842fc40f1447b768a2db98a9664d9d7fdf55e8f8
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_prefix_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_vma opd_entry_value
59 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
60
61 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
62 #define TARGET_LITTLE_NAME "elf64-powerpcle"
63 #define TARGET_BIG_SYM powerpc_elf64_vec
64 #define TARGET_BIG_NAME "elf64-powerpc"
65 #define ELF_ARCH bfd_arch_powerpc
66 #define ELF_TARGET_ID PPC64_ELF_DATA
67 #define ELF_MACHINE_CODE EM_PPC64
68 #define ELF_MAXPAGESIZE 0x10000
69 #define ELF_COMMONPAGESIZE 0x1000
70 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
71 #define elf_info_to_howto ppc64_elf_info_to_howto
72
73 #define elf_backend_want_got_sym 0
74 #define elf_backend_want_plt_sym 0
75 #define elf_backend_plt_alignment 3
76 #define elf_backend_plt_not_loaded 1
77 #define elf_backend_got_header_size 8
78 #define elf_backend_want_dynrelro 1
79 #define elf_backend_can_gc_sections 1
80 #define elf_backend_can_refcount 1
81 #define elf_backend_rela_normal 1
82 #define elf_backend_dtrel_excludes_plt 1
83 #define elf_backend_default_execstack 0
84
85 #define bfd_elf64_mkobject ppc64_elf_mkobject
86 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
87 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
88 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
89 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
90 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
91 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
92 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
93 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
94 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
95
96 #define elf_backend_object_p ppc64_elf_object_p
97 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
98 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
99 #define elf_backend_write_core_note ppc64_elf_write_core_note
100 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
101 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
102 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
103 #define elf_backend_check_directives ppc64_elf_before_check_relocs
104 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
105 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
106 #define elf_backend_check_relocs ppc64_elf_check_relocs
107 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
108 #define elf_backend_gc_keep ppc64_elf_gc_keep
109 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
110 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
111 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
112 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
113 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
114 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
115 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
116 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
117 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
118 #define elf_backend_action_discarded ppc64_elf_action_discarded
119 #define elf_backend_relocate_section ppc64_elf_relocate_section
120 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
121 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
122 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
123 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
124 #define elf_backend_special_sections ppc64_elf_special_sections
125 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
126 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
127 #define elf_backend_get_reloc_section bfd_get_section_by_name
128
129 /* The name of the dynamic interpreter. This is put in the .interp
130 section. */
131 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
132
133 /* The size in bytes of an entry in the procedure linkage table. */
134 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
135 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
136
137 /* The initial size of the plt reserved for the dynamic linker. */
138 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
139
140 /* Offsets to some stack save slots. */
141 #define STK_LR 16
142 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
143 /* This one is dodgy. ELFv2 does not have a linker word, so use the
144 CR save slot. Used only by optimised __tls_get_addr call stub,
145 relying on __tls_get_addr_opt not saving CR.. */
146 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
147
148 /* TOC base pointers offset from start of TOC. */
149 #define TOC_BASE_OFF 0x8000
150 /* TOC base alignment. */
151 #define TOC_BASE_ALIGN 256
152
153 /* Offset of tp and dtp pointers from start of TLS block. */
154 #define TP_OFFSET 0x7000
155 #define DTP_OFFSET 0x8000
156
157 /* .plt call stub instructions. The normal stub is like this, but
158 sometimes the .plt entry crosses a 64k boundary and we need to
159 insert an addi to adjust r11. */
160 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
161 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
162 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
163 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
164 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
165 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
166 #define BCTR 0x4e800420 /* bctr */
167
168 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
169 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
170 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
171 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
172 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
173
174 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
175 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
176 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
177 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
178 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
179 #define BNECTR 0x4ca20420 /* bnectr+ */
180 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
181
182 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
183 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
184 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
185
186 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
187 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
188 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
189
190 #define LI_R11_0 0x39600000 /* li %r11,0 */
191 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
192 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
193 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
194 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
195 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
196 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
197 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
198 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
199 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
200 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
201 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
202 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
203 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
204 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
205 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
206 #define PADDI_R12_PC 0x0610000039800000ULL
207 #define PLD_R12_PC 0x04100000e5800000ULL
208 #define PNOP 0x0700000000000000ULL
209
210 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
211 #define GLINK_PLTRESOLVE_SIZE(htab) \
212 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
213 /* 0: */
214 /* .quad plt0-1f */
215 /* __glink: */
216 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
217 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
218 /* 1: */
219 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
220 /* ld %2,(0b-1b)(%11) */
221 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
222 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
223 /* ld %12,0(%11) */
224 /* ld %2,8(%11) */
225 /* mtctr %12 */
226 /* ld %11,16(%11) */
227 /* bctr */
228 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
229 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
230 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
231 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
232 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
233
234 /* Pad with this. */
235 #define NOP 0x60000000
236
237 /* Some other nops. */
238 #define CROR_151515 0x4def7b82
239 #define CROR_313131 0x4ffffb82
240
241 /* .glink entries for the first 32k functions are two instructions. */
242 #define LI_R0_0 0x38000000 /* li %r0,0 */
243 #define B_DOT 0x48000000 /* b . */
244
245 /* After that, we need two instructions to load the index, followed by
246 a branch. */
247 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
248 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
249
250 /* Instructions used by the save and restore reg functions. */
251 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
252 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
253 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
254 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
255 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
256 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
257 #define LI_R12_0 0x39800000 /* li %r12,0 */
258 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
259 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
260 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
261 #define BLR 0x4e800020 /* blr */
262
263 /* Since .opd is an array of descriptors and each entry will end up
264 with identical R_PPC64_RELATIVE relocs, there is really no need to
265 propagate .opd relocs; The dynamic linker should be taught to
266 relocate .opd without reloc entries. */
267 #ifndef NO_OPD_RELOCS
268 #define NO_OPD_RELOCS 0
269 #endif
270
271 #ifndef ARRAY_SIZE
272 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
273 #endif
274
275 static inline int
276 abiversion (bfd *abfd)
277 {
278 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
279 }
280
281 static inline void
282 set_abiversion (bfd *abfd, int ver)
283 {
284 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
285 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
286 }
287 \f
288 /* Relocation HOWTO's. */
289 /* Like other ELF RELA targets that don't apply multiple
290 field-altering relocations to the same localation, src_mask is
291 always zero and pcrel_offset is the same as pc_relative.
292 PowerPC can always use a zero bitpos, even when the field is not at
293 the LSB. For example, a REL24 could use rightshift=2, bisize=24
294 and bitpos=2 which matches the ABI description, or as we do here,
295 rightshift=0, bitsize=26 and bitpos=0. */
296 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
297 complain, special_func) \
298 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
299 complain_overflow_ ## complain, special_func, \
300 #type, FALSE, 0, mask, pc_relative)
301
302 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
303
304 static reloc_howto_type ppc64_elf_howto_raw[] =
305 {
306 /* This reloc does nothing. */
307 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
308 bfd_elf_generic_reloc),
309
310 /* A standard 32 bit relocation. */
311 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
312 bfd_elf_generic_reloc),
313
314 /* An absolute 26 bit branch; the lower two bits must be zero.
315 FIXME: we don't check that, we just clear them. */
316 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
317 bfd_elf_generic_reloc),
318
319 /* A standard 16 bit relocation. */
320 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A 16 bit relocation without overflow. */
324 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
325 bfd_elf_generic_reloc),
326
327 /* Bits 16-31 of an address. */
328 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
332 bits, treated as a signed number, is negative. */
333 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
334 ppc64_elf_ha_reloc),
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
339 ppc64_elf_branch_reloc),
340
341 /* An absolute 16 bit branch, for which bit 10 should be set to
342 indicate that the branch is expected to be taken. The lower two
343 bits must be zero. */
344 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
345 ppc64_elf_brtaken_reloc),
346
347 /* An absolute 16 bit branch, for which bit 10 should be set to
348 indicate that the branch is not expected to be taken. The lower
349 two bits must be zero. */
350 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
351 ppc64_elf_brtaken_reloc),
352
353 /* A relative 26 bit branch; the lower two bits must be zero. */
354 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
355 ppc64_elf_branch_reloc),
356
357 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
358 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A relative 16 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch. Bit 10 should be set to indicate that
366 the branch is expected to be taken. The lower two bits must be
367 zero. */
368 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
369 ppc64_elf_brtaken_reloc),
370
371 /* A relative 16 bit branch. Bit 10 should be set to indicate that
372 the branch is not expected to be taken. The lower two bits must
373 be zero. */
374 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
375 ppc64_elf_brtaken_reloc),
376
377 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
378 symbol. */
379 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
380 ppc64_elf_unhandled_reloc),
381
382 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
383 the symbol. */
384 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
385 ppc64_elf_unhandled_reloc),
386
387 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
388 the symbol. */
389 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
390 ppc64_elf_unhandled_reloc),
391
392 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
393 the symbol. */
394 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
395 ppc64_elf_unhandled_reloc),
396
397 /* This is used only by the dynamic linker. The symbol should exist
398 both in the object being run and in some shared library. The
399 dynamic linker copies the data addressed by the symbol from the
400 shared library into the object, because the object being
401 run has to have the data at some particular address. */
402 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
403 ppc64_elf_unhandled_reloc),
404
405 /* Like R_PPC64_ADDR64, but used when setting global offset table
406 entries. */
407 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
408 ppc64_elf_unhandled_reloc),
409
410 /* Created by the link editor. Marks a procedure linkage table
411 entry for a symbol. */
412 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
413 ppc64_elf_unhandled_reloc),
414
415 /* Used only by the dynamic linker. When the object is run, this
416 doubleword64 is set to the load address of the object, plus the
417 addend. */
418 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
419 bfd_elf_generic_reloc),
420
421 /* Like R_PPC64_ADDR32, but may be unaligned. */
422 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR16, but may be unaligned. */
426 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* 32-bit PC relative. */
430 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit relocation to the symbol's procedure linkage table. */
434 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
435 ppc64_elf_unhandled_reloc),
436
437 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
438 FIXME: R_PPC64_PLTREL32 not supported. */
439 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
440 ppc64_elf_unhandled_reloc),
441
442 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
443 the symbol. */
444 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
445 ppc64_elf_unhandled_reloc),
446
447 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
448 the symbol. */
449 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
450 ppc64_elf_unhandled_reloc),
451
452 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
453 the symbol. */
454 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
455 ppc64_elf_unhandled_reloc),
456
457 /* 16-bit section relative relocation. */
458 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
459 ppc64_elf_sectoff_reloc),
460
461 /* Like R_PPC64_SECTOFF, but no overflow warning. */
462 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
463 ppc64_elf_sectoff_reloc),
464
465 /* 16-bit upper half section relative relocation. */
466 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half adjusted section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_ha_reloc),
472
473 /* Like R_PPC64_REL24 without touching the two least significant bits. */
474 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
475 bfd_elf_generic_reloc),
476
477 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
478
479 /* A standard 64-bit relocation. */
480 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
481 bfd_elf_generic_reloc),
482
483 /* The bits 32-47 of an address. */
484 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address, plus 1 if the contents of the low
488 16 bits, treated as a signed number, is negative. */
489 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
490 ppc64_elf_ha_reloc),
491
492 /* The bits 48-63 of an address. */
493 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
494 bfd_elf_generic_reloc),
495
496 /* The bits 48-63 of an address, plus 1 if the contents of the low
497 16 bits, treated as a signed number, is negative. */
498 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
499 ppc64_elf_ha_reloc),
500
501 /* Like ADDR64, but may be unaligned. */
502 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
503 bfd_elf_generic_reloc),
504
505 /* 64-bit relative relocation. */
506 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relocation to the symbol's procedure linkage table. */
510 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
511 ppc64_elf_unhandled_reloc),
512
513 /* 64-bit PC relative relocation to the symbol's procedure linkage
514 table. */
515 /* FIXME: R_PPC64_PLTREL64 not supported. */
516 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
517 ppc64_elf_unhandled_reloc),
518
519 /* 16 bit TOC-relative relocation. */
520 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
521 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
522 ppc64_elf_toc_reloc),
523
524 /* 16 bit TOC-relative relocation without overflow. */
525 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
526 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
527 ppc64_elf_toc_reloc),
528
529 /* 16 bit TOC-relative relocation, high 16 bits. */
530 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
531 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
532 ppc64_elf_toc_reloc),
533
534 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
535 contents of the low 16 bits, treated as a signed number, is
536 negative. */
537 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
538 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
539 ppc64_elf_toc_ha_reloc),
540
541 /* 64-bit relocation; insert value of TOC base (.TOC.). */
542 /* R_PPC64_TOC 51 doubleword64 .TOC. */
543 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
544 ppc64_elf_toc64_reloc),
545
546 /* Like R_PPC64_GOT16, but also informs the link editor that the
547 value to relocate may (!) refer to a PLT entry which the link
548 editor (a) may replace with the symbol value. If the link editor
549 is unable to fully resolve the symbol, it may (b) create a PLT
550 entry and store the address to the new PLT entry in the GOT.
551 This permits lazy resolution of function symbols at run time.
552 The link editor may also skip all of this and just (c) emit a
553 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
554 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
555 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
556 ppc64_elf_unhandled_reloc),
557
558 /* Like R_PPC64_PLTGOT16, but without overflow. */
559 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
560 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
561 ppc64_elf_unhandled_reloc),
562
563 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
564 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
565 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
566 ppc64_elf_unhandled_reloc),
567
568 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
569 1 if the contents of the low 16 bits, treated as a signed number,
570 is negative. */
571 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
572 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
573 ppc64_elf_unhandled_reloc),
574
575 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
576 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
577 bfd_elf_generic_reloc),
578
579 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
584 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
585 ppc64_elf_unhandled_reloc),
586
587 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
596 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
597 ppc64_elf_sectoff_reloc),
598
599 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
604 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
605 ppc64_elf_toc_reloc),
606
607 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
612 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
613 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
614 ppc64_elf_unhandled_reloc),
615
616 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
617 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
618 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
619 ppc64_elf_unhandled_reloc),
620
621 /* Marker relocs for TLS. */
622 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
623 bfd_elf_generic_reloc),
624
625 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
626 bfd_elf_generic_reloc),
627
628 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
629 bfd_elf_generic_reloc),
630
631 /* Marker reloc for optimizing r2 save in prologue rather than on
632 each plt call stub. */
633 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
634 bfd_elf_generic_reloc),
635
636 /* Marker relocs on inline plt call instructions. */
637 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
641 bfd_elf_generic_reloc),
642
643 /* Computes the load module index of the load module that contains the
644 definition of its TLS sym. */
645 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
646 ppc64_elf_unhandled_reloc),
647
648 /* Computes a dtv-relative displacement, the difference between the value
649 of sym+add and the base address of the thread-local storage block that
650 contains the definition of sym, minus 0x8000. */
651 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
652 ppc64_elf_unhandled_reloc),
653
654 /* A 16 bit dtprel reloc. */
655 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
656 ppc64_elf_unhandled_reloc),
657
658 /* Like DTPREL16, but no overflow. */
659 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16_LO, but next higher group of 16 bits. */
663 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_HI, but adjust for low 16 bits. */
667 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16, but for insns with a DS field. */
687 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16_DS, but no overflow. */
691 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
692 ppc64_elf_unhandled_reloc),
693
694 /* Computes a tp-relative displacement, the difference between the value of
695 sym+add and the value of the thread pointer (r13). */
696 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
697 ppc64_elf_unhandled_reloc),
698
699 /* A 16 bit tprel reloc. */
700 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
701 ppc64_elf_unhandled_reloc),
702
703 /* Like TPREL16, but no overflow. */
704 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16_LO, but next higher group of 16 bits. */
708 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_HI, but adjust for low 16 bits. */
712 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16, but for insns with a DS field. */
732 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16_DS, but no overflow. */
736 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
737 ppc64_elf_unhandled_reloc),
738
739 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
740 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
741 to the first entry relative to the TOC base (r2). */
742 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
743 ppc64_elf_unhandled_reloc),
744
745 /* Like GOT_TLSGD16, but no overflow. */
746 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
750 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
758 with values (sym+add)@dtpmod and zero, and computes the offset to the
759 first entry relative to the TOC base (r2). */
760 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
761 ppc64_elf_unhandled_reloc),
762
763 /* Like GOT_TLSLD16, but no overflow. */
764 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
768 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
776 the offset to the entry relative to the TOC base (r2). */
777 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
778 ppc64_elf_unhandled_reloc),
779
780 /* Like GOT_DTPREL16_DS, but no overflow. */
781 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
785 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
793 offset to the entry relative to the TOC base (r2). */
794 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
795 ppc64_elf_unhandled_reloc),
796
797 /* Like GOT_TPREL16_DS, but no overflow. */
798 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
802 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
810 ppc64_elf_unhandled_reloc),
811
812 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
813 bfd_elf_generic_reloc),
814
815 /* A 16 bit relative relocation. */
816 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation without overflow. */
820 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
821 bfd_elf_generic_reloc),
822
823 /* The high order 16 bits of a relative address. */
824 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address, plus 1 if the contents of
828 the low 16 bits, treated as a signed number, is negative. */
829 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
830 ppc64_elf_ha_reloc),
831
832 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
833 bfd_elf_generic_reloc),
834
835 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
836 ppc64_elf_ha_reloc),
837
838 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
839 bfd_elf_generic_reloc),
840
841 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
842 ppc64_elf_ha_reloc),
843
844 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
845 bfd_elf_generic_reloc),
846
847 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
848 ppc64_elf_ha_reloc),
849
850 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
851 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
852 ppc64_elf_ha_reloc),
853
854 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
855 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* Like R_PPC64_ADDR16_HI, but no overflow. */
859 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
860 bfd_elf_generic_reloc),
861
862 /* Like R_PPC64_ADDR16_HA, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
864 ppc64_elf_ha_reloc),
865
866 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
867 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_unhandled_reloc),
869
870 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_TPREL16_HI, but no overflow. */
875 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HA, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Marker reloc on ELFv2 large-model function entry. */
883 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
884 bfd_elf_generic_reloc),
885
886 /* Like ADDR64, but use local entry point of function. */
887 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
891 bfd_elf_generic_reloc),
892
893 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
894 bfd_elf_generic_reloc),
895
896 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
897 bfd_elf_generic_reloc),
898
899 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
900 ppc64_elf_prefix_reloc),
901
902 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
903 ppc64_elf_prefix_reloc),
904
905 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
906 ppc64_elf_prefix_reloc),
907
908 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
909 ppc64_elf_prefix_reloc),
910
911 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
912 ppc64_elf_prefix_reloc),
913
914 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
915 ppc64_elf_unhandled_reloc),
916
917 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
918 ppc64_elf_unhandled_reloc),
919
920 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
921 ppc64_elf_unhandled_reloc),
922
923 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
924 ppc64_elf_unhandled_reloc),
925
926 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
927 ppc64_elf_unhandled_reloc),
928
929 HOW (R_PPC64_GOT_TLSGD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
930 ppc64_elf_unhandled_reloc),
931
932 HOW (R_PPC64_GOT_TLSLD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
933 ppc64_elf_unhandled_reloc),
934
935 HOW (R_PPC64_GOT_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
936 ppc64_elf_unhandled_reloc),
937
938 HOW (R_PPC64_GOT_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
939 ppc64_elf_unhandled_reloc),
940
941 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
942 bfd_elf_generic_reloc),
943
944 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
945 ppc64_elf_ha_reloc),
946
947 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
948 bfd_elf_generic_reloc),
949
950 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
951 ppc64_elf_ha_reloc),
952
953 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
954 bfd_elf_generic_reloc),
955
956 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
957 ppc64_elf_ha_reloc),
958
959 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
960 bfd_elf_generic_reloc),
961
962 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
963 ppc64_elf_ha_reloc),
964
965 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
966 ppc64_elf_prefix_reloc),
967
968 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
969 ppc64_elf_prefix_reloc),
970
971 /* GNU extension to record C++ vtable hierarchy. */
972 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
973 NULL),
974
975 /* GNU extension to record C++ vtable member usage. */
976 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978 };
979
980 \f
981 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
982 be done. */
983
984 static void
985 ppc_howto_init (void)
986 {
987 unsigned int i, type;
988
989 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
990 {
991 type = ppc64_elf_howto_raw[i].type;
992 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
993 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
994 }
995 }
996
997 static reloc_howto_type *
998 ppc64_elf_reloc_type_lookup (bfd *abfd,
999 bfd_reloc_code_real_type code)
1000 {
1001 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1002
1003 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1004 /* Initialize howto table if needed. */
1005 ppc_howto_init ();
1006
1007 switch (code)
1008 {
1009 default:
1010 /* xgettext:c-format */
1011 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1012 (int) code);
1013 bfd_set_error (bfd_error_bad_value);
1014 return NULL;
1015
1016 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1017 break;
1018 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1019 break;
1020 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1021 break;
1022 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1023 break;
1024 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1025 break;
1026 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1027 break;
1028 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1029 break;
1030 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1031 break;
1032 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1033 break;
1034 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1035 break;
1036 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1037 break;
1038 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1039 break;
1040 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1041 break;
1042 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1043 break;
1044 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1045 break;
1046 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1047 break;
1048 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1049 break;
1050 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1051 break;
1052 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1053 break;
1054 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1055 break;
1056 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1057 break;
1058 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1059 break;
1060 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1061 break;
1062 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1063 break;
1064 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1065 break;
1066 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1067 break;
1068 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1069 break;
1070 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1071 break;
1072 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1073 break;
1074 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1075 break;
1076 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1077 break;
1078 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1079 break;
1080 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1081 break;
1082 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1083 break;
1084 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1085 break;
1086 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1087 break;
1088 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1089 break;
1090 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1091 break;
1092 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1093 break;
1094 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1095 break;
1096 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1097 break;
1098 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1099 break;
1100 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1101 break;
1102 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1103 break;
1104 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1105 break;
1106 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1107 break;
1108 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1109 break;
1110 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1111 break;
1112 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1113 break;
1114 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1115 break;
1116 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1117 break;
1118 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1119 break;
1120 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1121 break;
1122 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1123 break;
1124 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1125 break;
1126 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1127 break;
1128 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1129 break;
1130 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1133 break;
1134 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1137 break;
1138 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1139 break;
1140 case BFD_RELOC_PPC64_TLS_PCREL:
1141 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1142 break;
1143 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1144 break;
1145 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1146 break;
1147 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1148 break;
1149 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1150 break;
1151 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1152 break;
1153 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1154 break;
1155 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1156 break;
1157 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1158 break;
1159 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1160 break;
1161 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1162 break;
1163 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1164 break;
1165 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1166 break;
1167 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1168 break;
1169 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1170 break;
1171 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1172 break;
1173 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1176 break;
1177 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1178 break;
1179 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1180 break;
1181 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1182 break;
1183 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1184 break;
1185 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1200 break;
1201 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1202 break;
1203 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1204 break;
1205 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1206 break;
1207 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1208 break;
1209 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1210 break;
1211 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1212 break;
1213 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1214 break;
1215 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1216 break;
1217 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1220 break;
1221 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1222 break;
1223 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1224 break;
1225 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1226 break;
1227 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1228 break;
1229 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1232 break;
1233 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1234 break;
1235 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1236 break;
1237 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1238 break;
1239 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1240 break;
1241 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1242 break;
1243 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1244 break;
1245 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1246 break;
1247 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1248 break;
1249 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1252 break;
1253 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1254 break;
1255 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1256 break;
1257 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1258 break;
1259 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1260 break;
1261 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1262 break;
1263 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1264 break;
1265 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1266 break;
1267 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1268 break;
1269 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1270 break;
1271 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1272 break;
1273 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1274 break;
1275 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1276 break;
1277 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1278 break;
1279 case BFD_RELOC_PPC64_GOT_TLSGD34: r = R_PPC64_GOT_TLSGD34;
1280 break;
1281 case BFD_RELOC_PPC64_GOT_TLSLD34: r = R_PPC64_GOT_TLSLD34;
1282 break;
1283 case BFD_RELOC_PPC64_GOT_TPREL34: r = R_PPC64_GOT_TPREL34;
1284 break;
1285 case BFD_RELOC_PPC64_GOT_DTPREL34: r = R_PPC64_GOT_DTPREL34;
1286 break;
1287 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1288 break;
1289 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1290 break;
1291 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1292 break;
1293 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1294 break;
1295 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1296 break;
1297 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1298 break;
1299 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1300 break;
1301 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1302 break;
1303 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1304 break;
1305 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1306 break;
1307 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1308 break;
1309 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1310 break;
1311 }
1312
1313 return ppc64_elf_howto_table[r];
1314 };
1315
1316 static reloc_howto_type *
1317 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1318 const char *r_name)
1319 {
1320 unsigned int i;
1321
1322 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1323 if (ppc64_elf_howto_raw[i].name != NULL
1324 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1325 return &ppc64_elf_howto_raw[i];
1326
1327 return NULL;
1328 }
1329
1330 /* Set the howto pointer for a PowerPC ELF reloc. */
1331
1332 static bfd_boolean
1333 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1334 Elf_Internal_Rela *dst)
1335 {
1336 unsigned int type;
1337
1338 /* Initialize howto table if needed. */
1339 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1340 ppc_howto_init ();
1341
1342 type = ELF64_R_TYPE (dst->r_info);
1343 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1344 {
1345 /* xgettext:c-format */
1346 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1347 abfd, type);
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351 cache_ptr->howto = ppc64_elf_howto_table[type];
1352 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1353 {
1354 /* xgettext:c-format */
1355 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1356 abfd, type);
1357 bfd_set_error (bfd_error_bad_value);
1358 return FALSE;
1359 }
1360
1361 return TRUE;
1362 }
1363
1364 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1365
1366 static bfd_reloc_status_type
1367 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1368 void *data, asection *input_section,
1369 bfd *output_bfd, char **error_message)
1370 {
1371 enum elf_ppc64_reloc_type r_type;
1372 long insn;
1373 bfd_size_type octets;
1374 bfd_vma value;
1375
1376 /* If this is a relocatable link (output_bfd test tells us), just
1377 call the generic function. Any adjustment will be done at final
1378 link time. */
1379 if (output_bfd != NULL)
1380 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1381 input_section, output_bfd, error_message);
1382
1383 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1384 We won't actually be using the low bits, so trashing them
1385 doesn't matter. */
1386 r_type = reloc_entry->howto->type;
1387 if (r_type == R_PPC64_ADDR16_HIGHERA34
1388 || r_type == R_PPC64_ADDR16_HIGHESTA34
1389 || r_type == R_PPC64_REL16_HIGHERA34
1390 || r_type == R_PPC64_REL16_HIGHESTA34)
1391 reloc_entry->addend += 1ULL << 33;
1392 else
1393 reloc_entry->addend += 1U << 15;
1394 if (r_type != R_PPC64_REL16DX_HA)
1395 return bfd_reloc_continue;
1396
1397 value = 0;
1398 if (!bfd_is_com_section (symbol->section))
1399 value = symbol->value;
1400 value += (reloc_entry->addend
1401 + symbol->section->output_offset
1402 + symbol->section->output_section->vma);
1403 value -= (reloc_entry->address
1404 + input_section->output_offset
1405 + input_section->output_section->vma);
1406 value = (bfd_signed_vma) value >> 16;
1407
1408 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1409 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1410 insn &= ~0x1fffc1;
1411 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1412 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1413 if (value + 0x8000 > 0xffff)
1414 return bfd_reloc_overflow;
1415 return bfd_reloc_ok;
1416 }
1417
1418 static bfd_reloc_status_type
1419 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1420 void *data, asection *input_section,
1421 bfd *output_bfd, char **error_message)
1422 {
1423 if (output_bfd != NULL)
1424 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426
1427 if (strcmp (symbol->section->name, ".opd") == 0
1428 && (symbol->section->owner->flags & DYNAMIC) == 0)
1429 {
1430 bfd_vma dest = opd_entry_value (symbol->section,
1431 symbol->value + reloc_entry->addend,
1432 NULL, NULL, FALSE);
1433 if (dest != (bfd_vma) -1)
1434 reloc_entry->addend = dest - (symbol->value
1435 + symbol->section->output_section->vma
1436 + symbol->section->output_offset);
1437 }
1438 else
1439 {
1440 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1441
1442 if (symbol->section->owner != abfd
1443 && symbol->section->owner != NULL
1444 && abiversion (symbol->section->owner) >= 2)
1445 {
1446 unsigned int i;
1447
1448 for (i = 0; i < symbol->section->owner->symcount; ++i)
1449 {
1450 asymbol *symdef = symbol->section->owner->outsymbols[i];
1451
1452 if (strcmp (symdef->name, symbol->name) == 0)
1453 {
1454 elfsym = (elf_symbol_type *) symdef;
1455 break;
1456 }
1457 }
1458 }
1459 reloc_entry->addend
1460 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1461 }
1462 return bfd_reloc_continue;
1463 }
1464
1465 static bfd_reloc_status_type
1466 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1467 void *data, asection *input_section,
1468 bfd *output_bfd, char **error_message)
1469 {
1470 long insn;
1471 enum elf_ppc64_reloc_type r_type;
1472 bfd_size_type octets;
1473 /* Assume 'at' branch hints. */
1474 bfd_boolean is_isa_v2 = TRUE;
1475
1476 /* If this is a relocatable link (output_bfd test tells us), just
1477 call the generic function. Any adjustment will be done at final
1478 link time. */
1479 if (output_bfd != NULL)
1480 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1481 input_section, output_bfd, error_message);
1482
1483 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1484 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1485 insn &= ~(0x01 << 21);
1486 r_type = reloc_entry->howto->type;
1487 if (r_type == R_PPC64_ADDR14_BRTAKEN
1488 || r_type == R_PPC64_REL14_BRTAKEN)
1489 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1490
1491 if (is_isa_v2)
1492 {
1493 /* Set 'a' bit. This is 0b00010 in BO field for branch
1494 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1495 for branch on CTR insns (BO == 1a00t or 1a01t). */
1496 if ((insn & (0x14 << 21)) == (0x04 << 21))
1497 insn |= 0x02 << 21;
1498 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1499 insn |= 0x08 << 21;
1500 else
1501 goto out;
1502 }
1503 else
1504 {
1505 bfd_vma target = 0;
1506 bfd_vma from;
1507
1508 if (!bfd_is_com_section (symbol->section))
1509 target = symbol->value;
1510 target += symbol->section->output_section->vma;
1511 target += symbol->section->output_offset;
1512 target += reloc_entry->addend;
1513
1514 from = (reloc_entry->address
1515 + input_section->output_offset
1516 + input_section->output_section->vma);
1517
1518 /* Invert 'y' bit if not the default. */
1519 if ((bfd_signed_vma) (target - from) < 0)
1520 insn ^= 0x01 << 21;
1521 }
1522 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1523 out:
1524 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1525 input_section, output_bfd, error_message);
1526 }
1527
1528 static bfd_reloc_status_type
1529 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1530 void *data, asection *input_section,
1531 bfd *output_bfd, char **error_message)
1532 {
1533 /* If this is a relocatable link (output_bfd test tells us), just
1534 call the generic function. Any adjustment will be done at final
1535 link time. */
1536 if (output_bfd != NULL)
1537 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1538 input_section, output_bfd, error_message);
1539
1540 /* Subtract the symbol section base address. */
1541 reloc_entry->addend -= symbol->section->output_section->vma;
1542 return bfd_reloc_continue;
1543 }
1544
1545 static bfd_reloc_status_type
1546 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1547 void *data, asection *input_section,
1548 bfd *output_bfd, char **error_message)
1549 {
1550 /* If this is a relocatable link (output_bfd test tells us), just
1551 call the generic function. Any adjustment will be done at final
1552 link time. */
1553 if (output_bfd != NULL)
1554 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1555 input_section, output_bfd, error_message);
1556
1557 /* Subtract the symbol section base address. */
1558 reloc_entry->addend -= symbol->section->output_section->vma;
1559
1560 /* Adjust the addend for sign extension of the low 16 bits. */
1561 reloc_entry->addend += 0x8000;
1562 return bfd_reloc_continue;
1563 }
1564
1565 static bfd_reloc_status_type
1566 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1567 void *data, asection *input_section,
1568 bfd *output_bfd, char **error_message)
1569 {
1570 bfd_vma TOCstart;
1571
1572 /* If this is a relocatable link (output_bfd test tells us), just
1573 call the generic function. Any adjustment will be done at final
1574 link time. */
1575 if (output_bfd != NULL)
1576 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1577 input_section, output_bfd, error_message);
1578
1579 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1580 if (TOCstart == 0)
1581 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1582
1583 /* Subtract the TOC base address. */
1584 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1585 return bfd_reloc_continue;
1586 }
1587
1588 static bfd_reloc_status_type
1589 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1590 void *data, asection *input_section,
1591 bfd *output_bfd, char **error_message)
1592 {
1593 bfd_vma TOCstart;
1594
1595 /* If this is a relocatable link (output_bfd test tells us), just
1596 call the generic function. Any adjustment will be done at final
1597 link time. */
1598 if (output_bfd != NULL)
1599 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1600 input_section, output_bfd, error_message);
1601
1602 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1603 if (TOCstart == 0)
1604 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1605
1606 /* Subtract the TOC base address. */
1607 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1608
1609 /* Adjust the addend for sign extension of the low 16 bits. */
1610 reloc_entry->addend += 0x8000;
1611 return bfd_reloc_continue;
1612 }
1613
1614 static bfd_reloc_status_type
1615 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1616 void *data, asection *input_section,
1617 bfd *output_bfd, char **error_message)
1618 {
1619 bfd_vma TOCstart;
1620 bfd_size_type octets;
1621
1622 /* If this is a relocatable link (output_bfd test tells us), just
1623 call the generic function. Any adjustment will be done at final
1624 link time. */
1625 if (output_bfd != NULL)
1626 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1627 input_section, output_bfd, error_message);
1628
1629 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1630 if (TOCstart == 0)
1631 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1632
1633 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1634 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1635 return bfd_reloc_ok;
1636 }
1637
1638 static bfd_reloc_status_type
1639 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1640 void *data, asection *input_section,
1641 bfd *output_bfd, char **error_message)
1642 {
1643 uint64_t insn;
1644 bfd_vma targ;
1645
1646 if (output_bfd != NULL)
1647 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1648 input_section, output_bfd, error_message);
1649
1650 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1651 insn <<= 32;
1652 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1653
1654 targ = (symbol->section->output_section->vma
1655 + symbol->section->output_offset
1656 + reloc_entry->addend);
1657 if (!bfd_is_com_section (symbol->section))
1658 targ += symbol->value;
1659 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1660 targ += 1ULL << 33;
1661 if (reloc_entry->howto->pc_relative)
1662 {
1663 bfd_vma from = (reloc_entry->address
1664 + input_section->output_offset
1665 + input_section->output_section->vma);
1666 targ -=from;
1667 }
1668 targ >>= reloc_entry->howto->rightshift;
1669 insn &= ~reloc_entry->howto->dst_mask;
1670 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1671 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1672 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1673 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1674 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1675 >= 1ULL << reloc_entry->howto->bitsize))
1676 return bfd_reloc_overflow;
1677 return bfd_reloc_ok;
1678 }
1679
1680 static bfd_reloc_status_type
1681 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1682 void *data, asection *input_section,
1683 bfd *output_bfd, char **error_message)
1684 {
1685 /* If this is a relocatable link (output_bfd test tells us), just
1686 call the generic function. Any adjustment will be done at final
1687 link time. */
1688 if (output_bfd != NULL)
1689 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1690 input_section, output_bfd, error_message);
1691
1692 if (error_message != NULL)
1693 {
1694 static char buf[60];
1695 sprintf (buf, "generic linker can't handle %s",
1696 reloc_entry->howto->name);
1697 *error_message = buf;
1698 }
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 /* Track GOT entries needed for a given symbol. We might need more
1703 than one got entry per symbol. */
1704 struct got_entry
1705 {
1706 struct got_entry *next;
1707
1708 /* The symbol addend that we'll be placing in the GOT. */
1709 bfd_vma addend;
1710
1711 /* Unlike other ELF targets, we use separate GOT entries for the same
1712 symbol referenced from different input files. This is to support
1713 automatic multiple TOC/GOT sections, where the TOC base can vary
1714 from one input file to another. After partitioning into TOC groups
1715 we merge entries within the group.
1716
1717 Point to the BFD owning this GOT entry. */
1718 bfd *owner;
1719
1720 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1721 TLS_TPREL or TLS_DTPREL for tls entries. */
1722 unsigned char tls_type;
1723
1724 /* Non-zero if got.ent points to real entry. */
1725 unsigned char is_indirect;
1726
1727 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1728 union
1729 {
1730 bfd_signed_vma refcount;
1731 bfd_vma offset;
1732 struct got_entry *ent;
1733 } got;
1734 };
1735
1736 /* The same for PLT. */
1737 struct plt_entry
1738 {
1739 struct plt_entry *next;
1740
1741 bfd_vma addend;
1742
1743 union
1744 {
1745 bfd_signed_vma refcount;
1746 bfd_vma offset;
1747 } plt;
1748 };
1749
1750 struct ppc64_elf_obj_tdata
1751 {
1752 struct elf_obj_tdata elf;
1753
1754 /* Shortcuts to dynamic linker sections. */
1755 asection *got;
1756 asection *relgot;
1757
1758 /* Used during garbage collection. We attach global symbols defined
1759 on removed .opd entries to this section so that the sym is removed. */
1760 asection *deleted_section;
1761
1762 /* TLS local dynamic got entry handling. Support for multiple GOT
1763 sections means we potentially need one of these for each input bfd. */
1764 struct got_entry tlsld_got;
1765
1766 union
1767 {
1768 /* A copy of relocs before they are modified for --emit-relocs. */
1769 Elf_Internal_Rela *relocs;
1770
1771 /* Section contents. */
1772 bfd_byte *contents;
1773 } opd;
1774
1775 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1776 the reloc to be in the range -32768 to 32767. */
1777 unsigned int has_small_toc_reloc : 1;
1778
1779 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1780 instruction not one we handle. */
1781 unsigned int unexpected_toc_insn : 1;
1782
1783 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1784 this file. */
1785 unsigned int has_optrel : 1;
1786 };
1787
1788 #define ppc64_elf_tdata(bfd) \
1789 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1790
1791 #define ppc64_tlsld_got(bfd) \
1792 (&ppc64_elf_tdata (bfd)->tlsld_got)
1793
1794 #define is_ppc64_elf(bfd) \
1795 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1796 && elf_object_id (bfd) == PPC64_ELF_DATA)
1797
1798 /* Override the generic function because we store some extras. */
1799
1800 static bfd_boolean
1801 ppc64_elf_mkobject (bfd *abfd)
1802 {
1803 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1804 PPC64_ELF_DATA);
1805 }
1806
1807 /* Fix bad default arch selected for a 64 bit input bfd when the
1808 default is 32 bit. Also select arch based on apuinfo. */
1809
1810 static bfd_boolean
1811 ppc64_elf_object_p (bfd *abfd)
1812 {
1813 if (!abfd->arch_info->the_default)
1814 return TRUE;
1815
1816 if (abfd->arch_info->bits_per_word == 32)
1817 {
1818 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1819
1820 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1821 {
1822 /* Relies on arch after 32 bit default being 64 bit default. */
1823 abfd->arch_info = abfd->arch_info->next;
1824 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1825 }
1826 }
1827 return _bfd_elf_ppc_set_arch (abfd);
1828 }
1829
1830 /* Support for core dump NOTE sections. */
1831
1832 static bfd_boolean
1833 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1834 {
1835 size_t offset, size;
1836
1837 if (note->descsz != 504)
1838 return FALSE;
1839
1840 /* pr_cursig */
1841 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1842
1843 /* pr_pid */
1844 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1845
1846 /* pr_reg */
1847 offset = 112;
1848 size = 384;
1849
1850 /* Make a ".reg/999" section. */
1851 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1852 size, note->descpos + offset);
1853 }
1854
1855 static bfd_boolean
1856 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1857 {
1858 if (note->descsz != 136)
1859 return FALSE;
1860
1861 elf_tdata (abfd)->core->pid
1862 = bfd_get_32 (abfd, note->descdata + 24);
1863 elf_tdata (abfd)->core->program
1864 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1865 elf_tdata (abfd)->core->command
1866 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1867
1868 return TRUE;
1869 }
1870
1871 static char *
1872 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1873 ...)
1874 {
1875 switch (note_type)
1876 {
1877 default:
1878 return NULL;
1879
1880 case NT_PRPSINFO:
1881 {
1882 char data[136] ATTRIBUTE_NONSTRING;
1883 va_list ap;
1884
1885 va_start (ap, note_type);
1886 memset (data, 0, sizeof (data));
1887 strncpy (data + 40, va_arg (ap, const char *), 16);
1888 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1889 DIAGNOSTIC_PUSH;
1890 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1891 -Wstringop-truncation:
1892 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1893 */
1894 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1895 #endif
1896 strncpy (data + 56, va_arg (ap, const char *), 80);
1897 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1898 DIAGNOSTIC_POP;
1899 #endif
1900 va_end (ap);
1901 return elfcore_write_note (abfd, buf, bufsiz,
1902 "CORE", note_type, data, sizeof (data));
1903 }
1904
1905 case NT_PRSTATUS:
1906 {
1907 char data[504];
1908 va_list ap;
1909 long pid;
1910 int cursig;
1911 const void *greg;
1912
1913 va_start (ap, note_type);
1914 memset (data, 0, 112);
1915 pid = va_arg (ap, long);
1916 bfd_put_32 (abfd, pid, data + 32);
1917 cursig = va_arg (ap, int);
1918 bfd_put_16 (abfd, cursig, data + 12);
1919 greg = va_arg (ap, const void *);
1920 memcpy (data + 112, greg, 384);
1921 memset (data + 496, 0, 8);
1922 va_end (ap);
1923 return elfcore_write_note (abfd, buf, bufsiz,
1924 "CORE", note_type, data, sizeof (data));
1925 }
1926 }
1927 }
1928
1929 /* Add extra PPC sections. */
1930
1931 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1932 {
1933 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1934 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1935 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1936 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1937 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1938 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1939 { NULL, 0, 0, 0, 0 }
1940 };
1941
1942 enum _ppc64_sec_type {
1943 sec_normal = 0,
1944 sec_opd = 1,
1945 sec_toc = 2
1946 };
1947
1948 struct _ppc64_elf_section_data
1949 {
1950 struct bfd_elf_section_data elf;
1951
1952 union
1953 {
1954 /* An array with one entry for each opd function descriptor,
1955 and some spares since opd entries may be either 16 or 24 bytes. */
1956 #define OPD_NDX(OFF) ((OFF) >> 4)
1957 struct _opd_sec_data
1958 {
1959 /* Points to the function code section for local opd entries. */
1960 asection **func_sec;
1961
1962 /* After editing .opd, adjust references to opd local syms. */
1963 long *adjust;
1964 } opd;
1965
1966 /* An array for toc sections, indexed by offset/8. */
1967 struct _toc_sec_data
1968 {
1969 /* Specifies the relocation symbol index used at a given toc offset. */
1970 unsigned *symndx;
1971
1972 /* And the relocation addend. */
1973 bfd_vma *add;
1974 } toc;
1975 } u;
1976
1977 enum _ppc64_sec_type sec_type:2;
1978
1979 /* Flag set when small branches are detected. Used to
1980 select suitable defaults for the stub group size. */
1981 unsigned int has_14bit_branch:1;
1982
1983 /* Flag set when PLTCALL relocs are detected. */
1984 unsigned int has_pltcall:1;
1985
1986 /* Flag set when section has PLT/GOT/TOC relocations that can be
1987 optimised. */
1988 unsigned int has_optrel:1;
1989 };
1990
1991 #define ppc64_elf_section_data(sec) \
1992 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1993
1994 static bfd_boolean
1995 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
1996 {
1997 if (!sec->used_by_bfd)
1998 {
1999 struct _ppc64_elf_section_data *sdata;
2000 bfd_size_type amt = sizeof (*sdata);
2001
2002 sdata = bfd_zalloc (abfd, amt);
2003 if (sdata == NULL)
2004 return FALSE;
2005 sec->used_by_bfd = sdata;
2006 }
2007
2008 return _bfd_elf_new_section_hook (abfd, sec);
2009 }
2010
2011 static struct _opd_sec_data *
2012 get_opd_info (asection * sec)
2013 {
2014 if (sec != NULL
2015 && ppc64_elf_section_data (sec) != NULL
2016 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2017 return &ppc64_elf_section_data (sec)->u.opd;
2018 return NULL;
2019 }
2020 \f
2021 /* Parameters for the qsort hook. */
2022 static bfd_boolean synthetic_relocatable;
2023 static asection *synthetic_opd;
2024
2025 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2026
2027 static int
2028 compare_symbols (const void *ap, const void *bp)
2029 {
2030 const asymbol *a = *(const asymbol **) ap;
2031 const asymbol *b = *(const asymbol **) bp;
2032
2033 /* Section symbols first. */
2034 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2035 return -1;
2036 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2037 return 1;
2038
2039 /* then .opd symbols. */
2040 if (synthetic_opd != NULL)
2041 {
2042 if (strcmp (a->section->name, ".opd") == 0
2043 && strcmp (b->section->name, ".opd") != 0)
2044 return -1;
2045 if (strcmp (a->section->name, ".opd") != 0
2046 && strcmp (b->section->name, ".opd") == 0)
2047 return 1;
2048 }
2049
2050 /* then other code symbols. */
2051 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2052 == (SEC_CODE | SEC_ALLOC))
2053 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2054 != (SEC_CODE | SEC_ALLOC)))
2055 return -1;
2056
2057 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2058 != (SEC_CODE | SEC_ALLOC))
2059 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2060 == (SEC_CODE | SEC_ALLOC)))
2061 return 1;
2062
2063 if (synthetic_relocatable)
2064 {
2065 if (a->section->id < b->section->id)
2066 return -1;
2067
2068 if (a->section->id > b->section->id)
2069 return 1;
2070 }
2071
2072 if (a->value + a->section->vma < b->value + b->section->vma)
2073 return -1;
2074
2075 if (a->value + a->section->vma > b->value + b->section->vma)
2076 return 1;
2077
2078 /* For syms with the same value, prefer strong dynamic global function
2079 syms over other syms. */
2080 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2081 return -1;
2082
2083 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2084 return 1;
2085
2086 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2087 return -1;
2088
2089 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2090 return 1;
2091
2092 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2093 return -1;
2094
2095 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2096 return 1;
2097
2098 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2099 return -1;
2100
2101 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2102 return 1;
2103
2104 return a > b;
2105 }
2106
2107 /* Search SYMS for a symbol of the given VALUE. */
2108
2109 static asymbol *
2110 sym_exists_at (asymbol **syms, long lo, long hi, unsigned int id, bfd_vma value)
2111 {
2112 long mid;
2113
2114 if (id == (unsigned) -1)
2115 {
2116 while (lo < hi)
2117 {
2118 mid = (lo + hi) >> 1;
2119 if (syms[mid]->value + syms[mid]->section->vma < value)
2120 lo = mid + 1;
2121 else if (syms[mid]->value + syms[mid]->section->vma > value)
2122 hi = mid;
2123 else
2124 return syms[mid];
2125 }
2126 }
2127 else
2128 {
2129 while (lo < hi)
2130 {
2131 mid = (lo + hi) >> 1;
2132 if (syms[mid]->section->id < id)
2133 lo = mid + 1;
2134 else if (syms[mid]->section->id > id)
2135 hi = mid;
2136 else if (syms[mid]->value < value)
2137 lo = mid + 1;
2138 else if (syms[mid]->value > value)
2139 hi = mid;
2140 else
2141 return syms[mid];
2142 }
2143 }
2144 return NULL;
2145 }
2146
2147 static bfd_boolean
2148 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2149 {
2150 bfd_vma vma = *(bfd_vma *) ptr;
2151 return ((section->flags & SEC_ALLOC) != 0
2152 && section->vma <= vma
2153 && vma < section->vma + section->size);
2154 }
2155
2156 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2157 entry syms. Also generate @plt symbols for the glink branch table.
2158 Returns count of synthetic symbols in RET or -1 on error. */
2159
2160 static long
2161 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2162 long static_count, asymbol **static_syms,
2163 long dyn_count, asymbol **dyn_syms,
2164 asymbol **ret)
2165 {
2166 asymbol *s;
2167 size_t i, j, count;
2168 char *names;
2169 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2170 asection *opd = NULL;
2171 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2172 asymbol **syms;
2173 int abi = abiversion (abfd);
2174
2175 *ret = NULL;
2176
2177 if (abi < 2)
2178 {
2179 opd = bfd_get_section_by_name (abfd, ".opd");
2180 if (opd == NULL && abi == 1)
2181 return 0;
2182 }
2183
2184 syms = NULL;
2185 codesecsym = 0;
2186 codesecsymend = 0;
2187 secsymend = 0;
2188 opdsymend = 0;
2189 symcount = 0;
2190 if (opd != NULL)
2191 {
2192 symcount = static_count;
2193 if (!relocatable)
2194 symcount += dyn_count;
2195 if (symcount == 0)
2196 return 0;
2197
2198 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2199 if (syms == NULL)
2200 return -1;
2201
2202 if (!relocatable && static_count != 0 && dyn_count != 0)
2203 {
2204 /* Use both symbol tables. */
2205 memcpy (syms, static_syms, static_count * sizeof (*syms));
2206 memcpy (syms + static_count, dyn_syms,
2207 (dyn_count + 1) * sizeof (*syms));
2208 }
2209 else if (!relocatable && static_count == 0)
2210 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2211 else
2212 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2213
2214 /* Trim uninteresting symbols. Interesting symbols are section,
2215 function, and notype symbols. */
2216 for (i = 0, j = 0; i < symcount; ++i)
2217 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2218 | BSF_RELC | BSF_SRELC)) == 0)
2219 syms[j++] = syms[i];
2220 symcount = j;
2221
2222 synthetic_relocatable = relocatable;
2223 synthetic_opd = opd;
2224 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2225
2226 if (!relocatable && symcount > 1)
2227 {
2228 /* Trim duplicate syms, since we may have merged the normal
2229 and dynamic symbols. Actually, we only care about syms
2230 that have different values, so trim any with the same
2231 value. Don't consider ifunc and ifunc resolver symbols
2232 duplicates however, because GDB wants to know whether a
2233 text symbol is an ifunc resolver. */
2234 for (i = 1, j = 1; i < symcount; ++i)
2235 {
2236 const asymbol *s0 = syms[i - 1];
2237 const asymbol *s1 = syms[i];
2238
2239 if ((s0->value + s0->section->vma
2240 != s1->value + s1->section->vma)
2241 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2242 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2243 syms[j++] = syms[i];
2244 }
2245 symcount = j;
2246 }
2247
2248 i = 0;
2249 /* Note that here and in compare_symbols we can't compare opd and
2250 sym->section directly. With separate debug info files, the
2251 symbols will be extracted from the debug file while abfd passed
2252 to this function is the real binary. */
2253 if (strcmp (syms[i]->section->name, ".opd") == 0)
2254 ++i;
2255 codesecsym = i;
2256
2257 for (; i < symcount; ++i)
2258 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2259 | SEC_THREAD_LOCAL))
2260 != (SEC_CODE | SEC_ALLOC))
2261 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2262 break;
2263 codesecsymend = i;
2264
2265 for (; i < symcount; ++i)
2266 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2267 break;
2268 secsymend = i;
2269
2270 for (; i < symcount; ++i)
2271 if (strcmp (syms[i]->section->name, ".opd") != 0)
2272 break;
2273 opdsymend = i;
2274
2275 for (; i < symcount; ++i)
2276 if (((syms[i]->section->flags
2277 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2278 != (SEC_CODE | SEC_ALLOC))
2279 break;
2280 symcount = i;
2281 }
2282 count = 0;
2283
2284 if (relocatable)
2285 {
2286 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2287 arelent *r;
2288 size_t size;
2289 size_t relcount;
2290
2291 if (opdsymend == secsymend)
2292 goto done;
2293
2294 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2295 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2296 if (relcount == 0)
2297 goto done;
2298
2299 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2300 {
2301 count = -1;
2302 goto done;
2303 }
2304
2305 size = 0;
2306 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2307 {
2308 asymbol *sym;
2309
2310 while (r < opd->relocation + relcount
2311 && r->address < syms[i]->value + opd->vma)
2312 ++r;
2313
2314 if (r == opd->relocation + relcount)
2315 break;
2316
2317 if (r->address != syms[i]->value + opd->vma)
2318 continue;
2319
2320 if (r->howto->type != R_PPC64_ADDR64)
2321 continue;
2322
2323 sym = *r->sym_ptr_ptr;
2324 if (!sym_exists_at (syms, opdsymend, symcount,
2325 sym->section->id, sym->value + r->addend))
2326 {
2327 ++count;
2328 size += sizeof (asymbol);
2329 size += strlen (syms[i]->name) + 2;
2330 }
2331 }
2332
2333 if (size == 0)
2334 goto done;
2335 s = *ret = bfd_malloc (size);
2336 if (s == NULL)
2337 {
2338 count = -1;
2339 goto done;
2340 }
2341
2342 names = (char *) (s + count);
2343
2344 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2345 {
2346 asymbol *sym;
2347
2348 while (r < opd->relocation + relcount
2349 && r->address < syms[i]->value + opd->vma)
2350 ++r;
2351
2352 if (r == opd->relocation + relcount)
2353 break;
2354
2355 if (r->address != syms[i]->value + opd->vma)
2356 continue;
2357
2358 if (r->howto->type != R_PPC64_ADDR64)
2359 continue;
2360
2361 sym = *r->sym_ptr_ptr;
2362 if (!sym_exists_at (syms, opdsymend, symcount,
2363 sym->section->id, sym->value + r->addend))
2364 {
2365 size_t len;
2366
2367 *s = *syms[i];
2368 s->flags |= BSF_SYNTHETIC;
2369 s->section = sym->section;
2370 s->value = sym->value + r->addend;
2371 s->name = names;
2372 *names++ = '.';
2373 len = strlen (syms[i]->name);
2374 memcpy (names, syms[i]->name, len + 1);
2375 names += len + 1;
2376 /* Have udata.p point back to the original symbol this
2377 synthetic symbol was derived from. */
2378 s->udata.p = syms[i];
2379 s++;
2380 }
2381 }
2382 }
2383 else
2384 {
2385 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2386 bfd_byte *contents = NULL;
2387 size_t size;
2388 size_t plt_count = 0;
2389 bfd_vma glink_vma = 0, resolv_vma = 0;
2390 asection *dynamic, *glink = NULL, *relplt = NULL;
2391 arelent *p;
2392
2393 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2394 {
2395 free_contents_and_exit_err:
2396 count = -1;
2397 free_contents_and_exit:
2398 if (contents)
2399 free (contents);
2400 goto done;
2401 }
2402
2403 size = 0;
2404 for (i = secsymend; i < opdsymend; ++i)
2405 {
2406 bfd_vma ent;
2407
2408 /* Ignore bogus symbols. */
2409 if (syms[i]->value > opd->size - 8)
2410 continue;
2411
2412 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2413 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2414 {
2415 ++count;
2416 size += sizeof (asymbol);
2417 size += strlen (syms[i]->name) + 2;
2418 }
2419 }
2420
2421 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2422 if (dyn_count != 0
2423 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2424 {
2425 bfd_byte *dynbuf, *extdyn, *extdynend;
2426 size_t extdynsize;
2427 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2428
2429 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2430 goto free_contents_and_exit_err;
2431
2432 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2433 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2434
2435 extdyn = dynbuf;
2436 extdynend = extdyn + dynamic->size;
2437 for (; extdyn < extdynend; extdyn += extdynsize)
2438 {
2439 Elf_Internal_Dyn dyn;
2440 (*swap_dyn_in) (abfd, extdyn, &dyn);
2441
2442 if (dyn.d_tag == DT_NULL)
2443 break;
2444
2445 if (dyn.d_tag == DT_PPC64_GLINK)
2446 {
2447 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2448 See comment in ppc64_elf_finish_dynamic_sections. */
2449 glink_vma = dyn.d_un.d_val + 8 * 4;
2450 /* The .glink section usually does not survive the final
2451 link; search for the section (usually .text) where the
2452 glink stubs now reside. */
2453 glink = bfd_sections_find_if (abfd, section_covers_vma,
2454 &glink_vma);
2455 break;
2456 }
2457 }
2458
2459 free (dynbuf);
2460 }
2461
2462 if (glink != NULL)
2463 {
2464 /* Determine __glink trampoline by reading the relative branch
2465 from the first glink stub. */
2466 bfd_byte buf[4];
2467 unsigned int off = 0;
2468
2469 while (bfd_get_section_contents (abfd, glink, buf,
2470 glink_vma + off - glink->vma, 4))
2471 {
2472 unsigned int insn = bfd_get_32 (abfd, buf);
2473 insn ^= B_DOT;
2474 if ((insn & ~0x3fffffc) == 0)
2475 {
2476 resolv_vma
2477 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2478 break;
2479 }
2480 off += 4;
2481 if (off > 4)
2482 break;
2483 }
2484
2485 if (resolv_vma)
2486 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2487
2488 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2489 if (relplt != NULL)
2490 {
2491 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2492 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2493 goto free_contents_and_exit_err;
2494
2495 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2496 size += plt_count * sizeof (asymbol);
2497
2498 p = relplt->relocation;
2499 for (i = 0; i < plt_count; i++, p++)
2500 {
2501 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2502 if (p->addend != 0)
2503 size += sizeof ("+0x") - 1 + 16;
2504 }
2505 }
2506 }
2507
2508 if (size == 0)
2509 goto free_contents_and_exit;
2510 s = *ret = bfd_malloc (size);
2511 if (s == NULL)
2512 goto free_contents_and_exit_err;
2513
2514 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2515
2516 for (i = secsymend; i < opdsymend; ++i)
2517 {
2518 bfd_vma ent;
2519
2520 if (syms[i]->value > opd->size - 8)
2521 continue;
2522
2523 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2524 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2525 {
2526 size_t lo, hi;
2527 size_t len;
2528 asection *sec = abfd->sections;
2529
2530 *s = *syms[i];
2531 lo = codesecsym;
2532 hi = codesecsymend;
2533 while (lo < hi)
2534 {
2535 size_t mid = (lo + hi) >> 1;
2536 if (syms[mid]->section->vma < ent)
2537 lo = mid + 1;
2538 else if (syms[mid]->section->vma > ent)
2539 hi = mid;
2540 else
2541 {
2542 sec = syms[mid]->section;
2543 break;
2544 }
2545 }
2546
2547 if (lo >= hi && lo > codesecsym)
2548 sec = syms[lo - 1]->section;
2549
2550 for (; sec != NULL; sec = sec->next)
2551 {
2552 if (sec->vma > ent)
2553 break;
2554 /* SEC_LOAD may not be set if SEC is from a separate debug
2555 info file. */
2556 if ((sec->flags & SEC_ALLOC) == 0)
2557 break;
2558 if ((sec->flags & SEC_CODE) != 0)
2559 s->section = sec;
2560 }
2561 s->flags |= BSF_SYNTHETIC;
2562 s->value = ent - s->section->vma;
2563 s->name = names;
2564 *names++ = '.';
2565 len = strlen (syms[i]->name);
2566 memcpy (names, syms[i]->name, len + 1);
2567 names += len + 1;
2568 /* Have udata.p point back to the original symbol this
2569 synthetic symbol was derived from. */
2570 s->udata.p = syms[i];
2571 s++;
2572 }
2573 }
2574 free (contents);
2575
2576 if (glink != NULL && relplt != NULL)
2577 {
2578 if (resolv_vma)
2579 {
2580 /* Add a symbol for the main glink trampoline. */
2581 memset (s, 0, sizeof *s);
2582 s->the_bfd = abfd;
2583 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2584 s->section = glink;
2585 s->value = resolv_vma - glink->vma;
2586 s->name = names;
2587 memcpy (names, "__glink_PLTresolve",
2588 sizeof ("__glink_PLTresolve"));
2589 names += sizeof ("__glink_PLTresolve");
2590 s++;
2591 count++;
2592 }
2593
2594 /* FIXME: It would be very much nicer to put sym@plt on the
2595 stub rather than on the glink branch table entry. The
2596 objdump disassembler would then use a sensible symbol
2597 name on plt calls. The difficulty in doing so is
2598 a) finding the stubs, and,
2599 b) matching stubs against plt entries, and,
2600 c) there can be multiple stubs for a given plt entry.
2601
2602 Solving (a) could be done by code scanning, but older
2603 ppc64 binaries used different stubs to current code.
2604 (b) is the tricky one since you need to known the toc
2605 pointer for at least one function that uses a pic stub to
2606 be able to calculate the plt address referenced.
2607 (c) means gdb would need to set multiple breakpoints (or
2608 find the glink branch itself) when setting breakpoints
2609 for pending shared library loads. */
2610 p = relplt->relocation;
2611 for (i = 0; i < plt_count; i++, p++)
2612 {
2613 size_t len;
2614
2615 *s = **p->sym_ptr_ptr;
2616 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2617 we are defining a symbol, ensure one of them is set. */
2618 if ((s->flags & BSF_LOCAL) == 0)
2619 s->flags |= BSF_GLOBAL;
2620 s->flags |= BSF_SYNTHETIC;
2621 s->section = glink;
2622 s->value = glink_vma - glink->vma;
2623 s->name = names;
2624 s->udata.p = NULL;
2625 len = strlen ((*p->sym_ptr_ptr)->name);
2626 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2627 names += len;
2628 if (p->addend != 0)
2629 {
2630 memcpy (names, "+0x", sizeof ("+0x") - 1);
2631 names += sizeof ("+0x") - 1;
2632 bfd_sprintf_vma (abfd, names, p->addend);
2633 names += strlen (names);
2634 }
2635 memcpy (names, "@plt", sizeof ("@plt"));
2636 names += sizeof ("@plt");
2637 s++;
2638 if (abi < 2)
2639 {
2640 glink_vma += 8;
2641 if (i >= 0x8000)
2642 glink_vma += 4;
2643 }
2644 else
2645 glink_vma += 4;
2646 }
2647 count += plt_count;
2648 }
2649 }
2650
2651 done:
2652 free (syms);
2653 return count;
2654 }
2655 \f
2656 /* The following functions are specific to the ELF linker, while
2657 functions above are used generally. Those named ppc64_elf_* are
2658 called by the main ELF linker code. They appear in this file more
2659 or less in the order in which they are called. eg.
2660 ppc64_elf_check_relocs is called early in the link process,
2661 ppc64_elf_finish_dynamic_sections is one of the last functions
2662 called.
2663
2664 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2665 functions have both a function code symbol and a function descriptor
2666 symbol. A call to foo in a relocatable object file looks like:
2667
2668 . .text
2669 . x:
2670 . bl .foo
2671 . nop
2672
2673 The function definition in another object file might be:
2674
2675 . .section .opd
2676 . foo: .quad .foo
2677 . .quad .TOC.@tocbase
2678 . .quad 0
2679 .
2680 . .text
2681 . .foo: blr
2682
2683 When the linker resolves the call during a static link, the branch
2684 unsurprisingly just goes to .foo and the .opd information is unused.
2685 If the function definition is in a shared library, things are a little
2686 different: The call goes via a plt call stub, the opd information gets
2687 copied to the plt, and the linker patches the nop.
2688
2689 . x:
2690 . bl .foo_stub
2691 . ld 2,40(1)
2692 .
2693 .
2694 . .foo_stub:
2695 . std 2,40(1) # in practice, the call stub
2696 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2697 . addi 11,11,Lfoo@toc@l # this is the general idea
2698 . ld 12,0(11)
2699 . ld 2,8(11)
2700 . mtctr 12
2701 . ld 11,16(11)
2702 . bctr
2703 .
2704 . .section .plt
2705 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2706
2707 The "reloc ()" notation is supposed to indicate that the linker emits
2708 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2709 copying.
2710
2711 What are the difficulties here? Well, firstly, the relocations
2712 examined by the linker in check_relocs are against the function code
2713 sym .foo, while the dynamic relocation in the plt is emitted against
2714 the function descriptor symbol, foo. Somewhere along the line, we need
2715 to carefully copy dynamic link information from one symbol to the other.
2716 Secondly, the generic part of the elf linker will make .foo a dynamic
2717 symbol as is normal for most other backends. We need foo dynamic
2718 instead, at least for an application final link. However, when
2719 creating a shared library containing foo, we need to have both symbols
2720 dynamic so that references to .foo are satisfied during the early
2721 stages of linking. Otherwise the linker might decide to pull in a
2722 definition from some other object, eg. a static library.
