* elf-bfd.h (struct elf_backend_data): Remove "bfd *" and add
[binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
29
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
33
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49 struct elf64_hppa_dyn_hash_entry
50 {
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108 };
109
110 struct elf64_hppa_dyn_hash_table
111 {
112 struct bfd_hash_table root;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151 };
152
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159 static bfd_boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 bfd_boolean create, bfd_boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
182
183 static bfd_boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186 static bfd_boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
188
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192 static bfd_boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
201 static bfd_boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
204 static bfd_boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
206 asection *, struct elf_link_hash_entry *));
207
208 static bfd_boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
211
212 static int elf64_hppa_additional_program_headers
213 PARAMS ((bfd *));
214
215 static bfd_boolean elf64_hppa_modify_segment_map
216 PARAMS ((bfd *, struct bfd_link_info *));
217
218 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
219 PARAMS ((const Elf_Internal_Rela *));
220
221 static bfd_boolean elf64_hppa_finish_dynamic_sections
222 PARAMS ((bfd *, struct bfd_link_info *));
223
224 static bfd_boolean elf64_hppa_check_relocs
225 PARAMS ((bfd *, struct bfd_link_info *,
226 asection *, const Elf_Internal_Rela *));
227
228 static bfd_boolean elf64_hppa_dynamic_symbol_p
229 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
230
231 static bfd_boolean elf64_hppa_mark_exported_functions
232 PARAMS ((struct elf_link_hash_entry *, PTR));
233
234 static bfd_boolean elf64_hppa_finalize_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
237 static bfd_boolean elf64_hppa_finalize_dlt
238 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
239
240 static bfd_boolean allocate_global_data_dlt
241 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
242
243 static bfd_boolean allocate_global_data_plt
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246 static bfd_boolean allocate_global_data_stub
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249 static bfd_boolean allocate_global_data_opd
250 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
251
252 static bfd_boolean get_reloc_section
253 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
254
255 static bfd_boolean count_dyn_reloc
256 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
257 int, asection *, int, bfd_vma, bfd_vma));
258
259 static bfd_boolean allocate_dynrel_entries
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262 static bfd_boolean elf64_hppa_finalize_dynreloc
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265 static bfd_boolean get_opd
266 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
267
268 static bfd_boolean get_plt
269 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
270
271 static bfd_boolean get_dlt
272 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
273
274 static bfd_boolean get_stub
275 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
276
277 static int elf64_hppa_elf_get_symbol_type
278 PARAMS ((Elf_Internal_Sym *, int));
279
280 static bfd_boolean
281 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
282 struct elf64_hppa_dyn_hash_table *ht;
283 bfd *abfd ATTRIBUTE_UNUSED;
284 new_hash_entry_func new;
285 {
286 memset (ht, 0, sizeof (*ht));
287 return bfd_hash_table_init (&ht->root, new);
288 }
289
290 static struct bfd_hash_entry*
291 elf64_hppa_new_dyn_hash_entry (entry, table, string)
292 struct bfd_hash_entry *entry;
293 struct bfd_hash_table *table;
294 const char *string;
295 {
296 struct elf64_hppa_dyn_hash_entry *ret;
297 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
298
299 /* Allocate the structure if it has not already been allocated by a
300 subclass. */
301 if (!ret)
302 ret = bfd_hash_allocate (table, sizeof (*ret));
303
304 if (!ret)
305 return 0;
306
307 /* Initialize our local data. All zeros, and definitely easier
308 than setting 8 bit fields. */
309 memset (ret, 0, sizeof (*ret));
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_hppa_dyn_hash_entry *)
313 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
314
315 return &ret->root;
316 }
317
318 /* Create the derived linker hash table. The PA64 ELF port uses this
319 derived hash table to keep information specific to the PA ElF
320 linker (without using static variables). */
321
322 static struct bfd_link_hash_table*
323 elf64_hppa_hash_table_create (abfd)
324 bfd *abfd;
325 {
326 struct elf64_hppa_link_hash_table *ret;
327
328 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
329 if (!ret)
330 return 0;
331 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
332 _bfd_elf_link_hash_newfunc))
333 {
334 bfd_release (abfd, ret);
335 return 0;
336 }
337
338 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
339 elf64_hppa_new_dyn_hash_entry))
340 return 0;
341 return &ret->root.root;
342 }
343
344 /* Look up an entry in a PA64 ELF linker hash table. */
345
346 static struct elf64_hppa_dyn_hash_entry *
347 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
348 struct elf64_hppa_dyn_hash_table *table;
349 const char *string;
350 bfd_boolean create, copy;
351 {
352 return ((struct elf64_hppa_dyn_hash_entry *)
353 bfd_hash_lookup (&table->root, string, create, copy));
354 }
355
356 /* Traverse a PA64 ELF linker hash table. */
357
358 static void
359 elf64_hppa_dyn_hash_traverse (table, func, info)
360 struct elf64_hppa_dyn_hash_table *table;
361 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
362 PTR info;
363 {
364 (bfd_hash_traverse
365 (&table->root,
366 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
367 info));
368 }
369 \f
370 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371
372 Additionally we set the default architecture and machine. */
373 static bfd_boolean
374 elf64_hppa_object_p (abfd)
375 bfd *abfd;
376 {
377 Elf_Internal_Ehdr * i_ehdrp;
378 unsigned int flags;
379
380 i_ehdrp = elf_elfheader (abfd);
381 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
382 {
383 /* GCC on hppa-linux produces binaries with OSABI=Linux,
384 but the kernel produces corefiles with OSABI=SysV. */
385 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
386 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
387 return FALSE;
388 }
389 else
390 {
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
392 return FALSE;
393 }
394
395 flags = i_ehdrp->e_flags;
396 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
397 {
398 case EFA_PARISC_1_0:
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
400 case EFA_PARISC_1_1:
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
402 case EFA_PARISC_2_0:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
404 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 }
407 /* Don't be fussy. */
408 return TRUE;
409 }
410
411 /* Given section type (hdr->sh_type), return a boolean indicating
412 whether or not the section is an elf64-hppa specific section. */
413 static bfd_boolean
414 elf64_hppa_section_from_shdr (abfd, hdr, name)
415 bfd *abfd;
416 Elf_Internal_Shdr *hdr;
417 const char *name;
418 {
419 asection *newsect;
420
421 switch (hdr->sh_type)
422 {
423 case SHT_PARISC_EXT:
424 if (strcmp (name, ".PARISC.archext") != 0)
425 return FALSE;
426 break;
427 case SHT_PARISC_UNWIND:
428 if (strcmp (name, ".PARISC.unwind") != 0)
429 return FALSE;
430 break;
431 case SHT_PARISC_DOC:
432 case SHT_PARISC_ANNOT:
433 default:
434 return FALSE;
435 }
436
437 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
438 return FALSE;
439 newsect = hdr->bfd_section;
440
441 return TRUE;
442 }
443
444 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
445 name describes what was once potentially anonymous memory. We
446 allocate memory as necessary, possibly reusing PBUF/PLEN. */
447
448 static const char *
449 get_dyn_name (sec, h, rel, pbuf, plen)
450 asection *sec;
451 struct elf_link_hash_entry *h;
452 const Elf_Internal_Rela *rel;
453 char **pbuf;
454 size_t *plen;
455 {
456 size_t nlen, tlen;
457 char *buf;
458 size_t len;
459
460 if (h && rel->r_addend == 0)
461 return h->root.root.string;
462
463 if (h)
464 nlen = strlen (h->root.root.string);
465 else
466 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
467 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
468
469 len = *plen;
470 buf = *pbuf;
471 if (len < tlen)
472 {
473 if (buf)
474 free (buf);
475 *pbuf = buf = malloc (tlen);
476 *plen = len = tlen;
477 if (!buf)
478 return NULL;
479 }
480
481 if (h)
482 {
483 memcpy (buf, h->root.root.string, nlen);
484 buf[nlen++] = '+';
485 sprintf_vma (buf + nlen, rel->r_addend);
486 }
487 else
488 {
489 nlen = sprintf (buf, "%x:%lx",
490 sec->id & 0xffffffff,
491 (long) ELF64_R_SYM (rel->r_info));
492 if (rel->r_addend)
493 {
494 buf[nlen++] = '+';
495 sprintf_vma (buf + nlen, rel->r_addend);
496 }
497 }
498
499 return buf;
500 }
501
502 /* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
504
505 static bfd_boolean
506 get_reloc_section (abfd, hppa_info, sec)
507 bfd *abfd;
508 struct elf64_hppa_link_hash_table *hppa_info;
509 asection *sec;
510 {
511 const char *srel_name;
512 asection *srel;
513 bfd *dynobj;
514
515 srel_name = (bfd_elf_string_from_elf_section
516 (abfd, elf_elfheader(abfd)->e_shstrndx,
517 elf_section_data(sec)->rel_hdr.sh_name));
518 if (srel_name == NULL)
519 return FALSE;
520
521 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+5) == 0)
524 || (strncmp (srel_name, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd, sec),
526 srel_name+4) == 0));
527
528 dynobj = hppa_info->root.dynobj;
529 if (!dynobj)
530 hppa_info->root.dynobj = dynobj = abfd;
531
532 srel = bfd_get_section_by_name (dynobj, srel_name);
533 if (srel == NULL)
534 {
535 srel = bfd_make_section (dynobj, srel_name);
536 if (srel == NULL
537 || !bfd_set_section_flags (dynobj, srel,
538 (SEC_ALLOC
539 | SEC_LOAD
540 | SEC_HAS_CONTENTS
541 | SEC_IN_MEMORY
542 | SEC_LINKER_CREATED
543 | SEC_READONLY))
544 || !bfd_set_section_alignment (dynobj, srel, 3))
545 return FALSE;
546 }
547
548 hppa_info->other_rel_sec = srel;
549 return TRUE;
550 }
551
552 /* Add a new entry to the list of dynamic relocations against DYN_H.
