Remove error_pre_print and quit_pre_print.
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 union {
2619 /* A copy of relocs before they are modified for --emit-relocs. */
2620 Elf_Internal_Rela *relocs;
2621
2622 /* Section contents. */
2623 bfd_byte *contents;
2624 } opd;
2625
2626 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2627 the reloc to be in the range -32768 to 32767. */
2628 unsigned int has_small_toc_reloc : 1;
2629
2630 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2631 instruction not one we handle. */
2632 unsigned int unexpected_toc_insn : 1;
2633 };
2634
2635 #define ppc64_elf_tdata(bfd) \
2636 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2637
2638 #define ppc64_tlsld_got(bfd) \
2639 (&ppc64_elf_tdata (bfd)->tlsld_got)
2640
2641 #define is_ppc64_elf(bfd) \
2642 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2643 && elf_object_id (bfd) == PPC64_ELF_DATA)
2644
2645 /* Override the generic function because we store some extras. */
2646
2647 static bfd_boolean
2648 ppc64_elf_mkobject (bfd *abfd)
2649 {
2650 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2651 PPC64_ELF_DATA);
2652 }
2653
2654 /* Fix bad default arch selected for a 64 bit input bfd when the
2655 default is 32 bit. */
2656
2657 static bfd_boolean
2658 ppc64_elf_object_p (bfd *abfd)
2659 {
2660 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2661 {
2662 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2663
2664 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2665 {
2666 /* Relies on arch after 32 bit default being 64 bit default. */
2667 abfd->arch_info = abfd->arch_info->next;
2668 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2669 }
2670 }
2671 return TRUE;
2672 }
2673
2674 /* Support for core dump NOTE sections. */
2675
2676 static bfd_boolean
2677 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2678 {
2679 size_t offset, size;
2680
2681 if (note->descsz != 504)
2682 return FALSE;
2683
2684 /* pr_cursig */
2685 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2686
2687 /* pr_pid */
2688 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2689
2690 /* pr_reg */
2691 offset = 112;
2692 size = 384;
2693
2694 /* Make a ".reg/999" section. */
2695 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2696 size, note->descpos + offset);
2697 }
2698
2699 static bfd_boolean
2700 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2701 {
2702 if (note->descsz != 136)
2703 return FALSE;
2704
2705 elf_tdata (abfd)->core->pid
2706 = bfd_get_32 (abfd, note->descdata + 24);
2707 elf_tdata (abfd)->core->program
2708 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2709 elf_tdata (abfd)->core->command
2710 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2711
2712 return TRUE;
2713 }
2714
2715 static char *
2716 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2717 ...)
2718 {
2719 switch (note_type)
2720 {
2721 default:
2722 return NULL;
2723
2724 case NT_PRPSINFO:
2725 {
2726 char data[136];
2727 va_list ap;
2728
2729 va_start (ap, note_type);
2730 memset (data, 0, sizeof (data));
2731 strncpy (data + 40, va_arg (ap, const char *), 16);
2732 strncpy (data + 56, va_arg (ap, const char *), 80);
2733 va_end (ap);
2734 return elfcore_write_note (abfd, buf, bufsiz,
2735 "CORE", note_type, data, sizeof (data));
2736 }
2737
2738 case NT_PRSTATUS:
2739 {
2740 char data[504];
2741 va_list ap;
2742 long pid;
2743 int cursig;
2744 const void *greg;
2745
2746 va_start (ap, note_type);
2747 memset (data, 0, 112);
2748 pid = va_arg (ap, long);
2749 bfd_put_32 (abfd, pid, data + 32);
2750 cursig = va_arg (ap, int);
2751 bfd_put_16 (abfd, cursig, data + 12);
2752 greg = va_arg (ap, const void *);
2753 memcpy (data + 112, greg, 384);
2754 memset (data + 496, 0, 8);
2755 va_end (ap);
2756 return elfcore_write_note (abfd, buf, bufsiz,
2757 "CORE", note_type, data, sizeof (data));
2758 }
2759 }
2760 }
2761
2762 /* Add extra PPC sections. */
2763
2764 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2765 {
2766 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2767 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2768 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2769 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2770 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2771 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2772 { NULL, 0, 0, 0, 0 }
2773 };
2774
2775 enum _ppc64_sec_type {
2776 sec_normal = 0,
2777 sec_opd = 1,
2778 sec_toc = 2
2779 };
2780
2781 struct _ppc64_elf_section_data
2782 {
2783 struct bfd_elf_section_data elf;
2784
2785 union
2786 {
2787 /* An array with one entry for each opd function descriptor. */
2788 struct _opd_sec_data
2789 {
2790 /* Points to the function code section for local opd entries. */
2791 asection **func_sec;
2792
2793 /* After editing .opd, adjust references to opd local syms. */
2794 long *adjust;
2795 } opd;
2796
2797 /* An array for toc sections, indexed by offset/8. */
2798 struct _toc_sec_data
2799 {
2800 /* Specifies the relocation symbol index used at a given toc offset. */
2801 unsigned *symndx;
2802
2803 /* And the relocation addend. */
2804 bfd_vma *add;
2805 } toc;
2806 } u;
2807
2808 enum _ppc64_sec_type sec_type:2;
2809
2810 /* Flag set when small branches are detected. Used to
2811 select suitable defaults for the stub group size. */
2812 unsigned int has_14bit_branch:1;
2813 };
2814
2815 #define ppc64_elf_section_data(sec) \
2816 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2817
2818 static bfd_boolean
2819 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2820 {
2821 if (!sec->used_by_bfd)
2822 {
2823 struct _ppc64_elf_section_data *sdata;
2824 bfd_size_type amt = sizeof (*sdata);
2825
2826 sdata = bfd_zalloc (abfd, amt);
2827 if (sdata == NULL)
2828 return FALSE;
2829 sec->used_by_bfd = sdata;
2830 }
2831
2832 return _bfd_elf_new_section_hook (abfd, sec);
2833 }
2834
2835 static struct _opd_sec_data *
2836 get_opd_info (asection * sec)
2837 {
2838 if (sec != NULL
2839 && ppc64_elf_section_data (sec) != NULL
2840 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2841 return &ppc64_elf_section_data (sec)->u.opd;
2842 return NULL;
2843 }
2844 \f
2845 /* Parameters for the qsort hook. */
2846 static bfd_boolean synthetic_relocatable;
2847
2848 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2849
2850 static int
2851 compare_symbols (const void *ap, const void *bp)
2852 {
2853 const asymbol *a = * (const asymbol **) ap;
2854 const asymbol *b = * (const asymbol **) bp;
2855
2856 /* Section symbols first. */
2857 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2858 return -1;
2859 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2860 return 1;
2861
2862 /* then .opd symbols. */
2863 if (strcmp (a->section->name, ".opd") == 0
2864 && strcmp (b->section->name, ".opd") != 0)
2865 return -1;
2866 if (strcmp (a->section->name, ".opd") != 0
2867 && strcmp (b->section->name, ".opd") == 0)
2868 return 1;
2869
2870 /* then other code symbols. */
2871 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2872 == (SEC_CODE | SEC_ALLOC)
2873 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2874 != (SEC_CODE | SEC_ALLOC))
2875 return -1;
2876
2877 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2878 != (SEC_CODE | SEC_ALLOC)
2879 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2880 == (SEC_CODE | SEC_ALLOC))
2881 return 1;
2882
2883 if (synthetic_relocatable)
2884 {
2885 if (a->section->id < b->section->id)
2886 return -1;
2887
2888 if (a->section->id > b->section->id)
2889 return 1;
2890 }
2891
2892 if (a->value + a->section->vma < b->value + b->section->vma)
2893 return -1;
2894
2895 if (a->value + a->section->vma > b->value + b->section->vma)
2896 return 1;
2897
2898 /* For syms with the same value, prefer strong dynamic global function
2899 syms over other syms. */
2900 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2901 return -1;
2902
2903 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2904 return 1;
2905
2906 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2907 return -1;
2908
2909 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2910 return 1;
2911
2912 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2913 return -1;
2914
2915 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2916 return 1;
2917
2918 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2919 return -1;
2920
2921 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2922 return 1;
2923
2924 return 0;
2925 }
2926
2927 /* Search SYMS for a symbol of the given VALUE. */
2928
2929 static asymbol *
2930 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2931 {
2932 long mid;
2933
2934 if (id == -1)
2935 {
2936 while (lo < hi)
2937 {
2938 mid = (lo + hi) >> 1;
2939 if (syms[mid]->value + syms[mid]->section->vma < value)
2940 lo = mid + 1;
2941 else if (syms[mid]->value + syms[mid]->section->vma > value)
2942 hi = mid;
2943 else
2944 return syms[mid];
2945 }
2946 }
2947 else
2948 {
2949 while (lo < hi)
2950 {
2951 mid = (lo + hi) >> 1;
2952 if (syms[mid]->section->id < id)
2953 lo = mid + 1;
2954 else if (syms[mid]->section->id > id)
2955 hi = mid;
2956 else if (syms[mid]->value < value)
2957 lo = mid + 1;
2958 else if (syms[mid]->value > value)
2959 hi = mid;
2960 else
2961 return syms[mid];
2962 }
2963 }
2964 return NULL;
2965 }
2966
2967 static bfd_boolean
2968 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2969 {
2970 bfd_vma vma = *(bfd_vma *) ptr;
2971 return ((section->flags & SEC_ALLOC) != 0
2972 && section->vma <= vma
2973 && vma < section->vma + section->size);
2974 }
2975
2976 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2977 entry syms. Also generate @plt symbols for the glink branch table. */
2978
2979 static long
2980 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2981 long static_count, asymbol **static_syms,
2982 long dyn_count, asymbol **dyn_syms,
2983 asymbol **ret)
2984 {
2985 asymbol *s;
2986 long i;
2987 long count;
2988 char *names;
2989 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2990 asection *opd;
2991 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2992 asymbol **syms;
2993
2994 *ret = NULL;
2995
2996 opd = bfd_get_section_by_name (abfd, ".opd");
2997 if (opd == NULL)
2998 return 0;
2999
3000 symcount = static_count;
3001 if (!relocatable)
3002 symcount += dyn_count;
3003 if (symcount == 0)
3004 return 0;
3005
3006 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3007 if (syms == NULL)
3008 return -1;
3009
3010 if (!relocatable && static_count != 0 && dyn_count != 0)
3011 {
3012 /* Use both symbol tables. */
3013 memcpy (syms, static_syms, static_count * sizeof (*syms));
3014 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3015 }
3016 else if (!relocatable && static_count == 0)
3017 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3018 else
3019 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3020
3021 synthetic_relocatable = relocatable;
3022 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3023
3024 if (!relocatable && symcount > 1)
3025 {
3026 long j;
3027 /* Trim duplicate syms, since we may have merged the normal and
3028 dynamic symbols. Actually, we only care about syms that have
3029 different values, so trim any with the same value. */
3030 for (i = 1, j = 1; i < symcount; ++i)
3031 if (syms[i - 1]->value + syms[i - 1]->section->vma
3032 != syms[i]->value + syms[i]->section->vma)
3033 syms[j++] = syms[i];
3034 symcount = j;
3035 }
3036
3037 i = 0;
3038 if (strcmp (syms[i]->section->name, ".opd") == 0)
3039 ++i;
3040 codesecsym = i;
3041
3042 for (; i < symcount; ++i)
3043 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 codesecsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3051 break;
3052 secsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if (strcmp (syms[i]->section->name, ".opd") != 0)
3056 break;
3057 opdsymend = i;
3058
3059 for (; i < symcount; ++i)
3060 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3061 != (SEC_CODE | SEC_ALLOC))
3062 break;
3063 symcount = i;
3064
3065 count = 0;
3066
3067 if (relocatable)
3068 {
3069 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3070 arelent *r;
3071 size_t size;
3072 long relcount;
3073
3074 if (opdsymend == secsymend)
3075 goto done;
3076
3077 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3078 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3079 if (relcount == 0)
3080 goto done;
3081
3082 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3083 {
3084 count = -1;
3085 goto done;
3086 }
3087
3088 size = 0;
3089 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3090 {
3091 asymbol *sym;
3092
3093 while (r < opd->relocation + relcount
3094 && r->address < syms[i]->value + opd->vma)
3095 ++r;
3096
3097 if (r == opd->relocation + relcount)
3098 break;
3099
3100 if (r->address != syms[i]->value + opd->vma)
3101 continue;
3102
3103 if (r->howto->type != R_PPC64_ADDR64)
3104 continue;
3105
3106 sym = *r->sym_ptr_ptr;
3107 if (!sym_exists_at (syms, opdsymend, symcount,
3108 sym->section->id, sym->value + r->addend))
3109 {
3110 ++count;
3111 size += sizeof (asymbol);
3112 size += strlen (syms[i]->name) + 2;
3113 }
3114 }
3115
3116 s = *ret = bfd_malloc (size);
3117 if (s == NULL)
3118 {
3119 count = -1;
3120 goto done;
3121 }
3122
3123 names = (char *) (s + count);
3124
3125 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3126 {
3127 asymbol *sym;
3128
3129 while (r < opd->relocation + relcount
3130 && r->address < syms[i]->value + opd->vma)
3131 ++r;
3132
3133 if (r == opd->relocation + relcount)
3134 break;
3135
3136 if (r->address != syms[i]->value + opd->vma)
3137 continue;
3138
3139 if (r->howto->type != R_PPC64_ADDR64)
3140 continue;
3141
3142 sym = *r->sym_ptr_ptr;
3143 if (!sym_exists_at (syms, opdsymend, symcount,
3144 sym->section->id, sym->value + r->addend))
3145 {
3146 size_t len;
3147
3148 *s = *syms[i];
3149 s->flags |= BSF_SYNTHETIC;
3150 s->section = sym->section;
3151 s->value = sym->value + r->addend;
3152 s->name = names;
3153 *names++ = '.';
3154 len = strlen (syms[i]->name);
3155 memcpy (names, syms[i]->name, len + 1);
3156 names += len + 1;
3157 /* Have udata.p point back to the original symbol this
3158 synthetic symbol was derived from. */
3159 s->udata.p = syms[i];
3160 s++;
3161 }
3162 }
3163 }
3164 else
3165 {
3166 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3167 bfd_byte *contents;
3168 size_t size;
3169 long plt_count = 0;
3170 bfd_vma glink_vma = 0, resolv_vma = 0;
3171 asection *dynamic, *glink = NULL, *relplt = NULL;
3172 arelent *p;
3173
3174 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3175 {
3176 if (contents)
3177 {
3178 free_contents_and_exit:
3179 free (contents);
3180 }
3181 count = -1;
3182 goto done;
3183 }
3184
3185 size = 0;
3186 for (i = secsymend; i < opdsymend; ++i)
3187 {
3188 bfd_vma ent;
3189
3190 /* Ignore bogus symbols. */
3191 if (syms[i]->value > opd->size - 8)
3192 continue;
3193
3194 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3195 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3196 {
3197 ++count;
3198 size += sizeof (asymbol);
3199 size += strlen (syms[i]->name) + 2;
3200 }
3201 }
3202
3203 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3204 if (dyn_count != 0
3205 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3206 {
3207 bfd_byte *dynbuf, *extdyn, *extdynend;
3208 size_t extdynsize;
3209 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3210
3211 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3212 goto free_contents_and_exit;
3213
3214 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3215 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3216
3217 extdyn = dynbuf;
3218 extdynend = extdyn + dynamic->size;
3219 for (; extdyn < extdynend; extdyn += extdynsize)
3220 {
3221 Elf_Internal_Dyn dyn;
3222 (*swap_dyn_in) (abfd, extdyn, &dyn);
3223
3224 if (dyn.d_tag == DT_NULL)
3225 break;
3226
3227 if (dyn.d_tag == DT_PPC64_GLINK)
3228 {
3229 /* The first glink stub starts at offset 32; see comment in
3230 ppc64_elf_finish_dynamic_sections. */
3231 glink_vma = dyn.d_un.d_val + 32;
3232 /* The .glink section usually does not survive the final
3233 link; search for the section (usually .text) where the
3234 glink stubs now reside. */
3235 glink = bfd_sections_find_if (abfd, section_covers_vma,
3236 &glink_vma);
3237 break;
3238 }
3239 }
3240
3241 free (dynbuf);
3242 }
3243
3244 if (glink != NULL)
3245 {
3246 /* Determine __glink trampoline by reading the relative branch
3247 from the first glink stub. */
3248 bfd_byte buf[4];
3249 if (bfd_get_section_contents (abfd, glink, buf,
3250 glink_vma + 4 - glink->vma, 4))
3251 {
3252 unsigned int insn = bfd_get_32 (abfd, buf);
3253 insn ^= B_DOT;
3254 if ((insn & ~0x3fffffc) == 0)
3255 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3256 }
3257
3258 if (resolv_vma)
3259 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3260
3261 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3262 if (relplt != NULL)
3263 {
3264 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3265 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3266 goto free_contents_and_exit;
3267
3268 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3269 size += plt_count * sizeof (asymbol);
3270
3271 p = relplt->relocation;
3272 for (i = 0; i < plt_count; i++, p++)
3273 {
3274 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3275 if (p->addend != 0)
3276 size += sizeof ("+0x") - 1 + 16;
3277 }
3278 }
3279 }
3280
3281 s = *ret = bfd_malloc (size);
3282 if (s == NULL)
3283 goto free_contents_and_exit;
3284
3285 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3286
3287 for (i = secsymend; i < opdsymend; ++i)
3288 {
3289 bfd_vma ent;
3290
3291 if (syms[i]->value > opd->size - 8)
3292 continue;
3293
3294 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3295 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3296 {
3297 long lo, hi;
3298 size_t len;
3299 asection *sec = abfd->sections;
3300
3301 *s = *syms[i];
3302 lo = codesecsym;
3303 hi = codesecsymend;
3304 while (lo < hi)
3305 {
3306 long mid = (lo + hi) >> 1;
3307 if (syms[mid]->section->vma < ent)
3308 lo = mid + 1;
3309 else if (syms[mid]->section->vma > ent)
3310 hi = mid;
3311 else
3312 {
3313 sec = syms[mid]->section;
3314 break;
3315 }
3316 }
3317
3318 if (lo >= hi && lo > codesecsym)
3319 sec = syms[lo - 1]->section;
3320
3321 for (; sec != NULL; sec = sec->next)
3322 {
3323 if (sec->vma > ent)
3324 break;
3325 /* SEC_LOAD may not be set if SEC is from a separate debug
3326 info file. */
3327 if ((sec->flags & SEC_ALLOC) == 0)
3328 break;
3329 if ((sec->flags & SEC_CODE) != 0)
3330 s->section = sec;
3331 }
3332 s->flags |= BSF_SYNTHETIC;
3333 s->value = ent - s->section->vma;
3334 s->name = names;
3335 *names++ = '.';
3336 len = strlen (syms[i]->name);
3337 memcpy (names, syms[i]->name, len + 1);
3338 names += len + 1;
3339 /* Have udata.p point back to the original symbol this
3340 synthetic symbol was derived from. */
3341 s->udata.p = syms[i];
3342 s++;
3343 }
3344 }
3345 free (contents);
3346
3347 if (glink != NULL && relplt != NULL)
3348 {
3349 if (resolv_vma)
3350 {
3351 /* Add a symbol for the main glink trampoline. */
3352 memset (s, 0, sizeof *s);
3353 s->the_bfd = abfd;
3354 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3355 s->section = glink;
3356 s->value = resolv_vma - glink->vma;
3357 s->name = names;
3358 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3359 names += sizeof ("__glink_PLTresolve");
3360 s++;
3361 count++;
3362 }
3363
3364 /* FIXME: It would be very much nicer to put sym@plt on the
3365 stub rather than on the glink branch table entry. The
3366 objdump disassembler would then use a sensible symbol
3367 name on plt calls. The difficulty in doing so is
3368 a) finding the stubs, and,
3369 b) matching stubs against plt entries, and,
3370 c) there can be multiple stubs for a given plt entry.
3371
3372 Solving (a) could be done by code scanning, but older
3373 ppc64 binaries used different stubs to current code.
3374 (b) is the tricky one since you need to known the toc
3375 pointer for at least one function that uses a pic stub to
3376 be able to calculate the plt address referenced.
3377 (c) means gdb would need to set multiple breakpoints (or
3378 find the glink branch itself) when setting breakpoints
3379 for pending shared library loads. */
3380 p = relplt->relocation;
3381 for (i = 0; i < plt_count; i++, p++)
3382 {
3383 size_t len;
3384
3385 *s = **p->sym_ptr_ptr;
3386 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3387 we are defining a symbol, ensure one of them is set. */
3388 if ((s->flags & BSF_LOCAL) == 0)
3389 s->flags |= BSF_GLOBAL;
3390 s->flags |= BSF_SYNTHETIC;
3391 s->section = glink;
3392 s->value = glink_vma - glink->vma;
3393 s->name = names;
3394 s->udata.p = NULL;
3395 len = strlen ((*p->sym_ptr_ptr)->name);
3396 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3397 names += len;
3398 if (p->addend != 0)
3399 {
3400 memcpy (names, "+0x", sizeof ("+0x") - 1);
3401 names += sizeof ("+0x") - 1;
3402 bfd_sprintf_vma (abfd, names, p->addend);
3403 names += strlen (names);
3404 }
3405 memcpy (names, "@plt", sizeof ("@plt"));
3406 names += sizeof ("@plt");
3407 s++;
3408 glink_vma += 8;
3409 if (i >= 0x8000)
3410 glink_vma += 4;
3411 }
3412 count += plt_count;
3413 }
3414 }
3415
3416 done:
3417 free (syms);
3418 return count;
3419 }
3420 \f
3421 /* The following functions are specific to the ELF linker, while
3422 functions above are used generally. Those named ppc64_elf_* are
3423 called by the main ELF linker code. They appear in this file more
3424 or less in the order in which they are called. eg.
3425 ppc64_elf_check_relocs is called early in the link process,
3426 ppc64_elf_finish_dynamic_sections is one of the last functions
3427 called.
3428
3429 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3430 functions have both a function code symbol and a function descriptor
3431 symbol. A call to foo in a relocatable object file looks like:
3432
3433 . .text
3434 . x:
3435 . bl .foo
3436 . nop
3437
3438 The function definition in another object file might be:
3439
3440 . .section .opd
3441 . foo: .quad .foo
3442 . .quad .TOC.@tocbase
3443 . .quad 0
3444 .
3445 . .text
3446 . .foo: blr
3447
3448 When the linker resolves the call during a static link, the branch
3449 unsurprisingly just goes to .foo and the .opd information is unused.
3450 If the function definition is in a shared library, things are a little
3451 different: The call goes via a plt call stub, the opd information gets
3452 copied to the plt, and the linker patches the nop.
3453
3454 . x:
3455 . bl .foo_stub
3456 . ld 2,40(1)
3457 .
3458 .
3459 . .foo_stub:
3460 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3461 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3462 . std 2,40(1) # this is the general idea
3463 . ld 11,0(12)
3464 . ld 2,8(12)
3465 . mtctr 11
3466 . ld 11,16(12)
3467 . bctr
3468 .
3469 . .section .plt
3470 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3471
3472 The "reloc ()" notation is supposed to indicate that the linker emits
3473 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3474 copying.
3475
3476 What are the difficulties here? Well, firstly, the relocations
3477 examined by the linker in check_relocs are against the function code
3478 sym .foo, while the dynamic relocation in the plt is emitted against
3479 the function descriptor symbol, foo. Somewhere along the line, we need
3480 to carefully copy dynamic link information from one symbol to the other.
3481 Secondly, the generic part of the elf linker will make .foo a dynamic
3482 symbol as is normal for most other backends. We need foo dynamic
3483 instead, at least for an application final link. However, when
3484 creating a shared library containing foo, we need to have both symbols
3485 dynamic so that references to .foo are satisfied during the early
3486 stages of linking. Otherwise the linker might decide to pull in a
3487 definition from some other object, eg. a static library.
3488
3489 Update: As of August 2004, we support a new convention. Function
3490 calls may use the function descriptor symbol, ie. "bl foo". This
3491 behaves exactly as "bl .foo". */
3492
3493 /* Of those relocs that might be copied as dynamic relocs, this function
3494 selects those that must be copied when linking a shared library,
3495 even when the symbol is local. */
3496
3497 static int
3498 must_be_dyn_reloc (struct bfd_link_info *info,
3499 enum elf_ppc64_reloc_type r_type)
3500 {
3501 switch (r_type)
3502 {
3503 default:
3504 return 1;
3505
3506 case R_PPC64_REL32:
3507 case R_PPC64_REL64:
3508 case R_PPC64_REL30:
3509 return 0;
3510
3511 case R_PPC64_TPREL16:
3512 case R_PPC64_TPREL16_LO:
3513 case R_PPC64_TPREL16_HI:
3514 case R_PPC64_TPREL16_HA:
3515 case R_PPC64_TPREL16_DS:
3516 case R_PPC64_TPREL16_LO_DS:
3517 case R_PPC64_TPREL16_HIGHER:
3518 case R_PPC64_TPREL16_HIGHERA:
3519 case R_PPC64_TPREL16_HIGHEST:
3520 case R_PPC64_TPREL16_HIGHESTA:
3521 case R_PPC64_TPREL64:
3522 return !info->executable;
3523 }
3524 }
3525
3526 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3527 copying dynamic variables from a shared lib into an app's dynbss
3528 section, and instead use a dynamic relocation to point into the
3529 shared lib. With code that gcc generates, it's vital that this be
3530 enabled; In the PowerPC64 ABI, the address of a function is actually
3531 the address of a function descriptor, which resides in the .opd
3532 section. gcc uses the descriptor directly rather than going via the
3533 GOT as some other ABI's do, which means that initialized function
3534 pointers must reference the descriptor. Thus, a function pointer
3535 initialized to the address of a function in a shared library will
3536 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3537 redefines the function descriptor symbol to point to the copy. This
3538 presents a problem as a plt entry for that function is also
3539 initialized from the function descriptor symbol and the copy reloc
3540 may not be initialized first. */
3541 #define ELIMINATE_COPY_RELOCS 1
3542
3543 /* Section name for stubs is the associated section name plus this
3544 string. */
3545 #define STUB_SUFFIX ".stub"
3546
3547 /* Linker stubs.
3548 ppc_stub_long_branch:
3549 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3550 destination, but a 24 bit branch in a stub section will reach.
3551 . b dest
3552
3553 ppc_stub_plt_branch:
3554 Similar to the above, but a 24 bit branch in the stub section won't
3555 reach its destination.
3556 . addis %r12,%r2,xxx@toc@ha
3557 . ld %r11,xxx@toc@l(%r12)
3558 . mtctr %r11
3559 . bctr
3560
3561 ppc_stub_plt_call:
3562 Used to call a function in a shared library. If it so happens that
3563 the plt entry referenced crosses a 64k boundary, then an extra
3564 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3565 . addis %r12,%r2,xxx@toc@ha
3566 . std %r2,40(%r1)
3567 . ld %r11,xxx+0@toc@l(%r12)
3568 . mtctr %r11
3569 . ld %r2,xxx+8@toc@l(%r12)
3570 . ld %r11,xxx+16@toc@l(%r12)
3571 . bctr
3572
3573 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3574 code to adjust the value and save r2 to support multiple toc sections.
3575 A ppc_stub_long_branch with an r2 offset looks like:
3576 . std %r2,40(%r1)
3577 . addis %r2,%r2,off@ha
3578 . addi %r2,%r2,off@l
3579 . b dest
3580
3581 A ppc_stub_plt_branch with an r2 offset looks like:
3582 . std %r2,40(%r1)
3583 . addis %r12,%r2,xxx@toc@ha
3584 . ld %r11,xxx@toc@l(%r12)
3585 . addis %r2,%r2,off@ha
3586 . addi %r2,%r2,off@l
3587 . mtctr %r11
3588 . bctr
3589
3590 In cases where the "addis" instruction would add zero, the "addis" is
3591 omitted and following instructions modified slightly in some cases.
3592 */
3593
3594 enum ppc_stub_type {
3595 ppc_stub_none,
3596 ppc_stub_long_branch,
3597 ppc_stub_long_branch_r2off,
3598 ppc_stub_plt_branch,
3599 ppc_stub_plt_branch_r2off,
3600 ppc_stub_plt_call,
3601 ppc_stub_plt_call_r2save
3602 };
3603
3604 struct ppc_stub_hash_entry {
3605
3606 /* Base hash table entry structure. */
3607 struct bfd_hash_entry root;
3608
3609 enum ppc_stub_type stub_type;
3610
3611 /* The stub section. */
3612 asection *stub_sec;
3613
3614 /* Offset within stub_sec of the beginning of this stub. */
3615 bfd_vma stub_offset;
3616
3617 /* Given the symbol's value and its section we can determine its final
3618 value when building the stubs (so the stub knows where to jump. */
3619 bfd_vma target_value;
3620 asection *target_section;
3621
3622 /* The symbol table entry, if any, that this was derived from. */
3623 struct ppc_link_hash_entry *h;
3624 struct plt_entry *plt_ent;
3625
3626 /* Where this stub is being called from, or, in the case of combined
3627 stub sections, the first input section in the group. */
3628 asection *id_sec;
3629 };
3630
3631 struct ppc_branch_hash_entry {
3632
3633 /* Base hash table entry structure. */
3634 struct bfd_hash_entry root;
3635
3636 /* Offset within branch lookup table. */
3637 unsigned int offset;
3638
3639 /* Generation marker. */
3640 unsigned int iter;
3641 };
3642
3643 /* Used to track dynamic relocations for local symbols. */
3644 struct ppc_dyn_relocs
3645 {
3646 struct ppc_dyn_relocs *next;
3647
3648 /* The input section of the reloc. */
3649 asection *sec;
3650
3651 /* Total number of relocs copied for the input section. */
3652 unsigned int count : 31;
3653
3654 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3655 unsigned int ifunc : 1;
3656 };
3657
3658 struct ppc_link_hash_entry
3659 {
3660 struct elf_link_hash_entry elf;
3661
3662 union {
3663 /* A pointer to the most recently used stub hash entry against this
3664 symbol. */
3665 struct ppc_stub_hash_entry *stub_cache;
3666
3667 /* A pointer to the next symbol starting with a '.' */
3668 struct ppc_link_hash_entry *next_dot_sym;
3669 } u;
3670
3671 /* Track dynamic relocs copied for this symbol. */
3672 struct elf_dyn_relocs *dyn_relocs;
3673
3674 /* Link between function code and descriptor symbols. */
3675 struct ppc_link_hash_entry *oh;
3676
3677 /* Flag function code and descriptor symbols. */
3678 unsigned int is_func:1;
3679 unsigned int is_func_descriptor:1;
3680 unsigned int fake:1;
3681
3682 /* Whether global opd/toc sym has been adjusted or not.
3683 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3684 should be set for all globals defined in any opd/toc section. */
3685 unsigned int adjust_done:1;
3686
3687 /* Set if we twiddled this symbol to weak at some stage. */
3688 unsigned int was_undefined:1;
3689
3690 /* Contexts in which symbol is used in the GOT (or TOC).
3691 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3692 corresponding relocs are encountered during check_relocs.
3693 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3694 indicate the corresponding GOT entry type is not needed.
3695 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3696 a TPREL one. We use a separate flag rather than setting TPREL
3697 just for convenience in distinguishing the two cases. */
3698 #define TLS_GD 1 /* GD reloc. */
3699 #define TLS_LD 2 /* LD reloc. */
3700 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3701 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3702 #define TLS_TLS 16 /* Any TLS reloc. */
3703 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3704 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3705 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3706 unsigned char tls_mask;
3707 };
3708
3709 /* ppc64 ELF linker hash table. */
3710
3711 struct ppc_link_hash_table
3712 {
3713 struct elf_link_hash_table elf;
3714
3715 /* The stub hash table. */
3716 struct bfd_hash_table stub_hash_table;
3717
3718 /* Another hash table for plt_branch stubs. */
3719 struct bfd_hash_table branch_hash_table;
3720
3721 /* Hash table for function prologue tocsave. */
3722 htab_t tocsave_htab;
3723
3724 /* Linker stub bfd. */
3725 bfd *stub_bfd;
3726
3727 /* Linker call-backs. */
3728 asection * (*add_stub_section) (const char *, asection *);
3729 void (*layout_sections_again) (void);
3730
3731 /* Array to keep track of which stub sections have been created, and
3732 information on stub grouping. */
3733 struct map_stub {
3734 /* This is the section to which stubs in the group will be attached. */
3735 asection *link_sec;
3736 /* The stub section. */
3737 asection *stub_sec;
3738 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3739 bfd_vma toc_off;
3740 } *stub_group;
3741
3742 /* Temp used when calculating TOC pointers. */
3743 bfd_vma toc_curr;
3744 bfd *toc_bfd;
3745 asection *toc_first_sec;
3746
3747 /* Highest input section id. */
3748 int top_id;
3749
3750 /* Highest output section index. */
3751 int top_index;
3752
3753 /* Used when adding symbols. */
3754 struct ppc_link_hash_entry *dot_syms;
3755
3756 /* List of input sections for each output section. */
3757 asection **input_list;
3758
3759 /* Short-cuts to get to dynamic linker sections. */
3760 asection *got;
3761 asection *plt;
3762 asection *relplt;
3763 asection *iplt;
3764 asection *reliplt;
3765 asection *dynbss;
3766 asection *relbss;
3767 asection *glink;
3768 asection *sfpr;
3769 asection *brlt;
3770 asection *relbrlt;
3771 asection *glink_eh_frame;
3772
3773 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3774 struct ppc_link_hash_entry *tls_get_addr;
3775 struct ppc_link_hash_entry *tls_get_addr_fd;
3776
3777 /* The size of reliplt used by got entry relocs. */
3778 bfd_size_type got_reli_size;
3779
3780 /* Statistics. */
3781 unsigned long stub_count[ppc_stub_plt_call_r2save];
3782
3783 /* Number of stubs against global syms. */
3784 unsigned long stub_globals;
3785
3786 /* Alignment of PLT call stubs. */
3787 unsigned int plt_stub_align:4;
3788
3789 /* Set if PLT call stubs should load r11. */
3790 unsigned int plt_static_chain:1;
3791
3792 /* Set if PLT call stubs need a read-read barrier. */
3793 unsigned int plt_thread_safe:1;
3794
3795 /* Set if we should emit symbols for stubs. */
3796 unsigned int emit_stub_syms:1;
3797
3798 /* Set if __tls_get_addr optimization should not be done. */
3799 unsigned int no_tls_get_addr_opt:1;
3800
3801 /* Support for multiple toc sections. */
3802 unsigned int do_multi_toc:1;
3803 unsigned int multi_toc_needed:1;
3804 unsigned int second_toc_pass:1;
3805 unsigned int do_toc_opt:1;
3806
3807 /* Set on error. */
3808 unsigned int stub_error:1;
3809
3810 /* Temp used by ppc64_elf_process_dot_syms. */
3811 unsigned int twiddled_syms:1;
3812
3813 /* Incremented every time we size stubs. */
3814 unsigned int stub_iteration;
3815
3816 /* Small local sym cache. */
3817 struct sym_cache sym_cache;
3818 };
3819
3820 /* Rename some of the generic section flags to better document how they
3821 are used here. */
3822
3823 /* Nonzero if this section has TLS related relocations. */
3824 #define has_tls_reloc sec_flg0
3825
3826 /* Nonzero if this section has a call to __tls_get_addr. */
3827 #define has_tls_get_addr_call sec_flg1
3828
3829 /* Nonzero if this section has any toc or got relocs. */
3830 #define has_toc_reloc sec_flg2
3831
3832 /* Nonzero if this section has a call to another section that uses
3833 the toc or got. */
3834 #define makes_toc_func_call sec_flg3
3835
3836 /* Recursion protection when determining above flag. */
3837 #define call_check_in_progress sec_flg4
3838 #define call_check_done sec_flg5
3839
3840 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3841
3842 #define ppc_hash_table(p) \
3843 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3844 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3845
3846 #define ppc_stub_hash_lookup(table, string, create, copy) \
3847 ((struct ppc_stub_hash_entry *) \
3848 bfd_hash_lookup ((table), (string), (create), (copy)))
3849
3850 #define ppc_branch_hash_lookup(table, string, create, copy) \
3851 ((struct ppc_branch_hash_entry *) \
3852 bfd_hash_lookup ((table), (string), (create), (copy)))
3853
3854 /* Create an entry in the stub hash table. */
3855
3856 static struct bfd_hash_entry *
3857 stub_hash_newfunc (struct bfd_hash_entry *entry,
3858 struct bfd_hash_table *table,
3859 const char *string)
3860 {
3861 /* Allocate the structure if it has not already been allocated by a
3862 subclass. */
3863 if (entry == NULL)
3864 {
3865 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3866 if (entry == NULL)
3867 return entry;
3868 }
3869
3870 /* Call the allocation method of the superclass. */
3871 entry = bfd_hash_newfunc (entry, table, string);
3872 if (entry != NULL)
3873 {
3874 struct ppc_stub_hash_entry *eh;
3875
3876 /* Initialize the local fields. */
3877 eh = (struct ppc_stub_hash_entry *) entry;
3878 eh->stub_type = ppc_stub_none;
3879 eh->stub_sec = NULL;
3880 eh->stub_offset = 0;
3881 eh->target_value = 0;
3882 eh->target_section = NULL;
3883 eh->h = NULL;
3884 eh->id_sec = NULL;
3885 }
3886
3887 return entry;
3888 }
3889
3890 /* Create an entry in the branch hash table. */
3891
3892 static struct bfd_hash_entry *
3893 branch_hash_newfunc (struct bfd_hash_entry *entry,
3894 struct bfd_hash_table *table,
3895 const char *string)
3896 {
3897 /* Allocate the structure if it has not already been allocated by a
3898 subclass. */
3899 if (entry == NULL)
3900 {
3901 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3902 if (entry == NULL)
3903 return entry;
3904 }
3905
3906 /* Call the allocation method of the superclass. */
3907 entry = bfd_hash_newfunc (entry, table, string);
3908 if (entry != NULL)
3909 {
3910 struct ppc_branch_hash_entry *eh;
3911
3912 /* Initialize the local fields. */
3913 eh = (struct ppc_branch_hash_entry *) entry;
3914 eh->offset = 0;
3915 eh->iter = 0;
3916 }
3917
3918 return entry;
3919 }
3920
3921 /* Create an entry in a ppc64 ELF linker hash table. */
3922
3923 static struct bfd_hash_entry *
3924 link_hash_newfunc (struct bfd_hash_entry *entry,
3925 struct bfd_hash_table *table,
3926 const char *string)
3927 {
3928 /* Allocate the structure if it has not already been allocated by a
3929 subclass. */
3930 if (entry == NULL)
3931 {
3932 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3933 if (entry == NULL)
3934 return entry;
3935 }
3936
3937 /* Call the allocation method of the superclass. */
3938 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3939 if (entry != NULL)
3940 {
3941 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3942
3943 memset (&eh->u.stub_cache, 0,
3944 (sizeof (struct ppc_link_hash_entry)
3945 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3946
3947 /* When making function calls, old ABI code references function entry
3948 points (dot symbols), while new ABI code references the function
3949 descriptor symbol. We need to make any combination of reference and
3950 definition work together, without breaking archive linking.
3951
3952 For a defined function "foo" and an undefined call to "bar":
3953 An old object defines "foo" and ".foo", references ".bar" (possibly
3954 "bar" too).
3955 A new object defines "foo" and references "bar".
3956
3957 A new object thus has no problem with its undefined symbols being
3958 satisfied by definitions in an old object. On the other hand, the
3959 old object won't have ".bar" satisfied by a new object.
3960
3961 Keep a list of newly added dot-symbols. */
3962
3963 if (string[0] == '.')
3964 {
3965 struct ppc_link_hash_table *htab;
3966
3967 htab = (struct ppc_link_hash_table *) table;
3968 eh->u.next_dot_sym = htab->dot_syms;
3969 htab->dot_syms = eh;
3970 }
3971 }
3972
3973 return entry;
3974 }
3975
3976 struct tocsave_entry {
3977 asection *sec;
3978 bfd_vma offset;
3979 };
3980
3981 static hashval_t
3982 tocsave_htab_hash (const void *p)
3983 {
3984 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3985 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3986 }
3987
3988 static int
3989 tocsave_htab_eq (const void *p1, const void *p2)
3990 {
3991 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3992 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3993 return e1->sec == e2->sec && e1->offset == e2->offset;
3994 }
3995
3996 /* Create a ppc64 ELF linker hash table. */
3997
3998 static struct bfd_link_hash_table *
3999 ppc64_elf_link_hash_table_create (bfd *abfd)
4000 {
4001 struct ppc_link_hash_table *htab;
4002 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4003
4004 htab = bfd_zmalloc (amt);
4005 if (htab == NULL)
4006 return NULL;
4007
4008 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4009 sizeof (struct ppc_link_hash_entry),
4010 PPC64_ELF_DATA))
4011 {
4012 free (htab);
4013 return NULL;
4014 }
4015
4016 /* Init the stub hash table too. */
4017 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4018 sizeof (struct ppc_stub_hash_entry)))
4019 return NULL;
4020
4021 /* And the branch hash table. */
4022 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4023 sizeof (struct ppc_branch_hash_entry)))
4024 return NULL;
4025
4026 htab->tocsave_htab = htab_try_create (1024,
4027 tocsave_htab_hash,
4028 tocsave_htab_eq,
4029 NULL);
4030 if (htab->tocsave_htab == NULL)
4031 return NULL;
4032
4033 /* Initializing two fields of the union is just cosmetic. We really
4034 only care about glist, but when compiled on a 32-bit host the
4035 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4036 debugger inspection of these fields look nicer. */
4037 htab->elf.init_got_refcount.refcount = 0;
4038 htab->elf.init_got_refcount.glist = NULL;
4039 htab->elf.init_plt_refcount.refcount = 0;
4040 htab->elf.init_plt_refcount.glist = NULL;
4041 htab->elf.init_got_offset.offset = 0;
4042 htab->elf.init_got_offset.glist = NULL;
4043 htab->elf.init_plt_offset.offset = 0;
4044 htab->elf.init_plt_offset.glist = NULL;
4045
4046 return &htab->elf.root;
4047 }
4048
4049 /* Free the derived linker hash table. */
4050
4051 static void
4052 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4053 {
4054 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4055
4056 bfd_hash_table_free (&htab->stub_hash_table);
4057 bfd_hash_table_free (&htab->branch_hash_table);
4058 if (htab->tocsave_htab)
4059 htab_delete (htab->tocsave_htab);
4060 _bfd_elf_link_hash_table_free (hash);
4061 }
4062
4063 /* Create sections for linker generated code. */
4064
4065 static bfd_boolean
4066 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4067 {
4068 struct ppc_link_hash_table *htab;
4069 flagword flags;
4070
4071 htab = ppc_hash_table (info);
4072
4073 /* Create .sfpr for code to save and restore fp regs. */
4074 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4075 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4076 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4077 flags);
4078 if (htab->sfpr == NULL
4079 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4080 return FALSE;
4081
4082 /* Create .glink for lazy dynamic linking support. */
4083 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4084 flags);
4085 if (htab->glink == NULL
4086 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4087 return FALSE;
4088
4089 if (!info->no_ld_generated_unwind_info)
4090 {
4091 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4092 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4093 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4094 ".eh_frame",
4095 flags);
4096 if (htab->glink_eh_frame == NULL
4097 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4098 return FALSE;
4099 }
4100
4101 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4102 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4103 if (htab->iplt == NULL
4104 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4105 return FALSE;
4106
4107 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4108 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4109 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4110 ".rela.iplt",
4111 flags);
4112 if (htab->reliplt == NULL
4113 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4114 return FALSE;
4115
4116 /* Create branch lookup table for plt_branch stubs. */
4117 flags = (SEC_ALLOC | SEC_LOAD
4118 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4119 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4120 flags);
4121 if (htab->brlt == NULL
4122 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4123 return FALSE;
4124
4125 if (!info->shared)
4126 return TRUE;
4127
4128 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4129 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4130 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4131 ".rela.branch_lt",
4132 flags);
4133 if (htab->relbrlt == NULL
4134 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4135 return FALSE;
4136
4137 return TRUE;
4138 }
4139
4140 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4141
4142 bfd_boolean
4143 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4144 {
4145 struct ppc_link_hash_table *htab;
4146
4147 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4148
4149 /* Always hook our dynamic sections into the first bfd, which is the
4150 linker created stub bfd. This ensures that the GOT header is at
4151 the start of the output TOC section. */
4152 htab = ppc_hash_table (info);
4153 if (htab == NULL)
4154 return FALSE;
4155 htab->stub_bfd = abfd;
4156 htab->elf.dynobj = abfd;
4157
4158 if (info->relocatable)
4159 return TRUE;
4160
4161 return create_linkage_sections (htab->elf.dynobj, info);
4162 }
4163
4164 /* Build a name for an entry in the stub hash table. */
4165
4166 static char *
4167 ppc_stub_name (const asection *input_section,
4168 const asection *sym_sec,
4169 const struct ppc_link_hash_entry *h,
4170 const Elf_Internal_Rela *rel)
4171 {
4172 char *stub_name;
4173 ssize_t len;
4174
4175 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4176 offsets from a sym as a branch target? In fact, we could
4177 probably assume the addend is always zero. */
4178 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4179
4180 if (h)
4181 {
4182 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4183 stub_name = bfd_malloc (len);
4184 if (stub_name == NULL)
4185 return stub_name;
4186
4187 len = sprintf (stub_name, "%08x.%s+%x",
4188 input_section->id & 0xffffffff,
4189 h->elf.root.root.string,
4190 (int) rel->r_addend & 0xffffffff);
4191 }
4192 else
4193 {
4194 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4195 stub_name = bfd_malloc (len);
4196 if (stub_name == NULL)
4197 return stub_name;
4198
4199 len = sprintf (stub_name, "%08x.%x:%x+%x",
4200 input_section->id & 0xffffffff,
4201 sym_sec->id & 0xffffffff,
4202 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4203 (int) rel->r_addend & 0xffffffff);
4204 }
4205 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4206 stub_name[len - 2] = 0;
4207 return stub_name;
4208 }
4209
4210 /* Look up an entry in the stub hash. Stub entries are cached because
4211 creating the stub name takes a bit of time. */
4212
4213 static struct ppc_stub_hash_entry *
4214 ppc_get_stub_entry (const asection *input_section,
4215 const asection *sym_sec,
4216 struct ppc_link_hash_entry *h,
4217 const Elf_Internal_Rela *rel,
4218 struct ppc_link_hash_table *htab)
4219 {
4220 struct ppc_stub_hash_entry *stub_entry;
4221 const asection *id_sec;
4222
4223 /* If this input section is part of a group of sections sharing one
4224 stub section, then use the id of the first section in the group.
