bfd/
[binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_littable_section (asection *);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern asection *xtensa_get_property_section (asection *, const char *);
110 static flagword xtensa_get_property_predef_flags (asection *);
111
112 /* Other functions called directly by the linker. */
113
114 typedef void (*deps_callback_t)
115 (asection *, bfd_vma, asection *, bfd_vma, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
118
119
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
124
125 int elf32xtensa_size_opt;
126
127
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
131
132 typedef struct xtensa_relax_info_struct xtensa_relax_info;
133
134
135 /* The GNU tools do not easily allow extending interfaces to pass around
136 the pointer to the Xtensa ISA information, so instead we add a global
137 variable here (in BFD) that can be used by any of the tools that need
138 this information. */
139
140 xtensa_isa xtensa_default_isa;
141
142
143 /* When this is true, relocations may have been modified to refer to
144 symbols from other input files. The per-section list of "fix"
145 records needs to be checked when resolving relocations. */
146
147 static bfd_boolean relaxing_section = FALSE;
148
149 /* When this is true, during final links, literals that cannot be
150 coalesced and their relocations may be moved to other sections. */
151
152 int elf32xtensa_no_literal_movement = 1;
153
154 \f
155 static reloc_howto_type elf_howto_table[] =
156 {
157 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
158 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
159 FALSE, 0, 0, FALSE),
160 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
161 bfd_elf_xtensa_reloc, "R_XTENSA_32",
162 TRUE, 0xffffffff, 0xffffffff, FALSE),
163
164 /* Replace a 32-bit value with a value from the runtime linker (only
165 used by linker-generated stub functions). The r_addend value is
166 special: 1 means to substitute a pointer to the runtime linker's
167 dynamic resolver function; 2 means to substitute the link map for
168 the shared object. */
169 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
170 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
171
172 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
174 FALSE, 0, 0xffffffff, FALSE),
175 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
177 FALSE, 0, 0xffffffff, FALSE),
178 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
180 FALSE, 0, 0xffffffff, FALSE),
181 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
183 FALSE, 0, 0xffffffff, FALSE),
184
185 EMPTY_HOWTO (7),
186
187 /* Old relocations for backward compatibility. */
188 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
189 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
190 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
194
195 /* Assembly auto-expansion. */
196 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
198 /* Relax assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
201
202 EMPTY_HOWTO (13),
203 EMPTY_HOWTO (14),
204
205 /* GNU extension to record C++ vtable hierarchy. */
206 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_GNU_VTINHERIT",
208 FALSE, 0, 0, FALSE),
209 /* GNU extension to record C++ vtable member usage. */
210 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
211 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
212 FALSE, 0, 0, FALSE),
213
214 /* Relocations for supporting difference of symbols. */
215 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
216 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
217 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
219 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
221
222 /* General immediate operand relocations. */
223 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
224 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
225 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
253
254 /* "Alternate" relocations. The meaning of these is opcode-specific. */
255 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
285 };
286
287 #if DEBUG_GEN_RELOC
288 #define TRACE(str) \
289 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
290 #else
291 #define TRACE(str)
292 #endif
293
294 static reloc_howto_type *
295 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
296 bfd_reloc_code_real_type code)
297 {
298 switch (code)
299 {
300 case BFD_RELOC_NONE:
301 TRACE ("BFD_RELOC_NONE");
302 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
303
304 case BFD_RELOC_32:
305 TRACE ("BFD_RELOC_32");
306 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
307
308 case BFD_RELOC_XTENSA_DIFF8:
309 TRACE ("BFD_RELOC_XTENSA_DIFF8");
310 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
311
312 case BFD_RELOC_XTENSA_DIFF16:
313 TRACE ("BFD_RELOC_XTENSA_DIFF16");
314 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
315
316 case BFD_RELOC_XTENSA_DIFF32:
317 TRACE ("BFD_RELOC_XTENSA_DIFF32");
318 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
319
320 case BFD_RELOC_XTENSA_RTLD:
321 TRACE ("BFD_RELOC_XTENSA_RTLD");
322 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
323
324 case BFD_RELOC_XTENSA_GLOB_DAT:
325 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
326 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
327
328 case BFD_RELOC_XTENSA_JMP_SLOT:
329 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
330 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
331
332 case BFD_RELOC_XTENSA_RELATIVE:
333 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
334 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
335
336 case BFD_RELOC_XTENSA_PLT:
337 TRACE ("BFD_RELOC_XTENSA_PLT");
338 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
339
340 case BFD_RELOC_XTENSA_OP0:
341 TRACE ("BFD_RELOC_XTENSA_OP0");
342 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
343
344 case BFD_RELOC_XTENSA_OP1:
345 TRACE ("BFD_RELOC_XTENSA_OP1");
346 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
347
348 case BFD_RELOC_XTENSA_OP2:
349 TRACE ("BFD_RELOC_XTENSA_OP2");
350 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
351
352 case BFD_RELOC_XTENSA_ASM_EXPAND:
353 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
354 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
355
356 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
357 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
358 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
359
360 case BFD_RELOC_VTABLE_INHERIT:
361 TRACE ("BFD_RELOC_VTABLE_INHERIT");
362 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
363
364 case BFD_RELOC_VTABLE_ENTRY:
365 TRACE ("BFD_RELOC_VTABLE_ENTRY");
366 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
367
368 default:
369 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
370 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
371 {
372 unsigned n = (R_XTENSA_SLOT0_OP +
373 (code - BFD_RELOC_XTENSA_SLOT0_OP));
374 return &elf_howto_table[n];
375 }
376
377 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
378 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
379 {
380 unsigned n = (R_XTENSA_SLOT0_ALT +
381 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
382 return &elf_howto_table[n];
383 }
384
385 break;
386 }
387
388 TRACE ("Unknown");
389 return NULL;
390 }
391
392 static reloc_howto_type *
393 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
394 const char *r_name)
395 {
396 unsigned int i;
397
398 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
399 if (elf_howto_table[i].name != NULL
400 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
401 return &elf_howto_table[i];
402
403 return NULL;
404 }
405
406
407 /* Given an ELF "rela" relocation, find the corresponding howto and record
408 it in the BFD internal arelent representation of the relocation. */
409
410 static void
411 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
412 arelent *cache_ptr,
413 Elf_Internal_Rela *dst)
414 {
415 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
416
417 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
418 cache_ptr->howto = &elf_howto_table[r_type];
419 }
420
421 \f
422 /* Functions for the Xtensa ELF linker. */
423
424 /* The name of the dynamic interpreter. This is put in the .interp
425 section. */
426
427 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
428
429 /* The size in bytes of an entry in the procedure linkage table.
430 (This does _not_ include the space for the literals associated with
431 the PLT entry.) */
432
433 #define PLT_ENTRY_SIZE 16
434
435 /* For _really_ large PLTs, we may need to alternate between literals
436 and code to keep the literals within the 256K range of the L32R
437 instructions in the code. It's unlikely that anyone would ever need
438 such a big PLT, but an arbitrary limit on the PLT size would be bad.
439 Thus, we split the PLT into chunks. Since there's very little
440 overhead (2 extra literals) for each chunk, the chunk size is kept
441 small so that the code for handling multiple chunks get used and
442 tested regularly. With 254 entries, there are 1K of literals for
443 each chunk, and that seems like a nice round number. */
444
445 #define PLT_ENTRIES_PER_CHUNK 254
446
447 /* PLT entries are actually used as stub functions for lazy symbol
448 resolution. Once the symbol is resolved, the stub function is never
449 invoked. Note: the 32-byte frame size used here cannot be changed
450 without a corresponding change in the runtime linker. */
451
452 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
453 {
454 0x6c, 0x10, 0x04, /* entry sp, 32 */
455 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
456 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
457 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
458 0x0a, 0x80, 0x00, /* jx a8 */
459 0 /* unused */
460 };
461
462 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
463 {
464 0x36, 0x41, 0x00, /* entry sp, 32 */
465 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
466 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
467 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
468 0xa0, 0x08, 0x00, /* jx a8 */
469 0 /* unused */
470 };
471
472 /* Xtensa ELF linker hash table. */
473
474 struct elf_xtensa_link_hash_table
475 {
476 struct elf_link_hash_table elf;
477
478 /* Short-cuts to get to dynamic linker sections. */
479 asection *sgot;
480 asection *sgotplt;
481 asection *srelgot;
482 asection *splt;
483 asection *srelplt;
484 asection *sgotloc;
485 asection *spltlittbl;
486
487 /* Total count of PLT relocations seen during check_relocs.
488 The actual PLT code must be split into multiple sections and all
489 the sections have to be created before size_dynamic_sections,
490 where we figure out the exact number of PLT entries that will be
491 needed. It is OK if this count is an overestimate, e.g., some
492 relocations may be removed by GC. */
493 int plt_reloc_count;
494 };
495
496 /* Get the Xtensa ELF linker hash table from a link_info structure. */
497
498 #define elf_xtensa_hash_table(p) \
499 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
500
501 /* Create an Xtensa ELF linker hash table. */
502
503 static struct bfd_link_hash_table *
504 elf_xtensa_link_hash_table_create (bfd *abfd)
505 {
506 struct elf_xtensa_link_hash_table *ret;
507 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
508
509 ret = bfd_malloc (amt);
510 if (ret == NULL)
511 return NULL;
512
513 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
514 _bfd_elf_link_hash_newfunc,
515 sizeof (struct elf_link_hash_entry)))
516 {
517 free (ret);
518 return NULL;
519 }
520
521 ret->sgot = NULL;
522 ret->sgotplt = NULL;
523 ret->srelgot = NULL;
524 ret->splt = NULL;
525 ret->srelplt = NULL;
526 ret->sgotloc = NULL;
527 ret->spltlittbl = NULL;
528
529 ret->plt_reloc_count = 0;
530
531 return &ret->elf.root;
532 }
533
534 static inline bfd_boolean
535 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
536 struct bfd_link_info *info)
537 {
538 /* Check if we should do dynamic things to this symbol. The
539 "ignore_protected" argument need not be set, because Xtensa code
540 does not require special handling of STV_PROTECTED to make function
541 pointer comparisons work properly. The PLT addresses are never
542 used for function pointers. */
543
544 return _bfd_elf_dynamic_symbol_p (h, info, 0);
545 }
546
547 \f
548 static int
549 property_table_compare (const void *ap, const void *bp)
550 {
551 const property_table_entry *a = (const property_table_entry *) ap;
552 const property_table_entry *b = (const property_table_entry *) bp;
553
554 if (a->address == b->address)
555 {
556 if (a->size != b->size)
557 return (a->size - b->size);
558
559 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
560 return ((b->flags & XTENSA_PROP_ALIGN)
561 - (a->flags & XTENSA_PROP_ALIGN));
562
563 if ((a->flags & XTENSA_PROP_ALIGN)
564 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
565 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
566 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
568
569 if ((a->flags & XTENSA_PROP_UNREACHABLE)
570 != (b->flags & XTENSA_PROP_UNREACHABLE))
571 return ((b->flags & XTENSA_PROP_UNREACHABLE)
572 - (a->flags & XTENSA_PROP_UNREACHABLE));
573
574 return (a->flags - b->flags);
575 }
576
577 return (a->address - b->address);
578 }
579
580
581 static int
582 property_table_matches (const void *ap, const void *bp)
583 {
584 const property_table_entry *a = (const property_table_entry *) ap;
585 const property_table_entry *b = (const property_table_entry *) bp;
586
587 /* Check if one entry overlaps with the other. */
588 if ((b->address >= a->address && b->address < (a->address + a->size))
589 || (a->address >= b->address && a->address < (b->address + b->size)))
590 return 0;
591
592 return (a->address - b->address);
593 }
594
595
596 /* Get the literal table or property table entries for the given
597 section. Sets TABLE_P and returns the number of entries. On
598 error, returns a negative value. */
599
600 static int
601 xtensa_read_table_entries (bfd *abfd,
602 asection *section,
603 property_table_entry **table_p,
604 const char *sec_name,
605 bfd_boolean output_addr)
606 {
607 asection *table_section;
608 bfd_size_type table_size = 0;
609 bfd_byte *table_data;
610 property_table_entry *blocks;
611 int blk, block_count;
612 bfd_size_type num_records;
613 Elf_Internal_Rela *internal_relocs;
614 bfd_vma section_addr;
615 flagword predef_flags;
616 bfd_size_type table_entry_size;
617
618 if (!section
619 || !(section->flags & SEC_ALLOC)
620 || (section->flags & SEC_DEBUGGING))
621 {
622 *table_p = NULL;
623 return 0;
624 }
625
626 table_section = xtensa_get_property_section (section, sec_name);
627 if (table_section)
628 table_size = table_section->size;
629
630 if (table_size == 0)
631 {
632 *table_p = NULL;
633 return 0;
634 }
635
636 predef_flags = xtensa_get_property_predef_flags (table_section);
637 table_entry_size = 12;
638 if (predef_flags)
639 table_entry_size -= 4;
640
641 num_records = table_size / table_entry_size;
642 table_data = retrieve_contents (abfd, table_section, TRUE);
643 blocks = (property_table_entry *)
644 bfd_malloc (num_records * sizeof (property_table_entry));
645 block_count = 0;
646
647 if (output_addr)
648 section_addr = section->output_section->vma + section->output_offset;
649 else
650 section_addr = section->vma;
651
652 /* If the file has not yet been relocated, process the relocations
653 and sort out the table entries that apply to the specified section. */
654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
655 if (internal_relocs && !table_section->reloc_done)
656 {
657 unsigned i;
658
659 for (i = 0; i < table_section->reloc_count; i++)
660 {
661 Elf_Internal_Rela *rel = &internal_relocs[i];
662 unsigned long r_symndx;
663
664 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
665 continue;
666
667 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
668 r_symndx = ELF32_R_SYM (rel->r_info);
669
670 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
671 {
672 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
673 BFD_ASSERT (sym_off == 0);
674 blocks[block_count].address =
675 (section_addr + sym_off + rel->r_addend
676 + bfd_get_32 (abfd, table_data + rel->r_offset));
677 blocks[block_count].size =
678 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
679 if (predef_flags)
680 blocks[block_count].flags = predef_flags;
681 else
682 blocks[block_count].flags =
683 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
684 block_count++;
685 }
686 }
687 }
688 else
689 {
690 /* The file has already been relocated and the addresses are
691 already in the table. */
692 bfd_vma off;
693 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
694
695 for (off = 0; off < table_size; off += table_entry_size)
696 {
697 bfd_vma address = bfd_get_32 (abfd, table_data + off);
698
699 if (address >= section_addr
700 && address < section_addr + section_limit)
701 {
702 blocks[block_count].address = address;
703 blocks[block_count].size =
704 bfd_get_32 (abfd, table_data + off + 4);
705 if (predef_flags)
706 blocks[block_count].flags = predef_flags;
707 else
708 blocks[block_count].flags =
709 bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
711 }
712 }
713 }
714
715 release_contents (table_section, table_data);
716 release_internal_relocs (table_section, internal_relocs);
717
718 if (block_count > 0)
719 {
720 /* Now sort them into address order for easy reference. */
721 qsort (blocks, block_count, sizeof (property_table_entry),
722 property_table_compare);
723
724 /* Check that the table contents are valid. Problems may occur,
725 for example, if an unrelocated object file is stripped. */
726 for (blk = 1; blk < block_count; blk++)
727 {
728 /* The only circumstance where two entries may legitimately
729 have the same address is when one of them is a zero-size
730 placeholder to mark a place where fill can be inserted.
731 The zero-size entry should come first. */
732 if (blocks[blk - 1].address == blocks[blk].address &&
733 blocks[blk - 1].size != 0)
734 {
735 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
736 abfd, section);
737 bfd_set_error (bfd_error_bad_value);
738 free (blocks);
739 return -1;
740 }
741 }
742 }
743
744 *table_p = blocks;
745 return block_count;
746 }
747
748
749 static property_table_entry *
750 elf_xtensa_find_property_entry (property_table_entry *property_table,
751 int property_table_size,
752 bfd_vma addr)
753 {
754 property_table_entry entry;
755 property_table_entry *rv;
756
757 if (property_table_size == 0)
758 return NULL;
759
760 entry.address = addr;
761 entry.size = 1;
762 entry.flags = 0;
763
764 rv = bsearch (&entry, property_table, property_table_size,
765 sizeof (property_table_entry), property_table_matches);
766 return rv;
767 }
768
769
770 static bfd_boolean
771 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
772 int lit_table_size,
773 bfd_vma addr)
774 {
775 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
776 return TRUE;
777
778 return FALSE;
779 }
780
781 \f
782 /* Look through the relocs for a section during the first phase, and
783 calculate needed space in the dynamic reloc sections. */
784
785 static bfd_boolean
786 elf_xtensa_check_relocs (bfd *abfd,
787 struct bfd_link_info *info,
788 asection *sec,
789 const Elf_Internal_Rela *relocs)
790 {
791 struct elf_xtensa_link_hash_table *htab;
792 Elf_Internal_Shdr *symtab_hdr;
793 struct elf_link_hash_entry **sym_hashes;
794 const Elf_Internal_Rela *rel;
795 const Elf_Internal_Rela *rel_end;
796
797 if (info->relocatable)
798 return TRUE;
799
800 htab = elf_xtensa_hash_table (info);
801 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
802 sym_hashes = elf_sym_hashes (abfd);
803
804 rel_end = relocs + sec->reloc_count;
805 for (rel = relocs; rel < rel_end; rel++)
806 {
807 unsigned int r_type;
808 unsigned long r_symndx;
809 struct elf_link_hash_entry *h;
810
811 r_symndx = ELF32_R_SYM (rel->r_info);
812 r_type = ELF32_R_TYPE (rel->r_info);
813
814 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
815 {
816 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
817 abfd, r_symndx);
818 return FALSE;
819 }
820
821 if (r_symndx < symtab_hdr->sh_info)
822 h = NULL;
823 else
824 {
825 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
826 while (h->root.type == bfd_link_hash_indirect
827 || h->root.type == bfd_link_hash_warning)
828 h = (struct elf_link_hash_entry *) h->root.u.i.link;
829 }
830
831 switch (r_type)
832 {
833 case R_XTENSA_32:
834 if (h == NULL)
835 goto local_literal;
836
837 if ((sec->flags & SEC_ALLOC) != 0)
838 {
839 if (h->got.refcount <= 0)
840 h->got.refcount = 1;
841 else
842 h->got.refcount += 1;
843 }
844 break;
845
846 case R_XTENSA_PLT:
847 /* If this relocation is against a local symbol, then it's
848 exactly the same as a normal local GOT entry. */
849 if (h == NULL)
850 goto local_literal;
851
852 if ((sec->flags & SEC_ALLOC) != 0)
853 {
854 if (h->plt.refcount <= 0)
855 {
856 h->needs_plt = 1;
857 h->plt.refcount = 1;
858 }
859 else
860 h->plt.refcount += 1;
861
862 /* Keep track of the total PLT relocation count even if we
863 don't yet know whether the dynamic sections will be
864 created. */
865 htab->plt_reloc_count += 1;
866
867 if (elf_hash_table (info)->dynamic_sections_created)
868 {
869 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
870 return FALSE;
871 }
872 }
873 break;
874
875 local_literal:
876 if ((sec->flags & SEC_ALLOC) != 0)
877 {
878 bfd_signed_vma *local_got_refcounts;
879
880 /* This is a global offset table entry for a local symbol. */
881 local_got_refcounts = elf_local_got_refcounts (abfd);
882 if (local_got_refcounts == NULL)
883 {
884 bfd_size_type size;
885
886 size = symtab_hdr->sh_info;
887 size *= sizeof (bfd_signed_vma);
888 local_got_refcounts =
889 (bfd_signed_vma *) bfd_zalloc (abfd, size);
890 if (local_got_refcounts == NULL)
891 return FALSE;
892 elf_local_got_refcounts (abfd) = local_got_refcounts;
893 }
894 local_got_refcounts[r_symndx] += 1;
895 }
896 break;
897
898 case R_XTENSA_OP0:
899 case R_XTENSA_OP1:
900 case R_XTENSA_OP2:
901 case R_XTENSA_SLOT0_OP:
902 case R_XTENSA_SLOT1_OP:
903 case R_XTENSA_SLOT2_OP:
904 case R_XTENSA_SLOT3_OP:
905 case R_XTENSA_SLOT4_OP:
906 case R_XTENSA_SLOT5_OP:
907 case R_XTENSA_SLOT6_OP:
908 case R_XTENSA_SLOT7_OP:
909 case R_XTENSA_SLOT8_OP:
910 case R_XTENSA_SLOT9_OP:
911 case R_XTENSA_SLOT10_OP:
912 case R_XTENSA_SLOT11_OP:
913 case R_XTENSA_SLOT12_OP:
914 case R_XTENSA_SLOT13_OP:
915 case R_XTENSA_SLOT14_OP:
916 case R_XTENSA_SLOT0_ALT:
917 case R_XTENSA_SLOT1_ALT:
918 case R_XTENSA_SLOT2_ALT:
919 case R_XTENSA_SLOT3_ALT:
920 case R_XTENSA_SLOT4_ALT:
921 case R_XTENSA_SLOT5_ALT:
922 case R_XTENSA_SLOT6_ALT:
923 case R_XTENSA_SLOT7_ALT:
924 case R_XTENSA_SLOT8_ALT:
925 case R_XTENSA_SLOT9_ALT:
926 case R_XTENSA_SLOT10_ALT:
927 case R_XTENSA_SLOT11_ALT:
928 case R_XTENSA_SLOT12_ALT:
929 case R_XTENSA_SLOT13_ALT:
930 case R_XTENSA_SLOT14_ALT:
931 case R_XTENSA_ASM_EXPAND:
932 case R_XTENSA_ASM_SIMPLIFY:
933 case R_XTENSA_DIFF8:
934 case R_XTENSA_DIFF16:
935 case R_XTENSA_DIFF32:
936 /* Nothing to do for these. */
937 break;
938
939 case R_XTENSA_GNU_VTINHERIT:
940 /* This relocation describes the C++ object vtable hierarchy.
941 Reconstruct it for later use during GC. */
942 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
943 return FALSE;
944 break;
945
946 case R_XTENSA_GNU_VTENTRY:
947 /* This relocation describes which C++ vtable entries are actually
948 used. Record for later use during GC. */
949 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
950 return FALSE;
951 break;
952
953 default:
954 break;
955 }
956 }
957
958 return TRUE;
959 }
960
961
962 /* Return the section that should be marked against GC for a given
963 relocation. */
964
965 static asection *
966 elf_xtensa_gc_mark_hook (asection *sec,
967 struct bfd_link_info *info,
968 Elf_Internal_Rela *rel,
969 struct elf_link_hash_entry *h,
970 Elf_Internal_Sym *sym)
971 {
972 /* Property sections are marked "KEEP" in the linker scripts, but they
973 should not cause other sections to be marked. (This approach relies
974 on elf_xtensa_discard_info to remove property table entries that
975 describe discarded sections. Alternatively, it might be more
976 efficient to avoid using "KEEP" in the linker scripts and instead use
977 the gc_mark_extra_sections hook to mark only the property sections
978 that describe marked sections. That alternative does not work well
979 with the current property table sections, which do not correspond
980 one-to-one with the sections they describe, but that should be fixed
981 someday.) */
982 if (xtensa_is_property_section (sec))
983 return NULL;
984
985 if (h != NULL)
986 switch (ELF32_R_TYPE (rel->r_info))
987 {
988 case R_XTENSA_GNU_VTINHERIT:
989 case R_XTENSA_GNU_VTENTRY:
990 return NULL;
991 }
992
993 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
994 }
995
996
997 /* Update the GOT & PLT entry reference counts
998 for the section being removed. */
999
1000 static bfd_boolean
1001 elf_xtensa_gc_sweep_hook (bfd *abfd,
1002 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1003 asection *sec,
1004 const Elf_Internal_Rela *relocs)
1005 {
1006 Elf_Internal_Shdr *symtab_hdr;
1007 struct elf_link_hash_entry **sym_hashes;
1008 bfd_signed_vma *local_got_refcounts;
1009 const Elf_Internal_Rela *rel, *relend;
1010
1011 if ((sec->flags & SEC_ALLOC) == 0)
1012 return TRUE;
1013
1014 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1015 sym_hashes = elf_sym_hashes (abfd);
1016 local_got_refcounts = elf_local_got_refcounts (abfd);
1017
1018 relend = relocs + sec->reloc_count;
1019 for (rel = relocs; rel < relend; rel++)
1020 {
1021 unsigned long r_symndx;
1022 unsigned int r_type;
1023 struct elf_link_hash_entry *h = NULL;
1024
1025 r_symndx = ELF32_R_SYM (rel->r_info);
1026 if (r_symndx >= symtab_hdr->sh_info)
1027 {
1028 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1029 while (h->root.type == bfd_link_hash_indirect
1030 || h->root.type == bfd_link_hash_warning)
1031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1032 }
1033
1034 r_type = ELF32_R_TYPE (rel->r_info);
1035 switch (r_type)
1036 {
1037 case R_XTENSA_32:
1038 if (h == NULL)
1039 goto local_literal;
1040 if (h->got.refcount > 0)
1041 h->got.refcount--;
1042 break;
1043
1044 case R_XTENSA_PLT:
1045 if (h == NULL)
1046 goto local_literal;
1047 if (h->plt.refcount > 0)
1048 h->plt.refcount--;
1049 break;
1050
1051 local_literal:
1052 if (local_got_refcounts[r_symndx] > 0)
1053 local_got_refcounts[r_symndx] -= 1;
1054 break;
1055
1056 default:
1057 break;
1058 }
1059 }
1060
1061 return TRUE;
1062 }
1063
1064
1065 /* Create all the dynamic sections. */
1066
1067 static bfd_boolean
1068 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1069 {
1070 struct elf_xtensa_link_hash_table *htab;
1071 flagword flags, noalloc_flags;
1072
1073 htab = elf_xtensa_hash_table (info);
1074
1075 /* First do all the standard stuff. */
1076 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1077 return FALSE;
1078 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1079 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1080 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1081 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1082
1083 /* Create any extra PLT sections in case check_relocs has already
1084 been called on all the non-dynamic input files. */
1085 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1086 return FALSE;
1087
1088 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1089 | SEC_LINKER_CREATED | SEC_READONLY);
1090 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1091
1092 /* Mark the ".got.plt" section READONLY. */
1093 if (htab->sgotplt == NULL
1094 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1095 return FALSE;
1096
1097 /* Create ".rela.got". */
1098 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1099 if (htab->srelgot == NULL
1100 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1101 return FALSE;
1102
1103 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1104 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1105 if (htab->sgotloc == NULL
1106 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1107 return FALSE;
1108
1109 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1110 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1111 noalloc_flags);
1112 if (htab->spltlittbl == NULL
1113 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1114 return FALSE;
1115
1116 return TRUE;
1117 }
1118
1119
1120 static bfd_boolean
1121 add_extra_plt_sections (struct bfd_link_info *info, int count)
1122 {
1123 bfd *dynobj = elf_hash_table (info)->dynobj;
1124 int chunk;
1125
1126 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1127 ".got.plt" sections. */
1128 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1129 {
1130 char *sname;
1131 flagword flags;
1132 asection *s;
1133
1134 /* Stop when we find a section has already been created. */
1135 if (elf_xtensa_get_plt_section (info, chunk))
1136 break;
1137
1138 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1139 | SEC_LINKER_CREATED | SEC_READONLY);
1140
1141 sname = (char *) bfd_malloc (10);
1142 sprintf (sname, ".plt.%u", chunk);
1143 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1144 if (s == NULL
1145 || ! bfd_set_section_alignment (dynobj, s, 2))
1146 return FALSE;
1147
1148 sname = (char *) bfd_malloc (14);
1149 sprintf (sname, ".got.plt.%u", chunk);
1150 s = bfd_make_section_with_flags (dynobj, sname, flags);
1151 if (s == NULL
1152 || ! bfd_set_section_alignment (dynobj, s, 2))
1153 return FALSE;
1154 }
1155
1156 return TRUE;
1157 }
1158
1159
1160 /* Adjust a symbol defined by a dynamic object and referenced by a
1161 regular object. The current definition is in some section of the
1162 dynamic object, but we're not including those sections. We have to
1163 change the definition to something the rest of the link can
1164 understand. */
1165
1166 static bfd_boolean
1167 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1168 struct elf_link_hash_entry *h)
1169 {
1170 /* If this is a weak symbol, and there is a real definition, the
1171 processor independent code will have arranged for us to see the
1172 real definition first, and we can just use the same value. */
1173 if (h->u.weakdef)
1174 {
1175 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1176 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1177 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1178 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1179 return TRUE;
1180 }
1181
1182 /* This is a reference to a symbol defined by a dynamic object. The
1183 reference must go through the GOT, so there's no need for COPY relocs,
1184 .dynbss, etc. */
1185
1186 return TRUE;
1187 }
1188
1189
1190 static bfd_boolean
1191 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1192 {
1193 struct bfd_link_info *info;
1194 struct elf_xtensa_link_hash_table *htab;
1195 bfd_boolean is_dynamic;
1196
1197 if (h->root.type == bfd_link_hash_indirect)
1198 return TRUE;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
1203 info = (struct bfd_link_info *) arg;
1204 htab = elf_xtensa_hash_table (info);
1205
1206 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1207
1208 if (! is_dynamic)
1209 {
1210 if (info->shared)
1211 {
1212 /* For shared objects, there's no need for PLT entries for local
1213 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1214 if (h->plt.refcount > 0)
1215 {
1216 if (h->got.refcount < 0)
1217 h->got.refcount = 0;
1218 h->got.refcount += h->plt.refcount;
1219 h->plt.refcount = 0;
1220 }
1221 }
1222 else
1223 {
1224 /* Don't need any dynamic relocations at all. */
1225 h->plt.refcount = 0;
1226 h->got.refcount = 0;
1227 }
1228 }
1229
1230 if (h->plt.refcount > 0)
1231 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1232
1233 if (h->got.refcount > 0)
1234 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1235
1236 return TRUE;
1237 }
1238
1239
1240 static void
1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1242 {
1243 struct elf_xtensa_link_hash_table *htab;
1244 bfd *i;
1245
1246 htab = elf_xtensa_hash_table (info);
1247
1248 for (i = info->input_bfds; i; i = i->link_next)
1249 {
1250 bfd_signed_vma *local_got_refcounts;
1251 bfd_size_type j, cnt;
1252 Elf_Internal_Shdr *symtab_hdr;
1253
1254 local_got_refcounts = elf_local_got_refcounts (i);
1255 if (!local_got_refcounts)
1256 continue;
1257
1258 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1259 cnt = symtab_hdr->sh_info;
1260
1261 for (j = 0; j < cnt; ++j)
1262 {
1263 if (local_got_refcounts[j] > 0)
1264 htab->srelgot->size += (local_got_refcounts[j]
1265 * sizeof (Elf32_External_Rela));
1266 }
1267 }
1268 }
1269
1270
1271 /* Set the sizes of the dynamic sections. */
1272
1273 static bfd_boolean
1274 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1275 struct bfd_link_info *info)
1276 {
1277 struct elf_xtensa_link_hash_table *htab;
1278 bfd *dynobj, *abfd;
1279 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1280 bfd_boolean relplt, relgot;
1281 int plt_entries, plt_chunks, chunk;
1282
1283 plt_entries = 0;
1284 plt_chunks = 0;
1285
1286 htab = elf_xtensa_hash_table (info);
1287 dynobj = elf_hash_table (info)->dynobj;
1288 if (dynobj == NULL)
1289 abort ();
1290 srelgot = htab->srelgot;
1291 srelplt = htab->srelplt;
1292
1293 if (elf_hash_table (info)->dynamic_sections_created)
1294 {
1295 BFD_ASSERT (htab->srelgot != NULL
1296 && htab->srelplt != NULL
1297 && htab->sgot != NULL
1298 && htab->spltlittbl != NULL
1299 && htab->sgotloc != NULL);
1300
1301 /* Set the contents of the .interp section to the interpreter. */
1302 if (info->executable)
1303 {
1304 s = bfd_get_section_by_name (dynobj, ".interp");
1305 if (s == NULL)
1306 abort ();
1307 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1308 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1309 }
1310
1311 /* Allocate room for one word in ".got". */
1312 htab->sgot->size = 4;
1313
1314 /* Allocate space in ".rela.got" for literals that reference global
1315 symbols and space in ".rela.plt" for literals that have PLT
1316 entries. */
1317 elf_link_hash_traverse (elf_hash_table (info),
1318 elf_xtensa_allocate_dynrelocs,
1319 (void *) info);
1320
1321 /* If we are generating a shared object, we also need space in
1322 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1323 reference local symbols. */
1324 if (info->shared)
1325 elf_xtensa_allocate_local_got_size (info);
1326
1327 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1328 each PLT entry, we need the PLT code plus a 4-byte literal.
1329 For each chunk of ".plt", we also need two more 4-byte
1330 literals, two corresponding entries in ".rela.got", and an
1331 8-byte entry in ".xt.lit.plt". */
1332 spltlittbl = htab->spltlittbl;
1333 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1334 plt_chunks =
1335 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1336
1337 /* Iterate over all the PLT chunks, including any extra sections
1338 created earlier because the initial count of PLT relocations
1339 was an overestimate. */
1340 for (chunk = 0;
1341 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1342 chunk++)
1343 {
1344 int chunk_entries;
1345
1346 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1347 BFD_ASSERT (sgotplt != NULL);
1348
1349 if (chunk < plt_chunks - 1)
1350 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1351 else if (chunk == plt_chunks - 1)
1352 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1353 else
1354 chunk_entries = 0;
1355
1356 if (chunk_entries != 0)
1357 {
1358 sgotplt->size = 4 * (chunk_entries + 2);
1359 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1360 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1361 spltlittbl->size += 8;
1362 }
1363 else
1364 {
1365 sgotplt->size = 0;
1366 splt->size = 0;
1367 }
1368 }
1369
1370 /* Allocate space in ".got.loc" to match the total size of all the
1371 literal tables. */
1372 sgotloc = htab->sgotloc;
1373 sgotloc->size = spltlittbl->size;
1374 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1375 {
1376 if (abfd->flags & DYNAMIC)
1377 continue;
1378 for (s = abfd->sections; s != NULL; s = s->next)
1379 {
1380 if (! elf_discarded_section (s)
1381 && xtensa_is_littable_section (s)
1382 && s != spltlittbl)
1383 sgotloc->size += s->size;
1384 }
1385 }
1386 }
1387
1388 /* Allocate memory for dynamic sections. */
1389 relplt = FALSE;
1390 relgot = FALSE;
1391 for (s = dynobj->sections; s != NULL; s = s->next)
1392 {
1393 const char *name;
1394
1395 if ((s->flags & SEC_LINKER_CREATED) == 0)
1396 continue;
1397
1398 /* It's OK to base decisions on the section name, because none
1399 of the dynobj section names depend upon the input files. */
1400 name = bfd_get_section_name (dynobj, s);
1401
1402 if (CONST_STRNEQ (name, ".rela"))
1403 {
1404 if (s->size != 0)
1405 {
1406 if (strcmp (name, ".rela.plt") == 0)
1407 relplt = TRUE;
1408 else if (strcmp (name, ".rela.got") == 0)
1409 relgot = TRUE;
1410
1411 /* We use the reloc_count field as a counter if we need
1412 to copy relocs into the output file. */
1413 s->reloc_count = 0;
1414 }
1415 }
1416 else if (! CONST_STRNEQ (name, ".plt.")
1417 && ! CONST_STRNEQ (name, ".got.plt.")