553
554 We use this to keep a record of all the FPTR relocations against a
555 particular symbol so that we can create FPTR relocations in the
556 output file. */
557
558 static bfd_boolean
559 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
560 bfd *abfd;
561 struct elf64_hppa_dyn_hash_entry *dyn_h;
562 int type;
563 asection *sec;
564 int sec_symndx;
565 bfd_vma offset;
566 bfd_vma addend;
567 {
568 struct elf64_hppa_dyn_reloc_entry *rent;
569
570 rent = (struct elf64_hppa_dyn_reloc_entry *)
571 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
572 if (!rent)
573 return FALSE;
574
575 rent->next = dyn_h->reloc_entries;
576 rent->type = type;
577 rent->sec = sec;
578 rent->sec_symndx = sec_symndx;
579 rent->offset = offset;
580 rent->addend = addend;
581 dyn_h->reloc_entries = rent;
582
583 return TRUE;
584 }
585
586 /* Scan the RELOCS and record the type of dynamic entries that each
587 referenced symbol needs. */
588
589 static bfd_boolean
590 elf64_hppa_check_relocs (abfd, info, sec, relocs)
591 bfd *abfd;
592 struct bfd_link_info *info;
593 asection *sec;
594 const Elf_Internal_Rela *relocs;
595 {
596 struct elf64_hppa_link_hash_table *hppa_info;
597 const Elf_Internal_Rela *relend;
598 Elf_Internal_Shdr *symtab_hdr;
599 const Elf_Internal_Rela *rel;
600 asection *dlt, *plt, *stubs;
601 char *buf;
602 size_t buf_len;
603 int sec_symndx;
604
605 if (info->relocatable)
606 return TRUE;
607
608 /* If this is the first dynamic object found in the link, create
609 the special sections required for dynamic linking. */
610 if (! elf_hash_table (info)->dynamic_sections_created)
611 {
612 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
613 return FALSE;
614 }
615
616 hppa_info = elf64_hppa_hash_table (info);
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* If necessary, build a new table holding section symbols indices
620 for this BFD. */
621
622 if (info->shared && hppa_info->section_syms_bfd != abfd)
623 {
624 unsigned long i;
625 unsigned int highest_shndx;
626 Elf_Internal_Sym *local_syms = NULL;
627 Elf_Internal_Sym *isym, *isymend;
628 bfd_size_type amt;
629
630 /* We're done with the old cache of section index to section symbol
631 index information. Free it.
632
633 ?!? Note we leak the last section_syms array. Presumably we
634 could free it in one of the later routines in this file. */
635 if (hppa_info->section_syms)
636 free (hppa_info->section_syms);
637
638 /* Read this BFD's local symbols. */
639 if (symtab_hdr->sh_info != 0)
640 {
641 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
642 if (local_syms == NULL)
643 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
644 symtab_hdr->sh_info, 0,
645 NULL, NULL, NULL);
646 if (local_syms == NULL)
647 return FALSE;
648 }
649
650 /* Record the highest section index referenced by the local symbols. */
651 highest_shndx = 0;
652 isymend = local_syms + symtab_hdr->sh_info;
653 for (isym = local_syms; isym < isymend; isym++)
654 {
655 if (isym->st_shndx > highest_shndx)
656 highest_shndx = isym->st_shndx;
657 }
658
659 /* Allocate an array to hold the section index to section symbol index
660 mapping. Bump by one since we start counting at zero. */
661 highest_shndx++;
662 amt = highest_shndx;
663 amt *= sizeof (int);
664 hppa_info->section_syms = (int *) bfd_malloc (amt);
665
666 /* Now walk the local symbols again. If we find a section symbol,
667 record the index of the symbol into the section_syms array. */
668 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
669 {
670 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
671 hppa_info->section_syms[isym->st_shndx] = i;
672 }
673
674 /* We are finished with the local symbols. */
675 if (local_syms != NULL
676 && symtab_hdr->contents != (unsigned char *) local_syms)
677 {
678 if (! info->keep_memory)
679 free (local_syms);
680 else
681 {
682 /* Cache the symbols for elf_link_input_bfd. */
683 symtab_hdr->contents = (unsigned char *) local_syms;
684 }
685 }
686
687 /* Record which BFD we built the section_syms mapping for. */
688 hppa_info->section_syms_bfd = abfd;
689 }
690
691 /* Record the symbol index for this input section. We may need it for
692 relocations when building shared libraries. When not building shared
693 libraries this value is never really used, but assign it to zero to
694 prevent out of bounds memory accesses in other routines. */
695 if (info->shared)
696 {
697 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
698
699 /* If we did not find a section symbol for this section, then
700 something went terribly wrong above. */
701 if (sec_symndx == -1)
702 return FALSE;
703
704 sec_symndx = hppa_info->section_syms[sec_symndx];
705 }
706 else
707 sec_symndx = 0;
708
709 dlt = plt = stubs = NULL;
710 buf = NULL;
711 buf_len = 0;
712
713 relend = relocs + sec->reloc_count;
714 for (rel = relocs; rel < relend; ++rel)
715 {
716 enum
717 {
718 NEED_DLT = 1,
719 NEED_PLT = 2,
720 NEED_STUB = 4,
721 NEED_OPD = 8,
722 NEED_DYNREL = 16,
723 };
724
725 struct elf_link_hash_entry *h = NULL;
726 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
727 struct elf64_hppa_dyn_hash_entry *dyn_h;
728 int need_entry;
729 const char *addr_name;
730 bfd_boolean maybe_dynamic;
731 int dynrel_type = R_PARISC_NONE;
732 static reloc_howto_type *howto;
733
734 if (r_symndx >= symtab_hdr->sh_info)
735 {
736 /* We're dealing with a global symbol -- find its hash entry
737 and mark it as being referenced. */
738 long indx = r_symndx - symtab_hdr->sh_info;
739 h = elf_sym_hashes (abfd)[indx];
740 while (h->root.type == bfd_link_hash_indirect
741 || h->root.type == bfd_link_hash_warning)
742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
743
744 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
745 }
746
747 /* We can only get preliminary data on whether a symbol is
748 locally or externally defined, as not all of the input files
749 have yet been processed. Do something with what we know, as
750 this may help reduce memory usage and processing time later. */
751 maybe_dynamic = FALSE;
752 if (h && ((info->shared
753 && (!info->symbolic || info->unresolved_syms_in_shared_libs == RM_IGNORE))
754 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
755 || h->root.type == bfd_link_hash_defweak))
756 maybe_dynamic = TRUE;
757
758 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
759 need_entry = 0;
760 switch (howto->type)
761 {
762 /* These are simple indirect references to symbols through the
763 DLT. We need to create a DLT entry for any symbols which
764 appears in a DLTIND relocation. */
765 case R_PARISC_DLTIND21L:
766 case R_PARISC_DLTIND14R:
767 case R_PARISC_DLTIND14F:
768 case R_PARISC_DLTIND14WR:
769 case R_PARISC_DLTIND14DR:
770 need_entry = NEED_DLT;
771 break;
772
773 /* ?!? These need a DLT entry. But I have no idea what to do with
774 the "link time TP value. */
775 case R_PARISC_LTOFF_TP21L:
776 case R_PARISC_LTOFF_TP14R:
777 case R_PARISC_LTOFF_TP14F:
778 case R_PARISC_LTOFF_TP64:
779 case R_PARISC_LTOFF_TP14WR:
780 case R_PARISC_LTOFF_TP14DR:
781 case R_PARISC_LTOFF_TP16F:
782 case R_PARISC_LTOFF_TP16WF:
783 case R_PARISC_LTOFF_TP16DF:
784 need_entry = NEED_DLT;
785 break;
786
787 /* These are function calls. Depending on their precise target we
788 may need to make a stub for them. The stub uses the PLT, so we
789 need to create PLT entries for these symbols too. */
790 case R_PARISC_PCREL12F:
791 case R_PARISC_PCREL17F:
792 case R_PARISC_PCREL22F:
793 case R_PARISC_PCREL32:
794 case R_PARISC_PCREL64:
795 case R_PARISC_PCREL21L:
796 case R_PARISC_PCREL17R:
797 case R_PARISC_PCREL17C:
798 case R_PARISC_PCREL14R:
799 case R_PARISC_PCREL14F:
800 case R_PARISC_PCREL22C:
801 case R_PARISC_PCREL14WR:
802 case R_PARISC_PCREL14DR:
803 case R_PARISC_PCREL16F:
804 case R_PARISC_PCREL16WF:
805 case R_PARISC_PCREL16DF:
806 need_entry = (NEED_PLT | NEED_STUB);
807 break;
808
809 case R_PARISC_PLTOFF21L:
810 case R_PARISC_PLTOFF14R:
811 case R_PARISC_PLTOFF14F:
812 case R_PARISC_PLTOFF14WR:
813 case R_PARISC_PLTOFF14DR:
814 case R_PARISC_PLTOFF16F:
815 case R_PARISC_PLTOFF16WF:
816 case R_PARISC_PLTOFF16DF:
817 need_entry = (NEED_PLT);
818 break;
819
820 case R_PARISC_DIR64:
821 if (info->shared || maybe_dynamic)
822 need_entry = (NEED_DYNREL);
823 dynrel_type = R_PARISC_DIR64;
824 break;
825
826 /* This is an indirect reference through the DLT to get the address
827 of a OPD descriptor. Thus we need to make a DLT entry that points
828 to an OPD entry. */
829 case R_PARISC_LTOFF_FPTR21L:
830 case R_PARISC_LTOFF_FPTR14R:
831 case R_PARISC_LTOFF_FPTR14WR:
832 case R_PARISC_LTOFF_FPTR14DR:
833 case R_PARISC_LTOFF_FPTR32:
834 case R_PARISC_LTOFF_FPTR64:
835 case R_PARISC_LTOFF_FPTR16F:
836 case R_PARISC_LTOFF_FPTR16WF:
837 case R_PARISC_LTOFF_FPTR16DF:
838 if (info->shared || maybe_dynamic)
839 need_entry = (NEED_DLT | NEED_OPD);
840 else
841 need_entry = (NEED_DLT | NEED_OPD);
842 dynrel_type = R_PARISC_FPTR64;
843 break;
844
845 /* This is a simple OPD entry. */
846 case R_PARISC_FPTR64:
847 if (info->shared || maybe_dynamic)
848 need_entry = (NEED_OPD | NEED_DYNREL);
849 else
850 need_entry = (NEED_OPD);
851 dynrel_type = R_PARISC_FPTR64;
852 break;
853
854 /* Add more cases as needed. */
855 }
856
857 if (!need_entry)
858 continue;
859
860 /* Collect a canonical name for this address. */
861 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
862
863 /* Collect the canonical entry data for this address. */
864 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
865 addr_name, TRUE, TRUE);
866 BFD_ASSERT (dyn_h);
867
868 /* Stash away enough information to be able to find this symbol
