GLOB_DAT);
5124 rela.r_addend = 0;
5125 }
5126
5127 loc = srela->contents;
5128 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
5129 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5130 }
5131
5132 if (use_plt && h->got.offset != (bfd_vma) -1)
5133 {
5134 bfd_vma offset = (h->got.offset & ~(bfd_vma) 1);
5135 asection *sgot = htab->root.sgot;
5136 asection *splt = htab->root.splt;
5137 bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset
5138 + h->plt.offset),
5139 sgot->contents + offset);
5140 }
5141
5142 if (h->needs_copy)
5143 {
5144 asection *s;
5145 Elf_Internal_Rela rela;
5146 bfd_byte *loc;
5147
5148 /* This symbol needs a copy reloc. Set it up. */
5149 BFD_ASSERT (h->dynindx != -1
5150 && (h->root.type == bfd_link_hash_defined
5151 || h->root.type == bfd_link_hash_defweak));
5152
5153 rela.r_offset = (h->root.u.def.value
5154 + h->root.u.def.section->output_section->vma
5155 + h->root.u.def.section->output_offset);
5156 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_COPY);
5157 rela.r_addend = 0;
5158 if (h->root.u.def.section == htab->root.sdynrelro)
5159 s = htab->root.sreldynrelro;
5160 else
5161 s = htab->root.srelbss;
5162 BFD_ASSERT (s != NULL);
5163 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5164 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5165 }
5166
5167 /* Mark _DYNAMIC, _GLOBAL_OFFSET_TABLE_, and _gp_got as absolute. */
5168 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5169 || h == htab->root.hgot
5170 || h == htab->h_gp_got)
5171 sym->st_shndx = SHN_ABS;
5172
5173 return TRUE;
5174 }
5175
5176 /* Implement elf_backend_finish_dynamic_sections. */
5177 static bfd_boolean
5178 nios2_elf32_finish_dynamic_sections (bfd *output_bfd,
5179 struct bfd_link_info *info)
5180 {
5181 asection *sgotplt;
5182 asection *sdyn;
5183 struct elf32_nios2_link_hash_table *htab;
5184
5185 htab = elf32_nios2_hash_table (info);
5186 sgotplt = htab->root.sgotplt;
5187 sdyn = NULL;
5188
5189 if (htab->root.dynamic_sections_created)
5190 {
5191 asection *splt;
5192 Elf32_External_Dyn *dyncon, *dynconend;
5193
5194 splt = htab->root.splt;
5195 sdyn = bfd_get_linker_section (htab->root.dynobj, ".dynamic");
5196 BFD_ASSERT (splt != NULL && sdyn != NULL && sgotplt != NULL);
5197
5198 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5199 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5200 for (; dyncon < dynconend; dyncon++)
5201 {
5202 Elf_Internal_Dyn dyn;
5203 asection *s;
5204
5205 bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
5206
5207 switch (dyn.d_tag)
5208 {
5209 default:
5210 break;
5211
5212 case DT_PLTGOT:
5213 s = htab->root.sgotplt;
5214 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5215 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5216 break;
5217
5218 case DT_JMPREL:
5219 s = htab->root.srelplt;
5220 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5221 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5222 break;
5223
5224 case DT_PLTRELSZ:
5225 s = htab->root.srelplt;
5226 dyn.d_un.d_val = s->size;
5227 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5228 break;
5229
5230 case DT_NIOS2_GP:
5231 s = htab->root.sgotplt;
5232 dyn.d_un.d_ptr
5233 = s->output_section->vma + s->output_offset + 0x7ff0;
5234 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5235 break;
5236 }
5237 }
5238
5239 /* Fill in the first entry in the procedure linkage table. */
5240 if (splt->size > 0)
5241 {
5242 bfd_vma got_address = (sgotplt->output_section->vma
5243 + sgotplt->output_offset);
5244 if (bfd_link_pic (info))
5245 {
5246 bfd_vma got_pcrel = got_address - (splt->output_section->vma
5247 + splt->output_offset);
5248 /* Both GOT and PLT must be aligned to a 16-byte boundary
5249 for the two loads to share the %hiadj part. The 4-byte
5250 offset for nextpc is accounted for in the %lo offsets
5251 on the loads. */
5252 BFD_ASSERT ((got_pcrel & 0xf) == 0);
5253 nios2_elf32_install_data (splt, nios2_so_plt0_entry, 0, 6);
5254 nios2_elf32_install_imm16 (splt, 4, hiadj (got_pcrel));
5255 nios2_elf32_install_imm16 (splt, 12, got_pcrel & 0xffff);
5256 nios2_elf32_install_imm16 (splt, 16, (got_pcrel + 4) & 0xffff);
5257 }
5258 else
5259 {
5260 /* Divide by 4 here, not 3 because we already corrected for the