1418 && strcmp (name, ".got") != 0
1419 && strcmp (name, ".plt") != 0
1420 && strcmp (name, ".got.plt") != 0
1421 && strcmp (name, ".xt.lit.plt") != 0
1422 && strcmp (name, ".got.loc") != 0)
1423 {
1424 /* It's not one of our sections, so don't allocate space. */
1425 continue;
1426 }
1427
1428 if (s->size == 0)
1429 {
1430 /* If we don't need this section, strip it from the output
1431 file. We must create the ".plt*" and ".got.plt*"
1432 sections in create_dynamic_sections and/or check_relocs
1433 based on a conservative estimate of the PLT relocation
1434 count, because the sections must be created before the
1435 linker maps input sections to output sections. The
1436 linker does that before size_dynamic_sections, where we
1437 compute the exact size of the PLT, so there may be more
1438 of these sections than are actually needed. */
1439 s->flags |= SEC_EXCLUDE;
1440 }
1441 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1442 {
1443 /* Allocate memory for the section contents. */
1444 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1445 if (s->contents == NULL)
1446 return FALSE;
1447 }
1448 }
1449
1450 if (elf_hash_table (info)->dynamic_sections_created)
1451 {
1452 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1453 known until finish_dynamic_sections, but we need to get the relocs
1454 in place before they are sorted. */
1455 for (chunk = 0; chunk < plt_chunks; chunk++)
1456 {
1457 Elf_Internal_Rela irela;
1458 bfd_byte *loc;
1459
1460 irela.r_offset = 0;
1461 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1462 irela.r_addend = 0;
1463
1464 loc = (srelgot->contents
1465 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1466 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1467 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1468 loc + sizeof (Elf32_External_Rela));
1469 srelgot->reloc_count += 2;
1470 }
1471
1472 /* Add some entries to the .dynamic section. We fill in the
1473 values later, in elf_xtensa_finish_dynamic_sections, but we
1474 must add the entries now so that we get the correct size for
1475 the .dynamic section. The DT_DEBUG entry is filled in by the
1476 dynamic linker and used by the debugger. */
1477 #define add_dynamic_entry(TAG, VAL) \
1478 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1479
1480 if (info->executable)
1481 {
1482 if (!add_dynamic_entry (DT_DEBUG, 0))
1483 return FALSE;
1484 }
1485
1486 if (relplt)
1487 {
1488 if (!add_dynamic_entry (DT_PLTGOT, 0)
1489 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1490 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1491 || !add_dynamic_entry (DT_JMPREL, 0))
1492 return FALSE;
1493 }
1494
1495 if (relgot)
1496 {
1497 if (!add_dynamic_entry (DT_RELA, 0)
1498 || !add_dynamic_entry (DT_RELASZ, 0)
1499 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1500 return FALSE;
1501 }
1502
1503 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1504 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1505 return FALSE;
1506 }
1507 #undef add_dynamic_entry
1508
1509 return TRUE;
1510 }
1511
1512 \f
1513 /* Perform the specified relocation. The instruction at (contents + address)
1514 is modified to set one operand to represent the value in "relocation". The
1515 operand position is determined by the relocation type recorded in the
1516 howto. */
1517
1518 #define CALL_SEGMENT_BITS (30)
1519 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1520
1521 static bfd_reloc_status_type
1522 elf_xtensa_do_reloc (reloc_howto_type *howto,
1523 bfd *abfd,
1524 asection *input_section,
1525 bfd_vma relocation,
1526 bfd_byte *contents,
1527 bfd_vma address,
1528 bfd_boolean is_weak_undef,
1529 char **error_message)
1530 {
1531 xtensa_format fmt;
1532 xtensa_opcode opcode;
1533 xtensa_isa isa = xtensa_default_isa;
1534 static xtensa_insnbuf ibuff = NULL;
1535 static xtensa_insnbuf sbuff = NULL;
1536 bfd_vma self_address = 0;
1537 bfd_size_type input_size;
1538 int opnd, slot;
1539 uint32 newval;
1540
1541 if (!ibuff)
1542 {
1543 ibuff = xtensa_insnbuf_alloc (isa);
1544 sbuff = xtensa_insnbuf_alloc (isa);
1545 }
1546
1547 input_size = bfd_get_section_limit (abfd, input_section);
1548
1549 switch (howto->type)
1550 {
1551 case R_XTENSA_NONE:
1552 case R_XTENSA_DIFF8:
1553 case R_XTENSA_DIFF16:
1554 case R_XTENSA_DIFF32:
1555 return bfd_reloc_ok;
1556
1557 case R_XTENSA_ASM_EXPAND:
1558 if (!is_weak_undef)
1559 {
1560 /* Check for windowed CALL across a 1GB boundary. */
1561 xtensa_opcode opcode =
1562 get_expanded_call_opcode (contents + address,
1563 input_size - address, 0);
1564 if (is_windowed_call_opcode (opcode))
1565 {
1566 self_address = (input_section->output_section->vma
1567 + input_section->output_offset
1568 + address);
1569 if ((self_address >> CALL_SEGMENT_BITS)
1570 != (relocation >> CALL_SEGMENT_BITS))
1571 {
1572 *error_message = "windowed longcall crosses 1GB boundary; "
1573 "return may fail";
1574 return bfd_reloc_dangerous;
1575 }
1576 }
1577 }
1578 return bfd_reloc_ok;
1579
1580 case R_XTENSA_ASM_SIMPLIFY:
1581 {
1582 /* Convert the L32R/CALLX to CALL. */
1583 bfd_reloc_status_type retval =
1584 elf_xtensa_do_asm_simplify (contents, address, input_size,
1585 error_message);
1586 if (retval != bfd_reloc_ok)
1587 return bfd_reloc_dangerous;
1588
1589 /* The CALL needs to be relocated. Continue below for that part. */
1590 address += 3;
1591 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1592 }
1593 break;
1594
1595 case R_XTENSA_32:
1596 case R_XTENSA_PLT:
1597 {
1598 bfd_vma x;
1599 x = bfd_get_32 (abfd, contents + address);
1600 x = x + relocation;
1601 bfd_put_32 (abfd, x, contents + address);
1602 }
1603 return bfd_reloc_ok;
1604 }
1605
1606 /* Only instruction slot-specific relocations handled below.... */
1607 slot = get_relocation_slot (howto->type);
1608 if (slot == XTENSA_UNDEFINED)
1609 {
1610 *error_message = "unexpected relocation";
1611 return bfd_reloc_dangerous;
1612 }
1613
1614 /* Read the instruction into a buffer and decode the opcode. */
1615 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1616 input_size - address);
1617 fmt = xtensa_format_decode (isa, ibuff);
1618 if (fmt == XTENSA_UNDEFINED)
1619 {
1620 *error_message = "cannot decode instruction format";
1621 return bfd_reloc_dangerous;
1622 }
1623
1624 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1625
1626 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1627 if (opcode == XTENSA_UNDEFINED)
1628 {
1629 *error_message = "cannot decode instruction opcode";
1630 return bfd_reloc_dangerous;
1631 }
1632
1633 /* Check for opcode-specific "alternate" relocations. */
1634 if (is_alt_relocation (howto->type))
1635 {
1636 if (opcode == get_l32r_opcode ())
1637 {
1638 /* Handle the special-case of non-PC-relative L32R instructions. */
1639 bfd *output_bfd = input_section->output_section->owner;
1640 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1641 if (!lit4_sec)
1642 {
1643 *error_message = "relocation references missing .lit4 section";
1644 return bfd_reloc_dangerous;
1645 }
1646 self_address = ((lit4_sec->vma & ~0xfff)
1647 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1648 newval = relocation;
1649 opnd = 1;
1650 }
1651 else if (opcode == get_const16_opcode ())
1652 {
1653 /* ALT used for high 16 bits. */
1654 newval = relocation >> 16;
1655 opnd = 1;
1656 }
1657 else
1658 {
1659 /* No other "alternate" relocations currently defined. */
1660 *error_message = "unexpected relocation";
1661 return bfd_reloc_dangerous;
1662 }
1663 }
1664 else /* Not an "alternate" relocation.... */
1665 {
1666 if (opcode == get_const16_opcode ())
1667 {
1668 newval = relocation & 0xffff;
1669 opnd = 1;
1670 }
1671 else
1672 {
1673 /* ...normal PC-relative relocation.... */
1674
1675 /* Determine which operand is being relocated. */
1676 opnd = get_relocation_opnd (opcode, howto->type);
1677 if (opnd == XTENSA_UNDEFINED)
1678 {
1679 *error_message = "unexpected relocation";
1680 return bfd_reloc_dangerous;
1681 }
1682
1683 if (!howto->pc_relative)
1684 {
1685 *error_message = "expected PC-relative relocation";
1686 return bfd_reloc_dangerous;
1687 }
1688
1689 /* Calculate the PC address for this instruction. */
1690 self_address = (input_section->output_section->vma
1691 + input_section->output_offset
1692 + address);
1693
1694 newval = relocation;
1695 }
1696 }
1697
1698 /* Apply the relocation. */
1699 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1700 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1701 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1702 sbuff, newval))
1703 {
1704 const char *opname = xtensa_opcode_name (isa, opcode);
1705 const char *msg;
1706
1707 msg = "cannot encode";
1708 if (is_direct_call_opcode (opcode))
1709 {
1710 if ((relocation & 0x3) != 0)
1711 msg = "misaligned call target";
1712 else
1713 msg = "call target out of range";
1714 }
1715 else if (opcode == get_l32r_opcode ())
1716 {
1717 if ((relocation & 0x3) != 0)
1718 msg = "misaligned literal target";
1719 else if (is_alt_relocation (howto->type))
1720 msg = "literal target out of range (too many literals)";
1721 else if (self_address > relocation)
1722 msg = "literal target out of range (try using text-section-literals)";
1723 else
1724 msg = "literal placed after use";
1725 }
1726
1727 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1728 return bfd_reloc_dangerous;
1729 }
1730
1731 /* Check for calls across 1GB boundaries. */
1732 if (is_direct_call_opcode (opcode)
1733 && is_windowed_call_opcode (opcode))
1734 {
1735 if ((self_address >> CALL_SEGMENT_BITS)
1736 != (relocation >> CALL_SEGMENT_BITS))
1737 {
1738 *error_message =
1739 "windowed call crosses 1GB boundary; return may fail";
1740 return bfd_reloc_dangerous;
1741 }
1742 }
1743
1744 /* Write the modified instruction back out of the buffer. */
1745 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1746 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1747 input_size - address);
1748 return bfd_reloc_ok;
1749 }
1750
1751
1752 static char *
1753 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1754 {
1755 /* To reduce the size of the memory leak,
1756 we only use a single message buffer. */
1757 static bfd_size_type alloc_size = 0;
1758 static char *message = NULL;
1759 bfd_size_type orig_len, len = 0;
1760 bfd_boolean is_append;
1761
1762 VA_OPEN (ap, arglen);
1763 VA_FIXEDARG (ap, const char *, origmsg);
1764
1765 is_append = (origmsg == message);
1766
1767 orig_len = strlen (origmsg);
1768 len = orig_len + strlen (fmt) + arglen + 20;
1769 if (len > alloc_size)
1770 {
1771 message = (char *) bfd_realloc (message, len);
1772 alloc_size = len;
1773 }
1774 if (!is_append)
1775 memcpy (message, origmsg, orig_len);
1776 vsprintf (message + orig_len, fmt, ap);
1777 VA_CLOSE (ap);
1778 return message;
1779 }
1780
1781
1782 /* This function is registered as the "special_function" in the
1783 Xtensa howto for handling simplify operations.
1784 bfd_perform_relocation / bfd_install_relocation use it to
1785 perform (install) the specified relocation. Since this replaces the code
1786 in bfd_perform_relocation, it is basically an Xtensa-specific,
1787 stripped-down version of bfd_perform_relocation. */
1788
1789 static bfd_reloc_status_type
1790 bfd_elf_xtensa_reloc (bfd *abfd,
1791 arelent *reloc_entry,
1792 asymbol *symbol,
1793 void *data,
1794 asection *input_section,
1795 bfd *output_bfd,
1796 char **error_message)
1797 {
1798 bfd_vma relocation;
1799 bfd_reloc_status_type flag;
1800 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1801 bfd_vma output_base = 0;
1802 reloc_howto_type *howto = reloc_entry->howto;
1803 asection *reloc_target_output_section;
1804 bfd_boolean is_weak_undef;
1805
1806 if (!xtensa_default_isa)
1807 xtensa_default_isa = xtensa_isa_init (0, 0);
1808
1809 /* ELF relocs are against symbols. If we are producing relocatable
1810 output, and the reloc is against an external symbol, the resulting
1811 reloc will also be against the same symbol. In such a case, we
1812 don't want to change anything about the way the reloc is handled,
1813 since it will all be done at final link time. This test is similar
1814 to what bfd_elf_generic_reloc does except that it lets relocs with
1815 howto->partial_inplace go through even if the addend is non-zero.
1816 (The real problem is that partial_inplace is set for XTENSA_32
1817 relocs to begin with, but that's a long story and there's little we
1818 can do about it now....) */
1819
1820 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1821 {
1822 reloc_entry->address += input_section->output_offset;
1823 return bfd_reloc_ok;
1824 }
1825
1826 /* Is the address of the relocation really within the section? */
1827 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1828 return bfd_reloc_outofrange;
1829
1830 /* Work out which section the relocation is targeted at and the
1831 initial relocation command value. */
1832
1833 /* Get symbol value. (Common symbols are special.) */
1834 if (bfd_is_com_section (symbol->section))
1835 relocation = 0;
1836 else
1837 relocation = symbol->value;
1838
1839 reloc_target_output_section = symbol->section->output_section;
1840
1841 /* Convert input-section-relative symbol value to absolute. */
1842 if ((output_bfd && !howto->partial_inplace)
1843 || reloc_target_output_section == NULL)
1844 output_base = 0;
1845 else
1846 output_base = reloc_target_output_section->vma;
1847
1848 relocation += output_base + symbol->section->output_offset;
1849
1850 /* Add in supplied addend. */
1851 relocation += reloc_entry->addend;
1852
1853 /* Here the variable relocation holds the final address of the
1854 symbol we are relocating against, plus any addend. */
1855 if (output_bfd)
1856 {
1857 if (!howto->partial_inplace)
1858 {
1859 /* This is a partial relocation, and we want to apply the relocation
1860 to the reloc entry rather than the raw data. Everything except
1861 relocations against section symbols has already been handled
1862 above. */
1863
1864 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1865 reloc_entry->addend = relocation;
1866 reloc_entry->address += input_section->output_offset;
1867 return bfd_reloc_ok;
1868 }
1869 else
1870 {
1871 reloc_entry->address += input_section->output_offset;
1872 reloc_entry->addend = 0;
1873 }
1874 }
1875
1876 is_weak_undef = (bfd_is_und_section (symbol->section)
1877 && (symbol->flags & BSF_WEAK) != 0);
1878 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1879 (bfd_byte *) data, (bfd_vma) octets,
1880 is_weak_undef, error_message);
1881
1882 if (flag == bfd_reloc_dangerous)
1883 {
1884 /* Add the symbol name to the error message. */
1885 if (! *error_message)
1886 *error_message = "";
1887 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1888 strlen (symbol->name) + 17,
1889 symbol->name,
1890 (unsigned long) reloc_entry->addend);
1891 }
1892
1893 return flag;
1894 }
1895
1896
1897 /* Set up an entry in the procedure linkage table. */
1898
1899 static bfd_vma
1900 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1901 bfd *output_bfd,
1902 unsigned reloc_index)
1903 {
1904 asection *splt, *sgotplt;
1905 bfd_vma plt_base, got_base;
1906 bfd_vma code_offset, lit_offset;
1907 int chunk;
1908
1909 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1910 splt = elf_xtensa_get_plt_section (info, chunk);
1911 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1912 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1913
1914 plt_base = splt->output_section->vma + splt->output_offset;
1915 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1916
1917 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1918 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1919
1920 /* Fill in the literal entry. This is the offset of the dynamic
1921 relocation entry. */
1922 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1923 sgotplt->contents + lit_offset);
1924
1925 /* Fill in the entry in the procedure linkage table. */
1926 memcpy (splt->contents + code_offset,
1927 (bfd_big_endian (output_bfd)
1928 ? elf_xtensa_be_plt_entry
1929 : elf_xtensa_le_plt_entry),
1930 PLT_ENTRY_SIZE);
1931 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1932 plt_base + code_offset + 3),
1933 splt->contents + code_offset + 4);
1934 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1935 plt_base + code_offset + 6),
1936 splt->contents + code_offset + 7);
1937 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1938 plt_base + code_offset + 9),
1939 splt->contents + code_offset + 10);
1940
1941 return plt_base + code_offset;
1942 }
1943
1944
1945 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1946 both relocatable and final links. */
1947
1948 static bfd_boolean
1949 elf_xtensa_relocate_section (bfd *output_bfd,
1950 struct bfd_link_info *info,
1951 bfd *input_bfd,
1952 asection *input_section,
1953 bfd_byte *contents,
1954 Elf_Internal_Rela *relocs,
1955 Elf_Internal_Sym *local_syms,
1956 asection **local_sections)
1957 {
1958 struct elf_xtensa_link_hash_table *htab;
1959 Elf_Internal_Shdr *symtab_hdr;
1960 Elf_Internal_Rela *rel;
1961 Elf_Internal_Rela *relend;
1962 struct elf_link_hash_entry **sym_hashes;
1963 property_table_entry *lit_table = 0;
1964 int ltblsize = 0;
1965 char *error_message = NULL;
1966 bfd_size_type input_size;
1967
1968 if (!xtensa_default_isa)
1969 xtensa_default_isa = xtensa_isa_init (0, 0);
1970
1971 htab = elf_xtensa_hash_table (info);
1972 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1973 sym_hashes = elf_sym_hashes (input_bfd);
1974
1975 if (elf_hash_table (info)->dynamic_sections_created)
1976 {
1977 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1978 &lit_table, XTENSA_LIT_SEC_NAME,
1979 TRUE);
1980 if (ltblsize < 0)
1981 return FALSE;
1982 }
1983
1984 input_size = bfd_get_section_limit (input_bfd, input_section);
1985
1986 rel = relocs;
1987 relend = relocs + input_section->reloc_count;
1988 for (; rel < relend; rel++)
1989 {
1990 int r_type;
1991 reloc_howto_type *howto;
1992 unsigned long r_symndx;
1993 struct elf_link_hash_entry *h;
1994 Elf_Internal_Sym *sym;
1995 asection *sec;
1996 bfd_vma relocation;
1997 bfd_reloc_status_type r;
1998 bfd_boolean is_weak_undef;
1999 bfd_boolean unresolved_reloc;
2000 bfd_boolean warned;
2001
2002 r_type = ELF32_R_TYPE (rel->r_info);
2003 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2004 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2005 continue;
2006
2007 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2008 {
2009 bfd_set_error (bfd_error_bad_value);
2010 return FALSE;
2011 }
2012 howto = &elf_howto_table[r_type];
2013
2014 r_symndx = ELF32_R_SYM (rel->r_info);
2015
2016 h = NULL;
2017 sym = NULL;
2018 sec = NULL;
2019 is_weak_undef = FALSE;
2020 unresolved_reloc = FALSE;
2021 warned = FALSE;
2022
2023 if (howto->partial_inplace && !info->relocatable)
2024 {
2025 /* Because R_XTENSA_32 was made partial_inplace to fix some
2026 problems with DWARF info in partial links, there may be
2027 an addend stored in the contents. Take it out of there
2028 and move it back into the addend field of the reloc. */
2029 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2030 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2031 }
2032
2033 if (r_symndx < symtab_hdr->sh_info)
2034 {
2035 sym = local_syms + r_symndx;
2036 sec = local_sections[r_symndx];
2037 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2038 }
2039 else
2040 {
2041 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2042 r_symndx, symtab_hdr, sym_hashes,
2043 h, sec, relocation,
2044 unresolved_reloc, warned);
2045
2046 if (relocation == 0
2047 && !unresolved_reloc
2048 && h->root.type == bfd_link_hash_undefweak)
2049 is_weak_undef = TRUE;
2050 }
2051
2052 if (sec != NULL && elf_discarded_section (sec))
2053 {
2054 /* For relocs against symbols from removed linkonce sections,
2055 or sections discarded by a linker script, we just want the
2056 section contents zeroed. Avoid any special processing. */
2057 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2058 rel->r_info = 0;
2059 rel->r_addend = 0;
2060 continue;
2061 }
2062
2063 if (info->relocatable)
2064 {
2065 /* This is a relocatable link.
2066 1) If the reloc is against a section symbol, adjust
2067 according to the output section.
2068 2) If there is a new target for this relocation,
2069 the new target will be in the same output section.
2070 We adjust the relocation by the output section
2071 difference. */
2072
2073 if (relaxing_section)
2074 {
2075 /* Check if this references a section in another input file. */
2076 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2077 contents))
2078 return FALSE;
2079 r_type = ELF32_R_TYPE (rel->r_info);
2080 }
2081
2082 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2083 {
2084 char *error_message = NULL;
2085 /* Convert ASM_SIMPLIFY into the simpler relocation
2086 so that they never escape a relaxing link. */
2087 r = contract_asm_expansion (contents, input_size, rel,
2088 &error_message);
2089 if (r != bfd_reloc_ok)
2090 {
2091 if (!((*info->callbacks->reloc_dangerous)
2092 (info, error_message, input_bfd, input_section,
2093 rel->r_offset)))
2094 return FALSE;
2095 }
2096 r_type = ELF32_R_TYPE (rel->r_info);
2097 }
2098
2099 /* This is a relocatable link, so we don't have to change
2100 anything unless the reloc is against a section symbol,
2101 in which case we have to adjust according to where the
2102 section symbol winds up in the output section. */
2103 if (r_symndx < symtab_hdr->sh_info)
2104 {
2105 sym = local_syms + r_symndx;
2106 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2107 {
2108 sec = local_sections[r_symndx];
2109 rel->r_addend += sec->output_offset + sym->st_value;
2110 }
2111 }
2112
2113 /* If there is an addend with a partial_inplace howto,
2114 then move the addend to the contents. This is a hack
2115 to work around problems with DWARF in relocatable links
2116 with some previous version of BFD. Now we can't easily get
2117 rid of the hack without breaking backward compatibility.... */
2118 if (rel->r_addend)
2119 {
2120 howto = &elf_howto_table[r_type];
2121 if (howto->partial_inplace)
2122 {
2123 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2124 rel->r_addend, contents,
2125 rel->r_offset, FALSE,
2126 &error_message);
2127 if (r != bfd_reloc_ok)
2128 {
2129 if (!((*info->callbacks->reloc_dangerous)
2130 (info, error_message, input_bfd, input_section,
2131 rel->r_offset)))
2132 return FALSE;
2133 }
2134 rel->r_addend = 0;
2135 }
2136 }
2137
2138 /* Done with work for relocatable link; continue with next reloc. */
2139 continue;
2140 }
2141
2142 /* This is a final link. */
2143
2144 if (relaxing_section)
2145 {
2146 /* Check if this references a section in another input file. */
2147 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2148 &relocation);
2149
2150 /* Update some already cached values. */
2151 r_type = ELF32_R_TYPE (rel->r_info);
2152 howto = &elf_howto_table[r_type];
2153 }
2154
2155 /* Sanity check the address. */
2156 if (rel->r_offset >= input_size
2157 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2158 {
2159 (*_bfd_error_handler)
2160 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2161 input_bfd, input_section, rel->r_offset, input_size);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165
2166 /* Generate dynamic relocations. */
2167 if (elf_hash_table (info)->dynamic_sections_created)
2168 {
2169 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2170
2171 if (dynamic_symbol && is_operand_relocation (r_type))
2172 {
2173 /* This is an error. The symbol's real value won't be known
2174 until runtime and it's likely to be out of range anyway. */
2175 const char *name = h->root.root.string;
2176 error_message = vsprint_msg ("invalid relocation for dynamic "
2177 "symbol", ": %s",
2178 strlen (name) + 2, name);
2179 if (!((*info->callbacks->reloc_dangerous)
2180 (info, error_message, input_bfd, input_section,
2181 rel->r_offset)))
2182 return FALSE;
2183 }
2184 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2185 && (input_section->flags & SEC_ALLOC) != 0
2186 && (dynamic_symbol || info->shared))
2187 {
2188 Elf_Internal_Rela outrel;
2189 bfd_byte *loc;
2190 asection *srel;
2191
2192 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2193 srel = htab->srelplt;
2194 else
2195 srel = htab->srelgot;
2196
2197 BFD_ASSERT (srel != NULL);
2198
2199 outrel.r_offset =
2200 _bfd_elf_section_offset (output_bfd, info,
2201 input_section, rel->r_offset);
2202
2203 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2204 memset (&outrel, 0, sizeof outrel);
2205 else
2206 {
2207 outrel.r_offset += (input_section->output_section->vma
2208 + input_section->output_offset);
2209
2210 /* Complain if the relocation is in a read-only section
2211 and not in a literal pool. */
2212 if ((input_section->flags & SEC_READONLY) != 0
2213 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2214 outrel.r_offset))
2215 {
2216 error_message =
2217 _("dynamic relocation in read-only section");
2218 if (!((*info->callbacks->reloc_dangerous)
2219 (info, error_message, input_bfd, input_section,
2220 rel->r_offset)))
2221 return FALSE;
2222 }
2223
2224 if (dynamic_symbol)
2225 {
2226 outrel.r_addend = rel->r_addend;
2227 rel->r_addend = 0;
2228
2229 if (r_type == R_XTENSA_32)
2230 {
2231 outrel.r_info =
2232 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2233 relocation = 0;
2234 }
2235 else /* r_type == R_XTENSA_PLT */
2236 {
2237 outrel.r_info =
2238 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2239
2240 /* Create the PLT entry and set the initial
2241 contents of the literal entry to the address of
2242 the PLT entry. */
2243 relocation =
2244 elf_xtensa_create_plt_entry (info, output_bfd,
2245 srel->reloc_count);
2246 }
2247 unresolved_reloc = FALSE;
2248 }
2249 else
2250 {
2251 /* Generate a RELATIVE relocation. */
2252 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2253 outrel.r_addend = 0;
2254 }
2255 }
2256
2257 loc = (srel->contents
2258 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2259 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2260 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2261 <= srel->size);
2262 }
2263 }
2264
2265 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2266 because such sections are not SEC_ALLOC and thus ld.so will
2267 not process them. */
2268 if (unresolved_reloc
2269 && !((input_section->flags & SEC_DEBUGGING) != 0
2270 && h->def_dynamic))
2271 {
2272 (*_bfd_error_handler)
2273 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2274 input_bfd,
2275 input_section,
2276 (long) rel->r_offset,
2277 howto->name,
2278 h->root.root.string);
2279 return FALSE;
2280 }
2281
2282 /* There's no point in calling bfd_perform_relocation here.
2283 Just go directly to our "special function". */
2284 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2285 relocation + rel->r_addend,
2286 contents, rel->r_offset, is_weak_undef,
2287 &error_message);
2288
2289 if (r != bfd_reloc_ok && !warned)
2290 {
2291 const char *name;
2292
2293 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2294 BFD_ASSERT (error_message != NULL);
2295
2296 if (h)
2297 name = h->root.root.string;
2298 else
2299 {
2300 name = bfd_elf_string_from_elf_section
2301 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2302 if (name && *name == '\0')
2303 name = bfd_section_name (input_bfd, sec);
2304 }
2305 if (name)
2306 {
2307 if (rel->r_addend == 0)
2308 error_message = vsprint_msg (error_message, ": %s",
2309 strlen (name) + 2, name);
2310 else
2311 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2312 strlen (name) + 22,
2313 name, (int)rel->r_addend);
2314 }
2315
2316 if (!((*info->callbacks->reloc_dangerous)
2317 (info, error_message, input_bfd, input_section,
2318 rel->r_offset)))
2319 return FALSE;
2320 }
2321 }
2322
2323 if (lit_table)
2324 free (lit_table);
2325
2326 input_section->reloc_done = TRUE;
2327
2328 return TRUE;
2329 }
2330
2331
2332 /* Finish up dynamic symbol handling. There's not much to do here since
2333 the PLT and GOT entries are all set up by relocate_section. */
2334
2335 static bfd_boolean
2336 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2337 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2338 struct elf_link_hash_entry *h,
2339 Elf_Internal_Sym *sym)
2340 {
2341 if (h->needs_plt && !h->def_regular)
2342 {
2343 /* Mark the symbol as undefined, rather than as defined in
2344 the .plt section. Leave the value alone. */
2345 sym->st_shndx = SHN_UNDEF;
2346 /* If the symbol is weak, we do need to clear the value.
2347 Otherwise, the PLT entry would provide a definition for
2348 the symbol even if the symbol wasn't defined anywhere,
2349 and so the symbol would never be NULL. */
2350 if (!h->ref_regular_nonweak)
2351 sym->st_value = 0;
2352 }
2353
2354 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2355 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2356 || h == elf_hash_table (info)->hgot)
2357 sym->st_shndx = SHN_ABS;
2358
2359 return TRUE;
2360 }
2361
2362
2363 /* Combine adjacent literal table entries in the output. Adjacent
2364 entries within each input section may have been removed during
2365 relaxation, but we repeat the process here, even though it's too late
2366 to shrink the output section, because it's important to minimize the
2367 number of literal table entries to reduce the start-up work for the
2368 runtime linker. Returns the number of remaining table entries or -1
2369 on error. */
2370
2371 static int
2372 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2373 asection *sxtlit,
2374 asection *sgotloc)
2375 {
2376 bfd_byte *contents;
2377 property_table_entry *table;
2378 bfd_size_type section_size, sgotloc_size;
2379 bfd_vma offset;
2380 int n, m, num;
2381
2382 section_size = sxtlit->size;
2383 BFD_ASSERT (section_size % 8 == 0);
2384 num = section_size / 8;
2385
2386 sgotloc_size = sgotloc->size;
2387 if (sgotloc_size != section_size)
2388 {
2389 (*_bfd_error_handler)
2390 (_("internal inconsistency in size of .got.loc section"));
2391 return -1;
2392 }
2393
2394 table = bfd_malloc (num * sizeof (property_table_entry));
2395 if (table == 0)
2396 return -1;
2397
2398 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2399 propagates to the output section, where it doesn't really apply and
2400 where it breaks the following call to bfd_malloc_and_get_section. */
2401 sxtlit->flags &= ~SEC_IN_MEMORY;
2402
2403 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2404 {
2405 if (contents != 0)
2406 free (contents);
2407 free (table);
2408 return -1;
2409 }
2410
2411 /* There should never be any relocations left at this point, so this
2412 is quite a bit easier than what is done during relaxation. */
2413
2414 /* Copy the raw contents into a property table array and sort it. */
2415 offset = 0;
2416 for (n = 0; n < num; n++)
2417 {
2418 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2419 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2420 offset += 8;
2421 }
2422 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2423
2424 for (n = 0; n < num; n++)
2425 {
2426 bfd_boolean remove = FALSE;
2427
2428 if (table[n].size == 0)
2429 remove = TRUE;
2430 else if (n > 0 &&
2431 (table[n-1].address + table[n-1].size == table[n].address))
2432 {
2433 table[n-1].size += table[n].size;
2434 remove = TRUE;
2435 }
2436
2437 if (remove)
2438 {
2439 for (m = n; m < num - 1; m++)
2440 {
2441 table[m].address = table[m+1].address;
2442 table[m].size = table[m+1].size;
2443 }
2444
2445 n--;
2446 num--;
2447 }
2448 }
2449
2450 /* Copy the data back to the raw contents. */
2451 offset = 0;
2452 for (n = 0; n < num; n++)
2453 {
2454 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2455 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2456 offset += 8;
2457 }
2458
2459 /* Clear the removed bytes. */
2460 if ((bfd_size_type) (num * 8) < section_size)
2461 memset (&contents[num * 8], 0, section_size - num * 8);
2462
2463 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2464 section_size))
2465 return -1;
2466
2467 /* Copy the contents to ".got.loc". */
2468 memcpy (sgotloc->contents, contents, section_size);
2469
2470 free (contents);
2471 free (table);
2472 return num;
2473 }
2474
2475
2476 /* Finish up the dynamic sections. */
2477
2478 static bfd_boolean
2479 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2480 struct bfd_link_info *info)
2481 {
2482 struct elf_xtensa_link_hash_table *htab;
2483 bfd *dynobj;
2484 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2485 Elf32_External_Dyn *dyncon, *dynconend;
2486 int num_xtlit_entries;
2487
2488 if (! elf_hash_table (info)->dynamic_sections_created)
2489 return TRUE;
2490
2491 htab = elf_xtensa_hash_table (info);
2492 dynobj = elf_hash_table (info)->dynobj;
2493 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2494 BFD_ASSERT (sdyn != NULL);
2495
2496 /* Set the first entry in the global offset table to the address of
2497 the dynamic section. */
2498 sgot = htab->sgot;
2499 if (sgot)
2500 {
2501 BFD_ASSERT (sgot->size == 4);
2502 if (sdyn == NULL)
2503 bfd_put_32 (output_bfd, 0, sgot->contents);
2504 else
2505 bfd_put_32 (output_bfd,
2506 sdyn->output_section->vma + sdyn->output_offset,
2507 sgot->contents);
2508 }
2509
2510 srelplt = htab->srelplt;
2511 if (srelplt && srelplt->size != 0)
2512 {
2513 asection *sgotplt, *srelgot, *spltlittbl;
2514 int chunk, plt_chunks, plt_entries;
2515 Elf_Internal_Rela irela;
2516 bfd_byte *loc;
2517 unsigned rtld_reloc;
2518
2519 srelgot = htab->srelgot;
2520 spltlittbl = htab->spltlittbl;
2521 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2522
2523 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2524 of them follow immediately after.... */
2525 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2526 {
2527 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2528 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2529 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2530 break;
2531 }
2532 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2533
2534 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2535 plt_chunks =
2536 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2537
2538 for (chunk = 0; chunk < plt_chunks; chunk++)
2539 {
2540 int chunk_entries = 0;
2541
2542 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2543 BFD_ASSERT (sgotplt != NULL);
2544
2545 /* Emit special RTLD relocations for the first two entries in
2546 each chunk of the .got.plt section. */
2547
2548 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2549 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2550 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2551 irela.r_offset = (sgotplt->output_section->vma
2552 + sgotplt->output_offset);
2553 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2554 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2555 rtld_reloc += 1;
2556 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2557
2558 /* Next literal immediately follows the first. */
2559 loc += sizeof (Elf32_External_Rela);
2560 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2561 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2562 irela.r_offset = (sgotplt->output_section->vma
2563 + sgotplt->output_offset + 4);
2564 /* Tell rtld to set value to object's link map. */
2565 irela.r_addend = 2;
2566 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2567 rtld_reloc += 1;
2568 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2569
2570 /* Fill in the literal table. */
2571 if (chunk < plt_chunks - 1)
2572 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2573 else
2574 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2575
2576 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2577 bfd_put_32 (output_bfd,
2578 sgotplt->output_section->vma + sgotplt->output_offset,
2579 spltlittbl->contents + (chunk * 8) + 0);
2580 bfd_put_32 (output_bfd,
2581 8 + (chunk_entries * 4),
2582 spltlittbl->contents + (chunk * 8) + 4);
2583 }
2584
2585 /* All the dynamic relocations have been emitted at this point.