869 regardless of whether or not it is local or global. */
870 dyn_h->h = h;
871 dyn_h->owner = abfd;
872 dyn_h->sym_indx = r_symndx;
873
874 /* ?!? We may need to do some error checking in here. */
875 /* Create what's needed. */
876 if (need_entry & NEED_DLT)
877 {
878 if (! hppa_info->dlt_sec
879 && ! get_dlt (abfd, info, hppa_info))
880 goto err_out;
881 dyn_h->want_dlt = 1;
882 }
883
884 if (need_entry & NEED_PLT)
885 {
886 if (! hppa_info->plt_sec
887 && ! get_plt (abfd, info, hppa_info))
888 goto err_out;
889 dyn_h->want_plt = 1;
890 }
891
892 if (need_entry & NEED_STUB)
893 {
894 if (! hppa_info->stub_sec
895 && ! get_stub (abfd, info, hppa_info))
896 goto err_out;
897 dyn_h->want_stub = 1;
898 }
899
900 if (need_entry & NEED_OPD)
901 {
902 if (! hppa_info->opd_sec
903 && ! get_opd (abfd, info, hppa_info))
904 goto err_out;
905
906 dyn_h->want_opd = 1;
907
908 /* FPTRs are not allocated by the dynamic linker for PA64, though
909 it is possible that will change in the future. */
910
911 /* This could be a local function that had its address taken, in
912 which case H will be NULL. */
913 if (h)
914 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
915 }
916
917 /* Add a new dynamic relocation to the chain of dynamic
918 relocations for this symbol. */
919 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
920 {
921 if (! hppa_info->other_rel_sec
922 && ! get_reloc_section (abfd, hppa_info, sec))
923 goto err_out;
924
925 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
926 sec_symndx, rel->r_offset, rel->r_addend))
927 goto err_out;
928
929 /* If we are building a shared library and we just recorded
930 a dynamic R_PARISC_FPTR64 relocation, then make sure the
931 section symbol for this section ends up in the dynamic
932 symbol table. */
933 if (info->shared && dynrel_type == R_PARISC_FPTR64
934 && ! (_bfd_elf64_link_record_local_dynamic_symbol
935 (info, abfd, sec_symndx)))
936 return FALSE;
937 }
938 }
939
940 if (buf)
941 free (buf);
942 return TRUE;
943
944 err_out:
945 if (buf)
946 free (buf);
947 return FALSE;
948 }
949
950 struct elf64_hppa_allocate_data
951 {
952 struct bfd_link_info *info;
953 bfd_size_type ofs;
954 };
955
956 /* Should we do dynamic things to this symbol? */
957
958 static bfd_boolean
959 elf64_hppa_dynamic_symbol_p (h, info)
960 struct elf_link_hash_entry *h;
961 struct bfd_link_info *info;
962 {
963 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
964 and relocations that retrieve a function descriptor? Assume the
965 worst for now. */
966 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
967 {
968 /* ??? Why is this here and not elsewhere is_local_label_name. */
969 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
970 return FALSE;
971
972 return TRUE;
973 }
974 else
975 return FALSE;
976 }
977
978 /* Mark all functions exported by this file so that we can later allocate
979 entries in .opd for them. */
980
981 static bfd_boolean
982 elf64_hppa_mark_exported_functions (h, data)
983 struct elf_link_hash_entry *h;
984 PTR data;
985 {
986 struct bfd_link_info *info = (struct bfd_link_info *)data;
987 struct elf64_hppa_link_hash_table *hppa_info;
988
989 hppa_info = elf64_hppa_hash_table (info);
990
991 if (h->root.type == bfd_link_hash_warning)
992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
993
994 if (h
995 && (h->root.type == bfd_link_hash_defined
996 || h->root.type == bfd_link_hash_defweak)
997 && h->root.u.def.section->output_section != NULL
998 && h->type == STT_FUNC)
999 {
1000 struct elf64_hppa_dyn_hash_entry *dyn_h;
1001
1002 /* Add this symbol to the PA64 linker hash table. */
1003 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1004 h->root.root.string, TRUE, TRUE);
1005 BFD_ASSERT (dyn_h);
1006 dyn_h->h = h;
1007
1008 if (! hppa_info->opd_sec
1009 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1010 return FALSE;
1011
1012 dyn_h->want_opd = 1;
1013 /* Put a flag here for output_symbol_hook. */
1014 dyn_h->st_shndx = -1;
1015 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1016 }
1017
1018 return TRUE;
1019 }
1020
1021 /* Allocate space for a DLT entry. */
1022
1023 static bfd_boolean
1024 allocate_global_data_dlt (dyn_h, data)
1025 struct elf64_hppa_dyn_hash_entry *dyn_h;
1026 PTR data;
1027 {
1028 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029
1030 if (dyn_h->want_dlt)
1031 {
1032 struct elf_link_hash_entry *h = dyn_h->h;
1033
1034 if (x->info->shared)
1035 {
1036 /* Possibly add the symbol to the local dynamic symbol
1037 table since we might need to create a dynamic relocation
1038 against it. */
1039 if (! h
1040 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1041 {
1042 bfd *owner;
1043 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1044
1045 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1046 (x->info, owner, dyn_h->sym_indx)))
1047 return FALSE;
1048 }
1049 }
1050
1051 dyn_h->dlt_offset = x->ofs;
1052 x->ofs += DLT_ENTRY_SIZE;
1053 }
1054 return TRUE;
1055 }
1056
1057 /* Allocate space for a DLT.PLT entry. */
1058
1059 static bfd_boolean
1060 allocate_global_data_plt (dyn_h, data)
1061 struct elf64_hppa_dyn_hash_entry *dyn_h;
1062 PTR data;
1063 {
1064 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1065
1066 if (dyn_h->want_plt
1067 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1068 && !((dyn_h->h->root.type == bfd_link_hash_defined
1069 || dyn_h->h->root.type == bfd_link_hash_defweak)
1070 && dyn_h->h->root.u.def.section->output_section != NULL))
1071 {
1072 dyn_h->plt_offset = x->ofs;
1073 x->ofs += PLT_ENTRY_SIZE;
1074 if (dyn_h->plt_offset < 0x2000)
1075 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1076 }
1077 else
1078 dyn_h->want_plt = 0;
1079
1080 return TRUE;
1081 }
1082
1083 /* Allocate space for a STUB entry. */
1084
1085 static bfd_boolean
1086 allocate_global_data_stub (dyn_h, data)
1087 struct elf64_hppa_dyn_hash_entry *dyn_h;
1088 PTR data;
1089 {
1090 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1091
1092 if (dyn_h->want_stub
1093 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1094 && !((dyn_h->h->root.type == bfd_link_hash_defined
1095 || dyn_h->h->root.type == bfd_link_hash_defweak)
1096 && dyn_h->h->root.u.def.section->output_section != NULL))
1097 {
1098 dyn_h->stub_offset = x->ofs;
1099 x->ofs += sizeof (plt_stub);
1100 }
1101 else
1102 dyn_h->want_stub = 0;
1103 return TRUE;
1104 }
1105
1106 /* Allocate space for a FPTR entry. */
1107
1108 static bfd_boolean
1109 allocate_global_data_opd (dyn_h, data)
1110 struct elf64_hppa_dyn_hash_entry *dyn_h;
1111 PTR data;
1112 {
1113 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1114
1115 if (dyn_h->want_opd)
1116 {
1117 struct elf_link_hash_entry *h = dyn_h->h;
1118
1119 if (h)
1120 while (h->root.type == bfd_link_hash_indirect
1121 || h->root.type == bfd_link_hash_warning)
1122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1123
1124 /* We never need an opd entry for a symbol which is not
1125 defined by this output file. */
1126 if (h && (h->root.type == bfd_link_hash_undefined
1127 || h->root.u.def.section->output_section == NULL))
1128 dyn_h->want_opd = 0;
1129
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x->info->shared
1134 || h == NULL
1135 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1136 || (h->root.type == bfd_link_hash_defined
1137 || h->root.type == bfd_link_hash_defweak))
1138 {
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1143 if (x->info->shared
1144 && (h == NULL || (h->dynindx == -1)))
1145 {
1146 bfd *owner;
1147 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149 if (!_bfd_elf64_link_record_local_dynamic_symbol
1150 (x->info, owner, dyn_h->sym_indx))
1151 return FALSE;
1152 }
1153
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x->info->shared && h)
1160 {
1161 char *new_name;
1162 struct elf_link_hash_entry *nh;
1163
1164 new_name = alloca (strlen (h->root.root.string) + 2);
1165 new_name[0] = '.';
1166 strcpy (new_name + 1, h->root.root.string);
1167
1168 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1169 new_name, TRUE, TRUE, TRUE);
1170
1171 nh->root.type = h->root.type;
1172 nh->root.u.def.value = h->root.u.def.value;
1173 nh->root.u.def.section = h->root.u.def.section;
1174
1175 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1176 return FALSE;
1177
1178 }
1179 dyn_h->opd_offset = x->ofs;
1180 x->ofs += OPD_ENTRY_SIZE;
1181 }
1182
1183 /* Otherwise we do not need an opd entry. */
1184 else
1185 dyn_h->want_opd = 0;
1186 }
1187 return TRUE;
1188 }
1189
1190 /* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1192
1193 static void
1194 elf64_hppa_post_process_headers (abfd, link_info)
1195 bfd * abfd;
1196 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197 {
1198 Elf_Internal_Ehdr * i_ehdrp;
1199
1200 i_ehdrp = elf_elfheader (abfd);
1201
1202 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1203 {
1204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205 }
1206 else
1207 {
1208 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1209 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210 }
1211 }
1212
1213 /* Create function descriptor section (.opd). This section is called .opd
1214 because it contains "official procedure descriptors". The "official"
1215 refers to the fact that these descriptors are used when taking the address
1216 of a procedure, thus ensuring a unique address for each procedure. */
1217
1218 static bfd_boolean
1219 get_opd (abfd, info, hppa_info)
1220 bfd *abfd;
1221 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1222 struct elf64_hppa_link_hash_table *hppa_info;
1223 {
1224 asection *opd;
