570754acdcb8ea34d43785ae78a1d92451c68491
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_header_size 8
71 #define elf_backend_can_gc_sections 1
72 #define elf_backend_can_refcount 1
73 #define elf_backend_rela_normal 1
74
75 #define bfd_elf64_mkobject ppc64_elf_mkobject
76 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
77 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
78 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
79 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
80 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
81 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
82
83 #define elf_backend_object_p ppc64_elf_object_p
84 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
85 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
86 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
87 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
88 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
89 #define elf_backend_check_directives ppc64_elf_check_directives
90 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
91 #define elf_backend_check_relocs ppc64_elf_check_relocs
92 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
93 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
94 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
95 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
96 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
97 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
98 #define elf_backend_relocate_section ppc64_elf_relocate_section
99 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
100 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
101 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
102 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
103 #define elf_backend_get_sec_type_attr ppc64_elf_get_sec_type_attr
104
105 /* The name of the dynamic interpreter. This is put in the .interp
106 section. */
107 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
108
109 /* The size in bytes of an entry in the procedure linkage table. */
110 #define PLT_ENTRY_SIZE 24
111
112 /* The initial size of the plt reserved for the dynamic linker. */
113 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
114
115 /* TOC base pointers offset from start of TOC. */
116 #define TOC_BASE_OFF 0x8000
117
118 /* Offset of tp and dtp pointers from start of TLS block. */
119 #define TP_OFFSET 0x7000
120 #define DTP_OFFSET 0x8000
121
122 /* .plt call stub instructions. The normal stub is like this, but
123 sometimes the .plt entry crosses a 64k boundary and we need to
124 insert an addis to adjust r12. */
125 #define PLT_CALL_STUB_SIZE (7*4)
126 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
127 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
128 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
129 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
130 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
131 /* ld %r11,xxx+16@l(%r12) */
132 #define BCTR 0x4e800420 /* bctr */
133
134
135 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
136 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
137
138 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
139
140 /* glink call stub instructions. We enter with the index in R0, and the
141 address of glink entry in CTR. From that, we can calculate PLT0. */
142 #define GLINK_CALL_STUB_SIZE (16*4)
143 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
144 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
145 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
146 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
147 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
148 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
149 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
150 /* sub %r12,%r12,%r11 */
151 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
152 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
153 /* ld %r11,xxx@l(%r12) */
154 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
155 /* ld %r2,8(%r12) */
156 /* mtctr %r11 */
157 /* ld %r11,16(%r12) */
158 /* bctr */
159
160 /* Pad with this. */
161 #define NOP 0x60000000
162
163 /* Some other nops. */
164 #define CROR_151515 0x4def7b82
165 #define CROR_313131 0x4ffffb82
166
167 /* .glink entries for the first 32k functions are two instructions. */
168 #define LI_R0_0 0x38000000 /* li %r0,0 */
169 #define B_DOT 0x48000000 /* b . */
170
171 /* After that, we need two instructions to load the index, followed by
172 a branch. */
173 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
174 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
175
176 /* Instructions used by the save and restore reg functions. */
177 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
178 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
179 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
180 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
181 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
182 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
183 #define LI_R12_0 0x39800000 /* li %r12,0 */
184 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
185 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
186 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
187 #define BLR 0x4e800020 /* blr */
188
189 /* Since .opd is an array of descriptors and each entry will end up
190 with identical R_PPC64_RELATIVE relocs, there is really no need to
191 propagate .opd relocs; The dynamic linker should be taught to
192 relocate .opd without reloc entries. */
193 #ifndef NO_OPD_RELOCS
194 #define NO_OPD_RELOCS 0
195 #endif
196 \f
197 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
198
199 /* Relocation HOWTO's. */
200 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
201
202 static reloc_howto_type ppc64_elf_howto_raw[] = {
203 /* This reloc does nothing. */
204 HOWTO (R_PPC64_NONE, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_dont, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_PPC64_NONE", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 /* A standard 32 bit relocation. */
219 HOWTO (R_PPC64_ADDR32, /* type */
220 0, /* rightshift */
221 2, /* size (0 = byte, 1 = short, 2 = long) */
222 32, /* bitsize */
223 FALSE, /* pc_relative */
224 0, /* bitpos */
225 complain_overflow_bitfield, /* complain_on_overflow */
226 bfd_elf_generic_reloc, /* special_function */
227 "R_PPC64_ADDR32", /* name */
228 FALSE, /* partial_inplace */
229 0, /* src_mask */
230 0xffffffff, /* dst_mask */
231 FALSE), /* pcrel_offset */
232
233 /* An absolute 26 bit branch; the lower two bits must be zero.
234 FIXME: we don't check that, we just clear them. */
235 HOWTO (R_PPC64_ADDR24, /* type */
236 0, /* rightshift */
237 2, /* size (0 = byte, 1 = short, 2 = long) */
238 26, /* bitsize */
239 FALSE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_bitfield, /* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_PPC64_ADDR24", /* name */
244 FALSE, /* partial_inplace */
245 0, /* src_mask */
246 0x03fffffc, /* dst_mask */
247 FALSE), /* pcrel_offset */
248
249 /* A standard 16 bit relocation. */
250 HOWTO (R_PPC64_ADDR16, /* type */
251 0, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 16, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_bitfield, /* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_PPC64_ADDR16", /* name */
259 FALSE, /* partial_inplace */
260 0, /* src_mask */
261 0xffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 /* A 16 bit relocation without overflow. */
265 HOWTO (R_PPC64_ADDR16_LO, /* type */
266 0, /* rightshift */
267 1, /* size (0 = byte, 1 = short, 2 = long) */
268 16, /* bitsize */
269 FALSE, /* pc_relative */
270 0, /* bitpos */
271 complain_overflow_dont,/* complain_on_overflow */
272 bfd_elf_generic_reloc, /* special_function */
273 "R_PPC64_ADDR16_LO", /* name */
274 FALSE, /* partial_inplace */
275 0, /* src_mask */
276 0xffff, /* dst_mask */
277 FALSE), /* pcrel_offset */
278
279 /* Bits 16-31 of an address. */
280 HOWTO (R_PPC64_ADDR16_HI, /* type */
281 16, /* rightshift */
282 1, /* size (0 = byte, 1 = short, 2 = long) */
283 16, /* bitsize */
284 FALSE, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_dont, /* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_PPC64_ADDR16_HI", /* name */
289 FALSE, /* partial_inplace */
290 0, /* src_mask */
291 0xffff, /* dst_mask */
292 FALSE), /* pcrel_offset */
293
294 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
295 bits, treated as a signed number, is negative. */
296 HOWTO (R_PPC64_ADDR16_HA, /* type */
297 16, /* rightshift */
298 1, /* size (0 = byte, 1 = short, 2 = long) */
299 16, /* bitsize */
300 FALSE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_dont, /* complain_on_overflow */
303 ppc64_elf_ha_reloc, /* special_function */
304 "R_PPC64_ADDR16_HA", /* name */
305 FALSE, /* partial_inplace */
306 0, /* src_mask */
307 0xffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
309
310 /* An absolute 16 bit branch; the lower two bits must be zero.
311 FIXME: we don't check that, we just clear them. */
312 HOWTO (R_PPC64_ADDR14, /* type */
313 0, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 16, /* bitsize */
316 FALSE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_bitfield, /* complain_on_overflow */
319 ppc64_elf_branch_reloc, /* special_function */
320 "R_PPC64_ADDR14", /* name */
321 FALSE, /* partial_inplace */
322 0, /* src_mask */
323 0x0000fffc, /* dst_mask */
324 FALSE), /* pcrel_offset */
325
326 /* An absolute 16 bit branch, for which bit 10 should be set to
327 indicate that the branch is expected to be taken. The lower two
328 bits must be zero. */
329 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 16, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield, /* complain_on_overflow */
336 ppc64_elf_brtaken_reloc, /* special_function */
337 "R_PPC64_ADDR14_BRTAKEN",/* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0x0000fffc, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 /* An absolute 16 bit branch, for which bit 10 should be set to
344 indicate that the branch is not expected to be taken. The lower
345 two bits must be zero. */
346 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
347 0, /* rightshift */
348 2, /* size (0 = byte, 1 = short, 2 = long) */
349 16, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_bitfield, /* complain_on_overflow */
353 ppc64_elf_brtaken_reloc, /* special_function */
354 "R_PPC64_ADDR14_BRNTAKEN",/* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0x0000fffc, /* dst_mask */
358 FALSE), /* pcrel_offset */
359
360 /* A relative 26 bit branch; the lower two bits must be zero. */
361 HOWTO (R_PPC64_REL24, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 26, /* bitsize */
365 TRUE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_signed, /* complain_on_overflow */
368 ppc64_elf_branch_reloc, /* special_function */
369 "R_PPC64_REL24", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0x03fffffc, /* dst_mask */
373 TRUE), /* pcrel_offset */
374
375 /* A relative 16 bit branch; the lower two bits must be zero. */
376 HOWTO (R_PPC64_REL14, /* type */
377 0, /* rightshift */
378 2, /* size (0 = byte, 1 = short, 2 = long) */
379 16, /* bitsize */
380 TRUE, /* pc_relative */
381 0, /* bitpos */
382 complain_overflow_signed, /* complain_on_overflow */
383 ppc64_elf_branch_reloc, /* special_function */
384 "R_PPC64_REL14", /* name */
385 FALSE, /* partial_inplace */
386 0, /* src_mask */
387 0x0000fffc, /* dst_mask */
388 TRUE), /* pcrel_offset */
389
390 /* A relative 16 bit branch. Bit 10 should be set to indicate that
391 the branch is expected to be taken. The lower two bits must be
392 zero. */
393 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
394 0, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 16, /* bitsize */
397 TRUE, /* pc_relative */
398 0, /* bitpos */
399 complain_overflow_signed, /* complain_on_overflow */
400 ppc64_elf_brtaken_reloc, /* special_function */
401 "R_PPC64_REL14_BRTAKEN", /* name */
402 FALSE, /* partial_inplace */
403 0, /* src_mask */
404 0x0000fffc, /* dst_mask */
405 TRUE), /* pcrel_offset */
406
407 /* A relative 16 bit branch. Bit 10 should be set to indicate that
408 the branch is not expected to be taken. The lower two bits must
409 be zero. */
410 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 16, /* bitsize */
414 TRUE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_signed, /* complain_on_overflow */
417 ppc64_elf_brtaken_reloc, /* special_function */
418 "R_PPC64_REL14_BRNTAKEN",/* name */
419 FALSE, /* partial_inplace */
420 0, /* src_mask */
421 0x0000fffc, /* dst_mask */
422 TRUE), /* pcrel_offset */
423
424 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
425 symbol. */
426 HOWTO (R_PPC64_GOT16, /* type */
427 0, /* rightshift */
428 1, /* size (0 = byte, 1 = short, 2 = long) */
429 16, /* bitsize */
430 FALSE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_signed, /* complain_on_overflow */
433 ppc64_elf_unhandled_reloc, /* special_function */
434 "R_PPC64_GOT16", /* name */
435 FALSE, /* partial_inplace */
436 0, /* src_mask */
437 0xffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
439
440 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
441 the symbol. */
442 HOWTO (R_PPC64_GOT16_LO, /* type */
443 0, /* rightshift */
444 1, /* size (0 = byte, 1 = short, 2 = long) */
445 16, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 ppc64_elf_unhandled_reloc, /* special_function */
450 "R_PPC64_GOT16_LO", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0xffff, /* dst_mask */
454 FALSE), /* pcrel_offset */
455
456 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
457 the symbol. */
458 HOWTO (R_PPC64_GOT16_HI, /* type */
459 16, /* rightshift */
460 1, /* size (0 = byte, 1 = short, 2 = long) */
461 16, /* bitsize */
462 FALSE, /* pc_relative */
463 0, /* bitpos */
464 complain_overflow_dont,/* complain_on_overflow */
465 ppc64_elf_unhandled_reloc, /* special_function */
466 "R_PPC64_GOT16_HI", /* name */
467 FALSE, /* partial_inplace */
468 0, /* src_mask */
469 0xffff, /* dst_mask */
470 FALSE), /* pcrel_offset */
471
472 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
473 the symbol. */
474 HOWTO (R_PPC64_GOT16_HA, /* type */
475 16, /* rightshift */
476 1, /* size (0 = byte, 1 = short, 2 = long) */
477 16, /* bitsize */
478 FALSE, /* pc_relative */
479 0, /* bitpos */
480 complain_overflow_dont,/* complain_on_overflow */
481 ppc64_elf_unhandled_reloc, /* special_function */
482 "R_PPC64_GOT16_HA", /* name */
483 FALSE, /* partial_inplace */
484 0, /* src_mask */
485 0xffff, /* dst_mask */
486 FALSE), /* pcrel_offset */
487
488 /* This is used only by the dynamic linker. The symbol should exist
489 both in the object being run and in some shared library. The
490 dynamic linker copies the data addressed by the symbol from the
491 shared library into the object, because the object being
492 run has to have the data at some particular address. */
493 HOWTO (R_PPC64_COPY, /* type */
494 0, /* rightshift */
495 0, /* this one is variable size */
496 0, /* bitsize */
497 FALSE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_dont, /* complain_on_overflow */
500 ppc64_elf_unhandled_reloc, /* special_function */
501 "R_PPC64_COPY", /* name */
502 FALSE, /* partial_inplace */
503 0, /* src_mask */
504 0, /* dst_mask */
505 FALSE), /* pcrel_offset */
506
507 /* Like R_PPC64_ADDR64, but used when setting global offset table
508 entries. */
509 HOWTO (R_PPC64_GLOB_DAT, /* type */
510 0, /* rightshift */
511 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
512 64, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 ppc64_elf_unhandled_reloc, /* special_function */
517 "R_PPC64_GLOB_DAT", /* name */
518 FALSE, /* partial_inplace */
519 0, /* src_mask */
520 ONES (64), /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* Created by the link editor. Marks a procedure linkage table
524 entry for a symbol. */
525 HOWTO (R_PPC64_JMP_SLOT, /* type */
526 0, /* rightshift */
527 0, /* size (0 = byte, 1 = short, 2 = long) */
528 0, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont, /* complain_on_overflow */
532 ppc64_elf_unhandled_reloc, /* special_function */
533 "R_PPC64_JMP_SLOT", /* name */
534 FALSE, /* partial_inplace */
535 0, /* src_mask */
536 0, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 /* Used only by the dynamic linker. When the object is run, this
540 doubleword64 is set to the load address of the object, plus the
541 addend. */
542 HOWTO (R_PPC64_RELATIVE, /* type */
543 0, /* rightshift */
544 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
545 64, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 "R_PPC64_RELATIVE", /* name */
551 FALSE, /* partial_inplace */
552 0, /* src_mask */
553 ONES (64), /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* Like R_PPC64_ADDR32, but may be unaligned. */
557 HOWTO (R_PPC64_UADDR32, /* type */
558 0, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 32, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_bitfield, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 "R_PPC64_UADDR32", /* name */
566 FALSE, /* partial_inplace */
567 0, /* src_mask */
568 0xffffffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Like R_PPC64_ADDR16, but may be unaligned. */
572 HOWTO (R_PPC64_UADDR16, /* type */
573 0, /* rightshift */
574 1, /* size (0 = byte, 1 = short, 2 = long) */
575 16, /* bitsize */
576 FALSE, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_bitfield, /* complain_on_overflow */
579 bfd_elf_generic_reloc, /* special_function */
580 "R_PPC64_UADDR16", /* name */
581 FALSE, /* partial_inplace */
582 0, /* src_mask */
583 0xffff, /* dst_mask */
584 FALSE), /* pcrel_offset */
585
586 /* 32-bit PC relative. */
587 HOWTO (R_PPC64_REL32, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 32, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 /* FIXME: Verify. Was complain_overflow_bitfield. */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 "R_PPC64_REL32", /* name */
597 FALSE, /* partial_inplace */
598 0, /* src_mask */
599 0xffffffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* 32-bit relocation to the symbol's procedure linkage table. */
603 HOWTO (R_PPC64_PLT32, /* type */
604 0, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 32, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_bitfield, /* complain_on_overflow */
610 ppc64_elf_unhandled_reloc, /* special_function */
611 "R_PPC64_PLT32", /* name */
612 FALSE, /* partial_inplace */
613 0, /* src_mask */
614 0xffffffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
618 FIXME: R_PPC64_PLTREL32 not supported. */
619 HOWTO (R_PPC64_PLTREL32, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 TRUE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_signed, /* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_PPC64_PLTREL32", /* name */
628 FALSE, /* partial_inplace */
629 0, /* src_mask */
630 0xffffffff, /* dst_mask */
631 TRUE), /* pcrel_offset */
632
633 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
634 the symbol. */
635 HOWTO (R_PPC64_PLT16_LO, /* type */
636 0, /* rightshift */
637 1, /* size (0 = byte, 1 = short, 2 = long) */
638 16, /* bitsize */
639 FALSE, /* pc_relative */
640 0, /* bitpos */
641 complain_overflow_dont, /* complain_on_overflow */
642 ppc64_elf_unhandled_reloc, /* special_function */
643 "R_PPC64_PLT16_LO", /* name */
644 FALSE, /* partial_inplace */
645 0, /* src_mask */
646 0xffff, /* dst_mask */
647 FALSE), /* pcrel_offset */
648
649 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
650 the symbol. */
651 HOWTO (R_PPC64_PLT16_HI, /* type */
652 16, /* rightshift */
653 1, /* size (0 = byte, 1 = short, 2 = long) */
654 16, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont, /* complain_on_overflow */
658 ppc64_elf_unhandled_reloc, /* special_function */
659 "R_PPC64_PLT16_HI", /* name */
660 FALSE, /* partial_inplace */
661 0, /* src_mask */
662 0xffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
666 the symbol. */
667 HOWTO (R_PPC64_PLT16_HA, /* type */
668 16, /* rightshift */
669 1, /* size (0 = byte, 1 = short, 2 = long) */
670 16, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_dont, /* complain_on_overflow */
674 ppc64_elf_unhandled_reloc, /* special_function */
675 "R_PPC64_PLT16_HA", /* name */
676 FALSE, /* partial_inplace */
677 0, /* src_mask */
678 0xffff, /* dst_mask */
679 FALSE), /* pcrel_offset */
680
681 /* 16-bit section relative relocation. */
682 HOWTO (R_PPC64_SECTOFF, /* type */
683 0, /* rightshift */
684 1, /* size (0 = byte, 1 = short, 2 = long) */
685 16, /* bitsize */
686 FALSE, /* pc_relative */
687 0, /* bitpos */
688 complain_overflow_bitfield, /* complain_on_overflow */
689 ppc64_elf_sectoff_reloc, /* special_function */
690 "R_PPC64_SECTOFF", /* name */
691 FALSE, /* partial_inplace */
692 0, /* src_mask */
693 0xffff, /* dst_mask */
694 FALSE), /* pcrel_offset */
695
696 /* Like R_PPC64_SECTOFF, but no overflow warning. */
697 HOWTO (R_PPC64_SECTOFF_LO, /* type */
698 0, /* rightshift */
699 1, /* size (0 = byte, 1 = short, 2 = long) */
700 16, /* bitsize */
701 FALSE, /* pc_relative */
702 0, /* bitpos */
703 complain_overflow_dont, /* complain_on_overflow */
704 ppc64_elf_sectoff_reloc, /* special_function */
705 "R_PPC64_SECTOFF_LO", /* name */
706 FALSE, /* partial_inplace */
707 0, /* src_mask */
708 0xffff, /* dst_mask */
709 FALSE), /* pcrel_offset */
710
711 /* 16-bit upper half section relative relocation. */
712 HOWTO (R_PPC64_SECTOFF_HI, /* type */
713 16, /* rightshift */
714 1, /* size (0 = byte, 1 = short, 2 = long) */
715 16, /* bitsize */
716 FALSE, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_dont, /* complain_on_overflow */
719 ppc64_elf_sectoff_reloc, /* special_function */
720 "R_PPC64_SECTOFF_HI", /* name */
721 FALSE, /* partial_inplace */
722 0, /* src_mask */
723 0xffff, /* dst_mask */
724 FALSE), /* pcrel_offset */
725
726 /* 16-bit upper half adjusted section relative relocation. */
727 HOWTO (R_PPC64_SECTOFF_HA, /* type */
728 16, /* rightshift */
729 1, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 FALSE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_dont, /* complain_on_overflow */
734 ppc64_elf_sectoff_ha_reloc, /* special_function */
735 "R_PPC64_SECTOFF_HA", /* name */
736 FALSE, /* partial_inplace */
737 0, /* src_mask */
738 0xffff, /* dst_mask */
739 FALSE), /* pcrel_offset */
740
741 /* Like R_PPC64_REL24 without touching the two least significant bits. */
742 HOWTO (R_PPC64_REL30, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 30, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_dont, /* complain_on_overflow */
749 bfd_elf_generic_reloc, /* special_function */
750 "R_PPC64_REL30", /* name */
751 FALSE, /* partial_inplace */
752 0, /* src_mask */
753 0xfffffffc, /* dst_mask */
754 TRUE), /* pcrel_offset */
755
756 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
757
758 /* A standard 64-bit relocation. */
759 HOWTO (R_PPC64_ADDR64, /* type */
760 0, /* rightshift */
761 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
762 64, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_PPC64_ADDR64", /* name */
768 FALSE, /* partial_inplace */
769 0, /* src_mask */
770 ONES (64), /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* The bits 32-47 of an address. */
774 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
775 32, /* rightshift */
776 1, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_PPC64_ADDR16_HIGHER", /* name */
783 FALSE, /* partial_inplace */
784 0, /* src_mask */
785 0xffff, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* The bits 32-47 of an address, plus 1 if the contents of the low
789 16 bits, treated as a signed number, is negative. */
790 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
791 32, /* rightshift */
792 1, /* size (0 = byte, 1 = short, 2 = long) */
793 16, /* bitsize */
794 FALSE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_dont, /* complain_on_overflow */
797 ppc64_elf_ha_reloc, /* special_function */
798 "R_PPC64_ADDR16_HIGHERA", /* name */
799 FALSE, /* partial_inplace */
800 0, /* src_mask */
801 0xffff, /* dst_mask */
802 FALSE), /* pcrel_offset */
803
804 /* The bits 48-63 of an address. */
805 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
806 48, /* rightshift */
807 1, /* size (0 = byte, 1 = short, 2 = long) */
808 16, /* bitsize */
809 FALSE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_dont, /* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_PPC64_ADDR16_HIGHEST", /* name */
814 FALSE, /* partial_inplace */
815 0, /* src_mask */
816 0xffff, /* dst_mask */
817 FALSE), /* pcrel_offset */
818
819 /* The bits 48-63 of an address, plus 1 if the contents of the low
820 16 bits, treated as a signed number, is negative. */
821 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
822 48, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 16, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 ppc64_elf_ha_reloc, /* special_function */
829 "R_PPC64_ADDR16_HIGHESTA", /* name */
830 FALSE, /* partial_inplace */
831 0, /* src_mask */
832 0xffff, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* Like ADDR64, but may be unaligned. */
836 HOWTO (R_PPC64_UADDR64, /* type */
837 0, /* rightshift */
838 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
839 64, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_PPC64_UADDR64", /* name */
845 FALSE, /* partial_inplace */
846 0, /* src_mask */
847 ONES (64), /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* 64-bit relative relocation. */
851 HOWTO (R_PPC64_REL64, /* type */
852 0, /* rightshift */
853 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
854 64, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont, /* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_PPC64_REL64", /* name */
860 FALSE, /* partial_inplace */
861 0, /* src_mask */
862 ONES (64), /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 /* 64-bit relocation to the symbol's procedure linkage table. */
866 HOWTO (R_PPC64_PLT64, /* type */
867 0, /* rightshift */
868 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
869 64, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont, /* complain_on_overflow */
873 ppc64_elf_unhandled_reloc, /* special_function */
874 "R_PPC64_PLT64", /* name */
875 FALSE, /* partial_inplace */
876 0, /* src_mask */
877 ONES (64), /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 /* 64-bit PC relative relocation to the symbol's procedure linkage
881 table. */
882 /* FIXME: R_PPC64_PLTREL64 not supported. */
883 HOWTO (R_PPC64_PLTREL64, /* type */
884 0, /* rightshift */
885 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
886 64, /* bitsize */
887 TRUE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 ppc64_elf_unhandled_reloc, /* special_function */
891 "R_PPC64_PLTREL64", /* name */
892 FALSE, /* partial_inplace */
893 0, /* src_mask */
894 ONES (64), /* dst_mask */
895 TRUE), /* pcrel_offset */
896
897 /* 16 bit TOC-relative relocation. */
898
899 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
900 HOWTO (R_PPC64_TOC16, /* type */
901 0, /* rightshift */
902 1, /* size (0 = byte, 1 = short, 2 = long) */
903 16, /* bitsize */
904 FALSE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_signed, /* complain_on_overflow */
907 ppc64_elf_toc_reloc, /* special_function */
908 "R_PPC64_TOC16", /* name */
909 FALSE, /* partial_inplace */
910 0, /* src_mask */
911 0xffff, /* dst_mask */
912 FALSE), /* pcrel_offset */
913
914 /* 16 bit TOC-relative relocation without overflow. */
915
916 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
917 HOWTO (R_PPC64_TOC16_LO, /* type */
918 0, /* rightshift */
919 1, /* size (0 = byte, 1 = short, 2 = long) */
920 16, /* bitsize */
921 FALSE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_dont, /* complain_on_overflow */
924 ppc64_elf_toc_reloc, /* special_function */
925 "R_PPC64_TOC16_LO", /* name */
926 FALSE, /* partial_inplace */
927 0, /* src_mask */
928 0xffff, /* dst_mask */
929 FALSE), /* pcrel_offset */
930
931 /* 16 bit TOC-relative relocation, high 16 bits. */
932
933 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
934 HOWTO (R_PPC64_TOC16_HI, /* type */
935 16, /* rightshift */
936 1, /* size (0 = byte, 1 = short, 2 = long) */
937 16, /* bitsize */
938 FALSE, /* pc_relative */
939 0, /* bitpos */
940 complain_overflow_dont, /* complain_on_overflow */
941 ppc64_elf_toc_reloc, /* special_function */
942 "R_PPC64_TOC16_HI", /* name */
943 FALSE, /* partial_inplace */
944 0, /* src_mask */
945 0xffff, /* dst_mask */
946 FALSE), /* pcrel_offset */
947
948 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
949 contents of the low 16 bits, treated as a signed number, is
950 negative. */
951
952 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
953 HOWTO (R_PPC64_TOC16_HA, /* type */
954 16, /* rightshift */
955 1, /* size (0 = byte, 1 = short, 2 = long) */
956 16, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_dont, /* complain_on_overflow */
960 ppc64_elf_toc_ha_reloc, /* special_function */
961 "R_PPC64_TOC16_HA", /* name */
962 FALSE, /* partial_inplace */
963 0, /* src_mask */
964 0xffff, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* 64-bit relocation; insert value of TOC base (.TOC.). */
968
969 /* R_PPC64_TOC 51 doubleword64 .TOC. */
970 HOWTO (R_PPC64_TOC, /* type */
971 0, /* rightshift */
972 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
973 64, /* bitsize */
974 FALSE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_bitfield, /* complain_on_overflow */
977 ppc64_elf_toc64_reloc, /* special_function */
978 "R_PPC64_TOC", /* name */
979 FALSE, /* partial_inplace */
980 0, /* src_mask */
981 ONES (64), /* dst_mask */
982 FALSE), /* pcrel_offset */
983
984 /* Like R_PPC64_GOT16, but also informs the link editor that the
985 value to relocate may (!) refer to a PLT entry which the link
986 editor (a) may replace with the symbol value. If the link editor
987 is unable to fully resolve the symbol, it may (b) create a PLT
988 entry and store the address to the new PLT entry in the GOT.
989 This permits lazy resolution of function symbols at run time.
990 The link editor may also skip all of this and just (c) emit a
991 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
992 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
993 HOWTO (R_PPC64_PLTGOT16, /* type */
994 0, /* rightshift */
995 1, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_signed, /* complain_on_overflow */
1000 ppc64_elf_unhandled_reloc, /* special_function */
1001 "R_PPC64_PLTGOT16", /* name */
1002 FALSE, /* partial_inplace */
1003 0, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 /* Like R_PPC64_PLTGOT16, but without overflow. */
1008 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1009 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1010 0, /* rightshift */
1011 1, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 FALSE, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 ppc64_elf_unhandled_reloc, /* special_function */
1017 "R_PPC64_PLTGOT16_LO", /* name */
1018 FALSE, /* partial_inplace */
1019 0, /* src_mask */
1020 0xffff, /* dst_mask */
1021 FALSE), /* pcrel_offset */
1022
1023 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1024 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1025 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1026 16, /* rightshift */
1027 1, /* size (0 = byte, 1 = short, 2 = long) */
1028 16, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 ppc64_elf_unhandled_reloc, /* special_function */
1033 "R_PPC64_PLTGOT16_HI", /* name */
1034 FALSE, /* partial_inplace */
1035 0, /* src_mask */
1036 0xffff, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1040 1 if the contents of the low 16 bits, treated as a signed number,
1041 is negative. */
1042 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1043 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1044 16, /* rightshift */
1045 1, /* size (0 = byte, 1 = short, 2 = long) */
1046 16, /* bitsize */
1047 FALSE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_dont,/* complain_on_overflow */
1050 ppc64_elf_unhandled_reloc, /* special_function */
1051 "R_PPC64_PLTGOT16_HA", /* name */
1052 FALSE, /* partial_inplace */
1053 0, /* src_mask */
1054 0xffff, /* dst_mask */
1055 FALSE), /* pcrel_offset */
1056
1057 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1058 HOWTO (R_PPC64_ADDR16_DS, /* type */
1059 0, /* rightshift */
1060 1, /* size (0 = byte, 1 = short, 2 = long) */
1061 16, /* bitsize */
1062 FALSE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_bitfield, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_PPC64_ADDR16_DS", /* name */
1067 FALSE, /* partial_inplace */
1068 0, /* src_mask */
1069 0xfffc, /* dst_mask */
1070 FALSE), /* pcrel_offset */
1071
1072 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1073 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1074 0, /* rightshift */
1075 1, /* size (0 = byte, 1 = short, 2 = long) */
1076 16, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_PPC64_ADDR16_LO_DS",/* name */
1082 FALSE, /* partial_inplace */
1083 0, /* src_mask */
1084 0xfffc, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1088 HOWTO (R_PPC64_GOT16_DS, /* type */
1089 0, /* rightshift */
1090 1, /* size (0 = byte, 1 = short, 2 = long) */
1091 16, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_signed, /* complain_on_overflow */
1095 ppc64_elf_unhandled_reloc, /* special_function */
1096 "R_PPC64_GOT16_DS", /* name */
1097 FALSE, /* partial_inplace */
1098 0, /* src_mask */
1099 0xfffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1103 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1104 0, /* rightshift */
1105 1, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 ppc64_elf_unhandled_reloc, /* special_function */
1111 "R_PPC64_GOT16_LO_DS", /* name */
1112 FALSE, /* partial_inplace */
1113 0, /* src_mask */
1114 0xfffc, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1118 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1119 0, /* rightshift */
1120 1, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont, /* complain_on_overflow */
1125 ppc64_elf_unhandled_reloc, /* special_function */
1126 "R_PPC64_PLT16_LO_DS", /* name */
1127 FALSE, /* partial_inplace */
1128 0, /* src_mask */
1129 0xfffc, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1133 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1134 0, /* rightshift */
1135 1, /* size (0 = byte, 1 = short, 2 = long) */
1136 16, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_bitfield, /* complain_on_overflow */
1140 ppc64_elf_sectoff_reloc, /* special_function */
1141 "R_PPC64_SECTOFF_DS", /* name */
1142 FALSE, /* partial_inplace */
1143 0, /* src_mask */
1144 0xfffc, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1148 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1149 0, /* rightshift */
1150 1, /* size (0 = byte, 1 = short, 2 = long) */
1151 16, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont, /* complain_on_overflow */
1155 ppc64_elf_sectoff_reloc, /* special_function */
1156 "R_PPC64_SECTOFF_LO_DS",/* name */
1157 FALSE, /* partial_inplace */
1158 0, /* src_mask */
1159 0xfffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1163 HOWTO (R_PPC64_TOC16_DS, /* type */
1164 0, /* rightshift */
1165 1, /* size (0 = byte, 1 = short, 2 = long) */
1166 16, /* bitsize */
1167 FALSE, /* pc_relative */
1168 0, /* bitpos */
1169 complain_overflow_signed, /* complain_on_overflow */
1170 ppc64_elf_toc_reloc, /* special_function */
1171 "R_PPC64_TOC16_DS", /* name */
1172 FALSE, /* partial_inplace */
1173 0, /* src_mask */
1174 0xfffc, /* dst_mask */
1175 FALSE), /* pcrel_offset */
1176
1177 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1178 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1179 0, /* rightshift */
1180 1, /* size (0 = byte, 1 = short, 2 = long) */
1181 16, /* bitsize */
1182 FALSE, /* pc_relative */
1183 0, /* bitpos */
1184 complain_overflow_dont, /* complain_on_overflow */
1185 ppc64_elf_toc_reloc, /* special_function */
1186 "R_PPC64_TOC16_LO_DS", /* name */
1187 FALSE, /* partial_inplace */
1188 0, /* src_mask */
1189 0xfffc, /* dst_mask */
1190 FALSE), /* pcrel_offset */
1191
1192 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1193 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1194 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1195 0, /* rightshift */
1196 1, /* size (0 = byte, 1 = short, 2 = long) */
1197 16, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_signed, /* complain_on_overflow */
1201 ppc64_elf_unhandled_reloc, /* special_function */
1202 "R_PPC64_PLTGOT16_DS", /* name */
1203 FALSE, /* partial_inplace */
1204 0, /* src_mask */
1205 0xfffc, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1209 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1210 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1211 0, /* rightshift */
1212 1, /* size (0 = byte, 1 = short, 2 = long) */
1213 16, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 ppc64_elf_unhandled_reloc, /* special_function */
1218 "R_PPC64_PLTGOT16_LO_DS",/* name */
1219 FALSE, /* partial_inplace */
1220 0, /* src_mask */
1221 0xfffc, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Marker reloc for TLS. */
1225 HOWTO (R_PPC64_TLS,
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 32, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 "R_PPC64_TLS", /* name */
1234 FALSE, /* partial_inplace */
1235 0, /* src_mask */
1236 0, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Computes the load module index of the load module that contains the
1240 definition of its TLS sym. */
1241 HOWTO (R_PPC64_DTPMOD64,
1242 0, /* rightshift */
1243 4, /* size (0 = byte, 1 = short, 2 = long) */
1244 64, /* bitsize */
1245 FALSE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont, /* complain_on_overflow */
1248 ppc64_elf_unhandled_reloc, /* special_function */
1249 "R_PPC64_DTPMOD64", /* name */
1250 FALSE, /* partial_inplace */
1251 0, /* src_mask */
1252 ONES (64), /* dst_mask */
1253 FALSE), /* pcrel_offset */
1254
1255 /* Computes a dtv-relative displacement, the difference between the value
1256 of sym+add and the base address of the thread-local storage block that
1257 contains the definition of sym, minus 0x8000. */
1258 HOWTO (R_PPC64_DTPREL64,
1259 0, /* rightshift */
1260 4, /* size (0 = byte, 1 = short, 2 = long) */
1261 64, /* bitsize */
1262 FALSE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont, /* complain_on_overflow */
1265 ppc64_elf_unhandled_reloc, /* special_function */
1266 "R_PPC64_DTPREL64", /* name */
1267 FALSE, /* partial_inplace */
1268 0, /* src_mask */
1269 ONES (64), /* dst_mask */
1270 FALSE), /* pcrel_offset */
1271
1272 /* A 16 bit dtprel reloc. */
1273 HOWTO (R_PPC64_DTPREL16,
1274 0, /* rightshift */
1275 1, /* size (0 = byte, 1 = short, 2 = long) */
1276 16, /* bitsize */
1277 FALSE, /* pc_relative */
1278 0, /* bitpos */
1279 complain_overflow_signed, /* complain_on_overflow */
1280 ppc64_elf_unhandled_reloc, /* special_function */
1281 "R_PPC64_DTPREL16", /* name */
1282 FALSE, /* partial_inplace */
1283 0, /* src_mask */
1284 0xffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1286
1287 /* Like DTPREL16, but no overflow. */
1288 HOWTO (R_PPC64_DTPREL16_LO,
1289 0, /* rightshift */
1290 1, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_dont, /* complain_on_overflow */
1295 ppc64_elf_unhandled_reloc, /* special_function */
1296 "R_PPC64_DTPREL16_LO", /* name */
1297 FALSE, /* partial_inplace */
1298 0, /* src_mask */
1299 0xffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1303 HOWTO (R_PPC64_DTPREL16_HI,
1304 16, /* rightshift */
1305 1, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont, /* complain_on_overflow */
1310 ppc64_elf_unhandled_reloc, /* special_function */
1311 "R_PPC64_DTPREL16_HI", /* name */
1312 FALSE, /* partial_inplace */
1313 0, /* src_mask */
1314 0xffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1318 HOWTO (R_PPC64_DTPREL16_HA,
1319 16, /* rightshift */
1320 1, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont, /* complain_on_overflow */
1325 ppc64_elf_unhandled_reloc, /* special_function */
1326 "R_PPC64_DTPREL16_HA", /* name */
1327 FALSE, /* partial_inplace */
1328 0, /* src_mask */
1329 0xffff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1333 HOWTO (R_PPC64_DTPREL16_HIGHER,
1334 32, /* rightshift */
1335 1, /* size (0 = byte, 1 = short, 2 = long) */
1336 16, /* bitsize */
1337 FALSE, /* pc_relative */
1338 0, /* bitpos */
1339 complain_overflow_dont, /* complain_on_overflow */
1340 ppc64_elf_unhandled_reloc, /* special_function */
1341 "R_PPC64_DTPREL16_HIGHER", /* name */
1342 FALSE, /* partial_inplace */
1343 0, /* src_mask */
1344 0xffff, /* dst_mask */
1345 FALSE), /* pcrel_offset */
1346
1347 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1348 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1349 32, /* rightshift */
1350 1, /* size (0 = byte, 1 = short, 2 = long) */
1351 16, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_dont, /* complain_on_overflow */
1355 ppc64_elf_unhandled_reloc, /* special_function */
1356 "R_PPC64_DTPREL16_HIGHERA", /* name */
1357 FALSE, /* partial_inplace */
1358 0, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1363 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1364 48, /* rightshift */
1365 1, /* size (0 = byte, 1 = short, 2 = long) */
1366 16, /* bitsize */
1367 FALSE, /* pc_relative */
1368 0, /* bitpos */
1369 complain_overflow_dont, /* complain_on_overflow */
1370 ppc64_elf_unhandled_reloc, /* special_function */
1371 "R_PPC64_DTPREL16_HIGHEST", /* name */
1372 FALSE, /* partial_inplace */
1373 0, /* src_mask */
1374 0xffff, /* dst_mask */
1375 FALSE), /* pcrel_offset */
1376
1377 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1378 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1379 48, /* rightshift */
1380 1, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 ppc64_elf_unhandled_reloc, /* special_function */
1386 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0xffff, /* dst_mask */
1390 FALSE), /* pcrel_offset */
1391
1392 /* Like DTPREL16, but for insns with a DS field. */
1393 HOWTO (R_PPC64_DTPREL16_DS,
1394 0, /* rightshift */
1395 1, /* size (0 = byte, 1 = short, 2 = long) */
1396 16, /* bitsize */
1397 FALSE, /* pc_relative */
1398 0, /* bitpos */
1399 complain_overflow_signed, /* complain_on_overflow */
1400 ppc64_elf_unhandled_reloc, /* special_function */
1401 "R_PPC64_DTPREL16_DS", /* name */
1402 FALSE, /* partial_inplace */
1403 0, /* src_mask */
1404 0xfffc, /* dst_mask */
1405 FALSE), /* pcrel_offset */
1406
1407 /* Like DTPREL16_DS, but no overflow. */
1408 HOWTO (R_PPC64_DTPREL16_LO_DS,
1409 0, /* rightshift */
1410 1, /* size (0 = byte, 1 = short, 2 = long) */
1411 16, /* bitsize */
1412 FALSE, /* pc_relative */
1413 0, /* bitpos */
1414 complain_overflow_dont, /* complain_on_overflow */
1415 ppc64_elf_unhandled_reloc, /* special_function */
1416 "R_PPC64_DTPREL16_LO_DS", /* name */
1417 FALSE, /* partial_inplace */
1418 0, /* src_mask */
1419 0xfffc, /* dst_mask */
1420 FALSE), /* pcrel_offset */
1421
1422 /* Computes a tp-relative displacement, the difference between the value of
1423 sym+add and the value of the thread pointer (r13). */
1424 HOWTO (R_PPC64_TPREL64,
1425 0, /* rightshift */
1426 4, /* size (0 = byte, 1 = short, 2 = long) */
1427 64, /* bitsize */
1428 FALSE, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_dont, /* complain_on_overflow */
1431 ppc64_elf_unhandled_reloc, /* special_function */
1432 "R_PPC64_TPREL64", /* name */
1433 FALSE, /* partial_inplace */
1434 0, /* src_mask */
1435 ONES (64), /* dst_mask */
1436 FALSE), /* pcrel_offset */
1437
1438 /* A 16 bit tprel reloc. */
1439 HOWTO (R_PPC64_TPREL16,
1440 0, /* rightshift */
1441 1, /* size (0 = byte, 1 = short, 2 = long) */
1442 16, /* bitsize */
1443 FALSE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_signed, /* complain_on_overflow */
1446 ppc64_elf_unhandled_reloc, /* special_function */
1447 "R_PPC64_TPREL16", /* name */
1448 FALSE, /* partial_inplace */
1449 0, /* src_mask */
1450 0xffff, /* dst_mask */
1451 FALSE), /* pcrel_offset */
1452
1453 /* Like TPREL16, but no overflow. */
1454 HOWTO (R_PPC64_TPREL16_LO,
1455 0, /* rightshift */
1456 1, /* size (0 = byte, 1 = short, 2 = long) */
1457 16, /* bitsize */
1458 FALSE, /* pc_relative */
1459 0, /* bitpos */
1460 complain_overflow_dont, /* complain_on_overflow */
1461 ppc64_elf_unhandled_reloc, /* special_function */
1462 "R_PPC64_TPREL16_LO", /* name */
1463 FALSE, /* partial_inplace */
1464 0, /* src_mask */
1465 0xffff, /* dst_mask */
1466 FALSE), /* pcrel_offset */
1467
1468 /* Like TPREL16_LO, but next higher group of 16 bits. */
1469 HOWTO (R_PPC64_TPREL16_HI,
1470 16, /* rightshift */
1471 1, /* size (0 = byte, 1 = short, 2 = long) */
1472 16, /* bitsize */
1473 FALSE, /* pc_relative */
1474 0, /* bitpos */
1475 complain_overflow_dont, /* complain_on_overflow */
1476 ppc64_elf_unhandled_reloc, /* special_function */
1477 "R_PPC64_TPREL16_HI", /* name */
1478 FALSE, /* partial_inplace */
1479 0, /* src_mask */
1480 0xffff, /* dst_mask */
1481 FALSE), /* pcrel_offset */
1482
1483 /* Like TPREL16_HI, but adjust for low 16 bits. */
1484 HOWTO (R_PPC64_TPREL16_HA,
1485 16, /* rightshift */
1486 1, /* size (0 = byte, 1 = short, 2 = long) */
1487 16, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 ppc64_elf_unhandled_reloc, /* special_function */