2723
2724 Update: As of August 2004, we support a new convention. Function
2725 calls may use the function descriptor symbol, ie. "bl foo". This
2726 behaves exactly as "bl .foo". */
2727
2728 /* Of those relocs that might be copied as dynamic relocs, this
2729 function selects those that must be copied when linking a shared
2730 library or PIE, even when the symbol is local. */
2731
2732 static int
2733 must_be_dyn_reloc (struct bfd_link_info *info,
2734 enum elf_ppc64_reloc_type r_type)
2735 {
2736 switch (r_type)
2737 {
2738 default:
2739 /* Only relative relocs can be resolved when the object load
2740 address isn't fixed. DTPREL64 is excluded because the
2741 dynamic linker needs to differentiate global dynamic from
2742 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2743 return 1;
2744
2745 case R_PPC64_REL32:
2746 case R_PPC64_REL64:
2747 case R_PPC64_REL30:
2748 case R_PPC64_TOC16:
2749 case R_PPC64_TOC16_DS:
2750 case R_PPC64_TOC16_LO:
2751 case R_PPC64_TOC16_HI:
2752 case R_PPC64_TOC16_HA:
2753 case R_PPC64_TOC16_LO_DS:
2754 return 0;
2755
2756 case R_PPC64_TPREL16:
2757 case R_PPC64_TPREL16_LO:
2758 case R_PPC64_TPREL16_HI:
2759 case R_PPC64_TPREL16_HA:
2760 case R_PPC64_TPREL16_DS:
2761 case R_PPC64_TPREL16_LO_DS:
2762 case R_PPC64_TPREL16_HIGH:
2763 case R_PPC64_TPREL16_HIGHA:
2764 case R_PPC64_TPREL16_HIGHER:
2765 case R_PPC64_TPREL16_HIGHERA:
2766 case R_PPC64_TPREL16_HIGHEST:
2767 case R_PPC64_TPREL16_HIGHESTA:
2768 case R_PPC64_TPREL64:
2769 case R_PPC64_TPREL34:
2770 /* These relocations are relative but in a shared library the
2771 linker doesn't know the thread pointer base. */
2772 return bfd_link_dll (info);
2773 }
2774 }
2775
2776 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2777 copying dynamic variables from a shared lib into an app's dynbss
2778 section, and instead use a dynamic relocation to point into the
2779 shared lib. With code that gcc generates, it's vital that this be
2780 enabled; In the PowerPC64 ABI, the address of a function is actually
2781 the address of a function descriptor, which resides in the .opd
2782 section. gcc uses the descriptor directly rather than going via the
2783 GOT as some other ABI's do, which means that initialized function
2784 pointers must reference the descriptor. Thus, a function pointer
2785 initialized to the address of a function in a shared library will
2786 either require a copy reloc, or a dynamic reloc. Using a copy reloc
2787 redefines the function descriptor symbol to point to the copy. This
2788 presents a problem as a plt entry for that function is also
2789 initialized from the function descriptor symbol and the copy reloc
2790 may not be initialized first. */
2791 #define ELIMINATE_COPY_RELOCS 1
2792
2793 /* Section name for stubs is the associated section name plus this
2794 string. */
2795 #define STUB_SUFFIX ".stub"
2796
2797 /* Linker stubs.
2798 ppc_stub_long_branch:
2799 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2800 destination, but a 24 bit branch in a stub section will reach.
2801 . b dest
2802
2803 ppc_stub_plt_branch:
2804 Similar to the above, but a 24 bit branch in the stub section won't
2805 reach its destination.
2806 . addis %r11,%r2,xxx@toc@ha
2807 . ld %r12,xxx@toc@l(%r11)
2808 . mtctr %r12
2809 . bctr
2810
2811 ppc_stub_plt_call:
2812 Used to call a function in a shared library. If it so happens that
2813 the plt entry referenced crosses a 64k boundary, then an extra
2814 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2815 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2816 . addis %r11,%r2,xxx@toc@ha
2817 . ld %r12,xxx+0@toc@l(%r11)
2818 . mtctr %r12
2819 . ld %r2,xxx+8@toc@l(%r11)
2820 . ld %r11,xxx+16@toc@l(%r11)
2821 . bctr
2822
2823 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2824 code to adjust the value and save r2 to support multiple toc sections.
2825 A ppc_stub_long_branch with an r2 offset looks like:
2826 . std %r2,40(%r1)
2827 . addis %r2,%r2,off@ha
2828 . addi %r2,%r2,off@l
2829 . b dest
2830
2831 A ppc_stub_plt_branch with an r2 offset looks like:
2832 . std %r2,40(%r1)
2833 . addis %r11,%r2,xxx@toc@ha
2834 . ld %r12,xxx@toc@l(%r11)
2835 . addis %r2,%r2,off@ha
2836 . addi %r2,%r2,off@l
2837 . mtctr %r12
2838 . bctr
2839
2840 All of the above stubs are shown as their ELFv1 variants. ELFv2
2841 variants exist too, simpler for plt calls since a new toc pointer
2842 and static chain are not loaded by the stub. In addition, ELFv2
2843 has some more complex stubs to handle calls marked with NOTOC
2844 relocs from functions where r2 is not a valid toc pointer. These
2845 come in two flavours, the ones shown below, and _both variants that
2846 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2847 one call is from a function where r2 is used as the toc pointer but
2848 needs a toc adjusting stub for small-model multi-toc, and another
2849 call is from a function where r2 is not valid.
2850 ppc_stub_long_branch_notoc:
2851 . mflr %r12
2852 . bcl 20,31,1f
2853 . 1:
2854 . mflr %r11
2855 . mtlr %r12
2856 . addis %r12,%r11,dest-1b@ha
2857 . addi %r12,%r12,dest-1b@l
2858 . b dest
2859
2860 ppc_stub_plt_branch_notoc:
2861 . mflr %r12
2862 . bcl 20,31,1f
2863 . 1:
2864 . mflr %r11
2865 . mtlr %r12
2866 . lis %r12,xxx-1b@highest
2867 . ori %r12,%r12,xxx-1b@higher
2868 . sldi %r12,%r12,32
2869 . oris %r12,%r12,xxx-1b@high
2870 . ori %r12,%r12,xxx-1b@l
2871 . add %r12,%r11,%r12
2872 . mtctr %r12
2873 . bctr
2874
2875 ppc_stub_plt_call_notoc:
2876 . mflr %r12
2877 . bcl 20,31,1f
2878 . 1:
2879 . mflr %r11
2880 . mtlr %r12
2881 . lis %r12,xxx-1b@highest
2882 . ori %r12,%r12,xxx-1b@higher
2883 . sldi %r12,%r12,32
2884 . oris %r12,%r12,xxx-1b@high
2885 . ori %r12,%r12,xxx-1b@l
2886 . ldx %r12,%r11,%r12
2887 . mtctr %r12
2888 . bctr
2889
2890 There are also ELFv1 powerxx variants of these stubs.
2891 ppc_stub_long_branch_notoc:
2892 . pla %r12,dest@pcrel
2893 . b dest
2894 ppc_stub_plt_branch_notoc:
2895 . lis %r11,(dest-1f)@highesta34
2896 . ori %r11,%r11,(dest-1f)@highera34
2897 . sldi %r11,%r11,34
2898 . 1: pla %r12,dest@pcrel
2899 . add %r12,%r11,%r12
2900 . mtctr %r12
2901 . bctr
2902 ppc_stub_plt_call_notoc:
2903 . lis %r11,(xxx-1f)@highesta34
2904 . ori %r11,%r11,(xxx-1f)@highera34
2905 . sldi %r11,%r11,34
2906 . 1: pla %r12,xxx@pcrel
2907 . ldx %r12,%r11,%r12
2908 . mtctr %r12
2909 . bctr
2910
2911 In cases where the high instructions would add zero, they are
2912 omitted and following instructions modified in some cases.
2913 For example, a powerxx ppc_stub_plt_call_notoc might simplify down
2914 to
2915 . pld %r12,xxx@pcrel
2916 . mtctr %r12
2917 . bctr
2918
2919 For a given stub group (a set of sections all using the same toc
2920 pointer value) there will be just one stub type used for any
2921 particular function symbol. For example, if printf is called from
2922 code with the tocsave optimization (ie. r2 saved in function
2923 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2924 and from other code without the tocsave optimization requiring a
2925 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2926 type will be created. Calls with the tocsave optimization will
2927 enter this stub after the instruction saving r2. A similar
2928 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2929 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2930 to call an external function like printf. If other calls to printf
2931 require a ppc_stub_plt_call linkage stub then a single
2932 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2933 call. If other calls to printf require a ppc_stub_plt_call_r2save
2934 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2935 be created and calls not requiring r2 to be saved will enter the
2936 stub after the r2 save instruction. There is an analogous
2937 hierarchy of long branch and plt branch stubs for local call
2938 linkage. */
2939
2940 enum ppc_stub_type
2941 {
2942 ppc_stub_none,
2943 ppc_stub_long_branch,
2944 ppc_stub_long_branch_r2off,
2945 ppc_stub_long_branch_notoc,
2946 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2947 ppc_stub_plt_branch,
2948 ppc_stub_plt_branch_r2off,
2949 ppc_stub_plt_branch_notoc,
2950 ppc_stub_plt_branch_both,
2951 ppc_stub_plt_call,
2952 ppc_stub_plt_call_r2save,
2953 ppc_stub_plt_call_notoc,
2954 ppc_stub_plt_call_both,
2955 ppc_stub_global_entry,
2956 ppc_stub_save_res
2957 };
2958
2959 /* Information on stub grouping. */
2960 struct map_stub
2961 {
2962 /* The stub section. */
2963 asection *stub_sec;
2964 /* This is the section to which stubs in the group will be attached. */
2965 asection *link_sec;
2966 /* Next group. */
2967 struct map_stub *next;
2968 /* Whether to emit a copy of register save/restore functions in this
2969 group. */
2970 int needs_save_res;
2971 /* Current offset within stubs after the insn restoring lr in a
2972 _notoc or _both stub using bcl for pc-relative addressing, or
2973 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
2974 unsigned int lr_restore;
2975 /* Accumulated size of EH info emitted to describe return address
2976 if stubs modify lr. Does not include 17 byte FDE header. */
2977 unsigned int eh_size;
2978 /* Offset in glink_eh_frame to the start of EH info for this group. */
2979 unsigned int eh_base;
2980 };
2981
2982 struct ppc_stub_hash_entry
2983 {
2984 /* Base hash table entry structure. */
2985 struct bfd_hash_entry root;
2986
2987 enum ppc_stub_type stub_type;
2988
2989 /* Group information. */
2990 struct map_stub *group;
2991
2992 /* Offset within stub_sec of the beginning of this stub. */
2993 bfd_vma stub_offset;
2994
2995 /* Given the symbol's value and its section we can determine its final
2996 value when building the stubs (so the stub knows where to jump. */
2997 bfd_vma target_value;
2998 asection *target_section;
2999
3000 /* The symbol table entry, if any, that this was derived from. */
3001 struct ppc_link_hash_entry *h;
3002 struct plt_entry *plt_ent;
3003
3004 /* Symbol type. */
3005 unsigned char symtype;
3006
3007 /* Symbol st_other. */
3008 unsigned char other;
3009 };
3010
3011 struct ppc_branch_hash_entry
3012 {
3013 /* Base hash table entry structure. */
3014 struct bfd_hash_entry root;
3015
3016 /* Offset within branch lookup table. */
3017 unsigned int offset;
3018
3019 /* Generation marker. */
3020 unsigned int iter;
3021 };
3022
3023 /* Used to track dynamic relocations for local symbols. */
3024 struct ppc_dyn_relocs
3025 {
3026 struct ppc_dyn_relocs *next;
3027
3028 /* The input section of the reloc. */
3029 asection *sec;
3030
3031 /* Total number of relocs copied for the input section. */
3032 unsigned int count : 31;
3033
3034 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3035 unsigned int ifunc : 1;
3036 };
3037
3038 struct ppc_link_hash_entry
3039 {
3040 struct elf_link_hash_entry elf;
3041
3042 union
3043 {
3044 /* A pointer to the most recently used stub hash entry against this
3045 symbol. */
3046 struct ppc_stub_hash_entry *stub_cache;
3047
3048 /* A pointer to the next symbol starting with a '.' */
3049 struct ppc_link_hash_entry *next_dot_sym;
3050 } u;
3051
3052 /* Track dynamic relocs copied for this symbol. */
3053 struct elf_dyn_relocs *dyn_relocs;
3054
3055 /* Link between function code and descriptor symbols. */
3056 struct ppc_link_hash_entry *oh;
3057
3058 /* Flag function code and descriptor symbols. */
3059 unsigned int is_func:1;
3060 unsigned int is_func_descriptor:1;
3061 unsigned int fake:1;
3062
3063 /* Whether global opd/toc sym has been adjusted or not.
3064 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3065 should be set for all globals defined in any opd/toc section. */
3066 unsigned int adjust_done:1;
3067
3068 /* Set if this is an out-of-line register save/restore function,
3069 with non-standard calling convention. */
3070 unsigned int save_res:1;
3071
3072 /* Set if a duplicate symbol with non-zero localentry is detected,
3073 even when the duplicate symbol does not provide a definition. */
3074 unsigned int non_zero_localentry:1;
3075
3076 /* Contexts in which symbol is used in the GOT (or TOC).
3077 Bits are or'd into the mask as the corresponding relocs are
3078 encountered during check_relocs, with TLS_TLS being set when any
3079 of the other TLS bits are set. tls_optimize clears bits when
3080 optimizing to indicate the corresponding GOT entry type is not
3081 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3082 set TLS_GDIE when a GD reloc turns into an IE one.
3083 These flags are also kept for local symbols. */
3084 #define TLS_TLS 1 /* Any TLS reloc. */
3085 #define TLS_GD 2 /* GD reloc. */
3086 #define TLS_LD 4 /* LD reloc. */
3087 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3088 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3089 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3090 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3091 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3092 unsigned char tls_mask;
3093
3094 /* The above field is also used to mark function symbols. In which
3095 case TLS_TLS will be 0. */
3096 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3097 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3098 #define NON_GOT 256 /* local symbol plt, not stored. */
3099 };
3100
3101 /* ppc64 ELF linker hash table. */
3102
3103 struct ppc_link_hash_table
3104 {
3105 struct elf_link_hash_table elf;
3106
3107 /* The stub hash table. */
3108 struct bfd_hash_table stub_hash_table;
3109
3110 /* Another hash table for plt_branch stubs. */
3111 struct bfd_hash_table branch_hash_table;
3112
3113 /* Hash table for function prologue tocsave. */
3114 htab_t tocsave_htab;
3115
3116 /* Various options and other info passed from the linker. */
3117 struct ppc64_elf_params *params;
3118
3119 /* The size of sec_info below. */
3120 unsigned int sec_info_arr_size;
3121
3122 /* Per-section array of extra section info. Done this way rather
3123 than as part of ppc64_elf_section_data so we have the info for
3124 non-ppc64 sections. */
3125 struct
3126 {
3127 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3128 bfd_vma toc_off;
3129
3130 union
3131 {
3132 /* The section group that this section belongs to. */
3133 struct map_stub *group;
3134 /* A temp section list pointer. */
3135 asection *list;
3136 } u;
3137 } *sec_info;
3138
3139 /* Linked list of groups. */
3140 struct map_stub *group;
3141
3142 /* Temp used when calculating TOC pointers. */
3143 bfd_vma toc_curr;
3144 bfd *toc_bfd;
3145 asection *toc_first_sec;
3146
3147 /* Used when adding symbols. */
3148 struct ppc_link_hash_entry *dot_syms;
3149
3150 /* Shortcuts to get to dynamic linker sections. */
3151 asection *glink;
3152 asection *global_entry;
3153 asection *sfpr;
3154 asection *pltlocal;
3155 asection *relpltlocal;
3156 asection *brlt;
3157 asection *relbrlt;
3158 asection *glink_eh_frame;
3159
3160 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3161 struct ppc_link_hash_entry *tls_get_addr;
3162 struct ppc_link_hash_entry *tls_get_addr_fd;
3163
3164 /* The size of reliplt used by got entry relocs. */
3165 bfd_size_type got_reli_size;
3166
3167 /* Statistics. */
3168 unsigned long stub_count[ppc_stub_global_entry];
3169
3170 /* Number of stubs against global syms. */
3171 unsigned long stub_globals;
3172
3173 /* Set if we're linking code with function descriptors. */
3174 unsigned int opd_abi:1;
3175
3176 /* Support for multiple toc sections. */
3177 unsigned int do_multi_toc:1;
3178 unsigned int multi_toc_needed:1;
3179 unsigned int second_toc_pass:1;
3180 unsigned int do_toc_opt:1;
3181
3182 /* Set if tls optimization is enabled. */
3183 unsigned int do_tls_opt:1;
3184
3185 /* Set if inline plt calls should be converted to direct calls. */
3186 unsigned int can_convert_all_inline_plt:1;
3187
3188 /* Set on error. */
3189 unsigned int stub_error:1;
3190
3191 /* Whether func_desc_adjust needs to be run over symbols. */
3192 unsigned int need_func_desc_adj:1;
3193
3194 /* Whether there exist local gnu indirect function resolvers,
3195 referenced by dynamic relocations. */
3196 unsigned int local_ifunc_resolver:1;
3197 unsigned int maybe_local_ifunc_resolver:1;
3198
3199 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3200 unsigned int has_plt_localentry0:1;
3201
3202 /* Whether calls are made via the PLT from NOTOC functions. */
3203 unsigned int notoc_plt:1;
3204
3205 /* Whether to use powerxx instructions in linkage stubs. */
3206 unsigned int powerxx_stubs:1;
3207
3208 /* Incremented every time we size stubs. */
3209 unsigned int stub_iteration;
3210
3211 /* Small local sym cache. */
3212 struct sym_cache sym_cache;
3213 };
3214
3215 /* Rename some of the generic section flags to better document how they
3216 are used here. */
3217
3218 /* Nonzero if this section has TLS related relocations. */
3219 #define has_tls_reloc sec_flg0
3220
3221 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3222 relocations. */
3223 #define nomark_tls_get_addr sec_flg1
3224
3225 /* Nonzero if this section has any toc or got relocs. */
3226 #define has_toc_reloc sec_flg2
3227
3228 /* Nonzero if this section has a call to another section that uses
3229 the toc or got. */
3230 #define makes_toc_func_call sec_flg3
3231
3232 /* Recursion protection when determining above flag. */
3233 #define call_check_in_progress sec_flg4
3234 #define call_check_done sec_flg5
3235
3236 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3237
3238 #define ppc_hash_table(p) \
3239 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3240 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3241
3242 #define ppc_stub_hash_lookup(table, string, create, copy) \
3243 ((struct ppc_stub_hash_entry *) \
3244 bfd_hash_lookup ((table), (string), (create), (copy)))
3245
3246 #define ppc_branch_hash_lookup(table, string, create, copy) \
3247 ((struct ppc_branch_hash_entry *) \
3248 bfd_hash_lookup ((table), (string), (create), (copy)))
3249
3250 /* Create an entry in the stub hash table. */
3251
3252 static struct bfd_hash_entry *
3253 stub_hash_newfunc (struct bfd_hash_entry *entry,
3254 struct bfd_hash_table *table,
3255 const char *string)
3256 {
3257 /* Allocate the structure if it has not already been allocated by a
3258 subclass. */
3259 if (entry == NULL)
3260 {
3261 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3262 if (entry == NULL)
3263 return entry;
3264 }
3265
3266 /* Call the allocation method of the superclass. */
3267 entry = bfd_hash_newfunc (entry, table, string);
3268 if (entry != NULL)
3269 {
3270 struct ppc_stub_hash_entry *eh;
3271
3272 /* Initialize the local fields. */
3273 eh = (struct ppc_stub_hash_entry *) entry;
3274 eh->stub_type = ppc_stub_none;
3275 eh->group = NULL;
3276 eh->stub_offset = 0;
3277 eh->target_value = 0;
3278 eh->target_section = NULL;
3279 eh->h = NULL;
3280 eh->plt_ent = NULL;
3281 eh->other = 0;
3282 }
3283
3284 return entry;
3285 }
3286
3287 /* Create an entry in the branch hash table. */
3288
3289 static struct bfd_hash_entry *
3290 branch_hash_newfunc (struct bfd_hash_entry *entry,
3291 struct bfd_hash_table *table,
3292 const char *string)
3293 {
3294 /* Allocate the structure if it has not already been allocated by a
3295 subclass. */
3296 if (entry == NULL)
3297 {
3298 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3299 if (entry == NULL)
3300 return entry;
3301 }
3302
3303 /* Call the allocation method of the superclass. */
3304 entry = bfd_hash_newfunc (entry, table, string);
3305 if (entry != NULL)
3306 {
3307 struct ppc_branch_hash_entry *eh;
3308
3309 /* Initialize the local fields. */
3310 eh = (struct ppc_branch_hash_entry *) entry;
3311 eh->offset = 0;
3312 eh->iter = 0;
3313 }
3314
3315 return entry;
3316 }
3317
3318 /* Create an entry in a ppc64 ELF linker hash table. */
3319
3320 static struct bfd_hash_entry *
3321 link_hash_newfunc (struct bfd_hash_entry *entry,
3322 struct bfd_hash_table *table,
3323 const char *string)
3324 {
3325 /* Allocate the structure if it has not already been allocated by a
3326 subclass. */
3327 if (entry == NULL)
3328 {
3329 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3330 if (entry == NULL)
3331 return entry;
3332 }
3333
3334 /* Call the allocation method of the superclass. */
3335 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3336 if (entry != NULL)
3337 {
3338 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3339
3340 memset (&eh->u.stub_cache, 0,
3341 (sizeof (struct ppc_link_hash_entry)
3342 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3343
3344 /* When making function calls, old ABI code references function entry
3345 points (dot symbols), while new ABI code references the function
3346 descriptor symbol. We need to make any combination of reference and
3347 definition work together, without breaking archive linking.
3348
3349 For a defined function "foo" and an undefined call to "bar":
3350 An old object defines "foo" and ".foo", references ".bar" (possibly
3351 "bar" too).
3352 A new object defines "foo" and references "bar".
3353
3354 A new object thus has no problem with its undefined symbols being
3355 satisfied by definitions in an old object. On the other hand, the
3356 old object won't have ".bar" satisfied by a new object.
3357
3358 Keep a list of newly added dot-symbols. */
3359
3360 if (string[0] == '.')
3361 {
3362 struct ppc_link_hash_table *htab;
3363
3364 htab = (struct ppc_link_hash_table *) table;
3365 eh->u.next_dot_sym = htab->dot_syms;
3366 htab->dot_syms = eh;
3367 }
3368 }
3369
3370 return entry;
3371 }
3372
3373 struct tocsave_entry
3374 {
3375 asection *sec;
3376 bfd_vma offset;
3377 };
3378
3379 static hashval_t
3380 tocsave_htab_hash (const void *p)
3381 {
3382 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3383 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3384 }
3385
3386 static int
3387 tocsave_htab_eq (const void *p1, const void *p2)
3388 {
3389 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3390 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3391 return e1->sec == e2->sec && e1->offset == e2->offset;
3392 }
3393
3394 /* Destroy a ppc64 ELF linker hash table. */
3395
3396 static void
3397 ppc64_elf_link_hash_table_free (bfd *obfd)
3398 {
3399 struct ppc_link_hash_table *htab;
3400
3401 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3402 if (htab->tocsave_htab)
3403 htab_delete (htab->tocsave_htab);
3404 bfd_hash_table_free (&htab->branch_hash_table);
3405 bfd_hash_table_free (&htab->stub_hash_table);
3406 _bfd_elf_link_hash_table_free (obfd);
3407 }
3408
3409 /* Create a ppc64 ELF linker hash table. */
3410
3411 static struct bfd_link_hash_table *
3412 ppc64_elf_link_hash_table_create (bfd *abfd)
3413 {
3414 struct ppc_link_hash_table *htab;
3415 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3416
3417 htab = bfd_zmalloc (amt);
3418 if (htab == NULL)
3419 return NULL;
3420
3421 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3422 sizeof (struct ppc_link_hash_entry),
3423 PPC64_ELF_DATA))
3424 {
3425 free (htab);
3426 return NULL;
3427 }
3428
3429 /* Init the stub hash table too. */
3430 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3431 sizeof (struct ppc_stub_hash_entry)))
3432 {
3433 _bfd_elf_link_hash_table_free (abfd);
3434 return NULL;
3435 }
3436
3437 /* And the branch hash table. */
3438 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3439 sizeof (struct ppc_branch_hash_entry)))
3440 {
3441 bfd_hash_table_free (&htab->stub_hash_table);
3442 _bfd_elf_link_hash_table_free (abfd);
3443 return NULL;
3444 }
3445
3446 htab->tocsave_htab = htab_try_create (1024,
3447 tocsave_htab_hash,
3448 tocsave_htab_eq,
3449 NULL);
3450 if (htab->tocsave_htab == NULL)
3451 {
3452 ppc64_elf_link_hash_table_free (abfd);
3453 return NULL;
3454 }
3455 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3456
3457 /* Initializing two fields of the union is just cosmetic. We really
3458 only care about glist, but when compiled on a 32-bit host the
3459 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3460 debugger inspection of these fields look nicer. */
3461 htab->elf.init_got_refcount.refcount = 0;
3462 htab->elf.init_got_refcount.glist = NULL;
3463 htab->elf.init_plt_refcount.refcount = 0;
3464 htab->elf.init_plt_refcount.glist = NULL;
3465 htab->elf.init_got_offset.offset = 0;
3466 htab->elf.init_got_offset.glist = NULL;
3467 htab->elf.init_plt_offset.offset = 0;
3468 htab->elf.init_plt_offset.glist = NULL;
3469
3470 return &htab->elf.root;
3471 }
3472
3473 /* Create sections for linker generated code. */
3474
3475 static bfd_boolean
3476 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3477 {
3478 struct ppc_link_hash_table *htab;
3479 flagword flags;
3480
3481 htab = ppc_hash_table (info);
3482
3483 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3484 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3485 if (htab->params->save_restore_funcs)
3486 {
3487 /* Create .sfpr for code to save and restore fp regs. */
3488 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3489 flags);
3490 if (htab->sfpr == NULL
3491 || !bfd_set_section_alignment (htab->sfpr, 2))
3492 return FALSE;
3493 }
3494
3495 if (bfd_link_relocatable (info))
3496 return TRUE;
3497
3498 /* Create .glink for lazy dynamic linking support. */
3499 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3500 flags);
3501 if (htab->glink == NULL
3502 || !bfd_set_section_alignment (htab->glink, 3))
3503 return FALSE;
3504
3505 /* The part of .glink used by global entry stubs, separate so that
3506 it can be aligned appropriately without affecting htab->glink. */
3507 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3508 flags);
3509 if (htab->global_entry == NULL
3510 || !bfd_set_section_alignment (htab->global_entry, 2))
3511 return FALSE;
3512
3513 if (!info->no_ld_generated_unwind_info)
3514 {
3515 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3516 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3517 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3518 ".eh_frame",
3519 flags);
3520 if (htab->glink_eh_frame == NULL
3521 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3522 return FALSE;
3523 }
3524
3525 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3526 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3527 if (htab->elf.iplt == NULL
3528 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3529 return FALSE;
3530
3531 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3532 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3533 htab->elf.irelplt
3534 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3535 if (htab->elf.irelplt == NULL
3536 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3537 return FALSE;
3538
3539 /* Create branch lookup table for plt_branch stubs. */
3540 flags = (SEC_ALLOC | SEC_LOAD
3541 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3542 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3543 flags);
3544 if (htab->brlt == NULL
3545 || !bfd_set_section_alignment (htab->brlt, 3))
3546 return FALSE;
3547
3548 /* Local plt entries, put in .branch_lt but a separate section for
3549 convenience. */
3550 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3551 flags);
3552 if (htab->pltlocal == NULL
3553 || !bfd_set_section_alignment (htab->pltlocal, 3))
3554 return FALSE;
3555
3556 if (!bfd_link_pic (info))
3557 return TRUE;
3558
3559 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3560 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3561 htab->relbrlt
3562 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3563 if (htab->relbrlt == NULL
3564 || !bfd_set_section_alignment (htab->relbrlt, 3))
3565 return FALSE;
3566
3567 htab->relpltlocal
3568 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3569 if (htab->relpltlocal == NULL
3570 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3571 return FALSE;
3572
3573 return TRUE;
3574 }
3575
3576 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3577
3578 bfd_boolean
3579 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3580 struct ppc64_elf_params *params)
3581 {
3582 struct ppc_link_hash_table *htab;
3583
3584 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3585
3586 /* Always hook our dynamic sections into the first bfd, which is the
3587 linker created stub bfd. This ensures that the GOT header is at
3588 the start of the output TOC section. */
3589 htab = ppc_hash_table (info);
3590 htab->elf.dynobj = params->stub_bfd;
3591 htab->params = params;
3592
3593 return create_linkage_sections (htab->elf.dynobj, info);
3594 }
3595
3596 /* Build a name for an entry in the stub hash table. */
3597
3598 static char *
3599 ppc_stub_name (const asection *input_section,
3600 const asection *sym_sec,
3601 const struct ppc_link_hash_entry *h,
3602 const Elf_Internal_Rela *rel)
3603 {
3604 char *stub_name;
3605 ssize_t len;
3606
3607 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3608 offsets from a sym as a branch target? In fact, we could
3609 probably assume the addend is always zero. */
3610 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3611
3612 if (h)
3613 {
3614 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3615 stub_name = bfd_malloc (len);
3616 if (stub_name == NULL)
3617 return stub_name;
3618
3619 len = sprintf (stub_name, "%08x.%s+%x",
3620 input_section->id & 0xffffffff,
3621 h->elf.root.root.string,
3622 (int) rel->r_addend & 0xffffffff);
3623 }
3624 else
3625 {
3626 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3627 stub_name = bfd_malloc (len);
3628 if (stub_name == NULL)
3629 return stub_name;
3630
3631 len = sprintf (stub_name, "%08x.%x:%x+%x",
3632 input_section->id & 0xffffffff,
3633 sym_sec->id & 0xffffffff,
3634 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3635 (int) rel->r_addend & 0xffffffff);
3636 }
3637 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3638 stub_name[len - 2] = 0;
3639 return stub_name;
3640 }
3641
3642 /* Look up an entry in the stub hash. Stub entries are cached because
3643 creating the stub name takes a bit of time. */
3644
3645 static struct ppc_stub_hash_entry *
3646 ppc_get_stub_entry (const asection *input_section,
3647 const asection *sym_sec,
3648 struct ppc_link_hash_entry *h,
3649 const Elf_Internal_Rela *rel,
3650 struct ppc_link_hash_table *htab)
3651 {
3652 struct ppc_stub_hash_entry *stub_entry;
3653 struct map_stub *group;
3654
3655 /* If this input section is part of a group of sections sharing one
3656 stub section, then use the id of the first section in the group.
3657 Stub names need to include a section id, as there may well be
3658 more than one stub used to reach say, printf, and we need to
3659 distinguish between them. */
3660 group = htab->sec_info[input_section->id].u.group;
3661 if (group == NULL)
3662 return NULL;
3663
3664 if (h != NULL && h->u.stub_cache != NULL
3665 && h->u.stub_cache->h == h
3666 && h->u.stub_cache->group == group)
3667 {
3668 stub_entry = h->u.stub_cache;
3669 }
3670 else
3671 {
3672 char *stub_name;
3673
3674 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3675 if (stub_name == NULL)
3676 return NULL;
3677
3678 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3679 stub_name, FALSE, FALSE);
3680 if (h != NULL)
3681 h->u.stub_cache = stub_entry;
3682
3683 free (stub_name);
3684 }
3685
3686 return stub_entry;
3687 }
3688
3689 /* Add a new stub entry to the stub hash. Not all fields of the new
3690 stub entry are initialised. */
3691
3692 static struct ppc_stub_hash_entry *
3693 ppc_add_stub (const char *stub_name,
3694 asection *section,
3695 struct bfd_link_info *info)
3696 {
3697 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3698 struct map_stub *group;
3699 asection *link_sec;
3700 asection *stub_sec;
3701 struct ppc_stub_hash_entry *stub_entry;
3702
3703 group = htab->sec_info[section->id].u.group;
3704 link_sec = group->link_sec;
3705 stub_sec = group->stub_sec;
3706 if (stub_sec == NULL)
3707 {
3708 size_t namelen;
3709 bfd_size_type len;
3710 char *s_name;
3711
3712 namelen = strlen (link_sec->name);
3713 len = namelen + sizeof (STUB_SUFFIX);
3714 s_name = bfd_alloc (htab->params->stub_bfd, len);
3715 if (s_name == NULL)
3716 return NULL;
3717
3718 memcpy (s_name, link_sec->name, namelen);
3719 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3720 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3721 if (stub_sec == NULL)
3722 return NULL;
3723 group->stub_sec = stub_sec;
3724 }
3725
3726 /* Enter this entry into the linker stub hash table. */
3727 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3728 TRUE, FALSE);
3729 if (stub_entry == NULL)
3730 {
3731 /* xgettext:c-format */
3732 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3733 section->owner, stub_name);
3734 return NULL;
3735 }
3736
3737 stub_entry->group = group;
3738 stub_entry->stub_offset = 0;
3739 return stub_entry;
3740 }
3741
3742 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3743 not already done. */
3744
3745 static bfd_boolean
3746 create_got_section (bfd *abfd, struct bfd_link_info *info)
3747 {
3748 asection *got, *relgot;
3749 flagword flags;
3750 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3751
3752 if (!is_ppc64_elf (abfd))
3753 return FALSE;
3754 if (htab == NULL)
3755 return FALSE;
3756
3757 if (!htab->elf.sgot
3758 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3759 return FALSE;
3760
3761 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3762 | SEC_LINKER_CREATED);
3763
3764 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3765 if (!got
3766 || !bfd_set_section_alignment (got, 3))
3767 return FALSE;
3768
3769 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3770 flags | SEC_READONLY);
3771 if (!relgot
3772 || !bfd_set_section_alignment (relgot, 3))
3773 return FALSE;
3774
3775 ppc64_elf_tdata (abfd)->got = got;
3776 ppc64_elf_tdata (abfd)->relgot = relgot;
3777 return TRUE;
3778 }
3779
3780 /* Follow indirect and warning symbol links. */
3781
3782 static inline struct bfd_link_hash_entry *
3783 follow_link (struct bfd_link_hash_entry *h)
3784 {
3785 while (h->type == bfd_link_hash_indirect
3786 || h->type == bfd_link_hash_warning)
3787 h = h->u.i.link;
3788 return h;
3789 }
3790
3791 static inline struct elf_link_hash_entry *
3792 elf_follow_link (struct elf_link_hash_entry *h)
3793 {
3794 return (struct elf_link_hash_entry *) follow_link (&h->root);
3795 }
3796
3797 static inline struct ppc_link_hash_entry *
3798 ppc_follow_link (struct ppc_link_hash_entry *h)
3799 {
3800 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
3801 }
3802
3803 /* Merge PLT info on FROM with that on TO. */
3804
3805 static void
3806 move_plt_plist (struct ppc_link_hash_entry *from,
3807 struct ppc_link_hash_entry *to)
3808 {
3809 if (from->elf.plt.plist != NULL)
3810 {
3811 if (to->elf.plt.plist != NULL)
3812 {
3813 struct plt_entry **entp;
3814 struct plt_entry *ent;
3815
3816 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3817 {
3818 struct plt_entry *dent;
3819
3820 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3821 if (dent->addend == ent->addend)
3822 {
3823 dent->plt.refcount += ent->plt.refcount;
3824 *entp = ent->next;
3825 break;
3826 }
3827 if (dent == NULL)
3828 entp = &ent->next;
3829 }
3830 *entp = to->elf.plt.plist;
3831 }
3832
3833 to->elf.plt.plist = from->elf.plt.plist;
3834 from->elf.plt.plist = NULL;
3835 }
3836 }
3837
3838 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3839
3840 static void
3841 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3842 struct elf_link_hash_entry *dir,
3843 struct elf_link_hash_entry *ind)
3844 {
3845 struct ppc_link_hash_entry *edir, *eind;
3846
3847 edir = (struct ppc_link_hash_entry *) dir;
3848 eind = (struct ppc_link_hash_entry *) ind;
3849
3850 edir->is_func |= eind->is_func;
3851 edir->is_func_descriptor |= eind->is_func_descriptor;
3852 edir->tls_mask |= eind->tls_mask;
3853 if (eind->oh != NULL)
3854 edir->oh = ppc_follow_link (eind->oh);
3855
3856 if (edir->elf.versioned != versioned_hidden)
3857 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3858 edir->elf.ref_regular |= eind->elf.ref_regular;
3859 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3860 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3861 edir->elf.needs_plt |= eind->elf.needs_plt;
3862 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3863
3864 /* If we were called to copy over info for a weak sym, don't copy
3865 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3866 in order to simplify readonly_dynrelocs and save a field in the
3867 symbol hash entry, but that means dyn_relocs can't be used in any
3868 tests about a specific symbol, or affect other symbol flags which
3869 are then tested. */
3870 if (eind->elf.root.type != bfd_link_hash_indirect)
3871 return;
3872
3873 /* Copy over any dynamic relocs we may have on the indirect sym. */
3874 if (eind->dyn_relocs != NULL)
3875 {
3876 if (edir->dyn_relocs != NULL)
3877 {
3878 struct elf_dyn_relocs **pp;
3879 struct elf_dyn_relocs *p;
3880
3881 /* Add reloc counts against the indirect sym to the direct sym
3882 list. Merge any entries against the same section. */
3883 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3884 {
3885 struct elf_dyn_relocs *q;
3886
3887 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3888 if (q->sec == p->sec)
3889 {
3890 q->pc_count += p->pc_count;
3891 q->count += p->count;
3892 *pp = p->next;
3893 break;
3894 }
3895 if (q == NULL)
3896 pp = &p->next;
3897 }
3898 *pp = edir->dyn_relocs;
3899 }
3900
3901 edir->dyn_relocs = eind->dyn_relocs;
3902 eind->dyn_relocs = NULL;
3903 }
3904
3905 /* Copy over got entries that we may have already seen to the
3906 symbol which just became indirect. */
3907 if (eind->elf.got.glist != NULL)
3908 {
3909 if (edir->elf.got.glist != NULL)
3910 {
3911 struct got_entry **entp;
3912 struct got_entry *ent;
3913
3914 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3915 {
3916 struct got_entry *dent;
3917
3918 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3919 if (dent->addend == ent->addend
3920 && dent->owner == ent->owner
3921 && dent->tls_type == ent->tls_type)
3922 {
3923 dent->got.refcount += ent->got.refcount;
3924 *entp = ent->next;
3925 break;
3926 }
3927 if (dent == NULL)
3928 entp = &ent->next;
3929 }
3930 *entp = edir->elf.got.glist;
3931 }
3932
3933 edir->elf.got.glist = eind->elf.got.glist;
3934 eind->elf.got.glist = NULL;
3935 }
3936
3937 /* And plt entries. */
3938 move_plt_plist (eind, edir);
3939
3940 if (eind->elf.dynindx != -1)
3941 {
3942 if (edir->elf.dynindx != -1)
3943 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3944 edir->elf.dynstr_index);
3945 edir->elf.dynindx = eind->elf.dynindx;
3946 edir->elf.dynstr_index = eind->elf.dynstr_index;
3947 eind->elf.dynindx = -1;
3948 eind->elf.dynstr_index = 0;
3949 }
3950 }
3951
3952 /* Find the function descriptor hash entry from the given function code
3953 hash entry FH. Link the entries via their OH fields. */
3954
3955 static struct ppc_link_hash_entry *
3956 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3957 {
3958 struct ppc_link_hash_entry *fdh = fh->oh;
3959
3960 if (fdh == NULL)
3961 {
3962 const char *fd_name = fh->elf.root.root.string + 1;
3963
3964 fdh = (struct ppc_link_hash_entry *)
3965 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3966 if (fdh == NULL)
3967 return fdh;
3968
3969 fdh->is_func_descriptor = 1;
3970 fdh->oh = fh;
3971 fh->is_func = 1;
3972 fh->oh = fdh;
3973 }
3974
3975 fdh = ppc_follow_link (fdh);
3976 fdh->is_func_descriptor = 1;
3977 fdh->oh = fh;
3978 return fdh;
3979 }
3980
3981 /* Make a fake function descriptor sym for the undefined code sym FH. */
3982
3983 static struct ppc_link_hash_entry *
3984 make_fdh (struct bfd_link_info *info,
3985 struct ppc_link_hash_entry *fh)
3986 {
3987 bfd *abfd = fh->elf.root.u.undef.abfd;
3988 struct bfd_link_hash_entry *bh = NULL;
3989 struct ppc_link_hash_entry *fdh;
3990 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
3991 ? BSF_WEAK
3992 : BSF_GLOBAL);
3993
3994 if (!_bfd_generic_link_add_one_symbol (info, abfd,
3995 fh->elf.root.root.string + 1,
3996 flags, bfd_und_section_ptr, 0,
3997 NULL, FALSE, FALSE, &bh))
3998 return NULL;
3999
4000 fdh = (struct ppc_link_hash_entry *) bh;
4001 fdh->elf.non_elf = 0;
4002 fdh->fake = 1;
4003 fdh->is_func_descriptor = 1;
4004 fdh->oh = fh;
4005 fh->is_func = 1;
4006 fh->oh = fdh;
4007 return fdh;
4008 }
4009
4010 /* Fix function descriptor symbols defined in .opd sections to be
4011 function type. */
4012
4013 static bfd_boolean
4014 ppc64_elf_add_symbol_hook (bfd *ibfd,
4015 struct bfd_link_info *info,
4016 Elf_Internal_Sym *isym,
4017 const char **name,
4018 flagword *flags ATTRIBUTE_UNUSED,
4019 asection **sec,
4020 bfd_vma *value)
4021 {
4022 if (*sec != NULL
4023 && strcmp ((*sec)->name, ".opd") == 0)
4024 {
4025 asection *code_sec;
4026
4027 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4028 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4029 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4030
4031 /* If the symbol is a function defined in .opd, and the function
4032 code is in a discarded group, let it appear to be undefined. */
4033 if (!bfd_link_relocatable (info)
4034 && (*sec)->reloc_count != 0
4035 && opd_entry_value (*sec, *value, &code_sec, NULL,
4036 FALSE) != (bfd_vma) -1
4037 && discarded_section (code_sec))
4038 {
4039 *sec = bfd_und_section_ptr;
4040 isym->st_shndx = SHN_UNDEF;
4041 }
4042 }
4043 else if (*sec != NULL
4044 && strcmp ((*sec)->name, ".toc") == 0
4045 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4046 {
4047 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4048 if (htab != NULL)
4049 htab->params->object_in_toc = 1;
4050 }
4051
4052 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4053 {
4054 if (abiversion (ibfd) == 0)
4055 set_abiversion (ibfd, 2);
4056 else if (abiversion (ibfd) == 1)
4057 {
4058 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4059 " for ABI version 1"), *name);
4060 bfd_set_error (bfd_error_bad_value);
4061 return FALSE;
4062 }
4063 }
4064
4065 return TRUE;
4066 }
4067
4068 /* Merge non-visibility st_other attributes: local entry point. */
4069
4070 static void
4071 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4072 const Elf_Internal_Sym *isym,
4073 bfd_boolean definition,
4074 bfd_boolean dynamic)
4075 {
4076 if (definition && (!dynamic || !h->def_regular))
4077 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4078 | ELF_ST_VISIBILITY (h->other));
4079 }
4080
4081 /* Hook called on merging a symbol. We use this to clear "fake" since
4082 we now have a real symbol. */
4083
4084 static bfd_boolean
4085 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4086 const Elf_Internal_Sym *isym,
4087 asection **psec ATTRIBUTE_UNUSED,
4088 bfd_boolean newdef ATTRIBUTE_UNUSED,
4089 bfd_boolean olddef ATTRIBUTE_UNUSED,
4090 bfd *oldbfd ATTRIBUTE_UNUSED,
4091 const asection *oldsec ATTRIBUTE_UNUSED)
4092 {
4093 ((struct ppc_link_hash_entry *) h)->fake = 0;
4094 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4095 ((struct ppc_link_hash_entry *) h)->non_zero_localentry = 1;
4096 return TRUE;
4097 }
4098
4099 /* This function makes an old ABI object reference to ".bar" cause the
4100 inclusion of a new ABI object archive that defines "bar".
4101 NAME is a symbol defined in an archive. Return a symbol in the hash
4102 table that might be satisfied by the archive symbols. */
4103
4104 static struct elf_link_hash_entry *
4105 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4106 struct bfd_link_info *info,
4107 const char *name)
4108 {
4109 struct elf_link_hash_entry *h;
4110 char *dot_name;
4111 size_t len;
4112
4113 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4114 if (h != NULL
4115 /* Don't return this sym if it is a fake function descriptor
4116 created by add_symbol_adjust. */
4117 && !((struct ppc_link_hash_entry *) h)->fake)
4118 return h;
4119
4120 if (name[0] == '.')
4121 return h;
4122
4123 len = strlen (name);
4124 dot_name = bfd_alloc (abfd, len + 2);
4125 if (dot_name == NULL)
4126 return (struct elf_link_hash_entry *) -1;
4127 dot_name[0] = '.';
4128 memcpy (dot_name + 1, name, len + 1);
4129 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4130 bfd_release (abfd, dot_name);
4131 return h;
4132 }
4133
4134 /* This function satisfies all old ABI object references to ".bar" if a
4135 new ABI object defines "bar". Well, at least, undefined dot symbols
4136 are made weak. This stops later archive searches from including an
4137 object if we already have a function descriptor definition. It also
4138 prevents the linker complaining about undefined symbols.
4139 We also check and correct mismatched symbol visibility here. The
4140 most restrictive visibility of the function descriptor and the
4141 function entry symbol is used. */
4142
4143 static bfd_boolean
4144 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4145 {
4146 struct ppc_link_hash_table *htab;
4147 struct ppc_link_hash_entry *fdh;
4148
4149 if (eh->elf.root.type == bfd_link_hash_warning)
4150 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4151
4152 if (eh->elf.root.type == bfd_link_hash_indirect)
4153 return TRUE;
4154
4155 if (eh->elf.root.root.string[0] != '.')
4156 abort ();
4157
4158 htab = ppc_hash_table (info);
4159 if (htab == NULL)
4160 return FALSE;
4161
4162 fdh = lookup_fdh (eh, htab);
4163 if (fdh == NULL
4164 && !bfd_link_relocatable (info)
4165 && (eh->elf.root.type == bfd_link_hash_undefined
4166 || eh->elf.root.type == bfd_link_hash_undefweak)
4167 && eh->elf.ref_regular)
4168 {
4169 /* Make an undefined function descriptor sym, in order to
4170 pull in an --as-needed shared lib. Archives are handled
4171 elsewhere. */
4172 fdh = make_fdh (info, eh);
4173 if (fdh == NULL)
4174 return FALSE;
4175 }
4176
4177 if (fdh != NULL)
4178 {
4179 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4180 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4181
4182 /* Make both descriptor and entry symbol have the most
4183 constraining visibility of either symbol. */
4184 if (entry_vis < descr_vis)
4185 fdh->elf.other += entry_vis - descr_vis;
4186 else if (entry_vis > descr_vis)
4187 eh->elf.other += descr_vis - entry_vis;
4188
4189 /* Propagate reference flags from entry symbol to function
4190 descriptor symbol. */
4191 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4192 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4193 fdh->elf.ref_regular |= eh->elf.ref_regular;
4194 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4195
4196 if (!fdh->elf.forced_local
4197 && fdh->elf.dynindx == -1
4198 && fdh->elf.versioned != versioned_hidden
4199 && (bfd_link_dll (info)
4200 || fdh->elf.def_dynamic
4201 || fdh->elf.ref_dynamic)
4202 && (eh->elf.ref_regular
4203 || eh->elf.def_regular))
4204 {
4205 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4206 return FALSE;
4207 }
4208 }
4209
4210 return TRUE;
4211 }
4212
4213 /* Set up opd section info and abiversion for IBFD, and process list
4214 of dot-symbols we made in link_hash_newfunc. */
4215
4216 static bfd_boolean
4217 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4218 {
4219 struct ppc_link_hash_table *htab;
4220 struct ppc_link_hash_entry **p, *eh;
4221 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4222
4223 if (opd != NULL && opd->size != 0)
4224 {
4225 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4226 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4227
4228 if (abiversion (ibfd) == 0)
4229 set_abiversion (ibfd, 1);
4230 else if (abiversion (ibfd) >= 2)
4231 {
4232 /* xgettext:c-format */
4233 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4234 ibfd, abiversion (ibfd));
4235 bfd_set_error (bfd_error_bad_value);
4236 return FALSE;
4237 }
4238 }
4239
4240 if (is_ppc64_elf (info->output_bfd))
4241 {
4242 /* For input files without an explicit abiversion in e_flags
4243 we should have flagged any with symbol st_other bits set
4244 as ELFv1 and above flagged those with .opd as ELFv2.
4245 Set the output abiversion if not yet set, and for any input
4246 still ambiguous, take its abiversion from the output.
4247 Differences in ABI are reported later. */
4248 if (abiversion (info->output_bfd) == 0)
4249 set_abiversion (info->output_bfd, abiversion (ibfd));
4250 else if (abiversion (ibfd) == 0)
4251 set_abiversion (ibfd, abiversion (info->output_bfd));
4252 }
4253
4254 htab = ppc_hash_table (info);
4255 if (htab == NULL)
4256 return TRUE;
4257
4258 if (opd != NULL && opd->size != 0
4259 && (ibfd->flags & DYNAMIC) == 0
4260 && (opd->flags & SEC_RELOC) != 0
4261 && opd->reloc_count != 0
4262 && !bfd_is_abs_section (opd->output_section)
4263 && info->gc_sections)
4264 {
4265 /* Garbage collection needs some extra help with .opd sections.
4266 We don't want to necessarily keep everything referenced by
4267 relocs in .opd, as that would keep all functions. Instead,
4268 if we reference an .opd symbol (a function descriptor), we
4269 want to keep the function code symbol's section. This is
4270 easy for global symbols, but for local syms we need to keep
4271 information about the associated function section. */
4272 bfd_size_type amt;
4273 asection **opd_sym_map;
4274 Elf_Internal_Shdr *symtab_hdr;
4275 Elf_Internal_Rela *relocs, *rel_end, *rel;
4276
4277 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4278 opd_sym_map = bfd_zalloc (ibfd, amt);
4279 if (opd_sym_map == NULL)
4280 return FALSE;
4281 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4282 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4283 info->keep_memory);
4284 if (relocs == NULL)
4285 return FALSE;
4286 symtab_hdr = &elf_symtab_hdr (ibfd);
4287 rel_end = relocs + opd->reloc_count - 1;
4288 for (rel = relocs; rel < rel_end; rel++)
4289 {
4290 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4291 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4292
4293 if (r_type == R_PPC64_ADDR64
4294 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4295 && r_symndx < symtab_hdr->sh_info)
4296 {
4297 Elf_Internal_Sym *isym;
4298 asection *s;
4299
4300 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4301 if (isym == NULL)
4302 {
4303 if (elf_section_data (opd)->relocs != relocs)
4304 free (relocs);
4305 return FALSE;
4306 }
4307
4308 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4309 if (s != NULL && s != opd)
4310 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4311 }
4312 }
4313 if (elf_section_data (opd)->relocs != relocs)
4314 free (relocs);
4315 }
4316
4317 p = &htab->dot_syms;
4318 while ((eh = *p) != NULL)
4319 {
4320 *p = NULL;
4321 if (&eh->elf == htab->elf.hgot)
4322 ;
4323 else if (htab->elf.hgot == NULL
4324 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4325 htab->elf.hgot = &eh->elf;
4326 else if (abiversion (ibfd) <= 1)
4327 {
4328 htab->need_func_desc_adj = 1;
4329 if (!add_symbol_adjust (eh, info))
4330 return FALSE;
4331 }
4332 p = &eh->u.next_dot_sym;
4333 }
4334 return TRUE;
4335 }
4336
4337 /* Undo hash table changes when an --as-needed input file is determined
4338 not to be needed. */
4339
4340 static bfd_boolean
4341 ppc64_elf_notice_as_needed (bfd *ibfd,
4342 struct bfd_link_info *info,
4343 enum notice_asneeded_action act)
4344 {
4345 if (act == notice_not_needed)
4346 {
4347 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4348
4349 if (htab == NULL)
4350 return FALSE;
4351
4352 htab->dot_syms = NULL;
4353 }
4354 return _bfd_elf_notice_as_needed (ibfd, info, act);
4355 }
4356
4357 /* If --just-symbols against a final linked binary, then assume we need
4358 toc adjusting stubs when calling functions defined there. */
4359
4360 static void
4361 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4362 {
4363 if ((sec->flags & SEC_CODE) != 0
4364 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4365 && is_ppc64_elf (sec->owner))
4366 {
4367 if (abiversion (sec->owner) >= 2
4368 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4369 sec->has_toc_reloc = 1;
4370 }
4371 _bfd_elf_link_just_syms (sec, info);
4372 }
4373
4374 static struct plt_entry **
4375 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4376 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4377 {
4378 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4379 struct plt_entry **local_plt;
4380 unsigned char *local_got_tls_masks;
4381
4382 if (local_got_ents == NULL)
4383 {
4384 bfd_size_type size = symtab_hdr->sh_info;
4385
4386 size *= (sizeof (*local_got_ents)
4387 + sizeof (*local_plt)
4388 + sizeof (*local_got_tls_masks));
4389 local_got_ents = bfd_zalloc (abfd, size);
4390 if (local_got_ents == NULL)
4391 return NULL;
4392 elf_local_got_ents (abfd) = local_got_ents;
4393 }
4394
4395 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4396 {
4397 struct got_entry *ent;
4398
4399 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4400 if (ent->addend == r_addend
4401 && ent->owner == abfd
4402 && ent->tls_type == tls_type)
4403 break;
4404 if (ent == NULL)
4405 {
4406 bfd_size_type amt = sizeof (*ent);
4407 ent = bfd_alloc (abfd, amt);
4408 if (ent == NULL)
4409 return FALSE;
4410 ent->next = local_got_ents[r_symndx];
4411 ent->addend = r_addend;
4412 ent->owner = abfd;
4413 ent->tls_type = tls_type;
4414 ent->is_indirect = FALSE;
4415 ent->got.refcount = 0;
4416 local_got_ents[r_symndx] = ent;
4417 }
4418 ent->got.refcount += 1;
4419 }
4420
4421 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4422 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4423 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4424
4425 return local_plt + r_symndx;
4426 }
4427
4428 static bfd_boolean
4429 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4430 {
4431 struct plt_entry *ent;
4432
4433 for (ent = *plist; ent != NULL; ent = ent->next)
4434 if (ent->addend == addend)
4435 break;
4436 if (ent == NULL)
4437 {
4438 bfd_size_type amt = sizeof (*ent);
4439 ent = bfd_alloc (abfd, amt);
4440 if (ent == NULL)
4441 return FALSE;
4442 ent->next = *plist;
4443 ent->addend = addend;
4444 ent->plt.refcount = 0;
4445 *plist = ent;
4446 }
4447 ent->plt.refcount += 1;
4448 return TRUE;
4449 }
4450
4451 static bfd_boolean
4452 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4453 {
4454 return (r_type == R_PPC64_REL24
4455 || r_type == R_PPC64_REL24_NOTOC
4456 || r_type == R_PPC64_REL14
4457 || r_type == R_PPC64_REL14_BRTAKEN
4458 || r_type == R_PPC64_REL14_BRNTAKEN
4459 || r_type == R_PPC64_ADDR24
4460 || r_type == R_PPC64_ADDR14
4461 || r_type == R_PPC64_ADDR14_BRTAKEN
4462 || r_type == R_PPC64_ADDR14_BRNTAKEN
4463 || r_type == R_PPC64_PLTCALL
4464 || r_type == R_PPC64_PLTCALL_NOTOC);
4465 }
4466
4467 /* Relocs on inline plt call sequence insns prior to the call. */
4468
4469 static bfd_boolean
4470 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4471 {
4472 return (r_type == R_PPC64_PLT16_HA
4473 || r_type == R_PPC64_PLT16_HI
4474 || r_type == R_PPC64_PLT16_LO
4475 || r_type == R_PPC64_PLT16_LO_DS
4476 || r_type == R_PPC64_PLT_PCREL34
4477 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4478 || r_type == R_PPC64_PLTSEQ
4479 || r_type == R_PPC64_PLTSEQ_NOTOC);
4480 }
4481
4482 /* Look through the relocs for a section during the first phase, and
4483 calculate needed space in the global offset table, procedure
4484 linkage table, and dynamic reloc sections. */
4485
4486 static bfd_boolean
4487 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4488 asection *sec, const Elf_Internal_Rela *relocs)
4489 {
4490 struct ppc_link_hash_table *htab;
4491 Elf_Internal_Shdr *symtab_hdr;
4492 struct elf_link_hash_entry **sym_hashes;
4493 const Elf_Internal_Rela *rel;
4494 const Elf_Internal_Rela *rel_end;
4495 asection *sreloc;
4496 struct elf_link_hash_entry *tga, *dottga;
4497 bfd_boolean is_opd;
4498
4499 if (bfd_link_relocatable (info))
4500 return TRUE;
4501
4502 /* Don't do anything special with non-loaded, non-alloced sections.
4503 In particular, any relocs in such sections should not affect GOT
4504 and PLT reference counting (ie. we don't allow them to create GOT
4505 or PLT entries), there's no possibility or desire to optimize TLS
4506 relocs, and there's not much point in propagating relocs to shared
4507 libs that the dynamic linker won't relocate. */
4508 if ((sec->flags & SEC_ALLOC) == 0)
4509 return TRUE;
4510
4511 BFD_ASSERT (is_ppc64_elf (abfd));
4512
4513 htab = ppc_hash_table (info);
4514 if (htab == NULL)
4515 return FALSE;
4516
4517 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4518 FALSE, FALSE, TRUE);
4519 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4520 FALSE, FALSE, TRUE);
4521 symtab_hdr = &elf_symtab_hdr (abfd);
4522 sym_hashes = elf_sym_hashes (abfd);
4523 sreloc = NULL;
4524 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4525 rel_end = relocs + sec->reloc_count;
4526 for (rel = relocs; rel < rel_end; rel++)
4527 {
4528 unsigned long r_symndx;
4529 struct elf_link_hash_entry *h;
4530 enum elf_ppc64_reloc_type r_type;
4531 int tls_type;
4532 struct _ppc64_elf_section_data *ppc64_sec;
4533 struct plt_entry **ifunc, **plt_list;
4534
4535 r_symndx = ELF64_R_SYM (rel->r_info);
4536 if (r_symndx < symtab_hdr->sh_info)
4537 h = NULL;
4538 else
4539 {
4540 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4541 h = elf_follow_link (h);
4542
4543 if (h == htab->elf.hgot)
4544 sec->has_toc_reloc = 1;
4545 }
4546
4547 r_type = ELF64_R_TYPE (rel->r_info);
4548 switch (r_type)
4549 {
4550 case R_PPC64_D34:
4551 case R_PPC64_D34_LO:
4552 case R_PPC64_D34_HI30:
4553 case R_PPC64_D34_HA30:
4554 case R_PPC64_D28:
4555 case R_PPC64_TPREL34:
4556 case R_PPC64_DTPREL34:
4557 case R_PPC64_PCREL34:
4558 case R_PPC64_GOT_PCREL34:
4559 case R_PPC64_GOT_TLSGD34:
4560 case R_PPC64_GOT_TLSLD34:
4561 case R_PPC64_GOT_TPREL34:
4562 case R_PPC64_GOT_DTPREL34:
4563 case R_PPC64_PLT_PCREL34:
4564 case R_PPC64_PLT_PCREL34_NOTOC:
4565 case R_PPC64_PCREL28:
4566 htab->powerxx_stubs = 1;
4567 break;
4568 default:
4569 break;
4570 }
4571
4572 switch (r_type)
4573 {
4574 case R_PPC64_PLT16_HA:
4575 case R_PPC64_GOT_TLSLD16_HA:
4576 case R_PPC64_GOT_TLSGD16_HA:
4577 case R_PPC64_GOT_TPREL16_HA:
4578 case R_PPC64_GOT_DTPREL16_HA:
4579 case R_PPC64_GOT16_HA:
4580 case R_PPC64_TOC16_HA:
4581 case R_PPC64_PLT16_LO:
4582 case R_PPC64_PLT16_LO_DS:
4583 case R_PPC64_GOT_TLSLD16_LO:
4584 case R_PPC64_GOT_TLSGD16_LO:
4585 case R_PPC64_GOT_TPREL16_LO_DS:
4586 case R_PPC64_GOT_DTPREL16_LO_DS:
4587 case R_PPC64_GOT16_LO:
4588 case R_PPC64_GOT16_LO_DS:
4589 case R_PPC64_TOC16_LO:
4590 case R_PPC64_TOC16_LO_DS:
4591 case R_PPC64_GOT_PCREL34:
4592 ppc64_elf_tdata (abfd)->has_optrel = 1;
4593 ppc64_elf_section_data (sec)->has_optrel = 1;
4594 break;
4595 default:
4596 break;
4597 }
4598
4599 ifunc = NULL;
4600 if (h != NULL)
4601 {
4602 if (h->type == STT_GNU_IFUNC)
4603 {
4604 h->needs_plt = 1;
4605 ifunc = &h->plt.plist;
4606 }
4607 }
4608 else
4609 {
4610 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4611 abfd, r_symndx);
4612 if (isym == NULL)
4613 return FALSE;
4614
4615 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4616 {
4617 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4618 rel->r_addend,
4619 NON_GOT | PLT_IFUNC);
4620 if (ifunc == NULL)
4621 return FALSE;
4622 }
4623 }
4624
4625 tls_type = 0;
4626 switch (r_type)
4627 {
4628 case R_PPC64_TLSGD:
4629 case R_PPC64_TLSLD:
4630 /* These special tls relocs tie a call to __tls_get_addr with
4631 its parameter symbol. */
4632 if (h != NULL)
4633 ((struct ppc_link_hash_entry *) h)->tls_mask |= TLS_TLS | TLS_MARK;
4634 else
4635 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4636 rel->r_addend,
4637 NON_GOT | TLS_TLS | TLS_MARK))
4638 return FALSE;
4639 sec->has_tls_reloc = 1;
4640 break;
4641
4642 case R_PPC64_GOT_TLSLD16:
4643 case R_PPC64_GOT_TLSLD16_LO:
4644 case R_PPC64_GOT_TLSLD16_HI:
4645 case R_PPC64_GOT_TLSLD16_HA:
4646 case R_PPC64_GOT_TLSLD34:
4647 tls_type = TLS_TLS | TLS_LD;
4648 goto dogottls;
4649
4650 case R_PPC64_GOT_TLSGD16:
4651 case R_PPC64_GOT_TLSGD16_LO:
4652 case R_PPC64_GOT_TLSGD16_HI:
4653 case R_PPC64_GOT_TLSGD16_HA:
4654 case R_PPC64_GOT_TLSGD34:
4655 tls_type = TLS_TLS | TLS_GD;
4656 goto dogottls;
4657
4658 case R_PPC64_GOT_TPREL16_DS:
4659 case R_PPC64_GOT_TPREL16_LO_DS:
4660 case R_PPC64_GOT_TPREL16_HI:
4661 case R_PPC64_GOT_TPREL16_HA:
4662 case R_PPC64_GOT_TPREL34:
4663 if (bfd_link_dll (info))
4664 info->flags |= DF_STATIC_TLS;
4665 tls_type = TLS_TLS | TLS_TPREL;
4666 goto dogottls;
4667
4668 case R_PPC64_GOT_DTPREL16_DS:
4669 case R_PPC64_GOT_DTPREL16_LO_DS:
4670 case R_PPC64_GOT_DTPREL16_HI:
4671 case R_PPC64_GOT_DTPREL16_HA:
4672 case R_PPC64_GOT_DTPREL34:
4673 tls_type = TLS_TLS | TLS_DTPREL;
4674 dogottls:
4675 sec->has_tls_reloc = 1;
4676 goto dogot;
4677
4678 case R_PPC64_GOT16:
4679 case R_PPC64_GOT16_LO:
4680 case R_PPC64_GOT16_HI:
4681 case R_PPC64_GOT16_HA:
4682 case R_PPC64_GOT16_DS:
4683 case R_PPC64_GOT16_LO_DS:
4684 case R_PPC64_GOT_PCREL34:
4685 dogot:
4686 /* This symbol requires a global offset table entry. */
4687 sec->has_toc_reloc = 1;
4688 if (r_type == R_PPC64_GOT_TLSLD16
4689 || r_type == R_PPC64_GOT_TLSGD16
4690 || r_type == R_PPC64_GOT_TPREL16_DS
4691 || r_type == R_PPC64_GOT_DTPREL16_DS
4692 || r_type == R_PPC64_GOT16
4693 || r_type == R_PPC64_GOT16_DS)
4694 {
4695 htab->do_multi_toc = 1;
4696 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4697 }
4698
4699 if (ppc64_elf_tdata (abfd)->got == NULL
4700 && !create_got_section (abfd, info))
4701 return FALSE;
4702
4703 if (h != NULL)
4704 {
4705 struct ppc_link_hash_entry *eh;
4706 struct got_entry *ent;
4707
4708 eh = (struct ppc_link_hash_entry *) h;
4709 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4710 if (ent->addend == rel->r_addend
4711 && ent->owner == abfd
4712 && ent->tls_type == tls_type)
4713 break;
4714 if (ent == NULL)
4715 {
4716 bfd_size_type amt = sizeof (*ent);
4717 ent = bfd_alloc (abfd, amt);
4718 if (ent == NULL)
4719 return FALSE;
4720 ent->next = eh->elf.got.glist;
4721 ent->addend = rel->r_addend;
4722 ent->owner = abfd;
4723 ent->tls_type = tls_type;
4724 ent->is_indirect = FALSE;
4725 ent->got.refcount = 0;
4726 eh->elf.got.glist = ent;
4727 }
4728 ent->got.refcount += 1;
4729 eh->tls_mask |= tls_type;
4730 }
4731 else
4732 /* This is a global offset table entry for a local symbol. */
4733 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4734 rel->r_addend, tls_type))
4735 return FALSE;
4736
4737 /* We may also need a plt entry if the symbol turns out to be
4738 an ifunc. */
4739 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1)
4740 {
4741 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
4742 return FALSE;
4743 }
4744 break;
4745
4746 case R_PPC64_PLT16_HA:
4747 case R_PPC64_PLT16_HI:
4748 case R_PPC64_PLT16_LO:
4749 case R_PPC64_PLT16_LO_DS:
4750 case R_PPC64_PLT_PCREL34:
4751 case R_PPC64_PLT_PCREL34_NOTOC:
4752 case R_PPC64_PLT32:
4753 case R_PPC64_PLT64:
4754 /* This symbol requires a procedure linkage table entry. */
4755 plt_list = ifunc;
4756 if (h != NULL)
4757 {
4758 h->needs_plt = 1;
4759 if (h->root.root.string[0] == '.'