4225 Stub names need to include a section id, as there may well be
4226 more than one stub used to reach say, printf, and we need to
4227 distinguish between them. */
4228 id_sec = htab->stub_group[input_section->id].link_sec;
4229
4230 if (h != NULL && h->u.stub_cache != NULL
4231 && h->u.stub_cache->h == h
4232 && h->u.stub_cache->id_sec == id_sec)
4233 {
4234 stub_entry = h->u.stub_cache;
4235 }
4236 else
4237 {
4238 char *stub_name;
4239
4240 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4241 if (stub_name == NULL)
4242 return NULL;
4243
4244 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4245 stub_name, FALSE, FALSE);
4246 if (h != NULL)
4247 h->u.stub_cache = stub_entry;
4248
4249 free (stub_name);
4250 }
4251
4252 return stub_entry;
4253 }
4254
4255 /* Add a new stub entry to the stub hash. Not all fields of the new
4256 stub entry are initialised. */
4257
4258 static struct ppc_stub_hash_entry *
4259 ppc_add_stub (const char *stub_name,
4260 asection *section,
4261 struct bfd_link_info *info)
4262 {
4263 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4264 asection *link_sec;
4265 asection *stub_sec;
4266 struct ppc_stub_hash_entry *stub_entry;
4267
4268 link_sec = htab->stub_group[section->id].link_sec;
4269 stub_sec = htab->stub_group[section->id].stub_sec;
4270 if (stub_sec == NULL)
4271 {
4272 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4273 if (stub_sec == NULL)
4274 {
4275 size_t namelen;
4276 bfd_size_type len;
4277 char *s_name;
4278
4279 namelen = strlen (link_sec->name);
4280 len = namelen + sizeof (STUB_SUFFIX);
4281 s_name = bfd_alloc (htab->stub_bfd, len);
4282 if (s_name == NULL)
4283 return NULL;
4284
4285 memcpy (s_name, link_sec->name, namelen);
4286 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4287 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4288 if (stub_sec == NULL)
4289 return NULL;
4290 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4291 }
4292 htab->stub_group[section->id].stub_sec = stub_sec;
4293 }
4294
4295 /* Enter this entry into the linker stub hash table. */
4296 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4297 TRUE, FALSE);
4298 if (stub_entry == NULL)
4299 {
4300 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4301 section->owner, stub_name);
4302 return NULL;
4303 }
4304
4305 stub_entry->stub_sec = stub_sec;
4306 stub_entry->stub_offset = 0;
4307 stub_entry->id_sec = link_sec;
4308 return stub_entry;
4309 }
4310
4311 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4312 not already done. */
4313
4314 static bfd_boolean
4315 create_got_section (bfd *abfd, struct bfd_link_info *info)
4316 {
4317 asection *got, *relgot;
4318 flagword flags;
4319 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4320
4321 if (!is_ppc64_elf (abfd))
4322 return FALSE;
4323 if (htab == NULL)
4324 return FALSE;
4325
4326 if (!htab->got)
4327 {
4328 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4329 return FALSE;
4330
4331 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4332 if (!htab->got)
4333 abort ();
4334 }
4335
4336 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4337 | SEC_LINKER_CREATED);
4338
4339 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4340 if (!got
4341 || !bfd_set_section_alignment (abfd, got, 3))
4342 return FALSE;
4343
4344 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4345 flags | SEC_READONLY);
4346 if (!relgot
4347 || ! bfd_set_section_alignment (abfd, relgot, 3))
4348 return FALSE;
4349
4350 ppc64_elf_tdata (abfd)->got = got;
4351 ppc64_elf_tdata (abfd)->relgot = relgot;
4352 return TRUE;
4353 }
4354
4355 /* Create the dynamic sections, and set up shortcuts. */
4356
4357 static bfd_boolean
4358 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4359 {
4360 struct ppc_link_hash_table *htab;
4361
4362 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4363 return FALSE;
4364
4365 htab = ppc_hash_table (info);
4366 if (htab == NULL)
4367 return FALSE;
4368
4369 if (!htab->got)
4370 htab->got = bfd_get_linker_section (dynobj, ".got");
4371 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4372 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4373 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4374 if (!info->shared)
4375 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4376
4377 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4378 || (!info->shared && !htab->relbss))
4379 abort ();
4380
4381 return TRUE;
4382 }
4383
4384 /* Follow indirect and warning symbol links. */
4385
4386 static inline struct bfd_link_hash_entry *
4387 follow_link (struct bfd_link_hash_entry *h)
4388 {
4389 while (h->type == bfd_link_hash_indirect
4390 || h->type == bfd_link_hash_warning)
4391 h = h->u.i.link;
4392 return h;
4393 }
4394
4395 static inline struct elf_link_hash_entry *
4396 elf_follow_link (struct elf_link_hash_entry *h)
4397 {
4398 return (struct elf_link_hash_entry *) follow_link (&h->root);
4399 }
4400
4401 static inline struct ppc_link_hash_entry *
4402 ppc_follow_link (struct ppc_link_hash_entry *h)
4403 {
4404 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4405 }
4406
4407 /* Merge PLT info on FROM with that on TO. */
4408
4409 static void
4410 move_plt_plist (struct ppc_link_hash_entry *from,
4411 struct ppc_link_hash_entry *to)
4412 {
4413 if (from->elf.plt.plist != NULL)
4414 {
4415 if (to->elf.plt.plist != NULL)
4416 {
4417 struct plt_entry **entp;
4418 struct plt_entry *ent;
4419
4420 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4421 {
4422 struct plt_entry *dent;
4423
4424 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4425 if (dent->addend == ent->addend)
4426 {
4427 dent->plt.refcount += ent->plt.refcount;
4428 *entp = ent->next;
4429 break;
4430 }
4431 if (dent == NULL)
4432 entp = &ent->next;
4433 }
4434 *entp = to->elf.plt.plist;
4435 }
4436
4437 to->elf.plt.plist = from->elf.plt.plist;
4438 from->elf.plt.plist = NULL;
4439 }
4440 }
4441
4442 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4443
4444 static void
4445 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4446 struct elf_link_hash_entry *dir,
4447 struct elf_link_hash_entry *ind)
4448 {
4449 struct ppc_link_hash_entry *edir, *eind;
4450
4451 edir = (struct ppc_link_hash_entry *) dir;
4452 eind = (struct ppc_link_hash_entry *) ind;
4453
4454 edir->is_func |= eind->is_func;
4455 edir->is_func_descriptor |= eind->is_func_descriptor;
4456 edir->tls_mask |= eind->tls_mask;
4457 if (eind->oh != NULL)
4458 edir->oh = ppc_follow_link (eind->oh);
4459
4460 /* If called to transfer flags for a weakdef during processing
4461 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4462 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4463 if (!(ELIMINATE_COPY_RELOCS
4464 && eind->elf.root.type != bfd_link_hash_indirect
4465 && edir->elf.dynamic_adjusted))
4466 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4467
4468 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4469 edir->elf.ref_regular |= eind->elf.ref_regular;
4470 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4471 edir->elf.needs_plt |= eind->elf.needs_plt;
4472
4473 /* Copy over any dynamic relocs we may have on the indirect sym. */
4474 if (eind->dyn_relocs != NULL)
4475 {
4476 if (edir->dyn_relocs != NULL)
4477 {
4478 struct elf_dyn_relocs **pp;
4479 struct elf_dyn_relocs *p;
4480
4481 /* Add reloc counts against the indirect sym to the direct sym
4482 list. Merge any entries against the same section. */
4483 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4484 {
4485 struct elf_dyn_relocs *q;
4486
4487 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4488 if (q->sec == p->sec)
4489 {
4490 q->pc_count += p->pc_count;
4491 q->count += p->count;
4492 *pp = p->next;
4493 break;
4494 }
4495 if (q == NULL)
4496 pp = &p->next;
4497 }
4498 *pp = edir->dyn_relocs;
4499 }
4500
4501 edir->dyn_relocs = eind->dyn_relocs;
4502 eind->dyn_relocs = NULL;
4503 }
4504
4505 /* If we were called to copy over info for a weak sym, that's all.
4506 You might think dyn_relocs need not be copied over; After all,
4507 both syms will be dynamic or both non-dynamic so we're just
4508 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4509 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4510 dyn_relocs in read-only sections, and it does so on what is the
4511 DIR sym here. */
4512 if (eind->elf.root.type != bfd_link_hash_indirect)
4513 return;
4514
4515 /* Copy over got entries that we may have already seen to the
4516 symbol which just became indirect. */
4517 if (eind->elf.got.glist != NULL)
4518 {
4519 if (edir->elf.got.glist != NULL)
4520 {
4521 struct got_entry **entp;
4522 struct got_entry *ent;
4523
4524 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4525 {
4526 struct got_entry *dent;
4527
4528 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4529 if (dent->addend == ent->addend
4530 && dent->owner == ent->owner
4531 && dent->tls_type == ent->tls_type)
4532 {
4533 dent->got.refcount += ent->got.refcount;
4534 *entp = ent->next;
4535 break;
4536 }
4537 if (dent == NULL)
4538 entp = &ent->next;
4539 }
4540 *entp = edir->elf.got.glist;
4541 }
4542
4543 edir->elf.got.glist = eind->elf.got.glist;
4544 eind->elf.got.glist = NULL;
4545 }
4546
4547 /* And plt entries. */
4548 move_plt_plist (eind, edir);
4549
4550 if (eind->elf.dynindx != -1)
4551 {
4552 if (edir->elf.dynindx != -1)
4553 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4554 edir->elf.dynstr_index);
4555 edir->elf.dynindx = eind->elf.dynindx;
4556 edir->elf.dynstr_index = eind->elf.dynstr_index;
4557 eind->elf.dynindx = -1;
4558 eind->elf.dynstr_index = 0;
4559 }
4560 }
4561
4562 /* Find the function descriptor hash entry from the given function code
4563 hash entry FH. Link the entries via their OH fields. */
4564
4565 static struct ppc_link_hash_entry *
4566 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4567 {
4568 struct ppc_link_hash_entry *fdh = fh->oh;
4569
4570 if (fdh == NULL)
4571 {
4572 const char *fd_name = fh->elf.root.root.string + 1;
4573
4574 fdh = (struct ppc_link_hash_entry *)
4575 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4576 if (fdh == NULL)
4577 return fdh;
4578
4579 fdh->is_func_descriptor = 1;
4580 fdh->oh = fh;
4581 fh->is_func = 1;
4582 fh->oh = fdh;
4583 }
4584
4585 return ppc_follow_link (fdh);
4586 }
4587
4588 /* Make a fake function descriptor sym for the code sym FH. */
4589
4590 static struct ppc_link_hash_entry *
4591 make_fdh (struct bfd_link_info *info,
4592 struct ppc_link_hash_entry *fh)
4593 {
4594 bfd *abfd;
4595 asymbol *newsym;
4596 struct bfd_link_hash_entry *bh;
4597 struct ppc_link_hash_entry *fdh;
4598
4599 abfd = fh->elf.root.u.undef.abfd;
4600 newsym = bfd_make_empty_symbol (abfd);
4601 newsym->name = fh->elf.root.root.string + 1;
4602 newsym->section = bfd_und_section_ptr;
4603 newsym->value = 0;
4604 newsym->flags = BSF_WEAK;
4605
4606 bh = NULL;
4607 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4608 newsym->flags, newsym->section,
4609 newsym->value, NULL, FALSE, FALSE,
4610 &bh))
4611 return NULL;
4612
4613 fdh = (struct ppc_link_hash_entry *) bh;
4614 fdh->elf.non_elf = 0;
4615 fdh->fake = 1;
4616 fdh->is_func_descriptor = 1;
4617 fdh->oh = fh;
4618 fh->is_func = 1;
4619 fh->oh = fdh;
4620 return fdh;
4621 }
4622
4623 /* Fix function descriptor symbols defined in .opd sections to be
4624 function type. */
4625
4626 static bfd_boolean
4627 ppc64_elf_add_symbol_hook (bfd *ibfd,
4628 struct bfd_link_info *info,
4629 Elf_Internal_Sym *isym,
4630 const char **name ATTRIBUTE_UNUSED,
4631 flagword *flags ATTRIBUTE_UNUSED,
4632 asection **sec,
4633 bfd_vma *value ATTRIBUTE_UNUSED)
4634 {
4635 if ((ibfd->flags & DYNAMIC) == 0
4636 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4637 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4638
4639 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4640 {
4641 if ((ibfd->flags & DYNAMIC) == 0)
4642 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4643 }
4644 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4645 ;
4646 else if (*sec != NULL
4647 && strcmp ((*sec)->name, ".opd") == 0)
4648 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4649
4650 return TRUE;
4651 }
4652
4653 /* This function makes an old ABI object reference to ".bar" cause the
4654 inclusion of a new ABI object archive that defines "bar".
4655 NAME is a symbol defined in an archive. Return a symbol in the hash
4656 table that might be satisfied by the archive symbols. */
4657
4658 static struct elf_link_hash_entry *
4659 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4660 struct bfd_link_info *info,
4661 const char *name)
4662 {
4663 struct elf_link_hash_entry *h;
4664 char *dot_name;
4665 size_t len;
4666
4667 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4668 if (h != NULL
4669 /* Don't return this sym if it is a fake function descriptor
4670 created by add_symbol_adjust. */
4671 && !(h->root.type == bfd_link_hash_undefweak
4672 && ((struct ppc_link_hash_entry *) h)->fake))
4673 return h;
4674
4675 if (name[0] == '.')
4676 return h;
4677
4678 len = strlen (name);
4679 dot_name = bfd_alloc (abfd, len + 2);
4680 if (dot_name == NULL)
4681 return (struct elf_link_hash_entry *) 0 - 1;
4682 dot_name[0] = '.';
4683 memcpy (dot_name + 1, name, len + 1);
4684 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4685 bfd_release (abfd, dot_name);
4686 return h;
4687 }
4688
4689 /* This function satisfies all old ABI object references to ".bar" if a
4690 new ABI object defines "bar". Well, at least, undefined dot symbols
4691 are made weak. This stops later archive searches from including an
4692 object if we already have a function descriptor definition. It also
4693 prevents the linker complaining about undefined symbols.
4694 We also check and correct mismatched symbol visibility here. The
4695 most restrictive visibility of the function descriptor and the
4696 function entry symbol is used. */
4697
4698 static bfd_boolean
4699 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4700 {
4701 struct ppc_link_hash_table *htab;
4702 struct ppc_link_hash_entry *fdh;
4703
4704 if (eh->elf.root.type == bfd_link_hash_indirect)
4705 return TRUE;
4706
4707 if (eh->elf.root.type == bfd_link_hash_warning)
4708 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4709
4710 if (eh->elf.root.root.string[0] != '.')
4711 abort ();
4712
4713 htab = ppc_hash_table (info);
4714 if (htab == NULL)
4715 return FALSE;
4716
4717 fdh = lookup_fdh (eh, htab);
4718 if (fdh == NULL)
4719 {
4720 if (!info->relocatable
4721 && (eh->elf.root.type == bfd_link_hash_undefined
4722 || eh->elf.root.type == bfd_link_hash_undefweak)
4723 && eh->elf.ref_regular)
4724 {
4725 /* Make an undefweak function descriptor sym, which is enough to
4726 pull in an --as-needed shared lib, but won't cause link
4727 errors. Archives are handled elsewhere. */
4728 fdh = make_fdh (info, eh);
4729 if (fdh == NULL)
4730 return FALSE;
4731 fdh->elf.ref_regular = 1;
4732 }
4733 }
4734 else
4735 {
4736 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4737 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4738 if (entry_vis < descr_vis)
4739 fdh->elf.other += entry_vis - descr_vis;
4740 else if (entry_vis > descr_vis)
4741 eh->elf.other += descr_vis - entry_vis;
4742
4743 if ((fdh->elf.root.type == bfd_link_hash_defined
4744 || fdh->elf.root.type == bfd_link_hash_defweak)
4745 && eh->elf.root.type == bfd_link_hash_undefined)
4746 {
4747 eh->elf.root.type = bfd_link_hash_undefweak;
4748 eh->was_undefined = 1;
4749 htab->twiddled_syms = 1;
4750 }
4751 }
4752
4753 return TRUE;
4754 }
4755
4756 /* Process list of dot-symbols we made in link_hash_newfunc. */
4757
4758 static bfd_boolean
4759 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4760 {
4761 struct ppc_link_hash_table *htab;
4762 struct ppc_link_hash_entry **p, *eh;
4763
4764 if (!is_ppc64_elf (info->output_bfd))
4765 return TRUE;
4766 htab = ppc_hash_table (info);
4767 if (htab == NULL)
4768 return FALSE;
4769
4770 if (is_ppc64_elf (ibfd))
4771 {
4772 p = &htab->dot_syms;
4773 while ((eh = *p) != NULL)
4774 {
4775 *p = NULL;
4776 if (&eh->elf == htab->elf.hgot)
4777 ;
4778 else if (htab->elf.hgot == NULL
4779 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4780 htab->elf.hgot = &eh->elf;
4781 else if (!add_symbol_adjust (eh, info))
4782 return FALSE;
4783 p = &eh->u.next_dot_sym;
4784 }
4785 }
4786
4787 /* Clear the list for non-ppc64 input files. */
4788 p = &htab->dot_syms;
4789 while ((eh = *p) != NULL)
4790 {
4791 *p = NULL;
4792 p = &eh->u.next_dot_sym;
4793 }
4794
4795 /* We need to fix the undefs list for any syms we have twiddled to
4796 undef_weak. */
4797 if (htab->twiddled_syms)
4798 {
4799 bfd_link_repair_undef_list (&htab->elf.root);
4800 htab->twiddled_syms = 0;
4801 }
4802 return TRUE;
4803 }
4804
4805 /* Undo hash table changes when an --as-needed input file is determined
4806 not to be needed. */
4807
4808 static bfd_boolean
4809 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4810 struct bfd_link_info *info)
4811 {
4812 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4813
4814 if (htab == NULL)
4815 return FALSE;
4816
4817 htab->dot_syms = NULL;
4818 return TRUE;
4819 }
4820
4821 /* If --just-symbols against a final linked binary, then assume we need
4822 toc adjusting stubs when calling functions defined there. */
4823
4824 static void
4825 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4826 {
4827 if ((sec->flags & SEC_CODE) != 0
4828 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4829 && is_ppc64_elf (sec->owner))
4830 {
4831 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4832 if (got != NULL
4833 && got->size >= elf_backend_got_header_size
4834 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4835 sec->has_toc_reloc = 1;
4836 }
4837 _bfd_elf_link_just_syms (sec, info);
4838 }
4839
4840 static struct plt_entry **
4841 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4842 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4843 {
4844 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4845 struct plt_entry **local_plt;
4846 unsigned char *local_got_tls_masks;
4847
4848 if (local_got_ents == NULL)
4849 {
4850 bfd_size_type size = symtab_hdr->sh_info;
4851
4852 size *= (sizeof (*local_got_ents)
4853 + sizeof (*local_plt)
4854 + sizeof (*local_got_tls_masks));
4855 local_got_ents = bfd_zalloc (abfd, size);
4856 if (local_got_ents == NULL)
4857 return NULL;
4858 elf_local_got_ents (abfd) = local_got_ents;
4859 }
4860
4861 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4862 {
4863 struct got_entry *ent;
4864
4865 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4866 if (ent->addend == r_addend
4867 && ent->owner == abfd
4868 && ent->tls_type == tls_type)
4869 break;
4870 if (ent == NULL)
4871 {
4872 bfd_size_type amt = sizeof (*ent);
4873 ent = bfd_alloc (abfd, amt);
4874 if (ent == NULL)
4875 return FALSE;
4876 ent->next = local_got_ents[r_symndx];
4877 ent->addend = r_addend;
4878 ent->owner = abfd;
4879 ent->tls_type = tls_type;
4880 ent->is_indirect = FALSE;
4881 ent->got.refcount = 0;
4882 local_got_ents[r_symndx] = ent;
4883 }
4884 ent->got.refcount += 1;
4885 }
4886
4887 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4888 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4889 local_got_tls_masks[r_symndx] |= tls_type;
4890
4891 return local_plt + r_symndx;
4892 }
4893
4894 static bfd_boolean
4895 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4896 {
4897 struct plt_entry *ent;
4898
4899 for (ent = *plist; ent != NULL; ent = ent->next)
4900 if (ent->addend == addend)
4901 break;
4902 if (ent == NULL)
4903 {
4904 bfd_size_type amt = sizeof (*ent);
4905 ent = bfd_alloc (abfd, amt);
4906 if (ent == NULL)
4907 return FALSE;
4908 ent->next = *plist;
4909 ent->addend = addend;
4910 ent->plt.refcount = 0;
4911 *plist = ent;
4912 }
4913 ent->plt.refcount += 1;
4914 return TRUE;
4915 }
4916
4917 static bfd_boolean
4918 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4919 {
4920 return (r_type == R_PPC64_REL24
4921 || r_type == R_PPC64_REL14
4922 || r_type == R_PPC64_REL14_BRTAKEN
4923 || r_type == R_PPC64_REL14_BRNTAKEN
4924 || r_type == R_PPC64_ADDR24
4925 || r_type == R_PPC64_ADDR14
4926 || r_type == R_PPC64_ADDR14_BRTAKEN
4927 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4928 }
4929
4930 /* Look through the relocs for a section during the first phase, and
4931 calculate needed space in the global offset table, procedure
4932 linkage table, and dynamic reloc sections. */
4933
4934 static bfd_boolean
4935 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4936 asection *sec, const Elf_Internal_Rela *relocs)
4937 {
4938 struct ppc_link_hash_table *htab;
4939 Elf_Internal_Shdr *symtab_hdr;
4940 struct elf_link_hash_entry **sym_hashes;
4941 const Elf_Internal_Rela *rel;
4942 const Elf_Internal_Rela *rel_end;
4943 asection *sreloc;
4944 asection **opd_sym_map;
4945 struct elf_link_hash_entry *tga, *dottga;
4946
4947 if (info->relocatable)
4948 return TRUE;
4949
4950 /* Don't do anything special with non-loaded, non-alloced sections.
4951 In particular, any relocs in such sections should not affect GOT
4952 and PLT reference counting (ie. we don't allow them to create GOT
4953 or PLT entries), there's no possibility or desire to optimize TLS
4954 relocs, and there's not much point in propagating relocs to shared
4955 libs that the dynamic linker won't relocate. */
4956 if ((sec->flags & SEC_ALLOC) == 0)
4957 return TRUE;
4958
4959 BFD_ASSERT (is_ppc64_elf (abfd));
4960
4961 htab = ppc_hash_table (info);
4962 if (htab == NULL)
4963 return FALSE;
4964
4965 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4966 FALSE, FALSE, TRUE);
4967 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4968 FALSE, FALSE, TRUE);
4969 symtab_hdr = &elf_symtab_hdr (abfd);
4970 sym_hashes = elf_sym_hashes (abfd);
4971 sreloc = NULL;
4972 opd_sym_map = NULL;
4973 if (strcmp (sec->name, ".opd") == 0)
4974 {
4975 /* Garbage collection needs some extra help with .opd sections.
4976 We don't want to necessarily keep everything referenced by
4977 relocs in .opd, as that would keep all functions. Instead,
4978 if we reference an .opd symbol (a function descriptor), we
4979 want to keep the function code symbol's section. This is
4980 easy for global symbols, but for local syms we need to keep
4981 information about the associated function section. */
4982 bfd_size_type amt;
4983
4984 amt = sec->size * sizeof (*opd_sym_map) / 8;
4985 opd_sym_map = bfd_zalloc (abfd, amt);
4986 if (opd_sym_map == NULL)
4987 return FALSE;
4988 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4989 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4990 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4991 }
4992
4993 rel_end = relocs + sec->reloc_count;
4994 for (rel = relocs; rel < rel_end; rel++)
4995 {
4996 unsigned long r_symndx;
4997 struct elf_link_hash_entry *h;
4998 enum elf_ppc64_reloc_type r_type;
4999 int tls_type;
5000 struct _ppc64_elf_section_data *ppc64_sec;
5001 struct plt_entry **ifunc;
5002
5003 r_symndx = ELF64_R_SYM (rel->r_info);
5004 if (r_symndx < symtab_hdr->sh_info)
5005 h = NULL;
5006 else
5007 {
5008 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5009 h = elf_follow_link (h);
5010
5011 /* PR15323, ref flags aren't set for references in the same
5012 object. */
5013 h->root.non_ir_ref = 1;
5014
5015 if (h == htab->elf.hgot)
5016 sec->has_toc_reloc = 1;
5017 }
5018
5019 tls_type = 0;
5020 ifunc = NULL;
5021 if (h != NULL)
5022 {
5023 if (h->type == STT_GNU_IFUNC)
5024 {
5025 h->needs_plt = 1;
5026 ifunc = &h->plt.plist;
5027 }
5028 }
5029 else
5030 {
5031 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5032 abfd, r_symndx);
5033 if (isym == NULL)
5034 return FALSE;
5035
5036 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5037 {
5038 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5039 rel->r_addend, PLT_IFUNC);
5040 if (ifunc == NULL)
5041 return FALSE;
5042 }
5043 }
5044 r_type = ELF64_R_TYPE (rel->r_info);
5045 if (is_branch_reloc (r_type))
5046 {
5047 if (h != NULL && (h == tga || h == dottga))
5048 {
5049 if (rel != relocs
5050 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5051 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5052 /* We have a new-style __tls_get_addr call with a marker
5053 reloc. */
5054 ;
5055 else
5056 /* Mark this section as having an old-style call. */
5057 sec->has_tls_get_addr_call = 1;
5058 }
5059
5060 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5061 if (ifunc != NULL
5062 && !update_plt_info (abfd, ifunc, rel->r_addend))
5063 return FALSE;
5064 }
5065
5066 switch (r_type)
5067 {
5068 case R_PPC64_TLSGD:
5069 case R_PPC64_TLSLD:
5070 /* These special tls relocs tie a call to __tls_get_addr with
5071 its parameter symbol. */
5072 break;
5073
5074 case R_PPC64_GOT_TLSLD16:
5075 case R_PPC64_GOT_TLSLD16_LO:
5076 case R_PPC64_GOT_TLSLD16_HI:
5077 case R_PPC64_GOT_TLSLD16_HA:
5078 tls_type = TLS_TLS | TLS_LD;
5079 goto dogottls;
5080
5081 case R_PPC64_GOT_TLSGD16:
5082 case R_PPC64_GOT_TLSGD16_LO:
5083 case R_PPC64_GOT_TLSGD16_HI:
5084 case R_PPC64_GOT_TLSGD16_HA:
5085 tls_type = TLS_TLS | TLS_GD;
5086 goto dogottls;
5087
5088 case R_PPC64_GOT_TPREL16_DS:
5089 case R_PPC64_GOT_TPREL16_LO_DS:
5090 case R_PPC64_GOT_TPREL16_HI:
5091 case R_PPC64_GOT_TPREL16_HA:
5092 if (!info->executable)
5093 info->flags |= DF_STATIC_TLS;
5094 tls_type = TLS_TLS | TLS_TPREL;
5095 goto dogottls;
5096
5097 case R_PPC64_GOT_DTPREL16_DS:
5098 case R_PPC64_GOT_DTPREL16_LO_DS:
5099 case R_PPC64_GOT_DTPREL16_HI:
5100 case R_PPC64_GOT_DTPREL16_HA:
5101 tls_type = TLS_TLS | TLS_DTPREL;
5102 dogottls:
5103 sec->has_tls_reloc = 1;
5104 /* Fall thru */
5105
5106 case R_PPC64_GOT16:
5107 case R_PPC64_GOT16_DS:
5108 case R_PPC64_GOT16_HA:
5109 case R_PPC64_GOT16_HI:
5110 case R_PPC64_GOT16_LO:
5111 case R_PPC64_GOT16_LO_DS:
5112 /* This symbol requires a global offset table entry. */
5113 sec->has_toc_reloc = 1;
5114 if (r_type == R_PPC64_GOT_TLSLD16
5115 || r_type == R_PPC64_GOT_TLSGD16
5116 || r_type == R_PPC64_GOT_TPREL16_DS
5117 || r_type == R_PPC64_GOT_DTPREL16_DS
5118 || r_type == R_PPC64_GOT16
5119 || r_type == R_PPC64_GOT16_DS)
5120 {
5121 htab->do_multi_toc = 1;
5122 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5123 }
5124
5125 if (ppc64_elf_tdata (abfd)->got == NULL
5126 && !create_got_section (abfd, info))
5127 return FALSE;
5128
5129 if (h != NULL)
5130 {
5131 struct ppc_link_hash_entry *eh;
5132 struct got_entry *ent;
5133
5134 eh = (struct ppc_link_hash_entry *) h;
5135 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5136 if (ent->addend == rel->r_addend
5137 && ent->owner == abfd
5138 && ent->tls_type == tls_type)
5139 break;
5140 if (ent == NULL)
5141 {
5142 bfd_size_type amt = sizeof (*ent);
5143 ent = bfd_alloc (abfd, amt);
5144 if (ent == NULL)
5145 return FALSE;
5146 ent->next = eh->elf.got.glist;
5147 ent->addend = rel->r_addend;
5148 ent->owner = abfd;
5149 ent->tls_type = tls_type;
5150 ent->is_indirect = FALSE;
5151 ent->got.refcount = 0;
5152 eh->elf.got.glist = ent;
5153 }
5154 ent->got.refcount += 1;
5155 eh->tls_mask |= tls_type;
5156 }
5157 else
5158 /* This is a global offset table entry for a local symbol. */
5159 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5160 rel->r_addend, tls_type))
5161 return FALSE;
5162 break;
5163
5164 case R_PPC64_PLT16_HA:
5165 case R_PPC64_PLT16_HI:
5166 case R_PPC64_PLT16_LO:
5167 case R_PPC64_PLT32:
5168 case R_PPC64_PLT64:
5169 /* This symbol requires a procedure linkage table entry. We
5170 actually build the entry in adjust_dynamic_symbol,
5171 because this might be a case of linking PIC code without
5172 linking in any dynamic objects, in which case we don't
5173 need to generate a procedure linkage table after all. */
5174 if (h == NULL)
5175 {
5176 /* It does not make sense to have a procedure linkage
5177 table entry for a local symbol. */
5178 bfd_set_error (bfd_error_bad_value);
5179 return FALSE;
5180 }
5181 else
5182 {
5183 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5184 return FALSE;
5185 h->needs_plt = 1;
5186 if (h->root.root.string[0] == '.'
5187 && h->root.root.string[1] != '\0')
5188 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5189 }
5190 break;
5191
5192 /* The following relocations don't need to propagate the
5193 relocation if linking a shared object since they are
5194 section relative. */
5195 case R_PPC64_SECTOFF:
5196 case R_PPC64_SECTOFF_LO:
5197 case R_PPC64_SECTOFF_HI:
5198 case R_PPC64_SECTOFF_HA:
5199 case R_PPC64_SECTOFF_DS:
5200 case R_PPC64_SECTOFF_LO_DS:
5201 case R_PPC64_DTPREL16:
5202 case R_PPC64_DTPREL16_LO:
5203 case R_PPC64_DTPREL16_HI:
5204 case R_PPC64_DTPREL16_HA:
5205 case R_PPC64_DTPREL16_DS:
5206 case R_PPC64_DTPREL16_LO_DS:
5207 case R_PPC64_DTPREL16_HIGHER:
5208 case R_PPC64_DTPREL16_HIGHERA:
5209 case R_PPC64_DTPREL16_HIGHEST:
5210 case R_PPC64_DTPREL16_HIGHESTA:
5211 break;
5212
5213 /* Nor do these. */
5214 case R_PPC64_REL16:
5215 case R_PPC64_REL16_LO:
5216 case R_PPC64_REL16_HI:
5217 case R_PPC64_REL16_HA:
5218 break;
5219
5220 case R_PPC64_TOC16:
5221 case R_PPC64_TOC16_DS:
5222 htab->do_multi_toc = 1;
5223 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5224 case R_PPC64_TOC16_LO:
5225 case R_PPC64_TOC16_HI:
5226 case R_PPC64_TOC16_HA:
5227 case R_PPC64_TOC16_LO_DS:
5228 sec->has_toc_reloc = 1;
5229 break;
5230
5231 /* This relocation describes the C++ object vtable hierarchy.
5232 Reconstruct it for later use during GC. */
5233 case R_PPC64_GNU_VTINHERIT:
5234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5235 return FALSE;
5236 break;
5237
5238 /* This relocation describes which C++ vtable entries are actually
5239 used. Record for later use during GC. */
5240 case R_PPC64_GNU_VTENTRY:
5241 BFD_ASSERT (h != NULL);
5242 if (h != NULL
5243 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5244 return FALSE;
5245 break;
5246
5247 case R_PPC64_REL14:
5248 case R_PPC64_REL14_BRTAKEN:
5249 case R_PPC64_REL14_BRNTAKEN:
5250 {
5251 asection *dest = NULL;
5252
5253 /* Heuristic: If jumping outside our section, chances are
5254 we are going to need a stub. */
5255 if (h != NULL)
5256 {
5257 /* If the sym is weak it may be overridden later, so
5258 don't assume we know where a weak sym lives. */
5259 if (h->root.type == bfd_link_hash_defined)
5260 dest = h->root.u.def.section;
5261 }
5262 else
5263 {
5264 Elf_Internal_Sym *isym;
5265
5266 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5267 abfd, r_symndx);
5268 if (isym == NULL)
5269 return FALSE;
5270
5271 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5272 }
5273
5274 if (dest != sec)
5275 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5276 }
5277 /* Fall through. */
5278
5279 case R_PPC64_REL24:
5280 if (h != NULL && ifunc == NULL)
5281 {
5282 /* We may need a .plt entry if the function this reloc
5283 refers to is in a shared lib. */
5284 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5285 return FALSE;
5286 h->needs_plt = 1;
5287 if (h->root.root.string[0] == '.'
5288 && h->root.root.string[1] != '\0')
5289 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5290 if (h == tga || h == dottga)
5291 sec->has_tls_reloc = 1;
5292 }
5293 break;
5294
5295 case R_PPC64_TPREL64:
5296 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5297 if (!info->executable)
5298 info->flags |= DF_STATIC_TLS;
5299 goto dotlstoc;
5300
5301 case R_PPC64_DTPMOD64:
5302 if (rel + 1 < rel_end
5303 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5304 && rel[1].r_offset == rel->r_offset + 8)
5305 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5306 else
5307 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5308 goto dotlstoc;
5309
5310 case R_PPC64_DTPREL64:
5311 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5312 if (rel != relocs
5313 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5314 && rel[-1].r_offset == rel->r_offset - 8)
5315 /* This is the second reloc of a dtpmod, dtprel pair.
5316 Don't mark with TLS_DTPREL. */
5317 goto dodyn;
5318
5319 dotlstoc:
5320 sec->has_tls_reloc = 1;
5321 if (h != NULL)
5322 {
5323 struct ppc_link_hash_entry *eh;
5324 eh = (struct ppc_link_hash_entry *) h;
5325 eh->tls_mask |= tls_type;
5326 }
5327 else
5328 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5329 rel->r_addend, tls_type))
5330 return FALSE;
5331
5332 ppc64_sec = ppc64_elf_section_data (sec);
5333 if (ppc64_sec->sec_type != sec_toc)
5334 {
5335 bfd_size_type amt;
5336
5337 /* One extra to simplify get_tls_mask. */
5338 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5339 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5340 if (ppc64_sec->u.toc.symndx == NULL)
5341 return FALSE;
5342 amt = sec->size * sizeof (bfd_vma) / 8;
5343 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5344 if (ppc64_sec->u.toc.add == NULL)
5345 return FALSE;
5346 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5347 ppc64_sec->sec_type = sec_toc;
5348 }
5349 BFD_ASSERT (rel->r_offset % 8 == 0);
5350 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5351 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5352
5353 /* Mark the second slot of a GD or LD entry.
5354 -1 to indicate GD and -2 to indicate LD. */
5355 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5356 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5357 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5358 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5359 goto dodyn;
5360
5361 case R_PPC64_TPREL16:
5362 case R_PPC64_TPREL16_LO:
5363 case R_PPC64_TPREL16_HI:
5364 case R_PPC64_TPREL16_HA:
5365 case R_PPC64_TPREL16_DS:
5366 case R_PPC64_TPREL16_LO_DS:
5367 case R_PPC64_TPREL16_HIGHER:
5368 case R_PPC64_TPREL16_HIGHERA:
5369 case R_PPC64_TPREL16_HIGHEST:
5370 case R_PPC64_TPREL16_HIGHESTA:
5371 if (info->shared)
5372 {
5373 if (!info->executable)
5374 info->flags |= DF_STATIC_TLS;
5375 goto dodyn;
5376 }
5377 break;
5378
5379 case R_PPC64_ADDR64:
5380 if (opd_sym_map != NULL
5381 && rel + 1 < rel_end
5382 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5383 {
5384 if (h != NULL)
5385 {
5386 if (h->root.root.string[0] == '.'
5387 && h->root.root.string[1] != 0
5388 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5389 ;
5390 else
5391 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5392 }
5393 else
5394 {
5395 asection *s;
5396 Elf_Internal_Sym *isym;
5397
5398 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5399 abfd, r_symndx);
5400 if (isym == NULL)
5401 return FALSE;
5402
5403 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5404 if (s != NULL && s != sec)
5405 opd_sym_map[rel->r_offset / 8] = s;
5406 }
5407 }
5408 /* Fall through. */
5409
5410 case R_PPC64_REL30:
5411 case R_PPC64_REL32:
5412 case R_PPC64_REL64:
5413 case R_PPC64_ADDR14:
5414 case R_PPC64_ADDR14_BRNTAKEN:
5415 case R_PPC64_ADDR14_BRTAKEN:
5416 case R_PPC64_ADDR16:
5417 case R_PPC64_ADDR16_DS:
5418 case R_PPC64_ADDR16_HA:
5419 case R_PPC64_ADDR16_HI:
5420 case R_PPC64_ADDR16_HIGHER:
5421 case R_PPC64_ADDR16_HIGHERA:
5422 case R_PPC64_ADDR16_HIGHEST:
5423 case R_PPC64_ADDR16_HIGHESTA:
5424 case R_PPC64_ADDR16_LO:
5425 case R_PPC64_ADDR16_LO_DS:
5426 case R_PPC64_ADDR24:
5427 case R_PPC64_ADDR32:
5428 case R_PPC64_UADDR16:
5429 case R_PPC64_UADDR32:
5430 case R_PPC64_UADDR64:
5431 case R_PPC64_TOC:
5432 if (h != NULL && !info->shared)
5433 /* We may need a copy reloc. */
5434 h->non_got_ref = 1;
5435
5436 /* Don't propagate .opd relocs. */
5437 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5438 break;
5439
5440 /* If we are creating a shared library, and this is a reloc
5441 against a global symbol, or a non PC relative reloc
5442 against a local symbol, then we need to copy the reloc
5443 into the shared library. However, if we are linking with
5444 -Bsymbolic, we do not need to copy a reloc against a
5445 global symbol which is defined in an object we are
5446 including in the link (i.e., DEF_REGULAR is set). At
5447 this point we have not seen all the input files, so it is
5448 possible that DEF_REGULAR is not set now but will be set
5449 later (it is never cleared). In case of a weak definition,
5450 DEF_REGULAR may be cleared later by a strong definition in
5451 a shared library. We account for that possibility below by
5452 storing information in the dyn_relocs field of the hash
5453 table entry. A similar situation occurs when creating
5454 shared libraries and symbol visibility changes render the
5455 symbol local.
5456
5457 If on the other hand, we are creating an executable, we
5458 may need to keep relocations for symbols satisfied by a
5459 dynamic library if we manage to avoid copy relocs for the
5460 symbol. */
5461 dodyn:
5462 if ((info->shared
5463 && (must_be_dyn_reloc (info, r_type)
5464 || (h != NULL
5465 && (!SYMBOLIC_BIND (info, h)
5466 || h->root.type == bfd_link_hash_defweak
5467 || !h->def_regular))))
5468 || (ELIMINATE_COPY_RELOCS
5469 && !info->shared
5470 && h != NULL
5471 && (h->root.type == bfd_link_hash_defweak
5472 || !h->def_regular))
5473 || (!info->shared
5474 && ifunc != NULL))
5475 {
5476 /* We must copy these reloc types into the output file.
5477 Create a reloc section in dynobj and make room for
5478 this reloc. */
5479 if (sreloc == NULL)
5480 {
5481 sreloc = _bfd_elf_make_dynamic_reloc_section
5482 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5483
5484 if (sreloc == NULL)
5485 return FALSE;
5486 }
5487
5488 /* If this is a global symbol, we count the number of
5489 relocations we need for this symbol. */
5490 if (h != NULL)
5491 {
5492 struct elf_dyn_relocs *p;
5493 struct elf_dyn_relocs **head;
5494
5495 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5496 p = *head;
5497 if (p == NULL || p->sec != sec)
5498 {
5499 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5500 if (p == NULL)
5501 return FALSE;
5502 p->next = *head;
5503 *head = p;
5504 p->sec = sec;
5505 p->count = 0;
5506 p->pc_count = 0;
5507 }
5508 p->count += 1;
5509 if (!must_be_dyn_reloc (info, r_type))
5510 p->pc_count += 1;
5511 }
5512 else
5513 {
5514 /* Track dynamic relocs needed for local syms too.