5261 res_N branches. */
5262 bfd_vma res_size = (splt->size - 28) / 4;
5263 bfd_vma res_start = (splt->output_section->vma
5264 + splt->output_offset);
5265 bfd_vma res_offset;
5266
5267 for (res_offset = 0; res_offset < res_size; res_offset += 4)
5268 bfd_put_32 (output_bfd,
5269 6 | ((res_size - (res_offset + 4)) << 6),
5270 splt->contents + res_offset);
5271
5272 /* The GOT must be aligned to a 16-byte boundary for the
5273 two loads to share the same %hiadj part. */
5274 BFD_ASSERT ((got_address & 0xf) == 0);
5275
5276 nios2_elf32_install_data (splt, nios2_plt0_entry, res_size, 7);
5277 nios2_elf32_install_imm16 (splt, res_size, hiadj (res_start));
5278 nios2_elf32_install_imm16 (splt, res_size + 4,
5279 res_start & 0xffff);
5280 nios2_elf32_install_imm16 (splt, res_size + 12,
5281 hiadj (got_address));
5282 nios2_elf32_install_imm16 (splt, res_size + 16,
5283 (got_address + 4) & 0xffff);
5284 nios2_elf32_install_imm16 (splt, res_size + 20,
5285 (got_address + 8) & 0xffff);
5286 }
5287 }
5288 }
5289
5290 /* Fill in the first three entries in the global offset table. */
5291 if (sgotplt != NULL && sgotplt->size > 0)
5292 {
5293 if (sdyn == NULL)
5294 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents);
5295 else
5296 bfd_put_32 (output_bfd,
5297 sdyn->output_section->vma + sdyn->output_offset,
5298 sgotplt->contents);
5299 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 4);
5300 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 8);
5301
5302 if (sgotplt->output_section != bfd_abs_section_ptr)
5303 elf_section_data (sgotplt->output_section)->this_hdr.sh_entsize = 4;
5304 }
5305
5306 return TRUE;
5307 }
5308
5309 /* Implement elf_backend_adjust_dynamic_symbol:
5310 Adjust a symbol defined by a dynamic object and referenced by a
5311 regular object. The current definition is in some section of the
5312 dynamic object, but we're not including those sections. We have to
5313 change the definition to something the rest of the link can
5314 understand. */
5315 static bfd_boolean
5316 nios2_elf32_adjust_dynamic_symbol (struct bfd_link_info *info,
5317 struct elf_link_hash_entry *h)
5318 {
5319 struct elf32_nios2_link_hash_table *htab;
5320 bfd *dynobj;
5321 asection *s, *srel;
5322 unsigned align2;
5323
5324 htab = elf32_nios2_hash_table (info);
5325 dynobj = htab->root.dynobj;
5326
5327 /* Make sure we know what is going on here. */
5328 BFD_ASSERT (dynobj != NULL
5329 && (h->needs_plt
5330 || h->is_weakalias
5331 || (h->def_dynamic
5332 && h->ref_regular
5333 && !h->def_regular)));
5334
5335 /* If this is a function, put it in the procedure linkage table. We
5336 will fill in the contents of the procedure linkage table later,
5337 when we know the address of the .got section. */
5338 if (h->type == STT_FUNC || h->needs_plt)
5339 {
5340 if (h->plt.refcount <= 0
5341 || SYMBOL_CALLS_LOCAL (info, h)
5342 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5343 && h->root.type == bfd_link_hash_undefweak))
5344 {
5345 /* This case can occur if we saw a PLT reloc in an input
5346 file, but the symbol was never referred to by a dynamic
5347 object, or if all references were garbage collected. In
5348 such a case, we don't actually need to build a procedure
5349 linkage table, and we can just do a PCREL reloc instead. */
5350 h->plt.offset = (bfd_vma) -1;
5351 h->needs_plt = 0;
5352 }
5353
5354 return TRUE;
5355 }
5356
5357 /* Reinitialize the plt offset now that it is not used as a reference
5358 count any more. */
5359 h->plt.offset = (bfd_vma) -1;
5360
5361 /* If this is a weak symbol, and there is a real definition, the
5362 processor independent code will have arranged for us to see the
5363 real definition first, and we can just use the same value. */
5364 if (h->is_weakalias)
5365 {
5366 struct elf_link_hash_entry *def = weakdef (h);
5367 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
5368 h->root.u.def.section = def->root.u.def.section;
5369 h->root.u.def.value = def->root.u.def.value;
5370 return TRUE;
5371 }
5372
5373 /* If there are no non-GOT references, we do not need a copy
5374 relocation. */
5375 if (!h->non_got_ref)
5376 return TRUE;
5377
5378 /* This is a reference to a symbol defined by a dynamic object which
5379 is not a function.