4760 && h->root.root.string[1] != '\0')
4761 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4762 ((struct ppc_link_hash_entry *) h)->tls_mask |= PLT_KEEP;
4763 plt_list = &h->plt.plist;
4764 }
4765 if (plt_list == NULL)
4766 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4767 rel->r_addend,
4768 NON_GOT | PLT_KEEP);
4769 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4770 return FALSE;
4771 break;
4772
4773 /* The following relocations don't need to propagate the
4774 relocation if linking a shared object since they are
4775 section relative. */
4776 case R_PPC64_SECTOFF:
4777 case R_PPC64_SECTOFF_LO:
4778 case R_PPC64_SECTOFF_HI:
4779 case R_PPC64_SECTOFF_HA:
4780 case R_PPC64_SECTOFF_DS:
4781 case R_PPC64_SECTOFF_LO_DS:
4782 case R_PPC64_DTPREL16:
4783 case R_PPC64_DTPREL16_LO:
4784 case R_PPC64_DTPREL16_HI:
4785 case R_PPC64_DTPREL16_HA:
4786 case R_PPC64_DTPREL16_DS:
4787 case R_PPC64_DTPREL16_LO_DS:
4788 case R_PPC64_DTPREL16_HIGH:
4789 case R_PPC64_DTPREL16_HIGHA:
4790 case R_PPC64_DTPREL16_HIGHER:
4791 case R_PPC64_DTPREL16_HIGHERA:
4792 case R_PPC64_DTPREL16_HIGHEST:
4793 case R_PPC64_DTPREL16_HIGHESTA:
4794 break;
4795
4796 /* Nor do these. */
4797 case R_PPC64_REL16:
4798 case R_PPC64_REL16_LO:
4799 case R_PPC64_REL16_HI:
4800 case R_PPC64_REL16_HA:
4801 case R_PPC64_REL16_HIGH:
4802 case R_PPC64_REL16_HIGHA:
4803 case R_PPC64_REL16_HIGHER:
4804 case R_PPC64_REL16_HIGHERA:
4805 case R_PPC64_REL16_HIGHEST:
4806 case R_PPC64_REL16_HIGHESTA:
4807 case R_PPC64_REL16_HIGHER34:
4808 case R_PPC64_REL16_HIGHERA34:
4809 case R_PPC64_REL16_HIGHEST34:
4810 case R_PPC64_REL16_HIGHESTA34:
4811 case R_PPC64_REL16DX_HA:
4812 break;
4813
4814 /* Not supported as a dynamic relocation. */
4815 case R_PPC64_ADDR64_LOCAL:
4816 if (bfd_link_pic (info))
4817 {
4818 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4819 ppc_howto_init ();
4820 /* xgettext:c-format */
4821 info->callbacks->einfo (_("%H: %s reloc unsupported "
4822 "in shared libraries and PIEs\n"),
4823 abfd, sec, rel->r_offset,
4824 ppc64_elf_howto_table[r_type]->name);
4825 bfd_set_error (bfd_error_bad_value);
4826 return FALSE;
4827 }
4828 break;
4829
4830 case R_PPC64_TOC16:
4831 case R_PPC64_TOC16_DS:
4832 htab->do_multi_toc = 1;
4833 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4834 /* Fall through. */
4835 case R_PPC64_TOC16_LO:
4836 case R_PPC64_TOC16_HI:
4837 case R_PPC64_TOC16_HA:
4838 case R_PPC64_TOC16_LO_DS:
4839 sec->has_toc_reloc = 1;
4840 if (h != NULL && bfd_link_executable (info))
4841 {
4842 /* We may need a copy reloc. */
4843 h->non_got_ref = 1;
4844 /* Strongly prefer a copy reloc over a dynamic reloc.
4845 glibc ld.so as of 2019-08 will error out if one of
4846 these relocations is emitted. */
4847 h->needs_copy = 1;
4848 goto dodyn;
4849 }
4850 break;
4851
4852 /* Marker reloc. */
4853 case R_PPC64_ENTRY:
4854 break;
4855
4856 /* This relocation describes the C++ object vtable hierarchy.
4857 Reconstruct it for later use during GC. */
4858 case R_PPC64_GNU_VTINHERIT:
4859 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4860 return FALSE;
4861 break;
4862
4863 /* This relocation describes which C++ vtable entries are actually
4864 used. Record for later use during GC. */
4865 case R_PPC64_GNU_VTENTRY:
4866 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4867 return FALSE;
4868 break;
4869
4870 case R_PPC64_REL14:
4871 case R_PPC64_REL14_BRTAKEN:
4872 case R_PPC64_REL14_BRNTAKEN:
4873 {
4874 asection *dest = NULL;
4875
4876 /* Heuristic: If jumping outside our section, chances are
4877 we are going to need a stub. */
4878 if (h != NULL)
4879 {
4880 /* If the sym is weak it may be overridden later, so
4881 don't assume we know where a weak sym lives. */
4882 if (h->root.type == bfd_link_hash_defined)
4883 dest = h->root.u.def.section;
4884 }
4885 else
4886 {
4887 Elf_Internal_Sym *isym;
4888
4889 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4890 abfd, r_symndx);
4891 if (isym == NULL)
4892 return FALSE;
4893
4894 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4895 }
4896
4897 if (dest != sec)
4898 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4899 }
4900 goto rel24;
4901
4902 case R_PPC64_PLTCALL:
4903 case R_PPC64_PLTCALL_NOTOC:
4904 ppc64_elf_section_data (sec)->has_pltcall = 1;
4905 /* Fall through. */
4906
4907 case R_PPC64_REL24:
4908 case R_PPC64_REL24_NOTOC:
4909 rel24:
4910 plt_list = ifunc;
4911 if (h != NULL)
4912 {
4913 h->needs_plt = 1;
4914 if (h->root.root.string[0] == '.'
4915 && h->root.root.string[1] != '\0')
4916 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4917
4918 if (h == tga || h == dottga)
4919 {
4920 sec->has_tls_reloc = 1;
4921 if (rel != relocs
4922 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4923 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4924 /* We have a new-style __tls_get_addr call with
4925 a marker reloc. */
4926 ;
4927 else
4928 /* Mark this section as having an old-style call. */
4929 sec->nomark_tls_get_addr = 1;
4930 }
4931 plt_list = &h->plt.plist;
4932 }
4933
4934 /* We may need a .plt entry if the function this reloc
4935 refers to is in a shared lib. */
4936 if (plt_list
4937 && !update_plt_info (abfd, plt_list, rel->r_addend))
4938 return FALSE;
4939 break;
4940
4941 case R_PPC64_ADDR14:
4942 case R_PPC64_ADDR14_BRNTAKEN:
4943 case R_PPC64_ADDR14_BRTAKEN:
4944 case R_PPC64_ADDR24:
4945 goto dodyn;
4946
4947 case R_PPC64_TPREL64:
4948 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4949 if (bfd_link_dll (info))
4950 info->flags |= DF_STATIC_TLS;
4951 goto dotlstoc;
4952
4953 case R_PPC64_DTPMOD64:
4954 if (rel + 1 < rel_end
4955 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4956 && rel[1].r_offset == rel->r_offset + 8)
4957 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4958 else
4959 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4960 goto dotlstoc;
4961
4962 case R_PPC64_DTPREL64:
4963 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4964 if (rel != relocs
4965 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4966 && rel[-1].r_offset == rel->r_offset - 8)
4967 /* This is the second reloc of a dtpmod, dtprel pair.
4968 Don't mark with TLS_DTPREL. */
4969 goto dodyn;
4970
4971 dotlstoc:
4972 sec->has_tls_reloc = 1;
4973 if (h != NULL)
4974 {
4975 struct ppc_link_hash_entry *eh;
4976 eh = (struct ppc_link_hash_entry *) h;
4977 eh->tls_mask |= tls_type & 0xff;
4978 }
4979 else
4980 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4981 rel->r_addend, tls_type))
4982 return FALSE;
4983
4984 ppc64_sec = ppc64_elf_section_data (sec);
4985 if (ppc64_sec->sec_type != sec_toc)
4986 {
4987 bfd_size_type amt;
4988
4989 /* One extra to simplify get_tls_mask. */
4990 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
4991 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
4992 if (ppc64_sec->u.toc.symndx == NULL)
4993 return FALSE;
4994 amt = sec->size * sizeof (bfd_vma) / 8;
4995 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
4996 if (ppc64_sec->u.toc.add == NULL)
4997 return FALSE;
4998 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4999 ppc64_sec->sec_type = sec_toc;
5000 }
5001 BFD_ASSERT (rel->r_offset % 8 == 0);
5002 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5003 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5004
5005 /* Mark the second slot of a GD or LD entry.
5006 -1 to indicate GD and -2 to indicate LD. */
5007 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5008 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5009 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5010 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5011 goto dodyn;
5012
5013 case R_PPC64_TPREL16:
5014 case R_PPC64_TPREL16_LO:
5015 case R_PPC64_TPREL16_HI:
5016 case R_PPC64_TPREL16_HA:
5017 case R_PPC64_TPREL16_DS:
5018 case R_PPC64_TPREL16_LO_DS:
5019 case R_PPC64_TPREL16_HIGH:
5020 case R_PPC64_TPREL16_HIGHA:
5021 case R_PPC64_TPREL16_HIGHER:
5022 case R_PPC64_TPREL16_HIGHERA:
5023 case R_PPC64_TPREL16_HIGHEST:
5024 case R_PPC64_TPREL16_HIGHESTA:
5025 case R_PPC64_TPREL34:
5026 if (bfd_link_dll (info))
5027 info->flags |= DF_STATIC_TLS;
5028 goto dodyn;
5029
5030 case R_PPC64_ADDR64:
5031 if (is_opd
5032 && rel + 1 < rel_end
5033 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5034 {
5035 if (h != NULL)
5036 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5037 }
5038 /* Fall through. */
5039
5040 case R_PPC64_ADDR16:
5041 case R_PPC64_ADDR16_DS:
5042 case R_PPC64_ADDR16_HA:
5043 case R_PPC64_ADDR16_HI:
5044 case R_PPC64_ADDR16_HIGH:
5045 case R_PPC64_ADDR16_HIGHA:
5046 case R_PPC64_ADDR16_HIGHER:
5047 case R_PPC64_ADDR16_HIGHERA:
5048 case R_PPC64_ADDR16_HIGHEST:
5049 case R_PPC64_ADDR16_HIGHESTA:
5050 case R_PPC64_ADDR16_LO:
5051 case R_PPC64_ADDR16_LO_DS:
5052 case R_PPC64_D34:
5053 case R_PPC64_D34_LO:
5054 case R_PPC64_D34_HI30:
5055 case R_PPC64_D34_HA30:
5056 case R_PPC64_ADDR16_HIGHER34:
5057 case R_PPC64_ADDR16_HIGHERA34:
5058 case R_PPC64_ADDR16_HIGHEST34:
5059 case R_PPC64_ADDR16_HIGHESTA34:
5060 case R_PPC64_D28:
5061 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5062 && rel->r_addend == 0)
5063 {
5064 /* We may need a .plt entry if this reloc refers to a
5065 function in a shared lib. */
5066 if (!update_plt_info (abfd, &h->plt.plist, 0))
5067 return FALSE;
5068 h->pointer_equality_needed = 1;
5069 }
5070 /* Fall through. */
5071
5072 case R_PPC64_REL30:
5073 case R_PPC64_REL32:
5074 case R_PPC64_REL64:
5075 case R_PPC64_ADDR32:
5076 case R_PPC64_UADDR16:
5077 case R_PPC64_UADDR32:
5078 case R_PPC64_UADDR64:
5079 case R_PPC64_TOC:
5080 if (h != NULL && bfd_link_executable (info))
5081 /* We may need a copy reloc. */
5082 h->non_got_ref = 1;
5083
5084 /* Don't propagate .opd relocs. */
5085 if (NO_OPD_RELOCS && is_opd)
5086 break;
5087
5088 /* If we are creating a shared library, and this is a reloc
5089 against a global symbol, or a non PC relative reloc
5090 against a local symbol, then we need to copy the reloc
5091 into the shared library. However, if we are linking with
5092 -Bsymbolic, we do not need to copy a reloc against a
5093 global symbol which is defined in an object we are
5094 including in the link (i.e., DEF_REGULAR is set). At
5095 this point we have not seen all the input files, so it is
5096 possible that DEF_REGULAR is not set now but will be set
5097 later (it is never cleared). In case of a weak definition,
5098 DEF_REGULAR may be cleared later by a strong definition in
5099 a shared library. We account for that possibility below by
5100 storing information in the dyn_relocs field of the hash
5101 table entry. A similar situation occurs when creating
5102 shared libraries and symbol visibility changes render the
5103 symbol local.
5104
5105 If on the other hand, we are creating an executable, we
5106 may need to keep relocations for symbols satisfied by a
5107 dynamic library if we manage to avoid copy relocs for the
5108 symbol. */
5109 dodyn:
5110 if ((h != NULL
5111 && (h->root.type == bfd_link_hash_defweak
5112 || !h->def_regular))
5113 || (h != NULL
5114 && !bfd_link_executable (info)
5115 && !SYMBOLIC_BIND (info, h))
5116 || (bfd_link_pic (info)
5117 && must_be_dyn_reloc (info, r_type))
5118 || (!bfd_link_pic (info)
5119 && ifunc != NULL))
5120 {
5121 /* We must copy these reloc types into the output file.
5122 Create a reloc section in dynobj and make room for
5123 this reloc. */
5124 if (sreloc == NULL)
5125 {
5126 sreloc = _bfd_elf_make_dynamic_reloc_section
5127 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5128
5129 if (sreloc == NULL)
5130 return FALSE;
5131 }
5132
5133 /* If this is a global symbol, we count the number of
5134 relocations we need for this symbol. */
5135 if (h != NULL)
5136 {
5137 struct elf_dyn_relocs *p;
5138 struct elf_dyn_relocs **head;
5139
5140 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5141 p = *head;
5142 if (p == NULL || p->sec != sec)
5143 {
5144 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5145 if (p == NULL)
5146 return FALSE;
5147 p->next = *head;
5148 *head = p;
5149 p->sec = sec;
5150 p->count = 0;
5151 p->pc_count = 0;
5152 }
5153 p->count += 1;
5154 if (!must_be_dyn_reloc (info, r_type))
5155 p->pc_count += 1;
5156 }
5157 else
5158 {
5159 /* Track dynamic relocs needed for local syms too.
5160 We really need local syms available to do this
5161 easily. Oh well. */
5162 struct ppc_dyn_relocs *p;
5163 struct ppc_dyn_relocs **head;
5164 bfd_boolean is_ifunc;
5165 asection *s;
5166 void *vpp;
5167 Elf_Internal_Sym *isym;
5168
5169 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5170 abfd, r_symndx);
5171 if (isym == NULL)
5172 return FALSE;
5173
5174 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5175 if (s == NULL)
5176 s = sec;
5177
5178 vpp = &elf_section_data (s)->local_dynrel;
5179 head = (struct ppc_dyn_relocs **) vpp;
5180 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5181 p = *head;
5182 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5183 p = p->next;
5184 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5185 {
5186 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5187 if (p == NULL)
5188 return FALSE;
5189 p->next = *head;
5190 *head = p;
5191 p->sec = sec;
5192 p->ifunc = is_ifunc;
5193 p->count = 0;
5194 }
5195 p->count += 1;
5196 }
5197 }
5198 break;
5199
5200 default:
5201 break;
5202 }
5203 }
5204
5205 return TRUE;
5206 }
5207
5208 /* Merge backend specific data from an object file to the output
5209 object file when linking. */
5210
5211 static bfd_boolean
5212 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5213 {
5214 bfd *obfd = info->output_bfd;
5215 unsigned long iflags, oflags;
5216
5217 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5218 return TRUE;
5219
5220 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5221 return TRUE;
5222
5223 if (!_bfd_generic_verify_endian_match (ibfd, info))
5224 return FALSE;
5225
5226 iflags = elf_elfheader (ibfd)->e_flags;
5227 oflags = elf_elfheader (obfd)->e_flags;
5228
5229 if (iflags & ~EF_PPC64_ABI)
5230 {
5231 _bfd_error_handler
5232 /* xgettext:c-format */
5233 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5234 bfd_set_error (bfd_error_bad_value);
5235 return FALSE;
5236 }
5237 else if (iflags != oflags && iflags != 0)
5238 {
5239 _bfd_error_handler
5240 /* xgettext:c-format */
5241 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5242 ibfd, iflags, oflags);
5243 bfd_set_error (bfd_error_bad_value);
5244 return FALSE;
5245 }
5246
5247 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5248 return FALSE;
5249
5250 /* Merge Tag_compatibility attributes and any common GNU ones. */
5251 return _bfd_elf_merge_object_attributes (ibfd, info);
5252 }
5253
5254 static bfd_boolean
5255 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5256 {
5257 /* Print normal ELF private data. */
5258 _bfd_elf_print_private_bfd_data (abfd, ptr);
5259
5260 if (elf_elfheader (abfd)->e_flags != 0)
5261 {
5262 FILE *file = ptr;
5263
5264 fprintf (file, _("private flags = 0x%lx:"),
5265 elf_elfheader (abfd)->e_flags);
5266
5267 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5268 fprintf (file, _(" [abiv%ld]"),
5269 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5270 fputc ('\n', file);
5271 }
5272
5273 return TRUE;
5274 }
5275
5276 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5277 of the code entry point, and its section, which must be in the same
5278 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5279
5280 static bfd_vma
5281 opd_entry_value (asection *opd_sec,
5282 bfd_vma offset,
5283 asection **code_sec,
5284 bfd_vma *code_off,
5285 bfd_boolean in_code_sec)
5286 {
5287 bfd *opd_bfd = opd_sec->owner;
5288 Elf_Internal_Rela *relocs;
5289 Elf_Internal_Rela *lo, *hi, *look;
5290 bfd_vma val;
5291
5292 /* No relocs implies we are linking a --just-symbols object, or looking
5293 at a final linked executable with addr2line or somesuch. */
5294 if (opd_sec->reloc_count == 0)
5295 {
5296 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5297
5298 if (contents == NULL)
5299 {
5300 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5301 return (bfd_vma) -1;
5302 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5303 }
5304
5305 /* PR 17512: file: 64b9dfbb. */
5306 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5307 return (bfd_vma) -1;
5308
5309 val = bfd_get_64 (opd_bfd, contents + offset);
5310 if (code_sec != NULL)
5311 {
5312 asection *sec, *likely = NULL;
5313
5314 if (in_code_sec)
5315 {
5316 sec = *code_sec;
5317 if (sec->vma <= val
5318 && val < sec->vma + sec->size)
5319 likely = sec;
5320 else
5321 val = -1;
5322 }
5323 else
5324 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5325 if (sec->vma <= val
5326 && (sec->flags & SEC_LOAD) != 0
5327 && (sec->flags & SEC_ALLOC) != 0)
5328 likely = sec;
5329 if (likely != NULL)
5330 {
5331 *code_sec = likely;
5332 if (code_off != NULL)
5333 *code_off = val - likely->vma;
5334 }
5335 }
5336 return val;
5337 }
5338
5339 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5340
5341 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5342 if (relocs == NULL)
5343 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5344 /* PR 17512: file: df8e1fd6. */
5345 if (relocs == NULL)
5346 return (bfd_vma) -1;
5347
5348 /* Go find the opd reloc at the sym address. */
5349 lo = relocs;
5350 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5351 val = (bfd_vma) -1;
5352 while (lo < hi)
5353 {
5354 look = lo + (hi - lo) / 2;
5355 if (look->r_offset < offset)
5356 lo = look + 1;
5357 else if (look->r_offset > offset)
5358 hi = look;
5359 else
5360 {
5361 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5362
5363 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5364 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5365 {
5366 unsigned long symndx = ELF64_R_SYM (look->r_info);
5367 asection *sec = NULL;
5368
5369 if (symndx >= symtab_hdr->sh_info
5370 && elf_sym_hashes (opd_bfd) != NULL)
5371 {
5372 struct elf_link_hash_entry **sym_hashes;
5373 struct elf_link_hash_entry *rh;
5374
5375 sym_hashes = elf_sym_hashes (opd_bfd);
5376 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5377 if (rh != NULL)
5378 {
5379 rh = elf_follow_link (rh);
5380 if (rh->root.type != bfd_link_hash_defined
5381 && rh->root.type != bfd_link_hash_defweak)
5382 break;
5383 if (rh->root.u.def.section->owner == opd_bfd)
5384 {
5385 val = rh->root.u.def.value;
5386 sec = rh->root.u.def.section;
5387 }
5388 }
5389 }
5390
5391 if (sec == NULL)
5392 {
5393 Elf_Internal_Sym *sym;
5394
5395 if (symndx < symtab_hdr->sh_info)
5396 {
5397 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5398 if (sym == NULL)
5399 {
5400 size_t symcnt = symtab_hdr->sh_info;
5401 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5402 symcnt, 0,
5403 NULL, NULL, NULL);
5404 if (sym == NULL)
5405 break;
5406 symtab_hdr->contents = (bfd_byte *) sym;
5407 }
5408 sym += symndx;
5409 }
5410 else
5411 {
5412 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5413 1, symndx,
5414 NULL, NULL, NULL);
5415 if (sym == NULL)
5416 break;
5417 }
5418 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5419 if (sec == NULL)
5420 break;
5421 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5422 val = sym->st_value;
5423 }
5424
5425 val += look->r_addend;
5426 if (code_off != NULL)
5427 *code_off = val;
5428 if (code_sec != NULL)
5429 {
5430 if (in_code_sec && *code_sec != sec)
5431 return -1;
5432 else
5433 *code_sec = sec;
5434 }
5435 if (sec->output_section != NULL)
5436 val += sec->output_section->vma + sec->output_offset;
5437 }
5438 break;
5439 }
5440 }
5441
5442 return val;
5443 }
5444
5445 /* If the ELF symbol SYM might be a function in SEC, return the
5446 function size and set *CODE_OFF to the function's entry point,
5447 otherwise return zero. */
5448
5449 static bfd_size_type
5450 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5451 bfd_vma *code_off)
5452 {
5453 bfd_size_type size;
5454
5455 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5456 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5457 return 0;
5458
5459 size = 0;
5460 if (!(sym->flags & BSF_SYNTHETIC))
5461 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5462
5463 if (strcmp (sym->section->name, ".opd") == 0)
5464 {
5465 struct _opd_sec_data *opd = get_opd_info (sym->section);
5466 bfd_vma symval = sym->value;
5467
5468 if (opd != NULL
5469 && opd->adjust != NULL
5470 && elf_section_data (sym->section)->relocs != NULL)
5471 {
5472 /* opd_entry_value will use cached relocs that have been
5473 adjusted, but with raw symbols. That means both local
5474 and global symbols need adjusting. */
5475 long adjust = opd->adjust[OPD_NDX (symval)];
5476 if (adjust == -1)
5477 return 0;
5478 symval += adjust;
5479 }
5480
5481 if (opd_entry_value (sym->section, symval,
5482 &sec, code_off, TRUE) == (bfd_vma) -1)
5483 return 0;
5484 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5485 symbol. This size has nothing to do with the code size of the
5486 function, which is what we're supposed to return, but the
5487 code size isn't available without looking up the dot-sym.
5488 However, doing that would be a waste of time particularly
5489 since elf_find_function will look at the dot-sym anyway.
5490 Now, elf_find_function will keep the largest size of any
5491 function sym found at the code address of interest, so return
5492 1 here to avoid it incorrectly caching a larger function size
5493 for a small function. This does mean we return the wrong
5494 size for a new-ABI function of size 24, but all that does is
5495 disable caching for such functions. */
5496 if (size == 24)
5497 size = 1;
5498 }
5499 else
5500 {
5501 if (sym->section != sec)
5502 return 0;
5503 *code_off = sym->value;
5504 }
5505 if (size == 0)
5506 size = 1;
5507 return size;
5508 }
5509
5510 /* Return true if symbol is a strong function defined in an ELFv2
5511 object with st_other localentry bits of zero, ie. its local entry
5512 point coincides with its global entry point. */
5513
5514 static bfd_boolean
5515 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5516 {
5517 return (h != NULL
5518 && h->type == STT_FUNC
5519 && h->root.type == bfd_link_hash_defined
5520 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5521 && !((struct ppc_link_hash_entry *) h)->non_zero_localentry
5522 && is_ppc64_elf (h->root.u.def.section->owner)
5523 && abiversion (h->root.u.def.section->owner) >= 2);
5524 }
5525
5526 /* Return true if symbol is defined in a regular object file. */
5527
5528 static bfd_boolean
5529 is_static_defined (struct elf_link_hash_entry *h)
5530 {
5531 return ((h->root.type == bfd_link_hash_defined
5532 || h->root.type == bfd_link_hash_defweak)
5533 && h->root.u.def.section != NULL
5534 && h->root.u.def.section->output_section != NULL);
5535 }
5536
5537 /* If FDH is a function descriptor symbol, return the associated code
5538 entry symbol if it is defined. Return NULL otherwise. */
5539
5540 static struct ppc_link_hash_entry *
5541 defined_code_entry (struct ppc_link_hash_entry *fdh)
5542 {
5543 if (fdh->is_func_descriptor)
5544 {
5545 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5546 if (fh->elf.root.type == bfd_link_hash_defined
5547 || fh->elf.root.type == bfd_link_hash_defweak)
5548 return fh;
5549 }
5550 return NULL;
5551 }
5552
5553 /* If FH is a function code entry symbol, return the associated
5554 function descriptor symbol if it is defined. Return NULL otherwise. */
5555
5556 static struct ppc_link_hash_entry *
5557 defined_func_desc (struct ppc_link_hash_entry *fh)
5558 {
5559 if (fh->oh != NULL
5560 && fh->oh->is_func_descriptor)
5561 {
5562 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5563 if (fdh->elf.root.type == bfd_link_hash_defined
5564 || fdh->elf.root.type == bfd_link_hash_defweak)
5565 return fdh;
5566 }
5567 return NULL;
5568 }
5569
5570 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5571
5572 /* Garbage collect sections, after first dealing with dot-symbols. */
5573
5574 static bfd_boolean
5575 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5576 {
5577 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5578
5579 if (htab != NULL && htab->need_func_desc_adj)
5580 {
5581 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5582 htab->need_func_desc_adj = 0;
5583 }
5584 return bfd_elf_gc_sections (abfd, info);
5585 }
5586
5587 /* Mark all our entry sym sections, both opd and code section. */
5588
5589 static void
5590 ppc64_elf_gc_keep (struct bfd_link_info *info)
5591 {
5592 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5593 struct bfd_sym_chain *sym;
5594
5595 if (htab == NULL)
5596 return;
5597
5598 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5599 {
5600 struct ppc_link_hash_entry *eh, *fh;
5601 asection *sec;
5602
5603 eh = (struct ppc_link_hash_entry *)
5604 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5605 if (eh == NULL)
5606 continue;
5607 if (eh->elf.root.type != bfd_link_hash_defined
5608 && eh->elf.root.type != bfd_link_hash_defweak)
5609 continue;
5610
5611 fh = defined_code_entry (eh);
5612 if (fh != NULL)
5613 {
5614 sec = fh->elf.root.u.def.section;
5615 sec->flags |= SEC_KEEP;
5616 }
5617 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5618 && opd_entry_value (eh->elf.root.u.def.section,
5619 eh->elf.root.u.def.value,
5620 &sec, NULL, FALSE) != (bfd_vma) -1)
5621 sec->flags |= SEC_KEEP;
5622
5623 sec = eh->elf.root.u.def.section;
5624 sec->flags |= SEC_KEEP;
5625 }
5626 }
5627
5628 /* Mark sections containing dynamically referenced symbols. When
5629 building shared libraries, we must assume that any visible symbol is
5630 referenced. */
5631
5632 static bfd_boolean
5633 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5634 {
5635 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5636 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5637 struct ppc_link_hash_entry *fdh;
5638 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5639
5640 /* Dynamic linking info is on the func descriptor sym. */
5641 fdh = defined_func_desc (eh);
5642 if (fdh != NULL)
5643 eh = fdh;
5644
5645 if ((eh->elf.root.type == bfd_link_hash_defined
5646 || eh->elf.root.type == bfd_link_hash_defweak)
5647 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5648 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5649 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5650 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5651 && (!bfd_link_executable (info)
5652 || info->gc_keep_exported
5653 || info->export_dynamic
5654 || (eh->elf.dynamic
5655 && d != NULL
5656 && (*d->match) (&d->head, NULL,
5657 eh->elf.root.root.string)))
5658 && (eh->elf.versioned >= versioned
5659 || !bfd_hide_sym_by_version (info->version_info,
5660 eh->elf.root.root.string)))))
5661 {
5662 asection *code_sec;
5663 struct ppc_link_hash_entry *fh;
5664
5665 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5666
5667 /* Function descriptor syms cause the associated
5668 function code sym section to be marked. */
5669 fh = defined_code_entry (eh);
5670 if (fh != NULL)
5671 {
5672 code_sec = fh->elf.root.u.def.section;
5673 code_sec->flags |= SEC_KEEP;
5674 }
5675 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5676 && opd_entry_value (eh->elf.root.u.def.section,
5677 eh->elf.root.u.def.value,
5678 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5679 code_sec->flags |= SEC_KEEP;
5680 }
5681
5682 return TRUE;
5683 }
5684
5685 /* Return the section that should be marked against GC for a given
5686 relocation. */
5687
5688 static asection *
5689 ppc64_elf_gc_mark_hook (asection *sec,
5690 struct bfd_link_info *info,
5691 Elf_Internal_Rela *rel,
5692 struct elf_link_hash_entry *h,
5693 Elf_Internal_Sym *sym)
5694 {
5695 asection *rsec;
5696
5697 /* Syms return NULL if we're marking .opd, so we avoid marking all
5698 function sections, as all functions are referenced in .opd. */
5699 rsec = NULL;
5700 if (get_opd_info (sec) != NULL)
5701 return rsec;
5702
5703 if (h != NULL)
5704 {
5705 enum elf_ppc64_reloc_type r_type;
5706 struct ppc_link_hash_entry *eh, *fh, *fdh;
5707
5708 r_type = ELF64_R_TYPE (rel->r_info);
5709 switch (r_type)
5710 {
5711 case R_PPC64_GNU_VTINHERIT:
5712 case R_PPC64_GNU_VTENTRY:
5713 break;
5714
5715 default:
5716 switch (h->root.type)
5717 {
5718 case bfd_link_hash_defined:
5719 case bfd_link_hash_defweak:
5720 eh = (struct ppc_link_hash_entry *) h;
5721 fdh = defined_func_desc (eh);
5722 if (fdh != NULL)
5723 {
5724 /* -mcall-aixdesc code references the dot-symbol on
5725 a call reloc. Mark the function descriptor too
5726 against garbage collection. */
5727 fdh->elf.mark = 1;
5728 if (fdh->elf.is_weakalias)
5729 weakdef (&fdh->elf)->mark = 1;
5730 eh = fdh;
5731 }
5732
5733 /* Function descriptor syms cause the associated
5734 function code sym section to be marked. */
5735 fh = defined_code_entry (eh);
5736 if (fh != NULL)
5737 {
5738 /* They also mark their opd section. */
5739 eh->elf.root.u.def.section->gc_mark = 1;
5740
5741 rsec = fh->elf.root.u.def.section;
5742 }
5743 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5744 && opd_entry_value (eh->elf.root.u.def.section,
5745 eh->elf.root.u.def.value,
5746 &rsec, NULL, FALSE) != (bfd_vma) -1)
5747 eh->elf.root.u.def.section->gc_mark = 1;
5748 else
5749 rsec = h->root.u.def.section;
5750 break;
5751
5752 case bfd_link_hash_common:
5753 rsec = h->root.u.c.p->section;
5754 break;
5755
5756 default:
5757 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5758 }
5759 }
5760 }
5761 else
5762 {
5763 struct _opd_sec_data *opd;
5764
5765 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5766 opd = get_opd_info (rsec);
5767 if (opd != NULL && opd->func_sec != NULL)
5768 {
5769 rsec->gc_mark = 1;
5770
5771 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5772 }
5773 }
5774
5775 return rsec;
5776 }
5777
5778 /* The maximum size of .sfpr. */
5779 #define SFPR_MAX (218*4)
5780
5781 struct sfpr_def_parms
5782 {
5783 const char name[12];
5784 unsigned char lo, hi;
5785 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5786 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5787 };
5788
5789 /* Auto-generate _save*, _rest* functions in .sfpr.
5790 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5791 instead. */
5792
5793 static bfd_boolean
5794 sfpr_define (struct bfd_link_info *info,
5795 const struct sfpr_def_parms *parm,
5796 asection *stub_sec)
5797 {
5798 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5799 unsigned int i;
5800 size_t len = strlen (parm->name);
5801 bfd_boolean writing = FALSE;
5802 char sym[16];
5803
5804 if (htab == NULL)
5805 return FALSE;
5806
5807 memcpy (sym, parm->name, len);
5808 sym[len + 2] = 0;
5809
5810 for (i = parm->lo; i <= parm->hi; i++)
5811 {
5812 struct ppc_link_hash_entry *h;
5813
5814 sym[len + 0] = i / 10 + '0';
5815 sym[len + 1] = i % 10 + '0';
5816 h = (struct ppc_link_hash_entry *)
5817 elf_link_hash_lookup (&htab->elf, sym, writing, TRUE, TRUE);
5818 if (stub_sec != NULL)
5819 {
5820 if (h != NULL
5821 && h->elf.root.type == bfd_link_hash_defined
5822 && h->elf.root.u.def.section == htab->sfpr)
5823 {
5824 struct elf_link_hash_entry *s;
5825 char buf[32];
5826 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5827 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5828 if (s == NULL)
5829 return FALSE;
5830 if (s->root.type == bfd_link_hash_new
5831 || (s->root.type = bfd_link_hash_defined
5832 && s->root.u.def.section == stub_sec))
5833 {
5834 s->root.type = bfd_link_hash_defined;
5835 s->root.u.def.section = stub_sec;
5836 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5837 + h->elf.root.u.def.value);
5838 s->ref_regular = 1;
5839 s->def_regular = 1;
5840 s->ref_regular_nonweak = 1;
5841 s->forced_local = 1;
5842 s->non_elf = 0;
5843 s->root.linker_def = 1;
5844 }
5845 }
5846 continue;
5847 }
5848 if (h != NULL)
5849 {
5850 h->save_res = 1;
5851 if (!h->elf.def_regular)
5852 {
5853 h->elf.root.type = bfd_link_hash_defined;
5854 h->elf.root.u.def.section = htab->sfpr;
5855 h->elf.root.u.def.value = htab->sfpr->size;
5856 h->elf.type = STT_FUNC;
5857 h->elf.def_regular = 1;
5858 h->elf.non_elf = 0;
5859 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5860 writing = TRUE;
5861 if (htab->sfpr->contents == NULL)
5862 {
5863 htab->sfpr->contents
5864 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5865 if (htab->sfpr->contents == NULL)
5866 return FALSE;
5867 }
5868 }
5869 }
5870 if (writing)
5871 {
5872 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5873 if (i != parm->hi)
5874 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5875 else
5876 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5877 htab->sfpr->size = p - htab->sfpr->contents;
5878 }
5879 }
5880
5881 return TRUE;
5882 }
5883
5884 static bfd_byte *
5885 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5886 {
5887 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5888 return p + 4;
5889 }
5890
5891 static bfd_byte *
5892 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5893 {
5894 p = savegpr0 (abfd, p, r);
5895 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5896 p = p + 4;
5897 bfd_put_32 (abfd, BLR, p);
5898 return p + 4;
5899 }
5900
5901 static bfd_byte *
5902 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5903 {
5904 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5905 return p + 4;
5906 }
5907
5908 static bfd_byte *
5909 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5910 {
5911 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5912 p = p + 4;
5913 p = restgpr0 (abfd, p, r);
5914 bfd_put_32 (abfd, MTLR_R0, p);
5915 p = p + 4;
5916 if (r == 29)
5917 {
5918 p = restgpr0 (abfd, p, 30);
5919 p = restgpr0 (abfd, p, 31);
5920 }
5921 bfd_put_32 (abfd, BLR, p);
5922 return p + 4;
5923 }
5924
5925 static bfd_byte *
5926 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5927 {
5928 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5929 return p + 4;
5930 }
5931
5932 static bfd_byte *
5933 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5934 {
5935 p = savegpr1 (abfd, p, r);
5936 bfd_put_32 (abfd, BLR, p);
5937 return p + 4;
5938 }
5939
5940 static bfd_byte *
5941 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5942 {
5943 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5944 return p + 4;
5945 }
5946
5947 static bfd_byte *
5948 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5949 {
5950 p = restgpr1 (abfd, p, r);
5951 bfd_put_32 (abfd, BLR, p);
5952 return p + 4;
5953 }
5954
5955 static bfd_byte *
5956 savefpr (bfd *abfd, bfd_byte *p, int r)
5957 {
5958 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5959 return p + 4;
5960 }
5961
5962 static bfd_byte *
5963 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5964 {
5965 p = savefpr (abfd, p, r);
5966 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5967 p = p + 4;
5968 bfd_put_32 (abfd, BLR, p);
5969 return p + 4;
5970 }
5971
5972 static bfd_byte *
5973 restfpr (bfd *abfd, bfd_byte *p, int r)
5974 {
5975 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5976 return p + 4;
5977 }
5978
5979 static bfd_byte *
5980 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5981 {
5982 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5983 p = p + 4;
5984 p = restfpr (abfd, p, r);
5985 bfd_put_32 (abfd, MTLR_R0, p);
5986 p = p + 4;
5987 if (r == 29)
5988 {
5989 p = restfpr (abfd, p, 30);
5990 p = restfpr (abfd, p, 31);
5991 }
5992 bfd_put_32 (abfd, BLR, p);
5993 return p + 4;
5994 }
5995
5996 static bfd_byte *
5997 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5998 {
5999 p = savefpr (abfd, p, r);
6000 bfd_put_32 (abfd, BLR, p);
6001 return p + 4;
6002 }
6003
6004 static bfd_byte *
6005 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6006 {
6007 p = restfpr (abfd, p, r);
6008 bfd_put_32 (abfd, BLR, p);
6009 return p + 4;
6010 }
6011
6012 static bfd_byte *
6013 savevr (bfd *abfd, bfd_byte *p, int r)
6014 {
6015 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6016 p = p + 4;
6017 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6018 return p + 4;
6019 }
6020
6021 static bfd_byte *
6022 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6023 {
6024 p = savevr (abfd, p, r);
6025 bfd_put_32 (abfd, BLR, p);
6026 return p + 4;
6027 }
6028
6029 static bfd_byte *
6030 restvr (bfd *abfd, bfd_byte *p, int r)
6031 {
6032 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6033 p = p + 4;
6034 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6035 return p + 4;
6036 }
6037
6038 static bfd_byte *
6039 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6040 {
6041 p = restvr (abfd, p, r);
6042 bfd_put_32 (abfd, BLR, p);
6043 return p + 4;
6044 }
6045
6046 /* Called via elf_link_hash_traverse to transfer dynamic linking
6047 information on function code symbol entries to their corresponding
6048 function descriptor symbol entries. */
6049
6050 static bfd_boolean
6051 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6052 {
6053 struct bfd_link_info *info;
6054 struct ppc_link_hash_table *htab;
6055 struct ppc_link_hash_entry *fh;
6056 struct ppc_link_hash_entry *fdh;
6057 bfd_boolean force_local;
6058
6059 fh = (struct ppc_link_hash_entry *) h;
6060 if (fh->elf.root.type == bfd_link_hash_indirect)
6061 return TRUE;
6062
6063 if (!fh->is_func)
6064 return TRUE;
6065
6066 if (fh->elf.root.root.string[0] != '.'
6067 || fh->elf.root.root.string[1] == '\0')
6068 return TRUE;
6069
6070 info = inf;
6071 htab = ppc_hash_table (info);
6072 if (htab == NULL)
6073 return FALSE;
6074
6075 /* Find the corresponding function descriptor symbol. */
6076 fdh = lookup_fdh (fh, htab);
6077
6078 /* Resolve undefined references to dot-symbols as the value
6079 in the function descriptor, if we have one in a regular object.
6080 This is to satisfy cases like ".quad .foo". Calls to functions
6081 in dynamic objects are handled elsewhere. */
6082 if ((fh->elf.root.type == bfd_link_hash_undefined
6083 || fh->elf.root.type == bfd_link_hash_undefweak)
6084 && (fdh->elf.root.type == bfd_link_hash_defined
6085 || fdh->elf.root.type == bfd_link_hash_defweak)
6086 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6087 && opd_entry_value (fdh->elf.root.u.def.section,
6088 fdh->elf.root.u.def.value,
6089 &fh->elf.root.u.def.section,
6090 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6091 {
6092 fh->elf.root.type = fdh->elf.root.type;
6093 fh->elf.forced_local = 1;
6094 fh->elf.def_regular = fdh->elf.def_regular;
6095 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6096 }
6097
6098 if (!fh->elf.dynamic)
6099 {
6100 struct plt_entry *ent;
6101
6102 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6103 if (ent->plt.refcount > 0)
6104 break;
6105 if (ent == NULL)
6106 return TRUE;
6107 }
6108
6109 /* Create a descriptor as undefined if necessary. */
6110 if (fdh == NULL
6111 && !bfd_link_executable (info)
6112 && (fh->elf.root.type == bfd_link_hash_undefined
6113 || fh->elf.root.type == bfd_link_hash_undefweak))
6114 {
6115 fdh = make_fdh (info, fh);
6116 if (fdh == NULL)
6117 return FALSE;
6118 }
6119
6120 /* We can't support overriding of symbols on a fake descriptor. */
6121 if (fdh != NULL
6122 && fdh->fake
6123 && (fh->elf.root.type == bfd_link_hash_defined
6124 || fh->elf.root.type == bfd_link_hash_defweak))
6125 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6126
6127 /* Transfer dynamic linking information to the function descriptor. */
6128 if (fdh != NULL)
6129 {
6130 fdh->elf.ref_regular |= fh->elf.ref_regular;
6131 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6132 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6133 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6134 fdh->elf.dynamic |= fh->elf.dynamic;
6135 fdh->elf.needs_plt |= (fh->elf.needs_plt
6136 || fh->elf.type == STT_FUNC
6137 || fh->elf.type == STT_GNU_IFUNC);
6138 move_plt_plist (fh, fdh);
6139
6140 if (!fdh->elf.forced_local
6141 && fh->elf.dynindx != -1)
6142 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6143 return FALSE;
6144 }
6145
6146 /* Now that the info is on the function descriptor, clear the
6147 function code sym info. Any function code syms for which we
6148 don't have a definition in a regular file, we force local.
6149 This prevents a shared library from exporting syms that have
6150 been imported from another library. Function code syms that
6151 are really in the library we must leave global to prevent the
6152 linker dragging in a definition from a static library. */
6153 force_local = (!fh->elf.def_regular
6154 || fdh == NULL
6155 || !fdh->elf.def_regular
6156 || fdh->elf.forced_local);
6157 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6158
6159 return TRUE;
6160 }
6161
6162 static const struct sfpr_def_parms save_res_funcs[] =
6163 {
6164 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6165 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6166 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6167 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6168 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6169 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6170 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6171 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6172 { "._savef", 14, 31, savefpr, savefpr1_tail },
6173 { "._restf", 14, 31, restfpr, restfpr1_tail },
6174 { "_savevr_", 20, 31, savevr, savevr_tail },
6175 { "_restvr_", 20, 31, restvr, restvr_tail }
6176 };
6177
6178 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6179 this hook to a) provide some gcc support functions, and b) transfer
6180 dynamic linking information gathered so far on function code symbol
6181 entries, to their corresponding function descriptor symbol entries. */
6182
6183 static bfd_boolean
6184 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6185 struct bfd_link_info *info)
6186 {
6187 struct ppc_link_hash_table *htab;
6188
6189 htab = ppc_hash_table (info);
6190 if (htab == NULL)
6191 return FALSE;
6192
6193 /* Provide any missing _save* and _rest* functions. */
6194 if (htab->sfpr != NULL)
6195 {
6196 unsigned int i;
6197
6198 htab->sfpr->size = 0;
6199 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6200 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6201 return FALSE;
6202 if (htab->sfpr->size == 0)
6203 htab->sfpr->flags |= SEC_EXCLUDE;
6204 }
6205
6206 if (bfd_link_relocatable (info))
6207 return TRUE;
6208
6209 if (htab->elf.hgot != NULL)
6210 {
6211 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6212 /* Make .TOC. defined so as to prevent it being made dynamic.
6213 The wrong value here is fixed later in ppc64_elf_set_toc. */
6214 if (!htab->elf.hgot->def_regular
6215 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6216 {
6217 htab->elf.hgot->root.type = bfd_link_hash_defined;
6218 htab->elf.hgot->root.u.def.value = 0;
6219 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6220 htab->elf.hgot->def_regular = 1;
6221 htab->elf.hgot->root.linker_def = 1;
6222 }
6223 htab->elf.hgot->type = STT_OBJECT;
6224 htab->elf.hgot->other
6225 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6226 }
6227
6228 if (htab->need_func_desc_adj)
6229 {
6230 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6231 htab->need_func_desc_adj = 0;
6232 }
6233
6234 return TRUE;
6235 }
6236
6237 /* Find dynamic relocs for H that apply to read-only sections. */
6238
6239 static asection *
6240 readonly_dynrelocs (struct elf_link_hash_entry *h)
6241 {
6242 struct ppc_link_hash_entry *eh;
6243 struct elf_dyn_relocs *p;
6244
6245 eh = (struct ppc_link_hash_entry *) h;
6246 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6247 {
6248 asection *s = p->sec->output_section;
6249
6250 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6251 return p->sec;
6252 }
6253 return NULL;
6254 }
6255
6256 /* Return true if we have dynamic relocs against H or any of its weak
6257 aliases, that apply to read-only sections. Cannot be used after
6258 size_dynamic_sections. */
6259
6260 static bfd_boolean
6261 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6262 {
6263 struct ppc_link_hash_entry *eh;
6264
6265 eh = (struct ppc_link_hash_entry *) h;
6266 do
6267 {
6268 if (readonly_dynrelocs (&eh->elf))
6269 return TRUE;
6270 eh = (struct ppc_link_hash_entry *) eh->elf.u.alias;
6271 }
6272 while (eh != NULL && &eh->elf != h);
6273
6274 return FALSE;
6275 }
6276
6277 /* Return whether EH has pc-relative dynamic relocs. */
6278
6279 static bfd_boolean
6280 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6281 {
6282 struct elf_dyn_relocs *p;
6283
6284 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6285 if (p->pc_count != 0)
6286 return TRUE;
6287 return FALSE;
6288 }
6289
6290 /* Return true if a global entry stub will be created for H. Valid
6291 for ELFv2 before plt entries have been allocated. */
6292
6293 static bfd_boolean
6294 global_entry_stub (struct elf_link_hash_entry *h)
6295 {
6296 struct plt_entry *pent;
6297
6298 if (!h->pointer_equality_needed
6299 || h->def_regular)
6300 return FALSE;
6301
6302 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6303 if (pent->plt.refcount > 0
6304 && pent->addend == 0)
6305 return TRUE;
6306
6307 return FALSE;
6308 }
6309
6310 /* Adjust a symbol defined by a dynamic object and referenced by a
6311 regular object. The current definition is in some section of the
6312 dynamic object, but we're not including those sections. We have to
6313 change the definition to something the rest of the link can
6314 understand. */
6315
6316 static bfd_boolean
6317 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6318 struct elf_link_hash_entry *h)
6319 {
6320 struct ppc_link_hash_table *htab;
6321 asection *s, *srel;
6322
6323 htab = ppc_hash_table (info);
6324 if (htab == NULL)
6325 return FALSE;
6326
6327 /* Deal with function syms. */
6328 if (h->type == STT_FUNC
6329 || h->type == STT_GNU_IFUNC
6330 || h->needs_plt)
6331 {
6332 bfd_boolean local = (((struct ppc_link_hash_entry *) h)->save_res
6333 || SYMBOL_CALLS_LOCAL (info, h)
6334 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6335 /* Discard dyn_relocs when non-pic if we've decided that a
6336 function symbol is local and not an ifunc. We keep dynamic
6337 relocs for ifuncs when local rather than always emitting a
6338 plt call stub for them and defining the symbol on the call
6339 stub. We can't do that for ELFv1 anyway (a function symbol
6340 is defined on a descriptor, not code) and it can be faster at
6341 run-time due to not needing to bounce through a stub. The
6342 dyn_relocs for ifuncs will be applied even in a static
6343 executable. */
6344 if (!bfd_link_pic (info)
6345 && h->type != STT_GNU_IFUNC
6346 && local)
6347 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6348
6349 /* Clear procedure linkage table information for any symbol that
6350 won't need a .plt entry. */
6351 struct plt_entry *ent;
6352 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6353 if (ent->plt.refcount > 0)
6354 break;
6355 if (ent == NULL
6356 || (h->type != STT_GNU_IFUNC
6357 && local
6358 && (htab->can_convert_all_inline_plt
6359 || (((struct ppc_link_hash_entry *) h)->tls_mask
6360 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6361 {
6362 h->plt.plist = NULL;
6363 h->needs_plt = 0;
6364 h->pointer_equality_needed = 0;
6365 }
6366 else if (abiversion (info->output_bfd) >= 2)
6367 {
6368 /* Taking a function's address in a read/write section
6369 doesn't require us to define the function symbol in the
6370 executable on a global entry stub. A dynamic reloc can
6371 be used instead. The reason we prefer a few more dynamic
6372 relocs is that calling via a global entry stub costs a
6373 few more instructions, and pointer_equality_needed causes
6374 extra work in ld.so when resolving these symbols. */
6375 if (global_entry_stub (h))
6376 {
6377 if (!readonly_dynrelocs (h))
6378 {
6379 h->pointer_equality_needed = 0;
6380 /* If we haven't seen a branch reloc and the symbol
6381 isn't an ifunc then we don't need a plt entry. */
6382 if (!h->needs_plt)
6383 h->plt.plist = NULL;
6384 }
6385 else if (!bfd_link_pic (info))
6386 /* We are going to be defining the function symbol on the
6387 plt stub, so no dyn_relocs needed when non-pic. */
6388 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6389 }
6390
6391 /* ELFv2 function symbols can't have copy relocs. */
6392 return TRUE;
6393 }
6394 else if (!h->needs_plt
6395 && !readonly_dynrelocs (h))
6396 {
6397 /* If we haven't seen a branch reloc and the symbol isn't an
6398 ifunc then we don't need a plt entry. */
6399 h->plt.plist = NULL;
6400 h->pointer_equality_needed = 0;
6401 return TRUE;
6402 }
6403 }
6404 else
6405 h->plt.plist = NULL;
6406
6407 /* If this is a weak symbol, and there is a real definition, the
6408 processor independent code will have arranged for us to see the
6409 real definition first, and we can just use the same value. */
6410 if (h->is_weakalias)
6411 {
6412 struct elf_link_hash_entry *def = weakdef (h);
6413 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6414 h->root.u.def.section = def->root.u.def.section;
6415 h->root.u.def.value = def->root.u.def.value;
6416 if (def->root.u.def.section == htab->elf.sdynbss
6417 || def->root.u.def.section == htab->elf.sdynrelro)
6418 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6419 return TRUE;
6420 }
6421
6422 /* If we are creating a shared library, we must presume that the
6423 only references to the symbol are via the global offset table.
6424 For such cases we need not do anything here; the relocations will
6425 be handled correctly by relocate_section. */
6426 if (!bfd_link_executable (info))
6427 return TRUE;
6428
6429 /* If there are no references to this symbol that do not use the
6430 GOT, we don't need to generate a copy reloc. */
6431 if (!h->non_got_ref)
6432 return TRUE;
6433
6434 /* Don't generate a copy reloc for symbols defined in the executable. */
6435 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6436
6437 /* If -z nocopyreloc was given, don't generate them either. */
6438 || info->nocopyreloc
6439
6440 /* If we don't find any dynamic relocs in read-only sections, then
6441 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6442 || (ELIMINATE_COPY_RELOCS
6443 && !h->needs_copy
6444 && !alias_readonly_dynrelocs (h))
6445
6446 /* Protected variables do not work with .dynbss. The copy in
6447 .dynbss won't be used by the shared library with the protected
6448 definition for the variable. Text relocations are preferable
6449 to an incorrect program. */
6450 || h->protected_def)
6451 return TRUE;
6452
6453 if (h->plt.plist != NULL)
6454 {
6455 /* We should never get here, but unfortunately there are versions
6456 of gcc out there that improperly (for this ABI) put initialized
6457 function pointers, vtable refs and suchlike in read-only
6458 sections. Allow them to proceed, but warn that this might
6459 break at runtime. */
6460 info->callbacks->einfo
6461 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6462 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6463 h->root.root.string);
6464 }
6465
6466 /* This is a reference to a symbol defined by a dynamic object which
6467 is not a function. */
6468
6469 /* We must allocate the symbol in our .dynbss section, which will
6470 become part of the .bss section of the executable. There will be
6471 an entry for this symbol in the .dynsym section. The dynamic
6472 object will contain position independent code, so all references
6473 from the dynamic object to this symbol will go through the global
6474 offset table. The dynamic linker will use the .dynsym entry to
6475 determine the address it must put in the global offset table, so
6476 both the dynamic object and the regular object will refer to the
6477 same memory location for the variable. */
6478 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6479 {
6480 s = htab->elf.sdynrelro;
6481 srel = htab->elf.sreldynrelro;
6482 }
6483 else
6484 {
6485 s = htab->elf.sdynbss;
6486 srel = htab->elf.srelbss;
6487 }
6488 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6489 {
6490 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6491 linker to copy the initial value out of the dynamic object
6492 and into the runtime process image. */
6493 srel->size += sizeof (Elf64_External_Rela);
6494 h->needs_copy = 1;
6495 }
6496
6497 /* We no longer want dyn_relocs. */
6498 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6499 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6500 }
6501
6502 /* If given a function descriptor symbol, hide both the function code
6503 sym and the descriptor. */
6504 static void
6505 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6506 struct elf_link_hash_entry *h,
6507 bfd_boolean force_local)
6508 {
6509 struct ppc_link_hash_entry *eh;
6510 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6511
6512 if (ppc_hash_table (info) == NULL)
6513 return;
6514
6515 eh = (struct ppc_link_hash_entry *) h;
6516 if (eh->is_func_descriptor)
6517 {
6518 struct ppc_link_hash_entry *fh = eh->oh;
6519
6520 if (fh == NULL)
6521 {
6522 const char *p, *q;
6523 struct elf_link_hash_table *htab = elf_hash_table (info);
6524 char save;
6525
6526 /* We aren't supposed to use alloca in BFD because on
6527 systems which do not have alloca the version in libiberty
6528 calls xmalloc, which might cause the program to crash
6529 when it runs out of memory. This function doesn't have a
6530 return status, so there's no way to gracefully return an
6531 error. So cheat. We know that string[-1] can be safely
6532 accessed; It's either a string in an ELF string table,
6533 or allocated in an objalloc structure. */
6534
6535 p = eh->elf.root.root.string - 1;
6536 save = *p;
6537 *(char *) p = '.';
6538 fh = (struct ppc_link_hash_entry *)
6539 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6540 *(char *) p = save;
6541
6542 /* Unfortunately, if it so happens that the string we were
6543 looking for was allocated immediately before this string,
6544 then we overwrote the string terminator. That's the only
6545 reason the lookup should fail. */
6546 if (fh == NULL)
6547 {
6548 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6549 while (q >= eh->elf.root.root.string && *q == *p)
6550 --q, --p;
6551 if (q < eh->elf.root.root.string && *p == '.')