1492 "R_PPC64_TPREL16_HA", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0xffff, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* Like TPREL16_HI, but next higher group of 16 bits. */
1499 HOWTO (R_PPC64_TPREL16_HIGHER,
1500 32, /* rightshift */
1501 1, /* size (0 = byte, 1 = short, 2 = long) */
1502 16, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 ppc64_elf_unhandled_reloc, /* special_function */
1507 "R_PPC64_TPREL16_HIGHER", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0xffff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1514 HOWTO (R_PPC64_TPREL16_HIGHERA,
1515 32, /* rightshift */
1516 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 16, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_dont, /* complain_on_overflow */
1521 ppc64_elf_unhandled_reloc, /* special_function */
1522 "R_PPC64_TPREL16_HIGHERA", /* name */
1523 FALSE, /* partial_inplace */
1524 0, /* src_mask */
1525 0xffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1529 HOWTO (R_PPC64_TPREL16_HIGHEST,
1530 48, /* rightshift */
1531 1, /* size (0 = byte, 1 = short, 2 = long) */
1532 16, /* bitsize */
1533 FALSE, /* pc_relative */
1534 0, /* bitpos */
1535 complain_overflow_dont, /* complain_on_overflow */
1536 ppc64_elf_unhandled_reloc, /* special_function */
1537 "R_PPC64_TPREL16_HIGHEST", /* name */
1538 FALSE, /* partial_inplace */
1539 0, /* src_mask */
1540 0xffff, /* dst_mask */
1541 FALSE), /* pcrel_offset */
1542
1543 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1544 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1545 48, /* rightshift */
1546 1, /* size (0 = byte, 1 = short, 2 = long) */
1547 16, /* bitsize */
1548 FALSE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 ppc64_elf_unhandled_reloc, /* special_function */
1552 "R_PPC64_TPREL16_HIGHESTA", /* name */
1553 FALSE, /* partial_inplace */
1554 0, /* src_mask */
1555 0xffff, /* dst_mask */
1556 FALSE), /* pcrel_offset */
1557
1558 /* Like TPREL16, but for insns with a DS field. */
1559 HOWTO (R_PPC64_TPREL16_DS,
1560 0, /* rightshift */
1561 1, /* size (0 = byte, 1 = short, 2 = long) */
1562 16, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_signed, /* complain_on_overflow */
1566 ppc64_elf_unhandled_reloc, /* special_function */
1567 "R_PPC64_TPREL16_DS", /* name */
1568 FALSE, /* partial_inplace */
1569 0, /* src_mask */
1570 0xfffc, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 /* Like TPREL16_DS, but no overflow. */
1574 HOWTO (R_PPC64_TPREL16_LO_DS,
1575 0, /* rightshift */
1576 1, /* size (0 = byte, 1 = short, 2 = long) */
1577 16, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_dont, /* complain_on_overflow */
1581 ppc64_elf_unhandled_reloc, /* special_function */
1582 "R_PPC64_TPREL16_LO_DS", /* name */
1583 FALSE, /* partial_inplace */
1584 0, /* src_mask */
1585 0xfffc, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1589 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1590 to the first entry relative to the TOC base (r2). */
1591 HOWTO (R_PPC64_GOT_TLSGD16,
1592 0, /* rightshift */
1593 1, /* size (0 = byte, 1 = short, 2 = long) */
1594 16, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_signed, /* complain_on_overflow */
1598 ppc64_elf_unhandled_reloc, /* special_function */
1599 "R_PPC64_GOT_TLSGD16", /* name */
1600 FALSE, /* partial_inplace */
1601 0, /* src_mask */
1602 0xffff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
1605 /* Like GOT_TLSGD16, but no overflow. */
1606 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1607 0, /* rightshift */
1608 1, /* size (0 = byte, 1 = short, 2 = long) */
1609 16, /* bitsize */
1610 FALSE, /* pc_relative */
1611 0, /* bitpos */
1612 complain_overflow_dont, /* complain_on_overflow */
1613 ppc64_elf_unhandled_reloc, /* special_function */
1614 "R_PPC64_GOT_TLSGD16_LO", /* name */
1615 FALSE, /* partial_inplace */
1616 0, /* src_mask */
1617 0xffff, /* dst_mask */
1618 FALSE), /* pcrel_offset */
1619
1620 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1621 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1622 16, /* rightshift */
1623 1, /* size (0 = byte, 1 = short, 2 = long) */
1624 16, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont, /* complain_on_overflow */
1628 ppc64_elf_unhandled_reloc, /* special_function */
1629 "R_PPC64_GOT_TLSGD16_HI", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0xffff, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1636 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1637 16, /* rightshift */
1638 1, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 ppc64_elf_unhandled_reloc, /* special_function */
1644 "R_PPC64_GOT_TLSGD16_HA", /* name */
1645 FALSE, /* partial_inplace */
1646 0, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1651 with values (sym+add)@dtpmod and zero, and computes the offset to the
1652 first entry relative to the TOC base (r2). */
1653 HOWTO (R_PPC64_GOT_TLSLD16,
1654 0, /* rightshift */
1655 1, /* size (0 = byte, 1 = short, 2 = long) */
1656 16, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_signed, /* complain_on_overflow */
1660 ppc64_elf_unhandled_reloc, /* special_function */
1661 "R_PPC64_GOT_TLSLD16", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0xffff, /* dst_mask */
1665 FALSE), /* pcrel_offset */
1666
1667 /* Like GOT_TLSLD16, but no overflow. */
1668 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1669 0, /* rightshift */
1670 1, /* size (0 = byte, 1 = short, 2 = long) */
1671 16, /* bitsize */
1672 FALSE, /* pc_relative */
1673 0, /* bitpos */
1674 complain_overflow_dont, /* complain_on_overflow */
1675 ppc64_elf_unhandled_reloc, /* special_function */
1676 "R_PPC64_GOT_TLSLD16_LO", /* name */
1677 FALSE, /* partial_inplace */
1678 0, /* src_mask */
1679 0xffff, /* dst_mask */
1680 FALSE), /* pcrel_offset */
1681
1682 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1683 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1684 16, /* rightshift */
1685 1, /* size (0 = byte, 1 = short, 2 = long) */
1686 16, /* bitsize */
1687 FALSE, /* pc_relative */
1688 0, /* bitpos */
1689 complain_overflow_dont, /* complain_on_overflow */
1690 ppc64_elf_unhandled_reloc, /* special_function */
1691 "R_PPC64_GOT_TLSLD16_HI", /* name */
1692 FALSE, /* partial_inplace */
1693 0, /* src_mask */
1694 0xffff, /* dst_mask */
1695 FALSE), /* pcrel_offset */
1696
1697 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1698 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1699 16, /* rightshift */
1700 1, /* size (0 = byte, 1 = short, 2 = long) */
1701 16, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_dont, /* complain_on_overflow */
1705 ppc64_elf_unhandled_reloc, /* special_function */
1706 "R_PPC64_GOT_TLSLD16_HA", /* name */
1707 FALSE, /* partial_inplace */
1708 0, /* src_mask */
1709 0xffff, /* dst_mask */
1710 FALSE), /* pcrel_offset */
1711
1712 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1713 the offset to the entry relative to the TOC base (r2). */
1714 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1715 0, /* rightshift */
1716 1, /* size (0 = byte, 1 = short, 2 = long) */
1717 16, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_signed, /* complain_on_overflow */
1721 ppc64_elf_unhandled_reloc, /* special_function */
1722 "R_PPC64_GOT_DTPREL16_DS", /* name */
1723 FALSE, /* partial_inplace */
1724 0, /* src_mask */
1725 0xfffc, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 /* Like GOT_DTPREL16_DS, but no overflow. */
1729 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1730 0, /* rightshift */
1731 1, /* size (0 = byte, 1 = short, 2 = long) */
1732 16, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 ppc64_elf_unhandled_reloc, /* special_function */
1737 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0xfffc, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1744 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1745 16, /* rightshift */
1746 1, /* size (0 = byte, 1 = short, 2 = long) */
1747 16, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont, /* complain_on_overflow */
1751 ppc64_elf_unhandled_reloc, /* special_function */
1752 "R_PPC64_GOT_DTPREL16_HI", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0xffff, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1759 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1760 16, /* rightshift */
1761 1, /* size (0 = byte, 1 = short, 2 = long) */
1762 16, /* bitsize */
1763 FALSE, /* pc_relative */
1764 0, /* bitpos */
1765 complain_overflow_dont, /* complain_on_overflow */
1766 ppc64_elf_unhandled_reloc, /* special_function */
1767 "R_PPC64_GOT_DTPREL16_HA", /* name */
1768 FALSE, /* partial_inplace */
1769 0, /* src_mask */
1770 0xffff, /* dst_mask */
1771 FALSE), /* pcrel_offset */
1772
1773 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1774 offset to the entry relative to the TOC base (r2). */
1775 HOWTO (R_PPC64_GOT_TPREL16_DS,
1776 0, /* rightshift */
1777 1, /* size (0 = byte, 1 = short, 2 = long) */
1778 16, /* bitsize */
1779 FALSE, /* pc_relative */
1780 0, /* bitpos */
1781 complain_overflow_signed, /* complain_on_overflow */
1782 ppc64_elf_unhandled_reloc, /* special_function */
1783 "R_PPC64_GOT_TPREL16_DS", /* name */
1784 FALSE, /* partial_inplace */
1785 0, /* src_mask */
1786 0xfffc, /* dst_mask */
1787 FALSE), /* pcrel_offset */
1788
1789 /* Like GOT_TPREL16_DS, but no overflow. */
1790 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1791 0, /* rightshift */
1792 1, /* size (0 = byte, 1 = short, 2 = long) */
1793 16, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_dont, /* complain_on_overflow */
1797 ppc64_elf_unhandled_reloc, /* special_function */
1798 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xfffc, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803
1804 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1805 HOWTO (R_PPC64_GOT_TPREL16_HI,
1806 16, /* rightshift */
1807 1, /* size (0 = byte, 1 = short, 2 = long) */
1808 16, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_dont, /* complain_on_overflow */
1812 ppc64_elf_unhandled_reloc, /* special_function */
1813 "R_PPC64_GOT_TPREL16_HI", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818
1819 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1820 HOWTO (R_PPC64_GOT_TPREL16_HA,
1821 16, /* rightshift */
1822 1, /* size (0 = byte, 1 = short, 2 = long) */
1823 16, /* bitsize */
1824 FALSE, /* pc_relative */
1825 0, /* bitpos */
1826 complain_overflow_dont, /* complain_on_overflow */
1827 ppc64_elf_unhandled_reloc, /* special_function */
1828 "R_PPC64_GOT_TPREL16_HA", /* name */
1829 FALSE, /* partial_inplace */
1830 0, /* src_mask */
1831 0xffff, /* dst_mask */
1832 FALSE), /* pcrel_offset */
1833
1834 /* GNU extension to record C++ vtable hierarchy. */
1835 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1836 0, /* rightshift */
1837 0, /* size (0 = byte, 1 = short, 2 = long) */
1838 0, /* bitsize */
1839 FALSE, /* pc_relative */
1840 0, /* bitpos */
1841 complain_overflow_dont, /* complain_on_overflow */
1842 NULL, /* special_function */
1843 "R_PPC64_GNU_VTINHERIT", /* name */
1844 FALSE, /* partial_inplace */
1845 0, /* src_mask */
1846 0, /* dst_mask */
1847 FALSE), /* pcrel_offset */
1848
1849 /* GNU extension to record C++ vtable member usage. */
1850 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1851 0, /* rightshift */
1852 0, /* size (0 = byte, 1 = short, 2 = long) */
1853 0, /* bitsize */
1854 FALSE, /* pc_relative */
1855 0, /* bitpos */
1856 complain_overflow_dont, /* complain_on_overflow */
1857 NULL, /* special_function */
1858 "R_PPC64_GNU_VTENTRY", /* name */
1859 FALSE, /* partial_inplace */
1860 0, /* src_mask */
1861 0, /* dst_mask */
1862 FALSE), /* pcrel_offset */
1863 };
1864
1865 \f
1866 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1867 be done. */
1868
1869 static void
1870 ppc_howto_init (void)
1871 {
1872 unsigned int i, type;
1873
1874 for (i = 0;
1875 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1876 i++)
1877 {
1878 type = ppc64_elf_howto_raw[i].type;
1879 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1880 / sizeof (ppc64_elf_howto_table[0])));
1881 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1882 }
1883 }
1884
1885 static reloc_howto_type *
1886 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1887 bfd_reloc_code_real_type code)
1888 {
1889 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1890
1891 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1892 /* Initialize howto table if needed. */
1893 ppc_howto_init ();
1894
1895 switch (code)
1896 {
1897 default:
1898 return NULL;
1899
1900 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1901 break;
1902 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1903 break;
1904 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1905 break;
1906 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1907 break;
1908 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1909 break;
1910 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1911 break;
1912 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1913 break;
1914 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1915 break;
1916 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1917 break;
1918 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1919 break;
1920 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1921 break;
1922 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1923 break;
1924 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1925 break;
1926 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1927 break;
1928 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1929 break;
1930 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1931 break;
1932 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1933 break;
1934 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1935 break;
1936 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1937 break;
1938 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1939 break;
1940 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1941 break;
1942 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1943 break;
1944 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1945 break;
1946 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1947 break;
1948 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1949 break;
1950 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1951 break;
1952 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1953 break;
1954 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1955 break;
1956 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1957 break;
1958 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1959 break;
1960 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1961 break;
1962 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1963 break;
1964 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1965 break;
1966 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1967 break;
1968 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1969 break;
1970 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1971 break;
1972 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1973 break;
1974 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1975 break;
1976 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1977 break;
1978 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1979 break;
1980 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1981 break;
1982 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1983 break;
1984 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1985 break;
1986 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1987 break;
1988 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1989 break;
1990 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1991 break;
1992 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1993 break;
1994 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1995 break;
1996 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1997 break;
1998 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1999 break;
2000 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2001 break;
2002 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2003 break;
2004 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2005 break;
2006 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2007 break;
2008 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2009 break;
2010 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2019 break;
2020 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2021 break;
2022 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2023 break;
2024 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2025 break;
2026 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2027 break;
2028 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2029 break;
2030 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2031 break;
2032 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2033 break;
2034 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2035 break;
2036 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2037 break;
2038 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2039 break;
2040 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2041 break;
2042 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2043 break;
2044 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2045 break;
2046 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2047 break;
2048 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2049 break;
2050 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2051 break;
2052 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2053 break;
2054 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2065 break;
2066 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2067 break;
2068 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2069 break;
2070 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2071 break;
2072 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2073 break;
2074 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2075 break;
2076 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2077 break;
2078 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2079 break;
2080 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2081 break;
2082 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2083 break;
2084 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2085 break;
2086 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2087 break;
2088 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2089 break;
2090 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2091 break;
2092 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2093 break;
2094 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2095 break;
2096 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2097 break;
2098 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2099 break;
2100 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2101 break;
2102 }
2103
2104 return ppc64_elf_howto_table[r];
2105 };
2106
2107 /* Set the howto pointer for a PowerPC ELF reloc. */
2108
2109 static void
2110 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2111 Elf_Internal_Rela *dst)
2112 {
2113 unsigned int type;
2114
2115 /* Initialize howto table if needed. */
2116 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2117 ppc_howto_init ();
2118
2119 type = ELF64_R_TYPE (dst->r_info);
2120 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2121 / sizeof (ppc64_elf_howto_table[0])));
2122 cache_ptr->howto = ppc64_elf_howto_table[type];
2123 }
2124
2125 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2126
2127 static bfd_reloc_status_type
2128 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2129 void *data, asection *input_section,
2130 bfd *output_bfd, char **error_message)
2131 {
2132 /* If this is a relocatable link (output_bfd test tells us), just
2133 call the generic function. Any adjustment will be done at final
2134 link time. */
2135 if (output_bfd != NULL)
2136 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2137 input_section, output_bfd, error_message);
2138
2139 /* Adjust the addend for sign extension of the low 16 bits.
2140 We won't actually be using the low 16 bits, so trashing them
2141 doesn't matter. */
2142 reloc_entry->addend += 0x8000;
2143 return bfd_reloc_continue;
2144 }
2145
2146 static bfd_reloc_status_type
2147 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2148 void *data, asection *input_section,
2149 bfd *output_bfd, char **error_message)
2150 {
2151 if (output_bfd != NULL)
2152 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2153 input_section, output_bfd, error_message);
2154
2155 if (strcmp (symbol->section->name, ".opd") == 0
2156 && (symbol->section->owner->flags & DYNAMIC) == 0)
2157 {
2158 bfd_vma dest = opd_entry_value (symbol->section,
2159 symbol->value + reloc_entry->addend,
2160 NULL, NULL);
2161 if (dest != (bfd_vma) -1)
2162 reloc_entry->addend = dest - (symbol->value
2163 + symbol->section->output_section->vma
2164 + symbol->section->output_offset);
2165 }
2166 return bfd_reloc_continue;
2167 }
2168
2169 static bfd_reloc_status_type
2170 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2171 void *data, asection *input_section,
2172 bfd *output_bfd, char **error_message)
2173 {
2174 long insn;
2175 enum elf_ppc64_reloc_type r_type;
2176 bfd_size_type octets;
2177 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2178 bfd_boolean is_power4 = FALSE;
2179
2180 /* If this is a relocatable link (output_bfd test tells us), just
2181 call the generic function. Any adjustment will be done at final
2182 link time. */
2183 if (output_bfd != NULL)
2184 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2185 input_section, output_bfd, error_message);
2186
2187 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2188 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2189 insn &= ~(0x01 << 21);
2190 r_type = reloc_entry->howto->type;
2191 if (r_type == R_PPC64_ADDR14_BRTAKEN
2192 || r_type == R_PPC64_REL14_BRTAKEN)
2193 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2194
2195 if (is_power4)
2196 {
2197 /* Set 'a' bit. This is 0b00010 in BO field for branch
2198 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2199 for branch on CTR insns (BO == 1a00t or 1a01t). */
2200 if ((insn & (0x14 << 21)) == (0x04 << 21))
2201 insn |= 0x02 << 21;
2202 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2203 insn |= 0x08 << 21;
2204 else
2205 goto out;
2206 }
2207 else
2208 {
2209 bfd_vma target = 0;
2210 bfd_vma from;
2211
2212 if (!bfd_is_com_section (symbol->section))
2213 target = symbol->value;
2214 target += symbol->section->output_section->vma;
2215 target += symbol->section->output_offset;
2216 target += reloc_entry->addend;
2217
2218 from = (reloc_entry->address
2219 + input_section->output_offset
2220 + input_section->output_section->vma);
2221
2222 /* Invert 'y' bit if not the default. */
2223 if ((bfd_signed_vma) (target - from) < 0)
2224 insn ^= 0x01 << 21;
2225 }
2226 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2227 out:
2228 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2229 input_section, output_bfd, error_message);
2230 }
2231
2232 static bfd_reloc_status_type
2233 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2234 void *data, asection *input_section,
2235 bfd *output_bfd, char **error_message)
2236 {
2237 /* If this is a relocatable link (output_bfd test tells us), just
2238 call the generic function. Any adjustment will be done at final
2239 link time. */
2240 if (output_bfd != NULL)
2241 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2242 input_section, output_bfd, error_message);
2243
2244 /* Subtract the symbol section base address. */
2245 reloc_entry->addend -= symbol->section->output_section->vma;
2246 return bfd_reloc_continue;
2247 }
2248
2249 static bfd_reloc_status_type
2250 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2251 void *data, asection *input_section,
2252 bfd *output_bfd, char **error_message)
2253 {
2254 /* If this is a relocatable link (output_bfd test tells us), just
2255 call the generic function. Any adjustment will be done at final
2256 link time. */
2257 if (output_bfd != NULL)
2258 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2259 input_section, output_bfd, error_message);
2260
2261 /* Subtract the symbol section base address. */
2262 reloc_entry->addend -= symbol->section->output_section->vma;
2263
2264 /* Adjust the addend for sign extension of the low 16 bits. */
2265 reloc_entry->addend += 0x8000;
2266 return bfd_reloc_continue;
2267 }
2268
2269 static bfd_reloc_status_type
2270 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2271 void *data, asection *input_section,
2272 bfd *output_bfd, char **error_message)
2273 {
2274 bfd_vma TOCstart;
2275
2276 /* If this is a relocatable link (output_bfd test tells us), just
2277 call the generic function. Any adjustment will be done at final
2278 link time. */
2279 if (output_bfd != NULL)
2280 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2281 input_section, output_bfd, error_message);
2282
2283 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2284 if (TOCstart == 0)
2285 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2286
2287 /* Subtract the TOC base address. */
2288 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2289 return bfd_reloc_continue;
2290 }
2291
2292 static bfd_reloc_status_type
2293 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2294 void *data, asection *input_section,
2295 bfd *output_bfd, char **error_message)
2296 {
2297 bfd_vma TOCstart;
2298
2299 /* If this is a relocatable link (output_bfd test tells us), just
2300 call the generic function. Any adjustment will be done at final
2301 link time. */
2302 if (output_bfd != NULL)
2303 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2304 input_section, output_bfd, error_message);
2305
2306 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2307 if (TOCstart == 0)
2308 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2309
2310 /* Subtract the TOC base address. */
2311 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2312
2313 /* Adjust the addend for sign extension of the low 16 bits. */
2314 reloc_entry->addend += 0x8000;
2315 return bfd_reloc_continue;
2316 }
2317
2318 static bfd_reloc_status_type
2319 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2320 void *data, asection *input_section,
2321 bfd *output_bfd, char **error_message)
2322 {
2323 bfd_vma TOCstart;
2324 bfd_size_type octets;
2325
2326 /* If this is a relocatable link (output_bfd test tells us), just
2327 call the generic function. Any adjustment will be done at final
2328 link time. */
2329 if (output_bfd != NULL)
2330 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2331 input_section, output_bfd, error_message);
2332
2333 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2334 if (TOCstart == 0)
2335 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2336
2337 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2338 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2339 return bfd_reloc_ok;
2340 }
2341
2342 static bfd_reloc_status_type
2343 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2344 void *data, asection *input_section,
2345 bfd *output_bfd, char **error_message)
2346 {
2347 /* If this is a relocatable link (output_bfd test tells us), just
2348 call the generic function. Any adjustment will be done at final
2349 link time. */
2350 if (output_bfd != NULL)
2351 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2352 input_section, output_bfd, error_message);
2353
2354 if (error_message != NULL)
2355 {
2356 static char buf[60];
2357 sprintf (buf, "generic linker can't handle %s",
2358 reloc_entry->howto->name);
2359 *error_message = buf;
2360 }
2361 return bfd_reloc_dangerous;
2362 }
2363
2364 struct ppc64_elf_obj_tdata
2365 {
2366 struct elf_obj_tdata elf;
2367
2368 /* Shortcuts to dynamic linker sections. */
2369 asection *got;
2370 asection *relgot;
2371
2372 union {
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* Used when adding symbols. */
2378 bfd_boolean has_dotsym;
2379 } u;
2380
2381 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2382 sections means we potentially need one of these for each input bfd. */
2383 union {
2384 bfd_signed_vma refcount;
2385 bfd_vma offset;
2386 } tlsld_got;
2387
2388 /* A copy of relocs before they are modified for --emit-relocs. */
2389 Elf_Internal_Rela *opd_relocs;
2390 };
2391
2392 #define ppc64_elf_tdata(bfd) \
2393 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2394
2395 #define ppc64_tlsld_got(bfd) \
2396 (&ppc64_elf_tdata (bfd)->tlsld_got)
2397
2398 /* Override the generic function because we store some extras. */
2399
2400 static bfd_boolean
2401 ppc64_elf_mkobject (bfd *abfd)
2402 {
2403 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2404 abfd->tdata.any = bfd_zalloc (abfd, amt);
2405 if (abfd->tdata.any == NULL)
2406 return FALSE;
2407 return TRUE;
2408 }
2409
2410 /* Return 1 if target is one of ours. */
2411
2412 static bfd_boolean
2413 is_ppc64_elf_target (const struct bfd_target *targ)
2414 {
2415 extern const bfd_target bfd_elf64_powerpc_vec;
2416 extern const bfd_target bfd_elf64_powerpcle_vec;
2417
2418 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2419 }
2420
2421 /* Fix bad default arch selected for a 64 bit input bfd when the
2422 default is 32 bit. */
2423
2424 static bfd_boolean
2425 ppc64_elf_object_p (bfd *abfd)
2426 {
2427 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2428 {
2429 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2430
2431 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2432 {
2433 /* Relies on arch after 32 bit default being 64 bit default. */
2434 abfd->arch_info = abfd->arch_info->next;
2435 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2436 }
2437 }
2438 return TRUE;
2439 }
2440
2441 /* Support for core dump NOTE sections. */
2442
2443 static bfd_boolean
2444 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2445 {
2446 size_t offset, size;
2447
2448 if (note->descsz != 504)
2449 return FALSE;
2450
2451 /* pr_cursig */
2452 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2453
2454 /* pr_pid */
2455 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2456
2457 /* pr_reg */
2458 offset = 112;
2459 size = 384;
2460
2461 /* Make a ".reg/999" section. */
2462 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2463 size, note->descpos + offset);
2464 }
2465
2466 static bfd_boolean
2467 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2468 {
2469 if (note->descsz != 136)
2470 return FALSE;
2471
2472 elf_tdata (abfd)->core_program
2473 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2474 elf_tdata (abfd)->core_command
2475 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2476
2477 return TRUE;
2478 }
2479
2480 /* Merge backend specific data from an object file to the output
2481 object file when linking. */
2482
2483 static bfd_boolean
2484 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2485 {
2486 /* Check if we have the same endianess. */
2487 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2488 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2489 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2490 {
2491 const char *msg;
2492
2493 if (bfd_big_endian (ibfd))
2494 msg = _("%B: compiled for a big endian system "
2495 "and target is little endian");
2496 else
2497 msg = _("%B: compiled for a little endian system "
2498 "and target is big endian");
2499
2500 (*_bfd_error_handler) (msg, ibfd);
2501
2502 bfd_set_error (bfd_error_wrong_format);
2503 return FALSE;
2504 }
2505
2506 return TRUE;
2507 }
2508
2509 /* Add extra PPC sections. */
2510
2511 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2512 {
2513 { ".plt", 4, 0, SHT_NOBITS, 0 },
2514 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2515 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2516 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2517 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2518 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2519 { NULL, 0, 0, 0, 0 }
2520 };
2521
2522 static const struct bfd_elf_special_section *
2523 ppc64_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2524 {
2525 const struct bfd_elf_special_section const *ssect;
2526
2527 /* See if this is one of the special sections. */
2528 if (sec->name == NULL)
2529 return NULL;
2530
2531 ssect = _bfd_elf_get_special_section (sec->name,
2532 ppc64_elf_special_sections,
2533 sec->use_rela_p);
2534 if (ssect != NULL)
2535 return ssect;
2536
2537 return _bfd_elf_get_sec_type_attr (abfd, sec);
2538 }
2539
2540 struct _ppc64_elf_section_data
2541 {
2542 struct bfd_elf_section_data elf;
2543
2544 /* An array with one entry for each opd function descriptor. */
2545 union
2546 {
2547 /* Points to the function code section for local opd entries. */
2548 asection **func_sec;
2549 /* After editing .opd, adjust references to opd local syms. */
2550 long *adjust;
2551 } opd;
2552
2553 /* An array for toc sections, indexed by offset/8.
2554 Specifies the relocation symbol index used at a given toc offset. */
2555 unsigned *t_symndx;
2556 };
2557
2558 #define ppc64_elf_section_data(sec) \
2559 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2560
2561 static bfd_boolean
2562 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2563 {
2564 struct _ppc64_elf_section_data *sdata;
2565 bfd_size_type amt = sizeof (*sdata);
2566
2567 sdata = bfd_zalloc (abfd, amt);
2568 if (sdata == NULL)
2569 return FALSE;
2570 sec->used_by_bfd = sdata;
2571
2572 return _bfd_elf_new_section_hook (abfd, sec);
2573 }
2574
2575 static void *
2576 get_opd_info (asection * sec)
2577 {
2578 if (sec != NULL
2579 && ppc64_elf_section_data (sec) != NULL
2580 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2581 return ppc64_elf_section_data (sec)->opd.adjust;
2582 return NULL;
2583 }
2584 \f
2585 /* Parameters for the qsort hook. */
2586 static asection *synthetic_opd;
2587 static bfd_boolean synthetic_relocatable;
2588
2589 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2590
2591 static int
2592 compare_symbols (const void *ap, const void *bp)
2593 {
2594 const asymbol *a = * (const asymbol **) ap;
2595 const asymbol *b = * (const asymbol **) bp;
2596
2597 /* Section symbols first. */
2598 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2599 return -1;
2600 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2601 return 1;
2602
2603 /* then .opd symbols. */
2604 if (a->section == synthetic_opd && b->section != synthetic_opd)
2605 return -1;
2606 if (a->section != synthetic_opd && b->section == synthetic_opd)
2607 return 1;
2608
2609 /* then other code symbols. */
2610 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2611 == (SEC_CODE | SEC_ALLOC)
2612 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2613 != (SEC_CODE | SEC_ALLOC))
2614 return -1;
2615
2616 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2617 != (SEC_CODE | SEC_ALLOC)
2618 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2619 == (SEC_CODE | SEC_ALLOC))
2620 return 1;
2621
2622 if (synthetic_relocatable)
2623 {
2624 if (a->section->id < b->section->id)
2625 return -1;
2626
2627 if (a->section->id > b->section->id)
2628 return 1;
2629 }
2630
2631 if (a->value + a->section->vma < b->value + b->section->vma)
2632 return -1;
2633
2634 if (a->value + a->section->vma > b->value + b->section->vma)
2635 return 1;
2636
2637 return 0;
2638 }
2639
2640 /* Search SYMS for a symbol of the given VALUE. */
2641
2642 static asymbol *
2643 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2644 {
2645 long mid;
2646
2647 if (id == -1)
2648 {
2649 while (lo < hi)
2650 {
2651 mid = (lo + hi) >> 1;
2652 if (syms[mid]->value + syms[mid]->section->vma < value)
2653 lo = mid + 1;
2654 else if (syms[mid]->value + syms[mid]->section->vma > value)
2655 hi = mid;
2656 else
2657 return syms[mid];
2658 }
2659 }
2660 else
2661 {
2662 while (lo < hi)
2663 {
2664 mid = (lo + hi) >> 1;
2665 if (syms[mid]->section->id < id)
2666 lo = mid + 1;
2667 else if (syms[mid]->section->id > id)
2668 hi = mid;
2669 else if (syms[mid]->value < value)
2670 lo = mid + 1;
2671 else if (syms[mid]->value > value)
2672 hi = mid;
2673 else
2674 return syms[mid];
2675 }
2676 }
2677 return NULL;
2678 }
2679
2680 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2681 entry syms. */
2682
2683 static long
2684 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2685 long static_count, asymbol **static_syms,
2686 long dyn_count, asymbol **dyn_syms,
2687 asymbol **ret)
2688 {
2689 asymbol *s;
2690 long i;
2691 long count;
2692 char *names;
2693 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2694 asection *opd;
2695 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2696 asymbol **syms;
2697
2698 *ret = NULL;
2699
2700 opd = bfd_get_section_by_name (abfd, ".opd");
2701 if (opd == NULL)
2702 return 0;
2703
2704 symcount = static_count;
2705 if (!relocatable)
2706 symcount += dyn_count;
2707 if (symcount == 0)
2708 return 0;
2709
2710 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2711 if (syms == NULL)
2712 return -1;
2713
2714 if (!relocatable && static_count != 0 && dyn_count != 0)
2715 {
2716 /* Use both symbol tables. */
2717 memcpy (syms, static_syms, static_count * sizeof (*syms));
2718 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2719 }
2720 else if (!relocatable && static_count == 0)
2721 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2722 else
2723 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2724
2725 synthetic_opd = opd;
2726 synthetic_relocatable = relocatable;
2727 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2728
2729 if (!relocatable && symcount > 1)
2730 {
2731 long j;
2732 /* Trim duplicate syms, since we may have merged the normal and
2733 dynamic symbols. Actually, we only care about syms that have
2734 different values, so trim any with the same value. */
2735 for (i = 1, j = 1; i < symcount; ++i)
2736 if (syms[i - 1]->value + syms[i - 1]->section->vma
2737 != syms[i]->value + syms[i]->section->vma)
2738 syms[j++] = syms[i];
2739 symcount = j;
2740 }
2741
2742 i = 0;
2743 if (syms[i]->section == opd)
2744 ++i;
2745 codesecsym = i;
2746
2747 for (; i < symcount; ++i)
2748 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2749 != (SEC_CODE | SEC_ALLOC))
2750 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2751 break;
2752 codesecsymend = i;
2753
2754 for (; i < symcount; ++i)
2755 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2756 break;
2757 secsymend = i;
2758
2759 for (; i < symcount; ++i)
2760 if (syms[i]->section != opd)
2761 break;
2762 opdsymend = i;
2763
2764 for (; i < symcount; ++i)
2765 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2766 != (SEC_CODE | SEC_ALLOC))
2767 break;
2768 symcount = i;
2769
2770 count = 0;
2771 if (opdsymend == secsymend)
2772 goto done;
2773
2774 if (relocatable)
2775 {
2776 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2777 arelent *r;
2778 size_t size;
2779 long relcount;
2780
2781 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2782 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2783 if (relcount == 0)
2784 goto done;
2785
2786 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2787 {
2788 count = -1;
2789 goto done;
2790 }
2791
2792 size = 0;
2793 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2794 {
2795 asymbol *sym;
2796
2797 while (r < opd->relocation + relcount
2798 && r->address < syms[i]->value + opd->vma)
2799 ++r;
2800
2801 if (r == opd->relocation + relcount)
2802 break;
2803
2804 if (r->address != syms[i]->value + opd->vma)
2805 continue;
2806
2807 if (r->howto->type != R_PPC64_ADDR64)
2808 continue;
2809
2810 sym = *r->sym_ptr_ptr;
2811 if (!sym_exists_at (syms, opdsymend, symcount,
2812 sym->section->id, sym->value + r->addend))
2813 {
2814 ++count;
2815 size += sizeof (asymbol);
2816 size += strlen (syms[i]->name) + 2;
2817 }
2818 }
2819
2820 s = *ret = bfd_malloc (size);
2821 if (s == NULL)
2822 {
2823 count = -1;
2824 goto done;
2825 }
2826
2827 names = (char *) (s + count);
2828
2829 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2830 {
2831 asymbol *sym;
2832
2833 while (r < opd->relocation + relcount
2834 && r->address < syms[i]->value + opd->vma)
2835 ++r;
2836
2837 if (r == opd->relocation + relcount)
2838 break;
2839
2840 if (r->address != syms[i]->value + opd->vma)
2841 continue;
2842
2843 if (r->howto->type != R_PPC64_ADDR64)
2844 continue;
2845
2846 sym = *r->sym_ptr_ptr;
2847 if (!sym_exists_at (syms, opdsymend, symcount,
2848 sym->section->id, sym->value + r->addend))
2849 {
2850 size_t len;
2851
2852 *s = *syms[i];
2853 s->section = sym->section;
2854 s->value = sym->value + r->addend;
2855 s->name = names;
2856 *names++ = '.';
2857 len = strlen (syms[i]->name);
2858 memcpy (names, syms[i]->name, len + 1);
2859 names += len + 1;
2860 s++;
2861 }
2862 }
2863 }
2864 else
2865 {
2866 bfd_byte *contents;
2867 size_t size;
2868
2869 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2870 {
2871 if (contents)
2872 {
2873 free_contents_and_exit:
2874 free (contents);
2875 }
2876 count = -1;
2877 goto done;
2878 }
2879
2880 size = 0;
2881 for (i = secsymend; i < opdsymend; ++i)
2882 {
2883 bfd_vma ent;
2884
2885 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2886 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2887 {
2888 ++count;
2889 size += sizeof (asymbol);
2890 size += strlen (syms[i]->name) + 2;
2891 }
2892 }
2893
2894 s = *ret = bfd_malloc (size);
2895 if (s == NULL)
2896 goto free_contents_and_exit;
2897
2898 names = (char *) (s + count);
2899
2900 for (i = secsymend; i < opdsymend; ++i)
2901 {
2902 bfd_vma ent;
2903
2904 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2905 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2906 {
2907 long lo, hi;
2908 size_t len;
2909 asection *sec = abfd->sections;
2910
2911 *s = *syms[i];
2912 lo = codesecsym;
2913 hi = codesecsymend;
2914 while (lo < hi)
2915 {
2916 long mid = (lo + hi) >> 1;
2917 if (syms[mid]->section->vma < ent)
2918 lo = mid + 1;
2919 else if (syms[mid]->section->vma > ent)
2920 hi = mid;
2921 else
2922 {
2923 sec = syms[mid]->section;
2924 break;
2925 }
2926 }
2927
2928 if (lo >= hi && lo > codesecsym)
2929 sec = syms[lo - 1]->section;
2930
2931 for (; sec != NULL; sec = sec->next)
2932 {
2933 if (sec->vma > ent)
2934 break;
2935 if ((sec->flags & SEC_ALLOC) == 0
2936 || (sec->flags & SEC_LOAD) == 0)
2937 break;
2938 if ((sec->flags & SEC_CODE) != 0)
2939 s->section = sec;
2940 }
2941 s->value = ent - s->section->vma;
2942 s->name = names;
2943 *names++ = '.';
2944 len = strlen (syms[i]->name);
2945 memcpy (names, syms[i]->name, len + 1);
2946 names += len + 1;
2947 s++;
2948 }
2949 }
2950 free (contents);
2951 }
2952
2953 done:
2954 free (syms);
2955 return count;
2956 }
2957 \f
2958 /* The following functions are specific to the ELF linker, while
2959 functions above are used generally. Those named ppc64_elf_* are
2960 called by the main ELF linker code. They appear in this file more
2961 or less in the order in which they are called. eg.
2962 ppc64_elf_check_relocs is called early in the link process,
2963 ppc64_elf_finish_dynamic_sections is one of the last functions
2964 called.
2965
2966 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2967 functions have both a function code symbol and a function descriptor
2968 symbol. A call to foo in a relocatable object file looks like:
2969
2970 . .text
2971 . x:
2972 . bl .foo
2973 . nop
2974
2975 The function definition in another object file might be:
2976
2977 . .section .opd
2978 . foo: .quad .foo
2979 . .quad .TOC.@tocbase
2980 . .quad 0
2981 .
2982 . .text
2983 . .foo: blr
2984
2985 When the linker resolves the call during a static link, the branch
2986 unsurprisingly just goes to .foo and the .opd information is unused.
2987 If the function definition is in a shared library, things are a little
2988 different: The call goes via a plt call stub, the opd information gets
2989 copied to the plt, and the linker patches the nop.
2990
2991 . x:
2992 . bl .foo_stub
2993 . ld 2,40(1)
2994 .
2995 .
2996 . .foo_stub:
2997 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2998 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2999 . std 2,40(1) # this is the general idea
3000 . ld 11,0(12)
3001 . ld 2,8(12)
3002 . mtctr 11
3003 . ld 11,16(12)
3004 . bctr
3005 .
3006 . .section .plt
3007 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3008
3009 The "reloc ()" notation is supposed to indicate that the linker emits
3010 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3011 copying.
3012
3013 What are the difficulties here? Well, firstly, the relocations
3014 examined by the linker in check_relocs are against the function code
3015 sym .foo, while the dynamic relocation in the plt is emitted against
3016 the function descriptor symbol, foo. Somewhere along the line, we need
3017 to carefully copy dynamic link information from one symbol to the other.
3018 Secondly, the generic part of the elf linker will make .foo a dynamic
3019 symbol as is normal for most other backends. We need foo dynamic
3020 instead, at least for an application final link. However, when
3021 creating a shared library containing foo, we need to have both symbols
3022 dynamic so that references to .foo are satisfied during the early
3023 stages of linking. Otherwise the linker might decide to pull in a
3024 definition from some other object, eg. a static library.