5380 If we are creating a shared library, we must presume that the
5381 only references to the symbol are via the global offset table.
5382 For such cases we need not do anything here; the relocations will
5383 be handled correctly by relocate_section. */
5384 if (bfd_link_pic (info))
5385 return TRUE;
5386
5387 if (h->size == 0)
5388 {
5389 _bfd_error_handler (_("dynamic variable `%s' is zero size"),
5390 h->root.root.string);
5391 return TRUE;
5392 }
5393
5394 /* We must allocate the symbol in our .dynbss section, which will
5395 become part of the .bss section of the executable. There will be
5396 an entry for this symbol in the .dynsym section. The dynamic
5397 object will contain position independent code, so all references
5398 from the dynamic object to this symbol will go through the global
5399 offset table. The dynamic linker will use the .dynsym entry to
5400 determine the address it must put in the global offset table, so
5401 both the dynamic object and the regular object will refer to the
5402 same memory location for the variable. */
5403 /* We must generate a R_NIOS2_COPY reloc to tell the dynamic linker to
5404 copy the initial value out of the dynamic object and into the
5405 runtime process image. We need to remember the offset into the
5406 .rela.bss section we are going to use. */
5407 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5408 {
5409 s = htab->root.sdynrelro;
5410 srel = htab->root.sreldynrelro;
5411 }
5412 else
5413 {
5414 s = htab->root.sdynbss;
5415 srel = htab->root.srelbss;
5416 }
5417 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5418 {
5419 srel->size += sizeof (Elf32_External_Rela);
5420 h->needs_copy = 1;
5421 }
5422
5423 align2 = bfd_log2 (h->size);
5424 if (align2 > h->root.u.def.section->alignment_power)
5425 align2 = h->root.u.def.section->alignment_power;
5426
5427 /* Align dynbss. */
5428 s->size = BFD_ALIGN (s->size, (bfd_size_type)1 << align2);
5429 if (align2 > bfd_get_section_alignment (dynobj, s)
5430 && !bfd_set_section_alignment (dynobj, s, align2))
5431 return FALSE;
5432
5433 /* Define the symbol as being at this point in the section. */
5434 h->root.u.def.section = s;
5435 h->root.u.def.value = s->size;
5436
5437 /* Increment the section size to make room for the symbol. */
5438 s->size += h->size;
5439
5440 return TRUE;
5441 }
5442
5443 /* Worker function for nios2_elf32_size_dynamic_sections. */
5444 static bfd_boolean
5445 adjust_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
5446 {
5447 struct bfd_link_info *info;
5448 struct elf32_nios2_link_hash_table *htab;
5449
5450 if (h->root.type == bfd_link_hash_indirect)
5451 return TRUE;
5452
5453 if (h->root.type == bfd_link_hash_warning)
5454 /* When warning symbols are created, they **replace** the "real"
5455 entry in the hash table, thus we never get to see the real
5456 symbol in a hash traversal. So look at it now. */
5457 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5458
5459 info = (struct bfd_link_info *) inf;
5460 htab = elf32_nios2_hash_table (info);
5461
5462 if (h->plt.offset != (bfd_vma)-1)
5463 h->plt.offset += htab->res_n_size;
5464 if (htab->root.splt == h->root.u.def.section)
5465 h->root.u.def.value += htab->res_n_size;
5466
5467 return TRUE;
5468 }
5469
5470 /* Another worker function for nios2_elf32_size_dynamic_sections.
5471 Allocate space in .plt, .got and associated reloc sections for
5472 dynamic relocs. */
5473 static bfd_boolean
5474 allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
5475 {
5476 struct bfd_link_info *info;
5477 struct elf32_nios2_link_hash_table *htab;
5478 struct elf32_nios2_link_hash_entry *eh;
5479 struct elf_dyn_relocs *p;
5480 int use_plt;
5481
5482 if (h->root.type == bfd_link_hash_indirect)
5483 return TRUE;
5484
5485 if (h->root.type == bfd_link_hash_warning)
5486 /* When warning symbols are created, they **replace** the "real"
5487 entry in the hash table, thus we never get to see the real
5488 symbol in a hash traversal. So look at it now. */
5489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5490
5491 info = (struct bfd_link_info *) inf;
5492 htab = elf32_nios2_hash_table (info);
5493
5494 if (htab->root.dynamic_sections_created
5495 && h->plt.refcount > 0)
5496 {
5497 /* Make sure this symbol is output as a dynamic symbol.