1225 bfd *dynobj;
1226
1227 opd = hppa_info->opd_sec;
1228 if (!opd)
1229 {
1230 dynobj = hppa_info->root.dynobj;
1231 if (!dynobj)
1232 hppa_info->root.dynobj = dynobj = abfd;
1233
1234 opd = bfd_make_section (dynobj, ".opd");
1235 if (!opd
1236 || !bfd_set_section_flags (dynobj, opd,
1237 (SEC_ALLOC
1238 | SEC_LOAD
1239 | SEC_HAS_CONTENTS
1240 | SEC_IN_MEMORY
1241 | SEC_LINKER_CREATED))
1242 || !bfd_set_section_alignment (abfd, opd, 3))
1243 {
1244 BFD_ASSERT (0);
1245 return FALSE;
1246 }
1247
1248 hppa_info->opd_sec = opd;
1249 }
1250
1251 return TRUE;
1252 }
1253
1254 /* Create the PLT section. */
1255
1256 static bfd_boolean
1257 get_plt (abfd, info, hppa_info)
1258 bfd *abfd;
1259 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1260 struct elf64_hppa_link_hash_table *hppa_info;
1261 {
1262 asection *plt;
1263 bfd *dynobj;
1264
1265 plt = hppa_info->plt_sec;
1266 if (!plt)
1267 {
1268 dynobj = hppa_info->root.dynobj;
1269 if (!dynobj)
1270 hppa_info->root.dynobj = dynobj = abfd;
1271
1272 plt = bfd_make_section (dynobj, ".plt");
1273 if (!plt
1274 || !bfd_set_section_flags (dynobj, plt,
1275 (SEC_ALLOC
1276 | SEC_LOAD
1277 | SEC_HAS_CONTENTS
1278 | SEC_IN_MEMORY
1279 | SEC_LINKER_CREATED))
1280 || !bfd_set_section_alignment (abfd, plt, 3))
1281 {
1282 BFD_ASSERT (0);
1283 return FALSE;
1284 }
1285
1286 hppa_info->plt_sec = plt;
1287 }
1288
1289 return TRUE;
1290 }
1291
1292 /* Create the DLT section. */
1293
1294 static bfd_boolean
1295 get_dlt (abfd, info, hppa_info)
1296 bfd *abfd;
1297 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1298 struct elf64_hppa_link_hash_table *hppa_info;
1299 {
1300 asection *dlt;
1301 bfd *dynobj;
1302
1303 dlt = hppa_info->dlt_sec;
1304 if (!dlt)
1305 {
1306 dynobj = hppa_info->root.dynobj;
1307 if (!dynobj)
1308 hppa_info->root.dynobj = dynobj = abfd;
1309
1310 dlt = bfd_make_section (dynobj, ".dlt");
1311 if (!dlt
1312 || !bfd_set_section_flags (dynobj, dlt,
1313 (SEC_ALLOC
1314 | SEC_LOAD
1315 | SEC_HAS_CONTENTS
1316 | SEC_IN_MEMORY
1317 | SEC_LINKER_CREATED))
1318 || !bfd_set_section_alignment (abfd, dlt, 3))
1319 {
1320 BFD_ASSERT (0);
1321 return FALSE;
1322 }
1323
1324 hppa_info->dlt_sec = dlt;
1325 }
1326
1327 return TRUE;
1328 }
1329
1330 /* Create the stubs section. */
1331
1332 static bfd_boolean
1333 get_stub (abfd, info, hppa_info)
1334 bfd *abfd;
1335 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1336 struct elf64_hppa_link_hash_table *hppa_info;
1337 {
1338 asection *stub;
1339 bfd *dynobj;
1340
1341 stub = hppa_info->stub_sec;
1342 if (!stub)
1343 {
1344 dynobj = hppa_info->root.dynobj;
1345 if (!dynobj)
1346 hppa_info->root.dynobj = dynobj = abfd;
1347
1348 stub = bfd_make_section (dynobj, ".stub");
1349 if (!stub
1350 || !bfd_set_section_flags (dynobj, stub,
1351 (SEC_ALLOC
1352 | SEC_LOAD
1353 | SEC_HAS_CONTENTS
1354 | SEC_IN_MEMORY
1355 | SEC_READONLY
1356 | SEC_LINKER_CREATED))
1357 || !bfd_set_section_alignment (abfd, stub, 3))
1358 {
1359 BFD_ASSERT (0);
1360 return FALSE;
1361 }
1362
1363 hppa_info->stub_sec = stub;
1364 }
1365
1366 return TRUE;
1367 }
1368
1369 /* Create sections necessary for dynamic linking. This is only a rough
1370 cut and will likely change as we learn more about the somewhat
1371 unusual dynamic linking scheme HP uses.
1372
1373 .stub:
1374 Contains code to implement cross-space calls. The first time one
1375 of the stubs is used it will call into the dynamic linker, later
1376 calls will go straight to the target.
1377
1378 The only stub we support right now looks like
1379
1380 ldd OFFSET(%dp),%r1
1381 bve %r0(%r1)
1382 ldd OFFSET+8(%dp),%dp
1383
1384 Other stubs may be needed in the future. We may want the remove
1385 the break/nop instruction. It is only used right now to keep the
1386 offset of a .plt entry and a .stub entry in sync.
1387
1388 .dlt:
1389 This is what most people call the .got. HP used a different name.
1390 Losers.
1391
1392 .rela.dlt:
1393 Relocations for the DLT.
1394
1395 .plt:
1396 Function pointers as address,gp pairs.
1397
1398 .rela.plt:
1399 Should contain dynamic IPLT (and EPLT?) relocations.
1400
1401 .opd:
1402 FPTRS
1403
1404 .rela.opd:
1405 EPLT relocations for symbols exported from shared libraries. */
1406
1407 static bfd_boolean
1408 elf64_hppa_create_dynamic_sections (abfd, info)
1409 bfd *abfd;
1410 struct bfd_link_info *info;
1411 {
1412 asection *s;
1413
1414 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1415 return FALSE;
1416
1417 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1418 return FALSE;
1419
1420 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1421 return FALSE;
1422
1423 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1424 return FALSE;
1425
1426 s = bfd_make_section(abfd, ".rela.dlt");
1427 if (s == NULL
1428 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED))
1433 || !bfd_set_section_alignment (abfd, s, 3))
1434 return FALSE;
1435 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1436
1437 s = bfd_make_section(abfd, ".rela.plt");
1438 if (s == NULL
1439 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1440 | SEC_HAS_CONTENTS
1441 | SEC_IN_MEMORY
1442 | SEC_READONLY
1443 | SEC_LINKER_CREATED))
1444 || !bfd_set_section_alignment (abfd, s, 3))
1445 return FALSE;
1446 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1447
1448 s = bfd_make_section(abfd, ".rela.data");
1449 if (s == NULL
1450 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1451 | SEC_HAS_CONTENTS
1452 | SEC_IN_MEMORY
1453 | SEC_READONLY
1454 | SEC_LINKER_CREATED))
1455 || !bfd_set_section_alignment (abfd, s, 3))
1456 return FALSE;
1457 elf64_hppa_hash_table (info)->other_rel_sec = s;
1458
1459 s = bfd_make_section(abfd, ".rela.opd");
1460 if (s == NULL
1461 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1462 | SEC_HAS_CONTENTS
1463 | SEC_IN_MEMORY
1464 | SEC_READONLY
1465 | SEC_LINKER_CREATED))
1466 || !bfd_set_section_alignment (abfd, s, 3))
1467 return FALSE;
1468 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1469
1470 return TRUE;
1471 }
1472
1473 /* Allocate dynamic relocations for those symbols that turned out
1474 to be dynamic. */
1475
1476 static bfd_boolean
1477 allocate_dynrel_entries (dyn_h, data)
1478 struct elf64_hppa_dyn_hash_entry *dyn_h;
1479 PTR data;
1480 {
1481 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1482 struct elf64_hppa_link_hash_table *hppa_info;
1483 struct elf64_hppa_dyn_reloc_entry *rent;
1484 bfd_boolean dynamic_symbol, shared;
1485
1486 hppa_info = elf64_hppa_hash_table (x->info);
1487 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1488 shared = x->info->shared;
1489
1490 /* We may need to allocate relocations for a non-dynamic symbol
1491 when creating a shared library. */
1492 if (!dynamic_symbol && !shared)
1493 return TRUE;
1494
1495 /* Take care of the normal data relocations. */
1496
1497 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1498 {
1499 /* Allocate one iff we are building a shared library, the relocation
1500 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1501 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1502 continue;
1503
1504 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1505
1506 /* Make sure this symbol gets into the dynamic symbol table if it is
1507 not already recorded. ?!? This should not be in the loop since
1508 the symbol need only be added once. */
1509 if (dyn_h->h == 0
1510 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1511 if (!_bfd_elf64_link_record_local_dynamic_symbol
1512 (x->info, rent->sec->owner, dyn_h->sym_indx))
1513 return FALSE;
1514 }
1515
1516 /* Take care of the GOT and PLT relocations. */
1517
1518 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1519 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1520
1521 /* If we are building a shared library, then every symbol that has an
1522 opd entry will need an EPLT relocation to relocate the symbol's address
1523 and __gp value based on the runtime load address. */
1524 if (shared && dyn_h->want_opd)
1525 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1526
1527 if (dyn_h->want_plt && dynamic_symbol)
1528 {
1529 bfd_size_type t = 0;
1530
1531 /* Dynamic symbols get one IPLT relocation. Local symbols in
1532 shared libraries get two REL relocations. Local symbols in
1533 main applications get nothing. */
1534 if (dynamic_symbol)
1535 t = sizeof (Elf64_External_Rela);
1536 else if (shared)
1537 t = 2 * sizeof (Elf64_External_Rela);
1538
1539 hppa_info->plt_rel_sec->_raw_size += t;
1540 }
1541
1542 return TRUE;
1543 }
1544
1545 /* Adjust a symbol defined by a dynamic object and referenced by a
1546 regular object. */
1547
1548 static bfd_boolean
1549 elf64_hppa_adjust_dynamic_symbol (info, h)
1550 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1551 struct elf_link_hash_entry *h;
1552 {
1553 /* ??? Undefined symbols with PLT entries should be re-defined
1554 to be the PLT entry. */
1555
1556 /* If this is a weak symbol, and there is a real definition, the
1557 processor independent code will have arranged for us to see the
1558 real definition first, and we can just use the same value. */
1559 if (h->weakdef != NULL)
1560 {
1561 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1562 || h->weakdef->root.type == bfd_link_hash_defweak);
1563 h->root.u.def.section = h->weakdef->root.u.def.section;
1564 h->root.u.def.value = h->weakdef->root.u.def.value;
1565 return TRUE;
1566 }
1567
1568 /* If this is a reference to a symbol defined by a dynamic object which
1569 is not a function, we might allocate the symbol in our .dynbss section
1570 and allocate a COPY dynamic relocation.