3025
3026 Update: As of August 2004, we support a new convention. Function
3027 calls may use the function descriptor symbol, ie. "bl foo". This
3028 behaves exactly as "bl .foo". */
3029
3030 /* The linker needs to keep track of the number of relocs that it
3031 decides to copy as dynamic relocs in check_relocs for each symbol.
3032 This is so that it can later discard them if they are found to be
3033 unnecessary. We store the information in a field extending the
3034 regular ELF linker hash table. */
3035
3036 struct ppc_dyn_relocs
3037 {
3038 struct ppc_dyn_relocs *next;
3039
3040 /* The input section of the reloc. */
3041 asection *sec;
3042
3043 /* Total number of relocs copied for the input section. */
3044 bfd_size_type count;
3045
3046 /* Number of pc-relative relocs copied for the input section. */
3047 bfd_size_type pc_count;
3048 };
3049
3050 /* Track GOT entries needed for a given symbol. We might need more
3051 than one got entry per symbol. */
3052 struct got_entry
3053 {
3054 struct got_entry *next;
3055
3056 /* The symbol addend that we'll be placing in the GOT. */
3057 bfd_vma addend;
3058
3059 /* Unlike other ELF targets, we use separate GOT entries for the same
3060 symbol referenced from different input files. This is to support
3061 automatic multiple TOC/GOT sections, where the TOC base can vary
3062 from one input file to another.
3063
3064 Point to the BFD owning this GOT entry. */
3065 bfd *owner;
3066
3067 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3068 TLS_TPREL or TLS_DTPREL for tls entries. */
3069 char tls_type;
3070
3071 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3072 union
3073 {
3074 bfd_signed_vma refcount;
3075 bfd_vma offset;
3076 } got;
3077 };
3078
3079 /* The same for PLT. */
3080 struct plt_entry
3081 {
3082 struct plt_entry *next;
3083
3084 bfd_vma addend;
3085
3086 union
3087 {
3088 bfd_signed_vma refcount;
3089 bfd_vma offset;
3090 } plt;
3091 };
3092
3093 /* Of those relocs that might be copied as dynamic relocs, this macro
3094 selects those that must be copied when linking a shared library,
3095 even when the symbol is local. */
3096
3097 #define MUST_BE_DYN_RELOC(RTYPE) \
3098 ((RTYPE) != R_PPC64_REL32 \
3099 && (RTYPE) != R_PPC64_REL64 \
3100 && (RTYPE) != R_PPC64_REL30)
3101
3102 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3103 copying dynamic variables from a shared lib into an app's dynbss
3104 section, and instead use a dynamic relocation to point into the
3105 shared lib. With code that gcc generates, it's vital that this be
3106 enabled; In the PowerPC64 ABI, the address of a function is actually
3107 the address of a function descriptor, which resides in the .opd
3108 section. gcc uses the descriptor directly rather than going via the
3109 GOT as some other ABI's do, which means that initialized function
3110 pointers must reference the descriptor. Thus, a function pointer
3111 initialized to the address of a function in a shared library will
3112 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3113 redefines the function descriptor symbol to point to the copy. This
3114 presents a problem as a plt entry for that function is also
3115 initialized from the function descriptor symbol and the copy reloc
3116 may not be initialized first. */
3117 #define ELIMINATE_COPY_RELOCS 1
3118
3119 /* Section name for stubs is the associated section name plus this
3120 string. */
3121 #define STUB_SUFFIX ".stub"
3122
3123 /* Linker stubs.
3124 ppc_stub_long_branch:
3125 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3126 destination, but a 24 bit branch in a stub section will reach.
3127 . b dest
3128
3129 ppc_stub_plt_branch:
3130 Similar to the above, but a 24 bit branch in the stub section won't
3131 reach its destination.
3132 . addis %r12,%r2,xxx@toc@ha
3133 . ld %r11,xxx@toc@l(%r12)
3134 . mtctr %r11
3135 . bctr
3136
3137 ppc_stub_plt_call:
3138 Used to call a function in a shared library. If it so happens that
3139 the plt entry referenced crosses a 64k boundary, then an extra
3140 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3141 xxx+16 as appropriate.
3142 . addis %r12,%r2,xxx@toc@ha
3143 . std %r2,40(%r1)
3144 . ld %r11,xxx+0@toc@l(%r12)
3145 . ld %r2,xxx+8@toc@l(%r12)
3146 . mtctr %r11
3147 . ld %r11,xxx+16@toc@l(%r12)
3148 . bctr
3149
3150 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3151 code to adjust the value and save r2 to support multiple toc sections.
3152 A ppc_stub_long_branch with an r2 offset looks like:
3153 . std %r2,40(%r1)
3154 . addis %r2,%r2,off@ha
3155 . addi %r2,%r2,off@l
3156 . b dest
3157
3158 A ppc_stub_plt_branch with an r2 offset looks like:
3159 . std %r2,40(%r1)
3160 . addis %r12,%r2,xxx@toc@ha
3161 . ld %r11,xxx@toc@l(%r12)
3162 . addis %r2,%r2,off@ha
3163 . addi %r2,%r2,off@l
3164 . mtctr %r11
3165 . bctr
3166 */
3167
3168 enum ppc_stub_type {
3169 ppc_stub_none,
3170 ppc_stub_long_branch,
3171 ppc_stub_long_branch_r2off,
3172 ppc_stub_plt_branch,
3173 ppc_stub_plt_branch_r2off,
3174 ppc_stub_plt_call
3175 };
3176
3177 struct ppc_stub_hash_entry {
3178
3179 /* Base hash table entry structure. */
3180 struct bfd_hash_entry root;
3181
3182 enum ppc_stub_type stub_type;
3183
3184 /* The stub section. */
3185 asection *stub_sec;
3186
3187 /* Offset within stub_sec of the beginning of this stub. */
3188 bfd_vma stub_offset;
3189
3190 /* Given the symbol's value and its section we can determine its final
3191 value when building the stubs (so the stub knows where to jump. */
3192 bfd_vma target_value;
3193 asection *target_section;
3194
3195 /* The symbol table entry, if any, that this was derived from. */
3196 struct ppc_link_hash_entry *h;
3197
3198 /* And the reloc addend that this was derived from. */
3199 bfd_vma addend;
3200
3201 /* Where this stub is being called from, or, in the case of combined
3202 stub sections, the first input section in the group. */
3203 asection *id_sec;
3204 };
3205
3206 struct ppc_branch_hash_entry {
3207
3208 /* Base hash table entry structure. */
3209 struct bfd_hash_entry root;
3210
3211 /* Offset within .branch_lt. */
3212 unsigned int offset;
3213
3214 /* Generation marker. */
3215 unsigned int iter;
3216 };
3217
3218 struct ppc_link_hash_entry
3219 {
3220 struct elf_link_hash_entry elf;
3221
3222 /* A pointer to the most recently used stub hash entry against this
3223 symbol. */
3224 struct ppc_stub_hash_entry *stub_cache;
3225
3226 /* Track dynamic relocs copied for this symbol. */
3227 struct ppc_dyn_relocs *dyn_relocs;
3228
3229 /* Link between function code and descriptor symbols. */
3230 struct ppc_link_hash_entry *oh;
3231
3232 /* Flag function code and descriptor symbols. */
3233 unsigned int is_func:1;
3234 unsigned int is_func_descriptor:1;
3235 unsigned int fake:1;
3236
3237 /* Whether global opd/toc sym has been adjusted or not.
3238 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3239 should be set for all globals defined in any opd/toc section. */
3240 unsigned int adjust_done:1;
3241
3242 /* Set if we twiddled this symbol to weak at some stage. */
3243 unsigned int was_undefined:1;
3244
3245 /* Contexts in which symbol is used in the GOT (or TOC).
3246 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3247 corresponding relocs are encountered during check_relocs.
3248 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3249 indicate the corresponding GOT entry type is not needed.
3250 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3251 a TPREL one. We use a separate flag rather than setting TPREL
3252 just for convenience in distinguishing the two cases. */
3253 #define TLS_GD 1 /* GD reloc. */
3254 #define TLS_LD 2 /* LD reloc. */
3255 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3256 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3257 #define TLS_TLS 16 /* Any TLS reloc. */
3258 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3259 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3260 char tls_mask;
3261 };
3262
3263 /* ppc64 ELF linker hash table. */
3264
3265 struct ppc_link_hash_table
3266 {
3267 struct elf_link_hash_table elf;
3268
3269 /* The stub hash table. */
3270 struct bfd_hash_table stub_hash_table;
3271
3272 /* Another hash table for plt_branch stubs. */
3273 struct bfd_hash_table branch_hash_table;
3274
3275 /* Linker stub bfd. */
3276 bfd *stub_bfd;
3277
3278 /* Linker call-backs. */
3279 asection * (*add_stub_section) (const char *, asection *);
3280 void (*layout_sections_again) (void);
3281
3282 /* Array to keep track of which stub sections have been created, and
3283 information on stub grouping. */
3284 struct map_stub {
3285 /* This is the section to which stubs in the group will be attached. */
3286 asection *link_sec;
3287 /* The stub section. */
3288 asection *stub_sec;
3289 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3290 bfd_vma toc_off;
3291 } *stub_group;
3292
3293 /* Temp used when calculating TOC pointers. */
3294 bfd_vma toc_curr;
3295
3296 /* Highest input section id. */
3297 int top_id;
3298
3299 /* Highest output section index. */
3300 int top_index;
3301
3302 /* List of input sections for each output section. */
3303 asection **input_list;
3304
3305 /* Short-cuts to get to dynamic linker sections. */
3306 asection *got;
3307 asection *plt;
3308 asection *relplt;
3309 asection *dynbss;
3310 asection *relbss;
3311 asection *glink;
3312 asection *sfpr;
3313 asection *brlt;
3314 asection *relbrlt;
3315
3316 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3317 struct ppc_link_hash_entry *tls_get_addr;
3318 struct ppc_link_hash_entry *tls_get_addr_fd;
3319
3320 /* Statistics. */
3321 unsigned long stub_count[ppc_stub_plt_call];
3322
3323 /* Number of stubs against global syms. */
3324 unsigned long stub_globals;
3325
3326 /* Set if we should emit symbols for stubs. */
3327 unsigned int emit_stub_syms:1;
3328
3329 /* Support for multiple toc sections. */
3330 unsigned int no_multi_toc:1;
3331 unsigned int multi_toc_needed:1;
3332
3333 /* Set on error. */
3334 unsigned int stub_error:1;
3335
3336 /* Flag set when small branches are detected. Used to
3337 select suitable defaults for the stub group size. */
3338 unsigned int has_14bit_branch:1;
3339
3340 /* Temp used by ppc64_elf_check_directives. */
3341 unsigned int twiddled_syms:1;
3342
3343 /* Incremented every time we size stubs. */
3344 unsigned int stub_iteration;
3345
3346 /* Small local sym to section mapping cache. */
3347 struct sym_sec_cache sym_sec;
3348 };
3349
3350 /* Rename some of the generic section flags to better document how they
3351 are used here. */
3352 #define has_toc_reloc has_gp_reloc
3353 #define makes_toc_func_call need_finalize_relax
3354 #define call_check_in_progress reloc_done
3355
3356 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3357
3358 #define ppc_hash_table(p) \
3359 ((struct ppc_link_hash_table *) ((p)->hash))
3360
3361 #define ppc_stub_hash_lookup(table, string, create, copy) \
3362 ((struct ppc_stub_hash_entry *) \
3363 bfd_hash_lookup ((table), (string), (create), (copy)))
3364
3365 #define ppc_branch_hash_lookup(table, string, create, copy) \
3366 ((struct ppc_branch_hash_entry *) \
3367 bfd_hash_lookup ((table), (string), (create), (copy)))
3368
3369 /* Create an entry in the stub hash table. */
3370
3371 static struct bfd_hash_entry *
3372 stub_hash_newfunc (struct bfd_hash_entry *entry,
3373 struct bfd_hash_table *table,
3374 const char *string)
3375 {
3376 /* Allocate the structure if it has not already been allocated by a
3377 subclass. */
3378 if (entry == NULL)
3379 {
3380 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3381 if (entry == NULL)
3382 return entry;
3383 }
3384
3385 /* Call the allocation method of the superclass. */
3386 entry = bfd_hash_newfunc (entry, table, string);
3387 if (entry != NULL)
3388 {
3389 struct ppc_stub_hash_entry *eh;
3390
3391 /* Initialize the local fields. */
3392 eh = (struct ppc_stub_hash_entry *) entry;
3393 eh->stub_type = ppc_stub_none;
3394 eh->stub_sec = NULL;
3395 eh->stub_offset = 0;
3396 eh->target_value = 0;
3397 eh->target_section = NULL;
3398 eh->h = NULL;
3399 eh->id_sec = NULL;
3400 }
3401
3402 return entry;
3403 }
3404
3405 /* Create an entry in the branch hash table. */
3406
3407 static struct bfd_hash_entry *
3408 branch_hash_newfunc (struct bfd_hash_entry *entry,
3409 struct bfd_hash_table *table,
3410 const char *string)
3411 {
3412 /* Allocate the structure if it has not already been allocated by a
3413 subclass. */
3414 if (entry == NULL)
3415 {
3416 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3417 if (entry == NULL)
3418 return entry;
3419 }
3420
3421 /* Call the allocation method of the superclass. */
3422 entry = bfd_hash_newfunc (entry, table, string);
3423 if (entry != NULL)
3424 {
3425 struct ppc_branch_hash_entry *eh;
3426
3427 /* Initialize the local fields. */
3428 eh = (struct ppc_branch_hash_entry *) entry;
3429 eh->offset = 0;
3430 eh->iter = 0;
3431 }
3432
3433 return entry;
3434 }
3435
3436 /* Create an entry in a ppc64 ELF linker hash table. */
3437
3438 static struct bfd_hash_entry *
3439 link_hash_newfunc (struct bfd_hash_entry *entry,
3440 struct bfd_hash_table *table,
3441 const char *string)
3442 {
3443 /* Allocate the structure if it has not already been allocated by a
3444 subclass. */
3445 if (entry == NULL)
3446 {
3447 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3448 if (entry == NULL)
3449 return entry;
3450 }
3451
3452 /* Call the allocation method of the superclass. */
3453 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3454 if (entry != NULL)
3455 {
3456 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3457
3458 memset (&eh->stub_cache, 0,
3459 (sizeof (struct ppc_link_hash_entry)
3460 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3461 }
3462
3463 return entry;
3464 }
3465
3466 /* Create a ppc64 ELF linker hash table. */
3467
3468 static struct bfd_link_hash_table *
3469 ppc64_elf_link_hash_table_create (bfd *abfd)
3470 {
3471 struct ppc_link_hash_table *htab;
3472 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3473
3474 htab = bfd_zmalloc (amt);
3475 if (htab == NULL)
3476 return NULL;
3477
3478 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3479 {
3480 free (htab);
3481 return NULL;
3482 }
3483
3484 /* Init the stub hash table too. */
3485 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3486 return NULL;
3487
3488 /* And the branch hash table. */
3489 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3490 return NULL;
3491
3492 /* Initializing two fields of the union is just cosmetic. We really
3493 only care about glist, but when compiled on a 32-bit host the
3494 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3495 debugger inspection of these fields look nicer. */
3496 htab->elf.init_got_refcount.refcount = 0;
3497 htab->elf.init_got_refcount.glist = NULL;
3498 htab->elf.init_plt_refcount.refcount = 0;
3499 htab->elf.init_plt_refcount.glist = NULL;
3500 htab->elf.init_got_offset.offset = 0;
3501 htab->elf.init_got_offset.glist = NULL;
3502 htab->elf.init_plt_offset.offset = 0;
3503 htab->elf.init_plt_offset.glist = NULL;
3504
3505 return &htab->elf.root;
3506 }
3507
3508 /* Free the derived linker hash table. */
3509
3510 static void
3511 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3512 {
3513 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3514
3515 bfd_hash_table_free (&ret->stub_hash_table);
3516 bfd_hash_table_free (&ret->branch_hash_table);
3517 _bfd_generic_link_hash_table_free (hash);
3518 }
3519
3520 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3521
3522 void
3523 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3524 {
3525 struct ppc_link_hash_table *htab;
3526
3527 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3528
3529 /* Always hook our dynamic sections into the first bfd, which is the
3530 linker created stub bfd. This ensures that the GOT header is at
3531 the start of the output TOC section. */
3532 htab = ppc_hash_table (info);
3533 htab->stub_bfd = abfd;
3534 htab->elf.dynobj = abfd;
3535 }
3536
3537 /* Build a name for an entry in the stub hash table. */
3538
3539 static char *
3540 ppc_stub_name (const asection *input_section,
3541 const asection *sym_sec,
3542 const struct ppc_link_hash_entry *h,
3543 const Elf_Internal_Rela *rel)
3544 {
3545 char *stub_name;
3546 bfd_size_type len;
3547
3548 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3549 offsets from a sym as a branch target? In fact, we could
3550 probably assume the addend is always zero. */
3551 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3552
3553 if (h)
3554 {
3555 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3556 stub_name = bfd_malloc (len);
3557 if (stub_name == NULL)
3558 return stub_name;
3559
3560 sprintf (stub_name, "%08x.%s+%x",
3561 input_section->id & 0xffffffff,
3562 h->elf.root.root.string,
3563 (int) rel->r_addend & 0xffffffff);
3564 }
3565 else
3566 {
3567 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3568 stub_name = bfd_malloc (len);
3569 if (stub_name == NULL)
3570 return stub_name;
3571
3572 sprintf (stub_name, "%08x.%x:%x+%x",
3573 input_section->id & 0xffffffff,
3574 sym_sec->id & 0xffffffff,
3575 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3576 (int) rel->r_addend & 0xffffffff);
3577 }
3578 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3579 stub_name[len - 2] = 0;
3580 return stub_name;
3581 }
3582
3583 /* Look up an entry in the stub hash. Stub entries are cached because
3584 creating the stub name takes a bit of time. */
3585
3586 static struct ppc_stub_hash_entry *
3587 ppc_get_stub_entry (const asection *input_section,
3588 const asection *sym_sec,
3589 struct ppc_link_hash_entry *h,
3590 const Elf_Internal_Rela *rel,
3591 struct ppc_link_hash_table *htab)
3592 {
3593 struct ppc_stub_hash_entry *stub_entry;
3594 const asection *id_sec;
3595
3596 /* If this input section is part of a group of sections sharing one
3597 stub section, then use the id of the first section in the group.
3598 Stub names need to include a section id, as there may well be
3599 more than one stub used to reach say, printf, and we need to
3600 distinguish between them. */
3601 id_sec = htab->stub_group[input_section->id].link_sec;
3602
3603 if (h != NULL && h->stub_cache != NULL
3604 && h->stub_cache->h == h
3605 && h->stub_cache->id_sec == id_sec)
3606 {
3607 stub_entry = h->stub_cache;
3608 }
3609 else
3610 {
3611 char *stub_name;
3612
3613 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3614 if (stub_name == NULL)
3615 return NULL;
3616
3617 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3618 stub_name, FALSE, FALSE);
3619 if (h != NULL)
3620 h->stub_cache = stub_entry;
3621
3622 free (stub_name);
3623 }
3624
3625 return stub_entry;
3626 }
3627
3628 /* Add a new stub entry to the stub hash. Not all fields of the new
3629 stub entry are initialised. */
3630
3631 static struct ppc_stub_hash_entry *
3632 ppc_add_stub (const char *stub_name,
3633 asection *section,
3634 struct ppc_link_hash_table *htab)
3635 {
3636 asection *link_sec;
3637 asection *stub_sec;
3638 struct ppc_stub_hash_entry *stub_entry;
3639
3640 link_sec = htab->stub_group[section->id].link_sec;
3641 stub_sec = htab->stub_group[section->id].stub_sec;
3642 if (stub_sec == NULL)
3643 {
3644 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3645 if (stub_sec == NULL)
3646 {
3647 size_t namelen;
3648 bfd_size_type len;
3649 char *s_name;
3650
3651 namelen = strlen (link_sec->name);
3652 len = namelen + sizeof (STUB_SUFFIX);
3653 s_name = bfd_alloc (htab->stub_bfd, len);
3654 if (s_name == NULL)
3655 return NULL;
3656
3657 memcpy (s_name, link_sec->name, namelen);
3658 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3659 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3660 if (stub_sec == NULL)
3661 return NULL;
3662 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3663 }
3664 htab->stub_group[section->id].stub_sec = stub_sec;
3665 }
3666
3667 /* Enter this entry into the linker stub hash table. */
3668 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3669 TRUE, FALSE);
3670 if (stub_entry == NULL)
3671 {
3672 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3673 section->owner, stub_name);
3674 return NULL;
3675 }
3676
3677 stub_entry->stub_sec = stub_sec;
3678 stub_entry->stub_offset = 0;
3679 stub_entry->id_sec = link_sec;
3680 return stub_entry;
3681 }
3682
3683 /* Create sections for linker generated code. */
3684
3685 static bfd_boolean
3686 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3687 {
3688 struct ppc_link_hash_table *htab;
3689 flagword flags;
3690
3691 htab = ppc_hash_table (info);
3692
3693 /* Create .sfpr for code to save and restore fp regs. */
3694 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3695 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3696 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3697 flags);
3698 if (htab->sfpr == NULL
3699 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3700 return FALSE;
3701
3702 /* Create .glink for lazy dynamic linking support. */
3703 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3704 flags);
3705 if (htab->glink == NULL
3706 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3707 return FALSE;
3708
3709 /* Create .branch_lt for plt_branch stubs. */
3710 flags = (SEC_ALLOC | SEC_LOAD
3711 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3712 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3713 flags);
3714 if (htab->brlt == NULL
3715 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3716 return FALSE;
3717
3718 if (info->shared || info->emitrelocations)
3719 {
3720 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3721 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3722 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
3723 ".rela.branch_lt",
3724 flags);
3725 if (!htab->relbrlt
3726 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3727 return FALSE;
3728 }
3729 return TRUE;
3730 }
3731
3732 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3733 not already done. */
3734
3735 static bfd_boolean
3736 create_got_section (bfd *abfd, struct bfd_link_info *info)
3737 {
3738 asection *got, *relgot;
3739 flagword flags;
3740 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3741
3742 if (!htab->got)
3743 {
3744 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3745 return FALSE;
3746
3747 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3748 if (!htab->got)
3749 abort ();
3750 }
3751
3752 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3753 | SEC_LINKER_CREATED);
3754
3755 got = bfd_make_section_with_flags (abfd, ".got", flags);
3756 if (!got
3757 || !bfd_set_section_alignment (abfd, got, 3))
3758 return FALSE;
3759
3760 relgot = bfd_make_section_with_flags (abfd, ".rela.got",
3761 flags | SEC_READONLY);
3762 if (!relgot
3763 || ! bfd_set_section_alignment (abfd, relgot, 3))
3764 return FALSE;
3765
3766 ppc64_elf_tdata (abfd)->got = got;
3767 ppc64_elf_tdata (abfd)->relgot = relgot;
3768 return TRUE;
3769 }
3770
3771 /* Create the dynamic sections, and set up shortcuts. */
3772
3773 static bfd_boolean
3774 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3775 {
3776 struct ppc_link_hash_table *htab;
3777
3778 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3779 return FALSE;
3780
3781 htab = ppc_hash_table (info);
3782 if (!htab->got)
3783 htab->got = bfd_get_section_by_name (dynobj, ".got");
3784 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3785 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3786 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3787 if (!info->shared)
3788 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3789
3790 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3791 || (!info->shared && !htab->relbss))
3792 abort ();
3793
3794 return TRUE;
3795 }
3796
3797 /* Merge PLT info on FROM with that on TO. */
3798
3799 static void
3800 move_plt_plist (struct ppc_link_hash_entry *from,
3801 struct ppc_link_hash_entry *to)
3802 {
3803 if (from->elf.plt.plist != NULL)
3804 {
3805 if (to->elf.plt.plist != NULL)
3806 {
3807 struct plt_entry **entp;
3808 struct plt_entry *ent;
3809
3810 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3811 {
3812 struct plt_entry *dent;
3813
3814 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3815 if (dent->addend == ent->addend)
3816 {
3817 dent->plt.refcount += ent->plt.refcount;
3818 *entp = ent->next;
3819 break;
3820 }
3821 if (dent == NULL)
3822 entp = &ent->next;
3823 }
3824 *entp = to->elf.plt.plist;
3825 }
3826
3827 to->elf.plt.plist = from->elf.plt.plist;
3828 from->elf.plt.plist = NULL;
3829 }
3830 }
3831
3832 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3833
3834 static void
3835 ppc64_elf_copy_indirect_symbol
3836 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3837 struct elf_link_hash_entry *dir,
3838 struct elf_link_hash_entry *ind)
3839 {
3840 struct ppc_link_hash_entry *edir, *eind;
3841
3842 edir = (struct ppc_link_hash_entry *) dir;
3843 eind = (struct ppc_link_hash_entry *) ind;
3844
3845 /* Copy over any dynamic relocs we may have on the indirect sym. */
3846 if (eind->dyn_relocs != NULL)
3847 {
3848 if (edir->dyn_relocs != NULL)
3849 {
3850 struct ppc_dyn_relocs **pp;
3851 struct ppc_dyn_relocs *p;
3852
3853 if (eind->elf.root.type == bfd_link_hash_indirect)
3854 abort ();
3855
3856 /* Add reloc counts against the weak sym to the strong sym
3857 list. Merge any entries against the same section. */
3858 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3859 {
3860 struct ppc_dyn_relocs *q;
3861
3862 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3863 if (q->sec == p->sec)
3864 {
3865 q->pc_count += p->pc_count;
3866 q->count += p->count;
3867 *pp = p->next;
3868 break;
3869 }
3870 if (q == NULL)
3871 pp = &p->next;
3872 }
3873 *pp = edir->dyn_relocs;
3874 }
3875
3876 edir->dyn_relocs = eind->dyn_relocs;
3877 eind->dyn_relocs = NULL;
3878 }
3879
3880 edir->is_func |= eind->is_func;
3881 edir->is_func_descriptor |= eind->is_func_descriptor;
3882 edir->tls_mask |= eind->tls_mask;
3883
3884 /* If called to transfer flags for a weakdef during processing
3885 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3886 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3887 if (!(ELIMINATE_COPY_RELOCS
3888 && eind->elf.root.type != bfd_link_hash_indirect
3889 && edir->elf.dynamic_adjusted))
3890 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3891
3892 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3893 edir->elf.ref_regular |= eind->elf.ref_regular;
3894 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3895 edir->elf.needs_plt |= eind->elf.needs_plt;
3896
3897 /* If we were called to copy over info for a weak sym, that's all. */
3898 if (eind->elf.root.type != bfd_link_hash_indirect)
3899 return;
3900
3901 /* Copy over got entries that we may have already seen to the
3902 symbol which just became indirect. */
3903 if (eind->elf.got.glist != NULL)
3904 {
3905 if (edir->elf.got.glist != NULL)
3906 {
3907 struct got_entry **entp;
3908 struct got_entry *ent;
3909
3910 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3911 {
3912 struct got_entry *dent;
3913
3914 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3915 if (dent->addend == ent->addend
3916 && dent->owner == ent->owner
3917 && dent->tls_type == ent->tls_type)
3918 {
3919 dent->got.refcount += ent->got.refcount;
3920 *entp = ent->next;
3921 break;
3922 }
3923 if (dent == NULL)
3924 entp = &ent->next;
3925 }
3926 *entp = edir->elf.got.glist;
3927 }
3928
3929 edir->elf.got.glist = eind->elf.got.glist;
3930 eind->elf.got.glist = NULL;
3931 }
3932
3933 /* And plt entries. */
3934 move_plt_plist (eind, edir);
3935
3936 if (edir->elf.dynindx == -1)
3937 {
3938 edir->elf.dynindx = eind->elf.dynindx;
3939 edir->elf.dynstr_index = eind->elf.dynstr_index;
3940 eind->elf.dynindx = -1;
3941 eind->elf.dynstr_index = 0;
3942 }
3943 else
3944 BFD_ASSERT (eind->elf.dynindx == -1);
3945 }
3946
3947 /* Find the function descriptor hash entry from the given function code
3948 hash entry FH. Link the entries via their OH fields. */
3949
3950 static struct ppc_link_hash_entry *
3951 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3952 {
3953 struct ppc_link_hash_entry *fdh = fh->oh;
3954
3955 if (fdh == NULL)
3956 {
3957 const char *fd_name = fh->elf.root.root.string + 1;
3958
3959 fdh = (struct ppc_link_hash_entry *)
3960 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3961 if (fdh != NULL)
3962 {
3963 fdh->is_func_descriptor = 1;
3964 fdh->oh = fh;
3965 fh->is_func = 1;
3966 fh->oh = fdh;
3967 }
3968 }
3969
3970 return fdh;
3971 }
3972
3973 /* Make a fake function descriptor sym for the code sym FH. */
3974
3975 static struct ppc_link_hash_entry *
3976 make_fdh (struct bfd_link_info *info,
3977 struct ppc_link_hash_entry *fh)
3978 {
3979 bfd *abfd;
3980 asymbol *newsym;
3981 struct bfd_link_hash_entry *bh;
3982 struct ppc_link_hash_entry *fdh;
3983
3984 abfd = fh->elf.root.u.undef.abfd;
3985 newsym = bfd_make_empty_symbol (abfd);
3986 newsym->name = fh->elf.root.root.string + 1;
3987 newsym->section = bfd_und_section_ptr;
3988 newsym->value = 0;
3989 newsym->flags = BSF_WEAK;
3990
3991 bh = NULL;
3992 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
3993 newsym->flags, newsym->section,
3994 newsym->value, NULL, FALSE, FALSE,
3995 &bh))
3996 return NULL;
3997
3998 fdh = (struct ppc_link_hash_entry *) bh;
3999 fdh->elf.non_elf = 0;
4000 fdh->fake = 1;
4001 fdh->is_func_descriptor = 1;
4002 fdh->oh = fh;
4003 fh->is_func = 1;
4004 fh->oh = fdh;
4005 return fdh;
4006 }
4007
4008 /* Hacks to support old ABI code.
4009 When making function calls, old ABI code references function entry
4010 points (dot symbols), while new ABI code references the function
4011 descriptor symbol. We need to make any combination of reference and
4012 definition work together, without breaking archive linking.
4013
4014 For a defined function "foo" and an undefined call to "bar":
4015 An old object defines "foo" and ".foo", references ".bar" (possibly
4016 "bar" too).
4017 A new object defines "foo" and references "bar".
4018
4019 A new object thus has no problem with its undefined symbols being
4020 satisfied by definitions in an old object. On the other hand, the
4021 old object won't have ".bar" satisfied by a new object. */
4022
4023 /* Fix function descriptor symbols defined in .opd sections to be
4024 function type. */
4025
4026 static bfd_boolean
4027 ppc64_elf_add_symbol_hook (bfd *ibfd,
4028 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4029 Elf_Internal_Sym *isym,
4030 const char **name,
4031 flagword *flags ATTRIBUTE_UNUSED,
4032 asection **sec,
4033 bfd_vma *value ATTRIBUTE_UNUSED)
4034 {
4035 if (*sec != NULL
4036 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4037 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4038
4039 if ((*name)[0] == '.'
4040 && ELF_ST_BIND (isym->st_info) == STB_GLOBAL
4041 && ELF_ST_TYPE (isym->st_info) < STT_SECTION
4042 && is_ppc64_elf_target (ibfd->xvec))
4043 ppc64_elf_tdata (ibfd)->u.has_dotsym = 1;
4044
4045 return TRUE;
4046 }
4047
4048 /* This function makes an old ABI object reference to ".bar" cause the
4049 inclusion of a new ABI object archive that defines "bar".
4050 NAME is a symbol defined in an archive. Return a symbol in the hash
4051 table that might be satisfied by the archive symbols. */
4052
4053 static struct elf_link_hash_entry *
4054 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4055 struct bfd_link_info *info,
4056 const char *name)
4057 {
4058 struct elf_link_hash_entry *h;
4059 char *dot_name;
4060 size_t len;
4061
4062 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4063 if (h != NULL
4064 /* Don't return this sym if it is a fake function descriptor
4065 created by add_symbol_adjust. */
4066 && !(h->root.type == bfd_link_hash_undefweak
4067 && ((struct ppc_link_hash_entry *) h)->fake))
4068 return h;
4069
4070 if (name[0] == '.')
4071 return h;
4072
4073 len = strlen (name);
4074 dot_name = bfd_alloc (abfd, len + 2);
4075 if (dot_name == NULL)
4076 return (struct elf_link_hash_entry *) 0 - 1;
4077 dot_name[0] = '.';
4078 memcpy (dot_name + 1, name, len + 1);
4079 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4080 bfd_release (abfd, dot_name);
4081 return h;
4082 }
4083
4084 /* This function satisfies all old ABI object references to ".bar" if a
4085 new ABI object defines "bar". Well, at least, undefined dot symbols
4086 are made weak. This stops later archive searches from including an
4087 object if we already have a function descriptor definition. It also
4088 prevents the linker complaining about undefined symbols.
4089 We also check and correct mismatched symbol visibility here. The
4090 most restrictive visibility of the function descriptor and the
4091 function entry symbol is used. */
4092
4093 struct add_symbol_adjust_data
4094 {
4095 struct bfd_link_info *info;
4096 bfd_boolean ok;
4097 };
4098
4099 static bfd_boolean
4100 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4101 {
4102 struct add_symbol_adjust_data *data;
4103 struct ppc_link_hash_table *htab;
4104 struct ppc_link_hash_entry *eh;
4105 struct ppc_link_hash_entry *fdh;
4106
4107 if (h->root.type == bfd_link_hash_indirect)
4108 return TRUE;
4109
4110 if (h->root.type == bfd_link_hash_warning)
4111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4112
4113 if (h->root.root.string[0] != '.')
4114 return TRUE;
4115
4116 data = inf;
4117 htab = ppc_hash_table (data->info);
4118 eh = (struct ppc_link_hash_entry *) h;
4119 fdh = get_fdh (eh, htab);
4120 if (fdh == NULL
4121 && !data->info->relocatable
4122 && (eh->elf.root.type == bfd_link_hash_undefined
4123 || eh->elf.root.type == bfd_link_hash_undefweak)
4124 && eh->elf.ref_regular)
4125 {
4126 /* Make an undefweak function descriptor sym, which is enough to
4127 pull in an --as-needed shared lib, but won't cause link
4128 errors. Archives are handled elsewhere. */
4129 fdh = make_fdh (data->info, eh);
4130 if (fdh == NULL)
4131 data->ok = FALSE;
4132 else
4133 fdh->elf.ref_regular = 1;
4134 }
4135 else if (fdh != NULL)
4136 {
4137 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4138 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4139 if (entry_vis < descr_vis)
4140 fdh->elf.other += entry_vis - descr_vis;
4141 else if (entry_vis > descr_vis)
4142 eh->elf.other += descr_vis - entry_vis;
4143
4144 if ((fdh->elf.root.type == bfd_link_hash_defined
4145 || fdh->elf.root.type == bfd_link_hash_defweak)
4146 && eh->elf.root.type == bfd_link_hash_undefined)
4147 {
4148 eh->elf.root.type = bfd_link_hash_undefweak;
4149 eh->was_undefined = 1;
4150 htab->twiddled_syms = 1;
4151 }
4152 }
4153
4154 return TRUE;
4155 }
4156
4157 static bfd_boolean
4158 ppc64_elf_check_directives (bfd *abfd, struct bfd_link_info *info)
4159 {
4160 struct ppc_link_hash_table *htab;
4161 struct add_symbol_adjust_data data;
4162
4163 if (!is_ppc64_elf_target (abfd->xvec))
4164 return TRUE;
4165
4166 if (!ppc64_elf_tdata (abfd)->u.has_dotsym)
4167 return TRUE;
4168 ppc64_elf_tdata (abfd)->u.deleted_section = NULL;
4169
4170 htab = ppc_hash_table (info);
4171 if (!is_ppc64_elf_target (htab->elf.root.creator))
4172 return TRUE;
4173
4174 data.info = info;
4175 data.ok = TRUE;
4176 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4177
4178 /* We need to fix the undefs list for any syms we have twiddled to
4179 undef_weak. */
4180 if (htab->twiddled_syms)
4181 {
4182 bfd_link_repair_undef_list (&htab->elf.root);
4183 htab->twiddled_syms = 0;
4184 }
4185 return data.ok;
4186 }
4187
4188 static bfd_boolean
4189 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4190 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4191 {
4192 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4193 char *local_got_tls_masks;
4194
4195 if (local_got_ents == NULL)
4196 {
4197 bfd_size_type size = symtab_hdr->sh_info;
4198
4199 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4200 local_got_ents = bfd_zalloc (abfd, size);
4201 if (local_got_ents == NULL)
4202 return FALSE;
4203 elf_local_got_ents (abfd) = local_got_ents;
4204 }
4205
4206 if ((tls_type & TLS_EXPLICIT) == 0)
4207 {
4208 struct got_entry *ent;
4209
4210 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4211 if (ent->addend == r_addend
4212 && ent->owner == abfd
4213 && ent->tls_type == tls_type)
4214 break;
4215 if (ent == NULL)
4216 {
4217 bfd_size_type amt = sizeof (*ent);
4218 ent = bfd_alloc (abfd, amt);
4219 if (ent == NULL)
4220 return FALSE;
4221 ent->next = local_got_ents[r_symndx];
4222 ent->addend = r_addend;
4223 ent->owner = abfd;
4224 ent->tls_type = tls_type;
4225 ent->got.refcount = 0;
4226 local_got_ents[r_symndx] = ent;
4227 }
4228 ent->got.refcount += 1;
4229 }
4230
4231 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4232 local_got_tls_masks[r_symndx] |= tls_type;
4233 return TRUE;
4234 }
4235
4236 static bfd_boolean
4237 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4238 {
4239 struct plt_entry *ent;
4240
4241 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4242 if (ent->addend == addend)
4243 break;
4244 if (ent == NULL)
4245 {
4246 bfd_size_type amt = sizeof (*ent);
4247 ent = bfd_alloc (abfd, amt);
4248 if (ent == NULL)
4249 return FALSE;
4250 ent->next = eh->elf.plt.plist;
4251 ent->addend = addend;
4252 ent->plt.refcount = 0;
4253 eh->elf.plt.plist = ent;
4254 }
4255 ent->plt.refcount += 1;
4256 eh->elf.needs_plt = 1;
4257 if (eh->elf.root.root.string[0] == '.'
4258 && eh->elf.root.root.string[1] != '\0')
4259 eh->is_func = 1;
4260 return TRUE;
4261 }
4262
4263 /* Look through the relocs for a section during the first phase, and
4264 calculate needed space in the global offset table, procedure
4265 linkage table, and dynamic reloc sections. */
4266
4267 static bfd_boolean
4268 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4269 asection *sec, const Elf_Internal_Rela *relocs)
4270 {
4271 struct ppc_link_hash_table *htab;
4272 Elf_Internal_Shdr *symtab_hdr;
4273 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4274 const Elf_Internal_Rela *rel;
4275 const Elf_Internal_Rela *rel_end;
4276 asection *sreloc;
4277 asection **opd_sym_map;
4278
4279 if (info->relocatable)
4280 return TRUE;
4281
4282 /* Don't do anything special with non-loaded, non-alloced sections.
4283 In particular, any relocs in such sections should not affect GOT
4284 and PLT reference counting (ie. we don't allow them to create GOT
4285 or PLT entries), there's no possibility or desire to optimize TLS
4286 relocs, and there's not much point in propagating relocs to shared
4287 libs that the dynamic linker won't relocate. */
4288 if ((sec->flags & SEC_ALLOC) == 0)
4289 return TRUE;
4290
4291 htab = ppc_hash_table (info);
4292 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4293
4294 sym_hashes = elf_sym_hashes (abfd);
4295 sym_hashes_end = (sym_hashes
4296 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4297 - symtab_hdr->sh_info);
4298
4299 sreloc = NULL;
4300 opd_sym_map = NULL;
4301 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4302 {
4303 /* Garbage collection needs some extra help with .opd sections.