5498 Undefined weak syms won't yet be marked as dynamic. */
5499 if (h->dynindx == -1
5500 && !h->forced_local
5501 && !bfd_elf_link_record_dynamic_symbol (info, h))
5502 return FALSE;
5503
5504 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
5505 {
5506 asection *s = htab->root.splt;
5507
5508 /* Allocate room for the header. */
5509 if (s->size == 0)
5510 {
5511 if (bfd_link_pic (info))
5512 s->size = 24;
5513 else
5514 s->size = 28;
5515 }
5516
5517 h->plt.offset = s->size;
5518
5519 /* If this symbol is not defined in a regular file, and we are
5520 not generating a shared library, then set the symbol to this
5521 location in the .plt. This is required to make function
5522 pointers compare as equal between the normal executable and
5523 the shared library. */
5524 if (! bfd_link_pic (info)
5525 && !h->def_regular)
5526 {
5527 h->root.u.def.section = s;
5528 h->root.u.def.value = h->plt.offset;
5529 }
5530
5531 /* Make room for this entry. */
5532 s->size += 12;
5533
5534 /* We also need to make an entry in the .rela.plt section. */
5535 htab->root.srelplt->size += sizeof (Elf32_External_Rela);
5536
5537 /* And the .got.plt section. */
5538 htab->root.sgotplt->size += 4;
5539 }
5540 else
5541 {
5542 h->plt.offset = (bfd_vma) -1;
5543 h->needs_plt = 0;
5544 }
5545 }
5546 else
5547 {
5548 h->plt.offset = (bfd_vma) -1;
5549 h->needs_plt = 0;
5550 }
5551
5552 eh = (struct elf32_nios2_link_hash_entry *) h;
5553 use_plt = (eh->got_types_used == CALL_USED
5554 && h->plt.offset != (bfd_vma) -1);
5555
5556 if (h->got.refcount > 0)
5557 {
5558 asection *s;
5559 bfd_boolean dyn;
5560 int tls_type = eh->tls_type;
5561 int indx;
5562
5563 /* Make sure this symbol is output as a dynamic symbol.
5564 Undefined weak syms won't yet be marked as dynamic. */
5565 if (h->dynindx == -1
5566 && !h->forced_local
5567 && !bfd_elf_link_record_dynamic_symbol (info, h))
5568 return FALSE;
5569
5570 s = htab->root.sgot;
5571 h->got.offset = s->size;
5572
5573 if (tls_type == GOT_UNKNOWN)
5574 abort ();
5575
5576 if (tls_type == GOT_NORMAL)
5577 /* Non-TLS symbols need one GOT slot. */
5578 s->size += 4;
5579 else
5580 {
5581 if (tls_type & GOT_TLS_GD)
5582 /* R_NIOS2_TLS_GD16 needs 2 consecutive GOT slots. */
5583 s->size += 8;
5584 if (tls_type & GOT_TLS_IE)
5585 /* R_NIOS2_TLS_IE16 needs one GOT slot. */
5586 s->size += 4;
5587 }
5588
5589 dyn = htab->root.dynamic_sections_created;
5590
5591 indx = 0;
5592 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
5593 && (!bfd_link_pic (info)
5594 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5595 indx = h->dynindx;
5596
5597 if (tls_type != GOT_NORMAL
5598 && (bfd_link_pic (info) || indx != 0)
5599 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5600 || h->root.type != bfd_link_hash_undefweak))
5601 {
5602 if (tls_type & GOT_TLS_IE)
5603 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5604
5605 if (tls_type & GOT_TLS_GD)
5606 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5607
5608 if ((tls_type & GOT_TLS_GD) && indx != 0)
5609 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5610 }
5611 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5612 || h->root.type != bfd_link_hash_undefweak)
5613 && !use_plt
5614 && (bfd_link_pic (info)
5615 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
5616 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5617 }
5618 else
5619 h->got.offset = (bfd_vma) -1;
5620
5621 if (eh->dyn_relocs == NULL)
5622 return TRUE;
5623
5624 /* In the shared -Bsymbolic case, discard space allocated for
5625 dynamic pc-relative relocs against symbols which turn out to be
5626 defined in regular objects. For the normal shared case, discard
5627 space for pc-relative relocs that have become local due to symbol
5628 visibility changes. */
5629
5630 if (bfd_link_pic (info))
5631 {
5632 if (h->def_regular
5633 && (h->forced_local || SYMBOLIC_BIND (info, h)))
5634 {
5635 struct elf_dyn_relocs **pp;
5636
5637 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
5638 {
5639 p->count -= p->pc_count;
5640 p->pc_count = 0;
5641 if (p->count == 0)
5642 *pp = p->next;
5643 else
5644 pp = &p->next;
5645 }
5646 }
5647
5648 /* Also discard relocs on undefined weak syms with non-default
5649 visibility. */
5650 if (eh->dyn_relocs != NULL
5651 && h->root.type == bfd_link_hash_undefweak)
5652 {
5653 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5654 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
5655 eh->dyn_relocs = NULL;
5656
5657 /* Make sure undefined weak symbols are output as a dynamic
5658 symbol in PIEs. */
5659 else if (h->dynindx == -1
5660 && !h->forced_local
5661 && !bfd_elf_link_record_dynamic_symbol (info, h))
5662 return FALSE;
5663 }
5664 }
5665 else
5666 {
5667 /* For the non-shared case, discard space for relocs against
5668 symbols which turn out to need copy relocs or are not
5669 dynamic. */
5670
5671 if (!h->non_got_ref
5672 && ((h->def_dynamic && !h->def_regular)
5673 || (htab->root.dynamic_sections_created
5674 && (h->root.type == bfd_link_hash_undefweak
5675 || h->root.type == bfd_link_hash_undefined))))
5676 {
5677 /* Make sure this symbol is output as a dynamic symbol.