2586 Make sure the relocation sections are the correct size. */
2587 if (srelgot->size != (sizeof (Elf32_External_Rela)
2588 * srelgot->reloc_count)
2589 || srelplt->size != (sizeof (Elf32_External_Rela)
2590 * srelplt->reloc_count))
2591 abort ();
2592
2593 /* The .xt.lit.plt section has just been modified. This must
2594 happen before the code below which combines adjacent literal
2595 table entries, and the .xt.lit.plt contents have to be forced to
2596 the output here. */
2597 if (! bfd_set_section_contents (output_bfd,
2598 spltlittbl->output_section,
2599 spltlittbl->contents,
2600 spltlittbl->output_offset,
2601 spltlittbl->size))
2602 return FALSE;
2603 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2604 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2605 }
2606
2607 /* Combine adjacent literal table entries. */
2608 BFD_ASSERT (! info->relocatable);
2609 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2610 sgotloc = htab->sgotloc;
2611 BFD_ASSERT (sxtlit && sgotloc);
2612 num_xtlit_entries =
2613 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2614 if (num_xtlit_entries < 0)
2615 return FALSE;
2616
2617 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2618 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2619 for (; dyncon < dynconend; dyncon++)
2620 {
2621 Elf_Internal_Dyn dyn;
2622
2623 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2624
2625 switch (dyn.d_tag)
2626 {
2627 default:
2628 break;
2629
2630 case DT_XTENSA_GOT_LOC_SZ:
2631 dyn.d_un.d_val = num_xtlit_entries;
2632 break;
2633
2634 case DT_XTENSA_GOT_LOC_OFF:
2635 dyn.d_un.d_ptr = htab->sgotloc->vma;
2636 break;
2637
2638 case DT_PLTGOT:
2639 dyn.d_un.d_ptr = htab->sgot->vma;
2640 break;
2641
2642 case DT_JMPREL:
2643 dyn.d_un.d_ptr = htab->srelplt->vma;
2644 break;
2645
2646 case DT_PLTRELSZ:
2647 dyn.d_un.d_val = htab->srelplt->size;
2648 break;
2649
2650 case DT_RELASZ:
2651 /* Adjust RELASZ to not include JMPREL. This matches what
2652 glibc expects and what is done for several other ELF
2653 targets (e.g., i386, alpha), but the "correct" behavior
2654 seems to be unresolved. Since the linker script arranges
2655 for .rela.plt to follow all other relocation sections, we
2656 don't have to worry about changing the DT_RELA entry. */
2657 if (htab->srelplt)
2658 dyn.d_un.d_val -= htab->srelplt->size;
2659 break;
2660 }
2661
2662 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2663 }
2664
2665 return TRUE;
2666 }
2667
2668 \f
2669 /* Functions for dealing with the e_flags field. */
2670
2671 /* Merge backend specific data from an object file to the output
2672 object file when linking. */
2673
2674 static bfd_boolean
2675 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2676 {
2677 unsigned out_mach, in_mach;
2678 flagword out_flag, in_flag;
2679
2680 /* Check if we have the same endianess. */
2681 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2682 return FALSE;
2683
2684 /* Don't even pretend to support mixed-format linking. */
2685 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2686 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2687 return FALSE;
2688
2689 out_flag = elf_elfheader (obfd)->e_flags;
2690 in_flag = elf_elfheader (ibfd)->e_flags;
2691
2692 out_mach = out_flag & EF_XTENSA_MACH;
2693 in_mach = in_flag & EF_XTENSA_MACH;
2694 if (out_mach != in_mach)
2695 {
2696 (*_bfd_error_handler)
2697 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2698 ibfd, out_mach, in_mach);
2699 bfd_set_error (bfd_error_wrong_format);
2700 return FALSE;
2701 }
2702
2703 if (! elf_flags_init (obfd))
2704 {
2705 elf_flags_init (obfd) = TRUE;
2706 elf_elfheader (obfd)->e_flags = in_flag;
2707
2708 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2709 && bfd_get_arch_info (obfd)->the_default)
2710 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2711 bfd_get_mach (ibfd));
2712
2713 return TRUE;
2714 }
2715
2716 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2717 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2718
2719 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2720 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2721
2722 return TRUE;
2723 }
2724
2725
2726 static bfd_boolean
2727 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2728 {
2729 BFD_ASSERT (!elf_flags_init (abfd)
2730 || elf_elfheader (abfd)->e_flags == flags);
2731
2732 elf_elfheader (abfd)->e_flags |= flags;
2733 elf_flags_init (abfd) = TRUE;
2734
2735 return TRUE;
2736 }
2737
2738
2739 static bfd_boolean
2740 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2741 {
2742 FILE *f = (FILE *) farg;
2743 flagword e_flags = elf_elfheader (abfd)->e_flags;
2744
2745 fprintf (f, "\nXtensa header:\n");
2746 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2747 fprintf (f, "\nMachine = Base\n");
2748 else
2749 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2750
2751 fprintf (f, "Insn tables = %s\n",
2752 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2753
2754 fprintf (f, "Literal tables = %s\n",
2755 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2756
2757 return _bfd_elf_print_private_bfd_data (abfd, farg);
2758 }
2759
2760
2761 /* Set the right machine number for an Xtensa ELF file. */
2762
2763 static bfd_boolean
2764 elf_xtensa_object_p (bfd *abfd)
2765 {
2766 int mach;
2767 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2768
2769 switch (arch)
2770 {
2771 case E_XTENSA_MACH:
2772 mach = bfd_mach_xtensa;
2773 break;
2774 default:
2775 return FALSE;
2776 }
2777
2778 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2779 return TRUE;
2780 }
2781
2782
2783 /* The final processing done just before writing out an Xtensa ELF object
2784 file. This gets the Xtensa architecture right based on the machine
2785 number. */
2786
2787 static void
2788 elf_xtensa_final_write_processing (bfd *abfd,
2789 bfd_boolean linker ATTRIBUTE_UNUSED)
2790 {
2791 int mach;
2792 unsigned long val;
2793
2794 switch (mach = bfd_get_mach (abfd))
2795 {
2796 case bfd_mach_xtensa:
2797 val = E_XTENSA_MACH;
2798 break;
2799 default:
2800 return;
2801 }
2802
2803 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2804 elf_elfheader (abfd)->e_flags |= val;
2805 }
2806
2807
2808 static enum elf_reloc_type_class
2809 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2810 {
2811 switch ((int) ELF32_R_TYPE (rela->r_info))
2812 {
2813 case R_XTENSA_RELATIVE:
2814 return reloc_class_relative;
2815 case R_XTENSA_JMP_SLOT:
2816 return reloc_class_plt;
2817 default:
2818 return reloc_class_normal;
2819 }
2820 }
2821
2822 \f
2823 static bfd_boolean
2824 elf_xtensa_discard_info_for_section (bfd *abfd,
2825 struct elf_reloc_cookie *cookie,
2826 struct bfd_link_info *info,
2827 asection *sec)
2828 {
2829 bfd_byte *contents;
2830 bfd_vma section_size;
2831 bfd_vma offset, actual_offset;
2832 size_t removed_bytes = 0;
2833
2834 section_size = sec->size;
2835 if (section_size == 0 || section_size % 8 != 0)
2836 return FALSE;
2837
2838 if (sec->output_section
2839 && bfd_is_abs_section (sec->output_section))
2840 return FALSE;
2841
2842 contents = retrieve_contents (abfd, sec, info->keep_memory);
2843 if (!contents)
2844 return FALSE;
2845
2846 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2847 if (!cookie->rels)
2848 {
2849 release_contents (sec, contents);
2850 return FALSE;
2851 }
2852
2853 cookie->rel = cookie->rels;
2854 cookie->relend = cookie->rels + sec->reloc_count;
2855
2856 for (offset = 0; offset < section_size; offset += 8)
2857 {
2858 actual_offset = offset - removed_bytes;
2859
2860 /* The ...symbol_deleted_p function will skip over relocs but it
2861 won't adjust their offsets, so do that here. */
2862 while (cookie->rel < cookie->relend
2863 && cookie->rel->r_offset < offset)
2864 {
2865 cookie->rel->r_offset -= removed_bytes;
2866 cookie->rel++;
2867 }
2868
2869 while (cookie->rel < cookie->relend
2870 && cookie->rel->r_offset == offset)
2871 {
2872 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2873 {
2874 /* Remove the table entry. (If the reloc type is NONE, then
2875 the entry has already been merged with another and deleted
2876 during relaxation.) */
2877 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2878 {
2879 /* Shift the contents up. */
2880 if (offset + 8 < section_size)
2881 memmove (&contents[actual_offset],
2882 &contents[actual_offset+8],
2883 section_size - offset - 8);
2884 removed_bytes += 8;
2885 }
2886
2887 /* Remove this relocation. */
2888 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2889 }
2890
2891 /* Adjust the relocation offset for previous removals. This
2892 should not be done before calling ...symbol_deleted_p
2893 because it might mess up the offset comparisons there.
2894 Make sure the offset doesn't underflow in the case where
2895 the first entry is removed. */
2896 if (cookie->rel->r_offset >= removed_bytes)
2897 cookie->rel->r_offset -= removed_bytes;
2898 else
2899 cookie->rel->r_offset = 0;
2900
2901 cookie->rel++;
2902 }
2903 }
2904
2905 if (removed_bytes != 0)
2906 {
2907 /* Adjust any remaining relocs (shouldn't be any). */
2908 for (; cookie->rel < cookie->relend; cookie->rel++)
2909 {
2910 if (cookie->rel->r_offset >= removed_bytes)
2911 cookie->rel->r_offset -= removed_bytes;
2912 else
2913 cookie->rel->r_offset = 0;
2914 }
2915
2916 /* Clear the removed bytes. */
2917 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2918
2919 pin_contents (sec, contents);
2920 pin_internal_relocs (sec, cookie->rels);
2921
2922 /* Shrink size. */
2923 sec->size = section_size - removed_bytes;
2924
2925 if (xtensa_is_littable_section (sec))
2926 {
2927 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2928 if (sgotloc)
2929 sgotloc->size -= removed_bytes;
2930 }
2931 }
2932 else
2933 {
2934 release_contents (sec, contents);
2935 release_internal_relocs (sec, cookie->rels);
2936 }
2937
2938 return (removed_bytes != 0);
2939 }
2940
2941
2942 static bfd_boolean
2943 elf_xtensa_discard_info (bfd *abfd,
2944 struct elf_reloc_cookie *cookie,
2945 struct bfd_link_info *info)
2946 {
2947 asection *sec;
2948 bfd_boolean changed = FALSE;
2949
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 if (xtensa_is_property_section (sec))
2953 {
2954 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2955 changed = TRUE;
2956 }
2957 }
2958
2959 return changed;
2960 }
2961
2962
2963 static bfd_boolean
2964 elf_xtensa_ignore_discarded_relocs (asection *sec)
2965 {
2966 return xtensa_is_property_section (sec);
2967 }
2968
2969
2970 static unsigned int
2971 elf_xtensa_action_discarded (asection *sec)
2972 {
2973 if (strcmp (".xt_except_table", sec->name) == 0)
2974 return 0;
2975
2976 if (strcmp (".xt_except_desc", sec->name) == 0)
2977 return 0;
2978
2979 return _bfd_elf_default_action_discarded (sec);
2980 }
2981
2982 \f
2983 /* Support for core dump NOTE sections. */
2984
2985 static bfd_boolean
2986 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2987 {
2988 int offset;
2989 unsigned int size;
2990
2991 /* The size for Xtensa is variable, so don't try to recognize the format
2992 based on the size. Just assume this is GNU/Linux. */
2993
2994 /* pr_cursig */
2995 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2996
2997 /* pr_pid */
2998 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2999
3000 /* pr_reg */
3001 offset = 72;
3002 size = note->descsz - offset - 4;
3003
3004 /* Make a ".reg/999" section. */
3005 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3006 size, note->descpos + offset);
3007 }
3008
3009
3010 static bfd_boolean
3011 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3012 {
3013 switch (note->descsz)
3014 {
3015 default:
3016 return FALSE;
3017
3018 case 128: /* GNU/Linux elf_prpsinfo */
3019 elf_tdata (abfd)->core_program
3020 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3021 elf_tdata (abfd)->core_command
3022 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3023 }
3024
3025 /* Note that for some reason, a spurious space is tacked
3026 onto the end of the args in some (at least one anyway)
3027 implementations, so strip it off if it exists. */
3028
3029 {
3030 char *command = elf_tdata (abfd)->core_command;
3031 int n = strlen (command);
3032
3033 if (0 < n && command[n - 1] == ' ')
3034 command[n - 1] = '\0';
3035 }
3036
3037 return TRUE;
3038 }
3039
3040 \f
3041 /* Generic Xtensa configurability stuff. */
3042
3043 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3044 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3045 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3046 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3047 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3048 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3049 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3050 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3051
3052 static void
3053 init_call_opcodes (void)
3054 {
3055 if (callx0_op == XTENSA_UNDEFINED)
3056 {
3057 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3058 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3059 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3060 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3061 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3062 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3063 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3064 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3065 }
3066 }
3067
3068
3069 static bfd_boolean
3070 is_indirect_call_opcode (xtensa_opcode opcode)
3071 {
3072 init_call_opcodes ();
3073 return (opcode == callx0_op
3074 || opcode == callx4_op
3075 || opcode == callx8_op
3076 || opcode == callx12_op);
3077 }
3078
3079
3080 static bfd_boolean
3081 is_direct_call_opcode (xtensa_opcode opcode)
3082 {
3083 init_call_opcodes ();
3084 return (opcode == call0_op
3085 || opcode == call4_op
3086 || opcode == call8_op
3087 || opcode == call12_op);
3088 }
3089
3090
3091 static bfd_boolean
3092 is_windowed_call_opcode (xtensa_opcode opcode)
3093 {
3094 init_call_opcodes ();
3095 return (opcode == call4_op
3096 || opcode == call8_op
3097 || opcode == call12_op
3098 || opcode == callx4_op
3099 || opcode == callx8_op
3100 || opcode == callx12_op);
3101 }
3102
3103
3104 static xtensa_opcode
3105 get_const16_opcode (void)
3106 {
3107 static bfd_boolean done_lookup = FALSE;
3108 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3109 if (!done_lookup)
3110 {
3111 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3112 done_lookup = TRUE;
3113 }
3114 return const16_opcode;
3115 }
3116
3117
3118 static xtensa_opcode
3119 get_l32r_opcode (void)
3120 {
3121 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3122 static bfd_boolean done_lookup = FALSE;
3123
3124 if (!done_lookup)
3125 {
3126 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3127 done_lookup = TRUE;
3128 }
3129 return l32r_opcode;
3130 }
3131
3132
3133 static bfd_vma
3134 l32r_offset (bfd_vma addr, bfd_vma pc)
3135 {
3136 bfd_vma offset;
3137
3138 offset = addr - ((pc+3) & -4);
3139 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3140 offset = (signed int) offset >> 2;
3141 BFD_ASSERT ((signed int) offset >> 16 == -1);
3142 return offset;
3143 }
3144
3145
3146 static int
3147 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3148 {
3149 xtensa_isa isa = xtensa_default_isa;
3150 int last_immed, last_opnd, opi;
3151
3152 if (opcode == XTENSA_UNDEFINED)
3153 return XTENSA_UNDEFINED;
3154
3155 /* Find the last visible PC-relative immediate operand for the opcode.
3156 If there are no PC-relative immediates, then choose the last visible
3157 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3158 last_immed = XTENSA_UNDEFINED;
3159 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3160 for (opi = last_opnd - 1; opi >= 0; opi--)
3161 {
3162 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3163 continue;
3164 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3165 {
3166 last_immed = opi;
3167 break;
3168 }
3169 if (last_immed == XTENSA_UNDEFINED
3170 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3171 last_immed = opi;
3172 }
3173 if (last_immed < 0)
3174 return XTENSA_UNDEFINED;
3175
3176 /* If the operand number was specified in an old-style relocation,
3177 check for consistency with the operand computed above. */
3178 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3179 {
3180 int reloc_opnd = r_type - R_XTENSA_OP0;
3181 if (reloc_opnd != last_immed)
3182 return XTENSA_UNDEFINED;
3183 }
3184
3185 return last_immed;
3186 }
3187
3188
3189 int
3190 get_relocation_slot (int r_type)
3191 {
3192 switch (r_type)
3193 {
3194 case R_XTENSA_OP0:
3195 case R_XTENSA_OP1:
3196 case R_XTENSA_OP2:
3197 return 0;
3198
3199 default:
3200 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3201 return r_type - R_XTENSA_SLOT0_OP;
3202 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3203 return r_type - R_XTENSA_SLOT0_ALT;
3204 break;
3205 }
3206
3207 return XTENSA_UNDEFINED;
3208 }
3209
3210
3211 /* Get the opcode for a relocation. */
3212
3213 static xtensa_opcode
3214 get_relocation_opcode (bfd *abfd,
3215 asection *sec,
3216 bfd_byte *contents,
3217 Elf_Internal_Rela *irel)
3218 {
3219 static xtensa_insnbuf ibuff = NULL;
3220 static xtensa_insnbuf sbuff = NULL;
3221 xtensa_isa isa = xtensa_default_isa;
3222 xtensa_format fmt;
3223 int slot;
3224
3225 if (contents == NULL)
3226 return XTENSA_UNDEFINED;
3227
3228 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3229 return XTENSA_UNDEFINED;
3230
3231 if (ibuff == NULL)
3232 {
3233 ibuff = xtensa_insnbuf_alloc (isa);
3234 sbuff = xtensa_insnbuf_alloc (isa);
3235 }
3236
3237 /* Decode the instruction. */
3238 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3239 sec->size - irel->r_offset);
3240 fmt = xtensa_format_decode (isa, ibuff);
3241 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3242 if (slot == XTENSA_UNDEFINED)
3243 return XTENSA_UNDEFINED;
3244 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3245 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3246 }
3247
3248
3249 bfd_boolean
3250 is_l32r_relocation (bfd *abfd,
3251 asection *sec,
3252 bfd_byte *contents,
3253 Elf_Internal_Rela *irel)
3254 {
3255 xtensa_opcode opcode;
3256 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3257 return FALSE;
3258 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3259 return (opcode == get_l32r_opcode ());
3260 }
3261
3262
3263 static bfd_size_type
3264 get_asm_simplify_size (bfd_byte *contents,
3265 bfd_size_type content_len,
3266 bfd_size_type offset)
3267 {
3268 bfd_size_type insnlen, size = 0;
3269
3270 /* Decode the size of the next two instructions. */
3271 insnlen = insn_decode_len (contents, content_len, offset);
3272 if (insnlen == 0)
3273 return 0;
3274
3275 size += insnlen;
3276
3277 insnlen = insn_decode_len (contents, content_len, offset + size);
3278 if (insnlen == 0)
3279 return 0;
3280
3281 size += insnlen;
3282 return size;
3283 }
3284
3285
3286 bfd_boolean
3287 is_alt_relocation (int r_type)
3288 {
3289 return (r_type >= R_XTENSA_SLOT0_ALT
3290 && r_type <= R_XTENSA_SLOT14_ALT);
3291 }
3292
3293
3294 bfd_boolean
3295 is_operand_relocation (int r_type)
3296 {
3297 switch (r_type)
3298 {
3299 case R_XTENSA_OP0:
3300 case R_XTENSA_OP1:
3301 case R_XTENSA_OP2:
3302 return TRUE;
3303
3304 default:
3305 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3306 return TRUE;
3307 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3308 return TRUE;
3309 break;
3310 }
3311
3312 return FALSE;
3313 }
3314
3315
3316 #define MIN_INSN_LENGTH 2
3317
3318 /* Return 0 if it fails to decode. */
3319
3320 bfd_size_type
3321 insn_decode_len (bfd_byte *contents,
3322 bfd_size_type content_len,
3323 bfd_size_type offset)
3324 {
3325 int insn_len;
3326 xtensa_isa isa = xtensa_default_isa;
3327 xtensa_format fmt;
3328 static xtensa_insnbuf ibuff = NULL;
3329
3330 if (offset + MIN_INSN_LENGTH > content_len)
3331 return 0;
3332
3333 if (ibuff == NULL)
3334 ibuff = xtensa_insnbuf_alloc (isa);
3335 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3336 content_len - offset);
3337 fmt = xtensa_format_decode (isa, ibuff);
3338 if (fmt == XTENSA_UNDEFINED)
3339 return 0;
3340 insn_len = xtensa_format_length (isa, fmt);
3341 if (insn_len == XTENSA_UNDEFINED)
3342 return 0;
3343 return insn_len;
3344 }
3345
3346
3347 /* Decode the opcode for a single slot instruction.
3348 Return 0 if it fails to decode or the instruction is multi-slot. */
3349
3350 xtensa_opcode
3351 insn_decode_opcode (bfd_byte *contents,
3352 bfd_size_type content_len,
3353 bfd_size_type offset,
3354 int slot)
3355 {
3356 xtensa_isa isa = xtensa_default_isa;
3357 xtensa_format fmt;
3358 static xtensa_insnbuf insnbuf = NULL;
3359 static xtensa_insnbuf slotbuf = NULL;
3360
3361 if (offset + MIN_INSN_LENGTH > content_len)
3362 return XTENSA_UNDEFINED;
3363
3364 if (insnbuf == NULL)
3365 {
3366 insnbuf = xtensa_insnbuf_alloc (isa);
3367 slotbuf = xtensa_insnbuf_alloc (isa);
3368 }
3369
3370 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3371 content_len - offset);
3372 fmt = xtensa_format_decode (isa, insnbuf);
3373 if (fmt == XTENSA_UNDEFINED)
3374 return XTENSA_UNDEFINED;
3375
3376 if (slot >= xtensa_format_num_slots (isa, fmt))
3377 return XTENSA_UNDEFINED;
3378
3379 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3380 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3381 }
3382
3383
3384 /* The offset is the offset in the contents.
3385 The address is the address of that offset. */
3386
3387 static bfd_boolean
3388 check_branch_target_aligned (bfd_byte *contents,
3389 bfd_size_type content_length,
3390 bfd_vma offset,
3391 bfd_vma address)
3392 {
3393 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3394 if (insn_len == 0)
3395 return FALSE;
3396 return check_branch_target_aligned_address (address, insn_len);
3397 }
3398
3399
3400 static bfd_boolean
3401 check_loop_aligned (bfd_byte *contents,
3402 bfd_size_type content_length,
3403 bfd_vma offset,
3404 bfd_vma address)
3405 {
3406 bfd_size_type loop_len, insn_len;
3407 xtensa_opcode opcode;
3408
3409 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3410 if (opcode == XTENSA_UNDEFINED
3411 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3412 {
3413 BFD_ASSERT (FALSE);
3414 return FALSE;
3415 }
3416
3417 loop_len = insn_decode_len (contents, content_length, offset);
3418 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3419 if (loop_len == 0 || insn_len == 0)
3420 {
3421 BFD_ASSERT (FALSE);
3422 return FALSE;
3423 }
3424
3425 return check_branch_target_aligned_address (address + loop_len, insn_len);
3426 }
3427
3428
3429 static bfd_boolean
3430 check_branch_target_aligned_address (bfd_vma addr, int len)
3431 {
3432 if (len == 8)
3433 return (addr % 8 == 0);
3434 return ((addr >> 2) == ((addr + len - 1) >> 2));
3435 }
3436
3437 \f
3438 /* Instruction widening and narrowing. */
3439
3440 /* When FLIX is available we need to access certain instructions only
3441 when they are 16-bit or 24-bit instructions. This table caches
3442 information about such instructions by walking through all the
3443 opcodes and finding the smallest single-slot format into which each
3444 can be encoded. */
3445
3446 static xtensa_format *op_single_fmt_table = NULL;
3447
3448
3449 static void
3450 init_op_single_format_table (void)
3451 {
3452 xtensa_isa isa = xtensa_default_isa;
3453 xtensa_insnbuf ibuf;
3454 xtensa_opcode opcode;
3455 xtensa_format fmt;
3456 int num_opcodes;
3457
3458 if (op_single_fmt_table)
3459 return;
3460
3461 ibuf = xtensa_insnbuf_alloc (isa);
3462 num_opcodes = xtensa_isa_num_opcodes (isa);
3463
3464 op_single_fmt_table = (xtensa_format *)
3465 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3466 for (opcode = 0; opcode < num_opcodes; opcode++)
3467 {
3468 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3469 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3470 {
3471 if (xtensa_format_num_slots (isa, fmt) == 1
3472 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3473 {
3474 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3475 int fmt_length = xtensa_format_length (isa, fmt);
3476 if (old_fmt == XTENSA_UNDEFINED
3477 || fmt_length < xtensa_format_length (isa, old_fmt))
3478 op_single_fmt_table[opcode] = fmt;
3479 }
3480 }
3481 }
3482 xtensa_insnbuf_free (isa, ibuf);
3483 }
3484
3485
3486 static xtensa_format
3487 get_single_format (xtensa_opcode opcode)
3488 {
3489 init_op_single_format_table ();
3490 return op_single_fmt_table[opcode];
3491 }
3492
3493
3494 /* For the set of narrowable instructions we do NOT include the
3495 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3496 involved during linker relaxation that may require these to
3497 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3498 requires special case code to ensure it only works when op1 == op2. */
3499
3500 struct string_pair
3501 {
3502 const char *wide;
3503 const char *narrow;
3504 };
3505
3506 struct string_pair narrowable[] =
3507 {
3508 { "add", "add.n" },
3509 { "addi", "addi.n" },
3510 { "addmi", "addi.n" },
3511 { "l32i", "l32i.n" },
3512 { "movi", "movi.n" },
3513 { "ret", "ret.n" },
3514 { "retw", "retw.n" },
3515 { "s32i", "s32i.n" },
3516 { "or", "mov.n" } /* special case only when op1 == op2 */
3517 };
3518
3519 struct string_pair widenable[] =
3520 {
3521 { "add", "add.n" },
3522 { "addi", "addi.n" },
3523 { "addmi", "addi.n" },
3524 { "beqz", "beqz.n" },
3525 { "bnez", "bnez.n" },
3526 { "l32i", "l32i.n" },
3527 { "movi", "movi.n" },
3528 { "ret", "ret.n" },
3529 { "retw", "retw.n" },
3530 { "s32i", "s32i.n" },
3531 { "or", "mov.n" } /* special case only when op1 == op2 */
3532 };
3533
3534
3535 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3536 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3537 return the instruction buffer holding the narrow instruction. Otherwise,
3538 return 0. The set of valid narrowing are specified by a string table
3539 but require some special case operand checks in some cases. */
3540
3541 static xtensa_insnbuf
3542 can_narrow_instruction (xtensa_insnbuf slotbuf,
3543 xtensa_format fmt,
3544 xtensa_opcode opcode)
3545 {
3546 xtensa_isa isa = xtensa_default_isa;
3547 xtensa_format o_fmt;
3548 unsigned opi;
3549
3550 static xtensa_insnbuf o_insnbuf = NULL;
3551 static xtensa_insnbuf o_slotbuf = NULL;
3552
3553 if (o_insnbuf == NULL)
3554 {
3555 o_insnbuf = xtensa_insnbuf_alloc (isa);
3556 o_slotbuf = xtensa_insnbuf_alloc (isa);
3557 }
3558
3559 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3560 {
3561 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3562
3563 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3564 {
3565 uint32 value, newval;
3566 int i, operand_count, o_operand_count;
3567 xtensa_opcode o_opcode;
3568
3569 /* Address does not matter in this case. We might need to
3570 fix it to handle branches/jumps. */
3571 bfd_vma self_address = 0;
3572
3573 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3574 if (o_opcode == XTENSA_UNDEFINED)
3575 return 0;
3576 o_fmt = get_single_format (o_opcode);
3577 if (o_fmt == XTENSA_UNDEFINED)
3578 return 0;
3579
3580 if (xtensa_format_length (isa, fmt) != 3
3581 || xtensa_format_length (isa, o_fmt) != 2)
3582 return 0;
3583
3584 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3585 operand_count = xtensa_opcode_num_operands (isa, opcode);
3586 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3587
3588 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3589 return 0;
3590
3591 if (!is_or)
3592 {
3593 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3594 return 0;
3595 }
3596 else
3597 {
3598 uint32 rawval0, rawval1, rawval2;
3599
3600 if (o_operand_count + 1 != operand_count
3601 || xtensa_operand_get_field (isa, opcode, 0,
3602 fmt, 0, slotbuf, &rawval0) != 0
3603 || xtensa_operand_get_field (isa, opcode, 1,
3604 fmt, 0, slotbuf, &rawval1) != 0
3605 || xtensa_operand_get_field (isa, opcode, 2,
3606 fmt, 0, slotbuf, &rawval2) != 0
3607 || rawval1 != rawval2
3608 || rawval0 == rawval1 /* it is a nop */)
3609 return 0;
3610 }
3611
3612 for (i = 0; i < o_operand_count; ++i)
3613 {
3614 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3615 slotbuf, &value)
3616 || xtensa_operand_decode (isa, opcode, i, &value))
3617 return 0;
3618
3619 /* PC-relative branches need adjustment, but
3620 the PC-rel operand will always have a relocation. */
3621 newval = value;
3622 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3623 self_address)
3624 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3625 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3626 o_slotbuf, newval))
3627 return 0;
3628 }
3629
3630 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3631 return 0;
3632
3633 return o_insnbuf;
3634 }
3635 }
3636 return 0;
3637 }
3638
3639
3640 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3641 the action in-place directly into the contents and return TRUE. Otherwise,
3642 the return value is FALSE and the contents are not modified. */
3643
3644 static bfd_boolean
3645 narrow_instruction (bfd_byte *contents,
3646 bfd_size_type content_length,
3647 bfd_size_type offset)
3648 {
3649 xtensa_opcode opcode;
3650 bfd_size_type insn_len;
3651 xtensa_isa isa = xtensa_default_isa;
3652 xtensa_format fmt;
3653 xtensa_insnbuf o_insnbuf;
3654
3655 static xtensa_insnbuf insnbuf = NULL;
3656 static xtensa_insnbuf slotbuf = NULL;
3657
3658 if (insnbuf == NULL)
3659 {
3660 insnbuf = xtensa_insnbuf_alloc (isa);
3661 slotbuf = xtensa_insnbuf_alloc (isa);
3662 }
3663
3664 BFD_ASSERT (offset < content_length);
3665
3666 if (content_length < 2)
3667 return FALSE;
3668
3669 /* We will hand-code a few of these for a little while.
3670 These have all been specified in the assembler aleady. */
3671 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3672 content_length - offset);
3673 fmt = xtensa_format_decode (isa, insnbuf);
3674 if (xtensa_format_num_slots (isa, fmt) != 1)
3675 return FALSE;
3676
3677 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3678 return FALSE;
3679
3680 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3681 if (opcode == XTENSA_UNDEFINED)
3682 return FALSE;
3683 insn_len = xtensa_format_length (isa, fmt);
3684 if (insn_len > content_length)
3685 return FALSE;
3686
3687 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3688 if (o_insnbuf)
3689 {
3690 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3691 content_length - offset);
3692 return TRUE;
3693 }
3694
3695 return FALSE;
3696 }
3697
3698
3699 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3700 "density" instruction to a standard 3-byte instruction. If it is valid,
3701 return the instruction buffer holding the wide instruction. Otherwise,
3702 return 0. The set of valid widenings are specified by a string table
3703 but require some special case operand checks in some cases. */
3704
3705 static xtensa_insnbuf
3706 can_widen_instruction (xtensa_insnbuf slotbuf,
3707 xtensa_format fmt,
3708 xtensa_opcode opcode)
3709 {
3710 xtensa_isa isa = xtensa_default_isa;
3711 xtensa_format o_fmt;
3712 unsigned opi;
3713
3714 static xtensa_insnbuf o_insnbuf = NULL;
3715 static xtensa_insnbuf o_slotbuf = NULL;
3716
3717 if (o_insnbuf == NULL)
3718 {
3719 o_insnbuf = xtensa_insnbuf_alloc (isa);
3720 o_slotbuf = xtensa_insnbuf_alloc (isa);
3721 }
3722
3723 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3724 {
3725 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3726 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3727 || strcmp ("bnez", widenable[opi].wide) == 0);
3728
3729 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3730 {
3731 uint32 value, newval;
3732 int i, operand_count, o_operand_count, check_operand_count;
3733 xtensa_opcode o_opcode;
3734
3735 /* Address does not matter in this case. We might need to fix it
3736 to handle branches/jumps. */
3737 bfd_vma self_address = 0;
3738
3739 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3740 if (o_opcode == XTENSA_UNDEFINED)
3741 return 0;
3742 o_fmt = get_single_format (o_opcode);
3743 if (o_fmt == XTENSA_UNDEFINED)
3744 return 0;
3745
3746 if (xtensa_format_length (isa, fmt) != 2
3747 || xtensa_format_length (isa, o_fmt) != 3)
3748 return 0;
3749
3750 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3751 operand_count = xtensa_opcode_num_operands (isa, opcode);
3752 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3753 check_operand_count = o_operand_count;
3754
3755 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3756 return 0;
3757
3758 if (!is_or)
3759 {
3760 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3761 return 0;
3762 }
3763 else
3764 {
3765 uint32 rawval0, rawval1;
3766
3767 if (o_operand_count != operand_count + 1
3768 || xtensa_operand_get_field (isa, opcode, 0,
3769 fmt, 0, slotbuf, &rawval0) != 0
3770 || xtensa_operand_get_field (isa, opcode, 1,
3771 fmt, 0, slotbuf, &rawval1) != 0
3772 || rawval0 == rawval1 /* it is a nop */)
3773 return 0;
3774 }
3775 if (is_branch)
3776 check_operand_count--;
3777
3778 for (i = 0; i < check_operand_count; i++)
3779 {
3780 int new_i = i;
3781 if (is_or && i == o_operand_count - 1)
3782 new_i = i - 1;
3783 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3784 slotbuf, &value)
3785 || xtensa_operand_decode (isa, opcode, new_i, &value))
3786 return 0;
3787
3788 /* PC-relative branches need adjustment, but
3789 the PC-rel operand will always have a relocation. */
3790 newval = value;
3791 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3792 self_address)
3793 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3794 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3795 o_slotbuf, newval))
3796 return 0;
3797 }
3798
3799 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3800 return 0;
3801
3802 return o_insnbuf;
3803 }
3804 }
3805 return 0;
3806 }
3807
3808
3809 /* Attempt to widen an instruction. If the widening is valid, perform
3810 the action in-place directly into the contents and return TRUE. Otherwise,
3811 the return value is FALSE and the contents are not modified. */
3812
3813 static bfd_boolean
3814 widen_instruction (bfd_byte *contents,
3815 bfd_size_type content_length,
3816 bfd_size_type offset)
3817 {
3818 xtensa_opcode opcode;
3819 bfd_size_type insn_len;
3820 xtensa_isa isa = xtensa_default_isa;
3821 xtensa_format fmt;
3822 xtensa_insnbuf o_insnbuf;
3823
3824 static xtensa_insnbuf insnbuf = NULL;
3825 static xtensa_insnbuf slotbuf = NULL;
3826
3827 if (insnbuf == NULL)
3828 {
3829 insnbuf = xtensa_insnbuf_alloc (isa);
3830 slotbuf = xtensa_insnbuf_alloc (isa);
3831 }
3832
3833 BFD_ASSERT (offset < content_length);
3834
3835 if (content_length < 2)
3836 return FALSE;
3837
3838 /* We will hand-code a few of these for a little while.