1571
1572 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1573 of hackery. */
1574
1575 return TRUE;
1576 }
1577
1578 /* This function is called via elf_link_hash_traverse to mark millicode
1579 symbols with a dynindx of -1 and to remove the string table reference
1580 from the dynamic symbol table. If the symbol is not a millicode symbol,
1581 elf64_hppa_mark_exported_functions is called. */
1582
1583 static bfd_boolean
1584 elf64_hppa_mark_milli_and_exported_functions (h, data)
1585 struct elf_link_hash_entry *h;
1586 PTR data;
1587 {
1588 struct bfd_link_info *info = (struct bfd_link_info *)data;
1589 struct elf_link_hash_entry *elf = h;
1590
1591 if (elf->root.type == bfd_link_hash_warning)
1592 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1593
1594 if (elf->type == STT_PARISC_MILLI)
1595 {
1596 if (elf->dynindx != -1)
1597 {
1598 elf->dynindx = -1;
1599 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1600 elf->dynstr_index);
1601 }
1602 return TRUE;
1603 }
1604
1605 return elf64_hppa_mark_exported_functions (h, data);
1606 }
1607
1608 /* Set the final sizes of the dynamic sections and allocate memory for
1609 the contents of our special sections. */
1610
1611 static bfd_boolean
1612 elf64_hppa_size_dynamic_sections (output_bfd, info)
1613 bfd *output_bfd;
1614 struct bfd_link_info *info;
1615 {
1616 bfd *dynobj;
1617 asection *s;
1618 bfd_boolean plt;
1619 bfd_boolean relocs;
1620 bfd_boolean reltext;
1621 struct elf64_hppa_allocate_data data;
1622 struct elf64_hppa_link_hash_table *hppa_info;
1623
1624 hppa_info = elf64_hppa_hash_table (info);
1625
1626 dynobj = elf_hash_table (info)->dynobj;
1627 BFD_ASSERT (dynobj != NULL);
1628
1629 /* Mark each function this program exports so that we will allocate
1630 space in the .opd section for each function's FPTR. If we are
1631 creating dynamic sections, change the dynamic index of millicode
1632 symbols to -1 and remove them from the string table for .dynstr.
1633
1634 We have to traverse the main linker hash table since we have to
1635 find functions which may not have been mentioned in any relocs. */
1636 elf_link_hash_traverse (elf_hash_table (info),
1637 (elf_hash_table (info)->dynamic_sections_created
1638 ? elf64_hppa_mark_milli_and_exported_functions
1639 : elf64_hppa_mark_exported_functions),
1640 info);
1641
1642 if (elf_hash_table (info)->dynamic_sections_created)
1643 {
1644 /* Set the contents of the .interp section to the interpreter. */
1645 if (info->executable)
1646 {
1647 s = bfd_get_section_by_name (dynobj, ".interp");
1648 BFD_ASSERT (s != NULL);
1649 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652 }
1653 else
1654 {
1655 /* We may have created entries in the .rela.got section.
1656 However, if we are not creating the dynamic sections, we will
1657 not actually use these entries. Reset the size of .rela.dlt,
1658 which will cause it to get stripped from the output file
1659 below. */
1660 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1661 if (s != NULL)
1662 s->_raw_size = 0;
1663 }
1664
1665 /* Allocate the GOT entries. */
1666
1667 data.info = info;
1668 if (elf64_hppa_hash_table (info)->dlt_sec)
1669 {
1670 data.ofs = 0x0;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672 allocate_global_data_dlt, &data);
1673 hppa_info->dlt_sec->_raw_size = data.ofs;
1674
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_plt, &data);
1678 hppa_info->plt_sec->_raw_size = data.ofs;
1679
1680 data.ofs = 0x0;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682 allocate_global_data_stub, &data);
1683 hppa_info->stub_sec->_raw_size = data.ofs;
1684 }
1685
1686 /* Allocate space for entries in the .opd section. */
1687 if (elf64_hppa_hash_table (info)->opd_sec)
1688 {
1689 data.ofs = 0;
1690 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691 allocate_global_data_opd, &data);
1692 hppa_info->opd_sec->_raw_size = data.ofs;
1693 }
1694
1695 /* Now allocate space for dynamic relocations, if necessary. */
1696 if (hppa_info->root.dynamic_sections_created)
1697 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1698 allocate_dynrel_entries, &data);
1699
1700 /* The sizes of all the sections are set. Allocate memory for them. */
1701 plt = FALSE;
1702 relocs = FALSE;
1703 reltext = FALSE;
1704 for (s = dynobj->sections; s != NULL; s = s->next)
1705 {
1706 const char *name;
1707 bfd_boolean strip;
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
1716 strip = 0;
1717
1718 if (strcmp (name, ".plt") == 0)
1719 {
1720 /* Strip this section if we don't need it; see the comment below. */
1721 if (s->_raw_size == 0)
1722 {
1723 strip = TRUE;
1724 }
1725 else
1726 {
1727 /* Remember whether there is a PLT. */
1728 plt = TRUE;
1729 }
1730 }
1731 else if (strcmp (name, ".dlt") == 0)
1732 {
1733 /* Strip this section if we don't need it; see the comment below. */
1734 if (s->_raw_size == 0)
1735 {
1736 strip = TRUE;
1737 }
1738 }
1739 else if (strcmp (name, ".opd") == 0)
1740 {
1741 /* Strip this section if we don't need it; see the comment below. */
1742 if (s->_raw_size == 0)
1743 {
1744 strip = TRUE;
1745 }
1746 }
1747 else if (strncmp (name, ".rela", 5) == 0)
1748 {
1749 /* If we don't need this section, strip it from the output file.
1750 This is mostly to handle .rela.bss and .rela.plt. We must
1751 create both sections in create_dynamic_sections, because they
1752 must be created before the linker maps input sections to output
1753 sections. The linker does that before adjust_dynamic_symbol
1754 is called, and it is that function which decides whether
1755 anything needs to go into these sections. */
1756 if (s->_raw_size == 0)
1757 {
1758 /* If we don't need this section, strip it from the
1759 output file. This is mostly to handle .rela.bss and
1760 .rela.plt. We must create both sections in
1761 create_dynamic_sections, because they must be created
1762 before the linker maps input sections to output
1763 sections. The linker does that before
1764 adjust_dynamic_symbol is called, and it is that
1765 function which decides whether anything needs to go
1766 into these sections. */
1767 strip = TRUE;
1768 }
1769 else
1770 {
1771 asection *target;
1772
1773 /* Remember whether there are any reloc sections other
1774 than .rela.plt. */
1775 if (strcmp (name, ".rela.plt") != 0)
1776 {
1777 const char *outname;
1778
1779 relocs = TRUE;
1780
1781 /* If this relocation section applies to a read only
1782 section, then we probably need a DT_TEXTREL
1783 entry. The entries in the .rela.plt section
1784 really apply to the .got section, which we
1785 created ourselves and so know is not readonly. */
1786 outname = bfd_get_section_name (output_bfd,
1787 s->output_section);
1788 target = bfd_get_section_by_name (output_bfd, outname + 4);
1789 if (target != NULL
1790 && (target->flags & SEC_READONLY) != 0
1791 && (target->flags & SEC_ALLOC) != 0)
1792 reltext = TRUE;
1793 }
1794
1795 /* We use the reloc_count field as a counter if we need
1796 to copy relocs into the output file. */
1797 s->reloc_count = 0;
1798 }
1799 }
1800 else if (strncmp (name, ".dlt", 4) != 0
1801 && strcmp (name, ".stub") != 0
1802 && strcmp (name, ".got") != 0)
1803 {
1804 /* It's not one of our sections, so don't allocate space. */
1805 continue;
1806 }
1807
1808 if (strip)
1809 {
1810 _bfd_strip_section_from_output (info, s);
1811 continue;
1812 }
1813
1814 /* Allocate memory for the section contents if it has not
1815 been allocated already. We use bfd_zalloc here in case
1816 unused entries are not reclaimed before the section's
1817 contents are written out. This should not happen, but this
1818 way if it does, we get a R_PARISC_NONE reloc instead of
1819 garbage. */
1820 if (s->contents == NULL)
1821 {
1822 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1823 if (s->contents == NULL && s->_raw_size != 0)
1824 return FALSE;
1825 }
1826 }
1827
1828 if (elf_hash_table (info)->dynamic_sections_created)
1829 {
1830 /* Always create a DT_PLTGOT. It actually has nothing to do with
1831 the PLT, it is how we communicate the __gp value of a load
1832 module to the dynamic linker. */
1833 #define add_dynamic_entry(TAG, VAL) \
1834 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1835
1836 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1837 || !add_dynamic_entry (DT_PLTGOT, 0))
1838 return FALSE;
1839
1840 /* Add some entries to the .dynamic section. We fill in the
1841 values later, in elf64_hppa_finish_dynamic_sections, but we
1842 must add the entries now so that we get the correct size for
1843 the .dynamic section. The DT_DEBUG entry is filled in by the
1844 dynamic linker and used by the debugger. */
1845 if (! info->shared)
1846 {
1847 if (!add_dynamic_entry (DT_DEBUG, 0)
1848 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1849 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1850 return FALSE;
1851 }
1852
1853 /* Force DT_FLAGS to always be set.