5678 Undefined weak syms won't yet be marked as dynamic. */
5679 if (h->dynindx == -1
5680 && !h->forced_local
5681 && !bfd_elf_link_record_dynamic_symbol (info, h))
5682 return FALSE;
5683
5684 /* If that succeeded, we know we'll be keeping all the
5685 relocs. */
5686 if (h->dynindx != -1)
5687 goto keep;
5688 }
5689
5690 eh->dyn_relocs = NULL;
5691
5692 keep: ;
5693 }
5694
5695 /* Finally, allocate space. */
5696 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5697 {
5698 asection *sreloc = elf_section_data (p->sec)->sreloc;
5699 sreloc->size += p->count * sizeof (Elf32_External_Rela);
5700 }
5701
5702 return TRUE;
5703 }
5704
5705 /* Implement elf_backend_size_dynamic_sections:
5706 Set the sizes of the dynamic sections. */
5707 static bfd_boolean
5708 nios2_elf32_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
5709 struct bfd_link_info *info)
5710 {
5711 bfd *dynobj;
5712 asection *s;
5713 bfd_boolean relocs;
5714 bfd *ibfd;
5715 struct elf32_nios2_link_hash_table *htab;
5716
5717 htab = elf32_nios2_hash_table (info);
5718 dynobj = htab->root.dynobj;
5719 BFD_ASSERT (dynobj != NULL);
5720
5721 htab->res_n_size = 0;
5722 if (htab->root.dynamic_sections_created)
5723 {
5724 /* Set the contents of the .interp section to the interpreter. */
5725 if (bfd_link_executable (info) && !info->nointerp)
5726 {
5727 s = bfd_get_linker_section (dynobj, ".interp");
5728 BFD_ASSERT (s != NULL);
5729 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5730 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5731 }
5732 }
5733 else
5734 {
5735 /* We may have created entries in the .rela.got section.
5736 However, if we are not creating the dynamic sections, we will
5737 not actually use these entries. Reset the size of .rela.got,
5738 which will cause it to get stripped from the output file
5739 below. */
5740 s = htab->root.srelgot;
5741 if (s != NULL)
5742 s->size = 0;
5743 }
5744
5745 /* Set up .got offsets for local syms, and space for local dynamic
5746 relocs. */
5747 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5748 {
5749 bfd_signed_vma *local_got;
5750 bfd_signed_vma *end_local_got;
5751 char *local_tls_type;
5752 bfd_size_type locsymcount;
5753 Elf_Internal_Shdr *symtab_hdr;
5754 asection *srel;
5755
5756 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
5757 continue;
5758
5759 for (s = ibfd->sections; s != NULL; s = s->next)
5760 {
5761 struct elf_dyn_relocs *p;
5762
5763 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5764 {
5765 if (!bfd_is_abs_section (p->sec)
5766 && bfd_is_abs_section (p->sec->output_section))
5767 {
5768 /* Input section has been discarded, either because
5769 it is a copy of a linkonce section or due to
5770 linker script /DISCARD/, so we'll be discarding
5771 the relocs too. */
5772 }
5773 else if (p->count != 0)
5774 {
5775 srel = elf_section_data (p->sec)->sreloc;
5776 srel->size += p->count * sizeof (Elf32_External_Rela);
5777 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5778 info->flags |= DF_TEXTREL;
5779 }
5780 }
5781 }
5782
5783 local_got = elf_local_got_refcounts (ibfd);
5784 if (!local_got)
5785 continue;
5786
5787 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5788 locsymcount = symtab_hdr->sh_info;
5789 end_local_got = local_got + locsymcount;
5790 local_tls_type = elf32_nios2_local_got_tls_type (ibfd);
5791 s = htab->root.sgot;