4304 We don't want to necessarily keep everything referenced by
4305 relocs in .opd, as that would keep all functions. Instead,
4306 if we reference an .opd symbol (a function descriptor), we
4307 want to keep the function code symbol's section. This is
4308 easy for global symbols, but for local syms we need to keep
4309 information about the associated function section. Later, if
4310 edit_opd deletes entries, we'll use this array to adjust
4311 local syms in .opd. */
4312 union opd_info {
4313 asection *func_section;
4314 long entry_adjust;
4315 };
4316 bfd_size_type amt;
4317
4318 amt = sec->size * sizeof (union opd_info) / 8;
4319 opd_sym_map = bfd_zalloc (abfd, amt);
4320 if (opd_sym_map == NULL)
4321 return FALSE;
4322 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4323 }
4324
4325 if (htab->sfpr == NULL
4326 && !create_linkage_sections (htab->elf.dynobj, info))
4327 return FALSE;
4328
4329 rel_end = relocs + sec->reloc_count;
4330 for (rel = relocs; rel < rel_end; rel++)
4331 {
4332 unsigned long r_symndx;
4333 struct elf_link_hash_entry *h;
4334 enum elf_ppc64_reloc_type r_type;
4335 int tls_type = 0;
4336
4337 r_symndx = ELF64_R_SYM (rel->r_info);
4338 if (r_symndx < symtab_hdr->sh_info)
4339 h = NULL;
4340 else
4341 {
4342 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4343 while (h->root.type == bfd_link_hash_indirect
4344 || h->root.type == bfd_link_hash_warning)
4345 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4346 }
4347
4348 r_type = ELF64_R_TYPE (rel->r_info);
4349 switch (r_type)
4350 {
4351 case R_PPC64_GOT_TLSLD16:
4352 case R_PPC64_GOT_TLSLD16_LO:
4353 case R_PPC64_GOT_TLSLD16_HI:
4354 case R_PPC64_GOT_TLSLD16_HA:
4355 ppc64_tlsld_got (abfd)->refcount += 1;
4356 tls_type = TLS_TLS | TLS_LD;
4357 goto dogottls;
4358
4359 case R_PPC64_GOT_TLSGD16:
4360 case R_PPC64_GOT_TLSGD16_LO:
4361 case R_PPC64_GOT_TLSGD16_HI:
4362 case R_PPC64_GOT_TLSGD16_HA:
4363 tls_type = TLS_TLS | TLS_GD;
4364 goto dogottls;
4365
4366 case R_PPC64_GOT_TPREL16_DS:
4367 case R_PPC64_GOT_TPREL16_LO_DS:
4368 case R_PPC64_GOT_TPREL16_HI:
4369 case R_PPC64_GOT_TPREL16_HA:
4370 if (info->shared)
4371 info->flags |= DF_STATIC_TLS;
4372 tls_type = TLS_TLS | TLS_TPREL;
4373 goto dogottls;
4374
4375 case R_PPC64_GOT_DTPREL16_DS:
4376 case R_PPC64_GOT_DTPREL16_LO_DS:
4377 case R_PPC64_GOT_DTPREL16_HI:
4378 case R_PPC64_GOT_DTPREL16_HA:
4379 tls_type = TLS_TLS | TLS_DTPREL;
4380 dogottls:
4381 sec->has_tls_reloc = 1;
4382 /* Fall thru */
4383
4384 case R_PPC64_GOT16:
4385 case R_PPC64_GOT16_DS:
4386 case R_PPC64_GOT16_HA:
4387 case R_PPC64_GOT16_HI:
4388 case R_PPC64_GOT16_LO:
4389 case R_PPC64_GOT16_LO_DS:
4390 /* This symbol requires a global offset table entry. */
4391 sec->has_toc_reloc = 1;
4392 if (ppc64_elf_tdata (abfd)->got == NULL
4393 && !create_got_section (abfd, info))
4394 return FALSE;
4395
4396 if (h != NULL)
4397 {
4398 struct ppc_link_hash_entry *eh;
4399 struct got_entry *ent;
4400
4401 eh = (struct ppc_link_hash_entry *) h;
4402 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4403 if (ent->addend == rel->r_addend
4404 && ent->owner == abfd
4405 && ent->tls_type == tls_type)
4406 break;
4407 if (ent == NULL)
4408 {
4409 bfd_size_type amt = sizeof (*ent);
4410 ent = bfd_alloc (abfd, amt);
4411 if (ent == NULL)
4412 return FALSE;
4413 ent->next = eh->elf.got.glist;
4414 ent->addend = rel->r_addend;
4415 ent->owner = abfd;
4416 ent->tls_type = tls_type;
4417 ent->got.refcount = 0;
4418 eh->elf.got.glist = ent;
4419 }
4420 ent->got.refcount += 1;
4421 eh->tls_mask |= tls_type;
4422 }
4423 else
4424 /* This is a global offset table entry for a local symbol. */
4425 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4426 rel->r_addend, tls_type))
4427 return FALSE;
4428 break;
4429
4430 case R_PPC64_PLT16_HA:
4431 case R_PPC64_PLT16_HI:
4432 case R_PPC64_PLT16_LO:
4433 case R_PPC64_PLT32:
4434 case R_PPC64_PLT64:
4435 /* This symbol requires a procedure linkage table entry. We
4436 actually build the entry in adjust_dynamic_symbol,
4437 because this might be a case of linking PIC code without
4438 linking in any dynamic objects, in which case we don't
4439 need to generate a procedure linkage table after all. */
4440 if (h == NULL)
4441 {
4442 /* It does not make sense to have a procedure linkage
4443 table entry for a local symbol. */
4444 bfd_set_error (bfd_error_bad_value);
4445 return FALSE;
4446 }
4447 else
4448 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4449 rel->r_addend))
4450 return FALSE;
4451 break;
4452
4453 /* The following relocations don't need to propagate the
4454 relocation if linking a shared object since they are
4455 section relative. */
4456 case R_PPC64_SECTOFF:
4457 case R_PPC64_SECTOFF_LO:
4458 case R_PPC64_SECTOFF_HI:
4459 case R_PPC64_SECTOFF_HA:
4460 case R_PPC64_SECTOFF_DS:
4461 case R_PPC64_SECTOFF_LO_DS:
4462 case R_PPC64_DTPREL16:
4463 case R_PPC64_DTPREL16_LO:
4464 case R_PPC64_DTPREL16_HI:
4465 case R_PPC64_DTPREL16_HA:
4466 case R_PPC64_DTPREL16_DS:
4467 case R_PPC64_DTPREL16_LO_DS:
4468 case R_PPC64_DTPREL16_HIGHER:
4469 case R_PPC64_DTPREL16_HIGHERA:
4470 case R_PPC64_DTPREL16_HIGHEST:
4471 case R_PPC64_DTPREL16_HIGHESTA:
4472 break;
4473
4474 /* Nor do these. */
4475 case R_PPC64_TOC16:
4476 case R_PPC64_TOC16_LO:
4477 case R_PPC64_TOC16_HI:
4478 case R_PPC64_TOC16_HA:
4479 case R_PPC64_TOC16_DS:
4480 case R_PPC64_TOC16_LO_DS:
4481 sec->has_toc_reloc = 1;
4482 break;
4483
4484 /* This relocation describes the C++ object vtable hierarchy.
4485 Reconstruct it for later use during GC. */
4486 case R_PPC64_GNU_VTINHERIT:
4487 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4488 return FALSE;
4489 break;
4490
4491 /* This relocation describes which C++ vtable entries are actually
4492 used. Record for later use during GC. */
4493 case R_PPC64_GNU_VTENTRY:
4494 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4495 return FALSE;
4496 break;
4497
4498 case R_PPC64_REL14:
4499 case R_PPC64_REL14_BRTAKEN:
4500 case R_PPC64_REL14_BRNTAKEN:
4501 htab->has_14bit_branch = 1;
4502 /* Fall through. */
4503
4504 case R_PPC64_REL24:
4505 if (h != NULL)
4506 {
4507 /* We may need a .plt entry if the function this reloc
4508 refers to is in a shared lib. */
4509 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4510 rel->r_addend))
4511 return FALSE;
4512 if (h == &htab->tls_get_addr->elf
4513 || h == &htab->tls_get_addr_fd->elf)
4514 sec->has_tls_reloc = 1;
4515 else if (htab->tls_get_addr == NULL
4516 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4517 && (h->root.root.string[15] == 0
4518 || h->root.root.string[15] == '@'))
4519 {
4520 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4521 sec->has_tls_reloc = 1;
4522 }
4523 else if (htab->tls_get_addr_fd == NULL
4524 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4525 && (h->root.root.string[14] == 0
4526 || h->root.root.string[14] == '@'))
4527 {
4528 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4529 sec->has_tls_reloc = 1;
4530 }
4531 }
4532 break;
4533
4534 case R_PPC64_TPREL64:
4535 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4536 if (info->shared)
4537 info->flags |= DF_STATIC_TLS;
4538 goto dotlstoc;
4539
4540 case R_PPC64_DTPMOD64:
4541 if (rel + 1 < rel_end
4542 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4543 && rel[1].r_offset == rel->r_offset + 8)
4544 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4545 else
4546 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4547 goto dotlstoc;
4548
4549 case R_PPC64_DTPREL64:
4550 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4551 if (rel != relocs
4552 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4553 && rel[-1].r_offset == rel->r_offset - 8)
4554 /* This is the second reloc of a dtpmod, dtprel pair.
4555 Don't mark with TLS_DTPREL. */
4556 goto dodyn;
4557
4558 dotlstoc:
4559 sec->has_tls_reloc = 1;
4560 if (h != NULL)
4561 {
4562 struct ppc_link_hash_entry *eh;
4563 eh = (struct ppc_link_hash_entry *) h;
4564 eh->tls_mask |= tls_type;
4565 }
4566 else
4567 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4568 rel->r_addend, tls_type))
4569 return FALSE;
4570
4571 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4572 {
4573 /* One extra to simplify get_tls_mask. */
4574 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4575 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4576 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4577 return FALSE;
4578 }
4579 BFD_ASSERT (rel->r_offset % 8 == 0);
4580 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4581
4582 /* Mark the second slot of a GD or LD entry.
4583 -1 to indicate GD and -2 to indicate LD. */
4584 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4585 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4586 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4587 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4588 goto dodyn;
4589
4590 case R_PPC64_TPREL16:
4591 case R_PPC64_TPREL16_LO:
4592 case R_PPC64_TPREL16_HI:
4593 case R_PPC64_TPREL16_HA:
4594 case R_PPC64_TPREL16_DS:
4595 case R_PPC64_TPREL16_LO_DS:
4596 case R_PPC64_TPREL16_HIGHER:
4597 case R_PPC64_TPREL16_HIGHERA:
4598 case R_PPC64_TPREL16_HIGHEST:
4599 case R_PPC64_TPREL16_HIGHESTA:
4600 if (info->shared)
4601 {
4602 info->flags |= DF_STATIC_TLS;
4603 goto dodyn;
4604 }
4605 break;
4606
4607 case R_PPC64_ADDR64:
4608 if (opd_sym_map != NULL
4609 && rel + 1 < rel_end
4610 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4611 {
4612 if (h != NULL)
4613 {
4614 if (h->root.root.string[0] == '.'
4615 && h->root.root.string[1] != 0
4616 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4617 ;
4618 else
4619 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4620 }
4621 else
4622 {
4623 asection *s;
4624
4625 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4626 r_symndx);
4627 if (s == NULL)
4628 return FALSE;
4629 else if (s != sec)
4630 opd_sym_map[rel->r_offset / 8] = s;
4631 }
4632 }
4633 /* Fall through. */
4634
4635 case R_PPC64_REL30:
4636 case R_PPC64_REL32:
4637 case R_PPC64_REL64:
4638 case R_PPC64_ADDR14:
4639 case R_PPC64_ADDR14_BRNTAKEN:
4640 case R_PPC64_ADDR14_BRTAKEN:
4641 case R_PPC64_ADDR16:
4642 case R_PPC64_ADDR16_DS:
4643 case R_PPC64_ADDR16_HA:
4644 case R_PPC64_ADDR16_HI:
4645 case R_PPC64_ADDR16_HIGHER:
4646 case R_PPC64_ADDR16_HIGHERA:
4647 case R_PPC64_ADDR16_HIGHEST:
4648 case R_PPC64_ADDR16_HIGHESTA:
4649 case R_PPC64_ADDR16_LO:
4650 case R_PPC64_ADDR16_LO_DS:
4651 case R_PPC64_ADDR24:
4652 case R_PPC64_ADDR32:
4653 case R_PPC64_UADDR16:
4654 case R_PPC64_UADDR32:
4655 case R_PPC64_UADDR64:
4656 case R_PPC64_TOC:
4657 if (h != NULL && !info->shared)
4658 /* We may need a copy reloc. */
4659 h->non_got_ref = 1;
4660
4661 /* Don't propagate .opd relocs. */
4662 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4663 break;
4664
4665 /* If we are creating a shared library, and this is a reloc
4666 against a global symbol, or a non PC relative reloc
4667 against a local symbol, then we need to copy the reloc
4668 into the shared library. However, if we are linking with
4669 -Bsymbolic, we do not need to copy a reloc against a
4670 global symbol which is defined in an object we are
4671 including in the link (i.e., DEF_REGULAR is set). At
4672 this point we have not seen all the input files, so it is
4673 possible that DEF_REGULAR is not set now but will be set
4674 later (it is never cleared). In case of a weak definition,
4675 DEF_REGULAR may be cleared later by a strong definition in
4676 a shared library. We account for that possibility below by
4677 storing information in the dyn_relocs field of the hash
4678 table entry. A similar situation occurs when creating
4679 shared libraries and symbol visibility changes render the
4680 symbol local.
4681
4682 If on the other hand, we are creating an executable, we
4683 may need to keep relocations for symbols satisfied by a
4684 dynamic library if we manage to avoid copy relocs for the
4685 symbol. */
4686 dodyn:
4687 if ((info->shared
4688 && (MUST_BE_DYN_RELOC (r_type)
4689 || (h != NULL
4690 && (! info->symbolic
4691 || h->root.type == bfd_link_hash_defweak
4692 || !h->def_regular))))
4693 || (ELIMINATE_COPY_RELOCS
4694 && !info->shared
4695 && h != NULL
4696 && (h->root.type == bfd_link_hash_defweak
4697 || !h->def_regular)))
4698 {
4699 struct ppc_dyn_relocs *p;
4700 struct ppc_dyn_relocs **head;
4701
4702 /* We must copy these reloc types into the output file.
4703 Create a reloc section in dynobj and make room for
4704 this reloc. */
4705 if (sreloc == NULL)
4706 {
4707 const char *name;
4708 bfd *dynobj;
4709
4710 name = (bfd_elf_string_from_elf_section
4711 (abfd,
4712 elf_elfheader (abfd)->e_shstrndx,
4713 elf_section_data (sec)->rel_hdr.sh_name));
4714 if (name == NULL)
4715 return FALSE;
4716
4717 if (strncmp (name, ".rela", 5) != 0
4718 || strcmp (bfd_get_section_name (abfd, sec),
4719 name + 5) != 0)
4720 {
4721 (*_bfd_error_handler)
4722 (_("%B: bad relocation section name `%s\'"),
4723 abfd, name);
4724 bfd_set_error (bfd_error_bad_value);
4725 }
4726
4727 dynobj = htab->elf.dynobj;
4728 sreloc = bfd_get_section_by_name (dynobj, name);
4729 if (sreloc == NULL)
4730 {
4731 flagword flags;
4732
4733 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4734 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4735 | SEC_ALLOC | SEC_LOAD);
4736 sreloc = bfd_make_section_with_flags (dynobj,
4737 name,
4738 flags);
4739 if (sreloc == NULL
4740 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4741 return FALSE;
4742 }
4743 elf_section_data (sec)->sreloc = sreloc;
4744 }
4745
4746 /* If this is a global symbol, we count the number of
4747 relocations we need for this symbol. */
4748 if (h != NULL)
4749 {
4750 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4751 }
4752 else
4753 {
4754 /* Track dynamic relocs needed for local syms too.
4755 We really need local syms available to do this
4756 easily. Oh well. */
4757
4758 asection *s;
4759 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4760 sec, r_symndx);
4761 if (s == NULL)
4762 return FALSE;
4763
4764 head = ((struct ppc_dyn_relocs **)
4765 &elf_section_data (s)->local_dynrel);
4766 }
4767
4768 p = *head;
4769 if (p == NULL || p->sec != sec)
4770 {
4771 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4772 if (p == NULL)
4773 return FALSE;
4774 p->next = *head;
4775 *head = p;
4776 p->sec = sec;
4777 p->count = 0;
4778 p->pc_count = 0;
4779 }
4780
4781 p->count += 1;
4782 if (!MUST_BE_DYN_RELOC (r_type))
4783 p->pc_count += 1;
4784 }
4785 break;
4786
4787 default:
4788 break;
4789 }
4790 }
4791
4792 return TRUE;
4793 }
4794
4795 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4796 of the code entry point, and its section. */
4797
4798 static bfd_vma
4799 opd_entry_value (asection *opd_sec,
4800 bfd_vma offset,
4801 asection **code_sec,
4802 bfd_vma *code_off)
4803 {
4804 bfd *opd_bfd = opd_sec->owner;
4805 Elf_Internal_Rela *relocs;
4806 Elf_Internal_Rela *lo, *hi, *look;
4807 bfd_vma val;
4808
4809 /* No relocs implies we are linking a --just-symbols object. */
4810 if (opd_sec->reloc_count == 0)
4811 {
4812 bfd_vma val;
4813
4814 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4815 return (bfd_vma) -1;
4816
4817 if (code_sec != NULL)
4818 {
4819 asection *sec, *likely = NULL;
4820 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4821 if (sec->vma <= val
4822 && (sec->flags & SEC_LOAD) != 0
4823 && (sec->flags & SEC_ALLOC) != 0)
4824 likely = sec;
4825 if (likely != NULL)
4826 {
4827 *code_sec = likely;
4828 if (code_off != NULL)
4829 *code_off = val - likely->vma;
4830 }
4831 }
4832 return val;
4833 }
4834
4835 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4836 if (relocs == NULL)
4837 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4838
4839 /* Go find the opd reloc at the sym address. */
4840 lo = relocs;
4841 BFD_ASSERT (lo != NULL);
4842 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4843 val = (bfd_vma) -1;
4844 while (lo < hi)
4845 {
4846 look = lo + (hi - lo) / 2;
4847 if (look->r_offset < offset)
4848 lo = look + 1;
4849 else if (look->r_offset > offset)
4850 hi = look;
4851 else
4852 {
4853 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4854 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4855 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4856 {
4857 unsigned long symndx = ELF64_R_SYM (look->r_info);
4858 asection *sec;
4859
4860 if (symndx < symtab_hdr->sh_info)
4861 {
4862 Elf_Internal_Sym *sym;
4863
4864 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4865 if (sym == NULL)
4866 {
4867 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4868 symtab_hdr->sh_info,
4869 0, NULL, NULL, NULL);
4870 if (sym == NULL)
4871 break;
4872 symtab_hdr->contents = (bfd_byte *) sym;
4873 }
4874
4875 sym += symndx;
4876 val = sym->st_value;
4877 sec = NULL;
4878 if ((sym->st_shndx != SHN_UNDEF
4879 && sym->st_shndx < SHN_LORESERVE)
4880 || sym->st_shndx > SHN_HIRESERVE)
4881 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4882 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4883 }
4884 else
4885 {
4886 struct elf_link_hash_entry **sym_hashes;
4887 struct elf_link_hash_entry *rh;
4888
4889 sym_hashes = elf_sym_hashes (opd_bfd);
4890 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4891 while (rh->root.type == bfd_link_hash_indirect
4892 || rh->root.type == bfd_link_hash_warning)
4893 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4894 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4895 || rh->root.type == bfd_link_hash_defweak);
4896 val = rh->root.u.def.value;
4897 sec = rh->root.u.def.section;
4898 }
4899 val += look->r_addend;
4900 if (code_off != NULL)
4901 *code_off = val;
4902 if (code_sec != NULL)
4903 *code_sec = sec;
4904 if (sec != NULL && sec->output_section != NULL)
4905 val += sec->output_section->vma + sec->output_offset;
4906 }
4907 break;
4908 }
4909 }
4910
4911 return val;
4912 }
4913
4914 /* Return the section that should be marked against GC for a given
4915 relocation. */
4916
4917 static asection *
4918 ppc64_elf_gc_mark_hook (asection *sec,
4919 struct bfd_link_info *info,
4920 Elf_Internal_Rela *rel,
4921 struct elf_link_hash_entry *h,
4922 Elf_Internal_Sym *sym)
4923 {
4924 asection *rsec;
4925
4926 /* First mark all our entry sym sections. */
4927 if (info->gc_sym_list != NULL)
4928 {
4929 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4930 struct bfd_sym_chain *sym = info->gc_sym_list;
4931
4932 info->gc_sym_list = NULL;
4933 do
4934 {
4935 struct ppc_link_hash_entry *eh;
4936
4937 eh = (struct ppc_link_hash_entry *)
4938 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4939 if (eh == NULL)
4940 continue;
4941 if (eh->elf.root.type != bfd_link_hash_defined
4942 && eh->elf.root.type != bfd_link_hash_defweak)
4943 continue;
4944
4945 if (eh->is_func_descriptor
4946 && (eh->oh->elf.root.type == bfd_link_hash_defined
4947 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4948 rsec = eh->oh->elf.root.u.def.section;
4949 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4950 && opd_entry_value (eh->elf.root.u.def.section,
4951 eh->elf.root.u.def.value,
4952 &rsec, NULL) != (bfd_vma) -1)
4953 ;
4954 else
4955 continue;
4956
4957 if (!rsec->gc_mark)
4958 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4959
4960 rsec = eh->elf.root.u.def.section;
4961 if (!rsec->gc_mark)
4962 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4963
4964 sym = sym->next;
4965 }
4966 while (sym != NULL);
4967 }
4968
4969 /* Syms return NULL if we're marking .opd, so we avoid marking all
4970 function sections, as all functions are referenced in .opd. */
4971 rsec = NULL;
4972 if (get_opd_info (sec) != NULL)
4973 return rsec;
4974
4975 if (h != NULL)
4976 {
4977 enum elf_ppc64_reloc_type r_type;
4978 struct ppc_link_hash_entry *eh;
4979
4980 r_type = ELF64_R_TYPE (rel->r_info);
4981 switch (r_type)
4982 {
4983 case R_PPC64_GNU_VTINHERIT:
4984 case R_PPC64_GNU_VTENTRY:
4985 break;
4986
4987 default:
4988 switch (h->root.type)
4989 {
4990 case bfd_link_hash_defined:
4991 case bfd_link_hash_defweak:
4992 eh = (struct ppc_link_hash_entry *) h;
4993 if (eh->oh != NULL
4994 && eh->oh->is_func_descriptor
4995 && (eh->oh->elf.root.type == bfd_link_hash_defined
4996 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4997 eh = eh->oh;
4998
4999 /* Function descriptor syms cause the associated
5000 function code sym section to be marked. */
5001 if (eh->is_func_descriptor
5002 && (eh->oh->elf.root.type == bfd_link_hash_defined
5003 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5004 {
5005 /* They also mark their opd section. */
5006 if (!eh->elf.root.u.def.section->gc_mark)
5007 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5008 ppc64_elf_gc_mark_hook);
5009
5010 rsec = eh->oh->elf.root.u.def.section;
5011 }
5012 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5013 && opd_entry_value (eh->elf.root.u.def.section,
5014 eh->elf.root.u.def.value,
5015 &rsec, NULL) != (bfd_vma) -1)
5016 {
5017 if (!eh->elf.root.u.def.section->gc_mark)
5018 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5019 ppc64_elf_gc_mark_hook);
5020 }
5021 else
5022 rsec = h->root.u.def.section;
5023 break;
5024
5025 case bfd_link_hash_common:
5026 rsec = h->root.u.c.p->section;
5027 break;
5028
5029 default:
5030 break;
5031 }
5032 }
5033 }
5034 else
5035 {
5036 asection **opd_sym_section;
5037
5038 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5039 opd_sym_section = get_opd_info (rsec);
5040 if (opd_sym_section != NULL)
5041 {
5042 if (!rsec->gc_mark)
5043 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
5044
5045 rsec = opd_sym_section[(sym->st_value + rel->r_addend) / 8];
5046 }
5047 }
5048
5049 return rsec;
5050 }
5051
5052 /* Update the .got, .plt. and dynamic reloc reference counts for the
5053 section being removed. */
5054
5055 static bfd_boolean
5056 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5057 asection *sec, const Elf_Internal_Rela *relocs)
5058 {
5059 struct ppc_link_hash_table *htab;
5060 Elf_Internal_Shdr *symtab_hdr;
5061 struct elf_link_hash_entry **sym_hashes;
5062 struct got_entry **local_got_ents;
5063 const Elf_Internal_Rela *rel, *relend;
5064
5065 if ((sec->flags & SEC_ALLOC) == 0)
5066 return TRUE;
5067
5068 elf_section_data (sec)->local_dynrel = NULL;
5069
5070 htab = ppc_hash_table (info);
5071 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5072 sym_hashes = elf_sym_hashes (abfd);
5073 local_got_ents = elf_local_got_ents (abfd);
5074
5075 relend = relocs + sec->reloc_count;
5076 for (rel = relocs; rel < relend; rel++)
5077 {
5078 unsigned long r_symndx;
5079 enum elf_ppc64_reloc_type r_type;
5080 struct elf_link_hash_entry *h = NULL;
5081 char tls_type = 0;
5082
5083 r_symndx = ELF64_R_SYM (rel->r_info);
5084 r_type = ELF64_R_TYPE (rel->r_info);
5085 if (r_symndx >= symtab_hdr->sh_info)
5086 {
5087 struct ppc_link_hash_entry *eh;
5088 struct ppc_dyn_relocs **pp;
5089 struct ppc_dyn_relocs *p;
5090
5091 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5092 while (h->root.type == bfd_link_hash_indirect
5093 || h->root.type == bfd_link_hash_warning)
5094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5095 eh = (struct ppc_link_hash_entry *) h;
5096
5097 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5098 if (p->sec == sec)
5099 {
5100 /* Everything must go for SEC. */
5101 *pp = p->next;
5102 break;
5103 }
5104 }
5105
5106 switch (r_type)
5107 {
5108 case R_PPC64_GOT_TLSLD16:
5109 case R_PPC64_GOT_TLSLD16_LO:
5110 case R_PPC64_GOT_TLSLD16_HI:
5111 case R_PPC64_GOT_TLSLD16_HA:
5112 ppc64_tlsld_got (abfd)->refcount -= 1;
5113 tls_type = TLS_TLS | TLS_LD;
5114 goto dogot;
5115
5116 case R_PPC64_GOT_TLSGD16:
5117 case R_PPC64_GOT_TLSGD16_LO:
5118 case R_PPC64_GOT_TLSGD16_HI:
5119 case R_PPC64_GOT_TLSGD16_HA:
5120 tls_type = TLS_TLS | TLS_GD;
5121 goto dogot;
5122
5123 case R_PPC64_GOT_TPREL16_DS:
5124 case R_PPC64_GOT_TPREL16_LO_DS:
5125 case R_PPC64_GOT_TPREL16_HI:
5126 case R_PPC64_GOT_TPREL16_HA:
5127 tls_type = TLS_TLS | TLS_TPREL;
5128 goto dogot;
5129
5130 case R_PPC64_GOT_DTPREL16_DS:
5131 case R_PPC64_GOT_DTPREL16_LO_DS:
5132 case R_PPC64_GOT_DTPREL16_HI:
5133 case R_PPC64_GOT_DTPREL16_HA:
5134 tls_type = TLS_TLS | TLS_DTPREL;
5135 goto dogot;
5136
5137 case R_PPC64_GOT16:
5138 case R_PPC64_GOT16_DS:
5139 case R_PPC64_GOT16_HA:
5140 case R_PPC64_GOT16_HI:
5141 case R_PPC64_GOT16_LO:
5142 case R_PPC64_GOT16_LO_DS:
5143 dogot:
5144 {
5145 struct got_entry *ent;
5146
5147 if (h != NULL)
5148 ent = h->got.glist;
5149 else
5150 ent = local_got_ents[r_symndx];
5151
5152 for (; ent != NULL; ent = ent->next)
5153 if (ent->addend == rel->r_addend
5154 && ent->owner == abfd
5155 && ent->tls_type == tls_type)
5156 break;
5157 if (ent == NULL)
5158 abort ();
5159 if (ent->got.refcount > 0)
5160 ent->got.refcount -= 1;
5161 }
5162 break;
5163
5164 case R_PPC64_PLT16_HA:
5165 case R_PPC64_PLT16_HI:
5166 case R_PPC64_PLT16_LO:
5167 case R_PPC64_PLT32:
5168 case R_PPC64_PLT64:
5169 case R_PPC64_REL14:
5170 case R_PPC64_REL14_BRNTAKEN:
5171 case R_PPC64_REL14_BRTAKEN:
5172 case R_PPC64_REL24:
5173 if (h != NULL)
5174 {
5175 struct plt_entry *ent;
5176
5177 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5178 if (ent->addend == rel->r_addend)
5179 break;
5180 if (ent == NULL)
5181 abort ();
5182 if (ent->plt.refcount > 0)
5183 ent->plt.refcount -= 1;
5184 }
5185 break;
5186
5187 default:
5188 break;
5189 }
5190 }
5191 return TRUE;
5192 }
5193
5194 /* The maximum size of .sfpr. */
5195 #define SFPR_MAX (218*4)
5196
5197 struct sfpr_def_parms
5198 {
5199 const char name[12];
5200 unsigned char lo, hi;
5201 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5202 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5203 };
5204
5205 /* Auto-generate _save*, _rest* functions in .sfpr. */
5206
5207 static unsigned int
5208 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5209 {
5210 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5211 unsigned int i;
5212 size_t len = strlen (parm->name);
5213 bfd_boolean writing = FALSE;
5214 char sym[16];
5215
5216 memcpy (sym, parm->name, len);
5217 sym[len + 2] = 0;
5218
5219 for (i = parm->lo; i <= parm->hi; i++)
5220 {
5221 struct elf_link_hash_entry *h;
5222
5223 sym[len + 0] = i / 10 + '0';
5224 sym[len + 1] = i % 10 + '0';
5225 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5226 if (h != NULL
5227 && !h->def_regular)
5228 {
5229 h->root.type = bfd_link_hash_defined;
5230 h->root.u.def.section = htab->sfpr;
5231 h->root.u.def.value = htab->sfpr->size;
5232 h->type = STT_FUNC;
5233 h->def_regular = 1;
5234 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5235 writing = TRUE;
5236 if (htab->sfpr->contents == NULL)
5237 {
5238 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5239 if (htab->sfpr->contents == NULL)
5240 return FALSE;
5241 }
5242 }
5243 if (writing)
5244 {
5245 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5246 if (i != parm->hi)
5247 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5248 else
5249 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5250 htab->sfpr->size = p - htab->sfpr->contents;
5251 }
5252 }
5253
5254 return TRUE;
5255 }
5256
5257 static bfd_byte *
5258 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5259 {
5260 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5261 return p + 4;
5262 }
5263
5264 static bfd_byte *
5265 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5266 {
5267 p = savegpr0 (abfd, p, r);
5268 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5269 p = p + 4;
5270 bfd_put_32 (abfd, BLR, p);
5271 return p + 4;
5272 }
5273
5274 static bfd_byte *
5275 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5276 {
5277 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5278 return p + 4;
5279 }
5280
5281 static bfd_byte *
5282 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5283 {
5284 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5285 p = p + 4;
5286 p = restgpr0 (abfd, p, r);
5287 bfd_put_32 (abfd, MTLR_R0, p);
5288 p = p + 4;
5289 if (r == 29)
5290 {
5291 p = restgpr0 (abfd, p, 30);
5292 p = restgpr0 (abfd, p, 31);
5293 }
5294 bfd_put_32 (abfd, BLR, p);
5295 return p + 4;
5296 }
5297
5298 static bfd_byte *
5299 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5300 {
5301 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5302 return p + 4;
5303 }
5304
5305 static bfd_byte *
5306 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5307 {
5308 p = savegpr1 (abfd, p, r);
5309 bfd_put_32 (abfd, BLR, p);
5310 return p + 4;
5311 }
5312
5313 static bfd_byte *
5314 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5315 {
5316 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5317 return p + 4;
5318 }
5319
5320 static bfd_byte *
5321 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5322 {
5323 p = restgpr1 (abfd, p, r);
5324 bfd_put_32 (abfd, BLR, p);
5325 return p + 4;
5326 }
5327
5328 static bfd_byte *
5329 savefpr (bfd *abfd, bfd_byte *p, int r)
5330 {
5331 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5332 return p + 4;
5333 }
5334
5335 static bfd_byte *
5336 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5337 {
5338 p = savefpr (abfd, p, r);
5339 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5340 p = p + 4;
5341 bfd_put_32 (abfd, BLR, p);
5342 return p + 4;
5343 }
5344
5345 static bfd_byte *
5346 restfpr (bfd *abfd, bfd_byte *p, int r)
5347 {
5348 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5349 return p + 4;
5350 }
5351
5352 static bfd_byte *
5353 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5354 {
5355 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5356 p = p + 4;
5357 p = restfpr (abfd, p, r);
5358 bfd_put_32 (abfd, MTLR_R0, p);
5359 p = p + 4;
5360 if (r == 29)
5361 {
5362 p = restfpr (abfd, p, 30);
5363 p = restfpr (abfd, p, 31);
5364 }
5365 bfd_put_32 (abfd, BLR, p);
5366 return p + 4;
5367 }
5368
5369 static bfd_byte *
5370 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5371 {
5372 p = savefpr (abfd, p, r);
5373 bfd_put_32 (abfd, BLR, p);
5374 return p + 4;
5375 }
5376
5377 static bfd_byte *
5378 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5379 {
5380 p = restfpr (abfd, p, r);
5381 bfd_put_32 (abfd, BLR, p);
5382 return p + 4;
5383 }
5384
5385 static bfd_byte *
5386 savevr (bfd *abfd, bfd_byte *p, int r)
5387 {
5388 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5389 p = p + 4;
5390 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5391 return p + 4;
5392 }
5393
5394 static bfd_byte *
5395 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5396 {
5397 p = savevr (abfd, p, r);
5398 bfd_put_32 (abfd, BLR, p);
5399 return p + 4;
5400 }
5401
5402 static bfd_byte *
5403 restvr (bfd *abfd, bfd_byte *p, int r)
5404 {
5405 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5406 p = p + 4;
5407 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5408 return p + 4;
5409 }
5410
5411 static bfd_byte *
5412 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5413 {
5414 p = restvr (abfd, p, r);
5415 bfd_put_32 (abfd, BLR, p);
5416 return p + 4;
5417 }
5418
5419 /* Called via elf_link_hash_traverse to transfer dynamic linking
5420 information on function code symbol entries to their corresponding
5421 function descriptor symbol entries. */
5422
5423 static bfd_boolean
5424 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5425 {
5426 struct bfd_link_info *info;
5427 struct ppc_link_hash_table *htab;
5428 struct plt_entry *ent;
5429 struct ppc_link_hash_entry *fh;
5430 struct ppc_link_hash_entry *fdh;
5431 bfd_boolean force_local;
5432
5433 fh = (struct ppc_link_hash_entry *) h;
5434 if (fh->elf.root.type == bfd_link_hash_indirect)
5435 return TRUE;
5436
5437 if (fh->elf.root.type == bfd_link_hash_warning)
5438 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5439
5440 info = inf;
5441 htab = ppc_hash_table (info);
5442
5443 /* Resolve undefined references to dot-symbols as the value
5444 in the function descriptor, if we have one in a regular object.
5445 This is to satisfy cases like ".quad .foo". Calls to functions
5446 in dynamic objects are handled elsewhere. */
5447 if (fh->elf.root.type == bfd_link_hash_undefweak
5448 && fh->was_undefined
5449 && (fh->oh->elf.root.type == bfd_link_hash_defined
5450 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5451 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5452 && opd_entry_value (fh->oh->elf.root.u.def.section,
5453 fh->oh->elf.root.u.def.value,
5454 &fh->elf.root.u.def.section,
5455 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5456 {
5457 fh->elf.root.type = fh->oh->elf.root.type;
5458 fh->elf.forced_local = 1;
5459 }
5460
5461 /* If this is a function code symbol, transfer dynamic linking
5462 information to the function descriptor symbol. */
5463 if (!fh->is_func)
5464 return TRUE;
5465
5466 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5467 if (ent->plt.refcount > 0)
5468 break;
5469 if (ent == NULL
5470 || fh->elf.root.root.string[0] != '.'
5471 || fh->elf.root.root.string[1] == '\0')
5472 return TRUE;
5473
5474 /* Find the corresponding function descriptor symbol. Create it
5475 as undefined if necessary. */
5476
5477 fdh = get_fdh (fh, htab);
5478 if (fdh != NULL)
5479 while (fdh->elf.root.type == bfd_link_hash_indirect
5480 || fdh->elf.root.type == bfd_link_hash_warning)
5481 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5482
5483 if (fdh == NULL
5484 && info->shared
5485 && (fh->elf.root.type == bfd_link_hash_undefined
5486 || fh->elf.root.type == bfd_link_hash_undefweak))
5487 {
5488 fdh = make_fdh (info, fh);
5489 if (fdh == NULL)
5490 return FALSE;
5491 }
5492
5493 /* Fake function descriptors are made undefweak. If the function
5494 code symbol is strong undefined, make the fake sym the same.
5495 If the function code symbol is defined, then force the fake
5496 descriptor local; We can't support overriding of symbols in a
5497 shared library on a fake descriptor. */
5498
5499 if (fdh != NULL
5500 && fdh->fake
5501 && fdh->elf.root.type == bfd_link_hash_undefweak)
5502 {
5503 if (fh->elf.root.type == bfd_link_hash_undefined)
5504 {
5505 fdh->elf.root.type = bfd_link_hash_undefined;
5506 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5507 }
5508 else if (fh->elf.root.type == bfd_link_hash_defined
5509 || fh->elf.root.type == bfd_link_hash_defweak)
5510 {
5511 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5512 }
5513 }
5514
5515 if (fdh != NULL
5516 && !fdh->elf.forced_local
5517 && (info->shared
5518 || fdh->elf.def_dynamic
5519 || fdh->elf.ref_dynamic
5520 || (fdh->elf.root.type == bfd_link_hash_undefweak
5521 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5522 {
5523 if (fdh->elf.dynindx == -1)
5524 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5525 return FALSE;
5526 fdh->elf.ref_regular |= fh->elf.ref_regular;
5527 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5528 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5529 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5530 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5531 {
5532 move_plt_plist (fh, fdh);
5533 fdh->elf.needs_plt = 1;
5534 }
5535 fdh->is_func_descriptor = 1;
5536 fdh->oh = fh;
5537 fh->oh = fdh;
5538 }
5539
5540 /* Now that the info is on the function descriptor, clear the
5541 function code sym info. Any function code syms for which we
5542 don't have a definition in a regular file, we force local.
5543 This prevents a shared library from exporting syms that have
5544 been imported from another library. Function code syms that
5545 are really in the library we must leave global to prevent the
5546 linker dragging in a definition from a static library. */
5547 force_local = (!fh->elf.def_regular
5548 || fdh == NULL
5549 || !fdh->elf.def_regular
5550 || fdh->elf.forced_local);
5551 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5552
5553 return TRUE;
5554 }
5555
5556 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5557 this hook to a) provide some gcc support functions, and b) transfer
5558 dynamic linking information gathered so far on function code symbol
5559 entries, to their corresponding function descriptor symbol entries. */
5560
5561 static bfd_boolean
5562 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5563 struct bfd_link_info *info)
5564 {
5565 struct ppc_link_hash_table *htab;
5566 unsigned int i;
5567 const struct sfpr_def_parms funcs[] =
5568 {
5569 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5570 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5571 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5572 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5573 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5574 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5575 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5576 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5577 { "._savef", 14, 31, savefpr, savefpr1_tail },
5578 { "._restf", 14, 31, restfpr, restfpr1_tail },
5579 { "_savevr_", 20, 31, savevr, savevr_tail },
5580 { "_restvr_", 20, 31, restvr, restvr_tail }
5581 };
5582
5583 htab = ppc_hash_table (info);
5584 if (htab->sfpr == NULL)
5585 /* We don't have any relocs. */
5586 return TRUE;
5587
5588 /* Provide any missing _save* and _rest* functions. */
5589 htab->sfpr->size = 0;
5590 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5591 if (!sfpr_define (info, &funcs[i]))
5592 return FALSE;
5593
5594 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5595
5596 if (htab->sfpr->size == 0)
5597 htab->sfpr->flags |= SEC_EXCLUDE;
5598
5599 return TRUE;
5600 }
5601
5602 /* Adjust a symbol defined by a dynamic object and referenced by a
5603 regular object. The current definition is in some section of the
5604 dynamic object, but we're not including those sections. We have to
5605 change the definition to something the rest of the link can
5606 understand. */
5607
5608 static bfd_boolean
5609 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5610 struct elf_link_hash_entry *h)
5611 {
5612 struct ppc_link_hash_table *htab;
5613 asection *s;
5614 unsigned int power_of_two;
5615
5616 htab = ppc_hash_table (info);
5617
5618 /* Deal with function syms. */
5619 if (h->type == STT_FUNC
5620 || h->needs_plt)
5621 {
5622 /* Clear procedure linkage table information for any symbol that
5623 won't need a .plt entry. */
5624 struct plt_entry *ent;
5625 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5626 if (ent->plt.refcount > 0)
5627 break;
5628 if (ent == NULL
5629 || SYMBOL_CALLS_LOCAL (info, h)
5630 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5631 && h->root.type == bfd_link_hash_undefweak))
5632 {
5633 h->plt.plist = NULL;
5634 h->needs_plt = 0;
5635 }
5636 }
5637 else
5638 h->plt.plist = NULL;
5639
5640 /* If this is a weak symbol, and there is a real definition, the
5641 processor independent code will have arranged for us to see the
5642 real definition first, and we can just use the same value. */
5643 if (h->u.weakdef != NULL)
5644 {
5645 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5646 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5647 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5648 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5649 if (ELIMINATE_COPY_RELOCS)
5650 h->non_got_ref = h->u.weakdef->non_got_ref;
5651 return TRUE;
5652 }
5653
5654 /* If we are creating a shared library, we must presume that the
5655 only references to the symbol are via the global offset table.