1854 Required by HPUX 11.00 patch PHSS_26559. */
1855 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1856 return FALSE;
1857
1858 if (plt)
1859 {
1860 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1861 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1862 || !add_dynamic_entry (DT_JMPREL, 0))
1863 return FALSE;
1864 }
1865
1866 if (relocs)
1867 {
1868 if (!add_dynamic_entry (DT_RELA, 0)
1869 || !add_dynamic_entry (DT_RELASZ, 0)
1870 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1871 return FALSE;
1872 }
1873
1874 if (reltext)
1875 {
1876 if (!add_dynamic_entry (DT_TEXTREL, 0))
1877 return FALSE;
1878 info->flags |= DF_TEXTREL;
1879 }
1880 }
1881 #undef add_dynamic_entry
1882
1883 return TRUE;
1884 }
1885
1886 /* Called after we have output the symbol into the dynamic symbol
1887 table, but before we output the symbol into the normal symbol
1888 table.
1889
1890 For some symbols we had to change their address when outputting
1891 the dynamic symbol table. We undo that change here so that
1892 the symbols have their expected value in the normal symbol
1893 table. Ick. */
1894
1895 static bfd_boolean
1896 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1897 struct bfd_link_info *info;
1898 const char *name;
1899 Elf_Internal_Sym *sym;
1900 asection *input_sec ATTRIBUTE_UNUSED;
1901 struct elf_link_hash_entry *h;
1902 {
1903 struct elf64_hppa_link_hash_table *hppa_info;
1904 struct elf64_hppa_dyn_hash_entry *dyn_h;
1905
1906 /* We may be called with the file symbol or section symbols.
1907 They never need munging, so it is safe to ignore them. */
1908 if (!name)
1909 return TRUE;
1910
1911 /* Get the PA dyn_symbol (if any) associated with NAME. */
1912 hppa_info = elf64_hppa_hash_table (info);
1913 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1914 name, FALSE, FALSE);
1915 if (dyn_h->h != h)
1916 return TRUE;
1917
1918 /* Function symbols for which we created .opd entries *may* have been
1919 munged by finish_dynamic_symbol and have to be un-munged here.
1920
1921 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1922 into non-dynamic ones, so we initialize st_shndx to -1 in
1923 mark_exported_functions and check to see if it was overwritten
1924 here instead of just checking dyn_h->h->dynindx. */
1925 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1926 {
1927 /* Restore the saved value and section index. */
1928 sym->st_value = dyn_h->st_value;
1929 sym->st_shndx = dyn_h->st_shndx;
1930 }
1931
1932 return TRUE;
1933 }
1934
1935 /* Finish up dynamic symbol handling. We set the contents of various
1936 dynamic sections here. */
1937
1938 static bfd_boolean
1939 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1940 bfd *output_bfd;
1941 struct bfd_link_info *info;
1942 struct elf_link_hash_entry *h;
1943 Elf_Internal_Sym *sym;
1944 {
1945 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1946 struct elf64_hppa_link_hash_table *hppa_info;
1947 struct elf64_hppa_dyn_hash_entry *dyn_h;
1948
1949 hppa_info = elf64_hppa_hash_table (info);
1950 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1951 h->root.root.string, FALSE, FALSE);
1952
1953 stub = hppa_info->stub_sec;
1954 splt = hppa_info->plt_sec;
1955 sdlt = hppa_info->dlt_sec;
1956 sopd = hppa_info->opd_sec;
1957 spltrel = hppa_info->plt_rel_sec;
1958 sdltrel = hppa_info->dlt_rel_sec;
1959
1960 /* Incredible. It is actually necessary to NOT use the symbol's real
1961 value when building the dynamic symbol table for a shared library.
1962 At least for symbols that refer to functions.
1963
1964 We will store a new value and section index into the symbol long
1965 enough to output it into the dynamic symbol table, then we restore
1966 the original values (in elf64_hppa_link_output_symbol_hook). */
1967 if (dyn_h && dyn_h->want_opd)
1968 {
1969 BFD_ASSERT (sopd != NULL)
1970
1971 /* Save away the original value and section index so that we
1972 can restore them later. */
1973 dyn_h->st_value = sym->st_value;
1974 dyn_h->st_shndx = sym->st_shndx;
1975
1976 /* For the dynamic symbol table entry, we want the value to be
1977 address of this symbol's entry within the .opd section. */
1978 sym->st_value = (dyn_h->opd_offset
1979 + sopd->output_offset
1980 + sopd->output_section->vma);
1981 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1982 sopd->output_section);
1983 }
1984
1985 /* Initialize a .plt entry if requested. */
1986 if (dyn_h && dyn_h->want_plt
1987 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1988 {
1989 bfd_vma value;
1990 Elf_Internal_Rela rel;
1991 bfd_byte *loc;
1992
1993 BFD_ASSERT (splt != NULL && spltrel != NULL)
1994
1995 /* We do not actually care about the value in the PLT entry
1996 if we are creating a shared library and the symbol is
1997 still undefined, we create a dynamic relocation to fill
1998 in the correct value. */
1999 if (info->shared && h->root.type == bfd_link_hash_undefined)
2000 value = 0;
2001 else
2002 value = (h->root.u.def.value + h->root.u.def.section->vma);
2003
2004 /* Fill in the entry in the procedure linkage table.
2005
2006 The format of a plt entry is
2007 <funcaddr> <__gp>.
2008
2009 plt_offset is the offset within the PLT section at which to
2010 install the PLT entry.
2011
2012 We are modifying the in-memory PLT contents here, so we do not add
2013 in the output_offset of the PLT section. */
2014
2015 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2016 value = _bfd_get_gp_value (splt->output_section->owner);
2017 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2018
2019 /* Create a dynamic IPLT relocation for this entry.
2020
2021 We are creating a relocation in the output file's PLT section,
2022 which is included within the DLT secton. So we do need to include
2023 the PLT's output_offset in the computation of the relocation's
2024 address. */
2025 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2026 + splt->output_section->vma);
2027 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2028 rel.r_addend = 0;
2029
2030 loc = spltrel->contents;
2031 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2032 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2033 }
2034
2035 /* Initialize an external call stub entry if requested. */
2036 if (dyn_h && dyn_h->want_stub
2037 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2038 {
2039 bfd_vma value;
2040 int insn;
2041 unsigned int max_offset;
2042
2043 BFD_ASSERT (stub != NULL)
2044
2045 /* Install the generic stub template.
2046
2047 We are modifying the contents of the stub section, so we do not
2048 need to include the stub section's output_offset here. */
2049 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2050
2051 /* Fix up the first ldd instruction.
2052
2053 We are modifying the contents of the STUB section in memory,
2054 so we do not need to include its output offset in this computation.
2055
2056 Note the plt_offset value is the value of the PLT entry relative to
2057 the start of the PLT section. These instructions will reference
2058 data relative to the value of __gp, which may not necessarily have
2059 the same address as the start of the PLT section.
2060
2061 gp_offset contains the offset of __gp within the PLT section. */
2062 value = dyn_h->plt_offset - hppa_info->gp_offset;
2063
2064 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2065 if (output_bfd->arch_info->mach >= 25)
2066 {
2067 /* Wide mode allows 16 bit offsets. */
2068 max_offset = 32768;
2069 insn &= ~ 0xfff1;
2070 insn |= re_assemble_16 ((int) value);
2071 }
2072 else
2073 {
2074 max_offset = 8192;
2075 insn &= ~ 0x3ff1;
2076 insn |= re_assemble_14 ((int) value);
2077 }
2078
2079 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2080 {
2081 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2082 dyn_h->root.string,
2083 (long) value);
2084 return FALSE;
2085 }
2086
2087 bfd_put_32 (stub->owner, (bfd_vma) insn,
2088 stub->contents + dyn_h->stub_offset);
2089
2090 /* Fix up the second ldd instruction. */
2091 value += 8;
2092 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2093 if (output_bfd->arch_info->mach >= 25)
2094 {
2095 insn &= ~ 0xfff1;
2096 insn |= re_assemble_16 ((int) value);
2097 }
2098 else
2099 {
2100 insn &= ~ 0x3ff1;
2101 insn |= re_assemble_14 ((int) value);
2102 }
2103 bfd_put_32 (stub->owner, (bfd_vma) insn,
2104 stub->contents + dyn_h->stub_offset + 8);
2105 }
2106
2107 return TRUE;
2108 }
2109
2110 /* The .opd section contains FPTRs for each function this file
2111 exports. Initialize the FPTR entries. */
2112
2113 static bfd_boolean
2114 elf64_hppa_finalize_opd (dyn_h, data)
2115 struct elf64_hppa_dyn_hash_entry *dyn_h;
2116 PTR data;
2117 {
2118 struct bfd_link_info *info = (struct bfd_link_info *)data;
2119 struct elf64_hppa_link_hash_table *hppa_info;
2120 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2121 asection *sopd;
2122 asection *sopdrel;
2123
2124 hppa_info = elf64_hppa_hash_table (info);
2125 sopd = hppa_info->opd_sec;
2126 sopdrel = hppa_info->opd_rel_sec;
2127
2128 if (h && dyn_h->want_opd)
2129 {
2130 bfd_vma value;
2131
2132 /* The first two words of an .opd entry are zero.
2133
2134 We are modifying the contents of the OPD section in memory, so we
2135 do not need to include its output offset in this computation. */
2136 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2137
2138 value = (h->root.u.def.value
2139 + h->root.u.def.section->output_section->vma
2140 + h->root.u.def.section->output_offset);
2141
2142 /* The next word is the address of the function. */
2143 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2144
2145 /* The last word is our local __gp value. */
2146 value = _bfd_get_gp_value (sopd->output_section->owner);
2147 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2148 }
2149
2150 /* If we are generating a shared library, we must generate EPLT relocations
2151 for each entry in the .opd, even for static functions (they may have
2152 had their address taken). */
2153 if (info->shared && dyn_h && dyn_h->want_opd)
2154 {
2155 Elf_Internal_Rela rel;
2156 bfd_byte *loc;
2157 int dynindx;
2158
2159 /* We may need to do a relocation against a local symbol, in
2160 which case we have to look up it's dynamic symbol index off
2161 the local symbol hash table. */
2162 if (h && h->dynindx != -1)
2163 dynindx = h->dynindx;
2164 else
2165 dynindx
2166 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2167 dyn_h->sym_indx);
2168
2169 /* The offset of this relocation is the absolute address of the
2170 .opd entry for this symbol. */
2171 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2172 + sopd->output_section->vma);
2173
2174 /* If H is non-null, then we have an external symbol.