5792 srel = htab->root.srelgot;
5793 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
5794 {
5795 if (*local_got > 0)
5796 {
5797 *local_got = s->size;
5798 if (*local_tls_type & GOT_TLS_GD)
5799 /* TLS_GD relocs need an 8-byte structure in the GOT. */
5800 s->size += 8;
5801 if (*local_tls_type & GOT_TLS_IE)
5802 s->size += 4;
5803 if (*local_tls_type == GOT_NORMAL)
5804 s->size += 4;
5805
5806 if (bfd_link_pic (info) || *local_tls_type == GOT_TLS_GD)
5807 srel->size += sizeof (Elf32_External_Rela);
5808 }
5809 else
5810 *local_got = (bfd_vma) -1;
5811 }
5812 }
5813
5814 if (htab->tls_ldm_got.refcount > 0)
5815 {
5816 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5817 for R_NIOS2_TLS_LDM16 relocations. */
5818 htab->tls_ldm_got.offset = htab->root.sgot->size;
5819 htab->root.sgot->size += 8;
5820 if (bfd_link_pic (info))
5821 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5822 }
5823 else
5824 htab->tls_ldm_got.offset = -1;
5825
5826 /* Allocate global sym .plt and .got entries, and space for global
5827 sym dynamic relocs. */
5828 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
5829
5830 if (htab->root.dynamic_sections_created)
5831 {
5832 /* If the .got section is more than 0x8000 bytes, we add
5833 0x8000 to the value of _gp_got, so that 16-bit relocations
5834 have a greater chance of working. */
5835 if (htab->root.sgot->size >= 0x8000
5836 && htab->h_gp_got->root.u.def.value == 0)
5837 htab->h_gp_got->root.u.def.value = 0x8000;
5838 }
5839
5840 /* The check_relocs and adjust_dynamic_symbol entry points have
5841 determined the sizes of the various dynamic sections. Allocate
5842 memory for them. */
5843 relocs = FALSE;
5844 for (s = dynobj->sections; s != NULL; s = s->next)
5845 {
5846 const char *name;
5847
5848 if ((s->flags & SEC_LINKER_CREATED) == 0)
5849 continue;
5850
5851 /* It's OK to base decisions on the section name, because none
5852 of the dynobj section names depend upon the input files. */
5853 name = bfd_get_section_name (dynobj, s);
5854
5855 if (CONST_STRNEQ (name, ".rela"))
5856 {
5857 if (s->size != 0)
5858 {
5859 if (s != htab->root.srelplt)
5860 relocs = TRUE;
5861
5862 /* We use the reloc_count field as a counter if we need
5863 to copy relocs into the output file. */
5864 s->reloc_count = 0;
5865 }
5866 }
5867 else if (s == htab->root.splt)
5868 {
5869 /* Correct for the number of res_N branches. */
5870 if (s->size != 0 && !bfd_link_pic (info))
5871 {
5872 htab->res_n_size = (s->size - 28) / 3;
5873 s->size += htab->res_n_size;
5874 }
5875 }
5876 else if (s != htab->sbss
5877 && s != htab->root.sgot
5878 && s != htab->root.sgotplt
5879 && s != htab->root.sdynbss
5880 && s != htab->root.sdynrelro)
5881 /* It's not one of our sections, so don't allocate space. */
5882 continue;
5883
5884 if (s->size == 0)
5885 {
5886 s->flags |= SEC_EXCLUDE;
5887 continue;
5888 }
5889
5890 if ((s->flags & SEC_HAS_CONTENTS) == 0)
5891 continue;
5892
5893 /* Allocate memory for the section contents. */
5894 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
5895 if (s->contents == NULL)
5896 return FALSE;
5897 }
5898
5899 /* Adjust dynamic symbols that point to the plt to account for the
5900 now-known number of resN slots. */
5901 if (htab->res_n_size)
5902 elf_link_hash_traverse (& htab->root, adjust_dynrelocs, info);
5903
5904 if (htab->root.dynamic_sections_created)