3839 These have all been specified in the assembler aleady. */
3840 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3841 content_length - offset);
3842 fmt = xtensa_format_decode (isa, insnbuf);
3843 if (xtensa_format_num_slots (isa, fmt) != 1)
3844 return FALSE;
3845
3846 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3847 return FALSE;
3848
3849 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3850 if (opcode == XTENSA_UNDEFINED)
3851 return FALSE;
3852 insn_len = xtensa_format_length (isa, fmt);
3853 if (insn_len > content_length)
3854 return FALSE;
3855
3856 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3857 if (o_insnbuf)
3858 {
3859 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3860 content_length - offset);
3861 return TRUE;
3862 }
3863 return FALSE;
3864 }
3865
3866 \f
3867 /* Code for transforming CALLs at link-time. */
3868
3869 static bfd_reloc_status_type
3870 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3871 bfd_vma address,
3872 bfd_vma content_length,
3873 char **error_message)
3874 {
3875 static xtensa_insnbuf insnbuf = NULL;
3876 static xtensa_insnbuf slotbuf = NULL;
3877 xtensa_format core_format = XTENSA_UNDEFINED;
3878 xtensa_opcode opcode;
3879 xtensa_opcode direct_call_opcode;
3880 xtensa_isa isa = xtensa_default_isa;
3881 bfd_byte *chbuf = contents + address;
3882 int opn;
3883
3884 if (insnbuf == NULL)
3885 {
3886 insnbuf = xtensa_insnbuf_alloc (isa);
3887 slotbuf = xtensa_insnbuf_alloc (isa);
3888 }
3889
3890 if (content_length < address)
3891 {
3892 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3893 return bfd_reloc_other;
3894 }
3895
3896 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3897 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3898 if (direct_call_opcode == XTENSA_UNDEFINED)
3899 {
3900 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3901 return bfd_reloc_other;
3902 }
3903
3904 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3905 core_format = xtensa_format_lookup (isa, "x24");
3906 opcode = xtensa_opcode_lookup (isa, "or");
3907 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3908 for (opn = 0; opn < 3; opn++)
3909 {
3910 uint32 regno = 1;
3911 xtensa_operand_encode (isa, opcode, opn, &regno);
3912 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3913 slotbuf, regno);
3914 }
3915 xtensa_format_encode (isa, core_format, insnbuf);
3916 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3917 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3918
3919 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3920 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3921 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3922
3923 xtensa_format_encode (isa, core_format, insnbuf);
3924 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3925 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3926 content_length - address - 3);
3927
3928 return bfd_reloc_ok;
3929 }
3930
3931
3932 static bfd_reloc_status_type
3933 contract_asm_expansion (bfd_byte *contents,
3934 bfd_vma content_length,
3935 Elf_Internal_Rela *irel,
3936 char **error_message)
3937 {
3938 bfd_reloc_status_type retval =
3939 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3940 error_message);
3941
3942 if (retval != bfd_reloc_ok)
3943 return bfd_reloc_dangerous;
3944
3945 /* Update the irel->r_offset field so that the right immediate and
3946 the right instruction are modified during the relocation. */
3947 irel->r_offset += 3;
3948 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3949 return bfd_reloc_ok;
3950 }
3951
3952
3953 static xtensa_opcode
3954 swap_callx_for_call_opcode (xtensa_opcode opcode)
3955 {
3956 init_call_opcodes ();
3957
3958 if (opcode == callx0_op) return call0_op;
3959 if (opcode == callx4_op) return call4_op;
3960 if (opcode == callx8_op) return call8_op;
3961 if (opcode == callx12_op) return call12_op;
3962
3963 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3964 return XTENSA_UNDEFINED;
3965 }
3966
3967
3968 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3969 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3970 If not, return XTENSA_UNDEFINED. */
3971
3972 #define L32R_TARGET_REG_OPERAND 0
3973 #define CONST16_TARGET_REG_OPERAND 0
3974 #define CALLN_SOURCE_OPERAND 0
3975
3976 static xtensa_opcode
3977 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3978 {
3979 static xtensa_insnbuf insnbuf = NULL;
3980 static xtensa_insnbuf slotbuf = NULL;
3981 xtensa_format fmt;
3982 xtensa_opcode opcode;
3983 xtensa_isa isa = xtensa_default_isa;
3984 uint32 regno, const16_regno, call_regno;
3985 int offset = 0;
3986
3987 if (insnbuf == NULL)
3988 {
3989 insnbuf = xtensa_insnbuf_alloc (isa);
3990 slotbuf = xtensa_insnbuf_alloc (isa);
3991 }
3992
3993 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3994 fmt = xtensa_format_decode (isa, insnbuf);
3995 if (fmt == XTENSA_UNDEFINED
3996 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3997 return XTENSA_UNDEFINED;
3998
3999 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4000 if (opcode == XTENSA_UNDEFINED)
4001 return XTENSA_UNDEFINED;
4002
4003 if (opcode == get_l32r_opcode ())
4004 {
4005 if (p_uses_l32r)
4006 *p_uses_l32r = TRUE;
4007 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4008 fmt, 0, slotbuf, &regno)
4009 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4010 &regno))
4011 return XTENSA_UNDEFINED;
4012 }
4013 else if (opcode == get_const16_opcode ())
4014 {
4015 if (p_uses_l32r)
4016 *p_uses_l32r = FALSE;
4017 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4018 fmt, 0, slotbuf, &regno)
4019 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4020 &regno))
4021 return XTENSA_UNDEFINED;
4022
4023 /* Check that the next instruction is also CONST16. */
4024 offset += xtensa_format_length (isa, fmt);
4025 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4026 fmt = xtensa_format_decode (isa, insnbuf);
4027 if (fmt == XTENSA_UNDEFINED
4028 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4029 return XTENSA_UNDEFINED;
4030 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4031 if (opcode != get_const16_opcode ())
4032 return XTENSA_UNDEFINED;
4033
4034 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4035 fmt, 0, slotbuf, &const16_regno)
4036 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4037 &const16_regno)
4038 || const16_regno != regno)
4039 return XTENSA_UNDEFINED;
4040 }
4041 else
4042 return XTENSA_UNDEFINED;
4043
4044 /* Next instruction should be an CALLXn with operand 0 == regno. */
4045 offset += xtensa_format_length (isa, fmt);
4046 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4047 fmt = xtensa_format_decode (isa, insnbuf);
4048 if (fmt == XTENSA_UNDEFINED
4049 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4050 return XTENSA_UNDEFINED;
4051 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4052 if (opcode == XTENSA_UNDEFINED
4053 || !is_indirect_call_opcode (opcode))
4054 return XTENSA_UNDEFINED;
4055
4056 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4057 fmt, 0, slotbuf, &call_regno)
4058 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4059 &call_regno))
4060 return XTENSA_UNDEFINED;
4061
4062 if (call_regno != regno)
4063 return XTENSA_UNDEFINED;
4064
4065 return opcode;
4066 }
4067
4068 \f
4069 /* Data structures used during relaxation. */
4070
4071 /* r_reloc: relocation values. */
4072
4073 /* Through the relaxation process, we need to keep track of the values
4074 that will result from evaluating relocations. The standard ELF
4075 relocation structure is not sufficient for this purpose because we're
4076 operating on multiple input files at once, so we need to know which
4077 input file a relocation refers to. The r_reloc structure thus
4078 records both the input file (bfd) and ELF relocation.
4079
4080 For efficiency, an r_reloc also contains a "target_offset" field to
4081 cache the target-section-relative offset value that is represented by
4082 the relocation.
4083
4084 The r_reloc also contains a virtual offset that allows multiple
4085 inserted literals to be placed at the same "address" with
4086 different offsets. */
4087
4088 typedef struct r_reloc_struct r_reloc;
4089
4090 struct r_reloc_struct
4091 {
4092 bfd *abfd;
4093 Elf_Internal_Rela rela;
4094 bfd_vma target_offset;
4095 bfd_vma virtual_offset;
4096 };
4097
4098
4099 /* The r_reloc structure is included by value in literal_value, but not
4100 every literal_value has an associated relocation -- some are simple
4101 constants. In such cases, we set all the fields in the r_reloc
4102 struct to zero. The r_reloc_is_const function should be used to
4103 detect this case. */
4104
4105 static bfd_boolean
4106 r_reloc_is_const (const r_reloc *r_rel)
4107 {
4108 return (r_rel->abfd == NULL);
4109 }
4110
4111
4112 static bfd_vma
4113 r_reloc_get_target_offset (const r_reloc *r_rel)
4114 {
4115 bfd_vma target_offset;
4116 unsigned long r_symndx;
4117
4118 BFD_ASSERT (!r_reloc_is_const (r_rel));
4119 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4120 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4121 return (target_offset + r_rel->rela.r_addend);
4122 }
4123
4124
4125 static struct elf_link_hash_entry *
4126 r_reloc_get_hash_entry (const r_reloc *r_rel)
4127 {
4128 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4129 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4130 }
4131
4132
4133 static asection *
4134 r_reloc_get_section (const r_reloc *r_rel)
4135 {
4136 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4137 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4138 }
4139
4140
4141 static bfd_boolean
4142 r_reloc_is_defined (const r_reloc *r_rel)
4143 {
4144 asection *sec;
4145 if (r_rel == NULL)
4146 return FALSE;
4147
4148 sec = r_reloc_get_section (r_rel);
4149 if (sec == bfd_abs_section_ptr
4150 || sec == bfd_com_section_ptr
4151 || sec == bfd_und_section_ptr)
4152 return FALSE;
4153 return TRUE;
4154 }
4155
4156
4157 static void
4158 r_reloc_init (r_reloc *r_rel,
4159 bfd *abfd,
4160 Elf_Internal_Rela *irel,
4161 bfd_byte *contents,
4162 bfd_size_type content_length)
4163 {
4164 int r_type;
4165 reloc_howto_type *howto;
4166
4167 if (irel)
4168 {
4169 r_rel->rela = *irel;
4170 r_rel->abfd = abfd;
4171 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4172 r_rel->virtual_offset = 0;
4173 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4174 howto = &elf_howto_table[r_type];
4175 if (howto->partial_inplace)
4176 {
4177 bfd_vma inplace_val;
4178 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4179
4180 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4181 r_rel->target_offset += inplace_val;
4182 }
4183 }
4184 else
4185 memset (r_rel, 0, sizeof (r_reloc));
4186 }
4187
4188
4189 #if DEBUG
4190
4191 static void
4192 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4193 {
4194 if (r_reloc_is_defined (r_rel))
4195 {
4196 asection *sec = r_reloc_get_section (r_rel);
4197 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4198 }
4199 else if (r_reloc_get_hash_entry (r_rel))
4200 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4201 else
4202 fprintf (fp, " ?? + ");
4203
4204 fprintf_vma (fp, r_rel->target_offset);
4205 if (r_rel->virtual_offset)
4206 {
4207 fprintf (fp, " + ");
4208 fprintf_vma (fp, r_rel->virtual_offset);
4209 }
4210
4211 fprintf (fp, ")");
4212 }
4213
4214 #endif /* DEBUG */
4215
4216 \f
4217 /* source_reloc: relocations that reference literals. */
4218
4219 /* To determine whether literals can be coalesced, we need to first
4220 record all the relocations that reference the literals. The
4221 source_reloc structure below is used for this purpose. The
4222 source_reloc entries are kept in a per-literal-section array, sorted
4223 by offset within the literal section (i.e., target offset).
4224
4225 The source_sec and r_rel.rela.r_offset fields identify the source of
4226 the relocation. The r_rel field records the relocation value, i.e.,
4227 the offset of the literal being referenced. The opnd field is needed
4228 to determine the range of the immediate field to which the relocation
4229 applies, so we can determine whether another literal with the same
4230 value is within range. The is_null field is true when the relocation
4231 is being removed (e.g., when an L32R is being removed due to a CALLX
4232 that is converted to a direct CALL). */
4233
4234 typedef struct source_reloc_struct source_reloc;
4235
4236 struct source_reloc_struct
4237 {
4238 asection *source_sec;
4239 r_reloc r_rel;
4240 xtensa_opcode opcode;
4241 int opnd;
4242 bfd_boolean is_null;
4243 bfd_boolean is_abs_literal;
4244 };
4245
4246
4247 static void
4248 init_source_reloc (source_reloc *reloc,
4249 asection *source_sec,
4250 const r_reloc *r_rel,
4251 xtensa_opcode opcode,
4252 int opnd,
4253 bfd_boolean is_abs_literal)
4254 {
4255 reloc->source_sec = source_sec;
4256 reloc->r_rel = *r_rel;
4257 reloc->opcode = opcode;
4258 reloc->opnd = opnd;
4259 reloc->is_null = FALSE;
4260 reloc->is_abs_literal = is_abs_literal;
4261 }
4262
4263
4264 /* Find the source_reloc for a particular source offset and relocation
4265 type. Note that the array is sorted by _target_ offset, so this is
4266 just a linear search. */
4267
4268 static source_reloc *
4269 find_source_reloc (source_reloc *src_relocs,
4270 int src_count,
4271 asection *sec,
4272 Elf_Internal_Rela *irel)
4273 {
4274 int i;
4275
4276 for (i = 0; i < src_count; i++)
4277 {
4278 if (src_relocs[i].source_sec == sec
4279 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4280 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4281 == ELF32_R_TYPE (irel->r_info)))
4282 return &src_relocs[i];
4283 }
4284
4285 return NULL;
4286 }
4287
4288
4289 static int
4290 source_reloc_compare (const void *ap, const void *bp)
4291 {
4292 const source_reloc *a = (const source_reloc *) ap;
4293 const source_reloc *b = (const source_reloc *) bp;
4294
4295 if (a->r_rel.target_offset != b->r_rel.target_offset)
4296 return (a->r_rel.target_offset - b->r_rel.target_offset);
4297
4298 /* We don't need to sort on these criteria for correctness,
4299 but enforcing a more strict ordering prevents unstable qsort
4300 from behaving differently with different implementations.
4301 Without the code below we get correct but different results
4302 on Solaris 2.7 and 2.8. We would like to always produce the
4303 same results no matter the host. */
4304
4305 if ((!a->is_null) - (!b->is_null))
4306 return ((!a->is_null) - (!b->is_null));
4307 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4308 }
4309
4310 \f
4311 /* Literal values and value hash tables. */
4312
4313 /* Literals with the same value can be coalesced. The literal_value
4314 structure records the value of a literal: the "r_rel" field holds the
4315 information from the relocation on the literal (if there is one) and
4316 the "value" field holds the contents of the literal word itself.
4317
4318 The value_map structure records a literal value along with the
4319 location of a literal holding that value. The value_map hash table
4320 is indexed by the literal value, so that we can quickly check if a
4321 particular literal value has been seen before and is thus a candidate
4322 for coalescing. */
4323
4324 typedef struct literal_value_struct literal_value;
4325 typedef struct value_map_struct value_map;
4326 typedef struct value_map_hash_table_struct value_map_hash_table;
4327
4328 struct literal_value_struct
4329 {
4330 r_reloc r_rel;
4331 unsigned long value;
4332 bfd_boolean is_abs_literal;
4333 };
4334
4335 struct value_map_struct
4336 {
4337 literal_value val; /* The literal value. */
4338 r_reloc loc; /* Location of the literal. */
4339 value_map *next;
4340 };
4341
4342 struct value_map_hash_table_struct
4343 {
4344 unsigned bucket_count;
4345 value_map **buckets;
4346 unsigned count;
4347 bfd_boolean has_last_loc;
4348 r_reloc last_loc;
4349 };
4350
4351
4352 static void
4353 init_literal_value (literal_value *lit,
4354 const r_reloc *r_rel,
4355 unsigned long value,
4356 bfd_boolean is_abs_literal)
4357 {
4358 lit->r_rel = *r_rel;
4359 lit->value = value;
4360 lit->is_abs_literal = is_abs_literal;
4361 }
4362
4363
4364 static bfd_boolean
4365 literal_value_equal (const literal_value *src1,
4366 const literal_value *src2,
4367 bfd_boolean final_static_link)
4368 {
4369 struct elf_link_hash_entry *h1, *h2;
4370
4371 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4372 return FALSE;
4373
4374 if (r_reloc_is_const (&src1->r_rel))
4375 return (src1->value == src2->value);
4376
4377 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4378 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4379 return FALSE;
4380
4381 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4382 return FALSE;
4383
4384 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4385 return FALSE;
4386
4387 if (src1->value != src2->value)
4388 return FALSE;
4389
4390 /* Now check for the same section (if defined) or the same elf_hash
4391 (if undefined or weak). */
4392 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4393 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4394 if (r_reloc_is_defined (&src1->r_rel)
4395 && (final_static_link
4396 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4397 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4398 {
4399 if (r_reloc_get_section (&src1->r_rel)
4400 != r_reloc_get_section (&src2->r_rel))
4401 return FALSE;
4402 }
4403 else
4404 {
4405 /* Require that the hash entries (i.e., symbols) be identical. */
4406 if (h1 != h2 || h1 == 0)
4407 return FALSE;
4408 }
4409
4410 if (src1->is_abs_literal != src2->is_abs_literal)
4411 return FALSE;
4412
4413 return TRUE;
4414 }
4415
4416
4417 /* Must be power of 2. */
4418 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4419
4420 static value_map_hash_table *
4421 value_map_hash_table_init (void)
4422 {
4423 value_map_hash_table *values;
4424
4425 values = (value_map_hash_table *)
4426 bfd_zmalloc (sizeof (value_map_hash_table));
4427 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4428 values->count = 0;
4429 values->buckets = (value_map **)
4430 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4431 if (values->buckets == NULL)
4432 {
4433 free (values);
4434 return NULL;
4435 }
4436 values->has_last_loc = FALSE;
4437
4438 return values;
4439 }
4440
4441
4442 static void
4443 value_map_hash_table_delete (value_map_hash_table *table)
4444 {
4445 free (table->buckets);
4446 free (table);
4447 }
4448
4449
4450 static unsigned
4451 hash_bfd_vma (bfd_vma val)
4452 {
4453 return (val >> 2) + (val >> 10);
4454 }
4455
4456
4457 static unsigned
4458 literal_value_hash (const literal_value *src)
4459 {
4460 unsigned hash_val;
4461
4462 hash_val = hash_bfd_vma (src->value);
4463 if (!r_reloc_is_const (&src->r_rel))
4464 {
4465 void *sec_or_hash;
4466
4467 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4468 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4469 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4470
4471 /* Now check for the same section and the same elf_hash. */
4472 if (r_reloc_is_defined (&src->r_rel))
4473 sec_or_hash = r_reloc_get_section (&src->r_rel);
4474 else
4475 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4476 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4477 }
4478 return hash_val;
4479 }
4480
4481
4482 /* Check if the specified literal_value has been seen before. */
4483
4484 static value_map *
4485 value_map_get_cached_value (value_map_hash_table *map,
4486 const literal_value *val,
4487 bfd_boolean final_static_link)
4488 {
4489 value_map *map_e;
4490 value_map *bucket;
4491 unsigned idx;
4492
4493 idx = literal_value_hash (val);
4494 idx = idx & (map->bucket_count - 1);
4495 bucket = map->buckets[idx];
4496 for (map_e = bucket; map_e; map_e = map_e->next)
4497 {
4498 if (literal_value_equal (&map_e->val, val, final_static_link))
4499 return map_e;
4500 }
4501 return NULL;
4502 }
4503
4504
4505 /* Record a new literal value. It is illegal to call this if VALUE
4506 already has an entry here. */
4507
4508 static value_map *
4509 add_value_map (value_map_hash_table *map,
4510 const literal_value *val,
4511 const r_reloc *loc,
4512 bfd_boolean final_static_link)
4513 {
4514 value_map **bucket_p;
4515 unsigned idx;
4516
4517 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4518 if (val_e == NULL)
4519 {
4520 bfd_set_error (bfd_error_no_memory);
4521 return NULL;
4522 }
4523
4524 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4525 val_e->val = *val;
4526 val_e->loc = *loc;
4527
4528 idx = literal_value_hash (val);
4529 idx = idx & (map->bucket_count - 1);
4530 bucket_p = &map->buckets[idx];
4531
4532 val_e->next = *bucket_p;
4533 *bucket_p = val_e;
4534 map->count++;
4535 /* FIXME: Consider resizing the hash table if we get too many entries. */
4536
4537 return val_e;
4538 }
4539
4540 \f
4541 /* Lists of text actions (ta_) for narrowing, widening, longcall
4542 conversion, space fill, code & literal removal, etc. */
4543
4544 /* The following text actions are generated:
4545
4546 "ta_remove_insn" remove an instruction or instructions
4547 "ta_remove_longcall" convert longcall to call
4548 "ta_convert_longcall" convert longcall to nop/call
4549 "ta_narrow_insn" narrow a wide instruction
4550 "ta_widen" widen a narrow instruction
4551 "ta_fill" add fill or remove fill
4552 removed < 0 is a fill; branches to the fill address will be
4553 changed to address + fill size (e.g., address - removed)
4554 removed >= 0 branches to the fill address will stay unchanged
4555 "ta_remove_literal" remove a literal; this action is
4556 indicated when a literal is removed
4557 or replaced.
4558 "ta_add_literal" insert a new literal; this action is
4559 indicated when a literal has been moved.
4560 It may use a virtual_offset because
4561 multiple literals can be placed at the
4562 same location.
4563
4564 For each of these text actions, we also record the number of bytes
4565 removed by performing the text action. In the case of a "ta_widen"
4566 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4567
4568 typedef struct text_action_struct text_action;
4569 typedef struct text_action_list_struct text_action_list;
4570 typedef enum text_action_enum_t text_action_t;
4571
4572 enum text_action_enum_t
4573 {
4574 ta_none,
4575 ta_remove_insn, /* removed = -size */
4576 ta_remove_longcall, /* removed = -size */
4577 ta_convert_longcall, /* removed = 0 */
4578 ta_narrow_insn, /* removed = -1 */
4579 ta_widen_insn, /* removed = +1 */
4580 ta_fill, /* removed = +size */
4581 ta_remove_literal,
4582 ta_add_literal
4583 };
4584
4585
4586 /* Structure for a text action record. */
4587 struct text_action_struct
4588 {
4589 text_action_t action;
4590 asection *sec; /* Optional */
4591 bfd_vma offset;
4592 bfd_vma virtual_offset; /* Zero except for adding literals. */
4593 int removed_bytes;
4594 literal_value value; /* Only valid when adding literals. */
4595
4596 text_action *next;
4597 };
4598
4599
4600 /* List of all of the actions taken on a text section. */
4601 struct text_action_list_struct
4602 {
4603 text_action *head;
4604 };
4605
4606
4607 static text_action *
4608 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4609 {
4610 text_action **m_p;
4611
4612 /* It is not necessary to fill at the end of a section. */
4613 if (sec->size == offset)
4614 return NULL;
4615
4616 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4617 {
4618 text_action *t = *m_p;
4619 /* When the action is another fill at the same address,
4620 just increase the size. */
4621 if (t->offset == offset && t->action == ta_fill)
4622 return t;
4623 }
4624 return NULL;
4625 }
4626
4627
4628 static int
4629 compute_removed_action_diff (const text_action *ta,
4630 asection *sec,
4631 bfd_vma offset,
4632 int removed,
4633 int removable_space)
4634 {
4635 int new_removed;
4636 int current_removed = 0;
4637
4638 if (ta)
4639 current_removed = ta->removed_bytes;
4640
4641 BFD_ASSERT (ta == NULL || ta->offset == offset);
4642 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4643
4644 /* It is not necessary to fill at the end of a section. Clean this up. */
4645 if (sec->size == offset)
4646 new_removed = removable_space - 0;
4647 else
4648 {
4649 int space;
4650 int added = -removed - current_removed;
4651 /* Ignore multiples of the section alignment. */
4652 added = ((1 << sec->alignment_power) - 1) & added;
4653 new_removed = (-added);
4654
4655 /* Modify for removable. */
4656 space = removable_space - new_removed;
4657 new_removed = (removable_space
4658 - (((1 << sec->alignment_power) - 1) & space));
4659 }
4660 return (new_removed - current_removed);
4661 }
4662
4663
4664 static void
4665 adjust_fill_action (text_action *ta, int fill_diff)
4666 {
4667 ta->removed_bytes += fill_diff;
4668 }
4669
4670
4671 /* Add a modification action to the text. For the case of adding or
4672 removing space, modify any current fill and assume that
4673 "unreachable_space" bytes can be freely contracted. Note that a
4674 negative removed value is a fill. */
4675
4676 static void
4677 text_action_add (text_action_list *l,
4678 text_action_t action,
4679 asection *sec,
4680 bfd_vma offset,
4681 int removed)
4682 {
4683 text_action **m_p;
4684 text_action *ta;
4685
4686 /* It is not necessary to fill at the end of a section. */
4687 if (action == ta_fill && sec->size == offset)
4688 return;
4689
4690 /* It is not necessary to fill 0 bytes. */
4691 if (action == ta_fill && removed == 0)
4692 return;
4693
4694 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4695 {
4696 text_action *t = *m_p;
4697 /* When the action is another fill at the same address,
4698 just increase the size. */
4699 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4700 {
4701 t->removed_bytes += removed;
4702 return;
4703 }
4704 }
4705
4706 /* Create a new record and fill it up. */
4707 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4708 ta->action = action;
4709 ta->sec = sec;
4710 ta->offset = offset;
4711 ta->removed_bytes = removed;
4712 ta->next = (*m_p);
4713 *m_p = ta;
4714 }
4715
4716
4717 static void
4718 text_action_add_literal (text_action_list *l,
4719 text_action_t action,
4720 const r_reloc *loc,
4721 const literal_value *value,
4722 int removed)
4723 {
4724 text_action **m_p;
4725 text_action *ta;
4726 asection *sec = r_reloc_get_section (loc);
4727 bfd_vma offset = loc->target_offset;
4728 bfd_vma virtual_offset = loc->virtual_offset;
4729
4730 BFD_ASSERT (action == ta_add_literal);
4731
4732 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4733 {
4734 if ((*m_p)->offset > offset
4735 && ((*m_p)->offset != offset
4736 || (*m_p)->virtual_offset > virtual_offset))
4737 break;
4738 }
4739
4740 /* Create a new record and fill it up. */
4741 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4742 ta->action = action;
4743 ta->sec = sec;
4744 ta->offset = offset;
4745 ta->virtual_offset = virtual_offset;
4746 ta->value = *value;
4747 ta->removed_bytes = removed;
4748 ta->next = (*m_p);
4749 *m_p = ta;
4750 }
4751
4752
4753 static bfd_vma
4754 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4755 {
4756 text_action *r;
4757 int removed = 0;
4758
4759 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4760 {
4761 if (r->offset < offset
4762 || (r->action == ta_fill && r->removed_bytes < 0))
4763 removed += r->removed_bytes;
4764 }
4765
4766 return (offset - removed);
4767 }
4768
4769
4770 static unsigned
4771 action_list_count (text_action_list *action_list)
4772 {
4773 text_action *r = action_list->head;
4774 unsigned count = 0;
4775 for (r = action_list->head; r != NULL; r = r->next)
4776 {
4777 count++;
4778 }
4779 return count;
4780 }
4781
4782
4783 static bfd_vma
4784 offset_with_removed_text_before_fill (text_action_list *action_list,
4785 bfd_vma offset)
4786 {
4787 text_action *r;
4788 int removed = 0;
4789
4790 for (r = action_list->head; r && r->offset < offset; r = r->next)
4791 removed += r->removed_bytes;
4792
4793 return (offset - removed);
4794 }
4795
4796
4797 /* The find_insn_action routine will only find non-fill actions. */
4798
4799 static text_action *
4800 find_insn_action (text_action_list *action_list, bfd_vma offset)
4801 {
4802 text_action *t;
4803 for (t = action_list->head; t; t = t->next)
4804 {
4805 if (t->offset == offset)
4806 {
4807 switch (t->action)
4808 {
4809 case ta_none:
4810 case ta_fill:
4811 break;
4812 case ta_remove_insn:
4813 case ta_remove_longcall:
4814 case ta_convert_longcall:
4815 case ta_narrow_insn:
4816 case ta_widen_insn:
4817 return t;
4818 case ta_remove_literal:
4819 case ta_add_literal:
4820 BFD_ASSERT (0);
4821 break;
4822 }
4823 }
4824 }
4825 return NULL;
4826 }
4827
4828
4829 #if DEBUG
4830
4831 static void
4832 print_action_list (FILE *fp, text_action_list *action_list)
4833 {
4834 text_action *r;
4835
4836 fprintf (fp, "Text Action\n");
4837 for (r = action_list->head; r != NULL; r = r->next)
4838 {
4839 const char *t = "unknown";
4840 switch (r->action)
4841 {
4842 case ta_remove_insn:
4843 t = "remove_insn"; break;
4844 case ta_remove_longcall:
4845 t = "remove_longcall"; break;
4846 case ta_convert_longcall:
4847 t = "remove_longcall"; break;
4848 case ta_narrow_insn:
4849 t = "narrow_insn"; break;
4850 case ta_widen_insn:
4851 t = "widen_insn"; break;
4852 case ta_fill:
4853 t = "fill"; break;
4854 case ta_none:
4855 t = "none"; break;
4856 case ta_remove_literal:
4857 t = "remove_literal"; break;
4858 case ta_add_literal:
4859 t = "add_literal"; break;
4860 }
4861
4862 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4863 r->sec->owner->filename,
4864 r->sec->name, r->offset, t, r->removed_bytes);
4865 }
4866 }
4867
4868 #endif /* DEBUG */
4869
4870 \f
4871 /* Lists of literals being coalesced or removed. */
4872
4873 /* In the usual case, the literal identified by "from" is being
4874 coalesced with another literal identified by "to". If the literal is
4875 unused and is being removed altogether, "to.abfd" will be NULL.
4876 The removed_literal entries are kept on a per-section list, sorted
4877 by the "from" offset field. */
4878
4879 typedef struct removed_literal_struct removed_literal;
4880 typedef struct removed_literal_list_struct removed_literal_list;
4881
4882 struct removed_literal_struct
4883 {
4884 r_reloc from;
4885 r_reloc to;
4886 removed_literal *next;
4887 };
4888
4889 struct removed_literal_list_struct
4890 {
4891 removed_literal *head;
4892 removed_literal *tail;
4893 };
4894
4895
4896 /* Record that the literal at "from" is being removed. If "to" is not
4897 NULL, the "from" literal is being coalesced with the "to" literal. */
4898
4899 static void
4900 add_removed_literal (removed_literal_list *removed_list,
4901 const r_reloc *from,
4902 const r_reloc *to)
4903 {
4904 removed_literal *r, *new_r, *next_r;
4905
4906 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4907
4908 new_r->from = *from;
4909 if (to)
4910 new_r->to = *to;
4911 else
4912 new_r->to.abfd = NULL;
4913 new_r->next = NULL;
4914
4915 r = removed_list->head;
4916 if (r == NULL)
4917 {
4918 removed_list->head = new_r;
4919 removed_list->tail = new_r;
4920 }
4921 /* Special check for common case of append. */
4922 else if (removed_list->tail->from.target_offset < from->target_offset)
4923 {
4924 removed_list->tail->next = new_r;
4925 removed_list->tail = new_r;
4926 }
4927 else
4928 {
4929 while (r->from.target_offset < from->target_offset && r->next)
4930 {
4931 r = r->next;
4932 }
4933 next_r = r->next;
4934 r->next = new_r;
4935 new_r->next = next_r;
4936 if (next_r == NULL)
4937 removed_list->tail = new_r;
4938 }
4939 }
4940
4941
4942 /* Check if the list of removed literals contains an entry for the
4943 given address. Return the entry if found. */
4944
4945 static removed_literal *
4946 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4947 {
4948 removed_literal *r = removed_list->head;
4949 while (r && r->from.target_offset < addr)
4950 r = r->next;
4951 if (r && r->from.target_offset == addr)
4952 return r;
4953 return NULL;
4954 }
4955
4956
4957 #if DEBUG
4958
4959 static void
4960 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4961 {
4962 removed_literal *r;
4963 r = removed_list->head;
4964 if (r)
4965 fprintf (fp, "Removed Literals\n");
4966 for (; r != NULL; r = r->next)
4967 {
4968 print_r_reloc (fp, &r->from);
4969 fprintf (fp, " => ");
4970 if (r->to.abfd == NULL)
4971 fprintf (fp, "REMOVED");
4972 else
4973 print_r_reloc (fp, &r->to);
4974 fprintf (fp, "\n");
4975 }
4976 }
4977
4978 #endif /* DEBUG */
4979
4980 \f
4981 /* Per-section data for relaxation. */
4982
4983 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4984
4985 struct xtensa_relax_info_struct
4986 {
4987 bfd_boolean is_relaxable_literal_section;
4988 bfd_boolean is_relaxable_asm_section;
4989 int visited; /* Number of times visited. */
4990
4991 source_reloc *src_relocs; /* Array[src_count]. */
4992 int src_count;
4993 int src_next; /* Next src_relocs entry to assign. */
4994
4995 removed_literal_list removed_list;
4996 text_action_list action_list;
4997
4998 reloc_bfd_fix *fix_list;
4999 reloc_bfd_fix *fix_array;
5000 unsigned fix_array_count;
5001
5002 /* Support for expanding the reloc array that is stored
5003 in the section structure. If the relocations have been
5004 reallocated, the newly allocated relocations will be referenced
5005 here along with the actual size allocated. The relocation
5006 count will always be found in the section structure. */
5007 Elf_Internal_Rela *allocated_relocs;
5008 unsigned relocs_count;
5009 unsigned allocated_relocs_count;
5010 };
5011
5012 struct elf_xtensa_section_data
5013 {
5014 struct bfd_elf_section_data elf;
5015 xtensa_relax_info relax_info;
5016 };
5017
5018
5019 static bfd_boolean
5020 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5021 {
5022 if (!sec->used_by_bfd)
5023 {
5024 struct elf_xtensa_section_data *sdata;
5025 bfd_size_type amt = sizeof (*sdata);
5026
5027 sdata = bfd_zalloc (abfd, amt);
5028 if (sdata == NULL)
5029 return FALSE;
5030 sec->used_by_bfd = sdata;
5031 }
5032
5033 return _bfd_elf_new_section_hook (abfd, sec);
5034 }
5035
5036
5037 static xtensa_relax_info *
5038 get_xtensa_relax_info (asection *sec)
5039 {
5040 struct elf_xtensa_section_data *section_data;
5041
5042 /* No info available if no section or if it is an output section. */
5043 if (!sec || sec == sec->output_section)
5044 return NULL;
5045
5046 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5047 return &section_data->relax_info;
5048 }
5049
5050
5051 static void
5052 init_xtensa_relax_info (asection *sec)
5053 {
5054 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5055
5056 relax_info->is_relaxable_literal_section = FALSE;
5057 relax_info->is_relaxable_asm_section = FALSE;
5058 relax_info->visited = 0;
5059
5060 relax_info->src_relocs = NULL;
5061 relax_info->src_count = 0;
5062 relax_info->src_next = 0;
5063
5064 relax_info->removed_list.head = NULL;
5065 relax_info->removed_list.tail = NULL;
5066
5067 relax_info->action_list.head = NULL;
5068
5069 relax_info->fix_list = NULL;
5070 relax_info->fix_array = NULL;
5071 relax_info->fix_array_count = 0;
5072
5073 relax_info->allocated_relocs = NULL;
5074 relax_info->relocs_count = 0;
5075 relax_info->allocated_relocs_count = 0;
5076 }
5077
5078 \f
5079 /* Coalescing literals may require a relocation to refer to a section in
5080 a different input file, but the standard relocation information
5081 cannot express that. Instead, the reloc_bfd_fix structures are used
5082 to "fix" the relocations that refer to sections in other input files.