5515 We really need local syms available to do this
5516 easily. Oh well. */
5517 struct ppc_dyn_relocs *p;
5518 struct ppc_dyn_relocs **head;
5519 bfd_boolean is_ifunc;
5520 asection *s;
5521 void *vpp;
5522 Elf_Internal_Sym *isym;
5523
5524 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5525 abfd, r_symndx);
5526 if (isym == NULL)
5527 return FALSE;
5528
5529 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5530 if (s == NULL)
5531 s = sec;
5532
5533 vpp = &elf_section_data (s)->local_dynrel;
5534 head = (struct ppc_dyn_relocs **) vpp;
5535 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5536 p = *head;
5537 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5538 p = p->next;
5539 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5540 {
5541 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5542 if (p == NULL)
5543 return FALSE;
5544 p->next = *head;
5545 *head = p;
5546 p->sec = sec;
5547 p->ifunc = is_ifunc;
5548 p->count = 0;
5549 }
5550 p->count += 1;
5551 }
5552 }
5553 break;
5554
5555 default:
5556 break;
5557 }
5558 }
5559
5560 return TRUE;
5561 }
5562
5563 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5564 of the code entry point, and its section. */
5565
5566 static bfd_vma
5567 opd_entry_value (asection *opd_sec,
5568 bfd_vma offset,
5569 asection **code_sec,
5570 bfd_vma *code_off,
5571 bfd_boolean in_code_sec)
5572 {
5573 bfd *opd_bfd = opd_sec->owner;
5574 Elf_Internal_Rela *relocs;
5575 Elf_Internal_Rela *lo, *hi, *look;
5576 bfd_vma val;
5577
5578 /* No relocs implies we are linking a --just-symbols object, or looking
5579 at a final linked executable with addr2line or somesuch. */
5580 if (opd_sec->reloc_count == 0)
5581 {
5582 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5583
5584 if (contents == NULL)
5585 {
5586 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5587 return (bfd_vma) -1;
5588 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5589 }
5590
5591 val = bfd_get_64 (opd_bfd, contents + offset);
5592 if (code_sec != NULL)
5593 {
5594 asection *sec, *likely = NULL;
5595
5596 if (in_code_sec)
5597 {
5598 sec = *code_sec;
5599 if (sec->vma <= val
5600 && val < sec->vma + sec->size)
5601 likely = sec;
5602 else
5603 val = -1;
5604 }
5605 else
5606 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5607 if (sec->vma <= val
5608 && (sec->flags & SEC_LOAD) != 0
5609 && (sec->flags & SEC_ALLOC) != 0)
5610 likely = sec;
5611 if (likely != NULL)
5612 {
5613 *code_sec = likely;
5614 if (code_off != NULL)
5615 *code_off = val - likely->vma;
5616 }
5617 }
5618 return val;
5619 }
5620
5621 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5622
5623 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5624 if (relocs == NULL)
5625 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5626
5627 /* Go find the opd reloc at the sym address. */
5628 lo = relocs;
5629 BFD_ASSERT (lo != NULL);
5630 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5631 val = (bfd_vma) -1;
5632 while (lo < hi)
5633 {
5634 look = lo + (hi - lo) / 2;
5635 if (look->r_offset < offset)
5636 lo = look + 1;
5637 else if (look->r_offset > offset)
5638 hi = look;
5639 else
5640 {
5641 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5642
5643 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5644 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5645 {
5646 unsigned long symndx = ELF64_R_SYM (look->r_info);
5647 asection *sec;
5648
5649 if (symndx < symtab_hdr->sh_info
5650 || elf_sym_hashes (opd_bfd) == NULL)
5651 {
5652 Elf_Internal_Sym *sym;
5653
5654 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5655 if (sym == NULL)
5656 {
5657 size_t symcnt = symtab_hdr->sh_info;
5658 if (elf_sym_hashes (opd_bfd) == NULL)
5659 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5660 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5661 0, NULL, NULL, NULL);
5662 if (sym == NULL)
5663 break;
5664 symtab_hdr->contents = (bfd_byte *) sym;
5665 }
5666
5667 sym += symndx;
5668 val = sym->st_value;
5669 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5670 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5671 }
5672 else
5673 {
5674 struct elf_link_hash_entry **sym_hashes;
5675 struct elf_link_hash_entry *rh;
5676
5677 sym_hashes = elf_sym_hashes (opd_bfd);
5678 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5679 if (rh != NULL)
5680 {
5681 rh = elf_follow_link (rh);
5682 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5683 || rh->root.type == bfd_link_hash_defweak);
5684 val = rh->root.u.def.value;
5685 sec = rh->root.u.def.section;
5686 }
5687 else
5688 {
5689 /* Handle the odd case where we can be called
5690 during bfd_elf_link_add_symbols before the
5691 symbol hashes have been fully populated. */
5692 Elf_Internal_Sym *sym;
5693
5694 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
5695 symndx, NULL, NULL, NULL);
5696 if (sym == NULL)
5697 break;
5698
5699 val = sym->st_value;
5700 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5701 free (sym);
5702 }
5703 }
5704 val += look->r_addend;
5705 if (code_off != NULL)
5706 *code_off = val;
5707 if (code_sec != NULL)
5708 {
5709 if (in_code_sec && *code_sec != sec)
5710 return -1;
5711 else
5712 *code_sec = sec;
5713 }
5714 if (sec != NULL && sec->output_section != NULL)
5715 val += sec->output_section->vma + sec->output_offset;
5716 }
5717 break;
5718 }
5719 }
5720
5721 return val;
5722 }
5723
5724 /* If the ELF symbol SYM might be a function in SEC, return the
5725 function size and set *CODE_OFF to the function's entry point,
5726 otherwise return zero. */
5727
5728 static bfd_size_type
5729 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5730 bfd_vma *code_off)
5731 {
5732 bfd_size_type size;
5733
5734 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5735 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5736 return 0;
5737
5738 size = 0;
5739 if (!(sym->flags & BSF_SYNTHETIC))
5740 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5741
5742 if (strcmp (sym->section->name, ".opd") == 0)
5743 {
5744 if (opd_entry_value (sym->section, sym->value,
5745 &sec, code_off, TRUE) == (bfd_vma) -1)
5746 return 0;
5747 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5748 symbol. This size has nothing to do with the code size of the
5749 function, which is what we're supposed to return, but the
5750 code size isn't available without looking up the dot-sym.
5751 However, doing that would be a waste of time particularly
5752 since elf_find_function will look at the dot-sym anyway.
5753 Now, elf_find_function will keep the largest size of any
5754 function sym found at the code address of interest, so return
5755 1 here to avoid it incorrectly caching a larger function size
5756 for a small function. This does mean we return the wrong
5757 size for a new-ABI function of size 24, but all that does is
5758 disable caching for such functions. */
5759 if (size == 24)
5760 size = 1;
5761 }
5762 else
5763 {
5764 if (sym->section != sec)
5765 return 0;
5766 *code_off = sym->value;
5767 }
5768 if (size == 0)
5769 size = 1;
5770 return size;
5771 }
5772
5773 /* Return true if symbol is defined in a regular object file. */
5774
5775 static bfd_boolean
5776 is_static_defined (struct elf_link_hash_entry *h)
5777 {
5778 return ((h->root.type == bfd_link_hash_defined
5779 || h->root.type == bfd_link_hash_defweak)
5780 && h->root.u.def.section != NULL
5781 && h->root.u.def.section->output_section != NULL);
5782 }
5783
5784 /* If FDH is a function descriptor symbol, return the associated code
5785 entry symbol if it is defined. Return NULL otherwise. */
5786
5787 static struct ppc_link_hash_entry *
5788 defined_code_entry (struct ppc_link_hash_entry *fdh)
5789 {
5790 if (fdh->is_func_descriptor)
5791 {
5792 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5793 if (fh->elf.root.type == bfd_link_hash_defined
5794 || fh->elf.root.type == bfd_link_hash_defweak)
5795 return fh;
5796 }
5797 return NULL;
5798 }
5799
5800 /* If FH is a function code entry symbol, return the associated
5801 function descriptor symbol if it is defined. Return NULL otherwise. */
5802
5803 static struct ppc_link_hash_entry *
5804 defined_func_desc (struct ppc_link_hash_entry *fh)
5805 {
5806 if (fh->oh != NULL
5807 && fh->oh->is_func_descriptor)
5808 {
5809 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5810 if (fdh->elf.root.type == bfd_link_hash_defined
5811 || fdh->elf.root.type == bfd_link_hash_defweak)
5812 return fdh;
5813 }
5814 return NULL;
5815 }
5816
5817 /* Mark all our entry sym sections, both opd and code section. */
5818
5819 static void
5820 ppc64_elf_gc_keep (struct bfd_link_info *info)
5821 {
5822 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5823 struct bfd_sym_chain *sym;
5824
5825 if (htab == NULL)
5826 return;
5827
5828 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5829 {
5830 struct ppc_link_hash_entry *eh, *fh;
5831 asection *sec;
5832
5833 eh = (struct ppc_link_hash_entry *)
5834 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5835 if (eh == NULL)
5836 continue;
5837 if (eh->elf.root.type != bfd_link_hash_defined
5838 && eh->elf.root.type != bfd_link_hash_defweak)
5839 continue;
5840
5841 fh = defined_code_entry (eh);
5842 if (fh != NULL)
5843 {
5844 sec = fh->elf.root.u.def.section;
5845 sec->flags |= SEC_KEEP;
5846 }
5847 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5848 && opd_entry_value (eh->elf.root.u.def.section,
5849 eh->elf.root.u.def.value,
5850 &sec, NULL, FALSE) != (bfd_vma) -1)
5851 sec->flags |= SEC_KEEP;
5852
5853 sec = eh->elf.root.u.def.section;
5854 sec->flags |= SEC_KEEP;
5855 }
5856 }
5857
5858 /* Mark sections containing dynamically referenced symbols. When
5859 building shared libraries, we must assume that any visible symbol is
5860 referenced. */
5861
5862 static bfd_boolean
5863 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5864 {
5865 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5866 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5867 struct ppc_link_hash_entry *fdh;
5868
5869 /* Dynamic linking info is on the func descriptor sym. */
5870 fdh = defined_func_desc (eh);
5871 if (fdh != NULL)
5872 eh = fdh;
5873
5874 if ((eh->elf.root.type == bfd_link_hash_defined
5875 || eh->elf.root.type == bfd_link_hash_defweak)
5876 && (eh->elf.ref_dynamic
5877 || (!info->executable
5878 && eh->elf.def_regular
5879 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5880 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5881 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5882 || !bfd_hide_sym_by_version (info->version_info,
5883 eh->elf.root.root.string)))))
5884 {
5885 asection *code_sec;
5886 struct ppc_link_hash_entry *fh;
5887
5888 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5889
5890 /* Function descriptor syms cause the associated
5891 function code sym section to be marked. */
5892 fh = defined_code_entry (eh);
5893 if (fh != NULL)
5894 {
5895 code_sec = fh->elf.root.u.def.section;
5896 code_sec->flags |= SEC_KEEP;
5897 }
5898 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5899 && opd_entry_value (eh->elf.root.u.def.section,
5900 eh->elf.root.u.def.value,
5901 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5902 code_sec->flags |= SEC_KEEP;
5903 }
5904
5905 return TRUE;
5906 }
5907
5908 /* Return the section that should be marked against GC for a given
5909 relocation. */
5910
5911 static asection *
5912 ppc64_elf_gc_mark_hook (asection *sec,
5913 struct bfd_link_info *info,
5914 Elf_Internal_Rela *rel,
5915 struct elf_link_hash_entry *h,
5916 Elf_Internal_Sym *sym)
5917 {
5918 asection *rsec;
5919
5920 /* Syms return NULL if we're marking .opd, so we avoid marking all
5921 function sections, as all functions are referenced in .opd. */
5922 rsec = NULL;
5923 if (get_opd_info (sec) != NULL)
5924 return rsec;
5925
5926 if (h != NULL)
5927 {
5928 enum elf_ppc64_reloc_type r_type;
5929 struct ppc_link_hash_entry *eh, *fh, *fdh;
5930
5931 r_type = ELF64_R_TYPE (rel->r_info);
5932 switch (r_type)
5933 {
5934 case R_PPC64_GNU_VTINHERIT:
5935 case R_PPC64_GNU_VTENTRY:
5936 break;
5937
5938 default:
5939 switch (h->root.type)
5940 {
5941 case bfd_link_hash_defined:
5942 case bfd_link_hash_defweak:
5943 eh = (struct ppc_link_hash_entry *) h;
5944 fdh = defined_func_desc (eh);
5945 if (fdh != NULL)
5946 eh = fdh;
5947
5948 /* Function descriptor syms cause the associated
5949 function code sym section to be marked. */
5950 fh = defined_code_entry (eh);
5951 if (fh != NULL)
5952 {
5953 /* They also mark their opd section. */
5954 eh->elf.root.u.def.section->gc_mark = 1;
5955
5956 rsec = fh->elf.root.u.def.section;
5957 }
5958 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5959 && opd_entry_value (eh->elf.root.u.def.section,
5960 eh->elf.root.u.def.value,
5961 &rsec, NULL, FALSE) != (bfd_vma) -1)
5962 eh->elf.root.u.def.section->gc_mark = 1;
5963 else
5964 rsec = h->root.u.def.section;
5965 break;
5966
5967 case bfd_link_hash_common:
5968 rsec = h->root.u.c.p->section;
5969 break;
5970
5971 default:
5972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5973 }
5974 }
5975 }
5976 else
5977 {
5978 struct _opd_sec_data *opd;
5979
5980 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5981 opd = get_opd_info (rsec);
5982 if (opd != NULL && opd->func_sec != NULL)
5983 {
5984 rsec->gc_mark = 1;
5985
5986 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5987 }
5988 }
5989
5990 return rsec;
5991 }
5992
5993 /* Update the .got, .plt. and dynamic reloc reference counts for the
5994 section being removed. */
5995
5996 static bfd_boolean
5997 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5998 asection *sec, const Elf_Internal_Rela *relocs)
5999 {
6000 struct ppc_link_hash_table *htab;
6001 Elf_Internal_Shdr *symtab_hdr;
6002 struct elf_link_hash_entry **sym_hashes;
6003 struct got_entry **local_got_ents;
6004 const Elf_Internal_Rela *rel, *relend;
6005
6006 if (info->relocatable)
6007 return TRUE;
6008
6009 if ((sec->flags & SEC_ALLOC) == 0)
6010 return TRUE;
6011
6012 elf_section_data (sec)->local_dynrel = NULL;
6013
6014 htab = ppc_hash_table (info);
6015 if (htab == NULL)
6016 return FALSE;
6017
6018 symtab_hdr = &elf_symtab_hdr (abfd);
6019 sym_hashes = elf_sym_hashes (abfd);
6020 local_got_ents = elf_local_got_ents (abfd);
6021
6022 relend = relocs + sec->reloc_count;
6023 for (rel = relocs; rel < relend; rel++)
6024 {
6025 unsigned long r_symndx;
6026 enum elf_ppc64_reloc_type r_type;
6027 struct elf_link_hash_entry *h = NULL;
6028 unsigned char tls_type = 0;
6029
6030 r_symndx = ELF64_R_SYM (rel->r_info);
6031 r_type = ELF64_R_TYPE (rel->r_info);
6032 if (r_symndx >= symtab_hdr->sh_info)
6033 {
6034 struct ppc_link_hash_entry *eh;
6035 struct elf_dyn_relocs **pp;
6036 struct elf_dyn_relocs *p;
6037
6038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6039 h = elf_follow_link (h);
6040 eh = (struct ppc_link_hash_entry *) h;
6041
6042 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6043 if (p->sec == sec)
6044 {
6045 /* Everything must go for SEC. */
6046 *pp = p->next;
6047 break;
6048 }
6049 }
6050
6051 if (is_branch_reloc (r_type))
6052 {
6053 struct plt_entry **ifunc = NULL;
6054 if (h != NULL)
6055 {
6056 if (h->type == STT_GNU_IFUNC)
6057 ifunc = &h->plt.plist;
6058 }
6059 else if (local_got_ents != NULL)
6060 {
6061 struct plt_entry **local_plt = (struct plt_entry **)
6062 (local_got_ents + symtab_hdr->sh_info);
6063 unsigned char *local_got_tls_masks = (unsigned char *)
6064 (local_plt + symtab_hdr->sh_info);
6065 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6066 ifunc = local_plt + r_symndx;
6067 }
6068 if (ifunc != NULL)
6069 {
6070 struct plt_entry *ent;
6071
6072 for (ent = *ifunc; ent != NULL; ent = ent->next)
6073 if (ent->addend == rel->r_addend)
6074 break;
6075 if (ent == NULL)
6076 abort ();
6077 if (ent->plt.refcount > 0)
6078 ent->plt.refcount -= 1;
6079 continue;
6080 }
6081 }
6082
6083 switch (r_type)
6084 {
6085 case R_PPC64_GOT_TLSLD16:
6086 case R_PPC64_GOT_TLSLD16_LO:
6087 case R_PPC64_GOT_TLSLD16_HI:
6088 case R_PPC64_GOT_TLSLD16_HA:
6089 tls_type = TLS_TLS | TLS_LD;
6090 goto dogot;
6091
6092 case R_PPC64_GOT_TLSGD16:
6093 case R_PPC64_GOT_TLSGD16_LO:
6094 case R_PPC64_GOT_TLSGD16_HI:
6095 case R_PPC64_GOT_TLSGD16_HA:
6096 tls_type = TLS_TLS | TLS_GD;
6097 goto dogot;
6098
6099 case R_PPC64_GOT_TPREL16_DS:
6100 case R_PPC64_GOT_TPREL16_LO_DS:
6101 case R_PPC64_GOT_TPREL16_HI:
6102 case R_PPC64_GOT_TPREL16_HA:
6103 tls_type = TLS_TLS | TLS_TPREL;
6104 goto dogot;
6105
6106 case R_PPC64_GOT_DTPREL16_DS:
6107 case R_PPC64_GOT_DTPREL16_LO_DS:
6108 case R_PPC64_GOT_DTPREL16_HI:
6109 case R_PPC64_GOT_DTPREL16_HA:
6110 tls_type = TLS_TLS | TLS_DTPREL;
6111 goto dogot;
6112
6113 case R_PPC64_GOT16:
6114 case R_PPC64_GOT16_DS:
6115 case R_PPC64_GOT16_HA:
6116 case R_PPC64_GOT16_HI:
6117 case R_PPC64_GOT16_LO:
6118 case R_PPC64_GOT16_LO_DS:
6119 dogot:
6120 {
6121 struct got_entry *ent;
6122
6123 if (h != NULL)
6124 ent = h->got.glist;
6125 else
6126 ent = local_got_ents[r_symndx];
6127
6128 for (; ent != NULL; ent = ent->next)
6129 if (ent->addend == rel->r_addend
6130 && ent->owner == abfd
6131 && ent->tls_type == tls_type)
6132 break;
6133 if (ent == NULL)
6134 abort ();
6135 if (ent->got.refcount > 0)
6136 ent->got.refcount -= 1;
6137 }
6138 break;
6139
6140 case R_PPC64_PLT16_HA:
6141 case R_PPC64_PLT16_HI:
6142 case R_PPC64_PLT16_LO:
6143 case R_PPC64_PLT32:
6144 case R_PPC64_PLT64:
6145 case R_PPC64_REL14:
6146 case R_PPC64_REL14_BRNTAKEN:
6147 case R_PPC64_REL14_BRTAKEN:
6148 case R_PPC64_REL24:
6149 if (h != NULL)
6150 {
6151 struct plt_entry *ent;
6152
6153 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6154 if (ent->addend == rel->r_addend)
6155 break;
6156 if (ent != NULL && ent->plt.refcount > 0)
6157 ent->plt.refcount -= 1;
6158 }
6159 break;
6160
6161 default:
6162 break;
6163 }
6164 }
6165 return TRUE;
6166 }
6167
6168 /* The maximum size of .sfpr. */
6169 #define SFPR_MAX (218*4)
6170
6171 struct sfpr_def_parms
6172 {
6173 const char name[12];
6174 unsigned char lo, hi;
6175 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6176 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6177 };
6178
6179 /* Auto-generate _save*, _rest* functions in .sfpr. */
6180
6181 static bfd_boolean
6182 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6183 {
6184 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6185 unsigned int i;
6186 size_t len = strlen (parm->name);
6187 bfd_boolean writing = FALSE;
6188 char sym[16];
6189
6190 if (htab == NULL)
6191 return FALSE;
6192
6193 memcpy (sym, parm->name, len);
6194 sym[len + 2] = 0;
6195
6196 for (i = parm->lo; i <= parm->hi; i++)
6197 {
6198 struct elf_link_hash_entry *h;
6199
6200 sym[len + 0] = i / 10 + '0';
6201 sym[len + 1] = i % 10 + '0';
6202 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6203 if (h != NULL
6204 && !h->def_regular)
6205 {
6206 h->root.type = bfd_link_hash_defined;
6207 h->root.u.def.section = htab->sfpr;
6208 h->root.u.def.value = htab->sfpr->size;
6209 h->type = STT_FUNC;
6210 h->def_regular = 1;
6211 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6212 writing = TRUE;
6213 if (htab->sfpr->contents == NULL)
6214 {
6215 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6216 if (htab->sfpr->contents == NULL)
6217 return FALSE;
6218 }
6219 }
6220 if (writing)
6221 {
6222 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6223 if (i != parm->hi)
6224 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6225 else
6226 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6227 htab->sfpr->size = p - htab->sfpr->contents;
6228 }
6229 }
6230
6231 return TRUE;
6232 }
6233
6234 static bfd_byte *
6235 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6236 {
6237 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6238 return p + 4;
6239 }
6240
6241 static bfd_byte *
6242 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6243 {
6244 p = savegpr0 (abfd, p, r);
6245 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6246 p = p + 4;
6247 bfd_put_32 (abfd, BLR, p);
6248 return p + 4;
6249 }
6250
6251 static bfd_byte *
6252 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6253 {
6254 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6255 return p + 4;
6256 }
6257
6258 static bfd_byte *
6259 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6260 {
6261 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6262 p = p + 4;
6263 p = restgpr0 (abfd, p, r);
6264 bfd_put_32 (abfd, MTLR_R0, p);
6265 p = p + 4;
6266 if (r == 29)
6267 {
6268 p = restgpr0 (abfd, p, 30);
6269 p = restgpr0 (abfd, p, 31);
6270 }
6271 bfd_put_32 (abfd, BLR, p);
6272 return p + 4;
6273 }
6274
6275 static bfd_byte *
6276 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6277 {
6278 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6279 return p + 4;
6280 }
6281
6282 static bfd_byte *
6283 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6284 {
6285 p = savegpr1 (abfd, p, r);
6286 bfd_put_32 (abfd, BLR, p);
6287 return p + 4;
6288 }
6289
6290 static bfd_byte *
6291 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6292 {
6293 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6294 return p + 4;
6295 }
6296
6297 static bfd_byte *
6298 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6299 {
6300 p = restgpr1 (abfd, p, r);
6301 bfd_put_32 (abfd, BLR, p);
6302 return p + 4;
6303 }
6304
6305 static bfd_byte *
6306 savefpr (bfd *abfd, bfd_byte *p, int r)
6307 {
6308 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6309 return p + 4;
6310 }
6311
6312 static bfd_byte *
6313 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6314 {
6315 p = savefpr (abfd, p, r);
6316 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6317 p = p + 4;
6318 bfd_put_32 (abfd, BLR, p);
6319 return p + 4;
6320 }
6321
6322 static bfd_byte *
6323 restfpr (bfd *abfd, bfd_byte *p, int r)
6324 {
6325 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6326 return p + 4;
6327 }
6328
6329 static bfd_byte *
6330 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6331 {
6332 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6333 p = p + 4;
6334 p = restfpr (abfd, p, r);
6335 bfd_put_32 (abfd, MTLR_R0, p);
6336 p = p + 4;
6337 if (r == 29)
6338 {
6339 p = restfpr (abfd, p, 30);
6340 p = restfpr (abfd, p, 31);
6341 }
6342 bfd_put_32 (abfd, BLR, p);
6343 return p + 4;
6344 }
6345
6346 static bfd_byte *
6347 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6348 {
6349 p = savefpr (abfd, p, r);
6350 bfd_put_32 (abfd, BLR, p);
6351 return p + 4;
6352 }
6353
6354 static bfd_byte *
6355 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6356 {
6357 p = restfpr (abfd, p, r);
6358 bfd_put_32 (abfd, BLR, p);
6359 return p + 4;
6360 }
6361
6362 static bfd_byte *
6363 savevr (bfd *abfd, bfd_byte *p, int r)
6364 {
6365 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6366 p = p + 4;
6367 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6368 return p + 4;
6369 }
6370
6371 static bfd_byte *
6372 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6373 {
6374 p = savevr (abfd, p, r);
6375 bfd_put_32 (abfd, BLR, p);
6376 return p + 4;
6377 }
6378
6379 static bfd_byte *
6380 restvr (bfd *abfd, bfd_byte *p, int r)
6381 {
6382 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6383 p = p + 4;
6384 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6385 return p + 4;
6386 }
6387
6388 static bfd_byte *
6389 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6390 {
6391 p = restvr (abfd, p, r);
6392 bfd_put_32 (abfd, BLR, p);
6393 return p + 4;
6394 }
6395
6396 /* Called via elf_link_hash_traverse to transfer dynamic linking
6397 information on function code symbol entries to their corresponding
6398 function descriptor symbol entries. */
6399
6400 static bfd_boolean
6401 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6402 {
6403 struct bfd_link_info *info;
6404 struct ppc_link_hash_table *htab;
6405 struct plt_entry *ent;
6406 struct ppc_link_hash_entry *fh;
6407 struct ppc_link_hash_entry *fdh;
6408 bfd_boolean force_local;
6409
6410 fh = (struct ppc_link_hash_entry *) h;
6411 if (fh->elf.root.type == bfd_link_hash_indirect)
6412 return TRUE;
6413
6414 info = inf;
6415 htab = ppc_hash_table (info);
6416 if (htab == NULL)
6417 return FALSE;
6418
6419 /* Resolve undefined references to dot-symbols as the value
6420 in the function descriptor, if we have one in a regular object.
6421 This is to satisfy cases like ".quad .foo". Calls to functions
6422 in dynamic objects are handled elsewhere. */
6423 if (fh->elf.root.type == bfd_link_hash_undefweak
6424 && fh->was_undefined
6425 && (fdh = defined_func_desc (fh)) != NULL
6426 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6427 && opd_entry_value (fdh->elf.root.u.def.section,
6428 fdh->elf.root.u.def.value,
6429 &fh->elf.root.u.def.section,
6430 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6431 {
6432 fh->elf.root.type = fdh->elf.root.type;
6433 fh->elf.forced_local = 1;
6434 fh->elf.def_regular = fdh->elf.def_regular;
6435 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6436 }
6437
6438 /* If this is a function code symbol, transfer dynamic linking
6439 information to the function descriptor symbol. */
6440 if (!fh->is_func)
6441 return TRUE;
6442
6443 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6444 if (ent->plt.refcount > 0)
6445 break;
6446 if (ent == NULL
6447 || fh->elf.root.root.string[0] != '.'
6448 || fh->elf.root.root.string[1] == '\0')
6449 return TRUE;
6450
6451 /* Find the corresponding function descriptor symbol. Create it
6452 as undefined if necessary. */
6453
6454 fdh = lookup_fdh (fh, htab);
6455 if (fdh == NULL
6456 && !info->executable
6457 && (fh->elf.root.type == bfd_link_hash_undefined
6458 || fh->elf.root.type == bfd_link_hash_undefweak))
6459 {
6460 fdh = make_fdh (info, fh);
6461 if (fdh == NULL)
6462 return FALSE;
6463 }
6464
6465 /* Fake function descriptors are made undefweak. If the function
6466 code symbol is strong undefined, make the fake sym the same.
6467 If the function code symbol is defined, then force the fake
6468 descriptor local; We can't support overriding of symbols in a
6469 shared library on a fake descriptor. */
6470
6471 if (fdh != NULL
6472 && fdh->fake
6473 && fdh->elf.root.type == bfd_link_hash_undefweak)
6474 {
6475 if (fh->elf.root.type == bfd_link_hash_undefined)
6476 {
6477 fdh->elf.root.type = bfd_link_hash_undefined;
6478 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6479 }
6480 else if (fh->elf.root.type == bfd_link_hash_defined
6481 || fh->elf.root.type == bfd_link_hash_defweak)
6482 {
6483 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6484 }
6485 }
6486
6487 if (fdh != NULL
6488 && !fdh->elf.forced_local
6489 && (!info->executable
6490 || fdh->elf.def_dynamic
6491 || fdh->elf.ref_dynamic
6492 || (fdh->elf.root.type == bfd_link_hash_undefweak
6493 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6494 {
6495 if (fdh->elf.dynindx == -1)
6496 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6497 return FALSE;
6498 fdh->elf.ref_regular |= fh->elf.ref_regular;
6499 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6500 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6501 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6502 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6503 {
6504 move_plt_plist (fh, fdh);
6505 fdh->elf.needs_plt = 1;
6506 }
6507 fdh->is_func_descriptor = 1;
6508 fdh->oh = fh;
6509 fh->oh = fdh;
6510 }
6511
6512 /* Now that the info is on the function descriptor, clear the
6513 function code sym info. Any function code syms for which we
6514 don't have a definition in a regular file, we force local.
6515 This prevents a shared library from exporting syms that have
6516 been imported from another library. Function code syms that
6517 are really in the library we must leave global to prevent the
6518 linker dragging in a definition from a static library. */
6519 force_local = (!fh->elf.def_regular
6520 || fdh == NULL
6521 || !fdh->elf.def_regular
6522 || fdh->elf.forced_local);
6523 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6524
6525 return TRUE;
6526 }
6527
6528 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6529 this hook to a) provide some gcc support functions, and b) transfer
6530 dynamic linking information gathered so far on function code symbol
6531 entries, to their corresponding function descriptor symbol entries. */
6532
6533 static bfd_boolean
6534 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6535 struct bfd_link_info *info)
6536 {
6537 struct ppc_link_hash_table *htab;
6538 unsigned int i;
6539 static const struct sfpr_def_parms funcs[] =
6540 {
6541 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6542 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6543 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6544 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6545 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6546 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6547 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6548 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6549 { "._savef", 14, 31, savefpr, savefpr1_tail },
6550 { "._restf", 14, 31, restfpr, restfpr1_tail },
6551 { "_savevr_", 20, 31, savevr, savevr_tail },
6552 { "_restvr_", 20, 31, restvr, restvr_tail }
6553 };
6554
6555 htab = ppc_hash_table (info);
6556 if (htab == NULL)
6557 return FALSE;
6558
6559 if (!info->relocatable
6560 && htab->elf.hgot != NULL)
6561 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6562
6563 if (htab->sfpr == NULL)
6564 /* We don't have any relocs. */
6565 return TRUE;
6566
6567 /* Provide any missing _save* and _rest* functions. */
6568 htab->sfpr->size = 0;
6569 if (!info->relocatable)
6570 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6571 if (!sfpr_define (info, &funcs[i]))
6572 return FALSE;
6573
6574 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6575
6576 if (htab->sfpr->size == 0)
6577 htab->sfpr->flags |= SEC_EXCLUDE;
6578
6579 return TRUE;
6580 }
6581
6582 /* Adjust a symbol defined by a dynamic object and referenced by a
6583 regular object. The current definition is in some section of the
6584 dynamic object, but we're not including those sections. We have to
6585 change the definition to something the rest of the link can
6586 understand. */
6587
6588 static bfd_boolean
6589 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6590 struct elf_link_hash_entry *h)
6591 {
6592 struct ppc_link_hash_table *htab;
6593 asection *s;
6594
6595 htab = ppc_hash_table (info);
6596 if (htab == NULL)
6597 return FALSE;
6598
6599 /* Deal with function syms. */
6600 if (h->type == STT_FUNC
6601 || h->type == STT_GNU_IFUNC
6602 || h->needs_plt)
6603 {
6604 /* Clear procedure linkage table information for any symbol that
6605 won't need a .plt entry. */
6606 struct plt_entry *ent;
6607 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6608 if (ent->plt.refcount > 0)
6609 break;
6610 if (ent == NULL
6611 || (h->type != STT_GNU_IFUNC
6612 && (SYMBOL_CALLS_LOCAL (info, h)
6613 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6614 && h->root.type == bfd_link_hash_undefweak))))
6615 {
6616 h->plt.plist = NULL;
6617 h->needs_plt = 0;
6618 }
6619 }
6620 else
6621 h->plt.plist = NULL;
6622
6623 /* If this is a weak symbol, and there is a real definition, the
6624 processor independent code will have arranged for us to see the
6625 real definition first, and we can just use the same value. */
6626 if (h->u.weakdef != NULL)
6627 {
6628 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6629 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6630 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6631 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6632 if (ELIMINATE_COPY_RELOCS)
6633 h->non_got_ref = h->u.weakdef->non_got_ref;
6634 return TRUE;
6635 }
6636
6637 /* If we are creating a shared library, we must presume that the
6638 only references to the symbol are via the global offset table.
6639 For such cases we need not do anything here; the relocations will
6640 be handled correctly by relocate_section. */
6641 if (info->shared)
6642 return TRUE;
6643
6644 /* If there are no references to this symbol that do not use the
6645 GOT, we don't need to generate a copy reloc. */
6646 if (!h->non_got_ref)
6647 return TRUE;
6648
6649 /* Don't generate a copy reloc for symbols defined in the executable. */
6650 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6651 return TRUE;
6652
6653 if (ELIMINATE_COPY_RELOCS)
6654 {
6655 struct ppc_link_hash_entry * eh;
6656 struct elf_dyn_relocs *p;
6657
6658 eh = (struct ppc_link_hash_entry *) h;
6659 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6660 {
6661 s = p->sec->output_section;
6662 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6663 break;
6664 }
6665
6666 /* If we didn't find any dynamic relocs in read-only sections, then
6667 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6668 if (p == NULL)
6669 {
6670 h->non_got_ref = 0;
6671 return TRUE;
6672 }
6673 }
6674
6675 if (h->plt.plist != NULL)
6676 {
6677 /* We should never get here, but unfortunately there are versions
6678 of gcc out there that improperly (for this ABI) put initialized
6679 function pointers, vtable refs and suchlike in read-only
6680 sections. Allow them to proceed, but warn that this might
6681 break at runtime. */
6682 info->callbacks->einfo
6683 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6684 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6685 h->root.root.string);
6686 }
6687
6688 /* This is a reference to a symbol defined by a dynamic object which
6689 is not a function. */
6690
6691 /* We must allocate the symbol in our .dynbss section, which will
6692 become part of the .bss section of the executable. There will be
6693 an entry for this symbol in the .dynsym section. The dynamic
6694 object will contain position independent code, so all references
6695 from the dynamic object to this symbol will go through the global
6696 offset table. The dynamic linker will use the .dynsym entry to
6697 determine the address it must put in the global offset table, so
6698 both the dynamic object and the regular object will refer to the
6699 same memory location for the variable. */
6700
6701 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6702 to copy the initial value out of the dynamic object and into the
6703 runtime process image. We need to remember the offset into the
6704 .rela.bss section we are going to use. */
6705 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6706 {
6707 htab->relbss->size += sizeof (Elf64_External_Rela);
6708 h->needs_copy = 1;
6709 }
6710
6711 s = htab->dynbss;
6712
6713 return _bfd_elf_adjust_dynamic_copy (h, s);
6714 }
6715
6716 /* If given a function descriptor symbol, hide both the function code
6717 sym and the descriptor. */
6718 static void
6719 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6720 struct elf_link_hash_entry *h,
6721 bfd_boolean force_local)
6722 {
6723 struct ppc_link_hash_entry *eh;
6724 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6725
6726 eh = (struct ppc_link_hash_entry *) h;
6727 if (eh->is_func_descriptor)
6728 {
6729 struct ppc_link_hash_entry *fh = eh->oh;
6730
6731 if (fh == NULL)
6732 {
6733 const char *p, *q;
6734 struct ppc_link_hash_table *htab;
6735 char save;
6736
6737 /* We aren't supposed to use alloca in BFD because on
6738 systems which do not have alloca the version in libiberty
6739 calls xmalloc, which might cause the program to crash
6740 when it runs out of memory. This function doesn't have a
6741 return status, so there's no way to gracefully return an
6742 error. So cheat. We know that string[-1] can be safely
6743 accessed; It's either a string in an ELF string table,
6744 or allocated in an objalloc structure. */
6745
6746 p = eh->elf.root.root.string - 1;
6747 save = *p;
6748 *(char *) p = '.';
6749 htab = ppc_hash_table (info);
6750 if (htab == NULL)
6751 return;
6752
6753 fh = (struct ppc_link_hash_entry *)
6754 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6755 *(char *) p = save;
6756
6757 /* Unfortunately, if it so happens that the string we were
6758 looking for was allocated immediately before this string,
6759 then we overwrote the string terminator. That's the only
6760 reason the lookup should fail. */
6761 if (fh == NULL)
6762 {
6763 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6764 while (q >= eh->elf.root.root.string && *q == *p)
6765 --q, --p;
6766 if (q < eh->elf.root.root.string && *p == '.')
6767 fh = (struct ppc_link_hash_entry *)
6768 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6769 }
6770 if (fh != NULL)
6771 {
6772 eh->oh = fh;
6773 fh->oh = eh;
6774 }
6775 }
6776 if (fh != NULL)
6777 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6778 }
6779 }
6780
6781 static bfd_boolean
6782 get_sym_h (struct elf_link_hash_entry **hp,
6783 Elf_Internal_Sym **symp,
6784 asection **symsecp,
6785 unsigned char **tls_maskp,
6786 Elf_Internal_Sym **locsymsp,
6787 unsigned long r_symndx,
6788 bfd *ibfd)
6789 {
6790 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6791
6792 if (r_symndx >= symtab_hdr->sh_info)
6793 {
6794 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6795 struct elf_link_hash_entry *h;
6796
6797 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6798 h = elf_follow_link (h);
6799
6800 if (hp != NULL)
6801 *hp = h;
6802
6803 if (symp != NULL)
6804 *symp = NULL;
6805
6806 if (symsecp != NULL)
6807 {
6808 asection *symsec = NULL;
6809 if (h->root.type == bfd_link_hash_defined
6810 || h->root.type == bfd_link_hash_defweak)
6811 symsec = h->root.u.def.section;
6812 *symsecp = symsec;
6813 }
6814
6815 if (tls_maskp != NULL)
6816 {
6817 struct ppc_link_hash_entry *eh;
6818
6819 eh = (struct ppc_link_hash_entry *) h;
6820 *tls_maskp = &eh->tls_mask;
6821 }
6822 }
6823 else
6824 {
6825 Elf_Internal_Sym *sym;
6826 Elf_Internal_Sym *locsyms = *locsymsp;
6827
6828 if (locsyms == NULL)
6829 {
6830 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6831 if (locsyms == NULL)
6832 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6833 symtab_hdr->sh_info,
6834 0, NULL, NULL, NULL);
6835 if (locsyms == NULL)
6836 return FALSE;
6837 *locsymsp = locsyms;
6838 }
6839 sym = locsyms + r_symndx;
6840
6841 if (hp != NULL)
6842 *hp = NULL;
6843
6844 if (symp != NULL)
6845 *symp = sym;
6846
6847 if (symsecp != NULL)
6848 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6849
6850 if (tls_maskp != NULL)
6851 {
6852 struct got_entry **lgot_ents;
6853 unsigned char *tls_mask;
6854
6855 tls_mask = NULL;
6856 lgot_ents = elf_local_got_ents (ibfd);
6857 if (lgot_ents != NULL)
6858 {
6859 struct plt_entry **local_plt = (struct plt_entry **)
6860 (lgot_ents + symtab_hdr->sh_info);
6861 unsigned char *lgot_masks = (unsigned char *)
6862 (local_plt + symtab_hdr->sh_info);
6863 tls_mask = &lgot_masks[r_symndx];
6864 }
6865 *tls_maskp = tls_mask;
6866 }
6867 }
6868 return TRUE;
6869 }
6870
6871 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6872 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6873 type suitable for optimization, and 1 otherwise. */
6874
6875 static int
6876 get_tls_mask (unsigned char **tls_maskp,
6877 unsigned long *toc_symndx,
6878 bfd_vma *toc_addend,
6879 Elf_Internal_Sym **locsymsp,
6880 const Elf_Internal_Rela *rel,
6881 bfd *ibfd)
6882 {
6883 unsigned long r_symndx;
6884 int next_r;
6885 struct elf_link_hash_entry *h;
6886 Elf_Internal_Sym *sym;
6887 asection *sec;
6888 bfd_vma off;
6889
6890 r_symndx = ELF64_R_SYM (rel->r_info);
6891 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6892 return 0;
6893
6894 if ((*tls_maskp != NULL && **tls_maskp != 0)
6895 || sec == NULL
6896 || ppc64_elf_section_data (sec) == NULL
6897 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6898 return 1;
6899
6900 /* Look inside a TOC section too. */
6901 if (h != NULL)
6902 {
6903 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6904 off = h->root.u.def.value;
6905 }
6906 else
6907 off = sym->st_value;
6908 off += rel->r_addend;
6909 BFD_ASSERT (off % 8 == 0);
6910 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6911 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6912 if (toc_symndx != NULL)
6913 *toc_symndx = r_symndx;
6914 if (toc_addend != NULL)
6915 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6916 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6917 return 0;
6918 if ((h == NULL || is_static_defined (h))
6919 && (next_r == -1 || next_r == -2))
6920 return 1 - next_r;
6921 return 1;
6922 }
6923
6924 /* Find (or create) an entry in the tocsave hash table. */
6925
6926 static struct tocsave_entry *
6927 tocsave_find (struct ppc_link_hash_table *htab,
6928 enum insert_option insert,
6929 Elf_Internal_Sym **local_syms,
6930 const Elf_Internal_Rela *irela,
6931 bfd *ibfd)
6932 {
6933 unsigned long r_indx;
6934 struct elf_link_hash_entry *h;
6935 Elf_Internal_Sym *sym;
6936 struct tocsave_entry ent, *p;
6937 hashval_t hash;
6938 struct tocsave_entry **slot;
6939
6940 r_indx = ELF64_R_SYM (irela->r_info);
6941 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6942 return NULL;
6943 if (ent.sec == NULL || ent.sec->output_section == NULL)
6944 {
6945 (*_bfd_error_handler)
6946 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6947 return NULL;
6948 }
6949
6950 if (h != NULL)
6951 ent.offset = h->root.u.def.value;
6952 else
6953 ent.offset = sym->st_value;
6954 ent.offset += irela->r_addend;
6955
6956 hash = tocsave_htab_hash (&ent);
6957 slot = ((struct tocsave_entry **)
6958 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6959 if (slot == NULL)
6960 return NULL;
6961
6962 if (*slot == NULL)
6963 {
6964 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6965 if (p == NULL)
6966 return NULL;
6967 *p = ent;
6968 *slot = p;
6969 }
6970 return *slot;
6971 }
6972
6973 /* Adjust all global syms defined in opd sections. In gcc generated
6974 code for the old ABI, these will already have been done. */
6975
6976 static bfd_boolean
6977 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6978 {
6979 struct ppc_link_hash_entry *eh;
6980 asection *sym_sec;
6981 struct _opd_sec_data *opd;
6982
6983 if (h->root.type == bfd_link_hash_indirect)
6984 return TRUE;
6985
6986 if (h->root.type != bfd_link_hash_defined
6987 && h->root.type != bfd_link_hash_defweak)
6988 return TRUE;
6989
6990 eh = (struct ppc_link_hash_entry *) h;
6991 if (eh->adjust_done)
6992 return TRUE;
6993
6994 sym_sec = eh->elf.root.u.def.section;
6995 opd = get_opd_info (sym_sec);
6996 if (opd != NULL && opd->adjust != NULL)
6997 {
6998 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6999 if (adjust == -1)
7000 {
7001 /* This entry has been deleted. */
7002 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7003 if (dsec == NULL)
7004 {
7005 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7006 if (discarded_section (dsec))
7007 {
7008 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7009 break;
7010 }
7011 }
7012 eh->elf.root.u.def.value = 0;
7013 eh->elf.root.u.def.section = dsec;
7014 }
7015 else
7016 eh->elf.root.u.def.value += adjust;
7017 eh->adjust_done = 1;
7018 }
7019 return TRUE;
7020 }
7021
7022 /* Handles decrementing dynamic reloc counts for the reloc specified by
7023 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7024 have already been determined. */
7025
7026 static bfd_boolean
7027 dec_dynrel_count (bfd_vma r_info,
7028 asection *sec,
7029 struct bfd_link_info *info,
7030 Elf_Internal_Sym **local_syms,
7031 struct elf_link_hash_entry *h,
7032 Elf_Internal_Sym *sym)
7033 {
7034 enum elf_ppc64_reloc_type r_type;
7035 asection *sym_sec = NULL;
7036
7037 /* Can this reloc be dynamic? This switch, and later tests here
7038 should be kept in sync with the code in check_relocs. */
7039 r_type = ELF64_R_TYPE (r_info);
7040 switch (r_type)
7041 {
7042 default:
7043 return TRUE;
7044
7045 case R_PPC64_TPREL16:
7046 case R_PPC64_TPREL16_LO:
7047 case R_PPC64_TPREL16_HI:
7048 case R_PPC64_TPREL16_HA:
7049 case R_PPC64_TPREL16_DS:
7050 case R_PPC64_TPREL16_LO_DS:
7051 case R_PPC64_TPREL16_HIGHER:
7052 case R_PPC64_TPREL16_HIGHERA:
7053 case R_PPC64_TPREL16_HIGHEST:
7054 case R_PPC64_TPREL16_HIGHESTA:
7055 if (!info->shared)
7056 return TRUE;
7057
7058 case R_PPC64_TPREL64:
7059 case R_PPC64_DTPMOD64:
7060 case R_PPC64_DTPREL64:
7061 case R_PPC64_ADDR64:
7062 case R_PPC64_REL30:
7063 case R_PPC64_REL32:
7064 case R_PPC64_REL64:
7065 case R_PPC64_ADDR14:
7066 case R_PPC64_ADDR14_BRNTAKEN:
7067 case R_PPC64_ADDR14_BRTAKEN:
7068 case R_PPC64_ADDR16:
7069 case R_PPC64_ADDR16_DS:
7070 case R_PPC64_ADDR16_HA:
7071 case R_PPC64_ADDR16_HI:
7072 case R_PPC64_ADDR16_HIGHER:
7073 case R_PPC64_ADDR16_HIGHERA:
7074 case R_PPC64_ADDR16_HIGHEST:
7075 case R_PPC64_ADDR16_HIGHESTA:
7076 case R_PPC64_ADDR16_LO:
7077 case R_PPC64_ADDR16_LO_DS:
7078 case R_PPC64_ADDR24:
7079 case R_PPC64_ADDR32:
7080 case R_PPC64_UADDR16:
7081 case R_PPC64_UADDR32:
7082 case R_PPC64_UADDR64:
7083 case R_PPC64_TOC:
7084 break;
7085 }
7086
7087 if (local_syms != NULL)
7088 {
7089 unsigned long r_symndx;
7090 bfd *ibfd = sec->owner;
7091
7092 r_symndx = ELF64_R_SYM (r_info);
7093 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7094 return FALSE;
7095 }
7096
7097 if ((info->shared
7098 && (must_be_dyn_reloc (info, r_type)
7099 || (h != NULL
7100 && (!SYMBOLIC_BIND (info, h)
7101 || h->root.type == bfd_link_hash_defweak
7102 || !h->def_regular))))
7103 || (ELIMINATE_COPY_RELOCS
7104 && !info->shared
7105 && h != NULL
7106 && (h->root.type == bfd_link_hash_defweak
7107 || !h->def_regular)))
7108 ;
7109 else
7110 return TRUE;
7111
7112 if (h != NULL)
7113 {
7114 struct elf_dyn_relocs *p;
7115 struct elf_dyn_relocs **pp;
7116 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7117
7118 /* elf_gc_sweep may have already removed all dyn relocs associated
7119 with local syms for a given section. Also, symbol flags are
7120 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7121 report a dynreloc miscount. */
7122 if (*pp == NULL && info->gc_sections)
7123 return TRUE;
7124
7125 while ((p = *pp) != NULL)
7126 {
7127 if (p->sec == sec)
7128 {
7129 if (!must_be_dyn_reloc (info, r_type))
7130 p->pc_count -= 1;
7131 p->count -= 1;
7132 if (p->count == 0)
7133 *pp = p->next;
7134 return TRUE;
7135 }
7136 pp = &p->next;
7137 }
7138 }
7139 else
7140 {
7141 struct ppc_dyn_relocs *p;
7142 struct ppc_dyn_relocs **pp;
7143 void *vpp;
7144 bfd_boolean is_ifunc;
7145
7146 if (local_syms == NULL)
7147 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7148 if (sym_sec == NULL)
7149 sym_sec = sec;
7150
7151 vpp = &elf_section_data (sym_sec)->local_dynrel;
7152 pp = (struct ppc_dyn_relocs **) vpp;
7153
7154 if (*pp == NULL && info->gc_sections)
7155 return TRUE;
7156
7157 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7158 while ((p = *pp) != NULL)
7159 {
7160 if (p->sec == sec && p->ifunc == is_ifunc)
7161 {
7162 p->count -= 1;
7163 if (p->count == 0)
7164 *pp = p->next;
7165 return TRUE;
7166 }
7167 pp = &p->next;
7168 }
7169 }
7170
7171 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7172 sec->owner, sec);
7173 bfd_set_error (bfd_error_bad_value);
7174 return FALSE;
7175 }
7176
7177 /* Remove unused Official Procedure Descriptor entries. Currently we
7178 only remove those associated with functions in discarded link-once
7179 sections, or weakly defined functions that have been overridden. It
7180 would be possible to remove many more entries for statically linked
7181 applications. */
7182
7183 bfd_boolean
7184 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7185 {
7186 bfd *ibfd;
7187 bfd_boolean some_edited = FALSE;
7188 asection *need_pad = NULL;
7189
7190 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7191 {
7192 asection *sec;
7193 Elf_Internal_Rela *relstart, *rel, *relend;
7194 Elf_Internal_Shdr *symtab_hdr;
7195 Elf_Internal_Sym *local_syms;
7196 bfd_vma offset;
7197 struct _opd_sec_data *opd;
7198 bfd_boolean need_edit, add_aux_fields;
7199 bfd_size_type cnt_16b = 0;
7200
7201 if (!is_ppc64_elf (ibfd))
7202 continue;
7203
7204 sec = bfd_get_section_by_name (ibfd, ".opd");
7205 if (sec == NULL || sec->size == 0)
7206 continue;
7207
7208 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7209 continue;
7210
7211 if (sec->output_section == bfd_abs_section_ptr)
7212 continue;
7213
7214 /* Look through the section relocs. */
7215 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7216 continue;
7217
7218 local_syms = NULL;
7219 symtab_hdr = &elf_symtab_hdr (ibfd);
7220
7221 /* Read the relocations. */
7222 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7223 info->keep_memory);
7224 if (relstart == NULL)
7225 return FALSE;
7226
7227 /* First run through the relocs to check they are sane, and to
7228 determine whether we need to edit this opd section. */
7229 need_edit = FALSE;
7230 need_pad = sec;
7231 offset = 0;
7232 relend = relstart + sec->reloc_count;
7233 for (rel = relstart; rel < relend; )
7234 {
7235 enum elf_ppc64_reloc_type r_type;
7236 unsigned long r_symndx;
7237 asection *sym_sec;
7238 struct elf_link_hash_entry *h;
7239 Elf_Internal_Sym *sym;
7240
7241 /* .opd contains a regular array of 16 or 24 byte entries. We're
7242 only interested in the reloc pointing to a function entry
7243 point. */
7244 if (rel->r_offset != offset
7245 || rel + 1 >= relend
7246 || (rel + 1)->r_offset != offset + 8)
7247 {
7248 /* If someone messes with .opd alignment then after a
7249 "ld -r" we might have padding in the middle of .opd.