5905 {
5906 /* Add some entries to the .dynamic section. We fill in the
5907 values later, in elf_nios2_finish_dynamic_sections, but we
5908 must add the entries now so that we get the correct size for
5909 the .dynamic section. The DT_DEBUG entry is filled in by the
5910 dynamic linker and used by the debugger. */
5911 #define add_dynamic_entry(TAG, VAL) \
5912 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
5913
5914 if (!bfd_link_pic (info) && !add_dynamic_entry (DT_DEBUG, 0))
5915 return FALSE;
5916
5917 if (htab->root.sgotplt->size != 0
5918 && !add_dynamic_entry (DT_PLTGOT, 0))
5919 return FALSE;
5920
5921 if (htab->root.splt->size != 0
5922 && (!add_dynamic_entry (DT_PLTRELSZ, 0)
5923 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
5924 || !add_dynamic_entry (DT_JMPREL, 0)))
5925 return FALSE;
5926
5927 if (relocs
5928 && (!add_dynamic_entry (DT_RELA, 0)
5929 || !add_dynamic_entry (DT_RELASZ, 0)
5930 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))))
5931 return FALSE;
5932
5933 if (!bfd_link_pic (info) && !add_dynamic_entry (DT_NIOS2_GP, 0))
5934 return FALSE;
5935
5936 if ((info->flags & DF_TEXTREL) != 0
5937 && !add_dynamic_entry (DT_TEXTREL, 0))
5938 return FALSE;
5939 }
5940 #undef add_dynamic_entry
5941
5942 return TRUE;
5943 }
5944
5945 /* Free the derived linker hash table. */
5946 static void
5947 nios2_elf32_link_hash_table_free (bfd *obfd)
5948 {
5949 struct elf32_nios2_link_hash_table *htab
5950 = (struct elf32_nios2_link_hash_table *) obfd->link.hash;
5951
5952 bfd_hash_table_free (&htab->bstab);
5953 _bfd_elf_link_hash_table_free (obfd);
5954 }
5955
5956 /* Implement bfd_elf32_bfd_link_hash_table_create. */
5957 static struct bfd_link_hash_table *
5958 nios2_elf32_link_hash_table_create (bfd *abfd)
5959 {
5960 struct elf32_nios2_link_hash_table *ret;
5961 bfd_size_type amt = sizeof (struct elf32_nios2_link_hash_table);
5962
5963 ret = bfd_zmalloc (amt);
5964 if (ret == NULL)
5965 return NULL;
5966
5967 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
5968 link_hash_newfunc,
5969 sizeof (struct
5970 elf32_nios2_link_hash_entry),
5971 NIOS2_ELF_DATA))
5972 {
5973 free (ret);
5974 return NULL;
5975 }
5976
5977 /* Init the stub hash table too. */
5978 if (!bfd_hash_table_init (&ret->bstab, stub_hash_newfunc,
5979 sizeof (struct elf32_nios2_stub_hash_entry)))
5980 {
5981 _bfd_elf_link_hash_table_free (abfd);
5982 return NULL;
5983 }
5984 ret->root.root.hash_table_free = nios2_elf32_link_hash_table_free;
5985
5986 return &ret->root.root;
5987 }
5988
5989 /* Implement elf_backend_reloc_type_class. */
5990 static enum elf_reloc_type_class
5991 nios2_elf32_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5992 const asection *rel_sec ATTRIBUTE_UNUSED,
5993 const Elf_Internal_Rela *rela)
5994 {
5995 switch ((int) ELF32_R_TYPE (rela->r_info))
5996 {
5997 case R_NIOS2_RELATIVE:
5998 return reloc_class_relative;
5999 case R_NIOS2_JUMP_SLOT:
6000 return reloc_class_plt;
6001 case R_NIOS2_COPY:
6002 return reloc_class_copy;
6003 default:
6004 return reloc_class_normal;
6005 }
6006 }
6007
6008 /* Return 1 if target is one of ours. */
6009 static bfd_boolean
6010 is_nios2_elf_target (const struct bfd_target *targ)
6011 {
6012 return (targ == &nios2_elf32_le_vec
6013 || targ == &nios2_elf32_be_vec);
6014 }
6015
6016 /* Implement elf_backend_add_symbol_hook.