2175
2176 It is imperative that we use a different dynamic symbol for the
2177 EPLT relocation if the symbol has global scope.
2178
2179 In the dynamic symbol table, the function symbol will have a value
2180 which is address of the function's .opd entry.
2181
2182 Thus, we can not use that dynamic symbol for the EPLT relocation
2183 (if we did, the data in the .opd would reference itself rather
2184 than the actual address of the function). Instead we have to use
2185 a new dynamic symbol which has the same value as the original global
2186 function symbol.
2187
2188 We prefix the original symbol with a "." and use the new symbol in
2189 the EPLT relocation. This new symbol has already been recorded in
2190 the symbol table, we just have to look it up and use it.
2191
2192 We do not have such problems with static functions because we do
2193 not make their addresses in the dynamic symbol table point to
2194 the .opd entry. Ultimately this should be safe since a static
2195 function can not be directly referenced outside of its shared
2196 library.
2197
2198 We do have to play similar games for FPTR relocations in shared
2199 libraries, including those for static symbols. See the FPTR
2200 handling in elf64_hppa_finalize_dynreloc. */
2201 if (h)
2202 {
2203 char *new_name;
2204 struct elf_link_hash_entry *nh;
2205
2206 new_name = alloca (strlen (h->root.root.string) + 2);
2207 new_name[0] = '.';
2208 strcpy (new_name + 1, h->root.root.string);
2209
2210 nh = elf_link_hash_lookup (elf_hash_table (info),
2211 new_name, FALSE, FALSE, FALSE);
2212
2213 /* All we really want from the new symbol is its dynamic
2214 symbol index. */
2215 dynindx = nh->dynindx;
2216 }
2217
2218 rel.r_addend = 0;
2219 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2220
2221 loc = sopdrel->contents;
2222 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2223 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2224 }
2225 return TRUE;
2226 }
2227
2228 /* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2231
2232 static bfd_boolean
2233 elf64_hppa_finalize_dlt (dyn_h, data)
2234 struct elf64_hppa_dyn_hash_entry *dyn_h;
2235 PTR data;
2236 {
2237 struct bfd_link_info *info = (struct bfd_link_info *)data;
2238 struct elf64_hppa_link_hash_table *hppa_info;
2239 asection *sdlt, *sdltrel;
2240 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2241
2242 hppa_info = elf64_hppa_hash_table (info);
2243
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2246
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
2251 if (! info->shared && h && dyn_h->want_dlt)
2252 {
2253 bfd_vma value;
2254
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 to point to the FPTR entry in the .opd section.
2257
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2260 object file. */
2261 if (dyn_h->want_opd)
2262 {
2263 value = (dyn_h->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2266 }
2267 else if ((h->root.type == bfd_link_hash_defined
2268 || h->root.type == bfd_link_hash_defweak)
2269 && h->root.u.def.section)
2270 {
2271 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2272 if (h->root.u.def.section->output_section)
2273 value += h->root.u.def.section->output_section->vma;
2274 else
2275 value += h->root.u.def.section->vma;
2276 }
2277 else
2278 /* We have an undefined function reference. */
2279 value = 0;
2280
2281 /* We do not need to include the output offset of the DLT section
2282 here because we are modifying the in-memory contents. */
2283 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2284 }
2285
2286 /* Create a relocation for the DLT entry associated with this symbol.
2287 When building a shared library the symbol does not have to be dynamic. */
2288 if (dyn_h->want_dlt
2289 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2290 {
2291 Elf_Internal_Rela rel;
2292 bfd_byte *loc;
2293 int dynindx;
2294
2295 /* We may need to do a relocation against a local symbol, in
2296 which case we have to look up it's dynamic symbol index off
2297 the local symbol hash table. */
2298 if (h && h->dynindx != -1)
2299 dynindx = h->dynindx;
2300 else
2301 dynindx
2302 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2303 dyn_h->sym_indx);
2304
2305 /* Create a dynamic relocation for this entry. Do include the output
2306 offset of the DLT entry since we need an absolute address in the
2307 resulting object file. */
2308 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2309 + sdlt->output_section->vma);
2310 if (h && h->type == STT_FUNC)
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2312 else
2313 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2314 rel.r_addend = 0;
2315
2316 loc = sdltrel->contents;
2317 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2318 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2319 }
2320 return TRUE;
2321 }
2322
2323 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2324 for dynamic functions used to initialize static data. */
2325
2326 static bfd_boolean
2327 elf64_hppa_finalize_dynreloc (dyn_h, data)
2328 struct elf64_hppa_dyn_hash_entry *dyn_h;
2329 PTR data;
2330 {
2331 struct bfd_link_info *info = (struct bfd_link_info *)data;
2332 struct elf64_hppa_link_hash_table *hppa_info;
2333 struct elf_link_hash_entry *h;
2334 int dynamic_symbol;
2335
2336 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2337
2338 if (!dynamic_symbol && !info->shared)
2339 return TRUE;
2340
2341 if (dyn_h->reloc_entries)
2342 {
2343 struct elf64_hppa_dyn_reloc_entry *rent;
2344 int dynindx;
2345
2346 hppa_info = elf64_hppa_hash_table (info);
2347 h = dyn_h->h;
2348
2349 /* We may need to do a relocation against a local symbol, in
2350 which case we have to look up it's dynamic symbol index off
2351 the local symbol hash table. */
2352 if (h && h->dynindx != -1)
2353 dynindx = h->dynindx;
2354 else
2355 dynindx
2356 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2357 dyn_h->sym_indx);
2358
2359 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2360 {
2361 Elf_Internal_Rela rel;
2362 bfd_byte *loc;
2363
2364 /* Allocate one iff we are building a shared library, the relocation
2365 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2366 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2367 continue;
2368
2369 /* Create a dynamic relocation for this entry.
2370
2371 We need the output offset for the reloc's section because
2372 we are creating an absolute address in the resulting object
2373 file. */
2374 rel.r_offset = (rent->offset + rent->sec->output_offset
2375 + rent->sec->output_section->vma);
2376
2377 /* An FPTR64 relocation implies that we took the address of
2378 a function and that the function has an entry in the .opd
2379 section. We want the FPTR64 relocation to reference the
2380 entry in .opd.
2381
2382 We could munge the symbol value in the dynamic symbol table
2383 (in fact we already do for functions with global scope) to point
2384 to the .opd entry. Then we could use that dynamic symbol in
2385 this relocation.
2386
2387 Or we could do something sensible, not munge the symbol's
2388 address and instead just use a different symbol to reference
2389 the .opd entry. At least that seems sensible until you
2390 realize there's no local dynamic symbols we can use for that
2391 purpose. Thus the hair in the check_relocs routine.
2392
2393 We use a section symbol recorded by check_relocs as the
2394 base symbol for the relocation. The addend is the difference
2395 between the section symbol and the address of the .opd entry. */
2396 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2397 {
2398 bfd_vma value, value2;
2399
2400 /* First compute the address of the opd entry for this symbol. */
2401 value = (dyn_h->opd_offset
2402 + hppa_info->opd_sec->output_section->vma
2403 + hppa_info->opd_sec->output_offset);
2404
2405 /* Compute the value of the start of the section with
2406 the relocation. */
2407 value2 = (rent->sec->output_section->vma
2408 + rent->sec->output_offset);
2409
2410 /* Compute the difference between the start of the section
2411 with the relocation and the opd entry. */
2412 value -= value2;
2413
2414 /* The result becomes the addend of the relocation. */
2415 rel.r_addend = value;
2416
2417 /* The section symbol becomes the symbol for the dynamic
2418 relocation. */
2419 dynindx
2420 = _bfd_elf_link_lookup_local_dynindx (info,
2421 rent->sec->owner,
2422 rent->sec_symndx);
2423 }
2424 else
2425 rel.r_addend = rent->addend;
2426
2427 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2428
2429 loc = hppa_info->other_rel_sec->contents;
2430 loc += (hppa_info->other_rel_sec->reloc_count++
2431 * sizeof (Elf64_External_Rela));
2432 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2433 &rel, loc);
2434 }
2435 }
2436
2437 return TRUE;
2438 }
2439
2440 /* Used to decide how to sort relocs in an optimal manner for the
2441 dynamic linker, before writing them out. */
2442
2443 static enum elf_reloc_type_class
2444 elf64_hppa_reloc_type_class (rela)
2445 const Elf_Internal_Rela *rela;
2446 {
2447 if (ELF64_R_SYM (rela->r_info) == 0)
2448 return reloc_class_relative;
2449
2450 switch ((int) ELF64_R_TYPE (rela->r_info))
2451 {
2452 case R_PARISC_IPLT:
2453 return reloc_class_plt;
2454 case R_PARISC_COPY:
2455 return reloc_class_copy;
2456 default:
2457 return reloc_class_normal;
2458 }
2459 }
2460
2461 /* Finish up the dynamic sections. */
2462
2463 static bfd_boolean
2464 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2465 bfd *output_bfd;
2466 struct bfd_link_info *info;
2467 {
2468 bfd *dynobj;
2469 asection *sdyn;
2470 struct elf64_hppa_link_hash_table *hppa_info;
2471
2472 hppa_info = elf64_hppa_hash_table (info);
2473
2474 /* Finalize the contents of the .opd section. */
2475 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2476 elf64_hppa_finalize_opd,
2477 info);
2478
2479 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2480 elf64_hppa_finalize_dynreloc,
2481 info);
2482
2483 /* Finalize the contents of the .dlt section. */
2484 dynobj = elf_hash_table (info)->dynobj;
2485 /* Finalize the contents of the .dlt section. */
2486 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2487 elf64_hppa_finalize_dlt,
2488 info);
2489
2490 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2491
2492 if (elf_hash_table (info)->dynamic_sections_created)
2493 {
2494 Elf64_External_Dyn *dyncon, *dynconend;
2495
2496 BFD_ASSERT (sdyn != NULL);
2497
2498 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2499 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2500 for (; dyncon < dynconend; dyncon++)
2501 {
2502 Elf_Internal_Dyn dyn;
2503 asection *s;
2504
2505 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2506
2507 switch (dyn.d_tag)
2508 {
2509 default:
2510 break;
2511
2512 case DT_HP_LOAD_MAP:
2513 /* Compute the absolute address of 16byte scratchpad area
2514 for the dynamic linker.