6552 fh = (struct ppc_link_hash_entry *)
6553 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6554 }
6555 if (fh != NULL)
6556 {
6557 eh->oh = fh;
6558 fh->oh = eh;
6559 }
6560 }
6561 if (fh != NULL)
6562 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6563 }
6564 }
6565
6566 static bfd_boolean
6567 get_sym_h (struct elf_link_hash_entry **hp,
6568 Elf_Internal_Sym **symp,
6569 asection **symsecp,
6570 unsigned char **tls_maskp,
6571 Elf_Internal_Sym **locsymsp,
6572 unsigned long r_symndx,
6573 bfd *ibfd)
6574 {
6575 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6576
6577 if (r_symndx >= symtab_hdr->sh_info)
6578 {
6579 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6580 struct elf_link_hash_entry *h;
6581
6582 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6583 h = elf_follow_link (h);
6584
6585 if (hp != NULL)
6586 *hp = h;
6587
6588 if (symp != NULL)
6589 *symp = NULL;
6590
6591 if (symsecp != NULL)
6592 {
6593 asection *symsec = NULL;
6594 if (h->root.type == bfd_link_hash_defined
6595 || h->root.type == bfd_link_hash_defweak)
6596 symsec = h->root.u.def.section;
6597 *symsecp = symsec;
6598 }
6599
6600 if (tls_maskp != NULL)
6601 {
6602 struct ppc_link_hash_entry *eh;
6603
6604 eh = (struct ppc_link_hash_entry *) h;
6605 *tls_maskp = &eh->tls_mask;
6606 }
6607 }
6608 else
6609 {
6610 Elf_Internal_Sym *sym;
6611 Elf_Internal_Sym *locsyms = *locsymsp;
6612
6613 if (locsyms == NULL)
6614 {
6615 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6616 if (locsyms == NULL)
6617 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6618 symtab_hdr->sh_info,
6619 0, NULL, NULL, NULL);
6620 if (locsyms == NULL)
6621 return FALSE;
6622 *locsymsp = locsyms;
6623 }
6624 sym = locsyms + r_symndx;
6625
6626 if (hp != NULL)
6627 *hp = NULL;
6628
6629 if (symp != NULL)
6630 *symp = sym;
6631
6632 if (symsecp != NULL)
6633 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6634
6635 if (tls_maskp != NULL)
6636 {
6637 struct got_entry **lgot_ents;
6638 unsigned char *tls_mask;
6639
6640 tls_mask = NULL;
6641 lgot_ents = elf_local_got_ents (ibfd);
6642 if (lgot_ents != NULL)
6643 {
6644 struct plt_entry **local_plt = (struct plt_entry **)
6645 (lgot_ents + symtab_hdr->sh_info);
6646 unsigned char *lgot_masks = (unsigned char *)
6647 (local_plt + symtab_hdr->sh_info);
6648 tls_mask = &lgot_masks[r_symndx];
6649 }
6650 *tls_maskp = tls_mask;
6651 }
6652 }
6653 return TRUE;
6654 }
6655
6656 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6657 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6658 type suitable for optimization, and 1 otherwise. */
6659
6660 static int
6661 get_tls_mask (unsigned char **tls_maskp,
6662 unsigned long *toc_symndx,
6663 bfd_vma *toc_addend,
6664 Elf_Internal_Sym **locsymsp,
6665 const Elf_Internal_Rela *rel,
6666 bfd *ibfd)
6667 {
6668 unsigned long r_symndx;
6669 int next_r;
6670 struct elf_link_hash_entry *h;
6671 Elf_Internal_Sym *sym;
6672 asection *sec;
6673 bfd_vma off;
6674
6675 r_symndx = ELF64_R_SYM (rel->r_info);
6676 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6677 return 0;
6678
6679 if ((*tls_maskp != NULL
6680 && (**tls_maskp & TLS_TLS) != 0
6681 && **tls_maskp != (TLS_TLS | TLS_MARK))
6682 || sec == NULL
6683 || ppc64_elf_section_data (sec) == NULL
6684 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6685 return 1;
6686
6687 /* Look inside a TOC section too. */
6688 if (h != NULL)
6689 {
6690 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6691 off = h->root.u.def.value;
6692 }
6693 else
6694 off = sym->st_value;
6695 off += rel->r_addend;
6696 BFD_ASSERT (off % 8 == 0);
6697 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6698 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6699 if (toc_symndx != NULL)
6700 *toc_symndx = r_symndx;
6701 if (toc_addend != NULL)
6702 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6703 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6704 return 0;
6705 if ((h == NULL || is_static_defined (h))
6706 && (next_r == -1 || next_r == -2))
6707 return 1 - next_r;
6708 return 1;
6709 }
6710
6711 /* Find (or create) an entry in the tocsave hash table. */
6712
6713 static struct tocsave_entry *
6714 tocsave_find (struct ppc_link_hash_table *htab,
6715 enum insert_option insert,
6716 Elf_Internal_Sym **local_syms,
6717 const Elf_Internal_Rela *irela,
6718 bfd *ibfd)
6719 {
6720 unsigned long r_indx;
6721 struct elf_link_hash_entry *h;
6722 Elf_Internal_Sym *sym;
6723 struct tocsave_entry ent, *p;
6724 hashval_t hash;
6725 struct tocsave_entry **slot;
6726
6727 r_indx = ELF64_R_SYM (irela->r_info);
6728 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6729 return NULL;
6730 if (ent.sec == NULL || ent.sec->output_section == NULL)
6731 {
6732 _bfd_error_handler
6733 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6734 return NULL;
6735 }
6736
6737 if (h != NULL)
6738 ent.offset = h->root.u.def.value;
6739 else
6740 ent.offset = sym->st_value;
6741 ent.offset += irela->r_addend;
6742
6743 hash = tocsave_htab_hash (&ent);
6744 slot = ((struct tocsave_entry **)
6745 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6746 if (slot == NULL)
6747 return NULL;
6748
6749 if (*slot == NULL)
6750 {
6751 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6752 if (p == NULL)
6753 return NULL;
6754 *p = ent;
6755 *slot = p;
6756 }
6757 return *slot;
6758 }
6759
6760 /* Adjust all global syms defined in opd sections. In gcc generated
6761 code for the old ABI, these will already have been done. */
6762
6763 static bfd_boolean
6764 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6765 {
6766 struct ppc_link_hash_entry *eh;
6767 asection *sym_sec;
6768 struct _opd_sec_data *opd;
6769
6770 if (h->root.type == bfd_link_hash_indirect)
6771 return TRUE;
6772
6773 if (h->root.type != bfd_link_hash_defined
6774 && h->root.type != bfd_link_hash_defweak)
6775 return TRUE;
6776
6777 eh = (struct ppc_link_hash_entry *) h;
6778 if (eh->adjust_done)
6779 return TRUE;
6780
6781 sym_sec = eh->elf.root.u.def.section;
6782 opd = get_opd_info (sym_sec);
6783 if (opd != NULL && opd->adjust != NULL)
6784 {
6785 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6786 if (adjust == -1)
6787 {
6788 /* This entry has been deleted. */
6789 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6790 if (dsec == NULL)
6791 {
6792 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6793 if (discarded_section (dsec))
6794 {
6795 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6796 break;
6797 }
6798 }
6799 eh->elf.root.u.def.value = 0;
6800 eh->elf.root.u.def.section = dsec;
6801 }
6802 else
6803 eh->elf.root.u.def.value += adjust;
6804 eh->adjust_done = 1;
6805 }
6806 return TRUE;
6807 }
6808
6809 /* Handles decrementing dynamic reloc counts for the reloc specified by
6810 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6811 have already been determined. */
6812
6813 static bfd_boolean
6814 dec_dynrel_count (bfd_vma r_info,
6815 asection *sec,
6816 struct bfd_link_info *info,
6817 Elf_Internal_Sym **local_syms,
6818 struct elf_link_hash_entry *h,
6819 Elf_Internal_Sym *sym)
6820 {
6821 enum elf_ppc64_reloc_type r_type;
6822 asection *sym_sec = NULL;
6823
6824 /* Can this reloc be dynamic? This switch, and later tests here
6825 should be kept in sync with the code in check_relocs. */
6826 r_type = ELF64_R_TYPE (r_info);
6827 switch (r_type)
6828 {
6829 default:
6830 return TRUE;
6831
6832 case R_PPC64_TOC16:
6833 case R_PPC64_TOC16_DS:
6834 case R_PPC64_TOC16_LO:
6835 case R_PPC64_TOC16_HI:
6836 case R_PPC64_TOC16_HA:
6837 case R_PPC64_TOC16_LO_DS:
6838 if (h == NULL)
6839 return TRUE;
6840 break;
6841
6842 case R_PPC64_TPREL16:
6843 case R_PPC64_TPREL16_LO:
6844 case R_PPC64_TPREL16_HI:
6845 case R_PPC64_TPREL16_HA:
6846 case R_PPC64_TPREL16_DS:
6847 case R_PPC64_TPREL16_LO_DS:
6848 case R_PPC64_TPREL16_HIGH:
6849 case R_PPC64_TPREL16_HIGHA:
6850 case R_PPC64_TPREL16_HIGHER:
6851 case R_PPC64_TPREL16_HIGHERA:
6852 case R_PPC64_TPREL16_HIGHEST:
6853 case R_PPC64_TPREL16_HIGHESTA:
6854 case R_PPC64_TPREL64:
6855 case R_PPC64_TPREL34:
6856 case R_PPC64_DTPMOD64:
6857 case R_PPC64_DTPREL64:
6858 case R_PPC64_ADDR64:
6859 case R_PPC64_REL30:
6860 case R_PPC64_REL32:
6861 case R_PPC64_REL64:
6862 case R_PPC64_ADDR14:
6863 case R_PPC64_ADDR14_BRNTAKEN:
6864 case R_PPC64_ADDR14_BRTAKEN:
6865 case R_PPC64_ADDR16:
6866 case R_PPC64_ADDR16_DS:
6867 case R_PPC64_ADDR16_HA:
6868 case R_PPC64_ADDR16_HI:
6869 case R_PPC64_ADDR16_HIGH:
6870 case R_PPC64_ADDR16_HIGHA:
6871 case R_PPC64_ADDR16_HIGHER:
6872 case R_PPC64_ADDR16_HIGHERA:
6873 case R_PPC64_ADDR16_HIGHEST:
6874 case R_PPC64_ADDR16_HIGHESTA:
6875 case R_PPC64_ADDR16_LO:
6876 case R_PPC64_ADDR16_LO_DS:
6877 case R_PPC64_ADDR24:
6878 case R_PPC64_ADDR32:
6879 case R_PPC64_UADDR16:
6880 case R_PPC64_UADDR32:
6881 case R_PPC64_UADDR64:
6882 case R_PPC64_TOC:
6883 case R_PPC64_D34:
6884 case R_PPC64_D34_LO:
6885 case R_PPC64_D34_HI30:
6886 case R_PPC64_D34_HA30:
6887 case R_PPC64_ADDR16_HIGHER34:
6888 case R_PPC64_ADDR16_HIGHERA34:
6889 case R_PPC64_ADDR16_HIGHEST34:
6890 case R_PPC64_ADDR16_HIGHESTA34:
6891 case R_PPC64_D28:
6892 break;
6893 }
6894
6895 if (local_syms != NULL)
6896 {
6897 unsigned long r_symndx;
6898 bfd *ibfd = sec->owner;
6899
6900 r_symndx = ELF64_R_SYM (r_info);
6901 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6902 return FALSE;
6903 }
6904
6905 if ((h != NULL
6906 && (h->root.type == bfd_link_hash_defweak
6907 || !h->def_regular))
6908 || (h != NULL
6909 && !bfd_link_executable (info)
6910 && !SYMBOLIC_BIND (info, h))
6911 || (bfd_link_pic (info)
6912 && must_be_dyn_reloc (info, r_type))
6913 || (!bfd_link_pic (info)
6914 && (h != NULL
6915 ? h->type == STT_GNU_IFUNC
6916 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
6917 ;
6918 else
6919 return TRUE;
6920
6921 if (h != NULL)
6922 {
6923 struct elf_dyn_relocs *p;
6924 struct elf_dyn_relocs **pp;
6925 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6926
6927 /* elf_gc_sweep may have already removed all dyn relocs associated
6928 with local syms for a given section. Also, symbol flags are
6929 changed by elf_gc_sweep_symbol, confusing the test above. Don't
6930 report a dynreloc miscount. */
6931 if (*pp == NULL && info->gc_sections)
6932 return TRUE;
6933
6934 while ((p = *pp) != NULL)
6935 {
6936 if (p->sec == sec)
6937 {
6938 if (!must_be_dyn_reloc (info, r_type))
6939 p->pc_count -= 1;
6940 p->count -= 1;
6941 if (p->count == 0)
6942 *pp = p->next;
6943 return TRUE;
6944 }
6945 pp = &p->next;
6946 }
6947 }
6948 else
6949 {
6950 struct ppc_dyn_relocs *p;
6951 struct ppc_dyn_relocs **pp;
6952 void *vpp;
6953 bfd_boolean is_ifunc;
6954
6955 if (local_syms == NULL)
6956 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6957 if (sym_sec == NULL)
6958 sym_sec = sec;
6959
6960 vpp = &elf_section_data (sym_sec)->local_dynrel;
6961 pp = (struct ppc_dyn_relocs **) vpp;
6962
6963 if (*pp == NULL && info->gc_sections)
6964 return TRUE;
6965
6966 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
6967 while ((p = *pp) != NULL)
6968 {
6969 if (p->sec == sec && p->ifunc == is_ifunc)
6970 {
6971 p->count -= 1;
6972 if (p->count == 0)
6973 *pp = p->next;
6974 return TRUE;
6975 }
6976 pp = &p->next;
6977 }
6978 }
6979
6980 /* xgettext:c-format */
6981 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
6982 sec->owner, sec);
6983 bfd_set_error (bfd_error_bad_value);
6984 return FALSE;
6985 }
6986
6987 /* Remove unused Official Procedure Descriptor entries. Currently we
6988 only remove those associated with functions in discarded link-once
6989 sections, or weakly defined functions that have been overridden. It
6990 would be possible to remove many more entries for statically linked
6991 applications. */
6992
6993 bfd_boolean
6994 ppc64_elf_edit_opd (struct bfd_link_info *info)
6995 {
6996 bfd *ibfd;
6997 bfd_boolean some_edited = FALSE;
6998 asection *need_pad = NULL;
6999 struct ppc_link_hash_table *htab;
7000
7001 htab = ppc_hash_table (info);
7002 if (htab == NULL)
7003 return FALSE;
7004
7005 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7006 {
7007 asection *sec;
7008 Elf_Internal_Rela *relstart, *rel, *relend;
7009 Elf_Internal_Shdr *symtab_hdr;
7010 Elf_Internal_Sym *local_syms;
7011 struct _opd_sec_data *opd;
7012 bfd_boolean need_edit, add_aux_fields, broken;
7013 bfd_size_type cnt_16b = 0;
7014
7015 if (!is_ppc64_elf (ibfd))
7016 continue;
7017
7018 sec = bfd_get_section_by_name (ibfd, ".opd");
7019 if (sec == NULL || sec->size == 0)
7020 continue;
7021
7022 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7023 continue;
7024
7025 if (sec->output_section == bfd_abs_section_ptr)
7026 continue;
7027
7028 /* Look through the section relocs. */
7029 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7030 continue;
7031
7032 local_syms = NULL;
7033 symtab_hdr = &elf_symtab_hdr (ibfd);
7034
7035 /* Read the relocations. */
7036 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7037 info->keep_memory);
7038 if (relstart == NULL)
7039 return FALSE;
7040
7041 /* First run through the relocs to check they are sane, and to
7042 determine whether we need to edit this opd section. */
7043 need_edit = FALSE;
7044 broken = FALSE;
7045 need_pad = sec;
7046 relend = relstart + sec->reloc_count;
7047 for (rel = relstart; rel < relend; )
7048 {
7049 enum elf_ppc64_reloc_type r_type;
7050 unsigned long r_symndx;
7051 asection *sym_sec;
7052 struct elf_link_hash_entry *h;
7053 Elf_Internal_Sym *sym;
7054 bfd_vma offset;
7055
7056 /* .opd contains an array of 16 or 24 byte entries. We're
7057 only interested in the reloc pointing to a function entry
7058 point. */
7059 offset = rel->r_offset;
7060 if (rel + 1 == relend
7061 || rel[1].r_offset != offset + 8)
7062 {
7063 /* If someone messes with .opd alignment then after a
7064 "ld -r" we might have padding in the middle of .opd.
7065 Also, there's nothing to prevent someone putting
7066 something silly in .opd with the assembler. No .opd
7067 optimization for them! */
7068 broken_opd:
7069 _bfd_error_handler
7070 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7071 broken = TRUE;
7072 break;
7073 }
7074
7075 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7076 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7077 {
7078 _bfd_error_handler
7079 /* xgettext:c-format */
7080 (_("%pB: unexpected reloc type %u in .opd section"),
7081 ibfd, r_type);
7082 broken = TRUE;
7083 break;
7084 }
7085
7086 r_symndx = ELF64_R_SYM (rel->r_info);
7087 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7088 r_symndx, ibfd))
7089 goto error_ret;
7090
7091 if (sym_sec == NULL || sym_sec->owner == NULL)
7092 {
7093 const char *sym_name;
7094 if (h != NULL)
7095 sym_name = h->root.root.string;
7096 else
7097 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7098 sym_sec);
7099
7100 _bfd_error_handler
7101 /* xgettext:c-format */
7102 (_("%pB: undefined sym `%s' in .opd section"),
7103 ibfd, sym_name);
7104 broken = TRUE;
7105 break;
7106 }
7107
7108 /* opd entries are always for functions defined in the
7109 current input bfd. If the symbol isn't defined in the
7110 input bfd, then we won't be using the function in this
7111 bfd; It must be defined in a linkonce section in another
7112 bfd, or is weak. It's also possible that we are
7113 discarding the function due to a linker script /DISCARD/,
7114 which we test for via the output_section. */
7115 if (sym_sec->owner != ibfd
7116 || sym_sec->output_section == bfd_abs_section_ptr)
7117 need_edit = TRUE;
7118
7119 rel += 2;
7120 if (rel + 1 == relend
7121 || (rel + 2 < relend
7122 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7123 ++rel;
7124
7125 if (rel == relend)
7126 {
7127 if (sec->size == offset + 24)
7128 {
7129 need_pad = NULL;
7130 break;
7131 }
7132 if (sec->size == offset + 16)
7133 {
7134 cnt_16b++;
7135 break;
7136 }
7137 goto broken_opd;
7138 }
7139 else if (rel + 1 < relend
7140 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7141 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7142 {
7143 if (rel[0].r_offset == offset + 16)
7144 cnt_16b++;
7145 else if (rel[0].r_offset != offset + 24)
7146 goto broken_opd;
7147 }
7148 else
7149 goto broken_opd;
7150 }
7151
7152 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7153
7154 if (!broken && (need_edit || add_aux_fields))
7155 {
7156 Elf_Internal_Rela *write_rel;
7157 Elf_Internal_Shdr *rel_hdr;
7158 bfd_byte *rptr, *wptr;
7159 bfd_byte *new_contents;
7160 bfd_size_type amt;
7161
7162 new_contents = NULL;
7163 amt = OPD_NDX (sec->size) * sizeof (long);
7164 opd = &ppc64_elf_section_data (sec)->u.opd;
7165 opd->adjust = bfd_zalloc (sec->owner, amt);
7166 if (opd->adjust == NULL)
7167 return FALSE;
7168
7169 /* This seems a waste of time as input .opd sections are all
7170 zeros as generated by gcc, but I suppose there's no reason
7171 this will always be so. We might start putting something in
7172 the third word of .opd entries. */
7173 if ((sec->flags & SEC_IN_MEMORY) == 0)
7174 {
7175 bfd_byte *loc;
7176 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7177 {
7178 if (loc != NULL)
7179 free (loc);
7180 error_ret:
7181 if (local_syms != NULL
7182 && symtab_hdr->contents != (unsigned char *) local_syms)
7183 free (local_syms);
7184 if (elf_section_data (sec)->relocs != relstart)
7185 free (relstart);
7186 return FALSE;
7187 }
7188 sec->contents = loc;
7189 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7190 }
7191
7192 elf_section_data (sec)->relocs = relstart;
7193
7194 new_contents = sec->contents;
7195 if (add_aux_fields)
7196 {
7197 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7198 if (new_contents == NULL)
7199 return FALSE;
7200 need_pad = NULL;
7201 }
7202 wptr = new_contents;
7203 rptr = sec->contents;
7204 write_rel = relstart;
7205 for (rel = relstart; rel < relend; )
7206 {
7207 unsigned long r_symndx;
7208 asection *sym_sec;
7209 struct elf_link_hash_entry *h;
7210 struct ppc_link_hash_entry *fdh = NULL;
7211 Elf_Internal_Sym *sym;
7212 long opd_ent_size;
7213 Elf_Internal_Rela *next_rel;
7214 bfd_boolean skip;
7215
7216 r_symndx = ELF64_R_SYM (rel->r_info);
7217 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7218 r_symndx, ibfd))
7219 goto error_ret;
7220
7221 next_rel = rel + 2;
7222 if (next_rel + 1 == relend
7223 || (next_rel + 2 < relend
7224 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7225 ++next_rel;
7226
7227 /* See if the .opd entry is full 24 byte or
7228 16 byte (with fd_aux entry overlapped with next
7229 fd_func). */
7230 opd_ent_size = 24;
7231 if (next_rel == relend)
7232 {
7233 if (sec->size == rel->r_offset + 16)
7234 opd_ent_size = 16;
7235 }
7236 else if (next_rel->r_offset == rel->r_offset + 16)
7237 opd_ent_size = 16;
7238
7239 if (h != NULL
7240 && h->root.root.string[0] == '.')
7241 {
7242 fdh = ((struct ppc_link_hash_entry *) h)->oh;
7243 if (fdh != NULL)
7244 {
7245 fdh = ppc_follow_link (fdh);
7246 if (fdh->elf.root.type != bfd_link_hash_defined
7247 && fdh->elf.root.type != bfd_link_hash_defweak)
7248 fdh = NULL;
7249 }
7250 }
7251
7252 skip = (sym_sec->owner != ibfd
7253 || sym_sec->output_section == bfd_abs_section_ptr);
7254 if (skip)
7255 {
7256 if (fdh != NULL && sym_sec->owner == ibfd)
7257 {
7258 /* Arrange for the function descriptor sym
7259 to be dropped. */
7260 fdh->elf.root.u.def.value = 0;
7261 fdh->elf.root.u.def.section = sym_sec;
7262 }
7263 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7264
7265 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7266 rel = next_rel;
7267 else
7268 while (1)
7269 {
7270 if (!dec_dynrel_count (rel->r_info, sec, info,
7271 NULL, h, sym))
7272 goto error_ret;
7273
7274 if (++rel == next_rel)
7275 break;
7276
7277 r_symndx = ELF64_R_SYM (rel->r_info);
7278 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7279 r_symndx, ibfd))
7280 goto error_ret;
7281 }
7282 }
7283 else
7284 {
7285 /* We'll be keeping this opd entry. */
7286 long adjust;
7287
7288 if (fdh != NULL)
7289 {
7290 /* Redefine the function descriptor symbol to
7291 this location in the opd section. It is
7292 necessary to update the value here rather
7293 than using an array of adjustments as we do
7294 for local symbols, because various places
7295 in the generic ELF code use the value
7296 stored in u.def.value. */
7297 fdh->elf.root.u.def.value = wptr - new_contents;
7298 fdh->adjust_done = 1;
7299 }
7300
7301 /* Local syms are a bit tricky. We could
7302 tweak them as they can be cached, but
7303 we'd need to look through the local syms
7304 for the function descriptor sym which we
7305 don't have at the moment. So keep an
7306 array of adjustments. */
7307 adjust = (wptr - new_contents) - (rptr - sec->contents);
7308 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7309
7310 if (wptr != rptr)
7311 memcpy (wptr, rptr, opd_ent_size);
7312 wptr += opd_ent_size;
7313 if (add_aux_fields && opd_ent_size == 16)
7314 {
7315 memset (wptr, '\0', 8);
7316 wptr += 8;
7317 }
7318
7319 /* We need to adjust any reloc offsets to point to the
7320 new opd entries. */
7321 for ( ; rel != next_rel; ++rel)
7322 {
7323 rel->r_offset += adjust;
7324 if (write_rel != rel)
7325 memcpy (write_rel, rel, sizeof (*rel));
7326 ++write_rel;
7327 }
7328 }
7329
7330 rptr += opd_ent_size;
7331 }
7332
7333 sec->size = wptr - new_contents;
7334 sec->reloc_count = write_rel - relstart;
7335 if (add_aux_fields)
7336 {
7337 free (sec->contents);
7338 sec->contents = new_contents;
7339 }
7340
7341 /* Fudge the header size too, as this is used later in
7342 elf_bfd_final_link if we are emitting relocs. */
7343 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7344 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7345 some_edited = TRUE;
7346 }
7347 else if (elf_section_data (sec)->relocs != relstart)
7348 free (relstart);
7349
7350 if (local_syms != NULL
7351 && symtab_hdr->contents != (unsigned char *) local_syms)
7352 {
7353 if (!info->keep_memory)
7354 free (local_syms);
7355 else
7356 symtab_hdr->contents = (unsigned char *) local_syms;
7357 }
7358 }
7359
7360 if (some_edited)
7361 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7362
7363 /* If we are doing a final link and the last .opd entry is just 16 byte
7364 long, add a 8 byte padding after it. */
7365 if (need_pad != NULL && !bfd_link_relocatable (info))
7366 {
7367 bfd_byte *p;
7368
7369 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7370 {
7371 BFD_ASSERT (need_pad->size > 0);
7372
7373 p = bfd_malloc (need_pad->size + 8);
7374 if (p == NULL)
7375 return FALSE;
7376
7377 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7378 p, 0, need_pad->size))
7379 return FALSE;
7380
7381 need_pad->contents = p;
7382 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7383 }
7384 else
7385 {
7386 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7387 if (p == NULL)
7388 return FALSE;
7389
7390 need_pad->contents = p;
7391 }
7392
7393 memset (need_pad->contents + need_pad->size, 0, 8);
7394 need_pad->size += 8;
7395 }
7396
7397 return TRUE;
7398 }
7399
7400 /* Analyze inline PLT call relocations to see whether calls to locally
7401 defined functions can be converted to direct calls. */
7402
7403 bfd_boolean
7404 ppc64_elf_inline_plt (struct bfd_link_info *info)
7405 {
7406 struct ppc_link_hash_table *htab;
7407 bfd *ibfd;
7408 asection *sec;
7409 bfd_vma low_vma, high_vma, limit;
7410
7411 htab = ppc_hash_table (info);
7412 if (htab == NULL)
7413 return FALSE;
7414
7415 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7416 reduced somewhat to cater for possible stubs that might be added
7417 between the call and its destination. */
7418 if (htab->params->group_size < 0)
7419 {
7420 limit = -htab->params->group_size;
7421 if (limit == 1)
7422 limit = 0x1e00000;
7423 }
7424 else
7425 {
7426 limit = htab->params->group_size;
7427 if (limit == 1)
7428 limit = 0x1c00000;
7429 }
7430
7431 low_vma = -1;
7432 high_vma = 0;
7433 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7434 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7435 {
7436 if (low_vma > sec->vma)
7437 low_vma = sec->vma;
7438 if (high_vma < sec->vma + sec->size)
7439 high_vma = sec->vma + sec->size;
7440 }
7441
7442 /* If a "bl" can reach anywhere in local code sections, then we can
7443 convert all inline PLT sequences to direct calls when the symbol
7444 is local. */
7445 if (high_vma - low_vma < limit)
7446 {
7447 htab->can_convert_all_inline_plt = 1;
7448 return TRUE;
7449 }
7450
7451 /* Otherwise, go looking through relocs for cases where a direct
7452 call won't reach. Mark the symbol on any such reloc to disable
7453 the optimization and keep the PLT entry as it seems likely that
7454 this will be better than creating trampolines. Note that this
7455 will disable the optimization for all inline PLT calls to a
7456 particular symbol, not just those that won't reach. The
7457 difficulty in doing a more precise optimization is that the
7458 linker needs to make a decision depending on whether a
7459 particular R_PPC64_PLTCALL insn can be turned into a direct
7460 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7461 the sequence, and there is nothing that ties those relocs
7462 together except their symbol. */
7463
7464 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7465 {
7466 Elf_Internal_Shdr *symtab_hdr;
7467 Elf_Internal_Sym *local_syms;
7468
7469 if (!is_ppc64_elf (ibfd))
7470 continue;
7471
7472 local_syms = NULL;
7473 symtab_hdr = &elf_symtab_hdr (ibfd);
7474
7475 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7476 if (ppc64_elf_section_data (sec)->has_pltcall
7477 && !bfd_is_abs_section (sec->output_section))
7478 {
7479 Elf_Internal_Rela *relstart, *rel, *relend;
7480
7481 /* Read the relocations. */
7482 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7483 info->keep_memory);
7484 if (relstart == NULL)
7485 return FALSE;
7486
7487 relend = relstart + sec->reloc_count;
7488 for (rel = relstart; rel < relend; )
7489 {
7490 enum elf_ppc64_reloc_type r_type;
7491 unsigned long r_symndx;
7492 asection *sym_sec;
7493 struct elf_link_hash_entry *h;
7494 Elf_Internal_Sym *sym;
7495 unsigned char *tls_maskp;
7496
7497 r_type = ELF64_R_TYPE (rel->r_info);
7498 if (r_type != R_PPC64_PLTCALL
7499 && r_type != R_PPC64_PLTCALL_NOTOC)
7500 continue;
7501
7502 r_symndx = ELF64_R_SYM (rel->r_info);
7503 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7504 r_symndx, ibfd))
7505 {
7506 if (elf_section_data (sec)->relocs != relstart)
7507 free (relstart);
7508 if (local_syms != NULL
7509 && symtab_hdr->contents != (bfd_byte *) local_syms)
7510 free (local_syms);
7511 return FALSE;
7512 }
7513
7514 if (sym_sec != NULL && sym_sec->output_section != NULL)
7515 {
7516 bfd_vma from, to;
7517 if (h != NULL)
7518 to = h->root.u.def.value;
7519 else
7520 to = sym->st_value;
7521 to += (rel->r_addend
7522 + sym_sec->output_offset
7523 + sym_sec->output_section->vma);
7524 from = (rel->r_offset
7525 + sec->output_offset
7526 + sec->output_section->vma);
7527 if (to - from + limit < 2 * limit
7528 && !(r_type == R_PPC64_PLTCALL_NOTOC
7529 && (((h ? h->other : sym->st_other)
7530 & STO_PPC64_LOCAL_MASK)
7531 > 1 << STO_PPC64_LOCAL_BIT)))
7532 *tls_maskp &= ~PLT_KEEP;
7533 }
7534 }
7535 if (elf_section_data (sec)->relocs != relstart)
7536 free (relstart);
7537 }
7538
7539 if (local_syms != NULL
7540 && symtab_hdr->contents != (unsigned char *) local_syms)
7541 {
7542 if (!info->keep_memory)
7543 free (local_syms);
7544 else
7545 symtab_hdr->contents = (unsigned char *) local_syms;
7546 }
7547 }
7548
7549 return TRUE;
7550 }
7551
7552 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7553
7554 asection *
7555 ppc64_elf_tls_setup (struct bfd_link_info *info)
7556 {
7557 struct ppc_link_hash_table *htab;
7558
7559 htab = ppc_hash_table (info);
7560 if (htab == NULL)
7561 return NULL;
7562
7563 if (abiversion (info->output_bfd) == 1)
7564 htab->opd_abi = 1;
7565
7566 if (htab->params->no_multi_toc)
7567 htab->do_multi_toc = 0;
7568 else if (!htab->do_multi_toc)
7569 htab->params->no_multi_toc = 1;
7570
7571 /* Default to --no-plt-localentry, as this option can cause problems
7572 with symbol interposition. For example, glibc libpthread.so and
7573 libc.so duplicate many pthread symbols, with a fallback
7574 implementation in libc.so. In some cases the fallback does more
7575 work than the pthread implementation. __pthread_condattr_destroy
7576 is one such symbol: the libpthread.so implementation is
7577 localentry:0 while the libc.so implementation is localentry:8.
7578 An app that "cleverly" uses dlopen to only load necessary
7579 libraries at runtime may omit loading libpthread.so when not
7580 running multi-threaded, which then results in the libc.so
7581 fallback symbols being used and ld.so complaining. Now there
7582 are workarounds in ld (see non_zero_localentry) to detect the
7583 pthread situation, but that may not be the only case where
7584 --plt-localentry can cause trouble. */
7585 if (htab->params->plt_localentry0 < 0)
7586 htab->params->plt_localentry0 = 0;
7587 if (htab->params->plt_localentry0
7588 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7589 FALSE, FALSE, FALSE) == NULL)
7590 _bfd_error_handler
7591 (_("warning: --plt-localentry is especially dangerous without "
7592 "ld.so support to detect ABI violations"));
7593
7594 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7595 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7596 FALSE, FALSE, TRUE));
7597 /* Move dynamic linking info to the function descriptor sym. */
7598 if (htab->tls_get_addr != NULL)
7599 func_desc_adjust (&htab->tls_get_addr->elf, info);
7600 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7601 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7602 FALSE, FALSE, TRUE));
7603 if (htab->params->tls_get_addr_opt)
7604 {
7605 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7606
7607 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7608 FALSE, FALSE, TRUE);
7609 if (opt != NULL)
7610 func_desc_adjust (opt, info);
7611 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7612 FALSE, FALSE, TRUE);
7613 if (opt_fd != NULL
7614 && (opt_fd->root.type == bfd_link_hash_defined
7615 || opt_fd->root.type == bfd_link_hash_defweak))
7616 {
7617 /* If glibc supports an optimized __tls_get_addr call stub,
7618 signalled by the presence of __tls_get_addr_opt, and we'll
7619 be calling __tls_get_addr via a plt call stub, then
7620 make __tls_get_addr point to __tls_get_addr_opt. */
7621 tga_fd = &htab->tls_get_addr_fd->elf;
7622 if (htab->elf.dynamic_sections_created
7623 && tga_fd != NULL
7624 && (tga_fd->type == STT_FUNC
7625 || tga_fd->needs_plt)
7626 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7627 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd)))
7628 {
7629 struct plt_entry *ent;
7630
7631 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7632 if (ent->plt.refcount > 0)
7633 break;
7634 if (ent != NULL)
7635 {
7636 tga_fd->root.type = bfd_link_hash_indirect;
7637 tga_fd->root.u.i.link = &opt_fd->root;
7638 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7639 opt_fd->mark = 1;
7640 if (opt_fd->dynindx != -1)
7641 {
7642 /* Use __tls_get_addr_opt in dynamic relocations. */
7643 opt_fd->dynindx = -1;
7644 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7645 opt_fd->dynstr_index);
7646 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7647 return NULL;
7648 }
7649 htab->tls_get_addr_fd
7650 = (struct ppc_link_hash_entry *) opt_fd;
7651 tga = &htab->tls_get_addr->elf;
7652 if (opt != NULL && tga != NULL)
7653 {
7654 tga->root.type = bfd_link_hash_indirect;
7655 tga->root.u.i.link = &opt->root;
7656 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7657 opt->mark = 1;
7658 _bfd_elf_link_hash_hide_symbol (info, opt,
7659 tga->forced_local);
7660 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7661 }
7662 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7663 htab->tls_get_addr_fd->is_func_descriptor = 1;
7664 if (htab->tls_get_addr != NULL)
7665 {
7666 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7667 htab->tls_get_addr->is_func = 1;
7668 }
7669 }
7670 }
7671 }
7672 else if (htab->params->tls_get_addr_opt < 0)
7673 htab->params->tls_get_addr_opt = 0;
7674 }
7675 return _bfd_elf_tls_setup (info->output_bfd, info);
7676 }
7677
7678 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7679 HASH1 or HASH2. */
7680
7681 static bfd_boolean
7682 branch_reloc_hash_match (const bfd *ibfd,
7683 const Elf_Internal_Rela *rel,
7684 const struct ppc_link_hash_entry *hash1,
7685 const struct ppc_link_hash_entry *hash2)
7686 {
7687 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7688 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7689 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7690
7691 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7692 {
7693 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7694 struct elf_link_hash_entry *h;
7695
7696 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7697 h = elf_follow_link (h);
7698 if (h == &hash1->elf || h == &hash2->elf)
7699 return TRUE;
7700 }
7701 return FALSE;
7702 }
7703
7704 /* Run through all the TLS relocs looking for optimization
7705 opportunities. The linker has been hacked (see ppc64elf.em) to do
7706 a preliminary section layout so that we know the TLS segment
7707 offsets. We can't optimize earlier because some optimizations need
7708 to know the tp offset, and we need to optimize before allocating
7709 dynamic relocations. */
7710
7711 bfd_boolean
7712 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7713 {
7714 bfd *ibfd;
7715 asection *sec;
7716 struct ppc_link_hash_table *htab;
7717 unsigned char *toc_ref;
7718 int pass;
7719
7720 if (!bfd_link_executable (info))
7721 return TRUE;
7722
7723 htab = ppc_hash_table (info);
7724 if (htab == NULL)
7725 return FALSE;
7726
7727 /* Make two passes over the relocs. On the first pass, mark toc
7728 entries involved with tls relocs, and check that tls relocs
7729 involved in setting up a tls_get_addr call are indeed followed by
7730 such a call. If they are not, we can't do any tls optimization.
7731 On the second pass twiddle tls_mask flags to notify
7732 relocate_section that optimization can be done, and adjust got
7733 and plt refcounts. */
7734 toc_ref = NULL;
7735 for (pass = 0; pass < 2; ++pass)
7736 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7737 {
7738 Elf_Internal_Sym *locsyms = NULL;
7739 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7740
7741 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7742 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7743 {
7744 Elf_Internal_Rela *relstart, *rel, *relend;
7745 bfd_boolean found_tls_get_addr_arg = 0;
7746
7747 /* Read the relocations. */
7748 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7749 info->keep_memory);
7750 if (relstart == NULL)
7751 {
7752 free (toc_ref);
7753 return FALSE;
7754 }
7755
7756 relend = relstart + sec->reloc_count;
7757 for (rel = relstart; rel < relend; rel++)
7758 {
7759 enum elf_ppc64_reloc_type r_type;
7760 unsigned long r_symndx;
7761 struct elf_link_hash_entry *h;
7762 Elf_Internal_Sym *sym;
7763 asection *sym_sec;
7764 unsigned char *tls_mask;
7765 unsigned int tls_set, tls_clear, tls_type = 0;
7766 bfd_vma value;
7767 bfd_boolean ok_tprel, is_local;
7768 long toc_ref_index = 0;
7769 int expecting_tls_get_addr = 0;
7770 bfd_boolean ret = FALSE;
7771
7772 r_symndx = ELF64_R_SYM (rel->r_info);
7773 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7774 r_symndx, ibfd))
7775 {
7776 err_free_rel:
7777 if (elf_section_data (sec)->relocs != relstart)
7778 free (relstart);
7779 if (toc_ref != NULL)
7780 free (toc_ref);
7781 if (locsyms != NULL
7782 && (elf_symtab_hdr (ibfd).contents
7783 != (unsigned char *) locsyms))
7784 free (locsyms);
7785 return ret;
7786 }
7787
7788 if (h != NULL)
7789 {
7790 if (h->root.type == bfd_link_hash_defined
7791 || h->root.type == bfd_link_hash_defweak)
7792 value = h->root.u.def.value;
7793 else if (h->root.type == bfd_link_hash_undefweak)
7794 value = 0;
7795 else
7796 {
7797 found_tls_get_addr_arg = 0;
7798 continue;
7799 }
7800 }
7801 else
7802 /* Symbols referenced by TLS relocs must be of type
7803 STT_TLS. So no need for .opd local sym adjust. */
7804 value = sym->st_value;
7805
7806 ok_tprel = FALSE;
7807 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
7808 if (is_local)
7809 {
7810 if (h != NULL
7811 && h->root.type == bfd_link_hash_undefweak)
7812 ok_tprel = TRUE;
7813 else if (sym_sec != NULL
7814 && sym_sec->output_section != NULL)
7815 {
7816 value += sym_sec->output_offset;
7817 value += sym_sec->output_section->vma;
7818 value -= htab->elf.tls_sec->vma + TP_OFFSET;
7819 /* Note that even though the prefix insns
7820 allow a 1<<33 offset we use the same test
7821 as for addis;addi. There may be a mix of
7822 pcrel and non-pcrel code and the decision
7823 to optimise is per symbol, not per TLS
7824 sequence. */
7825 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
7826 }
7827 }
7828
7829 r_type = ELF64_R_TYPE (rel->r_info);
7830 /* If this section has old-style __tls_get_addr calls
7831 without marker relocs, then check that each
7832 __tls_get_addr call reloc is preceded by a reloc
7833 that conceivably belongs to the __tls_get_addr arg
7834 setup insn. If we don't find matching arg setup
7835 relocs, don't do any tls optimization. */
7836 if (pass == 0
7837 && sec->nomark_tls_get_addr
7838 && h != NULL
7839 && (h == &htab->tls_get_addr->elf
7840 || h == &htab->tls_get_addr_fd->elf)
7841 && !found_tls_get_addr_arg
7842 && is_branch_reloc (r_type))
7843 {
7844 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7845 "TLS optimization disabled\n"),
7846 ibfd, sec, rel->r_offset);
7847 ret = TRUE;
7848 goto err_free_rel;
7849 }
7850
7851 found_tls_get_addr_arg = 0;
7852 switch (r_type)
7853 {
7854 case R_PPC64_GOT_TLSLD16:
7855 case R_PPC64_GOT_TLSLD16_LO:
7856 case R_PPC64_GOT_TLSLD34:
7857 expecting_tls_get_addr = 1;
7858 found_tls_get_addr_arg = 1;
7859 /* Fall through. */
7860
7861 case R_PPC64_GOT_TLSLD16_HI:
7862 case R_PPC64_GOT_TLSLD16_HA:
7863 /* These relocs should never be against a symbol
7864 defined in a shared lib. Leave them alone if
7865 that turns out to be the case. */
7866 if (!is_local)
7867 continue;
7868
7869 /* LD -> LE */
7870 tls_set = 0;
7871 tls_clear = TLS_LD;
7872 tls_type = TLS_TLS | TLS_LD;
7873 break;
7874
7875 case R_PPC64_GOT_TLSGD16:
7876 case R_PPC64_GOT_TLSGD16_LO:
7877 case R_PPC64_GOT_TLSGD34:
7878 expecting_tls_get_addr = 1;
7879 found_tls_get_addr_arg = 1;
7880 /* Fall through. */
7881
7882 case R_PPC64_GOT_TLSGD16_HI:
7883 case R_PPC64_GOT_TLSGD16_HA:
7884 if (ok_tprel)
7885 /* GD -> LE */
7886 tls_set = 0;
7887 else
7888 /* GD -> IE */
7889 tls_set = TLS_TLS | TLS_GDIE;
7890 tls_clear = TLS_GD;
7891 tls_type = TLS_TLS | TLS_GD;
7892 break;
7893
7894 case R_PPC64_GOT_TPREL34:
7895 case R_PPC64_GOT_TPREL16_DS:
7896 case R_PPC64_GOT_TPREL16_LO_DS:
7897 case R_PPC64_GOT_TPREL16_HI:
7898 case R_PPC64_GOT_TPREL16_HA:
7899 if (ok_tprel)
7900 {
7901 /* IE -> LE */
7902 tls_set = 0;
7903 tls_clear = TLS_TPREL;
7904 tls_type = TLS_TLS | TLS_TPREL;
7905 break;
7906 }
7907 continue;
7908
7909 case R_PPC64_TLSLD:
7910 if (!is_local)
7911 continue;
7912 /* Fall through. */
7913 case R_PPC64_TLSGD:
7914 if (rel + 1 < relend
7915 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
7916 {
7917 if (pass != 0
7918 && (ELF64_R_TYPE (rel[1].r_info)
7919 != R_PPC64_PLTSEQ)
7920 && (ELF64_R_TYPE (rel[1].r_info)
7921 != R_PPC64_PLTSEQ_NOTOC))
7922 {
7923 r_symndx = ELF64_R_SYM (rel[1].r_info);
7924 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
7925 r_symndx, ibfd))
7926 goto err_free_rel;
7927 if (h != NULL)
7928 {
7929 struct plt_entry *ent = NULL;
7930
7931 for (ent = h->plt.plist;
7932 ent != NULL;
7933 ent = ent->next)
7934 if (ent->addend == rel[1].r_addend)
7935 break;
7936
7937 if (ent != NULL
7938 && ent->plt.refcount > 0)
7939 ent->plt.refcount -= 1;
7940 }
7941 }
7942 continue;
7943 }
7944 found_tls_get_addr_arg = 1;
7945 /* Fall through. */
7946
7947 case R_PPC64_TLS:
7948 case R_PPC64_TOC16:
7949 case R_PPC64_TOC16_LO:
7950 if (sym_sec == NULL || sym_sec != toc)
7951 continue;
7952
7953 /* Mark this toc entry as referenced by a TLS
7954 code sequence. We can do that now in the
7955 case of R_PPC64_TLS, and after checking for
7956 tls_get_addr for the TOC16 relocs. */
7957 if (toc_ref == NULL)
7958 toc_ref
7959 = bfd_zmalloc (toc->output_section->rawsize / 8);
7960 if (toc_ref == NULL)
7961 goto err_free_rel;
7962
7963 if (h != NULL)
7964 value = h->root.u.def.value;
7965 else
7966 value = sym->st_value;
7967 value += rel->r_addend;
7968 if (value % 8 != 0)
7969 continue;
7970 BFD_ASSERT (value < toc->size
7971 && toc->output_offset % 8 == 0);
7972 toc_ref_index = (value + toc->output_offset) / 8;
7973 if (r_type == R_PPC64_TLS
7974 || r_type == R_PPC64_TLSGD
7975 || r_type == R_PPC64_TLSLD)
7976 {
7977 toc_ref[toc_ref_index] = 1;
7978 continue;
7979 }
7980
7981 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7982 continue;
7983
7984 tls_set = 0;
7985 tls_clear = 0;
7986 expecting_tls_get_addr = 2;
7987 break;
7988
7989 case R_PPC64_TPREL64:
7990 if (pass == 0
7991 || sec != toc
7992 || toc_ref == NULL
7993 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7994 continue;
7995 if (ok_tprel)
7996 {
7997 /* IE -> LE */
7998 tls_set = TLS_EXPLICIT;
7999 tls_clear = TLS_TPREL;
8000 break;
8001 }
8002 continue;
8003
8004 case R_PPC64_DTPMOD64:
8005 if (pass == 0
8006 || sec != toc
8007 || toc_ref == NULL
8008 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8009 continue;
8010 if (rel + 1 < relend
8011 && (rel[1].r_info
8012 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8013 && rel[1].r_offset == rel->r_offset + 8)
8014 {
8015 if (ok_tprel)
8016 /* GD -> LE */
8017 tls_set = TLS_EXPLICIT | TLS_GD;
8018 else
8019 /* GD -> IE */
8020 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8021 tls_clear = TLS_GD;
8022 }
8023 else
8024 {
8025 if (!is_local)
8026 continue;
8027
8028 /* LD -> LE */
8029 tls_set = TLS_EXPLICIT;
8030 tls_clear = TLS_LD;
8031 }
8032 break;
8033
8034 default:
8035 continue;
8036 }
8037
8038 if (pass == 0)
8039 {
8040 if (!expecting_tls_get_addr
8041 || !sec->nomark_tls_get_addr)
8042 continue;
8043
8044 if (rel + 1 < relend
8045 && branch_reloc_hash_match (ibfd, rel + 1,
8046 htab->tls_get_addr,
8047 htab->tls_get_addr_fd))
8048 {
8049 if (expecting_tls_get_addr == 2)
8050 {
8051 /* Check for toc tls entries. */
8052 unsigned char *toc_tls;
8053 int retval;
8054
8055 retval = get_tls_mask (&toc_tls, NULL, NULL,
8056 &locsyms,
8057 rel, ibfd);
8058 if (retval == 0)
8059 goto err_free_rel;
8060 if (toc_tls != NULL)
8061 {
8062 if ((*toc_tls & TLS_TLS) != 0
8063 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8064 found_tls_get_addr_arg = 1;
8065 if (retval > 1)
8066 toc_ref[toc_ref_index] = 1;
8067 }
8068 }
8069 continue;
8070 }
8071
8072 /* Uh oh, we didn't find the expected call. We
8073 could just mark this symbol to exclude it
8074 from tls optimization but it's safer to skip
8075 the entire optimization. */
8076 /* xgettext:c-format */
8077 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8078 "TLS optimization disabled\n"),
8079 ibfd, sec, rel->r_offset);
8080 ret = TRUE;
8081 goto err_free_rel;
8082 }
8083
8084 /* If we don't have old-style __tls_get_addr calls
8085 without TLSGD/TLSLD marker relocs, and we haven't
8086 found a new-style __tls_get_addr call with a
8087 marker for this symbol, then we either have a
8088 broken object file or an -mlongcall style
8089 indirect call to __tls_get_addr without a marker.
8090 Disable optimization in this case. */
8091 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8092 && (tls_set & TLS_EXPLICIT) == 0
8093 && !sec->nomark_tls_get_addr
8094 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8095 != (TLS_TLS | TLS_MARK)))
8096 continue;
8097
8098 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8099 {
8100 struct plt_entry *ent = NULL;
8101
8102 if (htab->tls_get_addr != NULL)
8103 for (ent = htab->tls_get_addr->elf.plt.plist;
8104 ent != NULL;
8105 ent = ent->next)
8106 if (ent->addend == 0)
8107 break;
8108
8109 if (ent == NULL && htab->tls_get_addr_fd != NULL)
8110 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8111 ent != NULL;
8112 ent = ent->next)
8113 if (ent->addend == 0)
8114 break;
8115
8116 if (ent != NULL
8117 && ent->plt.refcount > 0)
8118 ent->plt.refcount -= 1;
8119 }
8120
8121 if (tls_clear == 0)
8122 continue;
8123
8124 if ((tls_set & TLS_EXPLICIT) == 0)
8125 {
8126 struct got_entry *ent;
8127
8128 /* Adjust got entry for this reloc. */
8129 if (h != NULL)
8130 ent = h->got.glist;
8131 else
8132 ent = elf_local_got_ents (ibfd)[r_symndx];
8133
8134 for (; ent != NULL; ent = ent->next)
8135 if (ent->addend == rel->r_addend
8136 && ent->owner == ibfd
8137 && ent->tls_type == tls_type)
8138 break;
8139 if (ent == NULL)
8140 abort ();
8141
8142 if (tls_set == 0)
8143 {
8144 /* We managed to get rid of a got entry. */
8145 if (ent->got.refcount > 0)
8146 ent->got.refcount -= 1;
8147 }
8148 }
8149 else
8150 {
8151 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8152 we'll lose one or two dyn relocs. */
8153 if (!dec_dynrel_count (rel->r_info, sec, info,
8154 NULL, h, sym))
8155 return FALSE;
8156
8157 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8158 {
8159 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8160 NULL, h, sym))
8161 return FALSE;
8162 }
8163 }
8164
8165 *tls_mask |= tls_set & 0xff;
8166 *tls_mask &= ~tls_clear;
8167 }
8168
8169 if (elf_section_data (sec)->relocs != relstart)
8170 free (relstart);
8171 }
8172
8173 if (locsyms != NULL
8174 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8175 {
8176 if (!info->keep_memory)
8177 free (locsyms);
8178 else
8179 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8180 }
8181 }
8182
8183 if (toc_ref != NULL)
8184 free (toc_ref);
8185 htab->do_tls_opt = 1;
8186 return TRUE;
8187 }
8188
8189 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8190 the values of any global symbols in a toc section that has been
8191 edited. Globals in toc sections should be a rarity, so this function
8192 sets a flag if any are found in toc sections other than the one just
8193 edited, so that further hash table traversals can be avoided. */
8194
8195 struct adjust_toc_info
8196 {
8197 asection *toc;
8198 unsigned long *skip;
8199 bfd_boolean global_toc_syms;
8200 };
8201
8202 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8203
8204 static bfd_boolean
8205 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8206 {
8207 struct ppc_link_hash_entry *eh;
8208 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8209 unsigned long i;
8210
8211 if (h->root.type != bfd_link_hash_defined
8212 && h->root.type != bfd_link_hash_defweak)
8213 return TRUE;
8214
8215 eh = (struct ppc_link_hash_entry *) h;
8216 if (eh->adjust_done)
8217 return TRUE;
8218
8219 if (eh->elf.root.u.def.section == toc_inf->toc)
8220 {
8221 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8222 i = toc_inf->toc->rawsize >> 3;
8223 else
8224 i = eh->elf.root.u.def.value >> 3;
8225
8226 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8227 {
8228 _bfd_error_handler
8229 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8230 do
8231 ++i;
8232 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8233 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8234 }
8235
8236 eh->elf.root.u.def.value -= toc_inf->skip[i];
8237 eh->adjust_done = 1;
8238 }
8239 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8240 toc_inf->global_toc_syms = TRUE;
8241
8242 return TRUE;
8243 }
8244
8245 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8246 on a _LO variety toc/got reloc. */
8247
8248 static bfd_boolean
8249 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8250 {
8251 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
8252 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
8253 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8254 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8255 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8256 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8257 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8258 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8259 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8260 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8261 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8262 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8263 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8264 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8265 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8266 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
8267 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8268 /* Exclude lfqu by testing reloc. If relocs are ever
8269 defined for the reduced D field in psq_lu then those
8270 will need testing too. */
8271 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8272 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
8273 && (insn & 1) == 0)
8274 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
8275 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8276 /* Exclude stfqu. psq_stu as above for psq_lu. */
8277 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8278 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
8279 && (insn & 1) == 0));
8280 }
8281
8282 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8283 pld ra,symbol@got@pcrel
8284 load/store rt,off(ra)
8285 or
8286 pla ra,symbol@pcrel
8287 load/store rt,off(ra)
8288 may be translated to
8289 pload/pstore rt,symbol+off@pcrel
8290 nop.
8291 This function returns true if the optimization is possible, placing
8292 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8293
8294 On entry to this function, the linker has already determined that
8295 the pld can be replaced with pla: *PINSN1 is that pla insn,
8296 while *PINSN2 is the second instruction. */
8297
8298 static bfd_boolean
8299 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8300 {
8301 uint64_t insn1 = *pinsn1;
8302 uint64_t insn2 = *pinsn2;
8303 bfd_signed_vma off;
8304
8305 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8306 {
8307 /* Check that regs match. */
8308 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8309 return FALSE;
8310
8311 /* P8LS or PMLS form, non-pcrel. */
8312 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8313 return FALSE;
8314
8315 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8316 *pinsn2 = PNOP;
8317 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8318 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8319 return TRUE;
8320 }
8321
8322 insn2 >>= 32;
8323
8324 /* Check that regs match. */
8325 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8326 return FALSE;
8327
8328 switch ((insn2 >> 26) & 63)
8329 {
8330 default:
8331 return FALSE;
8332
8333 case 32: /* lwz */
8334 case 34: /* lbz */
8335 case 36: /* stw */
8336 case 38: /* stb */
8337 case 40: /* lhz */
8338 case 42: /* lha */
8339 case 44: /* sth */
8340 case 48: /* lfs */
8341 case 50: /* lfd */
8342 case 52: /* stfs */
8343 case 54: /* stfd */
8344 /* These are the PMLS cases, where we just need to tack a prefix
8345 on the insn. */
8346 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8347 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8348 off = insn2 & 0xffff;
8349 break;
8350
8351 case 58: /* lwa, ld */
8352 if ((insn2 & 1) != 0)
8353 return FALSE;
8354 insn1 = ((1ULL << 58) | (1ULL << 52)
8355 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8356 | (insn2 & (31ULL << 21)));
8357 off = insn2 & 0xfffc;
8358 break;
8359
8360 case 57: /* lxsd, lxssp */
8361 if ((insn2 & 3) < 2)
8362 return FALSE;
8363 insn1 = ((1ULL << 58) | (1ULL << 52)
8364 | ((40ULL | (insn2 & 3)) << 26)
8365 | (insn2 & (31ULL << 21)));
8366 off = insn2 & 0xfffc;
8367 break;
8368
8369 case 61: /* stxsd, stxssp, lxv, stxv */
8370 if ((insn2 & 3) == 0)
8371 return FALSE;
8372 else if ((insn2 & 3) >= 2)
8373 {
8374 insn1 = ((1ULL << 58) | (1ULL << 52)
8375 | ((44ULL | (insn2 & 3)) << 26)
8376 | (insn2 & (31ULL << 21)));
8377 off = insn2 & 0xfffc;
8378 }
8379 else
8380 {
8381 insn1 = ((1ULL << 58) | (1ULL << 52)
8382 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8383 | (insn2 & (31ULL << 21)));
8384 off = insn2 & 0xfff0;
8385 }
8386 break;
8387
8388 case 56: /* lq */
8389 insn1 = ((1ULL << 58) | (1ULL << 52)
8390 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8391 off = insn2 & 0xffff;
8392 break;
8393
8394 case 62: /* std, stq */
8395 if ((insn2 & 1) != 0)
8396 return FALSE;
8397 insn1 = ((1ULL << 58) | (1ULL << 52)
8398 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8399 | (insn2 & (31ULL << 21)));
8400 off = insn2 & 0xfffc;
8401 break;
8402 }
8403
8404 *pinsn1 = insn1;
8405 *pinsn2 = (uint64_t) NOP << 32;
8406 *poff = (off ^ 0x8000) - 0x8000;
8407 return TRUE;
8408 }
8409
8410 /* Examine all relocs referencing .toc sections in order to remove
8411 unused .toc entries. */
8412
8413 bfd_boolean
8414 ppc64_elf_edit_toc (struct bfd_link_info *info)
8415 {
8416 bfd *ibfd;
8417 struct adjust_toc_info toc_inf;
8418 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8419
8420 htab->do_toc_opt = 1;
8421 toc_inf.global_toc_syms = TRUE;
8422 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8423 {
8424 asection *toc, *sec;
8425 Elf_Internal_Shdr *symtab_hdr;
8426 Elf_Internal_Sym *local_syms;
8427 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8428 unsigned long *skip, *drop;
8429 unsigned char *used;
8430 unsigned char *keep, last, some_unused;
8431
8432 if (!is_ppc64_elf (ibfd))
8433 continue;
8434
8435 toc = bfd_get_section_by_name (ibfd, ".toc");
8436 if (toc == NULL
8437 || toc->size == 0
8438 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8439 || discarded_section (toc))
8440 continue;
8441
8442 toc_relocs = NULL;
8443 local_syms = NULL;
8444 symtab_hdr = &elf_symtab_hdr (ibfd);
8445
8446 /* Look at sections dropped from the final link. */
8447 skip = NULL;
8448 relstart = NULL;
8449 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8450 {
8451 if (sec->reloc_count == 0
8452 || !discarded_section (sec)
8453 || get_opd_info (sec)
8454 || (sec->flags & SEC_ALLOC) == 0
8455 || (sec->flags & SEC_DEBUGGING) != 0)
8456 continue;
8457
8458 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8459 if (relstart == NULL)
8460 goto error_ret;
8461
8462 /* Run through the relocs to see which toc entries might be
8463 unused. */
8464 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8465 {
8466 enum elf_ppc64_reloc_type r_type;
8467 unsigned long r_symndx;
8468 asection *sym_sec;
8469 struct elf_link_hash_entry *h;
8470 Elf_Internal_Sym *sym;
8471 bfd_vma val;
8472
8473 r_type = ELF64_R_TYPE (rel->r_info);
8474 switch (r_type)
8475 {
8476 default:
8477 continue;
8478
8479 case R_PPC64_TOC16:
8480 case R_PPC64_TOC16_LO:
8481 case R_PPC64_TOC16_HI:
8482 case R_PPC64_TOC16_HA:
8483 case R_PPC64_TOC16_DS:
8484 case R_PPC64_TOC16_LO_DS:
8485 break;
8486 }
8487
8488 r_symndx = ELF64_R_SYM (rel->r_info);
8489 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8490 r_symndx, ibfd))
8491 goto error_ret;
8492
8493 if (sym_sec != toc)
8494 continue;
8495
8496 if (h != NULL)
8497 val = h->root.u.def.value;
8498 else
8499 val = sym->st_value;
8500 val += rel->r_addend;
8501
8502 if (val >= toc->size)
8503 continue;
8504
8505 /* Anything in the toc ought to be aligned to 8 bytes.
8506 If not, don't mark as unused. */
8507 if (val & 7)
8508 continue;
8509
8510 if (skip == NULL)
8511 {
8512 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8513 if (skip == NULL)
8514 goto error_ret;
8515 }
8516
8517 skip[val >> 3] = ref_from_discarded;
8518 }
8519
8520 if (elf_section_data (sec)->relocs != relstart)
8521 free (relstart);
8522 }
8523
8524 /* For largetoc loads of address constants, we can convert
8525 . addis rx,2,addr@got@ha
8526 . ld ry,addr@got@l(rx)
8527 to
8528 . addis rx,2,addr@toc@ha
8529 . addi ry,rx,addr@toc@l
8530 when addr is within 2G of the toc pointer. This then means
8531 that the word storing "addr" in the toc is no longer needed. */
8532
8533 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8534 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8535 && toc->reloc_count != 0)
8536 {
8537 /* Read toc relocs. */
8538 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8539 info->keep_memory);
8540 if (toc_relocs == NULL)
8541 goto error_ret;
8542
8543 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8544 {
8545 enum elf_ppc64_reloc_type r_type;
8546 unsigned long r_symndx;
8547 asection *sym_sec;
8548 struct elf_link_hash_entry *h;
8549 Elf_Internal_Sym *sym;
8550 bfd_vma val, addr;
8551
8552 r_type = ELF64_R_TYPE (rel->r_info);
8553 if (r_type != R_PPC64_ADDR64)
8554 continue;
8555
8556 r_symndx = ELF64_R_SYM (rel->r_info);
8557 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8558 r_symndx, ibfd))
8559 goto error_ret;
8560
8561 if (sym_sec == NULL
8562 || sym_sec->output_section == NULL
8563 || discarded_section (sym_sec))
8564 continue;
8565
8566 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8567 continue;
8568
8569 if (h != NULL)
8570 {
8571 if (h->type == STT_GNU_IFUNC)
8572 continue;
8573 val = h->root.u.def.value;
8574 }
8575 else
8576 {
8577 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8578 continue;
8579 val = sym->st_value;
8580 }
8581 val += rel->r_addend;
8582 val += sym_sec->output_section->vma + sym_sec->output_offset;
8583
8584 /* We don't yet know the exact toc pointer value, but we
8585 know it will be somewhere in the toc section. Don't
8586 optimize if the difference from any possible toc
8587 pointer is outside [ff..f80008000, 7fff7fff]. */
8588 addr = toc->output_section->vma + TOC_BASE_OFF;
8589 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8590 continue;
8591
8592 addr = toc->output_section->vma + toc->output_section->rawsize;
8593 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8594 continue;
8595
8596 if (skip == NULL)
8597 {
8598 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8599 if (skip == NULL)
8600 goto error_ret;
8601 }
8602
8603 skip[rel->r_offset >> 3]
8604 |= can_optimize | ((rel - toc_relocs) << 2);
8605 }
8606 }
8607
8608 if (skip == NULL)
8609 continue;
8610
8611 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8612 if (used == NULL)
8613 {
8614 error_ret:
8615 if (local_syms != NULL
8616 && symtab_hdr->contents != (unsigned char *) local_syms)
8617 free (local_syms);
8618 if (sec != NULL
8619 && relstart != NULL
8620 && elf_section_data (sec)->relocs != relstart)
8621 free (relstart);
8622 if (toc_relocs != NULL
8623 && elf_section_data (toc)->relocs != toc_relocs)
8624 free (toc_relocs);
8625 if (skip != NULL)
8626 free (skip);
8627 return FALSE;
8628 }
8629
8630 /* Now check all kept sections that might reference the toc.