5656 For such cases we need not do anything here; the relocations will
5657 be handled correctly by relocate_section. */
5658 if (info->shared)
5659 return TRUE;
5660
5661 /* If there are no references to this symbol that do not use the
5662 GOT, we don't need to generate a copy reloc. */
5663 if (!h->non_got_ref)
5664 return TRUE;
5665
5666 if (ELIMINATE_COPY_RELOCS)
5667 {
5668 struct ppc_link_hash_entry * eh;
5669 struct ppc_dyn_relocs *p;
5670
5671 eh = (struct ppc_link_hash_entry *) h;
5672 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5673 {
5674 s = p->sec->output_section;
5675 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5676 break;
5677 }
5678
5679 /* If we didn't find any dynamic relocs in read-only sections, then
5680 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5681 if (p == NULL)
5682 {
5683 h->non_got_ref = 0;
5684 return TRUE;
5685 }
5686 }
5687
5688 if (h->plt.plist != NULL)
5689 {
5690 /* We should never get here, but unfortunately there are versions
5691 of gcc out there that improperly (for this ABI) put initialized
5692 function pointers, vtable refs and suchlike in read-only
5693 sections. Allow them to proceed, but warn that this might
5694 break at runtime. */
5695 (*_bfd_error_handler)
5696 (_("copy reloc against `%s' requires lazy plt linking; "
5697 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5698 h->root.root.string);
5699 }
5700
5701 /* This is a reference to a symbol defined by a dynamic object which
5702 is not a function. */
5703
5704 /* We must allocate the symbol in our .dynbss section, which will
5705 become part of the .bss section of the executable. There will be
5706 an entry for this symbol in the .dynsym section. The dynamic
5707 object will contain position independent code, so all references
5708 from the dynamic object to this symbol will go through the global
5709 offset table. The dynamic linker will use the .dynsym entry to
5710 determine the address it must put in the global offset table, so
5711 both the dynamic object and the regular object will refer to the
5712 same memory location for the variable. */
5713
5714 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5715 to copy the initial value out of the dynamic object and into the
5716 runtime process image. We need to remember the offset into the
5717 .rela.bss section we are going to use. */
5718 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5719 {
5720 htab->relbss->size += sizeof (Elf64_External_Rela);
5721 h->needs_copy = 1;
5722 }
5723
5724 /* We need to figure out the alignment required for this symbol. I
5725 have no idea how ELF linkers handle this. */
5726 power_of_two = bfd_log2 (h->size);
5727 if (power_of_two > 4)
5728 power_of_two = 4;
5729
5730 /* Apply the required alignment. */
5731 s = htab->dynbss;
5732 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5733 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5734 {
5735 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5736 return FALSE;
5737 }
5738
5739 /* Define the symbol as being at this point in the section. */
5740 h->root.u.def.section = s;
5741 h->root.u.def.value = s->size;
5742
5743 /* Increment the section size to make room for the symbol. */
5744 s->size += h->size;
5745
5746 return TRUE;
5747 }
5748
5749 /* If given a function descriptor symbol, hide both the function code
5750 sym and the descriptor. */
5751 static void
5752 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5753 struct elf_link_hash_entry *h,
5754 bfd_boolean force_local)
5755 {
5756 struct ppc_link_hash_entry *eh;
5757 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5758
5759 eh = (struct ppc_link_hash_entry *) h;
5760 if (eh->is_func_descriptor)
5761 {
5762 struct ppc_link_hash_entry *fh = eh->oh;
5763
5764 if (fh == NULL)
5765 {
5766 const char *p, *q;
5767 struct ppc_link_hash_table *htab;
5768 char save;
5769
5770 /* We aren't supposed to use alloca in BFD because on
5771 systems which do not have alloca the version in libiberty
5772 calls xmalloc, which might cause the program to crash
5773 when it runs out of memory. This function doesn't have a
5774 return status, so there's no way to gracefully return an
5775 error. So cheat. We know that string[-1] can be safely
5776 accessed; It's either a string in an ELF string table,
5777 or allocated in an objalloc structure. */
5778
5779 p = eh->elf.root.root.string - 1;
5780 save = *p;
5781 *(char *) p = '.';
5782 htab = ppc_hash_table (info);
5783 fh = (struct ppc_link_hash_entry *)
5784 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5785 *(char *) p = save;
5786
5787 /* Unfortunately, if it so happens that the string we were
5788 looking for was allocated immediately before this string,
5789 then we overwrote the string terminator. That's the only
5790 reason the lookup should fail. */
5791 if (fh == NULL)
5792 {
5793 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5794 while (q >= eh->elf.root.root.string && *q == *p)
5795 --q, --p;
5796 if (q < eh->elf.root.root.string && *p == '.')
5797 fh = (struct ppc_link_hash_entry *)
5798 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5799 }
5800 if (fh != NULL)
5801 {
5802 eh->oh = fh;
5803 fh->oh = eh;
5804 }
5805 }
5806 if (fh != NULL)
5807 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5808 }
5809 }
5810
5811 static bfd_boolean
5812 get_sym_h (struct elf_link_hash_entry **hp,
5813 Elf_Internal_Sym **symp,
5814 asection **symsecp,
5815 char **tls_maskp,
5816 Elf_Internal_Sym **locsymsp,
5817 unsigned long r_symndx,
5818 bfd *ibfd)
5819 {
5820 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5821
5822 if (r_symndx >= symtab_hdr->sh_info)
5823 {
5824 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5825 struct elf_link_hash_entry *h;
5826
5827 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5828 while (h->root.type == bfd_link_hash_indirect
5829 || h->root.type == bfd_link_hash_warning)
5830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5831
5832 if (hp != NULL)
5833 *hp = h;
5834
5835 if (symp != NULL)
5836 *symp = NULL;
5837
5838 if (symsecp != NULL)
5839 {
5840 asection *symsec = NULL;
5841 if (h->root.type == bfd_link_hash_defined
5842 || h->root.type == bfd_link_hash_defweak)
5843 symsec = h->root.u.def.section;
5844 *symsecp = symsec;
5845 }
5846
5847 if (tls_maskp != NULL)
5848 {
5849 struct ppc_link_hash_entry *eh;
5850
5851 eh = (struct ppc_link_hash_entry *) h;
5852 *tls_maskp = &eh->tls_mask;
5853 }
5854 }
5855 else
5856 {
5857 Elf_Internal_Sym *sym;
5858 Elf_Internal_Sym *locsyms = *locsymsp;
5859
5860 if (locsyms == NULL)
5861 {
5862 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5863 if (locsyms == NULL)
5864 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5865 symtab_hdr->sh_info,
5866 0, NULL, NULL, NULL);
5867 if (locsyms == NULL)
5868 return FALSE;
5869 *locsymsp = locsyms;
5870 }
5871 sym = locsyms + r_symndx;
5872
5873 if (hp != NULL)
5874 *hp = NULL;
5875
5876 if (symp != NULL)
5877 *symp = sym;
5878
5879 if (symsecp != NULL)
5880 {
5881 asection *symsec = NULL;
5882 if ((sym->st_shndx != SHN_UNDEF
5883 && sym->st_shndx < SHN_LORESERVE)
5884 || sym->st_shndx > SHN_HIRESERVE)
5885 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5886 *symsecp = symsec;
5887 }
5888
5889 if (tls_maskp != NULL)
5890 {
5891 struct got_entry **lgot_ents;
5892 char *tls_mask;
5893
5894 tls_mask = NULL;
5895 lgot_ents = elf_local_got_ents (ibfd);
5896 if (lgot_ents != NULL)
5897 {
5898 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5899 tls_mask = &lgot_masks[r_symndx];
5900 }
5901 *tls_maskp = tls_mask;
5902 }
5903 }
5904 return TRUE;
5905 }
5906
5907 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5908 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5909 type suitable for optimization, and 1 otherwise. */
5910
5911 static int
5912 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5913 Elf_Internal_Sym **locsymsp,
5914 const Elf_Internal_Rela *rel, bfd *ibfd)
5915 {
5916 unsigned long r_symndx;
5917 int next_r;
5918 struct elf_link_hash_entry *h;
5919 Elf_Internal_Sym *sym;
5920 asection *sec;
5921 bfd_vma off;
5922
5923 r_symndx = ELF64_R_SYM (rel->r_info);
5924 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5925 return 0;
5926
5927 if ((*tls_maskp != NULL && **tls_maskp != 0)
5928 || sec == NULL
5929 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5930 return 1;
5931
5932 /* Look inside a TOC section too. */
5933 if (h != NULL)
5934 {
5935 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5936 off = h->root.u.def.value;
5937 }
5938 else
5939 off = sym->st_value;
5940 off += rel->r_addend;
5941 BFD_ASSERT (off % 8 == 0);
5942 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5943 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5944 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5945 return 0;
5946 if (toc_symndx != NULL)
5947 *toc_symndx = r_symndx;
5948 if ((h == NULL
5949 || ((h->root.type == bfd_link_hash_defined
5950 || h->root.type == bfd_link_hash_defweak)
5951 && !h->def_dynamic))
5952 && (next_r == -1 || next_r == -2))
5953 return 1 - next_r;
5954 return 1;
5955 }
5956
5957 /* Adjust all global syms defined in opd sections. In gcc generated
5958 code for the old ABI, these will already have been done. */
5959
5960 static bfd_boolean
5961 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5962 {
5963 struct ppc_link_hash_entry *eh;
5964 asection *sym_sec;
5965 long *opd_adjust;
5966
5967 if (h->root.type == bfd_link_hash_indirect)
5968 return TRUE;
5969
5970 if (h->root.type == bfd_link_hash_warning)
5971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5972
5973 if (h->root.type != bfd_link_hash_defined
5974 && h->root.type != bfd_link_hash_defweak)
5975 return TRUE;
5976
5977 eh = (struct ppc_link_hash_entry *) h;
5978 if (eh->adjust_done)
5979 return TRUE;
5980
5981 sym_sec = eh->elf.root.u.def.section;
5982 opd_adjust = get_opd_info (sym_sec);
5983 if (opd_adjust != NULL)
5984 {
5985 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5986 if (adjust == -1)
5987 {
5988 /* This entry has been deleted. */
5989 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->u.deleted_section;
5990 if (dsec == NULL)
5991 {
5992 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5993 if (elf_discarded_section (dsec))
5994 {
5995 ppc64_elf_tdata (sym_sec->owner)->u.deleted_section = dsec;
5996 break;
5997 }
5998 }
5999 eh->elf.root.u.def.value = 0;
6000 eh->elf.root.u.def.section = dsec;
6001 }
6002 else
6003 eh->elf.root.u.def.value += adjust;
6004 eh->adjust_done = 1;
6005 }
6006 return TRUE;
6007 }
6008
6009 /* Handles decrementing dynamic reloc counts for the reloc specified by
6010 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6011 have already been determined. */
6012
6013 static bfd_boolean
6014 dec_dynrel_count (bfd_vma r_info,
6015 asection *sec,
6016 struct bfd_link_info *info,
6017 Elf_Internal_Sym **local_syms,
6018 struct elf_link_hash_entry *h,
6019 asection *sym_sec)
6020 {
6021 enum elf_ppc64_reloc_type r_type;
6022 struct ppc_dyn_relocs *p;
6023 struct ppc_dyn_relocs **pp;
6024
6025 /* Can this reloc be dynamic? This switch, and later tests here
6026 should be kept in sync with the code in check_relocs. */
6027 r_type = ELF64_R_TYPE (r_info);
6028 switch (r_type)
6029 {
6030 default:
6031 return TRUE;
6032
6033 case R_PPC64_TPREL16:
6034 case R_PPC64_TPREL16_LO:
6035 case R_PPC64_TPREL16_HI:
6036 case R_PPC64_TPREL16_HA:
6037 case R_PPC64_TPREL16_DS:
6038 case R_PPC64_TPREL16_LO_DS:
6039 case R_PPC64_TPREL16_HIGHER:
6040 case R_PPC64_TPREL16_HIGHERA:
6041 case R_PPC64_TPREL16_HIGHEST:
6042 case R_PPC64_TPREL16_HIGHESTA:
6043 if (!info->shared)
6044 return TRUE;
6045
6046 case R_PPC64_TPREL64:
6047 case R_PPC64_DTPMOD64:
6048 case R_PPC64_DTPREL64:
6049 case R_PPC64_ADDR64:
6050 case R_PPC64_REL30:
6051 case R_PPC64_REL32:
6052 case R_PPC64_REL64:
6053 case R_PPC64_ADDR14:
6054 case R_PPC64_ADDR14_BRNTAKEN:
6055 case R_PPC64_ADDR14_BRTAKEN:
6056 case R_PPC64_ADDR16:
6057 case R_PPC64_ADDR16_DS:
6058 case R_PPC64_ADDR16_HA:
6059 case R_PPC64_ADDR16_HI:
6060 case R_PPC64_ADDR16_HIGHER:
6061 case R_PPC64_ADDR16_HIGHERA:
6062 case R_PPC64_ADDR16_HIGHEST:
6063 case R_PPC64_ADDR16_HIGHESTA:
6064 case R_PPC64_ADDR16_LO:
6065 case R_PPC64_ADDR16_LO_DS:
6066 case R_PPC64_ADDR24:
6067 case R_PPC64_ADDR32:
6068 case R_PPC64_UADDR16:
6069 case R_PPC64_UADDR32:
6070 case R_PPC64_UADDR64:
6071 case R_PPC64_TOC:
6072 break;
6073 }
6074
6075 if (local_syms != NULL)
6076 {
6077 unsigned long r_symndx;
6078 Elf_Internal_Sym *sym;
6079 bfd *ibfd = sec->owner;
6080
6081 r_symndx = ELF64_R_SYM (r_info);
6082 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6083 return FALSE;
6084 }
6085
6086 if ((info->shared
6087 && (MUST_BE_DYN_RELOC (r_type)
6088 || (h != NULL
6089 && (!info->symbolic
6090 || h->root.type == bfd_link_hash_defweak
6091 || !h->def_regular))))
6092 || (ELIMINATE_COPY_RELOCS
6093 && !info->shared
6094 && h != NULL
6095 && (h->root.type == bfd_link_hash_defweak
6096 || !h->def_regular)))
6097 ;
6098 else
6099 return TRUE;
6100
6101 if (h != NULL)
6102 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6103 else if (sym_sec != NULL)
6104 pp = (struct ppc_dyn_relocs **) &elf_section_data (sym_sec)->local_dynrel;
6105 else
6106 pp = (struct ppc_dyn_relocs **) &elf_section_data (sec)->local_dynrel;
6107
6108 while ((p = *pp) != NULL)
6109 {
6110 if (p->sec == sec)
6111 {
6112 if (!MUST_BE_DYN_RELOC (r_type))
6113 p->pc_count -= 1;
6114 p->count -= 1;
6115 if (p->count == 0)
6116 *pp = p->next;
6117 return TRUE;
6118 }
6119 pp = &p->next;
6120 }
6121
6122 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6123 sec->owner, sec);
6124 bfd_set_error (bfd_error_bad_value);
6125 return FALSE;
6126 }
6127
6128 /* Remove unused Official Procedure Descriptor entries. Currently we
6129 only remove those associated with functions in discarded link-once
6130 sections, or weakly defined functions that have been overridden. It
6131 would be possible to remove many more entries for statically linked
6132 applications. */
6133
6134 bfd_boolean
6135 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6136 bfd_boolean no_opd_opt,
6137 bfd_boolean non_overlapping)
6138 {
6139 bfd *ibfd;
6140 bfd_boolean some_edited = FALSE;
6141 asection *need_pad = NULL;
6142
6143 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6144 {
6145 asection *sec;
6146 Elf_Internal_Rela *relstart, *rel, *relend;
6147 Elf_Internal_Shdr *symtab_hdr;
6148 Elf_Internal_Sym *local_syms;
6149 struct elf_link_hash_entry **sym_hashes;
6150 bfd_vma offset;
6151 bfd_size_type amt;
6152 long *opd_adjust;
6153 bfd_boolean need_edit, add_aux_fields;
6154 bfd_size_type cnt_16b = 0;
6155
6156 sec = bfd_get_section_by_name (ibfd, ".opd");
6157 if (sec == NULL || sec->size == 0)
6158 continue;
6159
6160 amt = sec->size * sizeof (long) / 8;
6161 opd_adjust = get_opd_info (sec);
6162 if (opd_adjust == NULL)
6163 {
6164 /* check_relocs hasn't been called. Must be a ld -r link
6165 or --just-symbols object. */
6166 opd_adjust = bfd_alloc (obfd, amt);
6167 if (opd_adjust == NULL)
6168 return FALSE;
6169 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
6170 }
6171 memset (opd_adjust, 0, amt);
6172
6173 if (no_opd_opt)
6174 continue;
6175
6176 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6177 continue;
6178
6179 if (sec->output_section == bfd_abs_section_ptr)
6180 continue;
6181
6182 /* Look through the section relocs. */
6183 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6184 continue;
6185
6186 local_syms = NULL;
6187 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6188 sym_hashes = elf_sym_hashes (ibfd);
6189
6190 /* Read the relocations. */
6191 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6192 info->keep_memory);
6193 if (relstart == NULL)
6194 return FALSE;
6195
6196 /* First run through the relocs to check they are sane, and to
6197 determine whether we need to edit this opd section. */
6198 need_edit = FALSE;
6199 need_pad = sec;
6200 offset = 0;
6201 relend = relstart + sec->reloc_count;
6202 for (rel = relstart; rel < relend; )
6203 {
6204 enum elf_ppc64_reloc_type r_type;
6205 unsigned long r_symndx;
6206 asection *sym_sec;
6207 struct elf_link_hash_entry *h;
6208 Elf_Internal_Sym *sym;
6209
6210 /* .opd contains a regular array of 16 or 24 byte entries. We're
6211 only interested in the reloc pointing to a function entry
6212 point. */
6213 if (rel->r_offset != offset
6214 || rel + 1 >= relend
6215 || (rel + 1)->r_offset != offset + 8)
6216 {
6217 /* If someone messes with .opd alignment then after a
6218 "ld -r" we might have padding in the middle of .opd.
6219 Also, there's nothing to prevent someone putting
6220 something silly in .opd with the assembler. No .opd
6221 optimization for them! */
6222 broken_opd:
6223 (*_bfd_error_handler)
6224 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6225 need_edit = FALSE;
6226 break;
6227 }
6228
6229 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6230 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6231 {
6232 (*_bfd_error_handler)
6233 (_("%B: unexpected reloc type %u in .opd section"),
6234 ibfd, r_type);
6235 need_edit = FALSE;
6236 break;
6237 }
6238
6239 r_symndx = ELF64_R_SYM (rel->r_info);
6240 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6241 r_symndx, ibfd))
6242 goto error_ret;
6243
6244 if (sym_sec == NULL || sym_sec->owner == NULL)
6245 {
6246 const char *sym_name;
6247 if (h != NULL)
6248 sym_name = h->root.root.string;
6249 else
6250 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6251 sym_sec);
6252
6253 (*_bfd_error_handler)
6254 (_("%B: undefined sym `%s' in .opd section"),
6255 ibfd, sym_name);
6256 need_edit = FALSE;
6257 break;
6258 }
6259
6260 /* opd entries are always for functions defined in the
6261 current input bfd. If the symbol isn't defined in the
6262 input bfd, then we won't be using the function in this
6263 bfd; It must be defined in a linkonce section in another
6264 bfd, or is weak. It's also possible that we are
6265 discarding the function due to a linker script /DISCARD/,
6266 which we test for via the output_section. */
6267 if (sym_sec->owner != ibfd
6268 || sym_sec->output_section == bfd_abs_section_ptr)
6269 need_edit = TRUE;
6270
6271 rel += 2;
6272 if (rel == relend
6273 || (rel + 1 == relend && rel->r_offset == offset + 16))
6274 {
6275 if (sec->size == offset + 24)
6276 {
6277 need_pad = NULL;
6278 break;
6279 }
6280 if (rel == relend && sec->size == offset + 16)
6281 {
6282 cnt_16b++;
6283 break;
6284 }
6285 goto broken_opd;
6286 }
6287
6288 if (rel->r_offset == offset + 24)
6289 offset += 24;
6290 else if (rel->r_offset != offset + 16)
6291 goto broken_opd;
6292 else if (rel + 1 < relend
6293 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6294 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6295 {
6296 offset += 16;
6297 cnt_16b++;
6298 }
6299 else if (rel + 2 < relend
6300 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6301 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6302 {
6303 offset += 24;
6304 rel += 1;
6305 }
6306 else
6307 goto broken_opd;
6308 }
6309
6310 add_aux_fields = non_overlapping && cnt_16b > 0;
6311
6312 if (need_edit || add_aux_fields)
6313 {
6314 Elf_Internal_Rela *write_rel;
6315 bfd_byte *rptr, *wptr;
6316 bfd_byte *new_contents = NULL;
6317 bfd_boolean skip;
6318 long opd_ent_size;
6319
6320 /* This seems a waste of time as input .opd sections are all
6321 zeros as generated by gcc, but I suppose there's no reason
6322 this will always be so. We might start putting something in
6323 the third word of .opd entries. */
6324 if ((sec->flags & SEC_IN_MEMORY) == 0)
6325 {
6326 bfd_byte *loc;
6327 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6328 {
6329 if (loc != NULL)
6330 free (loc);
6331 error_ret:
6332 if (local_syms != NULL
6333 && symtab_hdr->contents != (unsigned char *) local_syms)
6334 free (local_syms);
6335 if (elf_section_data (sec)->relocs != relstart)
6336 free (relstart);
6337 return FALSE;
6338 }
6339 sec->contents = loc;
6340 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6341 }
6342
6343 elf_section_data (sec)->relocs = relstart;
6344
6345 new_contents = sec->contents;
6346 if (add_aux_fields)
6347 {
6348 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6349 if (new_contents == NULL)
6350 return FALSE;
6351 need_pad = FALSE;
6352 }
6353 wptr = new_contents;
6354 rptr = sec->contents;
6355
6356 write_rel = relstart;
6357 skip = FALSE;
6358 offset = 0;
6359 opd_ent_size = 0;
6360 for (rel = relstart; rel < relend; rel++)
6361 {
6362 unsigned long r_symndx;
6363 asection *sym_sec;
6364 struct elf_link_hash_entry *h;
6365 Elf_Internal_Sym *sym;
6366
6367 r_symndx = ELF64_R_SYM (rel->r_info);
6368 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6369 r_symndx, ibfd))
6370 goto error_ret;
6371
6372 if (rel->r_offset == offset)
6373 {
6374 struct ppc_link_hash_entry *fdh = NULL;
6375
6376 /* See if the .opd entry is full 24 byte or
6377 16 byte (with fd_aux entry overlapped with next
6378 fd_func). */
6379 opd_ent_size = 24;
6380 if ((rel + 2 == relend && sec->size == offset + 16)
6381 || (rel + 3 < relend
6382 && rel[2].r_offset == offset + 16
6383 && rel[3].r_offset == offset + 24
6384 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6385 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6386 opd_ent_size = 16;
6387
6388 if (h != NULL
6389 && h->root.root.string[0] == '.')
6390 {
6391 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6392 ppc_hash_table (info));
6393 if (fdh != NULL
6394 && fdh->elf.root.type != bfd_link_hash_defined
6395 && fdh->elf.root.type != bfd_link_hash_defweak)
6396 fdh = NULL;
6397 }
6398
6399 skip = (sym_sec->owner != ibfd
6400 || sym_sec->output_section == bfd_abs_section_ptr);
6401 if (skip)
6402 {
6403 if (fdh != NULL && sym_sec->owner == ibfd)
6404 {
6405 /* Arrange for the function descriptor sym
6406 to be dropped. */
6407 fdh->elf.root.u.def.value = 0;
6408 fdh->elf.root.u.def.section = sym_sec;
6409 }
6410 opd_adjust[rel->r_offset / 8] = -1;
6411 }
6412 else
6413 {
6414 /* We'll be keeping this opd entry. */
6415
6416 if (fdh != NULL)
6417 {
6418 /* Redefine the function descriptor symbol to
6419 this location in the opd section. It is
6420 necessary to update the value here rather
6421 than using an array of adjustments as we do
6422 for local symbols, because various places
6423 in the generic ELF code use the value
6424 stored in u.def.value. */
6425 fdh->elf.root.u.def.value = wptr - new_contents;
6426 fdh->adjust_done = 1;
6427 }
6428
6429 /* Local syms are a bit tricky. We could
6430 tweak them as they can be cached, but
6431 we'd need to look through the local syms
6432 for the function descriptor sym which we
6433 don't have at the moment. So keep an
6434 array of adjustments. */
6435 opd_adjust[rel->r_offset / 8]
6436 = (wptr - new_contents) - (rptr - sec->contents);
6437
6438 if (wptr != rptr)
6439 memcpy (wptr, rptr, opd_ent_size);
6440 wptr += opd_ent_size;
6441 if (add_aux_fields && opd_ent_size == 16)
6442 {
6443 memset (wptr, '\0', 8);
6444 wptr += 8;
6445 }
6446 }
6447 rptr += opd_ent_size;
6448 offset += opd_ent_size;
6449 }
6450
6451 if (skip)
6452 {
6453 if (!dec_dynrel_count (rel->r_info, sec, info,
6454 NULL, h, sym_sec))
6455 goto error_ret;
6456 }
6457 else
6458 {
6459 /* We need to adjust any reloc offsets to point to the
6460 new opd entries. While we're at it, we may as well
6461 remove redundant relocs. */
6462 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6463 if (write_rel != rel)
6464 memcpy (write_rel, rel, sizeof (*rel));
6465 ++write_rel;
6466 }
6467 }
6468
6469 sec->size = wptr - new_contents;
6470 sec->reloc_count = write_rel - relstart;
6471 if (add_aux_fields)
6472 {
6473 free (sec->contents);
6474 sec->contents = new_contents;
6475 }
6476
6477 /* Fudge the size too, as this is used later in
6478 elf_bfd_final_link if we are emitting relocs. */
6479 elf_section_data (sec)->rel_hdr.sh_size
6480 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6481 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6482 some_edited = TRUE;
6483 }
6484 else if (elf_section_data (sec)->relocs != relstart)
6485 free (relstart);
6486
6487 if (local_syms != NULL
6488 && symtab_hdr->contents != (unsigned char *) local_syms)
6489 {
6490 if (!info->keep_memory)
6491 free (local_syms);
6492 else
6493 symtab_hdr->contents = (unsigned char *) local_syms;
6494 }
6495 }
6496
6497 if (some_edited)
6498 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6499
6500 /* If we are doing a final link and the last .opd entry is just 16 byte
6501 long, add a 8 byte padding after it. */
6502 if (need_pad != NULL && !info->relocatable)
6503 {
6504 bfd_byte *p;
6505
6506 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6507 {
6508 BFD_ASSERT (need_pad->size > 0);
6509
6510 p = bfd_malloc (need_pad->size + 8);
6511 if (p == NULL)
6512 return FALSE;
6513
6514 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6515 p, 0, need_pad->size))
6516 return FALSE;
6517
6518 need_pad->contents = p;
6519 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6520 }
6521 else
6522 {
6523 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6524 if (p == NULL)
6525 return FALSE;
6526
6527 need_pad->contents = p;
6528 }
6529
6530 memset (need_pad->contents + need_pad->size, 0, 8);
6531 need_pad->size += 8;
6532 }
6533
6534 return TRUE;
6535 }
6536
6537 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6538
6539 asection *
6540 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6541 {
6542 struct ppc_link_hash_table *htab;
6543
6544 htab = ppc_hash_table (info);
6545 if (htab->tls_get_addr != NULL)
6546 {
6547 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6548
6549 while (h->elf.root.type == bfd_link_hash_indirect
6550 || h->elf.root.type == bfd_link_hash_warning)
6551 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6552
6553 htab->tls_get_addr = h;
6554
6555 if (htab->tls_get_addr_fd == NULL
6556 && h->oh != NULL
6557 && h->oh->is_func_descriptor
6558 && (h->oh->elf.root.type == bfd_link_hash_defined
6559 || h->oh->elf.root.type == bfd_link_hash_defweak))
6560 htab->tls_get_addr_fd = h->oh;
6561 }
6562
6563 if (htab->tls_get_addr_fd != NULL)
6564 {
6565 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6566
6567 while (h->elf.root.type == bfd_link_hash_indirect
6568 || h->elf.root.type == bfd_link_hash_warning)
6569 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6570
6571 htab->tls_get_addr_fd = h;
6572 }
6573
6574 return _bfd_elf_tls_setup (obfd, info);
6575 }
6576
6577 /* Run through all the TLS relocs looking for optimization
6578 opportunities. The linker has been hacked (see ppc64elf.em) to do
6579 a preliminary section layout so that we know the TLS segment
6580 offsets. We can't optimize earlier because some optimizations need
6581 to know the tp offset, and we need to optimize before allocating
6582 dynamic relocations. */
6583
6584 bfd_boolean
6585 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6586 {
6587 bfd *ibfd;
6588 asection *sec;
6589 struct ppc_link_hash_table *htab;
6590
6591 if (info->relocatable || info->shared)
6592 return TRUE;
6593
6594 htab = ppc_hash_table (info);
6595 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6596 {
6597 Elf_Internal_Sym *locsyms = NULL;
6598
6599 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6600 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6601 {
6602 Elf_Internal_Rela *relstart, *rel, *relend;
6603 int expecting_tls_get_addr;
6604
6605 /* Read the relocations. */
6606 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6607 info->keep_memory);
6608 if (relstart == NULL)
6609 return FALSE;
6610
6611 expecting_tls_get_addr = 0;
6612 relend = relstart + sec->reloc_count;
6613 for (rel = relstart; rel < relend; rel++)
6614 {
6615 enum elf_ppc64_reloc_type r_type;
6616 unsigned long r_symndx;
6617 struct elf_link_hash_entry *h;
6618 Elf_Internal_Sym *sym;
6619 asection *sym_sec;
6620 char *tls_mask;
6621 char tls_set, tls_clear, tls_type = 0;
6622 bfd_vma value;
6623 bfd_boolean ok_tprel, is_local;
6624
6625 r_symndx = ELF64_R_SYM (rel->r_info);
6626 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6627 r_symndx, ibfd))
6628 {
6629 err_free_rel:
6630 if (elf_section_data (sec)->relocs != relstart)
6631 free (relstart);
6632 if (locsyms != NULL
6633 && (elf_tdata (ibfd)->symtab_hdr.contents
6634 != (unsigned char *) locsyms))
6635 free (locsyms);
6636 return FALSE;
6637 }
6638
6639 if (h != NULL)
6640 {
6641 if (h->root.type != bfd_link_hash_defined
6642 && h->root.type != bfd_link_hash_defweak)
6643 continue;
6644 value = h->root.u.def.value;
6645 }
6646 else
6647 /* Symbols referenced by TLS relocs must be of type
6648 STT_TLS. So no need for .opd local sym adjust. */
6649 value = sym->st_value;
6650
6651 ok_tprel = FALSE;
6652 is_local = FALSE;
6653 if (h == NULL
6654 || !h->def_dynamic)
6655 {
6656 is_local = TRUE;
6657 value += sym_sec->output_offset;
6658 value += sym_sec->output_section->vma;
6659 value -= htab->elf.tls_sec->vma;
6660 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6661 < (bfd_vma) 1 << 32);
6662 }
6663
6664 r_type = ELF64_R_TYPE (rel->r_info);
6665 switch (r_type)
6666 {
6667 case R_PPC64_GOT_TLSLD16:
6668 case R_PPC64_GOT_TLSLD16_LO:
6669 case R_PPC64_GOT_TLSLD16_HI:
6670 case R_PPC64_GOT_TLSLD16_HA:
6671 /* These relocs should never be against a symbol
6672 defined in a shared lib. Leave them alone if
6673 that turns out to be the case. */
6674 ppc64_tlsld_got (ibfd)->refcount -= 1;
6675 if (!is_local)
6676 continue;
6677
6678 /* LD -> LE */
6679 tls_set = 0;
6680 tls_clear = TLS_LD;
6681 tls_type = TLS_TLS | TLS_LD;
6682 expecting_tls_get_addr = 1;
6683 break;
6684
6685 case R_PPC64_GOT_TLSGD16:
6686 case R_PPC64_GOT_TLSGD16_LO:
6687 case R_PPC64_GOT_TLSGD16_HI:
6688 case R_PPC64_GOT_TLSGD16_HA:
6689 if (ok_tprel)
6690 /* GD -> LE */
6691 tls_set = 0;
6692 else
6693 /* GD -> IE */
6694 tls_set = TLS_TLS | TLS_TPRELGD;
6695 tls_clear = TLS_GD;
6696 tls_type = TLS_TLS | TLS_GD;
6697 expecting_tls_get_addr = 1;
6698 break;
6699
6700 case R_PPC64_GOT_TPREL16_DS:
6701 case R_PPC64_GOT_TPREL16_LO_DS:
6702 case R_PPC64_GOT_TPREL16_HI:
6703 case R_PPC64_GOT_TPREL16_HA:
6704 expecting_tls_get_addr = 0;
6705 if (ok_tprel)
6706 {
6707 /* IE -> LE */
6708 tls_set = 0;
6709 tls_clear = TLS_TPREL;
6710 tls_type = TLS_TLS | TLS_TPREL;
6711 break;
6712 }
6713 else
6714 continue;
6715
6716 case R_PPC64_REL14:
6717 case R_PPC64_REL14_BRTAKEN:
6718 case R_PPC64_REL14_BRNTAKEN:
6719 case R_PPC64_REL24:
6720 if (h != NULL
6721 && (h == &htab->tls_get_addr->elf
6722 || h == &htab->tls_get_addr_fd->elf))
6723 {
6724 if (!expecting_tls_get_addr
6725 && rel != relstart
6726 && ((ELF64_R_TYPE (rel[-1].r_info)
6727 == R_PPC64_TOC16)
6728 || (ELF64_R_TYPE (rel[-1].r_info)
6729 == R_PPC64_TOC16_LO)))
6730 {
6731 /* Check for toc tls entries. */
6732 char *toc_tls;
6733 int retval;
6734
6735 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6736 rel - 1, ibfd);
6737 if (retval == 0)
6738 goto err_free_rel;
6739 if (toc_tls != NULL)
6740 expecting_tls_get_addr = retval > 1;
6741 }
6742
6743 if (expecting_tls_get_addr)
6744 {
6745 struct plt_entry *ent;
6746 for (ent = h->plt.plist; ent; ent = ent->next)
6747 if (ent->addend == 0)
6748 {
6749 if (ent->plt.refcount > 0)
6750 ent->plt.refcount -= 1;
6751 break;
6752 }
6753 }
6754 }
6755 expecting_tls_get_addr = 0;
6756 continue;
6757
6758 case R_PPC64_TPREL64:
6759 expecting_tls_get_addr = 0;
6760 if (ok_tprel)
6761 {
6762 /* IE -> LE */
6763 tls_set = TLS_EXPLICIT;
6764 tls_clear = TLS_TPREL;
6765 break;
6766 }
6767 else
6768 continue;
6769
6770 case R_PPC64_DTPMOD64:
6771 expecting_tls_get_addr = 0;
6772 if (rel + 1 < relend
6773 && (rel[1].r_info
6774 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6775 && rel[1].r_offset == rel->r_offset + 8)
6776 {
6777 if (ok_tprel)
6778 /* GD -> LE */
6779 tls_set = TLS_EXPLICIT | TLS_GD;
6780 else
6781 /* GD -> IE */
6782 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6783 tls_clear = TLS_GD;
6784 }
6785 else
6786 {
6787 if (!is_local)
6788 continue;
6789
6790 /* LD -> LE */
6791 tls_set = TLS_EXPLICIT;
6792 tls_clear = TLS_LD;
6793 }
6794 break;
6795
6796 default:
6797 expecting_tls_get_addr = 0;
6798 continue;
6799 }
6800
6801 if ((tls_set & TLS_EXPLICIT) == 0)
6802 {
6803 struct got_entry *ent;
6804
6805 /* Adjust got entry for this reloc. */
6806 if (h != NULL)
6807 ent = h->got.glist;
6808 else
6809 ent = elf_local_got_ents (ibfd)[r_symndx];
6810
6811 for (; ent != NULL; ent = ent->next)
6812 if (ent->addend == rel->r_addend
6813 && ent->owner == ibfd
6814 && ent->tls_type == tls_type)
6815 break;
6816 if (ent == NULL)
6817 abort ();
6818
6819 if (tls_set == 0)
6820 {
6821 /* We managed to get rid of a got entry. */
6822 if (ent->got.refcount > 0)
6823 ent->got.refcount -= 1;
6824 }
6825 }
6826 else
6827 {
6828 /* If we got rid of a DTPMOD/DTPREL reloc pair then
6829 we'll lose one or two dyn relocs. */
6830 if (!dec_dynrel_count (rel->r_info, sec, info,
6831 NULL, h, sym_sec))
6832 return FALSE;
6833
6834 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6835 {
6836 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
6837 NULL, h, sym_sec))
6838 return FALSE;
6839 }
6840 }
6841
6842 *tls_mask |= tls_set;
6843 *tls_mask &= ~tls_clear;
6844 }
6845
6846 if (elf_section_data (sec)->relocs != relstart)
6847 free (relstart);
6848 }
6849
6850 if (locsyms != NULL
6851 && (elf_tdata (ibfd)->symtab_hdr.contents
6852 != (unsigned char *) locsyms))
6853 {
6854 if (!info->keep_memory)
6855 free (locsyms);
6856 else
6857 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6858 }
6859 }
6860 return TRUE;
6861 }
6862
6863 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6864 the values of any global symbols in a toc section that has been
6865 edited. Globals in toc sections should be a rarity, so this function
6866 sets a flag if any are found in toc sections other than the one just
6867 edited, so that futher hash table traversals can be avoided. */
6868
6869 struct adjust_toc_info
6870 {
6871 asection *toc;
6872 unsigned long *skip;
6873 bfd_boolean global_toc_syms;
6874 };
6875
6876 static bfd_boolean
6877 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6878 {
6879 struct ppc_link_hash_entry *eh;
6880 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6881
6882 if (h->root.type == bfd_link_hash_indirect)
6883 return TRUE;
6884
6885 if (h->root.type == bfd_link_hash_warning)
6886 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6887
6888 if (h->root.type != bfd_link_hash_defined
6889 && h->root.type != bfd_link_hash_defweak)
6890 return TRUE;
6891
6892 eh = (struct ppc_link_hash_entry *) h;
6893 if (eh->adjust_done)
6894 return TRUE;
6895
6896 if (eh->elf.root.u.def.section == toc_inf->toc)
6897 {
6898 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6899 if (skip != (unsigned long) -1)
6900 eh->elf.root.u.def.value -= skip;
6901 else
6902 {
6903 (*_bfd_error_handler)
6904 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6905 eh->elf.root.u.def.section = &bfd_abs_section;
6906 eh->elf.root.u.def.value = 0;
6907 }
6908 eh->adjust_done = 1;
6909 }
6910 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6911 toc_inf->global_toc_syms = TRUE;
6912
6913 return TRUE;
6914 }
6915
6916 /* Examine all relocs referencing .toc sections in order to remove
6917 unused .toc entries. */
6918
6919 bfd_boolean
6920 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6921 {
6922 bfd *ibfd;
6923 struct adjust_toc_info toc_inf;
6924
6925 toc_inf.global_toc_syms = TRUE;
6926 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6927 {
6928 asection *toc, *sec;
6929 Elf_Internal_Shdr *symtab_hdr;
6930 Elf_Internal_Sym *local_syms;
6931 struct elf_link_hash_entry **sym_hashes;
6932 Elf_Internal_Rela *relstart, *rel;
6933 unsigned long *skip, *drop;
6934 unsigned char *used;
6935 unsigned char *keep, last, some_unused;
6936
6937 toc = bfd_get_section_by_name (ibfd, ".toc");
6938 if (toc == NULL
6939 || toc->size == 0
6940 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6941 || elf_discarded_section (toc))
6942 continue;
6943
6944 local_syms = NULL;
6945 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6946 sym_hashes = elf_sym_hashes (ibfd);
6947
6948 /* Look at sections dropped from the final link. */
6949 skip = NULL;
6950 relstart = NULL;
6951 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6952 {
6953 if (sec->reloc_count == 0
6954 || !elf_discarded_section (sec)
6955 || get_opd_info (sec)
6956 || (sec->flags & SEC_ALLOC) == 0
6957 || (sec->flags & SEC_DEBUGGING) != 0)
6958 continue;
6959
6960 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6961 if (relstart == NULL)
6962 goto error_ret;
6963
6964 /* Run through the relocs to see which toc entries might be
6965 unused. */
6966 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6967 {
6968 enum elf_ppc64_reloc_type r_type;
6969 unsigned long r_symndx;
6970 asection *sym_sec;
6971 struct elf_link_hash_entry *h;
6972 Elf_Internal_Sym *sym;
6973 bfd_vma val;
6974
6975 r_type = ELF64_R_TYPE (rel->r_info);
6976 switch (r_type)
6977 {
6978 default:
6979 continue;
6980
6981 case R_PPC64_TOC16:
6982 case R_PPC64_TOC16_LO:
6983 case R_PPC64_TOC16_HI:
6984 case R_PPC64_TOC16_HA:
6985 case R_PPC64_TOC16_DS:
6986 case R_PPC64_TOC16_LO_DS:
6987 break;
6988 }
6989
6990 r_symndx = ELF64_R_SYM (rel->r_info);
6991 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6992 r_symndx, ibfd))
6993 goto error_ret;
6994
6995 if (sym_sec != toc)
6996 continue;
6997
6998 if (h != NULL)
6999 val = h->root.u.def.value;
7000 else
7001 val = sym->st_value;
7002 val += rel->r_addend;
7003
7004 if (val >= toc->size)
7005 continue;
7006
7007 /* Anything in the toc ought to be aligned to 8 bytes.