7250 Also, there's nothing to prevent someone putting
7251 something silly in .opd with the assembler. No .opd
7252 optimization for them! */
7253 broken_opd:
7254 (*_bfd_error_handler)
7255 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7256 need_edit = FALSE;
7257 break;
7258 }
7259
7260 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7261 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7262 {
7263 (*_bfd_error_handler)
7264 (_("%B: unexpected reloc type %u in .opd section"),
7265 ibfd, r_type);
7266 need_edit = FALSE;
7267 break;
7268 }
7269
7270 r_symndx = ELF64_R_SYM (rel->r_info);
7271 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7272 r_symndx, ibfd))
7273 goto error_ret;
7274
7275 if (sym_sec == NULL || sym_sec->owner == NULL)
7276 {
7277 const char *sym_name;
7278 if (h != NULL)
7279 sym_name = h->root.root.string;
7280 else
7281 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7282 sym_sec);
7283
7284 (*_bfd_error_handler)
7285 (_("%B: undefined sym `%s' in .opd section"),
7286 ibfd, sym_name);
7287 need_edit = FALSE;
7288 break;
7289 }
7290
7291 /* opd entries are always for functions defined in the
7292 current input bfd. If the symbol isn't defined in the
7293 input bfd, then we won't be using the function in this
7294 bfd; It must be defined in a linkonce section in another
7295 bfd, or is weak. It's also possible that we are
7296 discarding the function due to a linker script /DISCARD/,
7297 which we test for via the output_section. */
7298 if (sym_sec->owner != ibfd
7299 || sym_sec->output_section == bfd_abs_section_ptr)
7300 need_edit = TRUE;
7301
7302 rel += 2;
7303 if (rel == relend
7304 || (rel + 1 == relend && rel->r_offset == offset + 16))
7305 {
7306 if (sec->size == offset + 24)
7307 {
7308 need_pad = NULL;
7309 break;
7310 }
7311 if (rel == relend && sec->size == offset + 16)
7312 {
7313 cnt_16b++;
7314 break;
7315 }
7316 goto broken_opd;
7317 }
7318
7319 if (rel->r_offset == offset + 24)
7320 offset += 24;
7321 else if (rel->r_offset != offset + 16)
7322 goto broken_opd;
7323 else if (rel + 1 < relend
7324 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7325 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7326 {
7327 offset += 16;
7328 cnt_16b++;
7329 }
7330 else if (rel + 2 < relend
7331 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7332 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7333 {
7334 offset += 24;
7335 rel += 1;
7336 }
7337 else
7338 goto broken_opd;
7339 }
7340
7341 add_aux_fields = non_overlapping && cnt_16b > 0;
7342
7343 if (need_edit || add_aux_fields)
7344 {
7345 Elf_Internal_Rela *write_rel;
7346 Elf_Internal_Shdr *rel_hdr;
7347 bfd_byte *rptr, *wptr;
7348 bfd_byte *new_contents;
7349 bfd_boolean skip;
7350 long opd_ent_size;
7351 bfd_size_type amt;
7352
7353 new_contents = NULL;
7354 amt = sec->size * sizeof (long) / 8;
7355 opd = &ppc64_elf_section_data (sec)->u.opd;
7356 opd->adjust = bfd_zalloc (sec->owner, amt);
7357 if (opd->adjust == NULL)
7358 return FALSE;
7359 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7360
7361 /* This seems a waste of time as input .opd sections are all
7362 zeros as generated by gcc, but I suppose there's no reason
7363 this will always be so. We might start putting something in
7364 the third word of .opd entries. */
7365 if ((sec->flags & SEC_IN_MEMORY) == 0)
7366 {
7367 bfd_byte *loc;
7368 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7369 {
7370 if (loc != NULL)
7371 free (loc);
7372 error_ret:
7373 if (local_syms != NULL
7374 && symtab_hdr->contents != (unsigned char *) local_syms)
7375 free (local_syms);
7376 if (elf_section_data (sec)->relocs != relstart)
7377 free (relstart);
7378 return FALSE;
7379 }
7380 sec->contents = loc;
7381 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7382 }
7383
7384 elf_section_data (sec)->relocs = relstart;
7385
7386 new_contents = sec->contents;
7387 if (add_aux_fields)
7388 {
7389 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7390 if (new_contents == NULL)
7391 return FALSE;
7392 need_pad = FALSE;
7393 }
7394 wptr = new_contents;
7395 rptr = sec->contents;
7396
7397 write_rel = relstart;
7398 skip = FALSE;
7399 offset = 0;
7400 opd_ent_size = 0;
7401 for (rel = relstart; rel < relend; rel++)
7402 {
7403 unsigned long r_symndx;
7404 asection *sym_sec;
7405 struct elf_link_hash_entry *h;
7406 Elf_Internal_Sym *sym;
7407
7408 r_symndx = ELF64_R_SYM (rel->r_info);
7409 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7410 r_symndx, ibfd))
7411 goto error_ret;
7412
7413 if (rel->r_offset == offset)
7414 {
7415 struct ppc_link_hash_entry *fdh = NULL;
7416
7417 /* See if the .opd entry is full 24 byte or
7418 16 byte (with fd_aux entry overlapped with next
7419 fd_func). */
7420 opd_ent_size = 24;
7421 if ((rel + 2 == relend && sec->size == offset + 16)
7422 || (rel + 3 < relend
7423 && rel[2].r_offset == offset + 16
7424 && rel[3].r_offset == offset + 24
7425 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7426 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7427 opd_ent_size = 16;
7428
7429 if (h != NULL
7430 && h->root.root.string[0] == '.')
7431 {
7432 struct ppc_link_hash_table *htab;
7433
7434 htab = ppc_hash_table (info);
7435 if (htab != NULL)
7436 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7437 htab);
7438 if (fdh != NULL
7439 && fdh->elf.root.type != bfd_link_hash_defined
7440 && fdh->elf.root.type != bfd_link_hash_defweak)
7441 fdh = NULL;
7442 }
7443
7444 skip = (sym_sec->owner != ibfd
7445 || sym_sec->output_section == bfd_abs_section_ptr);
7446 if (skip)
7447 {
7448 if (fdh != NULL && sym_sec->owner == ibfd)
7449 {
7450 /* Arrange for the function descriptor sym
7451 to be dropped. */
7452 fdh->elf.root.u.def.value = 0;
7453 fdh->elf.root.u.def.section = sym_sec;
7454 }
7455 opd->adjust[rel->r_offset / 8] = -1;
7456 }
7457 else
7458 {
7459 /* We'll be keeping this opd entry. */
7460
7461 if (fdh != NULL)
7462 {
7463 /* Redefine the function descriptor symbol to
7464 this location in the opd section. It is
7465 necessary to update the value here rather
7466 than using an array of adjustments as we do
7467 for local symbols, because various places
7468 in the generic ELF code use the value
7469 stored in u.def.value. */
7470 fdh->elf.root.u.def.value = wptr - new_contents;
7471 fdh->adjust_done = 1;
7472 }
7473
7474 /* Local syms are a bit tricky. We could
7475 tweak them as they can be cached, but
7476 we'd need to look through the local syms
7477 for the function descriptor sym which we
7478 don't have at the moment. So keep an
7479 array of adjustments. */
7480 opd->adjust[rel->r_offset / 8]
7481 = (wptr - new_contents) - (rptr - sec->contents);
7482
7483 if (wptr != rptr)
7484 memcpy (wptr, rptr, opd_ent_size);
7485 wptr += opd_ent_size;
7486 if (add_aux_fields && opd_ent_size == 16)
7487 {
7488 memset (wptr, '\0', 8);
7489 wptr += 8;
7490 }
7491 }
7492 rptr += opd_ent_size;
7493 offset += opd_ent_size;
7494 }
7495
7496 if (skip)
7497 {
7498 if (!NO_OPD_RELOCS
7499 && !info->relocatable
7500 && !dec_dynrel_count (rel->r_info, sec, info,
7501 NULL, h, sym))
7502 goto error_ret;
7503 }
7504 else
7505 {
7506 /* We need to adjust any reloc offsets to point to the
7507 new opd entries. While we're at it, we may as well
7508 remove redundant relocs. */
7509 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7510 if (write_rel != rel)
7511 memcpy (write_rel, rel, sizeof (*rel));
7512 ++write_rel;
7513 }
7514 }
7515
7516 sec->size = wptr - new_contents;
7517 sec->reloc_count = write_rel - relstart;
7518 if (add_aux_fields)
7519 {
7520 free (sec->contents);
7521 sec->contents = new_contents;
7522 }
7523
7524 /* Fudge the header size too, as this is used later in
7525 elf_bfd_final_link if we are emitting relocs. */
7526 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7527 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7528 some_edited = TRUE;
7529 }
7530 else if (elf_section_data (sec)->relocs != relstart)
7531 free (relstart);
7532
7533 if (local_syms != NULL
7534 && symtab_hdr->contents != (unsigned char *) local_syms)
7535 {
7536 if (!info->keep_memory)
7537 free (local_syms);
7538 else
7539 symtab_hdr->contents = (unsigned char *) local_syms;
7540 }
7541 }
7542
7543 if (some_edited)
7544 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7545
7546 /* If we are doing a final link and the last .opd entry is just 16 byte
7547 long, add a 8 byte padding after it. */
7548 if (need_pad != NULL && !info->relocatable)
7549 {
7550 bfd_byte *p;
7551
7552 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7553 {
7554 BFD_ASSERT (need_pad->size > 0);
7555
7556 p = bfd_malloc (need_pad->size + 8);
7557 if (p == NULL)
7558 return FALSE;
7559
7560 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7561 p, 0, need_pad->size))
7562 return FALSE;
7563
7564 need_pad->contents = p;
7565 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7566 }
7567 else
7568 {
7569 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7570 if (p == NULL)
7571 return FALSE;
7572
7573 need_pad->contents = p;
7574 }
7575
7576 memset (need_pad->contents + need_pad->size, 0, 8);
7577 need_pad->size += 8;
7578 }
7579
7580 return TRUE;
7581 }
7582
7583 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7584
7585 asection *
7586 ppc64_elf_tls_setup (struct bfd_link_info *info,
7587 int no_tls_get_addr_opt,
7588 int *no_multi_toc)
7589 {
7590 struct ppc_link_hash_table *htab;
7591
7592 htab = ppc_hash_table (info);
7593 if (htab == NULL)
7594 return NULL;
7595
7596 if (*no_multi_toc)
7597 htab->do_multi_toc = 0;
7598 else if (!htab->do_multi_toc)
7599 *no_multi_toc = 1;
7600
7601 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7602 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7603 FALSE, FALSE, TRUE));
7604 /* Move dynamic linking info to the function descriptor sym. */
7605 if (htab->tls_get_addr != NULL)
7606 func_desc_adjust (&htab->tls_get_addr->elf, info);
7607 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7608 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7609 FALSE, FALSE, TRUE));
7610 if (!no_tls_get_addr_opt)
7611 {
7612 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7613
7614 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7615 FALSE, FALSE, TRUE);
7616 if (opt != NULL)
7617 func_desc_adjust (opt, info);
7618 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7619 FALSE, FALSE, TRUE);
7620 if (opt_fd != NULL
7621 && (opt_fd->root.type == bfd_link_hash_defined
7622 || opt_fd->root.type == bfd_link_hash_defweak))
7623 {
7624 /* If glibc supports an optimized __tls_get_addr call stub,
7625 signalled by the presence of __tls_get_addr_opt, and we'll
7626 be calling __tls_get_addr via a plt call stub, then
7627 make __tls_get_addr point to __tls_get_addr_opt. */
7628 tga_fd = &htab->tls_get_addr_fd->elf;
7629 if (htab->elf.dynamic_sections_created
7630 && tga_fd != NULL
7631 && (tga_fd->type == STT_FUNC
7632 || tga_fd->needs_plt)
7633 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7634 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7635 && tga_fd->root.type == bfd_link_hash_undefweak)))
7636 {
7637 struct plt_entry *ent;
7638
7639 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7640 if (ent->plt.refcount > 0)
7641 break;
7642 if (ent != NULL)
7643 {
7644 tga_fd->root.type = bfd_link_hash_indirect;
7645 tga_fd->root.u.i.link = &opt_fd->root;
7646 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7647 if (opt_fd->dynindx != -1)
7648 {
7649 /* Use __tls_get_addr_opt in dynamic relocations. */
7650 opt_fd->dynindx = -1;
7651 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7652 opt_fd->dynstr_index);
7653 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7654 return NULL;
7655 }
7656 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7657 tga = &htab->tls_get_addr->elf;
7658 if (opt != NULL && tga != NULL)
7659 {
7660 tga->root.type = bfd_link_hash_indirect;
7661 tga->root.u.i.link = &opt->root;
7662 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7663 _bfd_elf_link_hash_hide_symbol (info, opt,
7664 tga->forced_local);
7665 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7666 }
7667 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7668 htab->tls_get_addr_fd->is_func_descriptor = 1;
7669 if (htab->tls_get_addr != NULL)
7670 {
7671 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7672 htab->tls_get_addr->is_func = 1;
7673 }
7674 }
7675 }
7676 }
7677 else
7678 no_tls_get_addr_opt = TRUE;
7679 }
7680 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7681 return _bfd_elf_tls_setup (info->output_bfd, info);
7682 }
7683
7684 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7685 HASH1 or HASH2. */
7686
7687 static bfd_boolean
7688 branch_reloc_hash_match (const bfd *ibfd,
7689 const Elf_Internal_Rela *rel,
7690 const struct ppc_link_hash_entry *hash1,
7691 const struct ppc_link_hash_entry *hash2)
7692 {
7693 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7694 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7695 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7696
7697 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7698 {
7699 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7700 struct elf_link_hash_entry *h;
7701
7702 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7703 h = elf_follow_link (h);
7704 if (h == &hash1->elf || h == &hash2->elf)
7705 return TRUE;
7706 }
7707 return FALSE;
7708 }
7709
7710 /* Run through all the TLS relocs looking for optimization
7711 opportunities. The linker has been hacked (see ppc64elf.em) to do
7712 a preliminary section layout so that we know the TLS segment
7713 offsets. We can't optimize earlier because some optimizations need
7714 to know the tp offset, and we need to optimize before allocating
7715 dynamic relocations. */
7716
7717 bfd_boolean
7718 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7719 {
7720 bfd *ibfd;
7721 asection *sec;
7722 struct ppc_link_hash_table *htab;
7723 unsigned char *toc_ref;
7724 int pass;
7725
7726 if (info->relocatable || !info->executable)
7727 return TRUE;
7728
7729 htab = ppc_hash_table (info);
7730 if (htab == NULL)
7731 return FALSE;
7732
7733 /* Make two passes over the relocs. On the first pass, mark toc
7734 entries involved with tls relocs, and check that tls relocs
7735 involved in setting up a tls_get_addr call are indeed followed by
7736 such a call. If they are not, we can't do any tls optimization.
7737 On the second pass twiddle tls_mask flags to notify
7738 relocate_section that optimization can be done, and adjust got
7739 and plt refcounts. */
7740 toc_ref = NULL;
7741 for (pass = 0; pass < 2; ++pass)
7742 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7743 {
7744 Elf_Internal_Sym *locsyms = NULL;
7745 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7746
7747 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7748 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7749 {
7750 Elf_Internal_Rela *relstart, *rel, *relend;
7751 bfd_boolean found_tls_get_addr_arg = 0;
7752
7753 /* Read the relocations. */
7754 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7755 info->keep_memory);
7756 if (relstart == NULL)
7757 return FALSE;
7758
7759 relend = relstart + sec->reloc_count;
7760 for (rel = relstart; rel < relend; rel++)
7761 {
7762 enum elf_ppc64_reloc_type r_type;
7763 unsigned long r_symndx;
7764 struct elf_link_hash_entry *h;
7765 Elf_Internal_Sym *sym;
7766 asection *sym_sec;
7767 unsigned char *tls_mask;
7768 unsigned char tls_set, tls_clear, tls_type = 0;
7769 bfd_vma value;
7770 bfd_boolean ok_tprel, is_local;
7771 long toc_ref_index = 0;
7772 int expecting_tls_get_addr = 0;
7773 bfd_boolean ret = FALSE;
7774
7775 r_symndx = ELF64_R_SYM (rel->r_info);
7776 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7777 r_symndx, ibfd))
7778 {
7779 err_free_rel:
7780 if (elf_section_data (sec)->relocs != relstart)
7781 free (relstart);
7782 if (toc_ref != NULL)
7783 free (toc_ref);
7784 if (locsyms != NULL
7785 && (elf_symtab_hdr (ibfd).contents
7786 != (unsigned char *) locsyms))
7787 free (locsyms);
7788 return ret;
7789 }
7790
7791 if (h != NULL)
7792 {
7793 if (h->root.type == bfd_link_hash_defined
7794 || h->root.type == bfd_link_hash_defweak)
7795 value = h->root.u.def.value;
7796 else if (h->root.type == bfd_link_hash_undefweak)
7797 value = 0;
7798 else
7799 {
7800 found_tls_get_addr_arg = 0;
7801 continue;
7802 }
7803 }
7804 else
7805 /* Symbols referenced by TLS relocs must be of type
7806 STT_TLS. So no need for .opd local sym adjust. */
7807 value = sym->st_value;
7808
7809 ok_tprel = FALSE;
7810 is_local = FALSE;
7811 if (h == NULL
7812 || !h->def_dynamic)
7813 {
7814 is_local = TRUE;
7815 if (h != NULL
7816 && h->root.type == bfd_link_hash_undefweak)
7817 ok_tprel = TRUE;
7818 else
7819 {
7820 value += sym_sec->output_offset;
7821 value += sym_sec->output_section->vma;
7822 value -= htab->elf.tls_sec->vma;
7823 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7824 < (bfd_vma) 1 << 32);
7825 }
7826 }
7827
7828 r_type = ELF64_R_TYPE (rel->r_info);
7829 /* If this section has old-style __tls_get_addr calls
7830 without marker relocs, then check that each
7831 __tls_get_addr call reloc is preceded by a reloc
7832 that conceivably belongs to the __tls_get_addr arg
7833 setup insn. If we don't find matching arg setup
7834 relocs, don't do any tls optimization. */
7835 if (pass == 0
7836 && sec->has_tls_get_addr_call
7837 && h != NULL
7838 && (h == &htab->tls_get_addr->elf
7839 || h == &htab->tls_get_addr_fd->elf)
7840 && !found_tls_get_addr_arg
7841 && is_branch_reloc (r_type))
7842 {
7843 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7844 "TLS optimization disabled\n"),
7845 ibfd, sec, rel->r_offset);
7846 ret = TRUE;
7847 goto err_free_rel;
7848 }
7849
7850 found_tls_get_addr_arg = 0;
7851 switch (r_type)
7852 {
7853 case R_PPC64_GOT_TLSLD16:
7854 case R_PPC64_GOT_TLSLD16_LO:
7855 expecting_tls_get_addr = 1;
7856 found_tls_get_addr_arg = 1;
7857 /* Fall thru */
7858
7859 case R_PPC64_GOT_TLSLD16_HI:
7860 case R_PPC64_GOT_TLSLD16_HA:
7861 /* These relocs should never be against a symbol
7862 defined in a shared lib. Leave them alone if
7863 that turns out to be the case. */
7864 if (!is_local)
7865 continue;
7866
7867 /* LD -> LE */
7868 tls_set = 0;
7869 tls_clear = TLS_LD;
7870 tls_type = TLS_TLS | TLS_LD;
7871 break;
7872
7873 case R_PPC64_GOT_TLSGD16:
7874 case R_PPC64_GOT_TLSGD16_LO:
7875 expecting_tls_get_addr = 1;
7876 found_tls_get_addr_arg = 1;
7877 /* Fall thru */
7878
7879 case R_PPC64_GOT_TLSGD16_HI:
7880 case R_PPC64_GOT_TLSGD16_HA:
7881 if (ok_tprel)
7882 /* GD -> LE */
7883 tls_set = 0;
7884 else
7885 /* GD -> IE */
7886 tls_set = TLS_TLS | TLS_TPRELGD;
7887 tls_clear = TLS_GD;
7888 tls_type = TLS_TLS | TLS_GD;
7889 break;
7890
7891 case R_PPC64_GOT_TPREL16_DS:
7892 case R_PPC64_GOT_TPREL16_LO_DS:
7893 case R_PPC64_GOT_TPREL16_HI:
7894 case R_PPC64_GOT_TPREL16_HA:
7895 if (ok_tprel)
7896 {
7897 /* IE -> LE */
7898 tls_set = 0;
7899 tls_clear = TLS_TPREL;
7900 tls_type = TLS_TLS | TLS_TPREL;
7901 break;
7902 }
7903 continue;
7904
7905 case R_PPC64_TLSGD:
7906 case R_PPC64_TLSLD:
7907 found_tls_get_addr_arg = 1;
7908 /* Fall thru */
7909
7910 case R_PPC64_TLS:
7911 case R_PPC64_TOC16:
7912 case R_PPC64_TOC16_LO:
7913 if (sym_sec == NULL || sym_sec != toc)
7914 continue;
7915
7916 /* Mark this toc entry as referenced by a TLS
7917 code sequence. We can do that now in the
7918 case of R_PPC64_TLS, and after checking for
7919 tls_get_addr for the TOC16 relocs. */
7920 if (toc_ref == NULL)
7921 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7922 if (toc_ref == NULL)
7923 goto err_free_rel;
7924
7925 if (h != NULL)
7926 value = h->root.u.def.value;
7927 else
7928 value = sym->st_value;
7929 value += rel->r_addend;
7930 BFD_ASSERT (value < toc->size && value % 8 == 0);
7931 toc_ref_index = (value + toc->output_offset) / 8;
7932 if (r_type == R_PPC64_TLS
7933 || r_type == R_PPC64_TLSGD
7934 || r_type == R_PPC64_TLSLD)
7935 {
7936 toc_ref[toc_ref_index] = 1;
7937 continue;
7938 }
7939
7940 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7941 continue;
7942
7943 tls_set = 0;
7944 tls_clear = 0;
7945 expecting_tls_get_addr = 2;
7946 break;
7947
7948 case R_PPC64_TPREL64:
7949 if (pass == 0
7950 || sec != toc
7951 || toc_ref == NULL
7952 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7953 continue;
7954 if (ok_tprel)
7955 {
7956 /* IE -> LE */
7957 tls_set = TLS_EXPLICIT;
7958 tls_clear = TLS_TPREL;
7959 break;
7960 }
7961 continue;
7962
7963 case R_PPC64_DTPMOD64:
7964 if (pass == 0
7965 || sec != toc
7966 || toc_ref == NULL
7967 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7968 continue;
7969 if (rel + 1 < relend
7970 && (rel[1].r_info
7971 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7972 && rel[1].r_offset == rel->r_offset + 8)
7973 {
7974 if (ok_tprel)
7975 /* GD -> LE */
7976 tls_set = TLS_EXPLICIT | TLS_GD;
7977 else
7978 /* GD -> IE */
7979 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7980 tls_clear = TLS_GD;
7981 }
7982 else
7983 {
7984 if (!is_local)
7985 continue;
7986
7987 /* LD -> LE */
7988 tls_set = TLS_EXPLICIT;
7989 tls_clear = TLS_LD;
7990 }
7991 break;
7992
7993 default:
7994 continue;
7995 }
7996
7997 if (pass == 0)
7998 {
7999 if (!expecting_tls_get_addr
8000 || !sec->has_tls_get_addr_call)
8001 continue;
8002
8003 if (rel + 1 < relend
8004 && branch_reloc_hash_match (ibfd, rel + 1,
8005 htab->tls_get_addr,
8006 htab->tls_get_addr_fd))
8007 {
8008 if (expecting_tls_get_addr == 2)
8009 {
8010 /* Check for toc tls entries. */
8011 unsigned char *toc_tls;
8012 int retval;
8013
8014 retval = get_tls_mask (&toc_tls, NULL, NULL,
8015 &locsyms,
8016 rel, ibfd);
8017 if (retval == 0)
8018 goto err_free_rel;
8019 if (toc_tls != NULL)
8020 {
8021 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8022 found_tls_get_addr_arg = 1;
8023 if (retval > 1)
8024 toc_ref[toc_ref_index] = 1;
8025 }
8026 }
8027 continue;
8028 }
8029
8030 if (expecting_tls_get_addr != 1)
8031 continue;
8032
8033 /* Uh oh, we didn't find the expected call. We
8034 could just mark this symbol to exclude it
8035 from tls optimization but it's safer to skip
8036 the entire optimization. */
8037 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8038 "TLS optimization disabled\n"),
8039 ibfd, sec, rel->r_offset);
8040 ret = TRUE;
8041 goto err_free_rel;
8042 }
8043
8044 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8045 {
8046 struct plt_entry *ent;
8047 for (ent = htab->tls_get_addr->elf.plt.plist;
8048 ent != NULL;
8049 ent = ent->next)
8050 if (ent->addend == 0)
8051 {
8052 if (ent->plt.refcount > 0)
8053 {
8054 ent->plt.refcount -= 1;
8055 expecting_tls_get_addr = 0;
8056 }
8057 break;
8058 }
8059 }
8060
8061 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8062 {
8063 struct plt_entry *ent;
8064 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8065 ent != NULL;
8066 ent = ent->next)
8067 if (ent->addend == 0)
8068 {
8069 if (ent->plt.refcount > 0)
8070 ent->plt.refcount -= 1;
8071 break;
8072 }
8073 }
8074
8075 if (tls_clear == 0)
8076 continue;
8077
8078 if ((tls_set & TLS_EXPLICIT) == 0)
8079 {
8080 struct got_entry *ent;
8081
8082 /* Adjust got entry for this reloc. */
8083 if (h != NULL)
8084 ent = h->got.glist;
8085 else
8086 ent = elf_local_got_ents (ibfd)[r_symndx];
8087
8088 for (; ent != NULL; ent = ent->next)
8089 if (ent->addend == rel->r_addend
8090 && ent->owner == ibfd
8091 && ent->tls_type == tls_type)
8092 break;
8093 if (ent == NULL)
8094 abort ();
8095
8096 if (tls_set == 0)
8097 {
8098 /* We managed to get rid of a got entry. */
8099 if (ent->got.refcount > 0)
8100 ent->got.refcount -= 1;
8101 }
8102 }
8103 else
8104 {
8105 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8106 we'll lose one or two dyn relocs. */
8107 if (!dec_dynrel_count (rel->r_info, sec, info,
8108 NULL, h, sym))
8109 return FALSE;
8110
8111 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8112 {
8113 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8114 NULL, h, sym))
8115 return FALSE;
8116 }
8117 }
8118
8119 *tls_mask |= tls_set;
8120 *tls_mask &= ~tls_clear;
8121 }
8122
8123 if (elf_section_data (sec)->relocs != relstart)
8124 free (relstart);
8125 }
8126
8127 if (locsyms != NULL
8128 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8129 {
8130 if (!info->keep_memory)
8131 free (locsyms);
8132 else
8133 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8134 }
8135 }
8136
8137 if (toc_ref != NULL)
8138 free (toc_ref);
8139 return TRUE;
8140 }
8141
8142 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8143 the values of any global symbols in a toc section that has been
8144 edited. Globals in toc sections should be a rarity, so this function
8145 sets a flag if any are found in toc sections other than the one just
8146 edited, so that futher hash table traversals can be avoided. */
8147
8148 struct adjust_toc_info
8149 {
8150 asection *toc;
8151 unsigned long *skip;
8152 bfd_boolean global_toc_syms;
8153 };
8154
8155 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8156
8157 static bfd_boolean
8158 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8159 {
8160 struct ppc_link_hash_entry *eh;
8161 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8162 unsigned long i;
8163
8164 if (h->root.type != bfd_link_hash_defined
8165 && h->root.type != bfd_link_hash_defweak)
8166 return TRUE;
8167
8168 eh = (struct ppc_link_hash_entry *) h;
8169 if (eh->adjust_done)
8170 return TRUE;
8171
8172 if (eh->elf.root.u.def.section == toc_inf->toc)
8173 {
8174 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8175 i = toc_inf->toc->rawsize >> 3;
8176 else
8177 i = eh->elf.root.u.def.value >> 3;
8178
8179 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8180 {
8181 (*_bfd_error_handler)
8182 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8183 do
8184 ++i;
8185 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8186 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8187 }
8188
8189 eh->elf.root.u.def.value -= toc_inf->skip[i];
8190 eh->adjust_done = 1;
8191 }
8192 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8193 toc_inf->global_toc_syms = TRUE;
8194
8195 return TRUE;
8196 }
8197
8198 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8199
8200 static bfd_boolean
8201 ok_lo_toc_insn (unsigned int insn)
8202 {
8203 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8204 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8205 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8206 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8207 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8208 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8209 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8210 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8211 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8212 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8213 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8214 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8215 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8216 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8217 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8218 && (insn & 3) != 1)
8219 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8220 && ((insn & 3) == 0 || (insn & 3) == 3))
8221 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8222 }
8223
8224 /* Examine all relocs referencing .toc sections in order to remove
8225 unused .toc entries. */
8226
8227 bfd_boolean
8228 ppc64_elf_edit_toc (struct bfd_link_info *info)
8229 {
8230 bfd *ibfd;
8231 struct adjust_toc_info toc_inf;
8232 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8233
8234 htab->do_toc_opt = 1;
8235 toc_inf.global_toc_syms = TRUE;
8236 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8237 {
8238 asection *toc, *sec;
8239 Elf_Internal_Shdr *symtab_hdr;
8240 Elf_Internal_Sym *local_syms;
8241 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8242 unsigned long *skip, *drop;
8243 unsigned char *used;
8244 unsigned char *keep, last, some_unused;
8245
8246 if (!is_ppc64_elf (ibfd))
8247 continue;
8248
8249 toc = bfd_get_section_by_name (ibfd, ".toc");
8250 if (toc == NULL
8251 || toc->size == 0
8252 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8253 || discarded_section (toc))
8254 continue;
8255
8256 toc_relocs = NULL;
8257 local_syms = NULL;
8258 symtab_hdr = &elf_symtab_hdr (ibfd);
8259
8260 /* Look at sections dropped from the final link. */
8261 skip = NULL;
8262 relstart = NULL;
8263 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8264 {
8265 if (sec->reloc_count == 0
8266 || !discarded_section (sec)
8267 || get_opd_info (sec)
8268 || (sec->flags & SEC_ALLOC) == 0
8269 || (sec->flags & SEC_DEBUGGING) != 0)
8270 continue;
8271
8272 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8273 if (relstart == NULL)
8274 goto error_ret;
8275
8276 /* Run through the relocs to see which toc entries might be
8277 unused. */
8278 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8279 {
8280 enum elf_ppc64_reloc_type r_type;
8281 unsigned long r_symndx;
8282 asection *sym_sec;
8283 struct elf_link_hash_entry *h;
8284 Elf_Internal_Sym *sym;
8285 bfd_vma val;
8286
8287 r_type = ELF64_R_TYPE (rel->r_info);
8288 switch (r_type)
8289 {
8290 default:
8291 continue;
8292
8293 case R_PPC64_TOC16:
8294 case R_PPC64_TOC16_LO:
8295 case R_PPC64_TOC16_HI:
8296 case R_PPC64_TOC16_HA:
8297 case R_PPC64_TOC16_DS:
8298 case R_PPC64_TOC16_LO_DS:
8299 break;
8300 }
8301
8302 r_symndx = ELF64_R_SYM (rel->r_info);
8303 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8304 r_symndx, ibfd))
8305 goto error_ret;
8306
8307 if (sym_sec != toc)
8308 continue;
8309
8310 if (h != NULL)
8311 val = h->root.u.def.value;
8312 else
8313 val = sym->st_value;
8314 val += rel->r_addend;
8315
8316 if (val >= toc->size)
8317 continue;
8318
8319 /* Anything in the toc ought to be aligned to 8 bytes.
8320 If not, don't mark as unused. */
8321 if (val & 7)
8322 continue;
8323
8324 if (skip == NULL)
8325 {
8326 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8327 if (skip == NULL)
8328 goto error_ret;
8329 }
8330
8331 skip[val >> 3] = ref_from_discarded;
8332 }
8333
8334 if (elf_section_data (sec)->relocs != relstart)
8335 free (relstart);
8336 }
8337
8338 /* For largetoc loads of address constants, we can convert
8339 . addis rx,2,addr@got@ha
8340 . ld ry,addr@got@l(rx)
8341 to
8342 . addis rx,2,addr@toc@ha
8343 . addi ry,rx,addr@toc@l
8344 when addr is within 2G of the toc pointer. This then means
8345 that the word storing "addr" in the toc is no longer needed. */
8346
8347 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8348 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8349 && toc->reloc_count != 0)
8350 {
8351 /* Read toc relocs. */
8352 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8353 info->keep_memory);
8354 if (toc_relocs == NULL)
8355 goto error_ret;
8356
8357 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8358 {
8359 enum elf_ppc64_reloc_type r_type;
8360 unsigned long r_symndx;
8361 asection *sym_sec;
8362 struct elf_link_hash_entry *h;
8363 Elf_Internal_Sym *sym;
8364 bfd_vma val, addr;
8365
8366 r_type = ELF64_R_TYPE (rel->r_info);
8367 if (r_type != R_PPC64_ADDR64)
8368 continue;
8369
8370 r_symndx = ELF64_R_SYM (rel->r_info);
8371 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8372 r_symndx, ibfd))
8373 goto error_ret;
8374
8375 if (sym_sec == NULL
8376 || discarded_section (sym_sec))
8377 continue;
8378
8379 if (!SYMBOL_CALLS_LOCAL (info, h))
8380 continue;
8381
8382 if (h != NULL)
8383 {
8384 if (h->type == STT_GNU_IFUNC)
8385 continue;
8386 val = h->root.u.def.value;
8387 }
8388 else
8389 {
8390 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8391 continue;
8392 val = sym->st_value;
8393 }
8394 val += rel->r_addend;
8395 val += sym_sec->output_section->vma + sym_sec->output_offset;
8396
8397 /* We don't yet know the exact toc pointer value, but we
8398 know it will be somewhere in the toc section. Don't
8399 optimize if the difference from any possible toc
8400 pointer is outside [ff..f80008000, 7fff7fff]. */
8401 addr = toc->output_section->vma + TOC_BASE_OFF;
8402 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8403 continue;
8404
8405 addr = toc->output_section->vma + toc->output_section->rawsize;
8406 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8407 continue;
8408
8409 if (skip == NULL)
8410 {
8411 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8412 if (skip == NULL)
8413 goto error_ret;
8414 }
8415
8416 skip[rel->r_offset >> 3]
8417 |= can_optimize | ((rel - toc_relocs) << 2);
8418 }
8419 }
8420
8421 if (skip == NULL)
8422 continue;
8423
8424 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8425 if (used == NULL)
8426 {
8427 error_ret:
8428 if (local_syms != NULL
8429 && symtab_hdr->contents != (unsigned char *) local_syms)
8430 free (local_syms);
8431 if (sec != NULL
8432 && relstart != NULL
8433 && elf_section_data (sec)->relocs != relstart)
8434 free (relstart);
8435 if (toc_relocs != NULL
8436 && elf_section_data (toc)->relocs != toc_relocs)
8437 free (toc_relocs);
8438 if (skip != NULL)
8439 free (skip);
8440 return FALSE;
8441 }
8442
8443 /* Now check all kept sections that might reference the toc.