5083 These structures are kept on per-section lists. The "src_type" field
5084 records the relocation type in case there are multiple relocations on
5085 the same location. FIXME: This is ugly; an alternative might be to
5086 add new symbols with the "owner" field to some other input file. */
5087
5088 struct reloc_bfd_fix_struct
5089 {
5090 asection *src_sec;
5091 bfd_vma src_offset;
5092 unsigned src_type; /* Relocation type. */
5093
5094 bfd *target_abfd;
5095 asection *target_sec;
5096 bfd_vma target_offset;
5097 bfd_boolean translated;
5098
5099 reloc_bfd_fix *next;
5100 };
5101
5102
5103 static reloc_bfd_fix *
5104 reloc_bfd_fix_init (asection *src_sec,
5105 bfd_vma src_offset,
5106 unsigned src_type,
5107 bfd *target_abfd,
5108 asection *target_sec,
5109 bfd_vma target_offset,
5110 bfd_boolean translated)
5111 {
5112 reloc_bfd_fix *fix;
5113
5114 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5115 fix->src_sec = src_sec;
5116 fix->src_offset = src_offset;
5117 fix->src_type = src_type;
5118 fix->target_abfd = target_abfd;
5119 fix->target_sec = target_sec;
5120 fix->target_offset = target_offset;
5121 fix->translated = translated;
5122
5123 return fix;
5124 }
5125
5126
5127 static void
5128 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5129 {
5130 xtensa_relax_info *relax_info;
5131
5132 relax_info = get_xtensa_relax_info (src_sec);
5133 fix->next = relax_info->fix_list;
5134 relax_info->fix_list = fix;
5135 }
5136
5137
5138 static int
5139 fix_compare (const void *ap, const void *bp)
5140 {
5141 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5142 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5143
5144 if (a->src_offset != b->src_offset)
5145 return (a->src_offset - b->src_offset);
5146 return (a->src_type - b->src_type);
5147 }
5148
5149
5150 static void
5151 cache_fix_array (asection *sec)
5152 {
5153 unsigned i, count = 0;
5154 reloc_bfd_fix *r;
5155 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5156
5157 if (relax_info == NULL)
5158 return;
5159 if (relax_info->fix_list == NULL)
5160 return;
5161
5162 for (r = relax_info->fix_list; r != NULL; r = r->next)
5163 count++;
5164
5165 relax_info->fix_array =
5166 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5167 relax_info->fix_array_count = count;
5168
5169 r = relax_info->fix_list;
5170 for (i = 0; i < count; i++, r = r->next)
5171 {
5172 relax_info->fix_array[count - 1 - i] = *r;
5173 relax_info->fix_array[count - 1 - i].next = NULL;
5174 }
5175
5176 qsort (relax_info->fix_array, relax_info->fix_array_count,
5177 sizeof (reloc_bfd_fix), fix_compare);
5178 }
5179
5180
5181 static reloc_bfd_fix *
5182 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5183 {
5184 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5185 reloc_bfd_fix *rv;
5186 reloc_bfd_fix key;
5187
5188 if (relax_info == NULL)
5189 return NULL;
5190 if (relax_info->fix_list == NULL)
5191 return NULL;
5192
5193 if (relax_info->fix_array == NULL)
5194 cache_fix_array (sec);
5195
5196 key.src_offset = offset;
5197 key.src_type = type;
5198 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5199 sizeof (reloc_bfd_fix), fix_compare);
5200 return rv;
5201 }
5202
5203 \f
5204 /* Section caching. */
5205
5206 typedef struct section_cache_struct section_cache_t;
5207
5208 struct section_cache_struct
5209 {
5210 asection *sec;
5211
5212 bfd_byte *contents; /* Cache of the section contents. */
5213 bfd_size_type content_length;
5214
5215 property_table_entry *ptbl; /* Cache of the section property table. */
5216 unsigned pte_count;
5217
5218 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5219 unsigned reloc_count;
5220 };
5221
5222
5223 static void
5224 init_section_cache (section_cache_t *sec_cache)
5225 {
5226 memset (sec_cache, 0, sizeof (*sec_cache));
5227 }
5228
5229
5230 static void
5231 clear_section_cache (section_cache_t *sec_cache)
5232 {
5233 if (sec_cache->sec)
5234 {
5235 release_contents (sec_cache->sec, sec_cache->contents);
5236 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5237 if (sec_cache->ptbl)
5238 free (sec_cache->ptbl);
5239 memset (sec_cache, 0, sizeof (sec_cache));
5240 }
5241 }
5242
5243
5244 static bfd_boolean
5245 section_cache_section (section_cache_t *sec_cache,
5246 asection *sec,
5247 struct bfd_link_info *link_info)
5248 {
5249 bfd *abfd;
5250 property_table_entry *prop_table = NULL;
5251 int ptblsize = 0;
5252 bfd_byte *contents = NULL;
5253 Elf_Internal_Rela *internal_relocs = NULL;
5254 bfd_size_type sec_size;
5255
5256 if (sec == NULL)
5257 return FALSE;
5258 if (sec == sec_cache->sec)
5259 return TRUE;
5260
5261 abfd = sec->owner;
5262 sec_size = bfd_get_section_limit (abfd, sec);
5263
5264 /* Get the contents. */
5265 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5266 if (contents == NULL && sec_size != 0)
5267 goto err;
5268
5269 /* Get the relocations. */
5270 internal_relocs = retrieve_internal_relocs (abfd, sec,
5271 link_info->keep_memory);
5272
5273 /* Get the entry table. */
5274 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5275 XTENSA_PROP_SEC_NAME, FALSE);
5276 if (ptblsize < 0)
5277 goto err;
5278
5279 /* Fill in the new section cache. */
5280 clear_section_cache (sec_cache);
5281 memset (sec_cache, 0, sizeof (sec_cache));
5282
5283 sec_cache->sec = sec;
5284 sec_cache->contents = contents;
5285 sec_cache->content_length = sec_size;
5286 sec_cache->relocs = internal_relocs;
5287 sec_cache->reloc_count = sec->reloc_count;
5288 sec_cache->pte_count = ptblsize;
5289 sec_cache->ptbl = prop_table;
5290
5291 return TRUE;
5292
5293 err:
5294 release_contents (sec, contents);
5295 release_internal_relocs (sec, internal_relocs);
5296 if (prop_table)
5297 free (prop_table);
5298 return FALSE;
5299 }
5300
5301 \f
5302 /* Extended basic blocks. */
5303
5304 /* An ebb_struct represents an Extended Basic Block. Within this
5305 range, we guarantee that all instructions are decodable, the
5306 property table entries are contiguous, and no property table
5307 specifies a segment that cannot have instructions moved. This
5308 structure contains caches of the contents, property table and
5309 relocations for the specified section for easy use. The range is
5310 specified by ranges of indices for the byte offset, property table
5311 offsets and relocation offsets. These must be consistent. */
5312
5313 typedef struct ebb_struct ebb_t;
5314
5315 struct ebb_struct
5316 {
5317 asection *sec;
5318
5319 bfd_byte *contents; /* Cache of the section contents. */
5320 bfd_size_type content_length;
5321
5322 property_table_entry *ptbl; /* Cache of the section property table. */
5323 unsigned pte_count;
5324
5325 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5326 unsigned reloc_count;
5327
5328 bfd_vma start_offset; /* Offset in section. */
5329 unsigned start_ptbl_idx; /* Offset in the property table. */
5330 unsigned start_reloc_idx; /* Offset in the relocations. */
5331
5332 bfd_vma end_offset;
5333 unsigned end_ptbl_idx;
5334 unsigned end_reloc_idx;
5335
5336 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5337
5338 /* The unreachable property table at the end of this set of blocks;
5339 NULL if the end is not an unreachable block. */
5340 property_table_entry *ends_unreachable;
5341 };
5342
5343
5344 enum ebb_target_enum
5345 {
5346 EBB_NO_ALIGN = 0,
5347 EBB_DESIRE_TGT_ALIGN,
5348 EBB_REQUIRE_TGT_ALIGN,
5349 EBB_REQUIRE_LOOP_ALIGN,
5350 EBB_REQUIRE_ALIGN
5351 };
5352
5353
5354 /* proposed_action_struct is similar to the text_action_struct except
5355 that is represents a potential transformation, not one that will
5356 occur. We build a list of these for an extended basic block
5357 and use them to compute the actual actions desired. We must be
5358 careful that the entire set of actual actions we perform do not
5359 break any relocations that would fit if the actions were not
5360 performed. */
5361
5362 typedef struct proposed_action_struct proposed_action;
5363
5364 struct proposed_action_struct
5365 {
5366 enum ebb_target_enum align_type; /* for the target alignment */
5367 bfd_vma alignment_pow;
5368 text_action_t action;
5369 bfd_vma offset;
5370 int removed_bytes;
5371 bfd_boolean do_action; /* If false, then we will not perform the action. */
5372 };
5373
5374
5375 /* The ebb_constraint_struct keeps a set of proposed actions for an
5376 extended basic block. */
5377
5378 typedef struct ebb_constraint_struct ebb_constraint;
5379
5380 struct ebb_constraint_struct
5381 {
5382 ebb_t ebb;
5383 bfd_boolean start_movable;
5384
5385 /* Bytes of extra space at the beginning if movable. */
5386 int start_extra_space;
5387
5388 enum ebb_target_enum start_align;
5389
5390 bfd_boolean end_movable;
5391
5392 /* Bytes of extra space at the end if movable. */
5393 int end_extra_space;
5394
5395 unsigned action_count;
5396 unsigned action_allocated;
5397
5398 /* Array of proposed actions. */
5399 proposed_action *actions;
5400
5401 /* Action alignments -- one for each proposed action. */
5402 enum ebb_target_enum *action_aligns;
5403 };
5404
5405
5406 static void
5407 init_ebb_constraint (ebb_constraint *c)
5408 {
5409 memset (c, 0, sizeof (ebb_constraint));
5410 }
5411
5412
5413 static void
5414 free_ebb_constraint (ebb_constraint *c)
5415 {
5416 if (c->actions)
5417 free (c->actions);
5418 }
5419
5420
5421 static void
5422 init_ebb (ebb_t *ebb,
5423 asection *sec,
5424 bfd_byte *contents,
5425 bfd_size_type content_length,
5426 property_table_entry *prop_table,
5427 unsigned ptblsize,
5428 Elf_Internal_Rela *internal_relocs,
5429 unsigned reloc_count)
5430 {
5431 memset (ebb, 0, sizeof (ebb_t));
5432 ebb->sec = sec;
5433 ebb->contents = contents;
5434 ebb->content_length = content_length;
5435 ebb->ptbl = prop_table;
5436 ebb->pte_count = ptblsize;
5437 ebb->relocs = internal_relocs;
5438 ebb->reloc_count = reloc_count;
5439 ebb->start_offset = 0;
5440 ebb->end_offset = ebb->content_length - 1;
5441 ebb->start_ptbl_idx = 0;
5442 ebb->end_ptbl_idx = ptblsize;
5443 ebb->start_reloc_idx = 0;
5444 ebb->end_reloc_idx = reloc_count;
5445 }
5446
5447
5448 /* Extend the ebb to all decodable contiguous sections. The algorithm
5449 for building a basic block around an instruction is to push it
5450 forward until we hit the end of a section, an unreachable block or
5451 a block that cannot be transformed. Then we push it backwards
5452 searching for similar conditions. */
5453
5454 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5455 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5456 static bfd_size_type insn_block_decodable_len
5457 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5458
5459 static bfd_boolean
5460 extend_ebb_bounds (ebb_t *ebb)
5461 {
5462 if (!extend_ebb_bounds_forward (ebb))
5463 return FALSE;
5464 if (!extend_ebb_bounds_backward (ebb))
5465 return FALSE;
5466 return TRUE;
5467 }
5468
5469
5470 static bfd_boolean
5471 extend_ebb_bounds_forward (ebb_t *ebb)
5472 {
5473 property_table_entry *the_entry, *new_entry;
5474
5475 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5476
5477 /* Stop when (1) we cannot decode an instruction, (2) we are at
5478 the end of the property tables, (3) we hit a non-contiguous property
5479 table entry, (4) we hit a NO_TRANSFORM region. */
5480
5481 while (1)
5482 {
5483 bfd_vma entry_end;
5484 bfd_size_type insn_block_len;
5485
5486 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5487 insn_block_len =
5488 insn_block_decodable_len (ebb->contents, ebb->content_length,
5489 ebb->end_offset,
5490 entry_end - ebb->end_offset);
5491 if (insn_block_len != (entry_end - ebb->end_offset))
5492 {
5493 (*_bfd_error_handler)
5494 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5495 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5496 return FALSE;
5497 }
5498 ebb->end_offset += insn_block_len;
5499
5500 if (ebb->end_offset == ebb->sec->size)
5501 ebb->ends_section = TRUE;
5502
5503 /* Update the reloc counter. */
5504 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5505 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5506 < ebb->end_offset))
5507 {
5508 ebb->end_reloc_idx++;
5509 }
5510
5511 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5512 return TRUE;
5513
5514 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5515 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5516 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5517 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5518 break;
5519
5520 if (the_entry->address + the_entry->size != new_entry->address)
5521 break;
5522
5523 the_entry = new_entry;
5524 ebb->end_ptbl_idx++;
5525 }
5526
5527 /* Quick check for an unreachable or end of file just at the end. */
5528 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5529 {
5530 if (ebb->end_offset == ebb->content_length)
5531 ebb->ends_section = TRUE;
5532 }
5533 else
5534 {
5535 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5536 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5537 && the_entry->address + the_entry->size == new_entry->address)
5538 ebb->ends_unreachable = new_entry;
5539 }
5540
5541 /* Any other ending requires exact alignment. */
5542 return TRUE;
5543 }
5544
5545
5546 static bfd_boolean
5547 extend_ebb_bounds_backward (ebb_t *ebb)
5548 {
5549 property_table_entry *the_entry, *new_entry;
5550
5551 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5552
5553 /* Stop when (1) we cannot decode the instructions in the current entry.
5554 (2) we are at the beginning of the property tables, (3) we hit a
5555 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5556
5557 while (1)
5558 {
5559 bfd_vma block_begin;
5560 bfd_size_type insn_block_len;
5561
5562 block_begin = the_entry->address - ebb->sec->vma;
5563 insn_block_len =
5564 insn_block_decodable_len (ebb->contents, ebb->content_length,
5565 block_begin,
5566 ebb->start_offset - block_begin);
5567 if (insn_block_len != ebb->start_offset - block_begin)
5568 {
5569 (*_bfd_error_handler)
5570 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5571 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5572 return FALSE;
5573 }
5574 ebb->start_offset -= insn_block_len;
5575
5576 /* Update the reloc counter. */
5577 while (ebb->start_reloc_idx > 0
5578 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5579 >= ebb->start_offset))
5580 {
5581 ebb->start_reloc_idx--;
5582 }
5583
5584 if (ebb->start_ptbl_idx == 0)
5585 return TRUE;
5586
5587 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5588 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5589 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5590 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5591 return TRUE;
5592 if (new_entry->address + new_entry->size != the_entry->address)
5593 return TRUE;
5594
5595 the_entry = new_entry;
5596 ebb->start_ptbl_idx--;
5597 }
5598 return TRUE;
5599 }
5600
5601
5602 static bfd_size_type
5603 insn_block_decodable_len (bfd_byte *contents,
5604 bfd_size_type content_len,
5605 bfd_vma block_offset,
5606 bfd_size_type block_len)
5607 {
5608 bfd_vma offset = block_offset;
5609
5610 while (offset < block_offset + block_len)
5611 {
5612 bfd_size_type insn_len = 0;
5613
5614 insn_len = insn_decode_len (contents, content_len, offset);
5615 if (insn_len == 0)
5616 return (offset - block_offset);
5617 offset += insn_len;
5618 }
5619 return (offset - block_offset);
5620 }
5621
5622
5623 static void
5624 ebb_propose_action (ebb_constraint *c,
5625 enum ebb_target_enum align_type,
5626 bfd_vma alignment_pow,
5627 text_action_t action,
5628 bfd_vma offset,
5629 int removed_bytes,
5630 bfd_boolean do_action)
5631 {
5632 proposed_action *act;
5633
5634 if (c->action_allocated <= c->action_count)
5635 {
5636 unsigned new_allocated, i;
5637 proposed_action *new_actions;
5638
5639 new_allocated = (c->action_count + 2) * 2;
5640 new_actions = (proposed_action *)
5641 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5642
5643 for (i = 0; i < c->action_count; i++)
5644 new_actions[i] = c->actions[i];
5645 if (c->actions)
5646 free (c->actions);
5647 c->actions = new_actions;
5648 c->action_allocated = new_allocated;
5649 }
5650
5651 act = &c->actions[c->action_count];
5652 act->align_type = align_type;
5653 act->alignment_pow = alignment_pow;
5654 act->action = action;
5655 act->offset = offset;
5656 act->removed_bytes = removed_bytes;
5657 act->do_action = do_action;
5658
5659 c->action_count++;
5660 }
5661
5662 \f
5663 /* Access to internal relocations, section contents and symbols. */
5664
5665 /* During relaxation, we need to modify relocations, section contents,
5666 and symbol definitions, and we need to keep the original values from
5667 being reloaded from the input files, i.e., we need to "pin" the
5668 modified values in memory. We also want to continue to observe the
5669 setting of the "keep-memory" flag. The following functions wrap the
5670 standard BFD functions to take care of this for us. */
5671
5672 static Elf_Internal_Rela *
5673 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5674 {
5675 Elf_Internal_Rela *internal_relocs;
5676
5677 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5678 return NULL;
5679
5680 internal_relocs = elf_section_data (sec)->relocs;
5681 if (internal_relocs == NULL)
5682 internal_relocs = (_bfd_elf_link_read_relocs
5683 (abfd, sec, NULL, NULL, keep_memory));
5684 return internal_relocs;
5685 }
5686
5687
5688 static void
5689 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5690 {
5691 elf_section_data (sec)->relocs = internal_relocs;
5692 }
5693
5694
5695 static void
5696 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5697 {
5698 if (internal_relocs
5699 && elf_section_data (sec)->relocs != internal_relocs)
5700 free (internal_relocs);
5701 }
5702
5703
5704 static bfd_byte *
5705 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5706 {
5707 bfd_byte *contents;
5708 bfd_size_type sec_size;
5709
5710 sec_size = bfd_get_section_limit (abfd, sec);
5711 contents = elf_section_data (sec)->this_hdr.contents;
5712
5713 if (contents == NULL && sec_size != 0)
5714 {
5715 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5716 {
5717 if (contents)
5718 free (contents);
5719 return NULL;
5720 }
5721 if (keep_memory)
5722 elf_section_data (sec)->this_hdr.contents = contents;
5723 }
5724 return contents;
5725 }
5726
5727
5728 static void
5729 pin_contents (asection *sec, bfd_byte *contents)
5730 {
5731 elf_section_data (sec)->this_hdr.contents = contents;
5732 }
5733
5734
5735 static void
5736 release_contents (asection *sec, bfd_byte *contents)
5737 {
5738 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5739 free (contents);
5740 }
5741
5742
5743 static Elf_Internal_Sym *
5744 retrieve_local_syms (bfd *input_bfd)
5745 {
5746 Elf_Internal_Shdr *symtab_hdr;
5747 Elf_Internal_Sym *isymbuf;
5748 size_t locsymcount;
5749
5750 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5751 locsymcount = symtab_hdr->sh_info;
5752
5753 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5754 if (isymbuf == NULL && locsymcount != 0)
5755 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5756 NULL, NULL, NULL);
5757
5758 /* Save the symbols for this input file so they won't be read again. */
5759 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5760 symtab_hdr->contents = (unsigned char *) isymbuf;
5761
5762 return isymbuf;
5763 }
5764
5765 \f
5766 /* Code for link-time relaxation. */
5767
5768 /* Initialization for relaxation: */
5769 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5770 static bfd_boolean find_relaxable_sections
5771 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5772 static bfd_boolean collect_source_relocs
5773 (bfd *, asection *, struct bfd_link_info *);
5774 static bfd_boolean is_resolvable_asm_expansion
5775 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5776 bfd_boolean *);
5777 static Elf_Internal_Rela *find_associated_l32r_irel
5778 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5779 static bfd_boolean compute_text_actions
5780 (bfd *, asection *, struct bfd_link_info *);
5781 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5782 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5783 static bfd_boolean check_section_ebb_pcrels_fit
5784 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5785 const xtensa_opcode *);
5786 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5787 static void text_action_add_proposed
5788 (text_action_list *, const ebb_constraint *, asection *);
5789 static int compute_fill_extra_space (property_table_entry *);
5790
5791 /* First pass: */
5792 static bfd_boolean compute_removed_literals
5793 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5794 static Elf_Internal_Rela *get_irel_at_offset
5795 (asection *, Elf_Internal_Rela *, bfd_vma);
5796 static bfd_boolean is_removable_literal
5797 (const source_reloc *, int, const source_reloc *, int);
5798 static bfd_boolean remove_dead_literal
5799 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5800 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5801 static bfd_boolean identify_literal_placement
5802 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5803 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5804 source_reloc *, property_table_entry *, int, section_cache_t *,
5805 bfd_boolean);
5806 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5807 static bfd_boolean coalesce_shared_literal
5808 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5809 static bfd_boolean move_shared_literal
5810 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5811 int, const r_reloc *, const literal_value *, section_cache_t *);
5812
5813 /* Second pass: */
5814 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5815 static bfd_boolean translate_section_fixes (asection *);
5816 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5817 static void translate_reloc (const r_reloc *, r_reloc *);
5818 static void shrink_dynamic_reloc_sections
5819 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5820 static bfd_boolean move_literal
5821 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5822 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5823 static bfd_boolean relax_property_section
5824 (bfd *, asection *, struct bfd_link_info *);
5825
5826 /* Third pass: */
5827 static bfd_boolean relax_section_symbols (bfd *, asection *);
5828
5829
5830 static bfd_boolean
5831 elf_xtensa_relax_section (bfd *abfd,
5832 asection *sec,
5833 struct bfd_link_info *link_info,
5834 bfd_boolean *again)
5835 {
5836 static value_map_hash_table *values = NULL;
5837 static bfd_boolean relocations_analyzed = FALSE;
5838 xtensa_relax_info *relax_info;
5839
5840 if (!relocations_analyzed)
5841 {
5842 /* Do some overall initialization for relaxation. */
5843 values = value_map_hash_table_init ();
5844 if (values == NULL)
5845 return FALSE;
5846 relaxing_section = TRUE;
5847 if (!analyze_relocations (link_info))
5848 return FALSE;
5849 relocations_analyzed = TRUE;
5850 }
5851 *again = FALSE;
5852
5853 /* Don't mess with linker-created sections. */
5854 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5855 return TRUE;
5856
5857 relax_info = get_xtensa_relax_info (sec);
5858 BFD_ASSERT (relax_info != NULL);
5859
5860 switch (relax_info->visited)
5861 {
5862 case 0:
5863 /* Note: It would be nice to fold this pass into
5864 analyze_relocations, but it is important for this step that the
5865 sections be examined in link order. */
5866 if (!compute_removed_literals (abfd, sec, link_info, values))
5867 return FALSE;
5868 *again = TRUE;
5869 break;
5870
5871 case 1:
5872 if (values)
5873 value_map_hash_table_delete (values);
5874 values = NULL;
5875 if (!relax_section (abfd, sec, link_info))
5876 return FALSE;
5877 *again = TRUE;
5878 break;
5879
5880 case 2:
5881 if (!relax_section_symbols (abfd, sec))
5882 return FALSE;
5883 break;
5884 }
5885
5886 relax_info->visited++;
5887 return TRUE;
5888 }
5889
5890 \f
5891 /* Initialization for relaxation. */
5892
5893 /* This function is called once at the start of relaxation. It scans
5894 all the input sections and marks the ones that are relaxable (i.e.,
5895 literal sections with L32R relocations against them), and then
5896 collects source_reloc information for all the relocations against
5897 those relaxable sections. During this process, it also detects
5898 longcalls, i.e., calls relaxed by the assembler into indirect
5899 calls, that can be optimized back into direct calls. Within each
5900 extended basic block (ebb) containing an optimized longcall, it
5901 computes a set of "text actions" that can be performed to remove
5902 the L32R associated with the longcall while optionally preserving
5903 branch target alignments. */
5904
5905 static bfd_boolean
5906 analyze_relocations (struct bfd_link_info *link_info)
5907 {
5908 bfd *abfd;
5909 asection *sec;
5910 bfd_boolean is_relaxable = FALSE;
5911
5912 /* Initialize the per-section relaxation info. */
5913 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5914 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5915 {
5916 init_xtensa_relax_info (sec);
5917 }
5918
5919 /* Mark relaxable sections (and count relocations against each one). */
5920 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5921 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5922 {
5923 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5924 return FALSE;
5925 }
5926
5927 /* Bail out if there are no relaxable sections. */
5928 if (!is_relaxable)
5929 return TRUE;
5930
5931 /* Allocate space for source_relocs. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 xtensa_relax_info *relax_info;
5936
5937 relax_info = get_xtensa_relax_info (sec);
5938 if (relax_info->is_relaxable_literal_section
5939 || relax_info->is_relaxable_asm_section)
5940 {
5941 relax_info->src_relocs = (source_reloc *)
5942 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5943 }
5944 else
5945 relax_info->src_count = 0;
5946 }
5947
5948 /* Collect info on relocations against each relaxable section. */
5949 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5951 {
5952 if (!collect_source_relocs (abfd, sec, link_info))
5953 return FALSE;
5954 }
5955
5956 /* Compute the text actions. */
5957 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5958 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5959 {
5960 if (!compute_text_actions (abfd, sec, link_info))
5961 return FALSE;
5962 }
5963
5964 return TRUE;
5965 }
5966
5967
5968 /* Find all the sections that might be relaxed. The motivation for
5969 this pass is that collect_source_relocs() needs to record _all_ the
5970 relocations that target each relaxable section. That is expensive
5971 and unnecessary unless the target section is actually going to be
5972 relaxed. This pass identifies all such sections by checking if
5973 they have L32Rs pointing to them. In the process, the total number
5974 of relocations targeting each section is also counted so that we
5975 know how much space to allocate for source_relocs against each
5976 relaxable literal section. */
5977
5978 static bfd_boolean
5979 find_relaxable_sections (bfd *abfd,
5980 asection *sec,
5981 struct bfd_link_info *link_info,
5982 bfd_boolean *is_relaxable_p)
5983 {
5984 Elf_Internal_Rela *internal_relocs;
5985 bfd_byte *contents;
5986 bfd_boolean ok = TRUE;
5987 unsigned i;
5988 xtensa_relax_info *source_relax_info;
5989 bfd_boolean is_l32r_reloc;
5990
5991 internal_relocs = retrieve_internal_relocs (abfd, sec,
5992 link_info->keep_memory);
5993 if (internal_relocs == NULL)
5994 return ok;
5995
5996 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5997 if (contents == NULL && sec->size != 0)
5998 {
5999 ok = FALSE;
6000 goto error_return;
6001 }
6002
6003 source_relax_info = get_xtensa_relax_info (sec);
6004 for (i = 0; i < sec->reloc_count; i++)
6005 {
6006 Elf_Internal_Rela *irel = &internal_relocs[i];
6007 r_reloc r_rel;
6008 asection *target_sec;
6009 xtensa_relax_info *target_relax_info;
6010
6011 /* If this section has not already been marked as "relaxable", and
6012 if it contains any ASM_EXPAND relocations (marking expanded
6013 longcalls) that can be optimized into direct calls, then mark
6014 the section as "relaxable". */
6015 if (source_relax_info
6016 && !source_relax_info->is_relaxable_asm_section
6017 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6018 {
6019 bfd_boolean is_reachable = FALSE;
6020 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6021 link_info, &is_reachable)
6022 && is_reachable)
6023 {
6024 source_relax_info->is_relaxable_asm_section = TRUE;
6025 *is_relaxable_p = TRUE;
6026 }
6027 }
6028
6029 r_reloc_init (&r_rel, abfd, irel, contents,
6030 bfd_get_section_limit (abfd, sec));
6031
6032 target_sec = r_reloc_get_section (&r_rel);
6033 target_relax_info = get_xtensa_relax_info (target_sec);
6034 if (!target_relax_info)
6035 continue;
6036
6037 /* Count PC-relative operand relocations against the target section.
6038 Note: The conditions tested here must match the conditions under
6039 which init_source_reloc is called in collect_source_relocs(). */
6040 is_l32r_reloc = FALSE;
6041 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6042 {
6043 xtensa_opcode opcode =
6044 get_relocation_opcode (abfd, sec, contents, irel);
6045 if (opcode != XTENSA_UNDEFINED)
6046 {
6047 is_l32r_reloc = (opcode == get_l32r_opcode ());
6048 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6049 || is_l32r_reloc)
6050 target_relax_info->src_count++;
6051 }
6052 }
6053
6054 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6055 {
6056 /* Mark the target section as relaxable. */
6057 target_relax_info->is_relaxable_literal_section = TRUE;
6058 *is_relaxable_p = TRUE;
6059 }
6060 }
6061
6062 error_return:
6063 release_contents (sec, contents);
6064 release_internal_relocs (sec, internal_relocs);
6065 return ok;
6066 }
6067
6068
6069 /* Record _all_ the relocations that point to relaxable sections, and
6070 get rid of ASM_EXPAND relocs by either converting them to
6071 ASM_SIMPLIFY or by removing them. */
6072
6073 static bfd_boolean
6074 collect_source_relocs (bfd *abfd,
6075 asection *sec,
6076 struct bfd_link_info *link_info)
6077 {
6078 Elf_Internal_Rela *internal_relocs;
6079 bfd_byte *contents;
6080 bfd_boolean ok = TRUE;
6081 unsigned i;
6082 bfd_size_type sec_size;
6083
6084 internal_relocs = retrieve_internal_relocs (abfd, sec,
6085 link_info->keep_memory);
6086 if (internal_relocs == NULL)
6087 return ok;
6088
6089 sec_size = bfd_get_section_limit (abfd, sec);
6090 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6091 if (contents == NULL && sec_size != 0)
6092 {
6093 ok = FALSE;
6094 goto error_return;
6095 }
6096
6097 /* Record relocations against relaxable literal sections. */
6098 for (i = 0; i < sec->reloc_count; i++)
6099 {
6100 Elf_Internal_Rela *irel = &internal_relocs[i];
6101 r_reloc r_rel;
6102 asection *target_sec;
6103 xtensa_relax_info *target_relax_info;
6104
6105 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6106
6107 target_sec = r_reloc_get_section (&r_rel);
6108 target_relax_info = get_xtensa_relax_info (target_sec);
6109
6110 if (target_relax_info
6111 && (target_relax_info->is_relaxable_literal_section
6112 || target_relax_info->is_relaxable_asm_section))
6113 {
6114 xtensa_opcode opcode = XTENSA_UNDEFINED;
6115 int opnd = -1;
6116 bfd_boolean is_abs_literal = FALSE;
6117
6118 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6119 {
6120 /* None of the current alternate relocs are PC-relative,
6121 and only PC-relative relocs matter here. However, we
6122 still need to record the opcode for literal
6123 coalescing. */
6124 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6125 if (opcode == get_l32r_opcode ())
6126 {
6127 is_abs_literal = TRUE;
6128 opnd = 1;
6129 }
6130 else
6131 opcode = XTENSA_UNDEFINED;
6132 }
6133 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6134 {
6135 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6136 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6137 }
6138
6139 if (opcode != XTENSA_UNDEFINED)
6140 {
6141 int src_next = target_relax_info->src_next++;
6142 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6143
6144 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6145 is_abs_literal);
6146 }
6147 }
6148 }
6149
6150 /* Now get rid of ASM_EXPAND relocations. At this point, the
6151 src_relocs array for the target literal section may still be
6152 incomplete, but it must at least contain the entries for the L32R
6153 relocations associated with ASM_EXPANDs because they were just
6154 added in the preceding loop over the relocations. */
6155
6156 for (i = 0; i < sec->reloc_count; i++)
6157 {
6158 Elf_Internal_Rela *irel = &internal_relocs[i];
6159 bfd_boolean is_reachable;
6160
6161 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6162 &is_reachable))
6163 continue;
6164
6165 if (is_reachable)
6166 {
6167 Elf_Internal_Rela *l32r_irel;
6168 r_reloc r_rel;
6169 asection *target_sec;
6170 xtensa_relax_info *target_relax_info;
6171
6172 /* Mark the source_reloc for the L32R so that it will be
6173 removed in compute_removed_literals(), along with the
6174 associated literal. */
6175 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6176 irel, internal_relocs);
6177 if (l32r_irel == NULL)
6178 continue;
6179
6180 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6181
6182 target_sec = r_reloc_get_section (&r_rel);
6183 target_relax_info = get_xtensa_relax_info (target_sec);
6184
6185 if (target_relax_info
6186 && (target_relax_info->is_relaxable_literal_section
6187 || target_relax_info->is_relaxable_asm_section))
6188 {
6189 source_reloc *s_reloc;
6190
6191 /* Search the source_relocs for the entry corresponding to
6192 the l32r_irel. Note: The src_relocs array is not yet
6193 sorted, but it wouldn't matter anyway because we're
6194 searching by source offset instead of target offset. */
6195 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6196 target_relax_info->src_next,
6197 sec, l32r_irel);
6198 BFD_ASSERT (s_reloc);
6199 s_reloc->is_null = TRUE;
6200 }
6201
6202 /* Convert this reloc to ASM_SIMPLIFY. */
6203 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6204 R_XTENSA_ASM_SIMPLIFY);
6205 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6206
6207 pin_internal_relocs (sec, internal_relocs);
6208 }
6209 else
6210 {
6211 /* It is resolvable but doesn't reach. We resolve now
6212 by eliminating the relocation -- the call will remain
6213 expanded into L32R/CALLX. */
6214 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6215 pin_internal_relocs (sec, internal_relocs);
6216 }
6217 }
6218
6219 error_return:
6220 release_contents (sec, contents);
6221 release_internal_relocs (sec, internal_relocs);
6222 return ok;
6223 }
6224
6225
6226 /* Return TRUE if the asm expansion can be resolved. Generally it can
6227 be resolved on a final link or when a partial link locates it in the
6228 same section as the target. Set "is_reachable" flag if the target of
6229 the call is within the range of a direct call, given the current VMA
6230 for this section and the target section. */
6231
6232 bfd_boolean
6233 is_resolvable_asm_expansion (bfd *abfd,
6234 asection *sec,
6235 bfd_byte *contents,
6236 Elf_Internal_Rela *irel,
6237 struct bfd_link_info *link_info,
6238 bfd_boolean *is_reachable_p)
6239 {
6240 asection *target_sec;
6241 bfd_vma target_offset;
6242 r_reloc r_rel;
6243 xtensa_opcode opcode, direct_call_opcode;
6244 bfd_vma self_address;
6245 bfd_vma dest_address;
6246 bfd_boolean uses_l32r;
6247 bfd_size_type sec_size;
6248
6249 *is_reachable_p = FALSE;
6250
6251 if (contents == NULL)
6252 return FALSE;
6253
6254 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6255 return FALSE;
6256
6257 sec_size = bfd_get_section_limit (abfd, sec);
6258 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6259 sec_size - irel->r_offset, &uses_l32r);
6260 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6261 if (!uses_l32r)
6262 return FALSE;
6263
6264 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6265 if (direct_call_opcode == XTENSA_UNDEFINED)
6266 return FALSE;
6267
6268 /* Check and see that the target resolves. */
6269 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6270 if (!r_reloc_is_defined (&r_rel))
6271 return FALSE;
6272
6273 target_sec = r_reloc_get_section (&r_rel);
6274 target_offset = r_rel.target_offset;
6275
6276 /* If the target is in a shared library, then it doesn't reach. This
6277 isn't supposed to come up because the compiler should never generate
6278 non-PIC calls on systems that use shared libraries, but the linker
6279 shouldn't crash regardless. */
6280 if (!target_sec->output_section)
6281 return FALSE;
6282
6283 /* For relocatable sections, we can only simplify when the output
6284 section of the target is the same as the output section of the
6285 source. */
6286 if (link_info->relocatable
6287 && (target_sec->output_section != sec->output_section
6288 || is_reloc_sym_weak (abfd, irel)))
6289 return FALSE;
6290
6291 self_address = (sec->output_section->vma
6292 + sec->output_offset + irel->r_offset + 3);
6293 dest_address = (target_sec->output_section->vma
6294 + target_sec->output_offset + target_offset);
6295
6296 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6297 self_address, dest_address);
6298
6299 if ((self_address >> CALL_SEGMENT_BITS) !=
6300 (dest_address >> CALL_SEGMENT_BITS))
6301 return FALSE;
6302
6303 return TRUE;
6304 }
6305
6306
6307 static Elf_Internal_Rela *
6308 find_associated_l32r_irel (bfd *abfd,
6309 asection *sec,
6310 bfd_byte *contents,
6311 Elf_Internal_Rela *other_irel,
6312 Elf_Internal_Rela *internal_relocs)
6313 {
6314 unsigned i;
6315
6316 for (i = 0; i < sec->reloc_count; i++)
6317 {
6318 Elf_Internal_Rela *irel = &internal_relocs[i];
6319
6320 if (irel == other_irel)
6321 continue;
6322 if (irel->r_offset != other_irel->r_offset)
6323 continue;
6324 if (is_l32r_relocation (abfd, sec, contents, irel))
6325 return irel;
6326 }
6327
6328 return NULL;
6329 }
6330
6331
6332 static xtensa_opcode *
6333 build_reloc_opcodes (bfd *abfd,
6334 asection *sec,
6335 bfd_byte *contents,
6336 Elf_Internal_Rela *internal_relocs)
6337 {
6338 unsigned i;
6339 xtensa_opcode *reloc_opcodes =
6340 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6341 for (i = 0; i < sec->reloc_count; i++)
6342 {
6343 Elf_Internal_Rela *irel = &internal_relocs[i];
6344 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6345 }
6346 return reloc_opcodes;
6347 }
6348
6349
6350 /* The compute_text_actions function will build a list of potential
6351 transformation actions for code in the extended basic block of each
6352 longcall that is optimized to a direct call. From this list we
6353 generate a set of actions to actually perform that optimizes for
6354 space and, if not using size_opt, maintains branch target
6355 alignments.