7008 If not, don't mark as unused. */
7009 if (val & 7)
7010 continue;
7011
7012 if (skip == NULL)
7013 {
7014 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7015 if (skip == NULL)
7016 goto error_ret;
7017 }
7018
7019 skip[val >> 3] = 1;
7020 }
7021
7022 if (elf_section_data (sec)->relocs != relstart)
7023 free (relstart);
7024 }
7025
7026 if (skip == NULL)
7027 continue;
7028
7029 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7030 if (used == NULL)
7031 {
7032 error_ret:
7033 if (local_syms != NULL
7034 && symtab_hdr->contents != (unsigned char *) local_syms)
7035 free (local_syms);
7036 if (sec != NULL
7037 && relstart != NULL
7038 && elf_section_data (sec)->relocs != relstart)
7039 free (relstart);
7040 if (skip != NULL)
7041 free (skip);
7042 return FALSE;
7043 }
7044
7045 /* Now check all kept sections that might reference the toc. */
7046 for (sec = ibfd->sections;
7047 sec != NULL;
7048 /* Check the toc itself last. */
7049 sec = (sec == toc ? NULL
7050 : sec->next == toc && sec->next->next ? sec->next->next
7051 : sec->next == NULL ? toc
7052 : sec->next))
7053 {
7054 int repeat;
7055
7056 if (sec->reloc_count == 0
7057 || elf_discarded_section (sec)
7058 || get_opd_info (sec)
7059 || (sec->flags & SEC_ALLOC) == 0
7060 || (sec->flags & SEC_DEBUGGING) != 0)
7061 continue;
7062
7063 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7064 if (relstart == NULL)
7065 goto error_ret;
7066
7067 /* Mark toc entries referenced as used. */
7068 repeat = 0;
7069 do
7070 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7071 {
7072 enum elf_ppc64_reloc_type r_type;
7073 unsigned long r_symndx;
7074 asection *sym_sec;
7075 struct elf_link_hash_entry *h;
7076 Elf_Internal_Sym *sym;
7077 bfd_vma val;
7078
7079 r_type = ELF64_R_TYPE (rel->r_info);
7080 switch (r_type)
7081 {
7082 case R_PPC64_TOC16:
7083 case R_PPC64_TOC16_LO:
7084 case R_PPC64_TOC16_HI:
7085 case R_PPC64_TOC16_HA:
7086 case R_PPC64_TOC16_DS:
7087 case R_PPC64_TOC16_LO_DS:
7088 /* In case we're taking addresses of toc entries. */
7089 case R_PPC64_ADDR64:
7090 break;
7091
7092 default:
7093 continue;
7094 }
7095
7096 r_symndx = ELF64_R_SYM (rel->r_info);
7097 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7098 r_symndx, ibfd))
7099 {
7100 free (used);
7101 goto error_ret;
7102 }
7103
7104 if (sym_sec != toc)
7105 continue;
7106
7107 if (h != NULL)
7108 val = h->root.u.def.value;
7109 else
7110 val = sym->st_value;
7111 val += rel->r_addend;
7112
7113 if (val >= toc->size)
7114 continue;
7115
7116 /* For the toc section, we only mark as used if
7117 this entry itself isn't unused. */
7118 if (sec == toc
7119 && !used[val >> 3]
7120 && (used[rel->r_offset >> 3]
7121 || !skip[rel->r_offset >> 3]))
7122 /* Do all the relocs again, to catch reference
7123 chains. */
7124 repeat = 1;
7125
7126 used[val >> 3] = 1;
7127 }
7128 while (repeat);
7129 }
7130
7131 /* Merge the used and skip arrays. Assume that TOC
7132 doublewords not appearing as either used or unused belong
7133 to to an entry more than one doubleword in size. */
7134 for (drop = skip, keep = used, last = 0, some_unused = 0;
7135 drop < skip + (toc->size + 7) / 8;
7136 ++drop, ++keep)
7137 {
7138 if (*keep)
7139 {
7140 *drop = 0;
7141 last = 0;
7142 }
7143 else if (*drop)
7144 {
7145 some_unused = 1;
7146 last = 1;
7147 }
7148 else
7149 *drop = last;
7150 }
7151
7152 free (used);
7153
7154 if (some_unused)
7155 {
7156 bfd_byte *contents, *src;
7157 unsigned long off;
7158
7159 /* Shuffle the toc contents, and at the same time convert the
7160 skip array from booleans into offsets. */
7161 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7162 goto error_ret;
7163
7164 elf_section_data (toc)->this_hdr.contents = contents;
7165
7166 for (src = contents, off = 0, drop = skip;
7167 src < contents + toc->size;
7168 src += 8, ++drop)
7169 {
7170 if (*drop)
7171 {
7172 *drop = (unsigned long) -1;
7173 off += 8;
7174 }
7175 else if (off != 0)
7176 {
7177 *drop = off;
7178 memcpy (src - off, src, 8);
7179 }
7180 }
7181 toc->rawsize = toc->size;
7182 toc->size = src - contents - off;
7183
7184 if (toc->reloc_count != 0)
7185 {
7186 Elf_Internal_Rela *wrel;
7187 bfd_size_type sz;
7188
7189 /* Read toc relocs. */
7190 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7191 TRUE);
7192 if (relstart == NULL)
7193 goto error_ret;
7194
7195 /* Remove unused toc relocs, and adjust those we keep. */
7196 wrel = relstart;
7197 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7198 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7199 {
7200 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7201 wrel->r_info = rel->r_info;
7202 wrel->r_addend = rel->r_addend;
7203 ++wrel;
7204 }
7205 else if (!dec_dynrel_count (rel->r_info, toc, info,
7206 &local_syms, NULL, NULL))
7207 goto error_ret;
7208
7209 toc->reloc_count = wrel - relstart;
7210 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7211 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7212 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7213 }
7214
7215 /* Adjust addends for relocs against the toc section sym. */
7216 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7217 {
7218 if (sec->reloc_count == 0
7219 || elf_discarded_section (sec))
7220 continue;
7221
7222 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7223 TRUE);
7224 if (relstart == NULL)
7225 goto error_ret;
7226
7227 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7228 {
7229 enum elf_ppc64_reloc_type r_type;
7230 unsigned long r_symndx;
7231 asection *sym_sec;
7232 struct elf_link_hash_entry *h;
7233 Elf_Internal_Sym *sym;
7234
7235 r_type = ELF64_R_TYPE (rel->r_info);
7236 switch (r_type)
7237 {
7238 default:
7239 continue;
7240
7241 case R_PPC64_TOC16:
7242 case R_PPC64_TOC16_LO:
7243 case R_PPC64_TOC16_HI:
7244 case R_PPC64_TOC16_HA:
7245 case R_PPC64_TOC16_DS:
7246 case R_PPC64_TOC16_LO_DS:
7247 case R_PPC64_ADDR64:
7248 break;
7249 }
7250
7251 r_symndx = ELF64_R_SYM (rel->r_info);
7252 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7253 r_symndx, ibfd))
7254 goto error_ret;
7255
7256 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7257 continue;
7258
7259 rel->r_addend -= skip[rel->r_addend >> 3];
7260 }
7261 }
7262
7263 /* We shouldn't have local or global symbols defined in the TOC,
7264 but handle them anyway. */
7265 if (local_syms != NULL)
7266 {
7267 Elf_Internal_Sym *sym;
7268
7269 for (sym = local_syms;
7270 sym < local_syms + symtab_hdr->sh_info;
7271 ++sym)
7272 if (sym->st_shndx != SHN_UNDEF
7273 && (sym->st_shndx < SHN_LORESERVE
7274 || sym->st_shndx > SHN_HIRESERVE)
7275 && sym->st_value != 0
7276 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7277 {
7278 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7279 sym->st_value -= skip[sym->st_value >> 3];
7280 else
7281 {
7282 (*_bfd_error_handler)
7283 (_("%s defined in removed toc entry"),
7284 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7285 NULL));
7286 sym->st_value = 0;
7287 sym->st_shndx = SHN_ABS;
7288 }
7289 symtab_hdr->contents = (unsigned char *) local_syms;
7290 }
7291 }
7292
7293 /* Finally, adjust any global syms defined in the toc. */
7294 if (toc_inf.global_toc_syms)
7295 {
7296 toc_inf.toc = toc;
7297 toc_inf.skip = skip;
7298 toc_inf.global_toc_syms = FALSE;
7299 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7300 &toc_inf);
7301 }
7302 }
7303
7304 if (local_syms != NULL
7305 && symtab_hdr->contents != (unsigned char *) local_syms)
7306 {
7307 if (!info->keep_memory)
7308 free (local_syms);
7309 else
7310 symtab_hdr->contents = (unsigned char *) local_syms;
7311 }
7312 free (skip);
7313 }
7314
7315 return TRUE;
7316 }
7317
7318 /* Allocate space in .plt, .got and associated reloc sections for
7319 dynamic relocs. */
7320
7321 static bfd_boolean
7322 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7323 {
7324 struct bfd_link_info *info;
7325 struct ppc_link_hash_table *htab;
7326 asection *s;
7327 struct ppc_link_hash_entry *eh;
7328 struct ppc_dyn_relocs *p;
7329 struct got_entry *gent;
7330
7331 if (h->root.type == bfd_link_hash_indirect)
7332 return TRUE;
7333
7334 if (h->root.type == bfd_link_hash_warning)
7335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7336
7337 info = (struct bfd_link_info *) inf;
7338 htab = ppc_hash_table (info);
7339
7340 if (htab->elf.dynamic_sections_created
7341 && h->dynindx != -1
7342 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7343 {
7344 struct plt_entry *pent;
7345 bfd_boolean doneone = FALSE;
7346 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7347 if (pent->plt.refcount > 0)
7348 {
7349 /* If this is the first .plt entry, make room for the special
7350 first entry. */
7351 s = htab->plt;
7352 if (s->size == 0)
7353 s->size += PLT_INITIAL_ENTRY_SIZE;
7354
7355 pent->plt.offset = s->size;
7356
7357 /* Make room for this entry. */
7358 s->size += PLT_ENTRY_SIZE;
7359
7360 /* Make room for the .glink code. */
7361 s = htab->glink;
7362 if (s->size == 0)
7363 s->size += GLINK_CALL_STUB_SIZE;
7364 /* We need bigger stubs past index 32767. */
7365 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7366 s->size += 4;
7367 s->size += 2*4;
7368
7369 /* We also need to make an entry in the .rela.plt section. */
7370 s = htab->relplt;
7371 s->size += sizeof (Elf64_External_Rela);
7372 doneone = TRUE;
7373 }
7374 else
7375 pent->plt.offset = (bfd_vma) -1;
7376 if (!doneone)
7377 {
7378 h->plt.plist = NULL;
7379 h->needs_plt = 0;
7380 }
7381 }
7382 else
7383 {
7384 h->plt.plist = NULL;
7385 h->needs_plt = 0;
7386 }
7387
7388 eh = (struct ppc_link_hash_entry *) h;
7389 /* Run through the TLS GD got entries first if we're changing them
7390 to TPREL. */
7391 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7392 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7393 if (gent->got.refcount > 0
7394 && (gent->tls_type & TLS_GD) != 0)
7395 {
7396 /* This was a GD entry that has been converted to TPREL. If
7397 there happens to be a TPREL entry we can use that one. */
7398 struct got_entry *ent;
7399 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7400 if (ent->got.refcount > 0
7401 && (ent->tls_type & TLS_TPREL) != 0
7402 && ent->addend == gent->addend
7403 && ent->owner == gent->owner)
7404 {
7405 gent->got.refcount = 0;
7406 break;
7407 }
7408
7409 /* If not, then we'll be using our own TPREL entry. */
7410 if (gent->got.refcount != 0)
7411 gent->tls_type = TLS_TLS | TLS_TPREL;
7412 }
7413
7414 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7415 if (gent->got.refcount > 0)
7416 {
7417 bfd_boolean dyn;
7418
7419 /* Make sure this symbol is output as a dynamic symbol.
7420 Undefined weak syms won't yet be marked as dynamic,
7421 nor will all TLS symbols. */
7422 if (h->dynindx == -1
7423 && !h->forced_local)
7424 {
7425 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7426 return FALSE;
7427 }
7428
7429 if ((gent->tls_type & TLS_LD) != 0
7430 && !h->def_dynamic)
7431 {
7432 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7433 continue;
7434 }
7435
7436 s = ppc64_elf_tdata (gent->owner)->got;
7437 gent->got.offset = s->size;
7438 s->size
7439 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7440 dyn = htab->elf.dynamic_sections_created;
7441 if ((info->shared
7442 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7443 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7444 || h->root.type != bfd_link_hash_undefweak))
7445 ppc64_elf_tdata (gent->owner)->relgot->size
7446 += (gent->tls_type & eh->tls_mask & TLS_GD
7447 ? 2 * sizeof (Elf64_External_Rela)
7448 : sizeof (Elf64_External_Rela));
7449 }
7450 else
7451 gent->got.offset = (bfd_vma) -1;
7452
7453 if (eh->dyn_relocs == NULL)
7454 return TRUE;
7455
7456 /* In the shared -Bsymbolic case, discard space allocated for
7457 dynamic pc-relative relocs against symbols which turn out to be
7458 defined in regular objects. For the normal shared case, discard
7459 space for relocs that have become local due to symbol visibility
7460 changes. */
7461
7462 if (info->shared)
7463 {
7464 /* Relocs that use pc_count are those that appear on a call insn,
7465 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7466 generated via assembly. We want calls to protected symbols to
7467 resolve directly to the function rather than going via the plt.
7468 If people want function pointer comparisons to work as expected
7469 then they should avoid writing weird assembly. */
7470 if (SYMBOL_CALLS_LOCAL (info, h))
7471 {
7472 struct ppc_dyn_relocs **pp;
7473
7474 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7475 {
7476 p->count -= p->pc_count;
7477 p->pc_count = 0;
7478 if (p->count == 0)
7479 *pp = p->next;
7480 else
7481 pp = &p->next;
7482 }
7483 }
7484
7485 /* Also discard relocs on undefined weak syms with non-default
7486 visibility. */
7487 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7488 && h->root.type == bfd_link_hash_undefweak)
7489 eh->dyn_relocs = NULL;
7490 }
7491 else if (ELIMINATE_COPY_RELOCS)
7492 {
7493 /* For the non-shared case, discard space for relocs against
7494 symbols which turn out to need copy relocs or are not
7495 dynamic. */
7496
7497 if (!h->non_got_ref
7498 && h->def_dynamic
7499 && !h->def_regular)
7500 {
7501 /* Make sure this symbol is output as a dynamic symbol.
7502 Undefined weak syms won't yet be marked as dynamic. */
7503 if (h->dynindx == -1
7504 && !h->forced_local)
7505 {
7506 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7507 return FALSE;
7508 }
7509
7510 /* If that succeeded, we know we'll be keeping all the
7511 relocs. */
7512 if (h->dynindx != -1)
7513 goto keep;
7514 }
7515
7516 eh->dyn_relocs = NULL;
7517
7518 keep: ;
7519 }
7520
7521 /* Finally, allocate space. */
7522 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7523 {
7524 asection *sreloc = elf_section_data (p->sec)->sreloc;
7525 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7526 }
7527
7528 return TRUE;
7529 }
7530
7531 /* Find any dynamic relocs that apply to read-only sections. */
7532
7533 static bfd_boolean
7534 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7535 {
7536 struct ppc_link_hash_entry *eh;
7537 struct ppc_dyn_relocs *p;
7538
7539 if (h->root.type == bfd_link_hash_warning)
7540 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7541
7542 eh = (struct ppc_link_hash_entry *) h;
7543 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7544 {
7545 asection *s = p->sec->output_section;
7546
7547 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7548 {
7549 struct bfd_link_info *info = inf;
7550
7551 info->flags |= DF_TEXTREL;
7552
7553 /* Not an error, just cut short the traversal. */
7554 return FALSE;
7555 }
7556 }
7557 return TRUE;
7558 }
7559
7560 /* Set the sizes of the dynamic sections. */
7561
7562 static bfd_boolean
7563 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7564 struct bfd_link_info *info)
7565 {
7566 struct ppc_link_hash_table *htab;
7567 bfd *dynobj;
7568 asection *s;
7569 bfd_boolean relocs;
7570 bfd *ibfd;
7571
7572 htab = ppc_hash_table (info);
7573 dynobj = htab->elf.dynobj;
7574 if (dynobj == NULL)
7575 abort ();
7576
7577 if (htab->elf.dynamic_sections_created)
7578 {
7579 /* Set the contents of the .interp section to the interpreter. */
7580 if (info->executable)
7581 {
7582 s = bfd_get_section_by_name (dynobj, ".interp");
7583 if (s == NULL)
7584 abort ();
7585 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7586 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7587 }
7588 }
7589
7590 /* Set up .got offsets for local syms, and space for local dynamic
7591 relocs. */
7592 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7593 {
7594 struct got_entry **lgot_ents;
7595 struct got_entry **end_lgot_ents;
7596 char *lgot_masks;
7597 bfd_size_type locsymcount;
7598 Elf_Internal_Shdr *symtab_hdr;
7599 asection *srel;
7600
7601 if (!is_ppc64_elf_target (ibfd->xvec))
7602 continue;
7603
7604 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7605 {
7606 s = ppc64_elf_tdata (ibfd)->got;
7607 ppc64_tlsld_got (ibfd)->offset = s->size;
7608 s->size += 16;
7609 if (info->shared)
7610 {
7611 srel = ppc64_elf_tdata (ibfd)->relgot;
7612 srel->size += sizeof (Elf64_External_Rela);
7613 }
7614 }
7615 else
7616 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7617
7618 for (s = ibfd->sections; s != NULL; s = s->next)
7619 {
7620 struct ppc_dyn_relocs *p;
7621
7622 for (p = *((struct ppc_dyn_relocs **)
7623 &elf_section_data (s)->local_dynrel);
7624 p != NULL;
7625 p = p->next)
7626 {
7627 if (!bfd_is_abs_section (p->sec)
7628 && bfd_is_abs_section (p->sec->output_section))
7629 {
7630 /* Input section has been discarded, either because
7631 it is a copy of a linkonce section or due to
7632 linker script /DISCARD/, so we'll be discarding
7633 the relocs too. */
7634 }
7635 else if (p->count != 0)
7636 {
7637 srel = elf_section_data (p->sec)->sreloc;
7638 srel->size += p->count * sizeof (Elf64_External_Rela);
7639 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7640 info->flags |= DF_TEXTREL;
7641 }
7642 }
7643 }
7644
7645 lgot_ents = elf_local_got_ents (ibfd);
7646 if (!lgot_ents)
7647 continue;
7648
7649 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7650 locsymcount = symtab_hdr->sh_info;
7651 end_lgot_ents = lgot_ents + locsymcount;
7652 lgot_masks = (char *) end_lgot_ents;
7653 s = ppc64_elf_tdata (ibfd)->got;
7654 srel = ppc64_elf_tdata (ibfd)->relgot;
7655 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7656 {
7657 struct got_entry *ent;
7658
7659 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7660 if (ent->got.refcount > 0)
7661 {
7662 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7663 {
7664 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7665 {
7666 ppc64_tlsld_got (ibfd)->offset = s->size;
7667 s->size += 16;
7668 if (info->shared)
7669 srel->size += sizeof (Elf64_External_Rela);
7670 }
7671 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7672 }
7673 else
7674 {
7675 ent->got.offset = s->size;
7676 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7677 {
7678 s->size += 16;
7679 if (info->shared)
7680 srel->size += 2 * sizeof (Elf64_External_Rela);
7681 }
7682 else
7683 {
7684 s->size += 8;
7685 if (info->shared)
7686 srel->size += sizeof (Elf64_External_Rela);
7687 }
7688 }
7689 }
7690 else
7691 ent->got.offset = (bfd_vma) -1;
7692 }
7693 }
7694
7695 /* Allocate global sym .plt and .got entries, and space for global
7696 sym dynamic relocs. */
7697 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7698
7699 /* We now have determined the sizes of the various dynamic sections.
7700 Allocate memory for them. */
7701 relocs = FALSE;
7702 for (s = dynobj->sections; s != NULL; s = s->next)
7703 {
7704 if ((s->flags & SEC_LINKER_CREATED) == 0)
7705 continue;
7706
7707 if (s == htab->brlt || s == htab->relbrlt)
7708 /* These haven't been allocated yet; don't strip. */
7709 continue;
7710 else if (s == htab->got
7711 || s == htab->plt
7712 || s == htab->glink)
7713 {
7714 /* Strip this section if we don't need it; see the
7715 comment below. */
7716 }
7717 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7718 {
7719 if (s->size == 0)
7720 {
7721 /* If we don't need this section, strip it from the
7722 output file. This is mostly to handle .rela.bss and
7723 .rela.plt. We must create both sections in
7724 create_dynamic_sections, because they must be created
7725 before the linker maps input sections to output
7726 sections. The linker does that before
7727 adjust_dynamic_symbol is called, and it is that
7728 function which decides whether anything needs to go
7729 into these sections. */
7730 }
7731 else
7732 {
7733 if (s != htab->relplt)
7734 relocs = TRUE;
7735
7736 /* We use the reloc_count field as a counter if we need
7737 to copy relocs into the output file. */
7738 s->reloc_count = 0;
7739 }
7740 }
7741 else
7742 {
7743 /* It's not one of our sections, so don't allocate space. */
7744 continue;
7745 }
7746
7747 if (s->size == 0)
7748 {
7749 s->flags |= SEC_EXCLUDE;
7750 continue;
7751 }
7752
7753 /* .plt is in the bss section. We don't initialise it. */
7754 if (s == htab->plt)
7755 continue;
7756
7757 /* Allocate memory for the section contents. We use bfd_zalloc
7758 here in case unused entries are not reclaimed before the
7759 section's contents are written out. This should not happen,
7760 but this way if it does we get a R_PPC64_NONE reloc in .rela
7761 sections instead of garbage.
7762 We also rely on the section contents being zero when writing
7763 the GOT. */
7764 s->contents = bfd_zalloc (dynobj, s->size);
7765 if (s->contents == NULL)
7766 return FALSE;
7767 }
7768
7769 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7770 {
7771 if (!is_ppc64_elf_target (ibfd->xvec))
7772 continue;
7773
7774 s = ppc64_elf_tdata (ibfd)->got;
7775 if (s != NULL && s != htab->got)
7776 {
7777 if (s->size == 0)
7778 s->flags |= SEC_EXCLUDE;
7779 else
7780 {
7781 s->contents = bfd_zalloc (ibfd, s->size);
7782 if (s->contents == NULL)
7783 return FALSE;
7784 }
7785 }
7786 s = ppc64_elf_tdata (ibfd)->relgot;
7787 if (s != NULL)
7788 {
7789 if (s->size == 0)
7790 s->flags |= SEC_EXCLUDE;
7791 else
7792 {
7793 s->contents = bfd_zalloc (ibfd, s->size);
7794 if (s->contents == NULL)
7795 return FALSE;
7796 relocs = TRUE;
7797 s->reloc_count = 0;
7798 }
7799 }
7800 }
7801
7802 if (htab->elf.dynamic_sections_created)
7803 {
7804 /* Add some entries to the .dynamic section. We fill in the
7805 values later, in ppc64_elf_finish_dynamic_sections, but we
7806 must add the entries now so that we get the correct size for
7807 the .dynamic section. The DT_DEBUG entry is filled in by the
7808 dynamic linker and used by the debugger. */
7809 #define add_dynamic_entry(TAG, VAL) \
7810 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7811
7812 if (info->executable)
7813 {
7814 if (!add_dynamic_entry (DT_DEBUG, 0))
7815 return FALSE;
7816 }
7817
7818 if (htab->plt != NULL && htab->plt->size != 0)
7819 {
7820 if (!add_dynamic_entry (DT_PLTGOT, 0)
7821 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7822 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7823 || !add_dynamic_entry (DT_JMPREL, 0)
7824 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7825 return FALSE;
7826 }
7827
7828 if (NO_OPD_RELOCS)
7829 {
7830 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7831 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7832 return FALSE;
7833 }
7834
7835 if (relocs)
7836 {
7837 if (!add_dynamic_entry (DT_RELA, 0)
7838 || !add_dynamic_entry (DT_RELASZ, 0)
7839 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7840 return FALSE;
7841
7842 /* If any dynamic relocs apply to a read-only section,
7843 then we need a DT_TEXTREL entry. */
7844 if ((info->flags & DF_TEXTREL) == 0)
7845 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7846
7847 if ((info->flags & DF_TEXTREL) != 0)
7848 {
7849 if (!add_dynamic_entry (DT_TEXTREL, 0))
7850 return FALSE;
7851 }
7852 }
7853 }
7854 #undef add_dynamic_entry
7855
7856 return TRUE;
7857 }
7858
7859 /* Determine the type of stub needed, if any, for a call. */
7860
7861 static inline enum ppc_stub_type
7862 ppc_type_of_stub (asection *input_sec,
7863 const Elf_Internal_Rela *rel,
7864 struct ppc_link_hash_entry **hash,
7865 bfd_vma destination)
7866 {
7867 struct ppc_link_hash_entry *h = *hash;
7868 bfd_vma location;
7869 bfd_vma branch_offset;
7870 bfd_vma max_branch_offset;
7871 enum elf_ppc64_reloc_type r_type;
7872
7873 if (h != NULL)
7874 {
7875 if (h->oh != NULL
7876 && h->oh->is_func_descriptor)
7877 h = h->oh;
7878
7879 if (h->elf.dynindx != -1)
7880 {
7881 struct plt_entry *ent;
7882
7883 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7884 if (ent->addend == rel->r_addend
7885 && ent->plt.offset != (bfd_vma) -1)
7886 {
7887 *hash = h;
7888 return ppc_stub_plt_call;
7889 }
7890 }
7891
7892 if (!(h->elf.root.type == bfd_link_hash_defined
7893 || h->elf.root.type == bfd_link_hash_defweak)
7894 || h->elf.root.u.def.section->output_section == NULL)
7895 return ppc_stub_none;
7896 }
7897
7898 /* Determine where the call point is. */
7899 location = (input_sec->output_offset
7900 + input_sec->output_section->vma
7901 + rel->r_offset);
7902
7903 branch_offset = destination - location;
7904 r_type = ELF64_R_TYPE (rel->r_info);
7905
7906 /* Determine if a long branch stub is needed. */
7907 max_branch_offset = 1 << 25;
7908 if (r_type != R_PPC64_REL24)
7909 max_branch_offset = 1 << 15;
7910
7911 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7912 /* We need a stub. Figure out whether a long_branch or plt_branch
7913 is needed later. */
7914 return ppc_stub_long_branch;
7915
7916 return ppc_stub_none;
7917 }
7918
7919 /* Build a .plt call stub. */
7920
7921 static inline bfd_byte *
7922 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7923 {
7924 #define PPC_LO(v) ((v) & 0xffff)
7925 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7926 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7927
7928 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7929 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7930 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7931 if (PPC_HA (offset + 8) != PPC_HA (offset))
7932 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7933 offset += 8;
7934 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7935 if (PPC_HA (offset + 8) != PPC_HA (offset))
7936 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7937 offset += 8;
7938 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7939 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7940 bfd_put_32 (obfd, BCTR, p), p += 4;
7941 return p;
7942 }
7943
7944 static bfd_boolean
7945 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7946 {
7947 struct ppc_stub_hash_entry *stub_entry;
7948 struct ppc_branch_hash_entry *br_entry;
7949 struct bfd_link_info *info;
7950 struct ppc_link_hash_table *htab;
7951 bfd_byte *loc;
7952 bfd_byte *p;
7953 unsigned int indx;
7954 struct plt_entry *ent;
7955 bfd_vma dest, off;
7956 int size;
7957
7958 /* Massage our args to the form they really have. */
7959 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7960 info = in_arg;
7961
7962 htab = ppc_hash_table (info);
7963
7964 /* Make a note of the offset within the stubs for this entry. */
7965 stub_entry->stub_offset = stub_entry->stub_sec->size;
7966 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7967
7968 htab->stub_count[stub_entry->stub_type - 1] += 1;
7969 switch (stub_entry->stub_type)
7970 {
7971 case ppc_stub_long_branch:
7972 case ppc_stub_long_branch_r2off:
7973 /* Branches are relative. This is where we are going to. */
7974 off = dest = (stub_entry->target_value
7975 + stub_entry->target_section->output_offset
7976 + stub_entry->target_section->output_section->vma);
7977
7978 /* And this is where we are coming from. */
7979 off -= (stub_entry->stub_offset
7980 + stub_entry->stub_sec->output_offset
7981 + stub_entry->stub_sec->output_section->vma);
7982
7983 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7984 size = 4;
7985 else
7986 {
7987 bfd_vma r2off;
7988
7989 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7990 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7991 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7992 loc += 4;
7993 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7994 loc += 4;
7995 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7996 loc += 4;
7997 off -= 12;
7998 size = 16;
7999 }
8000 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8001
8002 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
8003
8004 if (info->emitrelocations)
8005 {
8006 Elf_Internal_Rela *relocs, *r;
8007 struct bfd_elf_section_data *elfsec_data;
8008
8009 elfsec_data = elf_section_data (stub_entry->stub_sec);
8010 relocs = elfsec_data->relocs;
8011 if (relocs == NULL)
8012 {
8013 bfd_size_type relsize;
8014 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
8015 relocs = bfd_alloc (htab->stub_bfd, relsize);
8016 if (relocs == NULL)
8017 return FALSE;
8018 elfsec_data->relocs = relocs;
8019 elfsec_data->rel_hdr.sh_size = relsize;
8020 elfsec_data->rel_hdr.sh_entsize = 24;
8021 stub_entry->stub_sec->reloc_count = 0;
8022 }
8023 r = relocs + stub_entry->stub_sec->reloc_count;
8024 stub_entry->stub_sec->reloc_count += 1;
8025 r->r_offset = loc - stub_entry->stub_sec->contents;
8026 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8027 r->r_addend = dest;
8028 if (stub_entry->h != NULL)
8029 {
8030 struct elf_link_hash_entry **hashes;
8031 unsigned long symndx;
8032 struct ppc_link_hash_entry *h;
8033
8034 hashes = elf_sym_hashes (htab->stub_bfd);
8035 if (hashes == NULL)
8036 {
8037 bfd_size_type hsize;
8038
8039 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8040 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8041 if (hashes == NULL)
8042 return FALSE;
8043 elf_sym_hashes (htab->stub_bfd) = hashes;
8044 htab->stub_globals = 1;
8045 }
8046 symndx = htab->stub_globals++;
8047 h = stub_entry->h;
8048 hashes[symndx] = &h->elf;
8049 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8050 if (h->oh != NULL && h->oh->is_func)
8051 h = h->oh;
8052 if (h->elf.root.u.def.section != stub_entry->target_section)
8053 /* H is an opd symbol. The addend must be zero. */
8054 r->r_addend = 0;
8055 else
8056 {
8057 off = (h->elf.root.u.def.value
8058 + h->elf.root.u.def.section->output_offset
8059 + h->elf.root.u.def.section->output_section->vma);
8060 r->r_addend -= off;
8061 }
8062 }
8063 }
8064 break;
8065
8066 case ppc_stub_plt_branch:
8067 case ppc_stub_plt_branch_r2off:
8068 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8069 stub_entry->root.string + 9,
8070 FALSE, FALSE);
8071 if (br_entry == NULL)
8072 {
8073 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8074 stub_entry->root.string + 9);
8075 htab->stub_error = TRUE;
8076 return FALSE;
8077 }
8078
8079 off = (stub_entry->target_value
8080 + stub_entry->target_section->output_offset
8081 + stub_entry->target_section->output_section->vma);
8082
8083 bfd_put_64 (htab->brlt->owner, off,
8084 htab->brlt->contents + br_entry->offset);
8085
8086 if (htab->relbrlt != NULL)
8087 {
8088 /* Create a reloc for the branch lookup table entry. */
8089 Elf_Internal_Rela rela;
8090 bfd_byte *rl;
8091
8092 rela.r_offset = (br_entry->offset
8093 + htab->brlt->output_offset
8094 + htab->brlt->output_section->vma);
8095 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8096 rela.r_addend = off;
8097
8098 rl = htab->relbrlt->contents;
8099 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8100 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8101 }
8102
8103 off = (br_entry->offset
8104 + htab->brlt->output_offset
8105 + htab->brlt->output_section->vma
8106 - elf_gp (htab->brlt->output_section->owner)
8107 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8108
8109 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8110 {
8111 (*_bfd_error_handler)
8112 (_("linkage table error against `%s'"),
8113 stub_entry->root.string);
8114 bfd_set_error (bfd_error_bad_value);
8115 htab->stub_error = TRUE;
8116 return FALSE;
8117 }
8118
8119 indx = off;
8120 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8121 {
8122 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8123 loc += 4;
8124 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8125 size = 16;
8126 }
8127 else
8128 {
8129 bfd_vma r2off;
8130
8131 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8132 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8133 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8134 loc += 4;
8135 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8136 loc += 4;
8137 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8138 loc += 4;
8139 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8140 loc += 4;
8141 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8142 size = 28;
8143 }
8144 loc += 4;
8145 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8146 loc += 4;
8147 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8148 break;
8149
8150 case ppc_stub_plt_call:
8151 /* Do the best we can for shared libraries built without
8152 exporting ".foo" for each "foo". This can happen when symbol
8153 versioning scripts strip all bar a subset of symbols. */
8154 if (stub_entry->h->oh != NULL
8155 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8156 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8157 {
8158 /* Point the symbol at the stub. There may be multiple stubs,
8159 we don't really care; The main thing is to make this sym
8160 defined somewhere. Maybe defining the symbol in the stub
8161 section is a silly idea. If we didn't do this, htab->top_id
8162 could disappear. */
8163 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8164 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8165 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8166 }
8167
8168 /* Now build the stub. */
8169 off = (bfd_vma) -1;
8170 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8171 if (ent->addend == stub_entry->addend)
8172 {
8173 off = ent->plt.offset;
8174 break;
8175 }
8176 if (off >= (bfd_vma) -2)
8177 abort ();
8178
8179 off &= ~ (bfd_vma) 1;
8180 off += (htab->plt->output_offset
8181 + htab->plt->output_section->vma
8182 - elf_gp (htab->plt->output_section->owner)
8183 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8184
8185 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8186 {
8187 (*_bfd_error_handler)
8188 (_("linkage table error against `%s'"),
8189 stub_entry->h->elf.root.root.string);
8190 bfd_set_error (bfd_error_bad_value);
8191 htab->stub_error = TRUE;
8192 return FALSE;
8193 }
8194
8195 p = build_plt_stub (htab->stub_bfd, loc, off);
8196 size = p - loc;
8197 break;
8198
8199 default:
8200 BFD_FAIL ();
8201 return FALSE;
8202 }
8203
8204 stub_entry->stub_sec->size += size;
8205
8206 if (htab->emit_stub_syms)
8207 {
8208 struct elf_link_hash_entry *h;
8209 size_t len1, len2;
8210 char *name;
8211 const char *const stub_str[] = { "long_branch",
8212 "long_branch_r2off",
8213 "plt_branch",
8214 "plt_branch_r2off",
8215 "plt_call" };
8216
8217 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8218 len2 = strlen (stub_entry->root.string);
8219 name = bfd_malloc (len1 + len2 + 2);
8220 if (name == NULL)
8221 return FALSE;
8222 memcpy (name, stub_entry->root.string, 9);
8223 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8224 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8225 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8226 if (h == NULL)
8227 return FALSE;
8228 if (h->root.type == bfd_link_hash_new)
8229 {
8230 h->root.type = bfd_link_hash_defined;
8231 h->root.u.def.section = stub_entry->stub_sec;
8232 h->root.u.def.value = stub_entry->stub_offset;
8233 h->ref_regular = 1;
8234 h->def_regular = 1;
8235 h->ref_regular_nonweak = 1;
8236 h->forced_local = 1;
8237 h->non_elf = 0;
8238 }
8239 }
8240
8241 return TRUE;
8242 }
8243
8244 /* As above, but don't actually build the stub. Just bump offset so
8245 we know stub section sizes, and select plt_branch stubs where
8246 long_branch stubs won't do. */
8247
8248 static bfd_boolean
8249 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8250 {
8251 struct ppc_stub_hash_entry *stub_entry;
8252 struct bfd_link_info *info;
8253 struct ppc_link_hash_table *htab;
8254 bfd_vma off;
8255 int size;
8256
8257 /* Massage our args to the form they really have. */
8258 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8259 info = in_arg;
8260
8261 htab = ppc_hash_table (info);
8262
8263 if (stub_entry->stub_type == ppc_stub_plt_call)
8264 {
8265 struct plt_entry *ent;
8266 off = (bfd_vma) -1;
8267 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8268 if (ent->addend == stub_entry->addend)
8269 {
8270 off = ent->plt.offset & ~(bfd_vma) 1;
8271 break;
8272 }
8273 if (off >= (bfd_vma) -2)
8274 abort ();
8275 off += (htab->plt->output_offset
8276 + htab->plt->output_section->vma
8277 - elf_gp (htab->plt->output_section->owner)
8278 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8279
8280 size = PLT_CALL_STUB_SIZE;
8281 if (PPC_HA (off + 16) != PPC_HA (off))
8282 size += 4;
8283 }
8284 else
8285 {
8286 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8287 variants. */
8288 off = (stub_entry->target_value
8289 + stub_entry->target_section->output_offset
8290 + stub_entry->target_section->output_section->vma);
8291 off -= (stub_entry->stub_sec->size
8292 + stub_entry->stub_sec->output_offset
8293 + stub_entry->stub_sec->output_section->vma);
8294
8295 /* Reset the stub type from the plt variant in case we now
8296 can reach with a shorter stub. */
8297 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8298 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8299
8300 size = 4;
8301 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8302 {
8303 off -= 12;
8304 size = 16;
8305 }
8306
8307 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8308 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8309 {
8310 struct ppc_branch_hash_entry *br_entry;
8311
8312 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8313 stub_entry->root.string + 9,
8314 TRUE, FALSE);
8315 if (br_entry == NULL)
8316 {
8317 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8318 stub_entry->root.string + 9);
8319 htab->stub_error = TRUE;
8320 return FALSE;
8321 }
8322
8323 if (br_entry->iter != htab->stub_iteration)
8324 {
8325 br_entry->iter = htab->stub_iteration;
8326 br_entry->offset = htab->brlt->size;
8327 htab->brlt->size += 8;
8328
8329 if (htab->relbrlt != NULL)
8330 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8331 }
8332
8333 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8334 size = 16;
8335 if (stub_entry->stub_type != ppc_stub_plt_branch)
8336 size = 28;
8337 }
8338
8339 if (info->emitrelocations
8340 && (stub_entry->stub_type == ppc_stub_long_branch
8341 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8342 stub_entry->stub_sec->reloc_count += 1;
8343 }
8344
8345 stub_entry->stub_sec->size += size;
8346 return TRUE;
8347 }
8348
8349 /* Set up various things so that we can make a list of input sections
8350 for each output section included in the link. Returns -1 on error,
8351 0 when no stubs will be needed, and 1 on success. */
8352
8353 int
8354 ppc64_elf_setup_section_lists (bfd *output_bfd,
8355 struct bfd_link_info *info,
8356 int no_multi_toc)
8357 {
8358 bfd *input_bfd;
8359 int top_id, top_index, id;
8360 asection *section;
8361 asection **input_list;
8362 bfd_size_type amt;
8363 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8364
8365 htab->no_multi_toc = no_multi_toc;
8366
8367 if (htab->brlt == NULL)
8368 return 0;
8369
8370 /* Find the top input section id. */
8371 for (input_bfd = info->input_bfds, top_id = 3;
8372 input_bfd != NULL;
8373 input_bfd = input_bfd->link_next)
8374 {
8375 for (section = input_bfd->sections;
8376 section != NULL;
8377 section = section->next)
8378 {
8379 if (top_id < section->id)
8380 top_id = section->id;
8381 }
8382 }
8383
8384 htab->top_id = top_id;
8385 amt = sizeof (struct map_stub) * (top_id + 1);
8386 htab->stub_group = bfd_zmalloc (amt);
8387 if (htab->stub_group == NULL)
8388 return -1;
8389
8390 /* Set toc_off for com, und, abs and ind sections. */
8391 for (id = 0; id < 3; id++)
8392 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8393
8394 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8395
8396 /* We can't use output_bfd->section_count here to find the top output
8397 section index as some sections may have been removed, and
8398 strip_excluded_output_sections doesn't renumber the indices. */
8399 for (section = output_bfd->sections, top_index = 0;
8400 section != NULL;
8401 section = section->next)
8402 {
8403 if (top_index < section->index)
8404 top_index = section->index;
8405 }
8406
8407 htab->top_index = top_index;
8408 amt = sizeof (asection *) * (top_index + 1);
8409 input_list = bfd_zmalloc (amt);
8410 htab->input_list = input_list;
8411 if (input_list == NULL)
8412 return -1;
8413
8414 return 1;
8415 }
8416
8417 /* The linker repeatedly calls this function for each TOC input section
8418 and linker generated GOT section. Group input bfds such that the toc
8419 within a group is less than 64k in size. Will break with cute linker
8420 scripts that play games with dot in the output toc section. */
8421
8422 void
8423 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8424 {
8425 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8426
8427 if (!htab->no_multi_toc)
8428 {
8429 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8430 bfd_vma off = addr - htab->toc_curr;
8431
8432 if (off + isec->size > 0x10000)
8433 htab->toc_curr = addr;
8434
8435 elf_gp (isec->owner) = (htab->toc_curr
8436 - elf_gp (isec->output_section->owner)
8437 + TOC_BASE_OFF);
8438 }
8439 }
8440
8441 /* Called after the last call to the above function. */
8442
8443 void
8444 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8445 {
8446 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8447
8448 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8449
8450 /* toc_curr tracks the TOC offset used for code sections below in
8451 ppc64_elf_next_input_section. Start off at 0x8000. */
8452 htab->toc_curr = TOC_BASE_OFF;
8453 }
8454
8455 /* No toc references were found in ISEC. If the code in ISEC makes no
8456 calls, then there's no need to use toc adjusting stubs when branching
8457 into ISEC. Actually, indirect calls from ISEC are OK as they will
8458 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8459 needed, and 2 if a cyclical call-graph was found but no other reason
8460 for a stub was detected. If called from the top level, a return of
8461 2 means the same as a return of 0. */
8462
8463 static int
8464 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8465 {
8466 Elf_Internal_Rela *relstart, *rel;
8467 Elf_Internal_Sym *local_syms;
8468 int ret;
8469 struct ppc_link_hash_table *htab;
8470
8471 /* We know none of our code bearing sections will need toc stubs. */
8472 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8473 return 0;
8474
8475 if (isec->size == 0)
8476 return 0;
8477
8478 if (isec->output_section == NULL)
8479 return 0;
8480
8481 /* Hack for linux kernel. .fixup contains branches, but only back to
8482 the function that hit an exception. */
8483 if (strcmp (isec->name, ".fixup") == 0)
8484 return 0;
8485
8486 if (isec->reloc_count == 0)
8487 return 0;
8488
8489 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8490 info->keep_memory);
8491 if (relstart == NULL)
8492 return -1;
8493
8494 /* Look for branches to outside of this section. */
8495 local_syms = NULL;
8496 ret = 0;
8497 htab = ppc_hash_table (info);
8498 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8499 {
8500 enum elf_ppc64_reloc_type r_type;
8501 unsigned long r_symndx;
8502 struct elf_link_hash_entry *h;
8503 Elf_Internal_Sym *sym;
8504 asection *sym_sec;
8505 long *opd_adjust;
8506 bfd_vma sym_value;
8507 bfd_vma dest;
8508
8509 r_type = ELF64_R_TYPE (rel->r_info);
8510 if (r_type != R_PPC64_REL24
8511 && r_type != R_PPC64_REL14
8512 && r_type != R_PPC64_REL14_BRTAKEN
8513 && r_type != R_PPC64_REL14_BRNTAKEN)
8514 continue;
8515
8516 r_symndx = ELF64_R_SYM (rel->r_info);
8517 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8518 isec->owner))
8519 {
8520 ret = -1;
8521 break;
8522 }
8523
8524 /* Calls to dynamic lib functions go through a plt call stub
8525 that uses r2. Branches to undefined symbols might be a call
8526 using old-style dot symbols that can be satisfied by a plt
8527 call into a new-style dynamic library. */
8528 if (sym_sec == NULL)
8529 {
8530 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8531 if (eh != NULL
8532 && eh->oh != NULL
8533 && eh->oh->elf.plt.plist != NULL)
8534 {
8535 ret = 1;
8536 break;
8537 }
8538
8539 /* Ignore other undefined symbols. */
8540 continue;
8541 }
8542
8543 /* Assume branches to other sections not included in the link need
8544 stubs too, to cover -R and absolute syms. */
8545 if (sym_sec->output_section == NULL)
8546 {
8547 ret = 1;
8548 break;
8549 }
8550
8551 if (h == NULL)
8552 sym_value = sym->st_value;
8553 else
8554 {
8555 if (h->root.type != bfd_link_hash_defined
8556 && h->root.type != bfd_link_hash_defweak)
8557 abort ();
8558 sym_value = h->root.u.def.value;
8559 }
8560 sym_value += rel->r_addend;
8561
8562 /* If this branch reloc uses an opd sym, find the code section. */
8563 opd_adjust = get_opd_info (sym_sec);
8564 if (opd_adjust != NULL)
8565 {
8566 if (h == NULL)
8567 {
8568 long adjust;
8569
8570 adjust = opd_adjust[sym->st_value / 8];
8571 if (adjust == -1)
8572 /* Assume deleted functions won't ever be called. */
8573 continue;
8574 sym_value += adjust;
8575 }
8576
8577 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8578 if (dest == (bfd_vma) -1)
8579 continue;
8580 }
8581 else
8582 dest = (sym_value
8583 + sym_sec->output_offset
8584 + sym_sec->output_section->vma);
8585
8586 /* Ignore branch to self. */
8587 if (sym_sec == isec)
8588 continue;
8589
8590 /* If the called function uses the toc, we need a stub. */
8591 if (sym_sec->has_toc_reloc
8592 || sym_sec->makes_toc_func_call)
8593 {
8594 ret = 1;
8595 break;
8596 }
8597
8598 /* Assume any branch that needs a long branch stub might in fact
8599 need a plt_branch stub. A plt_branch stub uses r2. */
8600 else if (dest - (isec->output_offset
8601 + isec->output_section->vma
8602 + rel->r_offset) + (1 << 25) >= (2 << 25))
8603 {
8604 ret = 1;
8605 break;
8606 }
8607
8608 /* If calling back to a section in the process of being tested, we
8609 can't say for sure that no toc adjusting stubs are needed, so
8610 don't return zero. */
8611 else if (sym_sec->call_check_in_progress)
8612 ret = 2;
8613
8614 /* Branches to another section that itself doesn't have any TOC
8615 references are OK. Recursively call ourselves to check. */
8616 else if (sym_sec->id <= htab->top_id
8617 && htab->stub_group[sym_sec->id].toc_off == 0)
8618 {
8619 int recur;
8620
8621 /* Mark current section as indeterminate, so that other
8622 sections that call back to current won't be marked as
8623 known. */
8624 isec->call_check_in_progress = 1;
8625 recur = toc_adjusting_stub_needed (info, sym_sec);
8626 isec->call_check_in_progress = 0;
8627
8628 if (recur < 0)
8629 {
8630 /* An error. Exit. */
8631 ret = -1;
8632 break;
8633 }
8634 else if (recur <= 1)
8635 {
8636 /* Known result. Mark as checked and set section flag. */
8637 htab->stub_group[sym_sec->id].toc_off = 1;
8638 if (recur != 0)
8639 {
8640 sym_sec->makes_toc_func_call = 1;
8641 ret = 1;
8642 break;
8643 }
8644 }
8645 else
8646 {
8647 /* Unknown result. Continue checking. */
8648 ret = 2;
8649 }
8650 }
8651 }
8652
8653 if (local_syms != NULL
8654 && (elf_tdata (isec->owner)->symtab_hdr.contents
8655 != (unsigned char *) local_syms))
8656 free (local_syms);
8657 if (elf_section_data (isec)->relocs != relstart)
8658 free (relstart);
8659
8660 return ret;
8661 }
8662
8663 /* The linker repeatedly calls this function for each input section,
8664 in the order that input sections are linked into output sections.