8444 Check the toc itself last. */
8445 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8446 : ibfd->sections);
8447 sec != NULL;
8448 sec = (sec == toc ? NULL
8449 : sec->next == NULL ? toc
8450 : sec->next == toc && toc->next ? toc->next
8451 : sec->next))
8452 {
8453 int repeat;
8454
8455 if (sec->reloc_count == 0
8456 || discarded_section (sec)
8457 || get_opd_info (sec)
8458 || (sec->flags & SEC_ALLOC) == 0
8459 || (sec->flags & SEC_DEBUGGING) != 0)
8460 continue;
8461
8462 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8463 info->keep_memory);
8464 if (relstart == NULL)
8465 goto error_ret;
8466
8467 /* Mark toc entries referenced as used. */
8468 do
8469 {
8470 repeat = 0;
8471 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8472 {
8473 enum elf_ppc64_reloc_type r_type;
8474 unsigned long r_symndx;
8475 asection *sym_sec;
8476 struct elf_link_hash_entry *h;
8477 Elf_Internal_Sym *sym;
8478 bfd_vma val;
8479 enum {no_check, check_lo, check_ha} insn_check;
8480
8481 r_type = ELF64_R_TYPE (rel->r_info);
8482 switch (r_type)
8483 {
8484 default:
8485 insn_check = no_check;
8486 break;
8487
8488 case R_PPC64_GOT_TLSLD16_HA:
8489 case R_PPC64_GOT_TLSGD16_HA:
8490 case R_PPC64_GOT_TPREL16_HA:
8491 case R_PPC64_GOT_DTPREL16_HA:
8492 case R_PPC64_GOT16_HA:
8493 case R_PPC64_TOC16_HA:
8494 insn_check = check_ha;
8495 break;
8496
8497 case R_PPC64_GOT_TLSLD16_LO:
8498 case R_PPC64_GOT_TLSGD16_LO:
8499 case R_PPC64_GOT_TPREL16_LO_DS:
8500 case R_PPC64_GOT_DTPREL16_LO_DS:
8501 case R_PPC64_GOT16_LO:
8502 case R_PPC64_GOT16_LO_DS:
8503 case R_PPC64_TOC16_LO:
8504 case R_PPC64_TOC16_LO_DS:
8505 insn_check = check_lo;
8506 break;
8507 }
8508
8509 if (insn_check != no_check)
8510 {
8511 bfd_vma off = rel->r_offset & ~3;
8512 unsigned char buf[4];
8513 unsigned int insn;
8514
8515 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8516 {
8517 free (used);
8518 goto error_ret;
8519 }
8520 insn = bfd_get_32 (ibfd, buf);
8521 if (insn_check == check_lo
8522 ? !ok_lo_toc_insn (insn)
8523 : ((insn & ((0x3f << 26) | 0x1f << 16))
8524 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8525 {
8526 char str[12];
8527
8528 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8529 sprintf (str, "%#08x", insn);
8530 info->callbacks->einfo
8531 (_("%P: %H: toc optimization is not supported for"
8532 " %s instruction.\n"),
8533 ibfd, sec, rel->r_offset & ~3, str);
8534 }
8535 }
8536
8537 switch (r_type)
8538 {
8539 case R_PPC64_TOC16:
8540 case R_PPC64_TOC16_LO:
8541 case R_PPC64_TOC16_HI:
8542 case R_PPC64_TOC16_HA:
8543 case R_PPC64_TOC16_DS:
8544 case R_PPC64_TOC16_LO_DS:
8545 /* In case we're taking addresses of toc entries. */
8546 case R_PPC64_ADDR64:
8547 break;
8548
8549 default:
8550 continue;
8551 }
8552
8553 r_symndx = ELF64_R_SYM (rel->r_info);
8554 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8555 r_symndx, ibfd))
8556 {
8557 free (used);
8558 goto error_ret;
8559 }
8560
8561 if (sym_sec != toc)
8562 continue;
8563
8564 if (h != NULL)
8565 val = h->root.u.def.value;
8566 else
8567 val = sym->st_value;
8568 val += rel->r_addend;
8569
8570 if (val >= toc->size)
8571 continue;
8572
8573 if ((skip[val >> 3] & can_optimize) != 0)
8574 {
8575 bfd_vma off;
8576 unsigned char opc;
8577
8578 switch (r_type)
8579 {
8580 case R_PPC64_TOC16_HA:
8581 break;
8582
8583 case R_PPC64_TOC16_LO_DS:
8584 off = rel->r_offset;
8585 off += (bfd_big_endian (ibfd) ? -2 : 3);
8586 if (!bfd_get_section_contents (ibfd, sec, &opc,
8587 off, 1))
8588 {
8589 free (used);
8590 goto error_ret;
8591 }
8592 if ((opc & (0x3f << 2)) == (58u << 2))
8593 break;
8594 /* Fall thru */
8595
8596 default:
8597 /* Wrong sort of reloc, or not a ld. We may
8598 as well clear ref_from_discarded too. */
8599 skip[val >> 3] = 0;
8600 }
8601 }
8602
8603 if (sec != toc)
8604 used[val >> 3] = 1;
8605 /* For the toc section, we only mark as used if this
8606 entry itself isn't unused. */
8607 else if ((used[rel->r_offset >> 3]
8608 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8609 && !used[val >> 3])
8610 {
8611 /* Do all the relocs again, to catch reference
8612 chains. */
8613 repeat = 1;
8614 used[val >> 3] = 1;
8615 }
8616 }
8617 }
8618 while (repeat);
8619
8620 if (elf_section_data (sec)->relocs != relstart)
8621 free (relstart);
8622 }
8623
8624 /* Merge the used and skip arrays. Assume that TOC
8625 doublewords not appearing as either used or unused belong
8626 to to an entry more than one doubleword in size. */
8627 for (drop = skip, keep = used, last = 0, some_unused = 0;
8628 drop < skip + (toc->size + 7) / 8;
8629 ++drop, ++keep)
8630 {
8631 if (*keep)
8632 {
8633 *drop &= ~ref_from_discarded;
8634 if ((*drop & can_optimize) != 0)
8635 some_unused = 1;
8636 last = 0;
8637 }
8638 else if ((*drop & ref_from_discarded) != 0)
8639 {
8640 some_unused = 1;
8641 last = ref_from_discarded;
8642 }
8643 else
8644 *drop = last;
8645 }
8646
8647 free (used);
8648
8649 if (some_unused)
8650 {
8651 bfd_byte *contents, *src;
8652 unsigned long off;
8653 Elf_Internal_Sym *sym;
8654 bfd_boolean local_toc_syms = FALSE;
8655
8656 /* Shuffle the toc contents, and at the same time convert the
8657 skip array from booleans into offsets. */
8658 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8659 goto error_ret;
8660
8661 elf_section_data (toc)->this_hdr.contents = contents;
8662
8663 for (src = contents, off = 0, drop = skip;
8664 src < contents + toc->size;
8665 src += 8, ++drop)
8666 {
8667 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8668 off += 8;
8669 else if (off != 0)
8670 {
8671 *drop = off;
8672 memcpy (src - off, src, 8);
8673 }
8674 }
8675 *drop = off;
8676 toc->rawsize = toc->size;
8677 toc->size = src - contents - off;
8678
8679 /* Adjust addends for relocs against the toc section sym,
8680 and optimize any accesses we can. */
8681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8682 {
8683 if (sec->reloc_count == 0
8684 || discarded_section (sec))
8685 continue;
8686
8687 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8688 info->keep_memory);
8689 if (relstart == NULL)
8690 goto error_ret;
8691
8692 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8693 {
8694 enum elf_ppc64_reloc_type r_type;
8695 unsigned long r_symndx;
8696 asection *sym_sec;
8697 struct elf_link_hash_entry *h;
8698 bfd_vma val;
8699
8700 r_type = ELF64_R_TYPE (rel->r_info);
8701 switch (r_type)
8702 {
8703 default:
8704 continue;
8705
8706 case R_PPC64_TOC16:
8707 case R_PPC64_TOC16_LO:
8708 case R_PPC64_TOC16_HI:
8709 case R_PPC64_TOC16_HA:
8710 case R_PPC64_TOC16_DS:
8711 case R_PPC64_TOC16_LO_DS:
8712 case R_PPC64_ADDR64:
8713 break;
8714 }
8715
8716 r_symndx = ELF64_R_SYM (rel->r_info);
8717 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8718 r_symndx, ibfd))
8719 goto error_ret;
8720
8721 if (sym_sec != toc)
8722 continue;
8723
8724 if (h != NULL)
8725 val = h->root.u.def.value;
8726 else
8727 {
8728 val = sym->st_value;
8729 if (val != 0)
8730 local_toc_syms = TRUE;
8731 }
8732
8733 val += rel->r_addend;
8734
8735 if (val > toc->rawsize)
8736 val = toc->rawsize;
8737 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8738 continue;
8739 else if ((skip[val >> 3] & can_optimize) != 0)
8740 {
8741 Elf_Internal_Rela *tocrel
8742 = toc_relocs + (skip[val >> 3] >> 2);
8743 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8744
8745 switch (r_type)
8746 {
8747 case R_PPC64_TOC16_HA:
8748 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8749 break;
8750
8751 case R_PPC64_TOC16_LO_DS:
8752 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8753 break;
8754
8755 default:
8756 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8757 ppc_howto_init ();
8758 info->callbacks->einfo
8759 (_("%P: %H: %s references "
8760 "optimized away TOC entry\n"),
8761 ibfd, sec, rel->r_offset,
8762 ppc64_elf_howto_table[r_type]->name);
8763 bfd_set_error (bfd_error_bad_value);
8764 goto error_ret;
8765 }
8766 rel->r_addend = tocrel->r_addend;
8767 elf_section_data (sec)->relocs = relstart;
8768 continue;
8769 }
8770
8771 if (h != NULL || sym->st_value != 0)
8772 continue;
8773
8774 rel->r_addend -= skip[val >> 3];
8775 elf_section_data (sec)->relocs = relstart;
8776 }
8777
8778 if (elf_section_data (sec)->relocs != relstart)
8779 free (relstart);
8780 }
8781
8782 /* We shouldn't have local or global symbols defined in the TOC,
8783 but handle them anyway. */
8784 if (local_syms != NULL)
8785 for (sym = local_syms;
8786 sym < local_syms + symtab_hdr->sh_info;
8787 ++sym)
8788 if (sym->st_value != 0
8789 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8790 {
8791 unsigned long i;
8792
8793 if (sym->st_value > toc->rawsize)
8794 i = toc->rawsize >> 3;
8795 else
8796 i = sym->st_value >> 3;
8797
8798 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8799 {
8800 if (local_toc_syms)
8801 (*_bfd_error_handler)
8802 (_("%s defined on removed toc entry"),
8803 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8804 do
8805 ++i;
8806 while ((skip[i] & (ref_from_discarded | can_optimize)));
8807 sym->st_value = (bfd_vma) i << 3;
8808 }
8809
8810 sym->st_value -= skip[i];
8811 symtab_hdr->contents = (unsigned char *) local_syms;
8812 }
8813
8814 /* Adjust any global syms defined in this toc input section. */
8815 if (toc_inf.global_toc_syms)
8816 {
8817 toc_inf.toc = toc;
8818 toc_inf.skip = skip;
8819 toc_inf.global_toc_syms = FALSE;
8820 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8821 &toc_inf);
8822 }
8823
8824 if (toc->reloc_count != 0)
8825 {
8826 Elf_Internal_Shdr *rel_hdr;
8827 Elf_Internal_Rela *wrel;
8828 bfd_size_type sz;
8829
8830 /* Remove unused toc relocs, and adjust those we keep. */
8831 if (toc_relocs == NULL)
8832 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8833 info->keep_memory);
8834 if (toc_relocs == NULL)
8835 goto error_ret;
8836
8837 wrel = toc_relocs;
8838 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8839 if ((skip[rel->r_offset >> 3]
8840 & (ref_from_discarded | can_optimize)) == 0)
8841 {
8842 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8843 wrel->r_info = rel->r_info;
8844 wrel->r_addend = rel->r_addend;
8845 ++wrel;
8846 }
8847 else if (!dec_dynrel_count (rel->r_info, toc, info,
8848 &local_syms, NULL, NULL))
8849 goto error_ret;
8850
8851 elf_section_data (toc)->relocs = toc_relocs;
8852 toc->reloc_count = wrel - toc_relocs;
8853 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8854 sz = rel_hdr->sh_entsize;
8855 rel_hdr->sh_size = toc->reloc_count * sz;
8856 }
8857 }
8858 else if (toc_relocs != NULL
8859 && elf_section_data (toc)->relocs != toc_relocs)
8860 free (toc_relocs);
8861
8862 if (local_syms != NULL
8863 && symtab_hdr->contents != (unsigned char *) local_syms)
8864 {
8865 if (!info->keep_memory)
8866 free (local_syms);
8867 else
8868 symtab_hdr->contents = (unsigned char *) local_syms;
8869 }
8870 free (skip);
8871 }
8872
8873 return TRUE;
8874 }
8875
8876 /* Return true iff input section I references the TOC using
8877 instructions limited to +/-32k offsets. */
8878
8879 bfd_boolean
8880 ppc64_elf_has_small_toc_reloc (asection *i)
8881 {
8882 return (is_ppc64_elf (i->owner)
8883 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8884 }
8885
8886 /* Allocate space for one GOT entry. */
8887
8888 static void
8889 allocate_got (struct elf_link_hash_entry *h,
8890 struct bfd_link_info *info,
8891 struct got_entry *gent)
8892 {
8893 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8894 bfd_boolean dyn;
8895 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8896 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8897 ? 16 : 8);
8898 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8899 ? 2 : 1) * sizeof (Elf64_External_Rela);
8900 asection *got = ppc64_elf_tdata (gent->owner)->got;
8901
8902 gent->got.offset = got->size;
8903 got->size += entsize;
8904
8905 dyn = htab->elf.dynamic_sections_created;
8906 if (h->type == STT_GNU_IFUNC)
8907 {
8908 htab->reliplt->size += rentsize;
8909 htab->got_reli_size += rentsize;
8910 }
8911 else if ((info->shared
8912 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8913 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8914 || h->root.type != bfd_link_hash_undefweak))
8915 {
8916 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8917 relgot->size += rentsize;
8918 }
8919 }
8920
8921 /* This function merges got entries in the same toc group. */
8922
8923 static void
8924 merge_got_entries (struct got_entry **pent)
8925 {
8926 struct got_entry *ent, *ent2;
8927
8928 for (ent = *pent; ent != NULL; ent = ent->next)
8929 if (!ent->is_indirect)
8930 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8931 if (!ent2->is_indirect
8932 && ent2->addend == ent->addend
8933 && ent2->tls_type == ent->tls_type
8934 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8935 {
8936 ent2->is_indirect = TRUE;
8937 ent2->got.ent = ent;
8938 }
8939 }
8940
8941 /* Allocate space in .plt, .got and associated reloc sections for
8942 dynamic relocs. */
8943
8944 static bfd_boolean
8945 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8946 {
8947 struct bfd_link_info *info;
8948 struct ppc_link_hash_table *htab;
8949 asection *s;
8950 struct ppc_link_hash_entry *eh;
8951 struct elf_dyn_relocs *p;
8952 struct got_entry **pgent, *gent;
8953
8954 if (h->root.type == bfd_link_hash_indirect)
8955 return TRUE;
8956
8957 info = (struct bfd_link_info *) inf;
8958 htab = ppc_hash_table (info);
8959 if (htab == NULL)
8960 return FALSE;
8961
8962 if ((htab->elf.dynamic_sections_created
8963 && h->dynindx != -1
8964 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8965 || h->type == STT_GNU_IFUNC)
8966 {
8967 struct plt_entry *pent;
8968 bfd_boolean doneone = FALSE;
8969 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8970 if (pent->plt.refcount > 0)
8971 {
8972 if (!htab->elf.dynamic_sections_created
8973 || h->dynindx == -1)
8974 {
8975 s = htab->iplt;
8976 pent->plt.offset = s->size;
8977 s->size += PLT_ENTRY_SIZE;
8978 s = htab->reliplt;
8979 }
8980 else
8981 {
8982 /* If this is the first .plt entry, make room for the special
8983 first entry. */
8984 s = htab->plt;
8985 if (s->size == 0)
8986 s->size += PLT_INITIAL_ENTRY_SIZE;
8987
8988 pent->plt.offset = s->size;
8989
8990 /* Make room for this entry. */
8991 s->size += PLT_ENTRY_SIZE;
8992
8993 /* Make room for the .glink code. */
8994 s = htab->glink;
8995 if (s->size == 0)
8996 s->size += GLINK_CALL_STUB_SIZE;
8997 /* We need bigger stubs past index 32767. */
8998 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8999 s->size += 4;
9000 s->size += 2*4;
9001
9002 /* We also need to make an entry in the .rela.plt section. */
9003 s = htab->relplt;
9004 }
9005 s->size += sizeof (Elf64_External_Rela);
9006 doneone = TRUE;
9007 }
9008 else
9009 pent->plt.offset = (bfd_vma) -1;
9010 if (!doneone)
9011 {
9012 h->plt.plist = NULL;
9013 h->needs_plt = 0;
9014 }
9015 }
9016 else
9017 {
9018 h->plt.plist = NULL;
9019 h->needs_plt = 0;
9020 }
9021
9022 eh = (struct ppc_link_hash_entry *) h;
9023 /* Run through the TLS GD got entries first if we're changing them
9024 to TPREL. */
9025 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9026 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9027 if (gent->got.refcount > 0
9028 && (gent->tls_type & TLS_GD) != 0)
9029 {
9030 /* This was a GD entry that has been converted to TPREL. If
9031 there happens to be a TPREL entry we can use that one. */
9032 struct got_entry *ent;
9033 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9034 if (ent->got.refcount > 0
9035 && (ent->tls_type & TLS_TPREL) != 0
9036 && ent->addend == gent->addend
9037 && ent->owner == gent->owner)
9038 {
9039 gent->got.refcount = 0;
9040 break;
9041 }
9042
9043 /* If not, then we'll be using our own TPREL entry. */
9044 if (gent->got.refcount != 0)
9045 gent->tls_type = TLS_TLS | TLS_TPREL;
9046 }
9047
9048 /* Remove any list entry that won't generate a word in the GOT before
9049 we call merge_got_entries. Otherwise we risk merging to empty
9050 entries. */
9051 pgent = &h->got.glist;
9052 while ((gent = *pgent) != NULL)
9053 if (gent->got.refcount > 0)
9054 {
9055 if ((gent->tls_type & TLS_LD) != 0
9056 && !h->def_dynamic)
9057 {
9058 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9059 *pgent = gent->next;
9060 }
9061 else
9062 pgent = &gent->next;
9063 }
9064 else
9065 *pgent = gent->next;
9066
9067 if (!htab->do_multi_toc)
9068 merge_got_entries (&h->got.glist);
9069
9070 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9071 if (!gent->is_indirect)
9072 {
9073 /* Make sure this symbol is output as a dynamic symbol.
9074 Undefined weak syms won't yet be marked as dynamic,
9075 nor will all TLS symbols. */
9076 if (h->dynindx == -1
9077 && !h->forced_local
9078 && h->type != STT_GNU_IFUNC
9079 && htab->elf.dynamic_sections_created)
9080 {
9081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9082 return FALSE;
9083 }
9084
9085 if (!is_ppc64_elf (gent->owner))
9086 abort ();
9087
9088 allocate_got (h, info, gent);
9089 }
9090
9091 if (eh->dyn_relocs == NULL
9092 || (!htab->elf.dynamic_sections_created
9093 && h->type != STT_GNU_IFUNC))
9094 return TRUE;
9095
9096 /* In the shared -Bsymbolic case, discard space allocated for
9097 dynamic pc-relative relocs against symbols which turn out to be
9098 defined in regular objects. For the normal shared case, discard
9099 space for relocs that have become local due to symbol visibility
9100 changes. */
9101
9102 if (info->shared)
9103 {
9104 /* Relocs that use pc_count are those that appear on a call insn,
9105 or certain REL relocs (see must_be_dyn_reloc) that can be
9106 generated via assembly. We want calls to protected symbols to
9107 resolve directly to the function rather than going via the plt.
9108 If people want function pointer comparisons to work as expected
9109 then they should avoid writing weird assembly. */
9110 if (SYMBOL_CALLS_LOCAL (info, h))
9111 {
9112 struct elf_dyn_relocs **pp;
9113
9114 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9115 {
9116 p->count -= p->pc_count;
9117 p->pc_count = 0;
9118 if (p->count == 0)
9119 *pp = p->next;
9120 else
9121 pp = &p->next;
9122 }
9123 }
9124
9125 /* Also discard relocs on undefined weak syms with non-default
9126 visibility. */
9127 if (eh->dyn_relocs != NULL
9128 && h->root.type == bfd_link_hash_undefweak)
9129 {
9130 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9131 eh->dyn_relocs = NULL;
9132
9133 /* Make sure this symbol is output as a dynamic symbol.
9134 Undefined weak syms won't yet be marked as dynamic. */
9135 else if (h->dynindx == -1
9136 && !h->forced_local)
9137 {
9138 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9139 return FALSE;
9140 }
9141 }
9142 }
9143 else if (h->type == STT_GNU_IFUNC)
9144 {
9145 if (!h->non_got_ref)
9146 eh->dyn_relocs = NULL;
9147 }
9148 else if (ELIMINATE_COPY_RELOCS)
9149 {
9150 /* For the non-shared case, discard space for relocs against
9151 symbols which turn out to need copy relocs or are not
9152 dynamic. */
9153
9154 if (!h->non_got_ref
9155 && !h->def_regular)
9156 {
9157 /* Make sure this symbol is output as a dynamic symbol.
9158 Undefined weak syms won't yet be marked as dynamic. */
9159 if (h->dynindx == -1
9160 && !h->forced_local)
9161 {
9162 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9163 return FALSE;
9164 }
9165
9166 /* If that succeeded, we know we'll be keeping all the
9167 relocs. */
9168 if (h->dynindx != -1)
9169 goto keep;
9170 }
9171
9172 eh->dyn_relocs = NULL;
9173
9174 keep: ;
9175 }
9176
9177 /* Finally, allocate space. */
9178 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9179 {
9180 asection *sreloc = elf_section_data (p->sec)->sreloc;
9181 if (eh->elf.type == STT_GNU_IFUNC)
9182 sreloc = htab->reliplt;
9183 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9184 }
9185
9186 return TRUE;
9187 }
9188
9189 /* Find any dynamic relocs that apply to read-only sections. */
9190
9191 static bfd_boolean
9192 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9193 {
9194 struct ppc_link_hash_entry *eh;
9195 struct elf_dyn_relocs *p;
9196
9197 eh = (struct ppc_link_hash_entry *) h;
9198 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9199 {
9200 asection *s = p->sec->output_section;
9201
9202 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9203 {
9204 struct bfd_link_info *info = inf;
9205
9206 info->flags |= DF_TEXTREL;
9207
9208 /* Not an error, just cut short the traversal. */
9209 return FALSE;
9210 }
9211 }
9212 return TRUE;
9213 }
9214
9215 /* Set the sizes of the dynamic sections. */
9216
9217 static bfd_boolean
9218 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9219 struct bfd_link_info *info)
9220 {
9221 struct ppc_link_hash_table *htab;
9222 bfd *dynobj;
9223 asection *s;
9224 bfd_boolean relocs;
9225 bfd *ibfd;
9226 struct got_entry *first_tlsld;
9227
9228 htab = ppc_hash_table (info);
9229 if (htab == NULL)
9230 return FALSE;
9231
9232 dynobj = htab->elf.dynobj;
9233 if (dynobj == NULL)
9234 abort ();
9235
9236 if (htab->elf.dynamic_sections_created)
9237 {
9238 /* Set the contents of the .interp section to the interpreter. */
9239 if (info->executable)
9240 {
9241 s = bfd_get_linker_section (dynobj, ".interp");
9242 if (s == NULL)
9243 abort ();
9244 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9245 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9246 }
9247 }
9248
9249 /* Set up .got offsets for local syms, and space for local dynamic
9250 relocs. */
9251 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9252 {
9253 struct got_entry **lgot_ents;
9254 struct got_entry **end_lgot_ents;
9255 struct plt_entry **local_plt;
9256 struct plt_entry **end_local_plt;
9257 unsigned char *lgot_masks;
9258 bfd_size_type locsymcount;
9259 Elf_Internal_Shdr *symtab_hdr;
9260
9261 if (!is_ppc64_elf (ibfd))
9262 continue;
9263
9264 for (s = ibfd->sections; s != NULL; s = s->next)
9265 {
9266 struct ppc_dyn_relocs *p;
9267
9268 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9269 {
9270 if (!bfd_is_abs_section (p->sec)
9271 && bfd_is_abs_section (p->sec->output_section))
9272 {
9273 /* Input section has been discarded, either because
9274 it is a copy of a linkonce section or due to
9275 linker script /DISCARD/, so we'll be discarding
9276 the relocs too. */
9277 }
9278 else if (p->count != 0)
9279 {
9280 asection *srel = elf_section_data (p->sec)->sreloc;
9281 if (p->ifunc)
9282 srel = htab->reliplt;
9283 srel->size += p->count * sizeof (Elf64_External_Rela);
9284 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9285 info->flags |= DF_TEXTREL;
9286 }
9287 }
9288 }
9289
9290 lgot_ents = elf_local_got_ents (ibfd);
9291 if (!lgot_ents)
9292 continue;
9293
9294 symtab_hdr = &elf_symtab_hdr (ibfd);
9295 locsymcount = symtab_hdr->sh_info;
9296 end_lgot_ents = lgot_ents + locsymcount;
9297 local_plt = (struct plt_entry **) end_lgot_ents;
9298 end_local_plt = local_plt + locsymcount;
9299 lgot_masks = (unsigned char *) end_local_plt;
9300 s = ppc64_elf_tdata (ibfd)->got;
9301 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9302 {
9303 struct got_entry **pent, *ent;
9304
9305 pent = lgot_ents;
9306 while ((ent = *pent) != NULL)
9307 if (ent->got.refcount > 0)
9308 {
9309 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9310 {
9311 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9312 *pent = ent->next;
9313 }
9314 else
9315 {
9316 unsigned int ent_size = 8;
9317 unsigned int rel_size = sizeof (Elf64_External_Rela);
9318
9319 ent->got.offset = s->size;
9320 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9321 {
9322 ent_size *= 2;
9323 rel_size *= 2;
9324 }
9325 s->size += ent_size;
9326 if ((*lgot_masks & PLT_IFUNC) != 0)
9327 {
9328 htab->reliplt->size += rel_size;
9329 htab->got_reli_size += rel_size;
9330 }
9331 else if (info->shared)
9332 {
9333 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9334 srel->size += rel_size;
9335 }
9336 pent = &ent->next;
9337 }
9338 }
9339 else
9340 *pent = ent->next;
9341 }
9342
9343 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9344 for (; local_plt < end_local_plt; ++local_plt)
9345 {
9346 struct plt_entry *ent;
9347
9348 for (ent = *local_plt; ent != NULL; ent = ent->next)
9349 if (ent->plt.refcount > 0)
9350 {
9351 s = htab->iplt;
9352 ent->plt.offset = s->size;
9353 s->size += PLT_ENTRY_SIZE;
9354
9355 htab->reliplt->size += sizeof (Elf64_External_Rela);
9356 }
9357 else
9358 ent->plt.offset = (bfd_vma) -1;
9359 }
9360 }
9361
9362 /* Allocate global sym .plt and .got entries, and space for global
9363 sym dynamic relocs. */
9364 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9365
9366 first_tlsld = NULL;
9367 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9368 {
9369 struct got_entry *ent;
9370
9371 if (!is_ppc64_elf (ibfd))
9372 continue;
9373
9374 ent = ppc64_tlsld_got (ibfd);
9375 if (ent->got.refcount > 0)
9376 {
9377 if (!htab->do_multi_toc && first_tlsld != NULL)
9378 {
9379 ent->is_indirect = TRUE;
9380 ent->got.ent = first_tlsld;
9381 }
9382 else
9383 {
9384 if (first_tlsld == NULL)
9385 first_tlsld = ent;
9386 s = ppc64_elf_tdata (ibfd)->got;
9387 ent->got.offset = s->size;
9388 ent->owner = ibfd;
9389 s->size += 16;
9390 if (info->shared)
9391 {
9392 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9393 srel->size += sizeof (Elf64_External_Rela);
9394 }
9395 }
9396 }
9397 else
9398 ent->got.offset = (bfd_vma) -1;
9399 }
9400
9401 /* We now have determined the sizes of the various dynamic sections.
9402 Allocate memory for them. */
9403 relocs = FALSE;
9404 for (s = dynobj->sections; s != NULL; s = s->next)
9405 {
9406 if ((s->flags & SEC_LINKER_CREATED) == 0)
9407 continue;
9408
9409 if (s == htab->brlt || s == htab->relbrlt)
9410 /* These haven't been allocated yet; don't strip. */
9411 continue;
9412 else if (s == htab->got
9413 || s == htab->plt
9414 || s == htab->iplt
9415 || s == htab->glink
9416 || s == htab->dynbss)
9417 {
9418 /* Strip this section if we don't need it; see the
9419 comment below. */
9420 }
9421 else if (s == htab->glink_eh_frame)
9422 {
9423 if (!bfd_is_abs_section (s->output_section))
9424 /* Not sized yet. */
9425 continue;
9426 }
9427 else if (CONST_STRNEQ (s->name, ".rela"))
9428 {
9429 if (s->size != 0)
9430 {
9431 if (s != htab->relplt)
9432 relocs = TRUE;
9433
9434 /* We use the reloc_count field as a counter if we need
9435 to copy relocs into the output file. */
9436 s->reloc_count = 0;
9437 }
9438 }
9439 else
9440 {
9441 /* It's not one of our sections, so don't allocate space. */
9442 continue;
9443 }
9444
9445 if (s->size == 0)
9446 {
9447 /* If we don't need this section, strip it from the
9448 output file. This is mostly to handle .rela.bss and
9449 .rela.plt. We must create both sections in
9450 create_dynamic_sections, because they must be created
9451 before the linker maps input sections to output
9452 sections. The linker does that before
9453 adjust_dynamic_symbol is called, and it is that
9454 function which decides whether anything needs to go
9455 into these sections. */
9456 s->flags |= SEC_EXCLUDE;
9457 continue;
9458 }
9459
9460 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9461 continue;
9462
9463 /* Allocate memory for the section contents. We use bfd_zalloc
9464 here in case unused entries are not reclaimed before the
9465 section's contents are written out. This should not happen,
9466 but this way if it does we get a R_PPC64_NONE reloc in .rela
9467 sections instead of garbage.
9468 We also rely on the section contents being zero when writing
9469 the GOT. */
9470 s->contents = bfd_zalloc (dynobj, s->size);
9471 if (s->contents == NULL)
9472 return FALSE;
9473 }
9474
9475 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9476 {
9477 if (!is_ppc64_elf (ibfd))
9478 continue;
9479
9480 s = ppc64_elf_tdata (ibfd)->got;
9481 if (s != NULL && s != htab->got)
9482 {
9483 if (s->size == 0)
9484 s->flags |= SEC_EXCLUDE;
9485 else
9486 {
9487 s->contents = bfd_zalloc (ibfd, s->size);
9488 if (s->contents == NULL)
9489 return FALSE;
9490 }
9491 }
9492 s = ppc64_elf_tdata (ibfd)->relgot;
9493 if (s != NULL)
9494 {
9495 if (s->size == 0)
9496 s->flags |= SEC_EXCLUDE;
9497 else
9498 {
9499 s->contents = bfd_zalloc (ibfd, s->size);
9500 if (s->contents == NULL)
9501 return FALSE;
9502 relocs = TRUE;
9503 s->reloc_count = 0;
9504 }
9505 }
9506 }
9507
9508 if (htab->elf.dynamic_sections_created)
9509 {
9510 /* Add some entries to the .dynamic section. We fill in the
9511 values later, in ppc64_elf_finish_dynamic_sections, but we
9512 must add the entries now so that we get the correct size for
9513 the .dynamic section. The DT_DEBUG entry is filled in by the
9514 dynamic linker and used by the debugger. */
9515 #define add_dynamic_entry(TAG, VAL) \
9516 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9517
9518 if (info->executable)
9519 {
9520 if (!add_dynamic_entry (DT_DEBUG, 0))
9521 return FALSE;
9522 }
9523
9524 if (htab->plt != NULL && htab->plt->size != 0)
9525 {
9526 if (!add_dynamic_entry (DT_PLTGOT, 0)
9527 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9528 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9529 || !add_dynamic_entry (DT_JMPREL, 0)
9530 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9531 return FALSE;
9532 }
9533
9534 if (NO_OPD_RELOCS)
9535 {
9536 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9537 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9538 return FALSE;
9539 }
9540
9541 if (!htab->no_tls_get_addr_opt
9542 && htab->tls_get_addr_fd != NULL
9543 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9544 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9545 return FALSE;
9546
9547 if (relocs)
9548 {
9549 if (!add_dynamic_entry (DT_RELA, 0)
9550 || !add_dynamic_entry (DT_RELASZ, 0)
9551 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9552 return FALSE;
9553
9554 /* If any dynamic relocs apply to a read-only section,
9555 then we need a DT_TEXTREL entry. */
9556 if ((info->flags & DF_TEXTREL) == 0)
9557 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9558
9559 if ((info->flags & DF_TEXTREL) != 0)
9560 {
9561 if (!add_dynamic_entry (DT_TEXTREL, 0))
9562 return FALSE;
9563 }
9564 }
9565 }
9566 #undef add_dynamic_entry
9567
9568 return TRUE;
9569 }
9570
9571 /* Determine the type of stub needed, if any, for a call. */
9572
9573 static inline enum ppc_stub_type
9574 ppc_type_of_stub (asection *input_sec,
9575 const Elf_Internal_Rela *rel,
9576 struct ppc_link_hash_entry **hash,
9577 struct plt_entry **plt_ent,
9578 bfd_vma destination)
9579 {
9580 struct ppc_link_hash_entry *h = *hash;
9581 bfd_vma location;
9582 bfd_vma branch_offset;
9583 bfd_vma max_branch_offset;
9584 enum elf_ppc64_reloc_type r_type;
9585
9586 if (h != NULL)
9587 {
9588 struct plt_entry *ent;
9589 struct ppc_link_hash_entry *fdh = h;
9590 if (h->oh != NULL
9591 && h->oh->is_func_descriptor)
9592 {
9593 fdh = ppc_follow_link (h->oh);
9594 *hash = fdh;
9595 }
9596
9597 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9598 if (ent->addend == rel->r_addend
9599 && ent->plt.offset != (bfd_vma) -1)
9600 {
9601 *plt_ent = ent;
9602 return ppc_stub_plt_call;
9603 }
9604
9605 /* Here, we know we don't have a plt entry. If we don't have a
9606 either a defined function descriptor or a defined entry symbol
9607 in a regular object file, then it is pointless trying to make
9608 any other type of stub. */
9609 if (!is_static_defined (&fdh->elf)
9610 && !is_static_defined (&h->elf))
9611 return ppc_stub_none;
9612 }
9613 else if (elf_local_got_ents (input_sec->owner) != NULL)
9614 {
9615 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9616 struct plt_entry **local_plt = (struct plt_entry **)
9617 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9618 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9619
9620 if (local_plt[r_symndx] != NULL)
9621 {
9622 struct plt_entry *ent;
9623
9624 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9625 if (ent->addend == rel->r_addend
9626 && ent->plt.offset != (bfd_vma) -1)
9627 {
9628 *plt_ent = ent;
9629 return ppc_stub_plt_call;
9630 }
9631 }
9632 }
9633
9634 /* Determine where the call point is. */
9635 location = (input_sec->output_offset
9636 + input_sec->output_section->vma
9637 + rel->r_offset);
9638
9639 branch_offset = destination - location;
9640 r_type = ELF64_R_TYPE (rel->r_info);
9641
9642 /* Determine if a long branch stub is needed. */
9643 max_branch_offset = 1 << 25;
9644 if (r_type != R_PPC64_REL24)
9645 max_branch_offset = 1 << 15;
9646
9647 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9648 /* We need a stub. Figure out whether a long_branch or plt_branch
9649 is needed later. */
9650 return ppc_stub_long_branch;
9651
9652 return ppc_stub_none;
9653 }
9654
9655 /* With power7 weakly ordered memory model, it is possible for ld.so
9656 to update a plt entry in one thread and have another thread see a
9657 stale zero toc entry. To avoid this we need some sort of acquire
9658 barrier in the call stub. One solution is to make the load of the
9659 toc word seem to appear to depend on the load of the function entry
9660 word. Another solution is to test for r2 being zero, and branch to
9661 the appropriate glink entry if so.
9662
9663 . fake dep barrier compare
9664 . ld 11,xxx(2) ld 11,xxx(2)
9665 . mtctr 11 mtctr 11
9666 . xor 11,11,11 ld 2,xxx+8(2)
9667 . add 2,2,11 cmpldi 2,0
9668 . ld 2,xxx+8(2) bnectr+
9669 . bctr b <glink_entry>
9670
9671 The solution involving the compare turns out to be faster, so
9672 that's what we use unless the branch won't reach. */
9673
9674 #define ALWAYS_USE_FAKE_DEP 0
9675 #define ALWAYS_EMIT_R2SAVE 0
9676
9677 #define PPC_LO(v) ((v) & 0xffff)
9678 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9679 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9680
9681 static inline unsigned int
9682 plt_stub_size (struct ppc_link_hash_table *htab,
9683 struct ppc_stub_hash_entry *stub_entry,
9684 bfd_vma off)
9685 {
9686 unsigned size = PLT_CALL_STUB_SIZE;
9687
9688 if (!(ALWAYS_EMIT_R2SAVE
9689 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9690 size -= 4;
9691 if (!htab->plt_static_chain)
9692 size -= 4;
9693 if (htab->plt_thread_safe)
9694 size += 8;
9695 if (PPC_HA (off) == 0)
9696 size -= 4;
9697 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9698 size += 4;
9699 if (stub_entry->h != NULL
9700 && (stub_entry->h == htab->tls_get_addr_fd
9701 || stub_entry->h == htab->tls_get_addr)
9702 && !htab->no_tls_get_addr_opt)
9703 size += 13 * 4;
9704 return size;
9705 }
9706
9707 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9708 then return the padding needed to do so. */
9709 static inline unsigned int
9710 plt_stub_pad (struct ppc_link_hash_table *htab,
9711 struct ppc_stub_hash_entry *stub_entry,
9712 bfd_vma plt_off)
9713 {
9714 int stub_align = 1 << htab->plt_stub_align;
9715 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9716 bfd_vma stub_off = stub_entry->stub_sec->size;
9717
9718 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9719 > (stub_size & -stub_align))
9720 return stub_align - (stub_off & (stub_align - 1));
9721 return 0;
9722 }
9723
9724 /* Build a .plt call stub. */
9725
9726 static inline bfd_byte *
9727 build_plt_stub (struct ppc_link_hash_table *htab,
9728 struct ppc_stub_hash_entry *stub_entry,
9729 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9730 {
9731 bfd *obfd = htab->stub_bfd;
9732 bfd_boolean plt_static_chain = htab->plt_static_chain;
9733 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9734 bfd_boolean use_fake_dep = plt_thread_safe;
9735 bfd_vma cmp_branch_off = 0;
9736
9737 if (!ALWAYS_USE_FAKE_DEP
9738 && plt_thread_safe
9739 && !(stub_entry->h != NULL
9740 && (stub_entry->h == htab->tls_get_addr_fd
9741 || stub_entry->h == htab->tls_get_addr)
9742 && !htab->no_tls_get_addr_opt))
9743 {
9744 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9745 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9746 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9747 bfd_vma to, from;
9748
9749 if (pltindex > 32768)
9750 glinkoff += (pltindex - 32768) * 4;
9751 to = (glinkoff
9752 + htab->glink->output_offset
9753 + htab->glink->output_section->vma);
9754 from = (p - stub_entry->stub_sec->contents
9755 + 4 * (ALWAYS_EMIT_R2SAVE
9756 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9757 + 4 * (PPC_HA (offset) != 0)
9758 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9759 != PPC_HA (offset))
9760 + 4 * (plt_static_chain != 0)
9761 + 20
9762 + stub_entry->stub_sec->output_offset
9763 + stub_entry->stub_sec->output_section->vma);
9764 cmp_branch_off = to - from;
9765 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9766 }
9767
9768 if (PPC_HA (offset) != 0)
9769 {
9770 if (r != NULL)
9771 {
9772 if (ALWAYS_EMIT_R2SAVE
9773 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9774 r[0].r_offset += 4;
9775 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9776 r[1].r_offset = r[0].r_offset + 4;
9777 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9778 r[1].r_addend = r[0].r_addend;
9779 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9780 {
9781 r[2].r_offset = r[1].r_offset + 4;
9782 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9783 r[2].r_addend = r[0].r_addend;
9784 }
9785 else
9786 {
9787 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9788 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9789 r[2].r_addend = r[0].r_addend + 8;
9790 if (plt_static_chain)
9791 {
9792 r[3].r_offset = r[2].r_offset + 4;
9793 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9794 r[3].r_addend = r[0].r_addend + 16;
9795 }
9796 }
9797 }
9798 if (ALWAYS_EMIT_R2SAVE
9799 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9800 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9801 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9802 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9803 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9804 {
9805 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9806 offset = 0;
9807 }
9808 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9809 if (use_fake_dep)
9810 {
9811 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9812 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9813 }
9814 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9815 if (plt_static_chain)
9816 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9817 }
9818 else
9819 {
9820 if (r != NULL)
9821 {
9822 if (ALWAYS_EMIT_R2SAVE
9823 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9824 r[0].r_offset += 4;
9825 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9826 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9827 {
9828 r[1].r_offset = r[0].r_offset + 4;
9829 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9830 r[1].r_addend = r[0].r_addend;
9831 }
9832 else
9833 {
9834 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9835 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9836 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9837 if (plt_static_chain)
9838 {
9839 r[2].r_offset = r[1].r_offset + 4;
9840 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9841 r[2].r_addend = r[0].r_addend + 8;
9842 }
9843 }
9844 }
9845 if (ALWAYS_EMIT_R2SAVE
9846 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9847 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9848 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9849 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9850 {
9851 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9852 offset = 0;
9853 }
9854 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9855 if (use_fake_dep)
9856 {
9857 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9858 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9859 }
9860 if (plt_static_chain)
9861 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9862 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9863 }
9864 if (plt_thread_safe && !use_fake_dep)
9865 {
9866 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9867 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9868 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
9869 }
9870 else
9871 bfd_put_32 (obfd, BCTR, p), p += 4;
9872 return p;
9873 }
9874
9875 /* Build a special .plt call stub for __tls_get_addr. */
9876
9877 #define LD_R11_0R3 0xe9630000
9878 #define LD_R12_0R3 0xe9830000
9879 #define MR_R0_R3 0x7c601b78
9880 #define CMPDI_R11_0 0x2c2b0000
9881 #define ADD_R3_R12_R13 0x7c6c6a14
9882 #define BEQLR 0x4d820020
9883 #define MR_R3_R0 0x7c030378
9884 #define MFLR_R11 0x7d6802a6
9885 #define STD_R11_0R1 0xf9610000
9886 #define BCTRL 0x4e800421
9887 #define LD_R11_0R1 0xe9610000
9888 #define LD_R2_0R1 0xe8410000
9889 #define MTLR_R11 0x7d6803a6
9890
9891 static inline bfd_byte *
9892 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9893 struct ppc_stub_hash_entry *stub_entry,
9894 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9895 {
9896 bfd *obfd = htab->stub_bfd;
9897
9898 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9899 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9900 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9901 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9902 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9903 bfd_put_32 (obfd, BEQLR, p), p += 4;
9904 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9905 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9906 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9907
9908 if (r != NULL)
9909 r[0].r_offset += 9 * 4;
9910 p = build_plt_stub (htab, stub_entry, p, offset, r);
9911 bfd_put_32 (obfd, BCTRL, p - 4);
9912
9913 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9914 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9915 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9916 bfd_put_32 (obfd, BLR, p), p += 4;
9917
9918 return p;
9919 }
9920
9921 static Elf_Internal_Rela *
9922 get_relocs (asection *sec, int count)
9923 {
9924 Elf_Internal_Rela *relocs;
9925 struct bfd_elf_section_data *elfsec_data;
9926
9927 elfsec_data = elf_section_data (sec);
9928 relocs = elfsec_data->relocs;
9929 if (relocs == NULL)
9930 {
9931 bfd_size_type relsize;
9932 relsize = sec->reloc_count * sizeof (*relocs);
9933 relocs = bfd_alloc (sec->owner, relsize);
9934 if (relocs == NULL)
9935 return NULL;
9936 elfsec_data->relocs = relocs;
9937 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9938 sizeof (Elf_Internal_Shdr));
9939 if (elfsec_data->rela.hdr == NULL)
9940 return NULL;
9941 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9942 * sizeof (Elf64_External_Rela));
9943 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9944 sec->reloc_count = 0;
9945 }
9946 relocs += sec->reloc_count;
9947 sec->reloc_count += count;
9948 return relocs;
9949 }
9950
9951 static bfd_vma
9952 get_r2off (struct bfd_link_info *info,
9953 struct ppc_stub_hash_entry *stub_entry)
9954 {
9955 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9956 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9957
9958 if (r2off == 0)
9959 {
9960 /* Support linking -R objects. Get the toc pointer from the
9961 opd entry. */
9962 char buf[8];
9963 asection *opd = stub_entry->h->elf.root.u.def.section;
9964 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9965
9966 if (strcmp (opd->name, ".opd") != 0
9967 || opd->reloc_count != 0)
9968 {
9969 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
9970 stub_entry->h->elf.root.root.string);
9971 bfd_set_error (bfd_error_bad_value);
9972 return 0;
9973 }
9974 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9975 return 0;
9976 r2off = bfd_get_64 (opd->owner, buf);
9977 r2off -= elf_gp (info->output_bfd);
9978 }
9979 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9980 return r2off;
9981 }
9982
9983 static bfd_boolean
9984 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9985 {
9986 struct ppc_stub_hash_entry *stub_entry;
9987 struct ppc_branch_hash_entry *br_entry;
9988 struct bfd_link_info *info;
9989 struct ppc_link_hash_table *htab;
9990 bfd_byte *loc;
9991 bfd_byte *p;
9992 bfd_vma dest, off;
9993 int size;
9994 Elf_Internal_Rela *r;
9995 asection *plt;
9996
9997 /* Massage our args to the form they really have. */
9998 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9999 info = in_arg;
10000
10001 htab = ppc_hash_table (info);
10002 if (htab == NULL)
10003 return FALSE;
10004
10005 /* Make a note of the offset within the stubs for this entry. */
10006 stub_entry->stub_offset = stub_entry->stub_sec->size;
10007 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10008
10009 htab->stub_count[stub_entry->stub_type - 1] += 1;
10010 switch (stub_entry->stub_type)
10011 {
10012 case ppc_stub_long_branch:
10013 case ppc_stub_long_branch_r2off:
10014 /* Branches are relative. This is where we are going to. */
10015 off = dest = (stub_entry->target_value
10016 + stub_entry->target_section->output_offset
10017 + stub_entry->target_section->output_section->vma);
10018
10019 /* And this is where we are coming from. */
10020 off -= (stub_entry->stub_offset
10021 + stub_entry->stub_sec->output_offset
10022 + stub_entry->stub_sec->output_section->vma);
10023
10024 size = 4;
10025 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10026 {
10027 bfd_vma r2off = get_r2off (info, stub_entry);
10028
10029 if (r2off == 0)
10030 {
10031 htab->stub_error = TRUE;
10032 return FALSE;
10033 }
10034 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10035 loc += 4;
10036 size = 12;
10037 if (PPC_HA (r2off) != 0)
10038 {
10039 size = 16;
10040 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10041 loc += 4;
10042 }
10043 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10044 loc += 4;
10045 off -= size - 4;
10046 }
10047 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10048
10049 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10050 {
10051 info->callbacks->einfo
10052 (_("%P: long branch stub `%s' offset overflow\n"),
10053 stub_entry->root.string);
10054 htab->stub_error = TRUE;
10055 return FALSE;
10056 }
10057
10058 if (info->emitrelocations)
10059 {
10060 r = get_relocs (stub_entry->stub_sec, 1);
10061 if (r == NULL)
10062 return FALSE;
10063 r->r_offset = loc - stub_entry->stub_sec->contents;
10064 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10065 r->r_addend = dest;
10066 if (stub_entry->h != NULL)
10067 {
10068 struct elf_link_hash_entry **hashes;