6356
6357 These actions to be performed are placed on a per-section list.
6358 The actual changes are performed by relax_section() in the second
6359 pass. */
6360
6361 bfd_boolean
6362 compute_text_actions (bfd *abfd,
6363 asection *sec,
6364 struct bfd_link_info *link_info)
6365 {
6366 xtensa_opcode *reloc_opcodes = NULL;
6367 xtensa_relax_info *relax_info;
6368 bfd_byte *contents;
6369 Elf_Internal_Rela *internal_relocs;
6370 bfd_boolean ok = TRUE;
6371 unsigned i;
6372 property_table_entry *prop_table = 0;
6373 int ptblsize = 0;
6374 bfd_size_type sec_size;
6375
6376 relax_info = get_xtensa_relax_info (sec);
6377 BFD_ASSERT (relax_info);
6378 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6379
6380 /* Do nothing if the section contains no optimized longcalls. */
6381 if (!relax_info->is_relaxable_asm_section)
6382 return ok;
6383
6384 internal_relocs = retrieve_internal_relocs (abfd, sec,
6385 link_info->keep_memory);
6386
6387 if (internal_relocs)
6388 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6389 internal_reloc_compare);
6390
6391 sec_size = bfd_get_section_limit (abfd, sec);
6392 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6393 if (contents == NULL && sec_size != 0)
6394 {
6395 ok = FALSE;
6396 goto error_return;
6397 }
6398
6399 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6400 XTENSA_PROP_SEC_NAME, FALSE);
6401 if (ptblsize < 0)
6402 {
6403 ok = FALSE;
6404 goto error_return;
6405 }
6406
6407 for (i = 0; i < sec->reloc_count; i++)
6408 {
6409 Elf_Internal_Rela *irel = &internal_relocs[i];
6410 bfd_vma r_offset;
6411 property_table_entry *the_entry;
6412 int ptbl_idx;
6413 ebb_t *ebb;
6414 ebb_constraint ebb_table;
6415 bfd_size_type simplify_size;
6416
6417 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6418 continue;
6419 r_offset = irel->r_offset;
6420
6421 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6422 if (simplify_size == 0)
6423 {
6424 (*_bfd_error_handler)
6425 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6426 sec->owner, sec, r_offset);
6427 continue;
6428 }
6429
6430 /* If the instruction table is not around, then don't do this
6431 relaxation. */
6432 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6433 sec->vma + irel->r_offset);
6434 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6435 {
6436 text_action_add (&relax_info->action_list,
6437 ta_convert_longcall, sec, r_offset,
6438 0);
6439 continue;
6440 }
6441
6442 /* If the next longcall happens to be at the same address as an
6443 unreachable section of size 0, then skip forward. */
6444 ptbl_idx = the_entry - prop_table;
6445 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6446 && the_entry->size == 0
6447 && ptbl_idx + 1 < ptblsize
6448 && (prop_table[ptbl_idx + 1].address
6449 == prop_table[ptbl_idx].address))
6450 {
6451 ptbl_idx++;
6452 the_entry++;
6453 }
6454
6455 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6456 /* NO_REORDER is OK */
6457 continue;
6458
6459 init_ebb_constraint (&ebb_table);
6460 ebb = &ebb_table.ebb;
6461 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6462 internal_relocs, sec->reloc_count);
6463 ebb->start_offset = r_offset + simplify_size;
6464 ebb->end_offset = r_offset + simplify_size;
6465 ebb->start_ptbl_idx = ptbl_idx;
6466 ebb->end_ptbl_idx = ptbl_idx;
6467 ebb->start_reloc_idx = i;
6468 ebb->end_reloc_idx = i;
6469
6470 /* Precompute the opcode for each relocation. */
6471 if (reloc_opcodes == NULL)
6472 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6473 internal_relocs);
6474
6475 if (!extend_ebb_bounds (ebb)
6476 || !compute_ebb_proposed_actions (&ebb_table)
6477 || !compute_ebb_actions (&ebb_table)
6478 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6479 internal_relocs, &ebb_table,
6480 reloc_opcodes)
6481 || !check_section_ebb_reduces (&ebb_table))
6482 {
6483 /* If anything goes wrong or we get unlucky and something does
6484 not fit, with our plan because of expansion between
6485 critical branches, just convert to a NOP. */
6486
6487 text_action_add (&relax_info->action_list,
6488 ta_convert_longcall, sec, r_offset, 0);
6489 i = ebb_table.ebb.end_reloc_idx;
6490 free_ebb_constraint (&ebb_table);
6491 continue;
6492 }
6493
6494 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6495
6496 /* Update the index so we do not go looking at the relocations
6497 we have already processed. */
6498 i = ebb_table.ebb.end_reloc_idx;
6499 free_ebb_constraint (&ebb_table);
6500 }
6501
6502 #if DEBUG
6503 if (relax_info->action_list.head)
6504 print_action_list (stderr, &relax_info->action_list);
6505 #endif
6506
6507 error_return:
6508 release_contents (sec, contents);
6509 release_internal_relocs (sec, internal_relocs);
6510 if (prop_table)
6511 free (prop_table);
6512 if (reloc_opcodes)
6513 free (reloc_opcodes);
6514
6515 return ok;
6516 }
6517
6518
6519 /* Do not widen an instruction if it is preceeded by a
6520 loop opcode. It might cause misalignment. */
6521
6522 static bfd_boolean
6523 prev_instr_is_a_loop (bfd_byte *contents,
6524 bfd_size_type content_length,
6525 bfd_size_type offset)
6526 {
6527 xtensa_opcode prev_opcode;
6528
6529 if (offset < 3)
6530 return FALSE;
6531 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6532 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6533 }
6534
6535
6536 /* Find all of the possible actions for an extended basic block. */
6537
6538 bfd_boolean
6539 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6540 {
6541 const ebb_t *ebb = &ebb_table->ebb;
6542 unsigned rel_idx = ebb->start_reloc_idx;
6543 property_table_entry *entry, *start_entry, *end_entry;
6544 bfd_vma offset = 0;
6545 xtensa_isa isa = xtensa_default_isa;
6546 xtensa_format fmt;
6547 static xtensa_insnbuf insnbuf = NULL;
6548 static xtensa_insnbuf slotbuf = NULL;
6549
6550 if (insnbuf == NULL)
6551 {
6552 insnbuf = xtensa_insnbuf_alloc (isa);
6553 slotbuf = xtensa_insnbuf_alloc (isa);
6554 }
6555
6556 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6557 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6558
6559 for (entry = start_entry; entry <= end_entry; entry++)
6560 {
6561 bfd_vma start_offset, end_offset;
6562 bfd_size_type insn_len;
6563
6564 start_offset = entry->address - ebb->sec->vma;
6565 end_offset = entry->address + entry->size - ebb->sec->vma;
6566
6567 if (entry == start_entry)
6568 start_offset = ebb->start_offset;
6569 if (entry == end_entry)
6570 end_offset = ebb->end_offset;
6571 offset = start_offset;
6572
6573 if (offset == entry->address - ebb->sec->vma
6574 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6575 {
6576 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6577 BFD_ASSERT (offset != end_offset);
6578 if (offset == end_offset)
6579 return FALSE;
6580
6581 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6582 offset);
6583 if (insn_len == 0)
6584 goto decode_error;
6585
6586 if (check_branch_target_aligned_address (offset, insn_len))
6587 align_type = EBB_REQUIRE_TGT_ALIGN;
6588
6589 ebb_propose_action (ebb_table, align_type, 0,
6590 ta_none, offset, 0, TRUE);
6591 }
6592
6593 while (offset != end_offset)
6594 {
6595 Elf_Internal_Rela *irel;
6596 xtensa_opcode opcode;
6597
6598 while (rel_idx < ebb->end_reloc_idx
6599 && (ebb->relocs[rel_idx].r_offset < offset
6600 || (ebb->relocs[rel_idx].r_offset == offset
6601 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6602 != R_XTENSA_ASM_SIMPLIFY))))
6603 rel_idx++;
6604
6605 /* Check for longcall. */
6606 irel = &ebb->relocs[rel_idx];
6607 if (irel->r_offset == offset
6608 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6609 {
6610 bfd_size_type simplify_size;
6611
6612 simplify_size = get_asm_simplify_size (ebb->contents,
6613 ebb->content_length,
6614 irel->r_offset);
6615 if (simplify_size == 0)
6616 goto decode_error;
6617
6618 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6619 ta_convert_longcall, offset, 0, TRUE);
6620
6621 offset += simplify_size;
6622 continue;
6623 }
6624
6625 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6626 goto decode_error;
6627 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6628 ebb->content_length - offset);
6629 fmt = xtensa_format_decode (isa, insnbuf);
6630 if (fmt == XTENSA_UNDEFINED)
6631 goto decode_error;
6632 insn_len = xtensa_format_length (isa, fmt);
6633 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6634 goto decode_error;
6635
6636 if (xtensa_format_num_slots (isa, fmt) != 1)
6637 {
6638 offset += insn_len;
6639 continue;
6640 }
6641
6642 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6643 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6644 if (opcode == XTENSA_UNDEFINED)
6645 goto decode_error;
6646
6647 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6648 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6649 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6650 {
6651 /* Add an instruction narrow action. */
6652 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6653 ta_narrow_insn, offset, 0, FALSE);
6654 }
6655 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6656 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6657 && ! prev_instr_is_a_loop (ebb->contents,
6658 ebb->content_length, offset))
6659 {
6660 /* Add an instruction widen action. */
6661 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6662 ta_widen_insn, offset, 0, FALSE);
6663 }
6664 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6665 {
6666 /* Check for branch targets. */
6667 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6668 ta_none, offset, 0, TRUE);
6669 }
6670
6671 offset += insn_len;
6672 }
6673 }
6674
6675 if (ebb->ends_unreachable)
6676 {
6677 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6678 ta_fill, ebb->end_offset, 0, TRUE);
6679 }
6680
6681 return TRUE;
6682
6683 decode_error:
6684 (*_bfd_error_handler)
6685 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6686 ebb->sec->owner, ebb->sec, offset);
6687 return FALSE;
6688 }
6689
6690
6691 /* After all of the information has collected about the
6692 transformations possible in an EBB, compute the appropriate actions
6693 here in compute_ebb_actions. We still must check later to make
6694 sure that the actions do not break any relocations. The algorithm
6695 used here is pretty greedy. Basically, it removes as many no-ops
6696 as possible so that the end of the EBB has the same alignment
6697 characteristics as the original. First, it uses narrowing, then
6698 fill space at the end of the EBB, and finally widenings. If that
6699 does not work, it tries again with one fewer no-op removed. The
6700 optimization will only be performed if all of the branch targets
6701 that were aligned before transformation are also aligned after the
6702 transformation.
6703
6704 When the size_opt flag is set, ignore the branch target alignments,
6705 narrow all wide instructions, and remove all no-ops unless the end
6706 of the EBB prevents it. */
6707
6708 bfd_boolean
6709 compute_ebb_actions (ebb_constraint *ebb_table)
6710 {
6711 unsigned i = 0;
6712 unsigned j;
6713 int removed_bytes = 0;
6714 ebb_t *ebb = &ebb_table->ebb;
6715 unsigned seg_idx_start = 0;
6716 unsigned seg_idx_end = 0;
6717
6718 /* We perform this like the assembler relaxation algorithm: Start by
6719 assuming all instructions are narrow and all no-ops removed; then
6720 walk through.... */
6721
6722 /* For each segment of this that has a solid constraint, check to
6723 see if there are any combinations that will keep the constraint.
6724 If so, use it. */
6725 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6726 {
6727 bfd_boolean requires_text_end_align = FALSE;
6728 unsigned longcall_count = 0;
6729 unsigned longcall_convert_count = 0;
6730 unsigned narrowable_count = 0;
6731 unsigned narrowable_convert_count = 0;
6732 unsigned widenable_count = 0;
6733 unsigned widenable_convert_count = 0;
6734
6735 proposed_action *action = NULL;
6736 int align = (1 << ebb_table->ebb.sec->alignment_power);
6737
6738 seg_idx_start = seg_idx_end;
6739
6740 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6741 {
6742 action = &ebb_table->actions[i];
6743 if (action->action == ta_convert_longcall)
6744 longcall_count++;
6745 if (action->action == ta_narrow_insn)
6746 narrowable_count++;
6747 if (action->action == ta_widen_insn)
6748 widenable_count++;
6749 if (action->action == ta_fill)
6750 break;
6751 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6752 break;
6753 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6754 && !elf32xtensa_size_opt)
6755 break;
6756 }
6757 seg_idx_end = i;
6758
6759 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6760 requires_text_end_align = TRUE;
6761
6762 if (elf32xtensa_size_opt && !requires_text_end_align
6763 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6764 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6765 {
6766 longcall_convert_count = longcall_count;
6767 narrowable_convert_count = narrowable_count;
6768 widenable_convert_count = 0;
6769 }
6770 else
6771 {
6772 /* There is a constraint. Convert the max number of longcalls. */
6773 narrowable_convert_count = 0;
6774 longcall_convert_count = 0;
6775 widenable_convert_count = 0;
6776
6777 for (j = 0; j < longcall_count; j++)
6778 {
6779 int removed = (longcall_count - j) * 3 & (align - 1);
6780 unsigned desire_narrow = (align - removed) & (align - 1);
6781 unsigned desire_widen = removed;
6782 if (desire_narrow <= narrowable_count)
6783 {
6784 narrowable_convert_count = desire_narrow;
6785 narrowable_convert_count +=
6786 (align * ((narrowable_count - narrowable_convert_count)
6787 / align));
6788 longcall_convert_count = (longcall_count - j);
6789 widenable_convert_count = 0;
6790 break;
6791 }
6792 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6793 {
6794 narrowable_convert_count = 0;
6795 longcall_convert_count = longcall_count - j;
6796 widenable_convert_count = desire_widen;
6797 break;
6798 }
6799 }
6800 }
6801
6802 /* Now the number of conversions are saved. Do them. */
6803 for (i = seg_idx_start; i < seg_idx_end; i++)
6804 {
6805 action = &ebb_table->actions[i];
6806 switch (action->action)
6807 {
6808 case ta_convert_longcall:
6809 if (longcall_convert_count != 0)
6810 {
6811 action->action = ta_remove_longcall;
6812 action->do_action = TRUE;
6813 action->removed_bytes += 3;
6814 longcall_convert_count--;
6815 }
6816 break;
6817 case ta_narrow_insn:
6818 if (narrowable_convert_count != 0)
6819 {
6820 action->do_action = TRUE;
6821 action->removed_bytes += 1;
6822 narrowable_convert_count--;
6823 }
6824 break;
6825 case ta_widen_insn:
6826 if (widenable_convert_count != 0)
6827 {
6828 action->do_action = TRUE;
6829 action->removed_bytes -= 1;
6830 widenable_convert_count--;
6831 }
6832 break;
6833 default:
6834 break;
6835 }
6836 }
6837 }
6838
6839 /* Now we move on to some local opts. Try to remove each of the
6840 remaining longcalls. */
6841
6842 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6843 {
6844 removed_bytes = 0;
6845 for (i = 0; i < ebb_table->action_count; i++)
6846 {
6847 int old_removed_bytes = removed_bytes;
6848 proposed_action *action = &ebb_table->actions[i];
6849
6850 if (action->do_action && action->action == ta_convert_longcall)
6851 {
6852 bfd_boolean bad_alignment = FALSE;
6853 removed_bytes += 3;
6854 for (j = i + 1; j < ebb_table->action_count; j++)
6855 {
6856 proposed_action *new_action = &ebb_table->actions[j];
6857 bfd_vma offset = new_action->offset;
6858 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6859 {
6860 if (!check_branch_target_aligned
6861 (ebb_table->ebb.contents,
6862 ebb_table->ebb.content_length,
6863 offset, offset - removed_bytes))
6864 {
6865 bad_alignment = TRUE;
6866 break;
6867 }
6868 }
6869 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6870 {
6871 if (!check_loop_aligned (ebb_table->ebb.contents,
6872 ebb_table->ebb.content_length,
6873 offset,
6874 offset - removed_bytes))
6875 {
6876 bad_alignment = TRUE;
6877 break;
6878 }
6879 }
6880 if (new_action->action == ta_narrow_insn
6881 && !new_action->do_action
6882 && ebb_table->ebb.sec->alignment_power == 2)
6883 {
6884 /* Narrow an instruction and we are done. */
6885 new_action->do_action = TRUE;
6886 new_action->removed_bytes += 1;
6887 bad_alignment = FALSE;
6888 break;
6889 }
6890 if (new_action->action == ta_widen_insn
6891 && new_action->do_action
6892 && ebb_table->ebb.sec->alignment_power == 2)
6893 {
6894 /* Narrow an instruction and we are done. */
6895 new_action->do_action = FALSE;
6896 new_action->removed_bytes += 1;
6897 bad_alignment = FALSE;
6898 break;
6899 }
6900 }
6901 if (!bad_alignment)
6902 {
6903 action->removed_bytes += 3;
6904 action->action = ta_remove_longcall;
6905 action->do_action = TRUE;
6906 }
6907 }
6908 removed_bytes = old_removed_bytes;
6909 if (action->do_action)
6910 removed_bytes += action->removed_bytes;
6911 }
6912 }
6913
6914 removed_bytes = 0;
6915 for (i = 0; i < ebb_table->action_count; ++i)
6916 {
6917 proposed_action *action = &ebb_table->actions[i];
6918 if (action->do_action)
6919 removed_bytes += action->removed_bytes;
6920 }
6921
6922 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6923 && ebb->ends_unreachable)
6924 {
6925 proposed_action *action;
6926 int br;
6927 int extra_space;
6928
6929 BFD_ASSERT (ebb_table->action_count != 0);
6930 action = &ebb_table->actions[ebb_table->action_count - 1];
6931 BFD_ASSERT (action->action == ta_fill);
6932 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6933
6934 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6935 br = action->removed_bytes + removed_bytes + extra_space;
6936 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6937
6938 action->removed_bytes = extra_space - br;
6939 }
6940 return TRUE;
6941 }
6942
6943
6944 /* The xlate_map is a sorted array of address mappings designed to
6945 answer the offset_with_removed_text() query with a binary search instead
6946 of a linear search through the section's action_list. */
6947
6948 typedef struct xlate_map_entry xlate_map_entry_t;
6949 typedef struct xlate_map xlate_map_t;
6950
6951 struct xlate_map_entry
6952 {
6953 unsigned orig_address;
6954 unsigned new_address;
6955 unsigned size;
6956 };
6957
6958 struct xlate_map
6959 {
6960 unsigned entry_count;
6961 xlate_map_entry_t *entry;
6962 };
6963
6964
6965 static int
6966 xlate_compare (const void *a_v, const void *b_v)
6967 {
6968 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6969 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6970 if (a->orig_address < b->orig_address)
6971 return -1;
6972 if (a->orig_address > (b->orig_address + b->size - 1))
6973 return 1;
6974 return 0;
6975 }
6976
6977
6978 static bfd_vma
6979 xlate_offset_with_removed_text (const xlate_map_t *map,
6980 text_action_list *action_list,
6981 bfd_vma offset)
6982 {
6983 xlate_map_entry_t tmp;
6984 void *r;
6985 xlate_map_entry_t *e;
6986
6987 if (map == NULL)
6988 return offset_with_removed_text (action_list, offset);
6989
6990 if (map->entry_count == 0)
6991 return offset;
6992
6993 tmp.orig_address = offset;
6994 tmp.new_address = offset;
6995 tmp.size = 1;
6996
6997 r = bsearch (&offset, map->entry, map->entry_count,
6998 sizeof (xlate_map_entry_t), &xlate_compare);
6999 e = (xlate_map_entry_t *) r;
7000
7001 BFD_ASSERT (e != NULL);
7002 if (e == NULL)
7003 return offset;
7004 return e->new_address - e->orig_address + offset;
7005 }
7006
7007
7008 /* Build a binary searchable offset translation map from a section's
7009 action list. */
7010
7011 static xlate_map_t *
7012 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7013 {
7014 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7015 text_action_list *action_list = &relax_info->action_list;
7016 unsigned num_actions = 0;
7017 text_action *r;
7018 int removed;
7019 xlate_map_entry_t *current_entry;
7020
7021 if (map == NULL)
7022 return NULL;
7023
7024 num_actions = action_list_count (action_list);
7025 map->entry = (xlate_map_entry_t *)
7026 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7027 if (map->entry == NULL)
7028 {
7029 free (map);
7030 return NULL;
7031 }
7032 map->entry_count = 0;
7033
7034 removed = 0;
7035 current_entry = &map->entry[0];
7036
7037 current_entry->orig_address = 0;
7038 current_entry->new_address = 0;
7039 current_entry->size = 0;
7040
7041 for (r = action_list->head; r != NULL; r = r->next)
7042 {
7043 unsigned orig_size = 0;
7044 switch (r->action)
7045 {
7046 case ta_none:
7047 case ta_remove_insn:
7048 case ta_convert_longcall:
7049 case ta_remove_literal:
7050 case ta_add_literal:
7051 break;
7052 case ta_remove_longcall:
7053 orig_size = 6;
7054 break;
7055 case ta_narrow_insn:
7056 orig_size = 3;
7057 break;
7058 case ta_widen_insn:
7059 orig_size = 2;
7060 break;
7061 case ta_fill:
7062 break;
7063 }
7064 current_entry->size =
7065 r->offset + orig_size - current_entry->orig_address;
7066 if (current_entry->size != 0)
7067 {
7068 current_entry++;
7069 map->entry_count++;
7070 }
7071 current_entry->orig_address = r->offset + orig_size;
7072 removed += r->removed_bytes;
7073 current_entry->new_address = r->offset + orig_size - removed;
7074 current_entry->size = 0;
7075 }
7076
7077 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7078 - current_entry->orig_address);
7079 if (current_entry->size != 0)
7080 map->entry_count++;
7081
7082 return map;
7083 }
7084
7085
7086 /* Free an offset translation map. */
7087
7088 static void
7089 free_xlate_map (xlate_map_t *map)
7090 {
7091 if (map && map->entry)
7092 free (map->entry);
7093 if (map)
7094 free (map);
7095 }
7096
7097
7098 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7099 relocations in a section will fit if a proposed set of actions
7100 are performed. */
7101
7102 static bfd_boolean
7103 check_section_ebb_pcrels_fit (bfd *abfd,
7104 asection *sec,
7105 bfd_byte *contents,
7106 Elf_Internal_Rela *internal_relocs,
7107 const ebb_constraint *constraint,
7108 const xtensa_opcode *reloc_opcodes)
7109 {
7110 unsigned i, j;
7111 Elf_Internal_Rela *irel;
7112 xlate_map_t *xmap = NULL;
7113 bfd_boolean ok = TRUE;
7114 xtensa_relax_info *relax_info;
7115
7116 relax_info = get_xtensa_relax_info (sec);
7117
7118 if (relax_info && sec->reloc_count > 100)
7119 {
7120 xmap = build_xlate_map (sec, relax_info);
7121 /* NULL indicates out of memory, but the slow version
7122 can still be used. */
7123 }
7124
7125 for (i = 0; i < sec->reloc_count; i++)
7126 {
7127 r_reloc r_rel;
7128 bfd_vma orig_self_offset, orig_target_offset;
7129 bfd_vma self_offset, target_offset;
7130 int r_type;
7131 reloc_howto_type *howto;
7132 int self_removed_bytes, target_removed_bytes;
7133
7134 irel = &internal_relocs[i];
7135 r_type = ELF32_R_TYPE (irel->r_info);
7136
7137 howto = &elf_howto_table[r_type];
7138 /* We maintain the required invariant: PC-relative relocations
7139 that fit before linking must fit after linking. Thus we only
7140 need to deal with relocations to the same section that are
7141 PC-relative. */
7142 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7143 || !howto->pc_relative)
7144 continue;
7145
7146 r_reloc_init (&r_rel, abfd, irel, contents,
7147 bfd_get_section_limit (abfd, sec));
7148
7149 if (r_reloc_get_section (&r_rel) != sec)
7150 continue;
7151
7152 orig_self_offset = irel->r_offset;
7153 orig_target_offset = r_rel.target_offset;
7154
7155 self_offset = orig_self_offset;
7156 target_offset = orig_target_offset;
7157
7158 if (relax_info)
7159 {
7160 self_offset =
7161 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7162 orig_self_offset);
7163 target_offset =
7164 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7165 orig_target_offset);
7166 }
7167
7168 self_removed_bytes = 0;
7169 target_removed_bytes = 0;
7170
7171 for (j = 0; j < constraint->action_count; ++j)
7172 {
7173 proposed_action *action = &constraint->actions[j];
7174 bfd_vma offset = action->offset;
7175 int removed_bytes = action->removed_bytes;
7176 if (offset < orig_self_offset
7177 || (offset == orig_self_offset && action->action == ta_fill
7178 && action->removed_bytes < 0))
7179 self_removed_bytes += removed_bytes;
7180 if (offset < orig_target_offset
7181 || (offset == orig_target_offset && action->action == ta_fill
7182 && action->removed_bytes < 0))
7183 target_removed_bytes += removed_bytes;
7184 }
7185 self_offset -= self_removed_bytes;
7186 target_offset -= target_removed_bytes;
7187
7188 /* Try to encode it. Get the operand and check. */
7189 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7190 {
7191 /* None of the current alternate relocs are PC-relative,
7192 and only PC-relative relocs matter here. */
7193 }
7194 else
7195 {
7196 xtensa_opcode opcode;
7197 int opnum;
7198
7199 if (reloc_opcodes)
7200 opcode = reloc_opcodes[i];
7201 else
7202 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7203 if (opcode == XTENSA_UNDEFINED)
7204 {
7205 ok = FALSE;
7206 break;
7207 }
7208
7209 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7210 if (opnum == XTENSA_UNDEFINED)
7211 {
7212 ok = FALSE;
7213 break;
7214 }
7215
7216 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7217 {
7218 ok = FALSE;
7219 break;
7220 }
7221 }
7222 }
7223
7224 if (xmap)
7225 free_xlate_map (xmap);
7226
7227 return ok;
7228 }
7229
7230
7231 static bfd_boolean
7232 check_section_ebb_reduces (const ebb_constraint *constraint)
7233 {
7234 int removed = 0;
7235 unsigned i;
7236
7237 for (i = 0; i < constraint->action_count; i++)
7238 {
7239 const proposed_action *action = &constraint->actions[i];
7240 if (action->do_action)
7241 removed += action->removed_bytes;
7242 }
7243 if (removed < 0)
7244 return FALSE;
7245
7246 return TRUE;
7247 }
7248
7249
7250 void
7251 text_action_add_proposed (text_action_list *l,
7252 const ebb_constraint *ebb_table,
7253 asection *sec)
7254 {
7255 unsigned i;
7256
7257 for (i = 0; i < ebb_table->action_count; i++)
7258 {
7259 proposed_action *action = &ebb_table->actions[i];
7260
7261 if (!action->do_action)
7262 continue;
7263 switch (action->action)
7264 {
7265 case ta_remove_insn:
7266 case ta_remove_longcall:
7267 case ta_convert_longcall:
7268 case ta_narrow_insn:
7269 case ta_widen_insn:
7270 case ta_fill:
7271 case ta_remove_literal:
7272 text_action_add (l, action->action, sec, action->offset,
7273 action->removed_bytes);
7274 break;
7275 case ta_none:
7276 break;
7277 default:
7278 BFD_ASSERT (0);
7279 break;
7280 }
7281 }
7282 }
7283
7284
7285 int
7286 compute_fill_extra_space (property_table_entry *entry)
7287 {
7288 int fill_extra_space;
7289
7290 if (!entry)
7291 return 0;
7292
7293 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7294 return 0;
7295
7296 fill_extra_space = entry->size;
7297 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7298 {
7299 /* Fill bytes for alignment:
7300 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7301 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7302 int nsm = (1 << pow) - 1;
7303 bfd_vma addr = entry->address + entry->size;
7304 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7305 fill_extra_space += align_fill;
7306 }
7307 return fill_extra_space;
7308 }
7309
7310 \f
7311 /* First relaxation pass. */
7312
7313 /* If the section contains relaxable literals, check each literal to
7314 see if it has the same value as another literal that has already
7315 been seen, either in the current section or a previous one. If so,
7316 add an entry to the per-section list of removed literals. The
7317 actual changes are deferred until the next pass. */
7318
7319 static bfd_boolean
7320 compute_removed_literals (bfd *abfd,
7321 asection *sec,
7322 struct bfd_link_info *link_info,
7323 value_map_hash_table *values)
7324 {
7325 xtensa_relax_info *relax_info;
7326 bfd_byte *contents;
7327 Elf_Internal_Rela *internal_relocs;
7328 source_reloc *src_relocs, *rel;
7329 bfd_boolean ok = TRUE;
7330 property_table_entry *prop_table = NULL;
7331 int ptblsize;
7332 int i, prev_i;
7333 bfd_boolean last_loc_is_prev = FALSE;
7334 bfd_vma last_target_offset = 0;
7335 section_cache_t target_sec_cache;
7336 bfd_size_type sec_size;
7337
7338 init_section_cache (&target_sec_cache);
7339
7340 /* Do nothing if it is not a relaxable literal section. */
7341 relax_info = get_xtensa_relax_info (sec);
7342 BFD_ASSERT (relax_info);
7343 if (!relax_info->is_relaxable_literal_section)
7344 return ok;
7345
7346 internal_relocs = retrieve_internal_relocs (abfd, sec,
7347 link_info->keep_memory);
7348
7349 sec_size = bfd_get_section_limit (abfd, sec);
7350 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7351 if (contents == NULL && sec_size != 0)
7352 {
7353 ok = FALSE;
7354 goto error_return;
7355 }
7356
7357 /* Sort the source_relocs by target offset. */
7358 src_relocs = relax_info->src_relocs;
7359 qsort (src_relocs, relax_info->src_count,
7360 sizeof (source_reloc), source_reloc_compare);
7361 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7362 internal_reloc_compare);
7363
7364 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7365 XTENSA_PROP_SEC_NAME, FALSE);
7366 if (ptblsize < 0)
7367 {
7368 ok = FALSE;
7369 goto error_return;
7370 }
7371
7372 prev_i = -1;
7373 for (i = 0; i < relax_info->src_count; i++)
7374 {
7375 Elf_Internal_Rela *irel = NULL;
7376
7377 rel = &src_relocs[i];
7378 if (get_l32r_opcode () != rel->opcode)
7379 continue;
7380 irel = get_irel_at_offset (sec, internal_relocs,
7381 rel->r_rel.target_offset);
7382
7383 /* If the relocation on this is not a simple R_XTENSA_32 or
7384 R_XTENSA_PLT then do not consider it. This may happen when
7385 the difference of two symbols is used in a literal. */
7386 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7387 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7388 continue;
7389
7390 /* If the target_offset for this relocation is the same as the
7391 previous relocation, then we've already considered whether the
7392 literal can be coalesced. Skip to the next one.... */
7393 if (i != 0 && prev_i != -1
7394 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7395 continue;
7396 prev_i = i;
7397
7398 if (last_loc_is_prev &&
7399 last_target_offset + 4 != rel->r_rel.target_offset)
7400 last_loc_is_prev = FALSE;
7401
7402 /* Check if the relocation was from an L32R that is being removed
7403 because a CALLX was converted to a direct CALL, and check if
7404 there are no other relocations to the literal. */
7405 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7406 {
7407 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7408 irel, rel, prop_table, ptblsize))
7409 {
7410 ok = FALSE;
7411 goto error_return;
7412 }
7413 last_target_offset = rel->r_rel.target_offset;
7414 continue;
7415 }
7416
7417 if (!identify_literal_placement (abfd, sec, contents, link_info,
7418 values,
7419 &last_loc_is_prev, irel,
7420 relax_info->src_count - i, rel,
7421 prop_table, ptblsize,
7422 &target_sec_cache, rel->is_abs_literal))
7423 {
7424 ok = FALSE;
7425 goto error_return;
7426 }
7427 last_target_offset = rel->r_rel.target_offset;
7428 }
7429
7430 #if DEBUG
7431 print_removed_literals (stderr, &relax_info->removed_list);
7432 print_action_list (stderr, &relax_info->action_list);
7433 #endif /* DEBUG */
7434
7435 error_return:
7436 if (prop_table) free (prop_table);
7437 clear_section_cache (&target_sec_cache);
7438
7439 release_contents (sec, contents);
7440 release_internal_relocs (sec, internal_relocs);
7441 return ok;
7442 }
7443
7444
7445 static Elf_Internal_Rela *
7446 get_irel_at_offset (asection *sec,
7447 Elf_Internal_Rela *internal_relocs,
7448 bfd_vma offset)
7449 {
7450 unsigned i;
7451 Elf_Internal_Rela *irel;
7452 unsigned r_type;
7453 Elf_Internal_Rela key;
7454
7455 if (!internal_relocs)
7456 return NULL;
7457
7458 key.r_offset = offset;
7459 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7460 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7461 if (!irel)
7462 return NULL;
7463
7464 /* bsearch does not guarantee which will be returned if there are
7465 multiple matches. We need the first that is not an alignment. */
7466 i = irel - internal_relocs;
7467 while (i > 0)
7468 {
7469 if (internal_relocs[i-1].r_offset != offset)
7470 break;
7471 i--;
7472 }
7473 for ( ; i < sec->reloc_count; i++)
7474 {
7475 irel = &internal_relocs[i];
7476 r_type = ELF32_R_TYPE (irel->r_info);
7477 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7478 return irel;
7479 }
7480
7481 return NULL;
7482 }
7483
7484
7485 bfd_boolean
7486 is_removable_literal (const source_reloc *rel,
7487 int i,
7488 const source_reloc *src_relocs,
7489 int src_count)
7490 {
7491 const source_reloc *curr_rel;
7492 if (!rel->is_null)
7493 return FALSE;
7494
7495 for (++i; i < src_count; ++i)
7496 {
7497 curr_rel = &src_relocs[i];
7498 /* If all others have the same target offset.... */
7499 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7500 return TRUE;
7501
7502 if (!curr_rel->is_null
7503 && !xtensa_is_property_section (curr_rel->source_sec)
7504 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7505 return FALSE;
7506 }
7507 return TRUE;
7508 }
7509
7510
7511 bfd_boolean
7512 remove_dead_literal (bfd *abfd,
7513 asection *sec,
7514 struct bfd_link_info *link_info,
7515 Elf_Internal_Rela *internal_relocs,
7516 Elf_Internal_Rela *irel,
7517 source_reloc *rel,
7518 property_table_entry *prop_table,
7519 int ptblsize)
7520 {
7521 property_table_entry *entry;
7522 xtensa_relax_info *relax_info;
7523
7524 relax_info = get_xtensa_relax_info (sec);
7525 if (!relax_info)
7526 return FALSE;
7527
7528 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7529 sec->vma + rel->r_rel.target_offset);
7530
7531 /* Mark the unused literal so that it will be removed. */
7532 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7533
7534 text_action_add (&relax_info->action_list,
7535 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7536
7537 /* If the section is 4-byte aligned, do not add fill. */
7538 if (sec->alignment_power > 2)
7539 {
7540 int fill_extra_space;
7541 bfd_vma entry_sec_offset;
7542 text_action *fa;
7543 property_table_entry *the_add_entry;
7544 int removed_diff;
7545
7546 if (entry)
7547 entry_sec_offset = entry->address - sec->vma + entry->size;
7548 else
7549 entry_sec_offset = rel->r_rel.target_offset + 4;
7550
7551 /* If the literal range is at the end of the section,
7552 do not add fill. */
7553 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7554 entry_sec_offset);
7555 fill_extra_space = compute_fill_extra_space (the_add_entry);
7556
7557 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7558 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7559 -4, fill_extra_space);
7560 if (fa)
7561 adjust_fill_action (fa, removed_diff);
7562 else
7563 text_action_add (&relax_info->action_list,
7564 ta_fill, sec, entry_sec_offset, removed_diff);
7565 }
7566
7567 /* Zero out the relocation on this literal location. */
7568 if (irel)
7569 {
7570 if (elf_hash_table (link_info)->dynamic_sections_created)
7571 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7572
7573 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7574 pin_internal_relocs (sec, internal_relocs);
7575 }
7576
7577 /* Do not modify "last_loc_is_prev". */
7578 return TRUE;
7579 }
7580
7581
7582 bfd_boolean
7583 identify_literal_placement (bfd *abfd,
7584 asection *sec,
7585 bfd_byte *contents,
7586 struct bfd_link_info *link_info,
7587 value_map_hash_table *values,
7588 bfd_boolean *last_loc_is_prev_p,
7589 Elf_Internal_Rela *irel,
7590 int remaining_src_rels,
7591 source_reloc *rel,
7592 property_table_entry *prop_table,
7593 int ptblsize,
7594 section_cache_t *target_sec_cache,
7595 bfd_boolean is_abs_literal)
7596 {
7597 literal_value val;
7598 value_map *val_map;
7599 xtensa_relax_info *relax_info;
7600 bfd_boolean literal_placed = FALSE;
7601 r_reloc r_rel;
7602 unsigned long value;
7603 bfd_boolean final_static_link;
7604 bfd_size_type sec_size;
7605
7606 relax_info = get_xtensa_relax_info (sec);
7607 if (!relax_info)
7608 return FALSE;
7609
7610 sec_size = bfd_get_section_limit (abfd, sec);
7611
7612 final_static_link =
7613 (!link_info->relocatable
7614 && !elf_hash_table (link_info)->dynamic_sections_created);
7615
7616 /* The placement algorithm first checks to see if the literal is
7617 already in the value map. If so and the value map is reachable
7618 from all uses, then the literal is moved to that location. If
7619 not, then we identify the last location where a fresh literal was
7620 placed. If the literal can be safely moved there, then we do so.