8665 Build lists of input sections to determine groupings between which
8666 we may insert linker stubs. */
8667
8668 bfd_boolean
8669 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8670 {
8671 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8672
8673 if ((isec->output_section->flags & SEC_CODE) != 0
8674 && isec->output_section->index <= htab->top_index)
8675 {
8676 asection **list = htab->input_list + isec->output_section->index;
8677 /* Steal the link_sec pointer for our list. */
8678 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8679 /* This happens to make the list in reverse order,
8680 which is what we want. */
8681 PREV_SEC (isec) = *list;
8682 *list = isec;
8683 }
8684
8685 if (htab->multi_toc_needed)
8686 {
8687 /* If a code section has a function that uses the TOC then we need
8688 to use the right TOC (obviously). Also, make sure that .opd gets
8689 the correct TOC value for R_PPC64_TOC relocs that don't have or
8690 can't find their function symbol (shouldn't ever happen now). */
8691 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8692 {
8693 if (elf_gp (isec->owner) != 0)
8694 htab->toc_curr = elf_gp (isec->owner);
8695 }
8696 else if (htab->stub_group[isec->id].toc_off == 0)
8697 {
8698 int ret = toc_adjusting_stub_needed (info, isec);
8699 if (ret < 0)
8700 return FALSE;
8701 else
8702 isec->makes_toc_func_call = ret & 1;
8703 }
8704 }
8705
8706 /* Functions that don't use the TOC can belong in any TOC group.
8707 Use the last TOC base. This happens to make _init and _fini
8708 pasting work. */
8709 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8710 return TRUE;
8711 }
8712
8713 /* See whether we can group stub sections together. Grouping stub
8714 sections may result in fewer stubs. More importantly, we need to
8715 put all .init* and .fini* stubs at the beginning of the .init or
8716 .fini output sections respectively, because glibc splits the
8717 _init and _fini functions into multiple parts. Putting a stub in
8718 the middle of a function is not a good idea. */
8719
8720 static void
8721 group_sections (struct ppc_link_hash_table *htab,
8722 bfd_size_type stub_group_size,
8723 bfd_boolean stubs_always_before_branch)
8724 {
8725 asection **list = htab->input_list + htab->top_index;
8726 do
8727 {
8728 asection *tail = *list;
8729 while (tail != NULL)
8730 {
8731 asection *curr;
8732 asection *prev;
8733 bfd_size_type total;
8734 bfd_boolean big_sec;
8735 bfd_vma curr_toc;
8736
8737 curr = tail;
8738 total = tail->size;
8739 big_sec = total >= stub_group_size;
8740 curr_toc = htab->stub_group[tail->id].toc_off;
8741
8742 while ((prev = PREV_SEC (curr)) != NULL
8743 && ((total += curr->output_offset - prev->output_offset)
8744 < stub_group_size)
8745 && htab->stub_group[prev->id].toc_off == curr_toc)
8746 curr = prev;
8747
8748 /* OK, the size from the start of CURR to the end is less
8749 than stub_group_size and thus can be handled by one stub
8750 section. (or the tail section is itself larger than
8751 stub_group_size, in which case we may be toast.) We
8752 should really be keeping track of the total size of stubs
8753 added here, as stubs contribute to the final output
8754 section size. That's a little tricky, and this way will
8755 only break if stubs added make the total size more than
8756 2^25, ie. for the default stub_group_size, if stubs total
8757 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8758 do
8759 {
8760 prev = PREV_SEC (tail);
8761 /* Set up this stub group. */
8762 htab->stub_group[tail->id].link_sec = curr;
8763 }
8764 while (tail != curr && (tail = prev) != NULL);
8765
8766 /* But wait, there's more! Input sections up to stub_group_size
8767 bytes before the stub section can be handled by it too.
8768 Don't do this if we have a really large section after the
8769 stubs, as adding more stubs increases the chance that
8770 branches may not reach into the stub section. */
8771 if (!stubs_always_before_branch && !big_sec)
8772 {
8773 total = 0;
8774 while (prev != NULL
8775 && ((total += tail->output_offset - prev->output_offset)
8776 < stub_group_size)
8777 && htab->stub_group[prev->id].toc_off == curr_toc)
8778 {
8779 tail = prev;
8780 prev = PREV_SEC (tail);
8781 htab->stub_group[tail->id].link_sec = curr;
8782 }
8783 }
8784 tail = prev;
8785 }
8786 }
8787 while (list-- != htab->input_list);
8788 free (htab->input_list);
8789 #undef PREV_SEC
8790 }
8791
8792 /* Determine and set the size of the stub section for a final link.
8793
8794 The basic idea here is to examine all the relocations looking for
8795 PC-relative calls to a target that is unreachable with a "bl"
8796 instruction. */
8797
8798 bfd_boolean
8799 ppc64_elf_size_stubs (bfd *output_bfd,
8800 struct bfd_link_info *info,
8801 bfd_signed_vma group_size,
8802 asection *(*add_stub_section) (const char *, asection *),
8803 void (*layout_sections_again) (void))
8804 {
8805 bfd_size_type stub_group_size;
8806 bfd_boolean stubs_always_before_branch;
8807 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8808
8809 /* Stash our params away. */
8810 htab->add_stub_section = add_stub_section;
8811 htab->layout_sections_again = layout_sections_again;
8812 stubs_always_before_branch = group_size < 0;
8813 if (group_size < 0)
8814 stub_group_size = -group_size;
8815 else
8816 stub_group_size = group_size;
8817 if (stub_group_size == 1)
8818 {
8819 /* Default values. */
8820 if (stubs_always_before_branch)
8821 {
8822 stub_group_size = 0x1e00000;
8823 if (htab->has_14bit_branch)
8824 stub_group_size = 0x7800;
8825 }
8826 else
8827 {
8828 stub_group_size = 0x1c00000;
8829 if (htab->has_14bit_branch)
8830 stub_group_size = 0x7000;
8831 }
8832 }
8833
8834 group_sections (htab, stub_group_size, stubs_always_before_branch);
8835
8836 while (1)
8837 {
8838 bfd *input_bfd;
8839 unsigned int bfd_indx;
8840 asection *stub_sec;
8841 bfd_boolean stub_changed;
8842
8843 htab->stub_iteration += 1;
8844 stub_changed = FALSE;
8845
8846 for (input_bfd = info->input_bfds, bfd_indx = 0;
8847 input_bfd != NULL;
8848 input_bfd = input_bfd->link_next, bfd_indx++)
8849 {
8850 Elf_Internal_Shdr *symtab_hdr;
8851 asection *section;
8852 Elf_Internal_Sym *local_syms = NULL;
8853
8854 /* We'll need the symbol table in a second. */
8855 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8856 if (symtab_hdr->sh_info == 0)
8857 continue;
8858
8859 /* Walk over each section attached to the input bfd. */
8860 for (section = input_bfd->sections;
8861 section != NULL;
8862 section = section->next)
8863 {
8864 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8865
8866 /* If there aren't any relocs, then there's nothing more
8867 to do. */
8868 if ((section->flags & SEC_RELOC) == 0
8869 || section->reloc_count == 0)
8870 continue;
8871
8872 /* If this section is a link-once section that will be
8873 discarded, then don't create any stubs. */
8874 if (section->output_section == NULL
8875 || section->output_section->owner != output_bfd)
8876 continue;
8877
8878 /* Get the relocs. */
8879 internal_relocs
8880 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8881 info->keep_memory);
8882 if (internal_relocs == NULL)
8883 goto error_ret_free_local;
8884
8885 /* Now examine each relocation. */
8886 irela = internal_relocs;
8887 irelaend = irela + section->reloc_count;
8888 for (; irela < irelaend; irela++)
8889 {
8890 enum elf_ppc64_reloc_type r_type;
8891 unsigned int r_indx;
8892 enum ppc_stub_type stub_type;
8893 struct ppc_stub_hash_entry *stub_entry;
8894 asection *sym_sec, *code_sec;
8895 bfd_vma sym_value;
8896 bfd_vma destination;
8897 bfd_boolean ok_dest;
8898 struct ppc_link_hash_entry *hash;
8899 struct ppc_link_hash_entry *fdh;
8900 struct elf_link_hash_entry *h;
8901 Elf_Internal_Sym *sym;
8902 char *stub_name;
8903 const asection *id_sec;
8904 long *opd_adjust;
8905
8906 r_type = ELF64_R_TYPE (irela->r_info);
8907 r_indx = ELF64_R_SYM (irela->r_info);
8908
8909 if (r_type >= R_PPC64_max)
8910 {
8911 bfd_set_error (bfd_error_bad_value);
8912 goto error_ret_free_internal;
8913 }
8914
8915 /* Only look for stubs on branch instructions. */
8916 if (r_type != R_PPC64_REL24
8917 && r_type != R_PPC64_REL14
8918 && r_type != R_PPC64_REL14_BRTAKEN
8919 && r_type != R_PPC64_REL14_BRNTAKEN)
8920 continue;
8921
8922 /* Now determine the call target, its name, value,
8923 section. */
8924 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8925 r_indx, input_bfd))
8926 goto error_ret_free_internal;
8927 hash = (struct ppc_link_hash_entry *) h;
8928
8929 ok_dest = FALSE;
8930 fdh = NULL;
8931 if (hash == NULL)
8932 {
8933 sym_value = sym->st_value;
8934 ok_dest = TRUE;
8935 }
8936 else
8937 {
8938 sym_value = 0;
8939 /* Recognise an old ABI func code entry sym, and
8940 use the func descriptor sym instead. */
8941 if (hash->elf.root.root.string[0] == '.'
8942 && (fdh = get_fdh (hash, htab)) != NULL)
8943 {
8944 if (fdh->elf.root.type == bfd_link_hash_defined
8945 || fdh->elf.root.type == bfd_link_hash_defweak)
8946 {
8947 sym_sec = fdh->elf.root.u.def.section;
8948 sym_value = fdh->elf.root.u.def.value;
8949 if (sym_sec->output_section != NULL)
8950 ok_dest = TRUE;
8951 }
8952 else
8953 fdh = NULL;
8954 }
8955 else if (hash->elf.root.type == bfd_link_hash_defined
8956 || hash->elf.root.type == bfd_link_hash_defweak)
8957 {
8958 sym_value = hash->elf.root.u.def.value;
8959 if (sym_sec->output_section != NULL)
8960 ok_dest = TRUE;
8961 }
8962 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8963 ;
8964 else if (hash->elf.root.type == bfd_link_hash_undefined)
8965 ;
8966 else
8967 {
8968 bfd_set_error (bfd_error_bad_value);
8969 goto error_ret_free_internal;
8970 }
8971 }
8972
8973 destination = 0;
8974 if (ok_dest)
8975 {
8976 sym_value += irela->r_addend;
8977 destination = (sym_value
8978 + sym_sec->output_offset
8979 + sym_sec->output_section->vma);
8980 }
8981
8982 code_sec = sym_sec;
8983 opd_adjust = get_opd_info (sym_sec);
8984 if (opd_adjust != NULL)
8985 {
8986 bfd_vma dest;
8987
8988 if (hash == NULL)
8989 {
8990 long adjust = opd_adjust[sym_value / 8];
8991 if (adjust == -1)
8992 continue;
8993 sym_value += adjust;
8994 }
8995 dest = opd_entry_value (sym_sec, sym_value,
8996 &code_sec, &sym_value);
8997 if (dest != (bfd_vma) -1)
8998 {
8999 destination = dest;
9000 if (fdh != NULL)
9001 {
9002 /* Fixup old ABI sym to point at code
9003 entry. */
9004 hash->elf.root.type = bfd_link_hash_defweak;
9005 hash->elf.root.u.def.section = code_sec;
9006 hash->elf.root.u.def.value = sym_value;
9007 }
9008 }
9009 }
9010
9011 /* Determine what (if any) linker stub is needed. */
9012 stub_type = ppc_type_of_stub (section, irela, &hash,
9013 destination);
9014
9015 if (stub_type != ppc_stub_plt_call)
9016 {
9017 /* Check whether we need a TOC adjusting stub.
9018 Since the linker pastes together pieces from
9019 different object files when creating the
9020 _init and _fini functions, it may be that a
9021 call to what looks like a local sym is in
9022 fact a call needing a TOC adjustment. */
9023 if (code_sec != NULL
9024 && code_sec->output_section != NULL
9025 && (htab->stub_group[code_sec->id].toc_off
9026 != htab->stub_group[section->id].toc_off)
9027 && (code_sec->has_toc_reloc
9028 || code_sec->makes_toc_func_call))
9029 stub_type = ppc_stub_long_branch_r2off;
9030 }
9031
9032 if (stub_type == ppc_stub_none)
9033 continue;
9034
9035 /* __tls_get_addr calls might be eliminated. */
9036 if (stub_type != ppc_stub_plt_call
9037 && hash != NULL
9038 && (hash == htab->tls_get_addr
9039 || hash == htab->tls_get_addr_fd)
9040 && section->has_tls_reloc
9041 && irela != internal_relocs)
9042 {
9043 /* Get tls info. */
9044 char *tls_mask;
9045
9046 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9047 irela - 1, input_bfd))
9048 goto error_ret_free_internal;
9049 if (*tls_mask != 0)
9050 continue;
9051 }
9052
9053 /* Support for grouping stub sections. */
9054 id_sec = htab->stub_group[section->id].link_sec;
9055
9056 /* Get the name of this stub. */
9057 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9058 if (!stub_name)
9059 goto error_ret_free_internal;
9060
9061 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9062 stub_name, FALSE, FALSE);
9063 if (stub_entry != NULL)
9064 {
9065 /* The proper stub has already been created. */
9066 free (stub_name);
9067 continue;
9068 }
9069
9070 stub_entry = ppc_add_stub (stub_name, section, htab);
9071 if (stub_entry == NULL)
9072 {
9073 free (stub_name);
9074 error_ret_free_internal:
9075 if (elf_section_data (section)->relocs == NULL)
9076 free (internal_relocs);
9077 error_ret_free_local:
9078 if (local_syms != NULL
9079 && (symtab_hdr->contents
9080 != (unsigned char *) local_syms))
9081 free (local_syms);
9082 return FALSE;
9083 }
9084
9085 stub_entry->stub_type = stub_type;
9086 stub_entry->target_value = sym_value;
9087 stub_entry->target_section = code_sec;
9088 stub_entry->h = hash;
9089 stub_entry->addend = irela->r_addend;
9090
9091 if (stub_entry->h != NULL)
9092 htab->stub_globals += 1;
9093
9094 stub_changed = TRUE;
9095 }
9096
9097 /* We're done with the internal relocs, free them. */
9098 if (elf_section_data (section)->relocs != internal_relocs)
9099 free (internal_relocs);
9100 }
9101
9102 if (local_syms != NULL
9103 && symtab_hdr->contents != (unsigned char *) local_syms)
9104 {
9105 if (!info->keep_memory)
9106 free (local_syms);
9107 else
9108 symtab_hdr->contents = (unsigned char *) local_syms;
9109 }
9110 }
9111
9112 if (!stub_changed)
9113 break;
9114
9115 /* OK, we've added some stubs. Find out the new size of the
9116 stub sections. */
9117 for (stub_sec = htab->stub_bfd->sections;
9118 stub_sec != NULL;
9119 stub_sec = stub_sec->next)
9120 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9121 {
9122 stub_sec->size = 0;
9123 stub_sec->reloc_count = 0;
9124 }
9125
9126 htab->brlt->size = 0;
9127 if (htab->relbrlt != NULL)
9128 htab->relbrlt->size = 0;
9129
9130 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9131
9132 /* Ask the linker to do its stuff. */
9133 (*htab->layout_sections_again) ();
9134 }
9135
9136 /* It would be nice to strip .branch_lt from the output if the
9137 section is empty, but it's too late. If we strip sections here,
9138 the dynamic symbol table is corrupted since the section symbol
9139 for the stripped section isn't written. */
9140
9141 return TRUE;
9142 }
9143
9144 /* Called after we have determined section placement. If sections
9145 move, we'll be called again. Provide a value for TOCstart. */
9146
9147 bfd_vma
9148 ppc64_elf_toc (bfd *obfd)
9149 {
9150 asection *s;
9151 bfd_vma TOCstart;
9152
9153 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9154 order. The TOC starts where the first of these sections starts. */
9155 s = bfd_get_section_by_name (obfd, ".got");
9156 if (s == NULL)
9157 s = bfd_get_section_by_name (obfd, ".toc");
9158 if (s == NULL)
9159 s = bfd_get_section_by_name (obfd, ".tocbss");
9160 if (s == NULL)
9161 s = bfd_get_section_by_name (obfd, ".plt");
9162 if (s == NULL)
9163 {
9164 /* This may happen for
9165 o references to TOC base (SYM@toc / TOC[tc0]) without a
9166 .toc directive
9167 o bad linker script
9168 o --gc-sections and empty TOC sections
9169
9170 FIXME: Warn user? */
9171
9172 /* Look for a likely section. We probably won't even be
9173 using TOCstart. */
9174 for (s = obfd->sections; s != NULL; s = s->next)
9175 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9176 == (SEC_ALLOC | SEC_SMALL_DATA))
9177 break;
9178 if (s == NULL)
9179 for (s = obfd->sections; s != NULL; s = s->next)
9180 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9181 == (SEC_ALLOC | SEC_SMALL_DATA))
9182 break;
9183 if (s == NULL)
9184 for (s = obfd->sections; s != NULL; s = s->next)
9185 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9186 break;
9187 if (s == NULL)
9188 for (s = obfd->sections; s != NULL; s = s->next)
9189 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9190 break;
9191 }
9192
9193 TOCstart = 0;
9194 if (s != NULL)
9195 TOCstart = s->output_section->vma + s->output_offset;
9196
9197 return TOCstart;
9198 }
9199
9200 /* Build all the stubs associated with the current output file.
9201 The stubs are kept in a hash table attached to the main linker
9202 hash table. This function is called via gldelf64ppc_finish. */
9203
9204 bfd_boolean
9205 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9206 struct bfd_link_info *info,
9207 char **stats)
9208 {
9209 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9210 asection *stub_sec;
9211 bfd_byte *p;
9212 int stub_sec_count = 0;
9213
9214 htab->emit_stub_syms = emit_stub_syms;
9215
9216 /* Allocate memory to hold the linker stubs. */
9217 for (stub_sec = htab->stub_bfd->sections;
9218 stub_sec != NULL;
9219 stub_sec = stub_sec->next)
9220 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9221 && stub_sec->size != 0)
9222 {
9223 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9224 if (stub_sec->contents == NULL)
9225 return FALSE;
9226 /* We want to check that built size is the same as calculated
9227 size. rawsize is a convenient location to use. */
9228 stub_sec->rawsize = stub_sec->size;
9229 stub_sec->size = 0;
9230 }
9231
9232 if (htab->plt != NULL)
9233 {
9234 unsigned int indx;
9235 bfd_vma plt0;
9236
9237 /* Build the .glink plt call stub. */
9238 plt0 = (htab->plt->output_section->vma
9239 + htab->plt->output_offset
9240 - (htab->glink->output_section->vma
9241 + htab->glink->output_offset
9242 + GLINK_CALL_STUB_SIZE));
9243 if (plt0 + 0x80008000 > 0xffffffff)
9244 {
9245 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9246 bfd_set_error (bfd_error_bad_value);
9247 return FALSE;
9248 }
9249
9250 if (htab->emit_stub_syms)
9251 {
9252 struct elf_link_hash_entry *h;
9253 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9254 if (h == NULL)
9255 return FALSE;
9256 if (h->root.type == bfd_link_hash_new)
9257 {
9258 h->root.type = bfd_link_hash_defined;
9259 h->root.u.def.section = htab->glink;
9260 h->root.u.def.value = 0;
9261 h->ref_regular = 1;
9262 h->def_regular = 1;
9263 h->ref_regular_nonweak = 1;
9264 h->forced_local = 1;
9265 h->non_elf = 0;
9266 }
9267 }
9268 p = htab->glink->contents;
9269 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9270 p += 4;
9271 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9272 p += 4;
9273 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9274 p += 4;
9275 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9276 p += 4;
9277 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9278 p += 4;
9279 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9280 p += 4;
9281 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9282 p += 4;
9283 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9284 p += 4;
9285 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9286 p += 4;
9287 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9288 p += 4;
9289 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9290 p += 4;
9291 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9292 p += 4;
9293 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9294 p += 4;
9295 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9296 p += 4;
9297 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9298 p += 4;
9299 bfd_put_32 (htab->glink->owner, BCTR, p);
9300 p += 4;
9301
9302 /* Build the .glink lazy link call stubs. */
9303 indx = 0;
9304 while (p < htab->glink->contents + htab->glink->size)
9305 {
9306 if (indx < 0x8000)
9307 {
9308 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9309 p += 4;
9310 }
9311 else
9312 {
9313 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9314 p += 4;
9315 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9316 p += 4;
9317 }
9318 bfd_put_32 (htab->glink->owner,
9319 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9320 indx++;
9321 p += 4;
9322 }
9323 htab->glink->rawsize = p - htab->glink->contents;
9324 }
9325
9326 if (htab->brlt->size != 0)
9327 {
9328 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9329 htab->brlt->size);
9330 if (htab->brlt->contents == NULL)
9331 return FALSE;
9332 }
9333 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9334 {
9335 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9336 htab->relbrlt->size);
9337 if (htab->relbrlt->contents == NULL)
9338 return FALSE;
9339 }
9340
9341 /* Build the stubs as directed by the stub hash table. */
9342 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9343
9344 for (stub_sec = htab->stub_bfd->sections;
9345 stub_sec != NULL;
9346 stub_sec = stub_sec->next)
9347 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9348 {
9349 stub_sec_count += 1;
9350 if (stub_sec->rawsize != stub_sec->size)
9351 break;
9352 }
9353
9354 if (stub_sec != NULL
9355 || htab->glink->rawsize != htab->glink->size)
9356 {
9357 htab->stub_error = TRUE;
9358 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9359 }
9360
9361 if (htab->stub_error)
9362 return FALSE;
9363
9364 if (stats != NULL)
9365 {
9366 *stats = bfd_malloc (500);
9367 if (*stats == NULL)
9368 return FALSE;
9369
9370 sprintf (*stats, _("linker stubs in %u group%s\n"
9371 " branch %lu\n"
9372 " toc adjust %lu\n"
9373 " long branch %lu\n"
9374 " long toc adj %lu\n"
9375 " plt call %lu"),
9376 stub_sec_count,
9377 stub_sec_count == 1 ? "" : "s",
9378 htab->stub_count[ppc_stub_long_branch - 1],
9379 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9380 htab->stub_count[ppc_stub_plt_branch - 1],
9381 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9382 htab->stub_count[ppc_stub_plt_call - 1]);
9383 }
9384 return TRUE;
9385 }
9386
9387 /* This function undoes the changes made by add_symbol_adjust. */
9388
9389 static bfd_boolean
9390 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9391 {
9392 struct ppc_link_hash_entry *eh;
9393
9394 if (h->root.type == bfd_link_hash_indirect)
9395 return TRUE;
9396
9397 if (h->root.type == bfd_link_hash_warning)
9398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9399
9400 eh = (struct ppc_link_hash_entry *) h;
9401 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9402 return TRUE;
9403
9404 eh->elf.root.type = bfd_link_hash_undefined;
9405 return TRUE;
9406 }
9407
9408 void
9409 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9410 {
9411 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9412 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9413 }
9414
9415 /* The RELOCATE_SECTION function is called by the ELF backend linker
9416 to handle the relocations for a section.
9417
9418 The relocs are always passed as Rela structures; if the section
9419 actually uses Rel structures, the r_addend field will always be
9420 zero.
9421
9422 This function is responsible for adjust the section contents as
9423 necessary, and (if using Rela relocs and generating a
9424 relocatable output file) adjusting the reloc addend as
9425 necessary.
9426
9427 This function does not have to worry about setting the reloc
9428 address or the reloc symbol index.
9429
9430 LOCAL_SYMS is a pointer to the swapped in local symbols.
9431
9432 LOCAL_SECTIONS is an array giving the section in the input file
9433 corresponding to the st_shndx field of each local symbol.
9434
9435 The global hash table entry for the global symbols can be found
9436 via elf_sym_hashes (input_bfd).
9437
9438 When generating relocatable output, this function must handle
9439 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9440 going to be the section symbol corresponding to the output
9441 section, which means that the addend must be adjusted
9442 accordingly. */
9443
9444 static bfd_boolean
9445 ppc64_elf_relocate_section (bfd *output_bfd,
9446 struct bfd_link_info *info,
9447 bfd *input_bfd,
9448 asection *input_section,
9449 bfd_byte *contents,
9450 Elf_Internal_Rela *relocs,
9451 Elf_Internal_Sym *local_syms,
9452 asection **local_sections)
9453 {
9454 struct ppc_link_hash_table *htab;
9455 Elf_Internal_Shdr *symtab_hdr;
9456 struct elf_link_hash_entry **sym_hashes;
9457 Elf_Internal_Rela *rel;
9458 Elf_Internal_Rela *relend;
9459 Elf_Internal_Rela outrel;
9460 bfd_byte *loc;
9461 struct got_entry **local_got_ents;
9462 bfd_vma TOCstart;
9463 bfd_boolean ret = TRUE;
9464 bfd_boolean is_opd;
9465 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9466 bfd_boolean is_power4 = FALSE;
9467
9468 if (info->relocatable)
9469 return TRUE;
9470
9471 /* Initialize howto table if needed. */
9472 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9473 ppc_howto_init ();
9474
9475 htab = ppc_hash_table (info);
9476
9477 /* Don't relocate stub sections. */
9478 if (input_section->owner == htab->stub_bfd)
9479 return TRUE;
9480
9481 local_got_ents = elf_local_got_ents (input_bfd);
9482 TOCstart = elf_gp (output_bfd);
9483 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9484 sym_hashes = elf_sym_hashes (input_bfd);
9485 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9486
9487 rel = relocs;
9488 relend = relocs + input_section->reloc_count;
9489 for (; rel < relend; rel++)
9490 {
9491 enum elf_ppc64_reloc_type r_type;
9492 bfd_vma addend;
9493 bfd_reloc_status_type r;
9494 Elf_Internal_Sym *sym;
9495 asection *sec;
9496 struct elf_link_hash_entry *h_elf;
9497 struct ppc_link_hash_entry *h;
9498 struct ppc_link_hash_entry *fdh;
9499 const char *sym_name;
9500 unsigned long r_symndx, toc_symndx;
9501 char tls_mask, tls_gd, tls_type;
9502 char sym_type;
9503 bfd_vma relocation;
9504 bfd_boolean unresolved_reloc;
9505 bfd_boolean warned;
9506 unsigned long insn, mask;
9507 struct ppc_stub_hash_entry *stub_entry;
9508 bfd_vma max_br_offset;
9509 bfd_vma from;
9510
9511 r_type = ELF64_R_TYPE (rel->r_info);
9512 r_symndx = ELF64_R_SYM (rel->r_info);
9513
9514 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9515 symbol of the previous ADDR64 reloc. The symbol gives us the
9516 proper TOC base to use. */
9517 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9518 && rel != relocs
9519 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9520 && is_opd)
9521 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9522
9523 sym = NULL;
9524 sec = NULL;
9525 h_elf = NULL;
9526 sym_name = NULL;
9527 unresolved_reloc = FALSE;
9528 warned = FALSE;
9529
9530 if (r_symndx < symtab_hdr->sh_info)
9531 {
9532 /* It's a local symbol. */
9533 long *opd_adjust;
9534
9535 sym = local_syms + r_symndx;
9536 sec = local_sections[r_symndx];
9537 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
9538 sym_type = ELF64_ST_TYPE (sym->st_info);
9539 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9540 opd_adjust = get_opd_info (sec);
9541 if (opd_adjust != NULL)
9542 {
9543 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9544 if (adjust == -1)
9545 relocation = 0;
9546 else
9547 relocation += adjust;
9548 }
9549 }
9550 else
9551 {
9552 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9553 r_symndx, symtab_hdr, sym_hashes,
9554 h_elf, sec, relocation,
9555 unresolved_reloc, warned);
9556 sym_name = h_elf->root.root.string;
9557 sym_type = h_elf->type;
9558 }
9559 h = (struct ppc_link_hash_entry *) h_elf;
9560
9561 /* TLS optimizations. Replace instruction sequences and relocs
9562 based on information we collected in tls_optimize. We edit
9563 RELOCS so that --emit-relocs will output something sensible
9564 for the final instruction stream. */
9565 tls_mask = 0;
9566 tls_gd = 0;
9567 toc_symndx = 0;
9568 if (IS_PPC64_TLS_RELOC (r_type))
9569 {
9570 if (h != NULL)
9571 tls_mask = h->tls_mask;
9572 else if (local_got_ents != NULL)
9573 {
9574 char *lgot_masks;
9575 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9576 tls_mask = lgot_masks[r_symndx];
9577 }
9578 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9579 {
9580 /* Check for toc tls entries. */
9581 char *toc_tls;
9582
9583 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9584 rel, input_bfd))
9585 return FALSE;
9586
9587 if (toc_tls)
9588 tls_mask = *toc_tls;
9589 }
9590 }
9591
9592 /* Check that tls relocs are used with tls syms, and non-tls
9593 relocs are used with non-tls syms. */
9594 if (r_symndx != 0
9595 && r_type != R_PPC64_NONE
9596 && (h == NULL
9597 || h->elf.root.type == bfd_link_hash_defined
9598 || h->elf.root.type == bfd_link_hash_defweak)
9599 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9600 {
9601 if (r_type == R_PPC64_TLS && tls_mask != 0)
9602 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9603 ;
9604 else
9605 (*_bfd_error_handler)
9606 (sym_type == STT_TLS
9607 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9608 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9609 input_bfd,
9610 input_section,
9611 (long) rel->r_offset,
9612 ppc64_elf_howto_table[r_type]->name,
9613 sym_name);
9614 }
9615
9616 /* Ensure reloc mapping code below stays sane. */
9617 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9618 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9619 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9620 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9621 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9622 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9623 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9624 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9625 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9626 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9627 abort ();
9628
9629 switch (r_type)
9630 {
9631 default:
9632 break;
9633
9634 case R_PPC64_TOC16:
9635 case R_PPC64_TOC16_LO:
9636 case R_PPC64_TOC16_DS:
9637 case R_PPC64_TOC16_LO_DS:
9638 {
9639 /* Check for toc tls entries. */
9640 char *toc_tls;
9641 int retval;
9642
9643 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9644 rel, input_bfd);
9645 if (retval == 0)
9646 return FALSE;
9647
9648 if (toc_tls)
9649 {
9650 tls_mask = *toc_tls;
9651 if (r_type == R_PPC64_TOC16_DS
9652 || r_type == R_PPC64_TOC16_LO_DS)
9653 {
9654 if (tls_mask != 0
9655 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9656 goto toctprel;
9657 }
9658 else
9659 {
9660 /* If we found a GD reloc pair, then we might be
9661 doing a GD->IE transition. */
9662 if (retval == 2)
9663 {
9664 tls_gd = TLS_TPRELGD;
9665 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9666 goto tls_get_addr_check;
9667 }
9668 else if (retval == 3)
9669 {
9670 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9671 goto tls_get_addr_check;
9672 }
9673 }
9674 }
9675 }
9676 break;
9677
9678 case R_PPC64_GOT_TPREL16_DS:
9679 case R_PPC64_GOT_TPREL16_LO_DS:
9680 if (tls_mask != 0
9681 && (tls_mask & TLS_TPREL) == 0)
9682 {
9683 toctprel:
9684 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9685 insn &= 31 << 21;
9686 insn |= 0x3c0d0000; /* addis 0,13,0 */
9687 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9688 r_type = R_PPC64_TPREL16_HA;
9689 if (toc_symndx != 0)
9690 {
9691 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9692 /* We changed the symbol. Start over in order to
9693 get h, sym, sec etc. right. */
9694 rel--;
9695 continue;
9696 }
9697 else
9698 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9699 }
9700 break;
9701
9702 case R_PPC64_TLS:
9703 if (tls_mask != 0
9704 && (tls_mask & TLS_TPREL) == 0)
9705 {
9706 bfd_vma rtra;
9707 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9708 if ((insn & ((0x3f << 26) | (31 << 11)))
9709 == ((31 << 26) | (13 << 11)))
9710 rtra = insn & ((1 << 26) - (1 << 16));
9711 else if ((insn & ((0x3f << 26) | (31 << 16)))
9712 == ((31 << 26) | (13 << 16)))
9713 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9714 else
9715 abort ();
9716 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9717 /* add -> addi. */
9718 insn = 14 << 26;
9719 else if ((insn & (31 << 1)) == 23 << 1
9720 && ((insn & (31 << 6)) < 14 << 6
9721 || ((insn & (31 << 6)) >= 16 << 6
9722 && (insn & (31 << 6)) < 24 << 6)))
9723 /* load and store indexed -> dform. */
9724 insn = (32 | ((insn >> 6) & 31)) << 26;
9725 else if ((insn & (31 << 1)) == 21 << 1
9726 && (insn & (0x1a << 6)) == 0)
9727 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9728 insn = (((58 | ((insn >> 6) & 4)) << 26)
9729 | ((insn >> 6) & 1));
9730 else if ((insn & (31 << 1)) == 21 << 1
9731 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9732 /* lwax -> lwa. */
9733 insn = (58 << 26) | 2;
9734 else
9735 abort ();
9736 insn |= rtra;
9737 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9738 /* Was PPC64_TLS which sits on insn boundary, now
9739 PPC64_TPREL16_LO which is at insn+2. */
9740 rel->r_offset += 2;
9741 r_type = R_PPC64_TPREL16_LO;
9742 if (toc_symndx != 0)
9743 {
9744 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9745 /* We changed the symbol. Start over in order to
9746 get h, sym, sec etc. right. */
9747 rel--;
9748 continue;
9749 }
9750 else
9751 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9752 }
9753 break;
9754
9755 case R_PPC64_GOT_TLSGD16_HI:
9756 case R_PPC64_GOT_TLSGD16_HA:
9757 tls_gd = TLS_TPRELGD;
9758 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9759 goto tls_gdld_hi;
9760 break;
9761
9762 case R_PPC64_GOT_TLSLD16_HI:
9763 case R_PPC64_GOT_TLSLD16_HA:
9764 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9765 {
9766 tls_gdld_hi:
9767 if ((tls_mask & tls_gd) != 0)
9768 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9769 + R_PPC64_GOT_TPREL16_DS);
9770 else
9771 {
9772 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9773 rel->r_offset -= 2;
9774 r_type = R_PPC64_NONE;
9775 }
9776 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9777 }
9778 break;
9779
9780 case R_PPC64_GOT_TLSGD16:
9781 case R_PPC64_GOT_TLSGD16_LO:
9782 tls_gd = TLS_TPRELGD;
9783 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9784 goto tls_get_addr_check;
9785 break;
9786
9787 case R_PPC64_GOT_TLSLD16:
9788 case R_PPC64_GOT_TLSLD16_LO:
9789 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9790 {
9791 tls_get_addr_check:
9792 if (rel + 1 < relend)
9793 {
9794 enum elf_ppc64_reloc_type r_type2;
9795 unsigned long r_symndx2;
9796 struct elf_link_hash_entry *h2;
9797 bfd_vma insn1, insn2, insn3;
9798 bfd_vma offset;
9799
9800 /* The next instruction should be a call to
9801 __tls_get_addr. Peek at the reloc to be sure. */
9802 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9803 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9804 if (r_symndx2 < symtab_hdr->sh_info
9805 || (r_type2 != R_PPC64_REL14
9806 && r_type2 != R_PPC64_REL14_BRTAKEN
9807 && r_type2 != R_PPC64_REL14_BRNTAKEN
9808 && r_type2 != R_PPC64_REL24))
9809 break;
9810
9811 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9812 while (h2->root.type == bfd_link_hash_indirect
9813 || h2->root.type == bfd_link_hash_warning)
9814 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9815 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9816 && h2 != &htab->tls_get_addr_fd->elf))
9817 break;
9818
9819 /* OK, it checks out. Replace the call. */
9820 offset = rel[1].r_offset;
9821 insn1 = bfd_get_32 (output_bfd,
9822 contents + rel->r_offset - 2);
9823 insn3 = bfd_get_32 (output_bfd,
9824 contents + offset + 4);
9825 if ((tls_mask & tls_gd) != 0)
9826 {
9827 /* IE */
9828 insn1 &= (1 << 26) - (1 << 2);
9829 insn1 |= 58 << 26; /* ld */
9830 insn2 = 0x7c636a14; /* add 3,3,13 */
9831 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9832 if ((tls_mask & TLS_EXPLICIT) == 0)
9833 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9834 + R_PPC64_GOT_TPREL16_DS);
9835 else
9836 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9837 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9838 }
9839 else
9840 {
9841 /* LE */
9842 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9843 insn2 = 0x38630000; /* addi 3,3,0 */
9844 if (tls_gd == 0)
9845 {
9846 /* Was an LD reloc. */
9847 r_symndx = 0;
9848 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9849 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9850 }
9851 else if (toc_symndx != 0)
9852 r_symndx = toc_symndx;
9853 r_type = R_PPC64_TPREL16_HA;
9854 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9855 rel[1].r_info = ELF64_R_INFO (r_symndx,
9856 R_PPC64_TPREL16_LO);
9857 rel[1].r_offset += 2;
9858 }
9859 if (insn3 == NOP
9860 || insn3 == CROR_151515 || insn3 == CROR_313131)
9861 {
9862 insn3 = insn2;
9863 insn2 = NOP;
9864 rel[1].r_offset += 4;
9865 }
9866 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9867 bfd_put_32 (output_bfd, insn2, contents + offset);
9868 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9869 if (tls_gd == 0 || toc_symndx != 0)
9870 {
9871 /* We changed the symbol. Start over in order
9872 to get h, sym, sec etc. right. */
9873 rel--;
9874 continue;
9875 }
9876 }
9877 }
9878 break;
9879
9880 case R_PPC64_DTPMOD64:
9881 if (rel + 1 < relend
9882 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9883 && rel[1].r_offset == rel->r_offset + 8)
9884 {
9885 if ((tls_mask & TLS_GD) == 0)
9886 {
9887 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9888 if ((tls_mask & TLS_TPRELGD) != 0)
9889 r_type = R_PPC64_TPREL64;
9890 else
9891 {
9892 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9893 r_type = R_PPC64_NONE;
9894 }
9895 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9896 }
9897 }
9898 else
9899 {
9900 if ((tls_mask & TLS_LD) == 0)
9901 {
9902 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9903 r_type = R_PPC64_NONE;
9904 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9905 }
9906 }
9907 break;
9908
9909 case R_PPC64_TPREL64:
9910 if ((tls_mask & TLS_TPREL) == 0)
9911 {
9912 r_type = R_PPC64_NONE;
9913 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9914 }
9915 break;
9916 }
9917
9918 /* Handle other relocations that tweak non-addend part of insn. */
9919 insn = 0;
9920 max_br_offset = 1 << 25;
9921 addend = rel->r_addend;
9922 switch (r_type)
9923 {
9924 default:
9925 break;
9926
9927 /* Branch taken prediction relocations. */
9928 case R_PPC64_ADDR14_BRTAKEN:
9929 case R_PPC64_REL14_BRTAKEN:
9930 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9931 /* Fall thru. */
9932
9933 /* Branch not taken prediction relocations. */
9934 case R_PPC64_ADDR14_BRNTAKEN:
9935 case R_PPC64_REL14_BRNTAKEN:
9936 insn |= bfd_get_32 (output_bfd,
9937 contents + rel->r_offset) & ~(0x01 << 21);
9938 /* Fall thru. */
9939
9940 case R_PPC64_REL14:
9941 max_br_offset = 1 << 15;
9942 /* Fall thru. */
9943
9944 case R_PPC64_REL24:
9945 /* Calls to functions with a different TOC, such as calls to
9946 shared objects, need to alter the TOC pointer. This is
9947 done using a linkage stub. A REL24 branching to these
9948 linkage stubs needs to be followed by a nop, as the nop
9949 will be replaced with an instruction to restore the TOC
9950 base pointer. */
9951 stub_entry = NULL;
9952 fdh = h;
9953 if (((h != NULL
9954 && (((fdh = h->oh) != NULL
9955 && fdh->elf.plt.plist != NULL)
9956 || (fdh = h)->elf.plt.plist != NULL))
9957 || (sec != NULL
9958 && sec->output_section != NULL
9959 && sec->id <= htab->top_id
9960 && (htab->stub_group[sec->id].toc_off
9961 != htab->stub_group[input_section->id].toc_off)))
9962 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9963 rel, htab)) != NULL
9964 && (stub_entry->stub_type == ppc_stub_plt_call
9965 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9966 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9967 {
9968 bfd_boolean can_plt_call = FALSE;
9969
9970 if (rel->r_offset + 8 <= input_section->size)
9971 {
9972 unsigned long nop;
9973 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9974 if (nop == NOP
9975 || nop == CROR_151515 || nop == CROR_313131)
9976 {
9977 bfd_put_32 (input_bfd, LD_R2_40R1,
9978 contents + rel->r_offset + 4);
9979 can_plt_call = TRUE;
9980 }
9981 }
9982
9983 if (!can_plt_call)
9984 {
9985 if (stub_entry->stub_type == ppc_stub_plt_call)
9986 {
9987 /* If this is a plain branch rather than a branch
9988 and link, don't require a nop. */
9989 unsigned long br;
9990 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9991 if ((br & 1) == 0)
9992 can_plt_call = TRUE;
9993 }
9994 else if (h != NULL
9995 && strcmp (h->elf.root.root.string,
9996 ".__libc_start_main") == 0)
9997 {
9998 /* Allow crt1 branch to go via a toc adjusting stub. */
9999 can_plt_call = TRUE;
10000 }
10001 else
10002 {
10003 if (strcmp (input_section->output_section->name,
10004 ".init") == 0
10005 || strcmp (input_section->output_section->name,
10006 ".fini") == 0)
10007 (*_bfd_error_handler)
10008 (_("%B(%A+0x%lx): automatic multiple TOCs "
10009 "not supported using your crt files; "
10010 "recompile with -mminimal-toc or upgrade gcc"),
10011 input_bfd,
10012 input_section,
10013 (long) rel->r_offset);
10014 else
10015 (*_bfd_error_handler)
10016 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10017 "does not allow automatic multiple TOCs; "
10018 "recompile with -mminimal-toc or "
10019 "-fno-optimize-sibling-calls, "
10020 "or make `%s' extern"),
10021 input_bfd,
10022 input_section,
10023 (long) rel->r_offset,
10024 sym_name,
10025 sym_name);
10026 bfd_set_error (bfd_error_bad_value);
10027 ret = FALSE;
10028 }
10029 }
10030
10031 if (can_plt_call
10032 && stub_entry->stub_type == ppc_stub_plt_call)
10033 unresolved_reloc = FALSE;
10034 }
10035
10036 if (stub_entry == NULL
10037 && get_opd_info (sec) != NULL)
10038 {
10039 /* The branch destination is the value of the opd entry. */
10040 bfd_vma off = (relocation - sec->output_section->vma
10041 - sec->output_offset + rel->r_addend);
10042 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10043 if (dest != (bfd_vma) -1)
10044 {
10045 relocation = dest;
10046 addend = 0;
10047 }
10048 }
10049
10050 /* If the branch is out of reach we ought to have a long
10051 branch stub. */
10052 from = (rel->r_offset
10053 + input_section->output_offset
10054 + input_section->output_section->vma);
10055
10056 if (stub_entry == NULL
10057 && (relocation + rel->r_addend - from + max_br_offset
10058 >= 2 * max_br_offset)
10059 && r_type != R_PPC64_ADDR14_BRTAKEN
10060 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10061 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10062 htab);
10063
10064 if (stub_entry != NULL)
10065 {
10066 /* Munge up the value and addend so that we call the stub
10067 rather than the procedure directly. */
10068 relocation = (stub_entry->stub_offset
10069 + stub_entry->stub_sec->output_offset
10070 + stub_entry->stub_sec->output_section->vma);
10071 addend = 0;
10072 }
10073
10074 if (insn != 0)
10075 {
10076 if (is_power4)
10077 {
10078 /* Set 'a' bit. This is 0b00010 in BO field for branch
10079 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10080 for branch on CTR insns (BO == 1a00t or 1a01t). */
10081 if ((insn & (0x14 << 21)) == (0x04 << 21))
10082 insn |= 0x02 << 21;
10083 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10084 insn |= 0x08 << 21;
10085 else
10086 break;
10087 }
10088 else
10089 {
10090 /* Invert 'y' bit if not the default. */
10091 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10092 insn ^= 0x01 << 21;
10093 }
10094
10095 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10096 }
10097
10098 /* NOP out calls to undefined weak functions.