10069 unsigned long symndx;
10070 struct ppc_link_hash_entry *h;
10071
10072 hashes = elf_sym_hashes (htab->stub_bfd);
10073 if (hashes == NULL)
10074 {
10075 bfd_size_type hsize;
10076
10077 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10078 hashes = bfd_zalloc (htab->stub_bfd, hsize);
10079 if (hashes == NULL)
10080 return FALSE;
10081 elf_sym_hashes (htab->stub_bfd) = hashes;
10082 htab->stub_globals = 1;
10083 }
10084 symndx = htab->stub_globals++;
10085 h = stub_entry->h;
10086 hashes[symndx] = &h->elf;
10087 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10088 if (h->oh != NULL && h->oh->is_func)
10089 h = ppc_follow_link (h->oh);
10090 if (h->elf.root.u.def.section != stub_entry->target_section)
10091 /* H is an opd symbol. The addend must be zero. */
10092 r->r_addend = 0;
10093 else
10094 {
10095 off = (h->elf.root.u.def.value
10096 + h->elf.root.u.def.section->output_offset
10097 + h->elf.root.u.def.section->output_section->vma);
10098 r->r_addend -= off;
10099 }
10100 }
10101 }
10102 break;
10103
10104 case ppc_stub_plt_branch:
10105 case ppc_stub_plt_branch_r2off:
10106 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10107 stub_entry->root.string + 9,
10108 FALSE, FALSE);
10109 if (br_entry == NULL)
10110 {
10111 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10112 stub_entry->root.string);
10113 htab->stub_error = TRUE;
10114 return FALSE;
10115 }
10116
10117 dest = (stub_entry->target_value
10118 + stub_entry->target_section->output_offset
10119 + stub_entry->target_section->output_section->vma);
10120
10121 bfd_put_64 (htab->brlt->owner, dest,
10122 htab->brlt->contents + br_entry->offset);
10123
10124 if (br_entry->iter == htab->stub_iteration)
10125 {
10126 br_entry->iter = 0;
10127
10128 if (htab->relbrlt != NULL)
10129 {
10130 /* Create a reloc for the branch lookup table entry. */
10131 Elf_Internal_Rela rela;
10132 bfd_byte *rl;
10133
10134 rela.r_offset = (br_entry->offset
10135 + htab->brlt->output_offset
10136 + htab->brlt->output_section->vma);
10137 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10138 rela.r_addend = dest;
10139
10140 rl = htab->relbrlt->contents;
10141 rl += (htab->relbrlt->reloc_count++
10142 * sizeof (Elf64_External_Rela));
10143 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10144 }
10145 else if (info->emitrelocations)
10146 {
10147 r = get_relocs (htab->brlt, 1);
10148 if (r == NULL)
10149 return FALSE;
10150 /* brlt, being SEC_LINKER_CREATED does not go through the
10151 normal reloc processing. Symbols and offsets are not
10152 translated from input file to output file form, so
10153 set up the offset per the output file. */
10154 r->r_offset = (br_entry->offset
10155 + htab->brlt->output_offset
10156 + htab->brlt->output_section->vma);
10157 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10158 r->r_addend = dest;
10159 }
10160 }
10161
10162 dest = (br_entry->offset
10163 + htab->brlt->output_offset
10164 + htab->brlt->output_section->vma);
10165
10166 off = (dest
10167 - elf_gp (htab->brlt->output_section->owner)
10168 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10169
10170 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10171 {
10172 info->callbacks->einfo
10173 (_("%P: linkage table error against `%T'\n"),
10174 stub_entry->root.string);
10175 bfd_set_error (bfd_error_bad_value);
10176 htab->stub_error = TRUE;
10177 return FALSE;
10178 }
10179
10180 if (info->emitrelocations)
10181 {
10182 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10183 if (r == NULL)
10184 return FALSE;
10185 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10186 if (bfd_big_endian (info->output_bfd))
10187 r[0].r_offset += 2;
10188 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10189 r[0].r_offset += 4;
10190 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10191 r[0].r_addend = dest;
10192 if (PPC_HA (off) != 0)
10193 {
10194 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10195 r[1].r_offset = r[0].r_offset + 4;
10196 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10197 r[1].r_addend = r[0].r_addend;
10198 }
10199 }
10200
10201 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10202 {
10203 if (PPC_HA (off) != 0)
10204 {
10205 size = 16;
10206 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10207 loc += 4;
10208 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10209 }
10210 else
10211 {
10212 size = 12;
10213 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10214 }
10215 }
10216 else
10217 {
10218 bfd_vma r2off = get_r2off (info, stub_entry);
10219
10220 if (r2off == 0)
10221 {
10222 htab->stub_error = TRUE;
10223 return FALSE;
10224 }
10225
10226 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10227 loc += 4;
10228 size = 20;
10229 if (PPC_HA (off) != 0)
10230 {
10231 size += 4;
10232 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10233 loc += 4;
10234 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10235 loc += 4;
10236 }
10237 else
10238 {
10239 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10240 loc += 4;
10241 }
10242
10243 if (PPC_HA (r2off) != 0)
10244 {
10245 size += 4;
10246 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10247 loc += 4;
10248 }
10249 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10250 }
10251 loc += 4;
10252 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10253 loc += 4;
10254 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10255 break;
10256
10257 case ppc_stub_plt_call:
10258 case ppc_stub_plt_call_r2save:
10259 if (stub_entry->h != NULL
10260 && stub_entry->h->is_func_descriptor
10261 && stub_entry->h->oh != NULL)
10262 {
10263 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10264
10265 /* If the old-ABI "dot-symbol" is undefined make it weak so
10266 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10267 FIXME: We used to define the symbol on one of the call
10268 stubs instead, which is why we test symbol section id
10269 against htab->top_id in various places. Likely all
10270 these checks could now disappear. */
10271 if (fh->elf.root.type == bfd_link_hash_undefined)
10272 fh->elf.root.type = bfd_link_hash_undefweak;
10273 /* Stop undo_symbol_twiddle changing it back to undefined. */
10274 fh->was_undefined = 0;
10275 }
10276
10277 /* Now build the stub. */
10278 dest = stub_entry->plt_ent->plt.offset & ~1;
10279 if (dest >= (bfd_vma) -2)
10280 abort ();
10281
10282 plt = htab->plt;
10283 if (!htab->elf.dynamic_sections_created
10284 || stub_entry->h == NULL
10285 || stub_entry->h->elf.dynindx == -1)
10286 plt = htab->iplt;
10287
10288 dest += plt->output_offset + plt->output_section->vma;
10289
10290 if (stub_entry->h == NULL
10291 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10292 {
10293 Elf_Internal_Rela rela;
10294 bfd_byte *rl;
10295
10296 rela.r_offset = dest;
10297 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10298 rela.r_addend = (stub_entry->target_value
10299 + stub_entry->target_section->output_offset
10300 + stub_entry->target_section->output_section->vma);
10301
10302 rl = (htab->reliplt->contents
10303 + (htab->reliplt->reloc_count++
10304 * sizeof (Elf64_External_Rela)));
10305 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10306 stub_entry->plt_ent->plt.offset |= 1;
10307 }
10308
10309 off = (dest
10310 - elf_gp (plt->output_section->owner)
10311 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10312
10313 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10314 {
10315 info->callbacks->einfo
10316 (_("%P: linkage table error against `%T'\n"),
10317 stub_entry->h != NULL
10318 ? stub_entry->h->elf.root.root.string
10319 : "<local sym>");
10320 bfd_set_error (bfd_error_bad_value);
10321 htab->stub_error = TRUE;
10322 return FALSE;
10323 }
10324
10325 if (htab->plt_stub_align != 0)
10326 {
10327 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10328
10329 stub_entry->stub_sec->size += pad;
10330 stub_entry->stub_offset = stub_entry->stub_sec->size;
10331 loc += pad;
10332 }
10333
10334 r = NULL;
10335 if (info->emitrelocations)
10336 {
10337 r = get_relocs (stub_entry->stub_sec,
10338 (2
10339 + (PPC_HA (off) != 0)
10340 + (htab->plt_static_chain
10341 && PPC_HA (off + 16) == PPC_HA (off))));
10342 if (r == NULL)
10343 return FALSE;
10344 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10345 if (bfd_big_endian (info->output_bfd))
10346 r[0].r_offset += 2;
10347 r[0].r_addend = dest;
10348 }
10349 if (stub_entry->h != NULL
10350 && (stub_entry->h == htab->tls_get_addr_fd
10351 || stub_entry->h == htab->tls_get_addr)
10352 && !htab->no_tls_get_addr_opt)
10353 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10354 else
10355 p = build_plt_stub (htab, stub_entry, loc, off, r);
10356 size = p - loc;
10357 break;
10358
10359 default:
10360 BFD_FAIL ();
10361 return FALSE;
10362 }
10363
10364 stub_entry->stub_sec->size += size;
10365
10366 if (htab->emit_stub_syms)
10367 {
10368 struct elf_link_hash_entry *h;
10369 size_t len1, len2;
10370 char *name;
10371 const char *const stub_str[] = { "long_branch",
10372 "long_branch_r2off",
10373 "plt_branch",
10374 "plt_branch_r2off",
10375 "plt_call",
10376 "plt_call" };
10377
10378 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10379 len2 = strlen (stub_entry->root.string);
10380 name = bfd_malloc (len1 + len2 + 2);
10381 if (name == NULL)
10382 return FALSE;
10383 memcpy (name, stub_entry->root.string, 9);
10384 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10385 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10386 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10387 if (h == NULL)
10388 return FALSE;
10389 if (h->root.type == bfd_link_hash_new)
10390 {
10391 h->root.type = bfd_link_hash_defined;
10392 h->root.u.def.section = stub_entry->stub_sec;
10393 h->root.u.def.value = stub_entry->stub_offset;
10394 h->ref_regular = 1;
10395 h->def_regular = 1;
10396 h->ref_regular_nonweak = 1;
10397 h->forced_local = 1;
10398 h->non_elf = 0;
10399 }
10400 }
10401
10402 return TRUE;
10403 }
10404
10405 /* As above, but don't actually build the stub. Just bump offset so
10406 we know stub section sizes, and select plt_branch stubs where
10407 long_branch stubs won't do. */
10408
10409 static bfd_boolean
10410 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10411 {
10412 struct ppc_stub_hash_entry *stub_entry;
10413 struct bfd_link_info *info;
10414 struct ppc_link_hash_table *htab;
10415 bfd_vma off;
10416 int size;
10417
10418 /* Massage our args to the form they really have. */
10419 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10420 info = in_arg;
10421
10422 htab = ppc_hash_table (info);
10423 if (htab == NULL)
10424 return FALSE;
10425
10426 if (stub_entry->stub_type == ppc_stub_plt_call
10427 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10428 {
10429 asection *plt;
10430 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10431 if (off >= (bfd_vma) -2)
10432 abort ();
10433 plt = htab->plt;
10434 if (!htab->elf.dynamic_sections_created
10435 || stub_entry->h == NULL
10436 || stub_entry->h->elf.dynindx == -1)
10437 plt = htab->iplt;
10438 off += (plt->output_offset
10439 + plt->output_section->vma
10440 - elf_gp (plt->output_section->owner)
10441 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10442
10443 size = plt_stub_size (htab, stub_entry, off);
10444 if (htab->plt_stub_align)
10445 size += plt_stub_pad (htab, stub_entry, off);
10446 if (info->emitrelocations)
10447 {
10448 stub_entry->stub_sec->reloc_count
10449 += (2
10450 + (PPC_HA (off) != 0)
10451 + (htab->plt_static_chain
10452 && PPC_HA (off + 16) == PPC_HA (off)));
10453 stub_entry->stub_sec->flags |= SEC_RELOC;
10454 }
10455 }
10456 else
10457 {
10458 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10459 variants. */
10460 bfd_vma r2off = 0;
10461
10462 off = (stub_entry->target_value
10463 + stub_entry->target_section->output_offset
10464 + stub_entry->target_section->output_section->vma);
10465 off -= (stub_entry->stub_sec->size
10466 + stub_entry->stub_sec->output_offset
10467 + stub_entry->stub_sec->output_section->vma);
10468
10469 /* Reset the stub type from the plt variant in case we now
10470 can reach with a shorter stub. */
10471 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10472 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10473
10474 size = 4;
10475 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10476 {
10477 r2off = get_r2off (info, stub_entry);
10478 if (r2off == 0)
10479 {
10480 htab->stub_error = TRUE;
10481 return FALSE;
10482 }
10483 size = 12;
10484 if (PPC_HA (r2off) != 0)
10485 size = 16;
10486 off -= size - 4;
10487 }
10488
10489 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10490 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10491 {
10492 struct ppc_branch_hash_entry *br_entry;
10493
10494 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10495 stub_entry->root.string + 9,
10496 TRUE, FALSE);
10497 if (br_entry == NULL)
10498 {
10499 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10500 stub_entry->root.string);
10501 htab->stub_error = TRUE;
10502 return FALSE;
10503 }
10504
10505 if (br_entry->iter != htab->stub_iteration)
10506 {
10507 br_entry->iter = htab->stub_iteration;
10508 br_entry->offset = htab->brlt->size;
10509 htab->brlt->size += 8;
10510
10511 if (htab->relbrlt != NULL)
10512 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10513 else if (info->emitrelocations)
10514 {
10515 htab->brlt->reloc_count += 1;
10516 htab->brlt->flags |= SEC_RELOC;
10517 }
10518 }
10519
10520 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10521 off = (br_entry->offset
10522 + htab->brlt->output_offset
10523 + htab->brlt->output_section->vma
10524 - elf_gp (htab->brlt->output_section->owner)
10525 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10526
10527 if (info->emitrelocations)
10528 {
10529 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10530 stub_entry->stub_sec->flags |= SEC_RELOC;
10531 }
10532
10533 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10534 {
10535 size = 12;
10536 if (PPC_HA (off) != 0)
10537 size = 16;
10538 }
10539 else
10540 {
10541 size = 20;
10542 if (PPC_HA (off) != 0)
10543 size += 4;
10544
10545 if (PPC_HA (r2off) != 0)
10546 size += 4;
10547 }
10548 }
10549 else if (info->emitrelocations)
10550 {
10551 stub_entry->stub_sec->reloc_count += 1;
10552 stub_entry->stub_sec->flags |= SEC_RELOC;
10553 }
10554 }
10555
10556 stub_entry->stub_sec->size += size;
10557 return TRUE;
10558 }
10559
10560 /* Set up various things so that we can make a list of input sections
10561 for each output section included in the link. Returns -1 on error,
10562 0 when no stubs will be needed, and 1 on success. */
10563
10564 int
10565 ppc64_elf_setup_section_lists
10566 (struct bfd_link_info *info,
10567 asection *(*add_stub_section) (const char *, asection *),
10568 void (*layout_sections_again) (void))
10569 {
10570 bfd *input_bfd;
10571 int top_id, top_index, id;
10572 asection *section;
10573 asection **input_list;
10574 bfd_size_type amt;
10575 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10576
10577 if (htab == NULL)
10578 return -1;
10579 /* Stash our params away. */
10580 htab->add_stub_section = add_stub_section;
10581 htab->layout_sections_again = layout_sections_again;
10582
10583 /* Find the top input section id. */
10584 for (input_bfd = info->input_bfds, top_id = 3;
10585 input_bfd != NULL;
10586 input_bfd = input_bfd->link_next)
10587 {
10588 for (section = input_bfd->sections;
10589 section != NULL;
10590 section = section->next)
10591 {
10592 if (top_id < section->id)
10593 top_id = section->id;
10594 }
10595 }
10596
10597 htab->top_id = top_id;
10598 amt = sizeof (struct map_stub) * (top_id + 1);
10599 htab->stub_group = bfd_zmalloc (amt);
10600 if (htab->stub_group == NULL)
10601 return -1;
10602
10603 /* Set toc_off for com, und, abs and ind sections. */
10604 for (id = 0; id < 3; id++)
10605 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10606
10607 /* We can't use output_bfd->section_count here to find the top output
10608 section index as some sections may have been removed, and
10609 strip_excluded_output_sections doesn't renumber the indices. */
10610 for (section = info->output_bfd->sections, top_index = 0;
10611 section != NULL;
10612 section = section->next)
10613 {
10614 if (top_index < section->index)
10615 top_index = section->index;
10616 }
10617
10618 htab->top_index = top_index;
10619 amt = sizeof (asection *) * (top_index + 1);
10620 input_list = bfd_zmalloc (amt);
10621 htab->input_list = input_list;
10622 if (input_list == NULL)
10623 return -1;
10624
10625 return 1;
10626 }
10627
10628 /* Set up for first pass at multitoc partitioning. */
10629
10630 void
10631 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10632 {
10633 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10634
10635 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
10636 htab->toc_bfd = NULL;
10637 htab->toc_first_sec = NULL;
10638 }
10639
10640 /* The linker repeatedly calls this function for each TOC input section
10641 and linker generated GOT section. Group input bfds such that the toc
10642 within a group is less than 64k in size. */
10643
10644 bfd_boolean
10645 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10646 {
10647 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10648 bfd_vma addr, off, limit;
10649
10650 if (htab == NULL)
10651 return FALSE;
10652
10653 if (!htab->second_toc_pass)
10654 {
10655 /* Keep track of the first .toc or .got section for this input bfd. */
10656 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10657
10658 if (new_bfd)
10659 {
10660 htab->toc_bfd = isec->owner;
10661 htab->toc_first_sec = isec;
10662 }
10663
10664 addr = isec->output_offset + isec->output_section->vma;
10665 off = addr - htab->toc_curr;
10666 limit = 0x80008000;
10667 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10668 limit = 0x10000;
10669 if (off + isec->size > limit)
10670 {
10671 addr = (htab->toc_first_sec->output_offset
10672 + htab->toc_first_sec->output_section->vma);
10673 htab->toc_curr = addr;
10674 }
10675
10676 /* toc_curr is the base address of this toc group. Set elf_gp
10677 for the input section to be the offset relative to the
10678 output toc base plus 0x8000. Making the input elf_gp an
10679 offset allows us to move the toc as a whole without
10680 recalculating input elf_gp. */
10681 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10682 off += TOC_BASE_OFF;
10683
10684 /* Die if someone uses a linker script that doesn't keep input
10685 file .toc and .got together. */
10686 if (new_bfd
10687 && elf_gp (isec->owner) != 0
10688 && elf_gp (isec->owner) != off)
10689 return FALSE;
10690
10691 elf_gp (isec->owner) = off;
10692 return TRUE;
10693 }
10694
10695 /* During the second pass toc_first_sec points to the start of
10696 a toc group, and toc_curr is used to track the old elf_gp.
10697 We use toc_bfd to ensure we only look at each bfd once. */
10698 if (htab->toc_bfd == isec->owner)
10699 return TRUE;
10700 htab->toc_bfd = isec->owner;
10701
10702 if (htab->toc_first_sec == NULL
10703 || htab->toc_curr != elf_gp (isec->owner))
10704 {
10705 htab->toc_curr = elf_gp (isec->owner);
10706 htab->toc_first_sec = isec;
10707 }
10708 addr = (htab->toc_first_sec->output_offset
10709 + htab->toc_first_sec->output_section->vma);
10710 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10711 elf_gp (isec->owner) = off;
10712
10713 return TRUE;
10714 }
10715
10716 /* Called via elf_link_hash_traverse to merge GOT entries for global
10717 symbol H. */
10718
10719 static bfd_boolean
10720 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10721 {
10722 if (h->root.type == bfd_link_hash_indirect)
10723 return TRUE;
10724
10725 merge_got_entries (&h->got.glist);
10726
10727 return TRUE;
10728 }
10729
10730 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10731 symbol H. */
10732
10733 static bfd_boolean
10734 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10735 {
10736 struct got_entry *gent;
10737
10738 if (h->root.type == bfd_link_hash_indirect)
10739 return TRUE;
10740
10741 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10742 if (!gent->is_indirect)
10743 allocate_got (h, (struct bfd_link_info *) inf, gent);
10744 return TRUE;
10745 }
10746
10747 /* Called on the first multitoc pass after the last call to
10748 ppc64_elf_next_toc_section. This function removes duplicate GOT
10749 entries. */
10750
10751 bfd_boolean
10752 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10753 {
10754 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10755 struct bfd *ibfd, *ibfd2;
10756 bfd_boolean done_something;
10757
10758 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10759
10760 if (!htab->do_multi_toc)
10761 return FALSE;
10762
10763 /* Merge global sym got entries within a toc group. */
10764 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10765
10766 /* And tlsld_got. */
10767 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10768 {
10769 struct got_entry *ent, *ent2;
10770
10771 if (!is_ppc64_elf (ibfd))
10772 continue;
10773
10774 ent = ppc64_tlsld_got (ibfd);
10775 if (!ent->is_indirect
10776 && ent->got.offset != (bfd_vma) -1)
10777 {
10778 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10779 {
10780 if (!is_ppc64_elf (ibfd2))
10781 continue;
10782
10783 ent2 = ppc64_tlsld_got (ibfd2);
10784 if (!ent2->is_indirect
10785 && ent2->got.offset != (bfd_vma) -1
10786 && elf_gp (ibfd2) == elf_gp (ibfd))
10787 {
10788 ent2->is_indirect = TRUE;
10789 ent2->got.ent = ent;
10790 }
10791 }
10792 }
10793 }
10794
10795 /* Zap sizes of got sections. */
10796 htab->reliplt->rawsize = htab->reliplt->size;
10797 htab->reliplt->size -= htab->got_reli_size;
10798 htab->got_reli_size = 0;
10799
10800 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10801 {
10802 asection *got, *relgot;
10803
10804 if (!is_ppc64_elf (ibfd))
10805 continue;
10806
10807 got = ppc64_elf_tdata (ibfd)->got;
10808 if (got != NULL)
10809 {
10810 got->rawsize = got->size;
10811 got->size = 0;
10812 relgot = ppc64_elf_tdata (ibfd)->relgot;
10813 relgot->rawsize = relgot->size;
10814 relgot->size = 0;
10815 }
10816 }
10817
10818 /* Now reallocate the got, local syms first. We don't need to
10819 allocate section contents again since we never increase size. */
10820 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10821 {
10822 struct got_entry **lgot_ents;
10823 struct got_entry **end_lgot_ents;
10824 struct plt_entry **local_plt;
10825 struct plt_entry **end_local_plt;
10826 unsigned char *lgot_masks;
10827 bfd_size_type locsymcount;
10828 Elf_Internal_Shdr *symtab_hdr;
10829 asection *s;
10830
10831 if (!is_ppc64_elf (ibfd))
10832 continue;
10833
10834 lgot_ents = elf_local_got_ents (ibfd);
10835 if (!lgot_ents)
10836 continue;
10837
10838 symtab_hdr = &elf_symtab_hdr (ibfd);
10839 locsymcount = symtab_hdr->sh_info;
10840 end_lgot_ents = lgot_ents + locsymcount;
10841 local_plt = (struct plt_entry **) end_lgot_ents;
10842 end_local_plt = local_plt + locsymcount;
10843 lgot_masks = (unsigned char *) end_local_plt;
10844 s = ppc64_elf_tdata (ibfd)->got;
10845 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10846 {
10847 struct got_entry *ent;
10848
10849 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10850 {
10851 unsigned int ent_size = 8;
10852 unsigned int rel_size = sizeof (Elf64_External_Rela);
10853
10854 ent->got.offset = s->size;
10855 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10856 {
10857 ent_size *= 2;
10858 rel_size *= 2;
10859 }
10860 s->size += ent_size;
10861 if ((*lgot_masks & PLT_IFUNC) != 0)
10862 {
10863 htab->reliplt->size += rel_size;
10864 htab->got_reli_size += rel_size;
10865 }
10866 else if (info->shared)
10867 {
10868 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10869 srel->size += rel_size;
10870 }
10871 }
10872 }
10873 }
10874
10875 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10876
10877 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10878 {
10879 struct got_entry *ent;
10880
10881 if (!is_ppc64_elf (ibfd))
10882 continue;
10883
10884 ent = ppc64_tlsld_got (ibfd);
10885 if (!ent->is_indirect
10886 && ent->got.offset != (bfd_vma) -1)
10887 {
10888 asection *s = ppc64_elf_tdata (ibfd)->got;
10889 ent->got.offset = s->size;
10890 s->size += 16;
10891 if (info->shared)
10892 {
10893 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10894 srel->size += sizeof (Elf64_External_Rela);
10895 }
10896 }
10897 }
10898
10899 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10900 if (!done_something)
10901 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10902 {
10903 asection *got;
10904
10905 if (!is_ppc64_elf (ibfd))
10906 continue;
10907
10908 got = ppc64_elf_tdata (ibfd)->got;
10909 if (got != NULL)
10910 {
10911 done_something = got->rawsize != got->size;
10912 if (done_something)
10913 break;
10914 }
10915 }
10916
10917 if (done_something)
10918 (*htab->layout_sections_again) ();
10919
10920 /* Set up for second pass over toc sections to recalculate elf_gp
10921 on input sections. */
10922 htab->toc_bfd = NULL;
10923 htab->toc_first_sec = NULL;
10924 htab->second_toc_pass = TRUE;
10925 return done_something;
10926 }
10927
10928 /* Called after second pass of multitoc partitioning. */
10929
10930 void
10931 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10932 {
10933 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10934
10935 /* After the second pass, toc_curr tracks the TOC offset used
10936 for code sections below in ppc64_elf_next_input_section. */
10937 htab->toc_curr = TOC_BASE_OFF;
10938 }
10939
10940 /* No toc references were found in ISEC. If the code in ISEC makes no
10941 calls, then there's no need to use toc adjusting stubs when branching
10942 into ISEC. Actually, indirect calls from ISEC are OK as they will
10943 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10944 needed, and 2 if a cyclical call-graph was found but no other reason
10945 for a stub was detected. If called from the top level, a return of
10946 2 means the same as a return of 0. */
10947
10948 static int
10949 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10950 {
10951 int ret;
10952
10953 /* Mark this section as checked. */
10954 isec->call_check_done = 1;
10955
10956 /* We know none of our code bearing sections will need toc stubs. */
10957 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10958 return 0;
10959
10960 if (isec->size == 0)
10961 return 0;
10962
10963 if (isec->output_section == NULL)
10964 return 0;
10965
10966 ret = 0;
10967 if (isec->reloc_count != 0)
10968 {
10969 Elf_Internal_Rela *relstart, *rel;
10970 Elf_Internal_Sym *local_syms;
10971 struct ppc_link_hash_table *htab;
10972
10973 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10974 info->keep_memory);
10975 if (relstart == NULL)
10976 return -1;
10977
10978 /* Look for branches to outside of this section. */
10979 local_syms = NULL;
10980 htab = ppc_hash_table (info);
10981 if (htab == NULL)
10982 return -1;
10983
10984 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10985 {
10986 enum elf_ppc64_reloc_type r_type;
10987 unsigned long r_symndx;
10988 struct elf_link_hash_entry *h;
10989 struct ppc_link_hash_entry *eh;
10990 Elf_Internal_Sym *sym;
10991 asection *sym_sec;
10992 struct _opd_sec_data *opd;
10993 bfd_vma sym_value;
10994 bfd_vma dest;
10995
10996 r_type = ELF64_R_TYPE (rel->r_info);
10997 if (r_type != R_PPC64_REL24
10998 && r_type != R_PPC64_REL14
10999 && r_type != R_PPC64_REL14_BRTAKEN
11000 && r_type != R_PPC64_REL14_BRNTAKEN)
11001 continue;
11002
11003 r_symndx = ELF64_R_SYM (rel->r_info);
11004 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11005 isec->owner))
11006 {
11007 ret = -1;
11008 break;
11009 }
11010
11011 /* Calls to dynamic lib functions go through a plt call stub
11012 that uses r2. */
11013 eh = (struct ppc_link_hash_entry *) h;
11014 if (eh != NULL
11015 && (eh->elf.plt.plist != NULL
11016 || (eh->oh != NULL
11017 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11018 {
11019 ret = 1;
11020 break;
11021 }
11022
11023 if (sym_sec == NULL)
11024 /* Ignore other undefined symbols. */
11025 continue;
11026
11027 /* Assume branches to other sections not included in the
11028 link need stubs too, to cover -R and absolute syms. */
11029 if (sym_sec->output_section == NULL)
11030 {
11031 ret = 1;
11032 break;
11033 }
11034
11035 if (h == NULL)
11036 sym_value = sym->st_value;
11037 else
11038 {
11039 if (h->root.type != bfd_link_hash_defined
11040 && h->root.type != bfd_link_hash_defweak)
11041 abort ();
11042 sym_value = h->root.u.def.value;
11043 }
11044 sym_value += rel->r_addend;
11045
11046 /* If this branch reloc uses an opd sym, find the code section. */
11047 opd = get_opd_info (sym_sec);
11048 if (opd != NULL)
11049 {
11050 if (h == NULL && opd->adjust != NULL)
11051 {
11052 long adjust;
11053
11054 adjust = opd->adjust[sym->st_value / 8];
11055 if (adjust == -1)
11056 /* Assume deleted functions won't ever be called. */
11057 continue;
11058 sym_value += adjust;
11059 }
11060
11061 dest = opd_entry_value (sym_sec, sym_value,
11062 &sym_sec, NULL, FALSE);
11063 if (dest == (bfd_vma) -1)
11064 continue;
11065 }
11066 else
11067 dest = (sym_value
11068 + sym_sec->output_offset
11069 + sym_sec->output_section->vma);
11070
11071 /* Ignore branch to self. */
11072 if (sym_sec == isec)
11073 continue;
11074
11075 /* If the called function uses the toc, we need a stub. */
11076 if (sym_sec->has_toc_reloc
11077 || sym_sec->makes_toc_func_call)
11078 {
11079 ret = 1;
11080 break;
11081 }
11082
11083 /* Assume any branch that needs a long branch stub might in fact
11084 need a plt_branch stub. A plt_branch stub uses r2. */
11085 else if (dest - (isec->output_offset
11086 + isec->output_section->vma
11087 + rel->r_offset) + (1 << 25) >= (2 << 25))
11088 {
11089 ret = 1;
11090 break;
11091 }
11092
11093 /* If calling back to a section in the process of being
11094 tested, we can't say for sure that no toc adjusting stubs
11095 are needed, so don't return zero. */
11096 else if (sym_sec->call_check_in_progress)
11097 ret = 2;
11098
11099 /* Branches to another section that itself doesn't have any TOC
11100 references are OK. Recursively call ourselves to check. */
11101 else if (!sym_sec->call_check_done)
11102 {
11103 int recur;
11104
11105 /* Mark current section as indeterminate, so that other
11106 sections that call back to current won't be marked as
11107 known. */
11108 isec->call_check_in_progress = 1;
11109 recur = toc_adjusting_stub_needed (info, sym_sec);
11110 isec->call_check_in_progress = 0;
11111
11112 if (recur != 0)
11113 {
11114 ret = recur;
11115 if (recur != 2)
11116 break;
11117 }
11118 }
11119 }
11120
11121 if (local_syms != NULL
11122 && (elf_symtab_hdr (isec->owner).contents
11123 != (unsigned char *) local_syms))
11124 free (local_syms);
11125 if (elf_section_data (isec)->relocs != relstart)
11126 free (relstart);
11127 }
11128
11129 if ((ret & 1) == 0
11130 && isec->map_head.s != NULL
11131 && (strcmp (isec->output_section->name, ".init") == 0
11132 || strcmp (isec->output_section->name, ".fini") == 0))
11133 {
11134 if (isec->map_head.s->has_toc_reloc
11135 || isec->map_head.s->makes_toc_func_call)
11136 ret = 1;
11137 else if (!isec->map_head.s->call_check_done)
11138 {
11139 int recur;
11140 isec->call_check_in_progress = 1;
11141 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11142 isec->call_check_in_progress = 0;
11143 if (recur != 0)
11144 ret = recur;
11145 }
11146 }
11147
11148 if (ret == 1)
11149 isec->makes_toc_func_call = 1;
11150
11151 return ret;
11152 }
11153
11154 /* The linker repeatedly calls this function for each input section,
11155 in the order that input sections are linked into output sections.
11156 Build lists of input sections to determine groupings between which
11157 we may insert linker stubs. */
11158
11159 bfd_boolean
11160 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11161 {
11162 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11163
11164 if (htab == NULL)
11165 return FALSE;
11166
11167 if ((isec->output_section->flags & SEC_CODE) != 0
11168 && isec->output_section->index <= htab->top_index)
11169 {
11170 asection **list = htab->input_list + isec->output_section->index;
11171 /* Steal the link_sec pointer for our list. */
11172 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11173 /* This happens to make the list in reverse order,
11174 which is what we want. */
11175 PREV_SEC (isec) = *list;
11176 *list = isec;
11177 }
11178
11179 if (htab->multi_toc_needed)
11180 {
11181 /* If a code section has a function that uses the TOC then we need
11182 to use the right TOC (obviously). Also, make sure that .opd gets
11183 the correct TOC value for R_PPC64_TOC relocs that don't have or
11184 can't find their function symbol (shouldn't ever happen now).
11185 Also specially treat .fixup for the linux kernel. .fixup
11186 contains branches, but only back to the function that hit an
11187 exception. */
11188 if (isec->has_toc_reloc
11189 || (isec->flags & SEC_CODE) == 0
11190 || strcmp (isec->name, ".fixup") == 0)
11191 {
11192 if (elf_gp (isec->owner) != 0)
11193 htab->toc_curr = elf_gp (isec->owner);
11194 }
11195 else
11196 {
11197 if (!isec->call_check_done
11198 && toc_adjusting_stub_needed (info, isec) < 0)
11199 return FALSE;
11200 /* If we make a local call from this section, ie. a branch
11201 without a following nop, then we have no place to put a
11202 toc restoring insn. We must use the same toc group as
11203 the callee.
11204 Testing makes_toc_func_call actually tests for *any*
11205 calls to functions that need a good toc pointer. A more
11206 precise test would be better, as this one will set
11207 incorrect values for pasted .init/.fini fragments.
11208 (Fixed later in check_pasted_section.) */
11209 if (isec->makes_toc_func_call
11210 && elf_gp (isec->owner) != 0)
11211 htab->toc_curr = elf_gp (isec->owner);
11212 }
11213 }
11214
11215 /* Functions that don't use the TOC can belong in any TOC group.
11216 Use the last TOC base. */
11217 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11218 return TRUE;
11219 }
11220
11221 /* Check that all .init and .fini sections use the same toc, if they
11222 have toc relocs. */
11223
11224 static bfd_boolean
11225 check_pasted_section (struct bfd_link_info *info, const char *name)
11226 {
11227 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11228
11229 if (o != NULL)
11230 {
11231 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11232 bfd_vma toc_off = 0;
11233 asection *i;
11234
11235 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11236 if (i->has_toc_reloc)
11237 {
11238 if (toc_off == 0)
11239 toc_off = htab->stub_group[i->id].toc_off;
11240 else if (toc_off != htab->stub_group[i->id].toc_off)
11241 return FALSE;
11242 }
11243
11244 if (toc_off == 0)
11245 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11246 if (i->makes_toc_func_call)
11247 {
11248 toc_off = htab->stub_group[i->id].toc_off;
11249 break;
11250 }
11251
11252 /* Make sure the whole pasted function uses the same toc offset. */
11253 if (toc_off != 0)
11254 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11255 htab->stub_group[i->id].toc_off = toc_off;
11256 }
11257 return TRUE;
11258 }
11259
11260 bfd_boolean
11261 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11262 {
11263 return (check_pasted_section (info, ".init")
11264 & check_pasted_section (info, ".fini"));
11265 }
11266
11267 /* See whether we can group stub sections together. Grouping stub
11268 sections may result in fewer stubs. More importantly, we need to
11269 put all .init* and .fini* stubs at the beginning of the .init or
11270 .fini output sections respectively, because glibc splits the
11271 _init and _fini functions into multiple parts. Putting a stub in
11272 the middle of a function is not a good idea. */
11273
11274 static void
11275 group_sections (struct ppc_link_hash_table *htab,
11276 bfd_size_type stub_group_size,
11277 bfd_boolean stubs_always_before_branch)
11278 {
11279 asection **list;
11280 bfd_size_type stub14_group_size;
11281 bfd_boolean suppress_size_errors;
11282
11283 suppress_size_errors = FALSE;
11284 stub14_group_size = stub_group_size;
11285 if (stub_group_size == 1)
11286 {
11287 /* Default values. */
11288 if (stubs_always_before_branch)
11289 {
11290 stub_group_size = 0x1e00000;
11291 stub14_group_size = 0x7800;
11292 }
11293 else
11294 {
11295 stub_group_size = 0x1c00000;
11296 stub14_group_size = 0x7000;
11297 }
11298 suppress_size_errors = TRUE;
11299 }
11300
11301 list = htab->input_list + htab->top_index;
11302 do
11303 {
11304 asection *tail = *list;
11305 while (tail != NULL)
11306 {
11307 asection *curr;
11308 asection *prev;
11309 bfd_size_type total;
11310 bfd_boolean big_sec;
11311 bfd_vma curr_toc;
11312
11313 curr = tail;
11314 total = tail->size;
11315 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11316 && ppc64_elf_section_data (tail)->has_14bit_branch
11317 ? stub14_group_size : stub_group_size);
11318 if (big_sec && !suppress_size_errors)
11319 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11320 tail->owner, tail);
11321 curr_toc = htab->stub_group[tail->id].toc_off;
11322
11323 while ((prev = PREV_SEC (curr)) != NULL
11324 && ((total += curr->output_offset - prev->output_offset)
11325 < (ppc64_elf_section_data (prev) != NULL
11326 && ppc64_elf_section_data (prev)->has_14bit_branch
11327 ? stub14_group_size : stub_group_size))
11328 && htab->stub_group[prev->id].toc_off == curr_toc)
11329 curr = prev;
11330
11331 /* OK, the size from the start of CURR to the end is less
11332 than stub_group_size and thus can be handled by one stub
11333 section. (or the tail section is itself larger than
11334 stub_group_size, in which case we may be toast.) We
11335 should really be keeping track of the total size of stubs
11336 added here, as stubs contribute to the final output
11337 section size. That's a little tricky, and this way will
11338 only break if stubs added make the total size more than
11339 2^25, ie. for the default stub_group_size, if stubs total
11340 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11341 do
11342 {
11343 prev = PREV_SEC (tail);
11344 /* Set up this stub group. */
11345 htab->stub_group[tail->id].link_sec = curr;
11346 }
11347 while (tail != curr && (tail = prev) != NULL);
11348
11349 /* But wait, there's more! Input sections up to stub_group_size
11350 bytes before the stub section can be handled by it too.
11351 Don't do this if we have a really large section after the
11352 stubs, as adding more stubs increases the chance that
11353 branches may not reach into the stub section. */
11354 if (!stubs_always_before_branch && !big_sec)
11355 {
11356 total = 0;
11357 while (prev != NULL
11358 && ((total += tail->output_offset - prev->output_offset)
11359 < (ppc64_elf_section_data (prev) != NULL
11360 && ppc64_elf_section_data (prev)->has_14bit_branch
11361 ? stub14_group_size : stub_group_size))
11362 && htab->stub_group[prev->id].toc_off == curr_toc)
11363 {
11364 tail = prev;
11365 prev = PREV_SEC (tail);
11366 htab->stub_group[tail->id].link_sec = curr;
11367 }
11368 }
11369 tail = prev;
11370 }
11371 }
11372 while (list-- != htab->input_list);
11373 free (htab->input_list);
11374 #undef PREV_SEC
11375 }
11376
11377 static const unsigned char glink_eh_frame_cie[] =
11378 {
11379 0, 0, 0, 16, /* length. */
11380 0, 0, 0, 0, /* id. */
11381 1, /* CIE version. */
11382 'z', 'R', 0, /* Augmentation string. */
11383 4, /* Code alignment. */
11384 0x78, /* Data alignment. */
11385 65, /* RA reg. */
11386 1, /* Augmentation size. */
11387 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11388 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11389 };
11390
11391 /* Stripping output sections is normally done before dynamic section
11392 symbols have been allocated. This function is called later, and
11393 handles cases like htab->brlt which is mapped to its own output
11394 section. */
11395
11396 static void
11397 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11398 {
11399 if (isec->size == 0
11400 && isec->output_section->size == 0
11401 && !(isec->output_section->flags & SEC_KEEP)
11402 && !bfd_section_removed_from_list (info->output_bfd,
11403 isec->output_section)
11404 && elf_section_data (isec->output_section)->dynindx == 0)
11405 {
11406 isec->output_section->flags |= SEC_EXCLUDE;
11407 bfd_section_list_remove (info->output_bfd, isec->output_section);
11408 info->output_bfd->section_count--;
11409 }
11410 }
11411
11412 /* Determine and set the size of the stub section for a final link.
11413
11414 The basic idea here is to examine all the relocations looking for
11415 PC-relative calls to a target that is unreachable with a "bl"
11416 instruction. */
11417
11418 bfd_boolean
11419 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11420 bfd_boolean plt_static_chain, int plt_thread_safe,
11421 int plt_stub_align)
11422 {
11423 bfd_size_type stub_group_size;
11424 bfd_boolean stubs_always_before_branch;
11425 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11426
11427 if (htab == NULL)
11428 return FALSE;
11429
11430 htab->plt_static_chain = plt_static_chain;
11431 htab->plt_stub_align = plt_stub_align;
11432 if (plt_thread_safe == -1 && !info->executable)
11433 plt_thread_safe = 1;
11434 if (plt_thread_safe == -1)
11435 {
11436 static const char *const thread_starter[] =
11437 {
11438 "pthread_create",
11439 /* libstdc++ */
11440 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11441 /* librt */
11442 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11443 "mq_notify", "create_timer",
11444 /* libanl */
11445 "getaddrinfo_a",
11446 /* libgomp */
11447 "GOMP_parallel_start",
11448 "GOMP_parallel_loop_static_start",
11449 "GOMP_parallel_loop_dynamic_start",
11450 "GOMP_parallel_loop_guided_start",
11451 "GOMP_parallel_loop_runtime_start",
11452 "GOMP_parallel_sections_start",
11453 };
11454 unsigned i;
11455
11456 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11457 {
11458 struct elf_link_hash_entry *h;
11459 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11460 FALSE, FALSE, TRUE);
11461 plt_thread_safe = h != NULL && h->ref_regular;
11462 if (plt_thread_safe)
11463 break;
11464 }
11465 }
11466 htab->plt_thread_safe = plt_thread_safe;
11467 stubs_always_before_branch = group_size < 0;
11468 if (group_size < 0)
11469 stub_group_size = -group_size;
11470 else
11471 stub_group_size = group_size;
11472
11473 group_sections (htab, stub_group_size, stubs_always_before_branch);
11474
11475 while (1)
11476 {
11477 bfd *input_bfd;
11478 unsigned int bfd_indx;
11479 asection *stub_sec;
11480
11481 htab->stub_iteration += 1;
11482
11483 for (input_bfd = info->input_bfds, bfd_indx = 0;
11484 input_bfd != NULL;
11485 input_bfd = input_bfd->link_next, bfd_indx++)
11486 {
11487 Elf_Internal_Shdr *symtab_hdr;
11488 asection *section;
11489 Elf_Internal_Sym *local_syms = NULL;
11490
11491 if (!is_ppc64_elf (input_bfd))
11492 continue;
11493
11494 /* We'll need the symbol table in a second. */
11495 symtab_hdr = &elf_symtab_hdr (input_bfd);
11496 if (symtab_hdr->sh_info == 0)
11497 continue;
11498
11499 /* Walk over each section attached to the input bfd. */
11500 for (section = input_bfd->sections;
11501 section != NULL;
11502 section = section->next)
11503 {
11504 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11505
11506 /* If there aren't any relocs, then there's nothing more
11507 to do. */
11508 if ((section->flags & SEC_RELOC) == 0
11509 || (section->flags & SEC_ALLOC) == 0
11510 || (section->flags & SEC_LOAD) == 0
11511 || (section->flags & SEC_CODE) == 0
11512 || section->reloc_count == 0)
11513 continue;
11514
11515 /* If this section is a link-once section that will be
11516 discarded, then don't create any stubs. */
11517 if (section->output_section == NULL
11518 || section->output_section->owner != info->output_bfd)
11519 continue;
11520
11521 /* Get the relocs. */
11522 internal_relocs
11523 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11524 info->keep_memory);
11525 if (internal_relocs == NULL)
11526 goto error_ret_free_local;
11527
11528 /* Now examine each relocation. */
11529 irela = internal_relocs;
11530 irelaend = irela + section->reloc_count;
11531 for (; irela < irelaend; irela++)
11532 {
11533 enum elf_ppc64_reloc_type r_type;
11534 unsigned int r_indx;
11535 enum ppc_stub_type stub_type;
11536 struct ppc_stub_hash_entry *stub_entry;
11537 asection *sym_sec, *code_sec;
11538 bfd_vma sym_value, code_value;
11539 bfd_vma destination;
11540 bfd_boolean ok_dest;
11541 struct ppc_link_hash_entry *hash;
11542 struct ppc_link_hash_entry *fdh;
11543 struct elf_link_hash_entry *h;
11544 Elf_Internal_Sym *sym;
11545 char *stub_name;
11546 const asection *id_sec;
11547 struct _opd_sec_data *opd;
11548 struct plt_entry *plt_ent;
11549
11550 r_type = ELF64_R_TYPE (irela->r_info);
11551 r_indx = ELF64_R_SYM (irela->r_info);
11552
11553 if (r_type >= R_PPC64_max)
11554 {
11555 bfd_set_error (bfd_error_bad_value);
11556 goto error_ret_free_internal;
11557 }
11558
11559 /* Only look for stubs on branch instructions. */
11560 if (r_type != R_PPC64_REL24
11561 && r_type != R_PPC64_REL14
11562 && r_type != R_PPC64_REL14_BRTAKEN
11563 && r_type != R_PPC64_REL14_BRNTAKEN)
11564 continue;
11565
11566 /* Now determine the call target, its name, value,
11567 section. */
11568 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11569 r_indx, input_bfd))
11570 goto error_ret_free_internal;
11571 hash = (struct ppc_link_hash_entry *) h;
11572
11573 ok_dest = FALSE;
11574 fdh = NULL;
11575 sym_value = 0;
11576 if (hash == NULL)
11577 {
11578 sym_value = sym->st_value;
11579 ok_dest = TRUE;
11580 }
11581 else if (hash->elf.root.type == bfd_link_hash_defined
11582 || hash->elf.root.type == bfd_link_hash_defweak)
11583 {
11584 sym_value = hash->elf.root.u.def.value;
11585 if (sym_sec->output_section != NULL)
11586 ok_dest = TRUE;
11587 }
11588 else if (hash->elf.root.type == bfd_link_hash_undefweak
11589 || hash->elf.root.type == bfd_link_hash_undefined)
11590 {
11591 /* Recognise an old ABI func code entry sym, and
11592 use the func descriptor sym instead if it is
11593 defined. */
11594 if (hash->elf.root.root.string[0] == '.'