6017 This hook is called by the linker when adding symbols from an object
6018 file. We use it to put .comm items in .sbss, and not .bss. */
6019 static bfd_boolean
6020 nios2_elf_add_symbol_hook (bfd *abfd,
6021 struct bfd_link_info *info,
6022 Elf_Internal_Sym *sym,
6023 const char **namep ATTRIBUTE_UNUSED,
6024 flagword *flagsp ATTRIBUTE_UNUSED,
6025 asection **secp,
6026 bfd_vma *valp)
6027 {
6028 if (sym->st_shndx == SHN_COMMON
6029 && !bfd_link_relocatable (info)
6030 && sym->st_size <= elf_gp_size (abfd)
6031 && is_nios2_elf_target (info->output_bfd->xvec))
6032 {
6033 /* Common symbols less than or equal to -G nn bytes are automatically
6034 put into .sbss. */
6035 struct elf32_nios2_link_hash_table *htab;
6036
6037 htab = elf32_nios2_hash_table (info);
6038 if (htab->sbss == NULL)
6039 {
6040 flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED;
6041
6042 if (htab->root.dynobj == NULL)
6043 htab->root.dynobj = abfd;
6044
6045 htab->sbss = bfd_make_section_anyway_with_flags (htab->root.dynobj,
6046 ".sbss", flags);
6047 if (htab->sbss == NULL)
6048 return FALSE;
6049 }
6050
6051 *secp = htab->sbss;
6052 *valp = sym->st_size;
6053 }
6054
6055 return TRUE;
6056 }
6057
6058 /* Implement elf_backend_can_make_relative_eh_frame:
6059 Decide whether to attempt to turn absptr or lsda encodings in
6060 shared libraries into pcrel within the given input section. */
6061 static bfd_boolean
6062 nios2_elf32_can_make_relative_eh_frame (bfd *input_bfd ATTRIBUTE_UNUSED,
6063 struct bfd_link_info *info
6064 ATTRIBUTE_UNUSED,
6065 asection *eh_frame_section
6066 ATTRIBUTE_UNUSED)
6067 {
6068 /* We can't use PC-relative encodings in the .eh_frame section. */
6069 return FALSE;
6070 }
6071
6072 /* Implement elf_backend_special_sections. */
6073 const struct bfd_elf_special_section elf32_nios2_special_sections[] =
6074 {
6075 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS,
6076 SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
6077 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,
6078 SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
6079 { NULL, 0, 0, 0, 0 }
6080 };
6081
6082 #define ELF_ARCH bfd_arch_nios2
6083 #define ELF_TARGET_ID NIOS2_ELF_DATA
6084 #define ELF_MACHINE_CODE EM_ALTERA_NIOS2
6085
6086 /* The Nios II MMU uses a 4K page size. */
6087
6088 #define ELF_MAXPAGESIZE 0x1000
6089
6090 #define bfd_elf32_bfd_link_hash_table_create \
6091 nios2_elf32_link_hash_table_create
6092
6093 #define bfd_elf32_bfd_merge_private_bfd_data \
6094 nios2_elf32_merge_private_bfd_data
6095
6096 /* Relocation table lookup macros. */
6097
6098 #define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup
6099 #define bfd_elf32_bfd_reloc_name_lookup nios2_elf32_bfd_reloc_name_lookup
6100
6101 /* JUMP_TABLE_LINK macros. */
6102
6103 /* elf_info_to_howto (using RELA relocations). */
6104
6105 #define elf_info_to_howto nios2_elf32_info_to_howto
6106
6107 /* elf backend functions. */
6108
6109 #define elf_backend_can_gc_sections 1
6110 #define elf_backend_can_refcount 1
6111 #define elf_backend_plt_readonly 1
6112 #define elf_backend_want_got_plt 1
6113 #define elf_backend_want_dynrelro 1
6114 #define elf_backend_rela_normal 1
6115 #define elf_backend_dtrel_excludes_plt 1
6116
6117 #define elf_backend_relocate_section nios2_elf32_relocate_section
6118 #define elf_backend_section_flags nios2_elf32_section_flags
6119 #define elf_backend_fake_sections nios2_elf32_fake_sections
6120 #define elf_backend_check_relocs nios2_elf32_check_relocs
6121
6122 #define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook
6123 #define elf_backend_create_dynamic_sections \
6124 nios2_elf32_create_dynamic_sections
6125 #define elf_backend_finish_dynamic_symbol nios2_elf32_finish_dynamic_symbol
6126 #define elf_backend_finish_dynamic_sections \
6127 nios2_elf32_finish_dynamic_sections
6128 #define elf_backend_adjust_dynamic_symbol nios2_elf32_adjust_dynamic_symbol
6129 #define elf_backend_reloc_type_class nios2_elf32_reloc_type_class
6130 #define elf_backend_size_dynamic_sections nios2_elf32_size_dynamic_sections
6131 #define elf_backend_add_symbol_hook nios2_elf_add_symbol_hook
6132 #define elf_backend_copy_indirect_symbol nios2_elf32_copy_indirect_symbol
6133 #define elf_backend_object_p nios2_elf32_object_p
6134
6135 #define elf_backend_grok_prstatus nios2_grok_prstatus
6136 #define elf_backend_grok_psinfo nios2_grok_psinfo
6137
6138 #undef elf_backend_can_make_relative_eh_frame
6139 #define elf_backend_can_make_relative_eh_frame \
6140 nios2_elf32_can_make_relative_eh_frame
6141
6142 #define elf_backend_special_sections elf32_nios2_special_sections
6143
6144 #define TARGET_LITTLE_SYM nios2_elf32_le_vec
6145 #define TARGET_LITTLE_NAME "elf32-littlenios2"
6146 #define TARGET_BIG_SYM nios2_elf32_be_vec
6147 #define TARGET_BIG_NAME "elf32-bignios2"
6148
6149 #define elf_backend_got_header_size 12
6150 #define elf_backend_default_execstack 0
6151
6152 #include "elf32-target.h"