10099 We can thus call a weak function without first
10100 checking whether the function is defined. */
10101 else if (h != NULL
10102 && h->elf.root.type == bfd_link_hash_undefweak
10103 && r_type == R_PPC64_REL24
10104 && relocation == 0
10105 && rel->r_addend == 0)
10106 {
10107 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10108 continue;
10109 }
10110 break;
10111 }
10112
10113 /* Set `addend'. */
10114 tls_type = 0;
10115 switch (r_type)
10116 {
10117 default:
10118 (*_bfd_error_handler)
10119 (_("%B: unknown relocation type %d for symbol %s"),
10120 input_bfd, (int) r_type, sym_name);
10121
10122 bfd_set_error (bfd_error_bad_value);
10123 ret = FALSE;
10124 continue;
10125
10126 case R_PPC64_NONE:
10127 case R_PPC64_TLS:
10128 case R_PPC64_GNU_VTINHERIT:
10129 case R_PPC64_GNU_VTENTRY:
10130 continue;
10131
10132 /* GOT16 relocations. Like an ADDR16 using the symbol's
10133 address in the GOT as relocation value instead of the
10134 symbol's value itself. Also, create a GOT entry for the
10135 symbol and put the symbol value there. */
10136 case R_PPC64_GOT_TLSGD16:
10137 case R_PPC64_GOT_TLSGD16_LO:
10138 case R_PPC64_GOT_TLSGD16_HI:
10139 case R_PPC64_GOT_TLSGD16_HA:
10140 tls_type = TLS_TLS | TLS_GD;
10141 goto dogot;
10142
10143 case R_PPC64_GOT_TLSLD16:
10144 case R_PPC64_GOT_TLSLD16_LO:
10145 case R_PPC64_GOT_TLSLD16_HI:
10146 case R_PPC64_GOT_TLSLD16_HA:
10147 tls_type = TLS_TLS | TLS_LD;
10148 goto dogot;
10149
10150 case R_PPC64_GOT_TPREL16_DS:
10151 case R_PPC64_GOT_TPREL16_LO_DS:
10152 case R_PPC64_GOT_TPREL16_HI:
10153 case R_PPC64_GOT_TPREL16_HA:
10154 tls_type = TLS_TLS | TLS_TPREL;
10155 goto dogot;
10156
10157 case R_PPC64_GOT_DTPREL16_DS:
10158 case R_PPC64_GOT_DTPREL16_LO_DS:
10159 case R_PPC64_GOT_DTPREL16_HI:
10160 case R_PPC64_GOT_DTPREL16_HA:
10161 tls_type = TLS_TLS | TLS_DTPREL;
10162 goto dogot;
10163
10164 case R_PPC64_GOT16:
10165 case R_PPC64_GOT16_LO:
10166 case R_PPC64_GOT16_HI:
10167 case R_PPC64_GOT16_HA:
10168 case R_PPC64_GOT16_DS:
10169 case R_PPC64_GOT16_LO_DS:
10170 dogot:
10171 {
10172 /* Relocation is to the entry for this symbol in the global
10173 offset table. */
10174 asection *got;
10175 bfd_vma *offp;
10176 bfd_vma off;
10177 unsigned long indx = 0;
10178
10179 if (tls_type == (TLS_TLS | TLS_LD)
10180 && (h == NULL
10181 || !h->elf.def_dynamic))
10182 offp = &ppc64_tlsld_got (input_bfd)->offset;
10183 else
10184 {
10185 struct got_entry *ent;
10186
10187 if (h != NULL)
10188 {
10189 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10190 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10191 &h->elf)
10192 || (info->shared
10193 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10194 /* This is actually a static link, or it is a
10195 -Bsymbolic link and the symbol is defined
10196 locally, or the symbol was forced to be local
10197 because of a version file. */
10198 ;
10199 else
10200 {
10201 indx = h->elf.dynindx;
10202 unresolved_reloc = FALSE;
10203 }
10204 ent = h->elf.got.glist;
10205 }
10206 else
10207 {
10208 if (local_got_ents == NULL)
10209 abort ();
10210 ent = local_got_ents[r_symndx];
10211 }
10212
10213 for (; ent != NULL; ent = ent->next)
10214 if (ent->addend == rel->r_addend
10215 && ent->owner == input_bfd
10216 && ent->tls_type == tls_type)
10217 break;
10218 if (ent == NULL)
10219 abort ();
10220 offp = &ent->got.offset;
10221 }
10222
10223 got = ppc64_elf_tdata (input_bfd)->got;
10224 if (got == NULL)
10225 abort ();
10226
10227 /* The offset must always be a multiple of 8. We use the
10228 least significant bit to record whether we have already
10229 processed this entry. */
10230 off = *offp;
10231 if ((off & 1) != 0)
10232 off &= ~1;
10233 else
10234 {
10235 /* Generate relocs for the dynamic linker, except in
10236 the case of TLSLD where we'll use one entry per
10237 module. */
10238 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10239
10240 *offp = off | 1;
10241 if ((info->shared || indx != 0)
10242 && (h == NULL
10243 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10244 || h->elf.root.type != bfd_link_hash_undefweak))
10245 {
10246 outrel.r_offset = (got->output_section->vma
10247 + got->output_offset
10248 + off);
10249 outrel.r_addend = rel->r_addend;
10250 if (tls_type & (TLS_LD | TLS_GD))
10251 {
10252 outrel.r_addend = 0;
10253 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10254 if (tls_type == (TLS_TLS | TLS_GD))
10255 {
10256 loc = relgot->contents;
10257 loc += (relgot->reloc_count++
10258 * sizeof (Elf64_External_Rela));
10259 bfd_elf64_swap_reloca_out (output_bfd,
10260 &outrel, loc);
10261 outrel.r_offset += 8;
10262 outrel.r_addend = rel->r_addend;
10263 outrel.r_info
10264 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10265 }
10266 }
10267 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10268 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10269 else if (tls_type == (TLS_TLS | TLS_TPREL))
10270 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10271 else if (indx == 0)
10272 {
10273 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10274
10275 /* Write the .got section contents for the sake
10276 of prelink. */
10277 loc = got->contents + off;
10278 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10279 loc);
10280 }
10281 else
10282 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10283
10284 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10285 {
10286 outrel.r_addend += relocation;
10287 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10288 outrel.r_addend -= htab->elf.tls_sec->vma;
10289 }
10290 loc = relgot->contents;
10291 loc += (relgot->reloc_count++
10292 * sizeof (Elf64_External_Rela));
10293 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10294 }
10295
10296 /* Init the .got section contents here if we're not
10297 emitting a reloc. */
10298 else
10299 {
10300 relocation += rel->r_addend;
10301 if (tls_type == (TLS_TLS | TLS_LD))
10302 relocation = 1;
10303 else if (tls_type != 0)
10304 {
10305 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10306 if (tls_type == (TLS_TLS | TLS_TPREL))
10307 relocation += DTP_OFFSET - TP_OFFSET;
10308
10309 if (tls_type == (TLS_TLS | TLS_GD))
10310 {
10311 bfd_put_64 (output_bfd, relocation,
10312 got->contents + off + 8);
10313 relocation = 1;
10314 }
10315 }
10316
10317 bfd_put_64 (output_bfd, relocation,
10318 got->contents + off);
10319 }
10320 }
10321
10322 if (off >= (bfd_vma) -2)
10323 abort ();
10324
10325 relocation = got->output_offset + off;
10326
10327 /* TOC base (r2) is TOC start plus 0x8000. */
10328 addend = -TOC_BASE_OFF;
10329 }
10330 break;
10331
10332 case R_PPC64_PLT16_HA:
10333 case R_PPC64_PLT16_HI:
10334 case R_PPC64_PLT16_LO:
10335 case R_PPC64_PLT32:
10336 case R_PPC64_PLT64:
10337 /* Relocation is to the entry for this symbol in the
10338 procedure linkage table. */
10339
10340 /* Resolve a PLT reloc against a local symbol directly,
10341 without using the procedure linkage table. */
10342 if (h == NULL)
10343 break;
10344
10345 /* It's possible that we didn't make a PLT entry for this
10346 symbol. This happens when statically linking PIC code,
10347 or when using -Bsymbolic. Go find a match if there is a
10348 PLT entry. */
10349 if (htab->plt != NULL)
10350 {
10351 struct plt_entry *ent;
10352 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10353 if (ent->addend == rel->r_addend
10354 && ent->plt.offset != (bfd_vma) -1)
10355 {
10356 relocation = (htab->plt->output_section->vma
10357 + htab->plt->output_offset
10358 + ent->plt.offset);
10359 unresolved_reloc = FALSE;
10360 }
10361 }
10362 break;
10363
10364 case R_PPC64_TOC:
10365 /* Relocation value is TOC base. */
10366 relocation = TOCstart;
10367 if (r_symndx == 0)
10368 relocation += htab->stub_group[input_section->id].toc_off;
10369 else if (unresolved_reloc)
10370 ;
10371 else if (sec != NULL && sec->id <= htab->top_id)
10372 relocation += htab->stub_group[sec->id].toc_off;
10373 else
10374 unresolved_reloc = TRUE;
10375 goto dodyn2;
10376
10377 /* TOC16 relocs. We want the offset relative to the TOC base,
10378 which is the address of the start of the TOC plus 0x8000.
10379 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10380 in this order. */
10381 case R_PPC64_TOC16:
10382 case R_PPC64_TOC16_LO:
10383 case R_PPC64_TOC16_HI:
10384 case R_PPC64_TOC16_DS:
10385 case R_PPC64_TOC16_LO_DS:
10386 case R_PPC64_TOC16_HA:
10387 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10388 break;
10389
10390 /* Relocate against the beginning of the section. */
10391 case R_PPC64_SECTOFF:
10392 case R_PPC64_SECTOFF_LO:
10393 case R_PPC64_SECTOFF_HI:
10394 case R_PPC64_SECTOFF_DS:
10395 case R_PPC64_SECTOFF_LO_DS:
10396 case R_PPC64_SECTOFF_HA:
10397 if (sec != NULL)
10398 addend -= sec->output_section->vma;
10399 break;
10400
10401 case R_PPC64_REL14:
10402 case R_PPC64_REL14_BRNTAKEN:
10403 case R_PPC64_REL14_BRTAKEN:
10404 case R_PPC64_REL24:
10405 break;
10406
10407 case R_PPC64_TPREL16:
10408 case R_PPC64_TPREL16_LO:
10409 case R_PPC64_TPREL16_HI:
10410 case R_PPC64_TPREL16_HA:
10411 case R_PPC64_TPREL16_DS:
10412 case R_PPC64_TPREL16_LO_DS:
10413 case R_PPC64_TPREL16_HIGHER:
10414 case R_PPC64_TPREL16_HIGHERA:
10415 case R_PPC64_TPREL16_HIGHEST:
10416 case R_PPC64_TPREL16_HIGHESTA:
10417 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10418 if (info->shared)
10419 /* The TPREL16 relocs shouldn't really be used in shared
10420 libs as they will result in DT_TEXTREL being set, but
10421 support them anyway. */
10422 goto dodyn;
10423 break;
10424
10425 case R_PPC64_DTPREL16:
10426 case R_PPC64_DTPREL16_LO:
10427 case R_PPC64_DTPREL16_HI:
10428 case R_PPC64_DTPREL16_HA:
10429 case R_PPC64_DTPREL16_DS:
10430 case R_PPC64_DTPREL16_LO_DS:
10431 case R_PPC64_DTPREL16_HIGHER:
10432 case R_PPC64_DTPREL16_HIGHERA:
10433 case R_PPC64_DTPREL16_HIGHEST:
10434 case R_PPC64_DTPREL16_HIGHESTA:
10435 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10436 break;
10437
10438 case R_PPC64_DTPMOD64:
10439 relocation = 1;
10440 addend = 0;
10441 goto dodyn;
10442
10443 case R_PPC64_TPREL64:
10444 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10445 goto dodyn;
10446
10447 case R_PPC64_DTPREL64:
10448 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10449 /* Fall thru */
10450
10451 /* Relocations that may need to be propagated if this is a
10452 dynamic object. */
10453 case R_PPC64_REL30:
10454 case R_PPC64_REL32:
10455 case R_PPC64_REL64:
10456 case R_PPC64_ADDR14:
10457 case R_PPC64_ADDR14_BRNTAKEN:
10458 case R_PPC64_ADDR14_BRTAKEN:
10459 case R_PPC64_ADDR16:
10460 case R_PPC64_ADDR16_DS:
10461 case R_PPC64_ADDR16_HA:
10462 case R_PPC64_ADDR16_HI:
10463 case R_PPC64_ADDR16_HIGHER:
10464 case R_PPC64_ADDR16_HIGHERA:
10465 case R_PPC64_ADDR16_HIGHEST:
10466 case R_PPC64_ADDR16_HIGHESTA:
10467 case R_PPC64_ADDR16_LO:
10468 case R_PPC64_ADDR16_LO_DS:
10469 case R_PPC64_ADDR24:
10470 case R_PPC64_ADDR32:
10471 case R_PPC64_ADDR64:
10472 case R_PPC64_UADDR16:
10473 case R_PPC64_UADDR32:
10474 case R_PPC64_UADDR64:
10475 /* r_symndx will be zero only for relocs against symbols
10476 from removed linkonce sections, or sections discarded by
10477 a linker script. */
10478 dodyn:
10479 if (r_symndx == 0)
10480 break;
10481 /* Fall thru. */
10482
10483 dodyn2:
10484 if ((input_section->flags & SEC_ALLOC) == 0)
10485 break;
10486
10487 if (NO_OPD_RELOCS && is_opd)
10488 break;
10489
10490 if ((info->shared
10491 && (h == NULL
10492 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10493 || h->elf.root.type != bfd_link_hash_undefweak)
10494 && (MUST_BE_DYN_RELOC (r_type)
10495 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10496 || (ELIMINATE_COPY_RELOCS
10497 && !info->shared
10498 && h != NULL
10499 && h->elf.dynindx != -1
10500 && !h->elf.non_got_ref
10501 && h->elf.def_dynamic
10502 && !h->elf.def_regular))
10503 {
10504 Elf_Internal_Rela outrel;
10505 bfd_boolean skip, relocate;
10506 asection *sreloc;
10507 bfd_byte *loc;
10508 bfd_vma out_off;
10509
10510 /* When generating a dynamic object, these relocations
10511 are copied into the output file to be resolved at run
10512 time. */
10513
10514 skip = FALSE;
10515 relocate = FALSE;
10516
10517 out_off = _bfd_elf_section_offset (output_bfd, info,
10518 input_section, rel->r_offset);
10519 if (out_off == (bfd_vma) -1)
10520 skip = TRUE;
10521 else if (out_off == (bfd_vma) -2)
10522 skip = TRUE, relocate = TRUE;
10523 out_off += (input_section->output_section->vma
10524 + input_section->output_offset);
10525 outrel.r_offset = out_off;
10526 outrel.r_addend = rel->r_addend;
10527
10528 /* Optimize unaligned reloc use. */
10529 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10530 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10531 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10532 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10533 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10534 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10535 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10536 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10537 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10538
10539 if (skip)
10540 memset (&outrel, 0, sizeof outrel);
10541 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10542 && !is_opd
10543 && r_type != R_PPC64_TOC)
10544 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10545 else
10546 {
10547 /* This symbol is local, or marked to become local,
10548 or this is an opd section reloc which must point
10549 at a local function. */
10550 outrel.r_addend += relocation;
10551 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10552 {
10553 if (is_opd && h != NULL)
10554 {
10555 /* Lie about opd entries. This case occurs
10556 when building shared libraries and we
10557 reference a function in another shared
10558 lib. The same thing happens for a weak
10559 definition in an application that's
10560 overridden by a strong definition in a
10561 shared lib. (I believe this is a generic
10562 bug in binutils handling of weak syms.)
10563 In these cases we won't use the opd
10564 entry in this lib. */
10565 unresolved_reloc = FALSE;
10566 }
10567 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10568
10569 /* We need to relocate .opd contents for ld.so.
10570 Prelink also wants simple and consistent rules
10571 for relocs. This make all RELATIVE relocs have
10572 *r_offset equal to r_addend. */
10573 relocate = TRUE;
10574 }
10575 else
10576 {
10577 long indx = 0;
10578
10579 if (bfd_is_abs_section (sec))
10580 ;
10581 else if (sec == NULL || sec->owner == NULL)
10582 {
10583 bfd_set_error (bfd_error_bad_value);
10584 return FALSE;
10585 }
10586 else
10587 {
10588 asection *osec;
10589
10590 osec = sec->output_section;
10591 indx = elf_section_data (osec)->dynindx;
10592
10593 /* We are turning this relocation into one
10594 against a section symbol, so subtract out
10595 the output section's address but not the
10596 offset of the input section in the output
10597 section. */
10598 outrel.r_addend -= osec->vma;
10599 }
10600
10601 outrel.r_info = ELF64_R_INFO (indx, r_type);
10602 }
10603 }
10604
10605 sreloc = elf_section_data (input_section)->sreloc;
10606 if (sreloc == NULL)
10607 abort ();
10608
10609 loc = sreloc->contents;
10610 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10611 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10612
10613 /* If this reloc is against an external symbol, it will
10614 be computed at runtime, so there's no need to do
10615 anything now. However, for the sake of prelink ensure
10616 that the section contents are a known value. */
10617 if (! relocate)
10618 {
10619 unresolved_reloc = FALSE;
10620 /* The value chosen here is quite arbitrary as ld.so
10621 ignores section contents except for the special
10622 case of .opd where the contents might be accessed
10623 before relocation. Choose zero, as that won't
10624 cause reloc overflow. */
10625 relocation = 0;
10626 addend = 0;
10627 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10628 to improve backward compatibility with older
10629 versions of ld. */
10630 if (r_type == R_PPC64_ADDR64)
10631 addend = outrel.r_addend;
10632 /* Adjust pc_relative relocs to have zero in *r_offset. */
10633 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10634 addend = (input_section->output_section->vma
10635 + input_section->output_offset
10636 + rel->r_offset);
10637 }
10638 }
10639 break;
10640
10641 case R_PPC64_COPY:
10642 case R_PPC64_GLOB_DAT:
10643 case R_PPC64_JMP_SLOT:
10644 case R_PPC64_RELATIVE:
10645 /* We shouldn't ever see these dynamic relocs in relocatable
10646 files. */
10647 /* Fall through. */
10648
10649 case R_PPC64_PLTGOT16:
10650 case R_PPC64_PLTGOT16_DS:
10651 case R_PPC64_PLTGOT16_HA:
10652 case R_PPC64_PLTGOT16_HI:
10653 case R_PPC64_PLTGOT16_LO:
10654 case R_PPC64_PLTGOT16_LO_DS:
10655 case R_PPC64_PLTREL32:
10656 case R_PPC64_PLTREL64:
10657 /* These ones haven't been implemented yet. */
10658
10659 (*_bfd_error_handler)
10660 (_("%B: relocation %s is not supported for symbol %s."),
10661 input_bfd,
10662 ppc64_elf_howto_table[r_type]->name, sym_name);
10663
10664 bfd_set_error (bfd_error_invalid_operation);
10665 ret = FALSE;
10666 continue;
10667 }
10668
10669 /* Do any further special processing. */
10670 switch (r_type)
10671 {
10672 default:
10673 break;
10674
10675 case R_PPC64_ADDR16_HA:
10676 case R_PPC64_ADDR16_HIGHERA:
10677 case R_PPC64_ADDR16_HIGHESTA:
10678 case R_PPC64_GOT16_HA:
10679 case R_PPC64_PLTGOT16_HA:
10680 case R_PPC64_PLT16_HA:
10681 case R_PPC64_TOC16_HA:
10682 case R_PPC64_SECTOFF_HA:
10683 case R_PPC64_TPREL16_HA:
10684 case R_PPC64_DTPREL16_HA:
10685 case R_PPC64_GOT_TLSGD16_HA:
10686 case R_PPC64_GOT_TLSLD16_HA:
10687 case R_PPC64_GOT_TPREL16_HA:
10688 case R_PPC64_GOT_DTPREL16_HA:
10689 case R_PPC64_TPREL16_HIGHER:
10690 case R_PPC64_TPREL16_HIGHERA:
10691 case R_PPC64_TPREL16_HIGHEST:
10692 case R_PPC64_TPREL16_HIGHESTA:
10693 case R_PPC64_DTPREL16_HIGHER:
10694 case R_PPC64_DTPREL16_HIGHERA:
10695 case R_PPC64_DTPREL16_HIGHEST:
10696 case R_PPC64_DTPREL16_HIGHESTA:
10697 /* It's just possible that this symbol is a weak symbol
10698 that's not actually defined anywhere. In that case,
10699 'sec' would be NULL, and we should leave the symbol
10700 alone (it will be set to zero elsewhere in the link). */
10701 if (sec != NULL)
10702 /* Add 0x10000 if sign bit in 0:15 is set.
10703 Bits 0:15 are not used. */
10704 addend += 0x8000;
10705 break;
10706
10707 case R_PPC64_ADDR16_DS:
10708 case R_PPC64_ADDR16_LO_DS:
10709 case R_PPC64_GOT16_DS:
10710 case R_PPC64_GOT16_LO_DS:
10711 case R_PPC64_PLT16_LO_DS:
10712 case R_PPC64_SECTOFF_DS:
10713 case R_PPC64_SECTOFF_LO_DS:
10714 case R_PPC64_TOC16_DS:
10715 case R_PPC64_TOC16_LO_DS:
10716 case R_PPC64_PLTGOT16_DS:
10717 case R_PPC64_PLTGOT16_LO_DS:
10718 case R_PPC64_GOT_TPREL16_DS:
10719 case R_PPC64_GOT_TPREL16_LO_DS:
10720 case R_PPC64_GOT_DTPREL16_DS:
10721 case R_PPC64_GOT_DTPREL16_LO_DS:
10722 case R_PPC64_TPREL16_DS:
10723 case R_PPC64_TPREL16_LO_DS:
10724 case R_PPC64_DTPREL16_DS:
10725 case R_PPC64_DTPREL16_LO_DS:
10726 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10727 mask = 3;
10728 /* If this reloc is against an lq insn, then the value must be
10729 a multiple of 16. This is somewhat of a hack, but the
10730 "correct" way to do this by defining _DQ forms of all the
10731 _DS relocs bloats all reloc switches in this file. It
10732 doesn't seem to make much sense to use any of these relocs
10733 in data, so testing the insn should be safe. */
10734 if ((insn & (0x3f << 26)) == (56u << 26))
10735 mask = 15;
10736 if (((relocation + addend) & mask) != 0)
10737 {
10738 (*_bfd_error_handler)
10739 (_("%B: error: relocation %s not a multiple of %d"),
10740 input_bfd,
10741 ppc64_elf_howto_table[r_type]->name,
10742 mask + 1);
10743 bfd_set_error (bfd_error_bad_value);
10744 ret = FALSE;
10745 continue;
10746 }
10747 break;
10748 }
10749
10750 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10751 because such sections are not SEC_ALLOC and thus ld.so will
10752 not process them. */
10753 if (unresolved_reloc
10754 && !((input_section->flags & SEC_DEBUGGING) != 0
10755 && h->elf.def_dynamic))
10756 {
10757 (*_bfd_error_handler)
10758 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10759 input_bfd,
10760 input_section,
10761 (long) rel->r_offset,
10762 ppc64_elf_howto_table[(int) r_type]->name,
10763 h->elf.root.root.string);
10764 ret = FALSE;
10765 }
10766
10767 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10768 input_bfd,
10769 input_section,
10770 contents,
10771 rel->r_offset,
10772 relocation,
10773 addend);
10774
10775 if (r != bfd_reloc_ok)
10776 {
10777 if (sym_name == NULL)
10778 sym_name = "(null)";
10779 if (r == bfd_reloc_overflow)
10780 {
10781 if (warned)
10782 continue;
10783 if (h != NULL
10784 && h->elf.root.type == bfd_link_hash_undefweak
10785 && ppc64_elf_howto_table[r_type]->pc_relative)
10786 {
10787 /* Assume this is a call protected by other code that
10788 detects the symbol is undefined. If this is the case,
10789 we can safely ignore the overflow. If not, the
10790 program is hosed anyway, and a little warning isn't
10791 going to help. */
10792
10793 continue;
10794 }
10795
10796 if (!((*info->callbacks->reloc_overflow)
10797 (info, (h ? &h->elf.root : NULL), sym_name,
10798 ppc64_elf_howto_table[r_type]->name,
10799 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10800 return FALSE;
10801 }
10802 else
10803 {
10804 (*_bfd_error_handler)
10805 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10806 input_bfd,
10807 input_section,
10808 (long) rel->r_offset,
10809 ppc64_elf_howto_table[r_type]->name,
10810 sym_name,
10811 (int) r);
10812 ret = FALSE;
10813 }
10814 }
10815 }
10816
10817 /* If we're emitting relocations, then shortly after this function
10818 returns, reloc offsets and addends for this section will be
10819 adjusted. Worse, reloc symbol indices will be for the output
10820 file rather than the input. Save a copy of the relocs for
10821 opd_entry_value. */
10822 if (is_opd && info->emitrelocations)
10823 {
10824 bfd_size_type amt;
10825 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10826 rel = bfd_alloc (input_bfd, amt);
10827 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10828 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10829 if (rel == NULL)
10830 return FALSE;
10831 memcpy (rel, relocs, amt);
10832 }
10833 return ret;
10834 }
10835
10836 /* Adjust the value of any local symbols in opd sections. */
10837
10838 static bfd_boolean
10839 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10840 const char *name ATTRIBUTE_UNUSED,
10841 Elf_Internal_Sym *elfsym,
10842 asection *input_sec,
10843 struct elf_link_hash_entry *h)
10844 {
10845 long *opd_adjust, adjust;
10846 bfd_vma value;
10847
10848 if (h != NULL)
10849 return TRUE;
10850
10851 opd_adjust = get_opd_info (input_sec);
10852 if (opd_adjust == NULL)
10853 return TRUE;
10854
10855 value = elfsym->st_value - input_sec->output_offset;
10856 if (!info->relocatable)
10857 value -= input_sec->output_section->vma;
10858
10859 adjust = opd_adjust[value / 8];
10860 if (adjust == -1)
10861 elfsym->st_value = 0;
10862 else
10863 elfsym->st_value += adjust;
10864 return TRUE;
10865 }
10866
10867 /* Finish up dynamic symbol handling. We set the contents of various
10868 dynamic sections here. */
10869
10870 static bfd_boolean
10871 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10872 struct bfd_link_info *info,
10873 struct elf_link_hash_entry *h,
10874 Elf_Internal_Sym *sym)
10875 {
10876 struct ppc_link_hash_table *htab;
10877 bfd *dynobj;
10878 struct plt_entry *ent;
10879 Elf_Internal_Rela rela;
10880 bfd_byte *loc;
10881
10882 htab = ppc_hash_table (info);
10883 dynobj = htab->elf.dynobj;
10884
10885 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10886 if (ent->plt.offset != (bfd_vma) -1)
10887 {
10888 /* This symbol has an entry in the procedure linkage
10889 table. Set it up. */
10890
10891 if (htab->plt == NULL
10892 || htab->relplt == NULL
10893 || htab->glink == NULL)
10894 abort ();
10895
10896 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10897 fill in the PLT entry. */
10898 rela.r_offset = (htab->plt->output_section->vma
10899 + htab->plt->output_offset
10900 + ent->plt.offset);
10901 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10902 rela.r_addend = ent->addend;
10903
10904 loc = htab->relplt->contents;
10905 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10906 * sizeof (Elf64_External_Rela));
10907 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10908 }
10909
10910 if (h->needs_copy)
10911 {
10912 Elf_Internal_Rela rela;
10913 bfd_byte *loc;
10914
10915 /* This symbol needs a copy reloc. Set it up. */
10916
10917 if (h->dynindx == -1
10918 || (h->root.type != bfd_link_hash_defined
10919 && h->root.type != bfd_link_hash_defweak)
10920 || htab->relbss == NULL)
10921 abort ();
10922
10923 rela.r_offset = (h->root.u.def.value
10924 + h->root.u.def.section->output_section->vma
10925 + h->root.u.def.section->output_offset);
10926 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10927 rela.r_addend = 0;
10928 loc = htab->relbss->contents;
10929 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10930 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10931 }
10932
10933 /* Mark some specially defined symbols as absolute. */
10934 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10935 sym->st_shndx = SHN_ABS;
10936
10937 return TRUE;
10938 }
10939
10940 /* Used to decide how to sort relocs in an optimal manner for the
10941 dynamic linker, before writing them out. */
10942
10943 static enum elf_reloc_type_class
10944 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10945 {
10946 enum elf_ppc64_reloc_type r_type;
10947
10948 r_type = ELF64_R_TYPE (rela->r_info);
10949 switch (r_type)
10950 {
10951 case R_PPC64_RELATIVE:
10952 return reloc_class_relative;
10953 case R_PPC64_JMP_SLOT:
10954 return reloc_class_plt;
10955 case R_PPC64_COPY:
10956 return reloc_class_copy;
10957 default:
10958 return reloc_class_normal;
10959 }
10960 }
10961
10962 /* Finish up the dynamic sections. */
10963
10964 static bfd_boolean
10965 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10966 struct bfd_link_info *info)
10967 {
10968 struct ppc_link_hash_table *htab;
10969 bfd *dynobj;
10970 asection *sdyn;
10971
10972 htab = ppc_hash_table (info);
10973 dynobj = htab->elf.dynobj;
10974 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10975
10976 if (htab->elf.dynamic_sections_created)
10977 {
10978 Elf64_External_Dyn *dyncon, *dynconend;
10979
10980 if (sdyn == NULL || htab->got == NULL)
10981 abort ();
10982
10983 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10984 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10985 for (; dyncon < dynconend; dyncon++)
10986 {
10987 Elf_Internal_Dyn dyn;
10988 asection *s;
10989
10990 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10991
10992 switch (dyn.d_tag)
10993 {
10994 default:
10995 continue;
10996
10997 case DT_PPC64_GLINK:
10998 s = htab->glink;
10999 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11000 /* We stupidly defined DT_PPC64_GLINK to be the start
11001 of glink rather than the first entry point, which is
11002 what ld.so needs, and now have a bigger stub to
11003 support automatic multiple TOCs. */
11004 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11005 break;
11006
11007 case DT_PPC64_OPD:
11008 s = bfd_get_section_by_name (output_bfd, ".opd");
11009 if (s == NULL)
11010 continue;
11011 dyn.d_un.d_ptr = s->vma;
11012 break;
11013
11014 case DT_PPC64_OPDSZ:
11015 s = bfd_get_section_by_name (output_bfd, ".opd");
11016 if (s == NULL)
11017 continue;
11018 dyn.d_un.d_val = s->size;
11019 break;
11020
11021 case DT_PLTGOT:
11022 s = htab->plt;
11023 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11024 break;
11025
11026 case DT_JMPREL:
11027 s = htab->relplt;
11028 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11029 break;
11030
11031 case DT_PLTRELSZ:
11032 dyn.d_un.d_val = htab->relplt->size;
11033 break;
11034
11035 case DT_RELASZ:
11036 /* Don't count procedure linkage table relocs in the
11037 overall reloc count. */
11038 s = htab->relplt;
11039 if (s == NULL)
11040 continue;
11041 dyn.d_un.d_val -= s->size;
11042 break;
11043
11044 case DT_RELA:
11045 /* We may not be using the standard ELF linker script.
11046 If .rela.plt is the first .rela section, we adjust
11047 DT_RELA to not include it. */
11048 s = htab->relplt;
11049 if (s == NULL)
11050 continue;
11051 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11052 continue;
11053 dyn.d_un.d_ptr += s->size;
11054 break;
11055 }
11056
11057 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11058 }
11059 }
11060
11061 if (htab->got != NULL && htab->got->size != 0)
11062 {
11063 /* Fill in the first entry in the global offset table.
11064 We use it to hold the link-time TOCbase. */
11065 bfd_put_64 (output_bfd,
11066 elf_gp (output_bfd) + TOC_BASE_OFF,
11067 htab->got->contents);
11068
11069 /* Set .got entry size. */
11070 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11071 }
11072
11073 if (htab->plt != NULL && htab->plt->size != 0)
11074 {
11075 /* Set .plt entry size. */
11076 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11077 = PLT_ENTRY_SIZE;
11078 }
11079
11080 /* We need to handle writing out multiple GOT sections ourselves,
11081 since we didn't add them to DYNOBJ. We know dynobj is the first
11082 bfd. */
11083 while ((dynobj = dynobj->link_next) != NULL)
11084 {
11085 asection *s;
11086
11087 if (!is_ppc64_elf_target (dynobj->xvec))
11088 continue;
11089
11090 s = ppc64_elf_tdata (dynobj)->got;
11091 if (s != NULL
11092 && s->size != 0
11093 && s->output_section != bfd_abs_section_ptr
11094 && !bfd_set_section_contents (output_bfd, s->output_section,
11095 s->contents, s->output_offset,
11096 s->size))
11097 return FALSE;
11098 s = ppc64_elf_tdata (dynobj)->relgot;
11099 if (s != NULL
11100 && s->size != 0
11101 && s->output_section != bfd_abs_section_ptr
11102 && !bfd_set_section_contents (output_bfd, s->output_section,
11103 s->contents, s->output_offset,
11104 s->size))
11105 return FALSE;
11106 }
11107
11108 return TRUE;
11109 }
11110
11111 #include "elf64-target.h"