11595 && (fdh = lookup_fdh (hash, htab)) != NULL)
11596 {
11597 if (fdh->elf.root.type == bfd_link_hash_defined
11598 || fdh->elf.root.type == bfd_link_hash_defweak)
11599 {
11600 sym_sec = fdh->elf.root.u.def.section;
11601 sym_value = fdh->elf.root.u.def.value;
11602 if (sym_sec->output_section != NULL)
11603 ok_dest = TRUE;
11604 }
11605 else
11606 fdh = NULL;
11607 }
11608 }
11609 else
11610 {
11611 bfd_set_error (bfd_error_bad_value);
11612 goto error_ret_free_internal;
11613 }
11614
11615 destination = 0;
11616 if (ok_dest)
11617 {
11618 sym_value += irela->r_addend;
11619 destination = (sym_value
11620 + sym_sec->output_offset
11621 + sym_sec->output_section->vma);
11622 }
11623
11624 code_sec = sym_sec;
11625 code_value = sym_value;
11626 opd = get_opd_info (sym_sec);
11627 if (opd != NULL)
11628 {
11629 bfd_vma dest;
11630
11631 if (hash == NULL && opd->adjust != NULL)
11632 {
11633 long adjust = opd->adjust[sym_value / 8];
11634 if (adjust == -1)
11635 continue;
11636 code_value += adjust;
11637 sym_value += adjust;
11638 }
11639 dest = opd_entry_value (sym_sec, sym_value,
11640 &code_sec, &code_value, FALSE);
11641 if (dest != (bfd_vma) -1)
11642 {
11643 destination = dest;
11644 if (fdh != NULL)
11645 {
11646 /* Fixup old ABI sym to point at code
11647 entry. */
11648 hash->elf.root.type = bfd_link_hash_defweak;
11649 hash->elf.root.u.def.section = code_sec;
11650 hash->elf.root.u.def.value = code_value;
11651 }
11652 }
11653 }
11654
11655 /* Determine what (if any) linker stub is needed. */
11656 plt_ent = NULL;
11657 stub_type = ppc_type_of_stub (section, irela, &hash,
11658 &plt_ent, destination);
11659
11660 if (stub_type != ppc_stub_plt_call)
11661 {
11662 /* Check whether we need a TOC adjusting stub.
11663 Since the linker pastes together pieces from
11664 different object files when creating the
11665 _init and _fini functions, it may be that a
11666 call to what looks like a local sym is in
11667 fact a call needing a TOC adjustment. */
11668 if (code_sec != NULL
11669 && code_sec->output_section != NULL
11670 && (htab->stub_group[code_sec->id].toc_off
11671 != htab->stub_group[section->id].toc_off)
11672 && (code_sec->has_toc_reloc
11673 || code_sec->makes_toc_func_call))
11674 stub_type = ppc_stub_long_branch_r2off;
11675 }
11676
11677 if (stub_type == ppc_stub_none)
11678 continue;
11679
11680 /* __tls_get_addr calls might be eliminated. */
11681 if (stub_type != ppc_stub_plt_call
11682 && hash != NULL
11683 && (hash == htab->tls_get_addr
11684 || hash == htab->tls_get_addr_fd)
11685 && section->has_tls_reloc
11686 && irela != internal_relocs)
11687 {
11688 /* Get tls info. */
11689 unsigned char *tls_mask;
11690
11691 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11692 irela - 1, input_bfd))
11693 goto error_ret_free_internal;
11694 if (*tls_mask != 0)
11695 continue;
11696 }
11697
11698 if (stub_type == ppc_stub_plt_call
11699 && irela + 1 < irelaend
11700 && irela[1].r_offset == irela->r_offset + 4
11701 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11702 {
11703 if (!tocsave_find (htab, INSERT,
11704 &local_syms, irela + 1, input_bfd))
11705 goto error_ret_free_internal;
11706 }
11707 else if (stub_type == ppc_stub_plt_call)
11708 stub_type = ppc_stub_plt_call_r2save;
11709
11710 /* Support for grouping stub sections. */
11711 id_sec = htab->stub_group[section->id].link_sec;
11712
11713 /* Get the name of this stub. */
11714 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11715 if (!stub_name)
11716 goto error_ret_free_internal;
11717
11718 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11719 stub_name, FALSE, FALSE);
11720 if (stub_entry != NULL)
11721 {
11722 /* The proper stub has already been created. */
11723 free (stub_name);
11724 if (stub_type == ppc_stub_plt_call_r2save)
11725 stub_entry->stub_type = stub_type;
11726 continue;
11727 }
11728
11729 stub_entry = ppc_add_stub (stub_name, section, info);
11730 if (stub_entry == NULL)
11731 {
11732 free (stub_name);
11733 error_ret_free_internal:
11734 if (elf_section_data (section)->relocs == NULL)
11735 free (internal_relocs);
11736 error_ret_free_local:
11737 if (local_syms != NULL
11738 && (symtab_hdr->contents
11739 != (unsigned char *) local_syms))
11740 free (local_syms);
11741 return FALSE;
11742 }
11743
11744 stub_entry->stub_type = stub_type;
11745 if (stub_type != ppc_stub_plt_call
11746 && stub_type != ppc_stub_plt_call_r2save)
11747 {
11748 stub_entry->target_value = code_value;
11749 stub_entry->target_section = code_sec;
11750 }
11751 else
11752 {
11753 stub_entry->target_value = sym_value;
11754 stub_entry->target_section = sym_sec;
11755 }
11756 stub_entry->h = hash;
11757 stub_entry->plt_ent = plt_ent;
11758
11759 if (stub_entry->h != NULL)
11760 htab->stub_globals += 1;
11761 }
11762
11763 /* We're done with the internal relocs, free them. */
11764 if (elf_section_data (section)->relocs != internal_relocs)
11765 free (internal_relocs);
11766 }
11767
11768 if (local_syms != NULL
11769 && symtab_hdr->contents != (unsigned char *) local_syms)
11770 {
11771 if (!info->keep_memory)
11772 free (local_syms);
11773 else
11774 symtab_hdr->contents = (unsigned char *) local_syms;
11775 }
11776 }
11777
11778 /* We may have added some stubs. Find out the new size of the
11779 stub sections. */
11780 for (stub_sec = htab->stub_bfd->sections;
11781 stub_sec != NULL;
11782 stub_sec = stub_sec->next)
11783 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11784 {
11785 stub_sec->rawsize = stub_sec->size;
11786 stub_sec->size = 0;
11787 stub_sec->reloc_count = 0;
11788 stub_sec->flags &= ~SEC_RELOC;
11789 }
11790
11791 htab->brlt->size = 0;
11792 htab->brlt->reloc_count = 0;
11793 htab->brlt->flags &= ~SEC_RELOC;
11794 if (htab->relbrlt != NULL)
11795 htab->relbrlt->size = 0;
11796
11797 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11798
11799 if (info->emitrelocations
11800 && htab->glink != NULL && htab->glink->size != 0)
11801 {
11802 htab->glink->reloc_count = 1;
11803 htab->glink->flags |= SEC_RELOC;
11804 }
11805
11806 if (htab->glink_eh_frame != NULL
11807 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11808 && htab->glink_eh_frame->output_section->size != 0)
11809 {
11810 size_t size = 0, align;
11811
11812 for (stub_sec = htab->stub_bfd->sections;
11813 stub_sec != NULL;
11814 stub_sec = stub_sec->next)
11815 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11816 size += 20;
11817 if (htab->glink != NULL && htab->glink->size != 0)
11818 size += 24;
11819 if (size != 0)
11820 size += sizeof (glink_eh_frame_cie);
11821 align = 1;
11822 align <<= htab->glink_eh_frame->output_section->alignment_power;
11823 align -= 1;
11824 size = (size + align) & ~align;
11825 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11826 htab->glink_eh_frame->size = size;
11827 }
11828
11829 if (htab->plt_stub_align != 0)
11830 for (stub_sec = htab->stub_bfd->sections;
11831 stub_sec != NULL;
11832 stub_sec = stub_sec->next)
11833 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11834 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11835 & (-1 << htab->plt_stub_align));
11836
11837 for (stub_sec = htab->stub_bfd->sections;
11838 stub_sec != NULL;
11839 stub_sec = stub_sec->next)
11840 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11841 && stub_sec->rawsize != stub_sec->size)
11842 break;
11843
11844 /* Exit from this loop when no stubs have been added, and no stubs
11845 have changed size. */
11846 if (stub_sec == NULL
11847 && (htab->glink_eh_frame == NULL
11848 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11849 break;
11850
11851 /* Ask the linker to do its stuff. */
11852 (*htab->layout_sections_again) ();
11853 }
11854
11855 maybe_strip_output (info, htab->brlt);
11856 if (htab->glink_eh_frame != NULL)
11857 maybe_strip_output (info, htab->glink_eh_frame);
11858
11859 return TRUE;
11860 }
11861
11862 /* Called after we have determined section placement. If sections
11863 move, we'll be called again. Provide a value for TOCstart. */
11864
11865 bfd_vma
11866 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
11867 {
11868 asection *s;
11869 bfd_vma TOCstart;
11870
11871 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11872 order. The TOC starts where the first of these sections starts. */
11873 s = bfd_get_section_by_name (obfd, ".got");
11874 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11875 s = bfd_get_section_by_name (obfd, ".toc");
11876 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11877 s = bfd_get_section_by_name (obfd, ".tocbss");
11878 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11879 s = bfd_get_section_by_name (obfd, ".plt");
11880 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11881 {
11882 /* This may happen for
11883 o references to TOC base (SYM@toc / TOC[tc0]) without a
11884 .toc directive
11885 o bad linker script
11886 o --gc-sections and empty TOC sections
11887
11888 FIXME: Warn user? */
11889
11890 /* Look for a likely section. We probably won't even be
11891 using TOCstart. */
11892 for (s = obfd->sections; s != NULL; s = s->next)
11893 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11894 | SEC_EXCLUDE))
11895 == (SEC_ALLOC | SEC_SMALL_DATA))
11896 break;
11897 if (s == NULL)
11898 for (s = obfd->sections; s != NULL; s = s->next)
11899 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11900 == (SEC_ALLOC | SEC_SMALL_DATA))
11901 break;
11902 if (s == NULL)
11903 for (s = obfd->sections; s != NULL; s = s->next)
11904 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11905 == SEC_ALLOC)
11906 break;
11907 if (s == NULL)
11908 for (s = obfd->sections; s != NULL; s = s->next)
11909 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11910 break;
11911 }
11912
11913 TOCstart = 0;
11914 if (s != NULL)
11915 TOCstart = s->output_section->vma + s->output_offset;
11916
11917 _bfd_set_gp_value (obfd, TOCstart);
11918
11919 if (info != NULL && s != NULL && is_ppc64_elf (obfd))
11920 {
11921 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11922
11923 if (htab != NULL
11924 && htab->elf.hgot != NULL)
11925 {
11926 htab->elf.hgot->type = STT_OBJECT;
11927 htab->elf.hgot->root.type = bfd_link_hash_defined;
11928 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
11929 htab->elf.hgot->root.u.def.section = s;
11930 }
11931 }
11932 return TOCstart;
11933 }
11934
11935 /* Build all the stubs associated with the current output file.
11936 The stubs are kept in a hash table attached to the main linker
11937 hash table. This function is called via gldelf64ppc_finish. */
11938
11939 bfd_boolean
11940 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11941 struct bfd_link_info *info,
11942 char **stats)
11943 {
11944 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11945 asection *stub_sec;
11946 bfd_byte *p;
11947 int stub_sec_count = 0;
11948
11949 if (htab == NULL)
11950 return FALSE;
11951
11952 htab->emit_stub_syms = emit_stub_syms;
11953
11954 /* Allocate memory to hold the linker stubs. */
11955 for (stub_sec = htab->stub_bfd->sections;
11956 stub_sec != NULL;
11957 stub_sec = stub_sec->next)
11958 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11959 && stub_sec->size != 0)
11960 {
11961 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11962 if (stub_sec->contents == NULL)
11963 return FALSE;
11964 /* We want to check that built size is the same as calculated
11965 size. rawsize is a convenient location to use. */
11966 stub_sec->rawsize = stub_sec->size;
11967 stub_sec->size = 0;
11968 }
11969
11970 if (htab->glink != NULL && htab->glink->size != 0)
11971 {
11972 unsigned int indx;
11973 bfd_vma plt0;
11974
11975 /* Build the .glink plt call stub. */
11976 if (htab->emit_stub_syms)
11977 {
11978 struct elf_link_hash_entry *h;
11979 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11980 TRUE, FALSE, FALSE);
11981 if (h == NULL)
11982 return FALSE;
11983 if (h->root.type == bfd_link_hash_new)
11984 {
11985 h->root.type = bfd_link_hash_defined;
11986 h->root.u.def.section = htab->glink;
11987 h->root.u.def.value = 8;
11988 h->ref_regular = 1;
11989 h->def_regular = 1;
11990 h->ref_regular_nonweak = 1;
11991 h->forced_local = 1;
11992 h->non_elf = 0;
11993 }
11994 }
11995 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11996 if (info->emitrelocations)
11997 {
11998 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11999 if (r == NULL)
12000 return FALSE;
12001 r->r_offset = (htab->glink->output_offset
12002 + htab->glink->output_section->vma);
12003 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12004 r->r_addend = plt0;
12005 }
12006 p = htab->glink->contents;
12007 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12008 bfd_put_64 (htab->glink->owner, plt0, p);
12009 p += 8;
12010 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12011 p += 4;
12012 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12013 p += 4;
12014 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12015 p += 4;
12016 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
12017 p += 4;
12018 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12019 p += 4;
12020 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
12021 p += 4;
12022 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
12023 p += 4;
12024 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
12025 p += 4;
12026 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
12027 p += 4;
12028 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
12029 p += 4;
12030 bfd_put_32 (htab->glink->owner, BCTR, p);
12031 p += 4;
12032 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12033 {
12034 bfd_put_32 (htab->glink->owner, NOP, p);
12035 p += 4;
12036 }
12037
12038 /* Build the .glink lazy link call stubs. */
12039 indx = 0;
12040 while (p < htab->glink->contents + htab->glink->size)
12041 {
12042 if (indx < 0x8000)
12043 {
12044 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12045 p += 4;
12046 }
12047 else
12048 {
12049 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12050 p += 4;
12051 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
12052 p += 4;
12053 }
12054 bfd_put_32 (htab->glink->owner,
12055 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12056 indx++;
12057 p += 4;
12058 }
12059 htab->glink->rawsize = p - htab->glink->contents;
12060 }
12061
12062 if (htab->brlt->size != 0)
12063 {
12064 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12065 htab->brlt->size);
12066 if (htab->brlt->contents == NULL)
12067 return FALSE;
12068 }
12069 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12070 {
12071 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12072 htab->relbrlt->size);
12073 if (htab->relbrlt->contents == NULL)
12074 return FALSE;
12075 }
12076
12077 if (htab->glink_eh_frame != NULL
12078 && htab->glink_eh_frame->size != 0)
12079 {
12080 bfd_vma val;
12081 bfd_byte *last_fde;
12082 size_t last_fde_len, size, align, pad;
12083
12084 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12085 if (p == NULL)
12086 return FALSE;
12087 htab->glink_eh_frame->contents = p;
12088 last_fde = p;
12089
12090 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12091
12092 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12093 /* CIE length (rewrite in case little-endian). */
12094 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12095 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12096 p += sizeof (glink_eh_frame_cie);
12097
12098 for (stub_sec = htab->stub_bfd->sections;
12099 stub_sec != NULL;
12100 stub_sec = stub_sec->next)
12101 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12102 {
12103 last_fde = p;
12104 last_fde_len = 16;
12105 /* FDE length. */
12106 bfd_put_32 (htab->elf.dynobj, 16, p);
12107 p += 4;
12108 /* CIE pointer. */
12109 val = p - htab->glink_eh_frame->contents;
12110 bfd_put_32 (htab->elf.dynobj, val, p);
12111 p += 4;
12112 /* Offset to stub section. */
12113 val = (stub_sec->output_section->vma
12114 + stub_sec->output_offset);
12115 val -= (htab->glink_eh_frame->output_section->vma
12116 + htab->glink_eh_frame->output_offset);
12117 val -= p - htab->glink_eh_frame->contents;
12118 if (val + 0x80000000 > 0xffffffff)
12119 {
12120 info->callbacks->einfo
12121 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12122 stub_sec->name);
12123 return FALSE;
12124 }
12125 bfd_put_32 (htab->elf.dynobj, val, p);
12126 p += 4;
12127 /* stub section size. */
12128 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12129 p += 4;
12130 /* Augmentation. */
12131 p += 1;
12132 /* Pad. */
12133 p += 3;
12134 }
12135 if (htab->glink != NULL && htab->glink->size != 0)
12136 {
12137 last_fde = p;
12138 last_fde_len = 20;
12139 /* FDE length. */
12140 bfd_put_32 (htab->elf.dynobj, 20, p);
12141 p += 4;
12142 /* CIE pointer. */
12143 val = p - htab->glink_eh_frame->contents;
12144 bfd_put_32 (htab->elf.dynobj, val, p);
12145 p += 4;
12146 /* Offset to .glink. */
12147 val = (htab->glink->output_section->vma
12148 + htab->glink->output_offset
12149 + 8);
12150 val -= (htab->glink_eh_frame->output_section->vma
12151 + htab->glink_eh_frame->output_offset);
12152 val -= p - htab->glink_eh_frame->contents;
12153 if (val + 0x80000000 > 0xffffffff)
12154 {
12155 info->callbacks->einfo
12156 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12157 htab->glink->name);
12158 return FALSE;
12159 }
12160 bfd_put_32 (htab->elf.dynobj, val, p);
12161 p += 4;
12162 /* .glink size. */
12163 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12164 p += 4;
12165 /* Augmentation. */
12166 p += 1;
12167
12168 *p++ = DW_CFA_advance_loc + 1;
12169 *p++ = DW_CFA_register;
12170 *p++ = 65;
12171 *p++ = 12;
12172 *p++ = DW_CFA_advance_loc + 4;
12173 *p++ = DW_CFA_restore_extended;
12174 *p++ = 65;
12175 }
12176 /* Subsume any padding into the last FDE if user .eh_frame
12177 sections are aligned more than glink_eh_frame. Otherwise any
12178 zero padding will be seen as a terminator. */
12179 size = p - htab->glink_eh_frame->contents;
12180 align = 1;
12181 align <<= htab->glink_eh_frame->output_section->alignment_power;
12182 align -= 1;
12183 pad = ((size + align) & ~align) - size;
12184 htab->glink_eh_frame->size = size + pad;
12185 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12186 }
12187
12188 /* Build the stubs as directed by the stub hash table. */
12189 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12190
12191 if (htab->relbrlt != NULL)
12192 htab->relbrlt->reloc_count = 0;
12193
12194 if (htab->plt_stub_align != 0)
12195 for (stub_sec = htab->stub_bfd->sections;
12196 stub_sec != NULL;
12197 stub_sec = stub_sec->next)
12198 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12199 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12200 & (-1 << htab->plt_stub_align));
12201
12202 for (stub_sec = htab->stub_bfd->sections;
12203 stub_sec != NULL;
12204 stub_sec = stub_sec->next)
12205 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12206 {
12207 stub_sec_count += 1;
12208 if (stub_sec->rawsize != stub_sec->size)
12209 break;
12210 }
12211
12212 if (stub_sec != NULL
12213 || htab->glink->rawsize != htab->glink->size
12214 || (htab->glink_eh_frame != NULL
12215 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12216 {
12217 htab->stub_error = TRUE;
12218 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12219 }
12220
12221 if (htab->stub_error)
12222 return FALSE;
12223
12224 if (stats != NULL)
12225 {
12226 *stats = bfd_malloc (500);
12227 if (*stats == NULL)
12228 return FALSE;
12229
12230 sprintf (*stats, _("linker stubs in %u group%s\n"
12231 " branch %lu\n"
12232 " toc adjust %lu\n"
12233 " long branch %lu\n"
12234 " long toc adj %lu\n"
12235 " plt call %lu\n"
12236 " plt call toc %lu"),
12237 stub_sec_count,
12238 stub_sec_count == 1 ? "" : "s",
12239 htab->stub_count[ppc_stub_long_branch - 1],
12240 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12241 htab->stub_count[ppc_stub_plt_branch - 1],
12242 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12243 htab->stub_count[ppc_stub_plt_call - 1],
12244 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12245 }
12246 return TRUE;
12247 }
12248
12249 /* This function undoes the changes made by add_symbol_adjust. */
12250
12251 static bfd_boolean
12252 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12253 {
12254 struct ppc_link_hash_entry *eh;
12255
12256 if (h->root.type == bfd_link_hash_indirect)
12257 return TRUE;
12258
12259 eh = (struct ppc_link_hash_entry *) h;
12260 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12261 return TRUE;
12262
12263 eh->elf.root.type = bfd_link_hash_undefined;
12264 return TRUE;
12265 }
12266
12267 void
12268 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12269 {
12270 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12271
12272 if (htab != NULL)
12273 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12274 }
12275
12276 /* What to do when ld finds relocations against symbols defined in
12277 discarded sections. */
12278
12279 static unsigned int
12280 ppc64_elf_action_discarded (asection *sec)
12281 {
12282 if (strcmp (".opd", sec->name) == 0)
12283 return 0;
12284
12285 if (strcmp (".toc", sec->name) == 0)
12286 return 0;
12287
12288 if (strcmp (".toc1", sec->name) == 0)
12289 return 0;
12290
12291 return _bfd_elf_default_action_discarded (sec);
12292 }
12293
12294 /* The RELOCATE_SECTION function is called by the ELF backend linker
12295 to handle the relocations for a section.
12296
12297 The relocs are always passed as Rela structures; if the section
12298 actually uses Rel structures, the r_addend field will always be
12299 zero.
12300
12301 This function is responsible for adjust the section contents as
12302 necessary, and (if using Rela relocs and generating a
12303 relocatable output file) adjusting the reloc addend as
12304 necessary.
12305
12306 This function does not have to worry about setting the reloc
12307 address or the reloc symbol index.
12308
12309 LOCAL_SYMS is a pointer to the swapped in local symbols.
12310
12311 LOCAL_SECTIONS is an array giving the section in the input file
12312 corresponding to the st_shndx field of each local symbol.
12313
12314 The global hash table entry for the global symbols can be found
12315 via elf_sym_hashes (input_bfd).
12316
12317 When generating relocatable output, this function must handle
12318 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12319 going to be the section symbol corresponding to the output
12320 section, which means that the addend must be adjusted
12321 accordingly. */
12322
12323 static bfd_boolean
12324 ppc64_elf_relocate_section (bfd *output_bfd,
12325 struct bfd_link_info *info,
12326 bfd *input_bfd,
12327 asection *input_section,
12328 bfd_byte *contents,
12329 Elf_Internal_Rela *relocs,
12330 Elf_Internal_Sym *local_syms,
12331 asection **local_sections)
12332 {
12333 struct ppc_link_hash_table *htab;
12334 Elf_Internal_Shdr *symtab_hdr;
12335 struct elf_link_hash_entry **sym_hashes;
12336 Elf_Internal_Rela *rel;
12337 Elf_Internal_Rela *relend;
12338 Elf_Internal_Rela outrel;
12339 bfd_byte *loc;
12340 struct got_entry **local_got_ents;
12341 bfd_vma TOCstart;
12342 bfd_boolean ret = TRUE;
12343 bfd_boolean is_opd;
12344 /* Assume 'at' branch hints. */
12345 bfd_boolean is_isa_v2 = TRUE;
12346 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12347
12348 /* Initialize howto table if needed. */
12349 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12350 ppc_howto_init ();
12351
12352 htab = ppc_hash_table (info);
12353 if (htab == NULL)
12354 return FALSE;
12355
12356 /* Don't relocate stub sections. */
12357 if (input_section->owner == htab->stub_bfd)
12358 return TRUE;
12359
12360 BFD_ASSERT (is_ppc64_elf (input_bfd));
12361
12362 local_got_ents = elf_local_got_ents (input_bfd);
12363 TOCstart = elf_gp (output_bfd);
12364 symtab_hdr = &elf_symtab_hdr (input_bfd);
12365 sym_hashes = elf_sym_hashes (input_bfd);
12366 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12367
12368 rel = relocs;
12369 relend = relocs + input_section->reloc_count;
12370 for (; rel < relend; rel++)
12371 {
12372 enum elf_ppc64_reloc_type r_type;
12373 bfd_vma addend;
12374 bfd_reloc_status_type r;
12375 Elf_Internal_Sym *sym;
12376 asection *sec;
12377 struct elf_link_hash_entry *h_elf;
12378 struct ppc_link_hash_entry *h;
12379 struct ppc_link_hash_entry *fdh;
12380 const char *sym_name;
12381 unsigned long r_symndx, toc_symndx;
12382 bfd_vma toc_addend;
12383 unsigned char tls_mask, tls_gd, tls_type;
12384 unsigned char sym_type;
12385 bfd_vma relocation;
12386 bfd_boolean unresolved_reloc;
12387 bfd_boolean warned;
12388 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12389 unsigned int insn;
12390 unsigned int mask;
12391 struct ppc_stub_hash_entry *stub_entry;
12392 bfd_vma max_br_offset;
12393 bfd_vma from;
12394 const Elf_Internal_Rela orig_rel = *rel;
12395
12396 r_type = ELF64_R_TYPE (rel->r_info);
12397 r_symndx = ELF64_R_SYM (rel->r_info);
12398
12399 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12400 symbol of the previous ADDR64 reloc. The symbol gives us the
12401 proper TOC base to use. */
12402 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12403 && rel != relocs
12404 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12405 && is_opd)
12406 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12407
12408 sym = NULL;
12409 sec = NULL;
12410 h_elf = NULL;
12411 sym_name = NULL;
12412 unresolved_reloc = FALSE;
12413 warned = FALSE;
12414
12415 if (r_symndx < symtab_hdr->sh_info)
12416 {
12417 /* It's a local symbol. */
12418 struct _opd_sec_data *opd;
12419
12420 sym = local_syms + r_symndx;
12421 sec = local_sections[r_symndx];
12422 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12423 sym_type = ELF64_ST_TYPE (sym->st_info);
12424 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12425 opd = get_opd_info (sec);
12426 if (opd != NULL && opd->adjust != NULL)
12427 {
12428 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12429 if (adjust == -1)
12430 relocation = 0;
12431 else
12432 {
12433 /* If this is a relocation against the opd section sym
12434 and we have edited .opd, adjust the reloc addend so
12435 that ld -r and ld --emit-relocs output is correct.
12436 If it is a reloc against some other .opd symbol,
12437 then the symbol value will be adjusted later. */
12438 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12439 rel->r_addend += adjust;
12440 else
12441 relocation += adjust;
12442 }
12443 }
12444 }
12445 else
12446 {
12447 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12448 r_symndx, symtab_hdr, sym_hashes,
12449 h_elf, sec, relocation,
12450 unresolved_reloc, warned);
12451 sym_name = h_elf->root.root.string;
12452 sym_type = h_elf->type;
12453 if (sec != NULL
12454 && sec->owner == output_bfd
12455 && strcmp (sec->name, ".opd") == 0)
12456 {
12457 /* This is a symbol defined in a linker script. All
12458 such are defined in output sections, even those
12459 defined by simple assignment from a symbol defined in
12460 an input section. Transfer the symbol to an
12461 appropriate input .opd section, so that a branch to
12462 this symbol will be mapped to the location specified
12463 by the opd entry. */
12464 struct bfd_link_order *lo;
12465 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12466 if (lo->type == bfd_indirect_link_order)
12467 {
12468 asection *isec = lo->u.indirect.section;
12469 if (h_elf->root.u.def.value >= isec->output_offset
12470 && h_elf->root.u.def.value < (isec->output_offset
12471 + isec->size))
12472 {
12473 h_elf->root.u.def.value -= isec->output_offset;
12474 h_elf->root.u.def.section = isec;
12475 sec = isec;
12476 break;
12477 }
12478 }
12479 }
12480 }
12481 h = (struct ppc_link_hash_entry *) h_elf;
12482
12483 if (sec != NULL && discarded_section (sec))
12484 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12485 rel, 1, relend,
12486 ppc64_elf_howto_table[r_type], 0,
12487 contents);
12488
12489 if (info->relocatable)
12490 continue;
12491
12492 if (h != NULL && &h->elf == htab->elf.hgot)
12493 {
12494 relocation = (TOCstart
12495 + htab->stub_group[input_section->id].toc_off);
12496 sec = bfd_abs_section_ptr;
12497 unresolved_reloc = FALSE;
12498 }
12499
12500 /* TLS optimizations. Replace instruction sequences and relocs
12501 based on information we collected in tls_optimize. We edit
12502 RELOCS so that --emit-relocs will output something sensible
12503 for the final instruction stream. */
12504 tls_mask = 0;
12505 tls_gd = 0;
12506 toc_symndx = 0;
12507 if (h != NULL)
12508 tls_mask = h->tls_mask;
12509 else if (local_got_ents != NULL)
12510 {
12511 struct plt_entry **local_plt = (struct plt_entry **)
12512 (local_got_ents + symtab_hdr->sh_info);
12513 unsigned char *lgot_masks = (unsigned char *)
12514 (local_plt + symtab_hdr->sh_info);
12515 tls_mask = lgot_masks[r_symndx];
12516 }
12517 if (tls_mask == 0
12518 && (r_type == R_PPC64_TLS
12519 || r_type == R_PPC64_TLSGD
12520 || r_type == R_PPC64_TLSLD))
12521 {
12522 /* Check for toc tls entries. */
12523 unsigned char *toc_tls;
12524
12525 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12526 &local_syms, rel, input_bfd))
12527 return FALSE;
12528
12529 if (toc_tls)
12530 tls_mask = *toc_tls;
12531 }
12532
12533 /* Check that tls relocs are used with tls syms, and non-tls
12534 relocs are used with non-tls syms. */
12535 if (r_symndx != STN_UNDEF
12536 && r_type != R_PPC64_NONE
12537 && (h == NULL
12538 || h->elf.root.type == bfd_link_hash_defined
12539 || h->elf.root.type == bfd_link_hash_defweak)
12540 && (IS_PPC64_TLS_RELOC (r_type)
12541 != (sym_type == STT_TLS
12542 || (sym_type == STT_SECTION
12543 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12544 {
12545 if (tls_mask != 0
12546 && (r_type == R_PPC64_TLS
12547 || r_type == R_PPC64_TLSGD
12548 || r_type == R_PPC64_TLSLD))
12549 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12550 ;
12551 else
12552 info->callbacks->einfo
12553 (!IS_PPC64_TLS_RELOC (r_type)
12554 ? _("%P: %H: %s used with TLS symbol `%T'\n")
12555 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
12556 input_bfd, input_section, rel->r_offset,
12557 ppc64_elf_howto_table[r_type]->name,
12558 sym_name);
12559 }
12560
12561 /* Ensure reloc mapping code below stays sane. */
12562 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12563 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12564 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12565 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12566 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12567 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12568 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12569 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12570 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12571 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12572 abort ();
12573
12574 switch (r_type)
12575 {
12576 default:
12577 break;
12578
12579 case R_PPC64_LO_DS_OPT:
12580 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12581 if ((insn & (0x3f << 26)) != 58u << 26)
12582 abort ();
12583 insn += (14u << 26) - (58u << 26);
12584 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12585 r_type = R_PPC64_TOC16_LO;
12586 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12587 break;
12588
12589 case R_PPC64_TOC16:
12590 case R_PPC64_TOC16_LO:
12591 case R_PPC64_TOC16_DS:
12592 case R_PPC64_TOC16_LO_DS:
12593 {
12594 /* Check for toc tls entries. */
12595 unsigned char *toc_tls;
12596 int retval;
12597
12598 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12599 &local_syms, rel, input_bfd);
12600 if (retval == 0)
12601 return FALSE;
12602
12603 if (toc_tls)
12604 {
12605 tls_mask = *toc_tls;
12606 if (r_type == R_PPC64_TOC16_DS
12607 || r_type == R_PPC64_TOC16_LO_DS)
12608 {
12609 if (tls_mask != 0
12610 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12611 goto toctprel;
12612 }
12613 else
12614 {
12615 /* If we found a GD reloc pair, then we might be
12616 doing a GD->IE transition. */
12617 if (retval == 2)
12618 {
12619 tls_gd = TLS_TPRELGD;
12620 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12621 goto tls_ldgd_opt;
12622 }
12623 else if (retval == 3)
12624 {
12625 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12626 goto tls_ldgd_opt;
12627 }
12628 }
12629 }
12630 }
12631 break;
12632
12633 case R_PPC64_GOT_TPREL16_HI:
12634 case R_PPC64_GOT_TPREL16_HA:
12635 if (tls_mask != 0
12636 && (tls_mask & TLS_TPREL) == 0)
12637 {
12638 rel->r_offset -= d_offset;
12639 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12640 r_type = R_PPC64_NONE;
12641 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12642 }
12643 break;
12644
12645 case R_PPC64_GOT_TPREL16_DS:
12646 case R_PPC64_GOT_TPREL16_LO_DS:
12647 if (tls_mask != 0
12648 && (tls_mask & TLS_TPREL) == 0)
12649 {
12650 toctprel:
12651 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12652 insn &= 31 << 21;
12653 insn |= 0x3c0d0000; /* addis 0,13,0 */
12654 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12655 r_type = R_PPC64_TPREL16_HA;
12656 if (toc_symndx != 0)
12657 {
12658 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12659 rel->r_addend = toc_addend;
12660 /* We changed the symbol. Start over in order to
12661 get h, sym, sec etc. right. */
12662 rel--;
12663 continue;
12664 }
12665 else
12666 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12667 }
12668 break;
12669
12670 case R_PPC64_TLS:
12671 if (tls_mask != 0
12672 && (tls_mask & TLS_TPREL) == 0)
12673 {
12674 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12675 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12676 if (insn == 0)
12677 abort ();
12678 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12679 /* Was PPC64_TLS which sits on insn boundary, now
12680 PPC64_TPREL16_LO which is at low-order half-word. */
12681 rel->r_offset += d_offset;
12682 r_type = R_PPC64_TPREL16_LO;
12683 if (toc_symndx != 0)
12684 {
12685 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12686 rel->r_addend = toc_addend;
12687 /* We changed the symbol. Start over in order to
12688 get h, sym, sec etc. right. */
12689 rel--;
12690 continue;
12691 }
12692 else
12693 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12694 }
12695 break;
12696
12697 case R_PPC64_GOT_TLSGD16_HI:
12698 case R_PPC64_GOT_TLSGD16_HA:
12699 tls_gd = TLS_TPRELGD;
12700 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12701 goto tls_gdld_hi;
12702 break;
12703
12704 case R_PPC64_GOT_TLSLD16_HI:
12705 case R_PPC64_GOT_TLSLD16_HA:
12706 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12707 {
12708 tls_gdld_hi:
12709 if ((tls_mask & tls_gd) != 0)
12710 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12711 + R_PPC64_GOT_TPREL16_DS);
12712 else
12713 {
12714 rel->r_offset -= d_offset;
12715 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12716 r_type = R_PPC64_NONE;
12717 }
12718 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12719 }
12720 break;
12721
12722 case R_PPC64_GOT_TLSGD16:
12723 case R_PPC64_GOT_TLSGD16_LO:
12724 tls_gd = TLS_TPRELGD;
12725 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12726 goto tls_ldgd_opt;
12727 break;
12728
12729 case R_PPC64_GOT_TLSLD16:
12730 case R_PPC64_GOT_TLSLD16_LO:
12731 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12732 {
12733 unsigned int insn1, insn2, insn3;
12734 bfd_vma offset;
12735
12736 tls_ldgd_opt:
12737 offset = (bfd_vma) -1;
12738 /* If not using the newer R_PPC64_TLSGD/LD to mark
12739 __tls_get_addr calls, we must trust that the call
12740 stays with its arg setup insns, ie. that the next
12741 reloc is the __tls_get_addr call associated with
12742 the current reloc. Edit both insns. */
12743 if (input_section->has_tls_get_addr_call
12744 && rel + 1 < relend
12745 && branch_reloc_hash_match (input_bfd, rel + 1,
12746 htab->tls_get_addr,
12747 htab->tls_get_addr_fd))
12748 offset = rel[1].r_offset;
12749 if ((tls_mask & tls_gd) != 0)
12750 {
12751 /* IE */
12752 insn1 = bfd_get_32 (output_bfd,
12753 contents + rel->r_offset - d_offset);
12754 insn1 &= (1 << 26) - (1 << 2);
12755 insn1 |= 58 << 26; /* ld */
12756 insn2 = 0x7c636a14; /* add 3,3,13 */
12757 if (offset != (bfd_vma) -1)
12758 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12759 if ((tls_mask & TLS_EXPLICIT) == 0)
12760 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12761 + R_PPC64_GOT_TPREL16_DS);
12762 else
12763 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12764 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12765 }
12766 else
12767 {
12768 /* LE */
12769 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12770 insn2 = 0x38630000; /* addi 3,3,0 */
12771 if (tls_gd == 0)
12772 {
12773 /* Was an LD reloc. */
12774 if (toc_symndx)
12775 sec = local_sections[toc_symndx];
12776 for (r_symndx = 0;
12777 r_symndx < symtab_hdr->sh_info;
12778 r_symndx++)
12779 if (local_sections[r_symndx] == sec)
12780 break;
12781 if (r_symndx >= symtab_hdr->sh_info)
12782 r_symndx = STN_UNDEF;
12783 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12784 if (r_symndx != STN_UNDEF)
12785 rel->r_addend -= (local_syms[r_symndx].st_value
12786 + sec->output_offset
12787 + sec->output_section->vma);
12788 }
12789 else if (toc_symndx != 0)
12790 {
12791 r_symndx = toc_symndx;
12792 rel->r_addend = toc_addend;
12793 }
12794 r_type = R_PPC64_TPREL16_HA;
12795 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12796 if (offset != (bfd_vma) -1)
12797 {
12798 rel[1].r_info = ELF64_R_INFO (r_symndx,
12799 R_PPC64_TPREL16_LO);
12800 rel[1].r_offset = offset + d_offset;
12801 rel[1].r_addend = rel->r_addend;
12802 }
12803 }
12804 bfd_put_32 (output_bfd, insn1,
12805 contents + rel->r_offset - d_offset);
12806 if (offset != (bfd_vma) -1)
12807 {
12808 insn3 = bfd_get_32 (output_bfd,
12809 contents + offset + 4);
12810 if (insn3 == NOP
12811 || insn3 == CROR_151515 || insn3 == CROR_313131)
12812 {
12813 rel[1].r_offset += 4;
12814 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12815 insn2 = NOP;
12816 }
12817 bfd_put_32 (output_bfd, insn2, contents + offset);
12818 }
12819 if ((tls_mask & tls_gd) == 0
12820 && (tls_gd == 0 || toc_symndx != 0))
12821 {
12822 /* We changed the symbol. Start over in order
12823 to get h, sym, sec etc. right. */
12824 rel--;
12825 continue;
12826 }
12827 }
12828 break;
12829
12830 case R_PPC64_TLSGD:
12831 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12832 {
12833 unsigned int insn2, insn3;
12834 bfd_vma offset = rel->r_offset;
12835
12836 if ((tls_mask & TLS_TPRELGD) != 0)
12837 {
12838 /* IE */
12839 r_type = R_PPC64_NONE;
12840 insn2 = 0x7c636a14; /* add 3,3,13 */
12841 }
12842 else
12843 {
12844 /* LE */
12845 if (toc_symndx != 0)
12846 {
12847 r_symndx = toc_symndx;
12848 rel->r_addend = toc_addend;
12849 }
12850 r_type = R_PPC64_TPREL16_LO;
12851 rel->r_offset = offset + d_offset;
12852 insn2 = 0x38630000; /* addi 3,3,0 */
12853 }
12854 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12855 /* Zap the reloc on the _tls_get_addr call too. */
12856 BFD_ASSERT (offset == rel[1].r_offset);
12857 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12858 insn3 = bfd_get_32 (output_bfd,
12859 contents + offset + 4);
12860 if (insn3 == NOP
12861 || insn3 == CROR_151515 || insn3 == CROR_313131)
12862 {
12863 rel->r_offset += 4;
12864 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12865 insn2 = NOP;
12866 }
12867 bfd_put_32 (output_bfd, insn2, contents + offset);
12868 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12869 {
12870 rel--;
12871 continue;
12872 }
12873 }
12874 break;
12875
12876 case R_PPC64_TLSLD:
12877 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12878 {
12879 unsigned int insn2, insn3;
12880 bfd_vma offset = rel->r_offset;
12881
12882 if (toc_symndx)
12883 sec = local_sections[toc_symndx];
12884 for (r_symndx = 0;
12885 r_symndx < symtab_hdr->sh_info;
12886 r_symndx++)
12887 if (local_sections[r_symndx] == sec)
12888 break;
12889 if (r_symndx >= symtab_hdr->sh_info)
12890 r_symndx = STN_UNDEF;
12891 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12892 if (r_symndx != STN_UNDEF)
12893 rel->r_addend -= (local_syms[r_symndx].st_value
12894 + sec->output_offset
12895 + sec->output_section->vma);
12896
12897 r_type = R_PPC64_TPREL16_LO;
12898 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12899 rel->r_offset = offset + d_offset;
12900 /* Zap the reloc on the _tls_get_addr call too. */
12901 BFD_ASSERT (offset == rel[1].r_offset);
12902 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12903 insn2 = 0x38630000; /* addi 3,3,0 */
12904 insn3 = bfd_get_32 (output_bfd,
12905 contents + offset + 4);
12906 if (insn3 == NOP
12907 || insn3 == CROR_151515 || insn3 == CROR_313131)
12908 {
12909 rel->r_offset += 4;
12910 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12911 insn2 = NOP;
12912 }
12913 bfd_put_32 (output_bfd, insn2, contents + offset);
12914 rel--;
12915 continue;
12916 }
12917 break;
12918
12919 case R_PPC64_DTPMOD64:
12920 if (rel + 1 < relend
12921 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12922 && rel[1].r_offset == rel->r_offset + 8)
12923 {
12924 if ((tls_mask & TLS_GD) == 0)
12925 {
12926 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12927 if ((tls_mask & TLS_TPRELGD) != 0)
12928 r_type = R_PPC64_TPREL64;
12929 else
12930 {
12931 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12932 r_type = R_PPC64_NONE;
12933 }
12934 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12935 }
12936 }
12937 else
12938 {
12939 if ((tls_mask & TLS_LD) == 0)
12940 {
12941 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12942 r_type = R_PPC64_NONE;
12943 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12944 }
12945 }
12946 break;
12947
12948 case R_PPC64_TPREL64:
12949 if ((tls_mask & TLS_TPREL) == 0)
12950 {
12951 r_type = R_PPC64_NONE;
12952 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12953 }
12954 break;
12955 }
12956
12957 /* Handle other relocations that tweak non-addend part of insn. */
12958 insn = 0;
12959 max_br_offset = 1 << 25;
12960 addend = rel->r_addend;
12961 reloc_dest = DEST_NORMAL;
12962 switch (r_type)
12963 {
12964 default:
12965 break;
12966
12967 case R_PPC64_TOCSAVE:
12968 if (relocation + addend == (rel->r_offset
12969 + input_section->output_offset
12970 + input_section->output_section->vma)
12971 && tocsave_find (htab, NO_INSERT,
12972 &local_syms, rel, input_bfd))
12973 {
12974 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12975 if (insn == NOP
12976 || insn == CROR_151515 || insn == CROR_313131)
12977 bfd_put_32 (input_bfd, STD_R2_40R1,
12978 contents + rel->r_offset);
12979 }
12980 break;
12981
12982 /* Branch taken prediction relocations. */
12983 case R_PPC64_ADDR14_BRTAKEN:
12984 case R_PPC64_REL14_BRTAKEN:
12985 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12986 /* Fall thru. */
12987
12988 /* Branch not taken prediction relocations. */
12989 case R_PPC64_ADDR14_BRNTAKEN:
12990 case R_PPC64_REL14_BRNTAKEN:
12991 insn |= bfd_get_32 (output_bfd,
12992 contents + rel->r_offset) & ~(0x01 << 21);
12993 /* Fall thru. */
12994
12995 case R_PPC64_REL14:
12996 max_br_offset = 1 << 15;
12997 /* Fall thru. */
12998
12999 case R_PPC64_REL24:
13000 /* Calls to functions with a different TOC, such as calls to
13001 shared objects, need to alter the TOC pointer. This is
13002 done using a linkage stub. A REL24 branching to these
13003 linkage stubs needs to be followed by a nop, as the nop
13004 will be replaced with an instruction to restore the TOC
13005 base pointer. */
13006 fdh = h;
13007 if (h != NULL
13008 && h->oh != NULL
13009 && h->oh->is_func_descriptor)
13010 fdh = ppc_follow_link (h->oh);
13011 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13012 htab);
13013 if (stub_entry != NULL
13014 && (stub_entry->stub_type == ppc_stub_plt_call
13015 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13016 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13017 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13018 {
13019 bfd_boolean can_plt_call = FALSE;
13020
13021 /* All of these stubs will modify r2, so there must be a
13022 branch and link followed by a nop. The nop is
13023 replaced by an insn to restore r2. */
13024 if (rel->r_offset + 8 <= input_section->size)
13025 {
13026 unsigned long br;
13027
13028 br = bfd_get_32 (input_bfd,
13029 contents + rel->r_offset);
13030 if ((br & 1) != 0)
13031 {
13032 unsigned long nop;
13033
13034 nop = bfd_get_32 (input_bfd,
13035 contents + rel->r_offset + 4);
13036 if (nop == NOP
13037 || nop == CROR_151515 || nop == CROR_313131)
13038 {
13039 if (h != NULL
13040 && (h == htab->tls_get_addr_fd
13041 || h == htab->tls_get_addr)
13042 && !htab->no_tls_get_addr_opt)
13043 {
13044 /* Special stub used, leave nop alone. */
13045 }
13046 else
13047 bfd_put_32 (input_bfd, LD_R2_40R1,
13048 contents + rel->r_offset + 4);
13049 can_plt_call = TRUE;
13050 }
13051 }
13052 }
13053
13054 if (!can_plt_call && h != NULL)
13055 {
13056 const char *name = h->elf.root.root.string;
13057
13058 if (*name == '.')