8631 Check the toc itself last. */
8632 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8633 : ibfd->sections);
8634 sec != NULL;
8635 sec = (sec == toc ? NULL
8636 : sec->next == NULL ? toc
8637 : sec->next == toc && toc->next ? toc->next
8638 : sec->next))
8639 {
8640 int repeat;
8641
8642 if (sec->reloc_count == 0
8643 || discarded_section (sec)
8644 || get_opd_info (sec)
8645 || (sec->flags & SEC_ALLOC) == 0
8646 || (sec->flags & SEC_DEBUGGING) != 0)
8647 continue;
8648
8649 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8650 info->keep_memory);
8651 if (relstart == NULL)
8652 {
8653 free (used);
8654 goto error_ret;
8655 }
8656
8657 /* Mark toc entries referenced as used. */
8658 do
8659 {
8660 repeat = 0;
8661 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8662 {
8663 enum elf_ppc64_reloc_type r_type;
8664 unsigned long r_symndx;
8665 asection *sym_sec;
8666 struct elf_link_hash_entry *h;
8667 Elf_Internal_Sym *sym;
8668 bfd_vma val;
8669
8670 r_type = ELF64_R_TYPE (rel->r_info);
8671 switch (r_type)
8672 {
8673 case R_PPC64_TOC16:
8674 case R_PPC64_TOC16_LO:
8675 case R_PPC64_TOC16_HI:
8676 case R_PPC64_TOC16_HA:
8677 case R_PPC64_TOC16_DS:
8678 case R_PPC64_TOC16_LO_DS:
8679 /* In case we're taking addresses of toc entries. */
8680 case R_PPC64_ADDR64:
8681 break;
8682
8683 default:
8684 continue;
8685 }
8686
8687 r_symndx = ELF64_R_SYM (rel->r_info);
8688 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8689 r_symndx, ibfd))
8690 {
8691 free (used);
8692 goto error_ret;
8693 }
8694
8695 if (sym_sec != toc)
8696 continue;
8697
8698 if (h != NULL)
8699 val = h->root.u.def.value;
8700 else
8701 val = sym->st_value;
8702 val += rel->r_addend;
8703
8704 if (val >= toc->size)
8705 continue;
8706
8707 if ((skip[val >> 3] & can_optimize) != 0)
8708 {
8709 bfd_vma off;
8710 unsigned char opc;
8711
8712 switch (r_type)
8713 {
8714 case R_PPC64_TOC16_HA:
8715 break;
8716
8717 case R_PPC64_TOC16_LO_DS:
8718 off = rel->r_offset;
8719 off += (bfd_big_endian (ibfd) ? -2 : 3);
8720 if (!bfd_get_section_contents (ibfd, sec, &opc,
8721 off, 1))
8722 {
8723 free (used);
8724 goto error_ret;
8725 }
8726 if ((opc & (0x3f << 2)) == (58u << 2))
8727 break;
8728 /* Fall through. */
8729
8730 default:
8731 /* Wrong sort of reloc, or not a ld. We may
8732 as well clear ref_from_discarded too. */
8733 skip[val >> 3] = 0;
8734 }
8735 }
8736
8737 if (sec != toc)
8738 used[val >> 3] = 1;
8739 /* For the toc section, we only mark as used if this
8740 entry itself isn't unused. */
8741 else if ((used[rel->r_offset >> 3]
8742 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8743 && !used[val >> 3])
8744 {
8745 /* Do all the relocs again, to catch reference
8746 chains. */
8747 repeat = 1;
8748 used[val >> 3] = 1;
8749 }
8750 }
8751 }
8752 while (repeat);
8753
8754 if (elf_section_data (sec)->relocs != relstart)
8755 free (relstart);
8756 }
8757
8758 /* Merge the used and skip arrays. Assume that TOC
8759 doublewords not appearing as either used or unused belong
8760 to an entry more than one doubleword in size. */
8761 for (drop = skip, keep = used, last = 0, some_unused = 0;
8762 drop < skip + (toc->size + 7) / 8;
8763 ++drop, ++keep)
8764 {
8765 if (*keep)
8766 {
8767 *drop &= ~ref_from_discarded;
8768 if ((*drop & can_optimize) != 0)
8769 some_unused = 1;
8770 last = 0;
8771 }
8772 else if ((*drop & ref_from_discarded) != 0)
8773 {
8774 some_unused = 1;
8775 last = ref_from_discarded;
8776 }
8777 else
8778 *drop = last;
8779 }
8780
8781 free (used);
8782
8783 if (some_unused)
8784 {
8785 bfd_byte *contents, *src;
8786 unsigned long off;
8787 Elf_Internal_Sym *sym;
8788 bfd_boolean local_toc_syms = FALSE;
8789
8790 /* Shuffle the toc contents, and at the same time convert the
8791 skip array from booleans into offsets. */
8792 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8793 goto error_ret;
8794
8795 elf_section_data (toc)->this_hdr.contents = contents;
8796
8797 for (src = contents, off = 0, drop = skip;
8798 src < contents + toc->size;
8799 src += 8, ++drop)
8800 {
8801 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8802 off += 8;
8803 else if (off != 0)
8804 {
8805 *drop = off;
8806 memcpy (src - off, src, 8);
8807 }
8808 }
8809 *drop = off;
8810 toc->rawsize = toc->size;
8811 toc->size = src - contents - off;
8812
8813 /* Adjust addends for relocs against the toc section sym,
8814 and optimize any accesses we can. */
8815 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8816 {
8817 if (sec->reloc_count == 0
8818 || discarded_section (sec))
8819 continue;
8820
8821 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8822 info->keep_memory);
8823 if (relstart == NULL)
8824 goto error_ret;
8825
8826 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8827 {
8828 enum elf_ppc64_reloc_type r_type;
8829 unsigned long r_symndx;
8830 asection *sym_sec;
8831 struct elf_link_hash_entry *h;
8832 bfd_vma val;
8833
8834 r_type = ELF64_R_TYPE (rel->r_info);
8835 switch (r_type)
8836 {
8837 default:
8838 continue;
8839
8840 case R_PPC64_TOC16:
8841 case R_PPC64_TOC16_LO:
8842 case R_PPC64_TOC16_HI:
8843 case R_PPC64_TOC16_HA:
8844 case R_PPC64_TOC16_DS:
8845 case R_PPC64_TOC16_LO_DS:
8846 case R_PPC64_ADDR64:
8847 break;
8848 }
8849
8850 r_symndx = ELF64_R_SYM (rel->r_info);
8851 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8852 r_symndx, ibfd))
8853 goto error_ret;
8854
8855 if (sym_sec != toc)
8856 continue;
8857
8858 if (h != NULL)
8859 val = h->root.u.def.value;
8860 else
8861 {
8862 val = sym->st_value;
8863 if (val != 0)
8864 local_toc_syms = TRUE;
8865 }
8866
8867 val += rel->r_addend;
8868
8869 if (val > toc->rawsize)
8870 val = toc->rawsize;
8871 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8872 continue;
8873 else if ((skip[val >> 3] & can_optimize) != 0)
8874 {
8875 Elf_Internal_Rela *tocrel
8876 = toc_relocs + (skip[val >> 3] >> 2);
8877 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8878
8879 switch (r_type)
8880 {
8881 case R_PPC64_TOC16_HA:
8882 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8883 break;
8884
8885 case R_PPC64_TOC16_LO_DS:
8886 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8887 break;
8888
8889 default:
8890 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8891 ppc_howto_init ();
8892 info->callbacks->einfo
8893 /* xgettext:c-format */
8894 (_("%H: %s references "
8895 "optimized away TOC entry\n"),
8896 ibfd, sec, rel->r_offset,
8897 ppc64_elf_howto_table[r_type]->name);
8898 bfd_set_error (bfd_error_bad_value);
8899 goto error_ret;
8900 }
8901 rel->r_addend = tocrel->r_addend;
8902 elf_section_data (sec)->relocs = relstart;
8903 continue;
8904 }
8905
8906 if (h != NULL || sym->st_value != 0)
8907 continue;
8908
8909 rel->r_addend -= skip[val >> 3];
8910 elf_section_data (sec)->relocs = relstart;
8911 }
8912
8913 if (elf_section_data (sec)->relocs != relstart)
8914 free (relstart);
8915 }
8916
8917 /* We shouldn't have local or global symbols defined in the TOC,
8918 but handle them anyway. */
8919 if (local_syms != NULL)
8920 for (sym = local_syms;
8921 sym < local_syms + symtab_hdr->sh_info;
8922 ++sym)
8923 if (sym->st_value != 0
8924 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8925 {
8926 unsigned long i;
8927
8928 if (sym->st_value > toc->rawsize)
8929 i = toc->rawsize >> 3;
8930 else
8931 i = sym->st_value >> 3;
8932
8933 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8934 {
8935 if (local_toc_syms)
8936 _bfd_error_handler
8937 (_("%s defined on removed toc entry"),
8938 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8939 do
8940 ++i;
8941 while ((skip[i] & (ref_from_discarded | can_optimize)));
8942 sym->st_value = (bfd_vma) i << 3;
8943 }
8944
8945 sym->st_value -= skip[i];
8946 symtab_hdr->contents = (unsigned char *) local_syms;
8947 }
8948
8949 /* Adjust any global syms defined in this toc input section. */
8950 if (toc_inf.global_toc_syms)
8951 {
8952 toc_inf.toc = toc;
8953 toc_inf.skip = skip;
8954 toc_inf.global_toc_syms = FALSE;
8955 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8956 &toc_inf);
8957 }
8958
8959 if (toc->reloc_count != 0)
8960 {
8961 Elf_Internal_Shdr *rel_hdr;
8962 Elf_Internal_Rela *wrel;
8963 bfd_size_type sz;
8964
8965 /* Remove unused toc relocs, and adjust those we keep. */
8966 if (toc_relocs == NULL)
8967 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8968 info->keep_memory);
8969 if (toc_relocs == NULL)
8970 goto error_ret;
8971
8972 wrel = toc_relocs;
8973 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8974 if ((skip[rel->r_offset >> 3]
8975 & (ref_from_discarded | can_optimize)) == 0)
8976 {
8977 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8978 wrel->r_info = rel->r_info;
8979 wrel->r_addend = rel->r_addend;
8980 ++wrel;
8981 }
8982 else if (!dec_dynrel_count (rel->r_info, toc, info,
8983 &local_syms, NULL, NULL))
8984 goto error_ret;
8985
8986 elf_section_data (toc)->relocs = toc_relocs;
8987 toc->reloc_count = wrel - toc_relocs;
8988 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8989 sz = rel_hdr->sh_entsize;
8990 rel_hdr->sh_size = toc->reloc_count * sz;
8991 }
8992 }
8993 else if (toc_relocs != NULL
8994 && elf_section_data (toc)->relocs != toc_relocs)
8995 free (toc_relocs);
8996
8997 if (local_syms != NULL
8998 && symtab_hdr->contents != (unsigned char *) local_syms)
8999 {
9000 if (!info->keep_memory)
9001 free (local_syms);
9002 else
9003 symtab_hdr->contents = (unsigned char *) local_syms;
9004 }
9005 free (skip);
9006 }
9007
9008 /* Look for cases where we can change an indirect GOT access to
9009 a GOT relative or PC relative access, possibly reducing the
9010 number of GOT entries. */
9011 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9012 {
9013 asection *sec;
9014 Elf_Internal_Shdr *symtab_hdr;
9015 Elf_Internal_Sym *local_syms;
9016 Elf_Internal_Rela *relstart, *rel;
9017 bfd_vma got;
9018
9019 if (!is_ppc64_elf (ibfd))
9020 continue;
9021
9022 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9023 continue;
9024
9025 sec = ppc64_elf_tdata (ibfd)->got;
9026 got = 0;
9027 if (sec != NULL)
9028 got = sec->output_section->vma + sec->output_offset + 0x8000;
9029
9030 local_syms = NULL;
9031 symtab_hdr = &elf_symtab_hdr (ibfd);
9032
9033 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9034 {
9035 if (sec->reloc_count == 0
9036 || !ppc64_elf_section_data (sec)->has_optrel
9037 || discarded_section (sec))
9038 continue;
9039
9040 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9041 info->keep_memory);
9042 if (relstart == NULL)
9043 {
9044 got_error_ret:
9045 if (local_syms != NULL
9046 && symtab_hdr->contents != (unsigned char *) local_syms)
9047 free (local_syms);
9048 if (sec != NULL
9049 && relstart != NULL
9050 && elf_section_data (sec)->relocs != relstart)
9051 free (relstart);
9052 return FALSE;
9053 }
9054
9055 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9056 {
9057 enum elf_ppc64_reloc_type r_type;
9058 unsigned long r_symndx;
9059 Elf_Internal_Sym *sym;
9060 asection *sym_sec;
9061 struct elf_link_hash_entry *h;
9062 struct got_entry *ent;
9063 bfd_vma val, pc;
9064 unsigned char buf[8];
9065 unsigned int insn;
9066 enum {no_check, check_lo, check_ha} insn_check;
9067
9068 r_type = ELF64_R_TYPE (rel->r_info);
9069 switch (r_type)
9070 {
9071 default:
9072 insn_check = no_check;
9073 break;
9074
9075 case R_PPC64_PLT16_HA:
9076 case R_PPC64_GOT_TLSLD16_HA:
9077 case R_PPC64_GOT_TLSGD16_HA:
9078 case R_PPC64_GOT_TPREL16_HA:
9079 case R_PPC64_GOT_DTPREL16_HA:
9080 case R_PPC64_GOT16_HA:
9081 case R_PPC64_TOC16_HA:
9082 insn_check = check_ha;
9083 break;
9084
9085 case R_PPC64_PLT16_LO:
9086 case R_PPC64_PLT16_LO_DS:
9087 case R_PPC64_GOT_TLSLD16_LO:
9088 case R_PPC64_GOT_TLSGD16_LO:
9089 case R_PPC64_GOT_TPREL16_LO_DS:
9090 case R_PPC64_GOT_DTPREL16_LO_DS:
9091 case R_PPC64_GOT16_LO:
9092 case R_PPC64_GOT16_LO_DS:
9093 case R_PPC64_TOC16_LO:
9094 case R_PPC64_TOC16_LO_DS:
9095 insn_check = check_lo;
9096 break;
9097 }
9098
9099 if (insn_check != no_check)
9100 {
9101 bfd_vma off = rel->r_offset & ~3;
9102
9103 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9104 goto got_error_ret;
9105
9106 insn = bfd_get_32 (ibfd, buf);
9107 if (insn_check == check_lo
9108 ? !ok_lo_toc_insn (insn, r_type)
9109 : ((insn & ((0x3f << 26) | 0x1f << 16))
9110 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9111 {
9112 char str[12];
9113
9114 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9115 sprintf (str, "%#08x", insn);
9116 info->callbacks->einfo
9117 /* xgettext:c-format */
9118 (_("%H: got/toc optimization is not supported for"
9119 " %s instruction\n"),
9120 ibfd, sec, rel->r_offset & ~3, str);
9121 continue;
9122 }
9123 }
9124
9125 switch (r_type)
9126 {
9127 /* Note that we don't delete GOT entries for
9128 R_PPC64_GOT16_DS since we'd need a lot more
9129 analysis. For starters, the preliminary layout is
9130 before the GOT, PLT, dynamic sections and stubs are
9131 laid out. Then we'd need to allow for changes in
9132 distance between sections caused by alignment. */
9133 default:
9134 continue;
9135
9136 case R_PPC64_GOT16_HA:
9137 case R_PPC64_GOT16_LO_DS:
9138 case R_PPC64_GOT_PCREL34:
9139 break;
9140 }
9141
9142 r_symndx = ELF64_R_SYM (rel->r_info);
9143 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9144 r_symndx, ibfd))
9145 goto got_error_ret;
9146
9147 if (sym_sec == NULL
9148 || sym_sec->output_section == NULL
9149 || discarded_section (sym_sec))
9150 continue;
9151
9152 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9153 continue;
9154
9155 if (h != NULL)
9156 val = h->root.u.def.value;
9157 else
9158 val = sym->st_value;
9159 val += rel->r_addend;
9160 val += sym_sec->output_section->vma + sym_sec->output_offset;
9161
9162 /* Fudge factor to allow for the fact that the preliminary layout
9163 isn't exact. Reduce limits by this factor. */
9164 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9165
9166 switch (r_type)
9167 {
9168 default:
9169 continue;
9170
9171 case R_PPC64_GOT16_HA:
9172 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9173 >= LIMIT_ADJUST (0x100000000ULL))
9174 continue;
9175
9176 if (!bfd_get_section_contents (ibfd, sec, buf,
9177 rel->r_offset & ~3, 4))
9178 goto got_error_ret;
9179 insn = bfd_get_32 (ibfd, buf);
9180 if (((insn & ((0x3f << 26) | 0x1f << 16))
9181 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9182 continue;
9183 break;
9184
9185 case R_PPC64_GOT16_LO_DS:
9186 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9187 >= LIMIT_ADJUST (0x100000000ULL))
9188 continue;
9189 if (!bfd_get_section_contents (ibfd, sec, buf,
9190 rel->r_offset & ~3, 4))
9191 goto got_error_ret;
9192 insn = bfd_get_32 (ibfd, buf);
9193 if ((insn & (0x3f << 26 | 0x3)) != 58u << 26 /* ld */)
9194 continue;
9195 break;
9196
9197 case R_PPC64_GOT_PCREL34:
9198 pc = rel->r_offset;
9199 pc += sec->output_section->vma + sec->output_offset;
9200 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9201 >= LIMIT_ADJUST (1ULL << 34))
9202 continue;
9203 if (!bfd_get_section_contents (ibfd, sec, buf,
9204 rel->r_offset & ~3, 8))
9205 goto got_error_ret;
9206 insn = bfd_get_32 (ibfd, buf);
9207 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9208 continue;
9209 insn = bfd_get_32 (ibfd, buf + 4);
9210 if ((insn & (0x3f << 26)) != 57u << 26)
9211 continue;
9212 break;
9213 }
9214 #undef LIMIT_ADJUST
9215
9216 if (h != NULL)
9217 ent = h->got.glist;
9218 else
9219 {
9220 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9221 ent = local_got_ents[r_symndx];
9222 }
9223 for (; ent != NULL; ent = ent->next)
9224 if (ent->addend == rel->r_addend
9225 && ent->owner == ibfd
9226 && ent->tls_type == 0)
9227 break;
9228 BFD_ASSERT (ent && ent->got.refcount > 0);
9229 ent->got.refcount -= 1;
9230 }
9231
9232 if (elf_section_data (sec)->relocs != relstart)
9233 free (relstart);
9234 }
9235
9236 if (local_syms != NULL
9237 && symtab_hdr->contents != (unsigned char *) local_syms)
9238 {
9239 if (!info->keep_memory)
9240 free (local_syms);
9241 else
9242 symtab_hdr->contents = (unsigned char *) local_syms;
9243 }
9244 }
9245
9246 return TRUE;
9247 }
9248
9249 /* Return true iff input section I references the TOC using
9250 instructions limited to +/-32k offsets. */
9251
9252 bfd_boolean
9253 ppc64_elf_has_small_toc_reloc (asection *i)
9254 {
9255 return (is_ppc64_elf (i->owner)
9256 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9257 }
9258
9259 /* Allocate space for one GOT entry. */
9260
9261 static void
9262 allocate_got (struct elf_link_hash_entry *h,
9263 struct bfd_link_info *info,
9264 struct got_entry *gent)
9265 {
9266 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9267 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9268 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9269 ? 16 : 8);
9270 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9271 ? 2 : 1) * sizeof (Elf64_External_Rela);
9272 asection *got = ppc64_elf_tdata (gent->owner)->got;
9273
9274 gent->got.offset = got->size;
9275 got->size += entsize;
9276
9277 if (h->type == STT_GNU_IFUNC)
9278 {
9279 htab->elf.irelplt->size += rentsize;
9280 htab->got_reli_size += rentsize;
9281 }
9282 else if (((bfd_link_pic (info)
9283 && !(gent->tls_type != 0
9284 && bfd_link_executable (info)
9285 && SYMBOL_REFERENCES_LOCAL (info, h)))
9286 || (htab->elf.dynamic_sections_created
9287 && h->dynindx != -1
9288 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9289 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9290 {
9291 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9292 relgot->size += rentsize;
9293 }
9294 }
9295
9296 /* This function merges got entries in the same toc group. */
9297
9298 static void
9299 merge_got_entries (struct got_entry **pent)
9300 {
9301 struct got_entry *ent, *ent2;
9302
9303 for (ent = *pent; ent != NULL; ent = ent->next)
9304 if (!ent->is_indirect)
9305 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9306 if (!ent2->is_indirect
9307 && ent2->addend == ent->addend
9308 && ent2->tls_type == ent->tls_type
9309 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9310 {
9311 ent2->is_indirect = TRUE;
9312 ent2->got.ent = ent;
9313 }
9314 }
9315
9316 /* If H is undefined, make it dynamic if that makes sense. */
9317
9318 static bfd_boolean
9319 ensure_undef_dynamic (struct bfd_link_info *info,
9320 struct elf_link_hash_entry *h)
9321 {
9322 struct elf_link_hash_table *htab = elf_hash_table (info);
9323
9324 if (htab->dynamic_sections_created
9325 && ((info->dynamic_undefined_weak != 0
9326 && h->root.type == bfd_link_hash_undefweak)
9327 || h->root.type == bfd_link_hash_undefined)
9328 && h->dynindx == -1
9329 && !h->forced_local
9330 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9331 return bfd_elf_link_record_dynamic_symbol (info, h);
9332 return TRUE;
9333 }
9334
9335 /* Allocate space in .plt, .got and associated reloc sections for
9336 dynamic relocs. */
9337
9338 static bfd_boolean
9339 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9340 {
9341 struct bfd_link_info *info;
9342 struct ppc_link_hash_table *htab;
9343 asection *s;
9344 struct ppc_link_hash_entry *eh;
9345 struct got_entry **pgent, *gent;
9346
9347 if (h->root.type == bfd_link_hash_indirect)
9348 return TRUE;
9349
9350 info = (struct bfd_link_info *) inf;
9351 htab = ppc_hash_table (info);
9352 if (htab == NULL)
9353 return FALSE;
9354
9355 eh = (struct ppc_link_hash_entry *) h;
9356 /* Run through the TLS GD got entries first if we're changing them
9357 to TPREL. */
9358 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9359 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9360 if (gent->got.refcount > 0
9361 && (gent->tls_type & TLS_GD) != 0)
9362 {
9363 /* This was a GD entry that has been converted to TPREL. If
9364 there happens to be a TPREL entry we can use that one. */
9365 struct got_entry *ent;
9366 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9367 if (ent->got.refcount > 0
9368 && (ent->tls_type & TLS_TPREL) != 0
9369 && ent->addend == gent->addend
9370 && ent->owner == gent->owner)
9371 {
9372 gent->got.refcount = 0;
9373 break;
9374 }
9375
9376 /* If not, then we'll be using our own TPREL entry. */
9377 if (gent->got.refcount != 0)
9378 gent->tls_type = TLS_TLS | TLS_TPREL;
9379 }
9380
9381 /* Remove any list entry that won't generate a word in the GOT before
9382 we call merge_got_entries. Otherwise we risk merging to empty
9383 entries. */
9384 pgent = &h->got.glist;
9385 while ((gent = *pgent) != NULL)
9386 if (gent->got.refcount > 0)
9387 {
9388 if ((gent->tls_type & TLS_LD) != 0
9389 && SYMBOL_REFERENCES_LOCAL (info, h))
9390 {
9391 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9392 *pgent = gent->next;
9393 }
9394 else
9395 pgent = &gent->next;
9396 }
9397 else
9398 *pgent = gent->next;
9399
9400 if (!htab->do_multi_toc)
9401 merge_got_entries (&h->got.glist);
9402
9403 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9404 if (!gent->is_indirect)
9405 {
9406 /* Ensure we catch all the cases where this symbol should
9407 be made dynamic. */
9408 if (!ensure_undef_dynamic (info, h))
9409 return FALSE;
9410
9411 if (!is_ppc64_elf (gent->owner))
9412 abort ();
9413
9414 allocate_got (h, info, gent);
9415 }
9416
9417 /* If no dynamic sections we can't have dynamic relocs, except for
9418 IFUNCs which are handled even in static executables. */
9419 if (!htab->elf.dynamic_sections_created
9420 && h->type != STT_GNU_IFUNC)
9421 eh->dyn_relocs = NULL;
9422
9423 /* Discard relocs on undefined symbols that must be local. */
9424 else if (h->root.type == bfd_link_hash_undefined
9425 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9426 eh->dyn_relocs = NULL;
9427
9428 /* Also discard relocs on undefined weak syms with non-default
9429 visibility, or when dynamic_undefined_weak says so. */
9430 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9431 eh->dyn_relocs = NULL;
9432
9433 if (eh->dyn_relocs != NULL)
9434 {
9435 struct elf_dyn_relocs *p, **pp;
9436
9437 /* In the shared -Bsymbolic case, discard space allocated for
9438 dynamic pc-relative relocs against symbols which turn out to
9439 be defined in regular objects. For the normal shared case,
9440 discard space for relocs that have become local due to symbol
9441 visibility changes. */
9442 if (bfd_link_pic (info))
9443 {
9444 /* Relocs that use pc_count are those that appear on a call
9445 insn, or certain REL relocs (see must_be_dyn_reloc) that
9446 can be generated via assembly. We want calls to
9447 protected symbols to resolve directly to the function
9448 rather than going via the plt. If people want function
9449 pointer comparisons to work as expected then they should
9450 avoid writing weird assembly. */
9451 if (SYMBOL_CALLS_LOCAL (info, h))
9452 {
9453 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9454 {
9455 p->count -= p->pc_count;
9456 p->pc_count = 0;
9457 if (p->count == 0)
9458 *pp = p->next;
9459 else
9460 pp = &p->next;
9461 }
9462 }
9463
9464 if (eh->dyn_relocs != NULL)
9465 {
9466 /* Ensure we catch all the cases where this symbol
9467 should be made dynamic. */
9468 if (!ensure_undef_dynamic (info, h))
9469 return FALSE;
9470 }
9471 }
9472
9473 /* For a fixed position executable, discard space for
9474 relocs against symbols which are not dynamic. */
9475 else if (h->type != STT_GNU_IFUNC)
9476 {
9477 if (h->dynamic_adjusted
9478 && !h->def_regular
9479 && !ELF_COMMON_DEF_P (h))
9480 {
9481 /* Ensure we catch all the cases where this symbol
9482 should be made dynamic. */
9483 if (!ensure_undef_dynamic (info, h))
9484 return FALSE;
9485
9486 /* But if that didn't work out, discard dynamic relocs. */
9487 if (h->dynindx == -1)
9488 eh->dyn_relocs = NULL;
9489 }
9490 else
9491 eh->dyn_relocs = NULL;
9492 }
9493
9494 /* Finally, allocate space. */
9495 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9496 {
9497 asection *sreloc = elf_section_data (p->sec)->sreloc;
9498 if (eh->elf.type == STT_GNU_IFUNC)
9499 sreloc = htab->elf.irelplt;
9500 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9501 }
9502 }
9503
9504 /* We might need a PLT entry when the symbol
9505 a) is dynamic, or
9506 b) is an ifunc, or
9507 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9508 d) has plt16 relocs and we are linking statically. */
9509 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9510 || h->type == STT_GNU_IFUNC
9511 || (h->needs_plt && h->dynamic_adjusted)
9512 || (h->needs_plt
9513 && h->def_regular
9514 && !htab->elf.dynamic_sections_created
9515 && !htab->can_convert_all_inline_plt
9516 && (((struct ppc_link_hash_entry *) h)->tls_mask
9517 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9518 {
9519 struct plt_entry *pent;
9520 bfd_boolean doneone = FALSE;
9521 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9522 if (pent->plt.refcount > 0)
9523 {
9524 if (!htab->elf.dynamic_sections_created
9525 || h->dynindx == -1)
9526 {
9527 if (h->type == STT_GNU_IFUNC)
9528 {
9529 s = htab->elf.iplt;
9530 pent->plt.offset = s->size;
9531 s->size += PLT_ENTRY_SIZE (htab);
9532 s = htab->elf.irelplt;
9533 }
9534 else
9535 {
9536 s = htab->pltlocal;
9537 pent->plt.offset = s->size;
9538 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9539 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9540 }
9541 }
9542 else
9543 {
9544 /* If this is the first .plt entry, make room for the special
9545 first entry. */
9546 s = htab->elf.splt;
9547 if (s->size == 0)
9548 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9549
9550 pent->plt.offset = s->size;
9551
9552 /* Make room for this entry. */
9553 s->size += PLT_ENTRY_SIZE (htab);
9554
9555 /* Make room for the .glink code. */
9556 s = htab->glink;
9557 if (s->size == 0)
9558 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9559 if (htab->opd_abi)
9560 {
9561 /* We need bigger stubs past index 32767. */
9562 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9563 s->size += 4;
9564 s->size += 2*4;
9565 }
9566 else
9567 s->size += 4;
9568
9569 /* We also need to make an entry in the .rela.plt section. */
9570 s = htab->elf.srelplt;
9571 }
9572 if (s != NULL)
9573 s->size += sizeof (Elf64_External_Rela);
9574 doneone = TRUE;
9575 }
9576 else
9577 pent->plt.offset = (bfd_vma) -1;
9578 if (!doneone)
9579 {
9580 h->plt.plist = NULL;
9581 h->needs_plt = 0;
9582 }
9583 }
9584 else
9585 {
9586 h->plt.plist = NULL;
9587 h->needs_plt = 0;
9588 }
9589
9590 return TRUE;
9591 }
9592
9593 #define PPC_LO(v) ((v) & 0xffff)
9594 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9595 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9596 #define D34(v) \
9597 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9598 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9599
9600 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9601 to set up space for global entry stubs. These are put in glink,
9602 after the branch table. */
9603
9604 static bfd_boolean
9605 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9606 {
9607 struct bfd_link_info *info;
9608 struct ppc_link_hash_table *htab;
9609 struct plt_entry *pent;
9610 asection *s, *plt;
9611
9612 if (h->root.type == bfd_link_hash_indirect)
9613 return TRUE;
9614
9615 if (!h->pointer_equality_needed)
9616 return TRUE;
9617
9618 if (h->def_regular)
9619 return TRUE;
9620
9621 info = inf;
9622 htab = ppc_hash_table (info);
9623 if (htab == NULL)
9624 return FALSE;
9625
9626 s = htab->global_entry;
9627 plt = htab->elf.splt;
9628 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9629 if (pent->plt.offset != (bfd_vma) -1
9630 && pent->addend == 0)
9631 {
9632 /* For ELFv2, if this symbol is not defined in a regular file
9633 and we are not generating a shared library or pie, then we
9634 need to define the symbol in the executable on a call stub.
9635 This is to avoid text relocations. */
9636 bfd_vma off, stub_align, stub_off, stub_size;
9637 unsigned int align_power;
9638
9639 stub_size = 16;
9640 stub_off = s->size;
9641 if (htab->params->plt_stub_align >= 0)
9642 align_power = htab->params->plt_stub_align;
9643 else
9644 align_power = -htab->params->plt_stub_align;
9645 /* Setting section alignment is delayed until we know it is
9646 non-empty. Otherwise the .text output section will be
9647 aligned at least to plt_stub_align even when no global
9648 entry stubs are needed. */
9649 if (s->alignment_power < align_power)
9650 s->alignment_power = align_power;
9651 stub_align = (bfd_vma) 1 << align_power;
9652 if (htab->params->plt_stub_align >= 0
9653 || ((((stub_off + stub_size - 1) & -stub_align)
9654 - (stub_off & -stub_align))
9655 > ((stub_size - 1) & -stub_align)))
9656 stub_off = (stub_off + stub_align - 1) & -stub_align;
9657 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9658 off -= stub_off + s->output_offset + s->output_section->vma;
9659 /* Note that for --plt-stub-align negative we have a possible
9660 dependency between stub offset and size. Break that
9661 dependency by assuming the max stub size when calculating
9662 the stub offset. */
9663 if (PPC_HA (off) == 0)
9664 stub_size -= 4;
9665 h->root.type = bfd_link_hash_defined;
9666 h->root.u.def.section = s;
9667 h->root.u.def.value = stub_off;
9668 s->size = stub_off + stub_size;
9669 break;
9670 }
9671 return TRUE;
9672 }
9673
9674 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9675 read-only sections. */
9676
9677 static bfd_boolean
9678 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9679 {
9680 asection *sec;
9681
9682 if (h->root.type == bfd_link_hash_indirect)
9683 return TRUE;
9684
9685 sec = readonly_dynrelocs (h);
9686 if (sec != NULL)
9687 {
9688 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9689
9690 info->flags |= DF_TEXTREL;
9691 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9692 " in read-only section `%pA'\n"),
9693 sec->owner, h->root.root.string, sec);
9694
9695 /* Not an error, just cut short the traversal. */
9696 return FALSE;
9697 }
9698 return TRUE;
9699 }
9700
9701 /* Set the sizes of the dynamic sections. */
9702
9703 static bfd_boolean
9704 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9705 struct bfd_link_info *info)
9706 {
9707 struct ppc_link_hash_table *htab;
9708 bfd *dynobj;
9709 asection *s;
9710 bfd_boolean relocs;
9711 bfd *ibfd;
9712 struct got_entry *first_tlsld;
9713
9714 htab = ppc_hash_table (info);
9715 if (htab == NULL)
9716 return FALSE;
9717
9718 dynobj = htab->elf.dynobj;
9719 if (dynobj == NULL)
9720 abort ();
9721
9722 if (htab->elf.dynamic_sections_created)
9723 {
9724 /* Set the contents of the .interp section to the interpreter. */
9725 if (bfd_link_executable (info) && !info->nointerp)
9726 {
9727 s = bfd_get_linker_section (dynobj, ".interp");
9728 if (s == NULL)
9729 abort ();
9730 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9731 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9732 }
9733 }
9734
9735 /* Set up .got offsets for local syms, and space for local dynamic
9736 relocs. */
9737 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9738 {
9739 struct got_entry **lgot_ents;
9740 struct got_entry **end_lgot_ents;
9741 struct plt_entry **local_plt;
9742 struct plt_entry **end_local_plt;
9743 unsigned char *lgot_masks;
9744 bfd_size_type locsymcount;
9745 Elf_Internal_Shdr *symtab_hdr;
9746
9747 if (!is_ppc64_elf (ibfd))
9748 continue;
9749
9750 for (s = ibfd->sections; s != NULL; s = s->next)
9751 {
9752 struct ppc_dyn_relocs *p;
9753
9754 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9755 {
9756 if (!bfd_is_abs_section (p->sec)
9757 && bfd_is_abs_section (p->sec->output_section))
9758 {
9759 /* Input section has been discarded, either because
9760 it is a copy of a linkonce section or due to
9761 linker script /DISCARD/, so we'll be discarding
9762 the relocs too. */
9763 }
9764 else if (p->count != 0)
9765 {
9766 asection *srel = elf_section_data (p->sec)->sreloc;
9767 if (p->ifunc)
9768 srel = htab->elf.irelplt;
9769 srel->size += p->count * sizeof (Elf64_External_Rela);
9770 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9771 info->flags |= DF_TEXTREL;
9772 }
9773 }
9774 }
9775
9776 lgot_ents = elf_local_got_ents (ibfd);
9777 if (!lgot_ents)
9778 continue;
9779
9780 symtab_hdr = &elf_symtab_hdr (ibfd);
9781 locsymcount = symtab_hdr->sh_info;
9782 end_lgot_ents = lgot_ents + locsymcount;
9783 local_plt = (struct plt_entry **) end_lgot_ents;
9784 end_local_plt = local_plt + locsymcount;
9785 lgot_masks = (unsigned char *) end_local_plt;
9786 s = ppc64_elf_tdata (ibfd)->got;
9787 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9788 {
9789 struct got_entry **pent, *ent;
9790
9791 pent = lgot_ents;
9792 while ((ent = *pent) != NULL)
9793 if (ent->got.refcount > 0)
9794 {
9795 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9796 {
9797 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9798 *pent = ent->next;
9799 }
9800 else
9801 {
9802 unsigned int ent_size = 8;
9803 unsigned int rel_size = sizeof (Elf64_External_Rela);
9804
9805 ent->got.offset = s->size;
9806 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9807 {
9808 ent_size *= 2;
9809 rel_size *= 2;
9810 }
9811 s->size += ent_size;
9812 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9813 {
9814 htab->elf.irelplt->size += rel_size;
9815 htab->got_reli_size += rel_size;
9816 }
9817 else if (bfd_link_dll (info))
9818 {
9819 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9820 srel->size += rel_size;
9821 }
9822 pent = &ent->next;
9823 }
9824 }
9825 else
9826 *pent = ent->next;
9827 }
9828
9829 /* Allocate space for plt calls to local syms. */
9830 lgot_masks = (unsigned char *) end_local_plt;
9831 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
9832 {
9833 struct plt_entry *ent;
9834
9835 for (ent = *local_plt; ent != NULL; ent = ent->next)
9836 if (ent->plt.refcount > 0)
9837 {
9838 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9839 {
9840 s = htab->elf.iplt;
9841 ent->plt.offset = s->size;
9842 s->size += PLT_ENTRY_SIZE (htab);
9843 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9844 }
9845 else if (htab->can_convert_all_inline_plt
9846 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
9847 ent->plt.offset = (bfd_vma) -1;
9848 else
9849 {
9850 s = htab->pltlocal;
9851 ent->plt.offset = s->size;
9852 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9853 if (bfd_link_pic (info))
9854 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
9855 }
9856 }
9857 else
9858 ent->plt.offset = (bfd_vma) -1;
9859 }
9860 }
9861
9862 /* Allocate global sym .plt and .got entries, and space for global
9863 sym dynamic relocs. */
9864 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9865
9866 if (!htab->opd_abi && !bfd_link_pic (info))
9867 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9868
9869 first_tlsld = NULL;
9870 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9871 {
9872 struct got_entry *ent;
9873
9874 if (!is_ppc64_elf (ibfd))
9875 continue;
9876
9877 ent = ppc64_tlsld_got (ibfd);
9878 if (ent->got.refcount > 0)
9879 {
9880 if (!htab->do_multi_toc && first_tlsld != NULL)
9881 {
9882 ent->is_indirect = TRUE;
9883 ent->got.ent = first_tlsld;
9884 }
9885 else
9886 {
9887 if (first_tlsld == NULL)
9888 first_tlsld = ent;
9889 s = ppc64_elf_tdata (ibfd)->got;
9890 ent->got.offset = s->size;
9891 ent->owner = ibfd;
9892 s->size += 16;
9893 if (bfd_link_dll (info))
9894 {
9895 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9896 srel->size += sizeof (Elf64_External_Rela);
9897 }
9898 }
9899 }
9900 else
9901 ent->got.offset = (bfd_vma) -1;
9902 }
9903
9904 /* We now have determined the sizes of the various dynamic sections.
9905 Allocate memory for them. */
9906 relocs = FALSE;
9907 for (s = dynobj->sections; s != NULL; s = s->next)
9908 {
9909 if ((s->flags & SEC_LINKER_CREATED) == 0)
9910 continue;
9911
9912 if (s == htab->brlt || s == htab->relbrlt)
9913 /* These haven't been allocated yet; don't strip. */
9914 continue;
9915 else if (s == htab->elf.sgot
9916 || s == htab->elf.splt
9917 || s == htab->elf.iplt
9918 || s == htab->pltlocal
9919 || s == htab->glink
9920 || s == htab->global_entry
9921 || s == htab->elf.sdynbss
9922 || s == htab->elf.sdynrelro)
9923 {
9924 /* Strip this section if we don't need it; see the
9925 comment below. */
9926 }
9927 else if (s == htab->glink_eh_frame)
9928 {
9929 if (!bfd_is_abs_section (s->output_section))
9930 /* Not sized yet. */
9931 continue;
9932 }
9933 else if (CONST_STRNEQ (s->name, ".rela"))
9934 {
9935 if (s->size != 0)
9936 {
9937 if (s != htab->elf.srelplt)
9938 relocs = TRUE;
9939
9940 /* We use the reloc_count field as a counter if we need
9941 to copy relocs into the output file. */
9942 s->reloc_count = 0;
9943 }
9944 }
9945 else
9946 {
9947 /* It's not one of our sections, so don't allocate space. */
9948 continue;
9949 }
9950
9951 if (s->size == 0)
9952 {
9953 /* If we don't need this section, strip it from the
9954 output file. This is mostly to handle .rela.bss and
9955 .rela.plt. We must create both sections in
9956 create_dynamic_sections, because they must be created
9957 before the linker maps input sections to output
9958 sections. The linker does that before
9959 adjust_dynamic_symbol is called, and it is that
9960 function which decides whether anything needs to go
9961 into these sections. */
9962 s->flags |= SEC_EXCLUDE;
9963 continue;
9964 }
9965
9966 if (bfd_is_abs_section (s->output_section))
9967 _bfd_error_handler (_("warning: discarding dynamic section %s"),
9968 s->name);
9969
9970 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9971 continue;
9972
9973 /* Allocate memory for the section contents. We use bfd_zalloc
9974 here in case unused entries are not reclaimed before the
9975 section's contents are written out. This should not happen,
9976 but this way if it does we get a R_PPC64_NONE reloc in .rela
9977 sections instead of garbage.
9978 We also rely on the section contents being zero when writing
9979 the GOT and .dynrelro. */
9980 s->contents = bfd_zalloc (dynobj, s->size);
9981 if (s->contents == NULL)
9982 return FALSE;
9983 }
9984
9985 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9986 {
9987 if (!is_ppc64_elf (ibfd))
9988 continue;
9989
9990 s = ppc64_elf_tdata (ibfd)->got;
9991 if (s != NULL && s != htab->elf.sgot)
9992 {
9993 if (s->size == 0)
9994 s->flags |= SEC_EXCLUDE;
9995 else
9996 {
9997 s->contents = bfd_zalloc (ibfd, s->size);
9998 if (s->contents == NULL)
9999 return FALSE;
10000 }
10001 }
10002 s = ppc64_elf_tdata (ibfd)->relgot;
10003 if (s != NULL)
10004 {
10005 if (s->size == 0)
10006 s->flags |= SEC_EXCLUDE;
10007 else
10008 {
10009 s->contents = bfd_zalloc (ibfd, s->size);
10010 if (s->contents == NULL)
10011 return FALSE;
10012 relocs = TRUE;
10013 s->reloc_count = 0;
10014 }
10015 }
10016 }
10017
10018 if (htab->elf.dynamic_sections_created)
10019 {
10020 bfd_boolean tls_opt;
10021
10022 /* Add some entries to the .dynamic section. We fill in the
10023 values later, in ppc64_elf_finish_dynamic_sections, but we
10024 must add the entries now so that we get the correct size for
10025 the .dynamic section. The DT_DEBUG entry is filled in by the
10026 dynamic linker and used by the debugger. */
10027 #define add_dynamic_entry(TAG, VAL) \
10028 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10029
10030 if (bfd_link_executable (info))
10031 {
10032 if (!add_dynamic_entry (DT_DEBUG, 0))
10033 return FALSE;
10034 }
10035
10036 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10037 {
10038 if (!add_dynamic_entry (DT_PLTGOT, 0)
10039 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10040 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10041 || !add_dynamic_entry (DT_JMPREL, 0)
10042 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10043 return FALSE;
10044 }
10045
10046 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10047 {
10048 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10049 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10050 return FALSE;
10051 }
10052
10053 tls_opt = (htab->params->tls_get_addr_opt
10054 && htab->tls_get_addr_fd != NULL
10055 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10056 if (tls_opt || !htab->opd_abi)
10057 {
10058 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10059 return FALSE;
10060 }
10061
10062 if (relocs)
10063 {
10064 if (!add_dynamic_entry (DT_RELA, 0)
10065 || !add_dynamic_entry (DT_RELASZ, 0)
10066 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10067 return FALSE;
10068
10069 /* If any dynamic relocs apply to a read-only section,
10070 then we need a DT_TEXTREL entry. */
10071 if ((info->flags & DF_TEXTREL) == 0)
10072 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10073
10074 if ((info->flags & DF_TEXTREL) != 0)
10075 {
10076 if (!add_dynamic_entry (DT_TEXTREL, 0))
10077 return FALSE;
10078 }
10079 }
10080 }
10081 #undef add_dynamic_entry
10082
10083 return TRUE;
10084 }
10085
10086 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10087
10088 static bfd_boolean
10089 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10090 {
10091 if (h->plt.plist != NULL
10092 && !h->def_regular
10093 && !h->pointer_equality_needed)
10094 return FALSE;
10095
10096 return _bfd_elf_hash_symbol (h);
10097 }
10098
10099 /* Determine the type of stub needed, if any, for a call. */
10100
10101 static inline enum ppc_stub_type
10102 ppc_type_of_stub (asection *input_sec,
10103 const Elf_Internal_Rela *rel,
10104 struct ppc_link_hash_entry **hash,
10105 struct plt_entry **plt_ent,
10106 bfd_vma destination,
10107 unsigned long local_off)
10108 {
10109 struct ppc_link_hash_entry *h = *hash;
10110 bfd_vma location;
10111 bfd_vma branch_offset;
10112 bfd_vma max_branch_offset;
10113 enum elf_ppc64_reloc_type r_type;
10114
10115 if (h != NULL)
10116 {
10117 struct plt_entry *ent;
10118 struct ppc_link_hash_entry *fdh = h;
10119 if (h->oh != NULL
10120 && h->oh->is_func_descriptor)
10121 {
10122 fdh = ppc_follow_link (h->oh);
10123 *hash = fdh;
10124 }
10125
10126 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10127 if (ent->addend == rel->r_addend
10128 && ent->plt.offset != (bfd_vma) -1)
10129 {
10130 *plt_ent = ent;
10131 return ppc_stub_plt_call;
10132 }
10133
10134 /* Here, we know we don't have a plt entry. If we don't have a
10135 either a defined function descriptor or a defined entry symbol
10136 in a regular object file, then it is pointless trying to make
10137 any other type of stub. */
10138 if (!is_static_defined (&fdh->elf)
10139 && !is_static_defined (&h->elf))
10140 return ppc_stub_none;
10141 }
10142 else if (elf_local_got_ents (input_sec->owner) != NULL)
10143 {
10144 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10145 struct plt_entry **local_plt = (struct plt_entry **)
10146 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10147 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10148
10149 if (local_plt[r_symndx] != NULL)
10150 {
10151 struct plt_entry *ent;
10152
10153 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10154 if (ent->addend == rel->r_addend
10155 && ent->plt.offset != (bfd_vma) -1)
10156 {
10157 *plt_ent = ent;
10158 return ppc_stub_plt_call;
10159 }
10160 }
10161 }
10162
10163 /* Determine where the call point is. */
10164 location = (input_sec->output_offset
10165 + input_sec->output_section->vma
10166 + rel->r_offset);
10167
10168 branch_offset = destination - location;
10169 r_type = ELF64_R_TYPE (rel->r_info);
10170
10171 /* Determine if a long branch stub is needed. */
10172 max_branch_offset = 1 << 25;
10173 if (r_type == R_PPC64_REL14
10174 || r_type == R_PPC64_REL14_BRTAKEN
10175 || r_type == R_PPC64_REL14_BRNTAKEN)
10176 max_branch_offset = 1 << 15;
10177
10178 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10179 /* We need a stub. Figure out whether a long_branch or plt_branch
10180 is needed later. */
10181 return ppc_stub_long_branch;
10182
10183 return ppc_stub_none;
10184 }
10185
10186 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10187 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10188 . mflr %r12
10189 . bcl 20,31,1f
10190 .1: mflr %r11
10191 . mtlr %r12
10192 . lis %r12,xxx-1b@highest
10193 . ori %r12,%r12,xxx-1b@higher
10194 . sldi %r12,%r12,32
10195 . oris %r12,%r12,xxx-1b@high
10196 . ori %r12,%r12,xxx-1b@l
10197 . add/ldx %r12,%r11,%r12 */
10198
10199 static bfd_byte *
10200 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10201 {
10202 bfd_put_32 (abfd, MFLR_R12, p);
10203 p += 4;
10204 bfd_put_32 (abfd, BCL_20_31, p);
10205 p += 4;
10206 bfd_put_32 (abfd, MFLR_R11, p);
10207 p += 4;
10208 bfd_put_32 (abfd, MTLR_R12, p);
10209 p += 4;
10210 if (off + 0x8000 < 0x10000)
10211 {
10212 if (load)
10213 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10214 else
10215 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10216 p += 4;
10217 }
10218 else if (off + 0x80008000ULL < 0x100000000ULL)
10219 {
10220 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10221 p += 4;
10222 if (load)
10223 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10224 else
10225 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10226 p += 4;
10227 }
10228 else
10229 {
10230 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10231 {
10232 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10233 p += 4;
10234 }
10235 else
10236 {
10237 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10238 p += 4;
10239 if (((off >> 32) & 0xffff) != 0)
10240 {
10241 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10242 p += 4;
10243 }
10244 }
10245 if (((off >> 32) & 0xffffffffULL) != 0)
10246 {
10247 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10248 p += 4;
10249 }
10250 if (PPC_HI (off) != 0)
10251 {
10252 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10253 p += 4;
10254 }
10255 if (PPC_LO (off) != 0)
10256 {
10257 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10258 p += 4;
10259 }
10260 if (load)
10261 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10262 else
10263 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10264 p += 4;
10265 }
10266 return p;
10267 }
10268
10269 static unsigned int
10270 size_offset (bfd_vma off)
10271 {
10272 unsigned int size;
10273 if (off + 0x8000 < 0x10000)
10274 size = 4;
10275 else if (off + 0x80008000ULL < 0x100000000ULL)
10276 size = 8;
10277 else
10278 {
10279 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10280 size = 4;
10281 else
10282 {
10283 size = 4;
10284 if (((off >> 32) & 0xffff) != 0)
10285 size += 4;
10286 }
10287 if (((off >> 32) & 0xffffffffULL) != 0)
10288 size += 4;
10289 if (PPC_HI (off) != 0)
10290 size += 4;
10291 if (PPC_LO (off) != 0)
10292 size += 4;
10293 size += 4;
10294 }
10295 return size + 16;
10296 }
10297
10298 static unsigned int
10299 num_relocs_for_offset (bfd_vma off)
10300 {
10301 unsigned int num_rel;
10302 if (off + 0x8000 < 0x10000)
10303 num_rel = 1;
10304 else if (off + 0x80008000ULL < 0x100000000ULL)
10305 num_rel = 2;
10306 else
10307 {
10308 num_rel = 1;
10309 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10310 && ((off >> 32) & 0xffff) != 0)
10311 num_rel += 1;
10312 if (PPC_HI (off) != 0)
10313 num_rel += 1;
10314 if (PPC_LO (off) != 0)
10315 num_rel += 1;
10316 }
10317 return num_rel;
10318 }
10319
10320 static Elf_Internal_Rela *
10321 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10322 bfd_vma roff, bfd_vma targ, bfd_vma off)
10323 {
10324 bfd_vma relative_targ = targ - (roff - 8);
10325 if (bfd_big_endian (info->output_bfd))
10326 roff += 2;
10327 r->r_offset = roff;
10328 r->r_addend = relative_targ + roff;
10329 if (off + 0x8000 < 0x10000)
10330 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10331 else if (off + 0x80008000ULL < 0x100000000ULL)
10332 {
10333 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10334 ++r;
10335 roff += 4;
10336 r->r_offset = roff;
10337 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10338 r->r_addend = relative_targ + roff;
10339 }
10340 else
10341 {
10342 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10343 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10344 else
10345 {
10346 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10347 if (((off >> 32) & 0xffff) != 0)
10348 {
10349 ++r;
10350 roff += 4;
10351 r->r_offset = roff;
10352 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10353 r->r_addend = relative_targ + roff;
10354 }
10355 }
10356 if (((off >> 32) & 0xffffffffULL) != 0)
10357 roff += 4;
10358 if (PPC_HI (off) != 0)
10359 {
10360 ++r;
10361 roff += 4;
10362 r->r_offset = roff;
10363 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10364 r->r_addend = relative_targ + roff;
10365 }
10366 if (PPC_LO (off) != 0)
10367 {
10368 ++r;
10369 roff += 4;
10370 r->r_offset = roff;
10371 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10372 r->r_addend = relative_targ + roff;
10373 }
10374 }
10375 return r;
10376 }
10377
10378 static bfd_byte *
10379 build_powerxx_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10380 bfd_boolean load)
10381 {
10382 uint64_t insn;
10383 if (off - odd + (1ULL << 33) < 1ULL << 34)
10384 {
10385 off -= odd;
10386 if (odd)
10387 {
10388 bfd_put_32 (abfd, NOP, p);
10389 p += 4;
10390 }
10391 if (load)
10392 insn = PLD_R12_PC;
10393 else
10394 insn = PADDI_R12_PC;
10395 insn |= D34 (off);
10396 bfd_put_32 (abfd, insn >> 32, p);
10397 p += 4;
10398 bfd_put_32 (abfd, insn, p);
10399 }
10400 /* The minimum value for paddi is -0x200000000. The minimum value
10401 for li is -0x8000, which when shifted by 34 and added gives a
10402 minimum value of -0x2000200000000. The maximum value is
10403 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10404 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10405 {
10406 off -= 8 - odd;
10407 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10408 p += 4;
10409 if (!odd)
10410 {
10411 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10412 p += 4;
10413 }
10414 insn = PADDI_R12_PC | D34 (off);
10415 bfd_put_32 (abfd, insn >> 32, p);
10416 p += 4;
10417 bfd_put_32 (abfd, insn, p);
10418 p += 4;
10419 if (odd)
10420 {
10421 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10422 p += 4;
10423 }
10424 if (load)
10425 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10426 else
10427 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10428 }
10429 else
10430 {
10431 off -= odd + 8;
10432 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10433 p += 4;
10434 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10435 p += 4;
10436 if (odd)
10437 {
10438 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10439 p += 4;
10440 }
10441 insn = PADDI_R12_PC | D34 (off);
10442 bfd_put_32 (abfd, insn >> 32, p);
10443 p += 4;
10444 bfd_put_32 (abfd, insn, p);
10445 p += 4;
10446 if (!odd)
10447 {
10448 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10449 p += 4;
10450 }
10451 if (load)
10452 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10453 else
10454 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10455 }
10456 p += 4;
10457 return p;
10458 }
10459
10460 static unsigned int
10461 size_powerxx_offset (bfd_vma off, int odd)
10462 {
10463 if (off - odd + (1ULL << 33) < 1ULL << 34)
10464 return odd + 8;
10465 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10466 return 20;
10467 else
10468 return 24;
10469 }
10470
10471 static unsigned int
10472 num_relocs_for_powerxx_offset (bfd_vma off, int odd)
10473 {
10474 if (off - odd + (1ULL << 33) < 1ULL << 34)
10475 return 1;
10476 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10477 return 2;
10478 else
10479 return 3;
10480 }
10481
10482 static Elf_Internal_Rela *
10483 emit_relocs_for_powerxx_offset (struct bfd_link_info *info,
10484 Elf_Internal_Rela *r, bfd_vma roff,
10485 bfd_vma targ, bfd_vma off, int odd)
10486 {
10487 if (off - odd + (1ULL << 33) < 1ULL << 34)
10488 roff += odd;
10489 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10490 {
10491 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10492 r->r_offset = roff + d_offset;
10493 r->r_addend = targ + 8 - odd - d_offset;
10494 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10495 ++r;
10496 roff += 8 - odd;
10497 }
10498 else
10499 {
10500 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10501 r->r_offset = roff + d_offset;
10502 r->r_addend = targ + 8 + odd - d_offset;
10503 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10504 ++r;
10505 roff += 4;
10506 r->r_offset = roff + d_offset;
10507 r->r_addend = targ + 4 + odd - d_offset;
10508 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10509 ++r;
10510 roff += 4 + odd;
10511 }
10512 r->r_offset = roff;
10513 r->r_addend = targ;
10514 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10515 return r;
10516 }
10517
10518 /* Emit .eh_frame opcode to advance pc by DELTA. */
10519
10520 static bfd_byte *
10521 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10522 {
10523 delta /= 4;
10524 if (delta < 64)
10525 *eh++ = DW_CFA_advance_loc + delta;
10526 else if (delta < 256)
10527 {
10528 *eh++ = DW_CFA_advance_loc1;
10529 *eh++ = delta;
10530 }
10531 else if (delta < 65536)
10532 {
10533 *eh++ = DW_CFA_advance_loc2;
10534 bfd_put_16 (abfd, delta, eh);
10535 eh += 2;
10536 }
10537 else
10538 {
10539 *eh++ = DW_CFA_advance_loc4;
10540 bfd_put_32 (abfd, delta, eh);
10541 eh += 4;
10542 }
10543 return eh;
10544 }
10545
10546 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10547
10548 static unsigned int
10549 eh_advance_size (unsigned int delta)
10550 {
10551 if (delta < 64 * 4)
10552 /* DW_CFA_advance_loc+[1..63]. */
10553 return 1;
10554 if (delta < 256 * 4)
10555 /* DW_CFA_advance_loc1, byte. */
10556 return 2;
10557 if (delta < 65536 * 4)
10558 /* DW_CFA_advance_loc2, 2 bytes. */
10559 return 3;
10560 /* DW_CFA_advance_loc4, 4 bytes. */
10561 return 5;
10562 }
10563
10564 /* With power7 weakly ordered memory model, it is possible for ld.so
10565 to update a plt entry in one thread and have another thread see a
10566 stale zero toc entry. To avoid this we need some sort of acquire
10567 barrier in the call stub. One solution is to make the load of the
10568 toc word seem to appear to depend on the load of the function entry
10569 word. Another solution is to test for r2 being zero, and branch to
10570 the appropriate glink entry if so.
10571
10572 . fake dep barrier compare
10573 . ld 12,xxx(2) ld 12,xxx(2)
10574 . mtctr 12 mtctr 12
10575 . xor 11,12,12 ld 2,xxx+8(2)
10576 . add 2,2,11 cmpldi 2,0
10577 . ld 2,xxx+8(2) bnectr+
10578 . bctr b <glink_entry>
10579
10580 The solution involving the compare turns out to be faster, so
10581 that's what we use unless the branch won't reach. */
10582
10583 #define ALWAYS_USE_FAKE_DEP 0
10584 #define ALWAYS_EMIT_R2SAVE 0
10585
10586 static inline unsigned int
10587 plt_stub_size (struct ppc_link_hash_table *htab,
10588 struct ppc_stub_hash_entry *stub_entry,
10589 bfd_vma off)
10590 {
10591 unsigned size;
10592
10593 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10594 {
10595 if (htab->powerxx_stubs)
10596 {
10597 bfd_vma start = (stub_entry->stub_offset
10598 + stub_entry->group->stub_sec->output_offset
10599 + stub_entry->group->stub_sec->output_section->vma);
10600 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10601 start += 4;
10602 size = 8 + size_powerxx_offset (off, start & 4);
10603 }
10604 else
10605 size = 8 + size_offset (off - 8);
10606 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10607 size += 4;
10608 return size;
10609 }
10610
10611 size = 12;
10612 if (ALWAYS_EMIT_R2SAVE
10613 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10614 size += 4;
10615 if (PPC_HA (off) != 0)
10616 size += 4;
10617 if (htab->opd_abi)
10618 {
10619 size += 4;
10620 if (htab->params->plt_static_chain)
10621 size += 4;
10622 if (htab->params->plt_thread_safe
10623 && htab->elf.dynamic_sections_created
10624 && stub_entry->h != NULL
10625 && stub_entry->h->elf.dynindx != -1)
10626 size += 8;
10627 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10628 size += 4;
10629 }
10630 if (stub_entry->h != NULL
10631 && (stub_entry->h == htab->tls_get_addr_fd
10632 || stub_entry->h == htab->tls_get_addr)
10633 && htab->params->tls_get_addr_opt)
10634 {
10635 size += 7 * 4;
10636 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10637 size += 6 * 4;
10638 }
10639 return size;
10640 }
10641
10642 /* Depending on the sign of plt_stub_align:
10643 If positive, return the padding to align to a 2**plt_stub_align
10644 boundary.