2515
2516 By convention the linker script will allocate the scratchpad
2517 area at the start of the .data section. So all we have to
2518 to is find the start of the .data section. */
2519 s = bfd_get_section_by_name (output_bfd, ".data");
2520 dyn.d_un.d_ptr = s->vma;
2521 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2522 break;
2523
2524 case DT_PLTGOT:
2525 /* HP's use PLTGOT to set the GOT register. */
2526 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2527 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2528 break;
2529
2530 case DT_JMPREL:
2531 s = hppa_info->plt_rel_sec;
2532 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2533 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2534 break;
2535
2536 case DT_PLTRELSZ:
2537 s = hppa_info->plt_rel_sec;
2538 dyn.d_un.d_val = s->_raw_size;
2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2540 break;
2541
2542 case DT_RELA:
2543 s = hppa_info->other_rel_sec;
2544 if (! s || ! s->_raw_size)
2545 s = hppa_info->dlt_rel_sec;
2546 if (! s || ! s->_raw_size)
2547 s = hppa_info->opd_rel_sec;
2548 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2549 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2550 break;
2551
2552 case DT_RELASZ:
2553 s = hppa_info->other_rel_sec;
2554 dyn.d_un.d_val = s->_raw_size;
2555 s = hppa_info->dlt_rel_sec;
2556 dyn.d_un.d_val += s->_raw_size;
2557 s = hppa_info->opd_rel_sec;
2558 dyn.d_un.d_val += s->_raw_size;
2559 /* There is some question about whether or not the size of
2560 the PLT relocs should be included here. HP's tools do
2561 it, so we'll emulate them. */
2562 s = hppa_info->plt_rel_sec;
2563 dyn.d_un.d_val += s->_raw_size;
2564 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2565 break;
2566
2567 }
2568 }
2569 }
2570
2571 return TRUE;
2572 }
2573
2574 /* Return the number of additional phdrs we will need.
2575
2576 The generic ELF code only creates PT_PHDRs for executables. The HP
2577 dynamic linker requires PT_PHDRs for dynamic libraries too.
2578
2579 This routine indicates that the backend needs one additional program
2580 header for that case.
2581
2582 Note we do not have access to the link info structure here, so we have
2583 to guess whether or not we are building a shared library based on the
2584 existence of a .interp section. */
2585
2586 static int
2587 elf64_hppa_additional_program_headers (abfd)
2588 bfd *abfd;
2589 {
2590 asection *s;
2591
2592 /* If we are creating a shared library, then we have to create a
2593 PT_PHDR segment. HP's dynamic linker chokes without it. */
2594 s = bfd_get_section_by_name (abfd, ".interp");
2595 if (! s)
2596 return 1;
2597 return 0;
2598 }
2599
2600 /* Allocate and initialize any program headers required by this
2601 specific backend.
2602
2603 The generic ELF code only creates PT_PHDRs for executables. The HP
2604 dynamic linker requires PT_PHDRs for dynamic libraries too.
2605
2606 This allocates the PT_PHDR and initializes it in a manner suitable
2607 for the HP linker.
2608
2609 Note we do not have access to the link info structure here, so we have
2610 to guess whether or not we are building a shared library based on the
2611 existence of a .interp section. */
2612
2613 static bfd_boolean
2614 elf64_hppa_modify_segment_map (abfd, info)
2615 bfd *abfd;
2616 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2617 {
2618 struct elf_segment_map *m;
2619 asection *s;
2620
2621 s = bfd_get_section_by_name (abfd, ".interp");
2622 if (! s)
2623 {
2624 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2625 if (m->p_type == PT_PHDR)
2626 break;
2627 if (m == NULL)
2628 {
2629 m = ((struct elf_segment_map *)
2630 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2631 if (m == NULL)
2632 return FALSE;
2633
2634 m->p_type = PT_PHDR;
2635 m->p_flags = PF_R | PF_X;
2636 m->p_flags_valid = 1;
2637 m->p_paddr_valid = 1;
2638 m->includes_phdrs = 1;
2639
2640 m->next = elf_tdata (abfd)->segment_map;
2641 elf_tdata (abfd)->segment_map = m;
2642 }
2643 }
2644
2645 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2646 if (m->p_type == PT_LOAD)
2647 {
2648 unsigned int i;
2649
2650 for (i = 0; i < m->count; i++)
2651 {
2652 /* The code "hint" is not really a hint. It is a requirement
2653 for certain versions of the HP dynamic linker. Worse yet,
2654 it must be set even if the shared library does not have
2655 any code in its "text" segment (thus the check for .hash
2656 to catch this situation). */
2657 if (m->sections[i]->flags & SEC_CODE
2658 || (strcmp (m->sections[i]->name, ".hash") == 0))
2659 m->p_flags |= (PF_X | PF_HP_CODE);
2660 }
2661 }
2662
2663 return TRUE;
2664 }
2665
2666 /* Called when writing out an object file to decide the type of a
2667 symbol. */
2668 static int
2669 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2670 Elf_Internal_Sym *elf_sym;
2671 int type;
2672 {
2673 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2674 return STT_PARISC_MILLI;
2675 else
2676 return type;
2677 }
2678
2679 static struct bfd_elf_special_section const elf64_hppa_special_sections[]=
2680 {
2681 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2682 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 /* The hash bucket size is the standard one, namely 4. */
2687
2688 const struct elf_size_info hppa64_elf_size_info =
2689 {
2690 sizeof (Elf64_External_Ehdr),
2691 sizeof (Elf64_External_Phdr),
2692 sizeof (Elf64_External_Shdr),
2693 sizeof (Elf64_External_Rel),
2694 sizeof (Elf64_External_Rela),
2695 sizeof (Elf64_External_Sym),
2696 sizeof (Elf64_External_Dyn),
2697 sizeof (Elf_External_Note),
2698 4,
2699 1,
2700 64, 3,
2701 ELFCLASS64, EV_CURRENT,
2702 bfd_elf64_write_out_phdrs,
2703 bfd_elf64_write_shdrs_and_ehdr,
2704 bfd_elf64_write_relocs,
2705 bfd_elf64_swap_symbol_in,
2706 bfd_elf64_swap_symbol_out,
2707 bfd_elf64_slurp_reloc_table,
2708 bfd_elf64_slurp_symbol_table,
2709 bfd_elf64_swap_dyn_in,
2710 bfd_elf64_swap_dyn_out,
2711 bfd_elf64_swap_reloc_in,
2712 bfd_elf64_swap_reloc_out,
2713 bfd_elf64_swap_reloca_in,
2714 bfd_elf64_swap_reloca_out
2715 };
2716
2717 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2718 #define TARGET_BIG_NAME "elf64-hppa"
2719 #define ELF_ARCH bfd_arch_hppa
2720 #define ELF_MACHINE_CODE EM_PARISC
2721 /* This is not strictly correct. The maximum page size for PA2.0 is
2722 64M. But everything still uses 4k. */
2723 #define ELF_MAXPAGESIZE 0x1000
2724 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2725 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2726 #define elf_info_to_howto elf_hppa_info_to_howto
2727 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2728
2729 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2730 #define elf_backend_object_p elf64_hppa_object_p
2731 #define elf_backend_final_write_processing \
2732 elf_hppa_final_write_processing
2733 #define elf_backend_fake_sections elf_hppa_fake_sections
2734 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2735
2736 #define elf_backend_relocate_section elf_hppa_relocate_section
2737
2738 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2739
2740 #define elf_backend_create_dynamic_sections \
2741 elf64_hppa_create_dynamic_sections
2742 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2743
2744 #define elf_backend_adjust_dynamic_symbol \
2745 elf64_hppa_adjust_dynamic_symbol
2746
2747 #define elf_backend_size_dynamic_sections \
2748 elf64_hppa_size_dynamic_sections
2749
2750 #define elf_backend_finish_dynamic_symbol \
2751 elf64_hppa_finish_dynamic_symbol
2752 #define elf_backend_finish_dynamic_sections \
2753 elf64_hppa_finish_dynamic_sections
2754
2755 /* Stuff for the BFD linker: */
2756 #define bfd_elf64_bfd_link_hash_table_create \
2757 elf64_hppa_hash_table_create
2758
2759 #define elf_backend_check_relocs \
2760 elf64_hppa_check_relocs
2761
2762 #define elf_backend_size_info \
2763 hppa64_elf_size_info
2764
2765 #define elf_backend_additional_program_headers \
2766 elf64_hppa_additional_program_headers
2767
2768 #define elf_backend_modify_segment_map \
2769 elf64_hppa_modify_segment_map
2770
2771 #define elf_backend_link_output_symbol_hook \
2772 elf64_hppa_link_output_symbol_hook
2773
2774 #define elf_backend_want_got_plt 0
2775 #define elf_backend_plt_readonly 0
2776 #define elf_backend_want_plt_sym 0
2777 #define elf_backend_got_header_size 0
2778 #define elf_backend_type_change_ok TRUE
2779 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2780 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2781 #define elf_backend_rela_normal 1
2782 #define elf_backend_special_sections elf64_hppa_special_sections
2783
2784 #include "elf64-target.h"
2785
2786 #undef TARGET_BIG_SYM
2787 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2788 #undef TARGET_BIG_NAME
2789 #define TARGET_BIG_NAME "elf64-hppa-linux"
2790
2791 #undef elf_backend_special_sections
2792
2793 #define INCLUDED_TARGET_FILE 1
2794 #include "elf64-target.h"