7621 If not, then we assume that the literal is not to move and leave
7622 the literal where it is, marking it as the last literal
7623 location. */
7624
7625 /* Find the literal value. */
7626 value = 0;
7627 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7628 if (!irel)
7629 {
7630 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7631 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7632 }
7633 init_literal_value (&val, &r_rel, value, is_abs_literal);
7634
7635 /* Check if we've seen another literal with the same value that
7636 is in the same output section. */
7637 val_map = value_map_get_cached_value (values, &val, final_static_link);
7638
7639 if (val_map
7640 && (r_reloc_get_section (&val_map->loc)->output_section
7641 == sec->output_section)
7642 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7643 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7644 {
7645 /* No change to last_loc_is_prev. */
7646 literal_placed = TRUE;
7647 }
7648
7649 /* For relocatable links, do not try to move literals. To do it
7650 correctly might increase the number of relocations in an input
7651 section making the default relocatable linking fail. */
7652 if (!link_info->relocatable && !literal_placed
7653 && values->has_last_loc && !(*last_loc_is_prev_p))
7654 {
7655 asection *target_sec = r_reloc_get_section (&values->last_loc);
7656 if (target_sec && target_sec->output_section == sec->output_section)
7657 {
7658 /* Increment the virtual offset. */
7659 r_reloc try_loc = values->last_loc;
7660 try_loc.virtual_offset += 4;
7661
7662 /* There is a last loc that was in the same output section. */
7663 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7664 && move_shared_literal (sec, link_info, rel,
7665 prop_table, ptblsize,
7666 &try_loc, &val, target_sec_cache))
7667 {
7668 values->last_loc.virtual_offset += 4;
7669 literal_placed = TRUE;
7670 if (!val_map)
7671 val_map = add_value_map (values, &val, &try_loc,
7672 final_static_link);
7673 else
7674 val_map->loc = try_loc;
7675 }
7676 }
7677 }
7678
7679 if (!literal_placed)
7680 {
7681 /* Nothing worked, leave the literal alone but update the last loc. */
7682 values->has_last_loc = TRUE;
7683 values->last_loc = rel->r_rel;
7684 if (!val_map)
7685 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7686 else
7687 val_map->loc = rel->r_rel;
7688 *last_loc_is_prev_p = TRUE;
7689 }
7690
7691 return TRUE;
7692 }
7693
7694
7695 /* Check if the original relocations (presumably on L32R instructions)
7696 identified by reloc[0..N] can be changed to reference the literal
7697 identified by r_rel. If r_rel is out of range for any of the
7698 original relocations, then we don't want to coalesce the original
7699 literal with the one at r_rel. We only check reloc[0..N], where the
7700 offsets are all the same as for reloc[0] (i.e., they're all
7701 referencing the same literal) and where N is also bounded by the
7702 number of remaining entries in the "reloc" array. The "reloc" array
7703 is sorted by target offset so we know all the entries for the same
7704 literal will be contiguous. */
7705
7706 static bfd_boolean
7707 relocations_reach (source_reloc *reloc,
7708 int remaining_relocs,
7709 const r_reloc *r_rel)
7710 {
7711 bfd_vma from_offset, source_address, dest_address;
7712 asection *sec;
7713 int i;
7714
7715 if (!r_reloc_is_defined (r_rel))
7716 return FALSE;
7717
7718 sec = r_reloc_get_section (r_rel);
7719 from_offset = reloc[0].r_rel.target_offset;
7720
7721 for (i = 0; i < remaining_relocs; i++)
7722 {
7723 if (reloc[i].r_rel.target_offset != from_offset)
7724 break;
7725
7726 /* Ignore relocations that have been removed. */
7727 if (reloc[i].is_null)
7728 continue;
7729
7730 /* The original and new output section for these must be the same
7731 in order to coalesce. */
7732 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7733 != sec->output_section)
7734 return FALSE;
7735
7736 /* Absolute literals in the same output section can always be
7737 combined. */
7738 if (reloc[i].is_abs_literal)
7739 continue;
7740
7741 /* A literal with no PC-relative relocations can be moved anywhere. */
7742 if (reloc[i].opnd != -1)
7743 {
7744 /* Otherwise, check to see that it fits. */
7745 source_address = (reloc[i].source_sec->output_section->vma
7746 + reloc[i].source_sec->output_offset
7747 + reloc[i].r_rel.rela.r_offset);
7748 dest_address = (sec->output_section->vma
7749 + sec->output_offset
7750 + r_rel->target_offset);
7751
7752 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7753 source_address, dest_address))
7754 return FALSE;
7755 }
7756 }
7757
7758 return TRUE;
7759 }
7760
7761
7762 /* Move a literal to another literal location because it is
7763 the same as the other literal value. */
7764
7765 static bfd_boolean
7766 coalesce_shared_literal (asection *sec,
7767 source_reloc *rel,
7768 property_table_entry *prop_table,
7769 int ptblsize,
7770 value_map *val_map)
7771 {
7772 property_table_entry *entry;
7773 text_action *fa;
7774 property_table_entry *the_add_entry;
7775 int removed_diff;
7776 xtensa_relax_info *relax_info;
7777
7778 relax_info = get_xtensa_relax_info (sec);
7779 if (!relax_info)
7780 return FALSE;
7781
7782 entry = elf_xtensa_find_property_entry
7783 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7784 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7785 return TRUE;
7786
7787 /* Mark that the literal will be coalesced. */
7788 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7789
7790 text_action_add (&relax_info->action_list,
7791 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7792
7793 /* If the section is 4-byte aligned, do not add fill. */
7794 if (sec->alignment_power > 2)
7795 {
7796 int fill_extra_space;
7797 bfd_vma entry_sec_offset;
7798
7799 if (entry)
7800 entry_sec_offset = entry->address - sec->vma + entry->size;
7801 else
7802 entry_sec_offset = rel->r_rel.target_offset + 4;
7803
7804 /* If the literal range is at the end of the section,
7805 do not add fill. */
7806 fill_extra_space = 0;
7807 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7808 entry_sec_offset);
7809 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7810 fill_extra_space = the_add_entry->size;
7811
7812 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7813 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7814 -4, fill_extra_space);
7815 if (fa)
7816 adjust_fill_action (fa, removed_diff);
7817 else
7818 text_action_add (&relax_info->action_list,
7819 ta_fill, sec, entry_sec_offset, removed_diff);
7820 }
7821
7822 return TRUE;
7823 }
7824
7825
7826 /* Move a literal to another location. This may actually increase the
7827 total amount of space used because of alignments so we need to do
7828 this carefully. Also, it may make a branch go out of range. */
7829
7830 static bfd_boolean
7831 move_shared_literal (asection *sec,
7832 struct bfd_link_info *link_info,
7833 source_reloc *rel,
7834 property_table_entry *prop_table,
7835 int ptblsize,
7836 const r_reloc *target_loc,
7837 const literal_value *lit_value,
7838 section_cache_t *target_sec_cache)
7839 {
7840 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7841 text_action *fa, *target_fa;
7842 int removed_diff;
7843 xtensa_relax_info *relax_info, *target_relax_info;
7844 asection *target_sec;
7845 ebb_t *ebb;
7846 ebb_constraint ebb_table;
7847 bfd_boolean relocs_fit;
7848
7849 /* If this routine always returns FALSE, the literals that cannot be
7850 coalesced will not be moved. */
7851 if (elf32xtensa_no_literal_movement)
7852 return FALSE;
7853
7854 relax_info = get_xtensa_relax_info (sec);
7855 if (!relax_info)
7856 return FALSE;
7857
7858 target_sec = r_reloc_get_section (target_loc);
7859 target_relax_info = get_xtensa_relax_info (target_sec);
7860
7861 /* Literals to undefined sections may not be moved because they
7862 must report an error. */
7863 if (bfd_is_und_section (target_sec))
7864 return FALSE;
7865
7866 src_entry = elf_xtensa_find_property_entry
7867 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7868
7869 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7870 return FALSE;
7871
7872 target_entry = elf_xtensa_find_property_entry
7873 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7874 target_sec->vma + target_loc->target_offset);
7875
7876 if (!target_entry)
7877 return FALSE;
7878
7879 /* Make sure that we have not broken any branches. */
7880 relocs_fit = FALSE;
7881
7882 init_ebb_constraint (&ebb_table);
7883 ebb = &ebb_table.ebb;
7884 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7885 target_sec_cache->content_length,
7886 target_sec_cache->ptbl, target_sec_cache->pte_count,
7887 target_sec_cache->relocs, target_sec_cache->reloc_count);
7888
7889 /* Propose to add 4 bytes + worst-case alignment size increase to
7890 destination. */
7891 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7892 ta_fill, target_loc->target_offset,
7893 -4 - (1 << target_sec->alignment_power), TRUE);
7894
7895 /* Check all of the PC-relative relocations to make sure they still fit. */
7896 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7897 target_sec_cache->contents,
7898 target_sec_cache->relocs,
7899 &ebb_table, NULL);
7900
7901 if (!relocs_fit)
7902 return FALSE;
7903
7904 text_action_add_literal (&target_relax_info->action_list,
7905 ta_add_literal, target_loc, lit_value, -4);
7906
7907 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7908 {
7909 /* May need to add or remove some fill to maintain alignment. */
7910 int fill_extra_space;
7911 bfd_vma entry_sec_offset;
7912
7913 entry_sec_offset =
7914 target_entry->address - target_sec->vma + target_entry->size;
7915
7916 /* If the literal range is at the end of the section,
7917 do not add fill. */
7918 fill_extra_space = 0;
7919 the_add_entry =
7920 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7921 target_sec_cache->pte_count,
7922 entry_sec_offset);
7923 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7924 fill_extra_space = the_add_entry->size;
7925
7926 target_fa = find_fill_action (&target_relax_info->action_list,
7927 target_sec, entry_sec_offset);
7928 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7929 entry_sec_offset, 4,
7930 fill_extra_space);
7931 if (target_fa)
7932 adjust_fill_action (target_fa, removed_diff);
7933 else
7934 text_action_add (&target_relax_info->action_list,
7935 ta_fill, target_sec, entry_sec_offset, removed_diff);
7936 }
7937
7938 /* Mark that the literal will be moved to the new location. */
7939 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7940
7941 /* Remove the literal. */
7942 text_action_add (&relax_info->action_list,
7943 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7944
7945 /* If the section is 4-byte aligned, do not add fill. */
7946 if (sec->alignment_power > 2 && target_entry != src_entry)
7947 {
7948 int fill_extra_space;
7949 bfd_vma entry_sec_offset;
7950
7951 if (src_entry)
7952 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7953 else
7954 entry_sec_offset = rel->r_rel.target_offset+4;
7955
7956 /* If the literal range is at the end of the section,
7957 do not add fill. */
7958 fill_extra_space = 0;
7959 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7960 entry_sec_offset);
7961 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7962 fill_extra_space = the_add_entry->size;
7963
7964 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7965 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7966 -4, fill_extra_space);
7967 if (fa)
7968 adjust_fill_action (fa, removed_diff);
7969 else
7970 text_action_add (&relax_info->action_list,
7971 ta_fill, sec, entry_sec_offset, removed_diff);
7972 }
7973
7974 return TRUE;
7975 }
7976
7977 \f
7978 /* Second relaxation pass. */
7979
7980 /* Modify all of the relocations to point to the right spot, and if this
7981 is a relaxable section, delete the unwanted literals and fix the
7982 section size. */
7983
7984 bfd_boolean
7985 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
7986 {
7987 Elf_Internal_Rela *internal_relocs;
7988 xtensa_relax_info *relax_info;
7989 bfd_byte *contents;
7990 bfd_boolean ok = TRUE;
7991 unsigned i;
7992 bfd_boolean rv = FALSE;
7993 bfd_boolean virtual_action;
7994 bfd_size_type sec_size;
7995
7996 sec_size = bfd_get_section_limit (abfd, sec);
7997 relax_info = get_xtensa_relax_info (sec);
7998 BFD_ASSERT (relax_info);
7999
8000 /* First translate any of the fixes that have been added already. */
8001 translate_section_fixes (sec);
8002
8003 /* Handle property sections (e.g., literal tables) specially. */
8004 if (xtensa_is_property_section (sec))
8005 {
8006 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8007 return relax_property_section (abfd, sec, link_info);
8008 }
8009
8010 internal_relocs = retrieve_internal_relocs (abfd, sec,
8011 link_info->keep_memory);
8012 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8013 if (contents == NULL && sec_size != 0)
8014 {
8015 ok = FALSE;
8016 goto error_return;
8017 }
8018
8019 if (internal_relocs)
8020 {
8021 for (i = 0; i < sec->reloc_count; i++)
8022 {
8023 Elf_Internal_Rela *irel;
8024 xtensa_relax_info *target_relax_info;
8025 bfd_vma source_offset, old_source_offset;
8026 r_reloc r_rel;
8027 unsigned r_type;
8028 asection *target_sec;
8029
8030 /* Locally change the source address.
8031 Translate the target to the new target address.
8032 If it points to this section and has been removed,
8033 NULLify it.
8034 Write it back. */
8035
8036 irel = &internal_relocs[i];
8037 source_offset = irel->r_offset;
8038 old_source_offset = source_offset;
8039
8040 r_type = ELF32_R_TYPE (irel->r_info);
8041 r_reloc_init (&r_rel, abfd, irel, contents,
8042 bfd_get_section_limit (abfd, sec));
8043
8044 /* If this section could have changed then we may need to
8045 change the relocation's offset. */
8046
8047 if (relax_info->is_relaxable_literal_section
8048 || relax_info->is_relaxable_asm_section)
8049 {
8050 if (r_type != R_XTENSA_NONE
8051 && find_removed_literal (&relax_info->removed_list,
8052 irel->r_offset))
8053 {
8054 /* Remove this relocation. */
8055 if (elf_hash_table (link_info)->dynamic_sections_created)
8056 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8057 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8058 irel->r_offset = offset_with_removed_text
8059 (&relax_info->action_list, irel->r_offset);
8060 pin_internal_relocs (sec, internal_relocs);
8061 continue;
8062 }
8063
8064 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8065 {
8066 text_action *action =
8067 find_insn_action (&relax_info->action_list,
8068 irel->r_offset);
8069 if (action && (action->action == ta_convert_longcall
8070 || action->action == ta_remove_longcall))
8071 {
8072 bfd_reloc_status_type retval;
8073 char *error_message = NULL;
8074
8075 retval = contract_asm_expansion (contents, sec_size,
8076 irel, &error_message);
8077 if (retval != bfd_reloc_ok)
8078 {
8079 (*link_info->callbacks->reloc_dangerous)
8080 (link_info, error_message, abfd, sec,
8081 irel->r_offset);
8082 goto error_return;
8083 }
8084 /* Update the action so that the code that moves
8085 the contents will do the right thing. */
8086 if (action->action == ta_remove_longcall)
8087 action->action = ta_remove_insn;
8088 else
8089 action->action = ta_none;
8090 /* Refresh the info in the r_rel. */
8091 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8092 r_type = ELF32_R_TYPE (irel->r_info);
8093 }
8094 }
8095
8096 source_offset = offset_with_removed_text
8097 (&relax_info->action_list, irel->r_offset);
8098 irel->r_offset = source_offset;
8099 }
8100
8101 /* If the target section could have changed then
8102 we may need to change the relocation's target offset. */
8103
8104 target_sec = r_reloc_get_section (&r_rel);
8105 target_relax_info = get_xtensa_relax_info (target_sec);
8106
8107 if (target_relax_info
8108 && (target_relax_info->is_relaxable_literal_section
8109 || target_relax_info->is_relaxable_asm_section))
8110 {
8111 r_reloc new_reloc;
8112 reloc_bfd_fix *fix;
8113 bfd_vma addend_displacement;
8114
8115 translate_reloc (&r_rel, &new_reloc);
8116
8117 if (r_type == R_XTENSA_DIFF8
8118 || r_type == R_XTENSA_DIFF16
8119 || r_type == R_XTENSA_DIFF32)
8120 {
8121 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8122
8123 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8124 {
8125 (*link_info->callbacks->reloc_dangerous)
8126 (link_info, _("invalid relocation address"),
8127 abfd, sec, old_source_offset);
8128 goto error_return;
8129 }
8130
8131 switch (r_type)
8132 {
8133 case R_XTENSA_DIFF8:
8134 diff_value =
8135 bfd_get_8 (abfd, &contents[old_source_offset]);
8136 break;
8137 case R_XTENSA_DIFF16:
8138 diff_value =
8139 bfd_get_16 (abfd, &contents[old_source_offset]);
8140 break;
8141 case R_XTENSA_DIFF32:
8142 diff_value =
8143 bfd_get_32 (abfd, &contents[old_source_offset]);
8144 break;
8145 }
8146
8147 new_end_offset = offset_with_removed_text
8148 (&target_relax_info->action_list,
8149 r_rel.target_offset + diff_value);
8150 diff_value = new_end_offset - new_reloc.target_offset;
8151
8152 switch (r_type)
8153 {
8154 case R_XTENSA_DIFF8:
8155 diff_mask = 0xff;
8156 bfd_put_8 (abfd, diff_value,
8157 &contents[old_source_offset]);
8158 break;
8159 case R_XTENSA_DIFF16:
8160 diff_mask = 0xffff;
8161 bfd_put_16 (abfd, diff_value,
8162 &contents[old_source_offset]);
8163 break;
8164 case R_XTENSA_DIFF32:
8165 diff_mask = 0xffffffff;
8166 bfd_put_32 (abfd, diff_value,
8167 &contents[old_source_offset]);
8168 break;
8169 }
8170
8171 /* Check for overflow. */
8172 if ((diff_value & ~diff_mask) != 0)
8173 {
8174 (*link_info->callbacks->reloc_dangerous)
8175 (link_info, _("overflow after relaxation"),
8176 abfd, sec, old_source_offset);
8177 goto error_return;
8178 }
8179
8180 pin_contents (sec, contents);
8181 }
8182
8183 /* FIXME: If the relocation still references a section in
8184 the same input file, the relocation should be modified
8185 directly instead of adding a "fix" record. */
8186
8187 addend_displacement =
8188 new_reloc.target_offset + new_reloc.virtual_offset;
8189
8190 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8191 r_reloc_get_section (&new_reloc),
8192 addend_displacement, TRUE);
8193 add_fix (sec, fix);
8194 }
8195
8196 pin_internal_relocs (sec, internal_relocs);
8197 }
8198 }
8199
8200 if ((relax_info->is_relaxable_literal_section
8201 || relax_info->is_relaxable_asm_section)
8202 && relax_info->action_list.head)
8203 {
8204 /* Walk through the planned actions and build up a table
8205 of move, copy and fill records. Use the move, copy and
8206 fill records to perform the actions once. */
8207
8208 bfd_size_type size = sec->size;
8209 int removed = 0;
8210 bfd_size_type final_size, copy_size, orig_insn_size;
8211 bfd_byte *scratch = NULL;
8212 bfd_byte *dup_contents = NULL;
8213 bfd_size_type orig_size = size;
8214 bfd_vma orig_dot = 0;
8215 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8216 orig dot in physical memory. */
8217 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8218 bfd_vma dup_dot = 0;
8219
8220 text_action *action = relax_info->action_list.head;
8221
8222 final_size = sec->size;
8223 for (action = relax_info->action_list.head; action;
8224 action = action->next)
8225 {
8226 final_size -= action->removed_bytes;
8227 }
8228
8229 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8230 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8231
8232 /* The dot is the current fill location. */
8233 #if DEBUG
8234 print_action_list (stderr, &relax_info->action_list);
8235 #endif
8236
8237 for (action = relax_info->action_list.head; action;
8238 action = action->next)
8239 {
8240 virtual_action = FALSE;
8241 if (action->offset > orig_dot)
8242 {
8243 orig_dot += orig_dot_copied;
8244 orig_dot_copied = 0;
8245 orig_dot_vo = 0;
8246 /* Out of the virtual world. */
8247 }
8248
8249 if (action->offset > orig_dot)
8250 {
8251 copy_size = action->offset - orig_dot;
8252 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8253 orig_dot += copy_size;
8254 dup_dot += copy_size;
8255 BFD_ASSERT (action->offset == orig_dot);
8256 }
8257 else if (action->offset < orig_dot)
8258 {
8259 if (action->action == ta_fill
8260 && action->offset - action->removed_bytes == orig_dot)
8261 {
8262 /* This is OK because the fill only effects the dup_dot. */
8263 }
8264 else if (action->action == ta_add_literal)
8265 {
8266 /* TBD. Might need to handle this. */
8267 }
8268 }
8269 if (action->offset == orig_dot)
8270 {
8271 if (action->virtual_offset > orig_dot_vo)
8272 {
8273 if (orig_dot_vo == 0)
8274 {
8275 /* Need to copy virtual_offset bytes. Probably four. */
8276 copy_size = action->virtual_offset - orig_dot_vo;
8277 memmove (&dup_contents[dup_dot],
8278 &contents[orig_dot], copy_size);
8279 orig_dot_copied = copy_size;
8280 dup_dot += copy_size;
8281 }
8282 virtual_action = TRUE;
8283 }
8284 else
8285 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8286 }
8287 switch (action->action)
8288 {
8289 case ta_remove_literal:
8290 case ta_remove_insn:
8291 BFD_ASSERT (action->removed_bytes >= 0);
8292 orig_dot += action->removed_bytes;
8293 break;
8294
8295 case ta_narrow_insn:
8296 orig_insn_size = 3;
8297 copy_size = 2;
8298 memmove (scratch, &contents[orig_dot], orig_insn_size);
8299 BFD_ASSERT (action->removed_bytes == 1);
8300 rv = narrow_instruction (scratch, final_size, 0);
8301 BFD_ASSERT (rv);
8302 memmove (&dup_contents[dup_dot], scratch, copy_size);
8303 orig_dot += orig_insn_size;
8304 dup_dot += copy_size;
8305 break;
8306
8307 case ta_fill:
8308 if (action->removed_bytes >= 0)
8309 orig_dot += action->removed_bytes;
8310 else
8311 {
8312 /* Already zeroed in dup_contents. Just bump the
8313 counters. */
8314 dup_dot += (-action->removed_bytes);
8315 }
8316 break;
8317
8318 case ta_none:
8319 BFD_ASSERT (action->removed_bytes == 0);
8320 break;
8321
8322 case ta_convert_longcall:
8323 case ta_remove_longcall:
8324 /* These will be removed or converted before we get here. */
8325 BFD_ASSERT (0);
8326 break;
8327
8328 case ta_widen_insn:
8329 orig_insn_size = 2;
8330 copy_size = 3;
8331 memmove (scratch, &contents[orig_dot], orig_insn_size);
8332 BFD_ASSERT (action->removed_bytes == -1);
8333 rv = widen_instruction (scratch, final_size, 0);
8334 BFD_ASSERT (rv);
8335 memmove (&dup_contents[dup_dot], scratch, copy_size);
8336 orig_dot += orig_insn_size;
8337 dup_dot += copy_size;
8338 break;
8339
8340 case ta_add_literal:
8341 orig_insn_size = 0;
8342 copy_size = 4;
8343 BFD_ASSERT (action->removed_bytes == -4);
8344 /* TBD -- place the literal value here and insert
8345 into the table. */
8346 memset (&dup_contents[dup_dot], 0, 4);
8347 pin_internal_relocs (sec, internal_relocs);
8348 pin_contents (sec, contents);
8349
8350 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8351 relax_info, &internal_relocs, &action->value))
8352 goto error_return;
8353
8354 if (virtual_action)
8355 orig_dot_vo += copy_size;
8356
8357 orig_dot += orig_insn_size;
8358 dup_dot += copy_size;
8359 break;
8360
8361 default:
8362 /* Not implemented yet. */
8363 BFD_ASSERT (0);
8364 break;
8365 }
8366
8367 size -= action->removed_bytes;
8368 removed += action->removed_bytes;
8369 BFD_ASSERT (dup_dot <= final_size);
8370 BFD_ASSERT (orig_dot <= orig_size);
8371 }
8372
8373 orig_dot += orig_dot_copied;
8374 orig_dot_copied = 0;
8375
8376 if (orig_dot != orig_size)
8377 {
8378 copy_size = orig_size - orig_dot;
8379 BFD_ASSERT (orig_size > orig_dot);
8380 BFD_ASSERT (dup_dot + copy_size == final_size);
8381 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8382 orig_dot += copy_size;
8383 dup_dot += copy_size;
8384 }
8385 BFD_ASSERT (orig_size == orig_dot);
8386 BFD_ASSERT (final_size == dup_dot);
8387
8388 /* Move the dup_contents back. */
8389 if (final_size > orig_size)
8390 {
8391 /* Contents need to be reallocated. Swap the dup_contents into
8392 contents. */
8393 sec->contents = dup_contents;
8394 free (contents);
8395 contents = dup_contents;
8396 pin_contents (sec, contents);
8397 }
8398 else
8399 {
8400 BFD_ASSERT (final_size <= orig_size);
8401 memset (contents, 0, orig_size);
8402 memcpy (contents, dup_contents, final_size);
8403 free (dup_contents);
8404 }
8405 free (scratch);
8406 pin_contents (sec, contents);
8407
8408 sec->size = final_size;
8409 }
8410
8411 error_return:
8412 release_internal_relocs (sec, internal_relocs);
8413 release_contents (sec, contents);
8414 return ok;
8415 }
8416
8417
8418 static bfd_boolean
8419 translate_section_fixes (asection *sec)
8420 {
8421 xtensa_relax_info *relax_info;
8422 reloc_bfd_fix *r;
8423
8424 relax_info = get_xtensa_relax_info (sec);
8425 if (!relax_info)
8426 return TRUE;
8427
8428 for (r = relax_info->fix_list; r != NULL; r = r->next)
8429 if (!translate_reloc_bfd_fix (r))
8430 return FALSE;
8431
8432 return TRUE;
8433 }
8434
8435
8436 /* Translate a fix given the mapping in the relax info for the target
8437 section. If it has already been translated, no work is required. */
8438
8439 static bfd_boolean
8440 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8441 {
8442 reloc_bfd_fix new_fix;
8443 asection *sec;
8444 xtensa_relax_info *relax_info;
8445 removed_literal *removed;
8446 bfd_vma new_offset, target_offset;
8447
8448 if (fix->translated)
8449 return TRUE;
8450
8451 sec = fix->target_sec;
8452 target_offset = fix->target_offset;
8453
8454 relax_info = get_xtensa_relax_info (sec);
8455 if (!relax_info)
8456 {
8457 fix->translated = TRUE;
8458 return TRUE;
8459 }
8460
8461 new_fix = *fix;
8462
8463 /* The fix does not need to be translated if the section cannot change. */
8464 if (!relax_info->is_relaxable_literal_section
8465 && !relax_info->is_relaxable_asm_section)
8466 {
8467 fix->translated = TRUE;
8468 return TRUE;
8469 }
8470
8471 /* If the literal has been moved and this relocation was on an
8472 opcode, then the relocation should move to the new literal
8473 location. Otherwise, the relocation should move within the
8474 section. */
8475
8476 removed = FALSE;
8477 if (is_operand_relocation (fix->src_type))
8478 {
8479 /* Check if the original relocation is against a literal being
8480 removed. */
8481 removed = find_removed_literal (&relax_info->removed_list,
8482 target_offset);
8483 }
8484
8485 if (removed)
8486 {
8487 asection *new_sec;
8488
8489 /* The fact that there is still a relocation to this literal indicates
8490 that the literal is being coalesced, not simply removed. */
8491 BFD_ASSERT (removed->to.abfd != NULL);
8492
8493 /* This was moved to some other address (possibly another section). */
8494 new_sec = r_reloc_get_section (&removed->to);
8495 if (new_sec != sec)
8496 {
8497 sec = new_sec;
8498 relax_info = get_xtensa_relax_info (sec);
8499 if (!relax_info ||
8500 (!relax_info->is_relaxable_literal_section
8501 && !relax_info->is_relaxable_asm_section))
8502 {
8503 target_offset = removed->to.target_offset;
8504 new_fix.target_sec = new_sec;
8505 new_fix.target_offset = target_offset;
8506 new_fix.translated = TRUE;
8507 *fix = new_fix;
8508 return TRUE;
8509 }
8510 }
8511 target_offset = removed->to.target_offset;
8512 new_fix.target_sec = new_sec;
8513 }
8514
8515 /* The target address may have been moved within its section. */
8516 new_offset = offset_with_removed_text (&relax_info->action_list,
8517 target_offset);
8518
8519 new_fix.target_offset = new_offset;
8520 new_fix.target_offset = new_offset;
8521 new_fix.translated = TRUE;
8522 *fix = new_fix;
8523 return TRUE;
8524 }
8525
8526
8527 /* Fix up a relocation to take account of removed literals. */
8528
8529 static void
8530 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8531 {
8532 asection *sec;
8533 xtensa_relax_info *relax_info;
8534 removed_literal *removed;
8535 bfd_vma new_offset, target_offset, removed_bytes;
8536
8537 *new_rel = *orig_rel;
8538
8539 if (!r_reloc_is_defined (orig_rel))
8540 return;
8541 sec = r_reloc_get_section (orig_rel);
8542
8543 relax_info = get_xtensa_relax_info (sec);
8544 BFD_ASSERT (relax_info);
8545
8546 if (!relax_info->is_relaxable_literal_section
8547 && !relax_info->is_relaxable_asm_section)
8548 return;
8549
8550 target_offset = orig_rel->target_offset;
8551
8552 removed = FALSE;
8553 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8554 {
8555 /* Check if the original relocation is against a literal being
8556 removed. */
8557 removed = find_removed_literal (&relax_info->removed_list,
8558 target_offset);
8559 }
8560 if (removed && removed->to.abfd)
8561 {
8562 asection *new_sec;
8563
8564 /* The fact that there is still a relocation to this literal indicates
8565 that the literal is being coalesced, not simply removed. */
8566 BFD_ASSERT (removed->to.abfd != NULL);
8567
8568 /* This was moved to some other address
8569 (possibly in another section). */
8570 *new_rel = removed->to;
8571 new_sec = r_reloc_get_section (new_rel);
8572 if (new_sec != sec)
8573 {
8574 sec = new_sec;
8575 relax_info = get_xtensa_relax_info (sec);
8576 if (!relax_info
8577 || (!relax_info->is_relaxable_literal_section
8578 && !relax_info->is_relaxable_asm_section))
8579 return;
8580 }
8581 target_offset = new_rel->target_offset;
8582 }
8583
8584 /* ...and the target address may have been moved within its section. */
8585 new_offset = offset_with_removed_text (&relax_info->action_list,
8586 target_offset);
8587
8588 /* Modify the offset and addend. */
8589 removed_bytes = target_offset - new_offset;
8590 new_rel->target_offset = new_offset;
8591 new_rel->rela.r_addend -= removed_bytes;
8592 }
8593
8594
8595 /* For dynamic links, there may be a dynamic relocation for each
8596 literal. The number of dynamic relocations must be computed in
8597 size_dynamic_sections, which occurs before relaxation. When a
8598 literal is removed, this function checks if there is a corresponding
8599 dynamic relocation and shrinks the size of the appropriate dynamic
8600 relocation section accordingly. At this point, the contents of the
8601 dynamic relocation sections have not yet been filled in, so there's
8602 nothing else that needs to be done. */
8603
8604 static void
8605 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8606 bfd *abfd,
8607 asection *input_section,
8608 Elf_Internal_Rela *rel)
8609 {
8610 struct elf_xtensa_link_hash_table *htab;
8611 Elf_Internal_Shdr *symtab_hdr;
8612 struct elf_link_hash_entry **sym_hashes;
8613 unsigned long r_symndx;
8614 int r_type;
8615 struct elf_link_hash_entry *h;
8616 bfd_boolean dynamic_symbol;
8617
8618 htab = elf_xtensa_hash_table (info);
8619 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8620 sym_hashes = elf_sym_hashes (abfd);
8621
8622 r_type = ELF32_R_TYPE (rel->r_info);
8623 r_symndx = ELF32_R_SYM (rel->r_info);
8624
8625 if (r_symndx < symtab_hdr->sh_info)
8626 h = NULL;
8627 else
8628 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8629
8630 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8631
8632 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8633 && (input_section->flags & SEC_ALLOC) != 0
8634 && (dynamic_symbol || info->shared))
8635 {
8636 asection *srel;
8637 bfd_boolean is_plt = FALSE;
8638
8639 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8640 {
8641 srel = htab->srelplt;
8642 is_plt = TRUE;
8643 }
8644 else
8645 srel = htab->srelgot;
8646
8647 /* Reduce size of the .rela.* section by one reloc. */
8648 BFD_ASSERT (srel != NULL);
8649 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8650 srel->size -= sizeof (Elf32_External_Rela);
8651
8652 if (is_plt)
8653 {
8654 asection *splt, *sgotplt, *srelgot;
8655 int reloc_index, chunk;
8656
8657 /* Find the PLT reloc index of the entry being removed. This
8658 is computed from the size of ".rela.plt". It is needed to
8659 figure out which PLT chunk to resize. Usually "last index
8660 = size - 1" since the index starts at zero, but in this
8661 context, the size has just been decremented so there's no
8662 need to subtract one. */
8663 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8664
8665 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8666 splt = elf_xtensa_get_plt_section (info, chunk);
8667 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8668 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8669
8670 /* Check if an entire PLT chunk has just been eliminated. */
8671 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8672 {
8673 /* The two magic GOT entries for that chunk can go away. */
8674 srelgot = htab->srelgot;
8675 BFD_ASSERT (srelgot != NULL);
8676 srelgot->reloc_count -= 2;
8677 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8678 sgotplt->size -= 8;
8679
8680 /* There should be only one entry left (and it will be
8681 removed below). */
8682 BFD_ASSERT (sgotplt->size == 4);
8683 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8684 }
8685
8686 BFD_ASSERT (sgotplt->size >= 4);
8687 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8688
8689 sgotplt->size -= 4;
8690 splt->size -= PLT_ENTRY_SIZE;
8691 }
8692 }
8693 }
8694
8695
8696 /* Take an r_rel and move it to another section. This usually
8697 requires extending the interal_relocation array and pinning it. If
8698 the original r_rel is from the same BFD, we can complete this here.