10645 If negative, if this stub would cross fewer 2**plt_stub_align
10646 boundaries if we align, then return the padding needed to do so. */
10647
10648 static inline unsigned int
10649 plt_stub_pad (struct ppc_link_hash_table *htab,
10650 struct ppc_stub_hash_entry *stub_entry,
10651 bfd_vma plt_off)
10652 {
10653 int stub_align;
10654 unsigned stub_size;
10655 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10656
10657 if (htab->params->plt_stub_align >= 0)
10658 {
10659 stub_align = 1 << htab->params->plt_stub_align;
10660 if ((stub_off & (stub_align - 1)) != 0)
10661 return stub_align - (stub_off & (stub_align - 1));
10662 return 0;
10663 }
10664
10665 stub_align = 1 << -htab->params->plt_stub_align;
10666 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10667 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10668 > ((stub_size - 1) & -stub_align))
10669 return stub_align - (stub_off & (stub_align - 1));
10670 return 0;
10671 }
10672
10673 /* Build a .plt call stub. */
10674
10675 static inline bfd_byte *
10676 build_plt_stub (struct ppc_link_hash_table *htab,
10677 struct ppc_stub_hash_entry *stub_entry,
10678 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10679 {
10680 bfd *obfd = htab->params->stub_bfd;
10681 bfd_boolean plt_load_toc = htab->opd_abi;
10682 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10683 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10684 && htab->elf.dynamic_sections_created
10685 && stub_entry->h != NULL
10686 && stub_entry->h->elf.dynindx != -1);
10687 bfd_boolean use_fake_dep = plt_thread_safe;
10688 bfd_vma cmp_branch_off = 0;
10689
10690 if (!ALWAYS_USE_FAKE_DEP
10691 && plt_load_toc
10692 && plt_thread_safe
10693 && !((stub_entry->h == htab->tls_get_addr_fd
10694 || stub_entry->h == htab->tls_get_addr)
10695 && htab->params->tls_get_addr_opt))
10696 {
10697 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10698 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10699 / PLT_ENTRY_SIZE (htab));
10700 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10701 bfd_vma to, from;
10702
10703 if (pltindex > 32768)
10704 glinkoff += (pltindex - 32768) * 4;
10705 to = (glinkoff
10706 + htab->glink->output_offset
10707 + htab->glink->output_section->vma);
10708 from = (p - stub_entry->group->stub_sec->contents
10709 + 4 * (ALWAYS_EMIT_R2SAVE
10710 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10711 + 4 * (PPC_HA (offset) != 0)
10712 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10713 != PPC_HA (offset))
10714 + 4 * (plt_static_chain != 0)
10715 + 20
10716 + stub_entry->group->stub_sec->output_offset
10717 + stub_entry->group->stub_sec->output_section->vma);
10718 cmp_branch_off = to - from;
10719 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10720 }
10721
10722 if (PPC_HA (offset) != 0)
10723 {
10724 if (r != NULL)
10725 {
10726 if (ALWAYS_EMIT_R2SAVE
10727 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10728 r[0].r_offset += 4;
10729 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10730 r[1].r_offset = r[0].r_offset + 4;
10731 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10732 r[1].r_addend = r[0].r_addend;
10733 if (plt_load_toc)
10734 {
10735 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10736 {
10737 r[2].r_offset = r[1].r_offset + 4;
10738 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10739 r[2].r_addend = r[0].r_addend;
10740 }
10741 else
10742 {
10743 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10744 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10745 r[2].r_addend = r[0].r_addend + 8;
10746 if (plt_static_chain)
10747 {
10748 r[3].r_offset = r[2].r_offset + 4;
10749 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10750 r[3].r_addend = r[0].r_addend + 16;
10751 }
10752 }
10753 }
10754 }
10755 if (ALWAYS_EMIT_R2SAVE
10756 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10757 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10758 if (plt_load_toc)
10759 {
10760 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10761 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10762 }
10763 else
10764 {
10765 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10766 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10767 }
10768 if (plt_load_toc
10769 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10770 {
10771 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10772 offset = 0;
10773 }
10774 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10775 if (plt_load_toc)
10776 {
10777 if (use_fake_dep)
10778 {
10779 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10780 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10781 }
10782 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10783 if (plt_static_chain)
10784 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10785 }
10786 }
10787 else
10788 {
10789 if (r != NULL)
10790 {
10791 if (ALWAYS_EMIT_R2SAVE
10792 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10793 r[0].r_offset += 4;
10794 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10795 if (plt_load_toc)
10796 {
10797 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10798 {
10799 r[1].r_offset = r[0].r_offset + 4;
10800 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10801 r[1].r_addend = r[0].r_addend;
10802 }
10803 else
10804 {
10805 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10806 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10807 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10808 if (plt_static_chain)
10809 {
10810 r[2].r_offset = r[1].r_offset + 4;
10811 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10812 r[2].r_addend = r[0].r_addend + 8;
10813 }
10814 }
10815 }
10816 }
10817 if (ALWAYS_EMIT_R2SAVE
10818 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10819 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10820 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10821 if (plt_load_toc
10822 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10823 {
10824 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10825 offset = 0;
10826 }
10827 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10828 if (plt_load_toc)
10829 {
10830 if (use_fake_dep)
10831 {
10832 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10833 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10834 }
10835 if (plt_static_chain)
10836 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10837 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10838 }
10839 }
10840 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10841 {
10842 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10843 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10844 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10845 }
10846 else
10847 bfd_put_32 (obfd, BCTR, p), p += 4;
10848 return p;
10849 }
10850
10851 /* Build a special .plt call stub for __tls_get_addr. */
10852
10853 #define LD_R11_0R3 0xe9630000
10854 #define LD_R12_0R3 0xe9830000
10855 #define MR_R0_R3 0x7c601b78
10856 #define CMPDI_R11_0 0x2c2b0000
10857 #define ADD_R3_R12_R13 0x7c6c6a14
10858 #define BEQLR 0x4d820020
10859 #define MR_R3_R0 0x7c030378
10860 #define STD_R11_0R1 0xf9610000
10861 #define BCTRL 0x4e800421
10862 #define LD_R11_0R1 0xe9610000
10863 #define MTLR_R11 0x7d6803a6
10864
10865 static inline bfd_byte *
10866 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10867 struct ppc_stub_hash_entry *stub_entry,
10868 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10869 {
10870 bfd *obfd = htab->params->stub_bfd;
10871 bfd_byte *loc = p;
10872
10873 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10874 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10875 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10876 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10877 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10878 bfd_put_32 (obfd, BEQLR, p), p += 4;
10879 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10880 if (r != NULL)
10881 r[0].r_offset += 7 * 4;
10882 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
10883 return build_plt_stub (htab, stub_entry, p, offset, r);
10884
10885 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10886 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10887
10888 if (r != NULL)
10889 r[0].r_offset += 2 * 4;
10890 p = build_plt_stub (htab, stub_entry, p, offset, r);
10891 bfd_put_32 (obfd, BCTRL, p - 4);
10892
10893 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10894 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10895 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10896 bfd_put_32 (obfd, BLR, p), p += 4;
10897
10898 if (htab->glink_eh_frame != NULL
10899 && htab->glink_eh_frame->size != 0)
10900 {
10901 bfd_byte *base, *eh;
10902 unsigned int lr_used, delta;
10903
10904 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
10905 eh = base + stub_entry->group->eh_size;
10906 lr_used = stub_entry->stub_offset + (p - 20 - loc);
10907 delta = lr_used - stub_entry->group->lr_restore;
10908 stub_entry->group->lr_restore = lr_used + 16;
10909 eh = eh_advance (htab->elf.dynobj, eh, delta);
10910 *eh++ = DW_CFA_offset_extended_sf;
10911 *eh++ = 65;
10912 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
10913 *eh++ = DW_CFA_advance_loc + 4;
10914 *eh++ = DW_CFA_restore_extended;
10915 *eh++ = 65;
10916 stub_entry->group->eh_size = eh - base;
10917 }
10918 return p;
10919 }
10920
10921 static Elf_Internal_Rela *
10922 get_relocs (asection *sec, int count)
10923 {
10924 Elf_Internal_Rela *relocs;
10925 struct bfd_elf_section_data *elfsec_data;
10926
10927 elfsec_data = elf_section_data (sec);
10928 relocs = elfsec_data->relocs;
10929 if (relocs == NULL)
10930 {
10931 bfd_size_type relsize;
10932 relsize = sec->reloc_count * sizeof (*relocs);
10933 relocs = bfd_alloc (sec->owner, relsize);
10934 if (relocs == NULL)
10935 return NULL;
10936 elfsec_data->relocs = relocs;
10937 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10938 sizeof (Elf_Internal_Shdr));
10939 if (elfsec_data->rela.hdr == NULL)
10940 return NULL;
10941 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10942 * sizeof (Elf64_External_Rela));
10943 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10944 sec->reloc_count = 0;
10945 }
10946 relocs += sec->reloc_count;
10947 sec->reloc_count += count;
10948 return relocs;
10949 }
10950
10951 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
10952 forms, to the equivalent relocs against the global symbol given by
10953 STUB_ENTRY->H. */
10954
10955 static bfd_boolean
10956 use_global_in_relocs (struct ppc_link_hash_table *htab,
10957 struct ppc_stub_hash_entry *stub_entry,
10958 Elf_Internal_Rela *r, unsigned int num_rel)
10959 {
10960 struct elf_link_hash_entry **hashes;
10961 unsigned long symndx;
10962 struct ppc_link_hash_entry *h;
10963 bfd_vma symval;
10964
10965 /* Relocs are always against symbols in their own object file. Fake
10966 up global sym hashes for the stub bfd (which has no symbols). */
10967 hashes = elf_sym_hashes (htab->params->stub_bfd);
10968 if (hashes == NULL)
10969 {
10970 bfd_size_type hsize;
10971
10972 /* When called the first time, stub_globals will contain the
10973 total number of symbols seen during stub sizing. After
10974 allocating, stub_globals is used as an index to fill the
10975 hashes array. */
10976 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10977 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10978 if (hashes == NULL)
10979 return FALSE;
10980 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10981 htab->stub_globals = 1;
10982 }
10983 symndx = htab->stub_globals++;
10984 h = stub_entry->h;
10985 hashes[symndx] = &h->elf;
10986 if (h->oh != NULL && h->oh->is_func)
10987 h = ppc_follow_link (h->oh);
10988 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
10989 || h->elf.root.type == bfd_link_hash_defweak);
10990 symval = (h->elf.root.u.def.value
10991 + h->elf.root.u.def.section->output_offset
10992 + h->elf.root.u.def.section->output_section->vma);
10993 while (num_rel-- != 0)
10994 {
10995 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
10996 if (h->elf.root.u.def.section != stub_entry->target_section)
10997 {
10998 /* H is an opd symbol. The addend must be zero, and the
10999 branch reloc is the only one we can convert. */
11000 r->r_addend = 0;
11001 break;
11002 }
11003 else
11004 r->r_addend -= symval;
11005 --r;
11006 }
11007 return TRUE;
11008 }
11009
11010 static bfd_vma
11011 get_r2off (struct bfd_link_info *info,
11012 struct ppc_stub_hash_entry *stub_entry)
11013 {
11014 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11015 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11016
11017 if (r2off == 0)
11018 {
11019 /* Support linking -R objects. Get the toc pointer from the
11020 opd entry. */
11021 char buf[8];
11022 if (!htab->opd_abi)
11023 return r2off;
11024 asection *opd = stub_entry->h->elf.root.u.def.section;
11025 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11026
11027 if (strcmp (opd->name, ".opd") != 0
11028 || opd->reloc_count != 0)
11029 {
11030 info->callbacks->einfo
11031 (_("%P: cannot find opd entry toc for `%pT'\n"),
11032 stub_entry->h->elf.root.root.string);
11033 bfd_set_error (bfd_error_bad_value);
11034 return (bfd_vma) -1;
11035 }
11036 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11037 return (bfd_vma) -1;
11038 r2off = bfd_get_64 (opd->owner, buf);
11039 r2off -= elf_gp (info->output_bfd);
11040 }
11041 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11042 return r2off;
11043 }
11044
11045 static bfd_boolean
11046 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11047 {
11048 struct ppc_stub_hash_entry *stub_entry;
11049 struct ppc_branch_hash_entry *br_entry;
11050 struct bfd_link_info *info;
11051 struct ppc_link_hash_table *htab;
11052 bfd_byte *loc;
11053 bfd_byte *p, *relp;
11054 bfd_vma targ, off;
11055 Elf_Internal_Rela *r;
11056 asection *plt;
11057 int num_rel;
11058 int odd;
11059
11060 /* Massage our args to the form they really have. */
11061 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11062 info = in_arg;
11063
11064 htab = ppc_hash_table (info);
11065 if (htab == NULL)
11066 return FALSE;
11067
11068 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11069 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11070
11071 htab->stub_count[stub_entry->stub_type - 1] += 1;
11072 switch (stub_entry->stub_type)
11073 {
11074 case ppc_stub_long_branch:
11075 case ppc_stub_long_branch_r2off:
11076 /* Branches are relative. This is where we are going to. */
11077 targ = (stub_entry->target_value
11078 + stub_entry->target_section->output_offset
11079 + stub_entry->target_section->output_section->vma);
11080 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11081
11082 /* And this is where we are coming from. */
11083 off = (stub_entry->stub_offset
11084 + stub_entry->group->stub_sec->output_offset
11085 + stub_entry->group->stub_sec->output_section->vma);
11086 off = targ - off;
11087
11088 p = loc;
11089 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11090 {
11091 bfd_vma r2off = get_r2off (info, stub_entry);
11092
11093 if (r2off == (bfd_vma) -1)
11094 {
11095 htab->stub_error = TRUE;
11096 return FALSE;
11097 }
11098 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11099 p += 4;
11100 if (PPC_HA (r2off) != 0)
11101 {
11102 bfd_put_32 (htab->params->stub_bfd,
11103 ADDIS_R2_R2 | PPC_HA (r2off), p);
11104 p += 4;
11105 }
11106 if (PPC_LO (r2off) != 0)
11107 {
11108 bfd_put_32 (htab->params->stub_bfd,
11109 ADDI_R2_R2 | PPC_LO (r2off), p);
11110 p += 4;
11111 }
11112 off -= p - loc;
11113 }
11114 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11115 p += 4;
11116
11117 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11118 {
11119 _bfd_error_handler
11120 (_("long branch stub `%s' offset overflow"),
11121 stub_entry->root.string);
11122 htab->stub_error = TRUE;
11123 return FALSE;
11124 }
11125
11126 if (info->emitrelocations)
11127 {
11128 r = get_relocs (stub_entry->group->stub_sec, 1);
11129 if (r == NULL)
11130 return FALSE;
11131 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11132 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11133 r->r_addend = targ;
11134 if (stub_entry->h != NULL
11135 && !use_global_in_relocs (htab, stub_entry, r, 1))
11136 return FALSE;
11137 }
11138 break;
11139
11140 case ppc_stub_plt_branch:
11141 case ppc_stub_plt_branch_r2off:
11142 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11143 stub_entry->root.string + 9,
11144 FALSE, FALSE);
11145 if (br_entry == NULL)
11146 {
11147 _bfd_error_handler (_("can't find branch stub `%s'"),
11148 stub_entry->root.string);
11149 htab->stub_error = TRUE;
11150 return FALSE;
11151 }
11152
11153 targ = (stub_entry->target_value
11154 + stub_entry->target_section->output_offset
11155 + stub_entry->target_section->output_section->vma);
11156 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11157 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11158
11159 bfd_put_64 (htab->brlt->owner, targ,
11160 htab->brlt->contents + br_entry->offset);
11161
11162 if (br_entry->iter == htab->stub_iteration)
11163 {
11164 br_entry->iter = 0;
11165
11166 if (htab->relbrlt != NULL)
11167 {
11168 /* Create a reloc for the branch lookup table entry. */
11169 Elf_Internal_Rela rela;
11170 bfd_byte *rl;
11171
11172 rela.r_offset = (br_entry->offset
11173 + htab->brlt->output_offset
11174 + htab->brlt->output_section->vma);
11175 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11176 rela.r_addend = targ;
11177
11178 rl = htab->relbrlt->contents;
11179 rl += (htab->relbrlt->reloc_count++
11180 * sizeof (Elf64_External_Rela));
11181 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11182 }
11183 else if (info->emitrelocations)
11184 {
11185 r = get_relocs (htab->brlt, 1);
11186 if (r == NULL)
11187 return FALSE;
11188 /* brlt, being SEC_LINKER_CREATED does not go through the
11189 normal reloc processing. Symbols and offsets are not
11190 translated from input file to output file form, so
11191 set up the offset per the output file. */
11192 r->r_offset = (br_entry->offset
11193 + htab->brlt->output_offset
11194 + htab->brlt->output_section->vma);
11195 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11196 r->r_addend = targ;
11197 }
11198 }
11199
11200 targ = (br_entry->offset
11201 + htab->brlt->output_offset
11202 + htab->brlt->output_section->vma);
11203
11204 off = (elf_gp (info->output_bfd)
11205 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11206 off = targ - off;
11207
11208 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11209 {
11210 info->callbacks->einfo
11211 (_("%P: linkage table error against `%pT'\n"),
11212 stub_entry->root.string);
11213 bfd_set_error (bfd_error_bad_value);
11214 htab->stub_error = TRUE;
11215 return FALSE;
11216 }
11217
11218 if (info->emitrelocations)
11219 {
11220 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11221 if (r == NULL)
11222 return FALSE;
11223 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11224 if (bfd_big_endian (info->output_bfd))
11225 r[0].r_offset += 2;
11226 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11227 r[0].r_offset += 4;
11228 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11229 r[0].r_addend = targ;
11230 if (PPC_HA (off) != 0)
11231 {
11232 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11233 r[1].r_offset = r[0].r_offset + 4;
11234 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11235 r[1].r_addend = r[0].r_addend;
11236 }
11237 }
11238
11239 p = loc;
11240 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11241 {
11242 if (PPC_HA (off) != 0)
11243 {
11244 bfd_put_32 (htab->params->stub_bfd,
11245 ADDIS_R12_R2 | PPC_HA (off), p);
11246 p += 4;
11247 bfd_put_32 (htab->params->stub_bfd,
11248 LD_R12_0R12 | PPC_LO (off), p);
11249 }
11250 else
11251 bfd_put_32 (htab->params->stub_bfd,
11252 LD_R12_0R2 | PPC_LO (off), p);
11253 }
11254 else
11255 {
11256 bfd_vma r2off = get_r2off (info, stub_entry);
11257
11258 if (r2off == (bfd_vma) -1)
11259 {
11260 htab->stub_error = TRUE;
11261 return FALSE;
11262 }
11263
11264 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11265 p += 4;
11266 if (PPC_HA (off) != 0)
11267 {
11268 bfd_put_32 (htab->params->stub_bfd,
11269 ADDIS_R12_R2 | PPC_HA (off), p);
11270 p += 4;
11271 bfd_put_32 (htab->params->stub_bfd,
11272 LD_R12_0R12 | PPC_LO (off), p);
11273 }
11274 else
11275 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11276
11277 if (PPC_HA (r2off) != 0)
11278 {
11279 p += 4;
11280 bfd_put_32 (htab->params->stub_bfd,
11281 ADDIS_R2_R2 | PPC_HA (r2off), p);
11282 }
11283 if (PPC_LO (r2off) != 0)
11284 {
11285 p += 4;
11286 bfd_put_32 (htab->params->stub_bfd,
11287 ADDI_R2_R2 | PPC_LO (r2off), p);
11288 }
11289 }
11290 p += 4;
11291 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11292 p += 4;
11293 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11294 p += 4;
11295 break;
11296
11297 case ppc_stub_long_branch_notoc:
11298 case ppc_stub_long_branch_both:
11299 case ppc_stub_plt_branch_notoc:
11300 case ppc_stub_plt_branch_both:
11301 case ppc_stub_plt_call_notoc:
11302 case ppc_stub_plt_call_both:
11303 p = loc;
11304 off = (stub_entry->stub_offset
11305 + stub_entry->group->stub_sec->output_offset
11306 + stub_entry->group->stub_sec->output_section->vma);
11307 if (stub_entry->stub_type == ppc_stub_long_branch_both
11308 || stub_entry->stub_type == ppc_stub_plt_branch_both
11309 || stub_entry->stub_type == ppc_stub_plt_call_both)
11310 {
11311 off += 4;
11312 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11313 p += 4;
11314 }
11315 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11316 {
11317 targ = stub_entry->plt_ent->plt.offset & ~1;
11318 if (targ >= (bfd_vma) -2)
11319 abort ();
11320
11321 plt = htab->elf.splt;
11322 if (!htab->elf.dynamic_sections_created
11323 || stub_entry->h == NULL
11324 || stub_entry->h->elf.dynindx == -1)
11325 {
11326 if (stub_entry->symtype == STT_GNU_IFUNC)
11327 plt = htab->elf.iplt;
11328 else
11329 plt = htab->pltlocal;
11330 }
11331 targ += plt->output_offset + plt->output_section->vma;
11332 }
11333 else
11334 targ = (stub_entry->target_value
11335 + stub_entry->target_section->output_offset
11336 + stub_entry->target_section->output_section->vma);
11337 odd = off & 4;
11338 off = targ - off;
11339
11340 relp = p;
11341 num_rel = 0;
11342 if (htab->powerxx_stubs)
11343 {
11344 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11345 p = build_powerxx_offset (htab->params->stub_bfd, p, off, odd, load);
11346 }
11347 else
11348 {
11349 /* The notoc stubs calculate their target (either a PLT entry or
11350 the global entry point of a function) relative to the PC
11351 returned by the "bcl" two instructions past the start of the
11352 sequence emitted by build_offset. The offset is therefore 8
11353 less than calculated from the start of the sequence. */
11354 off -= 8;
11355 p = build_offset (htab->params->stub_bfd, p, off,
11356 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11357 }
11358
11359 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11360 {
11361 bfd_vma from;
11362 num_rel = 1;
11363 from = (stub_entry->stub_offset
11364 + stub_entry->group->stub_sec->output_offset
11365 + stub_entry->group->stub_sec->output_section->vma
11366 + (p - loc));
11367 bfd_put_32 (htab->params->stub_bfd,
11368 B_DOT | ((targ - from) & 0x3fffffc), p);
11369 }
11370 else
11371 {
11372 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11373 p += 4;
11374 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11375 }
11376 p += 4;
11377
11378 if (info->emitrelocations)
11379 {
11380 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11381 if (htab->powerxx_stubs)
11382 num_rel += num_relocs_for_powerxx_offset (off, odd);
11383 else
11384 {
11385 num_rel += num_relocs_for_offset (off);
11386 roff += 16;
11387 }
11388 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11389 if (r == NULL)
11390 return FALSE;
11391 if (htab->powerxx_stubs)
11392 r = emit_relocs_for_powerxx_offset (info, r, roff, targ, off, odd);
11393 else
11394 r = emit_relocs_for_offset (info, r, roff, targ, off);
11395 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11396 || stub_entry->stub_type == ppc_stub_long_branch_both)
11397 {
11398 ++r;
11399 roff = p - 4 - stub_entry->group->stub_sec->contents;
11400 r->r_offset = roff;
11401 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11402 r->r_addend = targ;
11403 if (stub_entry->h != NULL
11404 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11405 return FALSE;
11406 }
11407 }
11408
11409 if (!htab->powerxx_stubs
11410 && htab->glink_eh_frame != NULL
11411 && htab->glink_eh_frame->size != 0)
11412 {
11413 bfd_byte *base, *eh;
11414 unsigned int lr_used, delta;
11415
11416 base = (htab->glink_eh_frame->contents
11417 + stub_entry->group->eh_base + 17);
11418 eh = base + stub_entry->group->eh_size;
11419 lr_used = stub_entry->stub_offset + 8;
11420 if (stub_entry->stub_type == ppc_stub_long_branch_both
11421 || stub_entry->stub_type == ppc_stub_plt_branch_both
11422 || stub_entry->stub_type == ppc_stub_plt_call_both)
11423 lr_used += 4;
11424 delta = lr_used - stub_entry->group->lr_restore;
11425 stub_entry->group->lr_restore = lr_used + 8;
11426 eh = eh_advance (htab->elf.dynobj, eh, delta);
11427 *eh++ = DW_CFA_register;
11428 *eh++ = 65;
11429 *eh++ = 12;
11430 *eh++ = DW_CFA_advance_loc + 2;
11431 *eh++ = DW_CFA_restore_extended;
11432 *eh++ = 65;
11433 stub_entry->group->eh_size = eh - base;
11434 }
11435 break;
11436
11437 case ppc_stub_plt_call:
11438 case ppc_stub_plt_call_r2save:
11439 if (stub_entry->h != NULL
11440 && stub_entry->h->is_func_descriptor
11441 && stub_entry->h->oh != NULL)
11442 {
11443 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11444
11445 /* If the old-ABI "dot-symbol" is undefined make it weak so
11446 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11447 if (fh->elf.root.type == bfd_link_hash_undefined
11448 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11449 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11450 fh->elf.root.type = bfd_link_hash_undefweak;
11451 }
11452
11453 /* Now build the stub. */
11454 targ = stub_entry->plt_ent->plt.offset & ~1;
11455 if (targ >= (bfd_vma) -2)
11456 abort ();
11457
11458 plt = htab->elf.splt;
11459 if (!htab->elf.dynamic_sections_created
11460 || stub_entry->h == NULL
11461 || stub_entry->h->elf.dynindx == -1)
11462 {
11463 if (stub_entry->symtype == STT_GNU_IFUNC)
11464 plt = htab->elf.iplt;
11465 else
11466 plt = htab->pltlocal;
11467 }
11468 targ += plt->output_offset + plt->output_section->vma;
11469
11470 off = (elf_gp (info->output_bfd)
11471 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11472 off = targ - off;
11473
11474 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11475 {
11476 info->callbacks->einfo
11477 /* xgettext:c-format */
11478 (_("%P: linkage table error against `%pT'\n"),
11479 stub_entry->h != NULL
11480 ? stub_entry->h->elf.root.root.string
11481 : "<local sym>");
11482 bfd_set_error (bfd_error_bad_value);
11483 htab->stub_error = TRUE;
11484 return FALSE;
11485 }
11486
11487 r = NULL;
11488 if (info->emitrelocations)
11489 {
11490 r = get_relocs (stub_entry->group->stub_sec,
11491 ((PPC_HA (off) != 0)
11492 + (htab->opd_abi
11493 ? 2 + (htab->params->plt_static_chain
11494 && PPC_HA (off + 16) == PPC_HA (off))
11495 : 1)));
11496 if (r == NULL)
11497 return FALSE;
11498 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11499 if (bfd_big_endian (info->output_bfd))
11500 r[0].r_offset += 2;
11501 r[0].r_addend = targ;
11502 }
11503 if (stub_entry->h != NULL
11504 && (stub_entry->h == htab->tls_get_addr_fd
11505 || stub_entry->h == htab->tls_get_addr)
11506 && htab->params->tls_get_addr_opt)
11507 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11508 else
11509 p = build_plt_stub (htab, stub_entry, loc, off, r);
11510 break;
11511
11512 case ppc_stub_save_res:
11513 return TRUE;
11514
11515 default:
11516 BFD_FAIL ();
11517 return FALSE;
11518 }
11519
11520 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11521
11522 if (htab->params->emit_stub_syms)
11523 {
11524 struct elf_link_hash_entry *h;
11525 size_t len1, len2;
11526 char *name;
11527 const char *const stub_str[] = { "long_branch",
11528 "long_branch",
11529 "long_branch",
11530 "long_branch",
11531 "plt_branch",
11532 "plt_branch",
11533 "plt_branch",
11534 "plt_branch",
11535 "plt_call",
11536 "plt_call",
11537 "plt_call",
11538 "plt_call" };
11539
11540 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11541 len2 = strlen (stub_entry->root.string);
11542 name = bfd_malloc (len1 + len2 + 2);
11543 if (name == NULL)
11544 return FALSE;
11545 memcpy (name, stub_entry->root.string, 9);
11546 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11547 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11548 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11549 if (h == NULL)
11550 return FALSE;
11551 if (h->root.type == bfd_link_hash_new)
11552 {
11553 h->root.type = bfd_link_hash_defined;
11554 h->root.u.def.section = stub_entry->group->stub_sec;
11555 h->root.u.def.value = stub_entry->stub_offset;
11556 h->ref_regular = 1;
11557 h->def_regular = 1;
11558 h->ref_regular_nonweak = 1;
11559 h->forced_local = 1;
11560 h->non_elf = 0;
11561 h->root.linker_def = 1;
11562 }
11563 }
11564
11565 return TRUE;
11566 }
11567
11568 /* As above, but don't actually build the stub. Just bump offset so
11569 we know stub section sizes, and select plt_branch stubs where
11570 long_branch stubs won't do. */
11571
11572 static bfd_boolean
11573 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11574 {
11575 struct ppc_stub_hash_entry *stub_entry;
11576 struct bfd_link_info *info;
11577 struct ppc_link_hash_table *htab;
11578 asection *plt;
11579 bfd_vma targ, off, r2off;
11580 unsigned int size, extra, lr_used, delta, odd;
11581
11582 /* Massage our args to the form they really have. */
11583 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11584 info = in_arg;
11585
11586 htab = ppc_hash_table (info);
11587 if (htab == NULL)
11588 return FALSE;
11589
11590 /* Make a note of the offset within the stubs for this entry. */
11591 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11592
11593 if (stub_entry->h != NULL
11594 && stub_entry->h->save_res
11595 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11596 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11597 {
11598 /* Don't make stubs to out-of-line register save/restore
11599 functions. Instead, emit copies of the functions. */
11600 stub_entry->group->needs_save_res = 1;
11601 stub_entry->stub_type = ppc_stub_save_res;
11602 return TRUE;
11603 }
11604
11605 switch (stub_entry->stub_type)
11606 {
11607 case ppc_stub_plt_branch:
11608 case ppc_stub_plt_branch_r2off:
11609 /* Reset the stub type from the plt branch variant in case we now
11610 can reach with a shorter stub. */
11611 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11612 /* Fall through. */
11613 case ppc_stub_long_branch:
11614 case ppc_stub_long_branch_r2off:
11615 targ = (stub_entry->target_value
11616 + stub_entry->target_section->output_offset
11617 + stub_entry->target_section->output_section->vma);
11618 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11619 off = (stub_entry->stub_offset
11620 + stub_entry->group->stub_sec->output_offset
11621 + stub_entry->group->stub_sec->output_section->vma);
11622
11623 size = 4;
11624 r2off = 0;
11625 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11626 {
11627 r2off = get_r2off (info, stub_entry);
11628 if (r2off == (bfd_vma) -1)
11629 {
11630 htab->stub_error = TRUE;
11631 return FALSE;
11632 }
11633 size = 8;
11634 if (PPC_HA (r2off) != 0)
11635 size += 4;
11636 if (PPC_LO (r2off) != 0)
11637 size += 4;
11638 off += size - 4;
11639 }
11640 off = targ - off;
11641
11642 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11643 Do the same for -R objects without function descriptors. */
11644 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11645 && r2off == 0
11646 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11647 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11648 {
11649 struct ppc_branch_hash_entry *br_entry;
11650
11651 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11652 stub_entry->root.string + 9,
11653 TRUE, FALSE);
11654 if (br_entry == NULL)
11655 {
11656 _bfd_error_handler (_("can't build branch stub `%s'"),
11657 stub_entry->root.string);
11658 htab->stub_error = TRUE;
11659 return FALSE;
11660 }
11661
11662 if (br_entry->iter != htab->stub_iteration)
11663 {
11664 br_entry->iter = htab->stub_iteration;
11665 br_entry->offset = htab->brlt->size;
11666 htab->brlt->size += 8;
11667
11668 if (htab->relbrlt != NULL)
11669 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11670 else if (info->emitrelocations)
11671 {
11672 htab->brlt->reloc_count += 1;
11673 htab->brlt->flags |= SEC_RELOC;
11674 }
11675 }
11676
11677 targ = (br_entry->offset
11678 + htab->brlt->output_offset
11679 + htab->brlt->output_section->vma);
11680 off = (elf_gp (info->output_bfd)
11681 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11682 off = targ - off;
11683
11684 if (info->emitrelocations)
11685 {
11686 stub_entry->group->stub_sec->reloc_count
11687 += 1 + (PPC_HA (off) != 0);
11688 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11689 }
11690
11691 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11692 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11693 {
11694 size = 12;
11695 if (PPC_HA (off) != 0)
11696 size = 16;
11697 }
11698 else
11699 {
11700 size = 16;
11701 if (PPC_HA (off) != 0)
11702 size += 4;
11703
11704 if (PPC_HA (r2off) != 0)
11705 size += 4;
11706 if (PPC_LO (r2off) != 0)
11707 size += 4;
11708 }
11709 }
11710 else if (info->emitrelocations)
11711 {
11712 stub_entry->group->stub_sec->reloc_count += 1;
11713 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11714 }
11715 break;
11716
11717 case ppc_stub_plt_branch_notoc:
11718 case ppc_stub_plt_branch_both:
11719 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11720 /* Fall through. */
11721 case ppc_stub_long_branch_notoc:
11722 case ppc_stub_long_branch_both:
11723 off = (stub_entry->stub_offset
11724 + stub_entry->group->stub_sec->output_offset
11725 + stub_entry->group->stub_sec->output_section->vma);
11726 size = 0;
11727 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11728 size = 4;
11729 off += size;
11730 targ = (stub_entry->target_value
11731 + stub_entry->target_section->output_offset
11732 + stub_entry->target_section->output_section->vma);
11733 odd = off & 4;
11734 off = targ - off;
11735
11736 if (info->emitrelocations)
11737 {
11738 unsigned int num_rel;
11739 if (htab->powerxx_stubs)
11740 num_rel = num_relocs_for_powerxx_offset (off, odd);
11741 else
11742 num_rel = num_relocs_for_offset (off - 8);
11743 stub_entry->group->stub_sec->reloc_count += num_rel;
11744 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11745 }
11746
11747 if (htab->powerxx_stubs)
11748 extra = size_powerxx_offset (off, odd);
11749 else
11750 extra = size_offset (off - 8);
11751 /* Include branch insn plus those in the offset sequence. */
11752 size += 4 + extra;
11753 /* The branch insn is at the end, or "extra" bytes along. So
11754 its offset will be "extra" bytes less that that already
11755 calculated. */
11756 off -= extra;
11757
11758 if (!htab->powerxx_stubs)
11759 {
11760 /* After the bcl, lr has been modified so we need to emit
11761 .eh_frame info saying the return address is in r12. */
11762 lr_used = stub_entry->stub_offset + 8;
11763 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11764 lr_used += 4;
11765 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11766 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11767 DW_CFA_restore_extended 65. */
11768 delta = lr_used - stub_entry->group->lr_restore;
11769 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11770 stub_entry->group->lr_restore = lr_used + 8;
11771 }
11772
11773 /* If the branch can't reach, use a plt_branch. */
11774 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11775 {
11776 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
11777 - ppc_stub_long_branch_notoc);
11778 size += 4;
11779 }
11780 else if (info->emitrelocations)
11781 stub_entry->group->stub_sec->reloc_count +=1;
11782 break;
11783
11784 case ppc_stub_plt_call_notoc:
11785 case ppc_stub_plt_call_both:
11786 off = (stub_entry->stub_offset
11787 + stub_entry->group->stub_sec->output_offset
11788 + stub_entry->group->stub_sec->output_section->vma);
11789 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11790 off += 4;
11791 targ = stub_entry->plt_ent->plt.offset & ~1;
11792 if (targ >= (bfd_vma) -2)
11793 abort ();
11794
11795 plt = htab->elf.splt;
11796 if (!htab->elf.dynamic_sections_created
11797 || stub_entry->h == NULL
11798 || stub_entry->h->elf.dynindx == -1)
11799 {
11800 if (stub_entry->symtype == STT_GNU_IFUNC)
11801 plt = htab->elf.iplt;
11802 else
11803 plt = htab->pltlocal;
11804 }
11805 targ += plt->output_offset + plt->output_section->vma;
11806 odd = off & 4;
11807 off = targ - off;
11808
11809 if (htab->params->plt_stub_align != 0)
11810 {
11811 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11812
11813 stub_entry->group->stub_sec->size += pad;
11814 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11815 off -= pad;
11816 }
11817
11818 if (info->emitrelocations)
11819 {
11820 unsigned int num_rel;
11821 if (htab->powerxx_stubs)
11822 num_rel = num_relocs_for_powerxx_offset (off, odd);
11823 else
11824 num_rel = num_relocs_for_offset (off - 8);
11825 stub_entry->group->stub_sec->reloc_count += num_rel;
11826 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11827 }
11828
11829 size = plt_stub_size (htab, stub_entry, off);
11830
11831 if (!htab->powerxx_stubs)
11832 {
11833 /* After the bcl, lr has been modified so we need to emit
11834 .eh_frame info saying the return address is in r12. */
11835 lr_used = stub_entry->stub_offset + 8;
11836 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11837 lr_used += 4;
11838 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11839 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11840 DW_CFA_restore_extended 65. */
11841 delta = lr_used - stub_entry->group->lr_restore;
11842 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11843 stub_entry->group->lr_restore = lr_used + 8;
11844 }
11845 break;
11846
11847 case ppc_stub_plt_call:
11848 case ppc_stub_plt_call_r2save:
11849 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11850 if (targ >= (bfd_vma) -2)
11851 abort ();
11852 plt = htab->elf.splt;
11853 if (!htab->elf.dynamic_sections_created
11854 || stub_entry->h == NULL
11855 || stub_entry->h->elf.dynindx == -1)
11856 {
11857 if (stub_entry->symtype == STT_GNU_IFUNC)
11858 plt = htab->elf.iplt;
11859 else
11860 plt = htab->pltlocal;
11861 }
11862 targ += plt->output_offset + plt->output_section->vma;
11863
11864 off = (elf_gp (info->output_bfd)
11865 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11866 off = targ - off;
11867
11868 if (htab->params->plt_stub_align != 0)
11869 {
11870 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11871
11872 stub_entry->group->stub_sec->size += pad;
11873 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11874 }
11875
11876 if (info->emitrelocations)
11877 {
11878 stub_entry->group->stub_sec->reloc_count
11879 += ((PPC_HA (off) != 0)
11880 + (htab->opd_abi
11881 ? 2 + (htab->params->plt_static_chain
11882 && PPC_HA (off + 16) == PPC_HA (off))
11883 : 1));
11884 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11885 }
11886
11887 size = plt_stub_size (htab, stub_entry, off);
11888
11889 if (stub_entry->h != NULL
11890 && (stub_entry->h == htab->tls_get_addr_fd
11891 || stub_entry->h == htab->tls_get_addr)
11892 && htab->params->tls_get_addr_opt
11893 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
11894 {
11895 /* After the bctrl, lr has been modified so we need to
11896 emit .eh_frame info saying the return address is
11897 on the stack. In fact we put the EH info specifying
11898 that the return address is on the stack *at* the
11899 call rather than after it, because the EH info for a
11900 call needs to be specified by that point.
11901 See libgcc/unwind-dw2.c execute_cfa_program. */
11902 lr_used = stub_entry->stub_offset + size - 20;
11903 /* The eh_frame info will consist of a DW_CFA_advance_loc
11904 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
11905 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
11906 delta = lr_used - stub_entry->group->lr_restore;
11907 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11908 stub_entry->group->lr_restore = size - 4;
11909 }
11910 break;
11911
11912 default:
11913 BFD_FAIL ();
11914 return FALSE;
11915 }
11916
11917 stub_entry->group->stub_sec->size += size;
11918 return TRUE;
11919 }
11920
11921 /* Set up various things so that we can make a list of input sections
11922 for each output section included in the link. Returns -1 on error,
11923 0 when no stubs will be needed, and 1 on success. */
11924
11925 int
11926 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11927 {
11928 unsigned int id;
11929 bfd_size_type amt;
11930 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11931
11932 if (htab == NULL)
11933 return -1;
11934
11935 htab->sec_info_arr_size = _bfd_section_id;
11936 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
11937 htab->sec_info = bfd_zmalloc (amt);
11938 if (htab->sec_info == NULL)
11939 return -1;
11940
11941 /* Set toc_off for com, und, abs and ind sections. */
11942 for (id = 0; id < 3; id++)
11943 htab->sec_info[id].toc_off = TOC_BASE_OFF;
11944
11945 return 1;
11946 }
11947
11948 /* Set up for first pass at multitoc partitioning. */
11949
11950 void
11951 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11952 {
11953 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11954
11955 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11956 htab->toc_bfd = NULL;
11957 htab->toc_first_sec = NULL;
11958 }
11959
11960 /* The linker repeatedly calls this function for each TOC input section
11961 and linker generated GOT section. Group input bfds such that the toc
11962 within a group is less than 64k in size. */
11963
11964 bfd_boolean
11965 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11966 {
11967 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11968 bfd_vma addr, off, limit;
11969
11970 if (htab == NULL)
11971 return FALSE;
11972
11973 if (!htab->second_toc_pass)
11974 {
11975 /* Keep track of the first .toc or .got section for this input bfd. */
11976 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11977
11978 if (new_bfd)
11979 {
11980 htab->toc_bfd = isec->owner;
11981 htab->toc_first_sec = isec;
11982 }
11983
11984 addr = isec->output_offset + isec->output_section->vma;
11985 off = addr - htab->toc_curr;
11986 limit = 0x80008000;
11987 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11988 limit = 0x10000;
11989 if (off + isec->size > limit)
11990 {
11991 addr = (htab->toc_first_sec->output_offset
11992 + htab->toc_first_sec->output_section->vma);
11993 htab->toc_curr = addr;
11994 htab->toc_curr &= -TOC_BASE_ALIGN;
11995 }
11996
11997 /* toc_curr is the base address of this toc group. Set elf_gp
11998 for the input section to be the offset relative to the
11999 output toc base plus 0x8000. Making the input elf_gp an
12000 offset allows us to move the toc as a whole without
12001 recalculating input elf_gp. */
12002 off = htab->toc_curr - elf_gp (info->output_bfd);
12003 off += TOC_BASE_OFF;
12004
12005 /* Die if someone uses a linker script that doesn't keep input
12006 file .toc and .got together. */
12007 if (new_bfd
12008 && elf_gp (isec->owner) != 0
12009 && elf_gp (isec->owner) != off)
12010 return FALSE;
12011
12012 elf_gp (isec->owner) = off;
12013 return TRUE;
12014 }
12015
12016 /* During the second pass toc_first_sec points to the start of
12017 a toc group, and toc_curr is used to track the old elf_gp.
12018 We use toc_bfd to ensure we only look at each bfd once. */
12019 if (htab->toc_bfd == isec->owner)
12020 return TRUE;
12021 htab->toc_bfd = isec->owner;
12022
12023 if (htab->toc_first_sec == NULL
12024 || htab->toc_curr != elf_gp (isec->owner))
12025 {
12026 htab->toc_curr = elf_gp (isec->owner);
12027 htab->toc_first_sec = isec;
12028 }
12029 addr = (htab->toc_first_sec->output_offset
12030 + htab->toc_first_sec->output_section->vma);
12031 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12032 elf_gp (isec->owner) = off;
12033
12034 return TRUE;
12035 }
12036
12037 /* Called via elf_link_hash_traverse to merge GOT entries for global
12038 symbol H. */
12039
12040 static bfd_boolean
12041 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12042 {
12043 if (h->root.type == bfd_link_hash_indirect)
12044 return TRUE;
12045
12046 merge_got_entries (&h->got.glist);
12047
12048 return TRUE;
12049 }
12050
12051 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12052 symbol H. */
12053
12054 static bfd_boolean
12055 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12056 {
12057 struct got_entry *gent;
12058
12059 if (h->root.type == bfd_link_hash_indirect)
12060 return TRUE;
12061
12062 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12063 if (!gent->is_indirect)
12064 allocate_got (h, (struct bfd_link_info *) inf, gent);
12065 return TRUE;
12066 }
12067
12068 /* Called on the first multitoc pass after the last call to
12069 ppc64_elf_next_toc_section. This function removes duplicate GOT
12070 entries. */
12071
12072 bfd_boolean
12073 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12074 {
12075 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12076 struct bfd *ibfd, *ibfd2;
12077 bfd_boolean done_something;
12078
12079 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12080
12081 if (!htab->do_multi_toc)
12082 return FALSE;
12083
12084 /* Merge global sym got entries within a toc group. */
12085 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12086
12087 /* And tlsld_got. */
12088 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12089 {
12090 struct got_entry *ent, *ent2;
12091
12092 if (!is_ppc64_elf (ibfd))
12093 continue;
12094
12095 ent = ppc64_tlsld_got (ibfd);
12096 if (!ent->is_indirect
12097 && ent->got.offset != (bfd_vma) -1)
12098 {
12099 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12100 {
12101 if (!is_ppc64_elf (ibfd2))
12102 continue;
12103
12104 ent2 = ppc64_tlsld_got (ibfd2);
12105 if (!ent2->is_indirect
12106 && ent2->got.offset != (bfd_vma) -1
12107 && elf_gp (ibfd2) == elf_gp (ibfd))
12108 {
12109 ent2->is_indirect = TRUE;
12110 ent2->got.ent = ent;
12111 }
12112 }
12113 }
12114 }
12115
12116 /* Zap sizes of got sections. */
12117 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12118 htab->elf.irelplt->size -= htab->got_reli_size;
12119 htab->got_reli_size = 0;
12120
12121 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12122 {
12123 asection *got, *relgot;
12124
12125 if (!is_ppc64_elf (ibfd))
12126 continue;
12127
12128 got = ppc64_elf_tdata (ibfd)->got;
12129 if (got != NULL)
12130 {
12131 got->rawsize = got->size;
12132 got->size = 0;
12133 relgot = ppc64_elf_tdata (ibfd)->relgot;
12134 relgot->rawsize = relgot->size;
12135 relgot->size = 0;
12136 }
12137 }
12138
12139 /* Now reallocate the got, local syms first. We don't need to
12140 allocate section contents again since we never increase size. */
12141 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12142 {
12143 struct got_entry **lgot_ents;
12144 struct got_entry **end_lgot_ents;
12145 struct plt_entry **local_plt;
12146 struct plt_entry **end_local_plt;
12147 unsigned char *lgot_masks;
12148 bfd_size_type locsymcount;
12149 Elf_Internal_Shdr *symtab_hdr;
12150 asection *s;
12151
12152 if (!is_ppc64_elf (ibfd))
12153 continue;
12154
12155 lgot_ents = elf_local_got_ents (ibfd);
12156 if (!lgot_ents)
12157 continue;
12158
12159 symtab_hdr = &elf_symtab_hdr (ibfd);
12160 locsymcount = symtab_hdr->sh_info;
12161 end_lgot_ents = lgot_ents + locsymcount;
12162 local_plt = (struct plt_entry **) end_lgot_ents;
12163 end_local_plt = local_plt + locsymcount;
12164 lgot_masks = (unsigned char *) end_local_plt;
12165 s = ppc64_elf_tdata (ibfd)->got;
12166 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12167 {
12168 struct got_entry *ent;
12169
12170 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12171 {
12172 unsigned int ent_size = 8;
12173 unsigned int rel_size = sizeof (Elf64_External_Rela);
12174
12175 ent->got.offset = s->size;
12176 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12177 {
12178 ent_size *= 2;
12179 rel_size *= 2;
12180 }
12181 s->size += ent_size;
12182 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12183 {
12184 htab->elf.irelplt->size += rel_size;
12185 htab->got_reli_size += rel_size;
12186 }
12187 else if (bfd_link_pic (info)
12188 && !(ent->tls_type != 0
12189 && bfd_link_executable (info)))
12190 {
12191 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12192 srel->size += rel_size;
12193 }
12194 }
12195 }
12196 }
12197
12198 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12199
12200 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12201 {
12202 struct got_entry *ent;
12203
12204 if (!is_ppc64_elf (ibfd))
12205 continue;
12206
12207 ent = ppc64_tlsld_got (ibfd);
12208 if (!ent->is_indirect
12209 && ent->got.offset != (bfd_vma) -1)
12210 {
12211 asection *s = ppc64_elf_tdata (ibfd)->got;
12212 ent->got.offset = s->size;
12213 s->size += 16;
12214 if (bfd_link_dll (info))
12215 {
12216 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12217 srel->size += sizeof (Elf64_External_Rela);
12218 }
12219 }
12220 }
12221
12222 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12223 if (!done_something)
12224 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12225 {
12226 asection *got;
12227
12228 if (!is_ppc64_elf (ibfd))
12229 continue;
12230
12231 got = ppc64_elf_tdata (ibfd)->got;
12232 if (got != NULL)
12233 {
12234 done_something = got->rawsize != got->size;
12235 if (done_something)
12236 break;
12237 }
12238 }
12239
12240 if (done_something)
12241 (*htab->params->layout_sections_again) ();
12242
12243 /* Set up for second pass over toc sections to recalculate elf_gp
12244 on input sections. */
12245 htab->toc_bfd = NULL;
12246 htab->toc_first_sec = NULL;
12247 htab->second_toc_pass = TRUE;
12248 return done_something;
12249 }
12250
12251 /* Called after second pass of multitoc partitioning. */
12252
12253 void
12254 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12255 {
12256 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12257
12258 /* After the second pass, toc_curr tracks the TOC offset used
12259 for code sections below in ppc64_elf_next_input_section. */
12260 htab->toc_curr = TOC_BASE_OFF;
12261 }
12262
12263 /* No toc references were found in ISEC. If the code in ISEC makes no
12264 calls, then there's no need to use toc adjusting stubs when branching
12265 into ISEC. Actually, indirect calls from ISEC are OK as they will
12266 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12267 needed, and 2 if a cyclical call-graph was found but no other reason
12268 for a stub was detected. If called from the top level, a return of
12269 2 means the same as a return of 0. */
12270
12271 static int
12272 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12273 {
12274 int ret;
12275
12276 /* Mark this section as checked. */
12277 isec->call_check_done = 1;
12278
12279 /* We know none of our code bearing sections will need toc stubs. */
12280 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12281 return 0;
12282
12283 if (isec->size == 0)
12284 return 0;
12285
12286 if (isec->output_section == NULL)
12287 return 0;
12288
12289 ret = 0;
12290 if (isec->reloc_count != 0)
12291 {
12292 Elf_Internal_Rela *relstart, *rel;
12293 Elf_Internal_Sym *local_syms;
12294 struct ppc_link_hash_table *htab;
12295
12296 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12297 info->keep_memory);
12298 if (relstart == NULL)
12299 return -1;
12300
12301 /* Look for branches to outside of this section. */
12302 local_syms = NULL;
12303 htab = ppc_hash_table (info);
12304 if (htab == NULL)
12305 return -1;
12306
12307 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12308 {
12309 enum elf_ppc64_reloc_type r_type;
12310 unsigned long r_symndx;
12311 struct elf_link_hash_entry *h;
12312 struct ppc_link_hash_entry *eh;
12313 Elf_Internal_Sym *sym;
12314 asection *sym_sec;
12315 struct _opd_sec_data *opd;
12316 bfd_vma sym_value;
12317 bfd_vma dest;
12318
12319 r_type = ELF64_R_TYPE (rel->r_info);
12320 if (r_type != R_PPC64_REL24
12321 && r_type != R_PPC64_REL24_NOTOC
12322 && r_type != R_PPC64_REL14
12323 && r_type != R_PPC64_REL14_BRTAKEN
12324 && r_type != R_PPC64_REL14_BRNTAKEN
12325 && r_type != R_PPC64_PLTCALL
12326 && r_type != R_PPC64_PLTCALL_NOTOC)
12327 continue;
12328
12329 r_symndx = ELF64_R_SYM (rel->r_info);
12330 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12331 isec->owner))
12332 {
12333 ret = -1;
12334 break;
12335 }
12336
12337 /* Calls to dynamic lib functions go through a plt call stub
12338 that uses r2. */
12339 eh = (struct ppc_link_hash_entry *) h;
12340 if (eh != NULL
12341 && (eh->elf.plt.plist != NULL
12342 || (eh->oh != NULL
12343 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12344 {
12345 ret = 1;
12346 break;
12347 }
12348
12349 if (sym_sec == NULL)
12350 /* Ignore other undefined symbols. */
12351 continue;
12352
12353 /* Assume branches to other sections not included in the
12354 link need stubs too, to cover -R and absolute syms. */
12355 if (sym_sec->output_section == NULL)
12356 {
12357 ret = 1;
12358 break;
12359 }
12360
12361 if (h == NULL)
12362 sym_value = sym->st_value;
12363 else
12364 {
12365 if (h->root.type != bfd_link_hash_defined
12366 && h->root.type != bfd_link_hash_defweak)
12367 abort ();
12368 sym_value = h->root.u.def.value;
12369 }
12370 sym_value += rel->r_addend;
12371
12372 /* If this branch reloc uses an opd sym, find the code section. */
12373 opd = get_opd_info (sym_sec);
12374 if (opd != NULL)
12375 {
12376 if (h == NULL && opd->adjust != NULL)
12377 {
12378 long adjust;
12379
12380 adjust = opd->adjust[OPD_NDX (sym_value)];
12381 if (adjust == -1)
12382 /* Assume deleted functions won't ever be called. */
12383 continue;
12384 sym_value += adjust;
12385 }
12386
12387 dest = opd_entry_value (sym_sec, sym_value,
12388 &sym_sec, NULL, FALSE);
12389 if (dest == (bfd_vma) -1)
12390 continue;
12391 }
12392 else
12393 dest = (sym_value
12394 + sym_sec->output_offset
12395 + sym_sec->output_section->vma);
12396
12397 /* Ignore branch to self. */
12398 if (sym_sec == isec)
12399 continue;
12400
12401 /* If the called function uses the toc, we need a stub. */
12402 if (sym_sec->has_toc_reloc
12403 || sym_sec->makes_toc_func_call)
12404 {
12405 ret = 1;
12406 break;
12407 }
12408
12409 /* Assume any branch that needs a long branch stub might in fact
12410 need a plt_branch stub. A plt_branch stub uses r2. */
12411 else if (dest - (isec->output_offset
12412 + isec->output_section->vma
12413 + rel->r_offset) + (1 << 25)
12414 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12415 ? h->other
12416 : sym->st_other))
12417 {
12418 ret = 1;
12419 break;
12420 }
12421
12422 /* If calling back to a section in the process of being
12423 tested, we can't say for sure that no toc adjusting stubs
12424 are needed, so don't return zero. */
12425 else if (sym_sec->call_check_in_progress)
12426 ret = 2;
12427
12428 /* Branches to another section that itself doesn't have any TOC
12429 references are OK. Recursively call ourselves to check. */
12430 else if (!sym_sec->call_check_done)
12431 {
12432 int recur;
12433
12434 /* Mark current section as indeterminate, so that other
12435 sections that call back to current won't be marked as
12436 known. */
12437 isec->call_check_in_progress = 1;
12438 recur = toc_adjusting_stub_needed (info, sym_sec);
12439 isec->call_check_in_progress = 0;
12440
12441 if (recur != 0)
12442 {
12443 ret = recur;
12444 if (recur != 2)
12445 break;
12446 }
12447 }
12448 }
12449
12450 if (local_syms != NULL
12451 && (elf_symtab_hdr (isec->owner).contents
12452 != (unsigned char *) local_syms))
12453 free (local_syms);
12454 if (elf_section_data (isec)->relocs != relstart)
12455 free (relstart);
12456 }
12457
12458 if ((ret & 1) == 0
12459 && isec->map_head.s != NULL
12460 && (strcmp (isec->output_section->name, ".init") == 0
12461 || strcmp (isec->output_section->name, ".fini") == 0))
12462 {
12463 if (isec->map_head.s->has_toc_reloc
12464 || isec->map_head.s->makes_toc_func_call)
12465 ret = 1;
12466 else if (!isec->map_head.s->call_check_done)
12467 {
12468 int recur;
12469 isec->call_check_in_progress = 1;
12470 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12471 isec->call_check_in_progress = 0;
12472 if (recur != 0)
12473 ret = recur;
12474 }
12475 }
12476
12477 if (ret == 1)
12478 isec->makes_toc_func_call = 1;
12479
12480 return ret;
12481 }
12482
12483 /* The linker repeatedly calls this function for each input section,
12484 in the order that input sections are linked into output sections.
12485 Build lists of input sections to determine groupings between which
12486 we may insert linker stubs. */
12487
12488 bfd_boolean
12489 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12490 {
12491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12492
12493 if (htab == NULL)
12494 return FALSE;
12495
12496 if ((isec->output_section->flags & SEC_CODE) != 0
12497 && isec->output_section->id < htab->sec_info_arr_size)
12498 {
12499 /* This happens to make the list in reverse order,
12500 which is what we want. */
12501 htab->sec_info[isec->id].u.list
12502 = htab->sec_info[isec->output_section->id].u.list;
12503 htab->sec_info[isec->output_section->id].u.list = isec;
12504 }
12505
12506 if (htab->multi_toc_needed)
12507 {
12508 /* Analyse sections that aren't already flagged as needing a
12509 valid toc pointer. Exclude .fixup for the linux kernel.
12510 .fixup contains branches, but only back to the function that
12511 hit an exception. */
12512 if (!(isec->has_toc_reloc
12513 || (isec->flags & SEC_CODE) == 0
12514 || strcmp (isec->name, ".fixup") == 0
12515 || isec->call_check_done))
12516 {
12517 if (toc_adjusting_stub_needed (info, isec) < 0)
12518 return FALSE;
12519 }
12520 /* Make all sections use the TOC assigned for this object file.
12521 This will be wrong for pasted sections; We fix that in
12522 check_pasted_section(). */
12523 if (elf_gp (isec->owner) != 0)
12524 htab->toc_curr = elf_gp (isec->owner);
12525 }
12526
12527 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12528 return TRUE;
12529 }
12530
12531 /* Check that all .init and .fini sections use the same toc, if they
12532 have toc relocs. */
12533
12534 static bfd_boolean
12535 check_pasted_section (struct bfd_link_info *info, const char *name)
12536 {
12537 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12538
12539 if (o != NULL)
12540 {
12541 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12542 bfd_vma toc_off = 0;
12543 asection *i;
12544
12545 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12546 if (i->has_toc_reloc)
12547 {
12548 if (toc_off == 0)
12549 toc_off = htab->sec_info[i->id].toc_off;
12550 else if (toc_off != htab->sec_info[i->id].toc_off)
12551 return FALSE;
12552 }
12553
12554 if (toc_off == 0)
12555 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12556 if (i->makes_toc_func_call)
12557 {
12558 toc_off = htab->sec_info[i->id].toc_off;
12559 break;
12560 }
12561
12562 /* Make sure the whole pasted function uses the same toc offset. */
12563 if (toc_off != 0)
12564 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12565 htab->sec_info[i->id].toc_off = toc_off;
12566 }
12567 return TRUE;
12568 }
12569
12570 bfd_boolean
12571 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12572 {
12573 return (check_pasted_section (info, ".init")
12574 & check_pasted_section (info, ".fini"));
12575 }
12576
12577 /* See whether we can group stub sections together. Grouping stub
12578 sections may result in fewer stubs. More importantly, we need to
12579 put all .init* and .fini* stubs at the beginning of the .init or
12580 .fini output sections respectively, because glibc splits the
12581 _init and _fini functions into multiple parts. Putting a stub in
12582 the middle of a function is not a good idea. */
12583
12584 static bfd_boolean
12585 group_sections (struct bfd_link_info *info,
12586 bfd_size_type stub_group_size,
12587 bfd_boolean stubs_always_before_branch)
12588 {
12589 struct ppc_link_hash_table *htab;
12590 asection *osec;
12591 bfd_boolean suppress_size_errors;
12592
12593 htab = ppc_hash_table (info);
12594 if (htab == NULL)
12595 return FALSE;
12596
12597 suppress_size_errors = FALSE;
12598 if (stub_group_size == 1)
12599 {
12600 /* Default values. */
12601 if (stubs_always_before_branch)
12602 stub_group_size = 0x1e00000;
12603 else
12604 stub_group_size = 0x1c00000;
12605 suppress_size_errors = TRUE;
12606 }
12607
12608 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12609 {
12610 asection *tail;
12611
12612 if (osec->id >= htab->sec_info_arr_size)
12613 continue;
12614
12615 tail = htab->sec_info[osec->id].u.list;
12616 while (tail != NULL)
12617 {
12618 asection *curr;
12619 asection *prev;
12620 bfd_size_type total;
12621 bfd_boolean big_sec;
12622 bfd_vma curr_toc;
12623 struct map_stub *group;
12624 bfd_size_type group_size;
12625
12626 curr = tail;
12627 total = tail->size;
12628 group_size = (ppc64_elf_section_data (tail) != NULL
12629 && ppc64_elf_section_data (tail)->has_14bit_branch
12630 ? stub_group_size >> 10 : stub_group_size);
12631
12632 big_sec = total > group_size;
12633 if (big_sec && !suppress_size_errors)
12634 /* xgettext:c-format */
12635 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12636 tail->owner, tail);
12637 curr_toc = htab->sec_info[tail->id].toc_off;
12638
12639 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12640 && ((total += curr->output_offset - prev->output_offset)
12641 < (ppc64_elf_section_data (prev) != NULL
12642 && ppc64_elf_section_data (prev)->has_14bit_branch
12643 ? (group_size = stub_group_size >> 10) : group_size))
12644 && htab->sec_info[prev->id].toc_off == curr_toc)
12645 curr = prev;
12646
12647 /* OK, the size from the start of CURR to the end is less
12648 than group_size and thus can be handled by one stub
12649 section. (or the tail section is itself larger than
12650 group_size, in which case we may be toast.) We should
12651 really be keeping track of the total size of stubs added
12652 here, as stubs contribute to the final output section
12653 size. That's a little tricky, and this way will only
12654 break if stubs added make the total size more than 2^25,
12655 ie. for the default stub_group_size, if stubs total more
12656 than 2097152 bytes, or nearly 75000 plt call stubs. */
12657 group = bfd_alloc (curr->owner, sizeof (*group));
12658 if (group == NULL)
12659 return FALSE;
12660 group->link_sec = curr;
12661 group->stub_sec = NULL;
12662 group->needs_save_res = 0;
12663 group->lr_restore = 0;
12664 group->eh_size = 0;
12665 group->eh_base = 0;
12666 group->next = htab->group;
12667 htab->group = group;
12668 do
12669 {
12670 prev = htab->sec_info[tail->id].u.list;
12671 /* Set up this stub group. */
12672 htab->sec_info[tail->id].u.group = group;
12673 }
12674 while (tail != curr && (tail = prev) != NULL);
12675
12676 /* But wait, there's more! Input sections up to group_size
12677 bytes before the stub section can be handled by it too.
12678 Don't do this if we have a really large section after the
12679 stubs, as adding more stubs increases the chance that
12680 branches may not reach into the stub section. */
12681 if (!stubs_always_before_branch && !big_sec)
12682 {
12683 total = 0;
12684 while (prev != NULL
12685 && ((total += tail->output_offset - prev->output_offset)
12686 < (ppc64_elf_section_data (prev) != NULL
12687 && ppc64_elf_section_data (prev)->has_14bit_branch
12688 ? (group_size = stub_group_size >> 10)
12689 : group_size))
12690 && htab->sec_info[prev->id].toc_off == curr_toc)
12691 {
12692 tail = prev;
12693 prev = htab->sec_info[tail->id].u.list;
12694 htab->sec_info[tail->id].u.group = group;
12695 }
12696 }
12697 tail = prev;
12698 }
12699 }
12700 return TRUE;
12701 }
12702
12703 static const unsigned char glink_eh_frame_cie[] =
12704 {
12705 0, 0, 0, 16, /* length. */
12706 0, 0, 0, 0, /* id. */
12707 1, /* CIE version. */
12708 'z', 'R', 0, /* Augmentation string. */
12709 4, /* Code alignment. */
12710 0x78, /* Data alignment. */
12711 65, /* RA reg. */
12712 1, /* Augmentation size. */
12713 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
12714 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
12715 };
12716
12717 /* Stripping output sections is normally done before dynamic section
12718 symbols have been allocated. This function is called later, and
12719 handles cases like htab->brlt which is mapped to its own output
12720 section. */
12721
12722 static void
12723 maybe_strip_output (struct bfd_link_info *info, asection *isec)
12724 {
12725 if (isec->size == 0
12726 && isec->output_section->size == 0
12727 && !(isec->output_section->flags & SEC_KEEP)
12728 && !bfd_section_removed_from_list (info->output_bfd,
12729 isec->output_section)
12730 && elf_section_data (isec->output_section)->dynindx == 0)
12731 {
12732 isec->output_section->flags |= SEC_EXCLUDE;
12733 bfd_section_list_remove (info->output_bfd, isec->output_section);
12734 info->output_bfd->section_count--;
12735 }
12736 }
12737
12738 /* Determine and set the size of the stub section for a final link.
12739
12740 The basic idea here is to examine all the relocations looking for
12741 PC-relative calls to a target that is unreachable with a "bl"
12742 instruction. */
12743
12744 bfd_boolean
12745 ppc64_elf_size_stubs (struct bfd_link_info *info)
12746 {
12747 bfd_size_type stub_group_size;
12748 bfd_boolean stubs_always_before_branch;
12749 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12750
12751 if (htab == NULL)
12752 return FALSE;
12753
12754 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
12755 htab->params->plt_thread_safe = 1;
12756 if (!htab->opd_abi)
12757 htab->params->plt_thread_safe = 0;
12758 else if (htab->params->plt_thread_safe == -1)
12759 {
12760 static const char *const thread_starter[] =
12761 {
12762 "pthread_create",
12763 /* libstdc++ */
12764 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12765 /* librt */
12766 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12767 "mq_notify", "create_timer",
12768 /* libanl */
12769 "getaddrinfo_a",
12770 /* libgomp */
12771 "GOMP_parallel",
12772 "GOMP_parallel_start",
12773 "GOMP_parallel_loop_static",
12774 "GOMP_parallel_loop_static_start",
12775 "GOMP_parallel_loop_dynamic",
12776 "GOMP_parallel_loop_dynamic_start",
12777 "GOMP_parallel_loop_guided",
12778 "GOMP_parallel_loop_guided_start",
12779 "GOMP_parallel_loop_runtime",
12780 "GOMP_parallel_loop_runtime_start",
12781 "GOMP_parallel_sections",
12782 "GOMP_parallel_sections_start",
12783 /* libgo */
12784 "__go_go",
12785 };
12786 unsigned i;
12787
12788 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
12789 {
12790 struct elf_link_hash_entry *h;
12791 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12792 FALSE, FALSE, TRUE);
12793 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12794 if (htab->params->plt_thread_safe)
12795 break;
12796 }
12797 }
12798 stubs_always_before_branch = htab->params->group_size < 0;
12799 if (htab->params->group_size < 0)
12800 stub_group_size = -htab->params->group_size;
12801 else
12802 stub_group_size = htab->params->group_size;
12803
12804 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
12805 return FALSE;
12806
12807 #define STUB_SHRINK_ITER 20
12808 /* Loop until no stubs added. After iteration 20 of this loop we may
12809 exit on a stub section shrinking. This is to break out of a
12810 pathological case where adding stubs on one iteration decreases
12811 section gaps (perhaps due to alignment), which then requires
12812 fewer or smaller stubs on the next iteration. */
12813
12814 while (1)
12815 {
12816 bfd *input_bfd;
12817 unsigned int bfd_indx;
12818 struct map_stub *group;
12819
12820 htab->stub_iteration += 1;
12821
12822 for (input_bfd = info->input_bfds, bfd_indx = 0;
12823 input_bfd != NULL;
12824 input_bfd = input_bfd->link.next, bfd_indx++)
12825 {
12826 Elf_Internal_Shdr *symtab_hdr;
12827 asection *section;
12828 Elf_Internal_Sym *local_syms = NULL;
12829
12830 if (!is_ppc64_elf (input_bfd))
12831 continue;
12832
12833 /* We'll need the symbol table in a second. */
12834 symtab_hdr = &elf_symtab_hdr (input_bfd);
12835 if (symtab_hdr->sh_info == 0)
12836 continue;
12837
12838 /* Walk over each section attached to the input bfd. */
12839 for (section = input_bfd->sections;
12840 section != NULL;
12841 section = section->next)
12842 {
12843 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12844
12845 /* If there aren't any relocs, then there's nothing more
12846 to do. */
12847 if ((section->flags & SEC_RELOC) == 0
12848 || (section->flags & SEC_ALLOC) == 0
12849 || (section->flags & SEC_LOAD) == 0
12850 || (section->flags & SEC_CODE) == 0
12851 || section->reloc_count == 0)
12852 continue;
12853
12854 /* If this section is a link-once section that will be
12855 discarded, then don't create any stubs. */
12856 if (section->output_section == NULL
12857 || section->output_section->owner != info->output_bfd)
12858 continue;
12859
12860 /* Get the relocs. */
12861 internal_relocs
12862 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12863 info->keep_memory);
12864 if (internal_relocs == NULL)
12865 goto error_ret_free_local;
12866
12867 /* Now examine each relocation. */
12868 irela = internal_relocs;
12869 irelaend = irela + section->reloc_count;
12870 for (; irela < irelaend; irela++)
12871 {
12872 enum elf_ppc64_reloc_type r_type;
12873 unsigned int r_indx;
12874 enum ppc_stub_type stub_type;
12875 struct ppc_stub_hash_entry *stub_entry;
12876 asection *sym_sec, *code_sec;
12877 bfd_vma sym_value, code_value;
12878 bfd_vma destination;
12879 unsigned long local_off;
12880 bfd_boolean ok_dest;
12881 struct ppc_link_hash_entry *hash;
12882 struct ppc_link_hash_entry *fdh;
12883 struct elf_link_hash_entry *h;
12884 Elf_Internal_Sym *sym;
12885 char *stub_name;
12886 const asection *id_sec;
12887 struct _opd_sec_data *opd;
12888 struct plt_entry *plt_ent;
12889
12890 r_type = ELF64_R_TYPE (irela->r_info);
12891 r_indx = ELF64_R_SYM (irela->r_info);
12892
12893 if (r_type >= R_PPC64_max)
12894 {
12895 bfd_set_error (bfd_error_bad_value);
12896 goto error_ret_free_internal;
12897 }
12898
12899 /* Only look for stubs on branch instructions. */
12900 if (r_type != R_PPC64_REL24
12901 && r_type != R_PPC64_REL24_NOTOC
12902 && r_type != R_PPC64_REL14
12903 && r_type != R_PPC64_REL14_BRTAKEN
12904 && r_type != R_PPC64_REL14_BRNTAKEN)
12905 continue;
12906
12907 /* Now determine the call target, its name, value,
12908 section. */
12909 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12910 r_indx, input_bfd))
12911 goto error_ret_free_internal;
12912 hash = (struct ppc_link_hash_entry *) h;
12913
12914 ok_dest = FALSE;
12915 fdh = NULL;
12916 sym_value = 0;
12917 if (hash == NULL)
12918 {
12919 sym_value = sym->st_value;
12920 if (sym_sec != NULL
12921 && sym_sec->output_section != NULL)
12922 ok_dest = TRUE;
12923 }
12924 else if (hash->elf.root.type == bfd_link_hash_defined
12925 || hash->elf.root.type == bfd_link_hash_defweak)
12926 {
12927 sym_value = hash->elf.root.u.def.value;
12928 if (sym_sec->output_section != NULL)
12929 ok_dest = TRUE;
12930 }
12931 else if (hash->elf.root.type == bfd_link_hash_undefweak
12932 || hash->elf.root.type == bfd_link_hash_undefined)
12933 {
12934 /* Recognise an old ABI func code entry sym, and
12935 use the func descriptor sym instead if it is
12936 defined. */
12937 if (hash->elf.root.root.string[0] == '.'
12938 && hash->oh != NULL)
12939 {
12940 fdh = ppc_follow_link (hash->oh);
12941 if (fdh->elf.root.type == bfd_link_hash_defined
12942 || fdh->elf.root.type == bfd_link_hash_defweak)
12943 {
12944 sym_sec = fdh->elf.root.u.def.section;
12945 sym_value = fdh->elf.root.u.def.value;
12946 if (sym_sec->output_section != NULL)
12947 ok_dest = TRUE;
12948 }
12949 else
12950 fdh = NULL;
12951 }
12952 }
12953 else
12954 {
12955 bfd_set_error (bfd_error_bad_value);
12956 goto error_ret_free_internal;
12957 }
12958
12959 destination = 0;
12960 local_off = 0;
12961 if (ok_dest)
12962 {
12963 sym_value += irela->r_addend;
12964 destination = (sym_value
12965 + sym_sec->output_offset
12966 + sym_sec->output_section->vma);
12967 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12968 ? hash->elf.other
12969 : sym->st_other);
12970 }
12971
12972 code_sec = sym_sec;
12973 code_value = sym_value;
12974 opd = get_opd_info (sym_sec);
12975 if (opd != NULL)
12976 {
12977 bfd_vma dest;
12978
12979 if (hash == NULL && opd->adjust != NULL)
12980 {
12981 long adjust = opd->adjust[OPD_NDX (sym_value)];
12982 if (adjust == -1)
12983 continue;
12984 code_value += adjust;
12985 sym_value += adjust;
12986 }
12987 dest = opd_entry_value (sym_sec, sym_value,
12988 &code_sec, &code_value, FALSE);
12989 if (dest != (bfd_vma) -1)
12990 {
12991 destination = dest;
12992 if (fdh != NULL)
12993 {
12994 /* Fixup old ABI sym to point at code
12995 entry. */
12996 hash->elf.root.type = bfd_link_hash_defweak;
12997 hash->elf.root.u.def.section = code_sec;
12998 hash->elf.root.u.def.value = code_value;
12999 }
13000 }
13001 }
13002
13003 /* Determine what (if any) linker stub is needed. */
13004 plt_ent = NULL;
13005 stub_type = ppc_type_of_stub (section, irela, &hash,
13006 &plt_ent, destination,
13007 local_off);
13008
13009 if (r_type == R_PPC64_REL24_NOTOC)
13010 {
13011 if (stub_type == ppc_stub_plt_call)
13012 stub_type = ppc_stub_plt_call_notoc;
13013 else if (stub_type == ppc_stub_long_branch
13014 || (code_sec != NULL
13015 && code_sec->output_section != NULL
13016 && (((hash ? hash->elf.other : sym->st_other)
13017 & STO_PPC64_LOCAL_MASK)
13018 > 1 << STO_PPC64_LOCAL_BIT)))
13019 stub_type = ppc_stub_long_branch_notoc;
13020 }
13021 else if (stub_type != ppc_stub_plt_call)
13022 {
13023 /* Check whether we need a TOC adjusting stub.