13059 ++name;
13060
13061 if (strncmp (name, "__libc_start_main", 17) == 0
13062 && (name[17] == 0 || name[17] == '@'))
13063 {
13064 /* Allow crt1 branch to go via a toc adjusting
13065 stub. Other calls that never return could do
13066 the same, if we could detect such. */
13067 can_plt_call = TRUE;
13068 }
13069 }
13070
13071 if (!can_plt_call)
13072 {
13073 /* g++ as of 20130507 emits self-calls without a
13074 following nop. This is arguably wrong since we
13075 have conflicting information. On the one hand a
13076 global symbol and on the other a local call
13077 sequence, but don't error for this special case.
13078 It isn't possible to cheaply verify we have
13079 exactly such a call. Allow all calls to the same
13080 section. */
13081 asection *code_sec = sec;
13082
13083 if (get_opd_info (sec) != NULL)
13084 {
13085 bfd_vma off = (relocation + addend
13086 - sec->output_section->vma
13087 - sec->output_offset);
13088
13089 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13090 }
13091 if (code_sec == input_section)
13092 can_plt_call = TRUE;
13093 }
13094
13095 if (!can_plt_call)
13096 {
13097 info->callbacks->einfo
13098 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13099 "recompile with -fPIC"),
13100 input_bfd, input_section, rel->r_offset, sym_name);
13101
13102 bfd_set_error (bfd_error_bad_value);
13103 ret = FALSE;
13104 }
13105
13106 if (can_plt_call
13107 && (stub_entry->stub_type == ppc_stub_plt_call
13108 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13109 unresolved_reloc = FALSE;
13110 }
13111
13112 if ((stub_entry == NULL
13113 || stub_entry->stub_type == ppc_stub_long_branch
13114 || stub_entry->stub_type == ppc_stub_plt_branch)
13115 && get_opd_info (sec) != NULL)
13116 {
13117 /* The branch destination is the value of the opd entry. */
13118 bfd_vma off = (relocation + addend
13119 - sec->output_section->vma
13120 - sec->output_offset);
13121 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13122 if (dest != (bfd_vma) -1)
13123 {
13124 relocation = dest;
13125 addend = 0;
13126 reloc_dest = DEST_OPD;
13127 }
13128 }
13129
13130 /* If the branch is out of reach we ought to have a long
13131 branch stub. */
13132 from = (rel->r_offset
13133 + input_section->output_offset
13134 + input_section->output_section->vma);
13135
13136 if (stub_entry != NULL
13137 && (stub_entry->stub_type == ppc_stub_long_branch
13138 || stub_entry->stub_type == ppc_stub_plt_branch)
13139 && (r_type == R_PPC64_ADDR14_BRTAKEN
13140 || r_type == R_PPC64_ADDR14_BRNTAKEN
13141 || (relocation + addend - from + max_br_offset
13142 < 2 * max_br_offset)))
13143 /* Don't use the stub if this branch is in range. */
13144 stub_entry = NULL;
13145
13146 if (stub_entry != NULL)
13147 {
13148 /* Munge up the value and addend so that we call the stub
13149 rather than the procedure directly. */
13150 relocation = (stub_entry->stub_offset
13151 + stub_entry->stub_sec->output_offset
13152 + stub_entry->stub_sec->output_section->vma);
13153 addend = 0;
13154 reloc_dest = DEST_STUB;
13155
13156 if ((stub_entry->stub_type == ppc_stub_plt_call
13157 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13158 && (ALWAYS_EMIT_R2SAVE
13159 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13160 && rel + 1 < relend
13161 && rel[1].r_offset == rel->r_offset + 4
13162 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13163 relocation += 4;
13164 }
13165
13166 if (insn != 0)
13167 {
13168 if (is_isa_v2)
13169 {
13170 /* Set 'a' bit. This is 0b00010 in BO field for branch
13171 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13172 for branch on CTR insns (BO == 1a00t or 1a01t). */
13173 if ((insn & (0x14 << 21)) == (0x04 << 21))
13174 insn |= 0x02 << 21;
13175 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13176 insn |= 0x08 << 21;
13177 else
13178 break;
13179 }
13180 else
13181 {
13182 /* Invert 'y' bit if not the default. */
13183 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13184 insn ^= 0x01 << 21;
13185 }
13186
13187 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13188 }
13189
13190 /* NOP out calls to undefined weak functions.
13191 We can thus call a weak function without first
13192 checking whether the function is defined. */
13193 else if (h != NULL
13194 && h->elf.root.type == bfd_link_hash_undefweak
13195 && h->elf.dynindx == -1
13196 && r_type == R_PPC64_REL24
13197 && relocation == 0
13198 && addend == 0)
13199 {
13200 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13201 continue;
13202 }
13203 break;
13204 }
13205
13206 /* Set `addend'. */
13207 tls_type = 0;
13208 switch (r_type)
13209 {
13210 default:
13211 info->callbacks->einfo
13212 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13213 input_bfd, (int) r_type, sym_name);
13214
13215 bfd_set_error (bfd_error_bad_value);
13216 ret = FALSE;
13217 continue;
13218
13219 case R_PPC64_NONE:
13220 case R_PPC64_TLS:
13221 case R_PPC64_TLSGD:
13222 case R_PPC64_TLSLD:
13223 case R_PPC64_TOCSAVE:
13224 case R_PPC64_GNU_VTINHERIT:
13225 case R_PPC64_GNU_VTENTRY:
13226 continue;
13227
13228 /* GOT16 relocations. Like an ADDR16 using the symbol's
13229 address in the GOT as relocation value instead of the
13230 symbol's value itself. Also, create a GOT entry for the
13231 symbol and put the symbol value there. */
13232 case R_PPC64_GOT_TLSGD16:
13233 case R_PPC64_GOT_TLSGD16_LO:
13234 case R_PPC64_GOT_TLSGD16_HI:
13235 case R_PPC64_GOT_TLSGD16_HA:
13236 tls_type = TLS_TLS | TLS_GD;
13237 goto dogot;
13238
13239 case R_PPC64_GOT_TLSLD16:
13240 case R_PPC64_GOT_TLSLD16_LO:
13241 case R_PPC64_GOT_TLSLD16_HI:
13242 case R_PPC64_GOT_TLSLD16_HA:
13243 tls_type = TLS_TLS | TLS_LD;
13244 goto dogot;
13245
13246 case R_PPC64_GOT_TPREL16_DS:
13247 case R_PPC64_GOT_TPREL16_LO_DS:
13248 case R_PPC64_GOT_TPREL16_HI:
13249 case R_PPC64_GOT_TPREL16_HA:
13250 tls_type = TLS_TLS | TLS_TPREL;
13251 goto dogot;
13252
13253 case R_PPC64_GOT_DTPREL16_DS:
13254 case R_PPC64_GOT_DTPREL16_LO_DS:
13255 case R_PPC64_GOT_DTPREL16_HI:
13256 case R_PPC64_GOT_DTPREL16_HA:
13257 tls_type = TLS_TLS | TLS_DTPREL;
13258 goto dogot;
13259
13260 case R_PPC64_GOT16:
13261 case R_PPC64_GOT16_LO:
13262 case R_PPC64_GOT16_HI:
13263 case R_PPC64_GOT16_HA:
13264 case R_PPC64_GOT16_DS:
13265 case R_PPC64_GOT16_LO_DS:
13266 dogot:
13267 {
13268 /* Relocation is to the entry for this symbol in the global
13269 offset table. */
13270 asection *got;
13271 bfd_vma *offp;
13272 bfd_vma off;
13273 unsigned long indx = 0;
13274 struct got_entry *ent;
13275
13276 if (tls_type == (TLS_TLS | TLS_LD)
13277 && (h == NULL
13278 || !h->elf.def_dynamic))
13279 ent = ppc64_tlsld_got (input_bfd);
13280 else
13281 {
13282
13283 if (h != NULL)
13284 {
13285 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13286 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13287 &h->elf)
13288 || (info->shared
13289 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13290 /* This is actually a static link, or it is a
13291 -Bsymbolic link and the symbol is defined
13292 locally, or the symbol was forced to be local
13293 because of a version file. */
13294 ;
13295 else
13296 {
13297 BFD_ASSERT (h->elf.dynindx != -1);
13298 indx = h->elf.dynindx;
13299 unresolved_reloc = FALSE;
13300 }
13301 ent = h->elf.got.glist;
13302 }
13303 else
13304 {
13305 if (local_got_ents == NULL)
13306 abort ();
13307 ent = local_got_ents[r_symndx];
13308 }
13309
13310 for (; ent != NULL; ent = ent->next)
13311 if (ent->addend == orig_rel.r_addend
13312 && ent->owner == input_bfd
13313 && ent->tls_type == tls_type)
13314 break;
13315 }
13316
13317 if (ent == NULL)
13318 abort ();
13319 if (ent->is_indirect)
13320 ent = ent->got.ent;
13321 offp = &ent->got.offset;
13322 got = ppc64_elf_tdata (ent->owner)->got;
13323 if (got == NULL)
13324 abort ();
13325
13326 /* The offset must always be a multiple of 8. We use the
13327 least significant bit to record whether we have already
13328 processed this entry. */
13329 off = *offp;
13330 if ((off & 1) != 0)
13331 off &= ~1;
13332 else
13333 {
13334 /* Generate relocs for the dynamic linker, except in
13335 the case of TLSLD where we'll use one entry per
13336 module. */
13337 asection *relgot;
13338 bfd_boolean ifunc;
13339
13340 *offp = off | 1;
13341 relgot = NULL;
13342 ifunc = (h != NULL
13343 ? h->elf.type == STT_GNU_IFUNC
13344 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13345 if (ifunc)
13346 relgot = htab->reliplt;
13347 else if ((info->shared || indx != 0)
13348 && (h == NULL
13349 || (tls_type == (TLS_TLS | TLS_LD)
13350 && !h->elf.def_dynamic)
13351 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13352 || h->elf.root.type != bfd_link_hash_undefweak))
13353 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13354 if (relgot != NULL)
13355 {
13356 outrel.r_offset = (got->output_section->vma
13357 + got->output_offset
13358 + off);
13359 outrel.r_addend = addend;
13360 if (tls_type & (TLS_LD | TLS_GD))
13361 {
13362 outrel.r_addend = 0;
13363 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13364 if (tls_type == (TLS_TLS | TLS_GD))
13365 {
13366 loc = relgot->contents;
13367 loc += (relgot->reloc_count++
13368 * sizeof (Elf64_External_Rela));
13369 bfd_elf64_swap_reloca_out (output_bfd,
13370 &outrel, loc);
13371 outrel.r_offset += 8;
13372 outrel.r_addend = addend;
13373 outrel.r_info
13374 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13375 }
13376 }
13377 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13378 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13379 else if (tls_type == (TLS_TLS | TLS_TPREL))
13380 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13381 else if (indx != 0)
13382 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13383 else
13384 {
13385 if (ifunc)
13386 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13387 else
13388 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13389
13390 /* Write the .got section contents for the sake
13391 of prelink. */
13392 loc = got->contents + off;
13393 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13394 loc);
13395 }
13396
13397 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13398 {
13399 outrel.r_addend += relocation;
13400 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13401 outrel.r_addend -= htab->elf.tls_sec->vma;
13402 }
13403 loc = relgot->contents;
13404 loc += (relgot->reloc_count++
13405 * sizeof (Elf64_External_Rela));
13406 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13407 }
13408
13409 /* Init the .got section contents here if we're not
13410 emitting a reloc. */
13411 else
13412 {
13413 relocation += addend;
13414 if (tls_type == (TLS_TLS | TLS_LD))
13415 relocation = 1;
13416 else if (tls_type != 0)
13417 {
13418 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13419 if (tls_type == (TLS_TLS | TLS_TPREL))
13420 relocation += DTP_OFFSET - TP_OFFSET;
13421
13422 if (tls_type == (TLS_TLS | TLS_GD))
13423 {
13424 bfd_put_64 (output_bfd, relocation,
13425 got->contents + off + 8);
13426 relocation = 1;
13427 }
13428 }
13429
13430 bfd_put_64 (output_bfd, relocation,
13431 got->contents + off);
13432 }
13433 }
13434
13435 if (off >= (bfd_vma) -2)
13436 abort ();
13437
13438 relocation = got->output_section->vma + got->output_offset + off;
13439 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13440 }
13441 break;
13442
13443 case R_PPC64_PLT16_HA:
13444 case R_PPC64_PLT16_HI:
13445 case R_PPC64_PLT16_LO:
13446 case R_PPC64_PLT32:
13447 case R_PPC64_PLT64:
13448 /* Relocation is to the entry for this symbol in the
13449 procedure linkage table. */
13450
13451 /* Resolve a PLT reloc against a local symbol directly,
13452 without using the procedure linkage table. */
13453 if (h == NULL)
13454 break;
13455
13456 /* It's possible that we didn't make a PLT entry for this
13457 symbol. This happens when statically linking PIC code,
13458 or when using -Bsymbolic. Go find a match if there is a
13459 PLT entry. */
13460 if (htab->plt != NULL)
13461 {
13462 struct plt_entry *ent;
13463 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13464 if (ent->addend == orig_rel.r_addend
13465 && ent->plt.offset != (bfd_vma) -1)
13466 {
13467 relocation = (htab->plt->output_section->vma
13468 + htab->plt->output_offset
13469 + ent->plt.offset);
13470 unresolved_reloc = FALSE;
13471 }
13472 }
13473 break;
13474
13475 case R_PPC64_TOC:
13476 /* Relocation value is TOC base. */
13477 relocation = TOCstart;
13478 if (r_symndx == STN_UNDEF)
13479 relocation += htab->stub_group[input_section->id].toc_off;
13480 else if (unresolved_reloc)
13481 ;
13482 else if (sec != NULL && sec->id <= htab->top_id)
13483 relocation += htab->stub_group[sec->id].toc_off;
13484 else
13485 unresolved_reloc = TRUE;
13486 goto dodyn;
13487
13488 /* TOC16 relocs. We want the offset relative to the TOC base,
13489 which is the address of the start of the TOC plus 0x8000.
13490 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13491 in this order. */
13492 case R_PPC64_TOC16:
13493 case R_PPC64_TOC16_LO:
13494 case R_PPC64_TOC16_HI:
13495 case R_PPC64_TOC16_DS:
13496 case R_PPC64_TOC16_LO_DS:
13497 case R_PPC64_TOC16_HA:
13498 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13499 break;
13500
13501 /* Relocate against the beginning of the section. */
13502 case R_PPC64_SECTOFF:
13503 case R_PPC64_SECTOFF_LO:
13504 case R_PPC64_SECTOFF_HI:
13505 case R_PPC64_SECTOFF_DS:
13506 case R_PPC64_SECTOFF_LO_DS:
13507 case R_PPC64_SECTOFF_HA:
13508 if (sec != NULL)
13509 addend -= sec->output_section->vma;
13510 break;
13511
13512 case R_PPC64_REL16:
13513 case R_PPC64_REL16_LO:
13514 case R_PPC64_REL16_HI:
13515 case R_PPC64_REL16_HA:
13516 break;
13517
13518 case R_PPC64_REL14:
13519 case R_PPC64_REL14_BRNTAKEN:
13520 case R_PPC64_REL14_BRTAKEN:
13521 case R_PPC64_REL24:
13522 break;
13523
13524 case R_PPC64_TPREL16:
13525 case R_PPC64_TPREL16_LO:
13526 case R_PPC64_TPREL16_HI:
13527 case R_PPC64_TPREL16_HA:
13528 case R_PPC64_TPREL16_DS:
13529 case R_PPC64_TPREL16_LO_DS:
13530 case R_PPC64_TPREL16_HIGHER:
13531 case R_PPC64_TPREL16_HIGHERA:
13532 case R_PPC64_TPREL16_HIGHEST:
13533 case R_PPC64_TPREL16_HIGHESTA:
13534 if (h != NULL
13535 && h->elf.root.type == bfd_link_hash_undefweak
13536 && h->elf.dynindx == -1)
13537 {
13538 /* Make this relocation against an undefined weak symbol
13539 resolve to zero. This is really just a tweak, since
13540 code using weak externs ought to check that they are
13541 defined before using them. */
13542 bfd_byte *p = contents + rel->r_offset - d_offset;
13543
13544 insn = bfd_get_32 (output_bfd, p);
13545 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13546 if (insn != 0)
13547 bfd_put_32 (output_bfd, insn, p);
13548 break;
13549 }
13550 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13551 if (info->shared)
13552 /* The TPREL16 relocs shouldn't really be used in shared
13553 libs as they will result in DT_TEXTREL being set, but
13554 support them anyway. */
13555 goto dodyn;
13556 break;
13557
13558 case R_PPC64_DTPREL16:
13559 case R_PPC64_DTPREL16_LO:
13560 case R_PPC64_DTPREL16_HI:
13561 case R_PPC64_DTPREL16_HA:
13562 case R_PPC64_DTPREL16_DS:
13563 case R_PPC64_DTPREL16_LO_DS:
13564 case R_PPC64_DTPREL16_HIGHER:
13565 case R_PPC64_DTPREL16_HIGHERA:
13566 case R_PPC64_DTPREL16_HIGHEST:
13567 case R_PPC64_DTPREL16_HIGHESTA:
13568 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13569 break;
13570
13571 case R_PPC64_DTPMOD64:
13572 relocation = 1;
13573 addend = 0;
13574 goto dodyn;
13575
13576 case R_PPC64_TPREL64:
13577 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13578 goto dodyn;
13579
13580 case R_PPC64_DTPREL64:
13581 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13582 /* Fall thru */
13583
13584 /* Relocations that may need to be propagated if this is a
13585 dynamic object. */
13586 case R_PPC64_REL30:
13587 case R_PPC64_REL32:
13588 case R_PPC64_REL64:
13589 case R_PPC64_ADDR14:
13590 case R_PPC64_ADDR14_BRNTAKEN:
13591 case R_PPC64_ADDR14_BRTAKEN:
13592 case R_PPC64_ADDR16:
13593 case R_PPC64_ADDR16_DS:
13594 case R_PPC64_ADDR16_HA:
13595 case R_PPC64_ADDR16_HI:
13596 case R_PPC64_ADDR16_HIGHER:
13597 case R_PPC64_ADDR16_HIGHERA:
13598 case R_PPC64_ADDR16_HIGHEST:
13599 case R_PPC64_ADDR16_HIGHESTA:
13600 case R_PPC64_ADDR16_LO:
13601 case R_PPC64_ADDR16_LO_DS:
13602 case R_PPC64_ADDR24:
13603 case R_PPC64_ADDR32:
13604 case R_PPC64_ADDR64:
13605 case R_PPC64_UADDR16:
13606 case R_PPC64_UADDR32:
13607 case R_PPC64_UADDR64:
13608 dodyn:
13609 if ((input_section->flags & SEC_ALLOC) == 0)
13610 break;
13611
13612 if (NO_OPD_RELOCS && is_opd)
13613 break;
13614
13615 if ((info->shared
13616 && (h == NULL
13617 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13618 || h->elf.root.type != bfd_link_hash_undefweak)
13619 && (must_be_dyn_reloc (info, r_type)
13620 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13621 || (ELIMINATE_COPY_RELOCS
13622 && !info->shared
13623 && h != NULL
13624 && h->elf.dynindx != -1
13625 && !h->elf.non_got_ref
13626 && !h->elf.def_regular)
13627 || (!info->shared
13628 && (h != NULL
13629 ? h->elf.type == STT_GNU_IFUNC
13630 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13631 {
13632 bfd_boolean skip, relocate;
13633 asection *sreloc;
13634 bfd_vma out_off;
13635
13636 /* When generating a dynamic object, these relocations
13637 are copied into the output file to be resolved at run
13638 time. */
13639
13640 skip = FALSE;
13641 relocate = FALSE;
13642
13643 out_off = _bfd_elf_section_offset (output_bfd, info,
13644 input_section, rel->r_offset);
13645 if (out_off == (bfd_vma) -1)
13646 skip = TRUE;
13647 else if (out_off == (bfd_vma) -2)
13648 skip = TRUE, relocate = TRUE;
13649 out_off += (input_section->output_section->vma
13650 + input_section->output_offset);
13651 outrel.r_offset = out_off;
13652 outrel.r_addend = rel->r_addend;
13653
13654 /* Optimize unaligned reloc use. */
13655 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13656 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13657 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13658 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13659 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13660 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13661 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13662 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13663 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13664
13665 if (skip)
13666 memset (&outrel, 0, sizeof outrel);
13667 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13668 && !is_opd
13669 && r_type != R_PPC64_TOC)
13670 {
13671 BFD_ASSERT (h->elf.dynindx != -1);
13672 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13673 }
13674 else
13675 {
13676 /* This symbol is local, or marked to become local,
13677 or this is an opd section reloc which must point
13678 at a local function. */
13679 outrel.r_addend += relocation;
13680 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13681 {
13682 if (is_opd && h != NULL)
13683 {
13684 /* Lie about opd entries. This case occurs
13685 when building shared libraries and we
13686 reference a function in another shared
13687 lib. The same thing happens for a weak
13688 definition in an application that's
13689 overridden by a strong definition in a
13690 shared lib. (I believe this is a generic
13691 bug in binutils handling of weak syms.)
13692 In these cases we won't use the opd
13693 entry in this lib. */
13694 unresolved_reloc = FALSE;
13695 }
13696 if (!is_opd
13697 && r_type == R_PPC64_ADDR64
13698 && (h != NULL
13699 ? h->elf.type == STT_GNU_IFUNC
13700 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13701 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13702 else
13703 {
13704 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13705
13706 /* We need to relocate .opd contents for ld.so.
13707 Prelink also wants simple and consistent rules
13708 for relocs. This make all RELATIVE relocs have
13709 *r_offset equal to r_addend. */
13710 relocate = TRUE;
13711 }
13712 }
13713 else
13714 {
13715 long indx = 0;
13716
13717 if (h != NULL
13718 ? h->elf.type == STT_GNU_IFUNC
13719 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13720 {
13721 info->callbacks->einfo
13722 (_("%P: %H: %s for indirect "
13723 "function `%T' unsupported\n"),
13724 input_bfd, input_section, rel->r_offset,
13725 ppc64_elf_howto_table[r_type]->name,
13726 sym_name);
13727 ret = FALSE;
13728 }
13729 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13730 ;
13731 else if (sec == NULL || sec->owner == NULL)
13732 {
13733 bfd_set_error (bfd_error_bad_value);
13734 return FALSE;
13735 }
13736 else
13737 {
13738 asection *osec;
13739
13740 osec = sec->output_section;
13741 indx = elf_section_data (osec)->dynindx;
13742
13743 if (indx == 0)
13744 {
13745 if ((osec->flags & SEC_READONLY) == 0
13746 && htab->elf.data_index_section != NULL)
13747 osec = htab->elf.data_index_section;
13748 else
13749 osec = htab->elf.text_index_section;
13750 indx = elf_section_data (osec)->dynindx;
13751 }
13752 BFD_ASSERT (indx != 0);
13753
13754 /* We are turning this relocation into one
13755 against a section symbol, so subtract out
13756 the output section's address but not the
13757 offset of the input section in the output
13758 section. */
13759 outrel.r_addend -= osec->vma;
13760 }
13761
13762 outrel.r_info = ELF64_R_INFO (indx, r_type);
13763 }
13764 }
13765
13766 sreloc = elf_section_data (input_section)->sreloc;
13767 if (h != NULL
13768 ? h->elf.type == STT_GNU_IFUNC
13769 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13770 sreloc = htab->reliplt;
13771 if (sreloc == NULL)
13772 abort ();
13773
13774 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13775 >= sreloc->size)
13776 abort ();
13777 loc = sreloc->contents;
13778 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13779 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13780
13781 /* If this reloc is against an external symbol, it will
13782 be computed at runtime, so there's no need to do
13783 anything now. However, for the sake of prelink ensure
13784 that the section contents are a known value. */
13785 if (! relocate)
13786 {
13787 unresolved_reloc = FALSE;
13788 /* The value chosen here is quite arbitrary as ld.so
13789 ignores section contents except for the special
13790 case of .opd where the contents might be accessed
13791 before relocation. Choose zero, as that won't
13792 cause reloc overflow. */
13793 relocation = 0;
13794 addend = 0;
13795 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13796 to improve backward compatibility with older
13797 versions of ld. */
13798 if (r_type == R_PPC64_ADDR64)
13799 addend = outrel.r_addend;
13800 /* Adjust pc_relative relocs to have zero in *r_offset. */
13801 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13802 addend = (input_section->output_section->vma
13803 + input_section->output_offset
13804 + rel->r_offset);
13805 }
13806 }
13807 break;
13808
13809 case R_PPC64_COPY:
13810 case R_PPC64_GLOB_DAT:
13811 case R_PPC64_JMP_SLOT:
13812 case R_PPC64_JMP_IREL:
13813 case R_PPC64_RELATIVE:
13814 /* We shouldn't ever see these dynamic relocs in relocatable
13815 files. */
13816 /* Fall through. */
13817
13818 case R_PPC64_PLTGOT16:
13819 case R_PPC64_PLTGOT16_DS:
13820 case R_PPC64_PLTGOT16_HA:
13821 case R_PPC64_PLTGOT16_HI:
13822 case R_PPC64_PLTGOT16_LO:
13823 case R_PPC64_PLTGOT16_LO_DS:
13824 case R_PPC64_PLTREL32:
13825 case R_PPC64_PLTREL64:
13826 /* These ones haven't been implemented yet. */
13827
13828 info->callbacks->einfo
13829 (_("%P: %B: %s is not supported for `%T'\n"),
13830 input_bfd,
13831 ppc64_elf_howto_table[r_type]->name, sym_name);
13832
13833 bfd_set_error (bfd_error_invalid_operation);
13834 ret = FALSE;
13835 continue;
13836 }
13837
13838 /* Multi-instruction sequences that access the TOC can be
13839 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13840 to nop; addi rb,r2,x; */
13841 switch (r_type)
13842 {
13843 default:
13844 break;
13845
13846 case R_PPC64_GOT_TLSLD16_HI:
13847 case R_PPC64_GOT_TLSGD16_HI:
13848 case R_PPC64_GOT_TPREL16_HI:
13849 case R_PPC64_GOT_DTPREL16_HI:
13850 case R_PPC64_GOT16_HI:
13851 case R_PPC64_TOC16_HI:
13852 /* These relocs would only be useful if building up an
13853 offset to later add to r2, perhaps in an indexed
13854 addressing mode instruction. Don't try to optimize.
13855 Unfortunately, the possibility of someone building up an
13856 offset like this or even with the HA relocs, means that
13857 we need to check the high insn when optimizing the low
13858 insn. */
13859 break;
13860
13861 case R_PPC64_GOT_TLSLD16_HA:
13862 case R_PPC64_GOT_TLSGD16_HA:
13863 case R_PPC64_GOT_TPREL16_HA:
13864 case R_PPC64_GOT_DTPREL16_HA:
13865 case R_PPC64_GOT16_HA:
13866 case R_PPC64_TOC16_HA:
13867 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13868 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13869 {
13870 bfd_byte *p = contents + (rel->r_offset & ~3);
13871 bfd_put_32 (input_bfd, NOP, p);
13872 }
13873 break;
13874
13875 case R_PPC64_GOT_TLSLD16_LO:
13876 case R_PPC64_GOT_TLSGD16_LO:
13877 case R_PPC64_GOT_TPREL16_LO_DS:
13878 case R_PPC64_GOT_DTPREL16_LO_DS:
13879 case R_PPC64_GOT16_LO:
13880 case R_PPC64_GOT16_LO_DS:
13881 case R_PPC64_TOC16_LO:
13882 case R_PPC64_TOC16_LO_DS:
13883 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13884 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13885 {
13886 bfd_byte *p = contents + (rel->r_offset & ~3);
13887 insn = bfd_get_32 (input_bfd, p);
13888 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13889 {
13890 /* Transform addic to addi when we change reg. */
13891 insn &= ~((0x3f << 26) | (0x1f << 16));
13892 insn |= (14u << 26) | (2 << 16);
13893 }
13894 else
13895 {
13896 insn &= ~(0x1f << 16);
13897 insn |= 2 << 16;
13898 }
13899 bfd_put_32 (input_bfd, insn, p);
13900 }
13901 break;
13902 }
13903
13904 /* Do any further special processing. */
13905 switch (r_type)
13906 {
13907 default:
13908 break;
13909
13910 case R_PPC64_ADDR16_HA:
13911 case R_PPC64_REL16_HA:
13912 case R_PPC64_ADDR16_HIGHERA:
13913 case R_PPC64_ADDR16_HIGHESTA:
13914 case R_PPC64_TOC16_HA:
13915 case R_PPC64_SECTOFF_HA:
13916 case R_PPC64_TPREL16_HA:
13917 case R_PPC64_DTPREL16_HA:
13918 case R_PPC64_TPREL16_HIGHER:
13919 case R_PPC64_TPREL16_HIGHERA:
13920 case R_PPC64_TPREL16_HIGHEST:
13921 case R_PPC64_TPREL16_HIGHESTA:
13922 case R_PPC64_DTPREL16_HIGHER:
13923 case R_PPC64_DTPREL16_HIGHERA:
13924 case R_PPC64_DTPREL16_HIGHEST:
13925 case R_PPC64_DTPREL16_HIGHESTA:
13926 /* It's just possible that this symbol is a weak symbol
13927 that's not actually defined anywhere. In that case,
13928 'sec' would be NULL, and we should leave the symbol
13929 alone (it will be set to zero elsewhere in the link). */
13930 if (sec == NULL)
13931 break;
13932 /* Fall thru */
13933
13934 case R_PPC64_GOT16_HA:
13935 case R_PPC64_PLTGOT16_HA:
13936 case R_PPC64_PLT16_HA:
13937 case R_PPC64_GOT_TLSGD16_HA:
13938 case R_PPC64_GOT_TLSLD16_HA:
13939 case R_PPC64_GOT_TPREL16_HA:
13940 case R_PPC64_GOT_DTPREL16_HA:
13941 /* Add 0x10000 if sign bit in 0:15 is set.
13942 Bits 0:15 are not used. */
13943 addend += 0x8000;
13944 break;
13945
13946 case R_PPC64_ADDR16_DS:
13947 case R_PPC64_ADDR16_LO_DS:
13948 case R_PPC64_GOT16_DS:
13949 case R_PPC64_GOT16_LO_DS:
13950 case R_PPC64_PLT16_LO_DS:
13951 case R_PPC64_SECTOFF_DS:
13952 case R_PPC64_SECTOFF_LO_DS:
13953 case R_PPC64_TOC16_DS:
13954 case R_PPC64_TOC16_LO_DS:
13955 case R_PPC64_PLTGOT16_DS:
13956 case R_PPC64_PLTGOT16_LO_DS:
13957 case R_PPC64_GOT_TPREL16_DS:
13958 case R_PPC64_GOT_TPREL16_LO_DS:
13959 case R_PPC64_GOT_DTPREL16_DS:
13960 case R_PPC64_GOT_DTPREL16_LO_DS:
13961 case R_PPC64_TPREL16_DS:
13962 case R_PPC64_TPREL16_LO_DS:
13963 case R_PPC64_DTPREL16_DS:
13964 case R_PPC64_DTPREL16_LO_DS:
13965 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13966 mask = 3;
13967 /* If this reloc is against an lq insn, then the value must be
13968 a multiple of 16. This is somewhat of a hack, but the
13969 "correct" way to do this by defining _DQ forms of all the
13970 _DS relocs bloats all reloc switches in this file. It
13971 doesn't seem to make much sense to use any of these relocs
13972 in data, so testing the insn should be safe. */
13973 if ((insn & (0x3f << 26)) == (56u << 26))
13974 mask = 15;
13975 if (((relocation + addend) & mask) != 0)
13976 {
13977 info->callbacks->einfo
13978 (_("%P: %H: error: %s not a multiple of %u\n"),
13979 input_bfd, input_section, rel->r_offset,
13980 ppc64_elf_howto_table[r_type]->name,
13981 mask + 1);
13982 bfd_set_error (bfd_error_bad_value);
13983 ret = FALSE;
13984 continue;
13985 }
13986 break;
13987 }
13988
13989 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13990 because such sections are not SEC_ALLOC and thus ld.so will
13991 not process them. */
13992 if (unresolved_reloc
13993 && !((input_section->flags & SEC_DEBUGGING) != 0
13994 && h->elf.def_dynamic)
13995 && _bfd_elf_section_offset (output_bfd, info, input_section,
13996 rel->r_offset) != (bfd_vma) -1)
13997 {
13998 info->callbacks->einfo
13999 (_("%P: %H: unresolvable %s against `%T'\n"),
14000 input_bfd, input_section, rel->r_offset,
14001 ppc64_elf_howto_table[(int) r_type]->name,
14002 h->elf.root.root.string);
14003 ret = FALSE;
14004 }
14005
14006 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
14007 input_bfd,
14008 input_section,
14009 contents,
14010 rel->r_offset,
14011 relocation,
14012 addend);
14013
14014 if (r != bfd_reloc_ok)
14015 {
14016 char *more_info = NULL;
14017 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
14018
14019 if (reloc_dest != DEST_NORMAL)
14020 {
14021 more_info = bfd_malloc (strlen (reloc_name) + 8);
14022 if (more_info != NULL)
14023 {
14024 strcpy (more_info, reloc_name);
14025 strcat (more_info, (reloc_dest == DEST_OPD
14026 ? " (OPD)" : " (stub)"));
14027 reloc_name = more_info;
14028 }
14029 }
14030
14031 if (r == bfd_reloc_overflow)
14032 {
14033 if (warned)
14034 continue;
14035 if (h != NULL
14036 && h->elf.root.type == bfd_link_hash_undefweak
14037 && ppc64_elf_howto_table[r_type]->pc_relative)
14038 {
14039 /* Assume this is a call protected by other code that
14040 detects the symbol is undefined. If this is the case,
14041 we can safely ignore the overflow. If not, the
14042 program is hosed anyway, and a little warning isn't
14043 going to help. */
14044
14045 continue;
14046 }
14047
14048 if (!((*info->callbacks->reloc_overflow)
14049 (info, &h->elf.root, sym_name,
14050 reloc_name, orig_rel.r_addend,
14051 input_bfd, input_section, rel->r_offset)))
14052 return FALSE;
14053 }
14054 else
14055 {
14056 info->callbacks->einfo
14057 (_("%P: %H: %s against `%T': error %d\n"),
14058 input_bfd, input_section, rel->r_offset,
14059 reloc_name, sym_name, (int) r);
14060 ret = FALSE;
14061 }
14062 if (more_info != NULL)
14063 free (more_info);
14064 }
14065 }
14066
14067 /* If we're emitting relocations, then shortly after this function
14068 returns, reloc offsets and addends for this section will be
14069 adjusted. Worse, reloc symbol indices will be for the output
14070 file rather than the input. Save a copy of the relocs for
14071 opd_entry_value. */
14072 if (is_opd && (info->emitrelocations || info->relocatable))
14073 {
14074 bfd_size_type amt;
14075 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14076 rel = bfd_alloc (input_bfd, amt);
14077 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14078 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14079 if (rel == NULL)
14080 return FALSE;
14081 memcpy (rel, relocs, amt);
14082 }
14083 return ret;
14084 }
14085
14086 /* Adjust the value of any local symbols in opd sections. */
14087
14088 static int
14089 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14090 const char *name ATTRIBUTE_UNUSED,
14091 Elf_Internal_Sym *elfsym,
14092 asection *input_sec,
14093 struct elf_link_hash_entry *h)
14094 {
14095 struct _opd_sec_data *opd;
14096 long adjust;
14097 bfd_vma value;
14098
14099 if (h != NULL)
14100 return 1;
14101
14102 opd = get_opd_info (input_sec);
14103 if (opd == NULL || opd->adjust == NULL)
14104 return 1;
14105
14106 value = elfsym->st_value - input_sec->output_offset;
14107 if (!info->relocatable)
14108 value -= input_sec->output_section->vma;
14109
14110 adjust = opd->adjust[value / 8];
14111 if (adjust == -1)
14112 return 2;
14113
14114 elfsym->st_value += adjust;
14115 return 1;
14116 }
14117
14118 /* Finish up dynamic symbol handling. We set the contents of various
14119 dynamic sections here. */
14120
14121 static bfd_boolean
14122 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14123 struct bfd_link_info *info,
14124 struct elf_link_hash_entry *h,
14125 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14126 {
14127 struct ppc_link_hash_table *htab;
14128 struct plt_entry *ent;
14129 Elf_Internal_Rela rela;
14130 bfd_byte *loc;
14131
14132 htab = ppc_hash_table (info);
14133 if (htab == NULL)
14134 return FALSE;
14135
14136 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14137 if (ent->plt.offset != (bfd_vma) -1)
14138 {
14139 /* This symbol has an entry in the procedure linkage
14140 table. Set it up. */
14141 if (!htab->elf.dynamic_sections_created
14142 || h->dynindx == -1)
14143 {
14144 BFD_ASSERT (h->type == STT_GNU_IFUNC
14145 && h->def_regular
14146 && (h->root.type == bfd_link_hash_defined
14147 || h->root.type == bfd_link_hash_defweak));
14148 rela.r_offset = (htab->iplt->output_section->vma
14149 + htab->iplt->output_offset
14150 + ent->plt.offset);
14151 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14152 rela.r_addend = (h->root.u.def.value
14153 + h->root.u.def.section->output_offset
14154 + h->root.u.def.section->output_section->vma
14155 + ent->addend);
14156 loc = (htab->reliplt->contents
14157 + (htab->reliplt->reloc_count++
14158 * sizeof (Elf64_External_Rela)));
14159 }
14160 else
14161 {
14162 rela.r_offset = (htab->plt->output_section->vma
14163 + htab->plt->output_offset
14164 + ent->plt.offset);
14165 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14166 rela.r_addend = ent->addend;
14167 loc = (htab->relplt->contents
14168 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14169 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14170 }
14171 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14172 }
14173
14174 if (h->needs_copy)
14175 {
14176 /* This symbol needs a copy reloc. Set it up. */
14177
14178 if (h->dynindx == -1
14179 || (h->root.type != bfd_link_hash_defined
14180 && h->root.type != bfd_link_hash_defweak)
14181 || htab->relbss == NULL)
14182 abort ();
14183
14184 rela.r_offset = (h->root.u.def.value
14185 + h->root.u.def.section->output_section->vma
14186 + h->root.u.def.section->output_offset);
14187 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14188 rela.r_addend = 0;
14189 loc = htab->relbss->contents;
14190 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14191 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14192 }
14193
14194 return TRUE;
14195 }
14196
14197 /* Used to decide how to sort relocs in an optimal manner for the
14198 dynamic linker, before writing them out. */
14199
14200 static enum elf_reloc_type_class
14201 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14202 const asection *rel_sec,
14203 const Elf_Internal_Rela *rela)
14204 {
14205 enum elf_ppc64_reloc_type r_type;
14206 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14207
14208 if (rel_sec == htab->reliplt)
14209 return reloc_class_ifunc;
14210
14211 r_type = ELF64_R_TYPE (rela->r_info);
14212 switch (r_type)
14213 {
14214 case R_PPC64_RELATIVE:
14215 return reloc_class_relative;
14216 case R_PPC64_JMP_SLOT:
14217 return reloc_class_plt;
14218 case R_PPC64_COPY:
14219 return reloc_class_copy;
14220 default:
14221 return reloc_class_normal;
14222 }
14223 }
14224
14225 /* Finish up the dynamic sections. */
14226
14227 static bfd_boolean
14228 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14229 struct bfd_link_info *info)
14230 {
14231 struct ppc_link_hash_table *htab;
14232 bfd *dynobj;
14233 asection *sdyn;
14234
14235 htab = ppc_hash_table (info);
14236 if (htab == NULL)
14237 return FALSE;
14238
14239 dynobj = htab->elf.dynobj;
14240 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14241
14242 if (htab->elf.dynamic_sections_created)
14243 {
14244 Elf64_External_Dyn *dyncon, *dynconend;
14245
14246 if (sdyn == NULL || htab->got == NULL)
14247 abort ();
14248
14249 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14250 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14251 for (; dyncon < dynconend; dyncon++)
14252 {
14253 Elf_Internal_Dyn dyn;
14254 asection *s;
14255
14256 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14257
14258 switch (dyn.d_tag)
14259 {
14260 default:
14261 continue;
14262
14263 case DT_PPC64_GLINK:
14264 s = htab->glink;
14265 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14266 /* We stupidly defined DT_PPC64_GLINK to be the start
14267 of glink rather than the first entry point, which is
14268 what ld.so needs, and now have a bigger stub to
14269 support automatic multiple TOCs. */
14270 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14271 break;
14272
14273 case DT_PPC64_OPD:
14274 s = bfd_get_section_by_name (output_bfd, ".opd");
14275 if (s == NULL)
14276 continue;
14277 dyn.d_un.d_ptr = s->vma;
14278 break;
14279
14280 case DT_PPC64_OPDSZ:
14281 s = bfd_get_section_by_name (output_bfd, ".opd");
14282 if (s == NULL)
14283 continue;
14284 dyn.d_un.d_val = s->size;
14285 break;
14286
14287 case DT_PLTGOT:
14288 s = htab->plt;
14289 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14290 break;
14291
14292 case DT_JMPREL:
14293 s = htab->relplt;
14294 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14295 break;
14296
14297 case DT_PLTRELSZ:
14298 dyn.d_un.d_val = htab->relplt->size;
14299 break;
14300
14301 case DT_RELASZ:
14302 /* Don't count procedure linkage table relocs in the
14303 overall reloc count. */
14304 s = htab->relplt;
14305 if (s == NULL)
14306 continue;
14307 dyn.d_un.d_val -= s->size;
14308 break;
14309
14310 case DT_RELA:
14311 /* We may not be using the standard ELF linker script.
14312 If .rela.plt is the first .rela section, we adjust
14313 DT_RELA to not include it. */
14314 s = htab->relplt;
14315 if (s == NULL)
14316 continue;
14317 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14318 continue;
14319 dyn.d_un.d_ptr += s->size;
14320 break;
14321 }
14322
14323 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14324 }
14325 }
14326
14327 if (htab->got != NULL && htab->got->size != 0)
14328 {
14329 /* Fill in the first entry in the global offset table.
14330 We use it to hold the link-time TOCbase. */
14331 bfd_put_64 (output_bfd,
14332 elf_gp (output_bfd) + TOC_BASE_OFF,
14333 htab->got->contents);
14334
14335 /* Set .got entry size. */
14336 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14337 }
14338
14339 if (htab->plt != NULL && htab->plt->size != 0)
14340 {
14341 /* Set .plt entry size. */
14342 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14343 = PLT_ENTRY_SIZE;
14344 }
14345
14346 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14347 brlt ourselves if emitrelocations. */
14348 if (htab->brlt != NULL
14349 && htab->brlt->reloc_count != 0
14350 && !_bfd_elf_link_output_relocs (output_bfd,
14351 htab->brlt,
14352 elf_section_data (htab->brlt)->rela.hdr,
14353 elf_section_data (htab->brlt)->relocs,
14354 NULL))
14355 return FALSE;
14356
14357 if (htab->glink != NULL
14358 && htab->glink->reloc_count != 0
14359 && !_bfd_elf_link_output_relocs (output_bfd,
14360 htab->glink,
14361 elf_section_data (htab->glink)->rela.hdr,
14362 elf_section_data (htab->glink)->relocs,
14363 NULL))
14364 return FALSE;
14365
14366
14367 if (htab->glink_eh_frame != NULL
14368 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14369 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14370 htab->glink_eh_frame,
14371 htab->glink_eh_frame->contents))
14372 return FALSE;
14373
14374 /* We need to handle writing out multiple GOT sections ourselves,
14375 since we didn't add them to DYNOBJ. We know dynobj is the first
14376 bfd. */
14377 while ((dynobj = dynobj->link_next) != NULL)
14378 {
14379 asection *s;
14380
14381 if (!is_ppc64_elf (dynobj))
14382 continue;
14383
14384 s = ppc64_elf_tdata (dynobj)->got;
14385 if (s != NULL
14386 && s->size != 0
14387 && s->output_section != bfd_abs_section_ptr
14388 && !bfd_set_section_contents (output_bfd, s->output_section,
14389 s->contents, s->output_offset,
14390 s->size))
14391 return FALSE;
14392 s = ppc64_elf_tdata (dynobj)->relgot;
14393 if (s != NULL
14394 && s->size != 0
14395 && s->output_section != bfd_abs_section_ptr
14396 && !bfd_set_section_contents (output_bfd, s->output_section,
14397 s->contents, s->output_offset,
14398 s->size))
14399 return FALSE;
14400 }
14401
14402 return TRUE;
14403 }
14404
14405 #include "elf64-target.h"
14406
14407 /* FreeBSD support */
14408
14409 #undef TARGET_LITTLE_SYM
14410 #undef TARGET_LITTLE_NAME
14411
14412 #undef TARGET_BIG_SYM
14413 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14414 #undef TARGET_BIG_NAME
14415 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14416
14417 #undef ELF_OSABI
14418 #define ELF_OSABI ELFOSABI_FREEBSD
14419
14420 #undef elf64_bed
14421 #define elf64_bed elf64_powerpc_fbsd_bed
14422
14423 #include "elf64-target.h"
14424