8699 Otherwise, we add a fix record to let the final link fix the
8700 appropriate address. Contents and internal relocations for the
8701 section must be pinned after calling this routine. */
8702
8703 static bfd_boolean
8704 move_literal (bfd *abfd,
8705 struct bfd_link_info *link_info,
8706 asection *sec,
8707 bfd_vma offset,
8708 bfd_byte *contents,
8709 xtensa_relax_info *relax_info,
8710 Elf_Internal_Rela **internal_relocs_p,
8711 const literal_value *lit)
8712 {
8713 Elf_Internal_Rela *new_relocs = NULL;
8714 size_t new_relocs_count = 0;
8715 Elf_Internal_Rela this_rela;
8716 const r_reloc *r_rel;
8717
8718 r_rel = &lit->r_rel;
8719 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8720
8721 if (r_reloc_is_const (r_rel))
8722 bfd_put_32 (abfd, lit->value, contents + offset);
8723 else
8724 {
8725 int r_type;
8726 unsigned i;
8727 asection *target_sec;
8728 reloc_bfd_fix *fix;
8729 unsigned insert_at;
8730
8731 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8732 target_sec = r_reloc_get_section (r_rel);
8733
8734 /* This is the difficult case. We have to create a fix up. */
8735 this_rela.r_offset = offset;
8736 this_rela.r_info = ELF32_R_INFO (0, r_type);
8737 this_rela.r_addend =
8738 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8739 bfd_put_32 (abfd, lit->value, contents + offset);
8740
8741 /* Currently, we cannot move relocations during a relocatable link. */
8742 BFD_ASSERT (!link_info->relocatable);
8743 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8744 r_reloc_get_section (r_rel),
8745 r_rel->target_offset + r_rel->virtual_offset,
8746 FALSE);
8747 /* We also need to mark that relocations are needed here. */
8748 sec->flags |= SEC_RELOC;
8749
8750 translate_reloc_bfd_fix (fix);
8751 /* This fix has not yet been translated. */
8752 add_fix (sec, fix);
8753
8754 /* Add the relocation. If we have already allocated our own
8755 space for the relocations and we have room for more, then use
8756 it. Otherwise, allocate new space and move the literals. */
8757 insert_at = sec->reloc_count;
8758 for (i = 0; i < sec->reloc_count; ++i)
8759 {
8760 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8761 {
8762 insert_at = i;
8763 break;
8764 }
8765 }
8766
8767 if (*internal_relocs_p != relax_info->allocated_relocs
8768 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8769 {
8770 BFD_ASSERT (relax_info->allocated_relocs == NULL
8771 || sec->reloc_count == relax_info->relocs_count);
8772
8773 if (relax_info->allocated_relocs_count == 0)
8774 new_relocs_count = (sec->reloc_count + 2) * 2;
8775 else
8776 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8777
8778 new_relocs = (Elf_Internal_Rela *)
8779 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8780 if (!new_relocs)
8781 return FALSE;
8782
8783 /* We could handle this more quickly by finding the split point. */
8784 if (insert_at != 0)
8785 memcpy (new_relocs, *internal_relocs_p,
8786 insert_at * sizeof (Elf_Internal_Rela));
8787
8788 new_relocs[insert_at] = this_rela;
8789
8790 if (insert_at != sec->reloc_count)
8791 memcpy (new_relocs + insert_at + 1,
8792 (*internal_relocs_p) + insert_at,
8793 (sec->reloc_count - insert_at)
8794 * sizeof (Elf_Internal_Rela));
8795
8796 if (*internal_relocs_p != relax_info->allocated_relocs)
8797 {
8798 /* The first time we re-allocate, we can only free the
8799 old relocs if they were allocated with bfd_malloc.
8800 This is not true when keep_memory is in effect. */
8801 if (!link_info->keep_memory)
8802 free (*internal_relocs_p);
8803 }
8804 else
8805 free (*internal_relocs_p);
8806 relax_info->allocated_relocs = new_relocs;
8807 relax_info->allocated_relocs_count = new_relocs_count;
8808 elf_section_data (sec)->relocs = new_relocs;
8809 sec->reloc_count++;
8810 relax_info->relocs_count = sec->reloc_count;
8811 *internal_relocs_p = new_relocs;
8812 }
8813 else
8814 {
8815 if (insert_at != sec->reloc_count)
8816 {
8817 unsigned idx;
8818 for (idx = sec->reloc_count; idx > insert_at; idx--)
8819 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8820 }
8821 (*internal_relocs_p)[insert_at] = this_rela;
8822 sec->reloc_count++;
8823 if (relax_info->allocated_relocs)
8824 relax_info->relocs_count = sec->reloc_count;
8825 }
8826 }
8827 return TRUE;
8828 }
8829
8830
8831 /* This is similar to relax_section except that when a target is moved,
8832 we shift addresses up. We also need to modify the size. This
8833 algorithm does NOT allow for relocations into the middle of the
8834 property sections. */
8835
8836 static bfd_boolean
8837 relax_property_section (bfd *abfd,
8838 asection *sec,
8839 struct bfd_link_info *link_info)
8840 {
8841 Elf_Internal_Rela *internal_relocs;
8842 bfd_byte *contents;
8843 unsigned i, nexti;
8844 bfd_boolean ok = TRUE;
8845 bfd_boolean is_full_prop_section;
8846 size_t last_zfill_target_offset = 0;
8847 asection *last_zfill_target_sec = NULL;
8848 bfd_size_type sec_size;
8849
8850 sec_size = bfd_get_section_limit (abfd, sec);
8851 internal_relocs = retrieve_internal_relocs (abfd, sec,
8852 link_info->keep_memory);
8853 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8854 if (contents == NULL && sec_size != 0)
8855 {
8856 ok = FALSE;
8857 goto error_return;
8858 }
8859
8860 is_full_prop_section =
8861 ( CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
8862 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."));
8863
8864 if (internal_relocs)
8865 {
8866 for (i = 0; i < sec->reloc_count; i++)
8867 {
8868 Elf_Internal_Rela *irel;
8869 xtensa_relax_info *target_relax_info;
8870 unsigned r_type;
8871 asection *target_sec;
8872 literal_value val;
8873 bfd_byte *size_p, *flags_p;
8874
8875 /* Locally change the source address.
8876 Translate the target to the new target address.
8877 If it points to this section and has been removed, MOVE IT.
8878 Also, don't forget to modify the associated SIZE at
8879 (offset + 4). */
8880
8881 irel = &internal_relocs[i];
8882 r_type = ELF32_R_TYPE (irel->r_info);
8883 if (r_type == R_XTENSA_NONE)
8884 continue;
8885
8886 /* Find the literal value. */
8887 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8888 size_p = &contents[irel->r_offset + 4];
8889 flags_p = NULL;
8890 if (is_full_prop_section)
8891 {
8892 flags_p = &contents[irel->r_offset + 8];
8893 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8894 }
8895 else
8896 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
8897
8898 target_sec = r_reloc_get_section (&val.r_rel);
8899 target_relax_info = get_xtensa_relax_info (target_sec);
8900
8901 if (target_relax_info
8902 && (target_relax_info->is_relaxable_literal_section
8903 || target_relax_info->is_relaxable_asm_section ))
8904 {
8905 /* Translate the relocation's destination. */
8906 bfd_vma new_offset, new_end_offset;
8907 long old_size, new_size;
8908
8909 new_offset = offset_with_removed_text
8910 (&target_relax_info->action_list, val.r_rel.target_offset);
8911
8912 /* Assert that we are not out of bounds. */
8913 old_size = bfd_get_32 (abfd, size_p);
8914
8915 if (old_size == 0)
8916 {
8917 /* Only the first zero-sized unreachable entry is
8918 allowed to expand. In this case the new offset
8919 should be the offset before the fill and the new
8920 size is the expansion size. For other zero-sized
8921 entries the resulting size should be zero with an
8922 offset before or after the fill address depending
8923 on whether the expanding unreachable entry
8924 preceeds it. */
8925 if (last_zfill_target_sec
8926 && last_zfill_target_sec == target_sec
8927 && last_zfill_target_offset == val.r_rel.target_offset)
8928 new_end_offset = new_offset;
8929 else
8930 {
8931 new_end_offset = new_offset;
8932 new_offset = offset_with_removed_text_before_fill
8933 (&target_relax_info->action_list,
8934 val.r_rel.target_offset);
8935
8936 /* If it is not unreachable and we have not yet
8937 seen an unreachable at this address, place it
8938 before the fill address. */
8939 if (!flags_p
8940 || (bfd_get_32 (abfd, flags_p)
8941 & XTENSA_PROP_UNREACHABLE) == 0)
8942 new_end_offset = new_offset;
8943 else
8944 {
8945 last_zfill_target_sec = target_sec;
8946 last_zfill_target_offset = val.r_rel.target_offset;
8947 }
8948 }
8949 }
8950 else
8951 {
8952 new_end_offset = offset_with_removed_text_before_fill
8953 (&target_relax_info->action_list,
8954 val.r_rel.target_offset + old_size);
8955 }
8956
8957 new_size = new_end_offset - new_offset;
8958
8959 if (new_size != old_size)
8960 {
8961 bfd_put_32 (abfd, new_size, size_p);
8962 pin_contents (sec, contents);
8963 }
8964
8965 if (new_offset != val.r_rel.target_offset)
8966 {
8967 bfd_vma diff = new_offset - val.r_rel.target_offset;
8968 irel->r_addend += diff;
8969 pin_internal_relocs (sec, internal_relocs);
8970 }
8971 }
8972 }
8973 }
8974
8975 /* Combine adjacent property table entries. This is also done in
8976 finish_dynamic_sections() but at that point it's too late to
8977 reclaim the space in the output section, so we do this twice. */
8978
8979 if (internal_relocs && (!link_info->relocatable
8980 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
8981 {
8982 Elf_Internal_Rela *last_irel = NULL;
8983 int removed_bytes = 0;
8984 bfd_vma offset, last_irel_offset;
8985 bfd_vma section_size;
8986 bfd_size_type entry_size;
8987 flagword predef_flags;
8988
8989 if (is_full_prop_section)
8990 entry_size = 12;
8991 else
8992 entry_size = 8;
8993
8994 predef_flags = xtensa_get_property_predef_flags (sec);
8995
8996 /* Walk over memory and irels at the same time.
8997 This REQUIRES that the internal_relocs be sorted by offset. */
8998 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8999 internal_reloc_compare);
9000 nexti = 0; /* Index into internal_relocs. */
9001
9002 pin_internal_relocs (sec, internal_relocs);
9003 pin_contents (sec, contents);
9004
9005 last_irel_offset = (bfd_vma) -1;
9006 section_size = sec->size;
9007 BFD_ASSERT (section_size % entry_size == 0);
9008
9009 for (offset = 0; offset < section_size; offset += entry_size)
9010 {
9011 Elf_Internal_Rela *irel, *next_irel;
9012 bfd_vma bytes_to_remove, size, actual_offset;
9013 bfd_boolean remove_this_irel;
9014 flagword flags;
9015
9016 irel = NULL;
9017 next_irel = NULL;
9018
9019 /* Find the next two relocations (if there are that many left),
9020 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
9021 the starting reloc index. After these two loops, "i"
9022 is the index of the first non-NONE reloc past that starting
9023 index, and "nexti" is the index for the next non-NONE reloc
9024 after "i". */
9025
9026 for (i = nexti; i < sec->reloc_count; i++)
9027 {
9028 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
9029 {
9030 irel = &internal_relocs[i];
9031 break;
9032 }
9033 internal_relocs[i].r_offset -= removed_bytes;
9034 }
9035
9036 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9037 {
9038 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9039 != R_XTENSA_NONE)
9040 {
9041 next_irel = &internal_relocs[nexti];
9042 break;
9043 }
9044 internal_relocs[nexti].r_offset -= removed_bytes;
9045 }
9046
9047 remove_this_irel = FALSE;
9048 bytes_to_remove = 0;
9049 actual_offset = offset - removed_bytes;
9050 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9051
9052 if (is_full_prop_section)
9053 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9054 else
9055 flags = predef_flags;
9056
9057 /* Check that the irels are sorted by offset,
9058 with only one per address. */
9059 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9060 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9061
9062 /* Make sure there aren't relocs on the size or flag fields. */
9063 if ((irel && irel->r_offset == offset + 4)
9064 || (is_full_prop_section
9065 && irel && irel->r_offset == offset + 8))
9066 {
9067 irel->r_offset -= removed_bytes;
9068 last_irel_offset = irel->r_offset;
9069 }
9070 else if (next_irel && (next_irel->r_offset == offset + 4
9071 || (is_full_prop_section
9072 && next_irel->r_offset == offset + 8)))
9073 {
9074 nexti += 1;
9075 irel->r_offset -= removed_bytes;
9076 next_irel->r_offset -= removed_bytes;
9077 last_irel_offset = next_irel->r_offset;
9078 }
9079 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9080 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9081 {
9082 /* Always remove entries with zero size and no alignment. */
9083 bytes_to_remove = entry_size;
9084 if (irel && irel->r_offset == offset)
9085 {
9086 remove_this_irel = TRUE;
9087
9088 irel->r_offset -= removed_bytes;
9089 last_irel_offset = irel->r_offset;
9090 }
9091 }
9092 else if (irel && irel->r_offset == offset)
9093 {
9094 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9095 {
9096 if (last_irel)
9097 {
9098 flagword old_flags;
9099 bfd_vma old_size =
9100 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9101 bfd_vma old_address =
9102 (last_irel->r_addend
9103 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9104 bfd_vma new_address =
9105 (irel->r_addend
9106 + bfd_get_32 (abfd, &contents[actual_offset]));
9107 if (is_full_prop_section)
9108 old_flags = bfd_get_32
9109 (abfd, &contents[last_irel->r_offset + 8]);
9110 else
9111 old_flags = predef_flags;
9112
9113 if ((ELF32_R_SYM (irel->r_info)
9114 == ELF32_R_SYM (last_irel->r_info))
9115 && old_address + old_size == new_address
9116 && old_flags == flags
9117 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9118 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9119 {
9120 /* Fix the old size. */
9121 bfd_put_32 (abfd, old_size + size,
9122 &contents[last_irel->r_offset + 4]);
9123 bytes_to_remove = entry_size;
9124 remove_this_irel = TRUE;
9125 }
9126 else
9127 last_irel = irel;
9128 }
9129 else
9130 last_irel = irel;
9131 }
9132
9133 irel->r_offset -= removed_bytes;
9134 last_irel_offset = irel->r_offset;
9135 }
9136
9137 if (remove_this_irel)
9138 {
9139 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9140 irel->r_offset -= bytes_to_remove;
9141 }
9142
9143 if (bytes_to_remove != 0)
9144 {
9145 removed_bytes += bytes_to_remove;
9146 if (offset + bytes_to_remove < section_size)
9147 memmove (&contents[actual_offset],
9148 &contents[actual_offset + bytes_to_remove],
9149 section_size - offset - bytes_to_remove);
9150 }
9151 }
9152
9153 if (removed_bytes)
9154 {
9155 /* Clear the removed bytes. */
9156 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9157
9158 sec->size = section_size - removed_bytes;
9159
9160 if (xtensa_is_littable_section (sec))
9161 {
9162 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9163 if (sgotloc)
9164 sgotloc->size -= removed_bytes;
9165 }
9166 }
9167 }
9168
9169 error_return:
9170 release_internal_relocs (sec, internal_relocs);
9171 release_contents (sec, contents);
9172 return ok;
9173 }
9174
9175 \f
9176 /* Third relaxation pass. */
9177
9178 /* Change symbol values to account for removed literals. */
9179
9180 bfd_boolean
9181 relax_section_symbols (bfd *abfd, asection *sec)
9182 {
9183 xtensa_relax_info *relax_info;
9184 unsigned int sec_shndx;
9185 Elf_Internal_Shdr *symtab_hdr;
9186 Elf_Internal_Sym *isymbuf;
9187 unsigned i, num_syms, num_locals;
9188
9189 relax_info = get_xtensa_relax_info (sec);
9190 BFD_ASSERT (relax_info);
9191
9192 if (!relax_info->is_relaxable_literal_section
9193 && !relax_info->is_relaxable_asm_section)
9194 return TRUE;
9195
9196 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9197
9198 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9199 isymbuf = retrieve_local_syms (abfd);
9200
9201 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9202 num_locals = symtab_hdr->sh_info;
9203
9204 /* Adjust the local symbols defined in this section. */
9205 for (i = 0; i < num_locals; i++)
9206 {
9207 Elf_Internal_Sym *isym = &isymbuf[i];
9208
9209 if (isym->st_shndx == sec_shndx)
9210 {
9211 bfd_vma new_address = offset_with_removed_text
9212 (&relax_info->action_list, isym->st_value);
9213 bfd_vma new_size = isym->st_size;
9214
9215 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9216 {
9217 bfd_vma new_end = offset_with_removed_text
9218 (&relax_info->action_list, isym->st_value + isym->st_size);
9219 new_size = new_end - new_address;
9220 }
9221
9222 isym->st_value = new_address;
9223 isym->st_size = new_size;
9224 }
9225 }
9226
9227 /* Now adjust the global symbols defined in this section. */
9228 for (i = 0; i < (num_syms - num_locals); i++)
9229 {
9230 struct elf_link_hash_entry *sym_hash;
9231
9232 sym_hash = elf_sym_hashes (abfd)[i];
9233
9234 if (sym_hash->root.type == bfd_link_hash_warning)
9235 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9236
9237 if ((sym_hash->root.type == bfd_link_hash_defined
9238 || sym_hash->root.type == bfd_link_hash_defweak)
9239 && sym_hash->root.u.def.section == sec)
9240 {
9241 bfd_vma new_address = offset_with_removed_text
9242 (&relax_info->action_list, sym_hash->root.u.def.value);
9243 bfd_vma new_size = sym_hash->size;
9244
9245 if (sym_hash->type == STT_FUNC)
9246 {
9247 bfd_vma new_end = offset_with_removed_text
9248 (&relax_info->action_list,
9249 sym_hash->root.u.def.value + sym_hash->size);
9250 new_size = new_end - new_address;
9251 }
9252
9253 sym_hash->root.u.def.value = new_address;
9254 sym_hash->size = new_size;
9255 }
9256 }
9257
9258 return TRUE;
9259 }
9260
9261 \f
9262 /* "Fix" handling functions, called while performing relocations. */
9263
9264 static bfd_boolean
9265 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9266 bfd *input_bfd,
9267 asection *input_section,
9268 bfd_byte *contents)
9269 {
9270 r_reloc r_rel;
9271 asection *sec, *old_sec;
9272 bfd_vma old_offset;
9273 int r_type = ELF32_R_TYPE (rel->r_info);
9274 reloc_bfd_fix *fix;
9275
9276 if (r_type == R_XTENSA_NONE)
9277 return TRUE;
9278
9279 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9280 if (!fix)
9281 return TRUE;
9282
9283 r_reloc_init (&r_rel, input_bfd, rel, contents,
9284 bfd_get_section_limit (input_bfd, input_section));
9285 old_sec = r_reloc_get_section (&r_rel);
9286 old_offset = r_rel.target_offset;
9287
9288 if (!old_sec || !r_reloc_is_defined (&r_rel))
9289 {
9290 if (r_type != R_XTENSA_ASM_EXPAND)
9291 {
9292 (*_bfd_error_handler)
9293 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9294 input_bfd, input_section, rel->r_offset,
9295 elf_howto_table[r_type].name);
9296 return FALSE;
9297 }
9298 /* Leave it be. Resolution will happen in a later stage. */
9299 }
9300 else
9301 {
9302 sec = fix->target_sec;
9303 rel->r_addend += ((sec->output_offset + fix->target_offset)
9304 - (old_sec->output_offset + old_offset));
9305 }
9306 return TRUE;
9307 }
9308
9309
9310 static void
9311 do_fix_for_final_link (Elf_Internal_Rela *rel,
9312 bfd *input_bfd,
9313 asection *input_section,
9314 bfd_byte *contents,
9315 bfd_vma *relocationp)
9316 {
9317 asection *sec;
9318 int r_type = ELF32_R_TYPE (rel->r_info);
9319 reloc_bfd_fix *fix;
9320 bfd_vma fixup_diff;
9321
9322 if (r_type == R_XTENSA_NONE)
9323 return;
9324
9325 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9326 if (!fix)
9327 return;
9328
9329 sec = fix->target_sec;
9330
9331 fixup_diff = rel->r_addend;
9332 if (elf_howto_table[fix->src_type].partial_inplace)
9333 {
9334 bfd_vma inplace_val;
9335 BFD_ASSERT (fix->src_offset
9336 < bfd_get_section_limit (input_bfd, input_section));
9337 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9338 fixup_diff += inplace_val;
9339 }
9340
9341 *relocationp = (sec->output_section->vma
9342 + sec->output_offset
9343 + fix->target_offset - fixup_diff);
9344 }
9345
9346 \f
9347 /* Miscellaneous utility functions.... */
9348
9349 static asection *
9350 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9351 {
9352 struct elf_xtensa_link_hash_table *htab;
9353 bfd *dynobj;
9354 char plt_name[10];
9355
9356 if (chunk == 0)
9357 {
9358 htab = elf_xtensa_hash_table (info);
9359 return htab->splt;
9360 }
9361
9362 dynobj = elf_hash_table (info)->dynobj;
9363 sprintf (plt_name, ".plt.%u", chunk);
9364 return bfd_get_section_by_name (dynobj, plt_name);
9365 }
9366
9367
9368 static asection *
9369 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9370 {
9371 struct elf_xtensa_link_hash_table *htab;
9372 bfd *dynobj;
9373 char got_name[14];
9374
9375 if (chunk == 0)
9376 {
9377 htab = elf_xtensa_hash_table (info);
9378 return htab->sgotplt;
9379 }
9380
9381 dynobj = elf_hash_table (info)->dynobj;
9382 sprintf (got_name, ".got.plt.%u", chunk);
9383 return bfd_get_section_by_name (dynobj, got_name);
9384 }
9385
9386
9387 /* Get the input section for a given symbol index.
9388 If the symbol is:
9389 . a section symbol, return the section;
9390 . a common symbol, return the common section;
9391 . an undefined symbol, return the undefined section;
9392 . an indirect symbol, follow the links;
9393 . an absolute value, return the absolute section. */
9394
9395 static asection *
9396 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9397 {
9398 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9399 asection *target_sec = NULL;
9400 if (r_symndx < symtab_hdr->sh_info)
9401 {
9402 Elf_Internal_Sym *isymbuf;
9403 unsigned int section_index;
9404
9405 isymbuf = retrieve_local_syms (abfd);
9406 section_index = isymbuf[r_symndx].st_shndx;
9407
9408 if (section_index == SHN_UNDEF)
9409 target_sec = bfd_und_section_ptr;
9410 else if (section_index > 0 && section_index < SHN_LORESERVE)
9411 target_sec = bfd_section_from_elf_index (abfd, section_index);
9412 else if (section_index == SHN_ABS)
9413 target_sec = bfd_abs_section_ptr;
9414 else if (section_index == SHN_COMMON)
9415 target_sec = bfd_com_section_ptr;
9416 else
9417 /* Who knows? */
9418 target_sec = NULL;
9419 }
9420 else
9421 {
9422 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9423 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9424
9425 while (h->root.type == bfd_link_hash_indirect
9426 || h->root.type == bfd_link_hash_warning)
9427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9428
9429 switch (h->root.type)
9430 {
9431 case bfd_link_hash_defined:
9432 case bfd_link_hash_defweak:
9433 target_sec = h->root.u.def.section;
9434 break;
9435 case bfd_link_hash_common:
9436 target_sec = bfd_com_section_ptr;
9437 break;
9438 case bfd_link_hash_undefined:
9439 case bfd_link_hash_undefweak:
9440 target_sec = bfd_und_section_ptr;
9441 break;
9442 default: /* New indirect warning. */
9443 target_sec = bfd_und_section_ptr;
9444 break;
9445 }
9446 }
9447 return target_sec;
9448 }
9449
9450
9451 static struct elf_link_hash_entry *
9452 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9453 {
9454 unsigned long indx;
9455 struct elf_link_hash_entry *h;
9456 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9457
9458 if (r_symndx < symtab_hdr->sh_info)
9459 return NULL;
9460
9461 indx = r_symndx - symtab_hdr->sh_info;
9462 h = elf_sym_hashes (abfd)[indx];
9463 while (h->root.type == bfd_link_hash_indirect
9464 || h->root.type == bfd_link_hash_warning)
9465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9466 return h;
9467 }
9468
9469
9470 /* Get the section-relative offset for a symbol number. */
9471
9472 static bfd_vma
9473 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9474 {
9475 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9476 bfd_vma offset = 0;
9477
9478 if (r_symndx < symtab_hdr->sh_info)
9479 {
9480 Elf_Internal_Sym *isymbuf;
9481 isymbuf = retrieve_local_syms (abfd);
9482 offset = isymbuf[r_symndx].st_value;
9483 }
9484 else
9485 {
9486 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9487 struct elf_link_hash_entry *h =
9488 elf_sym_hashes (abfd)[indx];
9489
9490 while (h->root.type == bfd_link_hash_indirect
9491 || h->root.type == bfd_link_hash_warning)
9492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9493 if (h->root.type == bfd_link_hash_defined
9494 || h->root.type == bfd_link_hash_defweak)
9495 offset = h->root.u.def.value;
9496 }
9497 return offset;
9498 }
9499
9500
9501 static bfd_boolean
9502 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9503 {
9504 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9505 struct elf_link_hash_entry *h;
9506
9507 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9508 if (h && h->root.type == bfd_link_hash_defweak)
9509 return TRUE;
9510 return FALSE;
9511 }
9512
9513
9514 static bfd_boolean
9515 pcrel_reloc_fits (xtensa_opcode opc,
9516 int opnd,
9517 bfd_vma self_address,
9518 bfd_vma dest_address)
9519 {
9520 xtensa_isa isa = xtensa_default_isa;
9521 uint32 valp = dest_address;
9522 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9523 || xtensa_operand_encode (isa, opc, opnd, &valp))
9524 return FALSE;
9525 return TRUE;
9526 }
9527
9528
9529 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9530
9531 static bfd_boolean
9532 xtensa_is_property_section (asection *sec)
9533 {
9534 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9535 || CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9536 || CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME))
9537 return TRUE;
9538
9539 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9540 && (CONST_STRNEQ (&sec->name[linkonce_len], "x.")
9541 || CONST_STRNEQ (&sec->name[linkonce_len], "p.")
9542 || CONST_STRNEQ (&sec->name[linkonce_len], "prop.")))
9543 return TRUE;
9544
9545 return FALSE;
9546 }
9547
9548
9549 static bfd_boolean
9550 xtensa_is_littable_section (asection *sec)
9551 {
9552 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME))
9553 return TRUE;
9554
9555 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9556 && sec->name[linkonce_len] == 'p'
9557 && sec->name[linkonce_len + 1] == '.')
9558 return TRUE;
9559
9560 return FALSE;
9561 }
9562
9563
9564 static int
9565 internal_reloc_compare (const void *ap, const void *bp)
9566 {
9567 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9568 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9569
9570 if (a->r_offset != b->r_offset)
9571 return (a->r_offset - b->r_offset);
9572
9573 /* We don't need to sort on these criteria for correctness,
9574 but enforcing a more strict ordering prevents unstable qsort
9575 from behaving differently with different implementations.
9576 Without the code below we get correct but different results
9577 on Solaris 2.7 and 2.8. We would like to always produce the
9578 same results no matter the host. */
9579
9580 if (a->r_info != b->r_info)
9581 return (a->r_info - b->r_info);
9582
9583 return (a->r_addend - b->r_addend);
9584 }
9585
9586
9587 static int
9588 internal_reloc_matches (const void *ap, const void *bp)
9589 {
9590 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9591 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9592
9593 /* Check if one entry overlaps with the other; this shouldn't happen
9594 except when searching for a match. */
9595 return (a->r_offset - b->r_offset);
9596 }
9597
9598
9599 /* Predicate function used to look up a section in a particular group. */
9600
9601 static bfd_boolean
9602 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9603 {
9604 const char *gname = inf;
9605 const char *group_name = elf_group_name (sec);
9606
9607 return (group_name == gname
9608 || (group_name != NULL
9609 && gname != NULL
9610 && strcmp (group_name, gname) == 0));
9611 }
9612
9613
9614 asection *
9615 xtensa_get_property_section (asection *sec, const char *base_name)
9616 {
9617 const char *suffix, *group_name;
9618 char *prop_sec_name;
9619 asection *prop_sec;
9620
9621 group_name = elf_group_name (sec);
9622 if (group_name)
9623 {
9624 suffix = strrchr (sec->name, '.');
9625 if (suffix == sec->name)
9626 suffix = 0;
9627 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9628 + (suffix ? strlen (suffix) : 0));
9629 strcpy (prop_sec_name, base_name);
9630 if (suffix)
9631 strcat (prop_sec_name, suffix);
9632 }
9633 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9634 {
9635 char *linkonce_kind = 0;
9636
9637 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9638 linkonce_kind = "x.";
9639 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9640 linkonce_kind = "p.";
9641 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9642 linkonce_kind = "prop.";
9643 else
9644 abort ();
9645
9646 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9647 + strlen (linkonce_kind) + 1);
9648 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9649 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9650
9651 suffix = sec->name + linkonce_len;
9652 /* For backward compatibility, replace "t." instead of inserting
9653 the new linkonce_kind (but not for "prop" sections). */
9654 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9655 suffix += 2;
9656 strcat (prop_sec_name + linkonce_len, suffix);
9657 }
9658 else
9659 prop_sec_name = strdup (base_name);
9660
9661 /* Check if the section already exists. */
9662 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9663 match_section_group,
9664 (void *) group_name);
9665 /* If not, create it. */
9666 if (! prop_sec)
9667 {
9668 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9669 flags |= (bfd_get_section_flags (sec->owner, sec)
9670 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9671
9672 prop_sec = bfd_make_section_anyway_with_flags
9673 (sec->owner, strdup (prop_sec_name), flags);
9674 if (! prop_sec)
9675 return 0;
9676
9677 elf_group_name (prop_sec) = group_name;
9678 }
9679
9680 free (prop_sec_name);
9681 return prop_sec;
9682 }
9683
9684
9685 flagword
9686 xtensa_get_property_predef_flags (asection *sec)
9687 {
9688 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9689 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9690 return (XTENSA_PROP_INSN
9691 | XTENSA_PROP_INSN_NO_TRANSFORM
9692 | XTENSA_PROP_INSN_NO_REORDER);
9693
9694 if (xtensa_is_littable_section (sec))
9695 return (XTENSA_PROP_LITERAL
9696 | XTENSA_PROP_INSN_NO_TRANSFORM
9697 | XTENSA_PROP_INSN_NO_REORDER);
9698
9699 return 0;
9700 }
9701
9702 \f
9703 /* Other functions called directly by the linker. */
9704
9705 bfd_boolean
9706 xtensa_callback_required_dependence (bfd *abfd,
9707 asection *sec,
9708 struct bfd_link_info *link_info,
9709 deps_callback_t callback,
9710 void *closure)
9711 {
9712 Elf_Internal_Rela *internal_relocs;
9713 bfd_byte *contents;
9714 unsigned i;
9715 bfd_boolean ok = TRUE;
9716 bfd_size_type sec_size;
9717
9718 sec_size = bfd_get_section_limit (abfd, sec);
9719
9720 /* ".plt*" sections have no explicit relocations but they contain L32R
9721 instructions that reference the corresponding ".got.plt*" sections. */
9722 if ((sec->flags & SEC_LINKER_CREATED) != 0
9723 && CONST_STRNEQ (sec->name, ".plt"))
9724 {
9725 asection *sgotplt;
9726
9727 /* Find the corresponding ".got.plt*" section. */
9728 if (sec->name[4] == '\0')
9729 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9730 else
9731 {
9732 char got_name[14];
9733 int chunk = 0;
9734
9735 BFD_ASSERT (sec->name[4] == '.');
9736 chunk = strtol (&sec->name[5], NULL, 10);
9737
9738 sprintf (got_name, ".got.plt.%u", chunk);
9739 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9740 }
9741 BFD_ASSERT (sgotplt);
9742
9743 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9744 section referencing a literal at the very beginning of
9745 ".got.plt". This is very close to the real dependence, anyway. */
9746 (*callback) (sec, sec_size, sgotplt, 0, closure);
9747 }
9748
9749 internal_relocs = retrieve_internal_relocs (abfd, sec,
9750 link_info->keep_memory);
9751 if (internal_relocs == NULL
9752 || sec->reloc_count == 0)
9753 return ok;
9754
9755 /* Cache the contents for the duration of this scan. */
9756 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9757 if (contents == NULL && sec_size != 0)
9758 {
9759 ok = FALSE;
9760 goto error_return;
9761 }
9762
9763 if (!xtensa_default_isa)
9764 xtensa_default_isa = xtensa_isa_init (0, 0);
9765
9766 for (i = 0; i < sec->reloc_count; i++)
9767 {
9768 Elf_Internal_Rela *irel = &internal_relocs[i];
9769 if (is_l32r_relocation (abfd, sec, contents, irel))
9770 {
9771 r_reloc l32r_rel;
9772 asection *target_sec;
9773 bfd_vma target_offset;
9774
9775 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9776 target_sec = NULL;
9777 target_offset = 0;
9778 /* L32Rs must be local to the input file. */
9779 if (r_reloc_is_defined (&l32r_rel))
9780 {
9781 target_sec = r_reloc_get_section (&l32r_rel);
9782 target_offset = l32r_rel.target_offset;
9783 }
9784 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9785 closure);
9786 }
9787 }
9788
9789 error_return:
9790 release_internal_relocs (sec, internal_relocs);
9791 release_contents (sec, contents);
9792 return ok;
9793 }
9794
9795 /* The default literal sections should always be marked as "code" (i.e.,
9796 SHF_EXECINSTR). This is particularly important for the Linux kernel
9797 module loader so that the literals are not placed after the text. */
9798 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9799 {
9800 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9801 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9802 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9803 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9804 { NULL, 0, 0, 0, 0 }
9805 };
9806 \f
9807 #ifndef ELF_ARCH
9808 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9809 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9810 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9811 #define TARGET_BIG_NAME "elf32-xtensa-be"
9812 #define ELF_ARCH bfd_arch_xtensa
9813
9814 #define ELF_MACHINE_CODE EM_XTENSA
9815 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9816
9817 #if XCHAL_HAVE_MMU
9818 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9819 #else /* !XCHAL_HAVE_MMU */
9820 #define ELF_MAXPAGESIZE 1
9821 #endif /* !XCHAL_HAVE_MMU */
9822 #endif /* ELF_ARCH */
9823
9824 #define elf_backend_can_gc_sections 1
9825 #define elf_backend_can_refcount 1
9826 #define elf_backend_plt_readonly 1
9827 #define elf_backend_got_header_size 4
9828 #define elf_backend_want_dynbss 0
9829 #define elf_backend_want_got_plt 1
9830
9831 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9832
9833 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9834 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9835 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9836 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9837 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9838 #define bfd_elf32_bfd_reloc_name_lookup \
9839 elf_xtensa_reloc_name_lookup
9840 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9841 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9842
9843 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9844 #define elf_backend_check_relocs elf_xtensa_check_relocs
9845 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9846 #define elf_backend_discard_info elf_xtensa_discard_info
9847 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9848 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9849 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9850 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9851 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9852 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9853 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9854 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9855 #define elf_backend_object_p elf_xtensa_object_p
9856 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9857 #define elf_backend_relocate_section elf_xtensa_relocate_section
9858 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9859 #define elf_backend_omit_section_dynsym \
9860 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9861 #define elf_backend_special_sections elf_xtensa_special_sections
9862 #define elf_backend_action_discarded elf_xtensa_action_discarded
9863
9864 #include "elf32-target.h"