13024 Since the linker pastes together pieces from
13025 different object files when creating the
13026 _init and _fini functions, it may be that a
13027 call to what looks like a local sym is in
13028 fact a call needing a TOC adjustment. */
13029 if ((code_sec != NULL
13030 && code_sec->output_section != NULL
13031 && (htab->sec_info[code_sec->id].toc_off
13032 != htab->sec_info[section->id].toc_off)
13033 && (code_sec->has_toc_reloc
13034 || code_sec->makes_toc_func_call))
13035 || (((hash ? hash->elf.other : sym->st_other)
13036 & STO_PPC64_LOCAL_MASK)
13037 == 1 << STO_PPC64_LOCAL_BIT))
13038 stub_type = ppc_stub_long_branch_r2off;
13039 }
13040
13041 if (stub_type == ppc_stub_none)
13042 continue;
13043
13044 /* __tls_get_addr calls might be eliminated. */
13045 if (stub_type != ppc_stub_plt_call
13046 && stub_type != ppc_stub_plt_call_notoc
13047 && hash != NULL
13048 && (hash == htab->tls_get_addr
13049 || hash == htab->tls_get_addr_fd)
13050 && section->has_tls_reloc
13051 && irela != internal_relocs)
13052 {
13053 /* Get tls info. */
13054 unsigned char *tls_mask;
13055
13056 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13057 irela - 1, input_bfd))
13058 goto error_ret_free_internal;
13059 if ((*tls_mask & TLS_TLS) != 0)
13060 continue;
13061 }
13062
13063 if (stub_type == ppc_stub_plt_call)
13064 {
13065 if (!htab->opd_abi
13066 && htab->params->plt_localentry0 != 0
13067 && is_elfv2_localentry0 (&hash->elf))
13068 htab->has_plt_localentry0 = 1;
13069 else if (irela + 1 < irelaend
13070 && irela[1].r_offset == irela->r_offset + 4
13071 && (ELF64_R_TYPE (irela[1].r_info)
13072 == R_PPC64_TOCSAVE))
13073 {
13074 if (!tocsave_find (htab, INSERT,
13075 &local_syms, irela + 1, input_bfd))
13076 goto error_ret_free_internal;
13077 }
13078 else
13079 stub_type = ppc_stub_plt_call_r2save;
13080 }
13081
13082 /* Support for grouping stub sections. */
13083 id_sec = htab->sec_info[section->id].u.group->link_sec;
13084
13085 /* Get the name of this stub. */
13086 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13087 if (!stub_name)
13088 goto error_ret_free_internal;
13089
13090 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13091 stub_name, FALSE, FALSE);
13092 if (stub_entry != NULL)
13093 {
13094 enum ppc_stub_type old_type;
13095 /* A stub has already been created, but it may
13096 not be the required type. We shouldn't be
13097 transitioning from plt_call to long_branch
13098 stubs or vice versa, but we might be
13099 upgrading from plt_call to plt_call_r2save or
13100 from long_branch to long_branch_r2off. */
13101 free (stub_name);
13102 old_type = stub_entry->stub_type;
13103 switch (old_type)
13104 {
13105 default:
13106 abort ();
13107
13108 case ppc_stub_save_res:
13109 continue;
13110
13111 case ppc_stub_plt_call:
13112 case ppc_stub_plt_call_r2save:
13113 case ppc_stub_plt_call_notoc:
13114 case ppc_stub_plt_call_both:
13115 if (stub_type == ppc_stub_plt_call)
13116 continue;
13117 else if (stub_type == ppc_stub_plt_call_r2save)
13118 {
13119 if (old_type == ppc_stub_plt_call_notoc)
13120 stub_type = ppc_stub_plt_call_both;
13121 }
13122 else if (stub_type == ppc_stub_plt_call_notoc)
13123 {
13124 if (old_type == ppc_stub_plt_call_r2save)
13125 stub_type = ppc_stub_plt_call_both;
13126 }
13127 else
13128 abort ();
13129 break;
13130
13131 case ppc_stub_plt_branch:
13132 case ppc_stub_plt_branch_r2off:
13133 case ppc_stub_plt_branch_notoc:
13134 case ppc_stub_plt_branch_both:
13135 old_type += (ppc_stub_long_branch
13136 - ppc_stub_plt_branch);
13137 /* Fall through. */
13138 case ppc_stub_long_branch:
13139 case ppc_stub_long_branch_r2off:
13140 case ppc_stub_long_branch_notoc:
13141 case ppc_stub_long_branch_both:
13142 if (stub_type == ppc_stub_long_branch)
13143 continue;
13144 else if (stub_type == ppc_stub_long_branch_r2off)
13145 {
13146 if (old_type == ppc_stub_long_branch_notoc)
13147 stub_type = ppc_stub_long_branch_both;
13148 }
13149 else if (stub_type == ppc_stub_long_branch_notoc)
13150 {
13151 if (old_type == ppc_stub_long_branch_r2off)
13152 stub_type = ppc_stub_long_branch_both;
13153 }
13154 else
13155 abort ();
13156 break;
13157 }
13158 if (old_type < stub_type)
13159 stub_entry->stub_type = stub_type;
13160 continue;
13161 }
13162
13163 stub_entry = ppc_add_stub (stub_name, section, info);
13164 if (stub_entry == NULL)
13165 {
13166 free (stub_name);
13167 error_ret_free_internal:
13168 if (elf_section_data (section)->relocs == NULL)
13169 free (internal_relocs);
13170 error_ret_free_local:
13171 if (local_syms != NULL
13172 && (symtab_hdr->contents
13173 != (unsigned char *) local_syms))
13174 free (local_syms);
13175 return FALSE;
13176 }
13177
13178 stub_entry->stub_type = stub_type;
13179 if (stub_type >= ppc_stub_plt_call
13180 && stub_type <= ppc_stub_plt_call_both)
13181 {
13182 stub_entry->target_value = sym_value;
13183 stub_entry->target_section = sym_sec;
13184 }
13185 else
13186 {
13187 stub_entry->target_value = code_value;
13188 stub_entry->target_section = code_sec;
13189 }
13190 stub_entry->h = hash;
13191 stub_entry->plt_ent = plt_ent;
13192 stub_entry->symtype
13193 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13194 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13195
13196 if (hash != NULL
13197 && (hash->elf.root.type == bfd_link_hash_defined
13198 || hash->elf.root.type == bfd_link_hash_defweak))
13199 htab->stub_globals += 1;
13200 }
13201
13202 /* We're done with the internal relocs, free them. */
13203 if (elf_section_data (section)->relocs != internal_relocs)
13204 free (internal_relocs);
13205 }
13206
13207 if (local_syms != NULL
13208 && symtab_hdr->contents != (unsigned char *) local_syms)
13209 {
13210 if (!info->keep_memory)
13211 free (local_syms);
13212 else
13213 symtab_hdr->contents = (unsigned char *) local_syms;
13214 }
13215 }
13216
13217 /* We may have added some stubs. Find out the new size of the
13218 stub sections. */
13219 for (group = htab->group; group != NULL; group = group->next)
13220 {
13221 group->lr_restore = 0;
13222 group->eh_size = 0;
13223 if (group->stub_sec != NULL)
13224 {
13225 asection *stub_sec = group->stub_sec;
13226
13227 if (htab->stub_iteration <= STUB_SHRINK_ITER
13228 || stub_sec->rawsize < stub_sec->size)
13229 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13230 stub_sec->rawsize = stub_sec->size;
13231 stub_sec->size = 0;
13232 stub_sec->reloc_count = 0;
13233 stub_sec->flags &= ~SEC_RELOC;
13234 }
13235 }
13236
13237 if (htab->stub_iteration <= STUB_SHRINK_ITER
13238 || htab->brlt->rawsize < htab->brlt->size)
13239 htab->brlt->rawsize = htab->brlt->size;
13240 htab->brlt->size = 0;
13241 htab->brlt->reloc_count = 0;
13242 htab->brlt->flags &= ~SEC_RELOC;
13243 if (htab->relbrlt != NULL)
13244 htab->relbrlt->size = 0;
13245
13246 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13247
13248 for (group = htab->group; group != NULL; group = group->next)
13249 if (group->needs_save_res)
13250 group->stub_sec->size += htab->sfpr->size;
13251
13252 if (info->emitrelocations
13253 && htab->glink != NULL && htab->glink->size != 0)
13254 {
13255 htab->glink->reloc_count = 1;
13256 htab->glink->flags |= SEC_RELOC;
13257 }
13258
13259 if (htab->glink_eh_frame != NULL
13260 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13261 && htab->glink_eh_frame->output_section->size > 8)
13262 {
13263 size_t size = 0, align = 4;
13264
13265 for (group = htab->group; group != NULL; group = group->next)
13266 if (group->eh_size != 0)
13267 size += (group->eh_size + 17 + align - 1) & -align;
13268 if (htab->glink != NULL && htab->glink->size != 0)
13269 size += (24 + align - 1) & -align;
13270 if (size != 0)
13271 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13272 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13273 size = (size + align - 1) & -align;
13274 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13275 htab->glink_eh_frame->size = size;
13276 }
13277
13278 if (htab->params->plt_stub_align != 0)
13279 for (group = htab->group; group != NULL; group = group->next)
13280 if (group->stub_sec != NULL)
13281 {
13282 int align = abs (htab->params->plt_stub_align);
13283 group->stub_sec->size
13284 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13285 }
13286
13287 for (group = htab->group; group != NULL; group = group->next)
13288 if (group->stub_sec != NULL
13289 && group->stub_sec->rawsize != group->stub_sec->size
13290 && (htab->stub_iteration <= STUB_SHRINK_ITER
13291 || group->stub_sec->rawsize < group->stub_sec->size))
13292 break;
13293
13294 if (group == NULL
13295 && (htab->brlt->rawsize == htab->brlt->size
13296 || (htab->stub_iteration > STUB_SHRINK_ITER
13297 && htab->brlt->rawsize > htab->brlt->size))
13298 && (htab->glink_eh_frame == NULL
13299 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
13300 break;
13301
13302 /* Ask the linker to do its stuff. */
13303 (*htab->params->layout_sections_again) ();
13304 }
13305
13306 if (htab->glink_eh_frame != NULL
13307 && htab->glink_eh_frame->size != 0)
13308 {
13309 bfd_vma val;
13310 bfd_byte *p, *last_fde;
13311 size_t last_fde_len, size, align, pad;
13312 struct map_stub *group;
13313
13314 /* It is necessary to at least have a rough outline of the
13315 linker generated CIEs and FDEs written before
13316 bfd_elf_discard_info is run, in order for these FDEs to be
13317 indexed in .eh_frame_hdr. */
13318 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13319 if (p == NULL)
13320 return FALSE;
13321 htab->glink_eh_frame->contents = p;
13322 last_fde = p;
13323 align = 4;
13324
13325 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13326 /* CIE length (rewrite in case little-endian). */
13327 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13328 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13329 p += last_fde_len + 4;
13330
13331 for (group = htab->group; group != NULL; group = group->next)
13332 if (group->eh_size != 0)
13333 {
13334 group->eh_base = p - htab->glink_eh_frame->contents;
13335 last_fde = p;
13336 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13337 /* FDE length. */
13338 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13339 p += 4;
13340 /* CIE pointer. */
13341 val = p - htab->glink_eh_frame->contents;
13342 bfd_put_32 (htab->elf.dynobj, val, p);
13343 p += 4;
13344 /* Offset to stub section, written later. */
13345 p += 4;
13346 /* stub section size. */
13347 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13348 p += 4;
13349 /* Augmentation. */
13350 p += 1;
13351 /* Make sure we don't have all nops. This is enough for
13352 elf-eh-frame.c to detect the last non-nop opcode. */
13353 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13354 p = last_fde + last_fde_len + 4;
13355 }
13356 if (htab->glink != NULL && htab->glink->size != 0)
13357 {
13358 last_fde = p;
13359 last_fde_len = ((24 + align - 1) & -align) - 4;
13360 /* FDE length. */
13361 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13362 p += 4;
13363 /* CIE pointer. */
13364 val = p - htab->glink_eh_frame->contents;
13365 bfd_put_32 (htab->elf.dynobj, val, p);
13366 p += 4;
13367 /* Offset to .glink, written later. */
13368 p += 4;
13369 /* .glink size. */
13370 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13371 p += 4;
13372 /* Augmentation. */
13373 p += 1;
13374
13375 *p++ = DW_CFA_advance_loc + 1;
13376 *p++ = DW_CFA_register;
13377 *p++ = 65;
13378 *p++ = htab->opd_abi ? 12 : 0;
13379 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13380 *p++ = DW_CFA_restore_extended;
13381 *p++ = 65;
13382 p += ((24 + align - 1) & -align) - 24;
13383 }
13384 /* Subsume any padding into the last FDE if user .eh_frame
13385 sections are aligned more than glink_eh_frame. Otherwise any
13386 zero padding will be seen as a terminator. */
13387 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13388 size = p - htab->glink_eh_frame->contents;
13389 pad = ((size + align - 1) & -align) - size;
13390 htab->glink_eh_frame->size = size + pad;
13391 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13392 }
13393
13394 maybe_strip_output (info, htab->brlt);
13395 if (htab->glink_eh_frame != NULL)
13396 maybe_strip_output (info, htab->glink_eh_frame);
13397
13398 return TRUE;
13399 }
13400
13401 /* Called after we have determined section placement. If sections
13402 move, we'll be called again. Provide a value for TOCstart. */
13403
13404 bfd_vma
13405 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13406 {
13407 asection *s;
13408 bfd_vma TOCstart, adjust;
13409
13410 if (info != NULL)
13411 {
13412 struct elf_link_hash_entry *h;
13413 struct elf_link_hash_table *htab = elf_hash_table (info);
13414
13415 if (is_elf_hash_table (htab)
13416 && htab->hgot != NULL)
13417 h = htab->hgot;
13418 else
13419 {
13420 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13421 if (is_elf_hash_table (htab))
13422 htab->hgot = h;
13423 }
13424 if (h != NULL
13425 && h->root.type == bfd_link_hash_defined
13426 && !h->root.linker_def
13427 && (!is_elf_hash_table (htab)
13428 || h->def_regular))
13429 {
13430 TOCstart = (h->root.u.def.value - TOC_BASE_OFF
13431 + h->root.u.def.section->output_offset
13432 + h->root.u.def.section->output_section->vma);
13433 _bfd_set_gp_value (obfd, TOCstart);
13434 return TOCstart;
13435 }
13436 }
13437
13438 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13439 order. The TOC starts where the first of these sections starts. */
13440 s = bfd_get_section_by_name (obfd, ".got");
13441 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13442 s = bfd_get_section_by_name (obfd, ".toc");
13443 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13444 s = bfd_get_section_by_name (obfd, ".tocbss");
13445 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13446 s = bfd_get_section_by_name (obfd, ".plt");
13447 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13448 {
13449 /* This may happen for
13450 o references to TOC base (SYM@toc / TOC[tc0]) without a
13451 .toc directive
13452 o bad linker script
13453 o --gc-sections and empty TOC sections
13454
13455 FIXME: Warn user? */
13456
13457 /* Look for a likely section. We probably won't even be
13458 using TOCstart. */
13459 for (s = obfd->sections; s != NULL; s = s->next)
13460 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13461 | SEC_EXCLUDE))
13462 == (SEC_ALLOC | SEC_SMALL_DATA))
13463 break;
13464 if (s == NULL)
13465 for (s = obfd->sections; s != NULL; s = s->next)
13466 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13467 == (SEC_ALLOC | SEC_SMALL_DATA))
13468 break;
13469 if (s == NULL)
13470 for (s = obfd->sections; s != NULL; s = s->next)
13471 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13472 == SEC_ALLOC)
13473 break;
13474 if (s == NULL)
13475 for (s = obfd->sections; s != NULL; s = s->next)
13476 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13477 break;
13478 }
13479
13480 TOCstart = 0;
13481 if (s != NULL)
13482 TOCstart = s->output_section->vma + s->output_offset;
13483
13484 /* Force alignment. */
13485 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13486 TOCstart -= adjust;
13487 _bfd_set_gp_value (obfd, TOCstart);
13488
13489 if (info != NULL && s != NULL)
13490 {
13491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13492
13493 if (htab != NULL)
13494 {
13495 if (htab->elf.hgot != NULL)
13496 {
13497 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13498 htab->elf.hgot->root.u.def.section = s;
13499 }
13500 }
13501 else
13502 {
13503 struct bfd_link_hash_entry *bh = NULL;
13504 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13505 s, TOC_BASE_OFF - adjust,
13506 NULL, FALSE, FALSE, &bh);
13507 }
13508 }
13509 return TOCstart;
13510 }
13511
13512 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13513 write out any global entry stubs, and PLT relocations. */
13514
13515 static bfd_boolean
13516 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13517 {
13518 struct bfd_link_info *info;
13519 struct ppc_link_hash_table *htab;
13520 struct plt_entry *ent;
13521 asection *s;
13522
13523 if (h->root.type == bfd_link_hash_indirect)
13524 return TRUE;
13525
13526 info = inf;
13527 htab = ppc_hash_table (info);
13528 if (htab == NULL)
13529 return FALSE;
13530
13531 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13532 if (ent->plt.offset != (bfd_vma) -1)
13533 {
13534 /* This symbol has an entry in the procedure linkage
13535 table. Set it up. */
13536 Elf_Internal_Rela rela;
13537 asection *plt, *relplt;
13538 bfd_byte *loc;
13539
13540 if (!htab->elf.dynamic_sections_created
13541 || h->dynindx == -1)
13542 {
13543 if (!(h->def_regular
13544 && (h->root.type == bfd_link_hash_defined
13545 || h->root.type == bfd_link_hash_defweak)))
13546 continue;
13547 if (h->type == STT_GNU_IFUNC)
13548 {
13549 plt = htab->elf.iplt;
13550 relplt = htab->elf.irelplt;
13551 htab->local_ifunc_resolver = 1;
13552 if (htab->opd_abi)
13553 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13554 else
13555 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13556 }
13557 else
13558 {
13559 plt = htab->pltlocal;
13560 if (bfd_link_pic (info))
13561 {
13562 relplt = htab->relpltlocal;
13563 if (htab->opd_abi)
13564 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13565 else
13566 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13567 }
13568 else
13569 relplt = NULL;
13570 }
13571 rela.r_addend = (h->root.u.def.value
13572 + h->root.u.def.section->output_offset
13573 + h->root.u.def.section->output_section->vma
13574 + ent->addend);
13575
13576 if (relplt == NULL)
13577 {
13578 loc = plt->contents + ent->plt.offset;
13579 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13580 if (htab->opd_abi)
13581 {
13582 bfd_vma toc = elf_gp (info->output_bfd);
13583 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13584 bfd_put_64 (info->output_bfd, toc, loc + 8);
13585 }
13586 }
13587 else
13588 {
13589 rela.r_offset = (plt->output_section->vma
13590 + plt->output_offset
13591 + ent->plt.offset);
13592 loc = relplt->contents + (relplt->reloc_count++
13593 * sizeof (Elf64_External_Rela));
13594 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13595 }
13596 }
13597 else
13598 {
13599 rela.r_offset = (htab->elf.splt->output_section->vma
13600 + htab->elf.splt->output_offset
13601 + ent->plt.offset);
13602 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13603 rela.r_addend = ent->addend;
13604 loc = (htab->elf.srelplt->contents
13605 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13606 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13607 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13608 htab->maybe_local_ifunc_resolver = 1;
13609 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13610 }
13611 }
13612
13613 if (!h->pointer_equality_needed)
13614 return TRUE;
13615
13616 if (h->def_regular)
13617 return TRUE;
13618
13619 s = htab->global_entry;
13620 if (s == NULL || s->size == 0)
13621 return TRUE;
13622
13623 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13624 if (ent->plt.offset != (bfd_vma) -1
13625 && ent->addend == 0)
13626 {
13627 bfd_byte *p;
13628 asection *plt;
13629 bfd_vma off;
13630
13631 p = s->contents + h->root.u.def.value;
13632 plt = htab->elf.splt;
13633 if (!htab->elf.dynamic_sections_created
13634 || h->dynindx == -1)
13635 {
13636 if (h->type == STT_GNU_IFUNC)
13637 plt = htab->elf.iplt;
13638 else
13639 plt = htab->pltlocal;
13640 }
13641 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
13642 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
13643
13644 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
13645 {
13646 info->callbacks->einfo
13647 (_("%P: linkage table error against `%pT'\n"),
13648 h->root.root.string);
13649 bfd_set_error (bfd_error_bad_value);
13650 htab->stub_error = TRUE;
13651 }
13652
13653 htab->stub_count[ppc_stub_global_entry - 1] += 1;
13654 if (htab->params->emit_stub_syms)
13655 {
13656 size_t len = strlen (h->root.root.string);
13657 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
13658
13659 if (name == NULL)
13660 return FALSE;
13661
13662 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
13663 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
13664 if (h == NULL)
13665 return FALSE;
13666 if (h->root.type == bfd_link_hash_new)
13667 {
13668 h->root.type = bfd_link_hash_defined;
13669 h->root.u.def.section = s;
13670 h->root.u.def.value = p - s->contents;
13671 h->ref_regular = 1;
13672 h->def_regular = 1;
13673 h->ref_regular_nonweak = 1;
13674 h->forced_local = 1;
13675 h->non_elf = 0;
13676 h->root.linker_def = 1;
13677 }
13678 }
13679
13680 if (PPC_HA (off) != 0)
13681 {
13682 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
13683 p += 4;
13684 }
13685 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
13686 p += 4;
13687 bfd_put_32 (s->owner, MTCTR_R12, p);
13688 p += 4;
13689 bfd_put_32 (s->owner, BCTR, p);
13690 break;
13691 }
13692 return TRUE;
13693 }
13694
13695 /* Write PLT relocs for locals. */
13696
13697 static bfd_boolean
13698 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
13699 {
13700 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13701 bfd *ibfd;
13702
13703 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13704 {
13705 struct got_entry **lgot_ents, **end_lgot_ents;
13706 struct plt_entry **local_plt, **lplt, **end_local_plt;
13707 Elf_Internal_Shdr *symtab_hdr;
13708 bfd_size_type locsymcount;
13709 Elf_Internal_Sym *local_syms = NULL;
13710 struct plt_entry *ent;
13711
13712 if (!is_ppc64_elf (ibfd))
13713 continue;
13714
13715 lgot_ents = elf_local_got_ents (ibfd);
13716 if (!lgot_ents)
13717 continue;
13718
13719 symtab_hdr = &elf_symtab_hdr (ibfd);
13720 locsymcount = symtab_hdr->sh_info;
13721 end_lgot_ents = lgot_ents + locsymcount;
13722 local_plt = (struct plt_entry **) end_lgot_ents;
13723 end_local_plt = local_plt + locsymcount;
13724 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
13725 for (ent = *lplt; ent != NULL; ent = ent->next)
13726 if (ent->plt.offset != (bfd_vma) -1)
13727 {
13728 Elf_Internal_Sym *sym;
13729 asection *sym_sec;
13730 asection *plt, *relplt;
13731 bfd_byte *loc;
13732 bfd_vma val;
13733
13734 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
13735 lplt - local_plt, ibfd))
13736 {
13737 if (local_syms != NULL
13738 && symtab_hdr->contents != (unsigned char *) local_syms)
13739 free (local_syms);
13740 return FALSE;
13741 }
13742
13743 val = sym->st_value + ent->addend;
13744 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
13745 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
13746 if (sym_sec != NULL && sym_sec->output_section != NULL)
13747 val += sym_sec->output_offset + sym_sec->output_section->vma;
13748
13749 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13750 {
13751 htab->local_ifunc_resolver = 1;
13752 plt = htab->elf.iplt;
13753 relplt = htab->elf.irelplt;
13754 }
13755 else
13756 {
13757 plt = htab->pltlocal;
13758 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
13759 }
13760
13761 if (relplt == NULL)
13762 {
13763 loc = plt->contents + ent->plt.offset;
13764 bfd_put_64 (info->output_bfd, val, loc);
13765 if (htab->opd_abi)
13766 {
13767 bfd_vma toc = elf_gp (ibfd);
13768 bfd_put_64 (info->output_bfd, toc, loc + 8);
13769 }
13770 }
13771 else
13772 {
13773 Elf_Internal_Rela rela;
13774 rela.r_offset = (ent->plt.offset
13775 + plt->output_offset
13776 + plt->output_section->vma);
13777 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13778 {
13779 if (htab->opd_abi)
13780 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13781 else
13782 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13783 }
13784 else
13785 {
13786 if (htab->opd_abi)
13787 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13788 else
13789 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13790 }
13791 rela.r_addend = val;
13792 loc = relplt->contents + (relplt->reloc_count++
13793 * sizeof (Elf64_External_Rela));
13794 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13795 }
13796 }
13797
13798 if (local_syms != NULL
13799 && symtab_hdr->contents != (unsigned char *) local_syms)
13800 {
13801 if (!info->keep_memory)
13802 free (local_syms);
13803 else
13804 symtab_hdr->contents = (unsigned char *) local_syms;
13805 }
13806 }
13807 return TRUE;
13808 }
13809
13810 /* Build all the stubs associated with the current output file.
13811 The stubs are kept in a hash table attached to the main linker
13812 hash table. This function is called via gldelf64ppc_finish. */
13813
13814 bfd_boolean
13815 ppc64_elf_build_stubs (struct bfd_link_info *info,
13816 char **stats)
13817 {
13818 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13819 struct map_stub *group;
13820 asection *stub_sec;
13821 bfd_byte *p;
13822 int stub_sec_count = 0;
13823
13824 if (htab == NULL)
13825 return FALSE;
13826
13827 /* Allocate memory to hold the linker stubs. */
13828 for (group = htab->group; group != NULL; group = group->next)
13829 {
13830 group->eh_size = 0;
13831 group->lr_restore = 0;
13832 if ((stub_sec = group->stub_sec) != NULL
13833 && stub_sec->size != 0)
13834 {
13835 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
13836 stub_sec->size);
13837 if (stub_sec->contents == NULL)
13838 return FALSE;
13839 stub_sec->size = 0;
13840 }
13841 }
13842
13843 if (htab->glink != NULL && htab->glink->size != 0)
13844 {
13845 unsigned int indx;
13846 bfd_vma plt0;
13847
13848 /* Build the .glink plt call stub. */
13849 if (htab->params->emit_stub_syms)
13850 {
13851 struct elf_link_hash_entry *h;
13852 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
13853 TRUE, FALSE, FALSE);
13854 if (h == NULL)
13855 return FALSE;
13856 if (h->root.type == bfd_link_hash_new)
13857 {
13858 h->root.type = bfd_link_hash_defined;
13859 h->root.u.def.section = htab->glink;
13860 h->root.u.def.value = 8;
13861 h->ref_regular = 1;
13862 h->def_regular = 1;
13863 h->ref_regular_nonweak = 1;
13864 h->forced_local = 1;
13865 h->non_elf = 0;
13866 h->root.linker_def = 1;
13867 }
13868 }
13869 plt0 = (htab->elf.splt->output_section->vma
13870 + htab->elf.splt->output_offset
13871 - 16);
13872 if (info->emitrelocations)
13873 {
13874 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
13875 if (r == NULL)
13876 return FALSE;
13877 r->r_offset = (htab->glink->output_offset
13878 + htab->glink->output_section->vma);
13879 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
13880 r->r_addend = plt0;
13881 }
13882 p = htab->glink->contents;
13883 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
13884 bfd_put_64 (htab->glink->owner, plt0, p);
13885 p += 8;
13886 if (htab->opd_abi)
13887 {
13888 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
13889 p += 4;
13890 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13891 p += 4;
13892 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13893 p += 4;
13894 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13895 p += 4;
13896 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
13897 p += 4;
13898 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13899 p += 4;
13900 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13901 p += 4;
13902 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
13903 p += 4;
13904 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13905 p += 4;
13906 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
13907 p += 4;
13908 }
13909 else
13910 {
13911 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
13912 p += 4;
13913 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13914 p += 4;
13915 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13916 p += 4;
13917 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
13918 p += 4;
13919 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13920 p += 4;
13921 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
13922 p += 4;
13923 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
13924 p += 4;
13925 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13926 p += 4;
13927 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
13928 p += 4;
13929 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13930 p += 4;
13931 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
13932 p += 4;
13933 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13934 p += 4;
13935 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
13936 p += 4;
13937 }
13938 bfd_put_32 (htab->glink->owner, BCTR, p);
13939 p += 4;
13940 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
13941
13942 /* Build the .glink lazy link call stubs. */
13943 indx = 0;
13944 while (p < htab->glink->contents + htab->glink->size)
13945 {
13946 if (htab->opd_abi)
13947 {
13948 if (indx < 0x8000)
13949 {
13950 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
13951 p += 4;
13952 }
13953 else
13954 {
13955 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
13956 p += 4;
13957 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
13958 p);
13959 p += 4;
13960 }
13961 }
13962 bfd_put_32 (htab->glink->owner,
13963 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
13964 indx++;
13965 p += 4;
13966 }
13967 }
13968
13969 /* Build .glink global entry stubs, and PLT relocs for globals. */
13970 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
13971
13972 if (!write_plt_relocs_for_local_syms (info))
13973 return FALSE;
13974
13975 if (htab->brlt != NULL && htab->brlt->size != 0)
13976 {
13977 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
13978 htab->brlt->size);
13979 if (htab->brlt->contents == NULL)
13980 return FALSE;
13981 }
13982 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
13983 {
13984 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
13985 htab->relbrlt->size);
13986 if (htab->relbrlt->contents == NULL)
13987 return FALSE;
13988 }
13989
13990 /* Build the stubs as directed by the stub hash table. */
13991 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
13992
13993 for (group = htab->group; group != NULL; group = group->next)
13994 if (group->needs_save_res)
13995 group->stub_sec->size += htab->sfpr->size;
13996
13997 if (htab->relbrlt != NULL)
13998 htab->relbrlt->reloc_count = 0;
13999
14000 if (htab->params->plt_stub_align != 0)
14001 for (group = htab->group; group != NULL; group = group->next)
14002 if ((stub_sec = group->stub_sec) != NULL)
14003 {
14004 int align = abs (htab->params->plt_stub_align);
14005 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14006 }
14007
14008 for (group = htab->group; group != NULL; group = group->next)
14009 if (group->needs_save_res)
14010 {
14011 stub_sec = group->stub_sec;
14012 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14013 htab->sfpr->contents, htab->sfpr->size);
14014 if (htab->params->emit_stub_syms)
14015 {
14016 unsigned int i;
14017
14018 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14019 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14020 return FALSE;
14021 }
14022 }
14023
14024 if (htab->glink_eh_frame != NULL
14025 && htab->glink_eh_frame->size != 0)
14026 {
14027 bfd_vma val;
14028 size_t align = 4;
14029
14030 p = htab->glink_eh_frame->contents;
14031 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14032
14033 for (group = htab->group; group != NULL; group = group->next)
14034 if (group->eh_size != 0)
14035 {
14036 /* Offset to stub section. */
14037 val = (group->stub_sec->output_section->vma
14038 + group->stub_sec->output_offset);
14039 val -= (htab->glink_eh_frame->output_section->vma
14040 + htab->glink_eh_frame->output_offset
14041 + (p + 8 - htab->glink_eh_frame->contents));
14042 if (val + 0x80000000 > 0xffffffff)
14043 {
14044 _bfd_error_handler
14045 (_("%s offset too large for .eh_frame sdata4 encoding"),
14046 group->stub_sec->name);
14047 return FALSE;
14048 }
14049 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14050 p += (group->eh_size + 17 + 3) & -4;
14051 }
14052 if (htab->glink != NULL && htab->glink->size != 0)
14053 {
14054 /* Offset to .glink. */
14055 val = (htab->glink->output_section->vma
14056 + htab->glink->output_offset
14057 + 8);
14058 val -= (htab->glink_eh_frame->output_section->vma
14059 + htab->glink_eh_frame->output_offset
14060 + (p + 8 - htab->glink_eh_frame->contents));
14061 if (val + 0x80000000 > 0xffffffff)
14062 {
14063 _bfd_error_handler
14064 (_("%s offset too large for .eh_frame sdata4 encoding"),
14065 htab->glink->name);
14066 return FALSE;
14067 }
14068 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14069 p += (24 + align - 1) & -align;
14070 }
14071 }
14072
14073 for (group = htab->group; group != NULL; group = group->next)
14074 if ((stub_sec = group->stub_sec) != NULL)
14075 {
14076 stub_sec_count += 1;
14077 if (stub_sec->rawsize != stub_sec->size
14078 && (htab->stub_iteration <= STUB_SHRINK_ITER
14079 || stub_sec->rawsize < stub_sec->size))
14080 break;
14081 }
14082
14083 if (group != NULL)
14084 {
14085 htab->stub_error = TRUE;
14086 _bfd_error_handler (_("stubs don't match calculated size"));
14087 }
14088
14089 if (htab->stub_error)
14090 return FALSE;
14091
14092 if (stats != NULL)
14093 {
14094 size_t len;
14095 *stats = bfd_malloc (500);
14096 if (*stats == NULL)
14097 return FALSE;
14098
14099 len = sprintf (*stats,
14100 ngettext ("linker stubs in %u group\n",
14101 "linker stubs in %u groups\n",
14102 stub_sec_count),
14103 stub_sec_count);
14104 sprintf (*stats + len, _(" branch %lu\n"
14105 " branch toc adj %lu\n"
14106 " branch notoc %lu\n"
14107 " branch both %lu\n"
14108 " long branch %lu\n"
14109 " long toc adj %lu\n"
14110 " long notoc %lu\n"
14111 " long both %lu\n"
14112 " plt call %lu\n"
14113 " plt call save %lu\n"
14114 " plt call notoc %lu\n"
14115 " plt call both %lu\n"
14116 " global entry %lu"),
14117 htab->stub_count[ppc_stub_long_branch - 1],
14118 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14119 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14120 htab->stub_count[ppc_stub_long_branch_both - 1],
14121 htab->stub_count[ppc_stub_plt_branch - 1],
14122 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14123 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14124 htab->stub_count[ppc_stub_plt_branch_both - 1],
14125 htab->stub_count[ppc_stub_plt_call - 1],
14126 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14127 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14128 htab->stub_count[ppc_stub_plt_call_both - 1],
14129 htab->stub_count[ppc_stub_global_entry - 1]);
14130 }
14131 return TRUE;
14132 }
14133
14134 /* What to do when ld finds relocations against symbols defined in
14135 discarded sections. */
14136
14137 static unsigned int
14138 ppc64_elf_action_discarded (asection *sec)
14139 {
14140 if (strcmp (".opd", sec->name) == 0)
14141 return 0;
14142
14143 if (strcmp (".toc", sec->name) == 0)
14144 return 0;
14145
14146 if (strcmp (".toc1", sec->name) == 0)
14147 return 0;
14148
14149 return _bfd_elf_default_action_discarded (sec);
14150 }
14151
14152 /* These are the dynamic relocations supported by glibc. */
14153
14154 static bfd_boolean
14155 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14156 {
14157 switch (r_type)
14158 {
14159 case R_PPC64_RELATIVE:
14160 case R_PPC64_NONE:
14161 case R_PPC64_ADDR64:
14162 case R_PPC64_GLOB_DAT:
14163 case R_PPC64_IRELATIVE:
14164 case R_PPC64_JMP_IREL:
14165 case R_PPC64_JMP_SLOT:
14166 case R_PPC64_DTPMOD64:
14167 case R_PPC64_DTPREL64:
14168 case R_PPC64_TPREL64:
14169 case R_PPC64_TPREL16_LO_DS:
14170 case R_PPC64_TPREL16_DS:
14171 case R_PPC64_TPREL16:
14172 case R_PPC64_TPREL16_LO:
14173 case R_PPC64_TPREL16_HI:
14174 case R_PPC64_TPREL16_HIGH:
14175 case R_PPC64_TPREL16_HA:
14176 case R_PPC64_TPREL16_HIGHA:
14177 case R_PPC64_TPREL16_HIGHER:
14178 case R_PPC64_TPREL16_HIGHEST:
14179 case R_PPC64_TPREL16_HIGHERA:
14180 case R_PPC64_TPREL16_HIGHESTA:
14181 case R_PPC64_ADDR16_LO_DS:
14182 case R_PPC64_ADDR16_LO:
14183 case R_PPC64_ADDR16_HI:
14184 case R_PPC64_ADDR16_HIGH:
14185 case R_PPC64_ADDR16_HA:
14186 case R_PPC64_ADDR16_HIGHA:
14187 case R_PPC64_REL30:
14188 case R_PPC64_COPY:
14189 case R_PPC64_UADDR64:
14190 case R_PPC64_UADDR32:
14191 case R_PPC64_ADDR32:
14192 case R_PPC64_ADDR24:
14193 case R_PPC64_ADDR16:
14194 case R_PPC64_UADDR16:
14195 case R_PPC64_ADDR16_DS:
14196 case R_PPC64_ADDR16_HIGHER:
14197 case R_PPC64_ADDR16_HIGHEST:
14198 case R_PPC64_ADDR16_HIGHERA:
14199 case R_PPC64_ADDR16_HIGHESTA:
14200 case R_PPC64_ADDR14:
14201 case R_PPC64_ADDR14_BRTAKEN:
14202 case R_PPC64_ADDR14_BRNTAKEN:
14203 case R_PPC64_REL32:
14204 case R_PPC64_REL64:
14205 return TRUE;
14206
14207 default:
14208 return FALSE;
14209 }
14210 }
14211
14212 /* The RELOCATE_SECTION function is called by the ELF backend linker
14213 to handle the relocations for a section.
14214
14215 The relocs are always passed as Rela structures; if the section
14216 actually uses Rel structures, the r_addend field will always be
14217 zero.
14218
14219 This function is responsible for adjust the section contents as
14220 necessary, and (if using Rela relocs and generating a
14221 relocatable output file) adjusting the reloc addend as
14222 necessary.
14223
14224 This function does not have to worry about setting the reloc
14225 address or the reloc symbol index.
14226
14227 LOCAL_SYMS is a pointer to the swapped in local symbols.
14228
14229 LOCAL_SECTIONS is an array giving the section in the input file
14230 corresponding to the st_shndx field of each local symbol.
14231
14232 The global hash table entry for the global symbols can be found
14233 via elf_sym_hashes (input_bfd).
14234
14235 When generating relocatable output, this function must handle
14236 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14237 going to be the section symbol corresponding to the output
14238 section, which means that the addend must be adjusted
14239 accordingly. */
14240
14241 static bfd_boolean
14242 ppc64_elf_relocate_section (bfd *output_bfd,
14243 struct bfd_link_info *info,
14244 bfd *input_bfd,
14245 asection *input_section,
14246 bfd_byte *contents,
14247 Elf_Internal_Rela *relocs,
14248 Elf_Internal_Sym *local_syms,
14249 asection **local_sections)
14250 {
14251 struct ppc_link_hash_table *htab;
14252 Elf_Internal_Shdr *symtab_hdr;
14253 struct elf_link_hash_entry **sym_hashes;
14254 Elf_Internal_Rela *rel;
14255 Elf_Internal_Rela *wrel;
14256 Elf_Internal_Rela *relend;
14257 Elf_Internal_Rela outrel;
14258 bfd_byte *loc;
14259 struct got_entry **local_got_ents;
14260 bfd_vma TOCstart;
14261 bfd_boolean ret = TRUE;
14262 bfd_boolean is_opd;
14263 /* Assume 'at' branch hints. */
14264 bfd_boolean is_isa_v2 = TRUE;
14265 bfd_boolean warned_dynamic = FALSE;
14266 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14267
14268 /* Initialize howto table if needed. */
14269 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14270 ppc_howto_init ();
14271
14272 htab = ppc_hash_table (info);
14273 if (htab == NULL)
14274 return FALSE;
14275
14276 /* Don't relocate stub sections. */
14277 if (input_section->owner == htab->params->stub_bfd)
14278 return TRUE;
14279
14280 if (!is_ppc64_elf (input_bfd))
14281 {
14282 bfd_set_error (bfd_error_wrong_format);
14283 return FALSE;
14284 }
14285
14286 local_got_ents = elf_local_got_ents (input_bfd);
14287 TOCstart = elf_gp (output_bfd);
14288 symtab_hdr = &elf_symtab_hdr (input_bfd);
14289 sym_hashes = elf_sym_hashes (input_bfd);
14290 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14291
14292 rel = wrel = relocs;
14293 relend = relocs + input_section->reloc_count;
14294 for (; rel < relend; wrel++, rel++)
14295 {
14296 enum elf_ppc64_reloc_type r_type;
14297 bfd_vma addend;
14298 bfd_reloc_status_type r;
14299 Elf_Internal_Sym *sym;
14300 asection *sec;
14301 struct elf_link_hash_entry *h_elf;
14302 struct ppc_link_hash_entry *h;
14303 struct ppc_link_hash_entry *fdh;
14304 const char *sym_name;
14305 unsigned long r_symndx, toc_symndx;
14306 bfd_vma toc_addend;
14307 unsigned char tls_mask, tls_gd, tls_type;
14308 unsigned char sym_type;
14309 bfd_vma relocation;
14310 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14311 bfd_boolean warned;
14312 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14313 unsigned int insn;
14314 unsigned int mask;
14315 struct ppc_stub_hash_entry *stub_entry;
14316 bfd_vma max_br_offset;
14317 bfd_vma from;
14318 Elf_Internal_Rela orig_rel;
14319 reloc_howto_type *howto;
14320 struct reloc_howto_struct alt_howto;
14321 uint64_t pinsn;
14322 bfd_vma offset;
14323
14324 again:
14325 orig_rel = *rel;
14326
14327 r_type = ELF64_R_TYPE (rel->r_info);
14328 r_symndx = ELF64_R_SYM (rel->r_info);
14329
14330 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14331 symbol of the previous ADDR64 reloc. The symbol gives us the
14332 proper TOC base to use. */
14333 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14334 && wrel != relocs
14335 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14336 && is_opd)
14337 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14338
14339 sym = NULL;
14340 sec = NULL;
14341 h_elf = NULL;
14342 sym_name = NULL;
14343 unresolved_reloc = FALSE;
14344 warned = FALSE;
14345
14346 if (r_symndx < symtab_hdr->sh_info)
14347 {
14348 /* It's a local symbol. */
14349 struct _opd_sec_data *opd;
14350
14351 sym = local_syms + r_symndx;
14352 sec = local_sections[r_symndx];
14353 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14354 sym_type = ELF64_ST_TYPE (sym->st_info);
14355 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14356 opd = get_opd_info (sec);
14357 if (opd != NULL && opd->adjust != NULL)
14358 {
14359 long adjust = opd->adjust[OPD_NDX (sym->st_value
14360 + rel->r_addend)];
14361 if (adjust == -1)
14362 relocation = 0;
14363 else
14364 {
14365 /* If this is a relocation against the opd section sym
14366 and we have edited .opd, adjust the reloc addend so
14367 that ld -r and ld --emit-relocs output is correct.
14368 If it is a reloc against some other .opd symbol,
14369 then the symbol value will be adjusted later. */
14370 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14371 rel->r_addend += adjust;
14372 else
14373 relocation += adjust;
14374 }
14375 }
14376 }
14377 else
14378 {
14379 bfd_boolean ignored;
14380
14381 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14382 r_symndx, symtab_hdr, sym_hashes,
14383 h_elf, sec, relocation,
14384 unresolved_reloc, warned, ignored);
14385 sym_name = h_elf->root.root.string;
14386 sym_type = h_elf->type;
14387 if (sec != NULL
14388 && sec->owner == output_bfd
14389 && strcmp (sec->name, ".opd") == 0)
14390 {
14391 /* This is a symbol defined in a linker script. All
14392 such are defined in output sections, even those
14393 defined by simple assignment from a symbol defined in
14394 an input section. Transfer the symbol to an
14395 appropriate input .opd section, so that a branch to
14396 this symbol will be mapped to the location specified
14397 by the opd entry. */
14398 struct bfd_link_order *lo;
14399 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14400 if (lo->type == bfd_indirect_link_order)
14401 {
14402 asection *isec = lo->u.indirect.section;
14403 if (h_elf->root.u.def.value >= isec->output_offset
14404 && h_elf->root.u.def.value < (isec->output_offset
14405 + isec->size))
14406 {
14407 h_elf->root.u.def.value -= isec->output_offset;
14408 h_elf->root.u.def.section = isec;
14409 sec = isec;
14410 break;
14411 }
14412 }
14413 }
14414 }
14415 h = (struct ppc_link_hash_entry *) h_elf;
14416
14417 if (sec != NULL && discarded_section (sec))
14418 {
14419 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14420 input_bfd, input_section,
14421 contents, rel->r_offset);
14422 wrel->r_offset = rel->r_offset;
14423 wrel->r_info = 0;
14424 wrel->r_addend = 0;
14425
14426 /* For ld -r, remove relocations in debug sections against
14427 symbols defined in discarded sections. Not done for
14428 non-debug to preserve relocs in .eh_frame which the
14429 eh_frame editing code expects to be present. */
14430 if (bfd_link_relocatable (info)
14431 && (input_section->flags & SEC_DEBUGGING))
14432 wrel--;
14433
14434 continue;
14435 }
14436
14437 if (bfd_link_relocatable (info))
14438 goto copy_reloc;
14439
14440 if (h != NULL && &h->elf == htab->elf.hgot)
14441 {
14442 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14443 sec = bfd_abs_section_ptr;
14444 unresolved_reloc = FALSE;
14445 }
14446
14447 /* TLS optimizations. Replace instruction sequences and relocs
14448 based on information we collected in tls_optimize. We edit
14449 RELOCS so that --emit-relocs will output something sensible
14450 for the final instruction stream. */
14451 tls_mask = 0;
14452 tls_gd = 0;
14453 toc_symndx = 0;
14454 if (h != NULL)
14455 tls_mask = h->tls_mask;
14456 else if (local_got_ents != NULL)
14457 {
14458 struct plt_entry **local_plt = (struct plt_entry **)
14459 (local_got_ents + symtab_hdr->sh_info);
14460 unsigned char *lgot_masks = (unsigned char *)
14461 (local_plt + symtab_hdr->sh_info);
14462 tls_mask = lgot_masks[r_symndx];
14463 }
14464 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14465 && (r_type == R_PPC64_TLS
14466 || r_type == R_PPC64_TLSGD
14467 || r_type == R_PPC64_TLSLD))
14468 {
14469 /* Check for toc tls entries. */
14470 unsigned char *toc_tls;
14471
14472 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14473 &local_syms, rel, input_bfd))
14474 return FALSE;
14475
14476 if (toc_tls)
14477 tls_mask = *toc_tls;
14478 }
14479
14480 /* Check that tls relocs are used with tls syms, and non-tls
14481 relocs are used with non-tls syms. */
14482 if (r_symndx != STN_UNDEF
14483 && r_type != R_PPC64_NONE
14484 && (h == NULL
14485 || h->elf.root.type == bfd_link_hash_defined
14486 || h->elf.root.type == bfd_link_hash_defweak)
14487 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
14488 {
14489 if ((tls_mask & TLS_TLS) != 0
14490 && (r_type == R_PPC64_TLS
14491 || r_type == R_PPC64_TLSGD
14492 || r_type == R_PPC64_TLSLD))
14493 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14494 ;
14495 else
14496 info->callbacks->einfo
14497 (!IS_PPC64_TLS_RELOC (r_type)
14498 /* xgettext:c-format */
14499 ? _("%H: %s used with TLS symbol `%pT'\n")
14500 /* xgettext:c-format */
14501 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14502 input_bfd, input_section, rel->r_offset,
14503 ppc64_elf_howto_table[r_type]->name,
14504 sym_name);
14505 }
14506
14507 /* Ensure reloc mapping code below stays sane. */
14508 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14509 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14510 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14511 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14512 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14513 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14514 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14515 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14516 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14517 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14518 abort ();
14519
14520 switch (r_type)
14521 {
14522 default:
14523 break;
14524
14525 case R_PPC64_LO_DS_OPT:
14526 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
14527 if ((insn & (0x3f << 26)) != 58u << 26)
14528 abort ();
14529 insn += (14u << 26) - (58u << 26);
14530 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
14531 r_type = R_PPC64_TOC16_LO;
14532 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14533 break;
14534
14535 case R_PPC64_TOC16:
14536 case R_PPC64_TOC16_LO:
14537 case R_PPC64_TOC16_DS:
14538 case R_PPC64_TOC16_LO_DS:
14539 {
14540 /* Check for toc tls entries. */
14541 unsigned char *toc_tls;
14542 int retval;
14543
14544 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14545 &local_syms, rel, input_bfd);
14546 if (retval == 0)
14547 return FALSE;
14548
14549 if (toc_tls)
14550 {
14551 tls_mask = *toc_tls;
14552 if (r_type == R_PPC64_TOC16_DS
14553 || r_type == R_PPC64_TOC16_LO_DS)
14554 {
14555 if ((tls_mask & TLS_TLS) != 0
14556 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
14557 goto toctprel;
14558 }
14559 else
14560 {
14561 /* If we found a GD reloc pair, then we might be
14562 doing a GD->IE transition. */
14563 if (retval == 2)
14564 {
14565 tls_gd = TLS_GDIE;
14566 if ((tls_mask & TLS_TLS) != 0
14567 && (tls_mask & TLS_GD) == 0)
14568 goto tls_ldgd_opt;
14569 }
14570 else if (retval == 3)
14571 {
14572 if ((tls_mask & TLS_TLS) != 0
14573 && (tls_mask & TLS_LD) == 0)
14574 goto tls_ldgd_opt;
14575 }
14576 }
14577 }
14578 }
14579 break;
14580
14581 case R_PPC64_GOT_TPREL16_HI:
14582 case R_PPC64_GOT_TPREL16_HA:
14583 if ((tls_mask & TLS_TLS) != 0
14584 && (tls_mask & TLS_TPREL) == 0)
14585 {
14586 rel->r_offset -= d_offset;
14587 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14588 r_type = R_PPC64_NONE;
14589 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14590 }
14591 break;
14592
14593 case R_PPC64_GOT_TPREL16_DS:
14594 case R_PPC64_GOT_TPREL16_LO_DS:
14595 if ((tls_mask & TLS_TLS) != 0
14596 && (tls_mask & TLS_TPREL) == 0)
14597 {
14598 toctprel:
14599 insn = bfd_get_32 (input_bfd,
14600 contents + rel->r_offset - d_offset);
14601 insn &= 31 << 21;
14602 insn |= 0x3c0d0000; /* addis 0,13,0 */
14603 bfd_put_32 (input_bfd, insn,
14604 contents + rel->r_offset - d_offset);
14605 r_type = R_PPC64_TPREL16_HA;
14606 if (toc_symndx != 0)
14607 {
14608 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14609 rel->r_addend = toc_addend;
14610 /* We changed the symbol. Start over in order to
14611 get h, sym, sec etc. right. */
14612 goto again;
14613 }
14614 else
14615 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14616 }
14617 break;
14618
14619 case R_PPC64_GOT_TPREL34:
14620 if ((tls_mask & TLS_TLS) != 0
14621 && (tls_mask & TLS_TPREL) == 0)
14622 {
14623 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
14624 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14625 pinsn <<= 32;
14626 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14627 pinsn += ((2ULL << 56) + (-1ULL << 52)
14628 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
14629 bfd_put_32 (input_bfd, pinsn >> 32,
14630 contents + rel->r_offset);
14631 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14632 contents + rel->r_offset + 4);
14633 r_type = R_PPC64_TPREL34;
14634 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14635 }
14636 break;
14637
14638 case R_PPC64_TLS:
14639 if ((tls_mask & TLS_TLS) != 0
14640 && (tls_mask & TLS_TPREL) == 0)
14641 {
14642 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14643 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
14644 if (insn == 0)
14645 break;
14646 if ((rel->r_offset & 3) == 0)
14647 {
14648 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
14649 /* Was PPC64_TLS which sits on insn boundary, now
14650 PPC64_TPREL16_LO which is at low-order half-word. */
14651 rel->r_offset += d_offset;
14652 r_type = R_PPC64_TPREL16_LO;
14653 if (toc_symndx != 0)
14654 {
14655 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14656 rel->r_addend = toc_addend;
14657 /* We changed the symbol. Start over in order to
14658 get h, sym, sec etc. right. */
14659 goto again;
14660 }
14661 else
14662 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14663 }
14664 else if ((rel->r_offset & 3) == 1)
14665 {
14666 /* For pcrel IE to LE we already have the full
14667 offset and thus don't need an addi here. A nop
14668 or mr will do. */
14669 if ((insn & (0x3f << 26)) == 14 << 26)
14670 {
14671 /* Extract regs from addi rt,ra,si. */
14672 unsigned int rt = (insn >> 21) & 0x1f;
14673 unsigned int ra = (insn >> 16) & 0x1f;
14674 if (rt == ra)
14675 insn = NOP;
14676 else
14677 {
14678 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
14679 insn = (rt << 16) | (ra << 21) | (ra << 11);
14680 insn |= (31u << 26) | (444u << 1);
14681 }
14682 }
14683 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
14684 }
14685 }
14686 break;
14687
14688 case R_PPC64_GOT_TLSGD16_HI:
14689 case R_PPC64_GOT_TLSGD16_HA:
14690 tls_gd = TLS_GDIE;
14691 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14692 goto tls_gdld_hi;
14693 break;
14694
14695 case R_PPC64_GOT_TLSLD16_HI:
14696 case R_PPC64_GOT_TLSLD16_HA:
14697 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14698 {
14699 tls_gdld_hi:
14700 if ((tls_mask & tls_gd) != 0)
14701 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
14702 + R_PPC64_GOT_TPREL16_DS);
14703 else
14704 {
14705 rel->r_offset -= d_offset;
14706 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14707 r_type = R_PPC64_NONE;
14708 }
14709 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14710 }
14711 break;
14712
14713 case R_PPC64_GOT_TLSGD16:
14714 case R_PPC64_GOT_TLSGD16_LO:
14715 tls_gd = TLS_GDIE;
14716 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14717 goto tls_ldgd_opt;
14718 break;
14719
14720 case R_PPC64_GOT_TLSLD16:
14721 case R_PPC64_GOT_TLSLD16_LO:
14722 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14723 {
14724 unsigned int insn1, insn2;
14725
14726 tls_ldgd_opt:
14727 offset = (bfd_vma) -1;
14728 /* If not using the newer R_PPC64_TLSGD/LD to mark
14729 __tls_get_addr calls, we must trust that the call
14730 stays with its arg setup insns, ie. that the next
14731 reloc is the __tls_get_addr call associated with
14732 the current reloc. Edit both insns. */
14733 if (input_section->nomark_tls_get_addr
14734 && rel + 1 < relend
14735 && branch_reloc_hash_match (input_bfd, rel + 1,
14736 htab->tls_get_addr,
14737 htab->tls_get_addr_fd))
14738 offset = rel[1].r_offset;
14739 /* We read the low GOT_TLS (or TOC16) insn because we
14740 need to keep the destination reg. It may be
14741 something other than the usual r3, and moved to r3
14742 before the call by intervening code. */
14743 insn1 = bfd_get_32 (input_bfd,
14744 contents + rel->r_offset - d_offset);
14745 if ((tls_mask & tls_gd) != 0)
14746 {
14747 /* IE */
14748 insn1 &= (0x1f << 21) | (0x1f << 16);
14749 insn1 |= 58 << 26; /* ld */
14750 insn2 = 0x7c636a14; /* add 3,3,13 */
14751 if (offset != (bfd_vma) -1)
14752 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14753 if (r_type == R_PPC64_TOC16
14754 || r_type == R_PPC64_TOC16_LO)
14755 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
14756 else
14757 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
14758 + R_PPC64_GOT_TPREL16_DS);
14759 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14760 }
14761 else
14762 {
14763 /* LE */
14764 insn1 &= 0x1f << 21;
14765 insn1 |= 0x3c0d0000; /* addis r,13,0 */
14766 insn2 = 0x38630000; /* addi 3,3,0 */
14767 if (tls_gd == 0)
14768 {
14769 /* Was an LD reloc. */
14770 r_symndx = STN_UNDEF;
14771 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14772 }
14773 else if (toc_symndx != 0)
14774 {
14775 r_symndx = toc_symndx;
14776 rel->r_addend = toc_addend;
14777 }
14778 r_type = R_PPC64_TPREL16_HA;
14779 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14780 if (offset != (bfd_vma) -1)
14781 {
14782 rel[1].r_info = ELF64_R_INFO (r_symndx,
14783 R_PPC64_TPREL16_LO);
14784 rel[1].r_offset = offset + d_offset;
14785 rel[1].r_addend = rel->r_addend;
14786 }
14787 }
14788 bfd_put_32 (input_bfd, insn1,
14789 contents + rel->r_offset - d_offset);
14790 if (offset != (bfd_vma) -1)
14791 {
14792 bfd_put_32 (input_bfd, insn2, contents + offset);
14793 if (offset + 8 <= input_section->size)
14794 {
14795 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14796 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
14797 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
14798 }
14799 }
14800 if ((tls_mask & tls_gd) == 0
14801 && (tls_gd == 0 || toc_symndx != 0))
14802 {
14803 /* We changed the symbol. Start over in order
14804 to get h, sym, sec etc. right. */
14805 goto again;
14806 }
14807 }
14808 break;
14809
14810 case R_PPC64_GOT_TLSGD34:
14811 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14812 {
14813 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14814 pinsn <<= 32;
14815 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14816 if ((tls_mask & TLS_GDIE) != 0)
14817 {
14818 /* IE, pla -> pld */
14819 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
14820 r_type = R_PPC64_GOT_TPREL34;
14821 }
14822 else
14823 {
14824 /* LE, pla pcrel -> paddi r13 */
14825 pinsn += (-1ULL << 52) + (13ULL << 16);
14826 r_type = R_PPC64_TPREL34;
14827 }
14828 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14829 bfd_put_32 (input_bfd, pinsn >> 32,
14830 contents + rel->r_offset);
14831 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14832 contents + rel->r_offset + 4);
14833 }
14834 break;
14835
14836 case R_PPC64_GOT_TLSLD34:
14837 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14838 {
14839 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14840 pinsn <<= 32;
14841 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14842 pinsn += (-1ULL << 52) + (13ULL << 16);
14843 bfd_put_32 (input_bfd, pinsn >> 32,
14844 contents + rel->r_offset);
14845 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14846 contents + rel->r_offset + 4);
14847 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14848 r_symndx = STN_UNDEF;
14849 r_type = R_PPC64_TPREL34;
14850 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14851 goto again;
14852 }
14853 break;
14854
14855 case R_PPC64_TLSGD:
14856 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
14857 && rel + 1 < relend)
14858 {
14859 unsigned int insn2;
14860 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14861
14862 offset = rel->r_offset;
14863 if (is_plt_seq_reloc (r_type1))
14864 {
14865 bfd_put_32 (output_bfd, NOP, contents + offset);
14866 if (r_type1 == R_PPC64_PLT_PCREL34
14867 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14868 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14869 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14870 break;
14871 }
14872
14873 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14874 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14875
14876 if ((tls_mask & TLS_GDIE) != 0)
14877 {
14878 /* IE */
14879 r_type = R_PPC64_NONE;
14880 insn2 = 0x7c636a14; /* add 3,3,13 */
14881 }
14882 else
14883 {
14884 /* LE */
14885 if (toc_symndx != 0)
14886 {
14887 r_symndx = toc_symndx;
14888 rel->r_addend = toc_addend;
14889 }
14890 if (r_type1 == R_PPC64_REL24_NOTOC
14891 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14892 {
14893 r_type = R_PPC64_NONE;
14894 insn2 = NOP;
14895 }
14896 else
14897 {
14898 rel->r_offset = offset + d_offset;
14899 r_type = R_PPC64_TPREL16_LO;
14900 insn2 = 0x38630000; /* addi 3,3,0 */
14901 }
14902 }
14903 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14904 /* Zap the reloc on the _tls_get_addr call too. */
14905 BFD_ASSERT (offset == rel[1].r_offset);
14906 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14907 bfd_put_32 (input_bfd, insn2, contents + offset);
14908 if ((tls_mask & TLS_GDIE) == 0
14909 && toc_symndx != 0
14910 && r_type != R_PPC64_NONE)
14911 goto again;
14912 }
14913 break;
14914
14915 case R_PPC64_TLSLD:
14916 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
14917 && rel + 1 < relend)
14918 {
14919 unsigned int insn2;
14920 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14921
14922 offset = rel->r_offset;
14923 if (is_plt_seq_reloc (r_type1))
14924 {
14925 bfd_put_32 (output_bfd, NOP, contents + offset);
14926 if (r_type1 == R_PPC64_PLT_PCREL34
14927 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14928 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14929 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14930 break;
14931 }
14932
14933 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14934 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14935
14936 if (r_type1 == R_PPC64_REL24_NOTOC
14937 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14938 {
14939 r_type = R_PPC64_NONE;
14940 insn2 = NOP;
14941 }
14942 else
14943 {
14944 rel->r_offset = offset + d_offset;
14945 r_symndx = STN_UNDEF;
14946 r_type = R_PPC64_TPREL16_LO;
14947 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14948 insn2 = 0x38630000; /* addi 3,3,0 */
14949 }
14950 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14951 /* Zap the reloc on the _tls_get_addr call too. */
14952 BFD_ASSERT (offset == rel[1].r_offset);
14953 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14954 bfd_put_32 (input_bfd, insn2, contents + offset);
14955 if (r_type != R_PPC64_NONE)
14956 goto again;
14957 }
14958 break;
14959
14960 case R_PPC64_DTPMOD64:
14961 if (rel + 1 < relend
14962 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
14963 && rel[1].r_offset == rel->r_offset + 8)
14964 {
14965 if ((tls_mask & TLS_GD) == 0)
14966 {
14967 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
14968 if ((tls_mask & TLS_GDIE) != 0)
14969 r_type = R_PPC64_TPREL64;
14970 else
14971 {
14972 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14973 r_type = R_PPC64_NONE;
14974 }
14975 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14976 }
14977 }
14978 else
14979 {
14980 if ((tls_mask & TLS_LD) == 0)
14981 {
14982 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14983 r_type = R_PPC64_NONE;
14984 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14985 }
14986 }
14987 break;
14988
14989 case R_PPC64_TPREL64:
14990 if ((tls_mask & TLS_TPREL) == 0)
14991 {
14992 r_type = R_PPC64_NONE;
14993 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14994 }
14995 break;
14996
14997 case R_PPC64_ENTRY:
14998 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14999 if (!bfd_link_pic (info)
15000 && !info->traditional_format
15001 && relocation + 0x80008000 <= 0xffffffff)
15002 {
15003 unsigned int insn1, insn2;
15004
15005 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15006 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15007 if ((insn1 & ~0xfffc) == LD_R2_0R12
15008 && insn2 == ADD_R2_R2_R12)
15009 {
15010 bfd_put_32 (input_bfd,
15011 LIS_R2 + PPC_HA (relocation),
15012 contents + rel->r_offset);
15013 bfd_put_32 (input_bfd,
15014 ADDI_R2_R2 + PPC_LO (relocation),
15015 contents + rel->r_offset + 4);
15016 }
15017 }
15018 else
15019 {
15020 relocation -= (rel->r_offset
15021 + input_section->output_offset
15022 + input_section->output_section->vma);
15023 if (relocation + 0x80008000 <= 0xffffffff)
15024 {
15025 unsigned int insn1, insn2;
15026
15027 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15028 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15029 if ((insn1 & ~0xfffc) == LD_R2_0R12
15030 && insn2 == ADD_R2_R2_R12)
15031 {
15032 bfd_put_32 (input_bfd,
15033 ADDIS_R2_R12 + PPC_HA (relocation),
15034 contents + rel->r_offset);
15035 bfd_put_32 (input_bfd,
15036 ADDI_R2_R2 + PPC_LO (relocation),
15037 contents + rel->r_offset + 4);
15038 }
15039 }
15040 }
15041 break;
15042
15043 case R_PPC64_REL16_HA:
15044 /* If we are generating a non-PIC executable, edit
15045 . 0: addis 2,12,.TOC.-0b@ha
15046 . addi 2,2,.TOC.-0b@l
15047 used by ELFv2 global entry points to set up r2, to
15048 . lis 2,.TOC.@ha
15049 . addi 2,2,.TOC.@l
15050 if .TOC. is in range. */
15051 if (!bfd_link_pic (info)
15052 && !info->traditional_format
15053 && !htab->opd_abi
15054 && rel->r_addend == d_offset
15055 && h != NULL && &h->elf == htab->elf.hgot
15056 && rel + 1 < relend
15057 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15058 && rel[1].r_offset == rel->r_offset + 4
15059 && rel[1].r_addend == rel->r_addend + 4
15060 && relocation + 0x80008000 <= 0xffffffff)
15061 {
15062 unsigned int insn1, insn2;
15063 offset = rel->r_offset - d_offset;
15064 insn1 = bfd_get_32 (input_bfd, contents + offset);
15065 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15066 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15067 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15068 {
15069 r_type = R_PPC64_ADDR16_HA;
15070 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15071 rel->r_addend -= d_offset;
15072 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15073 rel[1].r_addend -= d_offset + 4;
15074 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15075 }
15076 }
15077 break;
15078 }
15079
15080 /* Handle other relocations that tweak non-addend part of insn. */
15081 insn = 0;
15082 max_br_offset = 1 << 25;
15083 addend = rel->r_addend;
15084 reloc_dest = DEST_NORMAL;
15085 switch (r_type)
15086 {
15087 default:
15088 break;
15089
15090 case R_PPC64_TOCSAVE:
15091 if (relocation + addend == (rel->r_offset
15092 + input_section->output_offset
15093 + input_section->output_section->vma)
15094 && tocsave_find (htab, NO_INSERT,
15095 &local_syms, rel, input_bfd))
15096 {
15097 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15098 if (insn == NOP
15099 || insn == CROR_151515 || insn == CROR_313131)
15100 bfd_put_32 (input_bfd,
15101 STD_R2_0R1 + STK_TOC (htab),
15102 contents + rel->r_offset);
15103 }
15104 break;
15105
15106 /* Branch taken prediction relocations. */
15107 case R_PPC64_ADDR14_BRTAKEN:
15108 case R_PPC64_REL14_BRTAKEN:
15109 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15110 /* Fall through. */
15111
15112 /* Branch not taken prediction relocations. */
15113 case R_PPC64_ADDR14_BRNTAKEN:
15114 case R_PPC64_REL14_BRNTAKEN:
15115 insn |= bfd_get_32 (input_bfd,
15116 contents + rel->r_offset) & ~(0x01 << 21);
15117 /* Fall through. */
15118
15119 case R_PPC64_REL14:
15120 max_br_offset = 1 << 15;
15121 /* Fall through. */
15122
15123 case R_PPC64_REL24:
15124 case R_PPC64_REL24_NOTOC:
15125 case R_PPC64_PLTCALL:
15126 case R_PPC64_PLTCALL_NOTOC:
15127 /* Calls to functions with a different TOC, such as calls to
15128 shared objects, need to alter the TOC pointer. This is
15129 done using a linkage stub. A REL24 branching to these
15130 linkage stubs needs to be followed by a nop, as the nop
15131 will be replaced with an instruction to restore the TOC
15132 base pointer. */
15133 fdh = h;
15134 if (h != NULL
15135 && h->oh != NULL
15136 && h->oh->is_func_descriptor)
15137 fdh = ppc_follow_link (h->oh);
15138 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15139 htab);
15140 if ((r_type == R_PPC64_PLTCALL
15141 || r_type == R_PPC64_PLTCALL_NOTOC)
15142 && stub_entry != NULL
15143 && stub_entry->stub_type >= ppc_stub_plt_call
15144 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15145 stub_entry = NULL;
15146
15147 if (stub_entry != NULL
15148 && ((stub_entry->stub_type >= ppc_stub_plt_call
15149 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15150 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15151 || stub_entry->stub_type == ppc_stub_plt_branch_both
15152 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15153 || stub_entry->stub_type == ppc_stub_long_branch_both))
15154 {
15155 bfd_boolean can_plt_call = FALSE;
15156
15157 if (stub_entry->stub_type == ppc_stub_plt_call
15158 && !htab->opd_abi
15159 && htab->params->plt_localentry0 != 0
15160 && is_elfv2_localentry0 (&h->elf))
15161 {
15162 /* The function doesn't use or change r2. */
15163 can_plt_call = TRUE;
15164 }
15165 else if (r_type == R_PPC64_REL24_NOTOC)
15166 {
15167 /* NOTOC calls don't need to restore r2. */
15168 can_plt_call = TRUE;
15169 }
15170
15171 /* All of these stubs may modify r2, so there must be a
15172 branch and link followed by a nop. The nop is
15173 replaced by an insn to restore r2. */
15174 else if (rel->r_offset + 8 <= input_section->size)
15175 {
15176 unsigned long br;
15177
15178 br = bfd_get_32 (input_bfd,
15179 contents + rel->r_offset);
15180 if ((br & 1) != 0)
15181 {
15182 unsigned long nop;
15183
15184 nop = bfd_get_32 (input_bfd,
15185 contents + rel->r_offset + 4);
15186 if (nop == LD_R2_0R1 + STK_TOC (htab))
15187 can_plt_call = TRUE;
15188 else if (nop == NOP
15189 || nop == CROR_151515
15190 || nop == CROR_313131)
15191 {
15192 if (h != NULL
15193 && (h == htab->tls_get_addr_fd
15194 || h == htab->tls_get_addr)
15195 && htab->params->tls_get_addr_opt)
15196 {
15197 /* Special stub used, leave nop alone. */
15198 }
15199 else
15200 bfd_put_32 (input_bfd,
15201 LD_R2_0R1 + STK_TOC (htab),
15202 contents + rel->r_offset + 4);
15203 can_plt_call = TRUE;
15204 }
15205 }
15206 }
15207
15208 if (!can_plt_call && h != NULL)
15209 {
15210 const char *name = h->elf.root.root.string;
15211
15212 if (*name == '.')
15213 ++name;
15214
15215 if (strncmp (name, "__libc_start_main", 17) == 0
15216 && (name[17] == 0 || name[17] == '@'))
15217 {
15218 /* Allow crt1 branch to go via a toc adjusting
15219 stub. Other calls that never return could do
15220 the same, if we could detect such. */
15221 can_plt_call = TRUE;
15222 }
15223 }
15224
15225 if (!can_plt_call)
15226 {
15227 /* g++ as of 20130507 emits self-calls without a
15228 following nop. This is arguably wrong since we
15229 have conflicting information. On the one hand a
15230 global symbol and on the other a local call
15231 sequence, but don't error for this special case.
15232 It isn't possible to cheaply verify we have
15233 exactly such a call. Allow all calls to the same
15234 section. */
15235 asection *code_sec = sec;
15236
15237 if (get_opd_info (sec) != NULL)
15238 {
15239 bfd_vma off = (relocation + addend
15240 - sec->output_section->vma
15241 - sec->output_offset);
15242
15243 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15244 }
15245 if (code_sec == input_section)
15246 can_plt_call = TRUE;
15247 }
15248
15249 if (!can_plt_call)
15250 {
15251 if (stub_entry->stub_type >= ppc_stub_plt_call
15252 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15253 info->callbacks->einfo
15254 /* xgettext:c-format */
15255 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15256 "(plt call stub)\n"),
15257 input_bfd, input_section, rel->r_offset, sym_name);
15258 else
15259 info->callbacks->einfo
15260 /* xgettext:c-format */
15261 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15262 "(toc save/adjust stub)\n"),
15263 input_bfd, input_section, rel->r_offset, sym_name);
15264
15265 bfd_set_error (bfd_error_bad_value);
15266 ret = FALSE;
15267 }
15268
15269 if (can_plt_call
15270 && stub_entry->stub_type >= ppc_stub_plt_call
15271 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15272 unresolved_reloc = FALSE;
15273 }
15274
15275 if ((stub_entry == NULL
15276 || stub_entry->stub_type == ppc_stub_long_branch
15277 || stub_entry->stub_type == ppc_stub_plt_branch)
15278 && get_opd_info (sec) != NULL)
15279 {
15280 /* The branch destination is the value of the opd entry. */
15281 bfd_vma off = (relocation + addend
15282 - sec->output_section->vma
15283 - sec->output_offset);
15284 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15285 if (dest != (bfd_vma) -1)
15286 {
15287 relocation = dest;
15288 addend = 0;
15289 reloc_dest = DEST_OPD;
15290 }
15291 }
15292
15293 /* If the branch is out of reach we ought to have a long
15294 branch stub. */
15295 from = (rel->r_offset
15296 + input_section->output_offset
15297 + input_section->output_section->vma);
15298
15299 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15300 ? fdh->elf.other
15301 : sym->st_other);
15302
15303 if (stub_entry != NULL
15304 && (stub_entry->stub_type == ppc_stub_long_branch
15305 || stub_entry->stub_type == ppc_stub_plt_branch)
15306 && (r_type == R_PPC64_ADDR14_BRTAKEN
15307 || r_type == R_PPC64_ADDR14_BRNTAKEN
15308 || (relocation + addend - from + max_br_offset
15309 < 2 * max_br_offset)))
15310 /* Don't use the stub if this branch is in range. */
15311 stub_entry = NULL;
15312
15313 if (stub_entry != NULL
15314 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15315 || stub_entry->stub_type == ppc_stub_long_branch_both
15316 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15317 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15318 && (r_type != R_PPC64_REL24_NOTOC
15319 || ((fdh ? fdh->elf.other : sym->st_other)
15320 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15321 && (relocation + addend - from + max_br_offset
15322 < 2 * max_br_offset))
15323 stub_entry = NULL;
15324
15325 if (stub_entry != NULL
15326 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15327 || stub_entry->stub_type == ppc_stub_long_branch_both
15328 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15329 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15330 && r_type == R_PPC64_REL24_NOTOC
15331 && (relocation + addend - from + max_br_offset
15332 < 2 * max_br_offset))
15333 stub_entry = NULL;
15334
15335 if (stub_entry != NULL)
15336 {
15337 /* Munge up the value and addend so that we call the stub
15338 rather than the procedure directly. */
15339 asection *stub_sec = stub_entry->group->stub_sec;
15340
15341 if (stub_entry->stub_type == ppc_stub_save_res)
15342 relocation += (stub_sec->output_offset
15343 + stub_sec->output_section->vma
15344 + stub_sec->size - htab->sfpr->size
15345 - htab->sfpr->output_offset
15346 - htab->sfpr->output_section->vma);
15347 else
15348 relocation = (stub_entry->stub_offset
15349 + stub_sec->output_offset
15350 + stub_sec->output_section->vma);
15351 addend = 0;
15352 reloc_dest = DEST_STUB;
15353
15354 if (((stub_entry->stub_type == ppc_stub_plt_call
15355 && ALWAYS_EMIT_R2SAVE)
15356 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15357 || stub_entry->stub_type == ppc_stub_plt_call_both)
15358 && !(h != NULL
15359 && (h == htab->tls_get_addr_fd
15360 || h == htab->tls_get_addr)
15361 && htab->params->tls_get_addr_opt)
15362 && rel + 1 < relend
15363 && rel[1].r_offset == rel->r_offset + 4
15364 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15365 relocation += 4;
15366 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15367 || stub_entry->stub_type == ppc_stub_plt_branch_both
15368 || stub_entry->stub_type == ppc_stub_plt_call_both)
15369 && r_type == R_PPC64_REL24_NOTOC)
15370 relocation += 4;
15371
15372 if (r_type == R_PPC64_REL24_NOTOC
15373 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15374 || stub_entry->stub_type == ppc_stub_plt_call_both))
15375 htab->notoc_plt = 1;
15376 }
15377
15378 if (insn != 0)
15379 {
15380 if (is_isa_v2)
15381 {
15382 /* Set 'a' bit. This is 0b00010 in BO field for branch
15383 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15384 for branch on CTR insns (BO == 1a00t or 1a01t). */
15385 if ((insn & (0x14 << 21)) == (0x04 << 21))
15386 insn |= 0x02 << 21;
15387 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15388 insn |= 0x08 << 21;
15389 else
15390 break;
15391 }
15392 else
15393 {
15394 /* Invert 'y' bit if not the default. */
15395 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15396 insn ^= 0x01 << 21;
15397 }
15398
15399 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15400 }
15401
15402 /* NOP out calls to undefined weak functions.
15403 We can thus call a weak function without first
15404 checking whether the function is defined. */
15405 else if (h != NULL
15406 && h->elf.root.type == bfd_link_hash_undefweak
15407 && h->elf.dynindx == -1
15408 && (r_type == R_PPC64_REL24
15409 || r_type == R_PPC64_REL24_NOTOC)
15410 && relocation == 0
15411 && addend == 0)
15412 {
15413 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15414 goto copy_reloc;
15415 }
15416 break;
15417
15418 case R_PPC64_GOT16_DS:
15419 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15420 if (relocation + addend - from + 0x8000 < 0x10000
15421 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15422 {
15423 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15424 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15425 {
15426 insn += (14u << 26) - (58u << 26);
15427 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15428 r_type = R_PPC64_TOC16;
15429 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15430 }
15431 }
15432 break;
15433
15434 case R_PPC64_GOT16_LO_DS:
15435 case R_PPC64_GOT16_HA:
15436 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15437 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15438 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15439 {
15440 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15441 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15442 {
15443 insn += (14u << 26) - (58u << 26);
15444 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15445 r_type = R_PPC64_TOC16_LO;
15446 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15447 }
15448 else if ((insn & (0x3f << 26)) == 15u << 26 /* addis */)
15449 {
15450 r_type = R_PPC64_TOC16_HA;
15451 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15452 }
15453 }
15454 break;
15455
15456 case R_PPC64_GOT_PCREL34:
15457 from = (rel->r_offset
15458 + input_section->output_section->vma
15459 + input_section->output_offset);
15460 if (relocation - from + (1ULL << 33) < 1ULL << 34
15461 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15462 {
15463 offset = rel->r_offset;
15464 pinsn = bfd_get_32 (input_bfd, contents + offset);
15465 pinsn <<= 32;
15466 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15467 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15468 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15469 {
15470 /* Replace with paddi. */
15471 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15472 r_type = R_PPC64_PCREL34;
15473 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15474 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15475 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15476 goto pcrelopt;
15477 }
15478 }
15479 break;
15480
15481 case R_PPC64_PCREL34:
15482 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15483 {
15484 offset = rel->r_offset;
15485 pinsn = bfd_get_32 (input_bfd, contents + offset);
15486 pinsn <<= 32;
15487 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15488 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15489 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15490 | (14ULL << 26) /* paddi */))
15491 {
15492 pcrelopt:
15493 if (rel + 1 < relend
15494 && rel[1].r_offset == offset
15495 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15496 {
15497 bfd_vma off2 = rel[1].r_addend;
15498 if (off2 == 0)
15499 /* zero means next insn. */
15500 off2 = 8;
15501 off2 += offset;
15502 if (off2 + 4 <= input_section->size)
15503 {
15504 uint64_t pinsn2;
15505 bfd_signed_vma addend_off;
15506 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15507 pinsn2 <<= 32;
15508 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15509 {
15510 if (off2 + 8 > input_section->size)
15511 break;
15512 pinsn2 |= bfd_get_32 (input_bfd,
15513 contents + off2 + 4);
15514 }
15515 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
15516 {
15517 addend += addend_off;
15518 rel->r_addend = addend;
15519 bfd_put_32 (input_bfd, pinsn >> 32,
15520 contents + offset);
15521 bfd_put_32 (input_bfd, pinsn,
15522 contents + offset + 4);
15523 bfd_put_32 (input_bfd, pinsn2 >> 32,
15524 contents + off2);
15525 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15526 bfd_put_32 (input_bfd, pinsn2,
15527 contents + off2 + 4);
15528 }
15529 }
15530 }
15531 }
15532 }
15533 break;
15534 }
15535
15536 tls_type = 0;
15537 save_unresolved_reloc = unresolved_reloc;
15538 switch (r_type)
15539 {
15540 default:
15541 /* xgettext:c-format */
15542 _bfd_error_handler (_("%pB: %s unsupported"),
15543 input_bfd, ppc64_elf_howto_table[r_type]->name);
15544
15545 bfd_set_error (bfd_error_bad_value);
15546 ret = FALSE;
15547 goto copy_reloc;
15548
15549 case R_PPC64_NONE:
15550 case R_PPC64_TLS:
15551 case R_PPC64_TLSGD:
15552 case R_PPC64_TLSLD:
15553 case R_PPC64_TOCSAVE:
15554 case R_PPC64_GNU_VTINHERIT:
15555 case R_PPC64_GNU_VTENTRY:
15556 case R_PPC64_ENTRY:
15557 case R_PPC64_PCREL_OPT:
15558 goto copy_reloc;
15559
15560 /* GOT16 relocations. Like an ADDR16 using the symbol's
15561 address in the GOT as relocation value instead of the
15562 symbol's value itself. Also, create a GOT entry for the
15563 symbol and put the symbol value there. */
15564 case R_PPC64_GOT_TLSGD16:
15565 case R_PPC64_GOT_TLSGD16_LO:
15566 case R_PPC64_GOT_TLSGD16_HI:
15567 case R_PPC64_GOT_TLSGD16_HA:
15568 case R_PPC64_GOT_TLSGD34:
15569 tls_type = TLS_TLS | TLS_GD;
15570 goto dogot;
15571
15572 case R_PPC64_GOT_TLSLD16:
15573 case R_PPC64_GOT_TLSLD16_LO:
15574 case R_PPC64_GOT_TLSLD16_HI:
15575 case R_PPC64_GOT_TLSLD16_HA:
15576 case R_PPC64_GOT_TLSLD34:
15577 tls_type = TLS_TLS | TLS_LD;
15578 goto dogot;
15579
15580 case R_PPC64_GOT_TPREL16_DS:
15581 case R_PPC64_GOT_TPREL16_LO_DS:
15582 case R_PPC64_GOT_TPREL16_HI:
15583 case R_PPC64_GOT_TPREL16_HA:
15584 case R_PPC64_GOT_TPREL34:
15585 tls_type = TLS_TLS | TLS_TPREL;
15586 goto dogot;
15587
15588 case R_PPC64_GOT_DTPREL16_DS:
15589 case R_PPC64_GOT_DTPREL16_LO_DS:
15590 case R_PPC64_GOT_DTPREL16_HI:
15591 case R_PPC64_GOT_DTPREL16_HA:
15592 case R_PPC64_GOT_DTPREL34:
15593 tls_type = TLS_TLS | TLS_DTPREL;
15594 goto dogot;
15595
15596 case R_PPC64_GOT16:
15597 case R_PPC64_GOT16_LO:
15598 case R_PPC64_GOT16_HI:
15599 case R_PPC64_GOT16_HA:
15600 case R_PPC64_GOT16_DS:
15601 case R_PPC64_GOT16_LO_DS:
15602 case R_PPC64_GOT_PCREL34:
15603 dogot:
15604 {
15605 /* Relocation is to the entry for this symbol in the global
15606 offset table. */
15607 asection *got;
15608 bfd_vma *offp;
15609 bfd_vma off;
15610 unsigned long indx = 0;
15611 struct got_entry *ent;
15612
15613 if (tls_type == (TLS_TLS | TLS_LD)
15614 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15615 ent = ppc64_tlsld_got (input_bfd);
15616 else
15617 {
15618 if (h != NULL)
15619 {
15620 if (!htab->elf.dynamic_sections_created
15621 || h->elf.dynindx == -1
15622 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
15623 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
15624 /* This is actually a static link, or it is a
15625 -Bsymbolic link and the symbol is defined
15626 locally, or the symbol was forced to be local
15627 because of a version file. */
15628 ;
15629 else
15630 {
15631 indx = h->elf.dynindx;
15632 unresolved_reloc = FALSE;
15633 }
15634 ent = h->elf.got.glist;
15635 }
15636 else
15637 {
15638 if (local_got_ents == NULL)
15639 abort ();
15640 ent = local_got_ents[r_symndx];
15641 }
15642
15643 for (; ent != NULL; ent = ent->next)
15644 if (ent->addend == orig_rel.r_addend
15645 && ent->owner == input_bfd
15646 && ent->tls_type == tls_type)
15647 break;
15648 }
15649
15650 if (ent == NULL)
15651 abort ();
15652 if (ent->is_indirect)
15653 ent = ent->got.ent;
15654 offp = &ent->got.offset;
15655 got = ppc64_elf_tdata (ent->owner)->got;
15656 if (got == NULL)
15657 abort ();
15658
15659 /* The offset must always be a multiple of 8. We use the
15660 least significant bit to record whether we have already
15661 processed this entry. */
15662 off = *offp;
15663 if ((off & 1) != 0)
15664 off &= ~1;
15665 else
15666 {
15667 /* Generate relocs for the dynamic linker, except in
15668 the case of TLSLD where we'll use one entry per
15669 module. */
15670 asection *relgot;
15671 bfd_boolean ifunc;
15672
15673 *offp = off | 1;
15674 relgot = NULL;
15675 ifunc = (h != NULL
15676 ? h->elf.type == STT_GNU_IFUNC
15677 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
15678 if (ifunc)
15679 {
15680 relgot = htab->elf.irelplt;
15681 if (indx == 0)
15682 htab->local_ifunc_resolver = 1;
15683 else if (is_static_defined (&h->elf))
15684 htab->maybe_local_ifunc_resolver = 1;
15685 }
15686 else if (indx != 0
15687 || (bfd_link_pic (info)
15688 && (h == NULL
15689 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
15690 && !(tls_type != 0
15691 && bfd_link_executable (info)
15692 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
15693 relgot = ppc64_elf_tdata (ent->owner)->relgot;
15694 if (relgot != NULL)
15695 {
15696 outrel.r_offset = (got->output_section->vma
15697 + got->output_offset
15698 + off);
15699 outrel.r_addend = orig_rel.r_addend;
15700 if (tls_type & (TLS_LD | TLS_GD))
15701 {
15702 outrel.r_addend = 0;
15703 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
15704 if (tls_type == (TLS_TLS | TLS_GD))
15705 {
15706 loc = relgot->contents;
15707 loc += (relgot->reloc_count++
15708 * sizeof (Elf64_External_Rela));
15709 bfd_elf64_swap_reloca_out (output_bfd,
15710 &outrel, loc);
15711 outrel.r_offset += 8;
15712 outrel.r_addend = orig_rel.r_addend;
15713 outrel.r_info
15714 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15715 }
15716 }
15717 else if (tls_type == (TLS_TLS | TLS_DTPREL))
15718 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15719 else if (tls_type == (TLS_TLS | TLS_TPREL))
15720 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
15721 else if (indx != 0)
15722 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
15723 else
15724 {
15725 if (ifunc)
15726 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
15727 else
15728 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
15729
15730 /* Write the .got section contents for the sake
15731 of prelink. */
15732 loc = got->contents + off;
15733 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
15734 loc);
15735 }
15736
15737 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
15738 {
15739 outrel.r_addend += relocation;
15740 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
15741 {
15742 if (htab->elf.tls_sec == NULL)
15743 outrel.r_addend = 0;
15744 else
15745 outrel.r_addend -= htab->elf.tls_sec->vma;
15746 }
15747 }
15748 loc = relgot->contents;
15749 loc += (relgot->reloc_count++
15750 * sizeof (Elf64_External_Rela));
15751 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
15752 }
15753
15754 /* Init the .got section contents here if we're not
15755 emitting a reloc. */
15756 else
15757 {
15758 relocation += orig_rel.r_addend;
15759 if (tls_type != 0)
15760 {
15761 if (htab->elf.tls_sec == NULL)
15762 relocation = 0;
15763 else
15764 {
15765 if (tls_type & TLS_LD)
15766 relocation = 0;
15767 else
15768 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
15769 if (tls_type & TLS_TPREL)
15770 relocation += DTP_OFFSET - TP_OFFSET;
15771 }
15772
15773 if (tls_type & (TLS_GD | TLS_LD))
15774 {
15775 bfd_put_64 (output_bfd, relocation,
15776 got->contents + off + 8);
15777 relocation = 1;
15778 }
15779 }
15780 bfd_put_64 (output_bfd, relocation,
15781 got->contents + off);
15782 }
15783 }
15784
15785 if (off >= (bfd_vma) -2)
15786 abort ();
15787
15788 relocation = got->output_section->vma + got->output_offset + off;
15789 addend = 0;
15790 if (!(r_type == R_PPC64_GOT_PCREL34
15791 || r_type == R_PPC64_GOT_TLSGD34
15792 || r_type == R_PPC64_GOT_TLSLD34
15793 || r_type == R_PPC64_GOT_TPREL34
15794 || r_type == R_PPC64_GOT_DTPREL34))
15795 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
15796 }
15797 break;
15798
15799 case R_PPC64_PLT16_HA:
15800 case R_PPC64_PLT16_HI:
15801 case R_PPC64_PLT16_LO:
15802 case R_PPC64_PLT16_LO_DS:
15803 case R_PPC64_PLT_PCREL34:
15804 case R_PPC64_PLT_PCREL34_NOTOC:
15805 case R_PPC64_PLT32:
15806 case R_PPC64_PLT64:
15807 case R_PPC64_PLTSEQ:
15808 case R_PPC64_PLTSEQ_NOTOC:
15809 case R_PPC64_PLTCALL:
15810 case R_PPC64_PLTCALL_NOTOC:
15811 /* Relocation is to the entry for this symbol in the
15812 procedure linkage table. */
15813 unresolved_reloc = TRUE;
15814 {
15815 struct plt_entry **plt_list = NULL;
15816 if (h != NULL)
15817 plt_list = &h->elf.plt.plist;
15818 else if (local_got_ents != NULL)
15819 {
15820 struct plt_entry **local_plt = (struct plt_entry **)
15821 (local_got_ents + symtab_hdr->sh_info);
15822 plt_list = local_plt + r_symndx;
15823 }
15824 if (plt_list)
15825 {
15826 struct plt_entry *ent;
15827
15828 for (ent = *plt_list; ent != NULL; ent = ent->next)
15829 if (ent->plt.offset != (bfd_vma) -1
15830 && ent->addend == orig_rel.r_addend)
15831 {
15832 asection *plt;
15833 bfd_vma got;
15834
15835 plt = htab->elf.splt;
15836 if (!htab->elf.dynamic_sections_created
15837 || h == NULL
15838 || h->elf.dynindx == -1)
15839 {
15840 if (h != NULL
15841 ? h->elf.type == STT_GNU_IFUNC
15842 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15843 plt = htab->elf.iplt;
15844 else
15845 plt = htab->pltlocal;
15846 }
15847 relocation = (plt->output_section->vma
15848 + plt->output_offset
15849 + ent->plt.offset);
15850 if (r_type == R_PPC64_PLT16_HA
15851 || r_type == R_PPC64_PLT16_HI
15852 || r_type == R_PPC64_PLT16_LO
15853 || r_type == R_PPC64_PLT16_LO_DS)
15854 {
15855 got = (elf_gp (output_bfd)
15856 + htab->sec_info[input_section->id].toc_off);
15857 relocation -= got;
15858 }
15859 addend = 0;
15860 unresolved_reloc = FALSE;
15861 break;
15862 }
15863 }
15864 }
15865 break;
15866
15867 case R_PPC64_TOC:
15868 /* Relocation value is TOC base. */
15869 relocation = TOCstart;
15870 if (r_symndx == STN_UNDEF)
15871 relocation += htab->sec_info[input_section->id].toc_off;
15872 else if (unresolved_reloc)
15873 ;
15874 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
15875 relocation += htab->sec_info[sec->id].toc_off;
15876 else
15877 unresolved_reloc = TRUE;
15878 goto dodyn;
15879
15880 /* TOC16 relocs. We want the offset relative to the TOC base,
15881 which is the address of the start of the TOC plus 0x8000.
15882 The TOC consists of sections .got, .toc, .tocbss, and .plt,
15883 in this order. */
15884 case R_PPC64_TOC16:
15885 case R_PPC64_TOC16_LO:
15886 case R_PPC64_TOC16_HI:
15887 case R_PPC64_TOC16_DS:
15888 case R_PPC64_TOC16_LO_DS:
15889 case R_PPC64_TOC16_HA:
15890 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
15891 if (h != NULL)
15892 goto dodyn;
15893 break;
15894
15895 /* Relocate against the beginning of the section. */
15896 case R_PPC64_SECTOFF:
15897 case R_PPC64_SECTOFF_LO:
15898 case R_PPC64_SECTOFF_HI:
15899 case R_PPC64_SECTOFF_DS:
15900 case R_PPC64_SECTOFF_LO_DS:
15901 case R_PPC64_SECTOFF_HA:
15902 if (sec != NULL)
15903 addend -= sec->output_section->vma;
15904 break;
15905
15906 case R_PPC64_REL16:
15907 case R_PPC64_REL16_LO:
15908 case R_PPC64_REL16_HI:
15909 case R_PPC64_REL16_HA:
15910 case R_PPC64_REL16_HIGH:
15911 case R_PPC64_REL16_HIGHA:
15912 case R_PPC64_REL16_HIGHER:
15913 case R_PPC64_REL16_HIGHERA:
15914 case R_PPC64_REL16_HIGHEST:
15915 case R_PPC64_REL16_HIGHESTA:
15916 case R_PPC64_REL16_HIGHER34:
15917 case R_PPC64_REL16_HIGHERA34:
15918 case R_PPC64_REL16_HIGHEST34:
15919 case R_PPC64_REL16_HIGHESTA34:
15920 case R_PPC64_REL16DX_HA:
15921 case R_PPC64_REL14:
15922 case R_PPC64_REL14_BRNTAKEN:
15923 case R_PPC64_REL14_BRTAKEN:
15924 case R_PPC64_REL24:
15925 case R_PPC64_REL24_NOTOC:
15926 case R_PPC64_PCREL34:
15927 case R_PPC64_PCREL28:
15928 break;
15929
15930 case R_PPC64_TPREL16:
15931 case R_PPC64_TPREL16_LO:
15932 case R_PPC64_TPREL16_HI:
15933 case R_PPC64_TPREL16_HA:
15934 case R_PPC64_TPREL16_DS:
15935 case R_PPC64_TPREL16_LO_DS:
15936 case R_PPC64_TPREL16_HIGH:
15937 case R_PPC64_TPREL16_HIGHA:
15938 case R_PPC64_TPREL16_HIGHER:
15939 case R_PPC64_TPREL16_HIGHERA:
15940 case R_PPC64_TPREL16_HIGHEST:
15941 case R_PPC64_TPREL16_HIGHESTA:
15942 case R_PPC64_TPREL34:
15943 if (h != NULL
15944 && h->elf.root.type == bfd_link_hash_undefweak
15945 && h->elf.dynindx == -1)
15946 {
15947 /* Make this relocation against an undefined weak symbol
15948 resolve to zero. This is really just a tweak, since
15949 code using weak externs ought to check that they are
15950 defined before using them. */
15951 bfd_byte *p = contents + rel->r_offset - d_offset;
15952
15953 insn = bfd_get_32 (input_bfd, p);
15954 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
15955 if (insn != 0)
15956 bfd_put_32 (input_bfd, insn, p);
15957 break;
15958 }
15959 if (htab->elf.tls_sec != NULL)
15960 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15961 /* The TPREL16 relocs shouldn't really be used in shared
15962 libs or with non-local symbols as that will result in
15963 DT_TEXTREL being set, but support them anyway. */
15964 goto dodyn;
15965
15966 case R_PPC64_DTPREL16:
15967 case R_PPC64_DTPREL16_LO:
15968 case R_PPC64_DTPREL16_HI:
15969 case R_PPC64_DTPREL16_HA:
15970 case R_PPC64_DTPREL16_DS:
15971 case R_PPC64_DTPREL16_LO_DS:
15972 case R_PPC64_DTPREL16_HIGH:
15973 case R_PPC64_DTPREL16_HIGHA:
15974 case R_PPC64_DTPREL16_HIGHER:
15975 case R_PPC64_DTPREL16_HIGHERA:
15976 case R_PPC64_DTPREL16_HIGHEST:
15977 case R_PPC64_DTPREL16_HIGHESTA:
15978 case R_PPC64_DTPREL34:
15979 if (htab->elf.tls_sec != NULL)
15980 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15981 break;
15982
15983 case R_PPC64_ADDR64_LOCAL:
15984 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
15985 ? h->elf.other
15986 : sym->st_other);
15987 break;
15988
15989 case R_PPC64_DTPMOD64:
15990 relocation = 1;
15991 addend = 0;
15992 goto dodyn;
15993
15994 case R_PPC64_TPREL64:
15995 if (htab->elf.tls_sec != NULL)
15996 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15997 goto dodyn;
15998
15999 case R_PPC64_DTPREL64:
16000 if (htab->elf.tls_sec != NULL)
16001 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16002 /* Fall through. */
16003
16004 /* Relocations that may need to be propagated if this is a
16005 dynamic object. */
16006 case R_PPC64_REL30:
16007 case R_PPC64_REL32:
16008 case R_PPC64_REL64:
16009 case R_PPC64_ADDR14:
16010 case R_PPC64_ADDR14_BRNTAKEN:
16011 case R_PPC64_ADDR14_BRTAKEN:
16012 case R_PPC64_ADDR16:
16013 case R_PPC64_ADDR16_DS:
16014 case R_PPC64_ADDR16_HA:
16015 case R_PPC64_ADDR16_HI:
16016 case R_PPC64_ADDR16_HIGH:
16017 case R_PPC64_ADDR16_HIGHA:
16018 case R_PPC64_ADDR16_HIGHER:
16019 case R_PPC64_ADDR16_HIGHERA:
16020 case R_PPC64_ADDR16_HIGHEST:
16021 case R_PPC64_ADDR16_HIGHESTA:
16022 case R_PPC64_ADDR16_LO:
16023 case R_PPC64_ADDR16_LO_DS:
16024 case R_PPC64_ADDR16_HIGHER34:
16025 case R_PPC64_ADDR16_HIGHERA34:
16026 case R_PPC64_ADDR16_HIGHEST34:
16027 case R_PPC64_ADDR16_HIGHESTA34:
16028 case R_PPC64_ADDR24:
16029 case R_PPC64_ADDR32:
16030 case R_PPC64_ADDR64:
16031 case R_PPC64_UADDR16:
16032 case R_PPC64_UADDR32:
16033 case R_PPC64_UADDR64:
16034 case R_PPC64_D34:
16035 case R_PPC64_D34_LO:
16036 case R_PPC64_D34_HI30:
16037 case R_PPC64_D34_HA30:
16038 case R_PPC64_D28:
16039 dodyn:
16040 if ((input_section->flags & SEC_ALLOC) == 0)
16041 break;
16042
16043 if (NO_OPD_RELOCS && is_opd)
16044 break;
16045
16046 if (bfd_link_pic (info)
16047 ? ((h == NULL
16048 || h->dyn_relocs != NULL)
16049 && ((h != NULL && pc_dynrelocs (h))
16050 || must_be_dyn_reloc (info, r_type)))
16051 : (h != NULL
16052 ? h->dyn_relocs != NULL
16053 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16054 {
16055 bfd_boolean skip, relocate;
16056 asection *sreloc;
16057 bfd_vma out_off;
16058 long indx = 0;
16059
16060 /* When generating a dynamic object, these relocations
16061 are copied into the output file to be resolved at run
16062 time. */
16063
16064 skip = FALSE;
16065 relocate = FALSE;
16066
16067 out_off = _bfd_elf_section_offset (output_bfd, info,
16068 input_section, rel->r_offset);
16069 if (out_off == (bfd_vma) -1)
16070 skip = TRUE;
16071 else if (out_off == (bfd_vma) -2)
16072 skip = TRUE, relocate = TRUE;
16073 out_off += (input_section->output_section->vma
16074 + input_section->output_offset);
16075 outrel.r_offset = out_off;
16076 outrel.r_addend = rel->r_addend;
16077
16078 /* Optimize unaligned reloc use. */
16079 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16080 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16081 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16082 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16083 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16084 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16085 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16086 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16087 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16088
16089 if (skip)
16090 memset (&outrel, 0, sizeof outrel);
16091 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16092 && !is_opd
16093 && r_type != R_PPC64_TOC)
16094 {
16095 indx = h->elf.dynindx;
16096 BFD_ASSERT (indx != -1);
16097 outrel.r_info = ELF64_R_INFO (indx, r_type);
16098 }
16099 else
16100 {
16101 /* This symbol is local, or marked to become local,
16102 or this is an opd section reloc which must point
16103 at a local function. */
16104 outrel.r_addend += relocation;
16105 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16106 {
16107 if (is_opd && h != NULL)
16108 {
16109 /* Lie about opd entries. This case occurs
16110 when building shared libraries and we
16111 reference a function in another shared
16112 lib. The same thing happens for a weak
16113 definition in an application that's
16114 overridden by a strong definition in a
16115 shared lib. (I believe this is a generic
16116 bug in binutils handling of weak syms.)
16117 In these cases we won't use the opd
16118 entry in this lib. */
16119 unresolved_reloc = FALSE;
16120 }
16121 if (!is_opd
16122 && r_type == R_PPC64_ADDR64
16123 && (h != NULL
16124 ? h->elf.type == STT_GNU_IFUNC
16125 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16126 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16127 else
16128 {
16129 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16130
16131 /* We need to relocate .opd contents for ld.so.
16132 Prelink also wants simple and consistent rules
16133 for relocs. This make all RELATIVE relocs have
16134 *r_offset equal to r_addend. */
16135 relocate = TRUE;
16136 }
16137 }
16138 else
16139 {
16140 if (h != NULL
16141 ? h->elf.type == STT_GNU_IFUNC
16142 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16143 {
16144 info->callbacks->einfo
16145 /* xgettext:c-format */
16146 (_("%H: %s for indirect "
16147 "function `%pT' unsupported\n"),
16148 input_bfd, input_section, rel->r_offset,
16149 ppc64_elf_howto_table[r_type]->name,
16150 sym_name);
16151 ret = FALSE;
16152 }
16153 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16154 ;
16155 else if (sec == NULL || sec->owner == NULL)
16156 {
16157 bfd_set_error (bfd_error_bad_value);
16158 return FALSE;
16159 }
16160 else
16161 {
16162 asection *osec = sec->output_section;
16163
16164 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16165 {
16166 /* TLS symbol values are relative to the
16167 TLS segment. Dynamic relocations for
16168 local TLS symbols therefore can't be
16169 reduced to a relocation against their
16170 section symbol because it holds the
16171 address of the section, not a value
16172 relative to the TLS segment. We could
16173 change the .tdata dynamic section symbol
16174 to be zero value but STN_UNDEF works
16175 and is used elsewhere, eg. for TPREL64
16176 GOT relocs against local TLS symbols. */
16177 osec = htab->elf.tls_sec;
16178 indx = 0;
16179 }
16180 else
16181 {
16182 indx = elf_section_data (osec)->dynindx;
16183 if (indx == 0)
16184 {
16185 if ((osec->flags & SEC_READONLY) == 0
16186 && htab->elf.data_index_section != NULL)
16187 osec = htab->elf.data_index_section;
16188 else
16189 osec = htab->elf.text_index_section;
16190 indx = elf_section_data (osec)->dynindx;
16191 }
16192 BFD_ASSERT (indx != 0);
16193 }
16194
16195 /* We are turning this relocation into one
16196 against a section symbol, so subtract out
16197 the output section's address but not the
16198 offset of the input section in the output
16199 section. */
16200 outrel.r_addend -= osec->vma;
16201 }
16202
16203 outrel.r_info = ELF64_R_INFO (indx, r_type);
16204 }
16205 }
16206
16207 sreloc = elf_section_data (input_section)->sreloc;
16208 if (h != NULL
16209 ? h->elf.type == STT_GNU_IFUNC
16210 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16211 {
16212 sreloc = htab->elf.irelplt;
16213 if (indx == 0)
16214 htab->local_ifunc_resolver = 1;
16215 else if (is_static_defined (&h->elf))
16216 htab->maybe_local_ifunc_resolver = 1;
16217 }
16218 if (sreloc == NULL)
16219 abort ();
16220
16221 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16222 >= sreloc->size)
16223 abort ();
16224 loc = sreloc->contents;
16225 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16226 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16227
16228 if (!warned_dynamic
16229 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16230 {
16231 info->callbacks->einfo
16232 /* xgettext:c-format */
16233 (_("%X%P: %pB: %s against %pT "
16234 "is not supported by glibc as a dynamic relocation\n"),
16235 input_bfd,
16236 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16237 sym_name);
16238 warned_dynamic = TRUE;
16239 }
16240
16241 /* If this reloc is against an external symbol, it will
16242 be computed at runtime, so there's no need to do
16243 anything now. However, for the sake of prelink ensure
16244 that the section contents are a known value. */
16245 if (!relocate)
16246 {
16247 unresolved_reloc = FALSE;
16248 /* The value chosen here is quite arbitrary as ld.so
16249 ignores section contents except for the special
16250 case of .opd where the contents might be accessed
16251 before relocation. Choose zero, as that won't
16252 cause reloc overflow. */
16253 relocation = 0;
16254 addend = 0;
16255 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16256 to improve backward compatibility with older
16257 versions of ld. */
16258 if (r_type == R_PPC64_ADDR64)
16259 addend = outrel.r_addend;
16260 /* Adjust pc_relative relocs to have zero in *r_offset. */
16261 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16262 addend = outrel.r_offset;
16263 }
16264 }
16265 break;
16266
16267 case R_PPC64_COPY:
16268 case R_PPC64_GLOB_DAT:
16269 case R_PPC64_JMP_SLOT:
16270 case R_PPC64_JMP_IREL:
16271 case R_PPC64_RELATIVE:
16272 /* We shouldn't ever see these dynamic relocs in relocatable
16273 files. */
16274 /* Fall through. */
16275
16276 case R_PPC64_PLTGOT16:
16277 case R_PPC64_PLTGOT16_DS:
16278 case R_PPC64_PLTGOT16_HA:
16279 case R_PPC64_PLTGOT16_HI:
16280 case R_PPC64_PLTGOT16_LO:
16281 case R_PPC64_PLTGOT16_LO_DS:
16282 case R_PPC64_PLTREL32:
16283 case R_PPC64_PLTREL64:
16284 /* These ones haven't been implemented yet. */
16285
16286 info->callbacks->einfo
16287 /* xgettext:c-format */
16288 (_("%P: %pB: %s is not supported for `%pT'\n"),
16289 input_bfd,
16290 ppc64_elf_howto_table[r_type]->name, sym_name);
16291
16292 bfd_set_error (bfd_error_invalid_operation);
16293 ret = FALSE;
16294 goto copy_reloc;
16295 }
16296
16297 /* Multi-instruction sequences that access the TOC can be
16298 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16299 to nop; addi rb,r2,x; */
16300 switch (r_type)
16301 {
16302 default:
16303 break;
16304
16305 case R_PPC64_GOT_TLSLD16_HI:
16306 case R_PPC64_GOT_TLSGD16_HI:
16307 case R_PPC64_GOT_TPREL16_HI:
16308 case R_PPC64_GOT_DTPREL16_HI:
16309 case R_PPC64_GOT16_HI:
16310 case R_PPC64_TOC16_HI:
16311 /* These relocs would only be useful if building up an
16312 offset to later add to r2, perhaps in an indexed
16313 addressing mode instruction. Don't try to optimize.
16314 Unfortunately, the possibility of someone building up an
16315 offset like this or even with the HA relocs, means that
16316 we need to check the high insn when optimizing the low
16317 insn. */
16318 break;
16319
16320 case R_PPC64_PLTCALL_NOTOC:
16321 if (!unresolved_reloc)
16322 htab->notoc_plt = 1;
16323 /* Fall through. */
16324 case R_PPC64_PLTCALL:
16325 if (unresolved_reloc)
16326 {
16327 /* No plt entry. Make this into a direct call. */
16328 bfd_byte *p = contents + rel->r_offset;
16329 insn = bfd_get_32 (input_bfd, p);
16330 insn &= 1;
16331 bfd_put_32 (input_bfd, B_DOT | insn, p);
16332 if (r_type == R_PPC64_PLTCALL)
16333 bfd_put_32 (input_bfd, NOP, p + 4);
16334 unresolved_reloc = save_unresolved_reloc;
16335 r_type = R_PPC64_REL24;
16336 }
16337 break;
16338
16339 case R_PPC64_PLTSEQ_NOTOC:
16340 case R_PPC64_PLTSEQ:
16341 if (unresolved_reloc)
16342 {
16343 unresolved_reloc = FALSE;
16344 goto nop_it;
16345 }
16346 break;
16347
16348 case R_PPC64_PLT_PCREL34_NOTOC:
16349 if (!unresolved_reloc)
16350 htab->notoc_plt = 1;
16351 /* Fall through. */
16352 case R_PPC64_PLT_PCREL34:
16353 if (unresolved_reloc)
16354 {
16355 bfd_byte *p = contents + rel->r_offset;
16356 bfd_put_32 (input_bfd, PNOP >> 32, p);
16357 bfd_put_32 (input_bfd, PNOP, p + 4);
16358 unresolved_reloc = FALSE;
16359 goto copy_reloc;
16360 }
16361 break;
16362
16363 case R_PPC64_PLT16_HA:
16364 if (unresolved_reloc)
16365 {
16366 unresolved_reloc = FALSE;
16367 goto nop_it;
16368 }
16369 /* Fall through. */
16370 case R_PPC64_GOT_TLSLD16_HA:
16371 case R_PPC64_GOT_TLSGD16_HA:
16372 case R_PPC64_GOT_TPREL16_HA:
16373 case R_PPC64_GOT_DTPREL16_HA:
16374 case R_PPC64_GOT16_HA:
16375 case R_PPC64_TOC16_HA:
16376 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16377 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16378 {
16379 bfd_byte *p;
16380 nop_it:
16381 p = contents + (rel->r_offset & ~3);
16382 bfd_put_32 (input_bfd, NOP, p);
16383 goto copy_reloc;
16384 }
16385 break;
16386
16387 case R_PPC64_PLT16_LO:
16388 case R_PPC64_PLT16_LO_DS:
16389 if (unresolved_reloc)
16390 {
16391 unresolved_reloc = FALSE;
16392 goto nop_it;
16393 }
16394 /* Fall through. */
16395 case R_PPC64_GOT_TLSLD16_LO:
16396 case R_PPC64_GOT_TLSGD16_LO:
16397 case R_PPC64_GOT_TPREL16_LO_DS:
16398 case R_PPC64_GOT_DTPREL16_LO_DS:
16399 case R_PPC64_GOT16_LO:
16400 case R_PPC64_GOT16_LO_DS:
16401 case R_PPC64_TOC16_LO:
16402 case R_PPC64_TOC16_LO_DS:
16403 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16404 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16405 {
16406 bfd_byte *p = contents + (rel->r_offset & ~3);
16407 insn = bfd_get_32 (input_bfd, p);
16408 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
16409 {
16410 /* Transform addic to addi when we change reg. */
16411 insn &= ~((0x3f << 26) | (0x1f << 16));
16412 insn |= (14u << 26) | (2 << 16);
16413 }
16414 else
16415 {
16416 insn &= ~(0x1f << 16);
16417 insn |= 2 << 16;
16418 }
16419 bfd_put_32 (input_bfd, insn, p);
16420 }
16421 break;
16422
16423 case R_PPC64_TPREL16_HA:
16424 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16425 {
16426 bfd_byte *p = contents + (rel->r_offset & ~3);
16427 insn = bfd_get_32 (input_bfd, p);
16428 if ((insn & ((0x3f << 26) | 0x1f << 16))
16429 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16430 /* xgettext:c-format */
16431 info->callbacks->minfo
16432 (_("%H: warning: %s unexpected insn %#x.\n"),
16433 input_bfd, input_section, rel->r_offset,
16434 ppc64_elf_howto_table[r_type]->name, insn);
16435 else
16436 {
16437 bfd_put_32 (input_bfd, NOP, p);
16438 goto copy_reloc;
16439 }
16440 }
16441 break;
16442
16443 case R_PPC64_TPREL16_LO:
16444 case R_PPC64_TPREL16_LO_DS:
16445 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16446 {
16447 bfd_byte *p = contents + (rel->r_offset & ~3);
16448 insn = bfd_get_32 (input_bfd, p);
16449 insn &= ~(0x1f << 16);
16450 insn |= 13 << 16;
16451 bfd_put_32 (input_bfd, insn, p);
16452 }
16453 break;
16454 }
16455
16456 /* Do any further special processing. */
16457 switch (r_type)
16458 {
16459 default:
16460 break;
16461
16462 case R_PPC64_REL16_HA:
16463 case R_PPC64_REL16_HIGHA:
16464 case R_PPC64_REL16_HIGHERA:
16465 case R_PPC64_REL16_HIGHESTA:
16466 case R_PPC64_REL16DX_HA:
16467 case R_PPC64_ADDR16_HA:
16468 case R_PPC64_ADDR16_HIGHA:
16469 case R_PPC64_ADDR16_HIGHERA:
16470 case R_PPC64_ADDR16_HIGHESTA:
16471 case R_PPC64_TOC16_HA:
16472 case R_PPC64_SECTOFF_HA:
16473 case R_PPC64_TPREL16_HA:
16474 case R_PPC64_TPREL16_HIGHA:
16475 case R_PPC64_TPREL16_HIGHERA:
16476 case R_PPC64_TPREL16_HIGHESTA:
16477 case R_PPC64_DTPREL16_HA:
16478 case R_PPC64_DTPREL16_HIGHA:
16479 case R_PPC64_DTPREL16_HIGHERA:
16480 case R_PPC64_DTPREL16_HIGHESTA:
16481 /* It's just possible that this symbol is a weak symbol
16482 that's not actually defined anywhere. In that case,
16483 'sec' would be NULL, and we should leave the symbol
16484 alone (it will be set to zero elsewhere in the link). */
16485 if (sec == NULL)
16486 break;
16487 /* Fall through. */
16488
16489 case R_PPC64_GOT16_HA:
16490 case R_PPC64_PLTGOT16_HA:
16491 case R_PPC64_PLT16_HA:
16492 case R_PPC64_GOT_TLSGD16_HA:
16493 case R_PPC64_GOT_TLSLD16_HA:
16494 case R_PPC64_GOT_TPREL16_HA:
16495 case R_PPC64_GOT_DTPREL16_HA:
16496 /* Add 0x10000 if sign bit in 0:15 is set.
16497 Bits 0:15 are not used. */
16498 addend += 0x8000;
16499 break;
16500
16501 case R_PPC64_D34_HA30:
16502 case R_PPC64_ADDR16_HIGHERA34:
16503 case R_PPC64_ADDR16_HIGHESTA34:
16504 case R_PPC64_REL16_HIGHERA34:
16505 case R_PPC64_REL16_HIGHESTA34:
16506 if (sec != NULL)
16507 addend += 1ULL << 33;
16508 break;
16509
16510 case R_PPC64_ADDR16_DS:
16511 case R_PPC64_ADDR16_LO_DS:
16512 case R_PPC64_GOT16_DS:
16513 case R_PPC64_GOT16_LO_DS:
16514 case R_PPC64_PLT16_LO_DS:
16515 case R_PPC64_SECTOFF_DS:
16516 case R_PPC64_SECTOFF_LO_DS:
16517 case R_PPC64_TOC16_DS:
16518 case R_PPC64_TOC16_LO_DS:
16519 case R_PPC64_PLTGOT16_DS:
16520 case R_PPC64_PLTGOT16_LO_DS:
16521 case R_PPC64_GOT_TPREL16_DS:
16522 case R_PPC64_GOT_TPREL16_LO_DS:
16523 case R_PPC64_GOT_DTPREL16_DS:
16524 case R_PPC64_GOT_DTPREL16_LO_DS:
16525 case R_PPC64_TPREL16_DS:
16526 case R_PPC64_TPREL16_LO_DS:
16527 case R_PPC64_DTPREL16_DS:
16528 case R_PPC64_DTPREL16_LO_DS:
16529 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16530 mask = 3;
16531 /* If this reloc is against an lq, lxv, or stxv insn, then
16532 the value must be a multiple of 16. This is somewhat of
16533 a hack, but the "correct" way to do this by defining _DQ
16534 forms of all the _DS relocs bloats all reloc switches in
16535 this file. It doesn't make much sense to use these
16536 relocs in data, so testing the insn should be safe. */
16537 if ((insn & (0x3f << 26)) == (56u << 26)
16538 || ((insn & (0x3f << 26)) == (61u << 26) && (insn & 3) == 1))
16539 mask = 15;
16540 relocation += addend;
16541 addend = insn & (mask ^ 3);
16542 if ((relocation & mask) != 0)
16543 {
16544 relocation ^= relocation & mask;
16545 info->callbacks->einfo
16546 /* xgettext:c-format */
16547 (_("%H: error: %s not a multiple of %u\n"),
16548 input_bfd, input_section, rel->r_offset,
16549 ppc64_elf_howto_table[r_type]->name,
16550 mask + 1);
16551 bfd_set_error (bfd_error_bad_value);
16552 ret = FALSE;
16553 goto copy_reloc;
16554 }
16555 break;
16556 }
16557
16558 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
16559 because such sections are not SEC_ALLOC and thus ld.so will
16560 not process them. */
16561 howto = ppc64_elf_howto_table[(int) r_type];
16562 if (unresolved_reloc
16563 && !((input_section->flags & SEC_DEBUGGING) != 0
16564 && h->elf.def_dynamic)
16565 && _bfd_elf_section_offset (output_bfd, info, input_section,
16566 rel->r_offset) != (bfd_vma) -1)
16567 {
16568 info->callbacks->einfo
16569 /* xgettext:c-format */
16570 (_("%H: unresolvable %s against `%pT'\n"),
16571 input_bfd, input_section, rel->r_offset,
16572 howto->name,
16573 h->elf.root.root.string);
16574 ret = FALSE;
16575 }
16576
16577 /* 16-bit fields in insns mostly have signed values, but a
16578 few insns have 16-bit unsigned values. Really, we should
16579 have different reloc types. */
16580 if (howto->complain_on_overflow != complain_overflow_dont
16581 && howto->dst_mask == 0xffff
16582 && (input_section->flags & SEC_CODE) != 0)
16583 {
16584 enum complain_overflow complain = complain_overflow_signed;
16585
16586 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16587 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
16588 complain = complain_overflow_bitfield;
16589 else if (howto->rightshift == 0
16590 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
16591 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
16592 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
16593 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
16594 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
16595 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
16596 complain = complain_overflow_unsigned;
16597 if (howto->complain_on_overflow != complain)
16598 {
16599 alt_howto = *howto;
16600 alt_howto.complain_on_overflow = complain;
16601 howto = &alt_howto;
16602 }
16603 }
16604
16605 switch (r_type)
16606 {
16607 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
16608 case R_PPC64_D34:
16609 case R_PPC64_D34_LO:
16610 case R_PPC64_D34_HI30:
16611 case R_PPC64_D34_HA30:
16612 case R_PPC64_PCREL34:
16613 case R_PPC64_GOT_PCREL34:
16614 case R_PPC64_TPREL34:
16615 case R_PPC64_DTPREL34:
16616 case R_PPC64_GOT_TLSGD34:
16617 case R_PPC64_GOT_TLSLD34:
16618 case R_PPC64_GOT_TPREL34:
16619 case R_PPC64_GOT_DTPREL34:
16620 case R_PPC64_PLT_PCREL34:
16621 case R_PPC64_PLT_PCREL34_NOTOC:
16622 case R_PPC64_D28:
16623 case R_PPC64_PCREL28:
16624 if (rel->r_offset + 8 > input_section->size)
16625 r = bfd_reloc_outofrange;
16626 else
16627 {
16628 relocation += addend;
16629 if (howto->pc_relative)
16630 relocation -= (rel->r_offset
16631 + input_section->output_offset
16632 + input_section->output_section->vma);
16633 relocation >>= howto->rightshift;
16634
16635 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16636 pinsn <<= 32;
16637 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
16638
16639 pinsn &= ~howto->dst_mask;
16640 pinsn |= (((relocation << 16) | (relocation & 0xffff))
16641 & howto->dst_mask);
16642 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
16643 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
16644 r = bfd_reloc_ok;
16645 if (howto->complain_on_overflow == complain_overflow_signed
16646 && (relocation + (1ULL << (howto->bitsize - 1))
16647 >= 1ULL << howto->bitsize))
16648 r = bfd_reloc_overflow;
16649 }
16650 break;
16651
16652 case R_PPC64_REL16DX_HA:
16653 if (rel->r_offset + 4 > input_section->size)
16654 r = bfd_reloc_outofrange;
16655 else
16656 {
16657 relocation += addend;
16658 relocation -= (rel->r_offset
16659 + input_section->output_offset
16660 + input_section->output_section->vma);
16661 relocation = (bfd_signed_vma) relocation >> 16;
16662 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16663 insn &= ~0x1fffc1;
16664 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
16665 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16666 r = bfd_reloc_ok;
16667 if (relocation + 0x8000 > 0xffff)
16668 r = bfd_reloc_overflow;
16669 }
16670 break;
16671
16672 default:
16673 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
16674 contents, rel->r_offset,
16675 relocation, addend);
16676 }
16677
16678 if (r != bfd_reloc_ok)
16679 {
16680 char *more_info = NULL;
16681 const char *reloc_name = howto->name;
16682
16683 if (reloc_dest != DEST_NORMAL)
16684 {
16685 more_info = bfd_malloc (strlen (reloc_name) + 8);
16686 if (more_info != NULL)
16687 {
16688 strcpy (more_info, reloc_name);
16689 strcat (more_info, (reloc_dest == DEST_OPD
16690 ? " (OPD)" : " (stub)"));
16691 reloc_name = more_info;
16692 }
16693 }
16694
16695 if (r == bfd_reloc_overflow)
16696 {
16697 /* On code like "if (foo) foo();" don't report overflow
16698 on a branch to zero when foo is undefined. */
16699 if (!warned
16700 && (reloc_dest == DEST_STUB
16701 || !(h != NULL
16702 && (h->elf.root.type == bfd_link_hash_undefweak
16703 || h->elf.root.type == bfd_link_hash_undefined)
16704 && is_branch_reloc (r_type))))
16705 info->callbacks->reloc_overflow (info, &h->elf.root,
16706 sym_name, reloc_name,
16707 orig_rel.r_addend,
16708 input_bfd, input_section,
16709 rel->r_offset);
16710 }
16711 else
16712 {
16713 info->callbacks->einfo
16714 /* xgettext:c-format */
16715 (_("%H: %s against `%pT': error %d\n"),
16716 input_bfd, input_section, rel->r_offset,
16717 reloc_name, sym_name, (int) r);
16718 ret = FALSE;
16719 }
16720 if (more_info != NULL)
16721 free (more_info);
16722 }
16723 copy_reloc:
16724 if (wrel != rel)
16725 *wrel = *rel;
16726 }
16727
16728 if (wrel != rel)
16729 {
16730 Elf_Internal_Shdr *rel_hdr;
16731 size_t deleted = rel - wrel;
16732
16733 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
16734 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16735 if (rel_hdr->sh_size == 0)
16736 {
16737 /* It is too late to remove an empty reloc section. Leave
16738 one NONE reloc.
16739 ??? What is wrong with an empty section??? */
16740 rel_hdr->sh_size = rel_hdr->sh_entsize;
16741 deleted -= 1;
16742 }
16743 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
16744 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16745 input_section->reloc_count -= deleted;
16746 }
16747
16748 /* If we're emitting relocations, then shortly after this function
16749 returns, reloc offsets and addends for this section will be
16750 adjusted. Worse, reloc symbol indices will be for the output
16751 file rather than the input. Save a copy of the relocs for
16752 opd_entry_value. */
16753 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
16754 {
16755 bfd_size_type amt;
16756 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
16757 rel = bfd_alloc (input_bfd, amt);
16758 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
16759 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
16760 if (rel == NULL)
16761 return FALSE;
16762 memcpy (rel, relocs, amt);
16763 }
16764 return ret;
16765 }
16766
16767 /* Adjust the value of any local symbols in opd sections. */
16768
16769 static int
16770 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
16771 const char *name ATTRIBUTE_UNUSED,
16772 Elf_Internal_Sym *elfsym,
16773 asection *input_sec,
16774 struct elf_link_hash_entry *h)
16775 {
16776 struct _opd_sec_data *opd;
16777 long adjust;
16778 bfd_vma value;
16779
16780 if (h != NULL)
16781 return 1;
16782
16783 opd = get_opd_info (input_sec);
16784 if (opd == NULL || opd->adjust == NULL)
16785 return 1;
16786
16787 value = elfsym->st_value - input_sec->output_offset;
16788 if (!bfd_link_relocatable (info))
16789 value -= input_sec->output_section->vma;
16790
16791 adjust = opd->adjust[OPD_NDX (value)];
16792 if (adjust == -1)
16793 return 2;
16794
16795 elfsym->st_value += adjust;
16796 return 1;
16797 }
16798
16799 /* Finish up dynamic symbol handling. We set the contents of various
16800 dynamic sections here. */
16801
16802 static bfd_boolean
16803 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
16804 struct bfd_link_info *info,
16805 struct elf_link_hash_entry *h,
16806 Elf_Internal_Sym *sym)
16807 {
16808 struct ppc_link_hash_table *htab;
16809 struct plt_entry *ent;
16810
16811 htab = ppc_hash_table (info);
16812 if (htab == NULL)
16813 return FALSE;
16814
16815 if (!htab->opd_abi && !h->def_regular)
16816 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
16817 if (ent->plt.offset != (bfd_vma) -1)
16818 {
16819 /* Mark the symbol as undefined, rather than as
16820 defined in glink. Leave the value if there were
16821 any relocations where pointer equality matters
16822 (this is a clue for the dynamic linker, to make
16823 function pointer comparisons work between an
16824 application and shared library), otherwise set it
16825 to zero. */
16826 sym->st_shndx = SHN_UNDEF;
16827 if (!h->pointer_equality_needed)
16828 sym->st_value = 0;
16829 else if (!h->ref_regular_nonweak)
16830 {
16831 /* This breaks function pointer comparisons, but
16832 that is better than breaking tests for a NULL
16833 function pointer. */
16834 sym->st_value = 0;
16835 }
16836 break;
16837 }
16838
16839 if (h->needs_copy
16840 && (h->root.type == bfd_link_hash_defined
16841 || h->root.type == bfd_link_hash_defweak)
16842 && (h->root.u.def.section == htab->elf.sdynbss
16843 || h->root.u.def.section == htab->elf.sdynrelro))
16844 {
16845 /* This symbol needs a copy reloc. Set it up. */
16846 Elf_Internal_Rela rela;
16847 asection *srel;
16848 bfd_byte *loc;
16849
16850 if (h->dynindx == -1)
16851 abort ();
16852
16853 rela.r_offset = (h->root.u.def.value
16854 + h->root.u.def.section->output_section->vma
16855 + h->root.u.def.section->output_offset);
16856 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
16857 rela.r_addend = 0;
16858 if (h->root.u.def.section == htab->elf.sdynrelro)
16859 srel = htab->elf.sreldynrelro;
16860 else
16861 srel = htab->elf.srelbss;
16862 loc = srel->contents;
16863 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
16864 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
16865 }
16866
16867 return TRUE;
16868 }
16869
16870 /* Used to decide how to sort relocs in an optimal manner for the
16871 dynamic linker, before writing them out. */
16872
16873 static enum elf_reloc_type_class
16874 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
16875 const asection *rel_sec,
16876 const Elf_Internal_Rela *rela)
16877 {
16878 enum elf_ppc64_reloc_type r_type;
16879 struct ppc_link_hash_table *htab = ppc_hash_table (info);
16880
16881 if (rel_sec == htab->elf.irelplt)
16882 return reloc_class_ifunc;
16883
16884 r_type = ELF64_R_TYPE (rela->r_info);
16885 switch (r_type)
16886 {
16887 case R_PPC64_RELATIVE:
16888 return reloc_class_relative;
16889 case R_PPC64_JMP_SLOT:
16890 return reloc_class_plt;
16891 case R_PPC64_COPY:
16892 return reloc_class_copy;
16893 default:
16894 return reloc_class_normal;
16895 }
16896 }
16897
16898 /* Finish up the dynamic sections. */
16899
16900 static bfd_boolean
16901 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
16902 struct bfd_link_info *info)
16903 {
16904 struct ppc_link_hash_table *htab;
16905 bfd *dynobj;
16906 asection *sdyn;
16907
16908 htab = ppc_hash_table (info);
16909 if (htab == NULL)
16910 return FALSE;
16911
16912 dynobj = htab->elf.dynobj;
16913 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16914
16915 if (htab->elf.dynamic_sections_created)
16916 {
16917 Elf64_External_Dyn *dyncon, *dynconend;
16918
16919 if (sdyn == NULL || htab->elf.sgot == NULL)
16920 abort ();
16921
16922 dyncon = (Elf64_External_Dyn *) sdyn->contents;
16923 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
16924 for (; dyncon < dynconend; dyncon++)
16925 {
16926 Elf_Internal_Dyn dyn;
16927 asection *s;
16928
16929 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
16930
16931 switch (dyn.d_tag)
16932 {
16933 default:
16934 continue;
16935
16936 case DT_PPC64_GLINK:
16937 s = htab->glink;
16938 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16939 /* We stupidly defined DT_PPC64_GLINK to be the start
16940 of glink rather than the first entry point, which is
16941 what ld.so needs, and now have a bigger stub to
16942 support automatic multiple TOCs. */
16943 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
16944 break;
16945
16946 case DT_PPC64_OPD:
16947 s = bfd_get_section_by_name (output_bfd, ".opd");
16948 if (s == NULL)
16949 continue;
16950 dyn.d_un.d_ptr = s->vma;
16951 break;
16952
16953 case DT_PPC64_OPT:
16954 if ((htab->do_multi_toc && htab->multi_toc_needed)
16955 || htab->notoc_plt)
16956 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
16957 if (htab->has_plt_localentry0)
16958 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
16959 break;
16960
16961 case DT_PPC64_OPDSZ:
16962 s = bfd_get_section_by_name (output_bfd, ".opd");
16963 if (s == NULL)
16964 continue;
16965 dyn.d_un.d_val = s->size;
16966 break;
16967
16968 case DT_PLTGOT:
16969 s = htab->elf.splt;
16970 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16971 break;
16972
16973 case DT_JMPREL:
16974 s = htab->elf.srelplt;
16975 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16976 break;
16977
16978 case DT_PLTRELSZ:
16979 dyn.d_un.d_val = htab->elf.srelplt->size;
16980 break;
16981
16982 case DT_TEXTREL:
16983 if (htab->local_ifunc_resolver)
16984 info->callbacks->einfo
16985 (_("%X%P: text relocations and GNU indirect "
16986 "functions will result in a segfault at runtime\n"));
16987 else if (htab->maybe_local_ifunc_resolver)
16988 info->callbacks->einfo
16989 (_("%P: warning: text relocations and GNU indirect "
16990 "functions may result in a segfault at runtime\n"));
16991 continue;
16992 }
16993
16994 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
16995 }
16996 }
16997
16998 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
16999 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17000 {
17001 /* Fill in the first entry in the global offset table.
17002 We use it to hold the link-time TOCbase. */
17003 bfd_put_64 (output_bfd,
17004 elf_gp (output_bfd) + TOC_BASE_OFF,
17005 htab->elf.sgot->contents);
17006
17007 /* Set .got entry size. */
17008 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17009 = 8;
17010 }
17011
17012 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17013 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17014 {
17015 /* Set .plt entry size. */
17016 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17017 = PLT_ENTRY_SIZE (htab);
17018 }
17019
17020 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17021 brlt ourselves if emitrelocations. */
17022 if (htab->brlt != NULL
17023 && htab->brlt->reloc_count != 0
17024 && !_bfd_elf_link_output_relocs (output_bfd,
17025 htab->brlt,
17026 elf_section_data (htab->brlt)->rela.hdr,
17027 elf_section_data (htab->brlt)->relocs,
17028 NULL))
17029 return FALSE;
17030
17031 if (htab->glink != NULL
17032 && htab->glink->reloc_count != 0
17033 && !_bfd_elf_link_output_relocs (output_bfd,
17034 htab->glink,
17035 elf_section_data (htab->glink)->rela.hdr,
17036 elf_section_data (htab->glink)->relocs,
17037 NULL))
17038 return FALSE;
17039
17040
17041 if (htab->glink_eh_frame != NULL
17042 && htab->glink_eh_frame->size != 0
17043 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17044 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17045 htab->glink_eh_frame,
17046 htab->glink_eh_frame->contents))
17047 return FALSE;
17048
17049 /* We need to handle writing out multiple GOT sections ourselves,
17050 since we didn't add them to DYNOBJ. We know dynobj is the first
17051 bfd. */
17052 while ((dynobj = dynobj->link.next) != NULL)
17053 {
17054 asection *s;
17055
17056 if (!is_ppc64_elf (dynobj))
17057 continue;
17058
17059 s = ppc64_elf_tdata (dynobj)->got;
17060 if (s != NULL
17061 && s->size != 0
17062 && s->output_section != bfd_abs_section_ptr
17063 && !bfd_set_section_contents (output_bfd, s->output_section,
17064 s->contents, s->output_offset,
17065 s->size))
17066 return FALSE;
17067 s = ppc64_elf_tdata (dynobj)->relgot;
17068 if (s != NULL
17069 && s->size != 0
17070 && s->output_section != bfd_abs_section_ptr
17071 && !bfd_set_section_contents (output_bfd, s->output_section,
17072 s->contents, s->output_offset,
17073 s->size))
17074 return FALSE;
17075 }
17076
17077 return TRUE;
17078 }
17079
17080 #include "elf64-target.h"
17081
17082 /* FreeBSD support */
17083
17084 #undef TARGET_LITTLE_SYM
17085 #undef TARGET_LITTLE_NAME
17086
17087 #undef TARGET_BIG_SYM
17088 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17089 #undef TARGET_BIG_NAME
17090 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17091
17092 #undef ELF_OSABI
17093 #define ELF_OSABI ELFOSABI_FREEBSD
17094
17095 #undef elf64_bed
17096 #define elf64_bed elf64_powerpc_fbsd_bed
17097
17098 #include "elf64-target.h"